General Request for Proposals - Research in Sustainable Solid Waste Management

The sustainability movement has reached the business models of nearly every industry in the United States, and many companies, municipalities and states have set aggressive sustainability goals that include how waste stream are being managed.  The EREF Board of Directors has set an initiative to ensure research funded reflects EREF’s long-term strategic plan to address all areas of integrated solid waste management, with a strong focus towards research that increased sustainable solid waste management practices.

EREF is an IRS 501(c)(3) non-profit organization and is one of the largest sources of funding for solid waste research in North America.  EREF is not affiliated with any other entity or group and governed by a duly elected Board of Directors.  The Board of Directors is the decision-making body that has responsibility for establishing policies that define program interests and fundamental objectives to be served by the Foundation.

EREF has two deadlines per year for pre-proposals: December 1; May 1

Pre-proposal topics must relate to sustainable solid waste management practices and pertain to the following topic areas:

  • Waste minimization
  • Waste-to-energy
  • Anaerobic digestion
  • Other thermal or biological conversion technologies
  • Strategies to promote diversion to higher and better uses (e.g. organics diversion, market analysis, optimized material management, logistics, etc.)
  • Landfilling

Previously awarded grants have ranged from $15,000 to over $500,000 with the average grant being amount being $160,000.

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Springer Nature - PMC COVID-19 Collection
  • PMC10120487

Logo of phenaturepg

Circularity in waste management: a research proposal to achieve the 2030 Agenda

Rocío gonzález-sánchez.

Department of Business Administration (ADO), Applied Economics II and Fundaments of Economic Analysis, Rey-Juan-Carlos University, Madrid, Spain

Sara Alonso-Muñoz

María sonia medina-salgado, associated data.

Data was retrieved from Web of Sciences database.

Waste management is the main challenge in the transition away from the linear "take-make-dispose" economy. Incorporating the principles of circularity in waste management would facilitate the achievement of Sustainable Development Goals. This paper aims to provide state-of-the-art research about circular waste management in the fulfillment of the 2030 Agenda. For this purpose, bibliometric analysis by VOSviewer and SciMat software is used to define the evolution and to detect research trends. Based on the main gaps identified in studies, a research agenda to guide for further opportunities in this field is suggested. The results obtained four clusters that address sustainable industrial infrastructure, biological waste management, recycling in developing countries and recovery processes. Four research propositions are established, focusing on plastic waste management and generation trends, circular municipal waste management, more sustainable landfill management, and enablers such as indicators and legislation. The transformation towards more bio and ecological models requires social, regulatory and organizational tools that consider the best interests and capacity of companies, public authorities and consumers. In addition, policy implications are considered.

Introduction

Circular economy (CE) is a regenerative and restorative system, which allows the conservation of the value of raw materials by breaking with the concept of end-of-life of products, minimizing waste and emissions and increasing efficiency, through recycling, reusing, and remanufacturing, among others (Ellen MacArthur Foundation 2017 ). This paradigm represents a further step towards sustainability supported by its three fundamental pillars—economic, environmental and social sustainability (Muñoz-Torres et al. 2018 ). The circular system is based on the principle of material balance, seeking regeneration of natural systems, which implies the minimisation of waste and pollution. In this way, changes already begin to emerge in the design phase (Foschi et al. 2021 ) and go beyond the production system, reaching the development of new patterns of consumption and use by maintaining or reusing products and materials (Vanapalli et al. 2021 ). From an environmental economics point of view, it implies that all material or waste streams must be considered (Andersen 2007 ). Products have a longer lifetime, new applications and are reintroduced into the production system, closing the loop. The social aspect is fundamental to this, and coordination and cooperation with suppliers and customers must be facilitated (Martín Martín et al. 2022 ). In addition, making this new paradigm shift requires a new behavioural and cultural framework.

Waste management involves the transportation, collection, processing, disposal or recycling of waste materials, originating from industries, manufacturing processes and municipal solid waste. This process or system presents one of the main challenges in the transition towards circular business models (Smol et al. 2020 ). CE involves a waste management system that combines changes in the entire supply chain (Johansen et al. 2022 ), from designers and choice of materials to operators and recycling issues (Salmenpera et al. 2021 ).

Circular waste management comprises both the reduction in the generation of residual and household waste, but also the reintroduction of these wastes back into the production system. This reduction is achieved through the eco-design of products, by reducing waste generated in transport, by conserving material value through recycling and by achieving a longer lifetime of products (Salmenpera et al. 2021 ). Once the waste has been generated, it must be incorporated into the production system from the CE, either by using parts or as a source of energy through the reintroduction of biological waste, thus closing the material flow cycle (Zeller et al. 2019 ).

Although interest in waste management research, applying the principles of circularity, is growing, it is necessary to know state-of-the-art research trends in this area. Previous bibliometric or analytical method studies have analysed the relationship between “circularity and “waste” or “waste management” but from a different perspective to the research conducted. Recent studies have provided a qualitative view of the relationship but from very specific aspects -considering a type of waste, a geographical area or time period or one of the dimensions of sustainability-. Some research focuses on one type of waste such as Tsai et al. ( 2020 ) who analyse the link between municipal solid waste and the circular economy or Sundar et al. ( 2023 ) who examine e-waste. Ranjbari et al. ( 2021 ) examines the application of circularity in waste management, including the “closed loop” concept, up to 2020. Circular economy and closed-loop material cycles are deeply connected; however, the concept of closed-loop material cycles arose with the beginning of industrialization (Kara et al. 2022 ). Negrete‑Cardoso et al. ( 2022 ) considers “circular economy” to be related to “waste” and its impact on the post-Covid period. Chioatto and Sospiro ( 2023 ) discuss European economic policy issues that have promoted waste management from a circularity perspective. From a systematic literature review approach Di Vaio et al. ( 2023 ) analyse the accountability and management accounting practices of waste management related to the circular economy.

Our study presents three differentiating contributions with respect to previous studies. Firstly, we focused specifically on “circular economy” and “waste management” from a holistic perspective considering environmental, economic and social aspects. Secondly, by considering the year 2021 in the period under study, this includes one of the years with the most research on the effect of COVID-19 on waste management. The unprecedented increase of waste generated by this pandemic requires further research to enable the construction of a comprehensive circular economy model (Ranjbari et al. 2023 ). Thirdly, we established a relationship between our results and their contribution to the fulfilment of the 2030 Agenda. Although previous work has recognised the contribution of circular waste management to the 2030 Agenda (Di Vaio et al. 2023 ), a full analysis of the contribution of research by specific targets has not been carried out. Further than considering the main topics of the 2030 Agenda in the different clusters obtained, this paper establishes the relationship between the Sustainable Global Goals (SDGs) associated with waste management and the different research streams found.

The purpose of this study is to provide state-of-the-art research on the relationship between circular economy and waste management. This bibliometric analysis examines the historical evolution of research and identifies trending themes to uncover the conceptual building blocks of this field. Moreover, is setting out a research agenda about future opportunities for practitioners, policymakers, and researchers. This paper contributes to filling the existing gap on scientific literature for guiding research in the implementation of circular waste management, which is fundamental to achieving the goals outlined in the 2030 Agenda. Hence, considering the current scientific literature, we propose the following research questions:

  • RQ1. How does the scientific literature structure on waste management and circular economy align with the 2030 Agenda?
  • RQ2. What are the central topics and patterns within this research field?
  • RQ3. What are the main research trend topics in the domain?
  • RQ4. What is the research proposal on the relationship between circular waste management and the 2030 Agenda?

The paper is divided as follows: following the introduction, the literature overiew on waste management and 2030 Agenda is covered, then the methodology section is presented, describing the different phases of the process. The bibliometric results are exposed as productivity measures, considering the historical evolution of documents published in the field of waste management and circular economy and the most representative journals by authors sorted by institution, country, number of documents published and total citations. Through co-occurrence analysis, using VOSviewer software and SciMat software which displays strategic diagrams and clusters with the main motor, research topic trends in the field were identified whether basic, emerging or disappearing, and developed or isolated themes. Finally, discussions and conclusions within a research agenda are presented.

Waste management and Sustainable Development Goals

Waste generation has increased significantly in recent years in relation to consumer patterns, activities and lifestyles. Therefore, waste management is of great environmental value (Martín Martín et al. 2022 ). Inappropriate waste generation has negative environmental, social and economic impacts in terms of damage to biodiversity and pollution, human health problems and the costs involved, respectively. Coping with the costs of environmental and social impacts must be considered worse than developing new and more efficient waste management systems (Sharma et al. 2021 ). To reduce these negative effects, the introduction of sustainable and circular issues to manage waste generation, and the collection of waste throughout the life cycle of products is required (Tsai et al. 2021 ). This need has been accentuated by recent crises in areas such as health, safety and energy during 2021 and 2022 (Vanapalli et al. 2021 ; Gatto 2022 ; Mišík 2022 ). However, these adverse historical events provide an opportunity for reflection, forcing governments and businesses to promote long overdue energy and ecological transition policies and practices (Gatto 2022 ; Mišík 2022 ). Given the need to consolidate this trend, the implementation of circularity enhances sustainability and requires a new vision in waste management (Minoja and Romano 2021 ).

In 2015 the United Nations adopted Agenda 2030 as a roadmap to achieving higher levels of sustainability, striving towards satisfying its 17 Sustainable Development Goals (SDGs) with the commitment of public actors, industry and society (Schulze et al. 2022 ). Several theories have been used in the literature to analyse these SDGs. Resource-based theory regarding natural resources is widely studied to examine waste practices that protect the environment (Agyabeng-Mensah et al. 2021 ). Due to the environmental impacts, some of the theories focus on pro-environmental attitudes and behaviour, such as social-practice theory (Munir 2022 ) and the theory of planned behaviour (Goh and Jie 2019 ). Regarding the association between SDGs and supply chains, a redesign towards sustainable practices is required. Transactions and economics theory have highlighted the need for changes to the decision-making process during production cycle stages to achieve sustainability goals. In addition, stakeholder and agency theories enable the achievement of SDGs, since both the collaboration and the alignment of interests in fulfilling the 2030 Agenda are required (Agrawal et al. 2022 ).

The relationship between waste management and the 2030 Agenda is closely linked, as it affects many SDGs. It is therefore essential that this relationship be studied. According to SDG 2, the listed items of: ‘end hunger, achieve food security, improved nutrition and promote sustainable agriculture’ require, among other factors, the minimisation of food loss and food waste to achieve efficient and sustainable agricultural production. Similarly, factors such as increasing food availability or achieving more resilient food systems would facilitate this goal (Wieben 2016 ). SDG 3, ‘Ensure healthy lives and promote well-being for all at all ages’, in order to reduce illness linked to water, pollution and hazardous chemicals by means of smart waste management (Fatimah et al. 2020 ). SDG 6 ‘ensure access to water and sanitation for all’ aims to reduce the percentage of untreated wastewater and increase recycling and reuse (Tortajada 2020 ). SDG 7 ‘ensure access to affordable, reliable, sustainable and modern energy’ proposes increasing the use of renewable energy and facilitating access to research on clean energy, including renewable sources (Taifouris and Martín 2023 ). SDG 9 ‘build resilient infrastructure, promote sustainable industrialisation and foster innovation’ advocates for the modernisation and conversion of industries towards cleaner and more sustainable models as they are required to use resources more efficiently and rationally (Dantas et al. 2021 ). SDG 11 ‘make cities and human settlements inclusive, safe, resilient and sustainable’ focuses on building more sustainable cities, with particular attention to air quality and municipal and other waste management. This also implies resource efficiency and waste generation-collection services (Sharma et al. 2021 ). SDG 12, ‘ensure sustainable consumption and production patterns’ seeks to achieve the sustainable management and efficient use of natural resources. This goal emphasises the importance of reducing different types of waste throughout the life cycle of a product or service through prevention, reduction, recycling and reuse activities (Principato et al. 2019 ). With regard to agro-food waste, a reduction of both food losses and food waste in the production and supply chains is proposed. SDG 13, ‘take urgent action to combat climate change and its impacts’, can affect waste treatments relevant to their environmental impact through using greener and cleaner technologies, such as anaerobic digestion (Kakadellis et al. 2021 ). SDG 14, ‘conserve and sustainably use the oceans, seas and marine resources’ is also linked to plastic waste management, according to marine pollution minimisation. SDG 15, ‘sustainably manage forests, combat desertification, halt and reverse land degradation, halt biodiversity loss’ can be mitigated by protection and restoration, avoiding landfill waste. Finally, SDG 17 ‘revitalise the global partnership for sustainable development’, can be enhanced owing to waste treatment development, enabled by new treatments technologies (Sharma et al. 2021 ).

SDGs achievement is a priority and takes on even greater importance considering the fact that eight years prior to the deadline set in the 2030 Agenda, some reports show that we are still far from meeting most of the goals. The Food and Agriculture Organisation (FAO) estimates that around 35% of employment is a direct result of food systems and the promotion and implementation of sustainable practices in the food system -including food waste and loss- which is still low, referring to unfulfilled SDG 2 (Torero 2020 ). Uncollected waste is one of the major issues. In terms of municipal solid waste management, proper collection is key, as mismanagement of these services can lead to dumping into waters, which directly affects SDG 6 achievement (Sharma et al. 2021 ). To enable both sustainable energy and industrialisation a transition towards the use of renewable and cleaner energy is necessary. Waste can be adopted as an energy resource, such as biomass waste and pyrolysis (Moya et al. 2017 ). However, fossil fuels are still strongly present in several industries, which negatively impact on SDG 7, 9 and 11. Waste management systems’ disruptions in relation to current situations -COVID-19 pandemic and supply crisis- have minimised recovery and recycling activity. For instance, the plastic waste proliferation caused by the pandemic resulted in both water and air pollution, due to poor and non-effective waste management. Thus, SDG 12, 13 and 14 premises are failing (Sharma et al. 2021 ). This also adversely affects halting biodiversity loss and the land degradation (SDG 15). In addition, there are advances in waste treatment thanks to new technologies which are starting to be implemented. For instance, anaerobic digestion and waste-to-energy technologies (Moya et al. 2017 ), but their application is still scarce, not satisfying SDG 17. Consequently, there is an urgent need to take additional measures to facilitate the implementation of the various sustainable measures included in the plan.

Methodology

This study combines a bibliometric analysis carried out by VOSviewer and SciMat software, and an in-depth literature review of the articles published during the year 2021. Figure  1 shows the phases of this work: Phase 1) data collection, phase 2) bibliometric analysis, and phase 3) systematic literature review and research agenda.

An external file that holds a picture, illustration, etc.
Object name is 12063_2023_373_Fig1_HTML.jpg

Methodological process

Data collection

In the first phase, documents from the Web of Science Core Collection database were collected from the period 2009 up to September 2021. The keywords used were ‘circular economy’ and ‘waste management’. This generated a total of 1.395 papers. Then, it was selected articles by topic, which includes title, abstract and authors’ keywords. retrieving 966 documents. Thereafter, we sorted the data into groups of Social Sciences Citation Index, Science Citation Index Expanded, Arts and Humanities Citation Index, taking only articles into consideration, reaching a total sample of 576 articles that were extracted and including in this analysis after a double checked in order to eliminate inconsistences.

Bibliometric analysis

Bibliometric methodology identifies research trends providing the knowledge structure about a specific field. By examining recent published articles, network analysis shows emerging fields (Hettiarachchi et al. 2022 ). In the second phase, bibliometric approach was performed using VOSviewer and SciMat software to understand the latest trends in the fields of waste management and circular economy. VOSviewer is more visual and allows for the examination of co-occurrence, analysis of authors, institutions and countries (Van Eck and Waltman 2010 ). In this paper, SciMat completes VOSviewer analysis since it carries out the co-occurrence analysis in time periods and the evolution of these periods can be seen on an evolution map. Additionally, SciMat illustrates strategic diagrams which uncover the main research themes (Cobo et al. 2012 ). Furthermore, it allows one to observe the clusters of each keyword, making the analysis more complete and comprehensive.

Following on from this, VOSviewer conducts a citation analysis of the most representative journals and the most prolific authors and from here, a co-occurrence analysis is displayed. Via the SciMat tool a co-word analysis is also developed, displaying the strategic diagrams and clusters with relevant keywords, divided up into three periods according to the number of documents published, years 2009–2019 (Period 1), 2020 (Period 2) and 2021 (Period 3).

In the third and last phase, a literature review of the articles related to circular economy and waste management is carried out, in accordance with 51 documents from the motor themes of the SciMat analysis in the third period, during the year 2021, to determine the latest trends and research in the field. Finally, a research agenda is exposed regarding trending topics analysed in this work.

Bibliometric results and productivity measures

Figure  2 shows the historical evolution of documents published in the field of waste management and circular economy from 2009 to September 2021, considering a total sample of 576 articles. Waste management towards circularity is gaining momentum in academia according to the number of documents published in the field since 2015, coinciding with ‘The 2030 Agenda for Sustainable Development’ (United Nations 2015 ). In addition, other European strategies and legislative challenges took place, such as ‘Communication on closing the loop. An EU action plan for the Circular Economy’ (European Commission 2015 ) and ‘Communication on a monitoring framework for the Circular Economy’ (European Commission 2018 ) considering waste management as one of the main challenges in the transition to circular business models.

An external file that holds a picture, illustration, etc.
Object name is 12063_2023_373_Fig2_HTML.jpg

Historical evolution of publications in the field of waste management and circular economy

Table ​ Table1 1 shows the ten most representative journals sorted by number of total documents published and citations. These journals represent 60,25% of the total sample formed by 132 sources. The Journal of Cleaner Production is the most influential with 79 articles published in the field of circular economy and waste management, and a total of 1.343 cites. It should be noted that almost all sources belong to the "environmental sciences" category. None of the most cited journals belong to the social sciences.

Most representative journals and authors’ institution and countries sorted by number of documents and total number of citations

( )
N%N%
Journal of Cleaner Production11.072 Q1 (24/279)Environmental Sciences7913,72%1343Ferronato, NItalyUniversity of Insubria91,56%12911
Sustainability3.889 Q2 (57/127)Environmental Studies7713,37%445Torretta, VItalyUniversity of Insubria81,39%12931
Waste Management8.816 Q1 (36/279)Environmental Sciences508,68%658Somplak, RCzech RepublicBRNO University of Technology81,39%3312
Resources, Conservation and Recycling13.716 Q1 (12/279)Environmental Sciences437,47%862Smol, MPolandAGH University of Science and Technology61,04%9218
Waste Management & Research4.432 Q2 (107/279)Environmental Sciences264,51%143Azapagic, AUnited KingdomUniversity of Manchester50,87%15660
Science of the Total Environment10.753 Q1 (26/279)Environmental Sciences233,99%474Zorpas, A. ACyprusOpen University of Cyprus50,87%6731
Journal of Environmental Management8.910 Q1 (34/279)Environmental Sciences142,43%269Ragazzi, MItalyUniversity of Trento40,69%10634
Environmental Science and Pollution Research5.190 Q2 (87/279)Environmental Sciences132,26%121Lu, WChinaUniversity of Hong Kong40,69%10133
Journal of Industrial Ecology

7.202

Q1 (49/279)

Environmental Sciences122,08%536Bao, ZChinaUniversity of Hong Kong40,69%1017
ACS Sustainable Chemistry & Engineering

9.224

Q1 (13/142)

Engineering, chemical101,74%79Irabien, ASpainUniversity of Cantabria40,69%7351

R ranking, N number of documents, % from the total sample of documents (N = 576), TC total number of citations

The most influential authors are sorted by number of documents published and total citations, indicating the institutions and country which they work in, and the h-index –impact and productivity measure-. The most prolific author is Navarro Ferronato from the University of Insubria in Italy with 9 papers published and a total of 129 cites, followed by Vicenzo Torreta (8, 129) from the same institution. The prevalence of Italian researchers is in line with the country's overall recycling rate for all types of waste which reaches 68%, well above the EU average (57%) published in the “Third Report on the Italian circular economy in 2021” (ENEA 2021 ). Additionally, in 2020 several legislative decrees came into force that facilitated the implementation of EU directives on waste and the circular economy.

Institutions include the University of Hong Kong whose role in integrated and sustainable waste management is significant both at the research level (Hossain et al. 2021 ) and practical level in running the campus and encouraging waste reduction and recycling among all stakeholders (The University of Hong Kong 2021 ).

Research trend topics in the field

Co-occurrence analysis by vosviewer software.

Co-occurrence analyses the most frequent keywords in a research field regarding their jointly mention, represented by clusters (Callon et al. 1983 ). This method is widely used to identify research trend topics about a particular subject area according to the keyword frequency (Donthu et al. 2021 ). The closer two items are from each other, the higher the connection. Accordingly, those keywords with a higher association appear closer.

This analysis used the full counting network technique which points the total number of occurrences a concept appears in all documents. The normalisation parameter method with association strength was performed by VOSviewer, to normalise the link strength between keywords (Van Eck and Waltman 2010 ).

Performing the analysis, different occurrence thresholds have been used to observe the network structure. VOSviewer software permits to perform a data cleaning to visualise a map created by text data merging terms using a thesaurus file (Van Eck and Waltman 2010 ). In our co-occurrence analysis we created a thesaurus to merge different keywords referring to the same item, such as ‘LCA’ and ‘life cycle assessment’, or ‘municipal solid waste’ and ‘municipal-solid waste’. Finally, a minimum of 13 occurrences of a keyword has been chosen from 2.868 words. 41 keywords met the threshold that represents the main items of each cluster. The keywords are divided up into main four groups of clusters coloured in red, green, blue and yellow in Fig.  3 . The red cluster named ‘Industrial ecology and more sustainable infrastructure’ -SDG 9- focuses on the circular economy and industrial ecology with the aim of making industrial buildings and construction and demolition waste more sustainable, and on the challenges and barriers posed by these new models. The green cluster ‘Waste management through biological and assessment processes’ -SDGs 6, 7, 11 and 12- links the food waste and municipal solid waste and how anaerobic digestion and biogas can achieve a reduction in the use of energy and low emissions. Water treatment is associated with optimisation through new technologies. These studies use the life cycle assessment as a main tool for measurement. Sustainable development and recycling, considering indicators and behaviors in developing countries are shown in the blue cluster named ‘Sustainable development and recycling in developing countries’ -SDG 12-. Finally, the cluster in yellow studies the need to establish new policies and designs that would allow for improved waste management through resource recovery, such as the extension of producer responsibility beyond the sale of the product or service. It is therefore titled ‘New procedures for the recovery of resources’ -SDG 12-.

An external file that holds a picture, illustration, etc.
Object name is 12063_2023_373_Fig3_HTML.jpg

Co-occurrence analysis of keywords by vosviewer

Strategic diagrams and motor themes by SciMat software

Science mapping analysis displays how items from a particular field are linked to each other, determining the evolution and cognitive structure (Small 1999 ). In this study, keywords are the items used. The bibliometric mapping tool used to show the strategic diagrams is SciMat software. From the set of documents, it generates a knowledge base, in this case, the relationships between keywords are stored following a co-occurrence analysis. SciMat software grouped by plural to find similar items during the de-duplicating process (Cobo et al. 2012 ). For instance, keywords such as system and systems.

SciMat tracks a longitudinal framework that analyses the conceptual and intellectual evolution of a field. The normalisation measure chosen was the equivalence index. And to obtain the scientific map and the associated clusters and subnets, the clustering algorithm method followed was simple centers algorithm. The analysis is performed dividing the sample into three periods: period 1 with a total of 214 articles of year 2009 up to year 2019, period 2 with 155 articles of the year 2020, and period 3 with 189 articles of the year 2021. From a sample of 2,819 words, a total of 77 words have been considered, selecting only keywords with a minimum of 10 associated documents. As can be seen in Fig.  4 , the stability index (0.99 and 0.99) indicates that there is a balance between the number of words from one period to the next.

An external file that holds a picture, illustration, etc.
Object name is 12063_2023_373_Fig4_HTML.jpg

Overlapping map. Periods 1, 2 and 3 by scimat software

The evolution map shows the results of the longitudinal analysis. The thick lines show the clusters that share a main theme, and the dashed lines are those that share themes other than the main theme (Cobo et al. 2012 ). In the first period the motor theme is circular economy, while in the second period the focus is on municipal solid waste.

Figure  5 shows the difference between periods 1 and 2, from the more general to the more specific, with municipal solid waste oriented towards sustainable development -SDG 11-. In the third period focus returns to circular economy, with more dispersion apparent than in period 2, yet more specificity, as the number of clusters expands again. The massive generation of plastic waste generated during COVID-19 (Khoo et al. 2021 ; Vanapalli et al. 2021 ) could explain the interest in municipal solid waste management during period 2 and the emergence of concepts with plastics management in period 3. As a result, an evolution from the first period can be observed, with a strong focus on the implementation of circular economy and energy generation towards a circular economy centered on municipal solid waste.

An external file that holds a picture, illustration, etc.
Object name is 12063_2023_373_Fig5_HTML.jpg

Evolution map. Periods 1 and 2 by scimat software

This analysis is focused on the third period to gain better attention about the recent evolution of this field. Figure  6 shows a strategic diagram of Period 3 (year 2021) with four quadrants of the main thematic nodes according to the co-word analysis performed by SciMat. The strategic diagram displays the motor themes: ‘circular economy’, ‘life cycle assessment’ and ‘China’, developed thereafter, the basic themes: ‘recovery’ as a very specific and underdeveloped topic, it suggests a strategy towards circularity that is beginning to be considered, because many policies were only focused on promoting recycling (Ghisellini et al. 2016 ). The emerging or disappearing themes: ‘generation’, an emerging theme related to e-waste which is working on the reuse of products -SDG 12-, but circular economy is not applied in-depth. Regarding sustainable development and waste management, the environmental impacts are still a very large gap in the literature; ‘plastic waste’ is an emerging theme for circular economy, and it is studied within the pyrolysis and recycling process and new designs to improve the circularity -SDG 9 and 12-. ‘Sector’ appears as an isolated theme from circular economy, the literature is very cohesive in density due to its links with waste management case studies in different industries -SDG 9-.

An external file that holds a picture, illustration, etc.
Object name is 12063_2023_373_Fig6_HTML.jpg

Strategic diagram. Period 3 (2021) by scimat software

Based on Fig.  6 ‘circular economy’, ‘China’ and ‘life cycle assessment’ appear as motor themes. These keywords present high density and centrality, thus they have been intensively and highly studied in literature. Which is why the following analysis is focused on them. ‘Circular economy’ is linked with ‘sustainability’ and ‘sustainable development’ according to the origin of circularity (Ghisellini et al. 2016 ). Likewise, the keyword ‘recycling’ relates to circular economy as a part of 3Rs principles, due to circular policies and their focus on recycling practices and strategies rather than other options -SDG 12-. ‘Municipal solid waste’ and ‘management’ is one of the most developed topics in the studies analysed and published during 2021 towards circular economy -SDG 11-.

‘China’ is a pioneering country in the implementation of circular economy policies, and strategies based on sustainability (Lieder and Rashid 2016 ). From a broad CE perspective, the country has incorporated these schemes due to the country’s rapid industrialisation and its growing efforts in research (McDowall et al. 2017 ). Indeed, the country is the largest producer of municipal solid waste (Wang et al. 2021 ) increased by COVID-19 (Vanapalli et al. 2021 ) and given its large industrial sector. The country is developing research that allows it to establish symbiotic relationships, to find new ways of using resources or converting waste into energy -SDG 7, 9 and 11-. It would be framed within the so-called industrial symbiosis, defined as the process by which waste from one industry or industrial process is converted into raw material for another (Provin et al. 2021 ).

‘Life cycle assessment’ appears far removed from circular economy, focusing more on waste demolition and construction management (Ahmed and Zhang 2021 ; Lu et al. 2021 ) -SDG 9-, and on plastic waste generation (Hossain et al. 2021 ; Pincelli et al. 2021 ).

Review analysis

A systematic literature review was performed, considering the core documents with highest impact –those that appear at a minimum two nodes (Cobo et al. 2012 )- from SciMat report. Selecting those articles from the three clusters that are presented as motor themes for period 3 (year 2021): ‘circular economy’, ‘China’ and ‘life cycle assessment’. Firstly, it was considered those papers with at least one citation (N = 51). Secondly, an in-depth analysis of those articles was carried out, compiling findings and future research lines of the 20 leading articles by number of citations (Table ​ (Table2) 2 ) according to the SciMat core documents.

Findings and future research lines of the main articles related with circular economy and waste management during year 2021

72Vanapalli et al. ( )Science of the Total EnvironmentTheoreticalActions and recommendations to reduce plastic waste related with Covid-19 designing policies, new technologies and products innovation (circular products), improving environmental behaviour, local production and consumption, incentives to recycling and efficiencyExtend the analysis with available data (empirical). Replicate the analysis to a post-pandemic scenario
16Jeswani et al. ( )Science of the Total EnvironmentEmpiricalLife Cycle Assessment shows that climate change impacts of chemical recycling and the production of circular plastics by pyrolysis are lower than energy's recovery and fossil resourcesImprove the sensitive analysis. Consider other geographical areas. Future use of technologies treatment of end-of-life is needed
14Sommerville et al. ( )Resources Conservation and RecyclingEmpirical (44 commercial recyclers)The quantitative assessment reveals a lack of circular thinking for the batteries end-of-life. It is necessary to have more options in reuse and recycling, closing the loop; and policies incentives improving circular practicesIncreased knowledge about the recycling process of some of the components, their recovery and follow-up are required
14Salmenpera et al. ( )Journal of Cleaner ProductionEmpirical (case study in Finland)Economy, technology, culture and legislation solutions are considered for coordinate actions to identify critical factors in the promotion of circularity focusing on developers and intermediariesExtend the analysis to other geographical areas and industries
11Loizia et al. ( )Science of the Total EnvironmentEmpirical (Municipal Solid Waste in Cyprus)The study provides key performed indicators toward circularity and sustainable development goals, showing that more effectively citizens' participation in waste strategies, such as awareness activities is requiredExtend the analysis to other geographical areas
10Vardopoulos, et al. ( )Environmental Sciences and Pollution ResearchTheoreticalCreating urban sustainable indicators of the environmental impacts from human activities, providing the correct strategy (DPSIR model) for optimizing MSW management effectiveness and efficiency in GreekLack of MSW generation data collection for comparison in the long-term. A need to amplify the indicators
9Abou Taleb and Al Farooque ( )Journal of Cleaner ProductionEmpirical (waste recycling in Egypt, 27 councils)Providing a model in municipal waste recyclable management from an accounting approach, with the highest circular economy gains and the lowest costs (cost-effective). Results show that developing countries must improve their circular and sustainable practicesExtend the data sample and periods for generalize the results. Apply to other industries
9Massaro et al. ( )Business Strategy and the EnvironmentTheoreticalImproving circularity towards industrial waste management, focused on smart services. And how Industry 4.0 can be integrated in waste management: optimization software, robots, mobile applicationsConsidering more case studies is required and analyse separately the professional and scientific issues
9Kazancoglu et al. ( )Business Strategy and the EnvironmentEmpirical (Case study textile firm in Turkey)The most important circular barriers are the lack of requirements and responsibilities for suppliers or manufacturers, and support from the government. Furthermore, one of the most fundamental factors is recycling policies for waste managementDifferences of applying the model in other sectors. Extend the study to other geographical areas. The complementary use of different decision-making models is required, also considering other barriers
7Di Foggia and Beccarello ( )Sustainable Production and ConsumptionEmpirical (Case study in 4.732 municipalities in Italy)The use of landfill could be reduced by increasing waste-to-energy conversion. The study provides ideas for more efficient waste management with the use of new technologiesComparative cost-effectiveness is necessary in future studies and extend the model to other geographical areas
7Wu et al. ( )Sustainable Production and ConsumptionTheoreticalDeveloping collective network-based bricolage process and adaptive institutional governance is an effective strategy for establishing an industrial-level circular economy towards the transitionVerifying the process in other geographical areas
7Lombardi et al. ( )Journal of Cleaner ProductionEmpirical (Italian plastic packaging management)Italian material flow analysis of the plastic packaging management and its circularity comparing the results with EU countries, showing positive rates on Italian recycling and energy recovery. The waste management efficiency must continue improving referring to its landfill levelsCalculate the eco-efficiency indicators and related material cycles. Limitations with the material flow analysis methodology such as the available data or the varying quality
6Van Straten et al. ( )Sustainable Production and ConsumptionEmpirical (Case study 3 Dutch hospitals)Showing the evaluating options of a hospital for calculating the save cost towards circularity: recycling the instruments, repairing for extending the life cycle of instruments, melting the steel into raw material and saving in handling waste costsExtend the period under study (only 6 months are considered). A sensitive analysis for further understanding
6Minoja and Romano ( )Journal of Cleaner ProductionTheoreticalStudying Italian waste management and the TBL contribution to sustainability if its commitment is integrated from a managerial and governance process. Proactive participation of stakeholders is also fundamental for business models; and public firms are more suitable to sustainable issuesOwnership results are only replicable to other industries with the same institutional and legal circumstances. Further in-depth analysis of IC and sustainability is required. Extend the study to other geographical areas and industries
6Sharma et al. ( )Business Strategy and the EnvironmentTheoreticalInvestigating the prospects, impediments, and prerequisites in the transition to circular economy in SMEs in India conducting by a semi-structured interview. Financial issues, awareness, lack of experience and recycling subject are the main impediments. Prerequisites are related to innovation and motivationExtending the sample under study for generalize the results. Applicate the analysis to other geographical areas
5Jagodzinska et al. ( )Journal of Cleaner ProductionEmpirical (landfill case study in Belgium)Studying close the loop with energy efficiency technologies towards circular economy by mining of existing landfills with the study of refuse-derived fuel of a waste excavated landfill in Belgium submitted to pyrolysisLack of data. The use of a more efficient technique of separation. Further analysis of the application is required
5Elgie et al. ( )Resources, Conservation and RecyclingEmpirical (Grenada case study)Estimating the material flows waste stream of plastic, motor oil and tires for improving solid waste management towards circularity. This can be achieved by improving data collection, banning certain materials, applying the "polluter pays" principle, and developing a resource management plan for problematic materialsLack of data. Extending the study to other geographical areas for further analysis
5Woodard ( )Journal of Cleaner ProductionEmpirical (100 England SMEs)Findings show the necessity of improving the efficiency of SMEs from England in waste management because of the use of household services to dispose of waste. Legislation, develop a holistic waste management system more effective, and increase the waste's awareness are key to achieve circularityComparison with other geographical areas. More in-depth review of local authorities
5Foschi et al. ( )Environmental Science and Pollution ResearchEmpirical (Emilia Romagna región case study)Promoting consumer's awareness, eco-design, a deposit-refund system, reduction of plastic waste, investing in a new industrial infrastructure of recycling, and the support to remanufacturers are the main recommendations of the workStakeholders’ participation is required and extend the analysis to other geographical areas
4Khoo et al. ( )Journal of Hazardous MaterialsTheoreticalRecommendation and future prospect and challenges in plastic waste management highlighting: increase awareness, policies, incentives and regulations, production with recycling purposes, new technologies for packaging,More in-depth analysis about plastic waste during and post-COVID19 pandemic. Applicate to a real case of study

TC total number of citations

Citation analysis is a measurement widely used that considers a paper highly cited as relevant in a field (Zupic and Cater 2014 ), enabling us to evaluate the influence of a research topic. Also is used as a tool to detect emerging and research trends (Chen 2006 ).

Municipal Solid Waste (MSW) -SDG 11- is one of the main topics. Many of the papers related are case studies such as Vardopoulos et al. ( 2021 ) which developed a Driver-Pressure-State-Impact-Response (DPSIR) model to evaluate and assess the Municipal Solid Waste practices in Greek municipalities. Abou Taleb and Al Farooque ( 2021 ) concentrate on full cost accounting in 27 Egypt councils designing pricing model ‘Pay-As-You-Throw (PAYT)’ for municipal waste recycling. Wielgosinski et al. ( 2021 ) performed an analysis of the Polish municipal solid waste management through a balance model for assessing the impact of increasing the level of recycling, whilst Istrate et al. ( 2021 ) studied the municipal solid waste management in Madrid with a material flow analysis. Similarly, Tong et al. ( 2021 ) analyses the solid waste management system and the cause-effect relationship of households in Vietnam. Di Foggia and Beccarello ( 2021 ) highlighted the fact that the waste management chain in Italy focuses on waste-to-energy plants, calculating market measures towards circularity. In addition, in the region of Brescia, Italy, Bertanza et al. ( 2021 ) examined the evolution of municipal solid waste evolution with mass flow analysis of medium firms. Solid waste management in Brazilian universities is explored in the Nolasco et al. ( 2021 ) paper, which developed a qualitative-quantitative analysis, identifying factors of university campus waste management.

Plastic waste management is greatly studied in connection with circularity practices in many of the articles published during 2021, such as the case studies carried out by Foschi et al. ( 2021 ) on the Emilia Romagna plastic waste recycling system, following the European Commission Plastic Strategy. Similarly, Wu et al. ( 2021 ) outlines how Taiwan achieves circular economy in plastic waste from an industrial level, owing to collective bricolage. Some of the papers outline COVID-19 and the excessive use of plastics, coinciding with the most cited article of the sample (Vanapalli et al. 2021 ) which address COVID-19 plastic waste generation and the use of more sustainable technologies. The Khoo et al. ( 2021 ) paper provides recommendations for adopting effective plastic waste management due to excessive use during the COVID-19 pandemic. Pikon et al. ( 2021 ) shows the influence of COVID-19 on waste management from an economic impact perspective, highlighting the changes in municipal solid waste during the pandemic in the Polish market. Furthermore, increasing attention is being paid to biodegradable plastics as an alternative to conventional plastics. Ghosh and Jones ( 2021 ) examine upcoming trends, potential future scenarios, and the material value chain perspective of biodegradable plastics, whilst Kakadellis et al. ( 2021 ) categorizes qualitative data about biodegradable plastic strategies in United Kingdom -SDG 12-.

In the studies examined, the management of food waste is also analysed -SDG 11 and 12.- Zarba et al. ( 2021 ) analyses the Italian agri-food effectiveness towards circular economy regulatory; Provin et al. ( 2021 ) examines the reuse of food industry waste for the manufacture of biotextiles in the framework of the circular economy and the SDGs. This inter-industry collaboration would be part of the industrial symbiosis referred to above -SDG 9-.

In a similar vein, and related to SDG 9, the last process analysed by the most cited studies is the pyrolysis process, which allows thermal degradation of waste, associated with landfill mining, extracting valuable materials from the remains of materials deposited in landfills (Jagodzinska et al. 2021 ). Martínez ( 2021 ) discusses the opportunities and challenges of pyrolysis in Latin America.

This section is based on the results obtained from the bibliometric clusterisation, and the review of the 20 most cited articles. The number of articles published in the field have increased since 2015, corresponding to the United Nations Agenda 2030 and the 17 Sustainable Development Goals focused on improving and achieving education, health, economic growth and reducing inequality, as well as preserving forests and oceans (United Nations 2015 ). It is also remarkable to note the growth between years 2019 and 2021 due to new strategies and worldwide circular policies implemented in the field of waste management, such as the ‘Circular Economy Action Plan for a greener and more competitive Europe’ based on the prevention of waste and seeking improved local waste and raw material management (EU 2020 ; Camana et al. 2021 ). Although the "Agenda 2030" or "SDG" themes were not found in any of the clusters, the rest of the themes are closely related to their fulfilment. Moreover, circular waste management not only contributes to several SDGs, but also creates synergies between the goals.

A significant trend in the literature has focused on waste recycling (SDG 11 and 12), which is essential, yet insufficient if sustainable production and consumption is to be achieved by 2030. The main research topics analysed in the articles published during year 2021 focus on (1) Municipal Solid Waste (MSW) with the design of new municipal waste recycling models such as the Pay-As-You-Throw (PAYT) pricing model (Abou Taleb and Al Farooque 2021 ), (2) the importance of plastic waste (Khoo et al. 2021 ) and its recovery as a tool in the implementation of circularity principles (Ferreira et al. 2021 ), increased by the generation of plastic waste during the COVID-19 pandemic (Khoo et al. 2021 ), and (3) the reduction of food waste or its application in bio-textiles (Provin et al. 2021 ) or as an energy source -SDG 9 and 11-.

Going one step further should be considered in achieving further targets of this goal. On the one hand, a reduction in waste generation and a search for more sustainable disposal options for waste that cannot be recycled are required, e.g., through new processes such as waste pyrolysis (Jagodzinska et al. 2021 ) -SDG 9-. On the other hand, extending the lifetime of products by finding additional, new uses for them, eliminating planned obsolescence or repairing the product at a cost lower than buying a new product (Ghisellini et al. 2016 ) -SDG 12. Complementarily, waste generated in one sector can be used as a raw material in another sector or as a source of energy in the case of organic waste -SDG 7 and 9-.

Research agenda

The research agenda provides guidance to scholars in future related-research directions. The agenda is based on the previous in-depth analysis of the 20 articles included in the review. Considering the analysis and the ensuing discussion, the following proposal is put forward for the circular management of waste management to accelerate the fulfilment of the 2030 Agenda. Moreover, this could fill gaps and give opportunities for further development. Figure 7 collects the research agenda propositions.

An external file that holds a picture, illustration, etc.
Object name is 12063_2023_373_Fig7_HTML.jpg

Research agenda propositions diagram

New trends in plastic waste management and generation (SDG 12)

One of the most researched materials in the most cited papers is the use of plastic -6 of the 20 papers analyse this issue-. Firstly, because of the significant increase in waste associated with it after COVID-19 (Vanapalli et al. 2021 ; Khoo et al. 2021 ). Secondly, because of the need to progressively replace it with other materials such as biodegradable plastics, which implies the use of renewable raw materials. In short, solutions must be proposed to current plastic waste, the quantity of which threatens the habitat of numerous species, and measures must be taken to curb its expansion and offer alternatives in sustainable materials.

It is worth noting that no studies have been found that analyse the legislative challenges associated with the progressive elimination of plastic in products such as bags or single-use items.

Proposition 1: To deepen new trends in plastic waste management and generation.

New pathways in the circular management of municipal waste (SDG 7, 9, 11 and 12)

The second line of the proposal relates to circular municipal waste management -SDG 11-, a topic of great interest in recent research (Abou Taleb and Al Farooque 2021 ), growing due to recent global crises. However, the approach that has analysed this topic focuses mainly on waste recycling.

A broader focus is needed, considering other alternatives such as the reduction of waste generation, reuse and the use of Organic Fraction of Municipal Solid Waste (OFMSW) as a raw material or energy source in other sectors. Compared to incineration, which is highly polluting if the organic waste is mixed with other types of waste, there are more sustainable and energy-efficient alternatives such as anaerobic digestion (Kakadellis et al. 2021 ) -SDG 7-. This requires consumer awareness and training –SDG 12- in waste separation, adequate facilities for the process and greater cooperation between industries (Foschi et al. 2021 ; Vanapalli et al. 2021 ) For the latter option, it is recommended that tools such as industrial symbiosis be explored in greater depth -SDG 9-.

Proposition 2: To expand the alternatives towards more sustainable options in municipal waste management with the cooperation of consumers and industries.

Towards more sustainable landfill management (SDG 7, 9 and 11)

In contrast to traditional landfill management, new infrastructures, treatments and smart technologies are proposed to improve recycling and waste disposal. Among them, (1) the construction of waste-to-energy plants makes it possible to burn solid waste to power electricity generators (Di Foggia and Beccarello 2021 ) –SDG 7-; (2) pyrolysis process for thermal degradation of waste, reducing waste accumulation (Jagodzinska et al. 2021 ) –SDG 11- or (3) Industry 4.0 can be applied in waste treatment -SDG 9- for more efficient technique of separation models in waste management addressing circular economy practices (Wang et al. 2021 ). This line of research has a profound relationship with municipal waste management, given the importance of municipal waste in current landfills.

Proposition 3: To improve the operation and efficiency of landfills through new infrastructures, treatments and technological tools.

Establishment of enablers in the implementation of circularity: Design of indicators and development of legislation (SDG 12)

Optimising waste management processes requires the establishment of measurement indicators. These indicators should be of a different nature and go beyond the economic or environmental quantification of targets. They should include social aspects such as awareness raising (Loizia et al. 2021 ; Van Straten et al. 2021 ). Additionally, along with technological and economic tools, the creation of a legislative framework is a critical factor in the implementation of circularity in waste management operations (Salmenpera et al. 2021 ; Woodard 2021 ).

Proposition 4: Establishment of measurement and policy enablers.

Conclusions

Circular waste management focuses on reducing the amount of waste generated and reintroducing the waste, once treated, as new material or energy in production, keeping the material in a cyclical flow within the same or another sector (Demirbas 2011 ; Salmenpera et al. 2021 ). It, therefore, implies reaching a new level of treatment, complementing the recycling option with a holistic view of the problem. The application of circularity principles in waste management can contribute significantly to the fulfilment of the 2030 Agenda, as it impacts several of the SDGs -6, 7, 9, 11 and 12-.

According to the research questions presented, the scientific literature structure of the field of waste management and circular economy (RQ1) has been analysed, showing that the most productive sources come from the field of environmental sciences, which conditions the main topics investigated and shows a clear lack of attention to social sciences. The most prolific authors come from two countries with a strong interest in environmental research in general and waste management in particular—Italy and China. In the case of China, this is due to its strong productive fabric and a prominent role in the generation of waste from the COVID-19 pandemic.

Concerning RQ2, four clusters have been obtained related to industrial ecology -SDG 9-, waste management from the application of bio-based processes -SDGs 6, 7, 11 and 12-, water treatment, sustainable development and recycling in developing countries -SDG 12- and the cluster on new procedures for the recovery of resources -SDG 12-.

To conduct analysis of the central topics and the patterns we used SciMat software, dividing the articles published in the field into three periods (2009–2019, 2020 and 2021) showing the scientific literature development, as can be seen in the evolution map (Fig.  5 ). The motor themes showed in the strategic diagram of the third period are circular economy, life cycle assessment and China; recovery is a basic theme; the emerging themes are generation and plastic waste; and sector is a developed theme. Referring to RQ3, the results provided from the systematic literature review are in line with the central topics pointed out previously. Many of the studies published during 2021 pertain to motor themes circular economy and China, and to plastic waste as an emerging theme.

The most cited articles and the previous bibliometric analysis have shown the great interest generated among scientists in the management of urban waste and plastic waste, which has increased in the last two years in relation to sanitary waste. The circular economy means that recycling is not enough in the management of this waste. In addition to the reduction in the generation of waste, the incorporation of the "bio" concept in its treatment, which allows fibres, bioplastics and other biomaterials to be obtained, has been added. Along the same lines, the treatment of food waste allows it to be converted into animal feed, biofuels or even textiles. However, among the most cited articles, no research related to the use and recycling of wastewater was found -SDG 6-. Further research is needed to enable its use for biomass production or as a source of nutrients for micro-organisms of interest (Kaszycki et al. 2021 ).

The establishment of three research propositions completes this research (RQ4). In this way, it is crucial to develop three fundamental aspects. First, the use of new technologies to meet the various needs raised. Secondly, a new approach to urban waste management is required. And thirdly, to develop research from a holistic perspective that will require the use of theories and sciences from the environmental, social and economic fields.

Theoretical contributions

The results of this study offer academic contributions about circular waste management. Among the theoretical contributions is the establishment of state-of-the-art research on waste management linked to the circular economy, which will guide future research and fill existing gaps. To offer the most complete research review possible, a mixed methodology—bibliometric and systematic review of the most cited recent research—has been used. A bibliometric analysis was carried out with two software tools, taking advantage of the potential of both. Using complementary software validates the analysis results. In addition, this article provides a framework for research as a guiding point in waste management.

Thus, lack of social research is a major drawback that requires urgent incorporation of new social or multidisciplinary studies. It can be considered that social and economic issues have not been sufficiently addressed in the literature. None of the clusters obtained have these dimensions as their motor theme. Dropping SDGs such as 8 -decent work and economic growth-.

Practical contributions

A guideline for practitioners about circular waste management is required. Findings reveal the need for a reference framework for scholars, practitioners and institutions.

This article implies practical contributions for governments to achieve a transition towards more circular waste management. The research shows the technical feasibility of substituting certain materials, mainly plastic, or applying techniques that allow a step beyond recycling. It is necessary to focus on actions based on recovery, reduction, remanufacturing and redesign of plastic waste to fill this gap (Olatayo et al. 2022 ). Highlight the policy spillover effect, which means that support for some public fees—for example, plastic bag fees—may imply greater support for other environmental policies related to waste reduction (Thomas et al. 2019 ). This could facilitate positive transitions towards environmental behavioural changes. In addition, public–private coordination is required in the implementation of new legislation (Foschi et al. 2021 ).

The significant "bio" trend has spread to different types of waste and sectors. Thus, the circular management of waste will require the development of infrastructures, technologies and processes oriented to its application, which means waste management with less environmental impact, but also a generation of value of the product derived from the waste. This value can be manifested in new products -whether or not related to the original sector of the product from which the waste is derived- or renewable and sustainable energies (Ferreira et al. 2021 ; Kaszycki et al. 2021 ). For this, these processes require the establishment of cooperation tools between industries in such a way that we can establish symbiosis between them (Provin et al. 2021 ).

Limitations and future research lines

Addressing the limitations of this study, it’s worth underscoring the fact that WoS was the exclusive Database used to retrieve the final sample under analysis, and only articles published in English are studied, other languages were not considered. Despite the use of VOSviewer to display the co-occurrence analysis, the interpretation of the results is subjective, in accordance with the papers reviewed. In future works, other software can be combined such as CiteSpace or HistCite to visually create scientific maps.

Regarding future research lines, the following aspects are considered a research agenda in the field of waste management and circular economy. The need to incorporate into waste management from a circular perspective such as: circular bioeconomy models, the construction of more robust eco-efficiency indicators to improve measurement and comparison between regions, and the consideration of new processes and techniques in the management of urban, food and plastic waste. Research is also required to manage waste in the construction and demolition of buildings and infrastructures from a sustainably innovative standpoint.

The challenges facing waste management in meeting the 2030 Agenda are considerable. Circular economy facilitates the pathway but is not a miracle tool. The contribution of companies and industries requires the collaboration and awareness of consumers. To this end, public institutions must generate policies, regulations and incentives that create the most favorable framework possible. Having already surpassed half of the set timeframe towards meeting the SDG targets, urgent measures are required, and the Academy must lend its support in this regard.

Authors’ contribution statements

All authors contributed to the study conception and design. Conception or design of the work: Rocío González Sánchez and Sara Alonso Muñoz. Data collection: Rocío González Sánchez and María Sonia Medina Salgado. Data analysis and interpretation: Rocío González Sánchez and Sara Alonso Muñoz. Drafting the article: Rocío González Sánchez and Sara Alonso Muñoz. Critical revision of the article: Rocío González Sánchez and Sonia Medina Salgado.

Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. This paper has been supported by Project PID2021-124641NB-I00 of the Ministry of Science and Innovation (Spain).

Data availability

Declarations.

The authors have no relevant financial or non-financial interests to disclose. The authors have no competing interests to declare that are relevant to the content of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

  • Abou Taleb M, Al Farooque O. Towards a circular economy for sustainable development: An application of full cost accounting to municipal waste recyclables. J Clean Prod. 2021; 280 (2):124047. doi: 10.1016/j.jclepro.2020.124047. [ CrossRef ] [ Google Scholar ]
  • Agrawal R, Majumdar A, Mjumdar K, Raut RD, Narkhede BE. Attaining sustainable development goals (SDGs) through supply chain practices and business strategies: A systematic review with bibliometric and network analyses. Bus Strategy Environ. 2022; 31 (7):3669–3687. doi: 10.1002/bse.3057. [ CrossRef ] [ Google Scholar ]
  • Agyabeng-Mensah Y, Tang L, Afum E, Baah C, Dacosta E. Organisational identity and circular economy: Are inter and intra organisational learning, lean management and zero waste practices worth pursuing? Sustain Prod Consum. 2021; 28 :648–662. doi: 10.1016/j.spc.2021.06.018. [ CrossRef ] [ Google Scholar ]
  • Ahmed RR, Zhang XQ. Multi-stage network-based two-type cost minimization for the reverse logistics management of inert construction waste. Waste Manag. 2021; 120 :805–819. doi: 10.1016/j.wasman.2020.11.004. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Andersen MS. An introductory note on the environmental economics of the circular economy. Sustain Sci. 2007; 2 :133–140. doi: 10.1007/s11625-006-0013-6. [ CrossRef ] [ Google Scholar ]
  • Bertanza G, Mazzotti S, Gomez FH, Nenci M, Vaccari M, Zetera SF. Implementation of circular economy in the management of municipal solid waste in an Italian medium-sized city: A 30-years lasting history. Waste Manag. 2021; 126 :821–831. doi: 10.1016/j.wasman.2021.04.017. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Callon M, Courtial J-P, Turner WA, Bauin S. From translations to problematic networks: An introduction to co-word analysis. Soc Sci Inf. 1983; 22 (2):191–235. doi: 10.1177/053901883022002003. [ CrossRef ] [ Google Scholar ]
  • Camana D, Manzardo A, Toniolo S, Gallo F, Scipioni A. Assessing environmental sustainability of local waste management policies in Italy from a circular economy perspective. An overview of existing tools. Sustain Prod Consum. 2021; 27 :613–629. doi: 10.1016/j.spc.2021.01.029. [ CrossRef ] [ Google Scholar ]
  • Chen C. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J Am Soc Inf Sci Tec. 2006; 57 (3):359–377. doi: 10.1002/asi.20317. [ CrossRef ] [ Google Scholar ]
  • Chioatto E, Sospiro P. Transition from waste management to circular economy: the European Union roadmap. Environ Dev Sustain. 2023; 25 :249–276. doi: 10.1007/s10668-021-02050-3. [ CrossRef ] [ Google Scholar ]
  • Clarivate (2022) 2021 Journal impact factor. Journal Citation Reports. Available at: https://jcr.clarivate.com/jcr/home . Accessed 20 July 2022
  • Cobo MJ, López-Herrera AG, Herrera-Viedma E, Herrera F. SciMAT: A new science mapping análisis software tool. J Am Soc Inf Sci Technol. 2012; 63 (8):1609–1630. doi: 10.1002/asi.22688. [ CrossRef ] [ Google Scholar ]
  • Dantas TET, de-Souza ED, Destro IR, Hammes G, Rodríguez CMT, Soares SR. How the combination of circular economy and Industry 4.0 can contribute towards achieving the Sustainable Development Goals. Sustain Prod Consum. 2021; 26 :213–227. doi: 10.1016/j.spc.2020.10.005. [ CrossRef ] [ Google Scholar ]
  • Demirbas A. Waste management, waste resource facilities and waste conversion processes. Energy Convers Manag. 2011; 52 (2):1280–1287. doi: 10.1016/j.enconman.2010.09.025. [ CrossRef ] [ Google Scholar ]
  • Di Foggia G, Beccarello M. Designing waste management systems to meet circular economy goals: The Italian case. Sustain Prod Consum. 2021; 26 :1074–1083. doi: 10.1016/j.spc.2021.01.002. [ CrossRef ] [ Google Scholar ]
  • Di Vaio A, Hasan S, Palladino R, Hasan S. The transition towards circular economy and waste within accounting and accountability models: a systematic literature review and conceptual framework. Environ Dev Sustain. 2023; 25 :734–810. doi: 10.1007/s10668-021-02078-5. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Donthu N, Kumar S, Mukherjee D, Pandey N, Lim WM. How to conduct a bibliometric analysis: An overview and guidelines. J Bus Res. 2021; 133 :285–296. doi: 10.1016/j.jbusres.2021.04.070. [ CrossRef ] [ Google Scholar ]
  • Elgie AR, Singh SJ, Telesford JN. You can't manage what you can't measure: The potential for circularity in Grenada's waste management system. Resour Conserv Recycl. 2021; 164 :105170. doi: 10.1016/j.resconrec.2020.105170. [ CrossRef ] [ Google Scholar ]
  • Ellen MacArthur Foundation (2017) A new textiles economy: Redesigning fashion’s future. Available at: http://www.ellenmacarthurfoundation.org/publications . Accessed 3 Jan 2022
  • ENEA (2021) Circular Economy Network, Fondazione per lo sviluppo sostenibile. Report on the Italian circular economy in 2021. Italy. Available at: https://circulareconomynetwork.it/wp-content/uploads/2021/03/Synthesis_The-third-circular-economy-report.pdf . Accessed 6 Apr 2022
  • EU, European Union (2020) Circular Economy Action Plan For a cleaner and a more competitive Europe. Available at: https://ec.europa.eu/environment/circular-economy/index_en.htm . Accessed 10 Feb 2022
  • European Commission (2015) Commission of European Communities. Communication. Closing the Loop—An EU Action Plan for the Circular Economy; COM 614; European Commission: Brussels, Belgium. Available at https://www.eea.europa.eu/policy-documents/com-2015-0614-final . Accessed 9 Jan 2022
  • European Commission (2018) Commission of European Communities. Communication Monitoring Framework for the Circular Economy; COM 29; European Commission: Brussels, Belgium. Available at: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM%3A2018%3A29%3AFIN . Accessed 9 Jan 2022
  • Fatimah YA, Govindan K, Murniningsih R, Setiawan A. Industry 4.0 based sustainable circular economy approach for smart waste management system to achieve sustainable development goals: A case study of Indonesia. J Clean Prod. 2020; 269 :122263. doi: 10.1016/j.jclepro.2020.122263. [ CrossRef ] [ Google Scholar ]
  • Ferreira SF, Buller LS, Maciel-Silva FW, Sganzerla WG, Berni MD, Forster-Carneiro T. Waste management and bioenergy recovery from acai processing in the Brazilian Amazonian region: A Perspective for a Circular Economy. Biofuel Bioprod Biorefin. 2021; 15 (1):37–46. doi: 10.1002/bbb.2147. [ CrossRef ] [ Google Scholar ]
  • Foschi E, D'addato F, Bonoli A. Plastic waste management: A comprehensive analysis of the current status to set up an after-use plastic strategy in Emilia-Romagna region (Italy) Environ Sci Pollut Res. 2021; 28 (19):24328–24341. doi: 10.1007/s11356-020-08155-y. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Gatto A. The energy futures we want: A research and policy agenda for energy transitions. Energy Res Soc Sci. 2022; 89 :102639. doi: 10.1016/j.erss.2022.102639. [ CrossRef ] [ Google Scholar ]
  • Ghisellini P, Cialani C, Ulgiati S. A review on circular economy: the expected transition to a balanced interplay of environmental and economic systems. J Clean Prod. 2016; 114 :11–32. doi: 10.1016/j.jclepro.2015.09.007. [ CrossRef ] [ Google Scholar ]
  • Ghosh K, Jones BH. Roadmap to biodegradable plastics-current state and research needs. ACS Sustain Chem Eng. 2021; 9 (18):6170–6187. doi: 10.1021/acssuschemeng.1c00801?rel=cite-as&ref=PDF&jav=VoR. [ CrossRef ] [ Google Scholar ]
  • Goh E, Jie F. To waste or not to waste: exploring motivational factors of Generation Z hospitality employees towards food wastage in the hospitality industry. Int J Hospit Manag. 2019; 80 :126–135. doi: 10.1016/j.ijhm.2019.02.005. [ CrossRef ] [ Google Scholar ]
  • Hettiarachchi BD, Seuring S, Brandenburg M. Industry 4.0-driven operations and supply chains for the circular economy: a bibliometric analysis. Oper Manag Res. 2022; 15 :858–878. doi: 10.1007/s12063-022-00275-7. [ CrossRef ] [ Google Scholar ]
  • Hossain MU, Ng ST, Dong YH, Amor B. Strategies for mitigating plastic wastes management problem: a lifecycle assessment study in Hong Kong. Waste Manag. 2021; 131 :412–422. doi: 10.1016/j.wasman.2021.06.030. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Istrate I-R, Medina-Martos E, Galvez-Martosa J-L, Dufour J. Assessment of the energy recovery potential of municipal solid waste under future scenarios. Appl Energy. 2021; 293 :116915. doi: 10.1016/j.apenergy.2021.116915. [ CrossRef ] [ Google Scholar ]
  • Jagodzinska K, Zaini IN, Svanberg R, Yang WH, Jonsson PG. Pyrolysis of excavated waste from landfill mining: Characterisation of the process products. J Clean Prod. 2021; 279 :123541. doi: 10.1016/j.jclepro.2020.123541. [ CrossRef ] [ Google Scholar ]
  • Jeswani H, Kruger C, Russ M, Horlacher M, Antony F, Hann S, Azapagic A. Life cycle environmental impacts of chemical recycling via pyrolysis of mixed plastic waste in comparison with mechanical recycling and energy recovery. Sci Total Environ. 2021; 769 :144483. doi: 10.1016/j.scitotenv.2020.144483. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Johansen MR, Christensen TB, Ramos TM, Syberg K. A review of the plastic value chain from a circular economy perspective. J Environ Manage. 2022; 302 (A):113975. doi: 10.1016/j.jenvman.2021.113975. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Kakadellis S, Woods J, Harris ZM. Friend or foe: stakeholder attitudes towards biodegradable plastic packaging in food waste anaerobic digestion. Resour Conserv Recycl. 2021; 169 :105529. doi: 10.1016/j.resconrec.2021.105529. [ CrossRef ] [ Google Scholar ]
  • Kara S, Hauschild M, Sutherland J, McAloone T. Closed-loop systems to circular economy: A pathway to environmental sustainability? CIRP Ann. 2022; 71 (2):505–528. doi: 10.1016/j.cirp.2022.05.008. [ CrossRef ] [ Google Scholar ]
  • Kaszycki P, Glodniok M, Petryszak P. Towards a bio-based circular economy in organic waste management and wastewater treatment - The Polish perspective. New Biotechnol. 2021; 61 :80–89. doi: 10.1016/j.nbt.2020.11.005. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Kazancoglu I, Sagnak M, Mangla SK, Kazancoglu Y. Circular economy and the policy: A framework for improving the corporate environmental management in supply chains. Bus Strategy Environ. 2021; 30 (1):590–608. doi: 10.1002/bse.2641. [ CrossRef ] [ Google Scholar ]
  • Khoo KS, Ho LY, Lim HR, Leong HY, Chew KW. Plastic waste associated with the COVID-19 pandemic: crisis or opportunity? J Hazard Mater. 2021; 417 :126108. doi: 10.1016/j.jhazmat.2021.126108. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Lieder M, Rashid A. Towards circular economy implementation: a comprehensive review in context of manufacturing industry. J Clean Prod. 2016; 115 :36–51. doi: 10.1016/j.jclepro.2015.12.042. [ CrossRef ] [ Google Scholar ]
  • Loizia P, Voukkali I, Zorpas AA, Pedreno JN, Chatziparaskeva G, Inglezakis VJ, Doula M. Measuring the level of environmental performance in insular areas, through key performed indicators, in the framework of waste strategy development. Sci Total Environ. 2021; 753 :141974. doi: 10.1016/j.scitotenv.2020.141974. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Lombardi M, Rana R, Fellner J. Material flow analysis and sustainability of the Italian plastic packaging management. J Clean Prod. 2021; 287 :125573. doi: 10.1016/j.jclepro.2020.125573. [ CrossRef ] [ Google Scholar ]
  • Lu WS, Lou JF, Webster C, Xue F, Bao ZK, Chi B. Estimating construction waste generation in the greater bay area, China using machine learning. Waste Manag. 2021; 134 :78–88. doi: 10.1016/j.wasman.2021.08.012. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Martín Martín JM, Calvo Martínez S, Guaita Martínez JM, Ribeiro Soriano DE. Qualitative analysis on the driving force behind upcycling practices associated with mobile applications: Circular economy perspective. Oper Manag Res. 2022 doi: 10.1007/s12063-022-00269-5. [ CrossRef ] [ Google Scholar ]
  • Martínez JD. An overview of the end-of-life tires status in some Latin American countries: Proposing pyrolysis for a circular economy. Renew Sust Energ Rev. 2021; 144 :111032. doi: 10.1016/j.rser.2021.111032. [ CrossRef ] [ Google Scholar ]
  • Massaro M, Secinaro S, Dal Mas F, Brescia V, Calandra D. Industry 4.0 and circular economy: an exploratory analysis of academic and practitioners' perspectives. Bus Strategy Environ. 2021; 30 (2):1213–1231. doi: 10.1002/bse.2680. [ CrossRef ] [ Google Scholar ]
  • McDowall W, Geng Y, Huang BJ, Bartekova E, Bleischwitz R, Turkeli S, Domenech T. Circular economy policies in China and Europe. J Ind Ecol. 2017; 21 (3):651–661. doi: 10.1111/jiec.12597. [ CrossRef ] [ Google Scholar ]
  • Minoja M, Romano G. Managing intellectual capital for sustainability: Evidence from a Re-municipalized, publicly owned waste management firm. J Clean Prod. 2021; 279 :123213. doi: 10.1016/j.jclepro.2020.123213. [ CrossRef ] [ Google Scholar ]
  • Mišík M. The EU needs to improve its external energy security. Energy Policy. 2022; 165 :112930. doi: 10.1016/j.enpol.2022.112930. [ CrossRef ] [ Google Scholar ]
  • Moya D, Aldás C, López G, Kaparaju P (2017) Municipal solid waste as a valuable renewable energy resource: a worldwide opportunity of energy recovery by using waste-to-energy technologies. 9th International Conference on Sustainability in Energy and Buildings, SEB-17, 5–7 July 2017, Chania, Crete, Greece:1876–6102. 10.1016/j.egypro.2017.09.618
  • Munir K. Sustainable food waste management strategies by applying practice theory in hospitality and food services- a systematic literature review. J Clean Prod. 2022; 331 :129991. doi: 10.1016/j.jclepro.2021.129991. [ CrossRef ] [ Google Scholar ]
  • Muñoz-Torres MJ, Fernández-Izquierdo MÁ, Rivera-Lirio JM, Ferrero-Ferrero I, Escrig-Olmedo E, Gisbert-Navarro JV, Marullo MC. An assessment tool to integrate sustainability principles into the global supply chain. Sustainability. 2018; 10 :535. doi: 10.3390/su10020535. [ CrossRef ] [ Google Scholar ]
  • Negrete-Cardoso M, Rosano-Ortega G, Álvarez-Aros EL, Tavera-Cortés ME, Vega-Lebrún CA, Sánchez-Ruíz FJ. Circular economy strategy and waste management: A bibliometric analysis in its contribution to sustainable development, toward a post-COVID-19 era. Environ Sci Pollut Res. 2022; 29 :61729–61746. doi: 10.1007/s11356-022-18703-3. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Nolasco E, Duraes PHV, Goncalves JP, Oliveira MCD, De Abreu LM, De Almeida AN. Characterization of solid wastes as a tool to implement waste management strategies in a university campus. Int J Sustain High. 2021; 22 (2):217–236. doi: 10.1108/IJSHE-12-2019-0358. [ CrossRef ] [ Google Scholar ]
  • Olatayo KI, Mativenga PT, Marnewick AL. Does policy on plastic waste support higher waste management hierarchy options? Recycling. 2022; 7 (3):36. doi: 10.3390/recycling7030036. [ CrossRef ] [ Google Scholar ]
  • Pikon K, Poranek N, Czajkowski A, Lazniewska-Piekarczyk B. Poland's proposal for a safe solution of waste treatment during the COVID-19 pandemic and circular economy connection. Appl Sci. 2021; 11 (9):3939. doi: 10.3390/app11093939. [ CrossRef ] [ Google Scholar ]
  • Pincelli IP, Junior ABD, Matias MS, Rutkowski EW. Post-consumer plastic packaging waste flow analysis for brazil: the challenges moving towards a circular economy. Waste Manag. 2021; 126 :781–790. doi: 10.1016/j.wasman.2021.04.005. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Principato L, Ruini L, Guidi M, Secondi L. Adopting the circular economy approach on food loss and waste: The case of Italian pasta production. Resour Conserv Recycl. 2019; 144 :82–89. doi: 10.1016/j.resconrec.2019.01.025. [ CrossRef ] [ Google Scholar ]
  • Provin AP, Dutra ARD, Gouveia ICADES, Cubas ALV. Circular economy for fashion industry: use of waste from the food industry for the production of biotextiles. Technol Forecast Soc Change. 2021; 169 :120858. doi: 10.1016/j.techfore.2021.120858. [ CrossRef ] [ Google Scholar ]
  • Ranjbari M, Esfandabadi ZS, Gautam S, Ferraris A, Scagnelli SD. Waste management beyond the COVID-19 pandemic: Bibliometric and text mining analyses. Gondwana Res. 2023; 114 :124–137. doi: 10.1016/j.gr.2021.12.015. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Ranjbari M, Saidani M, Esfandabadi ZS, Peng WX, Lam SS, Aghbashlo M, Tabatabaei M. Two decades of research on waste management in the circular economy: Insights from bibliometric, text mining, and content analyses. J Clean Prod. 2021; 314 :128009. doi: 10.1016/j.jclepro.2021.128009. [ CrossRef ] [ Google Scholar ]
  • Salmenpera H, Pitkanen K, Kautto P, Saikku L. Critical factors for enhancing the circular economy in waste management. J Clean Prod. 2021; 280 (1):124339. doi: 10.1016/j.jclepro.2020.124339. [ CrossRef ] [ Google Scholar ]
  • Schulze H, Bals L, Warwick J. A sustainable sourcing competence model for purchasing and supply management professionals. Oper Manag Res. 2022 doi: 10.1007/s12063-022-00256-w. [ CrossRef ] [ Google Scholar ]
  • Sharma NK, Govindan K, Lai KK, Chen WK, Kumar V. The transition from linear economy to circular economy for sustainability among SMEs: a study on prospects, impediments, and prerequisites. Bus Strategy Environ. 2021; 30 (4):1803–1822. doi: 10.1002/bse.2717. [ CrossRef ] [ Google Scholar ]
  • Small H. Visualizing science by citation mapping. J Am Soc Inf Sci. 1999; 50 (9):799–813. doi: 10.1002/(SICI)1097-4571(1999)50:9<799::AID-ASI9>3.0.CO;2-G. [ CrossRef ] [ Google Scholar ]
  • Smol M, Duda J, Czaplickas-Kotas A, Szoldrowska D. Transformation towards circular economy (CE) in municipal waste management system: Model solutions for Poland. Sustainability. 2020; 12 (11):4561. doi: 10.3390/su12114561. [ CrossRef ] [ Google Scholar ]
  • Sommerville R, Zhu PC, Rajaeifar MA, Heidrich O, Goodship V, Kendrick E. A qualitative assessment of lithium ion battery recycling processes. Resour Conserv Recycl. 2021; 165 :105219. doi: 10.1016/j.resconrec.2020.105219. [ CrossRef ] [ Google Scholar ]
  • Sundar D, Mathiyazhagan K, Agarwal V, Janardhanan M, Appolloni A. From linear to a circular economy in the e-waste management sector: Experience from the transition barriers in the United Kingdom. Bus Strategy Environ. 2023 doi: 10.1002/bse.3365. [ CrossRef ] [ Google Scholar ]
  • Taifouris M, Martín M. Towards energy security by promoting circular economy: A holistic approach. Appl Energy. 2023; 333 :120544. doi: 10.1016/j.apenergy.2022.120544. [ CrossRef ] [ Google Scholar ]
  • Thomas GO, Sautkina E, Poortinga W, Wolstenholme E, Whitmarsh L. The English plastic bag charge behavior and increased support for other charges to reduce plastic waste. Front Psychol. 2019 doi: 10.3389/fpsyg.2019.00266. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Tong YD, Huynh TDX, Khong TD. Understanding The Role Of Informal Sector For Sustainable Development Of Municipal Solid Waste Management System: A Case Study In Vietnam. Waste Manag. 2021; 124 :118–127. doi: 10.1016/j.wasman.2021.01.033. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Torero M (2020) Without food, there can be no exit from the pandemic. Nature:588–589. https://www.nature.com/articles/d41586-020-01181-3?faodatalab=2020-04-23 . Accessed 11 Feb 2022 [ PubMed ]
  • Tortajada C. Contributions of recycled wastewater to clean water and sanitation Sustainable Development Goals. NPJ Clean Water. 2020 doi: 10.1038/s41545-020-0069-3. [ CrossRef ] [ Google Scholar ]
  • Tsai FM, Bui TD, Tseng ML, Lim MK, Hu JY. Municipal solid waste management in a circular economy: A data-driven bibliometric analysis. J Clean Prod. 2020; 275 :124132. doi: 10.1016/j.jclepro.2020.124132. [ CrossRef ] [ Google Scholar ]
  • Tsai FM, Bui TD, Tseng ML, Lim MK, Tan RR. Sustainable solid-waste management in coastal and marine tourism cities in Vietnam: A hierarchical-level approach. Resour Conserv Recycl. 2021; 168 :105266. doi: 10.1016/j.resconrec.2020.105266. [ CrossRef ] [ Google Scholar ]
  • United Nations (2015) Transforming our World: The 2030 Agenda for Sustainable Development. Available at: https://sustainabledevelopment.un.org/post2015/transformingourworld/publication . Accessed 8 Feb 2022
  • University of Hong Kong (2021) The University of Hong Kong Campus Sustainability Report 2021. Available at: https://www.sustainabilityreport.hku.hk/_files/ugd/32b51f_fc37058f548b4b4ba71e005830252792.pdf . Accessed 15 Mar 2022
  • Van Eck N, Waltman L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics. 2010; 84 (2):523–538. doi: 10.1007/s11192-009-0146-3. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Van Straten B, Dankelman J, Van Der Eijk A, Horeman T. A circular healthcare economy; a feasibility study to reduce surgical stainless steel waste. Sustain Prod Consum. 2021; 27 :169–175. doi: 10.1016/j.spc.2020.10.030. [ CrossRef ] [ Google Scholar ]
  • Vanapalli KR, Sharma HB, Ranjan VP, Samal B, Bhattacharya J, Dubey BK, Goel S. Challenges and strategies for effective plastic waste management during and post COVID-19 pandemic. Sci Total Environ. 2021; 750 :141514. doi: 10.1016/j.scitotenv.2020.141514. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Vardopoulos I, Konstantopoulos I, Zorpas AA, Limousy L, Bennici S, Inglezakis VJ, Voukkali I. Sustainable metropolitan areas perspectives through assessment of the existing waste management strategies. Environ Sci Pollut Res. 2021; 28 (19):24305–24320. doi: 10.1007/s11356-020-07930-1. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Wang B, Farooque M, Zhong RY, Zhang AB, Liu YP. Internet Of Things (IoT)-enabled accountability in source separation of household waste for a circular economy in China. J Clean Prod. 2021; 300 :126773. doi: 10.1016/j.jclepro.2021.126773. [ CrossRef ] [ Google Scholar ]
  • Wieben E (2016) The post-2015 development agenda: how food loss and waste (FLW) reduction can contribute towards environmental sustainability and the achievement of the Sustainable Development Goals. DNC Working Paper. United Nations University Institute for Integrated Management of Material Fluxes and of Resources (UNU-FLORES). 10.53325/ZHRT3636
  • Wielgosinski G, Czerwinska J, Szufa S. Municipal solid waste mass balance as a tool for calculation of the possibility of implementing the circular economy concept. Energies. 2021; 14 (7):1811. doi: 10.3390/en14071811. [ CrossRef ] [ Google Scholar ]
  • Woodard R. Waste management in Small and Medium Enterprises (SMEs): Compliance with duty of care and implications for the circular economy. J Clean Prod. 2021; 278 :123770. doi: 10.1016/j.jclepro.2020.123770. [ CrossRef ] [ Google Scholar ]
  • Wu CY, Hu MC, Ni FC. Supporting a circular economy: Insights from Taiwan's plastic waste sector and lessons for developing countries. Sustain Prod Consum. 2021; 26 :228–238. doi: 10.1016/j.spc.2020.10.009. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Zarba C, Chinnici G, La Via G, Bracco S, Pecorino B, D'Amico M. Regulatory elements on the circular economy: Driving into the agri-food system. Sustainability. 2021; 13 (15):8350. doi: 10.3390/su13158350. [ CrossRef ] [ Google Scholar ]
  • Zeller V, Towa E, Degrez M, Achten WM. Urban waste flows and their potential for a circular economy model at city-region level. Waste Manag. 2019; 83 :83–94. doi: 10.1016/j.wasman.2018.10.034. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Zupic I, Cater T. Bibliometric methods in management and organization. Organ Res Methods. 2014; 18 (3):1–44. doi: 10.1177/1094428114562629. [ CrossRef ] [ Google Scholar ]

Waste Management Project Proposal Template

  • Great for beginners
  • Ready-to-use, fully customizable Subcategory
  • Get started in seconds

slide 1

Waste management is a pressing issue that affects our environment, communities, and future generations. If you're passionate about making a positive impact and want to propose a waste management project, ClickUp's Waste Management Project Proposal Template is the perfect tool to get started.

With this template, you'll be able to:

  • Clearly outline the goals, objectives, and scope of your waste management project.
  • Identify and assess key stakeholders, including local authorities and community members, to ensure collaboration and support.
  • Develop a comprehensive timeline, budget, and resource plan to effectively manage the project from start to finish.
  • Present your proposal in a professional and compelling way, using ClickUp's intuitive features to create visually appealing documentation.

Ready to turn your waste management vision into a reality? Use ClickUp's Waste Management Project Proposal Template today and make a difference in the world!

Benefits of Waste Management Project Proposal Template

The Waste Management Project Proposal Template offers numerous benefits for organizations looking to tackle waste management effectively. Here are just a few:

  • Streamlined project planning and execution, ensuring all waste management initiatives are well-organized and efficient
  • Clear communication of project goals, objectives, and timelines to stakeholders and team members
  • Comprehensive analysis of waste management strategies, allowing for informed decision-making and resource allocation
  • Increased accountability and transparency throughout the project, ensuring all tasks and responsibilities are clearly defined and tracked
  • Improved sustainability practices, leading to reduced waste generation and environmental impact.

Main Elements of Waste Management Project Proposal Template

ClickUp's Waste Management Project Proposal template is designed to help you streamline your waste management projects and proposals. Here are the main elements of this Whiteboard template:

  • Custom Statuses: Track the progress of your waste management projects with two customizable statuses - Open and Complete.
  • Custom Fields: Utilize custom fields to capture important information related to your waste management projects, such as project details, budget estimates, and timelines.
  • Project Proposal View: Use the Project Proposal view to outline the scope, objectives, and deliverables of your waste management project. This view allows you to collaborate with your team and stakeholders to ensure everyone is aligned.
  • Getting Started Guide View: The Getting Started Guide view provides a step-by-step roadmap for initiating and executing your waste management project. It helps you stay organized and ensures that all necessary tasks and actions are completed.

With ClickUp's Waste Management Project Proposal template, you can effectively plan, execute, and monitor your waste management projects from start to finish.

How to Use Project Proposal for Waste Management

If you're working on a waste management project proposal, you can follow these steps to effectively use the Waste Management Project Proposal Template in ClickUp:

1. Define the problem and goals

Start by clearly defining the waste management problem you aim to address. Identify the specific goals you want to achieve with your project, such as reducing landfill waste, implementing recycling programs, or improving waste disposal practices.

Use a Doc in ClickUp to outline the problem and goals, providing a clear and compelling explanation of why your project is necessary.

2. Develop a comprehensive plan

Next, develop a detailed plan that outlines the strategies and actions you will undertake to achieve your waste management goals. This may include implementing recycling initiatives, conducting waste audits, educating the community, or partnering with waste management companies.

Use tasks in ClickUp to break down your plan into actionable steps, assigning responsibilities and setting deadlines for each task.

3. Determine the budget and resources

Estimate the financial resources and materials needed to execute your waste management project. Consider expenses such as equipment, personnel, waste collection services, and community outreach materials. Additionally, identify any external resources or partnerships that may be required.

Create custom fields in ClickUp to track and calculate your project budget, ensuring that all costs are accounted for.

4. Craft a persuasive proposal

Now it's time to put together a compelling waste management project proposal that clearly communicates your plan, goals, and budget. Make sure to include relevant data, research, and case studies to support the effectiveness of your approach. Highlight the potential environmental and social benefits of your project.

Use the Docs feature in ClickUp to create a visually appealing proposal, incorporating images, charts, and graphs to enhance your message. You can also collaborate with team members to review and refine the proposal.

By following these steps and utilizing the Waste Management Project Proposal Template in ClickUp, you can effectively organize and present your waste management project, increasing the chances of securing support and funding for your initiative.

add new template customization

Get Started with ClickUp's Waste Management Project Proposal Template

Environmental organizations and waste management companies can use the Waste Management Project Proposal Template to streamline the process of proposing and implementing waste management projects.

First, hit “Get Free Solution” to sign up for ClickUp and add the template to your Workspace. Make sure you designate which Space or location in your Workspace you’d like this template applied.

Next, invite relevant members or guests to your Workspace to start collaborating.

Now you can take advantage of the full potential of this template to manage waste efficiently:

  • Use the Project Proposal View to outline and present your waste management project to stakeholders
  • The Getting Started Guide View will help you set clear guidelines and deadlines for each stage of the project
  • Organize tasks into two different statuses: Open and Complete, to keep track of progress
  • Assign team members to specific tasks and designate deadlines for each task
  • Collaborate with team members and stakeholders to brainstorm ideas and create a concrete plan
  • Set up notifications to stay updated on task progress and receive feedback from stakeholders
  • Monitor and analyze tasks to ensure the successful completion of the waste management project.

Related Templates

  • SEO Project Proposal Template
  • Tutoring Program Project Proposal Template
  • Tournament Project Proposal Template
  • Cricket Tournament Project Proposal Template
  • Solar Street Light Project Proposal Template

Template details

Free forever with 100mb storage.

Free training & 24-hours support

Serious about security & privacy

Highest levels of uptime the last 12 months

  • Product Roadmap
  • Affiliate & Referrals
  • On-Demand Demo
  • Integrations
  • Consultants
  • Gantt Chart
  • Native Time Tracking
  • Automations
  • Kanban Board
  • vs Airtable
  • vs Basecamp
  • vs MS Project
  • vs Smartsheet
  • Software Team Hub
  • PM Software Guide

Google Play Store

 
 
 
A Community-based Waste Management to Renewable Energy Workshop  2020   
EWG 04 2020A  Session 1   
Standard  Completed Project   
* Atleast Project Title is Required.
Project No. Project Title Project Status Publication (if any) Fund Account Sub-fund Project Year Project Session APEC Funding Co-funding Amount Total Project Value Sponsoring Forum   Topics   Committee   Other Fora Involved Other Non-APEC Stakeholders Involved   Proposing Economy(ies)   Co-Sponsoring Economies ; ; ;   Expected Start Date Expected Completion Date Project Proponent Name 1 Job Title 1 Organization 1 Postal Address 1 Telephone 1 Fax 1 Email 1 ;   Project Proponent Name 2 Job Title 2 Organization 2 Postal Address 2 Telephone 2 Fax 2 Email 2 Declaration Project Summary

This workshop is aimed to encourage application of waste management to renewable energy project through community involvement and engagement, as one of sustainable solutions for the waste crisis. The purposes of the workshop are: 1) increasing knowledge and understanding of waste management to renewable energy in Asia Pacific economies; 2) fostering community self-reliance in waste management.

This workshop will be held on May 2021 for two days in Bali. The activities will include seminar, discussion, sharing of best practices and also production of Project Report. The participants are  government, local communities, academics, and civil society organizations from APEC Economies.

Relevance Waste management has been an issue in many growing economies. APEC economies are responsible for a large share of global solid waste, 43 percent of global solid waste originated from APEC economies in 2016. An APEC economy resident generated 0.8 kg of solid waste per day in 2016, and this number is expected to increase to 1.1 kg per day by 2050, which is a 36 percent increase over the period . A substantial part of the solid waste consists of organic waste that in fact can be reused as compost for agriculture, gardening or as biogas to produce electricity . This represents an opportunity to turn the waste problem into economic opportunity.

New initiatives in waste management have been taking place to address the garbage accumulation problem.

However, while many of the large-scale programs have failed to achieve the targets, several smaller initiatives had succeeded. Some successful small-scale waste management programs have been carried out in Indonesia, for example in Surabaya and Banyumas. Similar programs were also done in several APEC economies such as Viet Nam, Philippines, Malaysia, and Mexico.

A community-based waste management is an alternative to overcome or minimize waste accumulation in sites managed by the local government. The local government approach to waste management has always consisted of three parts; collection; transporting and disposal at the Final Garbage Disposal Sites (FGDSs). This simple method has several shortcomings, such as high operational cost; the constant need to open new locations; and social, environmental, and health problems related to garbage buildup. Furthermore, especially in open dumping methods where the waste is not being processed, is the absence of economic value of the FGDS model. This proposal recommends an activity aiming to further develop the practice of alternative waste management which should utilize the concept of waste to energy (which will be economically beneficial) and should be developed by local communities and supported by the local/regional government.

In light of the pandemic, all APEC economies will face challenges in starting a new business, coupled with higher unemployment rate. A community-based waste management that can be established in the form of cooperatives brings economic and social benefit in the local level. It has the potential to offer a new source of income and skills development for the local communities. This potential is shown in the case of Surabaya city where it brings opportunity for communities to raise funds or assist the urban poor.

Furthermore, a considerable household waste accumulation is expected because there are more frequent online business activities and more usage of single-use food packages. A more effective waste management can offer a solution for this new problem.

The proposed project has met the funding criteria and eligibility of the Energy Efficiency and Low Carbon Measure. At the EMM11, the energy ministers aspired to the goal of “doubling the share of renewables in the APEC energy mix, including in power generation, from 2010 levels by 2030.” The project is particularly in line with EGNRET’s mission to facilitate an increase in the use of new and renewable energy technologies in the APEC region.

Regarding broader APEC Priority, this project also fits 2020 APEC priority: Driving Innovative Sustainability. The focus will be on identifying innovative practices that can complement the existing practices through science, technology, and innovation (STI), and shifting to a more responsible resource management, including discussion on Innovative Waste Management through Circular Economy. In processing waste into renewable energy, there are aspects of waste management which have been the problem that in fact have economic value. If the community is equipped with the knowledge to manage waste, alternative waste management solutions will emerge with more economic value. Waste management will also involve broader community participation such as from civil society, technological support from scientists and regulatory support from the government. This collaboration encourages innovation for a better future.

This project will focus on improving the capacity of the local community and local government in APEC economies, especially the developing ones. The local community groups from different economies will be facilitated to share their experience in managing waste by processing them into renewable energy. The local government will share their policy making experience to support such community initiative. The outputs of this project, the implementation of workshop, and Project Report, will in turn support APEC economies to improve the economic and social well-being of the people.

Singh, SK. (2020). Circular Economy: Don't let Waste go to Waste (Policy Brief). APEC Policy Support Unit

United Nations. (2015). Valuing Waste, Transforming Cities.

Institute on Global Environmental Strategies. (2017). Planning and Implementation of Integrated Solid Waste Management Strategies at Local Level: The Case of Surabaya City.



Objectives
Alignment APEC Leaders identified the need for better waste management and called for more work in this area in 2015 Leaders' Declaration:

"Our cities are potential centers of creativity and innovation, providing jobs and livelihoods for billions of people. We emphasize the importance of proper planning and adequate infrastructure for sustainable city development. We therefore welcome the work of our officials to discuss the challenges of rapid urbanization in APEC, including innovative ways of addressing waste management and water-related challenges."

2016 Leaders Declaration:

"We recognize the lack of effective solid waste management infrastructure imposes great socio-economic and environmental costs, and we encourage further work on this topic."

Concerns for better management of resources were reiterated in the 2017 Leaders' Declaration:

"We reaffirm our commitment to promote sustainable management of natural resources in achieving sustainable food security and higher productivity of the agriculture, aquaculture and fisheries sectors. We commit to continue to foster APEC cooperation on sustainable use and integrated management of land, forest, marine and water resources, through trans-boundary cooperation and collective efforts."

This project also responds to 2015 Energy Ministerial Meeting, on which APEC energy ministers strongly encouraged the acceleration of renewable energy development and deployment: “The future economic growth of the APEC region will be supported by an appropriate mix of energy resources and power generation technologies that includes both conventional and renewable energy with increasing priority for clean energy sources and enhanced energy efficiency. In this regard, we will build on synergies among the Member Economies aimed at maximizing strengths from each economy thus minimizing costs of policy implementation.”

The activities in this project is in accordance with 2020 Priority: Driving Innovative Sustainability.

This workshop aligns with EWG Strategic Plan 2019 – 2023: Accelerate best practices sharing and capacity building on the improvement of affordable, reliable, and resilient energy access. The work within the project will increase  knowledge and understanding of APEC economies in the field of waste to energy. Using waste as a source of electricity is in line with EWG plan to encourage the development and utilisation of renewable energy (in particular bioenergy) in order to achieve APEC aspirational goals to double the renewable energy share of energy mix in Asia Pacific Region by 2030. The conversion and utilisation of waste to produce renewable energy also plays an important role in improving the supply and access to energy in the community.

TILF/ASF Justification Beneficiaries and Outputs
1)  Workshop: A two days workshop will be carried out in Bali in mid 2021 which is planned to invite approximately    50 – 70 participants. It will presents experts from APEC, relevant international organizations, and civil society organization to share their experience in community-based waste management for renewable energy purposes. In order to ensure a comprehensive approach and discussion, it will include the perspectives from key actors. Delegates from member economies will also be encouraged to share their views of related barriers and potential solutions. The preliminary proposed topics are:

· Representatives from university/research center will present new findings in this issue (such as suitable waste-to-energy technology options) and identify what technological support is needed.

·  Representatives from local government will discuss how goverment can encourage community-based waste management to renewable energy, for example by financing or starting the project, improve the sustainability of the project, identify what regulatory supports need to be in place.

· Representatives from civil society organization will explore the community development aspect, including gender and development issues in community-based waste management.

2) Project Report: A complete project report will be drafted by Contractor and expected to be 15 pages long.  It consists of cover page, table of contents, introduction, summaries of presentations (policy aspects, technology options, community development aspects), feedbacks/reflections of the workshop and conclusions. It should be noted that an important part of this report will be:

· Policy recommendations (by considering legal, financial, institutional, and social aspects).

· Identified collaboration possibilities between key actors and between APEC economies, which will be discussed in the concluding session of the workshop.

This report will be available to public in APEC website and mainly targets  governments, academic community, and CSOs.

1) Increased workshop participants’ knowledge and understanding of community-based and small-scale waste management to renewable energy as an alternative waste management for APEC economies.

2) Increased willingness to consider application of community-based waste to energy projects in their respective economies.

The primary beneficiaries of this project are officials from all levels of government ideally at the directorial level with 10 years of experience. They will learn how government can encourage community initiatives to assist government in overcoming the problem of waste, while the community can obtain its economic benefit at the same time. This endeavor will furthermore contribute to reducing greenhouse gas emissions, lowering pollution, and improving public health. Relevant  institutions are Ministry of Energy and Mineral Resources, Ministry of Environment, State Development of Planning Agency (also their regional offices), Ministry of Rural Affairs, Ministry of Women Empowerment, and Ministry of Health.

In the long run, civil society organizations working in environmental issues and urban/rural community empowerment will be benefited indirectly in collaboration with decision makers. This will be done during the workshop and beyond, among other things in follow-up meetings. For local community (such as location-based women groups and youth groups), by gaining knowledge on alternative waste management for energy, this can foster their self-reliance on environmental management as well as potentially generate income. Thus the indirect benefits come in the forms of environmental, social, and economic benefit. For universities and research centers (in the field of renewable energy, waste and resource management, and environmental technology), this workshop help them to strengthen their roles in community services by aligning their work with the needs of community responding to environmental challenges.
Dissemination

Project Report will be published and disseminated in the APEC web site for free download as an APEC Publication. 

We will also send out this document to the beneficiaries. 

The target audience are: APEC economies in general, EWG fora, and stakeholders including decision makers, research centers and universities (in the field of renewable energy, waste and resource management, environmental technology), civil society organizations working on environment & community development, and energy related organizations outside APEC.

           
There is no intention to sell outputs arising from this project. 
Gender. Therefore, women’s perspective are greatly needed to contribute to this program. The project will ensure the participation and engagement of both men and women by:

1) Strongly recommend the active involvement of women since the stage of participants and speakers nomination. This will be reflected from at least 40% women participants ratio and at least 40% women speakers participant ratio. The number will demonstrate the increase of women’s skills and capacity building.

2) This project promotes at least two pillars of women economic empowerment:

·  Access to capital and assets: Include gender analysis by making ‘Gender and development issue in small-scale waste to energy’ one of the discussion’s topic. Successful project will encourage women (and other vulnerable groups) involvement and participation throughout decision-making process, and utilize gender-specific designs & approaches. Since successfull application potentially brings economic benefit, this demonstrate access to capital and assets.

· Leadership, voice, and agency: Encourage the participation of women’s group and women’s government agencies that will be self-funded. This particularly considering that Indonesia’s experience of community-based solid waste management shows how women as environmental cadres promote community empowerment. Women can deliver training and education about proper solid waste management, and this implies potential replication of environmental cadres practice in other cities and APEC economies. Women’s active leadership, voice, and agency can lead to many positive outcomes such as empowerment and increased gender equality.

3) The project will collect and use sex-disagregated data from participants.

4)  The result of the projects will be sent directly to women’s group and women’s government agencies. Furthermore, there will be follow up collaboration meetings between beneficiaries that will include breakout session on gender and development issue. Discussion in this meeting is expected to further strengthen women network beyond the workshop.

dos Muchangos,L and  Vaughter, P. (2019). Gender Mainstreaming in Waste Education Programs: A Conceptual Framework. doi: 10.3390/urbansci3010029

Prasetyanti, R. (2014). Developing Community Based Solid Waste Management Scenario in Surabaya, East Java, Indonesia: An Analysis Using System Dynamic Method. doi: 10.5923/j.ijas.20140401.01


Work Plan

November 2020 –

January 2021

Selection of project contractors

Contracting process

Issue analysis and formulate workshop agenda

Nominate speakers (and participants as needed)

Contractor

ToR and Contract

Draft agenda

List of nominated speakers and participants

January 2021

Considerations to shift the physical event to virtual

Risk assessment for mass gathering

Possible to have contract with specialist service provider to assist PO in virtual event

February 2021-

April 2021

Workshop preparation

Liaise with APEC Economies, speakers, and related forums

Invitations

List of invited speakers

1 March 2021

Call for participants

General Information

April 2021

Submitting APEC Project Monitoring Report

APEC Project Monitoring Report

May 2021

Workshop implementation (early May)

  Workshop

May 2021

Ex ante and ex post survey

 Survey result

June – July 2021

Drafting Project Report

Draft Project Report

1 August 2021

Submit Draft Project Report to APEC Secretariat

Review and approval for next process

Seeking Project Report endorsement by EWG Forum

EWG Endorsement

September 2021

Project Completion Date

November 2021

Submission of APEC Project Completion Report and supporting documents to APEC Secretariat

APEC Project Completion Report

July 2022

Participation in the long term evaluation of APEC Projects

Project delay (logistical challenge due to pandemic)

Scheduling start of work in November 2020. It is projected that in most APEC economies the pandemic will have subsided by then. Should the pandemic worsen or predicted to last until next year, PO may request extension of work plan.

Travel restrictions still in place in 2021 due to COVID 19

First, we will use 'WHO risk assessment and mitigation checklist for Mass Gatherings in the context of COVID-19' as the guidance document. The document includes decision matrix that incorporates the risk assessment and mitigation measure scores for the final determination whether or not the physical event is safe or should it be converted to virtual format, and we will make the final decision 4 months before the scheduled event (January 2021). We will also coordinate with local health authorities. Through consultation with Project Director, PO may request extension of work plan, or converting the event to virtual format and process budget re-allocation to enable the modification.

Next, if the event will proceed in physical format as planned, the mitigation will be in accordance to the aforementioned WHO document, including:

· Event emergency preparedness and response plans, mainly by developing Medical Response Plan

·  Stakeholder and partner coordination, by collaborating with health and security sectors both domestic and in other economies

·   Risk communication

·   Public health awareness of COVID-19 before and during the event

Inaccuracy in speaker nomination or sudden cancelation from speaker

Starting in the first stage of work, PO will communicate closely with key actors in APEC Economies (especially co-sponsoring economies) to ensure careful nomination of speakers and, if needed, include reserved speakers.

Low interest of participation

·  Allowing ample time to disseminate event informations before the invitations.

· Incorporate APEC economies’ opinions and advice in workshop preparation to ensure that the issues addressed correspond to their needs and interest.

Imbalance of gender ratio as expected

·  Communicate with APEC economies to encourage them to send one female participant from each economy, particularly from travel eligible economies.

· Encourage the participation of women’s group and women’s government agencies from Indonesia that will be self-funded.

·  Encourage female representation from CSO.

·  Brief Contractor about the need to achieve gender speaker ratio, and monitor the nomination.

Economies not applying knowledge learned or adopting recommendations from the project

The document Project Report will cover a guide to apply best practices for APEC Economies, including exploration of potential challenges in considering application. There will also be follow-up meetings. This is done to ensure that economies are supported to apply knowledge/recommendation beyond the project.

This project will be evaluated by the following points :

Workshop Implementation

The workshop implementation runs timely according to the wok plan.

Potential risks, including those associated with pandemic, are managed and reported to APEC Secretariat in Monitoring Report.

The workshop is implemented and all the potential risks are mitigated.

Satisfaction rate of quality of activities and speakers

Evaluation Survey will be done by Contractor

Minimal 80% of participant report that the quality of activities and speakers is satisfactory.

Project Report

1 Project Report

15 pages

10 policy recommendations

Timely submission for review process and distribution of Project Report & contact list of experts

Project report being uploaded to APEC website as scheduled and disseminated to minimal 30 beneficiaries.

Increased participants’ knowledge and understanding of community-based and small-scale waste to energy.

80% of participants increased their knowledge and understanding

Ex-ante and Ex-post survey is planned  and carried out  to evaluate the participants’ knowledge and understanding

Minimal 80% participants report increased capacity in community-based waste to energy project.

Increased participants’ willingness to consider application of community-based waste to energy project in their respective economies

70% of participants increased their willingness to consider application

Ex-ante and Ex-post survey is planned  and  carried out  to evaluate the participants’ willingness

Minimal 70% participants report increased willingness in application of the gained knowledge in the future

Number of participants

Workshop attendance from at least 11 travel eligible economies

Continuous coordination with APEC Economies to ensure high participation and address issues of high importance.

Minimal 11 economies attend the workshop

Women participants

40% of speakers and 40% of workshop participants are women

- At the preparation stage, nominate women speakers who are experts in the field.

- Request one women participants from each travel eligible economies.

At least 40% of speakers and 40% of workshop participants are women

This project will seek to cooperate with potential stakeholders who engage in similar capacity building activities, such as Policy Partnership on Science, Technology, and Innovation (PPSTI), Policy Partnership on Women and the Economy (PPWE), as well as academics and relevant international organizations. PO will coordinate with aforementioned fora to ensure critical inputs to this projects. The collaboration between fora and relevant organizations will avoid duplication of work, and bring benefits through combining expertise and sharing knowledge. Experts from APEC and non-APEC stakeholders including relevant international organizations will be invited as workshop speakers to share their experience.

APEC projects that were previously implemented has resulted in fruitful outputs in waste management and renewable energy separately, such as policy review, dialogues, and issue mapping; yet community-based waste management to renewable energy has not come into attention within APEC. We will build upon related APEC initiatives, such as “Guidebook for the Development of Sustainable Cities Focusing on Resource Circulation and Waste Management” as one of the references to develop recommendations for decision makers.

1)  This workshop be a meeting place of ideas and opportunities for APEC Economies for collaboration. It may bring about further cooperation on capacity building program, research, and replication of the community-based waste to energy initiatives.

2)  Project Report will offer recommendations for further actions and identify collaboration opportunities between key actors. Project Report will be uploaded to APEC website and disseminated to APEC economies and beneficiaries.

3) Evaluation Survey will be carried out and consisting of sex-disaggregated data. The result will be included in Project Report and will serve as a reference for future initiatives on their own gender equality targets.

PO responsible for the project is Dian Prasomya Ratri, Section Head of Regional Cooperation in the Ministry of Energy and Mineral Resources Indonesia. She was graduated from Master of Energy and Environmental Management, University of Twente and has been in charge of regional cooperation activities of the Ministry since 2017. She will be responsible for managing contractors and/or specialists.

Her contact number is +62 (0)815 7535 1175 and her email address is [email protected] / [email protected].

Contractor:

Project Overseer allocates the funding to hire a contractor to organize the workshop. The contractor’s support will comprises substantive and logistical matters. This will be crucial to ensure the workshop can run well so that the planned outputs are materialized to achieve the objectives. Contractor’s will work in total of 300 working hours with the main scope of services below:

- Drafting, revising and finalizing agenda of workshop including elaboration of each session; and nominating potential speakers. This includes coordinating with APEC economies’ to ensure that the issues addressed in this workshop correspond to their needs and interest.

- Note taking during the workshop implementation, moderate the breakout session, presenting recommendations.

- Supervision over set-up and operation of workshop related equipments.

-  Designing, carrying out, and analyzing ex-ante and ex-post survey for the participants, and Evaluation Survey to assess the workshop participants’ satisfactory level of activities and presenters.

-   Write the Project Report.

The allocation of work hours for contractor per task as follows:

25

Develop the overall work plan, including detailed activities in each stage of work.

15

Identify possible issues/theme for the workshop.

20

Liaising with APEC economies.

20

Doing a risk assessment of project format according to relevant guidelines and documents (WHO risk assessment and mitigation checklist for Mass Gatherings in the context of COVID-19, WHO situation reports, Indonesia national reports) including coordination with local public health authorities.

10

Making the necessary plan to accommodate the possibility of remote participation.

10

Finalizing the workshop agenda.

15

Drafting the list of potential speakers (including reserved speakers) and undertake necessary procedures to invite them.

10

Finalizing the list of confirmed speakers.

10

Mapping out beneficiaries that will be participants of this workshop.

15

Facilitate networking of speakers and involved organizations.

15

Selecting the potential workshop venue.

15

Preparing general information and invitation.

10

Sending invitation to participants from APEC economies.

10

Sending invitation to domestic participants: decision makers, academician or research centers, CSO, community group as deemed necessary.

20

Designing ex-ante and ex-post survey and Evaluation Survey.

10

Collect the surveys.

20

Note taking during the workshop implementation.

5

Supervision of workshop set-up and equipments.

5

·      Taking role as moderator for breakout sessions.

·      Presenting in concluding session, including recommendations that will be part of Project Report.

10

Analyzing survey and writing the survey report.

30

Write and finalize Project Report.

b. Clerical support

Project Overseer allocate APEC’s funding to contract clerical support to assist PO in administrative manners. This service will be in a single contract with Contractor above, but Clerical support will work alongside/in the office of PO for practical reasons. They will work in total of 200 working hours with the scope of works:

60

Handling communication and correspondence with external partners including contractor(s) and hotel, undertaking necessary procedures.

70

Handling communication with workshop participants and assisting them in travel arrangement, both from APEC economies’ and domestic participants from various institutions/organizations.

Dissemination of Project Report to beneficiaries.

50

Assisting PO in gathering and generate necessary documents to comply with APEC standard, particularly in relation with project accountability.

20

Assisting PO in finalizing Project Completion Reports.

Advance payment for participants’ travel and per diem

To ensure high participation from developing economies, PO requests advance payment for airfare and per diem.

Advance payment for speakers’ travel and per diem payment

As a courtesy to the speakers (experts) who will work closely with PO since workshop formulation to implementation, as well as ensure their participation in the workshop, PO requests advance payment for airfare and per diem.

Experts to attend two days of the workshop

To formulate recommendations that will be part of the Project Report, PO requests all speakers to participate in all sessions of the workshop.

Version: 6.0 
Created at 22/10/2020 12:07  by Lucy Phua 
Last modified at 14/07/2023 14:52  by Lucy Phua 
Content Type: Standard Proposal
Version:
Created at by
Last modified at by

All Rights Reserved © 2011 Asia-Pacific Economic Cooperation. Singapore. Developed with the assistance of Microsoft.

  • DOI: 10.24891/re.21.5.959
  • Corpus ID: 258781538

A dynamic input-output model of the Tyumen Oblast south's development based on the von Neumann algorithm

  • V. R. TSIBUL'SKII , Il'ya G. SOLOV'EV , D. Govorkov
  • Published in Regional Economics: Theory… 16 May 2023
  • Regional Economics: Theory and Practice

6 References

Estimation of the input-output balance model for the south of the tyumen oblast, assessment of the leontiev productive matrix of the economic development model for tyumen region (russia), development trajectories of the russian far east: evaluation based on the dynamic model of economic interactions, long-term forecasts of regional development: analysis of results and the problem of development, household income and expenditure in extended input‐output models: a comparative theoretical and empirical analysis*, related papers.

Showing 1 through 3 of 0 Related Papers

COMMENTS

  1. Circularity in waste management: a research proposal to achieve the

    Waste management is the main challenge in the transition away from the linear "take-make-dispose" economy. Incorporating the principles of circularity in waste management would facilitate the achievement of Sustainable Development Goals. This paper aims to provide state-of-the-art research about circular waste management in the fulfillment of the 2030 Agenda. For this purpose, bibliometric ...

  2. (PDF) Proposal for the Management of Solid Waste Generated in a

    (PDF) Proposal for the Management of Solid Waste ...

  3. Circularity in waste management: a research proposal to achieve the

    This paper aims to provide state-of-the-art research about circular waste management in the fulfillment of the 2030 Agenda. For this purpose, bibliometric analysis by VOSviewer and SciMat software ...

  4. Waste Management and Recycling Initiatives Led by Students

    Research shows that household waste significantly contributes to the generation of solid household waste in developing countries, and it accounts for 55-80 per cent of the total amount of waste (Isaifan et al., 2021). This includes various wastes generated in daily work, such as food waste, packaging materials, paper, plastic, glass, textiles ...

  5. PDF Circularity in waste management: a research proposal to achieve the

    The agenda is based on the pre-vious in-depth analysis of the 20 articles included in the review. Considering the analysis and the ensuing discus-sion, the following proposal is put forward for the circular management of waste management to accelerate the fulfil-ment of the 2030 Agenda.

  6. General Request for Proposals

    The EREF Board of Directors has set an initiative to ensure research funded reflects EREF's long-term strategic plan to address all areas of integrated solid waste management, with a strong focus towards research that increased sustainable solid waste management practices. EREF is an IRS 501 (c) (3) non-profit organization and is one of the ...

  7. PDF Solid Waste Management Project

    A PROPOSAL FOR SOLID WASTE MANAGEMENT

  8. Proposals for Waste Management Practices

    The following topic areas will be considered: climate change impacts on and from solid waste management; quantifying circularity of materials; quantifying the environmental burden of plastic wastes; environmental justice relating to solid waste; waste minimization; recycling; waste conversion to energy, biofuels, chemicals or other useful ...

  9. Proposals for Waste Management Practices

    The Environmental Research & Education Foundation (EREF) welcomes applications for projects and research addressing any area of integrated solid waste management, with priority given to research aimed at increasing sustainable solid waste management practices. The following topic areas will be considered: waste minimization; recycling; waste conversion to energy, biofuels, chemicals or other ...

  10. [Pdf] Proposal for The Management of Solid Waste Generated in A

    DOI: 10.2495/sc210481 Corpus ID: 244514331; PROPOSAL FOR THE MANAGEMENT OF SOLID WASTE GENERATED IN A UNIVERSITY CAMPUS: A CASE STUDY @article{MerchnSanmartn2021PROPOSALFT, title={PROPOSAL FOR THE MANAGEMENT OF SOLID WASTE GENERATED IN A UNIVERSITY CAMPUS: A CASE STUDY}, author={Bethy Merch{\'a}n-Sanmart{\'i}n and Patricia N. Almeida and Mayra Brocel and Bryan R. Pinto and Karen C{\'o}rdova ...

  11. Circularity in waste management: a research proposal to achieve the

    Abstract. Waste management is the main challenge in the transition away from the linear "take-make-dispose" economy. Incorporating the principles of circularity in waste management would facilitate the achievement of Sustainable Development Goals. This paper aims to provide state-of-the-art research about circular waste management in the ...

  12. ASU research proposal waste management

    The following research proposal will explain further about the problem and solutions. Theoretical Framework Waste Management Theory -represents a more in-depth account of the domain and contains conceptual analyses of waste, the activity upon waste, and a holistic view of the goals of waste management.

  13. Waste Management Project Proposal Template

    The Waste Management Project Proposal Template offers numerous benefits for organizations looking to tackle waste management effectively. Here are just a few: ... Make sure to include relevant data, research, and case studies to support the effectiveness of your approach. Highlight the potential environmental and social benefits of your project.

  14. Proposals

    A Community-based Waste Management to Renewable...

  15. Proposals for Waste Management Practices

    The Environmental Research & Education Foundation invites applications for projects and research that address any areas of integrated solid waste management, with a focus on research that increases sustainable solid waste management practices. The following areas will be considered: waste minimization; recycling; waste conversion to energy biofuels, chemicals, or other useful products ...

  16. (PDF) Proposal for municipal solid waste management for the city of

    Proposal for municipal solid waste management for the city of Kostomuksha. January 2013. January 2013. Affiliation: Greensettle Publications, NorTech Oulu, Thule Institute, Univ of Oulu. Authors ...

  17. PDF Hazardous waste management in Russia and the EU 2019

    Hazardous waste management in Russia and the EU. 2019. Фото: en.wikipedia.org. This working paper was prepared by Bellona as a part of the project Quality Journalism for Environmental Activists in Russia and the EU. The project is supported by the EU- Russia Civil Society Forum (www.eu-russia-csf.org) and its donors.

  18. PDF Circularity in waste management: a research proposal to achieve the

    e management would facilitate the achievement of Sustainable Development Goals. This paper aims to provide state-of-the-art. research about circular waste management in the fulfillment of the 2030 ...

  19. A dynamic input-output model of the Tyumen Oblast ...

    Subject. This article deals with the problem of constructing a real trajectory of the region's development and comparing it with the stated one. Objectives. The article aims to develop an algorithm for calculating and analyzing a dynamic input-output model of the south of the Tyumen Oblast, including social and infrastructural subsystems, and households as an endogenous variable-aggregate.

  20. Proposal for waste management in health care institutions

    Biomedical waste management is an essential aspect of human and environmental safety. The healthcare industries and the unfortunate pandemic have increased the generation of biomedical waste. If ...

  21. Igor KUZMIN

    Igor V. Kuzmin. Tyumen is a large city on the West Siberian Plain in Russia. Vascular plants of three large forest parks, four small squares and one cemetery were studied. Each green zone was ...

  22. Geographical location of the Tyumen Oblast (highlighted in dark gray

    Introduction . Specific molecular epidemic features of HIV infection in Tyumen Oblast (TO), Russia, were studied. Methods . The genome sequences encoding HIV-1 protease-reverse transcriptase ...