How Important Is Technology in Education? Benefits, Challenges, and Impact on Students

A group of students use their electronics while sitting at their desks.

Many of today’s high-demand jobs were created in the last decade, according to the International Society for Technology in Education (ISTE). As advances in technology drive globalization and digital transformation, teachers can help students acquire the necessary skills to succeed in the careers of the future.

How important is technology in education? The COVID-19 pandemic is quickly demonstrating why online education should be a vital part of teaching and learning. By integrating technology into existing curricula, as opposed to using it solely as a crisis-management tool, teachers can harness online learning as a powerful educational tool.

The effective use of digital learning tools in classrooms can increase student engagement, help teachers improve their lesson plans, and facilitate personalized learning. It also helps students build essential 21st-century skills.

Virtual classrooms, video, augmented reality (AR), robots, and other technology tools can not only make class more lively, they can also create more inclusive learning environments that foster collaboration and inquisitiveness and enable teachers to collect data on student performance.

Still, it’s important to note that technology is a tool used in education and not an end in itself. The promise of educational technology lies in what educators do with it and how it is used to best support their students’ needs.

Educational Technology Challenges

BuiltIn reports that 92 percent of teachers understand the impact of technology in education. According to Project Tomorrow, 59 percent of middle school students say digital educational tools have helped them with their grades and test scores. These tools have become so popular that the educational technology market is projected to expand to $342 billion by 2025, according to the World Economic Forum.

However, educational technology has its challenges, particularly when it comes to implementation and use. For example, despite growing interest in the use of AR, artificial intelligence, and other emerging technology, less than 10 percent of schools report having these tools in their classrooms, according to Project Tomorrow. Additional concerns include excessive screen time, the effectiveness of teachers using the technology, and worries about technology equity.

Prominently rising from the COVID-19 crisis is the issue of content. Educators need to be able to develop and weigh in on online educational content, especially to encourage students to consider a topic from different perspectives. The urgent actions taken during this crisis did not provide sufficient time for this. Access is an added concern — for example, not every school district has resources to provide students with a laptop, and internet connectivity can be unreliable in homes.

Additionally, while some students thrive in online education settings, others lag for various factors, including support resources. For example, a student who already struggled in face-to-face environments may struggle even more in the current situation. These students may have relied on resources that they no longer have in their homes.

Still, most students typically demonstrate confidence in using online education when they have the resources, as studies have suggested. However, online education may pose challenges for teachers, especially in places where it has not been the norm.

Despite the challenges and concerns, it’s important to note the benefits of technology in education, including increased collaboration and communication, improved quality of education, and engaging lessons that help spark imagination and a search for knowledge in students.

The Benefits of Technology in Education

Teachers want to improve student performance, and technology can help them accomplish this aim. To mitigate the challenges, administrators should help teachers gain the competencies needed to enhance learning for students through technology. Additionally, technology in the classroom should make teachers’ jobs easier without adding extra time to their day.

Technology provides students with easy-to-access information, accelerated learning, and fun opportunities to practice what they learn. It enables students to explore new subjects and deepen their understanding of difficult concepts, particularly in STEM. Through the use of technology inside and outside the classroom, students can gain 21st-century technical skills necessary for future occupations.

Still, children learn more effectively with direction. The World Economic Forum reports that while technology can help young students learn and acquire knowledge through play, for example, evidence suggests that learning is more effective through guidance from an adult, such as a teacher.

Leaders and administrators should take stock of where their faculty are in terms of their understanding of online spaces. From lessons learned during this disruptive time, they can implement solutions now for the future. For example, administrators could give teachers a week or two to think carefully about how to teach courses not previously online. In addition to an exploration of solutions, flexibility during these trying times is of paramount importance.

Below are examples of how important technology is in education and the benefits it offers to students and teachers.

Increased Collaboration and Communication

Educational technology can foster collaboration. Not only can teachers engage with students during lessons, but students can also communicate with each other. Through online lessons and learning games, students get to work together to solve problems. In collaborative activities, students can share their thoughts and ideas and support each other. At the same time, technology enables one-on-one interaction with teachers. Students can ask classroom-related questions and seek additional help on difficult-to-understand subject matter. At home, students can upload their homework, and teachers can access and view completed assignments using their laptops.

Personalized Learning Opportunities

Technology allows 24/7 access to educational resources. Classes can take place entirely online via the use of a laptop or mobile device. Hybrid versions of learning combine the use of technology from anywhere with regular in-person classroom sessions. In both scenarios, the use of technology to tailor learning plans for each student is possible. Teachers can create lessons based on student interests and strengths. An added benefit is that students can learn at their own pace. When they need to review class material to get a better understanding of essential concepts, students can review videos in the lesson plan. The data generated through these online activities enable teachers to see which students struggled with certain subjects and offer additional assistance and support.

Curiosity Driven by Engaging Content

Through engaging and educational content, teachers can spark inquisitiveness in children and boost their curiosity, which research says has ties to academic success. Curiosity helps students get a better understanding of math and reading concepts. Creating engaging content can involve the use of AR, videos, or podcasts. For example, when submitting assignments, students can include videos or interact with students from across the globe.

Improved Teacher Productivity and Efficiency

Teachers can leverage technology to achieve new levels of productivity, implement useful digital tools to expand learning opportunities for students, and increase student support and engagement. It also enables teachers to improve their instruction methods and personalize learning. Schools can benefit from technology by reducing the costs of physical instructional materials, enhancing educational program efficiency, and making the best use of teacher time.

Become a Leader in Enriching Classrooms through Technology

Educators unfamiliar with some of the technology used in education may not have been exposed to the tools as they prepared for their careers or as part of their professional development. Teachers looking to make the transition and acquire the skills to incorporate technology in education can take advantage of learning opportunities to advance their competencies. For individuals looking to help transform the education system through technology, American University’s School of Education online offers a Master of Arts in Teaching and a Master of Arts in Education Policy and Leadership to prepare educators with essential tools to become leaders. Courses such as Education Program and Policy Implementation and Teaching Science in Elementary School equip graduate students with critical competencies to incorporate technology into educational settings effectively.

Learn more about American University’s School of Education online and its master’s degree programs.

Virtual Reality in Education: Benefits, Tools, and Resources

Data-Driven Decision Making in Education: 11 Tips for Teachers & Administration

Helping Girls Succeed in STEM

BuiltIn, “Edtech 101”

EdTech, “Teaching Teachers to Put Tech Tools to Work”

International Society for Technology in Education, “Preparing Students for Jobs That Don’t Exist”

The Journal, “How Teachers Use Technology to Enrich Learning Experiences”

Pediatric Research, “Early Childhood Curiosity and Kindergarten Reading and Math Academic Achievement”

Project Tomorrow, “Digital Learning: Peril or Promise for Our K-12 Students”

World Economic Forum, “The Future of Jobs Report 2018”

World Economic Forum, “Learning through Play: How Schools Can Educate Students through Technology”

Request Information

Chatbot avatar

AU Program Helper

This AI chatbot provides automated responses, which may not always be accurate. By continuing with this conversation, you agree that the contents of this chat session may be transcribed and retained. You also consent that this chat session and your interactions, including cookie usage, are subject to our  privacy policy .

University of the People Logo

Home > Blog > Tips for Online Students > Discovering the Importance of Technology in Education 

Higher Education News , Tips for Online Students

Discovering the Importance of Technology in Education 

why is technology important in education essay

Updated: June 19, 2024

Published: May 24, 2019

iStock-888791812 (1)

Technology has taken over our world and has dramatically changed the way we live, work, and learn. In the education sector, technology has been a game-changer and has transformed the traditional methods of teaching and learning.  In a classroom setting, students are often given a lot of information to process quickly. This can be overwhelming and cause confusion. Technology provides access to numerous online resources that support independent learning and research. It also helps simplify the learning process by making concepts easier to understand, for example through instructional videos.   

Gone are the days of rote memorization and blackboard lectures. Today’s students are digital natives, who have grown up surrounded by technology and are accustomed to a more interactive, dynamic learning experience. Let’s take a closer look at the importance of technology in education.  

why is technology important in education essay

How Important is Technology in Education?  

Technology enhances the learning experience for students by providing them with the tools and resources necessary to succeed. From online resources that help simplify complex concepts to interactive learning experiences that keep students engaged, technology provides students with the support they need to thrive in the classroom and beyond. 

Here are reasons why technology is important in education. They include more engaged students, support for multiple learning styles, better collaboration, more instant feedback for teachers, and preparation for the future.   Let’s take a closer look at the importance of technology in education:  

Enhances Creativity and Innovation  

Technology has opened up a world of opportunities for students to be creative and innovative. With access to a wealth of information and resources at their fingertips, students can experiment, explore and bring their ideas to life.   

This type of hands-on learning is much more engaging and enjoyable for students and helps to foster critical thinking skills. For example, students can use graphic design software to create posters, animations, or videos to present their ideas.   

They can use 3D printing to design and create prototypes of their inventions. They can even use virtual and augmented reality to bring their ideas to life and make them more interactive.  

Supports Personalized Learning  

One of the biggest benefits of technology in education is personalized learning. With online resources and educational software, students can find information that is tailored to their needs, interests, and learning style.   

They can work at their own pace, repeat lessons if they need to, and access information that is relevant to their studies. This type of individualized learning can help students to stay motivated and achieve better results.  

Improves Communication and Collaboration  

Technology has revolutionized the way students, teachers, and administrators communicate and collaborate. With online platforms and social media, students can share ideas, work on projects, and stay connected no matter where they are. They can even work on projects with classmates from other schools or countries, breaking down geographical barriers and building a sense of community in the classroom.   

Furthermore, teachers can use technology to create interactive lessons, online quizzes and tests, and provide instant feedback to students, helping them to stay on track and improve their performance.  

Teaches Students How to be Responsible Online  

With so many social media options out there, it’s no surprise that students are already digital natives. But by bringing technology into the classroom, teachers get to help these students learn how to be responsible and make positive impacts in the digital world. The classroom becomes a mini version of the online world where students get to practice communicating, searching, and interacting with others just like they would in the real digital world.   

Makes Learning More Fun  

Students today are heavily reliant on technology in their daily lives outside the classroom. But incorporating technology in the classroom can not only make learning more interesting, but also help to reinforce the material taught. One innovative teaching method, game-based learning (GBL), involves using interactive games and leaderboards to deliver lessons, making the learning process much more engaging for students.  

With technology, students can also create multimedia projects and share their work with classmates, adding a creative element to the learning experience. Thanks to virtual reality (VR) and augmented reality (AR), students can take virtual field trips and simulations that can offer hands-on experiences that bring subjects to life.   

Prepares Students for the Future  

Technology is a critical tool for preparing students for the future. The workforce is rapidly evolving and technology is playing a significant role. Students need to be equipped with the skills they need to succeed in the digital age.   

Technology provides students with the tools and resources they need to develop a range of essential skills such as problem-solving, critical thinking, and collaboration. It also provides them with exposure to a variety of digital tools and platforms, helping them to become confident and proficient users.  

why is technology important in education essay

What Is the Role of Technology in Education?: The Future  

Wondering what is the role of technology in education ? The 3 important roles technology plays in education are increased collaboration and communication, personalized learning opportunities, and engaging content.  

The future of technology in education is bright and full of possibilities. From virtual and augmented reality to artificial intelligence and machine learning, technology is constantly evolving, and there is so much more to come. Virtual and augmented reality will soon become an integral part of the education experience, allowing students to immerse themselves in interactive, 3D simulations of real-life scenarios. Some benefits of technology in education include improved adaptability, more enriched collaboration, more enjoyable learning experiences, enhanced feedback, better connections, improved tech skills, and reduced costs.  

Artificial intelligence will also play a big role, with chatbots and AI-powered tutors providing instant feedback and support to students. Machine learning will also help to personalize the learning experience, making it more effective and efficient.  

In conclusion, technology has transformed the way we learn, and its impact on education has been profound. It has opened up new avenues for creativity and innovation, supported personalized learning, improved communication and collaboration, and prepared students for the future. As technology continues to evolve, it will be exciting to see how it will continue to shape and improve the education sector.  

In this article

At UoPeople, our blog writers are thinkers, researchers, and experts dedicated to curating articles relevant to our mission: making higher education accessible to everyone. Read More

Home — Essay Samples — Information Science and Technology — Technology in Education — The Importance of Technology in Education

test_template

The Importance of Technology in Education: Benefits for Students and Educators

  • Categories: Impact of Technology Technology in Education

About this sample

close

Words: 1490 |

Published: May 24, 2022

Words: 1490 | Pages: 3 | 8 min read

Table of contents

Introduction, importance of technology in education (essay).

  • Himmelsbach, V. (2019). How Does Technology Impact Student Learning? Retrieved November 26, 2020, from https:tophat.combloghow-does-technology-impact-student-learningDikusar, A. (2018).
  • How Important is Technology in Education? Retrieved October 22, 2020, from https:xbsoftware.combloghow-important-is-technology-in-educationCox, J. (2019).
  • Benefits of Technology in the Classroom. Retrieved November 4, 2020, from https:www.teachhub.comtechnology-in-the-classroom201911benefits-of-technology-in-the-classroom

Image of Alex Wood

Cite this Essay

Let us write you an essay from scratch

  • 450+ experts on 30 subjects ready to help
  • Custom essay delivered in as few as 3 hours

Get high-quality help

author

Prof. Kifaru

Verified writer

  • Expert in: Information Science and Technology

writer

+ 120 experts online

By clicking “Check Writers’ Offers”, you agree to our terms of service and privacy policy . We’ll occasionally send you promo and account related email

No need to pay just yet!

Related Essays

8 pages / 3531 words

3 pages / 1418 words

3 pages / 1301 words

2 pages / 783 words

Remember! This is just a sample.

You can get your custom paper by one of our expert writers.

121 writers online

Still can’t find what you need?

Browse our vast selection of original essay samples, each expertly formatted and styled

Related Essays on Technology in Education

The rapid evolution of technology has brought us to an era where free internet access in the world is no longer just a luxury but a necessity. The internet has transformed various aspects of our lives, from communication and [...]

Cell phones are a distraction in school is a statement that has ignited passionate debates among educators, parents, and students. The ubiquitous presence of cell phones in classrooms has prompted discussions about their impact [...]

The integration of technology into educational systems has sparked extensive debate among educators, policymakers, and stakeholders. Proponents argue that technology enhances learning experiences, fosters engagement, and [...]

With the rise of technology and the internet, children today have access to an unprecedented amount of information at their fingertips. This has sparked a debate among educators and parents about whether the internet is making [...]

The author's passion for technology and the impact of technology on the world Interest in problem-solving and its connection to technology Pursuing a diploma course in technology after secondary school Work [...]

Education is necessary for everyone. Education is very important, without education no one can lead a good life. Education is of two kinds i.e. natural and nurture. In nurture, education given to a child requires proper [...]

Related Topics

By clicking “Send”, you agree to our Terms of service and Privacy statement . We will occasionally send you account related emails.

Where do you want us to send this sample?

By clicking “Continue”, you agree to our terms of service and privacy policy.

Be careful. This essay is not unique

This essay was donated by a student and is likely to have been used and submitted before

Download this Sample

Free samples may contain mistakes and not unique parts

Sorry, we could not paraphrase this essay. Our professional writers can rewrite it and get you a unique paper.

Please check your inbox.

We can write you a custom essay that will follow your exact instructions and meet the deadlines. Let's fix your grades together!

Get Your Personalized Essay in 3 Hours or Less!

We use cookies to personalyze your web-site experience. By continuing we’ll assume you board with our cookie policy .

  • Instructions Followed To The Letter
  • Deadlines Met At Every Stage
  • Unique And Plagiarism Free

why is technology important in education essay

Education: Impact of Technology Essay

  • To find inspiration for your paper and overcome writer’s block
  • As a source of information (ensure proper referencing)
  • As a template for you assignment

Technology’s impact on education has been a popular discussion subject in recent years. Remote learning during the pandemic changed the public perspectives on the role of technology in teaching and learning. According to Himmelsbach (2022), educators realize the power of digital tools, devices, and applications. However, there are several ethical concerns and legal issues that need to be addressed. Teachers’ main objective is to improve students’ performance, and technology can help them achieve it. School of Education (2020) states that technology provides students access to information, accelerated learning, and interesting opportunities to practice their knowledge. It enables learners to engage in self-education and acquire technical skills needed for future jobs.

As the use of technology in the classroom increases, people have to be more mindful of ethical issues that arise from it. As per Mattison (2018), one big ethical problem is plagiarism, especially considering how search engines make it easy to find an answer to any question. Moreover, there is the matter of electronic communication between teachers and students and the blurring of lines in it between business and personal. Then there are concerns related to cyberbullying and the collection of students’ personal data by schools.

It is important to remember that there are also legal issues connected to the implementation of technology in the classroom. The main one, according to Smith (2020), is the issue of the legal right to use sources. However, the creator owns the content that they made, and in accordance with the chain of command policy, one has to obtain the creator’s permission if they wish to utilize the asset in their teaching.

A counter-point to this issue is presented by Poole et al. (2021), who found that many companies in the business of information publicizing are essentially privatizing the results of research sponsored by government grants and taxpayer money. Such financial and informational gatekeeping, according to Poole et al. (2021), promises to increase inequality, harming the poor and minorities first. That inequality is likely to exacerbate during the pandemic, with many students being forced to study from home, not having access to libraries in their respective universities. The legal issues of copyright, according to Winchester (2020) have been ignored for the past 20 years, but the increased necessity for studying from home might see a revision of knowledge rights. These changes might affect the way students study and utilize technology in the future.

Himmelsbach, V. (2022). How education technology in the classroom can impact student learning . Top Hat. Web.

Mattison, L. (2018). Ethical issues with using technology in the classroom . Study.com. Web.

Poole, A. H., Agosto, D., Greenberg, J., Lin, X., & Yan, E. (2021). Where do we stand? Diversity, equity, inclusion, and social justice in North American library and information science education. Journal of Education for Library and Information Science , 62 (3), 258-286.

School of Education. (2020). How important is technology in education? Benefits, challenges, and impact on students . SOE Online. Web.

Smith, L. (2020). Overcoming legal issues with implementing technology in the classroom . Study.com. Web.

Winchester, I. (2020). Culture, Freedom, Oppression, and Better Educational Opportunities. Journal of Educational Thought/Revue de la Pensée Educative , 53 (2), 123-124.

  • An Assistive Technology for Supporting Student Admission by University
  • Notetaking in an Online Environment
  • The Benefits of Privatizing the Postal Service
  • Arguments Against Privatizing Security System
  • Cuban Counterpoint: Tobacco and Sugar
  • Acceptable Use Policy in Miami Public Schools
  • Academic Writing Under Impact of Technology
  • Reading and Writing with Use of Technology
  • The Use of Technologies in the Classroom
  • Human Performance and Technology in Education
  • Chicago (A-D)
  • Chicago (N-B)

IvyPanda. (2024, March 21). Education: Impact of Technology. https://ivypanda.com/essays/education-impact-of-technology/

"Education: Impact of Technology." IvyPanda , 21 Mar. 2024, ivypanda.com/essays/education-impact-of-technology/.

IvyPanda . (2024) 'Education: Impact of Technology'. 21 March.

IvyPanda . 2024. "Education: Impact of Technology." March 21, 2024. https://ivypanda.com/essays/education-impact-of-technology/.

1. IvyPanda . "Education: Impact of Technology." March 21, 2024. https://ivypanda.com/essays/education-impact-of-technology/.

Bibliography

IvyPanda . "Education: Impact of Technology." March 21, 2024. https://ivypanda.com/essays/education-impact-of-technology/.

  • Future Students
  • Current Students
  • Faculty/Staff

Stanford GSE

News and Media

  • News & Media Home
  • Research Stories
  • School’s In
  • In the Media

You are here

How technology is reinventing education.

Image credit: Claire Scully

New advances in technology are upending education, from the recent debut of new artificial intelligence (AI) chatbots like ChatGPT to the growing accessibility of virtual-reality tools that expand the boundaries of the classroom. For educators, at the heart of it all is the hope that every learner gets an equal chance to develop the skills they need to succeed. But that promise is not without its pitfalls.

“Technology is a game-changer for education – it offers the prospect of universal access to high-quality learning experiences, and it creates fundamentally new ways of teaching,” said Dan Schwartz, dean of  Stanford Graduate School of Education  (GSE), who is also a professor of educational technology at the GSE and faculty director of the  Stanford Accelerator for Learning . “But there are a lot of ways we teach that aren’t great, and a big fear with AI in particular is that we just get more efficient at teaching badly. This is a moment to pay attention, to do things differently.”

For K-12 schools, this year also marks the end of the Elementary and Secondary School Emergency Relief (ESSER) funding program, which has provided pandemic recovery funds that many districts used to invest in educational software and systems. With these funds running out in September 2024, schools are trying to determine their best use of technology as they face the prospect of diminishing resources.

Here, Schwartz and other Stanford education scholars weigh in on some of the technology trends taking center stage in the classroom this year.

AI in the classroom

In 2023, the big story in technology and education was generative AI, following the introduction of ChatGPT and other chatbots that produce text seemingly written by a human in response to a question or prompt. Educators immediately  worried  that students would use the chatbot to cheat by trying to pass its writing off as their own. As schools move to adopt policies around students’ use of the tool, many are also beginning to explore potential opportunities – for example, to generate reading assignments or  coach  students during the writing process.

AI can also help automate tasks like grading and lesson planning, freeing teachers to do the human work that drew them into the profession in the first place, said Victor Lee, an associate professor at the GSE and faculty lead for the  AI + Education initiative  at the Stanford Accelerator for Learning. “I’m heartened to see some movement toward creating AI tools that make teachers’ lives better – not to replace them, but to give them the time to do the work that only teachers are able to do,” he said. “I hope to see more on that front.”

He also emphasized the need to teach students now to begin questioning and critiquing the development and use of AI. “AI is not going away,” said Lee, who is also director of  CRAFT  (Classroom-Ready Resources about AI for Teaching), which provides free resources to help teach AI literacy to high school students across subject areas. “We need to teach students how to understand and think critically about this technology.”

Immersive environments

The use of immersive technologies like augmented reality, virtual reality, and mixed reality is also expected to surge in the classroom, especially as new high-profile devices integrating these realities hit the marketplace in 2024.

The educational possibilities now go beyond putting on a headset and experiencing life in a distant location. With new technologies, students can create their own local interactive 360-degree scenarios, using just a cell phone or inexpensive camera and simple online tools.

“This is an area that’s really going to explode over the next couple of years,” said Kristen Pilner Blair, director of research for the  Digital Learning initiative  at the Stanford Accelerator for Learning, which runs a program exploring the use of  virtual field trips  to promote learning. “Students can learn about the effects of climate change, say, by virtually experiencing the impact on a particular environment. But they can also become creators, documenting and sharing immersive media that shows the effects where they live.”

Integrating AI into virtual simulations could also soon take the experience to another level, Schwartz said. “If your VR experience brings me to a redwood tree, you could have a window pop up that allows me to ask questions about the tree, and AI can deliver the answers.”

Gamification

Another trend expected to intensify this year is the gamification of learning activities, often featuring dynamic videos with interactive elements to engage and hold students’ attention.

“Gamification is a good motivator, because one key aspect is reward, which is very powerful,” said Schwartz. The downside? Rewards are specific to the activity at hand, which may not extend to learning more generally. “If I get rewarded for doing math in a space-age video game, it doesn’t mean I’m going to be motivated to do math anywhere else.”

Gamification sometimes tries to make “chocolate-covered broccoli,” Schwartz said, by adding art and rewards to make speeded response tasks involving single-answer, factual questions more fun. He hopes to see more creative play patterns that give students points for rethinking an approach or adapting their strategy, rather than only rewarding them for quickly producing a correct response.

Data-gathering and analysis

The growing use of technology in schools is producing massive amounts of data on students’ activities in the classroom and online. “We’re now able to capture moment-to-moment data, every keystroke a kid makes,” said Schwartz – data that can reveal areas of struggle and different learning opportunities, from solving a math problem to approaching a writing assignment.

But outside of research settings, he said, that type of granular data – now owned by tech companies – is more likely used to refine the design of the software than to provide teachers with actionable information.

The promise of personalized learning is being able to generate content aligned with students’ interests and skill levels, and making lessons more accessible for multilingual learners and students with disabilities. Realizing that promise requires that educators can make sense of the data that’s being collected, said Schwartz – and while advances in AI are making it easier to identify patterns and findings, the data also needs to be in a system and form educators can access and analyze for decision-making. Developing a usable infrastructure for that data, Schwartz said, is an important next step.

With the accumulation of student data comes privacy concerns: How is the data being collected? Are there regulations or guidelines around its use in decision-making? What steps are being taken to prevent unauthorized access? In 2023 K-12 schools experienced a rise in cyberattacks, underscoring the need to implement strong systems to safeguard student data.

Technology is “requiring people to check their assumptions about education,” said Schwartz, noting that AI in particular is very efficient at replicating biases and automating the way things have been done in the past, including poor models of instruction. “But it’s also opening up new possibilities for students producing material, and for being able to identify children who are not average so we can customize toward them. It’s an opportunity to think of entirely new ways of teaching – this is the path I hope to see.”

More Stories

Group of early elementary age students working on tablets

⟵ Go to all Research Stories

Get the Educator

Subscribe to our monthly newsletter.

Stanford Graduate School of Education

482 Galvez Mall Stanford, CA 94305-3096 Tel: (650) 723-2109

  • Contact Admissions
  • GSE Leadership
  • Site Feedback
  • Web Accessibility
  • Career Resources
  • Faculty Open Positions
  • Explore Courses
  • Academic Calendar
  • Office of the Registrar
  • Cubberley Library
  • StanfordWho
  • StanfordYou

Improving lives through learning

why is technology important in education essay

  • Stanford Home
  • Maps & Directions
  • Search Stanford
  • Emergency Info
  • Terms of Use
  • Non-Discrimination
  • Accessibility

© Stanford University , Stanford , California 94305 .

Why technology in education must be on our terms

Cameroon school children learning to use computer in classroom

The relationship between technology and education has been a topic of interest for decades. While technology presents remarkable opportunities, it's essential to approach its integration thoughtfully and responsibly. The  2023 Global Education Monitoring (GEM) Report offers valuable insights into how technology has transformed education, its benefits, limitations, and the challenges associated with its implementation.  

The flagship UNESCO report highlights the lack of appropriate governance and regulation, especially amidst rapidly emerging generative artificial intelligence tools. It urges countries to urgently set their own terms for the way technology is designed and used in learning so that it never replaces in-person, teacher-led instruction, and supports quality education for all. Here are some insights from the report. 

What has been the evolution of technology in education?

While the use of technology in education dates back to the emergence of radio in the 1920s, it's the digital technology of the last 40 years that holds the greatest potential for educational transformation. This period has witnessed a revolution in content distribution, learning management systems, testing methods, and language instruction. From augmented reality to personalized tutoring, technology has reshaped our learning experiences. Recent advancements in artificial intelligence have amplified the capabilities of educational technology, even raising questions about the role of human interaction in education.

What is the impact of technology on learning?

Technology undeniably enhances learning in specific contexts. However, it is crucial to recognize that a one-size-fits-all approach does not apply. Digital technology's primary contributions to learning lie in its ability to personalize instruction and extend available learning time. Additionally, it fosters engagement by encouraging interaction and collaboration among learners. Notably, the report highlights that technology need not be cutting-edge to be effective. For instance, in China, providing high-quality lesson recordings to rural students resulted in a 32% improvement in outcomes and a 38% reduction in urban-rural learning gaps.

How do we evaluate technology's effectiveness in education?

The report emphasizes that evaluating technology's impact must focus on learning outcomes rather than the mere implementation of digital tools. Cases such as Peru, where laptops were distributed without integrating them into pedagogy, demonstrate that technology alone doesn't guarantee improved learning. Similarly, exclusive reliance on remote instruction in the United States widened learning gaps. The report further warns against inappropriate or excessive technology use, citing instances of negative links between excessive ICT use and student performance.

How reliable is the evidence?

The rapid evolution of technology often outpaces its evaluation. Evidence primarily comes from affluent countries, raising concerns about generalizability. The report reveals that a mere 7% of education technology companies in the United Kingdom conducted randomized controlled trials, reflecting a lack of rigorous evaluation. The challenge of isolating technology's impact from other factors complicates precise assessment. Additionally, the influence of technology companies on evidence generation poses credibility challenges.

What are the recommendations for effective integration of technology in education?

As artificial intelligence gains prominence, the report emphasizes that not all technological change equates to progress. The adoption of technology must be guided by a learner-centric, rights-based framework, ensuring appropriateness, equity, evidence-based decisions, and sustainability. The report presents a four-point compass for policy-makers:

  • Look down: Evaluate the context and learning objectives to ensure technology choices strengthen education systems.
  • Look back: Prioritize marginalized groups to ensure that technology benefits all learners and narrows educational disparities.
  • Look up: Ensure evidence-based decision-making and consider hidden long-term costs before scaling up technology initiatives.
  • Look forward: Align technology integration with sustainable development goals, considering financial implications, children's well-being, and environmental impact.

Technology in education: A tool on whose terms

Technology in education: A tool on whose terms

From 4 to 7 September, UNESCO's  Digital Learning Week will gather policy-makers, practitioners, educators, private sector partners, researchers and development agencies to jointly explore how public digital learning platforms and generative AI can be steered to reinforce and enrich human-centered quality education.

  • Download the  2023 GEM Report  
  • Read the  press release  
  • Join the conversation on social media via  #TechOnOurTerms
  • More on the  Global Education Monitoring Report
  • More on UNESCO's  Digital Learning Week

Related items

  • Artificial intelligence
  • Educational technology
  • Digital learning week
  • Topics: Display
  • See more add

More on this subject

Global Media and Information Literacy Week Feature Conference 2024

Other recent articles

Lancement de la Deuxième Phase de l'Initiative de Codage Jeunesse UNESCO-CODEMAO en Chine

Article ChatGPT, artificial intelligence and higher education: What do higher education institutions need to know? 26 July 2024

The comic strip Inside AI: An Algorithmic Adventure released in Malagasy

  • CBSE Class 10th
  • CBSE Class 12th
  • UP Board 10th
  • UP Board 12th
  • Bihar Board 10th
  • Bihar Board 12th

Top Schools

  • Top Schools in India
  • Top Schools in Delhi
  • Top Schools in Mumbai
  • Top Schools in Chennai
  • Top Schools in Hyderabad
  • Top Schools in Kolkata
  • Top Schools in Pune
  • Top Schools in Bangalore

Products & Resources

  • JEE Main Knockout April
  • Free Sample Papers
  • Free Ebooks
  • NCERT Notes
  • NCERT Syllabus
  • NCERT Books
  • RD Sharma Solutions
  • Navodaya Vidyalaya Admission 2024-25
  • NCERT Solutions
  • NCERT Solutions for Class 12
  • NCERT Solutions for Class 11
  • NCERT solutions for Class 10
  • NCERT solutions for Class 9
  • NCERT solutions for Class 8
  • NCERT Solutions for Class 7
  • JEE Main Exam
  • JEE Advanced Exam
  • BITSAT Exam
  • View All Engineering Exams
  • Colleges Accepting B.Tech Applications
  • Top Engineering Colleges in India
  • Engineering Colleges in India
  • Engineering Colleges in Tamil Nadu
  • Engineering Colleges Accepting JEE Main
  • Top IITs in India
  • Top NITs in India
  • Top IIITs in India
  • JEE Main College Predictor
  • JEE Main Rank Predictor
  • MHT CET College Predictor
  • AP EAMCET College Predictor
  • GATE College Predictor
  • KCET College Predictor
  • JEE Advanced College Predictor
  • View All College Predictors
  • JEE Advanced Cutoff
  • JEE Main Cutoff
  • GATE Registration 2025
  • JEE Main Syllabus 2025
  • Download E-Books and Sample Papers
  • Compare Colleges
  • B.Tech College Applications
  • JEE Main Question Papers
  • View All Management Exams

Colleges & Courses

  • MBA College Admissions
  • MBA Colleges in India
  • Top IIMs Colleges in India
  • Top Online MBA Colleges in India
  • MBA Colleges Accepting XAT Score
  • BBA Colleges in India
  • XAT College Predictor 2025
  • SNAP College Predictor
  • NMAT College Predictor
  • MAT College Predictor 2024
  • CMAT College Predictor 2024
  • CAT Percentile Predictor 2024
  • CAT 2024 College Predictor
  • Top MBA Entrance Exams 2024
  • AP ICET Counselling 2024
  • GD Topics for MBA
  • CAT Exam Date 2024
  • Download Helpful Ebooks
  • List of Popular Branches
  • QnA - Get answers to your doubts
  • IIM Fees Structure
  • AIIMS Nursing
  • Top Medical Colleges in India
  • Top Medical Colleges in India accepting NEET Score
  • Medical Colleges accepting NEET
  • List of Medical Colleges in India
  • List of AIIMS Colleges In India
  • Medical Colleges in Maharashtra
  • Medical Colleges in India Accepting NEET PG
  • NEET College Predictor
  • NEET PG College Predictor
  • NEET MDS College Predictor
  • NEET Rank Predictor
  • DNB PDCET College Predictor
  • NEET Result 2024
  • NEET Asnwer Key 2024
  • NEET Cut off
  • NEET Online Preparation
  • Download Helpful E-books
  • Colleges Accepting Admissions
  • Top Law Colleges in India
  • Law College Accepting CLAT Score
  • List of Law Colleges in India
  • Top Law Colleges in Delhi
  • Top NLUs Colleges in India
  • Top Law Colleges in Chandigarh
  • Top Law Collages in Lucknow

Predictors & E-Books

  • CLAT College Predictor
  • MHCET Law ( 5 Year L.L.B) College Predictor
  • AILET College Predictor
  • Sample Papers
  • Compare Law Collages
  • Careers360 Youtube Channel
  • CLAT Syllabus 2025
  • CLAT Previous Year Question Paper
  • NID DAT Exam
  • Pearl Academy Exam

Predictors & Articles

  • NIFT College Predictor
  • UCEED College Predictor
  • NID DAT College Predictor
  • NID DAT Syllabus 2025
  • NID DAT 2025
  • Design Colleges in India
  • Top NIFT Colleges in India
  • Fashion Design Colleges in India
  • Top Interior Design Colleges in India
  • Top Graphic Designing Colleges in India
  • Fashion Design Colleges in Delhi
  • Fashion Design Colleges in Mumbai
  • Top Interior Design Colleges in Bangalore
  • NIFT Result 2024
  • NIFT Fees Structure
  • NIFT Syllabus 2025
  • Free Design E-books
  • List of Branches
  • Careers360 Youtube channel
  • IPU CET BJMC 2024
  • JMI Mass Communication Entrance Exam 2024
  • IIMC Entrance Exam 2024
  • Media & Journalism colleges in Delhi
  • Media & Journalism colleges in Bangalore
  • Media & Journalism colleges in Mumbai
  • List of Media & Journalism Colleges in India
  • CA Intermediate
  • CA Foundation
  • CS Executive
  • CS Professional
  • Difference between CA and CS
  • Difference between CA and CMA
  • CA Full form
  • CMA Full form
  • CS Full form
  • CA Salary In India

Top Courses & Careers

  • Bachelor of Commerce (B.Com)
  • Master of Commerce (M.Com)
  • Company Secretary
  • Cost Accountant
  • Charted Accountant
  • Credit Manager
  • Financial Advisor
  • Top Commerce Colleges in India
  • Top Government Commerce Colleges in India
  • Top Private Commerce Colleges in India
  • Top M.Com Colleges in Mumbai
  • Top B.Com Colleges in India
  • IT Colleges in Tamil Nadu
  • IT Colleges in Uttar Pradesh
  • MCA Colleges in India
  • BCA Colleges in India

Quick Links

  • Information Technology Courses
  • Programming Courses
  • Web Development Courses
  • Data Analytics Courses
  • Big Data Analytics Courses
  • RUHS Pharmacy Admission Test
  • Top Pharmacy Colleges in India
  • Pharmacy Colleges in Pune
  • Pharmacy Colleges in Mumbai
  • Colleges Accepting GPAT Score
  • Pharmacy Colleges in Lucknow
  • List of Pharmacy Colleges in Nagpur
  • GPAT Result
  • GPAT 2024 Admit Card
  • GPAT Question Papers
  • NCHMCT JEE 2024
  • Mah BHMCT CET
  • Top Hotel Management Colleges in Delhi
  • Top Hotel Management Colleges in Hyderabad
  • Top Hotel Management Colleges in Mumbai
  • Top Hotel Management Colleges in Tamil Nadu
  • Top Hotel Management Colleges in Maharashtra
  • B.Sc Hotel Management
  • Hotel Management
  • Diploma in Hotel Management and Catering Technology

Diploma Colleges

  • Top Diploma Colleges in Maharashtra
  • UPSC IAS 2024
  • SSC CGL 2024
  • IBPS RRB 2024
  • Previous Year Sample Papers
  • Free Competition E-books
  • Sarkari Result
  • QnA- Get your doubts answered
  • UPSC Previous Year Sample Papers
  • CTET Previous Year Sample Papers
  • SBI Clerk Previous Year Sample Papers
  • NDA Previous Year Sample Papers

Upcoming Events

  • NDA Application Form 2024
  • UPSC IAS Application Form 2024
  • CDS Application Form 2024
  • CTET Admit card 2024
  • HP TET Result 2023
  • SSC GD Constable Admit Card 2024
  • UPTET Notification 2024
  • SBI Clerk Result 2024

Other Exams

  • SSC CHSL 2024
  • UP PCS 2024
  • UGC NET 2024
  • RRB NTPC 2024
  • IBPS PO 2024
  • IBPS Clerk 2024
  • IBPS SO 2024
  • Top University in USA
  • Top University in Canada
  • Top University in Ireland
  • Top Universities in UK
  • Top Universities in Australia
  • Best MBA Colleges in Abroad
  • Business Management Studies Colleges

Top Countries

  • Study in USA
  • Study in UK
  • Study in Canada
  • Study in Australia
  • Study in Ireland
  • Study in Germany
  • Study in China
  • Study in Europe

Student Visas

  • Student Visa Canada
  • Student Visa UK
  • Student Visa USA
  • Student Visa Australia
  • Student Visa Germany
  • Student Visa New Zealand
  • Student Visa Ireland
  • CUET PG 2025
  • DU Admission 2024
  • UP B.Ed JEE 2024
  • LPU NEST 2024
  • IIT JAM 2025
  • AP OAMDC 2024
  • Universities in India
  • Top Universities in India 2024
  • Top Colleges in India
  • Top Universities in Uttar Pradesh 2024
  • Top Universities in Bihar
  • Top Universities in Madhya Pradesh 2024
  • Top Universities in Tamil Nadu 2024
  • Central Universities in India
  • CUET DU Cut off 2024
  • IGNOU Date Sheet 2024
  • CUET DU CSAS Portal 2024
  • CUET 2025 Syllabus
  • CUET Result 2024
  • CUET Participating Universities 2024
  • CUET Previous Year Question Paper
  • IGNOU Result 2024
  • E-Books and Sample Papers
  • CUET College Predictor 2024
  • CUET Exam Date 2024
  • CUET Cut Off 2024
  • NIRF Ranking 2024
  • IGNOU Exam Form 2024
  • CUET PG Counselling 2024
  • CUET Counselling 2024

Engineering Preparation

  • Knockout JEE Main 2024
  • Test Series JEE Main 2024
  • JEE Main 2024 Rank Booster

Medical Preparation

  • Knockout NEET 2024
  • Test Series NEET 2024
  • Rank Booster NEET 2024

Online Courses

  • JEE Main One Month Course
  • NEET One Month Course
  • IBSAT Free Mock Tests
  • IIT JEE Foundation Course
  • Knockout BITSAT 2024
  • Career Guidance Tool

Top Streams

  • IT & Software Certification Courses
  • Engineering and Architecture Certification Courses
  • Programming And Development Certification Courses
  • Business and Management Certification Courses
  • Marketing Certification Courses
  • Health and Fitness Certification Courses
  • Design Certification Courses

Specializations

  • Digital Marketing Certification Courses
  • Cyber Security Certification Courses
  • Artificial Intelligence Certification Courses
  • Business Analytics Certification Courses
  • Data Science Certification Courses
  • Cloud Computing Certification Courses
  • Machine Learning Certification Courses
  • View All Certification Courses
  • UG Degree Courses
  • PG Degree Courses
  • Short Term Courses
  • Free Courses
  • Online Degrees and Diplomas
  • Compare Courses

Top Providers

  • Coursera Courses
  • Udemy Courses
  • Edx Courses
  • Swayam Courses
  • upGrad Courses
  • Simplilearn Courses
  • Great Learning Courses

Technology In Education Essay

Essay On Technology In Education- Technology makes education very easy. Technology is now very essential to maintaining society, and it will definitely have an impact on education. In today's life, technology has made study easier. Here are 100, 200 and 500 word essays on Technology In Education

Technology plays a huge part in education. The students' learning process gets simpler as technology advances. Students can easily learn the concepts thanks to technologies utilised in schools and universities, such as computer labs and high-end equipment and instruments. In today's life, technology has made study easier. Here are some sample essays on Technology In Education

Technology In Education Essay

100 Words Essay On Technology In Education

Technology makes education very easy. Technology is now essential to maintaining society, and it will definitely have an impact on education. Previously teachers didn't allow students to use technology in education. Today's everything is connected to technology including education,communication, etc. Although technology has been a part of our lives for many years, the development and use of technology in education have only lately started to take shape. One of the most crucial things we have now that can help students perform better academically is technology. As technology advances, it creates new opportunities for students to interact and learn through a variety of sources. Online classes are the best example of technology.

200 Words Essay On Technology In Education

The word "technology" is derived from the Greek word "tekhnologia," where "tekh" signifies an art, a skill, etc., and "logy" defines a subject of interest. Technology makes our tasks easy and makes life easy. Today, technology plays a significant role in our lives and offers a digital platform. The term "smart classes" is being used increasingly in schools and colleges, and these classes are the best use of technology.

Technology And Education

Technology made education easy and attractive. Students study because of technology with their mobile phones and laptops.

By using technology, online classes have started, and students love doing smart classes.

Technology keeps students updated on the world and shows the right direction to do good in education.

Through technology, students can read newspapers daily wise. Technology made education easy and attractive.

From technology, schools make their app and take attendance online, which helps the environment also by not using paper and pen.

Technology attracts children more, which helps them to choose their path.

Education should not be done with only books; students should get a chance to explore their knowledge and try something new. Technology is the best thing to explore. By using technology, students' knowledge will grow faster than before.

500 Words Essay On Technology In Education

Technology has become an integral part of education because of different apps and websites. Nowadays, if you want to clear your doubts or to know your syllabus, everything is available online. Nowadays, education is nothing without technology.

Is Technology Helpful In Education?

Yes, technology is helpful to education. Nowadays, you will see the difference in how technology has changed teaching. In older days, students read from their books, and if they faced any problem, they would ask their teachers the next day at school or for tuition.

But nowadays, students clear their doubts by using apps and websites. Due to technology, they can also ask a question or can have live interaction with their teachers personally. Education has progressed a lot.

Technology has made education easy, and today we have multiple options to clear our doubts and interact online with our teachers. Nowadays, we have easy access to the internet, and other helping apps have made education accessible and exciting.

Technology is essential for students. Parents and teachers should permit their children to use technology for their students because time has changed, and the mode of education should also be changed. Students should be given a chance to learn something new and exciting and technology makes it possible.

Different Technologies for Education

Many devices make education easier for students and clear students' doubts. Some of them are-

Laptops | One of the best tools for learning is a laptop. You can obtain information on the Internet either in written form, video form, or audio form. On several applications and websites, you can find tutors who can give you a thorough explanation. Students can acquire extensive information and have their questions answered thanks to it. You may effortlessly visit several educational portals using a laptop.

Smartphone | Smartphones are smaller versions of laptops; you can use them more easily than laptops and take them with you wherever you go. It is user-friendly due to its compact size and simple internet connection. Students can speak with their teacher about questions using a smartphone. Many students have smartphones, which they use for academic purposes. Numerous apps were available for students on mobile devices.

Kindle for Textbooks | Kindle Textbooks are a type of online book. Kindle books are available at half the price of paper books. This helps to reduce the production of paper, which allows our environment and online books to be easily stored. Kindle Textbooks are popular these days. Many students use them.

My Experience

From the 12th standard, I used a smartphone and laptop for education. Technology makes study easier. When I didn't understand something from school, I used to look for those online and try to clear all my doubts by watching topic specific videos. In my school days, I learned different crafts and drawing skills by watching videos online. I used to take help from online videos to understand many science experiments and easy tricks to solve various mathematical questions. Technology in education is perfect for the future because the use of technology in education will bring a drastic change in our education system.

Applications for Admissions are open.

Tallentex 2025 - ALLEN's Talent Encouragement Exam

Tallentex 2025 - ALLEN's Talent Encouragement Exam

Register for Tallentex '25 - One of The Biggest Talent Encouragement Exam

JEE Main Important Physics formulas

JEE Main Important Physics formulas

As per latest 2024 syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters

JEE Main Important Chemistry formulas

JEE Main Important Chemistry formulas

As per latest 2024 syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters

TOEFL ® Registrations 2024

TOEFL ® Registrations 2024

Accepted by more than 11,000 universities in over 150 countries worldwide

JEE Main high scoring chapters and topics

JEE Main high scoring chapters and topics

As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE

JEE Main Important Mathematics Formulas

JEE Main Important Mathematics Formulas

As per latest 2024 syllabus. Maths formulas, equations, & theorems of class 11 & 12th chapters

Download Careers360 App's

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

student

Certifications

student

We Appeared in

Economic Times

Explore Greyhound Nation

  • Loyola Today

What is Educational Technology and Why is it Important?

Student using virtual reality glasses in the classroom

What is Educational Technology?

Educational Technology is the field of study that investigates the process of analyzing, designing, developing, implementing, and evaluating the instructional environment, learning materials, learners, and the learning process in order to improve teaching and learning.

Why is Educational Technology in Education Important?

Educational technology in education is important because it helps today’s teachers to integrate new technologies and tools into their classroom. Teachers are able to upgrade and improve the learner-centeredness of their classroom. It enables teachers to engage their students in unique, innovative, and equitable ways. Teachers are also able to expand their network and connect with other teachers and educators nationally and globally.

What can I do with a Master’s in Educational Technology degree?

Many teachers pursue a Master’s degree in Educational Technology because they want to improve their use of educational technology—they want to learn how to more effectively integrate the use of 1:1 devices, or how to teach in a hybrid or fully online setting, or how to improve student engagement and achievement with technology. Not only do they learn all of these skills and more, they also learn how to integrate research-supported strategies to improve their teaching and how to coach their peers to do the same. 

Graduates of a Master’s in Educational Technology degree have gone on to become:

  • National Board-Certified Teachers
  • School Administrators
  • Technology Facilitators and Coordinators
  • Personnel at Ed Tech Start Ups
  • Instructional Designers (both within and outside of education)
  • Online preK-12 Teachers
  • STEM Teachers and Coordinators
  • Professional Learning Leaders and Liaisons
  • Curriculum Developers

Here are some of the recent promotions that 2020 graduates of Loyola University Maryland’s Master’s in Educational Technology program have accepted:

  • Technology Teacher and Musician Joanna Edwards accepted a new position as Technology Teacher at Elizabeth Seton High School.
  • With her MEd in Educational Technology, Julia Goffredi started a new position as Coordinator of Educational Technology at Notre Dame Preparatory School.
  • Michele Baskin recently accepted a position at Great Minds to be a Digital Curriculum Developer on their PhD Science program.

What are the Top 5 Advantages of Loyola’s Educational Technology Program? 

  • Create engaging and transformative online instruction
  • Learn multimedia design for the classroom
  • Become a technology leader in your school
  • Understanding of the advantages and disadvantages of technology, and how to address both in the classroom.
  • Active professional networking with other teachers and educators nationally and globally.

Learn more about Loyola University Maryland’s fully online M.Ed. in Educational Technology program.

why is technology important in education essay

The Yale Wave

In absentia lucis, tenebrae vincunt..

why is technology important in education essay

How Technology is Changing the Education Landscape

As technology becomes increasingly ubiquitous in our lives, it is also making its way into the classroom. There are many benefits to using technology in the classroom, and as a teacher or professor, you must know how to use it effectively. There are many benefits to using technology in the classroom, and knowledge sharing software is one of the most effective tools at a teacher’s disposal. With the help of accessible and easy-to-train technological applications, your classroom education can be made more interactive and collaborative.

The Increasing Use Of Technology In Education

There are many reasons why the use of technology in education is increasing.

  • First, technology can help to level the playing field for all students. No matter their background or economic situation, all students have access to the same resources and tools when using technology in the classroom.
  • Technology can help to engage students in learning. When used correctly, technology can capture students’ attention and hold it for more extended periods than a traditional lecture or textbook.
  • Different tools and tech can help teachers to individualize instruction for each student. With the help of educational apps and software data, teachers can tailor their teaching methods to fit each student’s needs better.

How To Ensure That Technology Is Used Effectively In The Classroom

While there are many benefits to using technology in the classroom, it is essential to ensure it is used effectively. Here are a few tips:

  • You must ensure that you are using technology to supplement your instruction, not replace it. There is no substitute for a well-taught lesson delivered by a passionate and knowledgeable teacher. If only online information was what students were chasing, they wouldn’t bother showing up or being interested in personal classes.
  • You can also use technology to engage students in active learning, not passive consumption. Students should be doing things like writing, creating, and problem-solving when using technology in the classroom. So, avoid using technology for things like quizzes and lectures that could quickly be done without it.
  • It’s also good to ensure that students are using technology in a way that is appropriate for the task at hand. For example, they should use tools like search engines and databases if they are researching a topic. If they are writing an essay, they should be using word processing software.
  • Finally, monitor student usage to ensure that they are on task and not abusing the privilege of having technology in the classroom. One way to do this is to have them use apps or software that track their activity and time spent on tasks.

The Importance Of Teacher/Professor Training When It Comes To Using Technology In The Classroom

While there are many benefits to using technology in the classroom, teachers, and professors must receive training on how to use it effectively. Many different tools and applications are available, and it can be challenging to keep up with the latest trends. Teacher/professor training can help ensure that technology is used effectively in the classroom and that students get the most out of it. Moreover, teacher/professor training can also help address some of the challenges teachers face when integrating technology into their teaching practices.

One of the challenges that teachers face when using technology in the classroom is keeping up with the latest trends. Technology is constantly changing, and new applications and tools are continually being developed. It can be challenging for teachers to keep up with all of the recent developments, making it difficult to use technology effectively in the classroom. Teacher/professor training can help teachers stay up-to-date on the latest trends and developments in educational technology to integrate it more effectively into their teaching practices.

Another challenge teachers face when using technology in the classroom is ensuring that students are using the technology to learn. A student’s laptop or tablet does not mean they are using it for learning. Many distractions are around, making it difficult for students to focus on their work. Teacher/professor training can help teachers learn how to effectively use technology in the classroom so students can remain engaged and focused on their work.

How Technology Is Changing The Way Students Learn

Technology is changing the way students learn in several ways. 

Technology makes it easier for students to communicate with each other and their teachers. In the past, students had to rely on face-to-face or written communication (e.g., via email). Now, many different tools allow students to communicate with each other and their teachers online. It includes video conferencing, instant messaging, and online forums. This makes it easier for students to get help with their work and to collaborate with each other.

It also makes it possible for students to get more out of their education. In the past, students had to rely on lectures and textbooks to learn about a topic. Now, there are many different resources that students can use to learn about a topic.

Finally, technology is making it easier for teachers to personalize instruction for each student. In the past, teachers had to teach the same material to all of their students in the same way. Now, teachers can use many different tools to personalize instruction for each student. This includes online quizzes, adaptive learning software, and digital portfolios. This makes it easier for teachers to tailor their education to meet the needs of each individual student.

Technology in Education: An Overview

why is technology important in education essay

  • Share article

Technology is everywhere in education: Public schools in the United States now provide at least one computer for every five students. They spend more than $3 billion per year on digital content. Led by the federal government, the country is in the midst of a massive effort to make affordable high-speed Internet and free online teaching resources available to even the most rural and remote schools. And in 2015-16, for the first time, more state standardized tests for the elementary and middle grades will be administered via technology than by paper and pencil.

To keep up with what’s changing (and what isn’t), observers must know where to look.

There’s the booming ed-tech industry, with corporate titans and small startups alike vying for a slice of an $8 billion-plus yearly market for hardware and software. Much attention is also paid to the “early adopters”—those districts, schools, and teachers who are making the most ingenious and effective uses of the new tools at their disposal.

But a significant body of research has also made clear that most teachers have been slow to transform the ways they teach, despite the influx of new technology into their classrooms. There remains limited evidence to show that technology and online learning are improving learning outcomes for most students. And academics and parents alike have expressed concerns about digital distractions, ways in which unequal access to and use of technology might widen achievement gaps, and more.

State and federal lawmakers, meanwhile, have wrestled in recent years with the reality that new technologies also present new challenges. The rise of “big data,” for example, has led to new concerns about how schools can keep sensitive student information private and secure.

What follows is an overview of the big trends, opportunities, and concerns associated with classroom technology. Links to additional resources are included in each section for those who would like to dig deeper.

What Is Personalized Learning?

Many in the ed-tech field see new technologies as powerful tools to help schools meet the needs of ever-more-diverse student populations. The idea is that digital devices, software, and learning platforms offer a once-unimaginable array of options for tailoring education to each individual student’s academic strengths and weaknesses, interests and motivations, personal preferences, and optimal pace of learning.

In recent years, a group of organizations including the Bill & Melinda Gates Foundation, the Michael and Susan Dell Foundation, and EDUCAUSE have crafted a definition of “personalized learning” that rests on four pillars:

  • Each student should have a “learner profile” that documents his or her strengths, weaknesses, preferences, and goals;
  • Each student should pursue an individualized learning path that encourages him or her to set and manage personal academic goals;
  • Students should follow a “competency-based progression” that focuses on their ability to demonstrate mastery of a topic, rather than seat time; and,
  • Students’ learning environments should be flexible and structured in ways that support their individual goals.

How does technology support that vision?

In many schools, students are given district-owned computing devices or allowed to bring their own devices from home. The idea is that this allows for “24-7” learning at the time and location of the student’s choosing.

Learning management systems, student information systems, and other software are also used to distribute assignments, manage schedules and communications, and track student progress.

And educational software and applications have grown more “adaptive,” relying on technology and algorithms to determine not only what a student knows, but what his or her learning process is, and even his or her emotional state.

For all the technological progress, though, implementation remains a major challenge. Schools and educators across the country continue to wrestle with the changing role of teachers, how to balance flexible and “personalized” models with the state and federal accountability requirements they still must meet, and the deeper cultural challenge of changing educators’ long-standing habits and routines.

Despite the massive investments that many school systems are making, the evidence that digital personalized learning can improve student outcomes or narrow achievement gaps at scale remains scattered, at best.

Additional resources:

  • Taking Stock of Personalized Learning (Education Week special report)
  • A Working Definition of Personalized Learning
  • Why Ed Tech Is Not Transforming How Teachers Teach

What Is 1-to-1 Computing?

Increasingly, schools are moving to provide students with their own laptop computer, netbook, or digital tablet. Schools purchased more than 23 million devices for classroom use in 2013 and 2014 alone. In recent years, iPads and then Chromebooks (inexpensive Web-based laptops) have emerged as the devices of choice for many schools.

Video: Creating a Digital Culture

why is technology important in education essay

The two biggest factors spurring the rise in 1-to-1 student computing have been new mandates that state standardized tests be delivered online and the widespread adoption of the Common Core State Standards.

Generally, the hope is that putting devices in the hands of students will help with some or all of the following goals:

  • Allowing teachers and software to deliver more personalized content and lessons to students, while allowing students to learn at their own pace and ability level;
  • Helping students to become technologically skilled and literate and thus better prepared for modern workplaces;
  • Empowering students to do more complex and creative work by allowing them to use digital and online applications and tools;
  • Improving the administration and management of schools and classrooms by making it easier to gather information on what students know and have done;
  • Improving communications among students, teachers, and parents.

Despite the potential benefits, however, many districts have run into trouble when attempting to implement 1-to-1 computing initiatives. Paying for the devices can be a challenge, especially as the strategy of issuing long-term bonds for short-term technology purchases has come into question. Many districts have also run into problems with infrastructure (not enough bandwidth to support all students accessing the Internet at the same time) and deployment (poor planning in distributing and managing thousands of devices.)

The most significant problem for schools trying to go 1-to-1, though, has been a lack of educational vision. Without a clear picture of how teaching and learning is expected to change, experts say, going 1-to-1 often amounts to a “spray and pray” approach of distributing many devices and hoping for the best.

Some critics of educational technology also point to a recent study by the Organization for Economic Cooperation and Development, which found that countries where 15-year old students use computers most in the classroom scored the worst on international reading and math tests.

  • Learn More About 1-to-1 Computing
  • Hard Lessons Learned in Ambitious L.A. iPad Initiative
  • Chromebooks Gaining Popularity in School Districts

What Is Blended Learning?

In its simplest terms, blended learning combines traditional, teacher-to-student lessons with technology-based instruction.

Many schools and districts use a “rotation” model, which is often viewed as an effective means of providing students with more personalized instruction and smaller group experiences. In some cases, saving money (through larger overall class sizes, for example) is also a goal. The basic premise involves students rotating between online and in-person stations for different parts of the day. There are many versions of this approach, however: Do students stay in the classroom or go to a computer lab?

Does online instruction cover core content, or is it primarily for remediation? Are all students doing the same thing online, or do different students have different software and learning experiences?

Video: At Blended Learning School, Students on Flexible Schedules

why is technology important in education essay

One big trend for schools involves trying to make sure that what happens online is connected with what happens during face-to-face interactions with teachers. That could involve giving teachers a say in selecting the software that students use, for example, or making a concerted effort to ensure online programs provide teachers with data that is useful in making timely instructional decisions.

Another trend involves boosting students’ access to the Internet outside of school. Robust blended learning programs involve “anytime, anywhere” access to learning content for students—a major challenge in many communities.

Perhaps the biggest hurdle confronting educators interested in blended learning, though, is the lack of a solid research base. As of now, there is still no definitive evidence that blended learning works (or doesn’t.) While some studies have found encouraging results with specific programs or under certain circumstances, the question of whether blended learning positively impacts student learning still has a mostly unsatisfactory answer: “It depends.”

  • Blended Learning: Breaking Down Barriers (Education Week special report)
  • Blended Learning Research: The 7 Studies You Need to Know
  • Learn More About Blended Learning

What Is the Status of Tech Infrastructure and the E-Rate?

The promise of technology in the classroom is almost entirely dependent on reliable infrastructure. But in many parts of the country, schools still struggle to get affordable access to high-speed Internet and/or robust wireless connectivity.

A typical school district network involves multiple components. In 2014, the Federal Communications Commission established connectivity targets for some of the pieces:

  • A connection to the broader Internet provided by an outside service provider to the district office (or another central district hub). Target: 100 megabits per second per 1,000 students in the short-term, and 1 Gigabit per second per 1,000 students in the long-term.
  • A “Wide Area Network” that provides network connections between the district’s central hub and all of its campuses, office buildings, and other facilities. Target: Connections capable of delivering 10 Gigabits per second per 1,000 students.
  • “Local Area Networks” that provide connections within a school, including the equipment necessary to provide Wi-Fi service inside classrooms. Target: The FCC recommended a survey to determine a suitable measure. Many school-technology advocates call for internal connections that support 1-to-1 computing.

To support schools (and libraries) in building and paying for these networks, the FCC in 1996 established a program known as the E-rate. Fees on consumers’ phone bills fund the program, which has paid out more than $30 billion since its inception.

In 2014, the commission overhauled the E-rate, raising the program’s annual spending cap from $2.4 billion to $3.9 billion and prioritizing support for broadband service and wireless networks. The changes were already being felt as of Fall 2015; after steadily declining for years, the number of schools and libraries applying for E-rate funds for wireless network equipment skyrocketed, with nearly all of the applicants expected to receive a portion of the $1.6 billion in overall wireless-related requests.

High school students in Coral Gables, Fla., work together on a tablet during a history class.

As part of the E-rate overhaul, the FCC also approved a series of regulatory changes aimed at leveling the playing field for rural and remote schools, which often face two big struggles: accessing the fiber-optic cables that experts say are essential to meeting the FCC’s long-term goals, and finding affordable rates.

Infrastructure in some contexts can also be taken to include learning devices, digital content, and the policies and guidelines that govern how they are expected to be used in schools (such as “responsible use policies” and “digital citizenship” programs aimed to ensure that students and staff are using technology appropriately and in support of learning goals.)

Another big—and often overlooked—aspect of infrastructure is what’s known as interoperability. Essentially, the term refers to common standards and protocols for formatting and handling data so that information can be shared between software programs. A number of frameworks outline data interoperability standards for different purposes. Many hope to see the field settle on common standards in the coming years.

Additional Resources:

  • The Typical School Network (EducationSuperHighway)
  • The E-rate Overhaul in 4 Easy Charts
  • Reversing a Raw Deal: Rural Schools Still Struggle to Access Affordable High Speed Internet (Education Week special series)

How Is Online Testing Evolving?

The biggest development on this front has been states’ adoption of online exams aligned with the Common Core State Standards. During the 2014-15 school year, 10 states (plus the District of Columbia) used exams from the Partnership for Assessment of Readiness for College and Careers (PARCC), and 18 states used exams from the Smarter Balanced Assessment Consortium, all of which were delivered primarily online. Many of the other states also used online assessments.

The 2015-16 school year will be the first in which more state-required summative assessments in U.S. middle and elementary schools will be delivered via technology rather than paper and pencil, according to a recent analysis by EdTech Strategies, an educational technology consulting firm.

Beyond meeting legislative mandates, perceived benefits include cost savings, ease of administration and analysis, and the potential to employ complex performance tasks.

But some states—including Florida, Minnesota, Montana, and Wisconsin—have experienced big problems with online tests, ranging from cyber attacks to log-in problems to technical errors. And there is growing evidence that students who take the paper-and-pencil version of some important tests perform better than peers who take the same exams online, at least in the short term.

Nevertheless, it appears likely that online testing will continue to grow—and not just for state summative assessments. The U.S. Department of Education, for example, is among those pushing for a greater use of technologically enhanced formative assessments that can be used to diagnose students’ abilities in close to real time. In the department’s 2016 National Education Technology Plan, for example, it calls for states and districts to “design, develop, and implement learning dashboards, response systems, and communication pathways that give students, educators, families, and other stakeholders timely and actionable feedback about student learning to improve achievement and instructional practices.”

  • PARCC Scores Lower for Students Who Took Exams on Computers
  • Map: The National K-12 Testing Landscape
  • Pencils Down: The Shift to Online and Computer-Based Testing (EdTech Strategies)
  • Online Testing Glitches Causing Distrust in Technology
  • U.S. Ed-Tech Plan Calls Attention to ‘Digital-Use Divide’

How Are Digital Materials Used in Classrooms?

Digital instructional content is the largest slice of the (non-hardware) K-12 educational technology market, with annual sales of more then $3 billion. That includes digital lessons in math, English/language arts, and science, as well as “specialty” subjects such as business and fine arts. The market is still dominated by giant publishers such as Houghton Mifflin Harcourt and Pearson, who have been scrambling to transition from their print-centric legacy products to more digital offerings.

But newcomers with one-off products or specific areas of expertise have made inroads, and some apps and online services have also gained huge traction inside of schools.

As a result, many schools use a mix of digital resources, touting potential benefits such as greater ability to personalize, higher engagement among students, enhanced ability to keep content updated and current, and greater interactivity and adaptivity (or responsiveness to individual learners).

Still, though, the transition to digital instructional materials is happening slowly, for reasons that range from the financial (for districts that haven’t been able to purchase devices for all students, for example) to the technical (districts that lack the infrastructure to support every student being online together.) Print still accounts for about 70 percent of pre-K-12 instructional materials sales in the United States.

  • Learn More About Digital Curriculum
  • Digital Content Providers Ride Wave of Rising Revenues
  • K-12 Print Needs Persist Despite Digital Growth

What Are Open Educational Resources?

Rather than buying digital instructional content, some states and districts prefer using “open” digital education resources that are licensed in such a way that they can be freely used, revised, and shared. The trend appears likely to accelerate: The U.S. Department of Education, for example, is now formally encouraging districts to move away from textbooks and towards greater adoption of OER.

Seventh grader Mateo Smith, center, uses a laptop at Hughes STEM High School in Cincinnati.

New York and Utah have led the way in developing open educational resources and encouraging their use by schools. The K-12 OER Collaborative, which includes 12 states and several nonprofit organizations, is working to develop OER materials as well.

Proponents argue that OER offer greater bang for the buck, while also giving students better access to a wider array of digital materials and teachers more flexibility to customize instructional content for individual classrooms and students. Some also believe OER use encourages collaboration among teachers. Concerns from industry and others generally focus on the quality of open materials, as well as the challenges that educators face in sifting through voluminous one-off resources to find the right material for every lesson.

  • What is OER? (Creative Commons)
  • Districts Put Open Educational Resources to Work
  • Calculating the Return on Open Educational Resources

How Are Virtual Education and Distance Learning Doing?

One technology trend that has come under increasing scrutiny involves full-time online schools, particularly cyber charters. About 200,000 students are enrolled in about 200 publicly funded, independently managed online charter schools across 26 states.

But such schools were found to have an “overwhelming negative impact” on student learning in a comprehensive set of studies released in 2015 by a group of research organizations, including Stanford University’s Center for Research on Education Outcomes at Stanford University.

That research did not cover the more than two dozen full-time online schools that are state-run, however, nor did it cover the dozens more that are run by individual school districts. Thousands upon thousands of students who are enrolled in traditional brick-and-mortar schools also take individual courses online. Five states—Alabama, Arkansas, Florida, Michigan, and Virginia—now require students to have some online learning to graduate. Other states, such as Utah, have passed laws encouraging such options for students.

For many students, especially those in rural and remote areas, online and distance learning can offer access to courses, subjects, and teachers they might otherwise never be able to find. Such opportunities can also benefit advanced and highly motivated students and those with unusual schedules and travel requirements, and be a useful tool to keep schools running during snow days.

But so far, achieving positive academic outcomes at scale via online learning has proven difficult, and many observers have expressed concerns about the lack of accountability in the sector, especially as relates to for-profit managers of online options.

  • Learn More About Remote/Virtual Learning
  • Cyber Charters Have ‘Overwhelming Negative Impact’

Education Issues, Explained

How to Cite This Article Herold, B. (2016, February 5). Technology in Education An Overview. Education Week. Retrieved Month Day, Year from https://www.edweek.org/technology/technology-in-education-an-overview/2016/02

Sign Up for EdWeek Tech Leader

Edweek top school jobs.

AI Skeptic 1244482154

Sign Up & Sign In

module image 9

Suggestions or feedback?

MIT News | Massachusetts Institute of Technology

  • Machine learning
  • Sustainability
  • Black holes
  • Classes and programs

Departments

  • Aeronautics and Astronautics
  • Brain and Cognitive Sciences
  • Architecture
  • Political Science
  • Mechanical Engineering

Centers, Labs, & Programs

  • Abdul Latif Jameel Poverty Action Lab (J-PAL)
  • Picower Institute for Learning and Memory
  • Lincoln Laboratory
  • School of Architecture + Planning
  • School of Engineering
  • School of Humanities, Arts, and Social Sciences
  • Sloan School of Management
  • School of Science
  • MIT Schwarzman College of Computing

What 126 studies say about education technology

Press contact :.

J-PAL North America's recently released publication summarizes 126 rigorous evaluations of different uses of education technology and their impact on student learning.

Previous image Next image

In recent years, there has been widespread excitement around the transformative potential of technology in education. In the United States alone, spending on education technology has now exceeded $13 billion . Programs and policies to promote the use of education technology may expand access to quality education, support students’ learning in innovative ways, and help families navigate complex school systems.

However, the rapid development of education technology in the United States is occurring in a context of deep and persistent inequality . Depending on how programs are designed, how they are used, and who can access them, education technologies could alleviate or aggravate existing disparities. To harness education technology’s full potential, education decision-makers, product developers, and funders need to understand the ways in which technology can help — or in some cases hurt — student learning.

To address this need, J-PAL North America recently released a new publication summarizing 126 rigorous evaluations of different uses of education technology. Drawing primarily from research in developed countries, the publication looks at randomized evaluations and regression discontinuity designs across four broad categories: (1) access to technology, (2) computer-assisted learning or educational software, (3) technology-enabled nudges in education, and (4) online learning.

This growing body of evidence suggests some areas of promise and points to four key lessons on education technology.

First, supplying computers and internet alone generally do not improve students’ academic outcomes from kindergarten to 12th grade, but do increase computer usage and improve computer proficiency. Disparities in access to information and communication technologies can exacerbate existing educational inequalities. Students without access at school or at home may struggle to complete web-based assignments and may have a hard time developing digital literacy skills.

Broadly, programs to expand access to technology have been effective at increasing use of computers and improving computer skills. However, computer distribution and internet subsidy programs generally did not improve grades and test scores and in some cases led to adverse impacts on academic achievement. The limited rigorous evidence suggests that distributing computers may have a more direct impact on learning outcomes at the postsecondary level.

Second, educational software (often called “computer-assisted learning”) programs designed to help students develop particular skills have shown enormous promise in improving learning outcomes, particularly in math. Targeting instruction to meet students’ learning levels has been found to be effective in improving student learning, but large class sizes with a wide range of learning levels can make it hard for teachers to personalize instruction. Software has the potential to overcome traditional classroom constraints by customizing activities for each student. Educational software programs range from light-touch homework support tools to more intensive interventions that re-orient the classroom around the use of software.

Most educational software that have been rigorously evaluated help students practice particular skills through personalized tutoring approaches. Computer-assisted learning programs have shown enormous promise in improving academic achievement, especially in math. Of all 30 studies of computer-assisted learning programs, 20 reported statistically significant positive effects, 15 of which were focused on improving math outcomes.

Third, technology-based nudges — such as text message reminders — can have meaningful, if modest, impacts on a variety of education-related outcomes, often at extremely low costs. Low-cost interventions like text message reminders can successfully support students and families at each stage of schooling. Text messages with reminders, tips, goal-setting tools, and encouragement can increase parental engagement in learning activities, such as reading with their elementary-aged children.

Middle and high schools, meanwhile, can help parents support their children by providing families with information about how well their children are doing in school. Colleges can increase application and enrollment rates by leveraging technology to suggest specific action items, streamline financial aid procedures, and/or provide personalized support to high school students.

Online courses are developing a growing presence in education, but the limited experimental evidence suggests that online-only courses lower student academic achievement compared to in-person courses. In four of six studies that directly compared the impact of taking a course online versus in-person only, student performance was lower in the online courses. However, students performed similarly in courses with both in-person and online components compared to traditional face-to-face classes.

The new publication is meant to be a resource for decision-makers interested in learning which uses of education technology go beyond the hype to truly help students learn. At the same time, the publication outlines key open questions about the impacts of education technology, including questions relating to the long-term impacts of education technology and the impacts of education technology on different types of learners.

To help answer these questions, J-PAL North America’s Education, Technology, and Opportunity Initiative is working to build the evidence base on promising uses of education technology by partnering directly with education leaders.

Education leaders are invited to submit letters of interest to partner with J-PAL North America through its  Innovation Competition . Anyone interested in learning more about how to apply is encouraged to contact initiative manager Vincent Quan .

Share this news article on:

Related links.

  • J-PAL Education, Technology, and Opportunity Initiative
  • Education, Technology, and Opportunity Innovation Competition
  • Article: "Will Technology Transform Education for the Better?"
  • Abdul Latif Jameel Poverty Action Lab
  • Department of Economics

Related Topics

  • School of Humanities Arts and Social Sciences
  • Education, teaching, academics
  • Technology and society
  • Computer science and technology

Related Articles

why is technology important in education essay

J-PAL North America calls for proposals from education leaders

J-PAL North America’s Education, Technology, and Opportunity Innovation Competition supports education leaders in using randomized evaluations to generate evidence on how technology can improve student learning, particularly for students from disadvantaged backgrounds.

J-PAL North America’s Education, Technology, and Opportunity Innovation Competition announces inaugural partners

Applications for second offering of the ReACT Computer and Data Science Program are now open.

New learning opportunities for displaced persons

J-PAL North America will partner with the Sacramento-based California Franchise Tax Board to evaluate the impact of strategies to encourage households to file for the California Earned Income Tax Credit (CalEITC).

J-PAL North America announces new partnerships with three state and local governments

why is technology important in education essay

A new way to measure women’s and girls’ empowerment in impact evaluations

Previous item Next item

More MIT News

A tube spits a mist of orange-red particles onto a mesh of blue spheres connected in rings

A new approach to fine-tuning quantum materials

Read full story →

Ahmad Zakka squats by a wooden box that has been outfited with insulation and a bunch of wires

D-Lab off-grid brooder saves chicks and money using locally manufactured thermal batteries

Photo-collage shows a large molecule over an aerial photo of New Calendonia. On the left are five Psychotria leaves in a vertical line.

MIT chemists synthesize plant-derived molecules that hold potential as pharmaceuticals

Photo of Alex Shalek standing by the wall of a science lab

Alex Shalek named director of the Institute for Medical Engineering and Science

An aerial view of a complex highway interchange in Los Angeles.

New framework empowers pavement life-cycle decision-making while reducing data collection burden

Workers spreading wet cement

With sustainable cement, startup aims to eliminate gigatons of CO₂

  • More news on MIT News homepage →

Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge, MA, USA

  • Map (opens in new window)
  • Events (opens in new window)
  • People (opens in new window)
  • Careers (opens in new window)
  • Accessibility
  • Social Media Hub
  • MIT on Facebook
  • MIT on YouTube
  • MIT on Instagram

New global data reveal education technology’s impact on learning

The promise of technology in the classroom is great: enabling personalized, mastery-based learning; saving teacher time; and equipping students with the digital skills they will need  for 21st-century careers. Indeed, controlled pilot studies have shown meaningful improvements in student outcomes through personalized blended learning. 1 John F. Pane et al., “How does personalized learning affect student achievement?,” RAND Corporation, 2017, rand.org. During this time of school shutdowns and remote learning , education technology has become a lifeline for the continuation of learning.

As school systems begin to prepare for a return to the classroom , many are asking whether education technology should play a greater role in student learning beyond the immediate crisis and what that might look like. To help inform the answer to that question, this article analyzes one important data set: the 2018 Programme for International Student Assessment (PISA), published in December 2019 by the Organisation for Economic Co-operation and Development (OECD).

Every three years, the OECD uses PISA to test 15-year-olds around the world on math, reading, and science. What makes these tests so powerful is that they go beyond the numbers, asking students, principals, teachers, and parents a series of questions about their attitudes, behaviors, and resources. An optional student survey on information and communications technology (ICT) asks specifically about technology use—in the classroom, for homework, and more broadly.

In 2018, more than 340,000 students in 51 countries took the ICT survey, providing a rich data set for analyzing key questions about technology use in schools. How much is technology being used in schools? Which technologies are having a positive impact on student outcomes? What is the optimal amount of time to spend using devices in the classroom and for homework? How does this vary across different countries and regions?

From other studies we know that how education technology is used, and how it is embedded in the learning experience, is critical to its effectiveness. This data is focused on extent and intensity of use, not the pedagogical context of each classroom. It cannot therefore answer questions on the eventual potential of education technology—but it can powerfully tell us the extent to which that potential is being realized today in classrooms around the world.

Five key findings from the latest results help answer these questions and suggest potential links between technology and student outcomes:

  • The type of device matters—some are associated with worse student outcomes.
  • Geography matters—technology is associated with higher student outcomes in the United States than in other regions.
  • Who is using the technology matters—technology in the hands of teachers is associated with higher scores than technology in the hands of students.
  • Intensity matters—students who use technology intensely or not at all perform better than those with moderate use.
  • A school system’s current performance level matters—in lower-performing school systems, technology is associated with worse results.

This analysis covers only one source of data, and it should be interpreted with care alongside other relevant studies. Nonetheless, the 2018 PISA results suggest that systems aiming to improve student outcomes should take a more nuanced and cautious approach to deploying technology once students return to the classroom. It is not enough add devices to the classroom, check the box, and hope for the best.

What can we learn from the latest PISA results?

How will the use, and effectiveness, of technology change post-covid-19.

The PISA assessment was carried out in 2018 and published in December 2019. Since its publication, schools and students globally have been quite suddenly thrust into far greater reliance on technology. Use of online-learning websites and adaptive software has expanded dramatically. Khan Academy has experienced a 250 percent surge in traffic; smaller sites have seen traffic grow fivefold or more. Hundreds of thousands of teachers have been thrown into the deep end, learning to use new platforms, software, and systems. No one is arguing that the rapid cobbling together of remote learning under extreme time pressure represents best-practice use of education technology. Nonetheless, a vast experiment is underway, and innovations often emerge in times of crisis. At this point, it is unclear whether this represents the beginning of a new wave of more widespread and more effective technology use in the classroom or a temporary blip that will fade once students and teachers return to in-person instruction. It is possible that a combination of software improvements, teacher capability building, and student familiarity will fundamentally change the effectiveness of education technology in improving student outcomes. It is also possible that our findings will continue to hold true and technology in the classroom will continue to be a mixed blessing. It is therefore critical that ongoing research efforts track what is working and for whom and, just as important, what is not. These answers will inform the project of reimagining a better education for all students in the aftermath of COVID-19.

PISA data have their limitations. First, these data relate to high-school students, and findings may not be applicable in elementary schools or postsecondary institutions. Second, these are single-point observational data, not longitudinal experimental data, which means that any links between technology and results should be interpreted as correlation rather than causation. Third, the outcomes measured are math, science, and reading test results, so our analysis cannot assess important soft skills and nonacademic outcomes.

It is also worth noting that technology for learning has implications beyond direct student outcomes, both positive and negative. PISA cannot address these broader issues, and neither does this paper.

But PISA results, which we’ve broken down into five key findings, can still provide powerful insights. The assessment strives to measure the understanding and application of ideas, rather than the retention of facts derived from rote memorization, and the broad geographic coverage and sample size help elucidate the reality of what is happening on the ground.

Finding 1: The type of device matters

The evidence suggests that some devices have more impact than others on outcomes (Exhibit 1). Controlling for student socioeconomic status, school type, and location, 2 Specifically, we control for a composite indicator for economic, social, and cultural status (ESCS) derived from questions about general wealth, home possessions, parental education, and parental occupation; for school type “Is your school a public or a private school” (SC013); and for school location (SC001) where the options are a village, hamlet or rural area (fewer than 3,000 people), a small town (3,000 to about 15,000 people), a town (15,000 to about 100,000 people), a city (100,000 to about 1,000,000 people), and a large city (with more than 1,000,000 people). the use of data projectors 3 A projector is any device that projects computer output, slides, or other information onto a screen in the classroom. and internet-connected computers in the classroom is correlated with nearly a grade-level-better performance on the PISA assessment (assuming approximately 40 PISA points to every grade level). 4 Students were specifically asked (IC009), “Are any of these devices available for you to use at school?,” with the choices being “Yes, and I use it,” “Yes, but I don’t use it,” and “No.” We compared the results for students who have access to and use each device with those who do not have access. The full text for each device in our chart was as follows: Data projector, eg, for slide presentations; Internet-connected school computers; Desktop computer; Interactive whiteboard, eg, SmartBoard; Portable laptop or notebook; and Tablet computer, eg, iPad, BlackBerry PlayBook.

On the other hand, students who use laptops and tablets in the classroom have worse results than those who do not. For laptops, the impact of technology varies by subject; students who use laptops score five points lower on the PISA math assessment, but the impact on science and reading scores is not statistically significant. For tablets, the picture is clearer—in every subject, students who use tablets in the classroom perform a half-grade level worse than those who do not.

Some technologies are more neutral. At the global level, there is no statistically significant difference between students who use desktop computers and interactive whiteboards in the classroom and those who do not.

Finding 2: Geography matters

Looking more closely at the reading results, which were the focus of the 2018 assessment, 5 PISA rotates between focusing on reading, science, and math. The 2018 assessment focused on reading. This means that the total testing time was two hours for each student, of which one hour was reading focused. we can see that the relationship between technology and outcomes varies widely by country and region (Exhibit 2). For example, in all regions except the United States (representing North America), 6 The United States is the only country that took the ICT Familiarity Questionnaire survey in North America; thus, we are comparing it as a country with the other regions. students who use laptops in the classroom score between five and 12 PISA points lower than students who do not use laptops. In the United States, students who use laptops score 17 PISA points higher than those who do not. It seems that US students and teachers are doing something different with their laptops than those in other regions. Perhaps this difference is related to learning curves that develop as teachers and students learn how to get the most out of devices. A proxy to assess this learning curve could be penetration—71 percent of US students claim to be using laptops in the classroom, compared with an average of 37 percent globally. 7 The rate of use excludes nulls. The United States measures higher than any other region in laptop use by students in the classroom. US = 71 percent, Asia = 40 percent, EU = 35 percent, Latin America = 31 percent, MENA = 21 percent, Non-EU Europe = 41 percent. We observe a similar pattern with interactive whiteboards in non-EU Europe. In every other region, interactive whiteboards seem to be hurting results, but in non-EU Europe they are associated with a lift of 21 PISA points, a total that represents a half-year of learning. In this case, however, penetration is not significantly higher than in other developed regions.

Finding 3: It matters whether technology is in the hands of teachers or students

The survey asks students whether the teacher, student, or both were using technology. Globally, the best results in reading occur when only the teacher is using the device, with some benefit in science when both teacher and students use digital devices (Exhibit 3). Exclusive use of the device by students is associated with significantly lower outcomes everywhere. The pattern is similar for science and math.

Again, the regional differences are instructive. Looking again at reading, we note that US students are getting significant lift (three-quarters of a year of learning) from either just teachers or teachers and students using devices, while students alone using a device score significantly lower (half a year of learning) than students who do not use devices at all. Exclusive use of devices by the teacher is associated with better outcomes in Europe too, though the size of the effect is smaller.

Finding 4: Intensity of use matters

PISA also asked students about intensity of use—how much time they spend on devices, 8 PISA rotates between focusing on reading, science, and math. The 2018 assessment focused on reading. This means that the total testing time was two hours for each student, of which one hour was reading focused. both in the classroom and for homework. The results are stark: students who either shun technology altogether or use it intensely are doing better, with those in the middle flailing (Exhibit 4).

The regional data show a dramatic picture. In the classroom, the optimal amount of time to spend on devices is either “none at all” or “greater than 60 minutes” per subject per week in every region and every subject (this is the amount of time associated with the highest student outcomes, controlling for student socioeconomic status, school type, and location). In no region is a moderate amount of time (1–30 minutes or 31–60 minutes) associated with higher student outcomes. There are important differences across subjects and regions. In math, the optimal amount of time is “none at all” in every region. 9 The United States is the only country that took the ICT Familiarity Questionnaire survey in North America; thus, we are comparing it as a country with the other regions. In reading and science, however, the optimal amount of time is greater than 60 minutes for some regions: Asia and the United States for reading, and the United States and non-EU Europe for science.

The pattern for using devices for homework is slightly less clear cut. Students in Asia, the Middle East and North Africa (MENA), and non-EU Europe score highest when they spend “no time at all” on devices for their homework, while students spending a moderate amount of time (1–60 minutes) score best in Latin America and the European Union. Finally, students in the United States who spend greater than 60 minutes are getting the best outcomes.

One interpretation of these data is that students need to get a certain familiarity with technology before they can really start using it to learn. Think of typing an essay, for example. When students who mostly write by hand set out to type an essay, their attention will be focused on the typing rather than the essay content. A competent touch typist, however, will get significant productivity gains by typing rather than handwriting.

Would you like to learn more about our Social Sector Practice ?

Finding 5: the school systems’ overall performance level matters.

Diving deeper into the reading outcomes, which were the focus of the 2018 assessment, we can see the magnitude of the impact of device use in the classroom. In Asia, Latin America, and Europe, students who spend any time on devices in their literacy and language arts classrooms perform about a half-grade level below those who spend none at all. In MENA, they perform more than a full grade level lower. In the United States, by contrast, more than an hour of device use in the classroom is associated with a lift of 17 PISA points, almost a half-year of learning improvement (Exhibit 5).

At the country level, we see that those who are on what we would call the “poor-to-fair” stage of the school-system journey 10 Michael Barber, Chinezi Chijoke, and Mona Mourshed, “ How the world’s most improved school systems keep getting better ,” November 2010. have the worst relationships between technology use and outcomes. For every poor-to-fair system taking the survey, the amount of time on devices in the classroom associated with the highest student scores is zero minutes. Good and great systems are much more mixed. Students in some very highly performing systems (for example, Estonia and Chinese Taipei) perform highest with no device use, but students in other systems (for example, Japan, the United States, and Australia) are getting the best scores with over an hour of use per week in their literacy and language arts classrooms (Exhibit 6). These data suggest that multiple approaches are effective for good-to-great systems, but poor-to-fair systems—which are not well equipped to use devices in the classroom—may need to rethink whether technology is the best use of their resources.

What are the implications for students, teachers, and systems?

Looking across all these results, we can say that the relationship between technology and outcomes in classrooms today is mixed, with variation by device, how that device is used, and geography. Our data do not permit us to draw strong causal conclusions, but this section offers a few hypotheses, informed by existing literature and our own work with school systems, that could explain these results.

First, technology must be used correctly to be effective. Our experience in the field has taught us that it is not enough to “add technology” as if it were the missing, magic ingredient. The use of tech must start with learning goals, and software selection must be based on and integrated with the curriculum. Teachers need support to adapt lesson plans to optimize the use of technology, and teachers should be using the technology themselves or in partnership with students, rather than leaving students alone with devices. These lessons hold true regardless of geography. Another ICT survey question asked principals about schools’ capacity using digital devices. Globally, students performed better in schools where there were sufficient numbers of devices connected to fast internet service; where they had adequate software and online support platforms; and where teachers had the skills, professional development, and time to integrate digital devices in instruction. This was true even accounting for student socioeconomic status, school type, and location.

COVID-19 and student learning in the United States: The hurt could last a lifetime

COVID-19 and student learning in the United States: The hurt could last a lifetime

Second, technology must be matched to the instructional environment and context. One of the most striking findings in the latest PISA assessment is the extent to which technology has had a different impact on student outcomes in different geographies. This corroborates the findings of our 2010 report, How the world’s most improved school systems keep getting better . Those findings demonstrated that different sets of interventions were needed at different stages of the school-system reform journey, from poor-to-fair to good-to-great to excellent. In poor-to-fair systems, limited resources and teacher capabilities as well as poor infrastructure and internet bandwidth are likely to limit the benefits of student-based technology. Our previous work suggests that more prescriptive, teacher-based approaches and technologies (notably data projectors) are more likely to be effective in this context. For example, social enterprise Bridge International Academies equips teachers across several African countries with scripted lesson plans using e-readers. In general, these systems would likely be better off investing in teacher coaching than in a laptop per child. For administrators in good-to-great systems, the decision is harder, as technology has quite different impacts across different high-performing systems.

Third, technology involves a learning curve at both the system and student levels. It is no accident that the systems in which the use of education technology is more mature are getting more positive impact from tech in the classroom. The United States stands out as the country with the most mature set of education-technology products, and its scale enables companies to create software that is integrated with curricula. 11 Common Core State Standards sought to establish consistent educational standards across the United States. While these have not been adopted in all states, they cover enough states to provide continuity and consistency for software and curriculum developers. A similar effect also appears to operate at the student level; those who dabble in tech may be spending their time learning the tech rather than using the tech to learn. This learning curve needs to be built into technology-reform programs.

Taken together, these results suggest that systems that take a comprehensive, data-informed approach may achieve learning gains from thoughtful use of technology in the classroom. The best results come when significant effort is put into ensuring that devices and infrastructure are fit for purpose (fast enough internet service, for example), that software is effective and integrated with curricula, that teachers are trained and given time to rethink lesson plans integrating technology, that students have enough interaction with tech to use it effectively, and that technology strategy is cognizant of the system’s position on the school-system reform journey. Online learning and education technology are currently providing an invaluable service by enabling continued learning over the course of the pandemic; this does not mean that they should be accepted uncritically as students return to the classroom.

Jake Bryant is an associate partner in McKinsey’s Washington, DC, office; Felipe Child is a partner in the Bogotá office; Emma Dorn is the global Education Practice manager in the Silicon Valley office; and Stephen Hall is an associate partner in the Dubai office.

The authors wish to thank Fernanda Alcala, Sujatha Duraikkannan, and Samuel Huang for their contributions to this article.

Explore a career with us

Related articles.

COVID-19 and student learning in the United States: The hurt could last a lifetime

Safely back to school after coronavirus closures

How_the_worlds_most_improved_school_systems_keep_getting_better_500_Standard

How the world’s most improved school systems keep getting better

why is technology important in education essay

Stanford University

Along with Stanford news and stories, show me:

  • Student information
  • Faculty/Staff information

We want to provide announcements, events, leadership messages and resources that are relevant to you. Your selection is stored in a browser cookie which you can remove at any time using “Clear all personalization” below.

Image credit: Claire Scully

New advances in technology are upending education, from the recent debut of new artificial intelligence (AI) chatbots like ChatGPT to the growing accessibility of virtual-reality tools that expand the boundaries of the classroom. For educators, at the heart of it all is the hope that every learner gets an equal chance to develop the skills they need to succeed. But that promise is not without its pitfalls.

“Technology is a game-changer for education – it offers the prospect of universal access to high-quality learning experiences, and it creates fundamentally new ways of teaching,” said Dan Schwartz, dean of Stanford Graduate School of Education (GSE), who is also a professor of educational technology at the GSE and faculty director of the Stanford Accelerator for Learning . “But there are a lot of ways we teach that aren’t great, and a big fear with AI in particular is that we just get more efficient at teaching badly. This is a moment to pay attention, to do things differently.”

For K-12 schools, this year also marks the end of the Elementary and Secondary School Emergency Relief (ESSER) funding program, which has provided pandemic recovery funds that many districts used to invest in educational software and systems. With these funds running out in September 2024, schools are trying to determine their best use of technology as they face the prospect of diminishing resources.

Here, Schwartz and other Stanford education scholars weigh in on some of the technology trends taking center stage in the classroom this year.

AI in the classroom

In 2023, the big story in technology and education was generative AI, following the introduction of ChatGPT and other chatbots that produce text seemingly written by a human in response to a question or prompt. Educators immediately worried that students would use the chatbot to cheat by trying to pass its writing off as their own. As schools move to adopt policies around students’ use of the tool, many are also beginning to explore potential opportunities – for example, to generate reading assignments or coach students during the writing process.

AI can also help automate tasks like grading and lesson planning, freeing teachers to do the human work that drew them into the profession in the first place, said Victor Lee, an associate professor at the GSE and faculty lead for the AI + Education initiative at the Stanford Accelerator for Learning. “I’m heartened to see some movement toward creating AI tools that make teachers’ lives better – not to replace them, but to give them the time to do the work that only teachers are able to do,” he said. “I hope to see more on that front.”

He also emphasized the need to teach students now to begin questioning and critiquing the development and use of AI. “AI is not going away,” said Lee, who is also director of CRAFT (Classroom-Ready Resources about AI for Teaching), which provides free resources to help teach AI literacy to high school students across subject areas. “We need to teach students how to understand and think critically about this technology.”

Immersive environments

The use of immersive technologies like augmented reality, virtual reality, and mixed reality is also expected to surge in the classroom, especially as new high-profile devices integrating these realities hit the marketplace in 2024.

The educational possibilities now go beyond putting on a headset and experiencing life in a distant location. With new technologies, students can create their own local interactive 360-degree scenarios, using just a cell phone or inexpensive camera and simple online tools.

“This is an area that’s really going to explode over the next couple of years,” said Kristen Pilner Blair, director of research for the Digital Learning initiative at the Stanford Accelerator for Learning, which runs a program exploring the use of virtual field trips to promote learning. “Students can learn about the effects of climate change, say, by virtually experiencing the impact on a particular environment. But they can also become creators, documenting and sharing immersive media that shows the effects where they live.”

Integrating AI into virtual simulations could also soon take the experience to another level, Schwartz said. “If your VR experience brings me to a redwood tree, you could have a window pop up that allows me to ask questions about the tree, and AI can deliver the answers.”

Gamification

Another trend expected to intensify this year is the gamification of learning activities, often featuring dynamic videos with interactive elements to engage and hold students’ attention.

“Gamification is a good motivator, because one key aspect is reward, which is very powerful,” said Schwartz. The downside? Rewards are specific to the activity at hand, which may not extend to learning more generally. “If I get rewarded for doing math in a space-age video game, it doesn’t mean I’m going to be motivated to do math anywhere else.”

Gamification sometimes tries to make “chocolate-covered broccoli,” Schwartz said, by adding art and rewards to make speeded response tasks involving single-answer, factual questions more fun. He hopes to see more creative play patterns that give students points for rethinking an approach or adapting their strategy, rather than only rewarding them for quickly producing a correct response.

Data-gathering and analysis

The growing use of technology in schools is producing massive amounts of data on students’ activities in the classroom and online. “We’re now able to capture moment-to-moment data, every keystroke a kid makes,” said Schwartz – data that can reveal areas of struggle and different learning opportunities, from solving a math problem to approaching a writing assignment.

But outside of research settings, he said, that type of granular data – now owned by tech companies – is more likely used to refine the design of the software than to provide teachers with actionable information.

The promise of personalized learning is being able to generate content aligned with students’ interests and skill levels, and making lessons more accessible for multilingual learners and students with disabilities. Realizing that promise requires that educators can make sense of the data that’s being collected, said Schwartz – and while advances in AI are making it easier to identify patterns and findings, the data also needs to be in a system and form educators can access and analyze for decision-making. Developing a usable infrastructure for that data, Schwartz said, is an important next step.

With the accumulation of student data comes privacy concerns: How is the data being collected? Are there regulations or guidelines around its use in decision-making? What steps are being taken to prevent unauthorized access? In 2023 K-12 schools experienced a rise in cyberattacks, underscoring the need to implement strong systems to safeguard student data.

Technology is “requiring people to check their assumptions about education,” said Schwartz, noting that AI in particular is very efficient at replicating biases and automating the way things have been done in the past, including poor models of instruction. “But it’s also opening up new possibilities for students producing material, and for being able to identify children who are not average so we can customize toward them. It’s an opportunity to think of entirely new ways of teaching – this is the path I hope to see.”

This site belongs to UNESCO's International Institute for Educational Planning

Home

IIEP Learning Portal

why is technology important in education essay

Search form

  • issue briefs
  • Improve learning

Information and communication technology (ICT) in education

Information and communications technology (ict) can impact student learning when teachers are digitally literate and understand how to integrate it into curriculum..

Schools use a diverse set of ICT tools to communicate, create, disseminate, store, and manage information.(6) In some contexts, ICT has also become integral to the teaching-learning interaction, through such approaches as replacing chalkboards with interactive digital whiteboards, using students’ own smartphones or other devices for learning during class time, and the “flipped classroom” model where students watch lectures at home on the computer and use classroom time for more interactive exercises.

When teachers are digitally literate and trained to use ICT, these approaches can lead to higher order thinking skills, provide creative and individualized options for students to express their understandings, and leave students better prepared to deal with ongoing technological change in society and the workplace.(18)

ICT issues planners must consider include: considering the total cost-benefit equation, supplying and maintaining the requisite infrastructure, and ensuring investments are matched with teacher support and other policies aimed at effective ICT use.(16)

Issues and Discussion

Digital culture and digital literacy: Computer technologies and other aspects of digital culture have changed the ways people live, work, play, and learn, impacting the construction and distribution of knowledge and power around the world.(14) Graduates who are less familiar with digital culture are increasingly at a disadvantage in the national and global economy. Digital literacy—the skills of searching for, discerning, and producing information, as well as the critical use of new media for full participation in society—has thus become an important consideration for curriculum frameworks.(8)

In many countries, digital literacy is being built through the incorporation of information and communication technology (ICT) into schools. Some common educational applications of ICT include:

  • One laptop per child: Less expensive laptops have been designed for use in school on a 1:1 basis with features like lower power consumption, a low cost operating system, and special re-programming and mesh network functions.(42) Despite efforts to reduce costs, however, providing one laptop per child may be too costly for some developing countries.(41)
  • Tablets: Tablets are small personal computers with a touch screen, allowing input without a keyboard or mouse. Inexpensive learning software (“apps”) can be downloaded onto tablets, making them a versatile tool for learning.(7)(25) The most effective apps develop higher order thinking skills and provide creative and individualized options for students to express their understandings.(18)
  • Interactive White Boards or Smart Boards : Interactive white boards allow projected computer images to be displayed, manipulated, dragged, clicked, or copied.(3) Simultaneously, handwritten notes can be taken on the board and saved for later use. Interactive white boards are associated with whole-class instruction rather than student-centred activities.(38) Student engagement is generally higher when ICT is available for student use throughout the classroom.(4)
  • E-readers : E-readers are electronic devices that can hold hundreds of books in digital form, and they are increasingly utilized in the delivery of reading material.(19) Students—both skilled readers and reluctant readers—have had positive responses to the use of e-readers for independent reading.(22) Features of e-readers that can contribute to positive use include their portability and long battery life, response to text, and the ability to define unknown words.(22) Additionally, many classic book titles are available for free in e-book form.
  • Flipped Classrooms: The flipped classroom model, involving lecture and practice at home via computer-guided instruction and interactive learning activities in class, can allow for an expanded curriculum. There is little investigation on the student learning outcomes of flipped classrooms.(5) Student perceptions about flipped classrooms are mixed, but generally positive, as they prefer the cooperative learning activities in class over lecture.(5)(35)

ICT and Teacher Professional Development: Teachers need specific professional development opportunities in order to increase their ability to use ICT for formative learning assessments, individualized instruction, accessing online resources, and for fostering student interaction and collaboration.(15) Such training in ICT should positively impact teachers’ general attitudes towards ICT in the classroom, but it should also provide specific guidance on ICT teaching and learning within each discipline. Without this support, teachers tend to use ICT for skill-based applications, limiting student academic thinking.(32) To sup­port teachers as they change their teaching, it is also essential for education managers, supervisors, teacher educators, and decision makers to be trained in ICT use.(11)

Ensuring benefits of ICT investments: To ensure the investments made in ICT benefit students, additional conditions must be met. School policies need to provide schools with the minimum acceptable infrastructure for ICT, including stable and affordable internet connectivity and security measures such as filters and site blockers. Teacher policies need to target basic ICT literacy skills, ICT use in pedagogical settings, and discipline-specific uses. (21) Successful imple­mentation of ICT requires integration of ICT in the curriculum. Finally, digital content needs to be developed in local languages and reflect local culture. (40) Ongoing technical, human, and organizational supports on all of these issues are needed to ensure access and effective use of ICT. (21)

Resource Constrained Contexts: The total cost of ICT ownership is considerable: training of teachers and administrators, connectivity, technical support, and software, amongst others. (42) When bringing ICT into classrooms, policies should use an incremental pathway, establishing infrastructure and bringing in sustainable and easily upgradable ICT. (16) Schools in some countries have begun allowing students to bring their own mobile technology (such as laptop, tablet, or smartphone) into class rather than providing such tools to all students—an approach called Bring Your Own Device. (1)(27)(34) However, not all families can afford devices or service plans for their children. (30) Schools must ensure all students have equitable access to ICT devices for learning.

Inclusiveness Considerations

Digital Divide: The digital divide refers to disparities of digital media and internet access both within and across countries, as well as the gap between people with and without the digital literacy and skills to utilize media and internet.(23)(26)(31) The digital divide both creates and reinforces socio-economic inequalities of the world’s poorest people. Policies need to intentionally bridge this divide to bring media, internet, and digital literacy to all students, not just those who are easiest to reach.

Minority language groups: Students whose mother tongue is different from the official language of instruction are less likely to have computers and internet connections at home than students from the majority. There is also less material available to them online in their own language, putting them at a disadvantage in comparison to their majority peers who gather information, prepare talks and papers, and communicate more using ICT. (39) Yet ICT tools can also help improve the skills of minority language students—especially in learning the official language of instruction—through features such as automatic speech recognition, the availability of authentic audio-visual materials, and chat functions. (2)(17)

Students with different styles of learning: ICT can provide diverse options for taking in and processing information, making sense of ideas, and expressing learning. Over 87% of students learn best through visual and tactile modalities, and ICT can help these students ‘experience’ the information instead of just reading and hearing it. (20)(37) Mobile devices can also offer programmes (“apps”) that provide extra support to students with special needs, with features such as simplified screens and instructions, consistent placement of menus and control features, graphics combined with text, audio feedback, ability to set pace and level of difficulty, appropriate and unambiguous feedback, and easy error correction. (24)(29)

Plans and policies

  • India [ PDF ]
  • Detroit, USA [ PDF ]
  • Finland [ PDF ]
  • Alberta Education. 2012. Bring your own device: A guide for schools . Retrieved from http://education.alberta.ca/admin/technology/research.aspx
  • Alsied, S.M. and Pathan, M.M. 2015. ‘The use of computer technology in EFL classroom: Advantages and implications.’ International Journal of English Language and Translation Studies . 1 (1).
  • BBC. N.D. ‘What is an interactive whiteboard?’ Retrieved from http://www.bbcactive.com/BBCActiveIdeasandResources/Whatisaninteractivewhiteboard.aspx
  • Beilefeldt, T. 2012. ‘Guidance for technology decisions from classroom observation.’ Journal of Research on Technology in Education . 44 (3).
  • Bishop, J.L. and Verleger, M.A. 2013. ‘The flipped classroom: A survey of the research.’ Presented at the 120th ASEE Annual Conference and Exposition. Atlanta, Georgia.
  • Blurton, C. 2000. New Directions of ICT-Use in Education . United National Education Science and Culture Organization (UNESCO).
  • Bryant, B.R., Ok, M., Kang, E.Y., Kim, M.K., Lang, R., Bryant, D.P. and Pfannestiel, K. 2015. ‘Performance of fourth-grade students with learning disabilities on multiplication facts comparing teacher-mediated and technology-mediated interventions: A preliminary investigation. Journal of Behavioral Education. 24.
  • Buckingham, D. 2005. Educación en medios. Alfabetización, aprendizaje y cultura contemporánea, Barcelona, Paidós.
  • Buckingham, D., Sefton-Green, J., and Scanlon, M. 2001. 'Selling the Digital Dream: Marketing Education Technologies to Teachers and Parents.'  ICT, Pedagogy, and the Curriculum: Subject to Change . London: Routledge.
  • "Burk, R. 2001. 'E-book devices and the marketplace: In search of customers.' Library Hi Tech 19 (4)."
  • Chapman, D., and Mählck, L. (Eds). 2004. Adapting technology for school improvement: a global perspective. Paris: International Institute for Educational Planning.
  • Cheung, A.C.K and Slavin, R.E. 2012. ‘How features of educational technology applications affect student reading outcomes: A meta-analysis.’ Educational Research Review . 7.
  • Cheung, A.C.K and Slavin, R.E. 2013. ‘The effectiveness of educational technology applications for enhancing mathematics achievement in K-12 classrooms: A meta-analysis.’ Educational Research Review . 9.
  • Deuze, M. 2006. 'Participation Remediation Bricolage - Considering Principal Components of a Digital Culture.' The Information Society . 22 .
  • Dunleavy, M., Dextert, S. and Heinecke, W.F. 2007. ‘What added value does a 1:1 student to laptop ratio bring to technology-supported teaching and learning?’ Journal of Computer Assisted Learning . 23.
  • Enyedy, N. 2014. Personalized Instruction: New Interest, Old Rhetoric, Limited Results, and the Need for a New Direction for Computer-Mediated Learning . Boulder, CO: National Education Policy Center.
  • Golonka, E.M., Bowles, A.R., Frank, V.M., Richardson, D.L. and Freynik, S. 2014. ‘Technologies for foreign language learning: A review of technology types and their effectiveness.’ Computer Assisted Language Learning . 27 (1).
  • Goodwin, K. 2012. Use of Tablet Technology in the Classroom . Strathfield, New South Wales: NSW Curriculum and Learning Innovation Centre.
  • Jung, J., Chan-Olmsted, S., Park, B., and Kim, Y. 2011. 'Factors affecting e-book reader awareness, interest, and intention to use.' New Media & Society . 14 (2)
  • Kenney, L. 2011. ‘Elementary education, there’s an app for that. Communication technology in the elementary school classroom.’ The Elon Journal of Undergraduate Research in Communications . 2 (1).
  • Kopcha, T.J. 2012. ‘Teachers’ perceptions of the barriers to technology integration and practices with technology under situated professional development.’ Computers and Education . 59.
  • Miranda, T., Williams-Rossi, D., Johnson, K., and McKenzie, N. 2011. "Reluctant readers in middle school: Successful engagement with text using the e-reader.' International journal of applied science and technology . 1 (6).
  • Moyo, L. 2009. 'The digital divide: scarcity, inequality and conflict.' Digital Cultures . New York: Open University Press.
  • Newton, D.A. and Dell, A.G. 2011. ‘Mobile devices and students with disabilities: What do best practices tell us?’ Journal of Special Education Technology . 26 (3).
  • Nirvi, S. (2011). ‘Special education pupils find learning tool in iPad applications.’ Education Week . 30 .
  • Norris, P. 2001. Digital Divide: Civic Engagement, Information Poverty, and the Internet Worldwide . Cambridge, USA: Cambridge University Press.
  • Project Tomorrow. 2012. Learning in the 21st century: Mobile devices + social media = personalized learning . Washington, D.C.: Blackboard K-12.
  • Riasati, M.J., Allahyar, N. and Tan, K.E. 2012. ‘Technology in language education: Benefits and barriers.’ Journal of Education and Practice . 3 (5).
  • Rodriquez, C.D., Strnadova, I. and Cumming, T. 2013. ‘Using iPads with students with disabilities: Lessons learned from students, teachers, and parents.’ Intervention in School and Clinic . 49 (4).
  • Sangani, K. 2013. 'BYOD to the classroom.' Engineering & Technology . 3 (8).
  • Servon, L. 2002. Redefining the Digital Divide: Technology, Community and Public Policy . Malden, MA: Blackwell Publishers.
  • Smeets, E. 2005. ‘Does ICT contribute to powerful learning environments in primary education?’ Computers and Education. 44 .
  • Smith, G.E. and Thorne, S. 2007. Differentiating Instruction with Technology in K-5 Classrooms . Eugene, OR: International Society for Technology in Education.
  • Song, Y. 2014. '"Bring your own device (BYOD)" for seamless science inquiry in a primary school.' Computers & Education. 74 .
  • Strayer, J.F. 2012. ‘How learning in an inverted classroom influences cooperation, innovation and task orientation.’ Learning Environment Research. 15.
  • Tamim, R.M., Bernard, R.M., Borokhovski, E., Abrami, P.C. and Schmid, R.F. 2011. ‘What forty years of research says about the impact of technology on learning: A second-order meta-analysis and validation study. Review of Educational Research. 81 (1).
  • Tileston, D.W. 2003. What Every Teacher Should Know about Media and Technology. Thousand Oaks, CA: Corwin Press.
  • Turel, Y.K. and Johnson, T.E. 2012. ‘Teachers’ belief and use of interactive whiteboards for teaching and learning.’ Educational Technology and Society . 15(1).
  • Volman, M., van Eck, E., Heemskerk, I. and Kuiper, E. 2005. ‘New technologies, new differences. Gender and ethnic differences in pupils’ use of ICT in primary and secondary education.’ Computers and Education. 45 .
  • Voogt, J., Knezek, G., Cox, M., Knezek, D. and ten Brummelhuis, A. 2013. ‘Under which conditions does ICT have a positive effect on teaching and learning? A call to action.’ Journal of Computer Assisted Learning. 29 (1).
  • Warschauer, M. and Ames, M. 2010. ‘Can one laptop per child save the world’s poor?’ Journal of International Affairs. 64 (1).
  • Zuker, A.A. and Light, D. 2009. ‘Laptop programs for students.’ Science. 323 (5910).

Related information

  • Information and communication technologies (ICT)

How education technology can improve learning for all students

  • Full Transcript

Subscribe to the Center for Universal Education Bulletin

Alejandro j. ganimian , alejandro j. ganimian nonresident fellow - global economy and development , center for universal education emiliana vegas , and emiliana vegas former co-director - center for universal education , former senior fellow - global economy and development fred dews fred dews managing editor, podcasts and digital products - office of communications.

September 11, 2020

New research from the Center for Universal Education (CUE) at Brookings finds that technology’s impact on learning and teaching has been limited, especially in low- and middle-income countries, largely because tech has been used to replace analog tools. On this episode, two of the authors of a new report, titled, “ Realizing the Promise: How can education technology improve learning for all? ,” discuss their findings. Alejandro Ganimian is an assistant professor of applied technology and economics at New York University, and a CUE nonresident fellow. Emiliana Vegas is co-director of the center and a senior fellow in the Global Economy and Development program at Brookings.

Also on this episode, Governance Studies Senior Fellow Molly Reynolds on what’s happening in Congress, including  whether another government shutdown due to funding disagreements is possible, and  a look at a new COVID-19 relief package proposed by Senate Majority Leader Mitch McConnell, why it failed, and the politics behind it.  

Subscribe to Brookings podcasts  here  or on  iTunes , send feedback email to  [email protected] , and follow us and tweet us at  @policypodcasts  on Twitter.

The Brookings Cafeteria is part of the  Brookings Podcast Network .

Education Technology Global Education

Global Economy and Development

Center for Universal Education

August 2, 2024

Modupe (Mo) Olateju, Grace Cannon, Kelsey Rappe

July 29, 2024

Sweta Shah, Donald Wertlieb, Charlotte Vuyiswa McClain-Nhlapo, Ruchi Kulbir Singh, Kathy Hirsh-Pasek

July 24, 2024

  • Entertainment
  • Environment
  • Information Science and Technology
  • Social Issues

Home Essay Samples Information Science and Technology Technology in Education

Technology in Education: An Argumentative Perspective

Table of contents, introduction, enhanced engagement and interaction, personalized learning and flexibility, development of 21st-century skills, the risks of overreliance and inequity, the balance between tradition and innovation, works cited.

*minimum deadline

Cite this Essay

To export a reference to this article please select a referencing style below

writer logo

  • Self Driving Cars
  • Operating System
  • Julian Assange

Related Essays

Need writing help?

You can always rely on us no matter what type of paper you need

*No hidden charges

100% Unique Essays

Absolutely Confidential

Money Back Guarantee

By clicking “Send Essay”, you agree to our Terms of service and Privacy statement. We will occasionally send you account related emails

You can also get a UNIQUE essay on this or any other topic

Thank you! We’ll contact you as soon as possible.

Advertisement

Advertisement

Impacts of digital technologies on education and factors influencing schools' digital capacity and transformation: A literature review

  • Published: 21 November 2022
  • Volume 28 , pages 6695–6726, ( 2023 )

Cite this article

why is technology important in education essay

  • Stella Timotheou 1 ,
  • Ourania Miliou 1 ,
  • Yiannis Dimitriadis 2 ,
  • Sara Villagrá Sobrino 2 ,
  • Nikoleta Giannoutsou 2 ,
  • Romina Cachia 3 ,
  • Alejandra Martínez Monés 2 &
  • Andri Ioannou   ORCID: orcid.org/0000-0002-3570-6578 1  

73k Accesses

70 Citations

4 Altmetric

Explore all metrics

Digital technologies have brought changes to the nature and scope of education and led education systems worldwide to adopt strategies and policies for ICT integration. The latter brought about issues regarding the quality of teaching and learning with ICTs, especially concerning the understanding, adaptation, and design of the education systems in accordance with current technological trends. These issues were emphasized during the recent COVID-19 pandemic that accelerated the use of digital technologies in education, generating questions regarding digitalization in schools. Specifically, many schools demonstrated a lack of experience and low digital capacity, which resulted in widening gaps, inequalities, and learning losses. Such results have engendered the need for schools to learn and build upon the experience to enhance their digital capacity and preparedness, increase their digitalization levels, and achieve a successful digital transformation. Given that the integration of digital technologies is a complex and continuous process that impacts different actors within the school ecosystem, there is a need to show how these impacts are interconnected and identify the factors that can encourage an effective and efficient change in the school environments. For this purpose, we conducted a non-systematic literature review. The results of the literature review were organized thematically based on the evidence presented about the impact of digital technology on education and the factors that affect the schools’ digital capacity and digital transformation. The findings suggest that ICT integration in schools impacts more than just students’ performance; it affects several other school-related aspects and stakeholders, too. Furthermore, various factors affect the impact of digital technologies on education. These factors are interconnected and play a vital role in the digital transformation process. The study results shed light on how ICTs can positively contribute to the digital transformation of schools and which factors should be considered for schools to achieve effective and efficient change.

Similar content being viewed by others

why is technology important in education essay

Schools and the digital challenge: Evolution and perspectives

why is technology important in education essay

Digital technology and practices for school improvement: innovative digital school model

why is technology important in education essay

ICT and Digitization in the United States: Research, Trends, and Issues

Avoid common mistakes on your manuscript.

1 Introduction

Digital technologies have brought changes to the nature and scope of education. Versatile and disruptive technological innovations, such as smart devices, the Internet of Things (IoT), artificial intelligence (AI), augmented reality (AR) and virtual reality (VR), blockchain, and software applications have opened up new opportunities for advancing teaching and learning (Gaol & Prasolova-Førland, 2021 ; OECD, 2021 ). Hence, in recent years, education systems worldwide have increased their investment in the integration of information and communication technology (ICT) (Fernández-Gutiérrez et al., 2020 ; Lawrence & Tar, 2018 ) and prioritized their educational agendas to adapt strategies or policies around ICT integration (European Commission, 2019 ). The latter brought about issues regarding the quality of teaching and learning with ICTs (Bates, 2015 ), especially concerning the understanding, adaptation, and design of education systems in accordance with current technological trends (Balyer & Öz, 2018 ). Studies have shown that despite the investment made in the integration of technology in schools, the results have not been promising, and the intended outcomes have not yet been achieved (Delgado et al., 2015 ; Lawrence & Tar, 2018 ). These issues were exacerbated during the COVID-19 pandemic, which forced teaching across education levels to move online (Daniel, 2020 ). Online teaching accelerated the use of digital technologies generating questions regarding the process, the nature, the extent, and the effectiveness of digitalization in schools (Cachia et al., 2021 ; König et al., 2020 ). Specifically, many schools demonstrated a lack of experience and low digital capacity, which resulted in widening gaps, inequalities, and learning losses (Blaskó et al., 2021 ; Di Pietro et al, 2020 ). Such results have engendered the need for schools to learn and build upon the experience in order to enhance their digital capacity (European Commission, 2020 ) and increase their digitalization levels (Costa et al., 2021 ). Digitalization offers possibilities for fundamental improvement in schools (OECD, 2021 ; Rott & Marouane, 2018 ) and touches many aspects of a school’s development (Delcker & Ifenthaler, 2021 ) . However, it is a complex process that requires large-scale transformative changes beyond the technical aspects of technology and infrastructure (Pettersson, 2021 ). Namely, digitalization refers to “ a series of deep and coordinated culture, workforce, and technology shifts and operating models ” (Brooks & McCormack, 2020 , p. 3) that brings cultural, organizational, and operational change through the integration of digital technologies (JISC, 2020 ). A successful digital transformation requires that schools increase their digital capacity levels, establishing the necessary “ culture, policies, infrastructure as well as digital competence of students and staff to support the effective integration of technology in teaching and learning practices ” (Costa et al, 2021 , p.163).

Given that the integration of digital technologies is a complex and continuous process that impacts different actors within the school ecosystem (Eng, 2005 ), there is a need to show how the different elements of the impact are interconnected and to identify the factors that can encourage an effective and efficient change in the school environment. To address the issues outlined above, we formulated the following research questions:

a) What is the impact of digital technologies on education?

b) Which factors might affect a school’s digital capacity and transformation?

In the present investigation, we conducted a non-systematic literature review of publications pertaining to the impact of digital technologies on education and the factors that affect a school’s digital capacity and transformation. The results of the literature review were organized thematically based on the evidence presented about the impact of digital technology on education and the factors which affect the schools’ digital capacity and digital transformation.

2 Methodology

The non-systematic literature review presented herein covers the main theories and research published over the past 17 years on the topic. It is based on meta-analyses and review papers found in scholarly, peer-reviewed content databases and other key studies and reports related to the concepts studied (e.g., digitalization, digital capacity) from professional and international bodies (e.g., the OECD). We searched the Scopus database, which indexes various online journals in the education sector with an international scope, to collect peer-reviewed academic papers. Furthermore, we used an all-inclusive Google Scholar search to include relevant key terms or to include studies found in the reference list of the peer-reviewed papers, and other key studies and reports related to the concepts studied by professional and international bodies. Lastly, we gathered sources from the Publications Office of the European Union ( https://op.europa.eu/en/home ); namely, documents that refer to policies related to digital transformation in education.

Regarding search terms, we first searched resources on the impact of digital technologies on education by performing the following search queries: “impact” OR “effects” AND “digital technologies” AND “education”, “impact” OR “effects” AND “ICT” AND “education”. We further refined our results by adding the terms “meta-analysis” and “review” or by adjusting the search options based on the features of each database to avoid collecting individual studies that would provide limited contributions to a particular domain. We relied on meta-analyses and review studies as these consider the findings of multiple studies to offer a more comprehensive view of the research in a given area (Schuele & Justice, 2006 ). Specifically, meta-analysis studies provided quantitative evidence based on statistically verifiable results regarding the impact of educational interventions that integrate digital technologies in school classrooms (Higgins et al., 2012 ; Tolani-Brown et al., 2011 ).

However, quantitative data does not offer explanations for the challenges or difficulties experienced during ICT integration in learning and teaching (Tolani-Brown et al., 2011 ). To fill this gap, we analyzed literature reviews and gathered in-depth qualitative evidence of the benefits and implications of technology integration in schools. In the analysis presented herein, we also included policy documents and reports from professional and international bodies and governmental reports, which offered useful explanations of the key concepts of this study and provided recent evidence on digital capacity and transformation in education along with policy recommendations. The inclusion and exclusion criteria that were considered in this study are presented in Table 1 .

To ensure a reliable extraction of information from each study and assist the research synthesis we selected the study characteristics of interest (impact) and constructed coding forms. First, an overview of the synthesis was provided by the principal investigator who described the processes of coding, data entry, and data management. The coders followed the same set of instructions but worked independently. To ensure a common understanding of the process between coders, a sample of ten studies was tested. The results were compared, and the discrepancies were identified and resolved. Additionally, to ensure an efficient coding process, all coders participated in group meetings to discuss additions, deletions, and modifications (Stock, 1994 ). Due to the methodological diversity of the studied documents we began to synthesize the literature review findings based on similar study designs. Specifically, most of the meta-analysis studies were grouped in one category due to the quantitative nature of the measured impact. These studies tended to refer to student achievement (Hattie et al., 2014 ). Then, we organized the themes of the qualitative studies in several impact categories. Lastly, we synthesized both review and meta-analysis data across the categories. In order to establish a collective understanding of the concept of impact, we referred to a previous impact study by Balanskat ( 2009 ) which investigated the impact of technology in primary schools. In this context, the impact had a more specific ICT-related meaning and was described as “ a significant influence or effect of ICT on the measured or perceived quality of (parts of) education ” (Balanskat, 2009 , p. 9). In the study presented herein, the main impacts are in relation to learning and learners, teaching, and teachers, as well as other key stakeholders who are directly or indirectly connected to the school unit.

The study’s results identified multiple dimensions of the impact of digital technologies on students’ knowledge, skills, and attitudes; on equality, inclusion, and social integration; on teachers’ professional and teaching practices; and on other school-related aspects and stakeholders. The data analysis indicated various factors that might affect the schools’ digital capacity and transformation, such as digital competencies, the teachers’ personal characteristics and professional development, as well as the school’s leadership and management, administration, infrastructure, etc. The impacts and factors found in the literature review are presented below.

3.1 Impacts of digital technologies on students’ knowledge, skills, attitudes, and emotions

The impact of ICT use on students’ knowledge, skills, and attitudes has been investigated early in the literature. Eng ( 2005 ) found a small positive effect between ICT use and students' learning. Specifically, the author reported that access to computer-assisted instruction (CAI) programs in simulation or tutorial modes—used to supplement rather than substitute instruction – could enhance student learning. The author reported studies showing that teachers acknowledged the benefits of ICT on pupils with special educational needs; however, the impact of ICT on students' attainment was unclear. Balanskat et al. ( 2006 ) found a statistically significant positive association between ICT use and higher student achievement in primary and secondary education. The authors also reported improvements in the performance of low-achieving pupils. The use of ICT resulted in further positive gains for students, namely increased attention, engagement, motivation, communication and process skills, teamwork, and gains related to their behaviour towards learning. Evidence from qualitative studies showed that teachers, students, and parents recognized the positive impact of ICT on students' learning regardless of their competence level (strong/weak students). Punie et al. ( 2006 ) documented studies that showed positive results of ICT-based learning for supporting low-achieving pupils and young people with complex lives outside the education system. Liao et al. ( 2007 ) reported moderate positive effects of computer application instruction (CAI, computer simulations, and web-based learning) over traditional instruction on primary school student's achievement. Similarly, Tamim et al. ( 2011 ) reported small to moderate positive effects between the use of computer technology (CAI, ICT, simulations, computer-based instruction, digital and hypermedia) and student achievement in formal face-to-face classrooms compared to classrooms that did not use technology. Jewitt et al., ( 2011 ) found that the use of learning platforms (LPs) (virtual learning environments, management information systems, communication technologies, and information- and resource-sharing technologies) in schools allowed primary and secondary students to access a wider variety of quality learning resources, engage in independent and personalized learning, and conduct self- and peer-review; LPs also provide opportunities for teacher assessment and feedback. Similar findings were reported by Fu ( 2013 ), who documented a list of benefits and opportunities of ICT use. According to the author, the use of ICTs helps students access digital information and course content effectively and efficiently, supports student-centered and self-directed learning, as well as the development of a creative learning environment where more opportunities for critical thinking skills are offered, and promotes collaborative learning in a distance-learning environment. Higgins et al. ( 2012 ) found consistent but small positive associations between the use of technology and learning outcomes of school-age learners (5–18-year-olds) in studies linking the provision and use of technology with attainment. Additionally, Chauhan ( 2017 ) reported a medium positive effect of technology on the learning effectiveness of primary school students compared to students who followed traditional learning instruction.

The rise of mobile technologies and hardware devices instigated investigations into their impact on teaching and learning. Sung et al. ( 2016 ) reported a moderate effect on students' performance from the use of mobile devices in the classroom compared to the use of desktop computers or the non-use of mobile devices. Schmid et al. ( 2014 ) reported medium–low to low positive effects of technology integration (e.g., CAI, ICTs) in the classroom on students' achievement and attitude compared to not using technology or using technology to varying degrees. Tamim et al. ( 2015 ) found a low statistically significant effect of the use of tablets and other smart devices in educational contexts on students' achievement outcomes. The authors suggested that tablets offered additional advantages to students; namely, they reported improvements in students’ notetaking, organizational and communication skills, and creativity. Zheng et al. ( 2016 ) reported a small positive effect of one-to-one laptop programs on students’ academic achievement across subject areas. Additional reported benefits included student-centered, individualized, and project-based learning enhanced learner engagement and enthusiasm. Additionally, the authors found that students using one-to-one laptop programs tended to use technology more frequently than in non-laptop classrooms, and as a result, they developed a range of skills (e.g., information skills, media skills, technology skills, organizational skills). Haßler et al. ( 2016 ) found that most interventions that included the use of tablets across the curriculum reported positive learning outcomes. However, from 23 studies, five reported no differences, and two reported a negative effect on students' learning outcomes. Similar results were indicated by Kalati and Kim ( 2022 ) who investigated the effect of touchscreen technologies on young students’ learning. Specifically, from 53 studies, 34 advocated positive effects of touchscreen devices on children’s learning, 17 obtained mixed findings and two studies reported negative effects.

More recently, approaches that refer to the impact of gamification with the use of digital technologies on teaching and learning were also explored. A review by Pan et al. ( 2022 ) that examined the role of learning games in fostering mathematics education in K-12 settings, reported that gameplay improved students’ performance. Integration of digital games in teaching was also found as a promising pedagogical practice in STEM education that could lead to increased learning gains (Martinez et al., 2022 ; Wang et al., 2022 ). However, although Talan et al. ( 2020 ) reported a medium effect of the use of educational games (both digital and non-digital) on academic achievement, the effect of non-digital games was higher.

Over the last two years, the effects of more advanced technologies on teaching and learning were also investigated. Garzón and Acevedo ( 2019 ) found that AR applications had a medium effect on students' learning outcomes compared to traditional lectures. Similarly, Garzón et al. ( 2020 ) showed that AR had a medium impact on students' learning gains. VR applications integrated into various subjects were also found to have a moderate effect on students’ learning compared to control conditions (traditional classes, e.g., lectures, textbooks, and multimedia use, e.g., images, videos, animation, CAI) (Chen et al., 2022b ). Villena-Taranilla et al. ( 2022 ) noted the moderate effect of VR technologies on students’ learning when these were applied in STEM disciplines. In the same meta-analysis, Villena-Taranilla et al. ( 2022 ) highlighted the role of immersive VR, since its effect on students’ learning was greater (at a high level) across educational levels (K-6) compared to semi-immersive and non-immersive integrations. In another meta-analysis study, the effect size of the immersive VR was small and significantly differentiated across educational levels (Coban et al., 2022 ). The impact of AI on education was investigated by Su and Yang ( 2022 ) and Su et al. ( 2022 ), who showed that this technology significantly improved students’ understanding of AI computer science and machine learning concepts.

It is worth noting that the vast majority of studies referred to learning gains in specific subjects. Specifically, several studies examined the impact of digital technologies on students’ literacy skills and reported positive effects on language learning (Balanskat et al., 2006 ; Grgurović et al., 2013 ; Friedel et al., 2013 ; Zheng et al., 2016 ; Chen et al., 2022b ; Savva et al., 2022 ). Also, several studies documented positive effects on specific language learning areas, namely foreign language learning (Kao, 2014 ), writing (Higgins et al., 2012 ; Wen & Walters, 2022 ; Zheng et al., 2016 ), as well as reading and comprehension (Cheung & Slavin, 2011 ; Liao et al., 2007 ; Schwabe et al., 2022 ). ICTs were also found to have a positive impact on students' performance in STEM (science, technology, engineering, and mathematics) disciplines (Arztmann et al., 2022 ; Bado, 2022 ; Villena-Taranilla et al., 2022 ; Wang et al., 2022 ). Specifically, a number of studies reported positive impacts on students’ achievement in mathematics (Balanskat et al., 2006 ; Hillmayr et al., 2020 ; Li & Ma, 2010 ; Pan et al., 2022 ; Ran et al., 2022 ; Verschaffel et al., 2019 ; Zheng et al., 2016 ). Furthermore, studies documented positive effects of ICTs on science learning (Balanskat et al., 2006 ; Liao et al., 2007 ; Zheng et al., 2016 ; Hillmayr et al., 2020 ; Kalemkuş & Kalemkuş, 2022 ; Lei et al., 2022a ). Çelik ( 2022 ) also noted that computer simulations can help students understand learning concepts related to science. Furthermore, some studies documented that the use of ICTs had a positive impact on students’ achievement in other subjects, such as geography, history, music, and arts (Chauhan, 2017 ; Condie & Munro, 2007 ), and design and technology (Balanskat et al., 2006 ).

More specific positive learning gains were reported in a number of skills, e.g., problem-solving skills and pattern exploration skills (Higgins et al., 2012 ), metacognitive learning outcomes (Verschaffel et al., 2019 ), literacy skills, computational thinking skills, emotion control skills, and collaborative inquiry skills (Lu et al., 2022 ; Su & Yang, 2022 ; Su et al., 2022 ). Additionally, several investigations have reported benefits from the use of ICT on students’ creativity (Fielding & Murcia, 2022 ; Liu et al., 2022 ; Quah & Ng, 2022 ). Lastly, digital technologies were also found to be beneficial for enhancing students’ lifelong learning skills (Haleem et al., 2022 ).

Apart from gaining knowledge and skills, studies also reported improvement in motivation and interest in mathematics (Higgins et. al., 2019 ; Fadda et al., 2022 ) and increased positive achievement emotions towards several subjects during interventions using educational games (Lei et al., 2022a ). Chen et al. ( 2022a ) also reported a small but positive effect of digital health approaches in bullying and cyberbullying interventions with K-12 students, demonstrating that technology-based approaches can help reduce bullying and related consequences by providing emotional support, empowerment, and change of attitude. In their meta-review study, Su et al. ( 2022 ) also documented that AI technologies effectively strengthened students’ attitudes towards learning. In another meta-analysis, Arztmann et al. ( 2022 ) reported positive effects of digital games on motivation and behaviour towards STEM subjects.

3.2 Impacts of digital technologies on equality, inclusion and social integration

Although most of the reviewed studies focused on the impact of ICTs on students’ knowledge, skills, and attitudes, reports were also made on other aspects in the school context, such as equality, inclusion, and social integration. Condie and Munro ( 2007 ) documented research interventions investigating how ICT can support pupils with additional or special educational needs. While those interventions were relatively small scale and mostly based on qualitative data, their findings indicated that the use of ICTs enabled the development of communication, participation, and self-esteem. A recent meta-analysis (Baragash et al., 2022 ) with 119 participants with different disabilities, reported a significant overall effect size of AR on their functional skills acquisition. Koh’s meta-analysis ( 2022 ) also revealed that students with intellectual and developmental disabilities improved their competence and performance when they used digital games in the lessons.

Istenic Starcic and Bagon ( 2014 ) found that the role of ICT in inclusion and the design of pedagogical and technological interventions was not sufficiently explored in educational interventions with people with special needs; however, some benefits of ICT use were found in students’ social integration. The issue of gender and technology use was mentioned in a small number of studies. Zheng et al. ( 2016 ) reported a statistically significant positive interaction between one-to-one laptop programs and gender. Specifically, the results showed that girls and boys alike benefitted from the laptop program, but the effect on girls’ achievement was smaller than that on boys’. Along the same lines, Arztmann et al. ( 2022 ) reported no difference in the impact of game-based learning between boys and girls, arguing that boys and girls equally benefited from game-based interventions in STEM domains. However, results from a systematic review by Cussó-Calabuig et al. ( 2018 ) found limited and low-quality evidence on the effects of intensive use of computers on gender differences in computer anxiety, self-efficacy, and self-confidence. Based on their view, intensive use of computers can reduce gender differences in some areas and not in others, depending on contextual and implementation factors.

3.3 Impacts of digital technologies on teachers’ professional and teaching practices

Various research studies have explored the impact of ICT on teachers’ instructional practices and student assessment. Friedel et al. ( 2013 ) found that the use of mobile devices by students enabled teachers to successfully deliver content (e.g., mobile serious games), provide scaffolding, and facilitate synchronous collaborative learning. The integration of digital games in teaching and learning activities also gave teachers the opportunity to study and apply various pedagogical practices (Bado, 2022 ). Specifically, Bado ( 2022 ) found that teachers who implemented instructional activities in three stages (pre-game, game, and post-game) maximized students’ learning outcomes and engagement. For instance, during the pre-game stage, teachers focused on lectures and gameplay training, at the game stage teachers provided scaffolding on content, addressed technical issues, and managed the classroom activities. During the post-game stage, teachers organized activities for debriefing to ensure that the gameplay had indeed enhanced students’ learning outcomes.

Furthermore, ICT can increase efficiency in lesson planning and preparation by offering possibilities for a more collaborative approach among teachers. The sharing of curriculum plans and the analysis of students’ data led to clearer target settings and improvements in reporting to parents (Balanskat et al., 2006 ).

Additionally, the use and application of digital technologies in teaching and learning were found to enhance teachers’ digital competence. Balanskat et al. ( 2006 ) documented studies that revealed that the use of digital technologies in education had a positive effect on teachers’ basic ICT skills. The greatest impact was found on teachers with enough experience in integrating ICTs in their teaching and/or who had recently participated in development courses for the pedagogical use of technologies in teaching. Punie et al. ( 2006 ) reported that the provision of fully equipped multimedia portable computers and the development of online teacher communities had positive impacts on teachers’ confidence and competence in the use of ICTs.

Moreover, online assessment via ICTs benefits instruction. In particular, online assessments support the digitalization of students’ work and related logistics, allow teachers to gather immediate feedback and readjust to new objectives, and support the improvement of the technical quality of tests by providing more accurate results. Additionally, the capabilities of ICTs (e.g., interactive media, simulations) create new potential methods of testing specific skills, such as problem-solving and problem-processing skills, meta-cognitive skills, creativity and communication skills, and the ability to work productively in groups (Punie et al., 2006 ).

3.4 Impacts of digital technologies on other school-related aspects and stakeholders

There is evidence that the effective use of ICTs and the data transmission offered by broadband connections help improve administration (Balanskat et al., 2006 ). Specifically, ICTs have been found to provide better management systems to schools that have data gathering procedures in place. Condie and Munro ( 2007 ) reported impacts from the use of ICTs in schools in the following areas: attendance monitoring, assessment records, reporting to parents, financial management, creation of repositories for learning resources, and sharing of information amongst staff. Such data can be used strategically for self-evaluation and monitoring purposes which in turn can result in school improvements. Additionally, they reported that online access to other people with similar roles helped to reduce headteachers’ isolation by offering them opportunities to share insights into the use of ICT in learning and teaching and how it could be used to support school improvement. Furthermore, ICTs provided more efficient and successful examination management procedures, namely less time-consuming reporting processes compared to paper-based examinations and smooth communications between schools and examination authorities through electronic data exchange (Punie et al., 2006 ).

Zheng et al. ( 2016 ) reported that the use of ICTs improved home-school relationships. Additionally, Escueta et al. ( 2017 ) reported several ICT programs that had improved the flow of information from the school to parents. Particularly, they documented that the use of ICTs (learning management systems, emails, dedicated websites, mobile phones) allowed for personalized and customized information exchange between schools and parents, such as attendance records, upcoming class assignments, school events, and students’ grades, which generated positive results on students’ learning outcomes and attainment. Such information exchange between schools and families prompted parents to encourage their children to put more effort into their schoolwork.

The above findings suggest that the impact of ICT integration in schools goes beyond students’ performance in school subjects. Specifically, it affects a number of school-related aspects, such as equality and social integration, professional and teaching practices, and diverse stakeholders. In Table 2 , we summarize the different impacts of digital technologies on school stakeholders based on the literature review, while in Table 3 we organized the tools/platforms and practices/policies addressed in the meta-analyses, literature reviews, EU reports, and international bodies included in the manuscript.

Additionally, based on the results of the literature review, there are many types of digital technologies with different affordances (see, for example, studies on VR vs Immersive VR), which evolve over time (e.g. starting from CAIs in 2005 to Augmented and Virtual reality 2020). Furthermore, these technologies are linked to different pedagogies and policy initiatives, which are critical factors in the study of impact. Table 3 summarizes the different tools and practices that have been used to examine the impact of digital technologies on education since 2005 based on the review results.

3.5 Factors that affect the integration of digital technologies

Although the analysis of the literature review demonstrated different impacts of the use of digital technology on education, several authors highlighted the importance of various factors, besides the technology itself, that affect this impact. For example, Liao et al. ( 2007 ) suggested that future studies should carefully investigate which factors contribute to positive outcomes by clarifying the exact relationship between computer applications and learning. Additionally, Haßler et al., ( 2016 ) suggested that the neutral findings regarding the impact of tablets on students learning outcomes in some of the studies included in their review should encourage educators, school leaders, and school officials to further investigate the potential of such devices in teaching and learning. Several other researchers suggested that a number of variables play a significant role in the impact of ICTs on students’ learning that could be attributed to the school context, teaching practices and professional development, the curriculum, and learners’ characteristics (Underwood, 2009 ; Tamim et al., 2011 ; Higgins et al., 2012 ; Archer et al., 2014 ; Sung et al., 2016 ; Haßler et al., 2016 ; Chauhan, 2017 ; Lee et al., 2020 ; Tang et al., 2022 ).

3.5.1 Digital competencies

One of the most common challenges reported in studies that utilized digital tools in the classroom was the lack of students’ skills on how to use them. Fu ( 2013 ) found that students’ lack of technical skills is a barrier to the effective use of ICT in the classroom. Tamim et al. ( 2015 ) reported that students faced challenges when using tablets and smart mobile devices, associated with the technical issues or expertise needed for their use and the distracting nature of the devices and highlighted the need for teachers’ professional development. Higgins et al. ( 2012 ) reported that skills training about the use of digital technologies is essential for learners to fully exploit the benefits of instruction.

Delgado et al. ( 2015 ), meanwhile, reported studies that showed a strong positive association between teachers’ computer skills and students’ use of computers. Teachers’ lack of ICT skills and familiarization with technologies can become a constraint to the effective use of technology in the classroom (Balanskat et al., 2006 ; Delgado et al., 2015 ).

It is worth noting that the way teachers are introduced to ICTs affects the impact of digital technologies on education. Previous studies have shown that teachers may avoid using digital technologies due to limited digital skills (Balanskat, 2006 ), or they prefer applying “safe” technologies, namely technologies that their own teachers used and with which they are familiar (Condie & Munro, 2007 ). In this regard, the provision of digital skills training and exposure to new digital tools might encourage teachers to apply various technologies in their lessons (Condie & Munro, 2007 ). Apart from digital competence, technical support in the school setting has also been shown to affect teachers’ use of technology in their classrooms (Delgado et al., 2015 ). Ferrari et al. ( 2011 ) found that while teachers’ use of ICT is high, 75% stated that they needed more institutional support and a shift in the mindset of educational actors to achieve more innovative teaching practices. The provision of support can reduce time and effort as well as cognitive constraints, which could cause limited ICT integration in the school lessons by teachers (Escueta et al., 2017 ).

3.5.2 Teachers’ personal characteristics, training approaches, and professional development

Teachers’ personal characteristics and professional development affect the impact of digital technologies on education. Specifically, Cheok and Wong ( 2015 ) found that teachers’ personal characteristics (e.g., anxiety, self-efficacy) are associated with their satisfaction and engagement with technology. Bingimlas ( 2009 ) reported that lack of confidence, resistance to change, and negative attitudes in using new technologies in teaching are significant determinants of teachers’ levels of engagement in ICT. The same author reported that the provision of technical support, motivation support (e.g., awards, sufficient time for planning), and training on how technologies can benefit teaching and learning can eliminate the above barriers to ICT integration. Archer et al. ( 2014 ) found that comfort levels in using technology are an important predictor of technology integration and argued that it is essential to provide teachers with appropriate training and ongoing support until they are comfortable with using ICTs in the classroom. Hillmayr et al. ( 2020 ) documented that training teachers on ICT had an important effecton students’ learning.

According to Balanskat et al. ( 2006 ), the impact of ICTs on students’ learning is highly dependent on the teachers’ capacity to efficiently exploit their application for pedagogical purposes. Results obtained from the Teaching and Learning International Survey (TALIS) (OECD, 2021 ) revealed that although schools are open to innovative practices and have the capacity to adopt them, only 39% of teachers in the European Union reported that they are well or very well prepared to use digital technologies for teaching. Li and Ma ( 2010 ) and Hardman ( 2019 ) showed that the positive effect of technology on students’ achievement depends on the pedagogical practices used by teachers. Schmid et al. ( 2014 ) reported that learning was best supported when students were engaged in active, meaningful activities with the use of technological tools that provided cognitive support. Tamim et al. ( 2015 ) compared two different pedagogical uses of tablets and found a significant moderate effect when the devices were used in a student-centered context and approach rather than within teacher-led environments. Similarly, Garzón and Acevedo ( 2019 ) and Garzón et al. ( 2020 ) reported that the positive results from the integration of AR applications could be attributed to the existence of different variables which could influence AR interventions (e.g., pedagogical approach, learning environment, and duration of the intervention). Additionally, Garzón et al. ( 2020 ) suggested that the pedagogical resources that teachers used to complement their lectures and the pedagogical approaches they applied were crucial to the effective integration of AR on students’ learning gains. Garzón and Acevedo ( 2019 ) also emphasized that the success of a technology-enhanced intervention is based on both the technology per se and its characteristics and on the pedagogical strategies teachers choose to implement. For instance, their results indicated that the collaborative learning approach had the highest impact on students’ learning gains among other approaches (e.g., inquiry-based learning, situated learning, or project-based learning). Ran et al. ( 2022 ) also found that the use of technology to design collaborative and communicative environments showed the largest moderator effects among the other approaches.

Hattie ( 2008 ) reported that the effective use of computers is associated with training teachers in using computers as a teaching and learning tool. Zheng et al. ( 2016 ) noted that in addition to the strategies teachers adopt in teaching, ongoing professional development is also vital in ensuring the success of technology implementation programs. Sung et al. ( 2016 ) found that research on the use of mobile devices to support learning tends to report that the insufficient preparation of teachers is a major obstacle in implementing effective mobile learning programs in schools. Friedel et al. ( 2013 ) found that providing training and support to teachers increased the positive impact of the interventions on students’ learning gains. Trucano ( 2005 ) argued that positive impacts occur when digital technologies are used to enhance teachers’ existing pedagogical philosophies. Higgins et al. ( 2012 ) found that the types of technologies used and how they are used could also affect students’ learning. The authors suggested that training and professional development of teachers that focuses on the effective pedagogical use of technology to support teaching and learning is an important component of successful instructional approaches (Higgins et al., 2012 ). Archer et al. ( 2014 ) found that studies that reported ICT interventions during which teachers received training and support had moderate positive effects on students’ learning outcomes, which were significantly higher than studies where little or no detail about training and support was mentioned. Fu ( 2013 ) reported that the lack of teachers’ knowledge and skills on the technical and instructional aspects of ICT use in the classroom, in-service training, pedagogy support, technical and financial support, as well as the lack of teachers’ motivation and encouragement to integrate ICT on their teaching were significant barriers to the integration of ICT in education.

3.5.3 School leadership and management

Management and leadership are important cornerstones in the digital transformation process (Pihir et al., 2018 ). Zheng et al. ( 2016 ) documented leadership among the factors positively affecting the successful implementation of technology integration in schools. Strong leadership, strategic planning, and systematic integration of digital technologies are prerequisites for the digital transformation of education systems (Ređep, 2021 ). Management and leadership play a significant role in formulating policies that are translated into practice and ensure that developments in ICT become embedded into the life of the school and in the experiences of staff and pupils (Condie & Munro, 2007 ). Policy support and leadership must include the provision of an overall vision for the use of digital technologies in education, guidance for students and parents, logistical support, as well as teacher training (Conrads et al., 2017 ). Unless there is a commitment throughout the school, with accountability for progress at key points, it is unlikely for ICT integration to be sustained or become part of the culture (Condie & Munro, 2007 ). To achieve this, principals need to adopt and promote a whole-institution strategy and build a strong mutual support system that enables the school’s technological maturity (European Commission, 2019 ). In this context, school culture plays an essential role in shaping the mindsets and beliefs of school actors towards successful technology integration. Condie and Munro ( 2007 ) emphasized the importance of the principal’s enthusiasm and work as a source of inspiration for the school staff and the students to cultivate a culture of innovation and establish sustainable digital change. Specifically, school leaders need to create conditions in which the school staff is empowered to experiment and take risks with technology (Elkordy & Lovinelli, 2020 ).

In order for leaders to achieve the above, it is important to develop capacities for learning and leading, advocating professional learning, and creating support systems and structures (European Commission, 2019 ). Digital technology integration in education systems can be challenging and leadership needs guidance to achieve it. Such guidance can be introduced through the adoption of new methods and techniques in strategic planning for the integration of digital technologies (Ređep, 2021 ). Even though the role of leaders is vital, the relevant training offered to them has so far been inadequate. Specifically, only a third of the education systems in Europe have put in place national strategies that explicitly refer to the training of school principals (European Commission, 2019 , p. 16).

3.5.4 Connectivity, infrastructure, and government and other support

The effective integration of digital technologies across levels of education presupposes the development of infrastructure, the provision of digital content, and the selection of proper resources (Voogt et al., 2013 ). Particularly, a high-quality broadband connection in the school increases the quality and quantity of educational activities. There is evidence that ICT increases and formalizes cooperative planning between teachers and cooperation with managers, which in turn has a positive impact on teaching practices (Balanskat et al., 2006 ). Additionally, ICT resources, including software and hardware, increase the likelihood of teachers integrating technology into the curriculum to enhance their teaching practices (Delgado et al., 2015 ). For example, Zheng et al. ( 2016 ) found that the use of one-on-one laptop programs resulted in positive changes in teaching and learning, which would not have been accomplished without the infrastructure and technical support provided to teachers. Delgado et al. ( 2015 ) reported that limited access to technology (insufficient computers, peripherals, and software) and lack of technical support are important barriers to ICT integration. Access to infrastructure refers not only to the availability of technology in a school but also to the provision of a proper amount and the right types of technology in locations where teachers and students can use them. Effective technical support is a central element of the whole-school strategy for ICT (Underwood, 2009 ). Bingimlas ( 2009 ) reported that lack of technical support in the classroom and whole-school resources (e.g., failing to connect to the Internet, printers not printing, malfunctioning computers, and working on old computers) are significant barriers that discourage the use of ICT by teachers. Moreover, poor quality and inadequate hardware maintenance, and unsuitable educational software may discourage teachers from using ICTs (Balanskat et al., 2006 ; Bingimlas, 2009 ).

Government support can also impact the integration of ICTs in teaching. Specifically, Balanskat et al. ( 2006 ) reported that government interventions and training programs increased teachers’ enthusiasm and positive attitudes towards ICT and led to the routine use of embedded ICT.

Lastly, another important factor affecting digital transformation is the development and quality assurance of digital learning resources. Such resources can be support textbooks and related materials or resources that focus on specific subjects or parts of the curriculum. Policies on the provision of digital learning resources are essential for schools and can be achieved through various actions. For example, some countries are financing web portals that become repositories, enabling teachers to share resources or create their own. Additionally, they may offer e-learning opportunities or other services linked to digital education. In other cases, specific agencies of projects have also been set up to develop digital resources (Eurydice, 2019 ).

3.5.5 Administration and digital data management

The digital transformation of schools involves organizational improvements at the level of internal workflows, communication between the different stakeholders, and potential for collaboration. Vuorikari et al. ( 2020 ) presented evidence that digital technologies supported the automation of administrative practices in schools and reduced the administration’s workload. There is evidence that digital data affects the production of knowledge about schools and has the power to transform how schooling takes place. Specifically, Sellar ( 2015 ) reported that data infrastructure in education is developing due to the demand for “ information about student outcomes, teacher quality, school performance, and adult skills, associated with policy efforts to increase human capital and productivity practices ” (p. 771). In this regard, practices, such as datafication which refers to the “ translation of information about all kinds of things and processes into quantified formats” have become essential for decision-making based on accountability reports about the school’s quality. The data could be turned into deep insights about education or training incorporating ICTs. For example, measuring students’ online engagement with the learning material and drawing meaningful conclusions can allow teachers to improve their educational interventions (Vuorikari et al., 2020 ).

3.5.6 Students’ socioeconomic background and family support

Research show that the active engagement of parents in the school and their support for the school’s work can make a difference to their children’s attitudes towards learning and, as a result, their achievement (Hattie, 2008 ). In recent years, digital technologies have been used for more effective communication between school and family (Escueta et al., 2017 ). The European Commission ( 2020 ) presented data from a Eurostat survey regarding the use of computers by students during the pandemic. The data showed that younger pupils needed additional support and guidance from parents and the challenges were greater for families in which parents had lower levels of education and little to no digital skills.

In this regard, the socio-economic background of the learners and their socio-cultural environment also affect educational achievements (Punie et al., 2006 ). Trucano documented that the use of computers at home positively influenced students’ confidence and resulted in more frequent use at school, compared to students who had no home access (Trucano, 2005 ). In this sense, the socio-economic background affects the access to computers at home (OECD, 2015 ) which in turn influences the experience of ICT, an important factor for school achievement (Punie et al., 2006 ; Underwood, 2009 ). Furthermore, parents from different socio-economic backgrounds may have different abilities and availability to support their children in their learning process (Di Pietro et al., 2020 ).

3.5.7 Schools’ socioeconomic context and emergency situations

The socio-economic context of the school is closely related to a school’s digital transformation. For example, schools in disadvantaged, rural, or deprived areas are likely to lack the digital capacity and infrastructure required to adapt to the use of digital technologies during emergency periods, such as the COVID-19 pandemic (Di Pietro et al., 2020 ). Data collected from school principals confirmed that in several countries, there is a rural/urban divide in connectivity (OECD, 2015 ).

Emergency periods also affect the digitalization of schools. The COVID-19 pandemic led to the closure of schools and forced them to seek appropriate and connective ways to keep working on the curriculum (Di Pietro et al., 2020 ). The sudden large-scale shift to distance and online teaching and learning also presented challenges around quality and equity in education, such as the risk of increased inequalities in learning, digital, and social, as well as teachers facing difficulties coping with this demanding situation (European Commission, 2020 ).

Looking at the findings of the above studies, we can conclude that the impact of digital technologies on education is influenced by various actors and touches many aspects of the school ecosystem. Figure  1 summarizes the factors affecting the digital technologies’ impact on school stakeholders based on the findings from the literature review.

figure 1

Factors that affect the impact of ICTs on education

4 Discussion

The findings revealed that the use of digital technologies in education affects a variety of actors within a school’s ecosystem. First, we observed that as technologies evolve, so does the interest of the research community to apply them to school settings. Figure  2 summarizes the trends identified in current research around the impact of digital technologies on schools’ digital capacity and transformation as found in the present study. Starting as early as 2005, when computers, simulations, and interactive boards were the most commonly applied tools in school interventions (e.g., Eng, 2005 ; Liao et al., 2007 ; Moran et al., 2008 ; Tamim et al., 2011 ), moving towards the use of learning platforms (Jewitt et al., 2011 ), then to the use of mobile devices and digital games (e.g., Tamim et al., 2015 ; Sung et al., 2016 ; Talan et al., 2020 ), as well as e-books (e.g., Savva et al., 2022 ), to the more recent advanced technologies, such as AR and VR applications (e.g., Garzón & Acevedo, 2019 ; Garzón et al., 2020 ; Kalemkuş & Kalemkuş, 2022 ), or robotics and AI (e.g., Su & Yang, 2022 ; Su et al., 2022 ). As this evolution shows, digital technologies are a concept in flux with different affordances and characteristics. Additionally, from an instructional perspective, there has been a growing interest in different modes and models of content delivery such as online, blended, and hybrid modes (e.g., Cheok & Wong, 2015 ; Kazu & Yalçin, 2022 ; Ulum, 2022 ). This is an indication that the value of technologies to support teaching and learning as well as other school-related practices is increasingly recognized by the research and school community. The impact results from the literature review indicate that ICT integration on students’ learning outcomes has effects that are small (Coban et al., 2022 ; Eng, 2005 ; Higgins et al., 2012 ; Schmid et al., 2014 ; Tamim et al., 2015 ; Zheng et al., 2016 ) to moderate (Garzón & Acevedo, 2019 ; Garzón et al., 2020 ; Liao et al., 2007 ; Sung et al., 2016 ; Talan et al., 2020 ; Wen & Walters, 2022 ). That said, a number of recent studies have reported high effect sizes (e.g., Kazu & Yalçin, 2022 ).

figure 2

Current work and trends in the study of the impact of digital technologies on schools’ digital capacity

Based on these findings, several authors have suggested that the impact of technology on education depends on several variables and not on the technology per se (Tamim et al., 2011 ; Higgins et al., 2012 ; Archer et al., 2014 ; Sung et al., 2016 ; Haßler et al., 2016 ; Chauhan, 2017 ; Lee et al., 2020 ; Lei et al., 2022a ). While the impact of ICTs on student achievement has been thoroughly investigated by researchers, other aspects related to school life that are also affected by ICTs, such as equality, inclusion, and social integration have received less attention. Further analysis of the literature review has revealed a greater investment in ICT interventions to support learning and teaching in the core subjects of literacy and STEM disciplines, especially mathematics, and science. These were the most common subjects studied in the reviewed papers often drawing on national testing results, while studies that investigated other subject areas, such as social studies, were limited (Chauhan, 2017 ; Condie & Munro, 2007 ). As such, research is still lacking impact studies that focus on the effects of ICTs on a range of curriculum subjects.

The qualitative research provided additional information about the impact of digital technologies on education, documenting positive effects and giving more details about implications, recommendations, and future research directions. Specifically, the findings regarding the role of ICTs in supporting learning highlight the importance of teachers’ instructional practice and the learning context in the use of technologies and consequently their impact on instruction (Çelik, 2022 ; Schmid et al., 2014 ; Tamim et al., 2015 ). The review also provided useful insights regarding the various factors that affect the impact of digital technologies on education. These factors are interconnected and play a vital role in the transformation process. Specifically, these factors include a) digital competencies; b) teachers’ personal characteristics and professional development; c) school leadership and management; d) connectivity, infrastructure, and government support; e) administration and data management practices; f) students’ socio-economic background and family support and g) the socioeconomic context of the school and emergency situations. It is worth noting that we observed factors that affect the integration of ICTs in education but may also be affected by it. For example, the frequent use of ICTs and the use of laptops by students for instructional purposes positively affect the development of digital competencies (Zheng et al., 2016 ) and at the same time, the digital competencies affect the use of ICTs (Fu, 2013 ; Higgins et al., 2012 ). As a result, the impact of digital technologies should be explored more as an enabler of desirable and new practices and not merely as a catalyst that improves the output of the education process i.e. namely student attainment.

5 Conclusions

Digital technologies offer immense potential for fundamental improvement in schools. However, investment in ICT infrastructure and professional development to improve school education are yet to provide fruitful results. Digital transformation is a complex process that requires large-scale transformative changes that presuppose digital capacity and preparedness. To achieve such changes, all actors within the school’s ecosystem need to share a common vision regarding the integration of ICTs in education and work towards achieving this goal. Our literature review, which synthesized quantitative and qualitative data from a list of meta-analyses and review studies, provided useful insights into the impact of ICTs on different school stakeholders and showed that the impact of digital technologies touches upon many different aspects of school life, which are often overlooked when the focus is on student achievement as the final output of education. Furthermore, the concept of digital technologies is a concept in flux as technologies are not only different among them calling for different uses in the educational practice but they also change through time. Additionally, we opened a forum for discussion regarding the factors that affect a school’s digital capacity and transformation. We hope that our study will inform policy, practice, and research and result in a paradigm shift towards more holistic approaches in impact and assessment studies.

6 Study limitations and future directions

We presented a review of the study of digital technologies' impact on education and factors influencing schools’ digital capacity and transformation. The study results were based on a non-systematic literature review grounded on the acquisition of documentation in specific databases. Future studies should investigate more databases to corroborate and enhance our results. Moreover, search queries could be enhanced with key terms that could provide additional insights about the integration of ICTs in education, such as “policies and strategies for ICT integration in education”. Also, the study drew information from meta-analyses and literature reviews to acquire evidence about the effects of ICT integration in schools. Such evidence was mostly based on the general conclusions of the studies. It is worth mentioning that, we located individual studies which showed different, such as negative or neutral results. Thus, further insights are needed about the impact of ICTs on education and the factors influencing the impact. Furthermore, the nature of the studies included in meta-analyses and reviews is different as they are based on different research methodologies and data gathering processes. For instance, in a meta-analysis, the impact among the studies investigated is measured in a particular way, depending on policy or research targets (e.g., results from national examinations, pre-/post-tests). Meanwhile, in literature reviews, qualitative studies offer additional insights and detail based on self-reports and research opinions on several different aspects and stakeholders who could affect and be affected by ICT integration. As a result, it was challenging to draw causal relationships between so many interrelating variables.

Despite the challenges mentioned above, this study envisaged examining school units as ecosystems that consist of several actors by bringing together several variables from different research epistemologies to provide an understanding of the integration of ICTs. However, the use of other tools and methodologies and models for evaluation of the impact of digital technologies on education could give more detailed data and more accurate results. For instance, self-reflection tools, like SELFIE—developed on the DigCompOrg framework- (Kampylis et al., 2015 ; Bocconi & Lightfoot, 2021 ) can help capture a school’s digital capacity and better assess the impact of ICTs on education. Furthermore, the development of a theory of change could be a good approach for documenting the impact of digital technologies on education. Specifically, theories of change are models used for the evaluation of interventions and their impact; they are developed to describe how interventions will work and give the desired outcomes (Mayne, 2015 ). Theory of change as a methodological approach has also been used by researchers to develop models for evaluation in the field of education (e.g., Aromatario et al., 2019 ; Chapman & Sammons, 2013 ; De Silva et al., 2014 ).

We also propose that future studies aim at similar investigations by applying more holistic approaches for impact assessment that can provide in-depth data about the impact of digital technologies on education. For instance, future studies could focus on different research questions about the technologies that are used during the interventions or the way the implementation takes place (e.g., What methodologies are used for documenting impact? How are experimental studies implemented? How can teachers be taken into account and trained on the technology and its functions? What are the elements of an appropriate and successful implementation? How is the whole intervention designed? On which learning theories is the technology implementation based?).

Future research could also focus on assessing the impact of digital technologies on various other subjects since there is a scarcity of research related to particular subjects, such as geography, history, arts, music, and design and technology. More research should also be done about the impact of ICTs on skills, emotions, and attitudes, and on equality, inclusion, social interaction, and special needs education. There is also a need for more research about the impact of ICTs on administration, management, digitalization, and home-school relationships. Additionally, although new forms of teaching and learning with the use of ICTs (e.g., blended, hybrid, and online learning) have initiated several investigations in mainstream classrooms, only a few studies have measured their impact on students’ learning. Additionally, our review did not document any study about the impact of flipped classrooms on K-12 education. Regarding teaching and learning approaches, it is worth noting that studies referred to STEM or STEAM did not investigate the impact of STEM/STEAM as an interdisciplinary approach to learning but only investigated the impact of ICTs on learning in each domain as a separate subject (science, technology, engineering, arts, mathematics). Hence, we propose future research to also investigate the impact of the STEM/STEAM approach on education. The impact of emerging technologies on education, such as AR, VR, robotics, and AI has also been investigated recently, but more work needs to be done.

Finally, we propose that future studies could focus on the way in which specific factors, e.g., infrastructure and government support, school leadership and management, students’ and teachers’ digital competencies, approaches teachers utilize in the teaching and learning (e.g., blended, online and hybrid learning, flipped classrooms, STEM/STEAM approach, project-based learning, inquiry-based learning), affect the impact of digital technologies on education. We hope that future studies will give detailed insights into the concept of schools’ digital transformation through further investigation of impacts and factors which influence digital capacity and transformation based on the results and the recommendations of the present study.

Data availability statement

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Archer, K., Savage, R., Sanghera-Sidhu, S., Wood, E., Gottardo, A., & Chen, V. (2014). Examining the effectiveness of technology use in classrooms: A tertiary meta-analysis. Computers & Education, 78 , 140–149. https://doi.org/10.1016/j.compedu.2014.06.001

Article   Google Scholar  

Aromatario, O., Van Hoye, A., Vuillemin, A., Foucaut, A. M., Pommier, J., & Cambon, L. (2019). Using theory of change to develop an intervention theory for designing and evaluating behavior change SDApps for healthy eating and physical exercise: The OCAPREV theory. BMC Public Health, 19 (1), 1–12. https://doi.org/10.1186/s12889-019-7828-4

Arztmann, M., Hornstra, L., Jeuring, J., & Kester, L. (2022). Effects of games in STEM education: A meta-analysis on the moderating role of student background characteristics. Studies in Science Education , 1-37. https://doi.org/10.1080/03057267.2022.2057732

Bado, N. (2022). Game-based learning pedagogy: A review of the literature. Interactive Learning Environments, 30 (5), 936–948. https://doi.org/10.1080/10494820.2019.1683587

Balanskat, A. (2009). Study of the impact of technology in primary schools – Synthesis Report. Empirica and European Schoolnet. Retrieved 30 June 2022 from: https://erte.dge.mec.pt/sites/default/files/Recursos/Estudos/synthesis_report_steps_en.pdf

Balanskat, A. (2006). The ICT Impact Report: A review of studies of ICT impact on schools in Europe, European Schoolnet. Retrieved 30 June 2022 from:  https://en.unesco.org/icted/content/ict-impact-report-review-studies-ict-impact-schools-europe

Balanskat, A., Blamire, R., & Kefala, S. (2006). The ICT impact report.  European Schoolnet . Retrieved from: http://colccti.colfinder.org/sites/default/files/ict_impact_report_0.pdf

Balyer, A., & Öz, Ö. (2018). Academicians’ views on digital transformation in education. International Online Journal of Education and Teaching (IOJET), 5 (4), 809–830. Retrieved 30 June 2022 from  http://iojet.org/index.php/IOJET/article/view/441/295

Baragash, R. S., Al-Samarraie, H., Moody, L., & Zaqout, F. (2022). Augmented reality and functional skills acquisition among individuals with special needs: A meta-analysis of group design studies. Journal of Special Education Technology, 37 (1), 74–81. https://doi.org/10.1177/0162643420910413

Bates, A. W. (2015). Teaching in a digital age: Guidelines for designing teaching and learning . Open Educational Resources Collection . 6. Retrieved 30 June 2022 from: https://irl.umsl.edu/oer/6

Bingimlas, K. A. (2009). Barriers to the successful integration of ICT in teaching and learning environments: A review of the literature. Eurasia Journal of Mathematics, Science and Technology Education, 5 (3), 235–245. https://doi.org/10.12973/ejmste/75275

Blaskó, Z., Costa, P. D., & Schnepf, S. V. (2022). Learning losses and educational inequalities in Europe: Mapping the potential consequences of the COVID-19 crisis. Journal of European Social Policy, 32 (4), 361–375. https://doi.org/10.1177/09589287221091687

Bocconi, S., & Lightfoot, M. (2021). Scaling up and integrating the selfie tool for schools’ digital capacity in education and training systems: Methodology and lessons learnt. European Training Foundation . https://doi.org/10.2816/907029,JRC123936 . Accessed 30 June 2022.

Brooks, D. C., & McCormack, M. (2020). Driving Digital Transformation in Higher Education . Retrieved 30 June 2022 from: https://library.educause.edu/-/media/files/library/2020/6/dx2020.pdf?la=en&hash=28FB8C377B59AFB1855C225BBA8E3CFBB0A271DA

Cachia, R., Chaudron, S., Di Gioia, R., Velicu, A., & Vuorikari, R. (2021). Emergency remote schooling during COVID-19, a closer look at European families. Retrieved 30 June 2022 from  https://publications.jrc.ec.europa.eu/repository/handle/JRC125787

Çelik, B. (2022). The effects of computer simulations on students’ science process skills: Literature review. Canadian Journal of Educational and Social Studies, 2 (1), 16–28. https://doi.org/10.53103/cjess.v2i1.17

Chapman, C., & Sammons, P. (2013). School Self-Evaluation for School Improvement: What Works and Why? . CfBT Education Trust. 60 Queens Road, Reading, RG1 4BS, England.

Chauhan, S. (2017). A meta-analysis of the impact of technology on learning effectiveness of elementary students. Computers & Education, 105 , 14–30. https://doi.org/10.1016/j.compedu.2016.11.005

Chen, Q., Chan, K. L., Guo, S., Chen, M., Lo, C. K. M., & Ip, P. (2022a). Effectiveness of digital health interventions in reducing bullying and cyberbullying: a meta-analysis. Trauma, Violence, & Abuse , 15248380221082090. https://doi.org/10.1177/15248380221082090

Chen, B., Wang, Y., & Wang, L. (2022b). The effects of virtual reality-assisted language learning: A meta-analysis. Sustainability, 14 (6), 3147. https://doi.org/10.3390/su14063147

Cheok, M. L., & Wong, S. L. (2015). Predictors of e-learning satisfaction in teaching and learning for school teachers: A literature review. International Journal of Instruction, 8 (1), 75–90.

Cheung, A. C., & Slavin, R. E. (2011). The Effectiveness of Education Technology for Enhancing Reading Achievement: A Meta-Analysis. Center for Research and reform in Education .

Coban, M., Bolat, Y. I., & Goksu, I. (2022). The potential of immersive virtual reality to enhance learning: A meta-analysis. Educational Research Review , 100452. https://doi.org/10.1016/j.edurev.2022.100452

Condie, R., & Munro, R. K. (2007). The impact of ICT in schools-a landscape review. Retrieved 30 June 2022 from: https://oei.org.ar/ibertic/evaluacion/sites/default/files/biblioteca/33_impact_ict_in_schools.pdf

Conrads, J., Rasmussen, M., Winters, N., Geniet, A., Langer, L., (2017). Digital Education Policies in Europe and Beyond: Key Design Principles for More Effective Policies. Redecker, C., P. Kampylis, M. Bacigalupo, Y. Punie (ed.), EUR 29000 EN, Publications Office of the European Union, Luxembourg, https://doi.org/10.2760/462941

Costa, P., Castaño-Muñoz, J., & Kampylis, P. (2021). Capturing schools’ digital capacity: Psychometric analyses of the SELFIE self-reflection tool. Computers & Education, 162 , 104080. https://doi.org/10.1016/j.compedu.2020.104080

Cussó-Calabuig, R., Farran, X. C., & Bosch-Capblanch, X. (2018). Effects of intensive use of computers in secondary school on gender differences in attitudes towards ICT: A systematic review. Education and Information Technologies, 23 (5), 2111–2139. https://doi.org/10.1007/s10639-018-9706-6

Daniel, S. J. (2020). Education and the COVID-19 pandemic. Prospects, 49 (1), 91–96.

Delcker, J., & Ifenthaler, D. (2021). Teachers’ perspective on school development at German vocational schools during the Covid-19 pandemic. Technology, Pedagogy and Education, 30 (1), 125–139. https://doi.org/10.1080/1475939X.2020.1857826 . Accessed 30 June 2022.

Delgado, A., Wardlow, L., O’Malley, K., & McKnight, K. (2015). Educational technology: A review of the integration, resources, and effectiveness of technology in K-12 classrooms. Journal of Information Technology Education Research , 14, 397. Retrieved 30 June 2022 from  http://www.jite.org/documents/Vol14/JITEv14ResearchP397-416Delgado1829.pdf

De Silva, M. J., Breuer, E., Lee, L., Asher, L., Chowdhary, N., Lund, C., & Patel, V. (2014). Theory of change: A theory-driven approach to enhance the Medical Research Council’s framework for complex interventions. Trials, 15 (1), 1–13. https://doi.org/10.1186/1745-6215-15-267

Di Pietro, G., Biagi, F., Costa, P., Karpiński, Z., & Mazza, J. (2020). The likely impact of COVID-19 on education: Reflections based on the existing literature and recent international datasets (Vol. 30275). Publications Office of the European Union.

Google Scholar  

Elkordy, A., & Lovinelli, J. (2020). Competencies, Culture, and Change: A Model for Digital Transformation in K12 Educational Contexts. In D. Ifenthaler, S. Hofhues, M. Egloffstein, & C. Helbig (Eds.), Digital Transformation of Learning Organizations (pp. 203–219). Springer.

Eng, T. S. (2005). The impact of ICT on learning: A review of research. International Education Journal, 6 (5), 635–650.

European Commission. (2020). Digital Education Action Plan 2021 – 2027. Resetting education and training for the digital age. Retrieved 30 June 2022 from  https://ec.europa.eu/education/sites/default/files/document-library-docs/deap-communication-sept2020_en.pdf

European Commission. (2019). 2 nd survey of schools: ICT in education. Objective 1: Benchmark progress in ICT in schools . Retrieved 30 June 2022 from: https://data.europa.eu/euodp/data/storage/f/2019-03-19T084831/FinalreportObjective1-BenchmarkprogressinICTinschools.pdf

Eurydice. (2019). Digital Education at School in Europe , Luxembourg: Publications Office of the European Union. Retrieved 30 June 2022 from: https://eacea.ec.europa.eu/national-policies/eurydice/content/digital-education-school-europe_en

Escueta, M., Quan, V., Nickow, A. J., & Oreopoulos, P. (2017). Education technology: An evidence-based review. Retrieved 30 June 2022 from  https://ssrn.com/abstract=3031695

Fadda, D., Pellegrini, M., Vivanet, G., & Zandonella Callegher, C. (2022). Effects of digital games on student motivation in mathematics: A meta-analysis in K-12. Journal of Computer Assisted Learning, 38 (1), 304–325. https://doi.org/10.1111/jcal.12618

Fernández-Gutiérrez, M., Gimenez, G., & Calero, J. (2020). Is the use of ICT in education leading to higher student outcomes? Analysis from the Spanish Autonomous Communities. Computers & Education, 157 , 103969. https://doi.org/10.1016/j.compedu.2020.103969 . Accessed 30 June 2022.

Ferrari, A., Cachia, R., & Punie, Y. (2011). Educational change through technology: A challenge for obligatory schooling in Europe. Lecture Notes in Computer Science , 6964 , 97–110. Retrieved 30 June 2022  https://link.springer.com/content/pdf/10.1007/978-3-642-23985-4.pdf

Fielding, K., & Murcia, K. (2022). Research linking digital technologies to young children’s creativity: An interpretive framework and systematic review. Issues in Educational Research , 32 (1), 105–125. Retrieved 30 June 2022 from  http://www.iier.org.au/iier32/fielding-abs.html

Friedel, H., Bos, B., Lee, K., & Smith, S. (2013). The impact of mobile handheld digital devices on student learning: A literature review with meta-analysis. In Society for Information Technology & Teacher Education International Conference (pp. 3708–3717). Association for the Advancement of Computing in Education (AACE).

Fu, J. S. (2013). ICT in education: A critical literature review and its implications. International Journal of Education and Development Using Information and Communication Technology (IJEDICT), 9 (1), 112–125.

Gaol, F. L., & Prasolova-Førland, E. (2022). Special section editorial: The frontiers of augmented and mixed reality in all levels of education. Education and Information Technologies, 27 (1), 611–623.

Garzón, J., & Acevedo, J. (2019). Meta-analysis of the impact of Augmented Reality on students’ learning gains. Educational Research Review, 27 , 244–260. https://doi.org/10.1016/j.edurev.2019.04.001

Garzón, J., Baldiris, S., Gutiérrez, J., & Pavón, J. (2020). How do pedagogical approaches affect the impact of augmented reality on education? A meta-analysis and research synthesis. Educational Research Review , 100334. https://doi.org/10.1016/j.edurev.2020.100334

Grgurović, M., Chapelle, C. A., & Shelley, M. C. (2013). A meta-analysis of effectiveness studies on computer technology-supported language learning. ReCALL, 25 (2), 165–198. https://doi.org/10.1017/S0958344013000013

Haßler, B., Major, L., & Hennessy, S. (2016). Tablet use in schools: A critical review of the evidence for learning outcomes. Journal of Computer Assisted Learning, 32 (2), 139–156. https://doi.org/10.1111/jcal.12123

Haleem, A., Javaid, M., Qadri, M. A., & Suman, R. (2022). Understanding the role of digital technologies in education: A review. Sustainable Operations and Computers, 3 , 275–285.

Hardman, J. (2019). Towards a pedagogical model of teaching with ICTs for mathematics attainment in primary school: A review of studies 2008–2018. Heliyon, 5 (5), e01726. https://doi.org/10.1016/j.heliyon.2019.e01726

Hattie, J., Rogers, H. J., & Swaminathan, H. (2014). The role of meta-analysis in educational research. In A. D. Reid, P. Hart, & M. A. Peters (Eds.), A companion to research in education (pp. 197–207). Springer.

Chapter   Google Scholar  

Hattie, J. (2008). Visible learning: A synthesis of over 800 meta-analyses relating to achievement. Routledge . https://doi.org/10.4324/9780203887332

Higgins, S., Xiao, Z., & Katsipataki, M. (2012). The impact of digital technology on learning: A summary for the education endowment foundation . Education Endowment Foundation and Durham University.

Higgins, K., Huscroft-D’Angelo, J., & Crawford, L. (2019). Effects of technology in mathematics on achievement, motivation, and attitude: A meta-analysis. Journal of Educational Computing Research , 57(2), 283-319.

Hillmayr, D., Ziernwald, L., Reinhold, F., Hofer, S. I., & Reiss, K. M. (2020). The potential of digital tools to enhance mathematics and science learning in secondary schools: A context-specific meta-analysis. Computers & Education, 153 (1038), 97. https://doi.org/10.1016/j.compedu.2020.103897

Istenic Starcic, A., & Bagon, S. (2014). ICT-supported learning for inclusion of people with special needs: Review of seven educational technology journals, 1970–2011. British Journal of Educational Technology, 45 (2), 202–230. https://doi.org/10.1111/bjet.12086 . Accessed 30 June 2022.

Jewitt, C., Clark, W., & Hadjithoma-Garstka, C. (2011). The use of learning platforms to organise learning in English primary and secondary schools. Learning, Media and Technology, 36 (4), 335–348. https://doi.org/10.1080/17439884.2011.621955

JISC. (2020). What is digital transformation?.  Retrieved 30 June 2022 from: https://www.jisc.ac.uk/guides/digital-strategy-framework-for-university-leaders/what-is-digital-transformation

Kalati, A. T., & Kim, M. S. (2022). What is the effect of touchscreen technology on young children’s learning?: A systematic review. Education and Information Technologies , 1-19. https://doi.org/10.1007/s10639-021-10816-5

Kalemkuş, J., & Kalemkuş, F. (2022). Effect of the use of augmented reality applications on academic achievement of student in science education: Meta-analysis review. Interactive Learning Environments , 1-18. https://doi.org/10.1080/10494820.2022.2027458

Kao, C.-W. (2014). The effects of digital game-based learning task in English as a foreign language contexts: A meta-analysis. Education Journal, 42 (2), 113–141.

Kampylis, P., Punie, Y., & Devine, J. (2015). Promoting effective digital-age learning - a European framework for digitally competent educational organisations. JRC Technical Reports . https://doi.org/10.2791/54070

Kazu, I. Y., & Yalçin, C. K. (2022). Investigation of the effectiveness of hybrid learning on academic achievement: A meta-analysis study. International Journal of Progressive Education, 18 (1), 249–265. https://doi.org/10.29329/ijpe.2022.426.14

Koh, C. (2022). A qualitative meta-analysis on the use of serious games to support learners with intellectual and developmental disabilities: What we know, what we need to know and what we can do. International Journal of Disability, Development and Education, 69 (3), 919–950.

König, J., Jäger-Biela, D. J., & Glutsch, N. (2020). Adapting to online teaching during COVID-19 school closure: Teacher education and teacher competence effects among early career teachers in Germany. European Journal of Teacher Education, 43 (4), 608–622. https://doi.org/10.1080/02619768.2020.1809650

Lawrence, J. E., & Tar, U. A. (2018). Factors that influence teachers’ adoption and integration of ICT in teaching/learning process. Educational Media International, 55 (1), 79–105. https://doi.org/10.1080/09523987.2018.1439712

Lee, S., Kuo, L. J., Xu, Z., & Hu, X. (2020). The effects of technology-integrated classroom instruction on K-12 English language learners’ literacy development: A meta-analysis. Computer Assisted Language Learning , 1-32. https://doi.org/10.1080/09588221.2020.1774612

Lei, H., Chiu, M. M., Wang, D., Wang, C., & Xie, T. (2022a). Effects of game-based learning on students’ achievement in science: a meta-analysis. Journal of Educational Computing Research . https://doi.org/10.1177/07356331211064543

Lei, H., Wang, C., Chiu, M. M., & Chen, S. (2022b). Do educational games affect students’ achievement emotions? Evidence from a meta-analysis. Journal of Computer Assisted Learning., 38 (4), 946–959. https://doi.org/10.1111/jcal.12664

Liao, Y. K. C., Chang, H. W., & Chen, Y. W. (2007). Effects of computer application on elementary school student’s achievement: A meta-analysis of students in Taiwan. Computers in the Schools, 24 (3–4), 43–64. https://doi.org/10.1300/J025v24n03_04

Li, Q., & Ma, X. (2010). A meta-analysis of the effects of computer technology on school students’ mathematics learning. Educational Psychology Review, 22 (3), 215–243.

Liu, M., Pang, W., Guo, J., & Zhang, Y. (2022). A meta-analysis of the effect of multimedia technology on creative performance. Education and Information Technologies , 1-28. https://doi.org/10.1007/s10639-022-10981-1

Lu, Z., Chiu, M. M., Cui, Y., Mao, W., & Lei, H. (2022). Effects of game-based learning on students’ computational thinking: A meta-analysis. Journal of Educational Computing Research . https://doi.org/10.1177/07356331221100740

Martinez, L., Gimenes, M., & Lambert, E. (2022). Entertainment video games for academic learning: A systematic review. Journal of Educational Computing Research . https://doi.org/10.1177/07356331211053848

Mayne, J. (2015). Useful theory of change models. Canadian Journal of Program Evaluation, 30 (2), 119–142. https://doi.org/10.3138/cjpe.230

Moran, J., Ferdig, R. E., Pearson, P. D., Wardrop, J., & Blomeyer, R. L., Jr. (2008). Technology and reading performance in the middle-school grades: A meta-analysis with recommendations for policy and practice. Journal of Literacy Research, 40 (1), 6–58. https://doi.org/10.1080/10862960802070483

OECD. (2015). Students, Computers and Learning: Making the Connection . PISA, OECD Publishing, Paris. Retrieved from: https://doi.org/10.1787/9789264239555-en

OECD. (2021). OECD Digital Education Outlook 2021: Pushing the Frontiers with Artificial Intelligence, Blockchain and Robots. Retrieved from: https://www.oecd-ilibrary.org/education/oecd-digital-education-outlook-2021_589b283f-en

Pan, Y., Ke, F., & Xu, X. (2022). A systematic review of the role of learning games in fostering mathematics education in K-12 settings. Educational Research Review, 36 , 100448. https://doi.org/10.1016/j.edurev.2022.100448

Pettersson, F. (2021). Understanding digitalization and educational change in school by means of activity theory and the levels of learning concept. Education and Information Technologies, 26 (1), 187–204.

Pihir, I., Tomičić-Pupek, K., & Furjan, M. T. (2018). Digital transformation insights and trends. In Central European Conference on Information and Intelligent Systems (pp. 141–149). Faculty of Organization and Informatics Varazdin. Retrieved 30 June 2022 from https://www.proquest.com/conference-papers-proceedings/digital-transformation-insights-trends/docview/2125639934/se-2

Punie, Y., Zinnbauer, D., & Cabrera, M. (2006). A review of the impact of ICT on learning. Working Paper prepared for DG EAC. Retrieved 30 June 2022 from: http://www.eurosfaire.prd.fr/7pc/doc/1224678677_jrc47246n.pdf

Quah, C. Y., & Ng, K. H. (2022). A systematic literature review on digital storytelling authoring tool in education: January 2010 to January 2020. International Journal of Human-Computer Interaction, 38 (9), 851–867. https://doi.org/10.1080/10447318.2021.1972608

Ran, H., Kim, N. J., & Secada, W. G. (2022). A meta-analysis on the effects of technology’s functions and roles on students’ mathematics achievement in K-12 classrooms. Journal of computer assisted learning, 38 (1), 258–284. https://doi.org/10.1111/jcal.12611

Ređep, N. B. (2021). Comparative overview of the digital preparedness of education systems in selected CEE countries. Center for Policy Studies. CEU Democracy Institute .

Rott, B., & Marouane, C. (2018). Digitalization in schools–organization, collaboration and communication. In Digital Marketplaces Unleashed (pp. 113–124). Springer, Berlin, Heidelberg.

Savva, M., Higgins, S., & Beckmann, N. (2022). Meta-analysis examining the effects of electronic storybooks on language and literacy outcomes for children in grades Pre-K to grade 2. Journal of Computer Assisted Learning, 38 (2), 526–564. https://doi.org/10.1111/jcal.12623

Schmid, R. F., Bernard, R. M., Borokhovski, E., Tamim, R. M., Abrami, P. C., Surkes, M. A., Wade, C. A., & Woods, J. (2014). The effects of technology use in postsecondary education: A meta-analysis of classroom applications. Computers & Education, 72 , 271–291. https://doi.org/10.1016/j.compedu.2013.11.002

Schuele, C. M., & Justice, L. M. (2006). The importance of effect sizes in the interpretation of research: Primer on research: Part 3. The ASHA Leader, 11 (10), 14–27. https://doi.org/10.1044/leader.FTR4.11102006.14

Schwabe, A., Lind, F., Kosch, L., & Boomgaarden, H. G. (2022). No negative effects of reading on screen on comprehension of narrative texts compared to print: A meta-analysis. Media Psychology , 1-18. https://doi.org/10.1080/15213269.2022.2070216

Sellar, S. (2015). Data infrastructure: a review of expanding accountability systems and large-scale assessments in education. Discourse: Studies in the Cultural Politics of Education, 36 (5), 765–777. https://doi.org/10.1080/01596306.2014.931117

Stock, W. A. (1994). Systematic coding for research synthesis. In H. Cooper & L. V. Hedges (Eds.), The handbook of research synthesis, 236 (pp. 125–138). Russel Sage.

Su, J., Zhong, Y., & Ng, D. T. K. (2022). A meta-review of literature on educational approaches for teaching AI at the K-12 levels in the Asia-Pacific region. Computers and Education: Artificial Intelligence , 100065. https://doi.org/10.1016/j.caeai.2022.100065

Su, J., & Yang, W. (2022). Artificial intelligence in early childhood education: A scoping review. Computers and Education: Artificial Intelligence, 3 , 100049. https://doi.org/10.1016/j.caeai.2022.100049

Sung, Y. T., Chang, K. E., & Liu, T. C. (2016). The effects of integrating mobile devices with teaching and learning on students’ learning performance: A meta-analysis and research synthesis. Computers & Education, 94 , 252–275. https://doi.org/10.1016/j.compedu.2015.11.008

Talan, T., Doğan, Y., & Batdı, V. (2020). Efficiency of digital and non-digital educational games: A comparative meta-analysis and a meta-thematic analysis. Journal of Research on Technology in Education, 52 (4), 474–514. https://doi.org/10.1080/15391523.2020.1743798

Tamim, R. M., Bernard, R. M., Borokhovski, E., Abrami, P. C., & Schmid, R. F. (2011). What forty years of research says about the impact of technology on learning: A second-order meta-analysis and validation study. Review of Educational research, 81 (1), 4–28. Retrieved 30 June 2022 from  https://doi.org/10.3102/0034654310393361

Tamim, R. M., Borokhovski, E., Pickup, D., Bernard, R. M., & El Saadi, L. (2015). Tablets for teaching and learning: A systematic review and meta-analysis. Commonwealth of Learning. Retrieved from: http://oasis.col.org/bitstream/handle/11599/1012/2015_Tamim-et-al_Tablets-for-Teaching-and-Learning.pdf

Tang, C., Mao, S., Xing, Z., & Naumann, S. (2022). Improving student creativity through digital technology products: A literature review. Thinking Skills and Creativity, 44 , 101032. https://doi.org/10.1016/j.tsc.2022.101032

Tolani-Brown, N., McCormac, M., & Zimmermann, R. (2011). An analysis of the research and impact of ICT in education in developing country contexts. In ICTs and sustainable solutions for the digital divide: Theory and perspectives (pp. 218–242). IGI Global.

Trucano, M. (2005). Knowledge Maps: ICTs in Education. Washington, DC: info Dev / World Bank. Retrieved 30 June 2022 from  https://files.eric.ed.gov/fulltext/ED496513.pdf

Ulum, H. (2022). The effects of online education on academic success: A meta-analysis study. Education and Information Technologies, 27 (1), 429–450.

Underwood, J. D. (2009). The impact of digital technology: A review of the evidence of the impact of digital technologies on formal education. Retrieved 30 June 2022 from: http://dera.ioe.ac.uk/id/eprint/10491

Verschaffel, L., Depaepe, F., & Mevarech, Z. (2019). Learning Mathematics in metacognitively oriented ICT-Based learning environments: A systematic review of the literature. Education Research International , 2019 . https://doi.org/10.1155/2019/3402035

Villena-Taranilla, R., Tirado-Olivares, S., Cózar-Gutiérrez, R., & González-Calero, J. A. (2022). Effects of virtual reality on learning outcomes in K-6 education: A meta-analysis. Educational Research Review, 35 , 100434. https://doi.org/10.1016/j.edurev.2022.100434

Voogt, J., Knezek, G., Cox, M., Knezek, D., & ten Brummelhuis, A. (2013). Under which conditions does ICT have a positive effect on teaching and learning? A call to action. Journal of Computer Assisted Learning, 29 (1), 4–14. https://doi.org/10.1111/j.1365-2729.2011.00453.x

Vuorikari, R., Punie, Y., & Cabrera, M. (2020). Emerging technologies and the teaching profession: Ethical and pedagogical considerations based on near-future scenarios  (No. JRC120183). Joint Research Centre. Retrieved 30 June 2022 from: https://publications.jrc.ec.europa.eu/repository/handle/JRC120183

Wang, L. H., Chen, B., Hwang, G. J., Guan, J. Q., & Wang, Y. Q. (2022). Effects of digital game-based STEM education on students’ learning achievement: A meta-analysis. International Journal of STEM Education, 9 (1), 1–13. https://doi.org/10.1186/s40594-022-00344-0

Wen, X., & Walters, S. M. (2022). The impact of technology on students’ writing performances in elementary classrooms: A meta-analysis. Computers and Education Open, 3 , 100082. https://doi.org/10.1016/j.caeo.2022.100082

Zheng, B., Warschauer, M., Lin, C. H., & Chang, C. (2016). Learning in one-to-one laptop environments: A meta-analysis and research synthesis. Review of Educational Research, 86 (4), 1052–1084. https://doi.org/10.3102/0034654316628645

Download references

Acknowledgements

This project has received funding under Grant Agreement No Ref Ares (2021) 339036 7483039 as well as funding from the European Union’s Horizon 2020 Research and Innovation Program under Grant Agreement No 739578 and the Government of the Republic of Cyprus through the Deputy Ministry of Research, Innovation and Digital Policy. The UVa co-authors would like also to acknowledge funding from the European Regional Development Fund and the National Research Agency of the Spanish Ministry of Science and Innovation, under project grant PID2020-112584RB-C32.

Author information

Authors and affiliations.

CYENS Center of Excellence & Cyprus University of Technology (Cyprus Interaction Lab), Cyprus, CYENS Center of Excellence & Cyprus University of Technology, Nicosia-Limassol, Cyprus

Stella Timotheou, Ourania Miliou & Andri Ioannou

Universidad de Valladolid (UVA), Spain, Valladolid, Spain

Yiannis Dimitriadis, Sara Villagrá Sobrino, Nikoleta Giannoutsou & Alejandra Martínez Monés

JRC - Joint Research Centre of the European Commission, Seville, Spain

Romina Cachia

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Andri Ioannou .

Ethics declarations

Conflict of interest, additional information, publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Timotheou, S., Miliou, O., Dimitriadis, Y. et al. Impacts of digital technologies on education and factors influencing schools' digital capacity and transformation: A literature review. Educ Inf Technol 28 , 6695–6726 (2023). https://doi.org/10.1007/s10639-022-11431-8

Download citation

Received : 04 May 2022

Accepted : 27 October 2022

Published : 21 November 2022

Issue Date : June 2023

DOI : https://doi.org/10.1007/s10639-022-11431-8

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Digital technologies
  • Digital capacity
  • Digital transformation
  • Find a journal
  • Publish with us
  • Track your research

Become an Insider

Sign up today to receive premium content.

Home

4 Ways to Improve Higher Education User Experiences and Student Success

Alexander Huls

Alexander Huls is a Toronto-based writer whose work has appeared in The New York Times , Popular Mechanics , Esquire , The Atlantic and elsewhere.

Technology should do more than just work — it should work in a way that benefits whoever is using it. That’s why user experience is such a cornerstone of every software program, platform and cloud provider. If a user isn’t having a positive experience, you risk losing them.

That’s no less true for higher education, especially as technology becomes more and more integrated into various strands of higher ed’s DNA. According to HolonIQ, an investment intelligence firm, the first half of 2020 was  the second-largest half year for global ed tech investment . It is clear that the importance of technology in education is rising.

As the use of technology increases, IT departments must ensure they are providing positive user experiences to students, faculty and stakeholders. The risk of not doing so is high: Bad experiences can lead to diminished revenue, lower retention and more, which is why IT departments need to focus less on maintaining new technologies and more on those using them to best benefit the institutions they work for.

“It’s important to look at both our faculty and students as our customers. It’s our job to provide good service to them,” says James Temple, vice president of technology at  College of the Canyons . Here are a few ways IT departments can do that.

EXPLORE: Click the banner below to check out CDW's white paper and roadmap for designing flexible learning environments.

B2C21 - Solutions Bundle 

1. Choose the Right Tech for Student Success and Student Satisfaction

“Part of designing an effective user experience for learning is imagining what all the devices are that a learner is naturally going to use throughout the day,” says Kyle Bowen, executive director of learning experience at  Arizona State University .

It’s also important to consider (as best one can) the technical capabilities of users’ devices, such as computer specs, software versions and Wi-Fi speeds. This will help IT departments to not only adapt or optimize the technology students and faculty are using but also identify inclusive programs and tools that won’t strain budgets or computer power. (That said, throughout the pandemic, many institutions helped students and faculty with equipment. College of Canyon, for example, handed out about 500 laptops to students, says Temple.)

MORE ON EDTECH: Questions to ask before you start a one-to-one program .

However, it’s also important to select and adapt technology by reverse engineering from an intended goal, says Temple: “We want you to have the tools to successfully complete the class, but we also want to make sure that you’re getting the same quality of instruction you’d get had you been in a normal system.” The programs, platforms and technology IT departments work with (and support) directly influence the degree to which an online college experience will echo a traditional in-person experience and  lead to student success  and satisfaction.

In the early days of the pandemic — if not before — many institutions had already made the decision to enable the quick shift to increased remote capabilities. With future needs in mind, now may be an opportune moment to consider what might be improved.

Are there ways to further optimize videoconferencing, messaging or scheduling platforms to enhance student learning? Are certain platforms more suitable for an institution’s particular needs? Can tools such as  Webex  Classrooms or Canvas be tweaked to improve student performance? What about rolling out innovative remote solutions for specialized study, like Beyond Labz, a virtual lab for conducting science experiments?

2. Empower Stakeholders and IT Teams with Preventive Measures

Increased technology use inevitably leads to an increase in tech hiccups. What’s important is how IT departments respond to them. That’s especially true given the enormous shift to remote and hybrid learning throughout the pandemic. (According to the Institute of International Education, almost  90 percent of higher education institutions implemented a hybrid learning model  for Fall 2020.)

A great hybrid learning user experience can yield tremendous benefits. “In the hybrid mix modality environment, there are a lot more options for customization so that a student can have more choice, more agency in terms of how they choose to learn, how they engage in class, how you’re designing your learning experience,” ASU’s Bowen says. “That same flexibility is true for the faculty as well.”

However, bad technology can quickly lead to bad student or faculty experiences, which risk success and retention. Hybrid learning can only work if the technology works, and that can only work if IT departments are on hand to ensure it does.

James Temple, vice president of technology, College of the Canyons

James Temple vice president of technology, College of the Canyons

Preventive (or passive) support is one way to keep students and faculty satisfied while also reducing the number of IT tickets and speeding their resolution. Investing in tried-and-true options such as self-service portals,  AI-driven chatbots  or extensive knowledge bases can empower those navigating hybrid learning to help themselves. Explainer online videos for students and dedicated training for faculty are also effective.

IT departments have also implemented tools that allow them to take preventive action when issues arise. For example, ASU’s IT department connected classroom technologies to the network for remote monitoring, so IT staff are pinged when something isn’t working. “That way, we can proactively help. For example, if a projector is having trouble, we can resolve that before the faculty member comes into the room,” Bowen says. This could apply as well to lecture room cameras or microphones used to broadcast to students who are participating from home, not in class.

SIGN UP : Get exclusive insider content for IT insights on how to create value for your campus.

B2C21 - Insider 

3. Make User Experiences as Seamless as Possible with Fast Help

Technology use affects student achievement. Where preventive or automated methods fail, it’s important to provide active solutions as quickly as possible that limit interruptions to students and faculty. A critical component of a positive higher ed user experience is one that’s — ideally — invisible. “A big part of designing user experience is thinking about how we make that technology as transparent as possible and get it out of the way,” says ASU’s Bowen.

That’s why, when problems arise (and IT tickets start to appear), finding ways to resolve them isn’t just in the IT department’s best interest. Institutions have gone about this in different ways throughout the pandemic. For example,  Emerson College  established a corps of dedicated individuals who could quickly identify problems and direct support requests to an appropriate IT staff member.

In a similar manner, College of the Canyons created an accessible Zoom Room where on-duty technicians are available. When someone enters to request help, an IT staff member takes them into a breakout room for immediate personal service. “That’s worked really well for probably 80 percent of the issues we’ve run into,” says Temple.

MORE ON EDTECH:  With hybrid learning on the rise, higher ed sees a Zoom Room boom.

At ASU, asynchronous methods (such as text messaging) allow faculty to quickly send help requests during class, without having to pause the lecture. This lets IT work toward a resolution without interrupting learning.

4. Never Stop Optimizing User Experiences

The shift toward online learning during the pandemic — and the speed at which it happened — has changed how higher ed IT departments are perceived by those they serve. “Before, we were looked at as equipment people,” says College of the Canyons’ Temple. “There’s been a new appreciation for what IT does at colleges.”

Their work, however, is far from finished.

Creating positive user experiences is a moving target, not a stationary one. What higher education institutions have done to enhance user experiences is only a starting point.

“From a technology standpoint, we have a great foundation to work from. We’re focusing on how we can continually improve these experiences,” says ASU’s Bowen. “We’re working to iterate by asking, how do we refine the experience? How do we make it more interactive, make it more intuitive and provide greater access?”

Those in higher ed who follow this lead will continue to reap the rewards of good user experiences: happy students, happy teachers and happy staff.

why is technology important in education essay

  • Distance Learning
  • Collaboration
  • Artificial Intelligence

Related Articles

A robot ponders its existence as bursts of color emerge around its head

Deep Dive Into AI

How can AI improve and optimize your customer experience?

Copyright © 2024 CDW LLC 200 N. Milwaukee Avenue , Vernon Hills, IL 60061 Do Not Sell My Personal Information

  • [email protected]
  • Login / Register

10 Important Roles of Technology in Education

Article 11 Aug 2024 70 0

Technology in education

The landscape of education has evolved dramatically over the past few decades, largely due to the rapid advancements in technology. Gone are the days when learning was confined to textbooks and chalkboards. Today, technology plays an integral role in shaping educational experiences, making learning more accessible, engaging, and personalized. As educators and students navigate the digital age, understanding the role of technology in education becomes crucial. This blog explores the ten significant roles that technology plays in modern education, highlighting how it enhances learning, improves engagement, and prepares students for the future.

Enhancing Accessibility

One of the most transformative impacts of technology in education is its ability to enhance accessibility. In the past, geographical barriers, physical disabilities, and financial constraints often limited access to quality education. However, with the advent of digital tools and online learning platforms, education has become more inclusive and accessible to a broader audience.

For students with disabilities, assistive technologies such as screen readers, voice recognition software, and adaptive keyboards enable them to participate in learning activities on par with their peers. In remote or underserved areas, e-learning platforms and virtual classrooms bridge the gap, providing students with access to quality education that was previously out of reach. These technologies ensure that every student, regardless of their circumstances, has the opportunity to learn and grow.

Personalized Learning

Technology has also revolutionized personalized learning, allowing educators to tailor instruction to meet the individual needs of each student. Adaptive learning platforms use data analytics to assess a student's strengths and weaknesses, customizing lessons to match their learning pace and style. This approach not only enhances learning outcomes but also boosts student confidence by allowing them to progress at their own pace.

For example, platforms like Khan Academy and Coursera offer personalized learning experiences where students can choose from a wide range of subjects and learn at their own pace. Such platforms provide immediate feedback, helping students identify areas where they need improvement and offering additional resources to support their learning journey. This personalized approach to education is a significant departure from the one-size-fits-all model, making learning more engaging and effective.

Interactive Learning

The traditional classroom setting, with its lectures and note-taking, is gradually being replaced by more interactive and engaging methods of instruction, thanks to technology. Interactive learning tools, such as smartboards, virtual reality (VR), and augmented reality (AR), bring lessons to life, making learning a more dynamic and immersive experience.

Smartboards, for instance, allow teachers to present information in a visually appealing and interactive manner. Students can participate in activities directly on the board, making the learning process more engaging. VR and AR technologies take this a step further by transporting students to virtual environments where they can explore historical sites, conduct scientific experiments, or even dissect virtual organisms. These tools not only make learning more enjoyable but also help students retain information better by providing hands-on experiences.

Improving Student Engagement

Keeping students engaged in a traditional classroom setting can be challenging, but technology offers innovative solutions to capture their interest. Gamification, for example, has become a popular strategy for increasing student engagement. By incorporating game elements such as points, badges, and leaderboards into educational activities, teachers can make learning fun and competitive.

Educational apps like Kahoot! and Quizizz allow students to participate in quizzes and challenges, turning learning into a game. This approach not only motivates students to participate but also encourages them to strive for improvement. Additionally, digital platforms that offer multimedia content—such as videos, podcasts, and interactive simulations—cater to different learning styles, ensuring that every student remains engaged and interested in the material.

Facilitating Online Education

The rise of online education has been one of the most significant developments in the field of education technology. Virtual classrooms and e-learning platforms have made it possible for students to learn from anywhere in the world, at any time. This flexibility is particularly beneficial for adult learners, working professionals, and students with busy schedules.

Platforms like Zoom, Google Classroom, and Microsoft Teams have become essential tools for facilitating online education. These platforms offer features such as video conferencing, file sharing, and collaborative tools, enabling seamless communication between teachers and students. The ability to record and review lectures, participate in discussion forums, and access a wealth of online resources makes online education a viable and attractive option for many learners.

Resource Availability

The digital revolution has transformed the way educational resources are accessed and utilized. Today, students and teachers have access to an unprecedented amount of information at their fingertips. Digital libraries, online databases, and educational websites provide a wealth of resources that can be accessed anytime, anywhere.

For instance, Google Scholar and JSTOR offer access to a vast collection of academic papers, research articles, and journals, making it easier for students to conduct research and deepen their understanding of various subjects. Similarly, educational platforms like Khan Academy and Coursera provide free or affordable courses on a wide range of topics, empowering students to learn beyond the classroom. This abundance of resources has made education more flexible and accessible, allowing learners to explore their interests and enhance their knowledge at their own pace.

Assessment and Feedback

Technology has also transformed the way assessments are conducted and feedback is provided. Traditional assessments often rely on standardized testing, which may not accurately reflect a student's true abilities. However, digital tools offer more diverse and dynamic methods of assessment, providing a more comprehensive understanding of a student's progress.

Online assessment tools like Google Forms and Socrative allow teachers to create quizzes, surveys, and tests that can be automatically graded, providing instant feedback to students. This immediate feedback helps students identify areas where they need improvement and allows teachers to adjust their instruction accordingly. Additionally, digital portfolios and learning management systems (LMS) like Moodle and Blackboard enable students to track their progress over time, showcasing their achievements and growth.

Collaborative Learning

Collaboration is a crucial skill in the modern world, and technology has made it easier for students to work together on projects and assignments. Online collaboration tools like Google Docs, Trello, and Slack allow students to collaborate in real-time, regardless of their physical location. These tools enable students to share ideas, edit documents, and communicate with each other, fostering a sense of teamwork and collaboration.

Moreover, social media platforms like Twitter and LinkedIn offer opportunities for students to connect with peers, experts, and mentors from around the world. These connections provide valuable networking opportunities and expose students to diverse perspectives and ideas. Collaborative learning, facilitated by technology, not only enhances students' communication and teamwork skills but also prepares them for the collaborative nature of the modern workplace.

Teacher Empowerment

Technology is not just transforming the student experience; it is also empowering teachers by providing them with new tools and resources to enhance their teaching practices. Professional development platforms like Edmodo and Coursera offer teachers access to courses and workshops that help them stay updated with the latest educational trends and technologies.

Additionally, tools like Canva and Prezi enable teachers to create visually appealing presentations and teaching materials that capture students' attention. LMS platforms allow teachers to organize and manage their classes efficiently, providing them with insights into student performance and progress. By equipping teachers with the right tools and resources, technology enhances their ability to deliver effective and engaging instruction.

Preparing Students for the Future

As technology continues to advance, it is essential for students to be equipped with the skills necessary to thrive in the digital economy. Technology in education plays a crucial role in preparing students for the future by developing their digital literacy, critical thinking, and problem-solving skills.

Coding, robotics, and data analysis are becoming integral parts of the curriculum in many schools, providing students with the skills needed for future careers. Additionally, exposure to technology helps students become more adaptable and resilient, qualities that are essential in an ever-changing world. By integrating technology into education, we are not only enhancing learning experiences but also preparing students to succeed in a technology-driven future.

Technology has undoubtedly transformed the landscape of education, offering countless opportunities to enhance learning experiences, improve accessibility, and prepare students for the future. From personalized learning and interactive tools to online education and collaborative platforms, technology plays a vital role in modern education. As we continue to embrace technological advancements, it is crucial for educators, students, and policymakers to recognize the importance of technology in shaping the future of education. By leveraging these tools effectively, we can create more inclusive, engaging, and impactful learning experiences for all.

Technology's impact on education is profound and far-reaching, and its role will only continue to grow in importance. Embracing and integrating technology into our educational systems will ensure that we are preparing students not just for the present, but for a future where digital literacy and technological skills are paramount. The future of education is digital, and by understanding and harnessing the roles of technology, we can unlock endless possibilities for learning and growth.

  • Latest Articles

How to Study Smarter, Not Harder: Tips for Success

Top strategies & tips for effective exam preparation, the real reason why you can’t learn something new, how to make learning mathematics easier and more effective, unpacking the mental health crisis and technology’s role, brain vs. consciousness: a new perspective, why financial literacy is vital for young adults, creating and cherishing core memories for a lifetime, types of machine learning: supervised, unsupervised & more, 20 essential tools every student needs for success, unlock 100% brain potential: psychology & techniques, understanding the psychology of shame: causes and solutions, how to enjoy reading even when you hate it, equal education: why women’s education matters as much as men’s, ai benefits for teachers & students learning, why you should consider tuition classes to help improve your test scores, apply online.

Collegenp

Find Detailed information on:

  • Top Colleges & Universities
  • Popular Courses
  • Exam Preparation
  • Admissions & Eligibility
  • College Rankings

Sign Up or Login

Not a Member Yet! Join Us it's Free.

Already have account Please Login

  • Share full article

Advertisement

The Morning

Schools have a tech problem.

We explore some of the tech challenges faced by educators.

why is technology important in education essay

By Natasha Singer

I cover technology in schools.

As the new school year begins, school districts across the United States are cracking down on cellphones in classrooms. Teachers are tired of constantly pressing students to stop watching TikTok and messaging friends during class. In many schools, students have also used phones to threaten or bully their classmates.

As a result, as I note in a story today , at least eight states, including Indiana and Pennsylvania, have adopted measures this year to limit cellphones in schools.

But the phone crackdowns illustrate a larger issue. Technology rules and safeguards in schools often lag far behind student use and abuse of digital tools.

And it’s not just phones — school-issued laptops, tablets and classroom apps can also become sources of distraction and bullying. In today’s newsletter, I’ll highlight some of the tech challenges schools are facing.

Student cellphone bans

Schools have been trying to limit student phone use for decades. Maryland banned students from bringing pagers and “cellular telephones” to school in the late 1980s as illegal drug sales boomed. In the 1990s, as mobile phones gained traction, some schools barred the devices to stop the chirping from disrupting class.

Since the 2000s, though, it’s also gone the other way. As school shootings became more common, many districts began allowing mobile phones as a safety measure. And, after the rise of iPhones, some schools that had barred cellphones reversed the bans in part because some lower-income students who did not own laptops used them for schoolwork.

We are having trouble retrieving the article content.

Please enable JavaScript in your browser settings.

Thank you for your patience while we verify access. If you are in Reader mode please exit and  log into  your Times account, or  subscribe  for all of The Times.

Thank you for your patience while we verify access.

Already a subscriber?  Log in .

Want all of The Times?  Subscribe .

IMAGES

  1. Benefits Of Technology In Education English Language Free Essay Example

    why is technology important in education essay

  2. Importance of Technology Essay

    why is technology important in education essay

  3. Essay on Contribution of Technology in Education for all Class in 100

    why is technology important in education essay

  4. Essay on Contribution of Technology in Education

    why is technology important in education essay

  5. ≫ Contribution of Technology in Education Free Essay Sample on Samploon.com

    why is technology important in education essay

  6. Why is technology important to students Essay Example

    why is technology important in education essay

COMMENTS

  1. How Important Is Technology in Education?

    Increased Collaboration and Communication. Educational technology can foster collaboration. Not only can teachers engage with students during lessons, but students can also communicate with each other. Through online lessons and learning games, students get to work together to solve problems. In collaborative activities, students can share ...

  2. Discovering the Importance of Technology in Education

    The 3 important roles technology plays in education are increased collaboration and communication, personalized learning opportunities, and engaging content. The future of technology in education is bright and full of possibilities. From virtual and augmented reality to artificial intelligence and machine learning, technology is constantly ...

  3. Realizing the promise: How can education technology improve learning

    Here are five specific and sequential guidelines for decisionmakers to realize the potential of education technology to accelerate student learning. 1. Take stock of how your current schools ...

  4. The Importance of Technology in Education: [Essay Example ...

    Another importance of technology in education is technology can prepare students for the future. According to Cox, many students believe that with using technology in the classroom will help students prepare them for the digital future. Technology has changed the way people live. Many technologies have been implemented in the education sector.

  5. Why Do We Need Technology in Education?

    Using the Universal Design for Learning (UDL) (CAST, Inc., 2012) principles as a guide, technology can increase access to, and representation of, content, provide students with a variety of ways to communicate and express their knowledge, and motivate student learning through interest and engagement.

  6. Education: Impact of Technology

    Updated: Mar 21st, 2024. Technology's impact on education has been a popular discussion subject in recent years. Remote learning during the pandemic changed the public perspectives on the role of technology in teaching and learning. According to Himmelsbach (2022), educators realize the power of digital tools, devices, and applications.

  7. How technology is reinventing education

    New advances in technology are upending education, from the recent debut of new artificial intelligence (AI) chatbots like ChatGPT to the growing accessibility of virtual-reality tools that expand the boundaries of the classroom. For educators, at the heart of it all is the hope that every learner gets an equal chance to develop the skills they need to succeed.

  8. Why technology in education must be on our terms

    The adoption of technology must be guided by a learner-centric, rights-based framework, ensuring appropriateness, equity, evidence-based decisions, and sustainability. The report presents a four-point compass for policy-makers: Look down: Evaluate the context and learning objectives to ensure technology choices strengthen education systems.

  9. PDF Technology and its use in Education: Present Roles and Future Prospects

    The role of technology, in a traditional school setting, is to facilitate, through increased. efficiency and effectiveness, the education of knowledge and skills. In order to fully examine this. thesis, we must first define several terms. Efficiency will be defined as the quickness by which.

  10. Technology In Education Essay

    Here are 100, 200 and 500 word essays on Technology In Education. Technology plays a huge part in education. The students' learning process gets simpler as technology advances. Students can easily learn the concepts thanks to technologies utilised in schools and universities, such as computer labs and high-end equipment and instruments.

  11. What is Educational Technology and Why is it Important?

    What is Educational Technology? Educational Technology is the field of study that investigates the process of analyzing, designing, developing, implementing, and evaluating the instructional environment, learning materials, learners, and the learning process in order to improve teaching and learning.

  12. How Technology is Changing the Education Landscape

    There are many reasons why the use of technology in education is increasing. First, technology can help to level the playing field for all students. No matter their background or economic situation, all students have access to the same resources and tools when using technology in the classroom. Technology can help to engage students in learning.

  13. Technology in Education: An Overview

    Technology is everywhere in education: Public schools in the United States now provide at least one computer for every five students. They spend more than $3 billion per year on digital content ...

  14. Understanding the role of digital technologies in education: A review

    The importance of Big Data and the application of analytics to learning was an essential but generally overlooked part of Education technologies ... Small, medium and large-scale education technology companies have started proliferating in the future and are offering various new digital solutions to academic institutions. This will improve the ...

  15. What 126 studies say about education technology

    781-879-2524. Caption: J-PAL North America's recently released publication summarizes 126 rigorous evaluations of different uses of education technology and their impact on student learning. Credits: MIT stock photo. In recent years, there has been widespread excitement around the transformative potential of technology in education.

  16. New global data reveal education technology's impact on learning

    The promise of technology in the classroom is great: enabling personalized, mastery-based learning; saving teacher time; and equipping students with the digital skills they will need for 21st-century careers. Indeed, controlled pilot studies have shown meaningful improvements in student outcomes through personalized blended learning. 1 John F. Pane et al.,

  17. How technology is reinventing K-12 education

    In 2023 K-12 schools experienced a rise in cyberattacks, underscoring the need to implement strong systems to safeguard student data. Technology is "requiring people to check their assumptions ...

  18. Information and communication technology (ICT) in education

    References and sources. Information and Communications Technology (ICT) can impact student learning when teachers are digitally literate and understand how to integrate it into curriculum. Schools use a diverse set of ICT tools to communicate, create, disseminate, store, and manage information. (6) In some contexts, ICT has also become integral ...

  19. How education technology can improve learning for all students

    New research from the Center for Universal Education (CUE) at Brookings finds that technology's impact on learning and teaching has been limited, especially in low- and middle-income countries ...

  20. Technology in Education: An Argumentative Perspective [Free Essay

    Introduction. This essay has engaged in an argumentative discussion about the role of technology in education, examining its potential benefits such as enhanced engagement, personalized learning, and skill development, while also addressing the risks of overreliance and inequity. By understanding both sides of the argument, educators and ...

  21. Impacts of digital technologies on education and factors ...

    The non-systematic literature review presented herein covers the main theories and research published over the past 17 years on the topic. It is based on meta-analyses and review papers found in scholarly, peer-reviewed content databases and other key studies and reports related to the concepts studied (e.g., digitalization, digital capacity) from professional and international bodies (e.g ...

  22. Student Success and the Importance of Technology in Education

    Technology use affects student achievement. Where preventive or automated methods fail, it's important to provide active solutions as quickly as possible that limit interruptions to students and faculty. A critical component of a positive higher ed user experience is one that's — ideally — invisible. "A big part of designing user ...

  23. 10 Important Roles of Technology in Education

    From personalized learning and interactive tools to online education and collaborative platforms, technology plays a vital role in modern education. As we continue to embrace technological advancements, it is crucial for educators, students, and policymakers to recognize the importance of technology in shaping the future of education.

  24. Schools Have a Tech Problem

    Technology rules and safeguards in schools often lag far behind student use and abuse of digital tools. ... write essays and collaborate with peers can lead to distractions and enable bullying ...