• USC Libraries
  • Research Guides

Organizing Your Social Sciences Research Paper

  • The Research Problem/Question
  • Purpose of Guide
  • Design Flaws to Avoid
  • Independent and Dependent Variables
  • Glossary of Research Terms
  • Reading Research Effectively
  • Narrowing a Topic Idea
  • Broadening a Topic Idea
  • Extending the Timeliness of a Topic Idea
  • Academic Writing Style
  • Applying Critical Thinking
  • Choosing a Title
  • Making an Outline
  • Paragraph Development
  • Research Process Video Series
  • Executive Summary
  • The C.A.R.S. Model
  • Background Information
  • Theoretical Framework
  • Citation Tracking
  • Content Alert Services
  • Evaluating Sources
  • Primary Sources
  • Secondary Sources
  • Tiertiary Sources
  • Scholarly vs. Popular Publications
  • Qualitative Methods
  • Quantitative Methods
  • Insiderness
  • Using Non-Textual Elements
  • Limitations of the Study
  • Common Grammar Mistakes
  • Writing Concisely
  • Avoiding Plagiarism
  • Footnotes or Endnotes?
  • Further Readings
  • Generative AI and Writing
  • USC Libraries Tutorials and Other Guides
  • Bibliography

A research problem is a definite or clear expression [statement] about an area of concern, a condition to be improved upon, a difficulty to be eliminated, or a troubling question that exists in scholarly literature, in theory, or within existing practice that points to a need for meaningful understanding and deliberate investigation. A research problem does not state how to do something, offer a vague or broad proposition, or present a value question. In the social and behavioral sciences, studies are most often framed around examining a problem that needs to be understood and resolved in order to improve society and the human condition.

Bryman, Alan. “The Research Question in Social Research: What is its Role?” International Journal of Social Research Methodology 10 (2007): 5-20; Guba, Egon G., and Yvonna S. Lincoln. “Competing Paradigms in Qualitative Research.” In Handbook of Qualitative Research . Norman K. Denzin and Yvonna S. Lincoln, editors. (Thousand Oaks, CA: Sage, 1994), pp. 105-117; Pardede, Parlindungan. “Identifying and Formulating the Research Problem." Research in ELT: Module 4 (October 2018): 1-13; Li, Yanmei, and Sumei Zhang. "Identifying the Research Problem." In Applied Research Methods in Urban and Regional Planning . (Cham, Switzerland: Springer International Publishing, 2022), pp. 13-21.

Importance of...

The purpose of a problem statement is to:

  • Introduce the reader to the importance of the topic being studied . The reader is oriented to the significance of the study.
  • Anchors the research questions, hypotheses, or assumptions to follow . It offers a concise statement about the purpose of your paper.
  • Place the topic into a particular context that defines the parameters of what is to be investigated.
  • Provide the framework for reporting the results and indicates what is probably necessary to conduct the study and explain how the findings will present this information.

In the social sciences, the research problem establishes the means by which you must answer the "So What?" question. This declarative question refers to a research problem surviving the relevancy test [the quality of a measurement procedure that provides repeatability and accuracy]. Note that answering the "So What?" question requires a commitment on your part to not only show that you have reviewed the literature, but that you have thoroughly considered the significance of the research problem and its implications applied to creating new knowledge and understanding or informing practice.

To survive the "So What" question, problem statements should possess the following attributes:

  • Clarity and precision [a well-written statement does not make sweeping generalizations and irresponsible pronouncements; it also does include unspecific determinates like "very" or "giant"],
  • Demonstrate a researchable topic or issue [i.e., feasibility of conducting the study is based upon access to information that can be effectively acquired, gathered, interpreted, synthesized, and understood],
  • Identification of what would be studied, while avoiding the use of value-laden words and terms,
  • Identification of an overarching question or small set of questions accompanied by key factors or variables,
  • Identification of key concepts and terms,
  • Articulation of the study's conceptual boundaries or parameters or limitations,
  • Some generalizability in regards to applicability and bringing results into general use,
  • Conveyance of the study's importance, benefits, and justification [i.e., regardless of the type of research, it is important to demonstrate that the research is not trivial],
  • Does not have unnecessary jargon or overly complex sentence constructions; and,
  • Conveyance of more than the mere gathering of descriptive data providing only a snapshot of the issue or phenomenon under investigation.

Bryman, Alan. “The Research Question in Social Research: What is its Role?” International Journal of Social Research Methodology 10 (2007): 5-20; Brown, Perry J., Allen Dyer, and Ross S. Whaley. "Recreation Research—So What?" Journal of Leisure Research 5 (1973): 16-24; Castellanos, Susie. Critical Writing and Thinking. The Writing Center. Dean of the College. Brown University; Ellis, Timothy J. and Yair Levy Nova. "Framework of Problem-Based Research: A Guide for Novice Researchers on the Development of a Research-Worthy Problem." Informing Science: the International Journal of an Emerging Transdiscipline 11 (2008); Thesis and Purpose Statements. The Writer’s Handbook. Writing Center. University of Wisconsin, Madison; Thesis Statements. The Writing Center. University of North Carolina; Tips and Examples for Writing Thesis Statements. The Writing Lab and The OWL. Purdue University; Selwyn, Neil. "‘So What?’…A Question that Every Journal Article Needs to Answer." Learning, Media, and Technology 39 (2014): 1-5; Shoket, Mohd. "Research Problem: Identification and Formulation." International Journal of Research 1 (May 2014): 512-518.

Structure and Writing Style

I.  Types and Content

There are four general conceptualizations of a research problem in the social sciences:

  • Casuist Research Problem -- this type of problem relates to the determination of right and wrong in questions of conduct or conscience by analyzing moral dilemmas through the application of general rules and the careful distinction of special cases.
  • Difference Research Problem -- typically asks the question, “Is there a difference between two or more groups or treatments?” This type of problem statement is used when the researcher compares or contrasts two or more phenomena. This a common approach to defining a problem in the clinical social sciences or behavioral sciences.
  • Descriptive Research Problem -- typically asks the question, "what is...?" with the underlying purpose to describe the significance of a situation, state, or existence of a specific phenomenon. This problem is often associated with revealing hidden or understudied issues.
  • Relational Research Problem -- suggests a relationship of some sort between two or more variables to be investigated. The underlying purpose is to investigate specific qualities or characteristics that may be connected in some way.

A problem statement in the social sciences should contain :

  • A lead-in that helps ensure the reader will maintain interest over the study,
  • A declaration of originality [e.g., mentioning a knowledge void or a lack of clarity about a topic that will be revealed in the literature review of prior research],
  • An indication of the central focus of the study [establishing the boundaries of analysis], and
  • An explanation of the study's significance or the benefits to be derived from investigating the research problem.

NOTE:   A statement describing the research problem of your paper should not be viewed as a thesis statement that you may be familiar with from high school. Given the content listed above, a description of the research problem is usually a short paragraph in length.

II.  Sources of Problems for Investigation

The identification of a problem to study can be challenging, not because there's a lack of issues that could be investigated, but due to the challenge of formulating an academically relevant and researchable problem which is unique and does not simply duplicate the work of others. To facilitate how you might select a problem from which to build a research study, consider these sources of inspiration:

Deductions from Theory This relates to deductions made from social philosophy or generalizations embodied in life and in society that the researcher is familiar with. These deductions from human behavior are then placed within an empirical frame of reference through research. From a theory, the researcher can formulate a research problem or hypothesis stating the expected findings in certain empirical situations. The research asks the question: “What relationship between variables will be observed if theory aptly summarizes the state of affairs?” One can then design and carry out a systematic investigation to assess whether empirical data confirm or reject the hypothesis, and hence, the theory.

Interdisciplinary Perspectives Identifying a problem that forms the basis for a research study can come from academic movements and scholarship originating in disciplines outside of your primary area of study. This can be an intellectually stimulating exercise. A review of pertinent literature should include examining research from related disciplines that can reveal new avenues of exploration and analysis. An interdisciplinary approach to selecting a research problem offers an opportunity to construct a more comprehensive understanding of a very complex issue that any single discipline may be able to provide.

Interviewing Practitioners The identification of research problems about particular topics can arise from formal interviews or informal discussions with practitioners who provide insight into new directions for future research and how to make research findings more relevant to practice. Discussions with experts in the field, such as, teachers, social workers, health care providers, lawyers, business leaders, etc., offers the chance to identify practical, “real world” problems that may be understudied or ignored within academic circles. This approach also provides some practical knowledge which may help in the process of designing and conducting your study.

Personal Experience Don't undervalue your everyday experiences or encounters as worthwhile problems for investigation. Think critically about your own experiences and/or frustrations with an issue facing society or related to your community, your neighborhood, your family, or your personal life. This can be derived, for example, from deliberate observations of certain relationships for which there is no clear explanation or witnessing an event that appears harmful to a person or group or that is out of the ordinary.

Relevant Literature The selection of a research problem can be derived from a thorough review of pertinent research associated with your overall area of interest. This may reveal where gaps exist in understanding a topic or where an issue has been understudied. Research may be conducted to: 1) fill such gaps in knowledge; 2) evaluate if the methodologies employed in prior studies can be adapted to solve other problems; or, 3) determine if a similar study could be conducted in a different subject area or applied in a different context or to different study sample [i.e., different setting or different group of people]. Also, authors frequently conclude their studies by noting implications for further research; read the conclusion of pertinent studies because statements about further research can be a valuable source for identifying new problems to investigate. The fact that a researcher has identified a topic worthy of further exploration validates the fact it is worth pursuing.

III.  What Makes a Good Research Statement?

A good problem statement begins by introducing the broad area in which your research is centered, gradually leading the reader to the more specific issues you are investigating. The statement need not be lengthy, but a good research problem should incorporate the following features:

1.  Compelling Topic The problem chosen should be one that motivates you to address it but simple curiosity is not a good enough reason to pursue a research study because this does not indicate significance. The problem that you choose to explore must be important to you, but it must also be viewed as important by your readers and to a the larger academic and/or social community that could be impacted by the results of your study. 2.  Supports Multiple Perspectives The problem must be phrased in a way that avoids dichotomies and instead supports the generation and exploration of multiple perspectives. A general rule of thumb in the social sciences is that a good research problem is one that would generate a variety of viewpoints from a composite audience made up of reasonable people. 3.  Researchability This isn't a real word but it represents an important aspect of creating a good research statement. It seems a bit obvious, but you don't want to find yourself in the midst of investigating a complex research project and realize that you don't have enough prior research to draw from for your analysis. There's nothing inherently wrong with original research, but you must choose research problems that can be supported, in some way, by the resources available to you. If you are not sure if something is researchable, don't assume that it isn't if you don't find information right away--seek help from a librarian !

NOTE:   Do not confuse a research problem with a research topic. A topic is something to read and obtain information about, whereas a problem is something to be solved or framed as a question raised for inquiry, consideration, or solution, or explained as a source of perplexity, distress, or vexation. In short, a research topic is something to be understood; a research problem is something that needs to be investigated.

IV.  Asking Analytical Questions about the Research Problem

Research problems in the social and behavioral sciences are often analyzed around critical questions that must be investigated. These questions can be explicitly listed in the introduction [i.e., "This study addresses three research questions about women's psychological recovery from domestic abuse in multi-generational home settings..."], or, the questions are implied in the text as specific areas of study related to the research problem. Explicitly listing your research questions at the end of your introduction can help in designing a clear roadmap of what you plan to address in your study, whereas, implicitly integrating them into the text of the introduction allows you to create a more compelling narrative around the key issues under investigation. Either approach is appropriate.

The number of questions you attempt to address should be based on the complexity of the problem you are investigating and what areas of inquiry you find most critical to study. Practical considerations, such as, the length of the paper you are writing or the availability of resources to analyze the issue can also factor in how many questions to ask. In general, however, there should be no more than four research questions underpinning a single research problem.

Given this, well-developed analytical questions can focus on any of the following:

  • Highlights a genuine dilemma, area of ambiguity, or point of confusion about a topic open to interpretation by your readers;
  • Yields an answer that is unexpected and not obvious rather than inevitable and self-evident;
  • Provokes meaningful thought or discussion;
  • Raises the visibility of the key ideas or concepts that may be understudied or hidden;
  • Suggests the need for complex analysis or argument rather than a basic description or summary; and,
  • Offers a specific path of inquiry that avoids eliciting generalizations about the problem.

NOTE:   Questions of how and why concerning a research problem often require more analysis than questions about who, what, where, and when. You should still ask yourself these latter questions, however. Thinking introspectively about the who, what, where, and when of a research problem can help ensure that you have thoroughly considered all aspects of the problem under investigation and helps define the scope of the study in relation to the problem.

V.  Mistakes to Avoid

Beware of circular reasoning! Do not state the research problem as simply the absence of the thing you are suggesting. For example, if you propose the following, "The problem in this community is that there is no hospital," this only leads to a research problem where:

  • The need is for a hospital
  • The objective is to create a hospital
  • The method is to plan for building a hospital, and
  • The evaluation is to measure if there is a hospital or not.

This is an example of a research problem that fails the "So What?" test . In this example, the problem does not reveal the relevance of why you are investigating the fact there is no hospital in the community [e.g., perhaps there's a hospital in the community ten miles away]; it does not elucidate the significance of why one should study the fact there is no hospital in the community [e.g., that hospital in the community ten miles away has no emergency room]; the research problem does not offer an intellectual pathway towards adding new knowledge or clarifying prior knowledge [e.g., the county in which there is no hospital already conducted a study about the need for a hospital, but it was conducted ten years ago]; and, the problem does not offer meaningful outcomes that lead to recommendations that can be generalized for other situations or that could suggest areas for further research [e.g., the challenges of building a new hospital serves as a case study for other communities].

Alvesson, Mats and Jörgen Sandberg. “Generating Research Questions Through Problematization.” Academy of Management Review 36 (April 2011): 247-271 ; Choosing and Refining Topics. Writing@CSU. Colorado State University; D'Souza, Victor S. "Use of Induction and Deduction in Research in Social Sciences: An Illustration." Journal of the Indian Law Institute 24 (1982): 655-661; Ellis, Timothy J. and Yair Levy Nova. "Framework of Problem-Based Research: A Guide for Novice Researchers on the Development of a Research-Worthy Problem." Informing Science: the International Journal of an Emerging Transdiscipline 11 (2008); How to Write a Research Question. The Writing Center. George Mason University; Invention: Developing a Thesis Statement. The Reading/Writing Center. Hunter College; Problem Statements PowerPoint Presentation. The Writing Lab and The OWL. Purdue University; Procter, Margaret. Using Thesis Statements. University College Writing Centre. University of Toronto; Shoket, Mohd. "Research Problem: Identification and Formulation." International Journal of Research 1 (May 2014): 512-518; Trochim, William M.K. Problem Formulation. Research Methods Knowledge Base. 2006; Thesis and Purpose Statements. The Writer’s Handbook. Writing Center. University of Wisconsin, Madison; Thesis Statements. The Writing Center. University of North Carolina; Tips and Examples for Writing Thesis Statements. The Writing Lab and The OWL. Purdue University; Pardede, Parlindungan. “Identifying and Formulating the Research Problem." Research in ELT: Module 4 (October 2018): 1-13; Walk, Kerry. Asking an Analytical Question. [Class handout or worksheet]. Princeton University; White, Patrick. Developing Research Questions: A Guide for Social Scientists . New York: Palgrave McMillan, 2009; Li, Yanmei, and Sumei Zhang. "Identifying the Research Problem." In Applied Research Methods in Urban and Regional Planning . (Cham, Switzerland: Springer International Publishing, 2022), pp. 13-21.

  • << Previous: Background Information
  • Next: Theoretical Framework >>
  • Last Updated: May 25, 2024 4:09 PM
  • URL: https://libguides.usc.edu/writingguide

Problems: Definition, Types, and Evidence

  • Reference work entry
  • pp 2690–2693
  • Cite this reference work entry

meaning of problem solving in research

  • Norbert M. Seel 2  

1 Citations

Problem solving

A distinction can be made between “task” and “problem.” Generally, a task is a well-defined piece of work that is usually imposed by another person and may be burdensome. A problem is generally considered to be a task, a situation, or person which is difficult to deal with or control due to complexity and intransparency. In everyday language, a problem is a question proposed for solution, a matter stated for examination or proof. In each case, a problem is considered to be a matter which is difficult to solve or settle, a doubtful case, or a complex task involving doubt and uncertainty.

Theoretical Background

The nature of human problem solving has been studied by psychologists over the past hundred years. Beginning with the early experimental work of the Gestalt psychologists in Germany, and continuing through the 1960s and early 1970s, research on problem solving typically operated with relatively simple laboratory problems, such as Duncker’s...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Berry, D. C., & Broadbent, D. E. (1995). Implicit learning in the control of complex systems: A reconsideration of some of the earlier claims. In P. A. Frensch & J. Funke (Eds.), Complex problem solving: The European perspective (pp. 131–150). Hillsdale: Lawrence Erlbaum.

Google Scholar  

Broadbent, D. E. (1977). Levels, hierarchies, and the locus of control. Quarterly Journal of Experimental Psychology, 29 , 181–201.

Article   Google Scholar  

Dörner, D. (1976). Problemlösen als Informationsverarbeitung . Stuttgart: Kohlhammer (Problem solving as information processing).

Dörner, D., Kreuzig, H. W., Reither, F., & Stäudel, T. (1983). Lohhausen. Vom Umgang mit Unbestimmtheit und Komplexität [Lohhausen. The concern with uncertainty and complexity] . Bern: Huber.

Dörner, D. (1989). Die Logik des Misslingens . Hamburg: Rowohlt.

Funke, J. (1992). Wissen über dynamische Systeme: Erwerb, Repräsentation und Anwendung . Berlin: Springer.

Book   Google Scholar  

Funke, J., & Frensch, P. (1995). Complex problem solving research in North America and Europe: An integrative review. Foreign Psychology, 5 , 42–47.

Jonassen, D. H. (1997). Instructional design models for well-structured and ill-structured problem-solving learning outcomes. Educational Technology Research and Development, 45 (1), 65–94.

Newell, A., & Simon, H. A. (1972). Human problem solving . Englewood Cliffs: Prentice Hall.

Newell, A., Shaw, J. C., & Simon, H. A. (1959). A general problem-solving program for a computer. Computers and Automation, 8 (7), 10–16.

Download references

Author information

Authors and affiliations.

Department of Education, University of Freiburg, Rempartstr. 11, 3. OG, Freiburg, 79098, Germany

Prof. Norbert M. Seel ( Faculty of Economics and Behavioral Sciences )

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Norbert M. Seel .

Editor information

Editors and affiliations.

Faculty of Economics and Behavioral Sciences, Department of Education, University of Freiburg, 79085, Freiburg, Germany

Norbert M. Seel

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this entry

Cite this entry.

Seel, N.M. (2012). Problems: Definition, Types, and Evidence. In: Seel, N.M. (eds) Encyclopedia of the Sciences of Learning. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-1428-6_914

Download citation

DOI : https://doi.org/10.1007/978-1-4419-1428-6_914

Publisher Name : Springer, Boston, MA

Print ISBN : 978-1-4419-1427-9

Online ISBN : 978-1-4419-1428-6

eBook Packages : Humanities, Social Sciences and Law

Share this entry

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research
  • Search Menu
  • Sign in through your institution
  • Browse content in Arts and Humanities
  • Browse content in Archaeology
  • Anglo-Saxon and Medieval Archaeology
  • Archaeological Methodology and Techniques
  • Archaeology by Region
  • Archaeology of Religion
  • Archaeology of Trade and Exchange
  • Biblical Archaeology
  • Contemporary and Public Archaeology
  • Environmental Archaeology
  • Historical Archaeology
  • History and Theory of Archaeology
  • Industrial Archaeology
  • Landscape Archaeology
  • Mortuary Archaeology
  • Prehistoric Archaeology
  • Underwater Archaeology
  • Urban Archaeology
  • Zooarchaeology
  • Browse content in Architecture
  • Architectural Structure and Design
  • History of Architecture
  • Residential and Domestic Buildings
  • Theory of Architecture
  • Browse content in Art
  • Art Subjects and Themes
  • History of Art
  • Industrial and Commercial Art
  • Theory of Art
  • Biographical Studies
  • Byzantine Studies
  • Browse content in Classical Studies
  • Classical Literature
  • Classical Reception
  • Classical History
  • Classical Philosophy
  • Classical Mythology
  • Classical Art and Architecture
  • Classical Oratory and Rhetoric
  • Greek and Roman Archaeology
  • Greek and Roman Epigraphy
  • Greek and Roman Law
  • Greek and Roman Papyrology
  • Late Antiquity
  • Religion in the Ancient World
  • Digital Humanities
  • Browse content in History
  • Colonialism and Imperialism
  • Diplomatic History
  • Environmental History
  • Genealogy, Heraldry, Names, and Honours
  • Genocide and Ethnic Cleansing
  • Historical Geography
  • History by Period
  • History of Agriculture
  • History of Education
  • History of Emotions
  • History of Gender and Sexuality
  • Industrial History
  • Intellectual History
  • International History
  • Labour History
  • Legal and Constitutional History
  • Local and Family History
  • Maritime History
  • Military History
  • National Liberation and Post-Colonialism
  • Oral History
  • Political History
  • Public History
  • Regional and National History
  • Revolutions and Rebellions
  • Slavery and Abolition of Slavery
  • Social and Cultural History
  • Theory, Methods, and Historiography
  • Urban History
  • World History
  • Browse content in Language Teaching and Learning
  • Language Learning (Specific Skills)
  • Language Teaching Theory and Methods
  • Browse content in Linguistics
  • Applied Linguistics
  • Cognitive Linguistics
  • Computational Linguistics
  • Forensic Linguistics
  • Grammar, Syntax and Morphology
  • Historical and Diachronic Linguistics
  • History of English
  • Language Variation
  • Language Families
  • Language Acquisition
  • Language Evolution
  • Language Reference
  • Lexicography
  • Linguistic Theories
  • Linguistic Typology
  • Linguistic Anthropology
  • Phonetics and Phonology
  • Psycholinguistics
  • Sociolinguistics
  • Translation and Interpretation
  • Writing Systems
  • Browse content in Literature
  • Bibliography
  • Children's Literature Studies
  • Literary Studies (Modernism)
  • Literary Studies (Asian)
  • Literary Studies (European)
  • Literary Studies (Eco-criticism)
  • Literary Studies (Romanticism)
  • Literary Studies (American)
  • Literary Studies - World
  • Literary Studies (1500 to 1800)
  • Literary Studies (19th Century)
  • Literary Studies (20th Century onwards)
  • Literary Studies (African American Literature)
  • Literary Studies (British and Irish)
  • Literary Studies (Early and Medieval)
  • Literary Studies (Fiction, Novelists, and Prose Writers)
  • Literary Studies (Gender Studies)
  • Literary Studies (Graphic Novels)
  • Literary Studies (History of the Book)
  • Literary Studies (Plays and Playwrights)
  • Literary Studies (Poetry and Poets)
  • Literary Studies (Postcolonial Literature)
  • Literary Studies (Queer Studies)
  • Literary Studies (Science Fiction)
  • Literary Studies (Travel Literature)
  • Literary Studies (War Literature)
  • Literary Studies (Women's Writing)
  • Literary Theory and Cultural Studies
  • Mythology and Folklore
  • Shakespeare Studies and Criticism
  • Browse content in Media Studies
  • Browse content in Music
  • Applied Music
  • Dance and Music
  • Ethics in Music
  • Ethnomusicology
  • Gender and Sexuality in Music
  • Medicine and Music
  • Music Cultures
  • Music and Culture
  • Music and Religion
  • Music and Media
  • Music Education and Pedagogy
  • Music Theory and Analysis
  • Musical Scores, Lyrics, and Libretti
  • Musical Structures, Styles, and Techniques
  • Musicology and Music History
  • Performance Practice and Studies
  • Race and Ethnicity in Music
  • Sound Studies
  • Browse content in Performing Arts
  • Browse content in Philosophy
  • Aesthetics and Philosophy of Art
  • Epistemology
  • Feminist Philosophy
  • History of Western Philosophy
  • Metaphysics
  • Moral Philosophy
  • Non-Western Philosophy
  • Philosophy of Action
  • Philosophy of Law
  • Philosophy of Religion
  • Philosophy of Science
  • Philosophy of Language
  • Philosophy of Mind
  • Philosophy of Perception
  • Philosophy of Mathematics and Logic
  • Practical Ethics
  • Social and Political Philosophy
  • Browse content in Religion
  • Biblical Studies
  • Christianity
  • East Asian Religions
  • History of Religion
  • Judaism and Jewish Studies
  • Qumran Studies
  • Religion and Education
  • Religion and Health
  • Religion and Politics
  • Religion and Science
  • Religion and Law
  • Religion and Art, Literature, and Music
  • Religious Studies
  • Browse content in Society and Culture
  • Cookery, Food, and Drink
  • Cultural Studies
  • Customs and Traditions
  • Ethical Issues and Debates
  • Hobbies, Games, Arts and Crafts
  • Natural world, Country Life, and Pets
  • Popular Beliefs and Controversial Knowledge
  • Sports and Outdoor Recreation
  • Technology and Society
  • Travel and Holiday
  • Visual Culture
  • Browse content in Law
  • Arbitration
  • Browse content in Company and Commercial Law
  • Commercial Law
  • Company Law
  • Browse content in Comparative Law
  • Systems of Law
  • Competition Law
  • Browse content in Constitutional and Administrative Law
  • Government Powers
  • Judicial Review
  • Local Government Law
  • Military and Defence Law
  • Parliamentary and Legislative Practice
  • Construction Law
  • Contract Law
  • Browse content in Criminal Law
  • Criminal Procedure
  • Criminal Evidence Law
  • Sentencing and Punishment
  • Employment and Labour Law
  • Environment and Energy Law
  • Browse content in Financial Law
  • Banking Law
  • Insolvency Law
  • History of Law
  • Human Rights and Immigration
  • Intellectual Property Law
  • Browse content in International Law
  • Private International Law and Conflict of Laws
  • Public International Law
  • IT and Communications Law
  • Jurisprudence and Philosophy of Law
  • Law and Society
  • Law and Politics
  • Browse content in Legal System and Practice
  • Courts and Procedure
  • Legal Skills and Practice
  • Primary Sources of Law
  • Regulation of Legal Profession
  • Medical and Healthcare Law
  • Browse content in Policing
  • Criminal Investigation and Detection
  • Police and Security Services
  • Police Procedure and Law
  • Police Regional Planning
  • Browse content in Property Law
  • Personal Property Law
  • Study and Revision
  • Terrorism and National Security Law
  • Browse content in Trusts Law
  • Wills and Probate or Succession
  • Browse content in Medicine and Health
  • Browse content in Allied Health Professions
  • Arts Therapies
  • Clinical Science
  • Dietetics and Nutrition
  • Occupational Therapy
  • Operating Department Practice
  • Physiotherapy
  • Radiography
  • Speech and Language Therapy
  • Browse content in Anaesthetics
  • General Anaesthesia
  • Neuroanaesthesia
  • Browse content in Clinical Medicine
  • Acute Medicine
  • Cardiovascular Medicine
  • Clinical Genetics
  • Clinical Pharmacology and Therapeutics
  • Dermatology
  • Endocrinology and Diabetes
  • Gastroenterology
  • Genito-urinary Medicine
  • Geriatric Medicine
  • Infectious Diseases
  • Medical Oncology
  • Medical Toxicology
  • Pain Medicine
  • Palliative Medicine
  • Rehabilitation Medicine
  • Respiratory Medicine and Pulmonology
  • Rheumatology
  • Sleep Medicine
  • Sports and Exercise Medicine
  • Clinical Neuroscience
  • Community Medical Services
  • Critical Care
  • Emergency Medicine
  • Forensic Medicine
  • Haematology
  • History of Medicine
  • Medical Ethics
  • Browse content in Medical Dentistry
  • Oral and Maxillofacial Surgery
  • Paediatric Dentistry
  • Restorative Dentistry and Orthodontics
  • Surgical Dentistry
  • Browse content in Medical Skills
  • Clinical Skills
  • Communication Skills
  • Nursing Skills
  • Surgical Skills
  • Medical Statistics and Methodology
  • Browse content in Neurology
  • Clinical Neurophysiology
  • Neuropathology
  • Nursing Studies
  • Browse content in Obstetrics and Gynaecology
  • Gynaecology
  • Occupational Medicine
  • Ophthalmology
  • Otolaryngology (ENT)
  • Browse content in Paediatrics
  • Neonatology
  • Browse content in Pathology
  • Chemical Pathology
  • Clinical Cytogenetics and Molecular Genetics
  • Histopathology
  • Medical Microbiology and Virology
  • Patient Education and Information
  • Browse content in Pharmacology
  • Psychopharmacology
  • Browse content in Popular Health
  • Caring for Others
  • Complementary and Alternative Medicine
  • Self-help and Personal Development
  • Browse content in Preclinical Medicine
  • Cell Biology
  • Molecular Biology and Genetics
  • Reproduction, Growth and Development
  • Primary Care
  • Professional Development in Medicine
  • Browse content in Psychiatry
  • Addiction Medicine
  • Child and Adolescent Psychiatry
  • Forensic Psychiatry
  • Learning Disabilities
  • Old Age Psychiatry
  • Psychotherapy
  • Browse content in Public Health and Epidemiology
  • Epidemiology
  • Public Health
  • Browse content in Radiology
  • Clinical Radiology
  • Interventional Radiology
  • Nuclear Medicine
  • Radiation Oncology
  • Reproductive Medicine
  • Browse content in Surgery
  • Cardiothoracic Surgery
  • Gastro-intestinal and Colorectal Surgery
  • General Surgery
  • Neurosurgery
  • Paediatric Surgery
  • Peri-operative Care
  • Plastic and Reconstructive Surgery
  • Surgical Oncology
  • Transplant Surgery
  • Trauma and Orthopaedic Surgery
  • Vascular Surgery
  • Browse content in Science and Mathematics
  • Browse content in Biological Sciences
  • Aquatic Biology
  • Biochemistry
  • Bioinformatics and Computational Biology
  • Developmental Biology
  • Ecology and Conservation
  • Evolutionary Biology
  • Genetics and Genomics
  • Microbiology
  • Molecular and Cell Biology
  • Natural History
  • Plant Sciences and Forestry
  • Research Methods in Life Sciences
  • Structural Biology
  • Systems Biology
  • Zoology and Animal Sciences
  • Browse content in Chemistry
  • Analytical Chemistry
  • Computational Chemistry
  • Crystallography
  • Environmental Chemistry
  • Industrial Chemistry
  • Inorganic Chemistry
  • Materials Chemistry
  • Medicinal Chemistry
  • Mineralogy and Gems
  • Organic Chemistry
  • Physical Chemistry
  • Polymer Chemistry
  • Study and Communication Skills in Chemistry
  • Theoretical Chemistry
  • Browse content in Computer Science
  • Artificial Intelligence
  • Computer Architecture and Logic Design
  • Game Studies
  • Human-Computer Interaction
  • Mathematical Theory of Computation
  • Programming Languages
  • Software Engineering
  • Systems Analysis and Design
  • Virtual Reality
  • Browse content in Computing
  • Business Applications
  • Computer Games
  • Computer Security
  • Computer Networking and Communications
  • Digital Lifestyle
  • Graphical and Digital Media Applications
  • Operating Systems
  • Browse content in Earth Sciences and Geography
  • Atmospheric Sciences
  • Environmental Geography
  • Geology and the Lithosphere
  • Maps and Map-making
  • Meteorology and Climatology
  • Oceanography and Hydrology
  • Palaeontology
  • Physical Geography and Topography
  • Regional Geography
  • Soil Science
  • Urban Geography
  • Browse content in Engineering and Technology
  • Agriculture and Farming
  • Biological Engineering
  • Civil Engineering, Surveying, and Building
  • Electronics and Communications Engineering
  • Energy Technology
  • Engineering (General)
  • Environmental Science, Engineering, and Technology
  • History of Engineering and Technology
  • Mechanical Engineering and Materials
  • Technology of Industrial Chemistry
  • Transport Technology and Trades
  • Browse content in Environmental Science
  • Applied Ecology (Environmental Science)
  • Conservation of the Environment (Environmental Science)
  • Environmental Sustainability
  • Environmentalist Thought and Ideology (Environmental Science)
  • Management of Land and Natural Resources (Environmental Science)
  • Natural Disasters (Environmental Science)
  • Nuclear Issues (Environmental Science)
  • Pollution and Threats to the Environment (Environmental Science)
  • Social Impact of Environmental Issues (Environmental Science)
  • History of Science and Technology
  • Browse content in Materials Science
  • Ceramics and Glasses
  • Composite Materials
  • Metals, Alloying, and Corrosion
  • Nanotechnology
  • Browse content in Mathematics
  • Applied Mathematics
  • Biomathematics and Statistics
  • History of Mathematics
  • Mathematical Education
  • Mathematical Finance
  • Mathematical Analysis
  • Numerical and Computational Mathematics
  • Probability and Statistics
  • Pure Mathematics
  • Browse content in Neuroscience
  • Cognition and Behavioural Neuroscience
  • Development of the Nervous System
  • Disorders of the Nervous System
  • History of Neuroscience
  • Invertebrate Neurobiology
  • Molecular and Cellular Systems
  • Neuroendocrinology and Autonomic Nervous System
  • Neuroscientific Techniques
  • Sensory and Motor Systems
  • Browse content in Physics
  • Astronomy and Astrophysics
  • Atomic, Molecular, and Optical Physics
  • Biological and Medical Physics
  • Classical Mechanics
  • Computational Physics
  • Condensed Matter Physics
  • Electromagnetism, Optics, and Acoustics
  • History of Physics
  • Mathematical and Statistical Physics
  • Measurement Science
  • Nuclear Physics
  • Particles and Fields
  • Plasma Physics
  • Quantum Physics
  • Relativity and Gravitation
  • Semiconductor and Mesoscopic Physics
  • Browse content in Psychology
  • Affective Sciences
  • Clinical Psychology
  • Cognitive Neuroscience
  • Cognitive Psychology
  • Criminal and Forensic Psychology
  • Developmental Psychology
  • Educational Psychology
  • Evolutionary Psychology
  • Health Psychology
  • History and Systems in Psychology
  • Music Psychology
  • Neuropsychology
  • Organizational Psychology
  • Psychological Assessment and Testing
  • Psychology of Human-Technology Interaction
  • Psychology Professional Development and Training
  • Research Methods in Psychology
  • Social Psychology
  • Browse content in Social Sciences
  • Browse content in Anthropology
  • Anthropology of Religion
  • Human Evolution
  • Medical Anthropology
  • Physical Anthropology
  • Regional Anthropology
  • Social and Cultural Anthropology
  • Theory and Practice of Anthropology
  • Browse content in Business and Management
  • Business History
  • Business Strategy
  • Business Ethics
  • Business and Government
  • Business and Technology
  • Business and the Environment
  • Comparative Management
  • Corporate Governance
  • Corporate Social Responsibility
  • Entrepreneurship
  • Health Management
  • Human Resource Management
  • Industrial and Employment Relations
  • Industry Studies
  • Information and Communication Technologies
  • International Business
  • Knowledge Management
  • Management and Management Techniques
  • Operations Management
  • Organizational Theory and Behaviour
  • Pensions and Pension Management
  • Public and Nonprofit Management
  • Strategic Management
  • Supply Chain Management
  • Browse content in Criminology and Criminal Justice
  • Criminal Justice
  • Criminology
  • Forms of Crime
  • International and Comparative Criminology
  • Youth Violence and Juvenile Justice
  • Development Studies
  • Browse content in Economics
  • Agricultural, Environmental, and Natural Resource Economics
  • Asian Economics
  • Behavioural Finance
  • Behavioural Economics and Neuroeconomics
  • Econometrics and Mathematical Economics
  • Economic Methodology
  • Economic Systems
  • Economic History
  • Economic Development and Growth
  • Financial Markets
  • Financial Institutions and Services
  • General Economics and Teaching
  • Health, Education, and Welfare
  • History of Economic Thought
  • International Economics
  • Labour and Demographic Economics
  • Law and Economics
  • Macroeconomics and Monetary Economics
  • Microeconomics
  • Public Economics
  • Urban, Rural, and Regional Economics
  • Welfare Economics
  • Browse content in Education
  • Adult Education and Continuous Learning
  • Care and Counselling of Students
  • Early Childhood and Elementary Education
  • Educational Equipment and Technology
  • Educational Strategies and Policy
  • Higher and Further Education
  • Organization and Management of Education
  • Philosophy and Theory of Education
  • Schools Studies
  • Secondary Education
  • Teaching of a Specific Subject
  • Teaching of Specific Groups and Special Educational Needs
  • Teaching Skills and Techniques
  • Browse content in Environment
  • Applied Ecology (Social Science)
  • Climate Change
  • Conservation of the Environment (Social Science)
  • Environmentalist Thought and Ideology (Social Science)
  • Natural Disasters (Environment)
  • Social Impact of Environmental Issues (Social Science)
  • Browse content in Human Geography
  • Cultural Geography
  • Economic Geography
  • Political Geography
  • Browse content in Interdisciplinary Studies
  • Communication Studies
  • Museums, Libraries, and Information Sciences
  • Browse content in Politics
  • African Politics
  • Asian Politics
  • Chinese Politics
  • Comparative Politics
  • Conflict Politics
  • Elections and Electoral Studies
  • Environmental Politics
  • European Union
  • Foreign Policy
  • Gender and Politics
  • Human Rights and Politics
  • Indian Politics
  • International Relations
  • International Organization (Politics)
  • International Political Economy
  • Irish Politics
  • Latin American Politics
  • Middle Eastern Politics
  • Political Theory
  • Political Methodology
  • Political Communication
  • Political Philosophy
  • Political Sociology
  • Political Behaviour
  • Political Economy
  • Political Institutions
  • Politics and Law
  • Politics of Development
  • Public Administration
  • Public Policy
  • Quantitative Political Methodology
  • Regional Political Studies
  • Russian Politics
  • Security Studies
  • State and Local Government
  • UK Politics
  • US Politics
  • Browse content in Regional and Area Studies
  • African Studies
  • Asian Studies
  • East Asian Studies
  • Japanese Studies
  • Latin American Studies
  • Middle Eastern Studies
  • Native American Studies
  • Scottish Studies
  • Browse content in Research and Information
  • Research Methods
  • Browse content in Social Work
  • Addictions and Substance Misuse
  • Adoption and Fostering
  • Care of the Elderly
  • Child and Adolescent Social Work
  • Couple and Family Social Work
  • Direct Practice and Clinical Social Work
  • Emergency Services
  • Human Behaviour and the Social Environment
  • International and Global Issues in Social Work
  • Mental and Behavioural Health
  • Social Justice and Human Rights
  • Social Policy and Advocacy
  • Social Work and Crime and Justice
  • Social Work Macro Practice
  • Social Work Practice Settings
  • Social Work Research and Evidence-based Practice
  • Welfare and Benefit Systems
  • Browse content in Sociology
  • Childhood Studies
  • Community Development
  • Comparative and Historical Sociology
  • Economic Sociology
  • Gender and Sexuality
  • Gerontology and Ageing
  • Health, Illness, and Medicine
  • Marriage and the Family
  • Migration Studies
  • Occupations, Professions, and Work
  • Organizations
  • Population and Demography
  • Race and Ethnicity
  • Social Theory
  • Social Movements and Social Change
  • Social Research and Statistics
  • Social Stratification, Inequality, and Mobility
  • Sociology of Religion
  • Sociology of Education
  • Sport and Leisure
  • Urban and Rural Studies
  • Browse content in Warfare and Defence
  • Defence Strategy, Planning, and Research
  • Land Forces and Warfare
  • Military Administration
  • Military Life and Institutions
  • Naval Forces and Warfare
  • Other Warfare and Defence Issues
  • Peace Studies and Conflict Resolution
  • Weapons and Equipment

The Oxford Handbook of Cognitive Psychology

  • < Previous chapter
  • Next chapter >

48 Problem Solving

Department of Psychological and Brain Sciences, University of California, Santa Barbara

  • Published: 03 June 2013
  • Cite Icon Cite
  • Permissions Icon Permissions

Problem solving refers to cognitive processing directed at achieving a goal when the problem solver does not initially know a solution method. A problem exists when someone has a goal but does not know how to achieve it. Problems can be classified as routine or nonroutine, and as well defined or ill defined. The major cognitive processes in problem solving are representing, planning, executing, and monitoring. The major kinds of knowledge required for problem solving are facts, concepts, procedures, strategies, and beliefs. Classic theoretical approaches to the study of problem solving are associationism, Gestalt, and information processing. Current issues and suggested future issues include decision making, intelligence and creativity, teaching of thinking skills, expert problem solving, analogical reasoning, mathematical and scientific thinking, everyday thinking, and the cognitive neuroscience of problem solving. Common themes concern the domain specificity of problem solving and a focus on problem solving in authentic contexts.

The study of problem solving begins with defining problem solving, problem, and problem types. This introduction to problem solving is rounded out with an examination of cognitive processes in problem solving, the role of knowledge in problem solving, and historical approaches to the study of problem solving.

Definition of Problem Solving

Problem solving refers to cognitive processing directed at achieving a goal for which the problem solver does not initially know a solution method. This definition consists of four major elements (Mayer, 1992 ; Mayer & Wittrock, 2006 ):

Cognitive —Problem solving occurs within the problem solver’s cognitive system and can only be inferred indirectly from the problem solver’s behavior (including biological changes, introspections, and actions during problem solving). Process —Problem solving involves mental computations in which some operation is applied to a mental representation, sometimes resulting in the creation of a new mental representation. Directed —Problem solving is aimed at achieving a goal. Personal —Problem solving depends on the existing knowledge of the problem solver so that what is a problem for one problem solver may not be a problem for someone who already knows a solution method.

The definition is broad enough to include a wide array of cognitive activities such as deciding which apartment to rent, figuring out how to use a cell phone interface, playing a game of chess, making a medical diagnosis, finding the answer to an arithmetic word problem, or writing a chapter for a handbook. Problem solving is pervasive in human life and is crucial for human survival. Although this chapter focuses on problem solving in humans, problem solving also occurs in nonhuman animals and in intelligent machines.

How is problem solving related to other forms of high-level cognition processing, such as thinking and reasoning? Thinking refers to cognitive processing in individuals but includes both directed thinking (which corresponds to the definition of problem solving) and undirected thinking such as daydreaming (which does not correspond to the definition of problem solving). Thus, problem solving is a type of thinking (i.e., directed thinking).

Reasoning refers to problem solving within specific classes of problems, such as deductive reasoning or inductive reasoning. In deductive reasoning, the reasoner is given premises and must derive a conclusion by applying the rules of logic. For example, given that “A is greater than B” and “B is greater than C,” a reasoner can conclude that “A is greater than C.” In inductive reasoning, the reasoner is given (or has experienced) a collection of examples or instances and must infer a rule. For example, given that X, C, and V are in the “yes” group and x, c, and v are in the “no” group, the reasoning may conclude that B is in “yes” group because it is in uppercase format. Thus, reasoning is a type of problem solving.

Definition of Problem

A problem occurs when someone has a goal but does not know to achieve it. This definition is consistent with how the Gestalt psychologist Karl Duncker ( 1945 , p. 1) defined a problem in his classic monograph, On Problem Solving : “A problem arises when a living creature has a goal but does not know how this goal is to be reached.” However, today researchers recognize that the definition should be extended to include problem solving by intelligent machines. This definition can be clarified using an information processing approach by noting that a problem occurs when a situation is in the given state, the problem solver wants the situation to be in the goal state, and there is no obvious way to move from the given state to the goal state (Newell & Simon, 1972 ). Accordingly, the three main elements in describing a problem are the given state (i.e., the current state of the situation), the goal state (i.e., the desired state of the situation), and the set of allowable operators (i.e., the actions the problem solver is allowed to take). The definition of “problem” is broad enough to include the situation confronting a physician who wishes to make a diagnosis on the basis of preliminary tests and a patient examination, as well as a beginning physics student trying to solve a complex physics problem.

Types of Problems

It is customary in the problem-solving literature to make a distinction between routine and nonroutine problems. Routine problems are problems that are so familiar to the problem solver that the problem solver knows a solution method. For example, for most adults, “What is 365 divided by 12?” is a routine problem because they already know the procedure for long division. Nonroutine problems are so unfamiliar to the problem solver that the problem solver does not know a solution method. For example, figuring out the best way to set up a funding campaign for a nonprofit charity is a nonroutine problem for most volunteers. Technically, routine problems do not meet the definition of problem because the problem solver has a goal but knows how to achieve it. Much research on problem solving has focused on routine problems, although most interesting problems in life are nonroutine.

Another customary distinction is between well-defined and ill-defined problems. Well-defined problems have a clearly specified given state, goal state, and legal operators. Examples include arithmetic computation problems or games such as checkers or tic-tac-toe. Ill-defined problems have a poorly specified given state, goal state, or legal operators, or a combination of poorly defined features. Examples include solving the problem of global warming or finding a life partner. Although, ill-defined problems are more challenging, much research in problem solving has focused on well-defined problems.

Cognitive Processes in Problem Solving

The process of problem solving can be broken down into two main phases: problem representation , in which the problem solver builds a mental representation of the problem situation, and problem solution , in which the problem solver works to produce a solution. The major subprocess in problem representation is representing , which involves building a situation model —that is, a mental representation of the situation described in the problem. The major subprocesses in problem solution are planning , which involves devising a plan for how to solve the problem; executing , which involves carrying out the plan; and monitoring , which involves evaluating and adjusting one’s problem solving.

For example, given an arithmetic word problem such as “Alice has three marbles. Sarah has two more marbles than Alice. How many marbles does Sarah have?” the process of representing involves building a situation model in which Alice has a set of marbles, there is set of marbles for the difference between the two girls, and Sarah has a set of marbles that consists of Alice’s marbles and the difference set. In the planning process, the problem solver sets a goal of adding 3 and 2. In the executing process, the problem solver carries out the computation, yielding an answer of 5. In the monitoring process, the problem solver looks over what was done and concludes that 5 is a reasonable answer. In most complex problem-solving episodes, the four cognitive processes may not occur in linear order, but rather may interact with one another. Although some research focuses mainly on the execution process, problem solvers may tend to have more difficulty with the processes of representing, planning, and monitoring.

Knowledge for Problem Solving

An important theme in problem-solving research is that problem-solving proficiency on any task depends on the learner’s knowledge (Anderson et al., 2001 ; Mayer, 1992 ). Five kinds of knowledge are as follows:

Facts —factual knowledge about the characteristics of elements in the world, such as “Sacramento is the capital of California” Concepts —conceptual knowledge, including categories, schemas, or models, such as knowing the difference between plants and animals or knowing how a battery works Procedures —procedural knowledge of step-by-step processes, such as how to carry out long-division computations Strategies —strategic knowledge of general methods such as breaking a problem into parts or thinking of a related problem Beliefs —attitudinal knowledge about how one’s cognitive processing works such as thinking, “I’m good at this”

Although some research focuses mainly on the role of facts and procedures in problem solving, complex problem solving also depends on the problem solver’s concepts, strategies, and beliefs (Mayer, 1992 ).

Historical Approaches to Problem Solving

Psychological research on problem solving began in the early 1900s, as an outgrowth of mental philosophy (Humphrey, 1963 ; Mandler & Mandler, 1964 ). Throughout the 20th century four theoretical approaches developed: early conceptions, associationism, Gestalt psychology, and information processing.

Early Conceptions

The start of psychology as a science can be set at 1879—the year Wilhelm Wundt opened the first world’s psychology laboratory in Leipzig, Germany, and sought to train the world’s first cohort of experimental psychologists. Instead of relying solely on philosophical speculations about how the human mind works, Wundt sought to apply the methods of experimental science to issues addressed in mental philosophy. His theoretical approach became structuralism —the analysis of consciousness into its basic elements.

Wundt’s main contribution to the study of problem solving, however, was to call for its banishment. According to Wundt, complex cognitive processing was too complicated to be studied by experimental methods, so “nothing can be discovered in such experiments” (Wundt, 1911/1973 ). Despite his admonishments, however, a group of his former students began studying thinking mainly in Wurzburg, Germany. Using the method of introspection, subjects were asked to describe their thought process as they solved word association problems, such as finding the superordinate of “newspaper” (e.g., an answer is “publication”). Although the Wurzburg group—as they came to be called—did not produce a new theoretical approach, they found empirical evidence that challenged some of the key assumptions of mental philosophy. For example, Aristotle had proclaimed that all thinking involves mental imagery, but the Wurzburg group was able to find empirical evidence for imageless thought .

Associationism

The first major theoretical approach to take hold in the scientific study of problem solving was associationism —the idea that the cognitive representations in the mind consist of ideas and links between them and that cognitive processing in the mind involves following a chain of associations from one idea to the next (Mandler & Mandler, 1964 ; Mayer, 1992 ). For example, in a classic study, E. L. Thorndike ( 1911 ) placed a hungry cat in what he called a puzzle box—a wooden crate in which pulling a loop of string that hung from overhead would open a trap door to allow the cat to escape to a bowl of food outside the crate. Thorndike placed the cat in the puzzle box once a day for several weeks. On the first day, the cat engaged in many extraneous behaviors such as pouncing against the wall, pushing its paws through the slats, and meowing, but on successive days the number of extraneous behaviors tended to decrease. Overall, the time required to get out of the puzzle box decreased over the course of the experiment, indicating the cat was learning how to escape.

Thorndike’s explanation for how the cat learned to solve the puzzle box problem is based on an associationist view: The cat begins with a habit family hierarchy —a set of potential responses (e.g., pouncing, thrusting, meowing, etc.) all associated with the same stimulus (i.e., being hungry and confined) and ordered in terms of strength of association. When placed in the puzzle box, the cat executes its strongest response (e.g., perhaps pouncing against the wall), but when it fails, the strength of the association is weakened, and so on for each unsuccessful action. Eventually, the cat gets down to what was initially a weak response—waving its paw in the air—but when that response leads to accidentally pulling the string and getting out, it is strengthened. Over the course of many trials, the ineffective responses become weak and the successful response becomes strong. Thorndike refers to this process as the law of effect : Responses that lead to dissatisfaction become less associated with the situation and responses that lead to satisfaction become more associated with the situation. According to Thorndike’s associationist view, solving a problem is simply a matter of trial and error and accidental success. A major challenge to assocationist theory concerns the nature of transfer—that is, where does a problem solver find a creative solution that has never been performed before? Associationist conceptions of cognition can be seen in current research, including neural networks, connectionist models, and parallel distributed processing models (Rogers & McClelland, 2004 ).

Gestalt Psychology

The Gestalt approach to problem solving developed in the 1930s and 1940s as a counterbalance to the associationist approach. According to the Gestalt approach, cognitive representations consist of coherent structures (rather than individual associations) and the cognitive process of problem solving involves building a coherent structure (rather than strengthening and weakening of associations). For example, in a classic study, Kohler ( 1925 ) placed a hungry ape in a play yard that contained several empty shipping crates and a banana attached overhead but out of reach. Based on observing the ape in this situation, Kohler noted that the ape did not randomly try responses until one worked—as suggested by Thorndike’s associationist view. Instead, the ape stood under the banana, looked up at it, looked at the crates, and then in a flash of insight stacked the crates under the bananas as a ladder, and walked up the steps in order to reach the banana.

According to Kohler, the ape experienced a sudden visual reorganization in which the elements in the situation fit together in a way to solve the problem; that is, the crates could become a ladder that reduces the distance to the banana. Kohler referred to the underlying mechanism as insight —literally seeing into the structure of the situation. A major challenge of Gestalt theory is its lack of precision; for example, naming a process (i.e., insight) is not the same as explaining how it works. Gestalt conceptions can be seen in modern research on mental models and schemas (Gentner & Stevens, 1983 ).

Information Processing

The information processing approach to problem solving developed in the 1960s and 1970s and was based on the influence of the computer metaphor—the idea that humans are processors of information (Mayer, 2009 ). According to the information processing approach, problem solving involves a series of mental computations—each of which consists of applying a process to a mental representation (such as comparing two elements to determine whether they differ).

In their classic book, Human Problem Solving , Newell and Simon ( 1972 ) proposed that problem solving involved a problem space and search heuristics . A problem space is a mental representation of the initial state of the problem, the goal state of the problem, and all possible intervening states (based on applying allowable operators). Search heuristics are strategies for moving through the problem space from the given to the goal state. Newell and Simon focused on means-ends analysis , in which the problem solver continually sets goals and finds moves to accomplish goals.

Newell and Simon used computer simulation as a research method to test their conception of human problem solving. First, they asked human problem solvers to think aloud as they solved various problems such as logic problems, chess, and cryptarithmetic problems. Then, based on an information processing analysis, Newell and Simon created computer programs that solved these problems. In comparing the solution behavior of humans and computers, they found high similarity, suggesting that the computer programs were solving problems using the same thought processes as humans.

An important advantage of the information processing approach is that problem solving can be described with great clarity—as a computer program. An important limitation of the information processing approach is that it is most useful for describing problem solving for well-defined problems rather than ill-defined problems. The information processing conception of cognition lives on as a keystone of today’s cognitive science (Mayer, 2009 ).

Classic Issues in Problem Solving

Three classic issues in research on problem solving concern the nature of transfer (suggested by the associationist approach), the nature of insight (suggested by the Gestalt approach), and the role of problem-solving heuristics (suggested by the information processing approach).

Transfer refers to the effects of prior learning on new learning (or new problem solving). Positive transfer occurs when learning A helps someone learn B. Negative transfer occurs when learning A hinders someone from learning B. Neutral transfer occurs when learning A has no effect on learning B. Positive transfer is a central goal of education, but research shows that people often do not transfer what they learned to solving problems in new contexts (Mayer, 1992 ; Singley & Anderson, 1989 ).

Three conceptions of the mechanisms underlying transfer are specific transfer , general transfer , and specific transfer of general principles . Specific transfer refers to the idea that learning A will help someone learn B only if A and B have specific elements in common. For example, learning Spanish may help someone learn Latin because some of the vocabulary words are similar and the verb conjugation rules are similar. General transfer refers to the idea that learning A can help someone learn B even they have nothing specifically in common but A helps improve the learner’s mind in general. For example, learning Latin may help people learn “proper habits of mind” so they are better able to learn completely unrelated subjects as well. Specific transfer of general principles is the idea that learning A will help someone learn B if the same general principle or solution method is required for both even if the specific elements are different.

In a classic study, Thorndike and Woodworth ( 1901 ) found that students who learned Latin did not subsequently learn bookkeeping any better than students who had not learned Latin. They interpreted this finding as evidence for specific transfer—learning A did not transfer to learning B because A and B did not have specific elements in common. Modern research on problem-solving transfer continues to show that people often do not demonstrate general transfer (Mayer, 1992 ). However, it is possible to teach people a general strategy for solving a problem, so that when they see a new problem in a different context they are able to apply the strategy to the new problem (Judd, 1908 ; Mayer, 2008 )—so there is also research support for the idea of specific transfer of general principles.

Insight refers to a change in a problem solver’s mind from not knowing how to solve a problem to knowing how to solve it (Mayer, 1995 ; Metcalfe & Wiebe, 1987 ). In short, where does the idea for a creative solution come from? A central goal of problem-solving research is to determine the mechanisms underlying insight.

The search for insight has led to five major (but not mutually exclusive) explanatory mechanisms—insight as completing a schema, insight as suddenly reorganizing visual information, insight as reformulation of a problem, insight as removing mental blocks, and insight as finding a problem analog (Mayer, 1995 ). Completing a schema is exemplified in a study by Selz (Fridja & de Groot, 1982 ), in which people were asked to think aloud as they solved word association problems such as “What is the superordinate for newspaper?” To solve the problem, people sometimes thought of a coordinate, such as “magazine,” and then searched for a superordinate category that subsumed both terms, such as “publication.” According to Selz, finding a solution involved building a schema that consisted of a superordinate and two subordinate categories.

Reorganizing visual information is reflected in Kohler’s ( 1925 ) study described in a previous section in which a hungry ape figured out how to stack boxes as a ladder to reach a banana hanging above. According to Kohler, the ape looked around the yard and found the solution in a flash of insight by mentally seeing how the parts could be rearranged to accomplish the goal.

Reformulating a problem is reflected in a classic study by Duncker ( 1945 ) in which people are asked to think aloud as they solve the tumor problem—how can you destroy a tumor in a patient without destroying surrounding healthy tissue by using rays that at sufficient intensity will destroy any tissue in their path? In analyzing the thinking-aloud protocols—that is, transcripts of what the problem solvers said—Duncker concluded that people reformulated the goal in various ways (e.g., avoid contact with healthy tissue, immunize healthy tissue, have ray be weak in healthy tissue) until they hit upon a productive formulation that led to the solution (i.e., concentrating many weak rays on the tumor).

Removing mental blocks is reflected in classic studies by Duncker ( 1945 ) in which solving a problem involved thinking of a novel use for an object, and by Luchins ( 1942 ) in which solving a problem involved not using a procedure that had worked well on previous problems. Finding a problem analog is reflected in classic research by Wertheimer ( 1959 ) in which learning to find the area of a parallelogram is supported by the insight that one could cut off the triangle on one side and place it on the other side to form a rectangle—so a parallelogram is really a rectangle in disguise. The search for insight along each of these five lines continues in current problem-solving research.

Heuristics are problem-solving strategies, that is, general approaches to how to solve problems. Newell and Simon ( 1972 ) suggested three general problem-solving heuristics for moving from a given state to a goal state: random trial and error , hill climbing , and means-ends analysis . Random trial and error involves randomly selecting a legal move and applying it to create a new problem state, and repeating that process until the goal state is reached. Random trial and error may work for simple problems but is not efficient for complex ones. Hill climbing involves selecting the legal move that moves the problem solver closer to the goal state. Hill climbing will not work for problems in which the problem solver must take a move that temporarily moves away from the goal as is required in many problems.

Means-ends analysis involves creating goals and seeking moves that can accomplish the goal. If a goal cannot be directly accomplished, a subgoal is created to remove one or more obstacles. Newell and Simon ( 1972 ) successfully used means-ends analysis as the search heuristic in a computer program aimed at general problem solving, that is, solving a diverse collection of problems. However, people may also use specific heuristics that are designed to work for specific problem-solving situations (Gigerenzer, Todd, & ABC Research Group, 1999 ; Kahneman & Tversky, 1984 ).

Current and Future Issues in Problem Solving

Eight current issues in problem solving involve decision making, intelligence and creativity, teaching of thinking skills, expert problem solving, analogical reasoning, mathematical and scientific problem solving, everyday thinking, and the cognitive neuroscience of problem solving.

Decision Making

Decision making refers to the cognitive processing involved in choosing between two or more alternatives (Baron, 2000 ; Markman & Medin, 2002 ). For example, a decision-making task may involve choosing between getting $240 for sure or having a 25% change of getting $1000. According to economic theories such as expected value theory, people should chose the second option, which is worth $250 (i.e., .25 x $1000) rather than the first option, which is worth $240 (1.00 x $240), but psychological research shows that most people prefer the first option (Kahneman & Tversky, 1984 ).

Research on decision making has generated three classes of theories (Markman & Medin, 2002 ): descriptive theories, such as prospect theory (Kahneman & Tversky), which are based on the ideas that people prefer to overweight the cost of a loss and tend to overestimate small probabilities; heuristic theories, which are based on the idea that people use a collection of short-cut strategies such as the availability heuristic (Gigerenzer et al., 1999 ; Kahneman & Tversky, 2000 ); and constructive theories, such as mental accounting (Kahneman & Tversky, 2000 ), in which people build a narrative to justify their choices to themselves. Future research is needed to examine decision making in more realistic settings.

Intelligence and Creativity

Although researchers do not have complete consensus on the definition of intelligence (Sternberg, 1990 ), it is reasonable to view intelligence as the ability to learn or adapt to new situations. Fluid intelligence refers to the potential to solve problems without any relevant knowledge, whereas crystallized intelligence refers to the potential to solve problems based on relevant prior knowledge (Sternberg & Gregorenko, 2003 ). As people gain more experience in a field, their problem-solving performance depends more on crystallized intelligence (i.e., domain knowledge) than on fluid intelligence (i.e., general ability) (Sternberg & Gregorenko, 2003 ). The ability to monitor and manage one’s cognitive processing during problem solving—which can be called metacognition —is an important aspect of intelligence (Sternberg, 1990 ). Research is needed to pinpoint the knowledge that is needed to support intelligent performance on problem-solving tasks.

Creativity refers to the ability to generate ideas that are original (i.e., other people do not think of the same idea) and functional (i.e., the idea works; Sternberg, 1999 ). Creativity is often measured using tests of divergent thinking —that is, generating as many solutions as possible for a problem (Guilford, 1967 ). For example, the uses test asks people to list as many uses as they can think of for a brick. Creativity is different from intelligence, and it is at the heart of creative problem solving—generating a novel solution to a problem that the problem solver has never seen before. An important research question concerns whether creative problem solving depends on specific knowledge or creativity ability in general.

Teaching of Thinking Skills

How can people learn to be better problem solvers? Mayer ( 2008 ) proposes four questions concerning teaching of thinking skills:

What to teach —Successful programs attempt to teach small component skills (such as how to generate and evaluate hypotheses) rather than improve the mind as a single monolithic skill (Covington, Crutchfield, Davies, & Olton, 1974 ). How to teach —Successful programs focus on modeling the process of problem solving rather than solely reinforcing the product of problem solving (Bloom & Broder, 1950 ). Where to teach —Successful programs teach problem-solving skills within the specific context they will be used rather than within a general course on how to solve problems (Nickerson, 1999 ). When to teach —Successful programs teaching higher order skills early rather than waiting until lower order skills are completely mastered (Tharp & Gallimore, 1988 ).

Overall, research on teaching of thinking skills points to the domain specificity of problem solving; that is, successful problem solving depends on the problem solver having domain knowledge that is relevant to the problem-solving task.

Expert Problem Solving

Research on expertise is concerned with differences between how experts and novices solve problems (Ericsson, Feltovich, & Hoffman, 2006 ). Expertise can be defined in terms of time (e.g., 10 years of concentrated experience in a field), performance (e.g., earning a perfect score on an assessment), or recognition (e.g., receiving a Nobel Prize or becoming Grand Master in chess). For example, in classic research conducted in the 1940s, de Groot ( 1965 ) found that chess experts did not have better general memory than chess novices, but they did have better domain-specific memory for the arrangement of chess pieces on the board. Chase and Simon ( 1973 ) replicated this result in a better controlled experiment. An explanation is that experts have developed schemas that allow them to chunk collections of pieces into a single configuration.

In another landmark study, Larkin et al. ( 1980 ) compared how experts (e.g., physics professors) and novices (e.g., first-year physics students) solved textbook physics problems about motion. Experts tended to work forward from the given information to the goal, whereas novices tended to work backward from the goal to the givens using a means-ends analysis strategy. Experts tended to store their knowledge in an integrated way, whereas novices tended to store their knowledge in isolated fragments. In another study, Chi, Feltovich, and Glaser ( 1981 ) found that experts tended to focus on the underlying physics concepts (such as conservation of energy), whereas novices tended to focus on the surface features of the problem (such as inclined planes or springs). Overall, research on expertise is useful in pinpointing what experts know that is different from what novices know. An important theme is that experts rely on domain-specific knowledge rather than solely general cognitive ability.

Analogical Reasoning

Analogical reasoning occurs when people solve one problem by using their knowledge about another problem (Holyoak, 2005 ). For example, suppose a problem solver learns how to solve a problem in one context using one solution method and then is given a problem in another context that requires the same solution method. In this case, the problem solver must recognize that the new problem has structural similarity to the old problem (i.e., it may be solved by the same method), even though they do not have surface similarity (i.e., the cover stories are different). Three steps in analogical reasoning are recognizing —seeing that a new problem is similar to a previously solved problem; abstracting —finding the general method used to solve the old problem; and mapping —using that general method to solve the new problem.

Research on analogical reasoning shows that people often do not recognize that a new problem can be solved by the same method as a previously solved problem (Holyoak, 2005 ). However, research also shows that successful analogical transfer to a new problem is more likely when the problem solver has experience with two old problems that have the same underlying structural features (i.e., they are solved by the same principle) but different surface features (i.e., they have different cover stories) (Holyoak, 2005 ). This finding is consistent with the idea of specific transfer of general principles as described in the section on “Transfer.”

Mathematical and Scientific Problem Solving

Research on mathematical problem solving suggests that five kinds of knowledge are needed to solve arithmetic word problems (Mayer, 2008 ):

Factual knowledge —knowledge about the characteristics of problem elements, such as knowing that there are 100 cents in a dollar Schematic knowledge —knowledge of problem types, such as being able to recognize time-rate-distance problems Strategic knowledge —knowledge of general methods, such as how to break a problem into parts Procedural knowledge —knowledge of processes, such as how to carry our arithmetic operations Attitudinal knowledge —beliefs about one’s mathematical problem-solving ability, such as thinking, “I am good at this”

People generally possess adequate procedural knowledge but may have difficulty in solving mathematics problems because they lack factual, schematic, strategic, or attitudinal knowledge (Mayer, 2008 ). Research is needed to pinpoint the role of domain knowledge in mathematical problem solving.

Research on scientific problem solving shows that people harbor misconceptions, such as believing that a force is needed to keep an object in motion (McCloskey, 1983 ). Learning to solve science problems involves conceptual change, in which the problem solver comes to recognize that previous conceptions are wrong (Mayer, 2008 ). Students can be taught to engage in scientific reasoning such as hypothesis testing through direct instruction in how to control for variables (Chen & Klahr, 1999 ). A central theme of research on scientific problem solving concerns the role of domain knowledge.

Everyday Thinking

Everyday thinking refers to problem solving in the context of one’s life outside of school. For example, children who are street vendors tend to use different procedures for solving arithmetic problems when they are working on the streets than when they are in school (Nunes, Schlieman, & Carraher, 1993 ). This line of research highlights the role of situated cognition —the idea that thinking always is shaped by the physical and social context in which it occurs (Robbins & Aydede, 2009 ). Research is needed to determine how people solve problems in authentic contexts.

Cognitive Neuroscience of Problem Solving

The cognitive neuroscience of problem solving is concerned with the brain activity that occurs during problem solving. For example, using fMRI brain imaging methodology, Goel ( 2005 ) found that people used the language areas of the brain to solve logical reasoning problems presented in sentences (e.g., “All dogs are pets…”) and used the spatial areas of the brain to solve logical reasoning problems presented in abstract letters (e.g., “All D are P…”). Cognitive neuroscience holds the potential to make unique contributions to the study of problem solving.

Problem solving has always been a topic at the fringe of cognitive psychology—too complicated to study intensively but too important to completely ignore. Problem solving—especially in realistic environments—is messy in comparison to studying elementary processes in cognition. The field remains fragmented in the sense that topics such as decision making, reasoning, intelligence, expertise, mathematical problem solving, everyday thinking, and the like are considered to be separate topics, each with its own separate literature. Yet some recurring themes are the role of domain-specific knowledge in problem solving and the advantages of studying problem solving in authentic contexts.

Future Directions

Some important issues for future research include the three classic issues examined in this chapter—the nature of problem-solving transfer (i.e., How are people able to use what they know about previous problem solving to help them in new problem solving?), the nature of insight (e.g., What is the mechanism by which a creative solution is constructed?), and heuristics (e.g., What are some teachable strategies for problem solving?). In addition, future research in problem solving should continue to pinpoint the role of domain-specific knowledge in problem solving, the nature of cognitive ability in problem solving, how to help people develop proficiency in solving problems, and how to provide aids for problem solving.

Anderson L. W. , Krathwohl D. R. , Airasian P. W. , Cruikshank K. A. , Mayer R. E. , Pintrich P. R. , Raths, J., & Wittrock M. C. ( 2001 ). A taxonomy for learning, teaching, and assessing: A revision of Bloom’s taxonomy of educational objectives. New York : Longman.

Baron J. ( 2000 ). Thinking and deciding (3rd ed.). New York : Cambridge University Press.

Google Scholar

Google Preview

Bloom B. S. , & Broder B. J. ( 1950 ). Problem-solving processes of college students: An exploratory investigation. Chicago : University of Chicago Press.

Chase W. G. , & Simon H. A. ( 1973 ). Perception in chess.   Cognitive Psychology, 4, 55–81.

Chen Z. , & Klahr D. ( 1999 ). All other things being equal: Acquisition and transfer of the control of variable strategy . Child Development, 70, 1098–1120.

Chi M. T. H. , Feltovich P. J. , & Glaser R. ( 1981 ). Categorization and representation of physics problems by experts and novices. Cognitive Science, 5, 121–152.

Covington M. V. , Crutchfield R. S. , Davies L. B. , & Olton R. M. ( 1974 ). The productive thinking program. Columbus, OH : Merrill.

de Groot A. D. ( 1965 ). Thought and choice in chess. The Hague, The Netherlands : Mouton.

Duncker K. ( 1945 ). On problem solving.   Psychological Monographs, 58 (3) (Whole No. 270).

Ericsson K. A. , Feltovich P. J. , & Hoffman R. R. (Eds.). ( 2006 ). The Cambridge handbook of expertise and expert performance. New York : Cambridge University Press.

Fridja N. H. , & de Groot A. D. ( 1982 ). Otto Selz: His contribution to psychology. The Hague, The Netherlands : Mouton.

Gentner D. , & Stevens A. L. (Eds.). ( 1983 ). Mental models. Hillsdale, NJ : Erlbaum.

Gigerenzer G. , Todd P. M. , & ABC Research Group (Eds.). ( 1999 ). Simple heuristics that make us smart. Oxford, England : Oxford University Press.

Goel V. ( 2005 ). Cognitive neuroscience of deductive reasoning. In K. J. Holyoak & R. G. Morrison (Eds.), The Cambridge handbook of thinking and reasoning (pp. 475–492). New York : Cambridge University Press.

Guilford J. P. ( 1967 ). The nature of human intelligence. New York : McGraw-Hill.

Holyoak K. J. ( 2005 ). Analogy. In K. J. Holyoak & R. G. Morrison (Eds.), The Cambridge handbook of thinking and reasoning (pp. 117–142). New York : Cambridge University Press.

Humphrey G. ( 1963 ). Thinking: An introduction to experimental psychology. New York : Wiley.

Judd C. H. ( 1908 ). The relation of special training and general intelligence. Educational Review, 36, 28–42.

Kahneman D. , & Tversky A. ( 1984 ). Choices, values, and frames. American Psychologist, 39, 341–350.

Kahneman D. , & Tversky A. (Eds.). ( 2000 ). Choices, values, and frames. New York : Cambridge University Press.

Kohler W. ( 1925 ). The mentality of apes. New York : Liveright.

Larkin J. H. , McDermott J. , Simon D. P. , & Simon H. A. ( 1980 ). Expert and novice performance in solving physics problems. Science, 208, 1335–1342.

Luchins A. ( 1942 ). Mechanization in problem solving.   Psychological Monographs, 54 (6) (Whole No. 248).

Mandler J. M. , & Mandler G. ( 1964 ). Thinking from associationism to Gestalt. New York : Wiley.

Markman A. B. , & Medin D. L. ( 2002 ). Decision making. In D. Medin (Ed.), Stevens’ handbook of experimental psychology, Vol. 2. Memory and cognitive processes (2nd ed., pp. 413–466). New York : Wiley.

Mayer R. E. ( 1992 ). Thinking, problem solving, cognition (2nd ed). New York : Freeman.

Mayer R. E. ( 1995 ). The search for insight: Grappling with Gestalt psychology’s unanswered questions. In R. J. Sternberg & J. E. Davidson (Eds.), The nature of insight (pp. 3–32). Cambridge, MA : MIT Press.

Mayer R. E. ( 2008 ). Learning and instruction. Upper Saddle River, NJ : Merrill Prentice Hall.

Mayer R. E. ( 2009 ). Information processing. In T. L. Good (Ed.), 21st century education: A reference handbook (pp. 168–174). Thousand Oaks, CA : Sage.

Mayer R. E. , & Wittrock M. C. ( 2006 ). Problem solving. In P. A. Alexander & P. H. Winne (Eds.), Handbook of educational psychology (2nd ed., pp. 287–304). Mahwah, NJ : Erlbaum.

McCloskey M. ( 1983 ). Intuitive physics.   Scientific American, 248 (4), 122–130.

Metcalfe J. , & Wiebe D. ( 1987 ). Intuition in insight and non-insight problem solving. Memory and Cognition, 15, 238–246.

Newell A. , & Simon H. A. ( 1972 ). Human problem solving. Englewood Cliffs, NJ : Prentice-Hall.

Nickerson R. S. ( 1999 ). Enhancing creativity. In R. J. Sternberg (Ed.), Handbook of creativity (pp. 392–430). New York : Cambridge University Press.

Nunes T. , Schliemann A. D. , & Carraher D. W , ( 1993 ). Street mathematics and school mathematics. Cambridge, England : Cambridge University Press.

Robbins P. , & Aydede M. (Eds.). ( 2009 ). The Cambridge handbook of situated cognition. New York : Cambridge University Press.

Rogers T. T. , & McClelland J. L. ( 2004 ). Semantic cognition: A parallel distributed processing approach. Cambridge, MA : MIT Press.

Singley M. K. , & Anderson J. R. ( 1989 ). The transfer of cognitive skill. Cambridge, MA : Harvard University Press.

Sternberg R. J. ( 1990 ). Metaphors of mind: Conceptions of the nature of intelligence. New York : Cambridge University Press.

Sternberg R. J. ( 1999 ). Handbook of creativity. New York : Cambridge University Press.

Sternberg R. J. , & Gregorenko E. L. (Eds.). ( 2003 ). The psychology of abilities, competencies, and expertise. New York : Cambridge University Press.

Tharp R. G. , & Gallimore R. ( 1988 ). Rousing minds to life: Teaching, learning, and schooling in social context. New York : Cambridge University Press.

Thorndike E. L. ( 1911 ). Animal intelligence. New York: Hafner.

Thorndike E. L. , & Woodworth R. S. ( 1901 ). The influence of improvement in one mental function upon the efficiency of other functions. Psychological Review, 8, 247–261.

Wertheimer M. ( 1959 ). Productive thinking. New York : Harper and Collins.

Wundt W. ( 1973 ). An introduction to experimental psychology. New York : Arno Press. (Original work published in 1911).

Further Reading

Baron, J. ( 2008 ). Thinking and deciding (4th ed). New York: Cambridge University Press.

Duncker, K. ( 1945 ). On problem solving. Psychological Monographs , 58(3) (Whole No. 270).

Holyoak, K. J. , & Morrison, R. G. ( 2005 ). The Cambridge handbook of thinking and reasoning . New York: Cambridge University Press.

Mayer, R. E. , & Wittrock, M. C. ( 2006 ). Problem solving. In P. A. Alexander & P. H. Winne (Eds.), Handbook of educational psychology (2nd ed., pp. 287–304). Mahwah, NJ: Erlbaum.

Sternberg, R. J. , & Ben-Zeev, T. ( 2001 ). Complex cognition: The psychology of human thought . New York: Oxford University Press.

Weisberg, R. W. ( 2006 ). Creativity . New York: Wiley.

  • About Oxford Academic
  • Publish journals with us
  • University press partners
  • What we publish
  • New features  
  • Open access
  • Institutional account management
  • Rights and permissions
  • Get help with access
  • Accessibility
  • Advertising
  • Media enquiries
  • Oxford University Press
  • Oxford Languages
  • University of Oxford

Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide

  • Copyright © 2024 Oxford University Press
  • Cookie settings
  • Cookie policy
  • Privacy policy
  • Legal notice

This Feature Is Available To Subscribers Only

Sign In or Create an Account

This PDF is available to Subscribers Only

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Root out friction in every digital experience, super-charge conversion rates, and optimize digital self-service

Uncover insights from any interaction, deliver AI-powered agent coaching, and reduce cost to serve

Increase revenue and loyalty with real-time insights and recommendations delivered to teams on the ground

Know how your people feel and empower managers to improve employee engagement, productivity, and retention

Take action in the moments that matter most along the employee journey and drive bottom line growth

Whatever they’re are saying, wherever they’re saying it, know exactly what’s going on with your people

Get faster, richer insights with qual and quant tools that make powerful market research available to everyone

Run concept tests, pricing studies, prototyping + more with fast, powerful studies designed by UX research experts

Track your brand performance 24/7 and act quickly to respond to opportunities and challenges in your market

Explore the platform powering Experience Management

  • Free Account
  • For Digital
  • For Customer Care
  • For Human Resources
  • For Researchers
  • Financial Services
  • All Industries

Popular Use Cases

  • Customer Experience
  • Employee Experience
  • Net Promoter Score
  • Voice of Customer
  • Customer Success Hub
  • Product Documentation
  • Training & Certification
  • XM Institute
  • Popular Resources
  • Customer Stories
  • Artificial Intelligence
  • Market Research
  • Partnerships
  • Marketplace

The annual gathering of the experience leaders at the world’s iconic brands building breakthrough business results, live in Salt Lake City.

  • English/AU & NZ
  • Español/Europa
  • Español/América Latina
  • Português Brasileiro
  • REQUEST DEMO

Academic Experience

How to identify and resolve research problems

Updated July 12, 2023

In this article, we’re going to take you through one of the most pertinent parts of conducting research: a research problem (also known as a research problem statement).

When trying to formulate a good research statement, and understand how to solve it for complex projects, it can be difficult to know where to start.

Not only are there multiple perspectives (from stakeholders to project marketers who want answers), you have to consider the particular context of the research topic: is it timely, is it relevant and most importantly of all, is it valuable?

In other words: are you looking at a research worthy problem?

The fact is, a well-defined, precise, and goal-centric research problem will keep your researchers, stakeholders, and business-focused and your results actionable.

And when it works well, it's a powerful tool to identify practical solutions that can drive change and secure buy-in from your workforce.

Free eBook: The ultimate guide to market research

What is a research problem?

In social research methodology and behavioral sciences , a research problem establishes the direction of research, often relating to a specific topic or opportunity for discussion.

For example: climate change and sustainability, analyzing moral dilemmas or wage disparity amongst classes could all be areas that the research problem focuses on.

As well as outlining the topic and/or opportunity, a research problem will explain:

  • why the area/issue needs to be addressed,
  • why the area/issue is of importance,
  • the parameters of the research study
  • the research objective
  • the reporting framework for the results and
  • what the overall benefit of doing so will provide (whether to society as a whole or other researchers and projects).

Having identified the main topic or opportunity for discussion, you can then narrow it down into one or several specific questions that can be scrutinized and answered through the research process.

What are research questions?

Generating research questions underpinning your study usually starts with problems that require further research and understanding while fulfilling the objectives of the study.

A good problem statement begins by asking deeper questions to gain insights about a specific topic.

For example, using the problems above, our questions could be:

"How will climate change policies influence sustainability standards across specific geographies?"

"What measures can be taken to address wage disparity without increasing inflation?"

Developing a research worthy problem is the first step - and one of the most important - in any kind of research.

It’s also a task that will come up again and again because any business research process is cyclical. New questions arise as you iterate and progress through discovering, refining, and improving your products and processes. A research question can also be referred to as a "problem statement".

Note: good research supports multiple perspectives through empirical data. It’s focused on key concepts rather than a broad area, providing readily actionable insight and areas for further research.

Research question or research problem?

As we've highlighted, the terms “research question” and “research problem” are often used interchangeably, becoming a vague or broad proposition for many.

The term "problem statement" is far more representative, but finds little use among academics.

Instead, some researchers think in terms of a single research problem and several research questions that arise from it.

As mentioned above, the questions are lines of inquiry to explore in trying to solve the overarching research problem.

Ultimately, this provides a more meaningful understanding of a topic area.

It may be useful to think of questions and problems as coming out of your business data – that’s the O-data (otherwise known as operational data) like sales figures and website metrics.

What's an example of a research problem?

Your overall research problem could be: "How do we improve sales across EMEA and reduce lost deals?"

This research problem then has a subset of questions, such as:

"Why do sales peak at certain times of the day?"

"Why are customers abandoning their online carts at the point of sale?"

As well as helping you to solve business problems, research problems (and associated questions) help you to think critically about topics and/or issues (business or otherwise). You can also use your old research to aid future research -- a good example is laying the foundation for comparative trend reports or a complex research project.

(Also, if you want to see the bigger picture when it comes to research problems, why not check out our ultimate guide to market research? In it you'll find out: what effective market research looks like, the use cases for market research, carrying out a research study, and how to examine and action research findings).

The research process: why are research problems important?

A research problem has two essential roles in setting your research project on a course for success.

1. They set the scope

The research problem defines what problem or opportunity you’re looking at and what your research goals are. It stops you from getting side-tracked or allowing the scope of research to creep off-course .

Without a strong research problem or problem statement, your team could end up spending resources unnecessarily, or coming up with results that aren’t actionable - or worse, harmful to your business - because the field of study is too broad.

2. They tie your work to business goals and actions

To formulate a research problem in terms of business decisions means you always have clarity on what’s needed to make those decisions. You can show the effects of what you’ve studied using real outcomes.

Then, by focusing your research problem statement on a series of questions tied to business objectives, you can reduce the risk of the research being unactionable or inaccurate.

It's also worth examining research or other scholarly literature (you’ll find plenty of similar, pertinent research online) to see how others have explored specific topics and noting implications that could have for your research.

Four steps to defining your research problem

Defining a research problem

Image credit: http://myfreeschooltanzania.blogspot.com/2014/11/defining-research-problem.html

1. Observe and identify

Businesses today have so much data that it can be difficult to know which problems to address first. Researchers also have business stakeholders who come to them with problems they would like to have explored. A researcher’s job is to sift through these inputs and discover exactly what higher-level trends and key concepts are worth investing in.

This often means asking questions and doing some initial investigation to decide which avenues to pursue. This could mean gathering interdisciplinary perspectives identifying additional expertise and contextual information.

Sometimes, a small-scale preliminary study might be worth doing to help get a more comprehensive understanding of the business context and needs, and to make sure your research problem addresses the most critical questions.

This could take the form of qualitative research using a few in-depth interviews , an environmental scan, or reviewing relevant literature.

The sales manager of a sportswear company has a problem: sales of trail running shoes are down year-on-year and she isn’t sure why. She approaches the company’s research team for input and they begin asking questions within the company and reviewing their knowledge of the wider market.

2. Review the key factors involved

As a marketing researcher, you must work closely with your team of researchers to define and test the influencing factors and the wider context involved in your study. These might include demographic and economic trends or the business environment affecting the question at hand. This is referred to as a relational research problem.

To do this, you have to identify the factors that will affect the research and begin formulating different methods to control them.

You also need to consider the relationships between factors and the degree of control you have over them. For example, you may be able to control the loading speed of your website but you can’t control the fluctuations of the stock market.

Doing this will help you determine whether the findings of your project will produce enough information to be worth the cost.

You need to determine:

  • which factors affect the solution to the research proposal.
  • which ones can be controlled and used for the purposes of the company, and to what extent.
  • the functional relationships between the factors.
  • which ones are critical to the solution of the research study.

The research team at the running shoe company is hard at work. They explore the factors involved and the context of why YoY sales are down for trail shoes, including things like what the company’s competitors are doing, what the weather has been like – affecting outdoor exercise – and the relative spend on marketing for the brand from year to year.

The final factor is within the company’s control, although the first two are not. They check the figures and determine marketing spend has a significant impact on the company.

3. Prioritize

Once you and your research team have a few observations, prioritize them based on their business impact and importance. It may be that you can answer more than one question with a single study, but don’t do it at the risk of losing focus on your overarching research problem.

Questions to ask:

  • Who? Who are the people with the problem? Are they end-users, stakeholders, teams within your business? Have you validated the information to see what the scale of the problem is?
  • What? What is its nature and what is the supporting evidence?
  • Why? What is the business case for solving the problem? How will it help?
  • Where? How does the problem manifest and where is it observed?

To help you understand all dimensions, you might want to consider focus groups or preliminary interviews with external (including consumers and existing customers) and internal (salespeople, managers, and other stakeholders) parties to provide what is sometimes much-needed insight into a particular set of questions or problems.

After observing and investigating, the running shoe researchers come up with a few candidate questions, including:

  • What is the relationship between US average temperatures and sales of our products year on year?
  • At present, how does our customer base rank Competitor X and Competitor Y’s trail running shoe compared to our brand?
  • What is the relationship between marketing spend and trail shoe product sales over the last 12 months?

They opt for the final question, because the variables involved are fully within the company’s control, and based on their initial research and stakeholder input, seem the most likely cause of the dive in sales. The research question is specific enough to keep the work on course towards an actionable result, but it allows for a few different avenues to be explored, such as the different budget allocations of offline and online marketing and the kinds of messaging used.

Get feedback from the key teams within your business to make sure everyone is aligned and has the same understanding of the research problem and questions, and the actions you hope to take based on the results. Now is also a good time to demonstrate the ROI of your research and lay out its potential benefits to your stakeholders.

Different groups may have different goals and perspectives on the issue. This step is vital for getting the necessary buy-in and pushing the project forward.

The running shoe company researchers now have everything they need to begin. They call a meeting with the sales manager and consult with the product team, marketing team, and C-suite to make sure everyone is aligned and has bought into the direction of the research topic. They identify and agree that the likely course of action will be a rethink of how marketing resources are allocated, and potentially testing out some new channels and messaging strategies .

Can you explore a broad area and is it practical to do so?

A broader research problem or report can be a great way to bring attention to prevalent issues, societal or otherwise, but are often undertaken by those with the resources to do so.

Take a typical government cybersecurity breach survey, for example. Most of these reports raise awareness of cybercrime, from the day-to-day threats businesses face to what security measures some organizations are taking. What these reports don't do, however, is provide actionable advice - mostly because every organization is different.

The point here is that while some researchers will explore a very complex issue in detail, others will provide only a snapshot to maintain interest and encourage further investigation. The "value" of the data is wholly determined by the recipients of it - and what information you choose to include.

To summarize, it can be practical to undertake a broader research problem, certainly, but it may not be possible to cover everything or provide the detail your audience needs. Likewise, a more systematic investigation of an issue or topic will be more valuable, but you may also find that you cover far less ground.

It's important to think about your research objectives and expected findings before going ahead.

Ensuring your research project is a success

A complex research project can be made significantly easier with clear research objectives, a descriptive research problem, and a central focus. All of which we've outlined in this article.

If you have previous research, even better. Use it as a benchmark

Remember: what separates a good research paper from an average one is actually very simple: valuable, empirical data that explores a prevalent societal or business issue and provides actionable insights.

And we can help.

Sophisticated research made simple with Qualtrics

Trusted by the world's best brands, our platform enables researchers from academic to corporate to tackle the hardest challenges and deliver the results that matter.

Our CoreXM platform supports the methods that define superior research and delivers insights in real-time. It's easy to use (thanks to drag-and-drop functionality) and requires no coding, meaning you'll be capturing data and gleaning insights in no time.

Satisfaction New York vs Massachusetts

It also excels in flexibility; you can track consumer behavior across segments , benchmark your company versus competitors , carry out complex academic research, and do much more, all from one system.

It's one platform with endless applications, so no matter your research problem, we've got the tools to help you solve it. And if you don't have a team of research experts in-house, our market research team has the practical knowledge and tools to help design the surveys and find the respondents you need.

Of course, you may want to know where to begin with your own market research . If you're struggling, make sure to download our ultimate guide using the link below.

It's got everything you need and there’s always information in our research methods knowledge base.

Scott Smith

Scott Smith, Ph.D. is a contributor to the Qualtrics blog.

Related Articles

April 1, 2023

How to write great survey questions (with examples)

February 8, 2023

Smoothing the transition from school to work with work-based learning

December 6, 2022

How customer experience helps bring Open Universities Australia’s brand promise to life

August 18, 2022

School safety, learning gaps top of mind for parents this back-to-school season

August 9, 2022

3 things that will improve your teachers’ school experience

August 2, 2022

Why a sense of belonging at school matters for K-12 students

July 14, 2022

Improve the student experience with simplified course evaluations

March 17, 2022

Understanding what’s important to college students

Stay up to date with the latest xm thought leadership, tips and news., request demo.

Ready to learn more about Qualtrics?

  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Best Family Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Guided Meditations
  • Verywell Mind Insights
  • 2024 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

Overview of the Problem-Solving Mental Process

Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

meaning of problem solving in research

Rachel Goldman, PhD FTOS, is a licensed psychologist, clinical assistant professor, speaker, wellness expert specializing in eating behaviors, stress management, and health behavior change.

meaning of problem solving in research

  • Identify the Problem
  • Define the Problem
  • Form a Strategy
  • Organize Information
  • Allocate Resources
  • Monitor Progress
  • Evaluate the Results

Frequently Asked Questions

Problem-solving is a mental process that involves discovering, analyzing, and solving problems. The ultimate goal of problem-solving is to overcome obstacles and find a solution that best resolves the issue.

The best strategy for solving a problem depends largely on the unique situation. In some cases, people are better off learning everything they can about the issue and then using factual knowledge to come up with a solution. In other instances, creativity and insight are the best options.

It is not necessary to follow problem-solving steps sequentially, It is common to skip steps or even go back through steps multiple times until the desired solution is reached.

In order to correctly solve a problem, it is often important to follow a series of steps. Researchers sometimes refer to this as the problem-solving cycle. While this cycle is portrayed sequentially, people rarely follow a rigid series of steps to find a solution.

The following steps include developing strategies and organizing knowledge.

1. Identifying the Problem

While it may seem like an obvious step, identifying the problem is not always as simple as it sounds. In some cases, people might mistakenly identify the wrong source of a problem, which will make attempts to solve it inefficient or even useless.

Some strategies that you might use to figure out the source of a problem include :

  • Asking questions about the problem
  • Breaking the problem down into smaller pieces
  • Looking at the problem from different perspectives
  • Conducting research to figure out what relationships exist between different variables

2. Defining the Problem

After the problem has been identified, it is important to fully define the problem so that it can be solved. You can define a problem by operationally defining each aspect of the problem and setting goals for what aspects of the problem you will address

At this point, you should focus on figuring out which aspects of the problems are facts and which are opinions. State the problem clearly and identify the scope of the solution.

3. Forming a Strategy

After the problem has been identified, it is time to start brainstorming potential solutions. This step usually involves generating as many ideas as possible without judging their quality. Once several possibilities have been generated, they can be evaluated and narrowed down.

The next step is to develop a strategy to solve the problem. The approach used will vary depending upon the situation and the individual's unique preferences. Common problem-solving strategies include heuristics and algorithms.

  • Heuristics are mental shortcuts that are often based on solutions that have worked in the past. They can work well if the problem is similar to something you have encountered before and are often the best choice if you need a fast solution.
  • Algorithms are step-by-step strategies that are guaranteed to produce a correct result. While this approach is great for accuracy, it can also consume time and resources.

Heuristics are often best used when time is of the essence, while algorithms are a better choice when a decision needs to be as accurate as possible.

4. Organizing Information

Before coming up with a solution, you need to first organize the available information. What do you know about the problem? What do you not know? The more information that is available the better prepared you will be to come up with an accurate solution.

When approaching a problem, it is important to make sure that you have all the data you need. Making a decision without adequate information can lead to biased or inaccurate results.

5. Allocating Resources

Of course, we don't always have unlimited money, time, and other resources to solve a problem. Before you begin to solve a problem, you need to determine how high priority it is.

If it is an important problem, it is probably worth allocating more resources to solving it. If, however, it is a fairly unimportant problem, then you do not want to spend too much of your available resources on coming up with a solution.

At this stage, it is important to consider all of the factors that might affect the problem at hand. This includes looking at the available resources, deadlines that need to be met, and any possible risks involved in each solution. After careful evaluation, a decision can be made about which solution to pursue.

6. Monitoring Progress

After selecting a problem-solving strategy, it is time to put the plan into action and see if it works. This step might involve trying out different solutions to see which one is the most effective.

It is also important to monitor the situation after implementing a solution to ensure that the problem has been solved and that no new problems have arisen as a result of the proposed solution.

Effective problem-solvers tend to monitor their progress as they work towards a solution. If they are not making good progress toward reaching their goal, they will reevaluate their approach or look for new strategies .

7. Evaluating the Results

After a solution has been reached, it is important to evaluate the results to determine if it is the best possible solution to the problem. This evaluation might be immediate, such as checking the results of a math problem to ensure the answer is correct, or it can be delayed, such as evaluating the success of a therapy program after several months of treatment.

Once a problem has been solved, it is important to take some time to reflect on the process that was used and evaluate the results. This will help you to improve your problem-solving skills and become more efficient at solving future problems.

A Word From Verywell​

It is important to remember that there are many different problem-solving processes with different steps, and this is just one example. Problem-solving in real-world situations requires a great deal of resourcefulness, flexibility, resilience, and continuous interaction with the environment.

Get Advice From The Verywell Mind Podcast

Hosted by therapist Amy Morin, LCSW, this episode of The Verywell Mind Podcast shares how you can stop dwelling in a negative mindset.

Follow Now : Apple Podcasts / Spotify / Google Podcasts

You can become a better problem solving by:

  • Practicing brainstorming and coming up with multiple potential solutions to problems
  • Being open-minded and considering all possible options before making a decision
  • Breaking down problems into smaller, more manageable pieces
  • Asking for help when needed
  • Researching different problem-solving techniques and trying out new ones
  • Learning from mistakes and using them as opportunities to grow

It's important to communicate openly and honestly with your partner about what's going on. Try to see things from their perspective as well as your own. Work together to find a resolution that works for both of you. Be willing to compromise and accept that there may not be a perfect solution.

Take breaks if things are getting too heated, and come back to the problem when you feel calm and collected. Don't try to fix every problem on your own—consider asking a therapist or counselor for help and insight.

If you've tried everything and there doesn't seem to be a way to fix the problem, you may have to learn to accept it. This can be difficult, but try to focus on the positive aspects of your life and remember that every situation is temporary. Don't dwell on what's going wrong—instead, think about what's going right. Find support by talking to friends or family. Seek professional help if you're having trouble coping.

Davidson JE, Sternberg RJ, editors.  The Psychology of Problem Solving .  Cambridge University Press; 2003. doi:10.1017/CBO9780511615771

Sarathy V. Real world problem-solving .  Front Hum Neurosci . 2018;12:261. Published 2018 Jun 26. doi:10.3389/fnhum.2018.00261

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Research process
  • How to Define a Research Problem | Ideas & Examples

How to Define a Research Problem | Ideas & Examples

Published on 8 November 2022 by Shona McCombes and Tegan George.

A research problem is a specific issue or gap in existing knowledge that you aim to address in your research. You may choose to look for practical problems aimed at contributing to change, or theoretical problems aimed at expanding knowledge.

Some research will do both of these things, but usually the research problem focuses on one or the other. The type of research problem you choose depends on your broad topic of interest and the type of research you think will fit best.

This article helps you identify and refine a research problem. When writing your research proposal or introduction , formulate it as a problem statement and/or research questions .

Table of contents

Why is the research problem important, step 1: identify a broad problem area, step 2: learn more about the problem, frequently asked questions about research problems.

Having an interesting topic isn’t a strong enough basis for academic research. Without a well-defined research problem, you are likely to end up with an unfocused and unmanageable project.

You might end up repeating what other people have already said, trying to say too much, or doing research without a clear purpose and justification. You need a clear problem in order to do research that contributes new and relevant insights.

Whether you’re planning your thesis , starting a research paper , or writing a research proposal , the research problem is the first step towards knowing exactly what you’ll do and why.

Prevent plagiarism, run a free check.

As you read about your topic, look for under-explored aspects or areas of concern, conflict, or controversy. Your goal is to find a gap that your research project can fill.

Practical research problems

If you are doing practical research, you can identify a problem by reading reports, following up on previous research, or talking to people who work in the relevant field or organisation. You might look for:

  • Issues with performance or efficiency
  • Processes that could be improved
  • Areas of concern among practitioners
  • Difficulties faced by specific groups of people

Examples of practical research problems

Voter turnout in New England has been decreasing, in contrast to the rest of the country.

The HR department of a local chain of restaurants has a high staff turnover rate.

A non-profit organisation faces a funding gap that means some of its programs will have to be cut.

Theoretical research problems

If you are doing theoretical research, you can identify a research problem by reading existing research, theory, and debates on your topic to find a gap in what is currently known about it. You might look for:

  • A phenomenon or context that has not been closely studied
  • A contradiction between two or more perspectives
  • A situation or relationship that is not well understood
  • A troubling question that has yet to be resolved

Examples of theoretical research problems

The effects of long-term Vitamin D deficiency on cardiovascular health are not well understood.

The relationship between gender, race, and income inequality has yet to be closely studied in the context of the millennial gig economy.

Historians of Scottish nationalism disagree about the role of the British Empire in the development of Scotland’s national identity.

Next, you have to find out what is already known about the problem, and pinpoint the exact aspect that your research will address.

Context and background

  • Who does the problem affect?
  • Is it a newly-discovered problem, or a well-established one?
  • What research has already been done?
  • What, if any, solutions have been proposed?
  • What are the current debates about the problem? What is missing from these debates?

Specificity and relevance

  • What particular place, time, and/or group of people will you focus on?
  • What aspects will you not be able to tackle?
  • What will the consequences be if the problem is not resolved?

Example of a specific research problem

A local non-profit organisation focused on alleviating food insecurity has always fundraised from its existing support base. It lacks understanding of how best to target potential new donors. To be able to continue its work, the organisation requires research into more effective fundraising strategies.

Once you have narrowed down your research problem, the next step is to formulate a problem statement , as well as your research questions or hypotheses .

Once you’ve decided on your research objectives , you need to explain them in your paper, at the end of your problem statement.

Keep your research objectives clear and concise, and use appropriate verbs to accurately convey the work that you will carry out for each one.

I will compare …

The way you present your research problem in your introduction varies depending on the nature of your research paper . A research paper that presents a sustained argument will usually encapsulate this argument in a thesis statement .

A research paper designed to present the results of empirical research tends to present a research question that it seeks to answer. It may also include a hypothesis – a prediction that will be confirmed or disproved by your research.

Research objectives describe what you intend your research project to accomplish.

They summarise the approach and purpose of the project and help to focus your research.

Your objectives should appear in the introduction of your research paper , at the end of your problem statement .

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

McCombes, S. & George, T. (2022, November 08). How to Define a Research Problem | Ideas & Examples. Scribbr. Retrieved 27 May 2024, from https://www.scribbr.co.uk/the-research-process/define-research-problem/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, dissertation & thesis outline | example & free templates, example theoretical framework of a dissertation or thesis, how to write a strong hypothesis | guide & examples.

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals

Problem solving articles from across Nature Portfolio

Problem solving is the mental process of analyzing a situation, learning what options are available, and then choosing the alternative that will result in the desired outcome or some other selected goal.

Latest Research and Reviews

meaning of problem solving in research

No strong support for a Dunning–Kruger effect in creativity: analyses of self-assessment in absolute and relative terms

  • Izabela Lebuda
  • Gabriela Hofer
  • Mathias Benedek

meaning of problem solving in research

Forming cognitive maps for abstract spaces: the roles of the human hippocampus and orbitofrontal cortex

An fMRI study on a navigation task in multidimensional abstract spaces showed that the human hippocampus, entorhinal cortex, and orbitofrontal cortex collaborate in learning abstract space structures.

  • Ruiwang Huang

meaning of problem solving in research

States of epistemic curiosity interfere with memory for incidental scholastic facts

  • Nicole E. Keller
  • Carola Salvi
  • Joseph E. Dunsmoor

meaning of problem solving in research

Neurocognitive responses to spatial design behaviors and tools among interior architecture students: a pilot study

  • Yaren Şekerci
  • Mehmet Uğur Kahraman
  • Sevgi Şengül Ayan

meaning of problem solving in research

Association of executive function with suicidality based on resting-state functional connectivity in young adults with subthreshold depression

  • Je-Yeon Yun
  • Soo-Hee Choi
  • Joon Hwan Jang

meaning of problem solving in research

Spatially embedded recurrent neural networks reveal widespread links between structural and functional neuroscience findings

A fundamental question in neuroscience is what are the constraints that shape the structural and functional organization of the brain. By bringing biological cost constraints into the optimization process of artificial neural networks, Achterberg, Akarca and colleagues uncover the joint principle underlying a large set of neuroscientific findings.

  • Jascha Achterberg
  • Danyal Akarca
  • Duncan E. Astle

Advertisement

News and Comment

Reliable social switch.

The macaque homologue of the dorsal medial prefrontal cortex tracks the reliability of social information and determines whether this information is used to guide choices during decision making.

  • Jake Rogers

meaning of problem solving in research

DishBrain plays Pong and promises more

An in vitro biological system of cultured brain cells has learned to play Pong. This feat opens up an avenue towards the convergence of biological and machine intelligence.

  • Joshua Goldwag

meaning of problem solving in research

Tinkering with tools leads to more success

  • Teresa Schubert

meaning of problem solving in research

Parallel processing of alternative approaches

Neuronal activity in the secondary motor cortex of mice engaged in a foraging task simultaneously represents multiple alternative decision-making strategies.

  • Katherine Whalley

Teaching of 21st century skills needs to be informed by psychological research

The technological advancements and globalization of the 21st century require a broad set of skills beyond traditional subjects such as mathematics, reading, and science. Research in psychological science should inform best practice and evidence-based recommendations for teaching these skills.

  • Samuel Greiff
  • Francesca Borgonovi

Simulated brain solves problems

Quick links.

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

meaning of problem solving in research

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Elsevier - PMC COVID-19 Collection

Logo of pheelsevier

Problem solving through values: A challenge for thinking and capability development

  • • This paper introduces the 4W framework of consistent problem solving through values.
  • • The 4W suggests when, how and why the explication of values helps to solve a problem.
  • • The 4W is significant to teach students to cope with problems having crucial consequences.
  • • The paper considers challenges using such framework of thinking in different fields of education.

The paper aims to introduce the conceptual framework of problem solving through values. The framework consists of problem analysis, selection of value(s) as a background for the solution, the search for alternative ways of the solution, and the rationale for the solution. This framework reveals when, how, and why is important to think about values when solving problems. A consistent process fosters cohesive and creative value-based thinking during problem solving rather than teaching specific values. Therefore, the framework discloses the possibility for enabling the development of value-grounded problem solving capability.The application of this framework highlights the importance of responsibility for the chosen values that are the basis for the alternatives which determine actions. The 4W framework is meaningful for the people’s lives and their professional work. It is particularly important in the process of future professionals’ education. Critical issues concerning the development of problem solving through values are discussed when considering and examining options for the implementation of the 4W framework in educational institutions.

1. Introduction

The core competencies necessary for future professionals include problem solving based on complexity and collaborative approaches ( OECD, 2018 ). Currently, the emphasis is put on the development of technical, technological skills as well as system thinking and other cognitive abilities (e.g., Barber, 2018 ; Blanco, Schirmbeck, & Costa, 2018 ). Hence, education prepares learners with high qualifications yet lacking in moral values ( Nadda, 2017 ). Educational researchers (e.g., Barnett, 2007 ; Harland & Pickering, 2010 ) stress that such skills and abilities ( the how? ), as well as knowledge ( the what? ), are insufficient to educate a person for society and the world. The philosophy of education underlines both the epistemological and ontological dimensions of learning. Barnett (2007) points out that the ontological dimension has to be above the epistemological one. The ontological dimension encompasses the issues related to values that education should foster ( Harland & Pickering, 2010 ). In addition, values are closely related to the enablement of learners in educational environments ( Jucevičienė et al., 2010 ). For these reasons, ‘ the why ?’ based on values is required in the learning process. The question arises as to what values and how it makes sense to educate them. Value-based education seeks to address these issues and concentrates on values transfer due to their integration into the curriculum. Yazdani and Akbarilakeh (2017) discussed that value-based education could only convey factual knowledge of values and ethics. However, such education does not guarantee the internalization of values. Nevertheless, value-based education indicates problem solving as one of the possibilities to develop values.

Values guide and affect personal behavior encompassing the ethical aspects of solutions ( Roccas, Sagiv, & Navon, 2017 ; Schwartz, 1992 , 2012 ; Verplanken & Holland, 2002 ). Therefore, they represent the essential foundation for solving a problem. Growing evidence indicates the creative potential of values ( Dollinger, Burke, & Gump, 2007 ; Kasof, Chen, Himsel, & Greenberger, 2007 ; Lebedeva et al., 2019) and emphasizes their significance for problem solving. Meanwhile, research in problem solving pays little attention to values. Most of the problem solving models (e.g., Newell & Simon, 1972 ; Jonassen, 1997 ) utilize a rational economic approach. Principally, the research on the mechanisms of problem solving have been conducted under laboratory conditions performing simple tasks ( Csapó & Funke, 2017 ). Moreover, some of the decision-making models share the same steps as problem solving (c.f., Donovan, Guss, & Naslund, 2015 ). This explains why these terms are sometimes used interchangeably ( Huitt, 1992 ). Indeed, decision-making is a part of problem solving, which emerges while choosing between alternatives. Yet, values, moral, and ethical issues are more common in decision-making research (e.g., Keeney, 1994 ; Verplanken & Holland, 2002 ; Hall & Davis, 2007 ; Sheehan & Schmidt, 2015 ). Though, research by Shepherd, Patzelt, and Baron (2013) , Baron, Zhao, and Miao (2015) has affirmed that contemporary business decision makers rather often leave aside ethical issues and moral values. Thus, ‘ethical disengagement fallacy’ ( Sternberg, 2017, p.7 ) occurs as people think that ethics is more relevant to others. In the face of such disengagement, ethical issues lose their prominence.

The analysis of the literature revealed a wide field of problem solving research presenting a range of more theoretical insights rather empirical evidence. Despite this, to date, a comprehensive model that reveals how to solve problems emphasizing thinking about values is lacking. This underlines the relevance of the chosen topic, i.e. a challenge for thinking and for the development of capabilities addressing problems through values. To address this gap, the following issues need to be investigated: When, how, and why a problem solver should take into account values during problem solving? What challenges may occur for using such framework of thinking in different fields of education? Aiming this, the authors of the paper substantiated the conceptual framework of problem solving grounded in consistent thinking about values. The substantiation consists of several parts. First, different approaches to solving problems were examined. Second, searching to reveal the possibilities of values integration into problem solving, value-based approaches significant for problem solving were critically analyzed. Third, drawing on the effect of values when solving a problem and their creative potential, the authors of this paper claim that the identification of values and their choice for a solution need to be specified in the process of problem solving. As a synthesis of conclusions coming from the literature review and conceptual extensions regarding values, the authors of the paper created the coherent framework of problem solving through values (so called 4W).

The novelty of the 4W framework is exposed by several contributions. First, the clear design of overall problem solving process with attention on integrated thinking about values is used. Unlike in most models of problem solving, the first stage encompass the identification of a problem, an analysis of a context and the perspectives that influence the whole process, i.e. ‘What?’. The stage ‘What is the basis for a solution?’ focus on values identification and their choice. The stage ‘Ways how?’ encourages to create alternatives considering values. The stage ‘Why?’ represent justification of a chosen alternative according particular issues. Above-mentioned stages including specific steps are not found in any other model of problem solving. Second, even two key stages nurture thinking about values. The specificity of the 4W framework allows expecting its successful practical application. It may help to solve a problem more informed revealing when and how the explication of values helps to reach the desired value-based solution. The particular significance is that the 4W framework can be used to develop capabilities to solve problems through values. The challenges to use the 4W framework in education are discussed.

2. Methodology

To create the 4W framework, the integrative literature review was chosen. According to Snyder (2019) , this review is ‘useful when the purpose of the review is not to cover all articles ever published on the topic but rather to combine perspectives to create new theoretical models’ (p.334). The scope of this review focused on research disclosing problem solving process that paid attention on values. The following databases were used for relevant information search: EBSCO/Hostdatabases (ERIC, Education Source), Emerald, Google Scholar. The first step of this search was conducted using integrated keywords problem solving model , problem solving process, problem solving steps . These keywords were combined with the Boolean operator AND with the second keywords values approach, value-based . The inclusion criteria were used to identify research that: presents theoretical backgrounds and/or empirical evidences; performed within the last 5 years; within an educational context; availability of full text. The sources appropriate for this review was very limited in scope (N = 2).

We implemented the second search only with the same set of the integrated keywords. The inclusion criteria were the same except the date; this criterion was extended up to 10 years. This search presented 85 different sources. After reading the summaries, introductions and conclusions of the sources found, the sources that do not explicitly provide the process/models/steps of problem solving for teaching/learning purposes and eliminates values were excluded. Aiming to see a more accurate picture of the chosen topic, we selected secondary sources from these initial sources.

Several important issues were determined as well. First, most researchers ground their studies on existing problem solving models, however, not based on values. Second, some of them conducted empirical research in order to identify the process of studies participants’ problem solving. Therefore, we included sources without date restrictions trying to identify the principal sources that reveal the process/models/steps of problem solving. Third, decision-making is a part of problem solving process. Accordingly, we performed a search with the additional keywords decision-making AND values approach, value-based decision-making . We used such inclusion criteria: presents theoretical background and/or empirical evidence; no date restriction; within an educational context; availability of full text. These all searches resulted in a total of 16 (9 theoretical and 7 empirical) sources for inclusion. They were the main sources that contributed most fruitfully for the background. We used other sources for the justification the wholeness of the 4W framework. We present the principal results of the conducted literature review in the part ‘The background of the conceptual framework’.

3. The background of the conceptual framework

3.1. different approaches of how to solve a problem.

Researchers from different fields focus on problem solving. As a result, there still seems to be a lack of a conventional definition of problem solving. Regardless of some differences, there is an agreement that problem solving is a cognitive process and one of the meaningful and significant ways of learning ( Funke, 2014 ; Jonassen, 1997 ; Mayer & Wittrock, 2006 ). Differing in approaches to solving a problem, researchers ( Collins, Sibthorp, & Gookin, 2016 ; Jonassen, 1997 ; Litzinger et al., 2010 ; Mayer & Wittrock, 2006 ; O’Loughlin & McFadzean, 1999 ; ect.) present a variety of models that differ in the number of distinct steps. What is similar in these models is that they stress the procedural process of problem solving with the focus on the development of specific skills and competences.

For the sake of this paper, we have focused on those models of problem solving that clarify the process and draw attention to values, specifically, on Huitt (1992) , Basadur, Ellspermann, and Evans (1994) , and Morton (1997) . Integrating the creative approach to problem solving, Newell and Simon (1972) presents six phases: phase 1 - identifying the problem, phase 2 - understanding the problem, phase 3 - posing solutions, phase 4 - choosing solutions, phase 5 - implementing solutions, and phase 6 - final analysis. The weakness of this model is that these phases do not necessarily follow one another, and several can coincide. However, coping with simultaneously occurring phases could be a challenge, especially if these are, for instance, phases five and six. Certainly, it may be necessary to return to the previous phases for further analysis. According to Basadur et al. (1994) , problem solving consists of problem generation, problem formulation, problem solving, and solution implementation stages. Huitt (1992) distinguishes four stages in problem solving: input, processing, output, and review. Both Huitt (1992) and Basadur et al. (1994) four-stage models emphasize a sequential process of problem solving. Thus, problem solving includes four stages that are used in education. For example, problem-based learning employs such stages as introduction of the problem, problem analysis and learning issues, discovery and reporting, solution presentation and evaluation ( Chua, Tan, & Liu, 2016 ). Even PISA 2012 framework for problem solving composes four stages: exploring and understanding, representing and formulating, planning and executing, monitoring and reflecting ( OECD, 2013 ).

Drawing on various approaches to problem solving, it is possible to notice that although each stage is named differently, it is possible to reveal some general steps. These steps reflect the essential idea of problem solving: a search for the solution from the initial state to the desirable state. The identification of a problem and its contextual elements, the generation of alternatives to a problem solution, the evaluation of these alternatives according to specific criteria, the choice of an alternative for a solution, the implementation, and monitoring of the solution are the main proceeding steps in problem solving.

3.2. Value-based approaches relevant for problem solving

Huitt (1992) suggests that important values are among the criteria for the evaluation of alternatives and the effectiveness of a chosen solution. Basadur et al. (1994) point out to visible values in the problem formulation. Morton (1997) underlines that interests, investigation, prevention, and values of all types, which may influence the process, inspire every phase of problem solving. However, the aforementioned authors do not go deeper and do not seek to disclose the significance of values for problem solving.

Decision-making research shows more possibilities for problem solving and values integration. Sheehan and Schmidt (2015) model of ethical decision-making includes moral sensitivity, moral judgment, moral motivation, and moral action where values are presented in the component of moral motivation. Another useful approach concerned with values comes from decision-making in management. It is the concept of Value-Focused Thinking (VFT) proposed by Keeney (1994) . The author argues that the goals often are merely means of achieving results in traditional models of problem solving. Such models frequently do not help to identify logical links between the problem solving goals, values, and alternatives. Thus, according to Keeney (1994) , the decision-making starts with values as they are stated in the goals and objectives of decision-makers. VFT emphasizes the core values of decision-makers that are in a specific context as well as how to find a way to achieve them by using means-ends analysis. The weakness of VFT is its restriction to this means-ends analysis. According to Shin, Jonassen, and McGee (2003) , in searching for a solution, such analysis is weak as the problem solver focuses simply on removing inadequacies between the current state and the goal state. The strengths of this approach underline that values are included in the decision before alternatives are created. Besides, values help to find creative and meaningful alternatives and to assess them. Further, they include the forthcoming consequences of the decision. As VFT emphasizes the significant function of values and clarifies the possibilities of their integration into problem solving, we adapt this approach in the current paper.

3.3. The effect of values when solving a problem

In a broader sense, values provide a direction to a person’s life. Whereas the importance of values is relatively stable over time and across situations, Roccas et al. (2017) argue that values differ in their importance to a person. Verplanken and Holland (2002) investigated the relationship between values and choices or behavior. The research revealed that the activation of a value and the centrality of a value to the self, are the essential elements for value-guided behavior. The activation of values could happen in such cases: when values are the primary focus of attention; if the situation or the information a person is confronted with implies values; when the self is activated. The centrality of a particular value is ‘the degree to which an individual has incorporated this value as part of the self’ ( Verplanken & Holland, 2002, p.436 ). Thus, the perceived importance of values and attention to them determine value-guided behavior.

According to Argandoña (2003) , values can change due to external (changing values in the people around, in society, changes in situations, etc.) and internal (internalization by learning) factors affecting the person. The research by Hall and Davis (2007) indicates that the decision-makers’ applied value profile temporarily changed as they analyzed the issue from multiple perspectives and revealed the existence of a broader set of values. The study by Kirkman (2017) reveal that participants noticed the relevance of moral values to situations they encountered in various contexts.

Values are tightly related to personal integrity and identity and guide an individual’s perception, judgment, and behavior ( Halstead, 1996 ; Schwartz, 1992 ). Sheehan and Schmidt (2015) found that values influenced ethical decision-making of accounting study programme students when they uncovered their own values and grounded in them their individual codes of conduct for future jobs. Hence, the effect of values discloses by observing the problem solver’s decision-making. The latter observations could explain the abundance of ethics-laden research in decision-making rather than in problem solving.

Contemporary researchers emphasize the creative potential of values. Dollinger et al. (2007) , Kasof et al. (2007) , Lebedeva, Schwartz, Plucker, & Van De Vijver, 2019 present to some extent similar findings as they all used Schwartz Value Survey (respectively: Schwartz, 1992 ; ( Schwartz, 1994 ), Schwartz, 2012 ). These studies disclosed that such values as self-direction, stimulation and universalism foster creativity. Kasof et al. (2007) focused their research on identified motivation. Stressing that identified motivation is the only fully autonomous type of external motivation, authors define it as ‘the desire to commence an activity as a means to some end that one greatly values’ (p.106). While identified motivation toward specific values (italic in original) fosters the search for outcomes that express those specific values, this research demonstrated that it could also inhibit creative behavior. Thus, inhibition is necessary, especially in the case where reckless creativity could have painful consequences, for example, when an architect creates a beautiful staircase without a handrail. Consequently, creativity needs to be balanced.

Ultimately, values affect human beings’ lives as they express the motivational goals ( Schwartz, 1992 ). These motivational goals are the comprehensive criteria for a person’s choices when solving problems. Whereas some problem solving models only mention values as possible evaluation criteria, but they do not give any significant suggestions when and how the problem solver could think about the values coming to the understanding that his/her values direct the decision how to solve the problem. The authors of this paper claim that the identification of personal values and their choice for a solution need to be specified in the process of problem solving. This position is clearly reflected in humanistic philosophy and psychology ( Maslow, 2011 ; Rogers, 1995 ) that emphasize personal responsibility for discovering personal values through critical questioning, honest self-esteem, self-discovery, and open-mindedness in the constant pursuit of the truth in the path of individual life. However, fundamental (of humankind) and societal values should be taken into account. McLaughlin (1997) argues that a clear boundary between societal and personal values is difficult to set as they are intertwined due to their existence in complex cultural, social, and political contexts at a particular time. A person is related to time and context when choosing values. As a result, a person assumes existing values as implicit knowledge without as much as a consideration. This is particularly evident in the current consumer society.

Moreover, McLaughlin (1997) stresses that if a particular action should be tolerated and legitimated by society, it does not mean that this action is ultimately morally acceptable in all respects. Education has possibilities to reveal this. One such possibility is to turn to the capability approach ( Sen, 1990 ), which emphasizes what people are effectively able to do and to be. Capability, according to Sen (1990) , reflects a person’s freedom to choose between various ways of living, i.e., the focus is on the development of a person’s capability to choose the life he/she has a reason to value. According to Webster (2017) , ‘in order for people to value certain aspects of life, they need to appreciate the reasons and purposes – the whys – for certain valuing’ (italic in original; p.75). As values reflect and foster these whys, education should supplement the development of capability with attention to values ( Saito, 2003 ). In order to attain this possibility, a person has to be aware of and be able to understand two facets of values. Argandoña (2003) defines them as rationality and virtuality . Rationality refers to values as the ideal of conduct and involves the development of a person’s understanding of what values and why he/she should choose them when solving a problem. Virtuality approaches values as virtues and includes learning to enable a person to live according to his/her values. However, according to McLaughlin (1997) , some people may have specific values that are deep or self-evidently essential. These values are based on fundamental beliefs about the nature and purpose of the human being. Other values can be more or less superficial as they are based on giving priority to one or the other. Thus, virtuality highlights the depth of life harmonized to fundamentally rather than superficially laden values. These approaches inform the rationale for the framework of problem solving through values.

4. The 4W framework of problem solving through values

Similar to the above-presented stages of the problem solving processes, the introduced framework by the authors of this paper revisits them (see Fig. 1 ). The framework is titled 4W as its four stages respond to such questions: Analyzing the Problem: W hat ? → Choice of the value(s): W hat is the background for the solution? → Search for the alternative w ays of the solution: How ? → The rationale for problem solution: W hy is this alternative significant ? The stages of this framework cover seven steps that reveal the logical sequence of problem solving through values.

Fig. 1

The 4 W framework: problem solving through values.

Though systematic problem solving models are criticized for being linear and inflexible (e.g., Treffinger & Isaksen, 2005 ), the authors of this paper assume a structural view of the problem solving process due to several reasons. First, the framework enables problem solvers to understand the thorough process of problem solving through values. Second, this framework reveals the depth of each stage and step. Third, problem solving through values encourages tackling problems that have crucial consequences. Only by understanding and mastering the coherence of how problems those require a value-based approach need to be addressed, a problem solver will be able to cope with them in the future. Finally, this framework aims at helping to recognize, to underline personal values, to solve problems through thinking about values, and to take responsibility for choices, even value-based. The feedback supports a direct interrelation between stages. It shapes a dynamic process of problem solving through values.

The first stage of problem solving through values - ‘ The analysis of the problem: What? ’- consists of three steps (see Fig. 1 ). The first step is ‘ Recognizing the problematic situation and naming the problem ’. This step is performed in the following sequence. First, the problem solver should perceive the problematic situation he/she faces in order to understand it. Dostál (2015) argues that the problematic situation has the potential to become the problem necessary to be addressed. Although each problem is limited by its context, not every problematic situation turns into a problem. This is related to the problem solver’s capability and the perception of reality: a person may not ‘see’ the problem if his/her capability to perceive it is not developed ( Dorst, 2006 ; Dostál, 2015 ). Second, after the problem solver recognizes the existence of the problematic situation, the problem solver has to identify the presence or absence of the problem itself, i.e. to name the problem. This is especially important in the case of the ill-structured problems since they cannot be directly visible to the problem solver ( Jonassen, 1997 ). Consequently, this step allows to determine whether the problem solver developed or has acquired the capability to perceive the problematic situation and the problem (naming the problem).

The second step is ‘ Analysing the context of the problem as a reason for its rise ’. At this step, the problem solver aims to analyse the context of the problem. The latter is one of the external issues, and it determines the solution ( Jonassen, 2011 ). However, if more attention is paid to the solution of the problem, it diverts attention from the context ( Fields, 2006 ). The problem solver has to take into account both the conveyed and implied contextual elements in the problematic situation ( Dostál, 2015 ). In other words, the problem solver has to examine it through his/her ‘contextual lenses’ ( Hester & MacG, 2017 , p.208). Thus, during this step the problem solver needs to identify the elements that shape the problem - reasons and circumstances that cause the problem, the factors that can be changed, and stakeholders that are involved in the problematic situation. Whereas the elements of the context mentioned above are within the problematic situation, the problem solver can control many of them. Such control can provide unique ways for a solution.

Although the problem solver tries to predict the undesirable results, some criteria remain underestimated. For that reason, it is necessary to highlight values underlying the various possible goals during the analysis ( Fields, 2006 ). According to Hester and MacG (2017) , values express one of the main features of the context and direct the attention of the problem solver to a given problematic situation. Hence, the problem solver should explore the value-based positions that emerge in the context of the problem.

The analysis of these contextual elements focus not only on a specific problematic situation but also on the problem that has emerged. This requires setting boundaries of attention for an in-depth understanding ( Fields, 2006 ; Hester & MacG, 2017 ). Such understanding influences several actions: (a) the recognition of inappropriate aspects of the problematic situation; (b) the emergence of paths in which identified aspects are expected to change. These actions ensure consistency and safeguard against distractions. Thus, the problem solver can now recognize and identify the factors that influence the problem although they are outside of the problematic situation. However, the problem solver possesses no control over them. With the help of such context analysis, the problem solver constructs a thorough understanding of the problem. Moreover, the problem solver becomes ready to look at the problem from different perspectives.

The third step is ‘ Perspectives emerging in the problem ’. Ims and Zsolnai (2009) argue that problem solving usually contains a ‘problematic search’. Such a search is a pragmatic activity as the problem itself induces it. Thus, the problem solver searches for a superficial solution. As a result, the focus is on control over the problem rather than a deeper understanding of the problem itself. The analysis of the problem, especially including value-based approaches, reveals the necessity to consider the problem from a variety of perspectives. Mitroff (2000) builds on Linstone (1989) ideas and claims that a sound foundation of both naming and solving any problem lays in such perspectives: the technical/scientific, the interpersonal/social, the existential, and the systemic (see Table 1 ).

The main characteristics of four perspectives for problem solving

Whereas all problems have significant aspects of each perspective, disregarding one or another may lead to the wrong way of solving the problem. While analysing all four perspectives is essential, this does not mean that they all are equally important. Therefore, it is necessary to justify why one or another perspective is more relevant and significant in a particular case. Such analysis, according to Linstone (1989) , ‘forces us to distinguish how we are looking from what we are looking at’ (p.312; italic in original). Hence, the problem solver broadens the understanding of various perspectives and develops the capability to see the bigger picture ( Hall & Davis, 2007 ).

The problem solver aims to identify and describe four perspectives that have emerged in the problem during this step. In order to identify perspectives, the problem solver search answers to the following questions. First, regarding the technical/scientific perspective: What technical/scientific reasons are brought out in the problem? How and to what extent do they influence a problem and its context? Second, regarding the interpersonal/social perspective: What is the impact of the problem on stakeholders? How does it influence their attitudes, living conditions, interests, needs? Third, regarding the existential perspective: How does the problem affect human feelings, experiences, perception, and/or discovery of meaning? Fourth, regarding the systemic perspective: What is the effect of the problem on the person → community → society → the world? Based on the analysis of this step, the problem solver obtains a comprehensive picture of the problem. The next stage is to choose the value(s) that will address the problem.

The second stage - ‘ The choice of value(s): What is the background for the solution?’ - includes the fourth and the fifth steps. The fourth step is ‘ The identification of value(s) as a base for the solution ’. During this step, the problem solver should activate his/her value(s) making it (them) explicit. In order to do this, the problem solver proceeds several sub-steps. First, the problem solver reflects taking into account the analysis done in previous steps. He/she raises up questions revealing values that lay in the background of this analysis: What values does this analyzed context allow me to notice? What values do different perspectives of the problem ‘offer’? Such questioning is important as values are deeply hidden ( Verplanken & Holland, 2002 ) and they form a bias, which restricts the development of the capability to see from various points of view ( Hall & Paradice, 2007 ). In the 4W framework, this bias is relatively eliminated due to the analysis of the context and exploration of the perspectives of a problem. As a result, the problem solver discovers distinct value-based positions and gets an opportunity to identify the ‘value uncaptured’ ( Yang, Evans, Vladimirova, & Rana, 2017, p.1796 ) within the problem analyzed. The problem solver observes that some values exist in the context (the second step) and the disclosed perspectives (the third step). Some of the identified values do not affect the current situation as they are not required, or their potential is not exploited. Thus, looking through various value-based lenses, the problem solver can identify and discover a congruence between the opportunities offered by the values in the problem’s context, disclosed perspectives and his/her value(s). Consequently, the problem solver decides what values he/she chooses as a basis for the desired solution. Since problems usually call for a list of values, it is important to find out their order of priority. Thus, the last sub-step requires the problem solver to choose between fundamentally and superficially laden values.

In some cases, the problem solver identifies that a set of values (more than one value) can lead to the desired solution. If a person chooses this multiple value-based position, two options emerge. The first option is concerned with the analysis of each value-based position separately (from the fifth to the seventh step). In the second option, a person has to uncover which of his/her chosen values are fundamentally laden and which are superficially chosen, considering the desired outcome in the current situation. Such clarification could act as a strategy where the path for the desired solution is possible going from superficially chosen value(s) to fundamentally laden one. When a basis for the solution is established, the problem solver formulates the goal for the desired solution.

The fifth step is ‘ The formulation of the goal for the solution ’. Problem solving highlights essential points that reveal the structure of a person’s goals; thus, a goal is the core element of problem solving ( Funke, 2014 ). Meantime, values reflect the motivational content of the goals ( Schwartz, 1992 ). The attention on the chosen value not only activates it, but also motivates the problem solver. The motivation directs the formulation of the goal. In such a way, values explicitly become a basis of the goal for the solution. Thus, this step involves the problem solver in formulating the goal for the solution as the desired outcome.

The way how to take into account value(s) when formulating the goal is the integration of value(s) chosen by the problem solver in the formulation of the goal ( Keeney, 1994 ). For this purpose the conjunction of a context for a solution (it is analyzed during the second step) and a direction of preference (the chosen value reveals it) serves for the formulation of the goal (that represents the desired solution). In other words, a value should be directly included into the formulation of the goal. The goal could lose value, if value is not included into the goal formulation and remains only in the context of the goal. Let’s take the actual example concerning COVID-19 situation. Naturally, many countries governments’ preference represents such value as human life (‘it is important of every individual’s life’). Thus, most likely the particular country government’s goal of solving the COVID situation could be to save the lifes of the country people. The named problem is a complex where the goal of its solution is also complex, although it sounds simple. However, if the goal as desired outcome is formulated without the chosen value, this value remains in the context and its meaning becomes tacit. In the case of above presented example - the goal could be formulated ‘to provide hospitals with the necessary equipment and facilities’. Such goal has the value ‘human’s life’ in the context, but eliminates the complexity of the problem that leads to a partial solution of the problem. Thus, this step from the problem solver requires caution when formulating the goal as the desired outcome. For this reason, maintaining value is very important when formulating the goal’s text. To avoid the loss of values and maintain their proposed direction, is necessary to take into account values again when creating alternatives.

The third stage - ‘ Search for the alternative ways for a solution: How? ’ - encompasses the sixth step, which is called ‘ Creation of value-based alternatives ’. Frequently problem solver invokes a traditional view of problem identification, generation of alternatives, and selection of criteria for evaluating findings. Keeney (1994) ; Ims and Zsolnai (2009) criticize this rational approach as it supports a search for a partial solution where an active search for alternatives is neglected. Moreover, a problematic situation, according to Perkins (2009) , can create the illusion of a fully framed problem with some apparent weighting and some variations of choices. In this case, essential and distinct alternatives to the solution frequently become unnoticeable. Therefore, Perkins (2009) suggest to replace the focus on the attempts to comprehend the problem itself. Thinking through the ‘value lenses’ offers such opportunities. The deep understanding of the problem leads to the search for the alternative ways of a solution.

Thus, the aim of this step is for the problem solver to reveal the possible alternative ways for searching a desired solution. Most people think they know how to create alternatives, but often without delving into the situation. First of all, the problem solver based on the reflection of (but not limited to) the analysis of the context and the perspectives of the problem generates a range of alternatives. Some of these alternatives represent anchored thinking as he/she accepts the assumptions implicit in generated alternatives and with too little focus on values.

The chosen value with the formulated goal indicates direction and encourages a broader and more creative search for a solution. Hence, the problem solver should consider some of the initial alternatives that could best support the achievement of the desired solution. Values are the principles for evaluating the desirability of any alternative or outcome ( Keeney, 1994 ). Thus, planned actions should reveal the desirable mode of conduct. After such consideration, he/she should draw up a plan setting out the actions required to implement each of considered alternatives.

Lastly, after a thorough examination of each considered alternative and a plan of its implementation, the problem solver chooses one of them. If the problem solver does not see an appropriate alternative, he/she develops new alternatives. However, the problem solver may notice (and usually does) that more than one alternative can help him/her to achieve the desired solution. In this case, he/she indicates which alternative is the main one and has to be implemented in the first place, and what other alternatives and in what sequence will contribute in searching for the desired solution.

The fourth stage - ‘ The rationale for the solution: Why ’ - leads to the seventh step: ‘ The justification of the chosen alternative ’. Keeney (1994) emphasizes the compatibility of alternatives in question with the values that guide the action. This underlines the importance of justifying the choices a person makes where the focus is on taking responsibility. According to Zsolnai (2008) , responsibility means a choice, i.e., the perceived responsibility essentially determines its choice. Responsible justification allows for discovering optimal balance when choosing between distinct value-based alternatives. It also refers to the alternative solution that best reflects responsibility in a particular value context, choice, and implementation.

At this stage, the problem solver revisits the chosen solution and revises it. The problem solver justifies his/her choice based on the following questions: Why did you choose this? Why is this alternative significant looking from the technical/scientific, the interpersonal/social, the existential, and the systemic perspectives? Could you take full responsibility for the implementation of this alternative? Why? How clearly do envisaged actions reflect the goal of the desired solution? Whatever interests and for what reasons do this alternative satisfies in principle? What else do you see in the chosen alternative?

As mentioned above, each person gives priority to one aspect or another. The problem solver has to provide solid arguments for the justification of the chosen alternative. The quality of arguments, according to Jonassen (2011) , should be judged based on the quality of the evidence supporting the chosen alternative and opposing arguments that can reject solutions. Besides, the pursuit of value-based goals reflects the interests of the individual or collective interests. Therefore, it becomes critical for the problem solver to justify the level of responsibility he/she takes in assessing the chosen alternative. Such a complex evaluation of the chosen alternative ensures the acceptance of an integral rather than unilateral solution, as ‘recognizing that, in the end, people benefit most when they act for the common good’ ( Sternberg, 2012, p.46 ).

5. Discussion

The constant emphasis on thinking about values as explicit reasoning in the 4W framework (especially from the choice of the value(s) to the rationale for problem solution) reflects the pursuit of virtues. Virtues form the features of the character that are related to the choice ( Argandoña, 2003 ; McLaughlin, 2005 ). Hence, the problem solver develops value-grounded problem solving capability as the virtuality instead of employing rationality for problem solving.

Argandoña (2003) suggests that, in order to make a sound valuation process of any action, extrinsic, transcendent, and intrinsic types of motives need to be considered. They cover the respective types of values. The 4W framework meets these requirements. An extrinsic motive as ‘attaining the anticipated or expected satisfaction’ ( Argandoña, 2003, p.17 ) is reflected in the formulation of the goal of the solution, the creation of alternatives and especially in the justification of the chosen alternative way when the problem solver revisits the external effect of his/her possible action. Transcendent motive as ‘generating certain effects in others’ ( Argandoña, 2003, p.17 ) is revealed within the analysis of the context, perspectives, and creating alternatives. When the learner considers the creation of alternatives and revisits the chosen alternative, he/she pays more attention to these motives. Two types of motives mentioned so far are closely related to an intrinsic motive that emphasizes learning development within the problem solver. These motives confirm that problem solving is, in fact, lifelong learning. In light of these findings, the 4W framework is concerned with some features of value internalization as it is ‘a psychological outcome of conscious mind reasoning about values’ ( Yazdani & Akbarilakeh, 2017, p.1 ).

The 4W framework is complicated enough in terms of learning. One issue is concerned with the educational environments ( Jucevičienė, 2008 ) required to enable the 4W framework. First, the learning paradigm, rather than direct instruction, lies at the foundation of such environments. Second, such educational environments include the following dimensions: (1) educational goal; (2) learning capacity of the learners; (3) educational content relevant to the educational goal: ways and means of communicating educational content as information presented in advance (they may be real, people among them, as well as virtual); (5) methods and means of developing educational content in the process of learners’ performance; (6) physical environment relevant to the educational goal and conditions of its implementation as well as different items in the environment; (7) individuals involved in the implementation of the educational goal.

Another issue is related to exercising this framework in practice. Despite being aware of the 4W framework, a person may still not want to practice problem solving through values, since most of the solutions are going to be complicated, or may even be painful. One idea worth looking into is to reveal the extent to which problem solving through values can become a habit of mind. Profound focus on personal values, context analysis, and highlighting various perspectives can involve changes in the problem solver’s habit of mind. The constant practice of problem solving through values could first become ‘the epistemic habit of mind’ ( Mezirow, 2009, p.93 ), which means a personal way of knowing things and how to use that knowledge. This echoes Kirkman (2017) findings. The developed capability to notice moral values in situations that students encountered changed some students’ habit of mind as ‘for having “ruined” things by making it impossible not to attend to values in such situations!’ (the feedback from one student; Kirkman, 2017, p.12 ). However, this is not enough, as only those problems that require a value-based approach are addressed. Inevitably, the problem solver eventually encounters the challenges of nurturing ‘the moral-ethical habit of mind’ ( Mezirow, 2009, p.93 ). In pursuance to develop such habits of mind, the curriculum should include the necessity of the practising of the 4W framework.

Thinking based on values when solving problems enables the problem solver to engage in thoughtful reflection in contrast to pragmatic and superficial thinking supported by the consumer society. Reflection begins from the first stage of the 4W framework. As personal values are the basis for the desired solution, the problem solver is also involved in self-reflection. The conscious and continuous reflection on himself/herself and the problematic situation reinforce each step of the 4W framework. Moreover, the fourth stage (‘The rationale for the solution: Why’) involves the problem solver in critical reflection as it concerned with justification of ‘the why , the reasons for and the consequences of what we do’ (italic, bold in original; Mezirow, 1990, p.8 ). Exercising the 4W framework in practice could foster reflective practice. Empirical evidence shows that reflective practice directly impacts knowledge, skills and may lead to changes in personal belief systems and world views ( Slade, Burnham, Catalana, & Waters, 2019 ). Thus, with the help of reflective practice it is possible to identify in more detail how and to what extent the 4W framework has been mastered, what knowledge gained, capabilities developed, how point of views changed, and what influence the change process.

Critical issues related to the development of problem solving through values need to be distinguished when considering and examining options for the implementation of the 4W framework at educational institutions. First, the question to what extent can the 4W framework be incorporated into various subjects needs to be answered. Researchers could focus on applying the 4W framework to specific subjects in the humanities and social sciences. The case is with STEM subjects. Though value issues of sustainable development and ecology are of great importance, in reality STEM teaching is often restricted to the development of knowledge and skills, leaving aside the thinking about values. The special task of the researchers is to help practitioners to apply the 4W framework in STEM subjects. Considering this, researchers could employ the concept of ‘dialogic space’ ( Wegerif, 2011, p.3 ) which places particular importance of dialogue in the process of education emphasizing both the voices of teachers and students, and materials. In addition, the dimensions of educational environments could be useful aligning the 4W framework with STEM subjects. As STEM teaching is more based on solving various special tasks and/or integrating problem-based learning, the 4W framework could be a meaningful tool through which content is mastered, skills are developed, knowledge is acquired by solving pre-prepared specific tasks. In this case, the 4W framework could act as a mean addressing values in STEM teaching.

Second is the question of how to enable the process of problem solving through values. In the current paper, the concept of enabling is understood as an integral component of the empowerment. Juceviciene et al. (2010) specify that at least two perspectives can be employed to explain empowerment : a) through the power of legitimacy (according to Freire, 1996 ); and b) through the perspective of conditions for the acquisition of the required knowledge, capabilities, and competence, i.e., enabling. In this paper the 4W framework does not entail the issue of legitimacy. This issue may occur, for example, when a teacher in economics is expected to provide students with subject knowledge only, rather than adding tasks that involve problem solving through values. Yet, the issue of legitimacy is often implicit. A widespread phenomenon exists that teaching is limited to certain periods that do not have enough time for problem solving through values. The issue of legitimacy as an organizational task that supports/or not the implementation of the 4W framework in any curriculum is a question that calls for further discussion.

Third (if not the first), the issue of an educator’s competence to apply such a framework needs to be addressed. In order for a teacher to be a successful enabler, he/she should have the necessary competence. This is related to the specific pedagogical knowledge and skills, which are highly dependent on the peculiarities of the subject being taught. Nowadays actualities are encouraging to pay attention to STEM subjects and their teacher training. For researchers and teacher training institutions, who will be interested in implementing the 4W framework in STEM subjects, it would be useful to draw attention to ‘a material-dialogic approach to pedagogy’ ( Hetherington & Wegerif, 2018, p.27 ). This approach creates the conditions for a deep learning of STEM subjects revealing additional opportunities for problem solving through values in teaching. Highlighting these opportunities is a task for further research.

In contrast to traditional problem solving models, the 4W framework is more concerned with educational purposes. The prescriptive approach to teaching ( Thorne, 1994 ) is applied to the 4W framework. This approach focuses on providing guidelines that enable students to make sound decisions by making explicit value judgements. The limitation is that the 4W framework is focused on thinking but not executing. It does not include the fifth stage, which would focus on the execution of the decision how to solve the problem. This stage may contain some deviation from the predefined process of the solution of the problem.

6. Conclusions

The current paper focuses on revealing the essence of the 4W framework, which is based on enabling the problem solver to draw attention to when, how, and why it is essential to think about values during the problem solving process from the perspective of it’s design. Accordingly, the 4W framework advocates the coherent approach when solving a problem by using a creative potential of values.

The 4W framework allows the problem solver to look through the lens of his/her values twice. The first time, while formulating the problem solving goal as the desired outcome. The second time is when the problem solver looks deeper into his/her values while exploring alternative ways to solve problems. The problem solver is encouraged to reason about, find, accept, reject, compare values, and become responsible for the consequences of the choices grounded on his/her values. Thus, the problem solver could benefit from the 4W framework especially when dealing with issues having crucial consequences.

An educational approach reveals that the 4W framework could enable the development of value-grounded problem solving capability. As problem solving encourages the development of higher-order thinking skills, the consistent inclusion of values enriches them.

The 4W framework requires the educational environments for its enablement. The enablement process of problem solving through values could be based on the perspective of conditions for the acquisition of the required knowledge and capability. Continuous practice of this framework not only encourages reflection, but can also contribute to the creation of the epistemic habit of mind. Applying the 4W framework to specific subjects in the humanities and social sciences might face less challenge than STEM ones. The issue of an educator’s competence to apply such a framework is highly important. The discussed issues present significant challenges for researchers and educators. Caring that the curriculum of different courses should foresee problem solving through values, both practicing and empirical research are necessary.

Declaration of interests

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Both authors have approved the final article.

  • Argandoña A. Fostering values in organizations. Journal of Business Ethics. 2003; 45 (1–2):15–28. https://link.springer.com/content/pdf/10.1023/A:1024164210743.pdf [ Google Scholar ]
  • Barber S. A truly “Transformative” MBA: Executive education for the fourth industrial revolution. Journal of Pedagogic Development. 2018; 8 (2):44–55. [ Google Scholar ]
  • Barnett R. McGraw-Hill Education; UK): 2007. Will to learn: Being a student in an age of uncertainty. [ Google Scholar ]
  • Baron R.A., Zhao H., Miao Q. Personal motives, moral disengagement, and unethical decisions by entrepreneurs: Cognitive mechanisms on the “slippery slope” Journal of Business Ethics. 2015; 128 (1):107–118. doi: 10.1007/s10551-014-2078-y. [ CrossRef ] [ Google Scholar ]
  • Basadur M., Ellspermann S.J., Evans G.W. A new methodology for formulating ill-structured problems. Omega. 1994; 22 (6):627–645. doi: 10.1016/0305-0483(94)90053-1. [ CrossRef ] [ Google Scholar ]
  • Blanco E., Schirmbeck F., Costa C. International Conference on Remote Engineering and Virtual Instrumentation . Springer; Cham: 2018. Vocational Education for the Industrial Revolution; pp. 649–658. [ Google Scholar ]
  • Chua B.L., Tan O.S., Liu W.C. Journey into the problem-solving process: Cognitive functions in a PBL environment. Innovations in Education and Teaching International. 2016; 53 (2):191–202. doi: 10.1080/14703297.2014.961502. [ CrossRef ] [ Google Scholar ]
  • Collins R.H., Sibthorp J., Gookin J. Developing ill-structured problem-solving skills through wilderness education. Journal of Experiential Education. 2016; 39 (2):179–195. doi: 10.1177/1053825916639611. [ CrossRef ] [ Google Scholar ]
  • Csapó B., Funke J., editors. The nature of problem solving: Using research to inspire 21st century learning. OECD Publishing; 2017. The development and assessment of problem solving in 21st-century schools. (Chapter 1). [ CrossRef ] [ Google Scholar ]
  • Dollinger S.J., Burke P.A., Gump N.W. Creativity and values. Creativity Research Journal. 2007; 19 (2-3):91–103. doi: 10.1080/10400410701395028. [ CrossRef ] [ Google Scholar ]
  • Donovan S.J., Guss C.D., Naslund D. Improving dynamic decision making through training and self-reflection. Judgment and Decision Making. 2015; 10 (4):284–295. http://digitalcommons.unf.edu/apsy_facpub/2 [ Google Scholar ]
  • Dorst K. Design problems and design paradoxes. Design Issues. 2006; 22 (3):4–17. doi: 10.1162/desi.2006.22.3.4. [ CrossRef ] [ Google Scholar ]
  • Dostál J. Theory of problem solving. Procedia-Social and Behavioral Sciences. 2015; 174 :2798–2805. doi: 10.1016/j.sbspro.2015.01.970. [ CrossRef ] [ Google Scholar ]
  • Fields A.M. Ill-structured problems and the reference consultation: The librarian’s role in developing student expertise. Reference Services Review. 2006; 34 (3):405–420. doi: 10.1108/00907320610701554. [ CrossRef ] [ Google Scholar ]
  • Freire P. Continuum; New York: 1996. Pedagogy of the oppressed (revised) [ Google Scholar ]
  • Funke J. Problem solving: What are the important questions?. Proceedings of the 36th Annual Conference of the Cognitive Science Society; Austin, TX: Cognitive Science Society; 2014. pp. 493–498. [ Google Scholar ]
  • Hall D.J., Davis R.A. Engaging multiple perspectives: A value-based decision-making model. Decision Support Systems. 2007; 43 (4):1588–1604. doi: 10.1016/j.dss.2006.03.004. [ CrossRef ] [ Google Scholar ]
  • Hall D.J., Paradice D. Investigating value-based decision bias and mediation: do you do as you think? Communications of the ACM. 2007; 50 (4):81–85. [ Google Scholar ]
  • Halstead J.M. Values and values education in schools. In: Halstead J.M., Taylor M.J., editors. Values in education and education in values. The Falmer Press; London: 1996. pp. 3–14. [ Google Scholar ]
  • Harland T., Pickering N. Routledge; 2010. Values in higher education teaching. [ Google Scholar ]
  • Hester P.T., MacG K. Springer; New York: 2017. Systemic decision making: Fundamentals for addressing problems and messes. [ Google Scholar ]
  • Hetherington L., Wegerif R. Developing a material-dialogic approach to pedagogy to guide science teacher education. Journal of Education for Teaching. 2018; 44 (1):27–43. doi: 10.1080/02607476.2018.1422611. [ CrossRef ] [ Google Scholar ]
  • Huitt W. Problem solving and decision making: Consideration of individual differences using the Myers-Briggs type indicator. Journal of Psychological Type. 1992; 24 (1):33–44. [ Google Scholar ]
  • Ims K.J., Zsolnai L. The future international manager. Palgrave Macmillan; London: 2009. Holistic problem solving; pp. 116–129. [ Google Scholar ]
  • Jonassen D. Supporting problem solving in PBL. Interdisciplinary Journal of Problem-based Learning. 2011; 5 (2):95–119. doi: 10.7771/1541-5015.1256. [ CrossRef ] [ Google Scholar ]
  • Jonassen D.H. Instructional design models for well-structured and III-structured problem-solving learning outcomes. Educational Technology Research and Development. 1997; 45 (1):65–94. doi: 10.1007/BF02299613. [ CrossRef ] [ Google Scholar ]
  • Jucevičienė P. Educational and learning environments as a factor for socioeducational empowering of innovation. Socialiniai mokslai. 2008; 1 :58–70. [ Google Scholar ]
  • Jucevičienė P., Gudaitytė D., Karenauskaitė V., Lipinskienė D., Stanikūnienė B., Tautkevičienė G. Technologija; Kaunas: 2010. Universiteto edukacinė galia: Atsakas XXI amžiaus iššūkiams [The educational power of university: the response to the challenges of the 21st century] [ Google Scholar ]
  • Kasof J., Chen C., Himsel A., Greenberger E. Values and creativity. Creativity Research Journal. 2007; 19 (2–3):105–122. doi: 10.1080/10400410701397164. [ CrossRef ] [ Google Scholar ]
  • Keeney R.L. Creativity in decision making with value-focused thinking. MIT Sloan Management Review. 1994; 35 (4):33–41. [ Google Scholar ]
  • Kirkman R. Problem-based learning in engineering ethics courses. Interdisciplinary Journal of Problem-based Learning. 2017; 11 (1) doi: 10.7771/1541-5015.1610. [ CrossRef ] [ Google Scholar ]
  • Lebedeva N., Schwartz S., Plucker J., Van De Vijver F. Domains of everyday creativity and personal values. Frontiers in Psychology. 2019; 9 :1–16. doi: 10.3389/fpsyg.2018.02681. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Linstone H.A. Multiple perspectives: Concept, applications, and user guidelines. Systems Practice. 1989; 2 (3):307–331. [ Google Scholar ]
  • Litzinger T.A., Meter P.V., Firetto C.M., Passmore L.J., Masters C.B., Turns S.R.…Zappe S.E. A cognitive study of problem solving in statics. Journal of Engineering Education. 2010; 99 (4):337–353. [ Google Scholar ]
  • Maslow A.H. Vaga; Vilnius: 2011. Būties psichologija. [Psychology of Being] [ Google Scholar ]
  • Mayer R., Wittrock M. Problem solving. In: Alexander P., Winne P., editors. Handbook of educational psychology. Psychology Press; New York, NY: 2006. pp. 287–303. [ Google Scholar ]
  • McLaughlin T. The educative importance of ethos. British Journal of Educational Studies. 2005; 53 (3):306–325. doi: 10.1111/j.1467-8527.2005.00297.x. [ CrossRef ] [ Google Scholar ]
  • McLaughlin T.H. Technologija; Kaunas: 1997. Šiuolaikinė ugdymo filosofija: demokratiškumas, vertybės, įvairovė [Contemporary philosophy of education: democracy, values, diversity] [ Google Scholar ]
  • Mezirow J. Jossey-Bass Publishers; San Francisco: 1990. Fostering critical reflection in adulthood; pp. 1–12. https://my.liberatedleaders.com.au/wp-content/uploads/2017/02/How-Critical-Reflection-triggers-Transformative-Learning-Mezirow.pdf [ Google Scholar ]
  • Mezirow J. Contemporary theories of learning. Routledge; 2009. An overview on transformative learning; pp. 90–105. (Chapter 6) [ Google Scholar ]
  • Mitroff I. Šviesa; Kaunas: 2000. Kaip neklysti šiais beprotiškais laikais: ar mokame spręsti esmines problemas. [How not to get lost in these crazy times: do we know how to solve essential problems] [ Google Scholar ]
  • Morton L. Teaching creative problem solving: A paradigmatic approach. Cal. WL Rev. 1997; 34 :375. [ Google Scholar ]
  • Nadda P. Need for value based education. International Education and Research Journal. 2017; 3 (2) http://ierj.in/journal/index.php/ierj/article/view/690/659 [ Google Scholar ]
  • Newell A., Simon H.A. Prentice-Hall; Englewood Cliffs, NJ: 1972. Human problem solving. [ Google Scholar ]
  • OECD . PISA, OECD Publishing; Paris: 2013. PISA 2012 assessment and analytical framework: Mathematics, reading, science, problem solving and financial literacy . https://www.oecd.org/pisa/pisaproducts/PISA%202012%20framework%20e-book_final.pdf [ Google Scholar ]
  • OECD . PISA, OECD Publishing; 2018. PISA 2015 results in focus . https://www.oecd.org/pisa/pisa-2015-results-in-focus.pdf [ Google Scholar ]
  • O’Loughlin A., McFadzean E. Toward a holistic theory of strategic problem solving. Team Performance Management: An International Journal. 1999; 5 (3):103–120. [ Google Scholar ]
  • Perkins D.N. Decision making and its development. In: Callan E., Grotzer T., Kagan J., Nisbett R.E., Perkins D.N., Shulman L.S., editors. Education and a civil society: Teaching evidence-based decision making. American Academy of Arts and Sciences; Cambridge, MA: 2009. pp. 1–28. (Chapter 1) [ Google Scholar ]
  • Roccas S., Sagiv L., Navon M. Values and behavior. Cham: Springer; 2017. Methodological issues in studying personal values; pp. 15–50. [ Google Scholar ]
  • Rogers C.R. Houghton Mifflin Harcourt; Boston: 1995. On becoming a person: A therapist’s view of psychotherapy. [ Google Scholar ]
  • Saito M. Amartya Sen’s capability approach to education: A critical exploration. Journal of Philosophy of Education. 2003; 37 (1):17–33. doi: 10.1111/1467-9752.3701002. [ CrossRef ] [ Google Scholar ]
  • Schwartz S.H. Universals in the content and structure of values: Theoretical advances and empirical tests in 20 countries. In: Zanna M.P., editor. Vol. 25. Academic Press; 1992. pp. 1–65. (Advances in experimental social psychology). [ Google Scholar ]
  • Schwartz S.H. Are there universal aspects in the structure and contents of human values? Journal of social issues. 1994; 50 (4):19–45. [ Google Scholar ]
  • Schwartz S.H. An overview of the Schwartz theory of basic values. Online Readings in Psychology and Culture. 2012; 2 (1):1–20. doi: 10.9707/2307-0919.1116. [ CrossRef ] [ Google Scholar ]
  • Sen A. Development as capability expansion. The community development reader. 1990:41–58. http://www.masterhdfs.org/masterHDFS/wp-content/uploads/2014/05/Sen-development.pdf [ Google Scholar ]
  • Sheehan N.T., Schmidt J.A. Preparing accounting students for ethical decision making: Developing individual codes of conduct based on personal values. Journal of Accounting Education. 2015; 33 (3):183–197. doi: 10.1016/j.jaccedu.2015.06.001. [ CrossRef ] [ Google Scholar ]
  • Shepherd D.A., Patzelt H., Baron R.A. “I care about nature, but…”: Disengaging values in assessing opportunities that cause harm. The Academy of Management Journal. 2013; 56 (5):1251–1273. doi: 10.5465/amj.2011.0776. [ CrossRef ] [ Google Scholar ]
  • Shin N., Jonassen D.H., McGee S. Predictors of well‐structured and ill‐structured problem solving in an astronomy simulation. Journal of Research in Science Teaching. 2003; 40 (1):6–33. doi: 10.1002/tea.10058. [ CrossRef ] [ Google Scholar ]
  • Slade M.L., Burnham T.J., Catalana S.M., Waters T. The impact of reflective practice on teacher candidates’ learning. International Journal for the Scholarship of Teaching and Learning. 2019; 13 (2):15. doi: 10.20429/ijsotl.2019.130215. [ CrossRef ] [ Google Scholar ]
  • Snyder H. Literature review as a research methodology: An overview and guidelines. Journal of Business Research. 2019; 104 :333–339. doi: 10.1016/j.jbusres.2019.07.039. [ CrossRef ] [ Google Scholar ]
  • Sternberg R. Teaching for ethical reasoning. International Journal of Educational Psychology. 2012; 1 (1):35–50. doi: 10.4471/ijep.2012.03. [ CrossRef ] [ Google Scholar ]
  • Sternberg R. Speculations on the role of successful intelligence in solving contemporary world problems. Journal of Intelligence. 2017; 6 (1):4. doi: 10.3390/jintelligence6010004. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Thorne D.M. Environmental ethics in international business education: Descriptive and prescriptive dimensions. Journal of Teaching in International Business. 1994; 5 (1–2):109–122. doi: 10.1300/J066v05n01_08. [ CrossRef ] [ Google Scholar ]
  • Treffinger D.J., Isaksen S.G. Creative problem solving: The history, development, and implications for gifted education and talent development. The Gifted Child Quarterly. 2005; 49 (4):342–353. doi: 10.1177/001698620504900407. [ CrossRef ] [ Google Scholar ]
  • Verplanken B., Holland R.W. Motivated decision making: Effects of activation and self-centrality of values on choices and behavior. Journal of Personality and Social Psychology. 2002; 82 (3):434–447. doi: 10.1037/0022-3514.82.3.434. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Webster R.S. Re-enchanting education and spiritual wellbeing. Routledge; 2017. Being spiritually educated; pp. 73–85. [ Google Scholar ]
  • Wegerif R. Towards a dialogic theory of how children learn to think. Thinking Skills and Creativity. 2011; 6 (3):179–190. doi: 10.1016/j.tsc.2011.08.002. [ CrossRef ] [ Google Scholar ]
  • Yang M., Evans S., Vladimirova D., Rana P. Value uncaptured perspective for sustainable business model innovation. Journal of Cleaner Production. 2017; 140 :1794–1804. doi: 10.1016/j.jclepro.2016.07.102. [ CrossRef ] [ Google Scholar ]
  • Yazdani S., Akbarilakeh M. The model of value-based curriculum for medicine and surgery education in Iran. Journal of Minimally Invasive Surgical Sciences. 2017; 6 (3) doi: 10.5812/minsurgery.14053. [ CrossRef ] [ Google Scholar ]
  • Zsolnai L. Transaction Publishers; New Brunswick and London: 2008. Responsible decision making. [ Google Scholar ]

meaning of problem solving in research

What Is Problem Solving?

You will often see beach clean-up drives being publicized in coastal cities. There are already dustbins available on the beaches,…

What Is Problem Solving?

You will often see beach clean-up drives being publicized in coastal cities. There are already dustbins available on the beaches, so why do people need to organize these drives? It’s evident that despite advertising and posting anti-littering messages, some of us don’t follow the rules.

Temporary food stalls and shops make it even more difficult to keep the beaches clean. Since people can’t ask the shopkeepers to relocate or prevent every single person from littering, the clean-up drive is needed.  This is an ideal example of problem-solving psychology in humans. ( 230-fifth.com ) So, what is problem-solving? Let’s find out.

What Is Problem-Solving?

At its simplest, the meaning of problem-solving is the process of defining a problem, determining its cause, and implementing a solution. The definition of problem-solving is rooted in the fact that as humans, we exert control over our environment through solutions. We move forward in life when we solve problems and make decisions. 

We can better define the problem-solving process through a series of important steps.

Identify The Problem: 

This step isn’t as simple as it sounds. Most times, we mistakenly identify the consequences of a problem rather than the problem itself. It’s important that we’re careful to identify the actual problem and not just its symptoms. 

Define The Problem: 

Once the problem has been identified correctly, you should define it. This step can help clarify what needs to be addressed and for what purpose.

Form A Strategy: 

Develop a strategy to solve your problem. Defining an approach will provide direction and clarity on the next steps. 

Organize The Information:  

Organizing information systematically will help you determine whether something is missing. The more information you have, the easier it’ll become for you to arrive at a solution.  

Allocate Resources:  

We may not always be armed with the necessary resources to solve a problem. Before you commit to implementing a solution for a problem, you should determine the availability of different resources—money, time and other costs.

Track Progress: 

The true meaning of problem-solving is to work towards an objective. If you measure your progress, you can evaluate whether you’re on track. You could revise your strategies if you don’t notice the desired level of progress. 

Evaluate The Results:  

After you spot a solution, evaluate the results to determine whether it’s the best possible solution. For example, you can evaluate the success of a fitness routine after several weeks of exercise.

Meaning Of Problem-Solving Skill

Now that we’ve established the definition of problem-solving psychology in humans, let’s look at how we utilize our problem-solving skills.  These skills help you determine the source of a problem and how to effectively determine the solution. Problem-solving skills aren’t innate and can be mastered over time. Here are some important skills that are beneficial for finding solutions.

Communication

Communication is a critical skill when you have to work in teams.  If you and your colleagues have to work on a project together, you’ll have to collaborate with each other. In case of differences of opinion, you should be able to listen attentively and respond respectfully in order to successfully arrive at a solution.

As a problem-solver, you need to be able to research and identify underlying causes. You should never treat a problem lightly. In-depth study is imperative because often people identify only the symptoms and not the actual problem.

Once you have researched and identified the factors causing a problem, start working towards developing solutions. Your analytical skills can help you differentiate between effective and ineffective solutions.

Decision-Making

You’ll have to make a decision after you’ve identified the source and methods of solving a problem. If you’ve done your research and applied your analytical skills effectively, it’ll become easier for you to take a call or a decision.

Organizations really value decisive problem-solvers. Harappa Education’s   Defining Problems course will guide you on the path to developing a problem-solving mindset. Learn how to identify the different types of problems using the Types of Problems framework. Additionally, the SMART framework, which is a five-point tool, will teach you to create specific and actionable objectives to address problem statements and arrive at solutions. 

Explore topics & skills such as Problem Solving Skills , PICK Chart , How to Solve Problems & Barriers to Problem Solving from our Harappa Diaries blog section and develop your skills.

Thriversitybannersidenav

Stanford University

Along with Stanford news and stories, show me:

  • Student information
  • Faculty/Staff information

We want to provide announcements, events, leadership messages and resources that are relevant to you. Your selection is stored in a browser cookie which you can remove at any time using “Clear all personalization” below.

For everyone whose relationship with mathematics is distant or broken, Jo Boaler , a professor at Stanford Graduate School of Education (GSE), has ideas for repairing it. She particularly wants young people to feel comfortable with numbers from the start – to approach the subject with playfulness and curiosity, not anxiety or dread.

“Most people have only ever experienced what I call narrow mathematics – a set of procedures they need to follow, at speed,” Boaler says. “Mathematics should be flexible, conceptual, a place where we play with ideas and make connections. If we open it up and invite more creativity, more diverse thinking, we can completely transform the experience.”

Boaler, the Nomellini and Olivier Professor of Education at the GSE, is the co-founder and faculty director of Youcubed , a Stanford research center that provides resources for math learning that has reached more than 230 million students in over 140 countries. In 2013 Boaler, a former high school math teacher, produced How to Learn Math , the first massive open online course (MOOC) on mathematics education. She leads workshops and leadership summits for teachers and administrators, and her online courses have been taken by over a million users.

In her new book, Math-ish: Finding Creativity, Diversity, and Meaning in Mathematics , Boaler argues for a broad, inclusive approach to math education, offering strategies and activities for learners at any age. We spoke with her about why creativity is an important part of mathematics, the impact of representing numbers visually and physically, and how what she calls “ishing” a math problem can help students make better sense of the answer.

What do you mean by “math-ish” thinking?

It’s a way of thinking about numbers in the real world, which are usually imprecise estimates. If someone asks how old you are, how warm it is outside, how long it takes to drive to the airport – these are generally answered with what I call “ish” numbers, and that’s very different from the way we use and learn numbers in school.

In the book I share an example of a multiple-choice question from a nationwide exam where students are asked to estimate the sum of two fractions: 12/13 + 7/8. They’re given four choices for the closest answer: 1, 2, 19, or 21. Each of the fractions in the question is very close to 1, so the answer would be 2 – but the most common answer 13-year-olds gave was 19. The second most common was 21.

I’m not surprised, because when students learn fractions, they often don’t learn to think conceptually or to consider the relationship between the numerator or denominator. They learn rules about creating common denominators and adding or subtracting the numerators, without making sense of the fraction as a whole. But stepping back and judging whether a calculation is reasonable might be the most valuable mathematical skill a person can develop.

But don’t you also risk sending the message that mathematical precision isn’t important?

I’m not saying precision isn’t important. What I’m suggesting is that we ask students to estimate before they calculate, so when they come up with a precise answer, they’ll have a real sense for whether it makes sense. This also helps students learn how to move between big-picture and focused thinking, which are two different but equally important modes of reasoning.

Some people ask me, “Isn’t ‘ishing’ just estimating?” It is, but when we ask students to estimate, they often groan, thinking it’s yet another mathematical method. But when we ask them to “ish” a number, they're more willing to offer their thinking.

Ishing helps students develop a sense for numbers and shapes. It can help soften the sharp edges in mathematics, making it easier for kids to jump in and engage. It can buffer students against the dangers of perfectionism, which we know can be a damaging mindset. I think we all need a little more ish in our lives.

You also argue that mathematics should be taught in more visual ways. What do you mean by that?

For most people, mathematics is an almost entirely symbolic, numerical experience. Any visuals are usually sterile images in a textbook, showing bisecting angles, or circles divided into slices. But the way we function in life is by developing models of things in our minds. Take a stapler: Knowing what it looks like, what it feels and sounds like, how to interact with it, how it changes things – all of that contributes to our understanding of how it works.

There’s an activity we do with middle-school students where we show them an image of a 4 x 4 x 4 cm cube made up of smaller 1 cm cubes, like a Rubik’s Cube. The larger cube is dipped into a can of blue paint, and we ask the students, if they could take apart the little cubes, how many sides would be painted blue? Sometimes we give the students sugar cubes and have them physically build a larger 4 x 4 x 4 cube. This is an activity that leads into algebraic thinking.

Some years back we were interviewing students a year after they’d done that activity in our summer camp and asked what had stayed with them. One student said, “I’m in geometry class now, and I still remember that sugar cube, what it looked like and felt like.” His class had been asked to estimate the volume of their shoes, and he said he’d imagined his shoes filled with 1 cm sugar cubes in order to solve that question. He had built a mental model of a cube.

When we learn about cubes, most of us don’t get to see and manipulate them. When we learn about square roots, we don’t take squares and look at their diagonals. We just manipulate numbers.

I wonder if people consider the physical representations more appropriate for younger kids.

That’s the thing – elementary school teachers are amazing at giving kids those experiences, but it dies out in middle school, and by high school it’s all symbolic. There’s a myth that there’s a hierarchy of sophistication where you start out with visual and physical representations and then build up to the symbolic. But so much of high-level mathematical work now is visual. Here in Silicon Valley, if you look at Tesla engineers, they're drawing, they're sketching, they're building models, and nobody says that's elementary mathematics.

There’s an example in the book where you’ve asked students how they would calculate 38 x 5 in their heads, and they come up with several different ways of arriving at the same answer. The creativity is fascinating, but wouldn’t it be easier to teach students one standard method?

A depiction of various ways to calculate 38 x 5, numerically and visually.

A depiction of various ways to calculate 38 x 5, numerically and visually. | Courtesy Jo Boaler

That narrow, rigid version of mathematics where there’s only one right approach is what most students experience, and it’s a big part of why people have such math trauma. It keeps them from realizing the full range and power of mathematics. When you only have students blindly memorizing math facts, they’re not developing number sense. They don’t learn how to use numbers flexibly in different situations. It also makes students who think differently believe there’s something wrong with them.

When we open mathematics to acknowledge the different ways a concept or problem can be viewed, we also open the subject to many more students. Mathematical diversity, to me, is a concept that includes both the value of diversity in people and the diverse ways we can see and learn mathematics. When we bring those forms of diversity together, it’s powerful. If we want to value different ways of thinking and problem-solving in the world, we need to embrace mathematical diversity.

Cart

  • SUGGESTED TOPICS
  • The Magazine
  • Newsletters
  • Managing Yourself
  • Managing Teams
  • Work-life Balance
  • The Big Idea
  • Data & Visuals
  • Reading Lists
  • Case Selections
  • HBR Learning
  • Topic Feeds
  • Account Settings
  • Email Preferences

How to Talk to an Employee Who Isn’t Meeting Expectations

  • Jenny Fernandez

meaning of problem solving in research

It’s an opportunity to address the gap between the work they’re delivering and the company’s goals.

Approaching a conversation about improving an employee’s performance requires preparation, empathy, and a focus on collaboration. Even though hearing the truth about their current performance will be tough and potentially hurtful, it’s a teaching moment managers must embrace to help them become more resilient and adept at problem-solving and developing professional relationships. The author offers several strategies for treating difficult performance conversations not as fault-finding missions, but instead as opportunities to work collaboratively to define a shared commitment to growth and development.

As a leadership and team coach, I frequently encounter situations where managers feel ill-equipped to give their team members negative performance feedback. These conversations can be particularly challenging because the stakes are high for both sides. Unfavorable performance reviews and ratings come with tangible consequences for an employee’s compensation and career progression. Further, if the negative feedback is a surprise to them, it might prompt them to start looking for a new job.

meaning of problem solving in research

  • Jenny Fernandez , MBA, is an executive and team coach, Columbia and NYU faculty, and future of work and brand strategist. She works with senior leaders and their teams to become more collaborative, innovative, and resilient. Her work spans Fortune 500 companies, startups, and higher education. Jenny has been recognized by LinkedIn as a “Top Voice in Executive Coaching, Leadership Development, and Personal Branding” and was invited to join the prestigious Marshall Goldsmith’s 100 Coaches community. She is a Gen Z advocate. Connect with her on LinkedIn .

Partner Center

IMAGES

  1. 39 Best Problem-Solving Examples (2024)

    meaning of problem solving in research

  2. Problem-Solving Strategies: Definition and 5 Techniques to Try

    meaning of problem solving in research

  3. What Is Problem-Solving? Steps, Processes, Exercises to do it Right

    meaning of problem solving in research

  4. definition of problem solving with example

    meaning of problem solving in research

  5. Problem Solving Methods Steps Process Examples

    meaning of problem solving in research

  6. Introduction to Problem Solving Skills

    meaning of problem solving in research

VIDEO

  1. Research Problem || Defining a research Problem || Research

  2. 2024 Desert Ag Research Symposium on Soil Health: State Leaders Panel

  3. Beef Problem Solver: Dean Fish

  4. 2024 Desert Ag Research Symposium on Soil Health: Industry Stakeholders Panel

  5. 2024 Desert Ag Research Symposium on Soil Health Opening Remarks and Morning Keynote

  6. Afternoon Keynote: Mycorrhizae in Agriculture: Past, Present and Future

COMMENTS

  1. What is a Research Problem? Characteristics, Types, and Examples

    A research problem is a gap in existing knowledge, a contradiction in an established theory, or a real-world challenge that a researcher aims to address in their research. It is at the heart of any scientific inquiry, directing the trajectory of an investigation. The statement of a problem orients the reader to the importance of the topic, sets ...

  2. What is a Research Problem? Definition, Importance and ...

    A research problem statement should be clear, concise, and specific, outlining the issue, its context, and significance. While a research problem is a broad statement of the primary issue ...

  3. Problem Solving

    Solving a problem is finding a path through the problem space that starts with initial states passing along paths that satisfy the path constraints and ends in the goal state. Most early research on problem solving has been based on this linear definition and therefore focused on simple, static, well-structured problems (see Problem Typology ...

  4. What is Problem Solving? Steps, Process & Techniques

    Finding a suitable solution for issues can be accomplished by following the basic four-step problem-solving process and methodology outlined below. Step. Characteristics. 1. Define the problem. Differentiate fact from opinion. Specify underlying causes. Consult each faction involved for information. State the problem specifically.

  5. How to Define a Research Problem

    A research problem is a specific issue or gap in existing knowledge that you aim to address in your research. You may choose to look for practical problems aimed at contributing to change, or theoretical problems aimed at expanding knowledge. Some research will do both of these things, but usually the research problem focuses on one or the other.

  6. How to Write a Problem Statement

    Step 3: Set your aims and objectives. Finally, the problem statement should frame how you intend to address the problem. Your goal here should not be to find a conclusive solution, but rather to propose more effective approaches to tackling or understanding it. The research aim is the overall purpose of your research.

  7. The Research Problem/Question

    Definition. A research problem is a definite or clear expression [statement] about an area of concern, a condition to be improved upon, a difficulty to be eliminated, or a troubling question that exists in scholarly literature, in theory, or within existing practice that points to a need for meaningful understanding and deliberate investigation ...

  8. PDF Identifying a Research Problem and Question, and Searching Relevant

    A research problem, or phenomenon as it might be called in many forms of qualitative methodology, is the topic you would like to address, investigate, or study, whether descriptively or experimentally. It is the focus or reason for engaging in your research. It is typically a topic, phenomenon, or challenge that you are interested in

  9. Problems: Definition, Types, and Evidence

    The nature of human problem solving has been studied by psychologists over the past hundred years. Beginning with the early experimental work of the Gestalt psychologists in Germany, and continuing through the 1960s and early 1970s, research on problem solving typically operated with relatively simple laboratory problems, such as Duncker's famous "X-ray" problem and Ewert and Lambert's ...

  10. (PDF) The Nature of Problem Solving: Using Research to Inspire 21st

    Problem solving is at the heart of this, the capacity of an indi vidual to engage in. cognitive processing to understand and resolve prob lem situations where a method of solution is. not ...

  11. Problem Solving

    Cognitive—Problem solving occurs within the problem solver's cognitive system and can only be inferred indirectly from the problem solver's behavior (including biological changes, introspections, and actions during problem solving).. Process—Problem solving involves mental computations in which some operation is applied to a mental representation, sometimes resulting in the creation of ...

  12. Research Problems: How to Identify & Resolve

    A research problem has two essential roles in setting your research project on a course for success. 1. They set the scope. The research problem defines what problem or opportunity you're looking at and what your research goals are. It stops you from getting side-tracked or allowing the scope of research to creep off-course.

  13. Research Problem

    Research Problem. Definition: Research problem is a specific and well-defined issue or question that a researcher seeks to investigate through research. It is the starting point of any research project, as it sets the direction, scope, and purpose of the study. Types of Research Problems. Types of Research Problems are as follows: Descriptive ...

  14. The Nature of Problem Solving: Using Research to Inspire 21st Century

    Data and research on education including skills, literacy, research, elementary schools, childhood learning, vocational training and PISA, PIACC and TALIS surveys., Solving non-routine problems is a key competence in a world full of changes, uncertainty and surprise where we strive to achieve so many ambitious goals. But the world is also full of solutions because of the extraordinary ...

  15. The Nature of Problem Solving : Using Research to Inspire 21st Century

    The Nature of Problem Solving presents the background and the main ideas behind the development of the PISA 2012 assessment of problem solving, as well as results from research collaborations that originated within the group of experts who guided the development of this assessment. It illustrates the past, present and future of problem-solving ...

  16. (PDF) Theory of Problem Solving

    solving that change the problematic situation and can have an influe nce on the solving process. The resolution of the problem can be described as a state characterized as the removal ...

  17. The Problem-Solving Process

    Problem-solving is a mental process that involves discovering, analyzing, and solving problems. The ultimate goal of problem-solving is to overcome obstacles and find a solution that best resolves the issue. The best strategy for solving a problem depends largely on the unique situation. In some cases, people are better off learning everything ...

  18. How to Define a Research Problem

    A research problem is a specific issue or gap in existing knowledge that you aim to address in your research. You may choose to look for practical problems aimed at contributing to change, or theoretical problems aimed at expanding knowledge. Some research will do both of these things, but usually the research problem focuses on one or the other.

  19. Problem solving

    Definition. Problem solving is the mental process of analyzing a situation, learning what options are available, and then choosing the alternative that will result in the desired outcome or some ...

  20. Problem solving through values: A challenge for thinking and capability

    Meanwhile, research in problem solving pays little attention to values. Most of the problem solving models (e.g., Newell & Simon, 1972; Jonassen ... knowledge is acquired by solving pre-prepared specific tasks. In this case, the 4W framework could act as a mean addressing values in STEM teaching. Second is the question of how to enable the ...

  21. (PDF) Identifying and Formulating the Research Problem

    identify and determine the problem to study. Identifying a research problem is important. because, as the issue or concern in a particular setting that motivates and guides the need. Parlindungan ...

  22. Problem solving

    Problem solving is the process of achieving a goal by overcoming obstacles, a frequent part of most activities. Problems in need of solutions habit from simple personal tasks (e.g. how to turn on an appliance) to complex issues in business and technical fields. The former is an example of simple problem solving (SPS) addressing one issue ...

  23. What is Problem Solving

    At its simplest, the meaning of problem-solving is the process of defining a problem, determining its cause, and implementing a solution. The definition of problem-solving is rooted in the fact that as humans, we exert control over our environment through solutions. We move forward in life when we solve problems and make decisions.

  24. What Are Problem-Solving Skills? Definition and Examples

    Problem-solving skills are the ability to identify problems, brainstorm and analyze answers, and implement the best solutions. An employee with good problem-solving skills is both a self-starter and a collaborative teammate; they are proactive in understanding the root of a problem and work with others to consider a wide range of solutions ...

  25. The case for 'math-ish' thinking

    In her new book, Math-ish: Finding Creativity, Diversity, and Meaning in Mathematics, Boaler argues for a broad, inclusive approach to math education, offering strategies and activities for ...

  26. Navigate Complex Data with Problem Solving in Market Research

    Here's how you can apply problem solving skills to navigate complex data sets in Market Research. Powered by AI and the LinkedIn community. 1. Define Goals. Be the first to add your personal ...

  27. How to Talk to an Employee Who Isn't Meeting Expectations

    Approaching a conversation about improving an employee's performance requires preparation, empathy, and a focus on collaboration. Even though hearing the truth about their current performance ...