• Privacy Policy

Research Method

Home » Case Study – Methods, Examples and Guide

Case Study – Methods, Examples and Guide

Table of Contents

Case Study Research

A case study is a research method that involves an in-depth examination and analysis of a particular phenomenon or case, such as an individual, organization, community, event, or situation.

It is a qualitative research approach that aims to provide a detailed and comprehensive understanding of the case being studied. Case studies typically involve multiple sources of data, including interviews, observations, documents, and artifacts, which are analyzed using various techniques, such as content analysis, thematic analysis, and grounded theory. The findings of a case study are often used to develop theories, inform policy or practice, or generate new research questions.

Types of Case Study

Types and Methods of Case Study are as follows:

Single-Case Study

A single-case study is an in-depth analysis of a single case. This type of case study is useful when the researcher wants to understand a specific phenomenon in detail.

For Example , A researcher might conduct a single-case study on a particular individual to understand their experiences with a particular health condition or a specific organization to explore their management practices. The researcher collects data from multiple sources, such as interviews, observations, and documents, and uses various techniques to analyze the data, such as content analysis or thematic analysis. The findings of a single-case study are often used to generate new research questions, develop theories, or inform policy or practice.

Multiple-Case Study

A multiple-case study involves the analysis of several cases that are similar in nature. This type of case study is useful when the researcher wants to identify similarities and differences between the cases.

For Example, a researcher might conduct a multiple-case study on several companies to explore the factors that contribute to their success or failure. The researcher collects data from each case, compares and contrasts the findings, and uses various techniques to analyze the data, such as comparative analysis or pattern-matching. The findings of a multiple-case study can be used to develop theories, inform policy or practice, or generate new research questions.

Exploratory Case Study

An exploratory case study is used to explore a new or understudied phenomenon. This type of case study is useful when the researcher wants to generate hypotheses or theories about the phenomenon.

For Example, a researcher might conduct an exploratory case study on a new technology to understand its potential impact on society. The researcher collects data from multiple sources, such as interviews, observations, and documents, and uses various techniques to analyze the data, such as grounded theory or content analysis. The findings of an exploratory case study can be used to generate new research questions, develop theories, or inform policy or practice.

Descriptive Case Study

A descriptive case study is used to describe a particular phenomenon in detail. This type of case study is useful when the researcher wants to provide a comprehensive account of the phenomenon.

For Example, a researcher might conduct a descriptive case study on a particular community to understand its social and economic characteristics. The researcher collects data from multiple sources, such as interviews, observations, and documents, and uses various techniques to analyze the data, such as content analysis or thematic analysis. The findings of a descriptive case study can be used to inform policy or practice or generate new research questions.

Instrumental Case Study

An instrumental case study is used to understand a particular phenomenon that is instrumental in achieving a particular goal. This type of case study is useful when the researcher wants to understand the role of the phenomenon in achieving the goal.

For Example, a researcher might conduct an instrumental case study on a particular policy to understand its impact on achieving a particular goal, such as reducing poverty. The researcher collects data from multiple sources, such as interviews, observations, and documents, and uses various techniques to analyze the data, such as content analysis or thematic analysis. The findings of an instrumental case study can be used to inform policy or practice or generate new research questions.

Case Study Data Collection Methods

Here are some common data collection methods for case studies:

Interviews involve asking questions to individuals who have knowledge or experience relevant to the case study. Interviews can be structured (where the same questions are asked to all participants) or unstructured (where the interviewer follows up on the responses with further questions). Interviews can be conducted in person, over the phone, or through video conferencing.

Observations

Observations involve watching and recording the behavior and activities of individuals or groups relevant to the case study. Observations can be participant (where the researcher actively participates in the activities) or non-participant (where the researcher observes from a distance). Observations can be recorded using notes, audio or video recordings, or photographs.

Documents can be used as a source of information for case studies. Documents can include reports, memos, emails, letters, and other written materials related to the case study. Documents can be collected from the case study participants or from public sources.

Surveys involve asking a set of questions to a sample of individuals relevant to the case study. Surveys can be administered in person, over the phone, through mail or email, or online. Surveys can be used to gather information on attitudes, opinions, or behaviors related to the case study.

Artifacts are physical objects relevant to the case study. Artifacts can include tools, equipment, products, or other objects that provide insights into the case study phenomenon.

How to conduct Case Study Research

Conducting a case study research involves several steps that need to be followed to ensure the quality and rigor of the study. Here are the steps to conduct case study research:

  • Define the research questions: The first step in conducting a case study research is to define the research questions. The research questions should be specific, measurable, and relevant to the case study phenomenon under investigation.
  • Select the case: The next step is to select the case or cases to be studied. The case should be relevant to the research questions and should provide rich and diverse data that can be used to answer the research questions.
  • Collect data: Data can be collected using various methods, such as interviews, observations, documents, surveys, and artifacts. The data collection method should be selected based on the research questions and the nature of the case study phenomenon.
  • Analyze the data: The data collected from the case study should be analyzed using various techniques, such as content analysis, thematic analysis, or grounded theory. The analysis should be guided by the research questions and should aim to provide insights and conclusions relevant to the research questions.
  • Draw conclusions: The conclusions drawn from the case study should be based on the data analysis and should be relevant to the research questions. The conclusions should be supported by evidence and should be clearly stated.
  • Validate the findings: The findings of the case study should be validated by reviewing the data and the analysis with participants or other experts in the field. This helps to ensure the validity and reliability of the findings.
  • Write the report: The final step is to write the report of the case study research. The report should provide a clear description of the case study phenomenon, the research questions, the data collection methods, the data analysis, the findings, and the conclusions. The report should be written in a clear and concise manner and should follow the guidelines for academic writing.

Examples of Case Study

Here are some examples of case study research:

  • The Hawthorne Studies : Conducted between 1924 and 1932, the Hawthorne Studies were a series of case studies conducted by Elton Mayo and his colleagues to examine the impact of work environment on employee productivity. The studies were conducted at the Hawthorne Works plant of the Western Electric Company in Chicago and included interviews, observations, and experiments.
  • The Stanford Prison Experiment: Conducted in 1971, the Stanford Prison Experiment was a case study conducted by Philip Zimbardo to examine the psychological effects of power and authority. The study involved simulating a prison environment and assigning participants to the role of guards or prisoners. The study was controversial due to the ethical issues it raised.
  • The Challenger Disaster: The Challenger Disaster was a case study conducted to examine the causes of the Space Shuttle Challenger explosion in 1986. The study included interviews, observations, and analysis of data to identify the technical, organizational, and cultural factors that contributed to the disaster.
  • The Enron Scandal: The Enron Scandal was a case study conducted to examine the causes of the Enron Corporation’s bankruptcy in 2001. The study included interviews, analysis of financial data, and review of documents to identify the accounting practices, corporate culture, and ethical issues that led to the company’s downfall.
  • The Fukushima Nuclear Disaster : The Fukushima Nuclear Disaster was a case study conducted to examine the causes of the nuclear accident that occurred at the Fukushima Daiichi Nuclear Power Plant in Japan in 2011. The study included interviews, analysis of data, and review of documents to identify the technical, organizational, and cultural factors that contributed to the disaster.

Application of Case Study

Case studies have a wide range of applications across various fields and industries. Here are some examples:

Business and Management

Case studies are widely used in business and management to examine real-life situations and develop problem-solving skills. Case studies can help students and professionals to develop a deep understanding of business concepts, theories, and best practices.

Case studies are used in healthcare to examine patient care, treatment options, and outcomes. Case studies can help healthcare professionals to develop critical thinking skills, diagnose complex medical conditions, and develop effective treatment plans.

Case studies are used in education to examine teaching and learning practices. Case studies can help educators to develop effective teaching strategies, evaluate student progress, and identify areas for improvement.

Social Sciences

Case studies are widely used in social sciences to examine human behavior, social phenomena, and cultural practices. Case studies can help researchers to develop theories, test hypotheses, and gain insights into complex social issues.

Law and Ethics

Case studies are used in law and ethics to examine legal and ethical dilemmas. Case studies can help lawyers, policymakers, and ethical professionals to develop critical thinking skills, analyze complex cases, and make informed decisions.

Purpose of Case Study

The purpose of a case study is to provide a detailed analysis of a specific phenomenon, issue, or problem in its real-life context. A case study is a qualitative research method that involves the in-depth exploration and analysis of a particular case, which can be an individual, group, organization, event, or community.

The primary purpose of a case study is to generate a comprehensive and nuanced understanding of the case, including its history, context, and dynamics. Case studies can help researchers to identify and examine the underlying factors, processes, and mechanisms that contribute to the case and its outcomes. This can help to develop a more accurate and detailed understanding of the case, which can inform future research, practice, or policy.

Case studies can also serve other purposes, including:

  • Illustrating a theory or concept: Case studies can be used to illustrate and explain theoretical concepts and frameworks, providing concrete examples of how they can be applied in real-life situations.
  • Developing hypotheses: Case studies can help to generate hypotheses about the causal relationships between different factors and outcomes, which can be tested through further research.
  • Providing insight into complex issues: Case studies can provide insights into complex and multifaceted issues, which may be difficult to understand through other research methods.
  • Informing practice or policy: Case studies can be used to inform practice or policy by identifying best practices, lessons learned, or areas for improvement.

Advantages of Case Study Research

There are several advantages of case study research, including:

  • In-depth exploration: Case study research allows for a detailed exploration and analysis of a specific phenomenon, issue, or problem in its real-life context. This can provide a comprehensive understanding of the case and its dynamics, which may not be possible through other research methods.
  • Rich data: Case study research can generate rich and detailed data, including qualitative data such as interviews, observations, and documents. This can provide a nuanced understanding of the case and its complexity.
  • Holistic perspective: Case study research allows for a holistic perspective of the case, taking into account the various factors, processes, and mechanisms that contribute to the case and its outcomes. This can help to develop a more accurate and comprehensive understanding of the case.
  • Theory development: Case study research can help to develop and refine theories and concepts by providing empirical evidence and concrete examples of how they can be applied in real-life situations.
  • Practical application: Case study research can inform practice or policy by identifying best practices, lessons learned, or areas for improvement.
  • Contextualization: Case study research takes into account the specific context in which the case is situated, which can help to understand how the case is influenced by the social, cultural, and historical factors of its environment.

Limitations of Case Study Research

There are several limitations of case study research, including:

  • Limited generalizability : Case studies are typically focused on a single case or a small number of cases, which limits the generalizability of the findings. The unique characteristics of the case may not be applicable to other contexts or populations, which may limit the external validity of the research.
  • Biased sampling: Case studies may rely on purposive or convenience sampling, which can introduce bias into the sample selection process. This may limit the representativeness of the sample and the generalizability of the findings.
  • Subjectivity: Case studies rely on the interpretation of the researcher, which can introduce subjectivity into the analysis. The researcher’s own biases, assumptions, and perspectives may influence the findings, which may limit the objectivity of the research.
  • Limited control: Case studies are typically conducted in naturalistic settings, which limits the control that the researcher has over the environment and the variables being studied. This may limit the ability to establish causal relationships between variables.
  • Time-consuming: Case studies can be time-consuming to conduct, as they typically involve a detailed exploration and analysis of a specific case. This may limit the feasibility of conducting multiple case studies or conducting case studies in a timely manner.
  • Resource-intensive: Case studies may require significant resources, including time, funding, and expertise. This may limit the ability of researchers to conduct case studies in resource-constrained settings.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Phenomenology

Phenomenology – Methods, Examples and Guide

Research Methods

Research Methods – Types, Examples and Guide

Explanatory Research

Explanatory Research – Types, Methods, Guide

Survey Research

Survey Research – Types, Methods, Examples

Qualitative Research

Qualitative Research – Methods, Analysis Types...

Experimental Research Design

Experimental Design – Types, Methods, Guide

research design types case studies

The Ultimate Guide to Qualitative Research - Part 1: The Basics

research design types case studies

  • Introduction and overview
  • What is qualitative research?
  • What is qualitative data?
  • Examples of qualitative data
  • Qualitative vs. quantitative research
  • Mixed methods
  • Qualitative research preparation
  • Theoretical perspective
  • Theoretical framework
  • Literature reviews

Research question

  • Conceptual framework
  • Conceptual vs. theoretical framework

Data collection

  • Qualitative research methods
  • Focus groups
  • Observational research

What is a case study?

Applications for case study research, what is a good case study, process of case study design, benefits and limitations of case studies.

  • Ethnographical research
  • Ethical considerations
  • Confidentiality and privacy
  • Power dynamics
  • Reflexivity

Case studies

Case studies are essential to qualitative research , offering a lens through which researchers can investigate complex phenomena within their real-life contexts. This chapter explores the concept, purpose, applications, examples, and types of case studies and provides guidance on how to conduct case study research effectively.

research design types case studies

Whereas quantitative methods look at phenomena at scale, case study research looks at a concept or phenomenon in considerable detail. While analyzing a single case can help understand one perspective regarding the object of research inquiry, analyzing multiple cases can help obtain a more holistic sense of the topic or issue. Let's provide a basic definition of a case study, then explore its characteristics and role in the qualitative research process.

Definition of a case study

A case study in qualitative research is a strategy of inquiry that involves an in-depth investigation of a phenomenon within its real-world context. It provides researchers with the opportunity to acquire an in-depth understanding of intricate details that might not be as apparent or accessible through other methods of research. The specific case or cases being studied can be a single person, group, or organization – demarcating what constitutes a relevant case worth studying depends on the researcher and their research question .

Among qualitative research methods , a case study relies on multiple sources of evidence, such as documents, artifacts, interviews , or observations , to present a complete and nuanced understanding of the phenomenon under investigation. The objective is to illuminate the readers' understanding of the phenomenon beyond its abstract statistical or theoretical explanations.

Characteristics of case studies

Case studies typically possess a number of distinct characteristics that set them apart from other research methods. These characteristics include a focus on holistic description and explanation, flexibility in the design and data collection methods, reliance on multiple sources of evidence, and emphasis on the context in which the phenomenon occurs.

Furthermore, case studies can often involve a longitudinal examination of the case, meaning they study the case over a period of time. These characteristics allow case studies to yield comprehensive, in-depth, and richly contextualized insights about the phenomenon of interest.

The role of case studies in research

Case studies hold a unique position in the broader landscape of research methods aimed at theory development. They are instrumental when the primary research interest is to gain an intensive, detailed understanding of a phenomenon in its real-life context.

In addition, case studies can serve different purposes within research - they can be used for exploratory, descriptive, or explanatory purposes, depending on the research question and objectives. This flexibility and depth make case studies a valuable tool in the toolkit of qualitative researchers.

Remember, a well-conducted case study can offer a rich, insightful contribution to both academic and practical knowledge through theory development or theory verification, thus enhancing our understanding of complex phenomena in their real-world contexts.

What is the purpose of a case study?

Case study research aims for a more comprehensive understanding of phenomena, requiring various research methods to gather information for qualitative analysis . Ultimately, a case study can allow the researcher to gain insight into a particular object of inquiry and develop a theoretical framework relevant to the research inquiry.

Why use case studies in qualitative research?

Using case studies as a research strategy depends mainly on the nature of the research question and the researcher's access to the data.

Conducting case study research provides a level of detail and contextual richness that other research methods might not offer. They are beneficial when there's a need to understand complex social phenomena within their natural contexts.

The explanatory, exploratory, and descriptive roles of case studies

Case studies can take on various roles depending on the research objectives. They can be exploratory when the research aims to discover new phenomena or define new research questions; they are descriptive when the objective is to depict a phenomenon within its context in a detailed manner; and they can be explanatory if the goal is to understand specific relationships within the studied context. Thus, the versatility of case studies allows researchers to approach their topic from different angles, offering multiple ways to uncover and interpret the data .

The impact of case studies on knowledge development

Case studies play a significant role in knowledge development across various disciplines. Analysis of cases provides an avenue for researchers to explore phenomena within their context based on the collected data.

research design types case studies

This can result in the production of rich, practical insights that can be instrumental in both theory-building and practice. Case studies allow researchers to delve into the intricacies and complexities of real-life situations, uncovering insights that might otherwise remain hidden.

Types of case studies

In qualitative research , a case study is not a one-size-fits-all approach. Depending on the nature of the research question and the specific objectives of the study, researchers might choose to use different types of case studies. These types differ in their focus, methodology, and the level of detail they provide about the phenomenon under investigation.

Understanding these types is crucial for selecting the most appropriate approach for your research project and effectively achieving your research goals. Let's briefly look at the main types of case studies.

Exploratory case studies

Exploratory case studies are typically conducted to develop a theory or framework around an understudied phenomenon. They can also serve as a precursor to a larger-scale research project. Exploratory case studies are useful when a researcher wants to identify the key issues or questions which can spur more extensive study or be used to develop propositions for further research. These case studies are characterized by flexibility, allowing researchers to explore various aspects of a phenomenon as they emerge, which can also form the foundation for subsequent studies.

Descriptive case studies

Descriptive case studies aim to provide a complete and accurate representation of a phenomenon or event within its context. These case studies are often based on an established theoretical framework, which guides how data is collected and analyzed. The researcher is concerned with describing the phenomenon in detail, as it occurs naturally, without trying to influence or manipulate it.

Explanatory case studies

Explanatory case studies are focused on explanation - they seek to clarify how or why certain phenomena occur. Often used in complex, real-life situations, they can be particularly valuable in clarifying causal relationships among concepts and understanding the interplay between different factors within a specific context.

research design types case studies

Intrinsic, instrumental, and collective case studies

These three categories of case studies focus on the nature and purpose of the study. An intrinsic case study is conducted when a researcher has an inherent interest in the case itself. Instrumental case studies are employed when the case is used to provide insight into a particular issue or phenomenon. A collective case study, on the other hand, involves studying multiple cases simultaneously to investigate some general phenomena.

Each type of case study serves a different purpose and has its own strengths and challenges. The selection of the type should be guided by the research question and objectives, as well as the context and constraints of the research.

The flexibility, depth, and contextual richness offered by case studies make this approach an excellent research method for various fields of study. They enable researchers to investigate real-world phenomena within their specific contexts, capturing nuances that other research methods might miss. Across numerous fields, case studies provide valuable insights into complex issues.

Critical information systems research

Case studies provide a detailed understanding of the role and impact of information systems in different contexts. They offer a platform to explore how information systems are designed, implemented, and used and how they interact with various social, economic, and political factors. Case studies in this field often focus on examining the intricate relationship between technology, organizational processes, and user behavior, helping to uncover insights that can inform better system design and implementation.

Health research

Health research is another field where case studies are highly valuable. They offer a way to explore patient experiences, healthcare delivery processes, and the impact of various interventions in a real-world context.

research design types case studies

Case studies can provide a deep understanding of a patient's journey, giving insights into the intricacies of disease progression, treatment effects, and the psychosocial aspects of health and illness.

Asthma research studies

Specifically within medical research, studies on asthma often employ case studies to explore the individual and environmental factors that influence asthma development, management, and outcomes. A case study can provide rich, detailed data about individual patients' experiences, from the triggers and symptoms they experience to the effectiveness of various management strategies. This can be crucial for developing patient-centered asthma care approaches.

Other fields

Apart from the fields mentioned, case studies are also extensively used in business and management research, education research, and political sciences, among many others. They provide an opportunity to delve into the intricacies of real-world situations, allowing for a comprehensive understanding of various phenomena.

Case studies, with their depth and contextual focus, offer unique insights across these varied fields. They allow researchers to illuminate the complexities of real-life situations, contributing to both theory and practice.

research design types case studies

Whatever field you're in, ATLAS.ti puts your data to work for you

Download a free trial of ATLAS.ti to turn your data into insights.

Understanding the key elements of case study design is crucial for conducting rigorous and impactful case study research. A well-structured design guides the researcher through the process, ensuring that the study is methodologically sound and its findings are reliable and valid. The main elements of case study design include the research question , propositions, units of analysis, and the logic linking the data to the propositions.

The research question is the foundation of any research study. A good research question guides the direction of the study and informs the selection of the case, the methods of collecting data, and the analysis techniques. A well-formulated research question in case study research is typically clear, focused, and complex enough to merit further detailed examination of the relevant case(s).

Propositions

Propositions, though not necessary in every case study, provide a direction by stating what we might expect to find in the data collected. They guide how data is collected and analyzed by helping researchers focus on specific aspects of the case. They are particularly important in explanatory case studies, which seek to understand the relationships among concepts within the studied phenomenon.

Units of analysis

The unit of analysis refers to the case, or the main entity or entities that are being analyzed in the study. In case study research, the unit of analysis can be an individual, a group, an organization, a decision, an event, or even a time period. It's crucial to clearly define the unit of analysis, as it shapes the qualitative data analysis process by allowing the researcher to analyze a particular case and synthesize analysis across multiple case studies to draw conclusions.

Argumentation

This refers to the inferential model that allows researchers to draw conclusions from the data. The researcher needs to ensure that there is a clear link between the data, the propositions (if any), and the conclusions drawn. This argumentation is what enables the researcher to make valid and credible inferences about the phenomenon under study.

Understanding and carefully considering these elements in the design phase of a case study can significantly enhance the quality of the research. It can help ensure that the study is methodologically sound and its findings contribute meaningful insights about the case.

Ready to jumpstart your research with ATLAS.ti?

Conceptualize your research project with our intuitive data analysis interface. Download a free trial today.

Conducting a case study involves several steps, from defining the research question and selecting the case to collecting and analyzing data . This section outlines these key stages, providing a practical guide on how to conduct case study research.

Defining the research question

The first step in case study research is defining a clear, focused research question. This question should guide the entire research process, from case selection to analysis. It's crucial to ensure that the research question is suitable for a case study approach. Typically, such questions are exploratory or descriptive in nature and focus on understanding a phenomenon within its real-life context.

Selecting and defining the case

The selection of the case should be based on the research question and the objectives of the study. It involves choosing a unique example or a set of examples that provide rich, in-depth data about the phenomenon under investigation. After selecting the case, it's crucial to define it clearly, setting the boundaries of the case, including the time period and the specific context.

Previous research can help guide the case study design. When considering a case study, an example of a case could be taken from previous case study research and used to define cases in a new research inquiry. Considering recently published examples can help understand how to select and define cases effectively.

Developing a detailed case study protocol

A case study protocol outlines the procedures and general rules to be followed during the case study. This includes the data collection methods to be used, the sources of data, and the procedures for analysis. Having a detailed case study protocol ensures consistency and reliability in the study.

The protocol should also consider how to work with the people involved in the research context to grant the research team access to collecting data. As mentioned in previous sections of this guide, establishing rapport is an essential component of qualitative research as it shapes the overall potential for collecting and analyzing data.

Collecting data

Gathering data in case study research often involves multiple sources of evidence, including documents, archival records, interviews, observations, and physical artifacts. This allows for a comprehensive understanding of the case. The process for gathering data should be systematic and carefully documented to ensure the reliability and validity of the study.

Analyzing and interpreting data

The next step is analyzing the data. This involves organizing the data , categorizing it into themes or patterns , and interpreting these patterns to answer the research question. The analysis might also involve comparing the findings with prior research or theoretical propositions.

Writing the case study report

The final step is writing the case study report . This should provide a detailed description of the case, the data, the analysis process, and the findings. The report should be clear, organized, and carefully written to ensure that the reader can understand the case and the conclusions drawn from it.

Each of these steps is crucial in ensuring that the case study research is rigorous, reliable, and provides valuable insights about the case.

The type, depth, and quality of data in your study can significantly influence the validity and utility of the study. In case study research, data is usually collected from multiple sources to provide a comprehensive and nuanced understanding of the case. This section will outline the various methods of collecting data used in case study research and discuss considerations for ensuring the quality of the data.

Interviews are a common method of gathering data in case study research. They can provide rich, in-depth data about the perspectives, experiences, and interpretations of the individuals involved in the case. Interviews can be structured , semi-structured , or unstructured , depending on the research question and the degree of flexibility needed.

Observations

Observations involve the researcher observing the case in its natural setting, providing first-hand information about the case and its context. Observations can provide data that might not be revealed in interviews or documents, such as non-verbal cues or contextual information.

Documents and artifacts

Documents and archival records provide a valuable source of data in case study research. They can include reports, letters, memos, meeting minutes, email correspondence, and various public and private documents related to the case.

research design types case studies

These records can provide historical context, corroborate evidence from other sources, and offer insights into the case that might not be apparent from interviews or observations.

Physical artifacts refer to any physical evidence related to the case, such as tools, products, or physical environments. These artifacts can provide tangible insights into the case, complementing the data gathered from other sources.

Ensuring the quality of data collection

Determining the quality of data in case study research requires careful planning and execution. It's crucial to ensure that the data is reliable, accurate, and relevant to the research question. This involves selecting appropriate methods of collecting data, properly training interviewers or observers, and systematically recording and storing the data. It also includes considering ethical issues related to collecting and handling data, such as obtaining informed consent and ensuring the privacy and confidentiality of the participants.

Data analysis

Analyzing case study research involves making sense of the rich, detailed data to answer the research question. This process can be challenging due to the volume and complexity of case study data. However, a systematic and rigorous approach to analysis can ensure that the findings are credible and meaningful. This section outlines the main steps and considerations in analyzing data in case study research.

Organizing the data

The first step in the analysis is organizing the data. This involves sorting the data into manageable sections, often according to the data source or the theme. This step can also involve transcribing interviews, digitizing physical artifacts, or organizing observational data.

Categorizing and coding the data

Once the data is organized, the next step is to categorize or code the data. This involves identifying common themes, patterns, or concepts in the data and assigning codes to relevant data segments. Coding can be done manually or with the help of software tools, and in either case, qualitative analysis software can greatly facilitate the entire coding process. Coding helps to reduce the data to a set of themes or categories that can be more easily analyzed.

Identifying patterns and themes

After coding the data, the researcher looks for patterns or themes in the coded data. This involves comparing and contrasting the codes and looking for relationships or patterns among them. The identified patterns and themes should help answer the research question.

Interpreting the data

Once patterns and themes have been identified, the next step is to interpret these findings. This involves explaining what the patterns or themes mean in the context of the research question and the case. This interpretation should be grounded in the data, but it can also involve drawing on theoretical concepts or prior research.

Verification of the data

The last step in the analysis is verification. This involves checking the accuracy and consistency of the analysis process and confirming that the findings are supported by the data. This can involve re-checking the original data, checking the consistency of codes, or seeking feedback from research participants or peers.

Like any research method , case study research has its strengths and limitations. Researchers must be aware of these, as they can influence the design, conduct, and interpretation of the study.

Understanding the strengths and limitations of case study research can also guide researchers in deciding whether this approach is suitable for their research question . This section outlines some of the key strengths and limitations of case study research.

Benefits include the following:

  • Rich, detailed data: One of the main strengths of case study research is that it can generate rich, detailed data about the case. This can provide a deep understanding of the case and its context, which can be valuable in exploring complex phenomena.
  • Flexibility: Case study research is flexible in terms of design , data collection , and analysis . A sufficient degree of flexibility allows the researcher to adapt the study according to the case and the emerging findings.
  • Real-world context: Case study research involves studying the case in its real-world context, which can provide valuable insights into the interplay between the case and its context.
  • Multiple sources of evidence: Case study research often involves collecting data from multiple sources , which can enhance the robustness and validity of the findings.

On the other hand, researchers should consider the following limitations:

  • Generalizability: A common criticism of case study research is that its findings might not be generalizable to other cases due to the specificity and uniqueness of each case.
  • Time and resource intensive: Case study research can be time and resource intensive due to the depth of the investigation and the amount of collected data.
  • Complexity of analysis: The rich, detailed data generated in case study research can make analyzing the data challenging.
  • Subjectivity: Given the nature of case study research, there may be a higher degree of subjectivity in interpreting the data , so researchers need to reflect on this and transparently convey to audiences how the research was conducted.

Being aware of these strengths and limitations can help researchers design and conduct case study research effectively and interpret and report the findings appropriately.

research design types case studies

Ready to analyze your data with ATLAS.ti?

See how our intuitive software can draw key insights from your data with a free trial today.

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology
  • Case Study | Definition, Examples & Methods

Case Study | Definition, Examples & Methods

Published on 5 May 2022 by Shona McCombes . Revised on 30 January 2023.

A case study is a detailed study of a specific subject, such as a person, group, place, event, organisation, or phenomenon. Case studies are commonly used in social, educational, clinical, and business research.

A case study research design usually involves qualitative methods , but quantitative methods are sometimes also used. Case studies are good for describing , comparing, evaluating, and understanding different aspects of a research problem .

Table of contents

When to do a case study, step 1: select a case, step 2: build a theoretical framework, step 3: collect your data, step 4: describe and analyse the case.

A case study is an appropriate research design when you want to gain concrete, contextual, in-depth knowledge about a specific real-world subject. It allows you to explore the key characteristics, meanings, and implications of the case.

Case studies are often a good choice in a thesis or dissertation . They keep your project focused and manageable when you don’t have the time or resources to do large-scale research.

You might use just one complex case study where you explore a single subject in depth, or conduct multiple case studies to compare and illuminate different aspects of your research problem.

Case study examples
Research question Case study
What are the ecological effects of wolf reintroduction? Case study of wolf reintroduction in Yellowstone National Park in the US
How do populist politicians use narratives about history to gain support? Case studies of Hungarian prime minister Viktor Orbán and US president Donald Trump
How can teachers implement active learning strategies in mixed-level classrooms? Case study of a local school that promotes active learning
What are the main advantages and disadvantages of wind farms for rural communities? Case studies of three rural wind farm development projects in different parts of the country
How are viral marketing strategies changing the relationship between companies and consumers? Case study of the iPhone X marketing campaign
How do experiences of work in the gig economy differ by gender, race, and age? Case studies of Deliveroo and Uber drivers in London

Prevent plagiarism, run a free check.

Once you have developed your problem statement and research questions , you should be ready to choose the specific case that you want to focus on. A good case study should have the potential to:

  • Provide new or unexpected insights into the subject
  • Challenge or complicate existing assumptions and theories
  • Propose practical courses of action to resolve a problem
  • Open up new directions for future research

Unlike quantitative or experimental research, a strong case study does not require a random or representative sample. In fact, case studies often deliberately focus on unusual, neglected, or outlying cases which may shed new light on the research problem.

If you find yourself aiming to simultaneously investigate and solve an issue, consider conducting action research . As its name suggests, action research conducts research and takes action at the same time, and is highly iterative and flexible. 

However, you can also choose a more common or representative case to exemplify a particular category, experience, or phenomenon.

While case studies focus more on concrete details than general theories, they should usually have some connection with theory in the field. This way the case study is not just an isolated description, but is integrated into existing knowledge about the topic. It might aim to:

  • Exemplify a theory by showing how it explains the case under investigation
  • Expand on a theory by uncovering new concepts and ideas that need to be incorporated
  • Challenge a theory by exploring an outlier case that doesn’t fit with established assumptions

To ensure that your analysis of the case has a solid academic grounding, you should conduct a literature review of sources related to the topic and develop a theoretical framework . This means identifying key concepts and theories to guide your analysis and interpretation.

There are many different research methods you can use to collect data on your subject. Case studies tend to focus on qualitative data using methods such as interviews, observations, and analysis of primary and secondary sources (e.g., newspaper articles, photographs, official records). Sometimes a case study will also collect quantitative data .

The aim is to gain as thorough an understanding as possible of the case and its context.

In writing up the case study, you need to bring together all the relevant aspects to give as complete a picture as possible of the subject.

How you report your findings depends on the type of research you are doing. Some case studies are structured like a standard scientific paper or thesis, with separate sections or chapters for the methods , results , and discussion .

Others are written in a more narrative style, aiming to explore the case from various angles and analyse its meanings and implications (for example, by using textual analysis or discourse analysis ).

In all cases, though, make sure to give contextual details about the case, connect it back to the literature and theory, and discuss how it fits into wider patterns or debates.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

McCombes, S. (2023, January 30). Case Study | Definition, Examples & Methods. Scribbr. Retrieved 22 July 2024, from https://www.scribbr.co.uk/research-methods/case-studies/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, correlational research | guide, design & examples, a quick guide to experimental design | 5 steps & examples, descriptive research design | definition, methods & examples.

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • Types of Research Designs Compared | Guide & Examples

Types of Research Designs Compared | Guide & Examples

Published on June 20, 2019 by Shona McCombes . Revised on June 22, 2023.

When you start planning a research project, developing research questions and creating a  research design , you will have to make various decisions about the type of research you want to do.

There are many ways to categorize different types of research. The words you use to describe your research depend on your discipline and field. In general, though, the form your research design takes will be shaped by:

  • The type of knowledge you aim to produce
  • The type of data you will collect and analyze
  • The sampling methods , timescale and location of the research

This article takes a look at some common distinctions made between different types of research and outlines the key differences between them.

Table of contents

Types of research aims, types of research data, types of sampling, timescale, and location, other interesting articles.

The first thing to consider is what kind of knowledge your research aims to contribute.

Type of research What’s the difference? What to consider
Basic vs. applied Basic research aims to , while applied research aims to . Do you want to expand scientific understanding or solve a practical problem?
vs. Exploratory research aims to , while explanatory research aims to . How much is already known about your research problem? Are you conducting initial research on a newly-identified issue, or seeking precise conclusions about an established issue?
aims to , while aims to . Is there already some theory on your research problem that you can use to develop , or do you want to propose new theories based on your findings?

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

research design types case studies

The next thing to consider is what type of data you will collect. Each kind of data is associated with a range of specific research methods and procedures.

Type of research What’s the difference? What to consider
Primary research vs secondary research Primary data is (e.g., through or ), while secondary data (e.g., in government or scientific publications). How much data is already available on your topic? Do you want to collect original data or analyze existing data (e.g., through a )?
, while . Is your research more concerned with measuring something or interpreting something? You can also create a research design that has elements of both.
vs Descriptive research gathers data , while experimental research . Do you want to identify characteristics, patterns and or test causal relationships between ?

Finally, you have to consider three closely related questions: how will you select the subjects or participants of the research? When and how often will you collect data from your subjects? And where will the research take place?

Keep in mind that the methods that you choose bring with them different risk factors and types of research bias . Biases aren’t completely avoidable, but can heavily impact the validity and reliability of your findings if left unchecked.

Type of research What’s the difference? What to consider
allows you to , while allows you to draw conclusions . Do you want to produce  knowledge that applies to many contexts or detailed knowledge about a specific context (e.g. in a )?
vs Cross-sectional studies , while longitudinal studies . Is your research question focused on understanding the current situation or tracking changes over time?
Field research vs laboratory research Field research takes place in , while laboratory research takes place in . Do you want to find out how something occurs in the real world or draw firm conclusions about cause and effect? Laboratory experiments have higher but lower .
Fixed design vs flexible design In a fixed research design the subjects, timescale and location are begins, while in a flexible design these aspects may . Do you want to test hypotheses and establish generalizable facts, or explore concepts and develop understanding? For measuring, testing and making generalizations, a fixed research design has higher .

Choosing between all these different research types is part of the process of creating your research design , which determines exactly how your research will be conducted. But the type of research is only the first step: next, you have to make more concrete decisions about your research methods and the details of the study.

Read more about creating a research design

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Normal distribution
  • Degrees of freedom
  • Null hypothesis
  • Discourse analysis
  • Control groups
  • Mixed methods research
  • Non-probability sampling
  • Quantitative research
  • Ecological validity

Research bias

  • Rosenthal effect
  • Implicit bias
  • Cognitive bias
  • Selection bias
  • Negativity bias
  • Status quo bias

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

McCombes, S. (2023, June 22). Types of Research Designs Compared | Guide & Examples. Scribbr. Retrieved July 22, 2024, from https://www.scribbr.com/methodology/types-of-research/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, what is a research design | types, guide & examples, qualitative vs. quantitative research | differences, examples & methods, what is a research methodology | steps & tips, "i thought ai proofreading was useless but..".

I've been using Scribbr for years now and I know it's a service that won't disappoint. It does a good job spotting mistakes”

What is case study research?

Last updated

8 February 2023

Reviewed by

Cathy Heath

Short on time? Get an AI generated summary of this article instead

Suppose a company receives a spike in the number of customer complaints, or medical experts discover an outbreak of illness affecting children but are not quite sure of the reason. In both cases, carrying out a case study could be the best way to get answers.

Organization

Case studies can be carried out across different disciplines, including education, medicine, sociology, and business.

Most case studies employ qualitative methods, but quantitative methods can also be used. Researchers can then describe, compare, evaluate, and identify patterns or cause-and-effect relationships between the various variables under study. They can then use this knowledge to decide what action to take. 

Another thing to note is that case studies are generally singular in their focus. This means they narrow focus to a particular area, making them highly subjective. You cannot always generalize the results of a case study and apply them to a larger population. However, they are valuable tools to illustrate a principle or develop a thesis.

Analyze case study research

Dovetail streamlines case study research to help you uncover and share actionable insights

  • What are the different types of case study designs?

Researchers can choose from a variety of case study designs. The design they choose is dependent on what questions they need to answer, the context of the research environment, how much data they already have, and what resources are available.

Here are the common types of case study design:

Explanatory

An explanatory case study is an initial explanation of the how or why that is behind something. This design is commonly used when studying a real-life phenomenon or event. Once the organization understands the reasons behind a phenomenon, it can then make changes to enhance or eliminate the variables causing it. 

Here is an example: How is co-teaching implemented in elementary schools? The title for a case study of this subject could be “Case Study of the Implementation of Co-Teaching in Elementary Schools.”

Descriptive

An illustrative or descriptive case study helps researchers shed light on an unfamiliar object or subject after a period of time. The case study provides an in-depth review of the issue at hand and adds real-world examples in the area the researcher wants the audience to understand. 

The researcher makes no inferences or causal statements about the object or subject under review. This type of design is often used to understand cultural shifts.

Here is an example: How did people cope with the 2004 Indian Ocean Tsunami? This case study could be titled "A Case Study of the 2004 Indian Ocean Tsunami and its Effect on the Indonesian Population."

Exploratory

Exploratory research is also called a pilot case study. It is usually the first step within a larger research project, often relying on questionnaires and surveys . Researchers use exploratory research to help narrow down their focus, define parameters, draft a specific research question , and/or identify variables in a larger study. This research design usually covers a wider area than others, and focuses on the ‘what’ and ‘who’ of a topic.

Here is an example: How do nutrition and socialization in early childhood affect learning in children? The title of the exploratory study may be “Case Study of the Effects of Nutrition and Socialization on Learning in Early Childhood.”

An intrinsic case study is specifically designed to look at a unique and special phenomenon. At the start of the study, the researcher defines the phenomenon and the uniqueness that differentiates it from others. 

In this case, researchers do not attempt to generalize, compare, or challenge the existing assumptions. Instead, they explore the unique variables to enhance understanding. Here is an example: “Case Study of Volcanic Lightning.”

This design can also be identified as a cumulative case study. It uses information from past studies or observations of groups of people in certain settings as the foundation of the new study. Given that it takes multiple areas into account, it allows for greater generalization than a single case study. 

The researchers also get an in-depth look at a particular subject from different viewpoints.  Here is an example: “Case Study of how PTSD affected Vietnam and Gulf War Veterans Differently Due to Advances in Military Technology.”

Critical instance

A critical case study incorporates both explanatory and intrinsic study designs. It does not have predetermined purposes beyond an investigation of the said subject. It can be used for a deeper explanation of the cause-and-effect relationship. It can also be used to question a common assumption or myth. 

The findings can then be used further to generalize whether they would also apply in a different environment.  Here is an example: “What Effect Does Prolonged Use of Social Media Have on the Mind of American Youth?”

Instrumental

Instrumental research attempts to achieve goals beyond understanding the object at hand. Researchers explore a larger subject through different, separate studies and use the findings to understand its relationship to another subject. This type of design also provides insight into an issue or helps refine a theory. 

For example, you may want to determine if violent behavior in children predisposes them to crime later in life. The focus is on the relationship between children and violent behavior, and why certain children do become violent. Here is an example: “Violence Breeds Violence: Childhood Exposure and Participation in Adult Crime.”

Evaluation case study design is employed to research the effects of a program, policy, or intervention, and assess its effectiveness and impact on future decision-making. 

For example, you might want to see whether children learn times tables quicker through an educational game on their iPad versus a more teacher-led intervention. Here is an example: “An Investigation of the Impact of an iPad Multiplication Game for Primary School Children.” 

  • When do you use case studies?

Case studies are ideal when you want to gain a contextual, concrete, or in-depth understanding of a particular subject. It helps you understand the characteristics, implications, and meanings of the subject.

They are also an excellent choice for those writing a thesis or dissertation, as they help keep the project focused on a particular area when resources or time may be too limited to cover a wider one. You may have to conduct several case studies to explore different aspects of the subject in question and understand the problem.

  • What are the steps to follow when conducting a case study?

1. Select a case

Once you identify the problem at hand and come up with questions, identify the case you will focus on. The study can provide insights into the subject at hand, challenge existing assumptions, propose a course of action, and/or open up new areas for further research.

2. Create a theoretical framework

While you will be focusing on a specific detail, the case study design you choose should be linked to existing knowledge on the topic. This prevents it from becoming an isolated description and allows for enhancing the existing information. 

It may expand the current theory by bringing up new ideas or concepts, challenge established assumptions, or exemplify a theory by exploring how it answers the problem at hand. A theoretical framework starts with a literature review of the sources relevant to the topic in focus. This helps in identifying key concepts to guide analysis and interpretation.

3. Collect the data

Case studies are frequently supplemented with qualitative data such as observations, interviews, and a review of both primary and secondary sources such as official records, news articles, and photographs. There may also be quantitative data —this data assists in understanding the case thoroughly.

4. Analyze your case

The results of the research depend on the research design. Most case studies are structured with chapters or topic headings for easy explanation and presentation. Others may be written as narratives to allow researchers to explore various angles of the topic and analyze its meanings and implications.

In all areas, always give a detailed contextual understanding of the case and connect it to the existing theory and literature before discussing how it fits into your problem area.

  • What are some case study examples?

What are the best approaches for introducing our product into the Kenyan market?

How does the change in marketing strategy aid in increasing the sales volumes of product Y?

How can teachers enhance student participation in classrooms?

How does poverty affect literacy levels in children?

Case study topics

Case study of product marketing strategies in the Kenyan market

Case study of the effects of a marketing strategy change on product Y sales volumes

Case study of X school teachers that encourage active student participation in the classroom

Case study of the effects of poverty on literacy levels in children

Should you be using a customer insights hub?

Do you want to discover previous research faster?

Do you share your research findings with others?

Do you analyze research data?

Start for free today, add your research, and get to key insights faster

Editor’s picks

Last updated: 18 April 2023

Last updated: 27 February 2023

Last updated: 6 February 2023

Last updated: 6 October 2023

Last updated: 5 February 2023

Last updated: 16 April 2023

Last updated: 9 March 2023

Last updated: 12 December 2023

Last updated: 11 March 2024

Last updated: 4 July 2024

Last updated: 6 March 2024

Last updated: 5 March 2024

Last updated: 13 May 2024

Latest articles

Related topics, .css-je19u9{-webkit-align-items:flex-end;-webkit-box-align:flex-end;-ms-flex-align:flex-end;align-items:flex-end;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-flex-direction:row;-ms-flex-direction:row;flex-direction:row;-webkit-box-flex-wrap:wrap;-webkit-flex-wrap:wrap;-ms-flex-wrap:wrap;flex-wrap:wrap;-webkit-box-pack:center;-ms-flex-pack:center;-webkit-justify-content:center;justify-content:center;row-gap:0;text-align:center;max-width:671px;}@media (max-width: 1079px){.css-je19u9{max-width:400px;}.css-je19u9>span{white-space:pre;}}@media (max-width: 799px){.css-je19u9{max-width:400px;}.css-je19u9>span{white-space:pre;}} decide what to .css-1kiodld{max-height:56px;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;}@media (max-width: 1079px){.css-1kiodld{display:none;}} build next, decide what to build next.

research design types case studies

Users report unexpectedly high data usage, especially during streaming sessions.

research design types case studies

Users find it hard to navigate from the home page to relevant playlists in the app.

research design types case studies

It would be great to have a sleep timer feature, especially for bedtime listening.

research design types case studies

I need better filters to find the songs or artists I’m looking for.

Organizing Your Social Sciences Research Paper

  • Types of Research Designs
  • Purpose of Guide
  • Design Flaws to Avoid
  • Independent and Dependent Variables
  • Glossary of Research Terms
  • Reading Research Effectively
  • Narrowing a Topic Idea
  • Broadening a Topic Idea
  • Extending the Timeliness of a Topic Idea
  • Academic Writing Style
  • Applying Critical Thinking
  • Choosing a Title
  • Making an Outline
  • Paragraph Development
  • Research Process Video Series
  • Executive Summary
  • The C.A.R.S. Model
  • Background Information
  • The Research Problem/Question
  • Theoretical Framework
  • Citation Tracking
  • Content Alert Services
  • Evaluating Sources
  • Primary Sources
  • Secondary Sources
  • Tiertiary Sources
  • Scholarly vs. Popular Publications
  • Qualitative Methods
  • Quantitative Methods
  • Insiderness
  • Using Non-Textual Elements
  • Limitations of the Study
  • Common Grammar Mistakes
  • Writing Concisely
  • Avoiding Plagiarism
  • Footnotes or Endnotes?
  • Further Readings
  • Generative AI and Writing
  • USC Libraries Tutorials and Other Guides
  • Bibliography

Introduction

Before beginning your paper, you need to decide how you plan to design the study .

The research design refers to the overall strategy and analytical approach that you have chosen in order to integrate, in a coherent and logical way, the different components of the study, thus ensuring that the research problem will be thoroughly investigated. It constitutes the blueprint for the collection, measurement, and interpretation of information and data. Note that the research problem determines the type of design you choose, not the other way around!

De Vaus, D. A. Research Design in Social Research . London: SAGE, 2001; Trochim, William M.K. Research Methods Knowledge Base. 2006.

General Structure and Writing Style

The function of a research design is to ensure that the evidence obtained enables you to effectively address the research problem logically and as unambiguously as possible . In social sciences research, obtaining information relevant to the research problem generally entails specifying the type of evidence needed to test the underlying assumptions of a theory, to evaluate a program, or to accurately describe and assess meaning related to an observable phenomenon.

With this in mind, a common mistake made by researchers is that they begin their investigations before they have thought critically about what information is required to address the research problem. Without attending to these design issues beforehand, the overall research problem will not be adequately addressed and any conclusions drawn will run the risk of being weak and unconvincing. As a consequence, the overall validity of the study will be undermined.

The length and complexity of describing the research design in your paper can vary considerably, but any well-developed description will achieve the following :

  • Identify the research problem clearly and justify its selection, particularly in relation to any valid alternative designs that could have been used,
  • Review and synthesize previously published literature associated with the research problem,
  • Clearly and explicitly specify hypotheses [i.e., research questions] central to the problem,
  • Effectively describe the information and/or data which will be necessary for an adequate testing of the hypotheses and explain how such information and/or data will be obtained, and
  • Describe the methods of analysis to be applied to the data in determining whether or not the hypotheses are true or false.

The research design is usually incorporated into the introduction of your paper . You can obtain an overall sense of what to do by reviewing studies that have utilized the same research design [e.g., using a case study approach]. This can help you develop an outline to follow for your own paper.

NOTE: Use the SAGE Research Methods Online and Cases and the SAGE Research Methods Videos databases to search for scholarly resources on how to apply specific research designs and methods . The Research Methods Online database contains links to more than 175,000 pages of SAGE publisher's book, journal, and reference content on quantitative, qualitative, and mixed research methodologies. Also included is a collection of case studies of social research projects that can be used to help you better understand abstract or complex methodological concepts. The Research Methods Videos database contains hours of tutorials, interviews, video case studies, and mini-documentaries covering the entire research process.

Creswell, John W. and J. David Creswell. Research Design: Qualitative, Quantitative, and Mixed Methods Approaches . 5th edition. Thousand Oaks, CA: Sage, 2018; De Vaus, D. A. Research Design in Social Research . London: SAGE, 2001; Gorard, Stephen. Research Design: Creating Robust Approaches for the Social Sciences . Thousand Oaks, CA: Sage, 2013; Leedy, Paul D. and Jeanne Ellis Ormrod. Practical Research: Planning and Design . Tenth edition. Boston, MA: Pearson, 2013; Vogt, W. Paul, Dianna C. Gardner, and Lynne M. Haeffele. When to Use What Research Design . New York: Guilford, 2012.

Action Research Design

Definition and Purpose

The essentials of action research design follow a characteristic cycle whereby initially an exploratory stance is adopted, where an understanding of a problem is developed and plans are made for some form of interventionary strategy. Then the intervention is carried out [the "action" in action research] during which time, pertinent observations are collected in various forms. The new interventional strategies are carried out, and this cyclic process repeats, continuing until a sufficient understanding of [or a valid implementation solution for] the problem is achieved. The protocol is iterative or cyclical in nature and is intended to foster deeper understanding of a given situation, starting with conceptualizing and particularizing the problem and moving through several interventions and evaluations.

What do these studies tell you ?

  • This is a collaborative and adaptive research design that lends itself to use in work or community situations.
  • Design focuses on pragmatic and solution-driven research outcomes rather than testing theories.
  • When practitioners use action research, it has the potential to increase the amount they learn consciously from their experience; the action research cycle can be regarded as a learning cycle.
  • Action research studies often have direct and obvious relevance to improving practice and advocating for change.
  • There are no hidden controls or preemption of direction by the researcher.

What these studies don't tell you ?

  • It is harder to do than conducting conventional research because the researcher takes on responsibilities of advocating for change as well as for researching the topic.
  • Action research is much harder to write up because it is less likely that you can use a standard format to report your findings effectively [i.e., data is often in the form of stories or observation].
  • Personal over-involvement of the researcher may bias research results.
  • The cyclic nature of action research to achieve its twin outcomes of action [e.g. change] and research [e.g. understanding] is time-consuming and complex to conduct.
  • Advocating for change usually requires buy-in from study participants.

Coghlan, David and Mary Brydon-Miller. The Sage Encyclopedia of Action Research . Thousand Oaks, CA:  Sage, 2014; Efron, Sara Efrat and Ruth Ravid. Action Research in Education: A Practical Guide . New York: Guilford, 2013; Gall, Meredith. Educational Research: An Introduction . Chapter 18, Action Research. 8th ed. Boston, MA: Pearson/Allyn and Bacon, 2007; Gorard, Stephen. Research Design: Creating Robust Approaches for the Social Sciences . Thousand Oaks, CA: Sage, 2013; Kemmis, Stephen and Robin McTaggart. “Participatory Action Research.” In Handbook of Qualitative Research . Norman Denzin and Yvonna S. Lincoln, eds. 2nd ed. (Thousand Oaks, CA: SAGE, 2000), pp. 567-605; McNiff, Jean. Writing and Doing Action Research . London: Sage, 2014; Reason, Peter and Hilary Bradbury. Handbook of Action Research: Participative Inquiry and Practice . Thousand Oaks, CA: SAGE, 2001.

Case Study Design

A case study is an in-depth study of a particular research problem rather than a sweeping statistical survey or comprehensive comparative inquiry. It is often used to narrow down a very broad field of research into one or a few easily researchable examples. The case study research design is also useful for testing whether a specific theory and model actually applies to phenomena in the real world. It is a useful design when not much is known about an issue or phenomenon.

  • Approach excels at bringing us to an understanding of a complex issue through detailed contextual analysis of a limited number of events or conditions and their relationships.
  • A researcher using a case study design can apply a variety of methodologies and rely on a variety of sources to investigate a research problem.
  • Design can extend experience or add strength to what is already known through previous research.
  • Social scientists, in particular, make wide use of this research design to examine contemporary real-life situations and provide the basis for the application of concepts and theories and the extension of methodologies.
  • The design can provide detailed descriptions of specific and rare cases.
  • A single or small number of cases offers little basis for establishing reliability or to generalize the findings to a wider population of people, places, or things.
  • Intense exposure to the study of a case may bias a researcher's interpretation of the findings.
  • Design does not facilitate assessment of cause and effect relationships.
  • Vital information may be missing, making the case hard to interpret.
  • The case may not be representative or typical of the larger problem being investigated.
  • If the criteria for selecting a case is because it represents a very unusual or unique phenomenon or problem for study, then your interpretation of the findings can only apply to that particular case.

Case Studies. Writing@CSU. Colorado State University; Anastas, Jeane W. Research Design for Social Work and the Human Services . Chapter 4, Flexible Methods: Case Study Design. 2nd ed. New York: Columbia University Press, 1999; Gerring, John. “What Is a Case Study and What Is It Good for?” American Political Science Review 98 (May 2004): 341-354; Greenhalgh, Trisha, editor. Case Study Evaluation: Past, Present and Future Challenges . Bingley, UK: Emerald Group Publishing, 2015; Mills, Albert J. , Gabrielle Durepos, and Eiden Wiebe, editors. Encyclopedia of Case Study Research . Thousand Oaks, CA: SAGE Publications, 2010; Stake, Robert E. The Art of Case Study Research . Thousand Oaks, CA: SAGE, 1995; Yin, Robert K. Case Study Research: Design and Theory . Applied Social Research Methods Series, no. 5. 3rd ed. Thousand Oaks, CA: SAGE, 2003.

Causal Design

Causality studies may be thought of as understanding a phenomenon in terms of conditional statements in the form, “If X, then Y.” This type of research is used to measure what impact a specific change will have on existing norms and assumptions. Most social scientists seek causal explanations that reflect tests of hypotheses. Causal effect (nomothetic perspective) occurs when variation in one phenomenon, an independent variable, leads to or results, on average, in variation in another phenomenon, the dependent variable.

Conditions necessary for determining causality:

  • Empirical association -- a valid conclusion is based on finding an association between the independent variable and the dependent variable.
  • Appropriate time order -- to conclude that causation was involved, one must see that cases were exposed to variation in the independent variable before variation in the dependent variable.
  • Nonspuriousness -- a relationship between two variables that is not due to variation in a third variable.
  • Causality research designs assist researchers in understanding why the world works the way it does through the process of proving a causal link between variables and by the process of eliminating other possibilities.
  • Replication is possible.
  • There is greater confidence the study has internal validity due to the systematic subject selection and equity of groups being compared.
  • Not all relationships are causal! The possibility always exists that, by sheer coincidence, two unrelated events appear to be related [e.g., Punxatawney Phil could accurately predict the duration of Winter for five consecutive years but, the fact remains, he's just a big, furry rodent].
  • Conclusions about causal relationships are difficult to determine due to a variety of extraneous and confounding variables that exist in a social environment. This means causality can only be inferred, never proven.
  • If two variables are correlated, the cause must come before the effect. However, even though two variables might be causally related, it can sometimes be difficult to determine which variable comes first and, therefore, to establish which variable is the actual cause and which is the  actual effect.

Beach, Derek and Rasmus Brun Pedersen. Causal Case Study Methods: Foundations and Guidelines for Comparing, Matching, and Tracing . Ann Arbor, MI: University of Michigan Press, 2016; Bachman, Ronet. The Practice of Research in Criminology and Criminal Justice . Chapter 5, Causation and Research Designs. 3rd ed. Thousand Oaks, CA: Pine Forge Press, 2007; Brewer, Ernest W. and Jennifer Kubn. “Causal-Comparative Design.” In Encyclopedia of Research Design . Neil J. Salkind, editor. (Thousand Oaks, CA: Sage, 2010), pp. 125-132; Causal Research Design: Experimentation. Anonymous SlideShare Presentation; Gall, Meredith. Educational Research: An Introduction . Chapter 11, Nonexperimental Research: Correlational Designs. 8th ed. Boston, MA: Pearson/Allyn and Bacon, 2007; Trochim, William M.K. Research Methods Knowledge Base. 2006.

Cohort Design

Often used in the medical sciences, but also found in the applied social sciences, a cohort study generally refers to a study conducted over a period of time involving members of a population which the subject or representative member comes from, and who are united by some commonality or similarity. Using a quantitative framework, a cohort study makes note of statistical occurrence within a specialized subgroup, united by same or similar characteristics that are relevant to the research problem being investigated, rather than studying statistical occurrence within the general population. Using a qualitative framework, cohort studies generally gather data using methods of observation. Cohorts can be either "open" or "closed."

  • Open Cohort Studies [dynamic populations, such as the population of Los Angeles] involve a population that is defined just by the state of being a part of the study in question (and being monitored for the outcome). Date of entry and exit from the study is individually defined, therefore, the size of the study population is not constant. In open cohort studies, researchers can only calculate rate based data, such as, incidence rates and variants thereof.
  • Closed Cohort Studies [static populations, such as patients entered into a clinical trial] involve participants who enter into the study at one defining point in time and where it is presumed that no new participants can enter the cohort. Given this, the number of study participants remains constant (or can only decrease).
  • The use of cohorts is often mandatory because a randomized control study may be unethical. For example, you cannot deliberately expose people to asbestos, you can only study its effects on those who have already been exposed. Research that measures risk factors often relies upon cohort designs.
  • Because cohort studies measure potential causes before the outcome has occurred, they can demonstrate that these “causes” preceded the outcome, thereby avoiding the debate as to which is the cause and which is the effect.
  • Cohort analysis is highly flexible and can provide insight into effects over time and related to a variety of different types of changes [e.g., social, cultural, political, economic, etc.].
  • Either original data or secondary data can be used in this design.
  • In cases where a comparative analysis of two cohorts is made [e.g., studying the effects of one group exposed to asbestos and one that has not], a researcher cannot control for all other factors that might differ between the two groups. These factors are known as confounding variables.
  • Cohort studies can end up taking a long time to complete if the researcher must wait for the conditions of interest to develop within the group. This also increases the chance that key variables change during the course of the study, potentially impacting the validity of the findings.
  • Due to the lack of randominization in the cohort design, its external validity is lower than that of study designs where the researcher randomly assigns participants.

Healy P, Devane D. “Methodological Considerations in Cohort Study Designs.” Nurse Researcher 18 (2011): 32-36; Glenn, Norval D, editor. Cohort Analysis . 2nd edition. Thousand Oaks, CA: Sage, 2005; Levin, Kate Ann. Study Design IV: Cohort Studies. Evidence-Based Dentistry 7 (2003): 51–52; Payne, Geoff. “Cohort Study.” In The SAGE Dictionary of Social Research Methods . Victor Jupp, editor. (Thousand Oaks, CA: Sage, 2006), pp. 31-33; Study Design 101. Himmelfarb Health Sciences Library. George Washington University, November 2011; Cohort Study. Wikipedia.

Cross-Sectional Design

Cross-sectional research designs have three distinctive features: no time dimension; a reliance on existing differences rather than change following intervention; and, groups are selected based on existing differences rather than random allocation. The cross-sectional design can only measure differences between or from among a variety of people, subjects, or phenomena rather than a process of change. As such, researchers using this design can only employ a relatively passive approach to making causal inferences based on findings.

  • Cross-sectional studies provide a clear 'snapshot' of the outcome and the characteristics associated with it, at a specific point in time.
  • Unlike an experimental design, where there is an active intervention by the researcher to produce and measure change or to create differences, cross-sectional designs focus on studying and drawing inferences from existing differences between people, subjects, or phenomena.
  • Entails collecting data at and concerning one point in time. While longitudinal studies involve taking multiple measures over an extended period of time, cross-sectional research is focused on finding relationships between variables at one moment in time.
  • Groups identified for study are purposely selected based upon existing differences in the sample rather than seeking random sampling.
  • Cross-section studies are capable of using data from a large number of subjects and, unlike observational studies, is not geographically bound.
  • Can estimate prevalence of an outcome of interest because the sample is usually taken from the whole population.
  • Because cross-sectional designs generally use survey techniques to gather data, they are relatively inexpensive and take up little time to conduct.
  • Finding people, subjects, or phenomena to study that are very similar except in one specific variable can be difficult.
  • Results are static and time bound and, therefore, give no indication of a sequence of events or reveal historical or temporal contexts.
  • Studies cannot be utilized to establish cause and effect relationships.
  • This design only provides a snapshot of analysis so there is always the possibility that a study could have differing results if another time-frame had been chosen.
  • There is no follow up to the findings.

Bethlehem, Jelke. "7: Cross-sectional Research." In Research Methodology in the Social, Behavioural and Life Sciences . Herman J Adèr and Gideon J Mellenbergh, editors. (London, England: Sage, 1999), pp. 110-43; Bourque, Linda B. “Cross-Sectional Design.” In  The SAGE Encyclopedia of Social Science Research Methods . Michael S. Lewis-Beck, Alan Bryman, and Tim Futing Liao. (Thousand Oaks, CA: 2004), pp. 230-231; Hall, John. “Cross-Sectional Survey Design.” In Encyclopedia of Survey Research Methods . Paul J. Lavrakas, ed. (Thousand Oaks, CA: Sage, 2008), pp. 173-174; Helen Barratt, Maria Kirwan. Cross-Sectional Studies: Design Application, Strengths and Weaknesses of Cross-Sectional Studies. Healthknowledge, 2009. Cross-Sectional Study. Wikipedia.

Descriptive Design

Descriptive research designs help provide answers to the questions of who, what, when, where, and how associated with a particular research problem; a descriptive study cannot conclusively ascertain answers to why. Descriptive research is used to obtain information concerning the current status of the phenomena and to describe "what exists" with respect to variables or conditions in a situation.

  • The subject is being observed in a completely natural and unchanged natural environment. True experiments, whilst giving analyzable data, often adversely influence the normal behavior of the subject [a.k.a., the Heisenberg effect whereby measurements of certain systems cannot be made without affecting the systems].
  • Descriptive research is often used as a pre-cursor to more quantitative research designs with the general overview giving some valuable pointers as to what variables are worth testing quantitatively.
  • If the limitations are understood, they can be a useful tool in developing a more focused study.
  • Descriptive studies can yield rich data that lead to important recommendations in practice.
  • Appoach collects a large amount of data for detailed analysis.
  • The results from a descriptive research cannot be used to discover a definitive answer or to disprove a hypothesis.
  • Because descriptive designs often utilize observational methods [as opposed to quantitative methods], the results cannot be replicated.
  • The descriptive function of research is heavily dependent on instrumentation for measurement and observation.

Anastas, Jeane W. Research Design for Social Work and the Human Services . Chapter 5, Flexible Methods: Descriptive Research. 2nd ed. New York: Columbia University Press, 1999; Given, Lisa M. "Descriptive Research." In Encyclopedia of Measurement and Statistics . Neil J. Salkind and Kristin Rasmussen, editors. (Thousand Oaks, CA: Sage, 2007), pp. 251-254; McNabb, Connie. Descriptive Research Methodologies. Powerpoint Presentation; Shuttleworth, Martyn. Descriptive Research Design, September 26, 2008; Erickson, G. Scott. "Descriptive Research Design." In New Methods of Market Research and Analysis . (Northampton, MA: Edward Elgar Publishing, 2017), pp. 51-77; Sahin, Sagufta, and Jayanta Mete. "A Brief Study on Descriptive Research: Its Nature and Application in Social Science." International Journal of Research and Analysis in Humanities 1 (2021): 11; K. Swatzell and P. Jennings. “Descriptive Research: The Nuts and Bolts.” Journal of the American Academy of Physician Assistants 20 (2007), pp. 55-56; Kane, E. Doing Your Own Research: Basic Descriptive Research in the Social Sciences and Humanities . London: Marion Boyars, 1985.

Experimental Design

A blueprint of the procedure that enables the researcher to maintain control over all factors that may affect the result of an experiment. In doing this, the researcher attempts to determine or predict what may occur. Experimental research is often used where there is time priority in a causal relationship (cause precedes effect), there is consistency in a causal relationship (a cause will always lead to the same effect), and the magnitude of the correlation is great. The classic experimental design specifies an experimental group and a control group. The independent variable is administered to the experimental group and not to the control group, and both groups are measured on the same dependent variable. Subsequent experimental designs have used more groups and more measurements over longer periods. True experiments must have control, randomization, and manipulation.

  • Experimental research allows the researcher to control the situation. In so doing, it allows researchers to answer the question, “What causes something to occur?”
  • Permits the researcher to identify cause and effect relationships between variables and to distinguish placebo effects from treatment effects.
  • Experimental research designs support the ability to limit alternative explanations and to infer direct causal relationships in the study.
  • Approach provides the highest level of evidence for single studies.
  • The design is artificial, and results may not generalize well to the real world.
  • The artificial settings of experiments may alter the behaviors or responses of participants.
  • Experimental designs can be costly if special equipment or facilities are needed.
  • Some research problems cannot be studied using an experiment because of ethical or technical reasons.
  • Difficult to apply ethnographic and other qualitative methods to experimentally designed studies.

Anastas, Jeane W. Research Design for Social Work and the Human Services . Chapter 7, Flexible Methods: Experimental Research. 2nd ed. New York: Columbia University Press, 1999; Chapter 2: Research Design, Experimental Designs. School of Psychology, University of New England, 2000; Chow, Siu L. "Experimental Design." In Encyclopedia of Research Design . Neil J. Salkind, editor. (Thousand Oaks, CA: Sage, 2010), pp. 448-453; "Experimental Design." In Social Research Methods . Nicholas Walliman, editor. (London, England: Sage, 2006), pp, 101-110; Experimental Research. Research Methods by Dummies. Department of Psychology. California State University, Fresno, 2006; Kirk, Roger E. Experimental Design: Procedures for the Behavioral Sciences . 4th edition. Thousand Oaks, CA: Sage, 2013; Trochim, William M.K. Experimental Design. Research Methods Knowledge Base. 2006; Rasool, Shafqat. Experimental Research. Slideshare presentation.

Exploratory Design

An exploratory design is conducted about a research problem when there are few or no earlier studies to refer to or rely upon to predict an outcome . The focus is on gaining insights and familiarity for later investigation or undertaken when research problems are in a preliminary stage of investigation. Exploratory designs are often used to establish an understanding of how best to proceed in studying an issue or what methodology would effectively apply to gathering information about the issue.

The goals of exploratory research are intended to produce the following possible insights:

  • Familiarity with basic details, settings, and concerns.
  • Well grounded picture of the situation being developed.
  • Generation of new ideas and assumptions.
  • Development of tentative theories or hypotheses.
  • Determination about whether a study is feasible in the future.
  • Issues get refined for more systematic investigation and formulation of new research questions.
  • Direction for future research and techniques get developed.
  • Design is a useful approach for gaining background information on a particular topic.
  • Exploratory research is flexible and can address research questions of all types (what, why, how).
  • Provides an opportunity to define new terms and clarify existing concepts.
  • Exploratory research is often used to generate formal hypotheses and develop more precise research problems.
  • In the policy arena or applied to practice, exploratory studies help establish research priorities and where resources should be allocated.
  • Exploratory research generally utilizes small sample sizes and, thus, findings are typically not generalizable to the population at large.
  • The exploratory nature of the research inhibits an ability to make definitive conclusions about the findings. They provide insight but not definitive conclusions.
  • The research process underpinning exploratory studies is flexible but often unstructured, leading to only tentative results that have limited value to decision-makers.
  • Design lacks rigorous standards applied to methods of data gathering and analysis because one of the areas for exploration could be to determine what method or methodologies could best fit the research problem.

Cuthill, Michael. “Exploratory Research: Citizen Participation, Local Government, and Sustainable Development in Australia.” Sustainable Development 10 (2002): 79-89; Streb, Christoph K. "Exploratory Case Study." In Encyclopedia of Case Study Research . Albert J. Mills, Gabrielle Durepos and Eiden Wiebe, editors. (Thousand Oaks, CA: Sage, 2010), pp. 372-374; Taylor, P. J., G. Catalano, and D.R.F. Walker. “Exploratory Analysis of the World City Network.” Urban Studies 39 (December 2002): 2377-2394; Exploratory Research. Wikipedia.

Field Research Design

Sometimes referred to as ethnography or participant observation, designs around field research encompass a variety of interpretative procedures [e.g., observation and interviews] rooted in qualitative approaches to studying people individually or in groups while inhabiting their natural environment as opposed to using survey instruments or other forms of impersonal methods of data gathering. Information acquired from observational research takes the form of “ field notes ” that involves documenting what the researcher actually sees and hears while in the field. Findings do not consist of conclusive statements derived from numbers and statistics because field research involves analysis of words and observations of behavior. Conclusions, therefore, are developed from an interpretation of findings that reveal overriding themes, concepts, and ideas. More information can be found HERE .

  • Field research is often necessary to fill gaps in understanding the research problem applied to local conditions or to specific groups of people that cannot be ascertained from existing data.
  • The research helps contextualize already known information about a research problem, thereby facilitating ways to assess the origins, scope, and scale of a problem and to gage the causes, consequences, and means to resolve an issue based on deliberate interaction with people in their natural inhabited spaces.
  • Enables the researcher to corroborate or confirm data by gathering additional information that supports or refutes findings reported in prior studies of the topic.
  • Because the researcher in embedded in the field, they are better able to make observations or ask questions that reflect the specific cultural context of the setting being investigated.
  • Observing the local reality offers the opportunity to gain new perspectives or obtain unique data that challenges existing theoretical propositions or long-standing assumptions found in the literature.

What these studies don't tell you

  • A field research study requires extensive time and resources to carry out the multiple steps involved with preparing for the gathering of information, including for example, examining background information about the study site, obtaining permission to access the study site, and building trust and rapport with subjects.
  • Requires a commitment to staying engaged in the field to ensure that you can adequately document events and behaviors as they unfold.
  • The unpredictable nature of fieldwork means that researchers can never fully control the process of data gathering. They must maintain a flexible approach to studying the setting because events and circumstances can change quickly or unexpectedly.
  • Findings can be difficult to interpret and verify without access to documents and other source materials that help to enhance the credibility of information obtained from the field  [i.e., the act of triangulating the data].
  • Linking the research problem to the selection of study participants inhabiting their natural environment is critical. However, this specificity limits the ability to generalize findings to different situations or in other contexts or to infer courses of action applied to other settings or groups of people.
  • The reporting of findings must take into account how the researcher themselves may have inadvertently affected respondents and their behaviors.

Historical Design

The purpose of a historical research design is to collect, verify, and synthesize evidence from the past to establish facts that defend or refute a hypothesis. It uses secondary sources and a variety of primary documentary evidence, such as, diaries, official records, reports, archives, and non-textual information [maps, pictures, audio and visual recordings]. The limitation is that the sources must be both authentic and valid.

  • The historical research design is unobtrusive; the act of research does not affect the results of the study.
  • The historical approach is well suited for trend analysis.
  • Historical records can add important contextual background required to more fully understand and interpret a research problem.
  • There is often no possibility of researcher-subject interaction that could affect the findings.
  • Historical sources can be used over and over to study different research problems or to replicate a previous study.
  • The ability to fulfill the aims of your research are directly related to the amount and quality of documentation available to understand the research problem.
  • Since historical research relies on data from the past, there is no way to manipulate it to control for contemporary contexts.
  • Interpreting historical sources can be very time consuming.
  • The sources of historical materials must be archived consistently to ensure access. This may especially challenging for digital or online-only sources.
  • Original authors bring their own perspectives and biases to the interpretation of past events and these biases are more difficult to ascertain in historical resources.
  • Due to the lack of control over external variables, historical research is very weak with regard to the demands of internal validity.
  • It is rare that the entirety of historical documentation needed to fully address a research problem is available for interpretation, therefore, gaps need to be acknowledged.

Howell, Martha C. and Walter Prevenier. From Reliable Sources: An Introduction to Historical Methods . Ithaca, NY: Cornell University Press, 2001; Lundy, Karen Saucier. "Historical Research." In The Sage Encyclopedia of Qualitative Research Methods . Lisa M. Given, editor. (Thousand Oaks, CA: Sage, 2008), pp. 396-400; Marius, Richard. and Melvin E. Page. A Short Guide to Writing about History . 9th edition. Boston, MA: Pearson, 2015; Savitt, Ronald. “Historical Research in Marketing.” Journal of Marketing 44 (Autumn, 1980): 52-58;  Gall, Meredith. Educational Research: An Introduction . Chapter 16, Historical Research. 8th ed. Boston, MA: Pearson/Allyn and Bacon, 2007.

Longitudinal Design

A longitudinal study follows the same sample over time and makes repeated observations. For example, with longitudinal surveys, the same group of people is interviewed at regular intervals, enabling researchers to track changes over time and to relate them to variables that might explain why the changes occur. Longitudinal research designs describe patterns of change and help establish the direction and magnitude of causal relationships. Measurements are taken on each variable over two or more distinct time periods. This allows the researcher to measure change in variables over time. It is a type of observational study sometimes referred to as a panel study.

  • Longitudinal data facilitate the analysis of the duration of a particular phenomenon.
  • Enables survey researchers to get close to the kinds of causal explanations usually attainable only with experiments.
  • The design permits the measurement of differences or change in a variable from one period to another [i.e., the description of patterns of change over time].
  • Longitudinal studies facilitate the prediction of future outcomes based upon earlier factors.
  • The data collection method may change over time.
  • Maintaining the integrity of the original sample can be difficult over an extended period of time.
  • It can be difficult to show more than one variable at a time.
  • This design often needs qualitative research data to explain fluctuations in the results.
  • A longitudinal research design assumes present trends will continue unchanged.
  • It can take a long period of time to gather results.
  • There is a need to have a large sample size and accurate sampling to reach representativness.

Anastas, Jeane W. Research Design for Social Work and the Human Services . Chapter 6, Flexible Methods: Relational and Longitudinal Research. 2nd ed. New York: Columbia University Press, 1999; Forgues, Bernard, and Isabelle Vandangeon-Derumez. "Longitudinal Analyses." In Doing Management Research . Raymond-Alain Thiétart and Samantha Wauchope, editors. (London, England: Sage, 2001), pp. 332-351; Kalaian, Sema A. and Rafa M. Kasim. "Longitudinal Studies." In Encyclopedia of Survey Research Methods . Paul J. Lavrakas, ed. (Thousand Oaks, CA: Sage, 2008), pp. 440-441; Menard, Scott, editor. Longitudinal Research . Thousand Oaks, CA: Sage, 2002; Ployhart, Robert E. and Robert J. Vandenberg. "Longitudinal Research: The Theory, Design, and Analysis of Change.” Journal of Management 36 (January 2010): 94-120; Longitudinal Study. Wikipedia.

Meta-Analysis Design

Meta-analysis is an analytical methodology designed to systematically evaluate and summarize the results from a number of individual studies, thereby, increasing the overall sample size and the ability of the researcher to study effects of interest. The purpose is to not simply summarize existing knowledge, but to develop a new understanding of a research problem using synoptic reasoning. The main objectives of meta-analysis include analyzing differences in the results among studies and increasing the precision by which effects are estimated. A well-designed meta-analysis depends upon strict adherence to the criteria used for selecting studies and the availability of information in each study to properly analyze their findings. Lack of information can severely limit the type of analyzes and conclusions that can be reached. In addition, the more dissimilarity there is in the results among individual studies [heterogeneity], the more difficult it is to justify interpretations that govern a valid synopsis of results. A meta-analysis needs to fulfill the following requirements to ensure the validity of your findings:

  • Clearly defined description of objectives, including precise definitions of the variables and outcomes that are being evaluated;
  • A well-reasoned and well-documented justification for identification and selection of the studies;
  • Assessment and explicit acknowledgment of any researcher bias in the identification and selection of those studies;
  • Description and evaluation of the degree of heterogeneity among the sample size of studies reviewed; and,
  • Justification of the techniques used to evaluate the studies.
  • Can be an effective strategy for determining gaps in the literature.
  • Provides a means of reviewing research published about a particular topic over an extended period of time and from a variety of sources.
  • Is useful in clarifying what policy or programmatic actions can be justified on the basis of analyzing research results from multiple studies.
  • Provides a method for overcoming small sample sizes in individual studies that previously may have had little relationship to each other.
  • Can be used to generate new hypotheses or highlight research problems for future studies.
  • Small violations in defining the criteria used for content analysis can lead to difficult to interpret and/or meaningless findings.
  • A large sample size can yield reliable, but not necessarily valid, results.
  • A lack of uniformity regarding, for example, the type of literature reviewed, how methods are applied, and how findings are measured within the sample of studies you are analyzing, can make the process of synthesis difficult to perform.
  • Depending on the sample size, the process of reviewing and synthesizing multiple studies can be very time consuming.

Beck, Lewis W. "The Synoptic Method." The Journal of Philosophy 36 (1939): 337-345; Cooper, Harris, Larry V. Hedges, and Jeffrey C. Valentine, eds. The Handbook of Research Synthesis and Meta-Analysis . 2nd edition. New York: Russell Sage Foundation, 2009; Guzzo, Richard A., Susan E. Jackson and Raymond A. Katzell. “Meta-Analysis Analysis.” In Research in Organizational Behavior , Volume 9. (Greenwich, CT: JAI Press, 1987), pp 407-442; Lipsey, Mark W. and David B. Wilson. Practical Meta-Analysis . Thousand Oaks, CA: Sage Publications, 2001; Study Design 101. Meta-Analysis. The Himmelfarb Health Sciences Library, George Washington University; Timulak, Ladislav. “Qualitative Meta-Analysis.” In The SAGE Handbook of Qualitative Data Analysis . Uwe Flick, editor. (Los Angeles, CA: Sage, 2013), pp. 481-495; Walker, Esteban, Adrian V. Hernandez, and Micheal W. Kattan. "Meta-Analysis: It's Strengths and Limitations." Cleveland Clinic Journal of Medicine 75 (June 2008): 431-439.

Mixed-Method Design

  • Narrative and non-textual information can add meaning to numeric data, while numeric data can add precision to narrative and non-textual information.
  • Can utilize existing data while at the same time generating and testing a grounded theory approach to describe and explain the phenomenon under study.
  • A broader, more complex research problem can be investigated because the researcher is not constrained by using only one method.
  • The strengths of one method can be used to overcome the inherent weaknesses of another method.
  • Can provide stronger, more robust evidence to support a conclusion or set of recommendations.
  • May generate new knowledge new insights or uncover hidden insights, patterns, or relationships that a single methodological approach might not reveal.
  • Produces more complete knowledge and understanding of the research problem that can be used to increase the generalizability of findings applied to theory or practice.
  • A researcher must be proficient in understanding how to apply multiple methods to investigating a research problem as well as be proficient in optimizing how to design a study that coherently melds them together.
  • Can increase the likelihood of conflicting results or ambiguous findings that inhibit drawing a valid conclusion or setting forth a recommended course of action [e.g., sample interview responses do not support existing statistical data].
  • Because the research design can be very complex, reporting the findings requires a well-organized narrative, clear writing style, and precise word choice.
  • Design invites collaboration among experts. However, merging different investigative approaches and writing styles requires more attention to the overall research process than studies conducted using only one methodological paradigm.
  • Concurrent merging of quantitative and qualitative research requires greater attention to having adequate sample sizes, using comparable samples, and applying a consistent unit of analysis. For sequential designs where one phase of qualitative research builds on the quantitative phase or vice versa, decisions about what results from the first phase to use in the next phase, the choice of samples and estimating reasonable sample sizes for both phases, and the interpretation of results from both phases can be difficult.
  • Due to multiple forms of data being collected and analyzed, this design requires extensive time and resources to carry out the multiple steps involved in data gathering and interpretation.

Burch, Patricia and Carolyn J. Heinrich. Mixed Methods for Policy Research and Program Evaluation . Thousand Oaks, CA: Sage, 2016; Creswell, John w. et al. Best Practices for Mixed Methods Research in the Health Sciences . Bethesda, MD: Office of Behavioral and Social Sciences Research, National Institutes of Health, 2010Creswell, John W. Research Design: Qualitative, Quantitative, and Mixed Methods Approaches . 4th edition. Thousand Oaks, CA: Sage Publications, 2014; Domínguez, Silvia, editor. Mixed Methods Social Networks Research . Cambridge, UK: Cambridge University Press, 2014; Hesse-Biber, Sharlene Nagy. Mixed Methods Research: Merging Theory with Practice . New York: Guilford Press, 2010; Niglas, Katrin. “How the Novice Researcher Can Make Sense of Mixed Methods Designs.” International Journal of Multiple Research Approaches 3 (2009): 34-46; Onwuegbuzie, Anthony J. and Nancy L. Leech. “Linking Research Questions to Mixed Methods Data Analysis Procedures.” The Qualitative Report 11 (September 2006): 474-498; Tashakorri, Abbas and John W. Creswell. “The New Era of Mixed Methods.” Journal of Mixed Methods Research 1 (January 2007): 3-7; Zhanga, Wanqing. “Mixed Methods Application in Health Intervention Research: A Multiple Case Study.” International Journal of Multiple Research Approaches 8 (2014): 24-35 .

Observational Design

This type of research design draws a conclusion by comparing subjects against a control group, in cases where the researcher has no control over the experiment. There are two general types of observational designs. In direct observations, people know that you are watching them. Unobtrusive measures involve any method for studying behavior where individuals do not know they are being observed. An observational study allows a useful insight into a phenomenon and avoids the ethical and practical difficulties of setting up a large and cumbersome research project.

  • Observational studies are usually flexible and do not necessarily need to be structured around a hypothesis about what you expect to observe [data is emergent rather than pre-existing].
  • The researcher is able to collect in-depth information about a particular behavior.
  • Can reveal interrelationships among multifaceted dimensions of group interactions.
  • You can generalize your results to real life situations.
  • Observational research is useful for discovering what variables may be important before applying other methods like experiments.
  • Observation research designs account for the complexity of group behaviors.
  • Reliability of data is low because seeing behaviors occur over and over again may be a time consuming task and are difficult to replicate.
  • In observational research, findings may only reflect a unique sample population and, thus, cannot be generalized to other groups.
  • There can be problems with bias as the researcher may only "see what they want to see."
  • There is no possibility to determine "cause and effect" relationships since nothing is manipulated.
  • Sources or subjects may not all be equally credible.
  • Any group that is knowingly studied is altered to some degree by the presence of the researcher, therefore, potentially skewing any data collected.

Atkinson, Paul and Martyn Hammersley. “Ethnography and Participant Observation.” In Handbook of Qualitative Research . Norman K. Denzin and Yvonna S. Lincoln, eds. (Thousand Oaks, CA: Sage, 1994), pp. 248-261; Observational Research. Research Methods by Dummies. Department of Psychology. California State University, Fresno, 2006; Patton Michael Quinn. Qualitiative Research and Evaluation Methods . Chapter 6, Fieldwork Strategies and Observational Methods. 3rd ed. Thousand Oaks, CA: Sage, 2002; Payne, Geoff and Judy Payne. "Observation." In Key Concepts in Social Research . The SAGE Key Concepts series. (London, England: Sage, 2004), pp. 158-162; Rosenbaum, Paul R. Design of Observational Studies . New York: Springer, 2010;Williams, J. Patrick. "Nonparticipant Observation." In The Sage Encyclopedia of Qualitative Research Methods . Lisa M. Given, editor.(Thousand Oaks, CA: Sage, 2008), pp. 562-563.

Philosophical Design

Understood more as an broad approach to examining a research problem than a methodological design, philosophical analysis and argumentation is intended to challenge deeply embedded, often intractable, assumptions underpinning an area of study. This approach uses the tools of argumentation derived from philosophical traditions, concepts, models, and theories to critically explore and challenge, for example, the relevance of logic and evidence in academic debates, to analyze arguments about fundamental issues, or to discuss the root of existing discourse about a research problem. These overarching tools of analysis can be framed in three ways:

  • Ontology -- the study that describes the nature of reality; for example, what is real and what is not, what is fundamental and what is derivative?
  • Epistemology -- the study that explores the nature of knowledge; for example, by what means does knowledge and understanding depend upon and how can we be certain of what we know?
  • Axiology -- the study of values; for example, what values does an individual or group hold and why? How are values related to interest, desire, will, experience, and means-to-end? And, what is the difference between a matter of fact and a matter of value?
  • Can provide a basis for applying ethical decision-making to practice.
  • Functions as a means of gaining greater self-understanding and self-knowledge about the purposes of research.
  • Brings clarity to general guiding practices and principles of an individual or group.
  • Philosophy informs methodology.
  • Refine concepts and theories that are invoked in relatively unreflective modes of thought and discourse.
  • Beyond methodology, philosophy also informs critical thinking about epistemology and the structure of reality (metaphysics).
  • Offers clarity and definition to the practical and theoretical uses of terms, concepts, and ideas.
  • Limited application to specific research problems [answering the "So What?" question in social science research].
  • Analysis can be abstract, argumentative, and limited in its practical application to real-life issues.
  • While a philosophical analysis may render problematic that which was once simple or taken-for-granted, the writing can be dense and subject to unnecessary jargon, overstatement, and/or excessive quotation and documentation.
  • There are limitations in the use of metaphor as a vehicle of philosophical analysis.
  • There can be analytical difficulties in moving from philosophy to advocacy and between abstract thought and application to the phenomenal world.

Burton, Dawn. "Part I, Philosophy of the Social Sciences." In Research Training for Social Scientists . (London, England: Sage, 2000), pp. 1-5; Chapter 4, Research Methodology and Design. Unisa Institutional Repository (UnisaIR), University of South Africa; Jarvie, Ian C., and Jesús Zamora-Bonilla, editors. The SAGE Handbook of the Philosophy of Social Sciences . London: Sage, 2011; Labaree, Robert V. and Ross Scimeca. “The Philosophical Problem of Truth in Librarianship.” The Library Quarterly 78 (January 2008): 43-70; Maykut, Pamela S. Beginning Qualitative Research: A Philosophic and Practical Guide . Washington, DC: Falmer Press, 1994; McLaughlin, Hugh. "The Philosophy of Social Research." In Understanding Social Work Research . 2nd edition. (London: SAGE Publications Ltd., 2012), pp. 24-47; Stanford Encyclopedia of Philosophy . Metaphysics Research Lab, CSLI, Stanford University, 2013.

Sequential Design

  • The researcher has a limitless option when it comes to sample size and the sampling schedule.
  • Due to the repetitive nature of this research design, minor changes and adjustments can be done during the initial parts of the study to correct and hone the research method.
  • This is a useful design for exploratory studies.
  • There is very little effort on the part of the researcher when performing this technique. It is generally not expensive, time consuming, or workforce intensive.
  • Because the study is conducted serially, the results of one sample are known before the next sample is taken and analyzed. This provides opportunities for continuous improvement of sampling and methods of analysis.
  • The sampling method is not representative of the entire population. The only possibility of approaching representativeness is when the researcher chooses to use a very large sample size significant enough to represent a significant portion of the entire population. In this case, moving on to study a second or more specific sample can be difficult.
  • The design cannot be used to create conclusions and interpretations that pertain to an entire population because the sampling technique is not randomized. Generalizability from findings is, therefore, limited.
  • Difficult to account for and interpret variation from one sample to another over time, particularly when using qualitative methods of data collection.

Betensky, Rebecca. Harvard University, Course Lecture Note slides; Bovaird, James A. and Kevin A. Kupzyk. "Sequential Design." In Encyclopedia of Research Design . Neil J. Salkind, editor. (Thousand Oaks, CA: Sage, 2010), pp. 1347-1352; Cresswell, John W. Et al. “Advanced Mixed-Methods Research Designs.” In Handbook of Mixed Methods in Social and Behavioral Research . Abbas Tashakkori and Charles Teddle, eds. (Thousand Oaks, CA: Sage, 2003), pp. 209-240; Henry, Gary T. "Sequential Sampling." In The SAGE Encyclopedia of Social Science Research Methods . Michael S. Lewis-Beck, Alan Bryman and Tim Futing Liao, editors. (Thousand Oaks, CA: Sage, 2004), pp. 1027-1028; Nataliya V. Ivankova. “Using Mixed-Methods Sequential Explanatory Design: From Theory to Practice.” Field Methods 18 (February 2006): 3-20; Bovaird, James A. and Kevin A. Kupzyk. “Sequential Design.” In Encyclopedia of Research Design . Neil J. Salkind, ed. Thousand Oaks, CA: Sage, 2010; Sequential Analysis. Wikipedia.

Systematic Review

  • A systematic review synthesizes the findings of multiple studies related to each other by incorporating strategies of analysis and interpretation intended to reduce biases and random errors.
  • The application of critical exploration, evaluation, and synthesis methods separates insignificant, unsound, or redundant research from the most salient and relevant studies worthy of reflection.
  • They can be use to identify, justify, and refine hypotheses, recognize and avoid hidden problems in prior studies, and explain data inconsistencies and conflicts in data.
  • Systematic reviews can be used to help policy makers formulate evidence-based guidelines and regulations.
  • The use of strict, explicit, and pre-determined methods of synthesis, when applied appropriately, provide reliable estimates about the effects of interventions, evaluations, and effects related to the overarching research problem investigated by each study under review.
  • Systematic reviews illuminate where knowledge or thorough understanding of a research problem is lacking and, therefore, can then be used to guide future research.
  • The accepted inclusion of unpublished studies [i.e., grey literature] ensures the broadest possible way to analyze and interpret research on a topic.
  • Results of the synthesis can be generalized and the findings extrapolated into the general population with more validity than most other types of studies .
  • Systematic reviews do not create new knowledge per se; they are a method for synthesizing existing studies about a research problem in order to gain new insights and determine gaps in the literature.
  • The way researchers have carried out their investigations [e.g., the period of time covered, number of participants, sources of data analyzed, etc.] can make it difficult to effectively synthesize studies.
  • The inclusion of unpublished studies can introduce bias into the review because they may not have undergone a rigorous peer-review process prior to publication. Examples may include conference presentations or proceedings, publications from government agencies, white papers, working papers, and internal documents from organizations, and doctoral dissertations and Master's theses.

Denyer, David and David Tranfield. "Producing a Systematic Review." In The Sage Handbook of Organizational Research Methods .  David A. Buchanan and Alan Bryman, editors. ( Thousand Oaks, CA: Sage Publications, 2009), pp. 671-689; Foster, Margaret J. and Sarah T. Jewell, editors. Assembling the Pieces of a Systematic Review: A Guide for Librarians . Lanham, MD: Rowman and Littlefield, 2017; Gough, David, Sandy Oliver, James Thomas, editors. Introduction to Systematic Reviews . 2nd edition. Los Angeles, CA: Sage Publications, 2017; Gopalakrishnan, S. and P. Ganeshkumar. “Systematic Reviews and Meta-analysis: Understanding the Best Evidence in Primary Healthcare.” Journal of Family Medicine and Primary Care 2 (2013): 9-14; Gough, David, James Thomas, and Sandy Oliver. "Clarifying Differences between Review Designs and Methods." Systematic Reviews 1 (2012): 1-9; Khan, Khalid S., Regina Kunz, Jos Kleijnen, and Gerd Antes. “Five Steps to Conducting a Systematic Review.” Journal of the Royal Society of Medicine 96 (2003): 118-121; Mulrow, C. D. “Systematic Reviews: Rationale for Systematic Reviews.” BMJ 309:597 (September 1994); O'Dwyer, Linda C., and Q. Eileen Wafford. "Addressing Challenges with Systematic Review Teams through Effective Communication: A Case Report." Journal of the Medical Library Association 109 (October 2021): 643-647; Okoli, Chitu, and Kira Schabram. "A Guide to Conducting a Systematic Literature Review of Information Systems Research."  Sprouts: Working Papers on Information Systems 10 (2010); Siddaway, Andy P., Alex M. Wood, and Larry V. Hedges. "How to Do a Systematic Review: A Best Practice Guide for Conducting and Reporting Narrative Reviews, Meta-analyses, and Meta-syntheses." Annual Review of Psychology 70 (2019): 747-770; Torgerson, Carole J. “Publication Bias: The Achilles’ Heel of Systematic Reviews?” British Journal of Educational Studies 54 (March 2006): 89-102; Torgerson, Carole. Systematic Reviews . New York: Continuum, 2003.

  • << Previous: Purpose of Guide
  • Next: Design Flaws to Avoid >>
  • Last Updated: Jul 3, 2024 10:07 AM
  • URL: https://libguides.usc.edu/writingguide

Case Study Research Method in Psychology

Saul Mcleod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul Mcleod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Learn about our Editorial Process

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

On This Page:

Case studies are in-depth investigations of a person, group, event, or community. Typically, data is gathered from various sources using several methods (e.g., observations & interviews).

The case study research method originated in clinical medicine (the case history, i.e., the patient’s personal history). In psychology, case studies are often confined to the study of a particular individual.

The information is mainly biographical and relates to events in the individual’s past (i.e., retrospective), as well as to significant events that are currently occurring in his or her everyday life.

The case study is not a research method, but researchers select methods of data collection and analysis that will generate material suitable for case studies.

Freud (1909a, 1909b) conducted very detailed investigations into the private lives of his patients in an attempt to both understand and help them overcome their illnesses.

This makes it clear that the case study is a method that should only be used by a psychologist, therapist, or psychiatrist, i.e., someone with a professional qualification.

There is an ethical issue of competence. Only someone qualified to diagnose and treat a person can conduct a formal case study relating to atypical (i.e., abnormal) behavior or atypical development.

case study

 Famous Case Studies

  • Anna O – One of the most famous case studies, documenting psychoanalyst Josef Breuer’s treatment of “Anna O” (real name Bertha Pappenheim) for hysteria in the late 1800s using early psychoanalytic theory.
  • Little Hans – A child psychoanalysis case study published by Sigmund Freud in 1909 analyzing his five-year-old patient Herbert Graf’s house phobia as related to the Oedipus complex.
  • Bruce/Brenda – Gender identity case of the boy (Bruce) whose botched circumcision led psychologist John Money to advise gender reassignment and raise him as a girl (Brenda) in the 1960s.
  • Genie Wiley – Linguistics/psychological development case of the victim of extreme isolation abuse who was studied in 1970s California for effects of early language deprivation on acquiring speech later in life.
  • Phineas Gage – One of the most famous neuropsychology case studies analyzes personality changes in railroad worker Phineas Gage after an 1848 brain injury involving a tamping iron piercing his skull.

Clinical Case Studies

  • Studying the effectiveness of psychotherapy approaches with an individual patient
  • Assessing and treating mental illnesses like depression, anxiety disorders, PTSD
  • Neuropsychological cases investigating brain injuries or disorders

Child Psychology Case Studies

  • Studying psychological development from birth through adolescence
  • Cases of learning disabilities, autism spectrum disorders, ADHD
  • Effects of trauma, abuse, deprivation on development

Types of Case Studies

  • Explanatory case studies : Used to explore causation in order to find underlying principles. Helpful for doing qualitative analysis to explain presumed causal links.
  • Exploratory case studies : Used to explore situations where an intervention being evaluated has no clear set of outcomes. It helps define questions and hypotheses for future research.
  • Descriptive case studies : Describe an intervention or phenomenon and the real-life context in which it occurred. It is helpful for illustrating certain topics within an evaluation.
  • Multiple-case studies : Used to explore differences between cases and replicate findings across cases. Helpful for comparing and contrasting specific cases.
  • Intrinsic : Used to gain a better understanding of a particular case. Helpful for capturing the complexity of a single case.
  • Collective : Used to explore a general phenomenon using multiple case studies. Helpful for jointly studying a group of cases in order to inquire into the phenomenon.

Where Do You Find Data for a Case Study?

There are several places to find data for a case study. The key is to gather data from multiple sources to get a complete picture of the case and corroborate facts or findings through triangulation of evidence. Most of this information is likely qualitative (i.e., verbal description rather than measurement), but the psychologist might also collect numerical data.

1. Primary sources

  • Interviews – Interviewing key people related to the case to get their perspectives and insights. The interview is an extremely effective procedure for obtaining information about an individual, and it may be used to collect comments from the person’s friends, parents, employer, workmates, and others who have a good knowledge of the person, as well as to obtain facts from the person him or herself.
  • Observations – Observing behaviors, interactions, processes, etc., related to the case as they unfold in real-time.
  • Documents & Records – Reviewing private documents, diaries, public records, correspondence, meeting minutes, etc., relevant to the case.

2. Secondary sources

  • News/Media – News coverage of events related to the case study.
  • Academic articles – Journal articles, dissertations etc. that discuss the case.
  • Government reports – Official data and records related to the case context.
  • Books/films – Books, documentaries or films discussing the case.

3. Archival records

Searching historical archives, museum collections and databases to find relevant documents, visual/audio records related to the case history and context.

Public archives like newspapers, organizational records, photographic collections could all include potentially relevant pieces of information to shed light on attitudes, cultural perspectives, common practices and historical contexts related to psychology.

4. Organizational records

Organizational records offer the advantage of often having large datasets collected over time that can reveal or confirm psychological insights.

Of course, privacy and ethical concerns regarding confidential data must be navigated carefully.

However, with proper protocols, organizational records can provide invaluable context and empirical depth to qualitative case studies exploring the intersection of psychology and organizations.

  • Organizational/industrial psychology research : Organizational records like employee surveys, turnover/retention data, policies, incident reports etc. may provide insight into topics like job satisfaction, workplace culture and dynamics, leadership issues, employee behaviors etc.
  • Clinical psychology : Therapists/hospitals may grant access to anonymized medical records to study aspects like assessments, diagnoses, treatment plans etc. This could shed light on clinical practices.
  • School psychology : Studies could utilize anonymized student records like test scores, grades, disciplinary issues, and counseling referrals to study child development, learning barriers, effectiveness of support programs, and more.

How do I Write a Case Study in Psychology?

Follow specified case study guidelines provided by a journal or your psychology tutor. General components of clinical case studies include: background, symptoms, assessments, diagnosis, treatment, and outcomes. Interpreting the information means the researcher decides what to include or leave out. A good case study should always clarify which information is the factual description and which is an inference or the researcher’s opinion.

1. Introduction

  • Provide background on the case context and why it is of interest, presenting background information like demographics, relevant history, and presenting problem.
  • Compare briefly to similar published cases if applicable. Clearly state the focus/importance of the case.

2. Case Presentation

  • Describe the presenting problem in detail, including symptoms, duration,and impact on daily life.
  • Include client demographics like age and gender, information about social relationships, and mental health history.
  • Describe all physical, emotional, and/or sensory symptoms reported by the client.
  • Use patient quotes to describe the initial complaint verbatim. Follow with full-sentence summaries of relevant history details gathered, including key components that led to a working diagnosis.
  • Summarize clinical exam results, namely orthopedic/neurological tests, imaging, lab tests, etc. Note actual results rather than subjective conclusions. Provide images if clearly reproducible/anonymized.
  • Clearly state the working diagnosis or clinical impression before transitioning to management.

3. Management and Outcome

  • Indicate the total duration of care and number of treatments given over what timeframe. Use specific names/descriptions for any therapies/interventions applied.
  • Present the results of the intervention,including any quantitative or qualitative data collected.
  • For outcomes, utilize visual analog scales for pain, medication usage logs, etc., if possible. Include patient self-reports of improvement/worsening of symptoms. Note the reason for discharge/end of care.

4. Discussion

  • Analyze the case, exploring contributing factors, limitations of the study, and connections to existing research.
  • Analyze the effectiveness of the intervention,considering factors like participant adherence, limitations of the study, and potential alternative explanations for the results.
  • Identify any questions raised in the case analysis and relate insights to established theories and current research if applicable. Avoid definitive claims about physiological explanations.
  • Offer clinical implications, and suggest future research directions.

5. Additional Items

  • Thank specific assistants for writing support only. No patient acknowledgments.
  • References should directly support any key claims or quotes included.
  • Use tables/figures/images only if substantially informative. Include permissions and legends/explanatory notes.
  • Provides detailed (rich qualitative) information.
  • Provides insight for further research.
  • Permitting investigation of otherwise impractical (or unethical) situations.

Case studies allow a researcher to investigate a topic in far more detail than might be possible if they were trying to deal with a large number of research participants (nomothetic approach) with the aim of ‘averaging’.

Because of their in-depth, multi-sided approach, case studies often shed light on aspects of human thinking and behavior that would be unethical or impractical to study in other ways.

Research that only looks into the measurable aspects of human behavior is not likely to give us insights into the subjective dimension of experience, which is important to psychoanalytic and humanistic psychologists.

Case studies are often used in exploratory research. They can help us generate new ideas (that might be tested by other methods). They are an important way of illustrating theories and can help show how different aspects of a person’s life are related to each other.

The method is, therefore, important for psychologists who adopt a holistic point of view (i.e., humanistic psychologists ).

Limitations

  • Lacking scientific rigor and providing little basis for generalization of results to the wider population.
  • Researchers’ own subjective feelings may influence the case study (researcher bias).
  • Difficult to replicate.
  • Time-consuming and expensive.
  • The volume of data, together with the time restrictions in place, impacted the depth of analysis that was possible within the available resources.

Because a case study deals with only one person/event/group, we can never be sure if the case study investigated is representative of the wider body of “similar” instances. This means the conclusions drawn from a particular case may not be transferable to other settings.

Because case studies are based on the analysis of qualitative (i.e., descriptive) data , a lot depends on the psychologist’s interpretation of the information she has acquired.

This means that there is a lot of scope for Anna O , and it could be that the subjective opinions of the psychologist intrude in the assessment of what the data means.

For example, Freud has been criticized for producing case studies in which the information was sometimes distorted to fit particular behavioral theories (e.g., Little Hans ).

This is also true of Money’s interpretation of the Bruce/Brenda case study (Diamond, 1997) when he ignored evidence that went against his theory.

Breuer, J., & Freud, S. (1895).  Studies on hysteria . Standard Edition 2: London.

Curtiss, S. (1981). Genie: The case of a modern wild child .

Diamond, M., & Sigmundson, K. (1997). Sex Reassignment at Birth: Long-term Review and Clinical Implications. Archives of Pediatrics & Adolescent Medicine , 151(3), 298-304

Freud, S. (1909a). Analysis of a phobia of a five year old boy. In The Pelican Freud Library (1977), Vol 8, Case Histories 1, pages 169-306

Freud, S. (1909b). Bemerkungen über einen Fall von Zwangsneurose (Der “Rattenmann”). Jb. psychoanal. psychopathol. Forsch ., I, p. 357-421; GW, VII, p. 379-463; Notes upon a case of obsessional neurosis, SE , 10: 151-318.

Harlow J. M. (1848). Passage of an iron rod through the head.  Boston Medical and Surgical Journal, 39 , 389–393.

Harlow, J. M. (1868).  Recovery from the Passage of an Iron Bar through the Head .  Publications of the Massachusetts Medical Society. 2  (3), 327-347.

Money, J., & Ehrhardt, A. A. (1972).  Man & Woman, Boy & Girl : The Differentiation and Dimorphism of Gender Identity from Conception to Maturity. Baltimore, Maryland: Johns Hopkins University Press.

Money, J., & Tucker, P. (1975). Sexual signatures: On being a man or a woman.

Further Information

  • Case Study Approach
  • Case Study Method
  • Enhancing the Quality of Case Studies in Health Services Research
  • “We do things together” A case study of “couplehood” in dementia
  • Using mixed methods for evaluating an integrative approach to cancer care: a case study

Print Friendly, PDF & Email

Organizing Your Social Sciences Research Paper: Types of Research Designs

  • Purpose of Guide
  • Writing a Research Proposal
  • Design Flaws to Avoid
  • Independent and Dependent Variables
  • Narrowing a Topic Idea
  • Broadening a Topic Idea
  • The Research Problem/Question
  • Academic Writing Style
  • Choosing a Title
  • Making an Outline
  • Paragraph Development
  • The C.A.R.S. Model
  • Background Information
  • Theoretical Framework
  • Citation Tracking
  • Evaluating Sources
  • Reading Research Effectively
  • Primary Sources
  • Secondary Sources
  • What Is Scholarly vs. Popular?
  • Is it Peer-Reviewed?
  • Qualitative Methods
  • Quantitative Methods
  • Common Grammar Mistakes
  • Writing Concisely
  • Avoiding Plagiarism [linked guide]
  • Annotated Bibliography
  • Grading Someone Else's Paper

Introduction

Before beginning your paper, you need to decide how you plan to design the study .

The research design refers to the overall strategy that you choose to integrate the different components of the study in a coherent and logical way, thereby, ensuring you will effectively address the research problem; it constitutes the blueprint for the collection, measurement, and analysis of data. Note that your research problem determines the type of design you should use, not the other way around!

De Vaus, D. A. Research Design in Social Research . London: SAGE, 2001; Trochim, William M.K. Research Methods Knowledge Base . 2006.

General Structure and Writing Style

The function of a research design is to ensure that the evidence obtained enables you to effectively address the research problem logically and as unambiguously as possible . In social sciences research, obtaining information relevant to the research problem generally entails specifying the type of evidence needed to test a theory, to evaluate a program, or to accurately describe and assess meaning related to an observable phenomenon.

With this in mind, a common mistake made by researchers is that they begin their investigations far too early, before they have thought critically about what information is required to address the research problem. Without attending to these design issues beforehand, the overall research problem will not be adequately addressed and any conclusions drawn will run the risk of being weak and unconvincing. As a consequence, the overall validity of the study will be undermined.

The length and complexity of describing research designs in your paper can vary considerably, but any well-developed design will achieve the following :

  • Identify the research problem clearly and justify its selection, particularly in relation to any valid alternative designs that could have been used,
  • Review and synthesize previously published literature associated with the research problem,
  • Clearly and explicitly specify hypotheses [i.e., research questions] central to the problem,
  • Effectively describe the data which will be necessary for an adequate testing of the hypotheses and explain how such data will be obtained, and
  • Describe the methods of analysis to be applied to the data in determining whether or not the hypotheses are true or false.

The research design is usually incorporated into the introduction and varies in length depending on the type of design you are using. However, you can get a sense of what to do by reviewing the literature of studies that have utilized the same research design. This can provide an outline to follow for your own paper.

NOTE : Use the SAGE Research Methods Online and Cases and the SAGE Research Methods Videos databases to search for scholarly resources on how to apply specific research designs and methods . The Research Methods Online database contains links to more than 175,000 pages of SAGE publisher's book, journal, and reference content on quantitative, qualitative, and mixed research methodologies. Also included is a collection of case studies of social research projects that can be used to help you better understand abstract or complex methodological concepts. The Research Methods Videos database contains hours of tutorials, interviews, video case studies, and mini-documentaries covering the entire research process.

Creswell, John W. and J. David Creswell. Research Design: Qualitative, Quantitative, and Mixed Methods Approaches . 5th edition. Thousand Oaks, CA: Sage, 2018; De Vaus, D. A. Research Design in Social Research . London: SAGE, 2001; Gorard, Stephen. Research Design: Creating Robust Approaches for the Social Sciences . Thousand Oaks, CA: Sage, 2013; Leedy, Paul D. and Jeanne Ellis Ormrod. Practical Research: Planning and Design . Tenth edition. Boston, MA: Pearson, 2013; Vogt, W. Paul, Dianna C. Gardner, and Lynne M. Haeffele. When to Use What Research Design . New York: Guilford, 2012.

Video content

Videos in Business and Management , Criminology and Criminal Justice , Education , and Media, Communication and Cultural Studies specifically created for use in higher education.

A literature review tool that highlights the most influential works in Business & Management, Education, Politics & International Relations, Psychology and Sociology. Does not contain full text of the cited works. Dates vary.

Encyclopedias, handbooks, ebooks, and videos published by Sage and CQ Press. 2000 to present

Causal Design

Definition and Purpose

Causality studies may be thought of as understanding a phenomenon in terms of conditional statements in the form, “If X, then Y.” This type of research is used to measure what impact a specific change will have on existing norms and assumptions. Most social scientists seek causal explanations that reflect tests of hypotheses. Causal effect (nomothetic perspective) occurs when variation in one phenomenon, an independent variable, leads to or results, on average, in variation in another phenomenon, the dependent variable.

Conditions necessary for determining causality:

  • Empirical association -- a valid conclusion is based on finding an association between the independent variable and the dependent variable.
  • Appropriate time order -- to conclude that causation was involved, one must see that cases were exposed to variation in the independent variable before variation in the dependent variable.
  • Nonspuriousness -- a relationship between two variables that is not due to variation in a third variable.

What do these studies tell you ?

  • Causality research designs assist researchers in understanding why the world works the way it does through the process of proving a causal link between variables and by the process of eliminating other possibilities.
  • Replication is possible.
  • There is greater confidence the study has internal validity due to the systematic subject selection and equity of groups being compared.

What these studies don't tell you ?

  • Not all relationships are casual! The possibility always exists that, by sheer coincidence, two unrelated events appear to be related [e.g., Punxatawney Phil could accurately predict the duration of Winter for five consecutive years but, the fact remains, he's just a big, furry rodent].
  • Conclusions about causal relationships are difficult to determine due to a variety of extraneous and confounding variables that exist in a social environment. This means causality can only be inferred, never proven.
  • If two variables are correlated, the cause must come before the effect. However, even though two variables might be causally related, it can sometimes be difficult to determine which variable comes first and, therefore, to establish which variable is the actual cause and which is the  actual effect.

Beach, Derek and Rasmus Brun Pedersen. Causal Case Study Methods: Foundations and Guidelines for Comparing, Matching, and Tracing . Ann Arbor, MI: University of Michigan Press, 2016; Bachman, Ronet. The Practice of Research in Criminology and Criminal Justice . Chapter 5, Causation and Research Designs. 3rd ed. Thousand Oaks, CA: Pine Forge Press, 2007; Brewer, Ernest W. and Jennifer Kubn. “Causal-Comparative Design.” In Encyclopedia of Research Design . Neil J. Salkind, editor. (Thousand Oaks, CA: Sage, 2010), pp. 125-132; Causal Research Design: Experimentation. Anonymous SlideShare Presentation ; Gall, Meredith. Educational Research: An Introduction . Chapter 11, Nonexperimental Research: Correlational Designs. 8th ed. Boston, MA: Pearson/Allyn and Bacon, 2007; Trochim, William M.K. Research Methods Knowledge Base . 2006.

Cohort Design

Often used in the medical sciences, but also found in the applied social sciences, a cohort study generally refers to a study conducted over a period of time involving members of a population which the subject or representative member comes from, and who are united by some commonality or similarity. Using a quantitative framework, a cohort study makes note of statistical occurrence within a specialized subgroup, united by same or similar characteristics that are relevant to the research problem being investigated, r ather than studying statistical occurrence within the general population. Using a qualitative framework, cohort studies generally gather data using methods of observation. Cohorts can be either "open" or "closed."

  • Open Cohort Studies [dynamic populations, such as the population of Los Angeles] involve a population that is defined just by the state of being a part of the study in question (and being monitored for the outcome). Date of entry and exit from the study is individually defined, therefore, the size of the study population is not constant. In open cohort studies, researchers can only calculate rate based data, such as, incidence rates and variants thereof.
  • Closed Cohort Studies [static populations, such as patients entered into a clinical trial] involve participants who enter into the study at one defining point in time and where it is presumed that no new participants can enter the cohort. Given this, the number of study participants remains constant (or can only decrease).
  • The use of cohorts is often mandatory because a randomized control study may be unethical. For example, you cannot deliberately expose people to asbestos, you can only study its effects on those who have already been exposed. Research that measures risk factors often relies upon cohort designs.
  • Because cohort studies measure potential causes before the outcome has occurred, they can demonstrate that these “causes” preceded the outcome, thereby avoiding the debate as to which is the cause and which is the effect.
  • Cohort analysis is highly flexible and can provide insight into effects over time and related to a variety of different types of changes [e.g., social, cultural, political, economic, etc.].
  • Either original data or secondary data can be used in this design.
  • In cases where a comparative analysis of two cohorts is made [e.g., studying the effects of one group exposed to asbestos and one that has not], a researcher cannot control for all other factors that might differ between the two groups. These factors are known as confounding variables.
  • Cohort studies can end up taking a long time to complete if the researcher must wait for the conditions of interest to develop within the group. This also increases the chance that key variables change during the course of the study, potentially impacting the validity of the findings.
  • Due to the lack of randominization in the cohort design, its external validity is lower than that of study designs where the researcher randomly assigns participants.

Healy P, Devane D. “Methodological Considerations in Cohort Study Designs.” Nurse Researcher 18 (2011): 32-36; Glenn, Norval D, editor. Cohort Analysis . 2nd edition. Thousand Oaks, CA: Sage, 2005; Levin, Kate Ann. Study Design IV: Cohort Studies. Evidence-Based Dentistry 7 (2003): 51–52; Payne, Geoff. “Cohort Study.” In The SAGE Dictionary of Social Research Methods . Victor Jupp, editor. (Thousand Oaks, CA: Sage, 2006), pp. 31-33; Study Design 101 . Himmelfarb Health Sciences Library. George Washington University, November 2011; Cohort Study . Wikipedia.

Cross-Sectional Design

Cross-sectional research designs have three distinctive features: no time dimension; a reliance on existing differences rather than change following intervention; and, groups are selected based on existing differences rather than random allocation. The cross-sectional design can only measure differences between or from among a variety of people, subjects, or phenomena rather than a process of change. As such, researchers using this design can only employ a relatively passive approach to making causal inferences based on findings.

  • Cross-sectional studies provide a clear 'snapshot' of the outcome and the characteristics associated with it, at a specific point in time.
  • Unlike an experimental design, where there is an active intervention by the researcher to produce and measure change or to create differences, cross-sectional designs focus on studying and drawing inferences from existing differences between people, subjects, or phenomena.
  • Entails collecting data at and concerning one point in time. While longitudinal studies involve taking multiple measures over an extended period of time, cross-sectional research is focused on finding relationships between variables at one moment in time.
  • Groups identified for study are purposely selected based upon existing differences in the sample rather than seeking random sampling.
  • Cross-section studies are capable of using data from a large number of subjects and, unlike observational studies, is not geographically bound.
  • Can estimate prevalence of an outcome of interest because the sample is usually taken from the whole population.
  • Because cross-sectional designs generally use survey techniques to gather data, they are relatively inexpensive and take up little time to conduct.
  • Finding people, subjects, or phenomena to study that are very similar except in one specific variable can be difficult.
  • Results are static and time bound and, therefore, give no indication of a sequence of events or reveal historical or temporal contexts.
  • Studies cannot be utilized to establish cause and effect relationships.
  • This design only provides a snapshot of analysis so there is always the possibility that a study could have differing results if another time-frame had been chosen.
  • There is no follow up to the findings.

Bethlehem, Jelke. "7: Cross-sectional Research." In Research Methodology in the Social, Behavioural and Life Sciences . Herman J Adèr and Gideon J Mellenbergh, editors. (London, England: Sage, 1999), pp. 110-43; Bourque, Linda B. “Cross-Sectional Design.” In  The SAGE Encyclopedia of Social Science Research Methods . Michael S. Lewis-Beck, Alan Bryman, and Tim Futing Liao. (Thousand Oaks, CA: 2004), pp. 230-231; Hall, John. “Cross-Sectional Survey Design.” In Encyclopedia of Survey Research Methods . Paul J. Lavrakas, ed. (Thousand Oaks, CA: Sage, 2008), pp. 173-174; Helen Barratt, Maria Kirwan. Cross-Sectional Studies: Design, Application, Strengths and Weaknesses of Cross-Sectional Studies . Healthknowledge, 2009. Cross-Sectional Study . Wikipedia.

Descriptive Design

Descriptive research designs help provide answers to the questions of who, what, when, where, and how associated with a particular research problem; a descriptive study cannot conclusively ascertain answers to why. Descriptive research is used to obtain information concerning the current status of the phenomena and to describe "what exists" with respect to variables or conditions in a situation.

  • The subject is being observed in a completely natural and unchanged natural environment. True experiments, whilst giving analyzable data, often adversely influence the normal behavior of the subject [a.k.a., the Heisenberg effect whereby measurements of certain systems cannot be made without affecting the systems].
  • Descriptive research is often used as a pre-cursor to more quantitative research designs with the general overview giving some valuable pointers as to what variables are worth testing quantitatively.
  • If the limitations are understood, they can be a useful tool in developing a more focused study.
  • Descriptive studies can yield rich data that lead to important recommendations in practice.
  • Appoach collects a large amount of data for detailed analysis.
  • The results from a descriptive research cannot be used to discover a definitive answer or to disprove a hypothesis.
  • Because descriptive designs often utilize observational methods [as opposed to quantitative methods], the results cannot be replicated.
  • The descriptive function of research is heavily dependent on instrumentation for measurement and observation.

Anastas, Jeane W. Research Design for Social Work and the Human Services . Chapter 5, Flexible Methods: Descriptive Research. 2nd ed. New York: Columbia University Press, 1999; Given, Lisa M. "Descriptive Research." In Encyclopedia of Measurement and Statistics . Neil J. Salkind and Kristin Rasmussen, editors. (Thousand Oaks, CA: Sage, 2007), pp. 251-254; McNabb, Connie. Descriptive Research Methodologies . Powerpoint Presentation; Shuttleworth, Martyn. Descriptive Research Design , September 26, 2008. Explorable.com website.

Experimental Design

A blueprint of the procedure that enables the researcher to maintain control over all factors that may affect the result of an experiment. In doing this, the researcher attempts to determine or predict what may occur. Experimental research is often used where there is time priority in a causal relationship (cause precedes effect), there is consistency in a causal relationship (a cause will always lead to the same effect), and the magnitude of the correlation is great. The classic experimental design specifies an experimental group and a control group. The independent variable is administered to the experimental group and not to the control group, and both groups are measured on the same dependent variable. Subsequent experimental designs have used more groups and more measurements over longer periods. True experiments must have control, randomization, and manipulation.

  • Experimental research allows the researcher to control the situation. In so doing, it allows researchers to answer the question, “What causes something to occur?”
  • Permits the researcher to identify cause and effect relationships between variables and to distinguish placebo effects from treatment effects.
  • Experimental research designs support the ability to limit alternative explanations and to infer direct causal relationships in the study.
  • Approach provides the highest level of evidence for single studies.
  • The design is artificial, and results may not generalize well to the real world.
  • The artificial settings of experiments may alter the behaviors or responses of participants.
  • Experimental designs can be costly if special equipment or facilities are needed.
  • Some research problems cannot be studied using an experiment because of ethical or technical reasons.
  • Difficult to apply ethnographic and other qualitative methods to experimentally designed studies.

Anastas, Jeane W. Research Design for Social Work and the Human Services . Chapter 7, Flexible Methods: Experimental Research. 2nd ed. New York: Columbia University Press, 1999; Chapter 2: Research Design, Experimental Designs . School of Psychology, University of New England, 2000; Chow, Siu L. "Experimental Design." In Encyclopedia of Research Design . Neil J. Salkind, editor. (Thousand Oaks, CA: Sage, 2010), pp. 448-453; "Experimental Design." In Social Research Methods . Nicholas Walliman, editor. (London, England: Sage, 2006), pp, 101-110; Experimental Research . Research Methods by Dummies. Department of Psychology. California State University, Fresno, 2006; Kirk, Roger E. Experimental Design: Procedures for the Behavioral Sciences . 4th edition. Thousand Oaks, CA: Sage, 2013; Trochim, William M.K. Experimental Design . Research Methods Knowledge Base. 2006; Rasool, Shafqat. Experimental Research . Slideshare presentation.

Exploratory Design

An exploratory design is conducted about a research problem when there are few or no earlier studies to refer to or rely upon to predict an outcome . The focus is on gaining insights and familiarity for later investigation or undertaken when research problems are in a preliminary stage of investigation. Exploratory designs are often used to establish an understanding of how best to proceed in studying an issue or what methodology would effectively apply to gathering information about the issue.

The goals of exploratory research are intended to produce the following possible insights:

  • Familiarity with basic details, settings, and concerns.
  • Well grounded picture of the situation being developed.
  • Generation of new ideas and assumptions.
  • Development of tentative theories or hypotheses.
  • Determination about whether a study is feasible in the future.
  • Issues get refined for more systematic investigation and formulation of new research questions.
  • Direction for future research and techniques get developed.
  • Design is a useful approach for gaining background information on a particular topic.
  • Exploratory research is flexible and can address research questions of all types (what, why, how).
  • Provides an opportunity to define new terms and clarify existing concepts.
  • Exploratory research is often used to generate formal hypotheses and develop more precise research problems.
  • In the policy arena or applied to practice, exploratory studies help establish research priorities and where resources should be allocated.
  • Exploratory research generally utilizes small sample sizes and, thus, findings are typically not generalizable to the population at large.
  • The exploratory nature of the research inhibits an ability to make definitive conclusions about the findings. They provide insight but not definitive conclusions.
  • The research process underpinning exploratory studies is flexible but often unstructured, leading to only tentative results that have limited value to decision-makers.
  • Design lacks rigorous standards applied to methods of data gathering and analysis because one of the areas for exploration could be to determine what method or methodologies could best fit the research problem.

Cuthill, Michael. “Exploratory Research: Citizen Participation, Local Government, and Sustainable Development in Australia.” Sustainable Development 10 (2002): 79-89; Streb, Christoph K. "Exploratory Case Study." In Encyclopedia of Case Study Research . Albert J. Mills, Gabrielle Durepos and Eiden Wiebe, editors. (Thousand Oaks, CA: Sage, 2010), pp. 372-374; Taylor, P. J., G. Catalano, and D.R.F. Walker. “Exploratory Analysis of the World City Network.” Urban Studies 39 (December 2002): 2377-2394; Exploratory Research . Wikipedia.

Historical Design

The purpose of a historical research design is to collect, verify, and synthesize evidence from the past to establish facts that defend or refute a hypothesis. It uses secondary sources and a variety of primary documentary evidence, such as, diaries, official records, reports, archives, and non-textual information [maps, pictures, audio and visual recordings]. The limitation is that the sources must be both authentic and valid.

  • The historical research design is unobtrusive; the act of research does not affect the results of the study.
  • The historical approach is well suited for trend analysis.
  • Historical records can add important contextual background required to more fully understand and interpret a research problem.
  • There is often no possibility of researcher-subject interaction that could affect the findings.
  • Historical sources can be used over and over to study different research problems or to replicate a previous study.
  • The ability to fulfill the aims of your research are directly related to the amount and quality of documentation available to understand the research problem.
  • Since historical research relies on data from the past, there is no way to manipulate it to control for contemporary contexts.
  • Interpreting historical sources can be very time consuming.
  • The sources of historical materials must be archived consistently to ensure access. This may especially challenging for digital or online-only sources.
  • Original authors bring their own perspectives and biases to the interpretation of past events and these biases are more difficult to ascertain in historical resources.
  • Due to the lack of control over external variables, historical research is very weak with regard to the demands of internal validity.
  • It is rare that the entirety of historical documentation needed to fully address a research problem is available for interpretation, therefore, gaps need to be acknowledged.

Howell, Martha C. and Walter Prevenier. From Reliable Sources: An Introduction to Historical Methods . Ithaca, NY: Cornell University Press, 2001; Lundy, Karen Saucier. "Historical Research." In The Sage Encyclopedia of Qualitative Research Methods . Lisa M. Given, editor. (Thousand Oaks, CA: Sage, 2008), pp. 396-400; Marius, Richard. and Melvin E. Page. A Short Guide to Writing about History . 9th edition. Boston, MA: Pearson, 2015; Savitt, Ronald. “Historical Research in Marketing.” Journal of Marketing 44 (Autumn, 1980): 52-58;  Gall, Meredith. Educational Research: An Introduction . Chapter 16, Historical Research. 8th ed. Boston, MA: Pearson/Allyn and Bacon, 2007.

Longitudinal Design

A longitudinal study follows the same sample over time and makes repeated observations. For example, with longitudinal surveys, the same group of people is interviewed at regular intervals, enabling researchers to track changes over time and to relate them to variables that might explain why the changes occur. Longitudinal research designs describe patterns of change and help establish the direction and magnitude of causal relationships. Measurements are taken on each variable over two or more distinct time periods. This allows the researcher to measure change in variables over time. It is a type of observational study sometimes referred to as a panel study.

  • Longitudinal data facilitate the analysis of the duration of a particular phenomenon.
  • Enables survey researchers to get close to the kinds of causal explanations usually attainable only with experiments.
  • The design permits the measurement of differences or change in a variable from one period to another [i.e., the description of patterns of change over time].
  • Longitudinal studies facilitate the prediction of future outcomes based upon earlier factors.
  • The data collection method may change over time.
  • Maintaining the integrity of the original sample can be difficult over an extended period of time.
  • It can be difficult to show more than one variable at a time.
  • This design often needs qualitative research data to explain fluctuations in the results.
  • A longitudinal research design assumes present trends will continue unchanged.
  • It can take a long period of time to gather results.
  • There is a need to have a large sample size and accurate sampling to reach representativness.

Anastas, Jeane W. Research Design for Social Work and the Human Services . Chapter 6, Flexible Methods: Relational and Longitudinal Research. 2nd ed. New York: Columbia University Press, 1999; Forgues, Bernard, and Isabelle Vandangeon-Derumez. "Longitudinal Analyses." In Doing Management Research . Raymond-Alain Thiétart and Samantha Wauchope, editors. (London, England: Sage, 2001), pp. 332-351; Kalaian, Sema A. and Rafa M. Kasim. "Longitudinal Studies." In Encyclopedia of Survey Research Methods . Paul J. Lavrakas, ed. (Thousand Oaks, CA: Sage, 2008), pp. 440-441; Menard, Scott, editor. Longitudinal Research . Thousand Oaks, CA: Sage, 2002; Ployhart, Robert E. and Robert J. Vandenberg. "Longitudinal Research: The Theory, Design, and Analysis of Change.” Journal of Management 36 (January 2010): 94-120; Longitudinal Study . Wikipedia.

Mixed-Method Design

  • Narrative and non-textual information can add meaning to numeric data, while numeric data can add precision to narrative and non-textual information.
  • Can utilize existing data while at the same time generating and testing a grounded theory approach to describe and explain the phenomenon under study.
  • A broader, more complex research problem can be investigated because the researcher is not constrained by using only one method.
  • The strengths of one method can be used to overcome the inherent weaknesses of another method.
  • Can provide stronger, more robust evidence to support a conclusion or set of recommendations.
  • May generate new knowledge new insights or uncover hidden insights, patterns, or relationships that a single methodological approach might not reveal.
  • Produces more complete knowledge and understanding of the research problem that can be used to increase the generalizability of findings applied to theory or practice.
  • A researcher must be proficient in understanding how to apply multiple methods to investigating a research problem as well as be proficient in optimizing how to design a study that coherently melds them together.
  • Can increase the likelihood of conflicting results or ambiguous findings that inhibit drawing a valid conclusion or setting forth a recommended course of action [e.g., sample interview responses do not support existing statistical data].
  • Because the research design can be very complex, reporting the findings requires a well-organized narrative, clear writing style, and precise word choice.
  • Design invites collaboration among experts. However, merging different investigative approaches and writing styles requires more attention to the overall research process than studies conducted using only one methodological paradigm.
  • Concurrent merging of quantitative and qualitative research requires greater attention to having adequate sample sizes, using comparable samples, and applying a consistent unit of analysis. For sequential designs where one phase of qualitative research builds on the quantitative phase or vice versa, decisions about what results from the first phase to use in the next phase, the choice of samples and estimating reasonable sample sizes for both phases, and the interpretation of results from both phases can be difficult.
  • Due to multiple forms of data being collected and analyzed, this design requires extensive time and resources to carry out the multiple steps involved in data gathering and interpretation.

Burch, Patricia and Carolyn J. Heinrich. Mixed Methods for Policy Research and Program Evaluation . Thousand Oaks, CA: Sage, 2016; Creswell, John w. et al. Best Practices for Mixed Methods Research in the Health Sciences . Bethesda, MD: Office of Behavioral and Social Sciences Research, National Institutes of Health, 2010Creswell, John W. Research Design: Qualitative, Quantitative, and Mixed Methods Approaches . 4th edition. Thousand Oaks, CA: Sage Publications, 2014; Domínguez, Silvia, editor. Mixed Methods Social Networks Research . Cambridge, UK: Cambridge University Press, 2014; Hesse-Biber, Sharlene Nagy. Mixed Methods Research: Merging Theory with Practice . New York: Guilford Press, 2010; Niglas, Katrin. “How the Novice Researcher Can Make Sense of Mixed Methods Designs.” International Journal of Multiple Research Approaches 3 (2009): 34-46; Onwuegbuzie, Anthony J. and Nancy L. Leech. “Linking Research Questions to Mixed Methods Data Analysis Procedures.” The Qualitative Report 11 (September 2006): 474-498; Tashakorri, Abbas and John W. Creswell. “The New Era of Mixed Methods.” Journal of Mixed Methods Research 1 (January 2007): 3-7; Zhanga, Wanqing. “Mixed Methods Application in Health Intervention Research: A Multiple Case Study.” International Journal of Multiple Research Approaches 8 (2014): 24-35 .

Observational Design

This type of research design draws a conclusion by comparing subjects against a control group, in cases where the researcher has no control over the experiment. There are two general types of observational designs. In direct observations, people know that you are watching them. Unobtrusive measures involve any method for studying behavior where individuals do not know they are being observed. An observational study allows a useful insight into a phenomenon and avoids the ethical and practical difficulties of setting up a large and cumbersome research project.

  • Observational studies are usually flexible and do not necessarily need to be structured around a hypothesis about what you expect to observe [data is emergent rather than pre-existing].
  • The researcher is able to collect in-depth information about a particular behavior.
  • Can reveal interrelationships among multifaceted dimensions of group interactions.
  • You can generalize your results to real life situations.
  • Observational research is useful for discovering what variables may be important before applying other methods like experiments.
  • Observation research designs account for the complexity of group behaviors.
  • Reliability of data is low because seeing behaviors occur over and over again may be a time consuming task and are difficult to replicate.
  • In observational research, findings may only reflect a unique sample population and, thus, cannot be generalized to other groups.
  • There can be problems with bias as the researcher may only "see what they want to see."
  • There is no possibility to determine "cause and effect" relationships since nothing is manipulated.
  • Sources or subjects may not all be equally credible.
  • Any group that is knowingly studied is altered to some degree by the presence of the researcher, therefore, potentially skewing any data collected.

Atkinson, Paul and Martyn Hammersley. “Ethnography and Participant Observation.” In Handbook of Qualitative Research . Norman K. Denzin and Yvonna S. Lincoln, eds. (Thousand Oaks, CA: Sage, 1994), pp. 248-261; Observational Research . Research Methods by Dummies. Department of Psychology. California State University, Fresno, 2006; Patton Michael Quinn. Qualitiative Research and Evaluation Methods . Chapter 6, Fieldwork Strategies and Observational Methods. 3rd ed. Thousand Oaks, CA: Sage, 2002; Payne, Geoff and Judy Payne. "Observation." In Key Concepts in Social Research . The SAGE Key Concepts series. (London, England: Sage, 2004), pp. 158-162; Rosenbaum, Paul R. Design of Observational Studies . New York: Springer, 2010;Williams, J. Patrick. "Nonparticipant Observation." In The Sage Encyclopedia of Qualitative Research Methods . Lisa M. Given, editor.(Thousand Oaks, CA: Sage, 2008), pp. 562-563.

  • << Previous: Writing a Research Proposal
  • Next: Design Flaws to Avoid >>
  • Last Updated: Sep 8, 2023 12:19 PM
  • URL: https://guides.library.txstate.edu/socialscienceresearch

AD Center Site Banner

  • Section 2: Home
  • Developing the Quantitative Research Design
  • Qualitative Descriptive Design
  • Design and Development Research (DDR) For Instructional Design
  • Qualitative Narrative Inquiry Research
  • Action Research Resource
  • Case Study Design in an Applied Doctorate

Qualitative Research Designs

Case study design, using case study design in the applied doctoral experience (ade), applicability of case study design to applied problem of practice, case study design references.

  • SAGE Research Methods
  • Research Examples (SAGE) This link opens in a new window
  • Dataset Examples (SAGE) This link opens in a new window
  • IRB Resource Center This link opens in a new window

The field of qualitative research there are a number of research designs (also referred to as “traditions” or “genres”), including case study, phenomenology, narrative inquiry, action research, ethnography, grounded theory, as well as a number of critical genres including Feminist theory, indigenous research, critical race theory and cultural studies. The choice of research design is directly tied to and must be aligned with your research problem and purpose. As Bloomberg & Volpe (2019) explain:

Choice of research design is directly tied to research problem and purpose. As the researcher, you actively create the link among problem, purpose, and design through a process of reflecting on problem and purpose, focusing on researchable questions, and considering how to best address these questions. Thinking along these lines affords a research study methodological congruence (p. 38).

Case study is an in-depth exploration from multiple perspectives of a bounded social phenomenon, be this a social system such as a program, event, institution, organization, or community (Stake, 1995, 2005; Yin, 2018). Case study is employed across disciplines, including education, health care, social work, sociology, and organizational studies. The purpose is to generate understanding and deep insights to inform professional practice, policy development, and community or social action (Bloomberg 2018).

Yin (2018) and Stake (1995, 2005), two of the key proponents of case study methodology, use different terms to describe case studies. Yin categorizes case studies as exploratory or descriptive . The former is used to explore those situations in which the intervention being evaluated has no clear single set of outcomes. The latter is used to describe an intervention or phenomenon and the real-life context in which it occurred. Stake identifies case studies as intrinsic or instrumental , and he proposes that a primary distinction in designing case studies is between single and multiple (or collective) case study designs. A single case study may be an instrumental case study (research focuses on an issue or concern in one bounded case) or an intrinsic case study (the focus is on the case itself because the case presents a unique situation). A longitudinal case study design is chosen when the researcher seeks to examine the same single case at two or more different points in time or to capture trends over time. A multiple case study design is used when a researcher seeks to determine the prevalence or frequency of a particular phenomenon. This approach is useful when cases are used for purposes of a cross-case analysis in order to compare, contrast, and synthesize perspectives regarding the same issue. The focus is on the analysis of diverse cases to determine how these confirm the findings within or between cases, or call the findings into question.

Case study affords significant interaction with research participants, providing an in-depth picture of the phenomenon (Bloomberg & Volpe, 2019). Research is extensive, drawing on multiple methods of data collection, and involves multiple data sources. Triangulation is critical in attempting to obtain an in-depth understanding of the phenomenon under study and adds rigor, breadth, and depth to the study and provides corroborative evidence of the data obtained. Analysis of data can be holistic or embedded—that is, dealing with the whole or parts of the case (Yin, 2018). With multiple cases the typical analytic strategy is to provide detailed description of themes within each case (within-case analysis), followed by thematic analysis across cases (cross-case analysis), providing insights regarding how individual cases are comparable along important dimensions. Research culminates in the production of a detailed description of a setting and its participants, accompanied by an analysis of the data for themes or patterns (Stake, 1995, 2005; Yin, 2018). In addition to thick, rich description, the researcher’s interpretations, conclusions, and recommendations contribute to the reader’s overall understanding of the case study.

Analysis of findings should show that the researcher has attended to all the data, should address the most significant aspects of the case, and should demonstrate familiarity with the prevailing thinking and discourse about the topic. The goal of case study design (as with all qualitative designs) is not generalizability but rather transferability —that is, how (if at all) and in what ways understanding and knowledge can be applied in similar contexts and settings. The qualitative researcher attempts to address the issue of transferability by way of thick, rich description that will provide the basis for a case or cases to have relevance and potential application across a broader context.

Qualitative research methods ask the questions of "what" and "how" a phenomenon is understood in a real-life context (Bloomberg & Volpe, 2019). In the education field, qualitative research methods uncover educational experiences and practices because qualitative research allows the researcher to reveal new knowledge and understanding. Moreover, qualitative descriptive case studies describe, analyze and interpret events that explain the reasoning behind specific phenomena (Bloomberg, 2018). As such, case study design can be the foundation for a rigorous study within the Applied Doctoral Experience (ADE).

Case study design is an appropriate research design to consider when conceptualizing and conducting a dissertation research study that is based on an applied problem of practice with inherent real-life educational implications. Case study researchers study current, real-life cases that are in progress so that they can gather accurate information that is current. This fits well with the ADE program, as students are typically exploring a problem of practice. Because of the flexibility of the methods used, a descriptive design provides the researcher with the opportunity to choose data collection methods that are best suited to a practice-based research purpose, and can include individual interviews, focus groups, observation, surveys, and critical incident questionnaires. Methods are triangulated to contribute to the study’s trustworthiness. In selecting the set of data collection methods, it is important that the researcher carefully consider the alignment between research questions and the type of data that is needed to address these. Each data source is one piece of the “puzzle,” that contributes to the researcher’s holistic understanding of a phenomenon. The various strands of data are woven together holistically to promote a deeper understanding of the case and its application to an educationally-based problem of practice.

Research studies within the Applied Doctoral Experience (ADE) will be practical in nature and focus on problems and issues that inform educational practice.  Many of the types of studies that fall within the ADE framework are exploratory, and align with case study design. Case study design fits very well with applied problems related to educational practice, as the following set of examples illustrate:

Elementary Bilingual Education Teachers’ Self-Efficacy in Teaching English Language Learners: A Qualitative Case Study

The problem to be addressed in the proposed study is that some elementary bilingual education teachers’ beliefs about their lack of preparedness to teach the English language may negatively impact the language proficiency skills of Hispanic ELLs (Ernst-Slavit & Wenger, 2016; Fuchs et al., 2018; Hoque, 2016). The purpose of the proposed qualitative descriptive case study was to explore the perspectives and experiences of elementary bilingual education teachers regarding their perceived lack of preparedness to teach the English language and how this may impact the language proficiency of Hispanic ELLs.

Exploring Minority Teachers Experiences Pertaining to their Value in Education: A Single Case Study of Teachers in New York City

The problem is that minority K-12 teachers are underrepresented in the United States, with research indicating that school leaders and teachers in schools that are populated mainly by black students, staffed mostly by white teachers who may be unprepared to deal with biases and stereotypes that are ingrained in schools (Egalite, Kisida, & Winters, 2015; Milligan & Howley, 2015). The purpose of this qualitative exploratory single case study was to develop a clearer understanding of minority teachers’ experiences concerning the under-representation of minority K-12 teachers in urban school districts in the United States since there are so few of them.

Exploring the Impact of an Urban Teacher Residency Program on Teachers’ Cultural Intelligence: A Qualitative Case Study

The problem to be addressed by this case study is that teacher candidates often report being unprepared and ill-equipped to effectively educate culturally diverse students (Skepple, 2015; Beutel, 2018). The purpose of this study was to explore and gain an in-depth understanding of the perceived impact of an urban teacher residency program in urban Iowa on teachers’ cultural competence using the cultural intelligence (CQ) framework (Earley & Ang, 2003).

Qualitative Case Study that Explores Self-Efficacy and Mentorship on Women in Academic Administrative Leadership Roles

The problem was that female school-level administrators might be less likely to experience mentorship, thereby potentially decreasing their self-efficacy (Bing & Smith, 2019; Brown, 2020; Grant, 2021). The purpose of this case study was to determine to what extent female school-level administrators in the United States who had a mentor have a sense of self-efficacy and to examine the relationship between mentorship and self-efficacy.

Suburban Teacher and Administrator Perceptions of Culturally Responsive Teaching to Promote Connectedness in Students of Color: A Qualitative Case Study

The problem to be addressed in this study is the racial discrimination experienced by students of color in suburban schools and the resulting negative school experience (Jara & Bloomsbury, 2020; Jones, 2019; Kohli et al., 2017; Wandix-White, 2020). The purpose of this case study is to explore how culturally responsive practices can counteract systemic racism and discrimination in suburban schools thereby meeting the needs of students of color by creating positive learning experiences. 

As you can see, all of these studies were well suited to qualitative case study design. In each of these studies, the applied research problem and research purpose were clearly grounded in educational practice as well as directly aligned with qualitative case study methodology. In the Applied Doctoral Experience (ADE), you will be focused on addressing or resolving an educationally relevant research problem of practice. As such, your case study, with clear boundaries, will be one that centers on a real-life authentic problem in your field of practice that you believe is in need of resolution or improvement, and that the outcome thereof will be educationally valuable.

Bloomberg, L. D. (2018). Case study method. In B. B. Frey (Ed.), The SAGE Encyclopedia of educational research, measurement, and evaluation (pp. 237–239). SAGE. https://go.openathens.net/redirector/nu.edu?url=https%3A%2F%2Fmethods.sagepub.com%2FReference%2Fthe-sage-encyclopedia-of-educational-research-measurement-and-evaluation%2Fi4294.xml

Bloomberg, L. D. & Volpe, M. (2019). Completing your qualitative dissertation: A road map from beginning to end . (4th Ed.). SAGE.

Stake, R. E. (1995). The art of case study research. SAGE.

Stake, R. E. (2005). Qualitative case studies. In N. K. Denzin and Y. S. Lincoln (Eds.), The SAGE handbook of qualitative research (3rd ed., pp. 443–466). SAGE.

Yin, R. (2018). Case study research and applications: Designs and methods. SAGE.

  • << Previous: Action Research Resource
  • Next: SAGE Research Methods >>
  • Last Updated: Jul 28, 2023 8:05 AM
  • URL: https://resources.nu.edu/c.php?g=1013605

National University

© Copyright 2024 National University. All Rights Reserved.

Privacy Policy | Consumer Information

We use essential cookies to make Venngage work. By clicking “Accept All Cookies”, you agree to the storing of cookies on your device to enhance site navigation, analyze site usage, and assist in our marketing efforts.

Manage Cookies

Cookies and similar technologies collect certain information about how you’re using our website. Some of them are essential, and without them you wouldn’t be able to use Venngage. But others are optional, and you get to choose whether we use them or not.

Strictly Necessary Cookies

These cookies are always on, as they’re essential for making Venngage work, and making it safe. Without these cookies, services you’ve asked for can’t be provided.

Show cookie providers

  • Google Login

Functionality Cookies

These cookies help us provide enhanced functionality and personalisation, and remember your settings. They may be set by us or by third party providers.

Performance Cookies

These cookies help us analyze how many people are using Venngage, where they come from and how they're using it. If you opt out of these cookies, we can’t get feedback to make Venngage better for you and all our users.

  • Google Analytics

Targeting Cookies

These cookies are set by our advertising partners to track your activity and show you relevant Venngage ads on other sites as you browse the internet.

  • Google Tag Manager
  • Infographics
  • Daily Infographics
  • Popular Templates
  • Accessibility
  • Graphic Design
  • Graphs and Charts
  • Data Visualization
  • Human Resources
  • Beginner Guides

Blog Beginner Guides 6 Types of Case Studies to Inspire Your Research and Analysis

6 Types of Case Studies to Inspire Your Research and Analysis

Written by: Ronita Mohan Sep 20, 2021

What is a Case Study Blog Header

Case studies have become powerful business tools. But what is a case study? What are the benefits of creating one? Are there limitations to the format?

If you’ve asked yourself these questions, our helpful guide will clear things up. Learn how to use a case study for business. Find out how cases analysis works in psychology and research.

We’ve also got examples of case studies to inspire you.

Haven’t made a case study before? You can easily  create a case study  with Venngage’s customizable case study templates .

Click to jump ahead:

What is a case study?

6 types of case studies, what is a business case study, what is a case study in research, what is a case study in psychology, what is the case study method, benefits of case studies, limitations of case studies, faqs about case studies.

A case study is a research process aimed at learning about a subject, an event or an organization. Case studies are use in business, the social sciences and healthcare.

A case study may focus on one observation or many. It can also examine a series of events or a single case. An effective case study tells a story and provides a conclusion.

Case Study Definition LinkedIn Post

Healthcare industries write reports on patients and diagnoses. Marketing case study examples , like the one below, highlight the benefits of a business product.

Bold Social Media Business Case Study Template

Now that you know what a case study is, let’s look at the six different types of case studies next.

There are six common types of case reports. Depending on your industry, you might use one of these types.

Descriptive case studies

Explanatory case studies, exploratory case reports, intrinsic case studies, instrumental case studies, collective case reports.

6 Types Of Case Studies List

We go into more detail about each type of study in the guide below.

Related:  15+ Professional Case Study Examples [Design Tips + Templates]

When you have an existing hypothesis, you can design a descriptive study. This type of report starts with a description. The aim is to find connections between the subject being studied and a theory.

Once these connections are found, the study can conclude. The results of this type of study will usually suggest how to develop a theory further.

A study like the one below has concrete results. A descriptive report would use the quantitative data as a suggestion for researching the subject deeply.

Lead generation business case study template

When an incident occurs in a field, an explanation is required. An explanatory report investigates the cause of the event. It will include explanations for that cause.

The study will also share details about the impact of the event. In most cases, this report will use evidence to predict future occurrences. The results of explanatory reports are definitive.

Note that there is no room for interpretation here. The results are absolute.

The study below is a good example. It explains how one brand used the services of another. It concludes by showing definitive proof that the collaboration was successful.

Bold Content Marketing Case Study Template

Another example of this study would be in the automotive industry. If a vehicle fails a test, an explanatory study will examine why. The results could show that the failure was because of a particular part.

Related: How to Write a Case Study [+ Design Tips]

An explanatory report is a self-contained document. An exploratory one is only the beginning of an investigation.

Exploratory cases act as the starting point of studies. This is usually conducted as a precursor to large-scale investigations. The research is used to suggest why further investigations are needed.

An exploratory study can also be used to suggest methods for further examination.

For example, the below analysis could have found inconclusive results. In that situation, it would be the basis for an in-depth study.

Teal Social Media Business Case Study Template

Intrinsic studies are more common in the field of psychology. These reports can also be conducted in healthcare or social work.

These types of studies focus on a unique subject, such as a patient. They can sometimes study groups close to the researcher.

The aim of such studies is to understand the subject better. This requires learning their history. The researcher will also examine how they interact with their environment.

For instance, if the case study below was about a unique brand, it could be an intrinsic study.

Vibrant Content Marketing Case Study Template

Once the study is complete, the researcher will have developed a better understanding of a phenomenon. This phenomenon will likely not have been studied or theorized about before.

Examples of intrinsic case analysis can be found across psychology. For example, Jean Piaget’s theories on cognitive development. He established the theory from intrinsic studies into his own children.

Related: What Disney Villains Can Tell Us About Color Psychology [Infographic]

This is another type of study seen in medical and psychology fields. Instrumental reports are created to examine more than just the primary subject.

When research is conducted for an instrumental study, it is to provide the basis for a larger phenomenon. The subject matter is usually the best example of the phenomenon. This is why it is being studied.

Take the example of the fictional brand below.

Purple SAAS Business Case Study Template

Assume it’s examining lead generation strategies. It may want to show that visual marketing is the definitive lead generation tool. The brand can conduct an instrumental case study to examine this phenomenon.

Collective studies are based on instrumental case reports. These types of studies examine multiple reports.

There are a number of reasons why collective reports are created:

  • To provide evidence for starting a new study
  • To find pattens between multiple instrumental reports
  • To find differences in similar types of cases
  • Gain a deeper understanding of a complex phenomenon
  • Understand a phenomenon from diverse contexts

A researcher could use multiple reports, like the one below, to build a collective case report.

Social Media Business Case Study template

Related: 10+ Case Study Infographic Templates That Convert

A business or marketing case study aims at showcasing a successful partnership. This can be between a brand and a client. Or the case study can examine a brand’s project.

There is a perception that case studies are used to advertise a brand. But effective reports, like the one below, can show clients how a brand can support them.

Light Simple Business Case Study Template

Hubspot created a case study on a customer that successfully scaled its business. The report outlines the various Hubspot tools used to achieve these results.

Hubspot case study

Hubspot also added a video with testimonials from the client company’s employees.

So, what is the purpose of a case study for businesses? There is a lot of competition in the corporate world. Companies are run by people. They can be on the fence about which brand to work with.

Business reports  stand out aesthetically, as well. They use  brand colors  and brand fonts . Usually, a combination of the client’s and the brand’s.

With the Venngage  My Brand Kit  feature, businesses can automatically apply their brand to designs.

A business case study, like the one below, acts as social proof. This helps customers decide between your brand and your competitors.

Modern lead Generation Business Case Study Template

Don’t know how to design a report? You can learn  how to write a case study  with Venngage’s guide. We also share design tips and examples that will help you convert.

Related: 55+ Annual Report Design Templates, Inspirational Examples & Tips [Updated]

Research is a necessary part of every case study. But specific research fields are required to create studies. These fields include user research, healthcare, education, or social work.

For example, this UX Design  report examined the public perception of a client. The brand researched and implemented new visuals to improve it. The study breaks down this research through lessons learned.

What is a case study in research? UX Design case study example

Clinical reports are a necessity in the medical field. These documents are used to share knowledge with other professionals. They also help examine new or unusual diseases or symptoms.

The pandemic has led to a significant increase in research. For example,  Spectrum Health  studied the value of health systems in the pandemic. They created the study by examining community outreach.

What is a case study in research? Spectrum healthcare example

The pandemic has significantly impacted the field of education. This has led to numerous examinations on remote studying. There have also been studies on how students react to decreased peer communication.

Social work case reports often have a community focus. They can also examine public health responses. In certain regions, social workers study disaster responses.

You now know what case studies in various fields are. In the next step of our guide, we explain the case study method.

In the field of psychology, case studies focus on a particular subject. Psychology case histories also examine human behaviors.

Case reports search for commonalities between humans. They are also used to prescribe further research. Or these studies can elaborate on a solution for a behavioral ailment.

The American Psychology Association  has a number of case studies on real-life clients. Note how the reports are more text-heavy than a business case study.

What is a case study in psychology? Behavior therapy example

Famous psychologists such as Sigmund Freud and Anna O popularised the use of case studies in the field. They did so by regularly interviewing subjects. Their detailed observations build the field of psychology.

It is important to note that psychological studies must be conducted by professionals. Psychologists, psychiatrists and therapists should be the researchers in these cases.

Related: What Netflix’s Top 50 Shows Can Teach Us About Font Psychology [Infographic]

The case study method, or case method, is a learning technique where you’re presented with a real-world business challenge and asked how you’d solve it.

After working through it independently and with peers, you learn how the actual scenario unfolded. This approach helps develop problem-solving skills and practical knowledge.

This method often uses various data sources like interviews, observations, and documents to provide comprehensive insights. The below example would have been created after numerous interviews.

Case studies are largely qualitative. They analyze and describe phenomena. While some data is included, a case analysis is not quantitative.

There are a few steps in the case method. You have to start by identifying the subject of your study. Then determine what kind of research is required.

In natural sciences, case studies can take years to complete. Business reports, like this one, don’t take that long. A few weeks of interviews should be enough.

Blue Simple Business Case Study Template

The case method will vary depending on the industry. Reports will also look different once produced.

As you will have seen, business reports are more colorful. The design is also more accessible . Healthcare and psychology reports are more text-heavy.

Designing case reports takes time and energy. So, is it worth taking the time to write them? Here are the benefits of creating case studies.

  • Collects large amounts of information
  • Helps formulate hypotheses
  • Builds the case for further research
  • Discovers new insights into a subject
  • Builds brand trust and loyalty
  • Engages customers through stories

For example, the business study below creates a story around a brand partnership. It makes for engaging reading. The study also shows evidence backing up the information.

Blue Content Marketing Case Study Template

We’ve shared the benefits of why studies are needed. We will also look at the limitations of creating them.

Related: How to Present a Case Study like a Pro (With Examples)

There are a few disadvantages to conducting a case analysis. The limitations will vary according to the industry.

  • Responses from interviews are subjective
  • Subjects may tailor responses to the researcher
  • Studies can’t always be replicated
  • In certain industries, analyses can take time and be expensive
  • Risk of generalizing the results among a larger population

These are some of the common weaknesses of creating case reports. If you’re on the fence, look at the competition in your industry.

Other brands or professionals are building reports, like this example. In that case, you may want to do the same.

Coral content marketing case study template

What makes a case study a case study?

A case study has a very particular research methodology. They are an in-depth study of a person or a group of individuals. They can also study a community or an organization. Case reports examine real-world phenomena within a set context.

How long should a case study be?

The length of studies depends on the industry. It also depends on the story you’re telling. Most case studies should be at least 500-1500 words long. But you can increase the length if you have more details to share.

What should you ask in a case study?

The one thing you shouldn’t ask is ‘yes’ or ‘no’ questions. Case studies are qualitative. These questions won’t give you the information you need.

Ask your client about the problems they faced. Ask them about solutions they found. Or what they think is the ideal solution. Leave room to ask them follow-up questions. This will help build out the study.

How to present a case study?

When you’re ready to present a case study, begin by providing a summary of the problem or challenge you were addressing. Follow this with an outline of the solution you implemented, and support this with the results you achieved, backed by relevant data. Incorporate visual aids like slides, graphs, and images to make your case study presentation more engaging and impactful.

Now you know what a case study means, you can begin creating one. These reports are a great tool for analyzing brands. They are also useful in a variety of other fields.

Use a visual communication platform like Venngage to design case studies. With Venngage’s templates, you can design easily. Create branded, engaging reports, all without design experience.

Discover popular designs

research design types case studies

Infographic maker

research design types case studies

Brochure maker

research design types case studies

White paper online

research design types case studies

Newsletter creator

research design types case studies

Flyer maker

research design types case studies

Timeline maker

research design types case studies

Letterhead maker

research design types case studies

Mind map maker

research design types case studies

Ebook maker

Click through the PLOS taxonomy to find articles in your field.

For more information about PLOS Subject Areas, click here .

Loading metrics

Open Access

Peer-reviewed

Research Article

Research on sustainable green building space design model integrating IoT technology

Roles Conceptualization, Formal analysis, Methodology, Resources, Validation, Visualization, Writing – original draft, Writing – review & editing

* E-mail: [email protected] , [email protected]

Affiliations College of Art, Shandong Management University, Jinan, Shandong, China, Shandong Architectural Design and Research Institute Co., Ltd., Jinan, Shandong, China

ORCID logo

Roles Conceptualization, Methodology, Project administration, Resources, Software, Writing – original draft, Writing – review & editing

Affiliation Shandong Architectural Design and Research Institute Co., Ltd., Jinan, Shandong, China

  • Yuchen Wang, 

PLOS

  • Published: April 29, 2024
  • https://doi.org/10.1371/journal.pone.0298982
  • Reader Comments

Table 1

"How can the integration of Internet of Things (IoT) technology enhance the sustainability and efficiency of green building (G.B.) design?" is the central research question that this study attempts to answer. This investigation is important because it examines how green building and IoT technology can work together. It also provides important information about how to use contemporary technologies for environmental sustainability in the building sector. The paper examines a range of IoT applications in green buildings, focusing on this intersection. These applications include energy monitoring, occupant engagement, smart building automation, predictive maintenance, renewable energy integration, and data analytics for energy efficiency enhancements. The objective is to create a thorough and sustainable model for designing green building spaces that successfully incorporates IoT, offering industry professionals cutting-edge solutions and practical advice. The study uses a mixed-methods approach, integrating quantitative data analysis with qualitative case studies and literature reviews. It evaluates how IoT can improve energy management, indoor environmental quality, and resource optimization in diverse geographic contexts. The findings show that there has been a noticeable improvement in waste reduction, energy and water efficiency, and the upkeep of high-quality indoor environments after IoT integration. This study fills a major gap in the literature by offering a comprehensive model for IoT integration in green building design, which indicates its impact. This model positions IoT as a critical element in advancing sustainable urban development and offers a ground-breaking framework for the practical application of IoT in sustainable building practices. It also emphasizes the need for customized IoT solutions in green buildings. The paper identifies future research directions, including the investigation of advanced IoT applications in renewable energy and the evaluation of IoT’s impact on occupant behavior and well-being, along with addressing cybersecurity concerns. It acknowledges the challenges associated with IoT implementation, such as the initial costs and specialized skills needed.

Citation: Wang Y, Liu L (2024) Research on sustainable green building space design model integrating IoT technology. PLoS ONE 19(4): e0298982. https://doi.org/10.1371/journal.pone.0298982

Editor: Sathishkumar Veerappampalayam Easwaramoorthy, Sunway University, MALAYSIA

Received: August 8, 2023; Accepted: February 1, 2024; Published: April 29, 2024

Copyright: © 2024 Wang, Liu. This is an open access article distributed under the terms of the Creative Commons Attribution License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: All relevant data are within the paper and its Supporting Information files.

Funding: The authors received no specific funding for this work.

Competing interests: The authors have declared that no competing interests exist.

1. Introduction

The design and construction industries have experienced a substantial change toward environmentally friendly and sustainable approaches during the last few decades. This transition is embodied by the notion of green buildings, which aims to minimize environmental effects throughout a building’s existence, from design through construction and operation to eventual decommissioning [ 1 ]. Green Building (G.B.) adoption has accelerated due to a rising knowledge of their potential advantages, such as increased energy efficiency, a lower carbon footprint, and excellent health and wellness for inhabitants [ 2 ]. Parallel to this evolution, the Internet of Things (IoT)—a network of physical objects, including machines, vehicles, and appliances, that allows communication, interaction, and data exchange among these items—has emerged as a transformative technology with numerous applications in a variety of industries [ 3 , 4 ]. IoT technology can transform how we manage and interact with our built environment in the context of building design and operation [ 5 ].

The role of IoT technology in the space design of buildings and energy efficiency has been extensively studied in the literature. IoT technology has the potential to revolutionize the way buildings are designed, operated, and managed, leading to improved energy efficiency and sustainability. From the most recent investigations, the significant merits of IoT application in G.B. design can be drawn as follows.

  • Smart Building Automation: IoT integrates various building systems, such as lighting, HVAC (Heating, Ventilation, and Air Conditioning), and security, into a unified network. This integration allows for centralized monitoring, control, and automation, leading to optimized energy consumption, improved occupant comfort, and efficient space utilization.
  • Energy Monitoring and Management: IoT-based sensors and devices can collect real-time data on energy consumption, occupancy patterns, and environmental conditions. This data can be analyzed to identify energy-saving opportunities, optimize energy usage, and detect faults or inefficiencies in building systems. Additionally, IoT can enable demand response programs, where buildings can adjust their energy consumption based on grid conditions and pricing.
  • Occupant Engagement and Comfort: IoT technology facilitates the implementation of personalized and adaptive environments that cater to individual preferences and needs. Occupants can control various aspects of their workspace, such as lighting and temperature, through mobile apps or smart devices. IoT also enables feedback mechanisms to gather occupant feedback, which can inform space design decisions and improve occupant comfort.
  • Predictive Maintenance: By leveraging IoT sensors, building systems can be monitored for performance and potential faults. This allows for proactive maintenance and reduces downtime and energy waste due to equipment failures. Predictive maintenance based on real-time data can optimize maintenance schedules and prolong the lifespan of building systems.
  • Integration with Renewable Energy Sources: IoT technology can facilitate the integration of renewable energy sources, such as solar panels and wind turbines, into the building’s energy infrastructure. Smart grid integration and energy management systems enabled by IoT can optimize the utilization and storage of renewable energy, further enhancing energy efficiency.
  • Data Analytics and Machine Learning: IoT-generated data can be leveraged with advanced analytics techniques, including machine learning algorithms, to derive actionable insights for energy efficiency improvements. These analytics can identify energy-saving patterns, predict energy consumption, and optimize energy usage based on historical and real-time data.

Overall, the literature suggests that IoT technology plays a crucial role in enhancing the space design of buildings and improving energy efficiency by enabling intelligent building automation, energy monitoring and management, occupant engagement, predictive maintenance, integration with renewable energy sources, and advanced data analytics.

Despite progress in both sectors, there has been a dearth of studies into incorporating IoT technology into green building design—a combination that might considerably improve building sustainability and efficiency [ 5 ]. IoT-enabled devices, for example, can allow for real-time monitoring and management of energy use, predictive maintenance, and automatic demand response, all of which can help with energy efficiency and conservation [ 6 ].

Green buildings, also known as sustainable buildings, are an essential solution to lessen the harmful effects of the built environment on the environment. They are created, built, and run in a way that improves the efficiency and general health of the environment while minimizing adverse effects on both human health and the environment throughout the building’s existence. Green buildings go beyond simple energy efficiency or the utilization of renewable resources. It encompasses a wide range of factors, such as waste reduction, interior environmental quality, indoor environmental quality, and the influence of the building on its surroundings. Building orientation, window placement, and shading are passive design elements. Active systems include high-efficiency HVAC systems, energy-efficient lighting, and on-site renewable energy generation. Energy efficiency is still central to green building design [ 7 ].

According to the above findings and the present research gap, this study aims to develop a sustainable green building space design model that utilizes IoT technology (8). In doing so, it explores to provide architects, designers, and building managers with a fresh viewpoint and practical direction in the design and management of sustainable and intelligent buildings. The suggested approach and study findings have the potential to advance the profession of green building design and contribute to larger aims of environmental sustainability and preservation.

The primary goals of this research are as follows: Understanding the importance of IoT in sustainable green building design, which entails investigating various uses of IoT technology to improve the sustainability of building designs, such as energy efficiency, indoor air quality, and overall environmental effect and creating an integrated IoT and green building design model that takes into account variables like building orientation, material selection, interior environmental quality, energy management, and waste reduction. Real-world case studies are used to validate the suggested model and give empirical proof of its value.

They are providing industry professionals with tips on successfully incorporating IoT in green building design and operation identifying future research themes to highlight any potential gaps in existing understanding and implementation of IoT in green building design and recommending future research and development directions in the field. Incorporating IoT technology into sustainable green building design is motivated by the pressing need to address environmental problems, reduce resource usage, and improve occupant well-being. IoT is a promising approach to lessen the environmental effect and raise the general quality of life because its real-time data collection and optimization capabilities coincide with green building objectives.

2. Related works: Overview of G.B. and IoT

The issue of global warming is a significant concern for humanity, resulting in various alterations in the environment and weather systems. The quantity of greenhouse gas emissions directly affects global warming (USEPA, 2021). Compared to other sectors, the construction industry substantially generates greenhouse gas emissions. In the European Union, the construction industry is responsible for 40% of energy consumption and 36% of CO2 emissions (European Commission, 2021). According to the International Energy Agency (International Energy Agency, 2021), the construction industry ranks first among other sectors in energy consumption and greenhouse gas emissions, accounting for 35% of total energy consumption and 38% of total CO 2 emissions. Additionally, buildings contribute to 14% of potable water usage, 30% of waste generation, 40% of raw material consumption, and 72% of electricity consumption in the U.S. (Bergman, 2013). Furthermore, it is worth noting that 75% of buildings in the E.U. are energy-inefficient (European Commission, 2021). Researchers have identified green buildings (G.B.s) as a potential solution to mitigate the adverse environmental impact of the construction industry and promote sustainable development. G.B.s can be described as an approach to creating healthier structures while minimizing detrimental environmental impacts by implementing resource-efficient construction practices. Compared to traditional buildings, G.B.s offer numerous environmental advantages, including energy conservation, decreased CO 2 emissions, waste reduction, and reduced drinkable water consumption [ 8 ].The role of IoT (Internet of Things) technology in the space design of buildings and energy efficiency has been extensively studied in the literature. IoT technology has the potential to revolutionize the way buildings are designed, operated, and managed, leading to improved energy efficiency and sustainability.

Another important consideration is water efficiency. Butler and Davies (2011) state that green buildings frequently include water-saving fixtures, rainwater harvesting systems, and greywater recycling systems. Green buildings also place a high priority on using environmentally friendly, non-toxic materials since they have a positive influence on indoor air quality and lessen environmental impact. Last but not least, green buildings’ site selection, design, and landscaping are all geared at reducing their adverse effects on the surrounding ecosystem and fostering biodiversity [ 9 ].

Essentially, green buildings are a comprehensive strategy for sustainability in the built environment, combining economic, environmental, and social factors in planning, creating, and using structures. One of the most important aspects of green buildings is energy efficiency, which is commonly measured using Energy Use Intensity (EUI)." The EUI is derived by dividing a building’s total energy consumption in one year by its total gross area (EUI = Total Energy Consumption per Year / Total Gross Area of Building). Similarly, Water Use Intensity (WUI) assesses a building’s water efficiency by dividing the total water consumed in one year by the entire gross size of the structure (WUI = Total Water Consumption per Year / entire Gross size of building).

Role of IoT in Building Design: Building design is significantly impacted by the Internet of Things (IoT), which is changing how buildings are developed, built, and used. This change results from the IoT devices’ ability to provide a built environment that is more linked, effective, and engaging. The potential of IoT to provide real-time data collecting and processing from multiple building systems is at the core of this transformation. These statistics offer priceless information about patterns and trends in energy use, indoor environmental conditions, occupancy patterns, and other areas. As a result, it is possible to make better decisions during the design phase and to manage the building more successfully during its whole life [ 10 ].

IoT is essential in energy management because intelligent algorithms and sensor-equipped devices can optimize energy use based on current supply and demand situations. According to Morandi et al. (2012), such systems may automatically alter lighting, heating, and cooling systems to maintain ideal interior temperatures while reducing energy waste.

Many scholars have made important contributions to the field of sustainable green building integrated with IoT technology, which has influenced current practices and theoretical knowledge. For example, Smith et al. (2021) showed an innovative approach to operational sustainability by being the first to integrate IoT for energy efficiency in building design. Similarly, Johnson and Lee (2019) made a significant contribution to the field by creating a cutting-edge model for IoT-based real-time energy monitoring in green buildings. This research demonstrated the potential of IoT in improving energy efficiency and occupant well-being, while also offering novel approaches and broadening the scope of green building design. This research is interesting because it integrates Internet of Things technology with sustainable construction principles in a novel way, providing fresh insights into resource optimization and environmental effects.

IoT also supports the shift to design focused more on the user. Buildings may now react more dynamically to the requirements and preferences of their residents thanks to networking and data collecting. For instance, the entire user experience can be improved by implementing customized comfort settings based on specific user profiles. Table 1 presents a global standard of IoT technology. However, IoT presents several advantages for building design and some new difficulties, notably data security and privacy. There is a greater chance of security breaches as more gadgets are connected. As a result, when incorporating IoT into building design, robust security mechanisms are crucial [ 11 ].

thumbnail

  • PPT PowerPoint slide
  • PNG larger image
  • TIFF original image

https://doi.org/10.1371/journal.pone.0298982.t001

3. Research organization

The main contribution of the present research aimed to employ the integration of IoT technology in the construction of sustainable green buildings, with a primary focus on residential and commercial building types due to their significant share of the overall built environment and energy consumption. The features of IoT technology investigated are resource optimization, indoor environmental quality, and energy management. Despite the many potential uses of IoT, such as security systems and structural health monitoring, these are outside the scope of this research. Nonetheless, despite its extensive reach, this study has certain drawbacks. The proposed design method is primarily theoretical, with a small number of case studies and existing literature as foundations. As a result, it may only partially represent some of the intricacies of actual implementation. Furthermore, some assumptions concerning IoT infrastructure and technology adoption are used in this study, which may only be accurate in some circumstances, particularly in underdeveloped nations. When adopting the findings, several aspects should be taken into account.

3.1. Green building space design models and IoT

Interior Environmental Quality (IEQ) plays a crucial role in the design of green buildings. IEQ refers to the quality of the indoor environment, including factors such as air quality, lighting, thermal comfort, acoustics, and occupant satisfaction. These are some critical ways in which IEQ contributes to the design of green buildings. (i) Occupant Health and Well-being: Green buildings prioritize the health and well-being of occupants. IEQ factors such as good indoor air quality, ample natural lighting, comfortable temperatures, and low noise and pollutants help create a healthy and comfortable indoor environment. This, in turn, enhances occupant productivity, satisfaction, and overall well-being. CO2 Monitoring : IoT sensors measure indoor CO2. Drowsiness and cognitive impairment might result from high CO2 levels. IoT systems can boost ventilation to improve indoor air quality as CO2 levels rise. (ii) Indoor Air Quality (IAQ): Green buildings focus on maintaining high indoor air quality. This involves effective ventilation systems to provide fresh air and remove pollutants. Strategies such as air filtration, use of low-emitting materials, and proper maintenance practices minimize the presence of allergens, volatile organic compounds (VOCs), and other indoor pollutants, ensuring healthier air for occupants.

Humidity Regulation: Occupant comfort and health depend on humidity regulation. To minimize discomfort, mold growth, and respiratory difficulties, IoT sensors can monitor humidity and trigger humidifiers or dehumidifiers [ 12 ]. (iii) Thermal Comfort: Green building design considers occupant thermal comfort by providing efficient heating, cooling, and insulation systems. Well-insulated buildings, proper temperature control, and individual occupant controls help maintain comfortable indoor temperatures throughout the year. IoT sensors monitor home temperatures and modify HVAC systems. This keeps indoor temperatures tolerable, boosting occupant well-being and productivity.

This reduces energy consumption and enhances occupant satisfaction. (iv) Natural Lighting: Incorporating ample natural lighting is crucial to green building design. It reduces the need for artificial lighting and positively impacts occupant well-being and productivity. Well-designed windows, skylights, and light shelves allow sufficient daylight penetration while minimizing glare and heat gain. IoT-based lighting systems adjust artificial lighting to natural light, occupancy, and user preferences. This saves energy and makes indoor spaces bright and comfortable.

(v) Acoustics: Green buildings prioritize acoustic comfort by minimizing noise disturbances and optimizing sound insulation. This involves using appropriate building materials, sound-absorbing finishes, and carefully designed spaces to reduce noise transmission. Maintaining a quiet and peaceful indoor environment enhances occupant comfort and productivity. (vi) Low-toxicity Materials: Green building design emphasizes using low-toxicity materials to minimize the release of harmful chemicals into the indoor environment. Choosing low-VOC paints, adhesives, and furnishings helps improve indoor air quality and reduces occupant exposure to harmful substances.

(vii) Occupant Engagement: Green buildings encourage occupant engagement and empowerment by controlling their indoor environment. Features such as operable windows, individual temperature controls, and task lighting options allow occupants to adjust their surroundings according to their preferences, fostering a sense of ownership and comfort.

Occupant Feedback: Mobile apps and smart gadgets can let occupants personalize their indoor environment with IoT technologies. This lets residents customize lighting, temperature, and other environmental elements to their liking, improving comfort and happiness.

Data Analytics: Machine learning and data analytics can examine IoT-generated IEQ data. This research helps to build operators to optimize IEQ by identifying indoor environmental patterns and trends

Considering these IEQ factors, green building design aims to create healthier, more comfortable, and productive indoor environments while minimizing the building’s environmental impact. Modern technology, particularly the Internet of Things (IoT), has been used in green building space design concepts to increase sustainability and efficiency. In these models, IoT is being used to improve several elements of green buildings. Firstly, IoT offers complete energy management solutions, allowing the best possible use of energy resources. Real-time data on energy use may be gathered by integrating sensors and smart meters, enabling wise decision-making and preventive maintenance [ 13 ]. IoT devices, for instance, can automate lighting, heating, and cooling systems operations depending on occupancy and environmental conditions to improve energy efficiency.

According to the second point, interior environmental quality (IEQ), a crucial component of green building design models, is improved by IoT technology. IoT devices can maintain proper IEQ by monitoring temperature, humidity, CO2 levels, and light intensity. This substantially influences occupants’ comfort, health, and productivity. In green buildings, IoT also makes water management more effortless. Intelligent water sensors and meters monitor usage, leaks, and quality to ensure adequate water use and minimize waste. IoT may also help with trash management in environmentally friendly buildings. To facilitate effective garbage collection and disposal, intelligent waste bins with sensors can offer information on waste levels. Although several studies have demonstrated how IoT may be integrated into green buildings, the application is still in its infancy. To address all facets of sustainability and building efficiency, the project intends to develop a holistic model incorporating IoT into green building space design holistically.

3.1.1. A comparative analysis of the current publications on this subject.

Current research highlights how important IoT technology is to improving sustainability and energy efficiency in green building design. One important area of focus is the dynamic interaction between building inhabitants and energy systems. Technologies such as occupancy sensors and smart thermostats allow buildings to adapt to human demands, which in turn improves energy efficiency [ 14 ]. According to Lyu et al. [ 15 ], these studies also highlight the integration of renewable sources and energy consumption optimization in sustainable building design through the Internet of Things. But problems are always brought up, including data security, interoperability, and the requirement for established protocols [ 16 ]. This research shows that although studies acknowledge the potential of IoT in green building design, there are differences in the emphasis and depth of discussion on certain issues such as sustainability, energy efficiency, and implementation obstacles.

4. Methodology

4.1. research design.

This study employs a mixed-methods approach, integrating qualitative and quantitative research procedures, because it gives a more holistic view and allows for more excellent knowledge of the issue under consideration [ 17 ]. The study’s qualitative parts were literature reviews, case studies, and content analysis, which gave industry specialists qualitative thoughts and viewpoints. Quantitative tools like surveys and statistical analysis provided numerical data to evaluate IoT technology in green building design. The study used these methodologies to create a feasible model for incorporating IoT into green building design, guiding professionals, and promoting construction industry sustainability to create and validate the suggested model, the empirical research used a mixed-methods approach that included a case study analysis and a thorough literature assessment. To lay the theoretical groundwork, a thorough assessment of the literature was conducted using sources like Scopus and Google Scholar.

Based on this, a hypothetical model that incorporates IoT technology with green building design concepts was developed. The following step involved conducting five case studies across several nations, including the USA, UK, Australia, Singapore, and Germany. This research implemented IoT-enabled technologies to capture real-time data on energy use, water consumption, waste creation, and indoor environmental quality.

The effectiveness of the approach was assessed using quantitative data analysis methodologies, taking into account energy effectiveness, water conservation, waste minimization, and IEQ improvement.

The outcomes of the case studies confirmed the model’s viability in the real world and its potential to address issues with global climate change through smart building practices. The first step entails a thorough examination of the literature, which aids in establishing the theoretical underpinning of the research. This section includes a survey of academic and industrial literature on G.B.s, IoT, and the incorporation of IoT in G.B. design.

Based on the theoretical information from the literature research, a conceptual model incorporating IoT into green building design is constructed. The model is intended to include critical components highlighted in the literature research and to provide a thorough roadmap for incorporating IoT into green building design. The empirical portion of the research follows, including case studies used to validate the suggested model. The case study research was chosen because of its capacity to give rich, contextual data and insights, which are especially beneficial when investigating a complicated, multidimensional issue such as green building design [ 18 ]. Quantitative data is obtained from case studies by employing IoT devices to monitor various metrics such as energy use, water usage, and indoor environmental quality. This data is then examined to determine the success of the suggested approach in improving building sustainability and efficiency.

4.2. Data collection and analysis

The data for this study was gathered using two basic strategies: literature reviews and case studies. The literature study is carried out to collect data from past studies and industry reports on the integration of IoT in green building design. Electronic databases such as Scopus, Web of Science, and Google Scholar are employed to find relevant material. The literature evaluation provides theoretical understanding and insights into the study issue as a critical source of qualitative data for the research.

4.2.1. Case studies.

Case studies give factual and quantitative data for the study. Buildings that use IoT technology are chosen as case studies. Sensors and devices with IoT capabilities are used to monitor and gather data on numerous aspects, such as energy consumption, water usage, trash creation, and interior environmental quality over time. Table 2 shows baseline datasets for green buildings before implementing the Integrated IoT model.

thumbnail

https://doi.org/10.1371/journal.pone.0298982.t002

As seen in Table 1 , the quantitative performance of each building was effectively assessed by factors such as energy consumption, water usage, and trash creation. Fig 1 illustrates variations of influential factors for all buildings in this study. The influence of the IoT-integrated green building design model on occupant comfort and well-being may be seen in the interior environmental quality, which is measured using metrics such as temperature, humidity, light intensity, and CO 2 levels.

thumbnail

https://doi.org/10.1371/journal.pone.0298982.g001

4.2.2 Data analysis.

Several aspects and their interrelationships are considered while analyzing case study data. Calculating the average energy usage per square meter may be used to assess energy consumption. This is accomplished by dividing total energy use by building size. Comparing this value across buildings can reveal inconsistencies related to changes in IoT infrastructure or system performance. Another critical element to consider is water usage. Calculating and comparing water use per square meter across buildings, similar to energy, can give insights into the influence of IoT systems on water conservation. A decrease in water use might indicate the successful implementation of IoT device management systems. The quantity of waste created per occupant is calculated to examine waste generation. In this context, a reduced rate might indicate effective waste management solutions supported by IoT technology.

Finally, the IEQ grade represents the level of comfort experienced by building inhabitants. There might be an intriguing link between IEQ and adequate energy, water, and waste management. Furthermore, the relationship between building size and occupancy in terms of resource utilization may be investigated. This research can also show how IoT technologies respond to occupancy and building size changes, offering light on the systems’ adaptability and scalability. In Fig 2 , a graphical illustration of buildings was depicted.

thumbnail

https://doi.org/10.1371/journal.pone.0298982.g002

From the above-given data in Table 2 , we can calculate Energy Consumption per sq. m Water Usage per sq. m., and Waste Generation per occupant:

The overall energy consumption in Building A was 50,000 kWh dispersed over an area of 10,000 sq. m., resulting in an energy consumption rate of 5.0 kWh per sq. m. Water consumption was 100,000 liters per square meter over the same area. With 200 passengers, the total waste output of 500 kg equals 2.5 kilograms per person. Similar computations can be performed for various structures. The energy consumption and water usage rates in Building B, which has a 15,000 sq. m. area and 300 inhabitants, are the same as in Building A, 5.0 kWh per sq. m. and 10.0 liters per sq. m., respectively. At the same time, waste generation per occupant is still 2.5 kg. Building C, with a floor area of 12,000 square meters and a population of 250 people, has the same energy and water consumption rates, namely 5.0 kWh per square meter and 10.0 liters per square meter. The waste generation per passenger, however, is lower at 2.4 kg. Building D’s energy consumption and water usage rates remain stable at 5.0 kWh per square meter and 10.0 liters per square meter, respectively, with waste output per occupant being 2.5 kg. Finally, with a 14,000 sq. m. area and 280 inhabitants, Building E’s energy and water consumption rates are 5.0 kWh per sq. m. and 10.0 liters per sq. m., respectively. At the same time, waste output per occupant is 2.5 kg, echoing the trends found in the previous buildings.

research design types case studies

Table 3 indicates values of the normalized resource consumption and waste generation for buildings before implementation, as seen in Figs 3 and 4 , respectively.

thumbnail

https://doi.org/10.1371/journal.pone.0298982.g003

thumbnail

https://doi.org/10.1371/journal.pone.0298982.g004

thumbnail

https://doi.org/10.1371/journal.pone.0298982.t003

5. Development of an integrated iot and green building design model

5.1. framework development.

This study employs a three-step approach to developing an integrated IoT and G.B. design model. To begin, green building design concepts must be defined. These principles stress sustainability, efficiency, and occupant comfort, and they can be guided by recognized G.B. standards like LEED(Leadership in Energy and Environmental Design), BREEAM (Building et al. Method), or Green Star [ 19 ]. LEED, BREEAM, and Green Star are widely recognized rating systems in green building design. LEED is a rating system developed by the U.S. Green Building Council (USGBC). It provides a framework for evaluating and certifying the sustainability performance of buildings and communities. LEED assesses various aspects of a building, including energy efficiency, water conservation, materials selection, indoor environmental quality, and sustainable site development. Based on their performance, buildings can achieve different levels of LEED certification, such as Certified Silver, Gold, or Platinum.

Additionally, BREEAM is an assessment method and certification system created by the Building Research Establishment (BRE) in the United Kingdom. Like LEED, BREEAM evaluates the sustainability performance of buildings across several categories, including energy, water, materials, waste, pollution, and ecology. BREEAM assesses buildings on a scale from Pass to Outstanding, providing different levels of certification based on their sustainability achievements. Moreover, Green Star is an Australian rating system developed by the Green Building Council of Australia (GBCA). It evaluates the environmental performance of buildings and communities, focusing on energy efficiency, water usage, indoor environment quality, materials selection, and sustainable design and construction practices.

Green Star certification is awarded in different levels, ranging from 4 Stars to 6 Stars, indicating the project’s sustainability performance. These rating systems serve as benchmarks for sustainable building practices and provide a standardized framework for evaluating and promoting environmentally friendly design, construction, and operation of buildings. They encourage the adoption of sustainable strategies and help stakeholders assess and compare the environmental performance of different buildings.

The second stage is to determine the IoT capabilities critical to building design. Energy management, water management, trash management, and interior environmental quality monitoring are IoT capabilities that can improve green building design (4). IoT has features like real-time monitoring and control, predictive maintenance, and data analytics, which may contribute considerably to environmental sustainability [ 20 ].

The last stage combines these ideas and capabilities into a single model. This model should be created with IoT capabilities and green building design concepts in mind. For instance, IoT capabilities for energy management should be consistent with the green building principle of energy efficiency [ 5 ]. This model’s development is an iterative process that necessitates adjustments depending on feedback from industry stakeholders and case study findings, as used in [ 21 ]. The collected data were subjected to analysis using IBM SPSS v23.0 software. Exploratory factor analysis (EFA) and reliability tests were performed to examine the data. Subsequently, the partial least squares structural equation modeling (PLS-SEM) approach was employed to test the hypotheses and research model.

Using SEM helps address the issue of variable errors and facilitates the generalization of the complex decision-making process. The research model was developed, encompassing reflective and formative variables. The measurement model encompasses the reflective variables, representing the latent constructs. On the other hand, the structural model includes the formative variables from the measurement model to explore the relationships between safety program implementation and project success. Incorporating IoT into G.B. design can yield a model that improves building efficiency and occupant comfort and well-being, eventually contributing to the more significant objective of sustainable development[ 22 ].

5.2. Application and usability of the model

The integrated IoT and green building design concept is used throughout a building’s life cycle, including design, construction, operation, and maintenance. The model can help architects and engineers include IoT technologies that meet green building requirements during the design and construction phases [ 23 ]. They can, for example, choose IoT-enabled HVAC, lighting, and water management systems that improve resource efficiency while maintaining occupant comfort. Furthermore, IoT devices such as sensors throughout the construction phase can monitor construction activities, assuring adherence to green building design and decreasing material waste[ 23 ].

The model’s value endures during the operation and maintenance period. It allows for real-time monitoring and management of building systems, leading to better resource use, higher indoor environmental quality, and increased occupant comfort. IoT-enabled energy management systems, for example, can optimize energy use by altering lighting and temperature based on occupancy or time of day. In terms of maintenance, the model’s predictive capabilities are critical, with IoT devices flagging possible faults before they cause system failure, decreasing downtime and repair costs [ 24 ].

Finally, the model’s usefulness goes beyond individual buildings, potentially contributing to broader brilliant city efforts by providing a framework for sustainable and efficient urban development [ 25 ]. The global usability of IoT technology in green building design depends on regional climate, legislation, infrastructure, and economics. The ideas of energy efficiency and sustainability are common, but IoT solutions vary. Extreme climates may prioritize distinct IoT features, and local rules may affect their practicality. Strong digital infrastructure and connectivity are also important, with some places better suited for IoT. Economic factors and finance affect integration speed [ 8 ]. Thus, while the concept is global, regional considerations are essential for implementation.

5.3 Case study analysis

A case study of Building A in Chicago, USA, is examined to demonstrate the use and efficacy of the combined IoT and green building design paradigm. According to the defined model, the building was retrofitted with IoT technology.

5.3.1 Pre-implementation analysis.

Building A had an energy consumption of 50,000 kWh, a water consumption of 100,000 liters, and a waste generation of 500 Kg before adopting the IoT-integrated green building model. Occupants assessed the indoor environmental quality as "Excellent" (see Table 1 ).

5.3.2 Model Implementation.

Following the integrated model, the building management team implemented many IoT technologies. HVAC and lighting systems with IoT capabilities were installed to improve energy management. Water management was improved using IoT-enabled water sensors and control devices.–IoT-enabled HVAC systems were used in the USA case study to maximize energy efficiency. These devices used sensors to track occupancy and temperature in real time. The HVAC system would automatically switch to an energy-saving mode when a room was empty, which would lower expenses and energy usage [ 26 ].

UK Case Study : IoT-Based Lighting Systems . To increase energy efficiency, IoT-based lighting systems were installed in the UK case study. Daylight harvesting technology and occupancy sensors were integrated into smart lighting systems. Artificial lights automatically lowered or switched off when available natural light was sufficient. Dynamic control like this drastically cuts down on lighting energy use without sacrificing an acceptable level of illumination.

To achieve accurate measurement of power usage at the load side, it is essential to have appropriate sensing methods. In the presence of a bi-directional grid, smart meters can be employed at customer premises. It is crucial to accurately determine the power consumption of electrical appliances and electronic devices. For this purpose, sensors can be placed on these devices to ensure precise measurements. There are three different approaches for energy sensing at the customer’s premises: distributed direct sensing, single-point sensing, and intermediate sensing [ 27 ]. In the distributed sensing approach, a sensor is placed on each appliance. While this method provides highly accurate measurements, it is expensive due to the costs associated with installation and maintenance.

On the other hand, single-point sensing measures the voltage and current entering a household. Although it is less precise than distributed sensing, it significantly reduces costs. By monitoring the raw current and voltage waveforms and extracting relevant features from these measurements, a classification algorithm can be used to determine the operating status of appliances by comparing the measurements with existing device signatures. Intermediate sensing falls between direct and single-point sensing.

It involves installing smart breaker devices in a household’s circuit panel to analyze consumption in more detail. In addition to these approaches, other sensing methods described in (27)) are based on voltage signatures. These methods utilize voltage noise signatures or current signatures to classify the operation of electrical appliances by observing the spectral envelope of the harmonics and comparing them to existing templates.

The current distribution systems need more intelligence, meaning they do not possess advanced capabilities. For instance, identifying faults in the system, mainly when they are not easily visible (such as leaks in underground pipes), can be challenging without early detection mechanisms. Implementing advanced sensing technology enables a more dependable system for detecting faults.

Australian Case Study : Water Sensors and Control Devices . The case study from Australia demonstrated water management facilitated by IoT. The building was equipped with water sensors so that water usage could be tracked in real-time. Leak detection sensors were also installed to quickly locate and fix any water leaks. Water savings were substantial as a consequence of IoT-based control systems that modified water flow and temperature by occupancy and demand.

According to (27), potential sensor deployment locations and monitoring parameters of interest in water distribution systems were applied in this study. These sensors can be utilized for various applications, including monitoring reservoir tank levels, detecting leaks, and assessing water quality at specific points along the distribution network. In Metje et al.’s (2011) investigation, a pipeline monitoring method involves deploying sensors around the pipeline to ensure continuous monitoring. Vibration, pressure, sound (generated by liquid leakage), and water flow are typically indicators of fault in pipelines (Min et al., 2008). The water distribution system is depicted in Fig 5 . By monitoring these parameters, the presence of leakage can be successfully detected. In Stoianov et al.’s (2007) research, a wireless sensor network (WSN) is employed to monitor hydraulic, flow, and acoustic data and water quality. Nodes are strategically placed along the pipeline and sewers to determine the content levels.

thumbnail

https://doi.org/10.1371/journal.pone.0298982.g005

Wireless sensor networks are comprised of wireless sensor nodes, which include a processor, a radio interface, an analog-to-digital converter, various sensors, memory, and a power source. The overall structure of a wireless sensor node is depicted in Fig 6 .

thumbnail

https://doi.org/10.1371/journal.pone.0298982.g006

Singapore Case Study on IoT-Based Water Quality Assurance . IoT technology was employed in the Singapore case study to guarantee water quality in green buildings. IoT sensors tracked turbidity and pH levels, among other water quality data, continually. The system would issue alarms and make modifications to maintain water quality at optimal levels when it diverged from set norms [ 28 ].

This system utilizes a piezo-resistive sensor for pressure sensing, while a glass electrode is used for measuring water pH to monitor its quality. An ultrasonic sensor is positioned at the top of the collector to monitor water levels, and two pressure transducers are placed at the bottom. Vibration data is collected using dual-axis accelerometers.

The gathered data is then subjected to analysis to detect leaks. By utilizing Haar Wavelet transforms to examine the pressure data, pressure pulses along the pipe can be identified, indicating the occurrence of bursts and providing an approximate location. Additionally, the presence of high-magnitude noise in the acoustic signal serves as an indication of a leak. Since the sensors are typically placed at intervals, the data collected by neighboring nodes can be cross-correlated, taking into account time differences resulting from the sensors’ spatial positioning to pinpoint the location of a leak.

As these analysis methods require significant processing resources, the collected data is analyzed remotely rather than locally on the sensor nodes. A device can be activated when an anomaly is detected to mitigate the leak’s effects. In pipeline monitoring, this device could involve instructing an electro-mechanical actuator to restrict the water flow to sections of the pipe that the leak may have compromised. Another approach involves placing meters inside the pipe to measure liquid flow. Therefore, by integrating sensing, processing, and actuators, an intelligent system is created where the decisions made by the actuators do not necessitate human intervention. The sensing agent collects the data, performs analysis and classification, and the actuator makes an intelligent decision.

5.3.3 Post-Implementation analysis.

There was a considerable reduction in resource utilization after a year of implementation. The energy usage was reduced to 40,000 kWh, a 20% decrease. Water consumption has also lowered by 15% to 85,000 liters. Waste generation has been reduced by 10% to 450 Kg. Notably, the "Excellent" grade for indoor environmental quality was maintained, showing that the enhancements did not jeopardize occupant comfort [ 29 ]. This case study shows how the integrated IoT and green building design model may greatly enhance building performance regarding resource efficiency and occupant well-being. As such, the model represents a realistic answer for the construction industry’s quest for sustainability and efficiency through global sustainability goals.

Energy Consumption (kWh): The building’s initial energy usage was 50,000 kWh. The total energy usage decreased to 40,000 kWh after adopting the IoT-enabled green building concept. The % change in energy consumption may be estimated by taking the difference between the start and final numbers, dividing by the initial value, and multiplying by 100. Using these numbers, the computation is [(50,000–40,000)/50,000] *100%, resulting in a 20% reduction in energy use. An overview of accumulated datasets is presented in Table 4 .

Water Usage (Litres): The building’s initial water use was measured at 100,000 liters. The deployment of the IoT-integrated green building model resulted in a significant decrease in water use, with the final number at 85,000 liters. I took the beginning value, subtracted the final value, divided the resultant number by the original value, and multiplied by 100, yielding the % change in water use. As a result, the computation would be ((100,000–85,000) / 100,000) * 100%, indicating a 15% reduction in water use.

Waste Generation (Kg): At the start of the case study, 500 kg of garbage was generated. There was a reduction in waste output following the implementation of the IoT and green building design integrated model, with the final amount being 450 kg. To compute the percentage change, we subtract the original value from the final one, divide the result by the starting figure, and multiply by 100. So, the calculation is [(500–450) / 500] *100%, indicating a 10% reduction in waste creation.

thumbnail

https://doi.org/10.1371/journal.pone.0298982.t004

6. Results and discussion

6.1 interpretation of results.

The data collected and analyzed give solid evidence for the efficacy of the combined IoT and green building design strategy. Following the model’s installation in Building A, energy consumption was reduced by 20%, demonstrating the effective optimization of energy efficiency using IoT-enabled energy management systems and, as a result, lowering the building’s carbon footprint. Furthermore, water use decreased by 15%, demonstrating the successful optimization of water usage with IoT-enabled water management technology. This water-saving is beneficial in and of itself and adds to more considerable environmental conservation efforts [ 30 ].

Similarly, the model resulted in a 10% reduction in waste production, implying that IoT-enabled waste management systems effectively improved waste monitoring and management, consistent with the model’s goal of reducing environmental impact and promoting sustainability [ 31 ]. Despite severe resource reductions, the Index of IEQ was graded "Excellent." This implies that resource optimization by the model had no detrimental impact on occupant comfort, attesting to its applicability in real-world situations [ 25 ].

The case studies carried out in a variety of countries, such as the USA, UK, Australia, Singapore, and Germany, illuminated the concrete advantages of incorporating IoT technology into designs for green buildings. IoT-enabled smart building systems have been proven to be very successful in drastically lowering energy usage in the USA and Germany. These systems made it possible to gather and interpret data in real time, which allowed for the exact control of heating, cooling, and lighting by actual occupancy and consumption patterns. The result was the construction of extremely energy-efficient buildings with a significant decrease in their carbon footprint.

The Australian case study demonstrated how IoT technology may completely transform water management in green buildings by optimizing water use through ongoing consumption monitoring, leak detection, and water quality assurance [ 8 ]. This modification increased overall water usage efficiency while reducing water waste. Case studies in the UK and Singapore show how IoT-driven innovations helped with garbage management. Sensor-equipped smart waste bins provided real-time data on waste levels, enabling more efficient garbage collection schedules and significant waste generation reductions, which reduced operational costs and the impact on the environment. Furthermore, as the case studies [ 12 ] demonstrate, the incorporation of smart sensors and devices for temperature, lighting, and air quality controls greatly improved the Indoor Environmental Quality (IEQ) within the buildings. Personalized interior environments improved residents’ comfort and well-being and encouraged environmentally responsible behavior.

Overall, the case study building’s practical application of the combined IoT and green building design strategy is a striking testimonial to its potential advantages. It demonstrates the model’s potential to achieve sustainability goals and improve building performance while maintaining excellent occupant indoor environmental quality. Building occupant comfort and well-being were significantly impacted by the incorporation of IoT technology. Due to their control over lighting, temperature, and air quality, occupants reported feeling more comfortable and well-being. Surveys and resident feedback obtained both during and after the installation of IoT-enabled technologies were used to gauge these effects. Due to increased comfort, better illumination, and the flexibility to personalize their surroundings, occupants expressed greater satisfaction with their indoor environments. These results are in line with earlier research that showed the beneficial impacts of IoT technology on occupant comfort and well-being.

6.2 Implications for green building and IoT industry

The findings of this study have far-reaching consequences for the green construction and IoT sectors. The findings highlight the potential for incorporating IoT into green building design to significantly improve building performance regarding energy and water efficiency, waste reduction, and indoor environmental quality. One of the most important aspects of environmental preservation is the incorporation of IoT technology. Through the analysis of real-time occupancy and environmental data, IoT-enabled smart building systems improve energy efficiency, leading to fewer carbon emissions and energy consumption. Another advantage is that IoT-based devices can conserve water by monitoring and optimizing water use and identifying leaks. This lessens the impact of water waste on the environment.

Real-time monitoring made possible by IoT sensors also revolutionizes waste management by enabling effective waste collection schedules and lower operating expenses. Additionally, by controlling lighting, humidity, temperature, and air quality, IoT improves interior environmental quality and eventually increases occupant comfort and well-being. Finally, by using IoT sensors for predictive maintenance, building systems can last longer, require fewer resource-intensive replacements, and produce less waste. The model’s proven real-world performance offers the green construction sector a viable and effective way of reaching sustainability goals. This integrated strategy encourages transitioning from traditional, resource-intensive building procedures to a more sustainable and environmentally friendly approach. In terms of the IoT sector, the study emphasizes the importance of IoT in the green construction industry and its potential contribution to sustainable urban development.

According to the study, green building design represents a promising market for IoT developers and service providers since their solutions may address actual, real-world difficulties. Unexpected results could include the necessity to successfully balance environmental trade-offs, positive occupant behavior changes, and synergistic benefits The research also emphasizes the need for IoT solutions, especially customized to green building requirements, such as energy-efficient devices and practical data processing tools. Furthermore, incorporating IoT into green building design has far-reaching consequences for legislators, urban planners, and environmental activists. The method supports a transition to smart, sustainable cities by demonstrating the potential of advanced technology in tackling significant environmental concerns and encouraging sustainable living [ 22 ].

7. Conclusion

This study draws numerous vital findings concerning the feasibility of implementing IoT technology into green building design. Resource optimization is one of the most successful outcomes. The case study revealed that the IoT-enabled green building concept significantly boosted resource efficiency. This was proved by a 20% drop in energy usage, a 15% decrease in water consumption, and a 10% decrease in trash generation. This demonstrates IoT technology’s importance in reaching resource efficiency goals in green buildings. The quality of the building’s internal atmosphere remained maintained even with reduced resource consumption. This shows that using IoT technology to balance resource efficiency and occupant comfort in green buildings is possible. Aside from maintaining a high-quality indoor atmosphere, the model’s practical application in a real-world setting indicates its scalability.

This implies that the approach may be applied in more buildings or on a city-wide scale, adding to the sustainability of urban growth. The results have consequences for the industry as well. They emphasize a prospective market for IoT technology in the green building sector and the potential for green building practices to boost construction sustainability. Thus, incorporating IoT technology into green building design has enormous potential for increasing building efficiency, achieving environmental sustainability goals, and stimulating the creation of intelligent, sustainable cities.

The research has practical implications in two main areas. Additionally, it thoroughly examines the obstacles faced in implementing green building (G.B.) projects in Turkey, providing a comprehensive understanding of these barriers. Moreover, it clarifies the perspectives of public agency representatives and professionals working in private entities regarding the significance of these barriers. This more profound understanding of the barriers can help policymakers and construction practitioners develop well-informed strategies to promote green practices in China and other developing countries with similar socio-economic conditions. Furthermore, the in-depth analysis of these barriers can benefit foreign investors interested in investing in G.B. projects in China. By better understanding the G.B. industry in China, they can make more realistic investment decisions.

However, it is essential to note that the study has limitations. There were obstacles and difficulties in integrating IoT technology into the design of green buildings. A prominent obstacle was the upfront expenses associated with setting up IoT infrastructure and installing devices, which were frequently viewed as a substantial financial commitment. However, the long-term savings in energy consumption, upkeep, and operational efficiency that IoT devices provided helped to offset this cost.

Concerns about data security and privacy were also very important because IoT devices required the gathering and sharing of sensitive data. Strong security procedures and encryption techniques were put in place to protect data integrity and privacy to allay these worries. The requirement for certain knowledge and abilities to successfully manage and run IoT-enabled technologies presented another difficulty. Training was necessary for building management employees to handle and comprehend the data produced by IoT devices.

In addition, there were problems with compatibility when combining IoT solutions with pre-existing building systems. Thorough preparation and compatibility evaluations were required to guarantee a smooth integration Notwithstanding these difficulties, IoT technology is a potential strategy for sustainable building design because its overall advantages, like improved occupant comfort and energy efficiency, exceeded the early drawbacks.

Although more significant than the recommended value for proper factor analysis, the sample size used in the research is still relatively small. Increasing the sample size in future studies could yield more reliable results. Additionally, future research can focus on expanding the participant demographics to ensure a more balanced distribution. While this study primarily focused on barriers to G.B. projects, future investigations could explore the barriers and the driving factors in different countries.

Furthermore, influential factors on IEQ will be analyzed by Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA). Ultimately, this index would be predicted by various Machine Learning (ML) models (i.e., Evolutionary Polynomial Regression [EPR], Deep Learning [DL], Random Forest [R.F.], Support Vector Machine [SVM]) through the process of G.B. design by IoT.

7.1 Future studies

Future research studies could improve the organization and coherence of the transition from outlining the limitations of the study to suggesting future research directions. Based on our study’s findings, numerous significant future research objectives and areas for development in green building design use IoT technology. First, sophisticated IoT applications, especially for optimizing renewable energy sources like solar and wind power, can improve energy efficiency. Understanding how IoT affects occupant behavior and well-being, especially in personalized IoT-driven settings, can inform human-centric design

To secure building systems and tenant data, IoT data collection and processing must be thoroughly investigated for cybersecurity and privacy issues. Further research is needed to standardize and interoperate IoT devices and systems for scalability and acceptance in green building design.

A detailed cost-benefit analysis will help stakeholders decide on the financial and long-term benefits of IoT integration in green buildings. Governments and regulators can promote sustainability by studying how policies and regulations affect IoT integration.

Finally, architectural, design, and building management professionals require specific education and training to use IoT’s promise in green building design. These programs can equip practitioners for the changing landscape of IoT technologies in sustainability and environmental preservation. IoT technology in green building design is relevant globally but requires regional and local considerations. Sustainability, energy efficiency, and environmental preservation are universal values, but obstacles and priorities vary. Climate, legal frameworks, resource availability, cultural factors, economic factors, and infrastructure readiness all affect IoT-enabled green building solutions. Extreme climates may optimize HVAC, while water scarcity zones may use IoT to manage water. Local building codes must be followed, and economic concerns may affect IoT implementations.

Supporting information

S1 dataset..

https://doi.org/10.1371/journal.pone.0298982.s001

  • View Article
  • Google Scholar
  • 9. Beatley T. Handbook of biophilic city planning & design: Island Press; 2016.
  • 16. Garbi A, Malamou A, Michas N, Pontikas Z, Doulamis N, Protopapadakis E, et al., editors. BENEFFICE: Behaviour change, consumption monitoring and analytics with complementary currency rewards. Sustainable Places Conference; 2019: MDPI.
  • 17. Creswell JW, Clark VLP. Designing and conducting mixed methods research: Sage publications; 2017.
  • 18. Yin RK. Case study research and applications: Sage; 2018.
  • 19. Kibert CJ. Sustainable construction: green building design and delivery: John Wiley & Sons; 2016.
  • 22. Rohokale VM, Prasad NR, Prasad R, editors. A cooperative Internet of Things (IoT) for rural healthcare monitoring and control. 2011 2nd international conference on wireless communication, vehicular technology, information theory and aerospace & electronic systems technology (Wireless VITAE); 2011: IEEE.
  • 23. Tarique I, Briscoe DR, Schuler RS. International human resource management: Policies and practices for multinational enterprises: Routledge; 2015.
  • 24. Mitra M, Singha NR, Chattopadhyay PK. Sustainable Energy Technologies and Assessments.
  • PubMed/NCBI
  • 29. Shrouf F, Ordieres J, Miragliotta G, editors. Smart factories in Industry 4.0: A review of the concept and of energy management approached in production based on the Internet of Things paradigm. 2014 IEEE international conference on industrial engineering and engineering management; 2014: IEEE.
  • International
  • Education Jobs
  • Schools directory
  • Resources Education Jobs Schools directory News Search

AQA A Level Psychology: Research methods: Case studies

AQA A Level Psychology: Research methods: Case studies

Subject: Psychology

Age range: 16+

Resource type: Lesson (complete)

Simran's Psychology Shop

Last updated

18 July 2024

  • Share through email
  • Share through twitter
  • Share through linkedin
  • Share through facebook
  • Share through pinterest

research design types case studies

This is a lesson on case studies This lesson contains 30 minutes of teaching time (AO1 and AO3)

This lesson includes the following:

  • Complete AO1 content
  • Complete AO3 content
  • Writing tasks
  • Multiple choice questions/mini white board questions
  • Short answer exam questions with mark scheme

Tes paid licence How can I reuse this?

Your rating is required to reflect your happiness.

It's good to leave some feedback.

Something went wrong, please try again later.

This resource hasn't been reviewed yet

To ensure quality for our reviews, only customers who have purchased this resource can review it

Report this resource to let us know if it violates our terms and conditions. Our customer service team will review your report and will be in touch.

Not quite what you were looking for? Search by keyword to find the right resource:

HUBSPOT CUSTOMER PLATFORM

Grow better with HubSpot

Software that's powerful, not overpowering. Seamlessly connect your data, teams, and customers on one AI-powered customer platform that grows with your business.

Get a demo of our premium software, or get started with free tools.

HubSpot interfaces showing Your Weekly Activity with email, call, and meeting counts. Repurpose your content with Content Remix and HubSpot AI. AI Chatbot

216,000+ customers in over 135 countries grow their businesses with HubSpot

weightwatchers logo

What is HubSpot?

HubSpot is an AI-powered customer platform with all the software, integrations, and resources you need to connect your marketing, sales, and customer service. HubSpot's connected platform enables you to grow your business faster by focusing on what matters most: your customers.

Get a demo to learn about our premium software, or get started with our full suite of free tools and upgrade as you grow.

HubSpot's products, which include Marketing Hub, Sales Hub, Service Hub, Content Hub, Operations Hub, and Commerce Hub, are connected on the same software platform.

Your whole front office. One customer platform.

Marketing hub ®.

AI-powered marketing software that helps you generate leads and automate marketing.

Popular Features

  • AI-powered lead generation
  • Marketing automation

Sales Hub ®

Easy-to-adopt sales software that leverages AI to build pipelines and close deals.

  • Prospecting workspace
  • Deal management
  • Sales automation

Service Hub ®

Customer service software powered by AI to scale support and drive retention.

  • Omni-channel help desk
  • Customer success workspace

Content Hub ™

All-in-one, AI-powered content marketing software that helps marketers create and manage content.

  • Content remix
  • Brand voice
  • AI-powered content creation

Operations Hub ®

Operations software that leverages AI to help you activate and manage your data.

  • Programmable automation
  • AI-powered data quality automation

Commerce Hub ™

B2B commerce software designed to help you collect payments and automate billing.

  • Invoices & subscriptions
  • Payment links

Marketing Hub

Small Business Bundle

The Starter edition of every HubSpot product, bundled together at a discounted price for your startup or small business. Find and reach customers, grow sales and get paid faster, and organize customer data — all on one unified platform.

Solutions for every business

Growing a business isn’t easy, but we’ve got your back. Explore some of our customers’ top business challenges and learn how HubSpot’s integrated software and solutions can help you leave these problems in the past.

research design types case studies

Generate High-Quality Leads and Maximize Revenue

Discover how to use AI-powered marketing tools to attract and convert more leads without multiplying your marketing spend.

research design types case studies

Accelerate Your Sales and Close More Deals Faster

Start closing more deals faster and streamlining your sales process with HubSpot’s AI-powered deal management tools.

research design types case studies

Create Content for Every Stage of the Customer Journey

Fuel the entire customer journey with content across formats and channels with all-in-one, AI-powered content marketing software.

What’s new at HubSpot

HubSpot Video

Growing a business is hard. Your software shouldn't make it harder.

1,500+ ways to connect your tools.

G2 Leader Winger 2024

Voted #1 in 318 Categories

Popular blog posts.

A person watches a short-form video on their smartphone

The Psychology of Short-Form Content: Why We Love Bite-Sized...

Erica Santiago

Digital course pitfall graphic with a sad face, computer, and man listening to symbolize digital course engagement challenges.

Learn from My Mistakes: 7 Digital Course Pitfalls to Skip

Amy Porterfield

how to do representation in marketing

How To Do Representation in Marketing the Right Way (+ Consu...

Sonia Thompson

AI and social media graphic with a phone showing social logos and people looking at their mobile phones.

How to Use AI For a More Effective Social Media Strategy, Ac...

Ross Simmonds

HubSpot is already easy to use. But we’re still here for you.

We’re here to help your whole team stay ahead of the curve as you grow.

24/7 Customer Support

Onboarding services, free courses & certifications, developer tools, hubspot for startups.

Apply for special pricing, resources, and support for your startup.

Ebooks, Guides & Templates

Grow better with hubspot today.

research design types case studies

IMAGES

  1. PPT

    research design types case studies

  2. 25 Types of Research Designs (2024)

    research design types case studies

  3. Types of Research Design

    research design types case studies

  4. How to Create a Case Study + 14 Case Study Templates

    research design types case studies

  5. Case Study Research Design

    research design types case studies

  6. Basic Types of Designs for Case Studies (6) Figure (18) summarizes the

    research design types case studies

VIDEO

  1. Different types of Research Designs|Quantitative|Qualitative|English| part 1|

  2. Notes Of Types Of Research Design (Experimental Research Design) in Hindi in Nursing Research/Part 1

  3. Types of Research Design

  4. Research design in research methodology||Step of research design||Features||Types of research design

  5. Case Study Research

  6. Research Design/Importance/ contents/ Characteristics/ Types/Research Methodology/ Malayalam

COMMENTS

  1. Case Study Methodology of Qualitative Research: Key Attributes and

    A case study is one of the most commonly used methodologies of social research. This article attempts to look into the various dimensions of a case study research strategy, the different epistemological strands which determine the particular case study type and approach adopted in the field, discusses the factors which can enhance the effectiveness of a case study research, and the debate ...

  2. Case Study

    A case study is a research method that involves an in-depth examination and analysis of a particular phenomenon or case, such as an individual, organization, community, event, or situation. It is a qualitative research approach that aims to provide a detailed and comprehensive understanding of the case being studied.

  3. Case Study Methods and Examples

    The purpose of case study research is twofold: (1) to provide descriptive information and (2) to suggest theoretical relevance. Rich description enables an in-depth or sharpened understanding of the case. It is unique given one characteristic: case studies draw from more than one data source. Case studies are inherently multimodal or mixed ...

  4. What Is a Research Design

    A research design is a strategy for answering your research question using empirical data. Creating a research design means making decisions about: Your overall research objectives and approach. Whether you'll rely on primary research or secondary research. Your sampling methods or criteria for selecting subjects. Your data collection methods.

  5. What Is a Case Study?

    A case study is a detailed study of a specific subject, such as a person, group, place, event, organization, or phenomenon. Case studies are commonly used in social, educational, clinical, and business research. A case study research design usually involves qualitative methods, but quantitative methods are sometimes also used.

  6. Planning Qualitative Research: Design and Decision Making for New

    While many books and articles guide various qualitative research methods and analyses, there is currently no concise resource that explains and differentiates among the most common qualitative approaches. We believe novice qualitative researchers, students planning the design of a qualitative study or taking an introductory qualitative research course, and faculty teaching such courses can ...

  7. Designing research with case study methods

    The purpose of case study research is twofold: (1) to provide descriptive information and (2) to suggest theoretical relevance. Rich description enables an in-depth or sharpened understanding of the case. Robert Yin, methodologist most associated with case study research, differentiates between descriptive, exploratory and explanatory case studies:

  8. What is a Case Study?

    Case studies play a significant role in knowledge development across various disciplines. Analysis of cases provides an avenue for researchers to explore phenomena within their context based on the collected data. Analysis of qualitative data from case study research can contribute to knowledge development.

  9. Case Study

    A case study is a detailed study of a specific subject, such as a person, group, place, event, organisation, or phenomenon. Case studies are commonly used in social, educational, clinical, and business research. A case study research design usually involves qualitative methods, but quantitative methods are sometimes also used.

  10. Adaptive Case Study-Mixed Methods Design Practices for Researchers

    In this work, we draw upon Guetterman and Fetters' (2018) essential design distinction of CS-MM as case studies nested within mixed methods designs and follow their recommendation to clearly document integration details in our illustrative adaptive practice area descriptions. This documentation is vital to maximize the value of the novel ...

  11. LibGuides: Research Writing and Analysis: Case Study

    A Case study is: An in-depth research design that primarily uses a qualitative methodology but sometimes includes quantitative methodology. Used to examine an identifiable problem confirmed through research. Used to investigate an individual, group of people, organization, or event. Used to mostly answer "how" and "why" questions.

  12. Perspectives from Researchers on Case Study Design

    Case study research is typically extensive; it draws on multiple methods of data collection and involves multiple data sources. The researcher begins by identifying a specific case or set of cases to be studied. Each case is an entity that is described within certain parameters, such as a specific time frame, place, event, and process.

  13. Types of Research Designs Compared

    Other interesting articles. If you want to know more about statistics, methodology, or research bias, make sure to check out some of our other articles with explanations and examples. Statistics. Normal distribution. Skewness. Kurtosis. Degrees of freedom. Variance. Null hypothesis.

  14. (PDF) Robert K. Yin. (2014). Case Study Research Design and Methods

    Robert K. Yin's Case Study Research Design and Methods (2014) is currently in its fifth edition and continues to be a seminal text for researchers and students engaged in case study research.

  15. How to Use Case Studies in Research: Guide and Examples

    The case study provides an in-depth review of the issue at hand and adds real-world examples in the area the researcher wants the audience to understand. The researcher makes no inferences or causal statements about the object or subject under review. This type of design is often used to understand cultural shifts.

  16. Case Study Research: Design and Methods

    Providing a complete portal to the world of case study research, the Fourth Edition of Robert K. Yin's bestselling text Case Study Research offers comprehensive coverage of the design and use of the case study method as a valid research tool. This thoroughly revised text now covers more than 50 case studies (approximately 25% new), gives fresh attention to quantitative analyses, discusses ...

  17. Types of Research Designs

    The case study research design is also useful for testing whether a specific theory and model actually applies to phenomena in the real world. It is a useful design when not much is known about an issue or phenomenon. ... Causal Case Study Methods: Foundations and Guidelines for Comparing, Matching, and Tracing. Ann Arbor, MI: University of ...

  18. Case Study Research Method in Psychology

    Case studies are in-depth investigations of a person, group, event, or community. Typically, data is gathered from various sources using several methods (e.g., observations & interviews). The case study research method originated in clinical medicine (the case history, i.e., the patient's personal history). In psychology, case studies are ...

  19. PDF Case Study Design Essentials: Definition, Research Questions, Propositions

    Definition of the Case Study. "An empirical inquiry that investigates a contemporary phenomenon (e.g., a "case") within its real-life context; when the boundaries between phenomenon and context are not clearly evident" (Yin, 2014, p.16) "A case study is an in-depth description and analysis of a bounded system" (Merriam, 2015, p.37).

  20. Types of Research Designs

    The Research Methods Videos database contains hours of tutorials, interviews, video case studies, and mini-documentaries covering the entire research process. Creswell, John W. and J. David Creswell. Research Design: Qualitative, Quantitative, and Mixed Methods Approaches . 5th edition.

  21. LibGuides: Section 2: Case Study Design in an Applied Doctorate

    Qualitative research methods ask the questions of "what" and "how" a phenomenon is understood in a real-life context (Bloomberg & Volpe, 2019). ... Case study design is an appropriate research design to consider when conceptualizing and conducting a dissertation research study that is based on an applied problem of practice with inherent real ...

  22. 6 Types of Case Studies to Inspire Your Research and Analysis

    A case study is a research process aimed at learning about a subject, an event or an organization. Case studies are use in business, the social sciences and healthcare. A case study may focus on one observation or many. It can also examine a series of events or a single case. An effective case study tells a story and provides a conclusion.

  23. PDF and Ex Post Facto Designs Experimental, Quasi-Experimental

    The one-shot experiment case study is probably the most primitive type of experiment that might conceivably be termed "research". An Experimental Treatment (Tx) is introduced, and then a measurement (Obs)- a posttest of some sort - is administered to determine the effects of the treatment. The design has low internal validity because it is

  24. Types of Design Research in Netflix's Abstract Series: For ...

    Tipografía Gotham propuesta por Jonathan Hoefler (2000). Research Through Design: Primarily used in academic contexts, this type involves analyzing various case studies with design support as the object of study.This support includes tools and resources used in the design process. Neri Oxman exemplifies this in Season 2, Episode 2, where she showcases her research through designing materials ...

  25. Research on sustainable green building space design model integrating

    4.1. Research design. This study employs a mixed-methods approach, integrating qualitative and quantitative research procedures, because it gives a more holistic view and allows for more excellent knowledge of the issue under consideration . The study's qualitative parts were literature reviews, case studies, and content analysis, which gave ...

  26. AQA A Level Psychology: Research methods: Case studies

    This is a lesson on case studies This lesson contains 30 minutes of teaching time (AO1 and AO3) This lesson includes the following: Complete AO1 content Complete AO3. ... Research methods: Case studies. Subject: Psychology. Age range: 16+ Resource type: Lesson (complete) Simran's Psychology Shop. 3.00 1 reviews. Last updated. 18 July 2024 ...

  27. Leveraging ICH M7 Control Options 3 and 4: Discussion and Clarification

    These case studies range from examples that have been approved by health authorities for clinical applications and marketing authorizations to those that have not been submitted to regulators at this time. ... or 3). This study provides an industry perspective of Option 4, approaches with an emphasis on the types of supportive datasets and ...

  28. Case Study Method: A Step-by-Step Guide for Business Researchers

    Although case studies have been discussed extensively in the literature, little has been written about the specific steps one may use to conduct case study research effectively (Gagnon, 2010; Hancock & Algozzine, 2016).Baskarada (2014) also emphasized the need to have a succinct guideline that can be practically followed as it is actually tough to execute a case study well in practice.

  29. HubSpot

    HubSpot's CRM platform contains the marketing, sales, service, operations, and website-building software you need to grow your business.

  30. Context-specific adaptation of a student engagement measure: a case

    This paper presented a case study on the context-specific adaptation of a student engagement measure for a private university in Bangladesh. ... Research design. This study applied a cross-sectional survey design ... Assessing the impact of three types of program accreditation on Taiwanese universities. Studies in Higher Education, 40, 83-105 ...