• Privacy Policy

Research Method

Home » Research Problem – Examples, Types and Guide

Research Problem – Examples, Types and Guide

Table of Contents

Research Problem

Research Problem

Definition:

Research problem is a specific and well-defined issue or question that a researcher seeks to investigate through research. It is the starting point of any research project, as it sets the direction, scope, and purpose of the study.

Types of Research Problems

Types of Research Problems are as follows:

Descriptive problems

These problems involve describing or documenting a particular phenomenon, event, or situation. For example, a researcher might investigate the demographics of a particular population, such as their age, gender, income, and education.

Exploratory problems

These problems are designed to explore a particular topic or issue in depth, often with the goal of generating new ideas or hypotheses. For example, a researcher might explore the factors that contribute to job satisfaction among employees in a particular industry.

Explanatory Problems

These problems seek to explain why a particular phenomenon or event occurs, and they typically involve testing hypotheses or theories. For example, a researcher might investigate the relationship between exercise and mental health, with the goal of determining whether exercise has a causal effect on mental health.

Predictive Problems

These problems involve making predictions or forecasts about future events or trends. For example, a researcher might investigate the factors that predict future success in a particular field or industry.

Evaluative Problems

These problems involve assessing the effectiveness of a particular intervention, program, or policy. For example, a researcher might evaluate the impact of a new teaching method on student learning outcomes.

How to Define a Research Problem

Defining a research problem involves identifying a specific question or issue that a researcher seeks to address through a research study. Here are the steps to follow when defining a research problem:

  • Identify a broad research topic : Start by identifying a broad topic that you are interested in researching. This could be based on your personal interests, observations, or gaps in the existing literature.
  • Conduct a literature review : Once you have identified a broad topic, conduct a thorough literature review to identify the current state of knowledge in the field. This will help you identify gaps or inconsistencies in the existing research that can be addressed through your study.
  • Refine the research question: Based on the gaps or inconsistencies identified in the literature review, refine your research question to a specific, clear, and well-defined problem statement. Your research question should be feasible, relevant, and important to the field of study.
  • Develop a hypothesis: Based on the research question, develop a hypothesis that states the expected relationship between variables.
  • Define the scope and limitations: Clearly define the scope and limitations of your research problem. This will help you focus your study and ensure that your research objectives are achievable.
  • Get feedback: Get feedback from your advisor or colleagues to ensure that your research problem is clear, feasible, and relevant to the field of study.

Components of a Research Problem

The components of a research problem typically include the following:

  • Topic : The general subject or area of interest that the research will explore.
  • Research Question : A clear and specific question that the research seeks to answer or investigate.
  • Objective : A statement that describes the purpose of the research, what it aims to achieve, and the expected outcomes.
  • Hypothesis : An educated guess or prediction about the relationship between variables, which is tested during the research.
  • Variables : The factors or elements that are being studied, measured, or manipulated in the research.
  • Methodology : The overall approach and methods that will be used to conduct the research.
  • Scope and Limitations : A description of the boundaries and parameters of the research, including what will be included and excluded, and any potential constraints or limitations.
  • Significance: A statement that explains the potential value or impact of the research, its contribution to the field of study, and how it will add to the existing knowledge.

Research Problem Examples

Following are some Research Problem Examples:

Research Problem Examples in Psychology are as follows:

  • Exploring the impact of social media on adolescent mental health.
  • Investigating the effectiveness of cognitive-behavioral therapy for treating anxiety disorders.
  • Studying the impact of prenatal stress on child development outcomes.
  • Analyzing the factors that contribute to addiction and relapse in substance abuse treatment.
  • Examining the impact of personality traits on romantic relationships.

Research Problem Examples in Sociology are as follows:

  • Investigating the relationship between social support and mental health outcomes in marginalized communities.
  • Studying the impact of globalization on labor markets and employment opportunities.
  • Analyzing the causes and consequences of gentrification in urban neighborhoods.
  • Investigating the impact of family structure on social mobility and economic outcomes.
  • Examining the effects of social capital on community development and resilience.

Research Problem Examples in Economics are as follows:

  • Studying the effects of trade policies on economic growth and development.
  • Analyzing the impact of automation and artificial intelligence on labor markets and employment opportunities.
  • Investigating the factors that contribute to economic inequality and poverty.
  • Examining the impact of fiscal and monetary policies on inflation and economic stability.
  • Studying the relationship between education and economic outcomes, such as income and employment.

Political Science

Research Problem Examples in Political Science are as follows:

  • Analyzing the causes and consequences of political polarization and partisan behavior.
  • Investigating the impact of social movements on political change and policymaking.
  • Studying the role of media and communication in shaping public opinion and political discourse.
  • Examining the effectiveness of electoral systems in promoting democratic governance and representation.
  • Investigating the impact of international organizations and agreements on global governance and security.

Environmental Science

Research Problem Examples in Environmental Science are as follows:

  • Studying the impact of air pollution on human health and well-being.
  • Investigating the effects of deforestation on climate change and biodiversity loss.
  • Analyzing the impact of ocean acidification on marine ecosystems and food webs.
  • Studying the relationship between urban development and ecological resilience.
  • Examining the effectiveness of environmental policies and regulations in promoting sustainability and conservation.

Research Problem Examples in Education are as follows:

  • Investigating the impact of teacher training and professional development on student learning outcomes.
  • Studying the effectiveness of technology-enhanced learning in promoting student engagement and achievement.
  • Analyzing the factors that contribute to achievement gaps and educational inequality.
  • Examining the impact of parental involvement on student motivation and achievement.
  • Studying the effectiveness of alternative educational models, such as homeschooling and online learning.

Research Problem Examples in History are as follows:

  • Analyzing the social and economic factors that contributed to the rise and fall of ancient civilizations.
  • Investigating the impact of colonialism on indigenous societies and cultures.
  • Studying the role of religion in shaping political and social movements throughout history.
  • Analyzing the impact of the Industrial Revolution on economic and social structures.
  • Examining the causes and consequences of global conflicts, such as World War I and II.

Research Problem Examples in Business are as follows:

  • Studying the impact of corporate social responsibility on brand reputation and consumer behavior.
  • Investigating the effectiveness of leadership development programs in improving organizational performance and employee satisfaction.
  • Analyzing the factors that contribute to successful entrepreneurship and small business development.
  • Examining the impact of mergers and acquisitions on market competition and consumer welfare.
  • Studying the effectiveness of marketing strategies and advertising campaigns in promoting brand awareness and sales.

Research Problem Example for Students

An Example of a Research Problem for Students could be:

“How does social media usage affect the academic performance of high school students?”

This research problem is specific, measurable, and relevant. It is specific because it focuses on a particular area of interest, which is the impact of social media on academic performance. It is measurable because the researcher can collect data on social media usage and academic performance to evaluate the relationship between the two variables. It is relevant because it addresses a current and important issue that affects high school students.

To conduct research on this problem, the researcher could use various methods, such as surveys, interviews, and statistical analysis of academic records. The results of the study could provide insights into the relationship between social media usage and academic performance, which could help educators and parents develop effective strategies for managing social media use among students.

Another example of a research problem for students:

“Does participation in extracurricular activities impact the academic performance of middle school students?”

This research problem is also specific, measurable, and relevant. It is specific because it focuses on a particular type of activity, extracurricular activities, and its impact on academic performance. It is measurable because the researcher can collect data on students’ participation in extracurricular activities and their academic performance to evaluate the relationship between the two variables. It is relevant because extracurricular activities are an essential part of the middle school experience, and their impact on academic performance is a topic of interest to educators and parents.

To conduct research on this problem, the researcher could use surveys, interviews, and academic records analysis. The results of the study could provide insights into the relationship between extracurricular activities and academic performance, which could help educators and parents make informed decisions about the types of activities that are most beneficial for middle school students.

Applications of Research Problem

Applications of Research Problem are as follows:

  • Academic research: Research problems are used to guide academic research in various fields, including social sciences, natural sciences, humanities, and engineering. Researchers use research problems to identify gaps in knowledge, address theoretical or practical problems, and explore new areas of study.
  • Business research : Research problems are used to guide business research, including market research, consumer behavior research, and organizational research. Researchers use research problems to identify business challenges, explore opportunities, and develop strategies for business growth and success.
  • Healthcare research : Research problems are used to guide healthcare research, including medical research, clinical research, and health services research. Researchers use research problems to identify healthcare challenges, develop new treatments and interventions, and improve healthcare delivery and outcomes.
  • Public policy research : Research problems are used to guide public policy research, including policy analysis, program evaluation, and policy development. Researchers use research problems to identify social issues, assess the effectiveness of existing policies and programs, and develop new policies and programs to address societal challenges.
  • Environmental research : Research problems are used to guide environmental research, including environmental science, ecology, and environmental management. Researchers use research problems to identify environmental challenges, assess the impact of human activities on the environment, and develop sustainable solutions to protect the environment.

Purpose of Research Problems

The purpose of research problems is to identify an area of study that requires further investigation and to formulate a clear, concise and specific research question. A research problem defines the specific issue or problem that needs to be addressed and serves as the foundation for the research project.

Identifying a research problem is important because it helps to establish the direction of the research and sets the stage for the research design, methods, and analysis. It also ensures that the research is relevant and contributes to the existing body of knowledge in the field.

A well-formulated research problem should:

  • Clearly define the specific issue or problem that needs to be investigated
  • Be specific and narrow enough to be manageable in terms of time, resources, and scope
  • Be relevant to the field of study and contribute to the existing body of knowledge
  • Be feasible and realistic in terms of available data, resources, and research methods
  • Be interesting and intellectually stimulating for the researcher and potential readers or audiences.

Characteristics of Research Problem

The characteristics of a research problem refer to the specific features that a problem must possess to qualify as a suitable research topic. Some of the key characteristics of a research problem are:

  • Clarity : A research problem should be clearly defined and stated in a way that it is easily understood by the researcher and other readers. The problem should be specific, unambiguous, and easy to comprehend.
  • Relevance : A research problem should be relevant to the field of study, and it should contribute to the existing body of knowledge. The problem should address a gap in knowledge, a theoretical or practical problem, or a real-world issue that requires further investigation.
  • Feasibility : A research problem should be feasible in terms of the availability of data, resources, and research methods. It should be realistic and practical to conduct the study within the available time, budget, and resources.
  • Novelty : A research problem should be novel or original in some way. It should represent a new or innovative perspective on an existing problem, or it should explore a new area of study or apply an existing theory to a new context.
  • Importance : A research problem should be important or significant in terms of its potential impact on the field or society. It should have the potential to produce new knowledge, advance existing theories, or address a pressing societal issue.
  • Manageability : A research problem should be manageable in terms of its scope and complexity. It should be specific enough to be investigated within the available time and resources, and it should be broad enough to provide meaningful results.

Advantages of Research Problem

The advantages of a well-defined research problem are as follows:

  • Focus : A research problem provides a clear and focused direction for the research study. It ensures that the study stays on track and does not deviate from the research question.
  • Clarity : A research problem provides clarity and specificity to the research question. It ensures that the research is not too broad or too narrow and that the research objectives are clearly defined.
  • Relevance : A research problem ensures that the research study is relevant to the field of study and contributes to the existing body of knowledge. It addresses gaps in knowledge, theoretical or practical problems, or real-world issues that require further investigation.
  • Feasibility : A research problem ensures that the research study is feasible in terms of the availability of data, resources, and research methods. It ensures that the research is realistic and practical to conduct within the available time, budget, and resources.
  • Novelty : A research problem ensures that the research study is original and innovative. It represents a new or unique perspective on an existing problem, explores a new area of study, or applies an existing theory to a new context.
  • Importance : A research problem ensures that the research study is important and significant in terms of its potential impact on the field or society. It has the potential to produce new knowledge, advance existing theories, or address a pressing societal issue.
  • Rigor : A research problem ensures that the research study is rigorous and follows established research methods and practices. It ensures that the research is conducted in a systematic, objective, and unbiased manner.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Data collection

Data Collection – Methods Types and Examples

Delimitations

Delimitations in Research – Types, Examples and...

Research Process

Research Process – Steps, Examples and Tips

Research Design

Research Design – Types, Methods and Examples

Institutional Review Board (IRB)

Institutional Review Board – Application Sample...

Evaluating Research

Evaluating Research – Process, Examples and...

Grad Coach

Research Aims, Objectives & Questions

The “Golden Thread” Explained Simply (+ Examples)

By: David Phair (PhD) and Alexandra Shaeffer (PhD) | June 2022

The research aims , objectives and research questions (collectively called the “golden thread”) are arguably the most important thing you need to get right when you’re crafting a research proposal , dissertation or thesis . We receive questions almost every day about this “holy trinity” of research and there’s certainly a lot of confusion out there, so we’ve crafted this post to help you navigate your way through the fog.

Overview: The Golden Thread

  • What is the golden thread
  • What are research aims ( examples )
  • What are research objectives ( examples )
  • What are research questions ( examples )
  • The importance of alignment in the golden thread

What is the “golden thread”?  

The golden thread simply refers to the collective research aims , research objectives , and research questions for any given project (i.e., a dissertation, thesis, or research paper ). These three elements are bundled together because it’s extremely important that they align with each other, and that the entire research project aligns with them.

Importantly, the golden thread needs to weave its way through the entirety of any research project , from start to end. In other words, it needs to be very clearly defined right at the beginning of the project (the topic ideation and proposal stage) and it needs to inform almost every decision throughout the rest of the project. For example, your research design and methodology will be heavily influenced by the golden thread (we’ll explain this in more detail later), as well as your literature review.

The research aims, objectives and research questions (the golden thread) define the focus and scope ( the delimitations ) of your research project. In other words, they help ringfence your dissertation or thesis to a relatively narrow domain, so that you can “go deep” and really dig into a specific problem or opportunity. They also help keep you on track , as they act as a litmus test for relevance. In other words, if you’re ever unsure whether to include something in your document, simply ask yourself the question, “does this contribute toward my research aims, objectives or questions?”. If it doesn’t, chances are you can drop it.

Alright, enough of the fluffy, conceptual stuff. Let’s get down to business and look at what exactly the research aims, objectives and questions are and outline a few examples to bring these concepts to life.

Free Webinar: How To Find A Dissertation Research Topic

Research Aims: What are they?

Simply put, the research aim(s) is a statement that reflects the broad overarching goal (s) of the research project. Research aims are fairly high-level (low resolution) as they outline the general direction of the research and what it’s trying to achieve .

Research Aims: Examples  

True to the name, research aims usually start with the wording “this research aims to…”, “this research seeks to…”, and so on. For example:

“This research aims to explore employee experiences of digital transformation in retail HR.”   “This study sets out to assess the interaction between student support and self-care on well-being in engineering graduate students”  

As you can see, these research aims provide a high-level description of what the study is about and what it seeks to achieve. They’re not hyper-specific or action-oriented, but they’re clear about what the study’s focus is and what is being investigated.

Need a helping hand?

research problems and questions

Research Objectives: What are they?

The research objectives take the research aims and make them more practical and actionable . In other words, the research objectives showcase the steps that the researcher will take to achieve the research aims.

The research objectives need to be far more specific (higher resolution) and actionable than the research aims. In fact, it’s always a good idea to craft your research objectives using the “SMART” criteria. In other words, they should be specific, measurable, achievable, relevant and time-bound”.

Research Objectives: Examples  

Let’s look at two examples of research objectives. We’ll stick with the topic and research aims we mentioned previously.  

For the digital transformation topic:

To observe the retail HR employees throughout the digital transformation. To assess employee perceptions of digital transformation in retail HR. To identify the barriers and facilitators of digital transformation in retail HR.

And for the student wellness topic:

To determine whether student self-care predicts the well-being score of engineering graduate students. To determine whether student support predicts the well-being score of engineering students. To assess the interaction between student self-care and student support when predicting well-being in engineering graduate students.

  As you can see, these research objectives clearly align with the previously mentioned research aims and effectively translate the low-resolution aims into (comparatively) higher-resolution objectives and action points . They give the research project a clear focus and present something that resembles a research-based “to-do” list.

The research objectives detail the specific steps that you, as the researcher, will take to achieve the research aims you laid out.

Research Questions: What are they?

Finally, we arrive at the all-important research questions. The research questions are, as the name suggests, the key questions that your study will seek to answer . Simply put, they are the core purpose of your dissertation, thesis, or research project. You’ll present them at the beginning of your document (either in the introduction chapter or literature review chapter) and you’ll answer them at the end of your document (typically in the discussion and conclusion chapters).  

The research questions will be the driving force throughout the research process. For example, in the literature review chapter, you’ll assess the relevance of any given resource based on whether it helps you move towards answering your research questions. Similarly, your methodology and research design will be heavily influenced by the nature of your research questions. For instance, research questions that are exploratory in nature will usually make use of a qualitative approach, whereas questions that relate to measurement or relationship testing will make use of a quantitative approach.  

Let’s look at some examples of research questions to make this more tangible.

Research Questions: Examples  

Again, we’ll stick with the research aims and research objectives we mentioned previously.  

For the digital transformation topic (which would be qualitative in nature):

How do employees perceive digital transformation in retail HR? What are the barriers and facilitators of digital transformation in retail HR?  

And for the student wellness topic (which would be quantitative in nature):

Does student self-care predict the well-being scores of engineering graduate students? Does student support predict the well-being scores of engineering students? Do student self-care and student support interact when predicting well-being in engineering graduate students?  

You’ll probably notice that there’s quite a formulaic approach to this. In other words, the research questions are basically the research objectives “converted” into question format. While that is true most of the time, it’s not always the case. For example, the first research objective for the digital transformation topic was more or less a step on the path toward the other objectives, and as such, it didn’t warrant its own research question.  

So, don’t rush your research questions and sloppily reword your objectives as questions. Carefully think about what exactly you’re trying to achieve (i.e. your research aim) and the objectives you’ve set out, then craft a set of well-aligned research questions . Also, keep in mind that this can be a somewhat iterative process , where you go back and tweak research objectives and aims to ensure tight alignment throughout the golden thread.

The importance of strong alignment 

Alignment is the keyword here and we have to stress its importance . Simply put, you need to make sure that there is a very tight alignment between all three pieces of the golden thread. If your research aims and research questions don’t align, for example, your project will be pulling in different directions and will lack focus . This is a common problem students face and can cause many headaches (and tears), so be warned.

Take the time to carefully craft your research aims, objectives and research questions before you run off down the research path. Ideally, get your research supervisor/advisor to review and comment on your golden thread before you invest significant time into your project, and certainly before you start collecting data .  

Recap: The golden thread

In this post, we unpacked the golden thread of research, consisting of the research aims , research objectives and research questions . You can jump back to any section using the links below.

As always, feel free to leave a comment below – we always love to hear from you. Also, if you’re interested in 1-on-1 support, take a look at our private coaching service here.

research problems and questions

Psst... there’s more!

This post was based on one of our popular Research Bootcamps . If you're working on a research project, you'll definitely want to check this out ...

You Might Also Like:

Narrative analysis explainer

39 Comments

Isaac Levi

Thank you very much for your great effort put. As an Undergraduate taking Demographic Research & Methodology, I’ve been trying so hard to understand clearly what is a Research Question, Research Aim and the Objectives in a research and the relationship between them etc. But as for now I’m thankful that you’ve solved my problem.

Hatimu Bah

Well appreciated. This has helped me greatly in doing my dissertation.

Dr. Abdallah Kheri

An so delighted with this wonderful information thank you a lot.

so impressive i have benefited a lot looking forward to learn more on research.

Ekwunife, Chukwunonso Onyeka Steve

I am very happy to have carefully gone through this well researched article.

Infact,I used to be phobia about anything research, because of my poor understanding of the concepts.

Now,I get to know that my research question is the same as my research objective(s) rephrased in question format.

I please I would need a follow up on the subject,as I intends to join the team of researchers. Thanks once again.

Tosin

Thanks so much. This was really helpful.

Ishmael

I know you pepole have tried to break things into more understandable and easy format. And God bless you. Keep it up

sylas

i found this document so useful towards my study in research methods. thanks so much.

Michael L. Andrion

This is my 2nd read topic in your course and I should commend the simplified explanations of each part. I’m beginning to understand and absorb the use of each part of a dissertation/thesis. I’ll keep on reading your free course and might be able to avail the training course! Kudos!

Scarlett

Thank you! Better put that my lecture and helped to easily understand the basics which I feel often get brushed over when beginning dissertation work.

Enoch Tindiwegi

This is quite helpful. I like how the Golden thread has been explained and the needed alignment.

Sora Dido Boru

This is quite helpful. I really appreciate!

Chulyork

The article made it simple for researcher students to differentiate between three concepts.

Afowosire Wasiu Adekunle

Very innovative and educational in approach to conducting research.

Sàlihu Abubakar Dayyabu

I am very impressed with all these terminology, as I am a fresh student for post graduate, I am highly guided and I promised to continue making consultation when the need arise. Thanks a lot.

Mohammed Shamsudeen

A very helpful piece. thanks, I really appreciate it .

Sonam Jyrwa

Very well explained, and it might be helpful to many people like me.

JB

Wish i had found this (and other) resource(s) at the beginning of my PhD journey… not in my writing up year… 😩 Anyways… just a quick question as i’m having some issues ordering my “golden thread”…. does it matter in what order you mention them? i.e., is it always first aims, then objectives, and finally the questions? or can you first mention the research questions and then the aims and objectives?

UN

Thank you for a very simple explanation that builds upon the concepts in a very logical manner. Just prior to this, I read the research hypothesis article, which was equally very good. This met my primary objective.

My secondary objective was to understand the difference between research questions and research hypothesis, and in which context to use which one. However, I am still not clear on this. Can you kindly please guide?

Derek Jansen

In research, a research question is a clear and specific inquiry that the researcher wants to answer, while a research hypothesis is a tentative statement or prediction about the relationship between variables or the expected outcome of the study. Research questions are broader and guide the overall study, while hypotheses are specific and testable statements used in quantitative research. Research questions identify the problem, while hypotheses provide a focus for testing in the study.

Saen Fanai

Exactly what I need in this research journey, I look forward to more of your coaching videos.

Abubakar Rofiat Opeyemi

This helped a lot. Thanks so much for the effort put into explaining it.

Lamin Tarawally

What data source in writing dissertation/Thesis requires?

What is data source covers when writing dessertation/thesis

Latifat Muhammed

This is quite useful thanks

Yetunde

I’m excited and thankful. I got so much value which will help me progress in my thesis.

Amer Al-Rashid

where are the locations of the reserch statement, research objective and research question in a reserach paper? Can you write an ouline that defines their places in the researh paper?

Webby

Very helpful and important tips on Aims, Objectives and Questions.

Refiloe Raselane

Thank you so much for making research aim, research objectives and research question so clear. This will be helpful to me as i continue with my thesis.

Annabelle Roda-Dafielmoto

Thanks much for this content. I learned a lot. And I am inspired to learn more. I am still struggling with my preparation for dissertation outline/proposal. But I consistently follow contents and tutorials and the new FB of GRAD Coach. Hope to really become confident in writing my dissertation and successfully defend it.

Joe

As a researcher and lecturer, I find splitting research goals into research aims, objectives, and questions is unnecessarily bureaucratic and confusing for students. For most biomedical research projects, including ‘real research’, 1-3 research questions will suffice (numbers may differ by discipline).

Abdella

Awesome! Very important resources and presented in an informative way to easily understand the golden thread. Indeed, thank you so much.

Sheikh

Well explained

New Growth Care Group

The blog article on research aims, objectives, and questions by Grad Coach is a clear and insightful guide that aligns with my experiences in academic research. The article effectively breaks down the often complex concepts of research aims and objectives, providing a straightforward and accessible explanation. Drawing from my own research endeavors, I appreciate the practical tips offered, such as the need for specificity and clarity when formulating research questions. The article serves as a valuable resource for students and researchers, offering a concise roadmap for crafting well-defined research goals and objectives. Whether you’re a novice or an experienced researcher, this article provides practical insights that contribute to the foundational aspects of a successful research endeavor.

yaikobe

A great thanks for you. it is really amazing explanation. I grasp a lot and one step up to research knowledge.

UMAR SALEH

I really found these tips helpful. Thank you very much Grad Coach.

Rahma D.

I found this article helpful. Thanks for sharing this.

Juhaida

thank you so much, the explanation and examples are really helpful

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly
  • USC Libraries
  • Research Guides

Organizing Your Social Sciences Research Paper

  • Broadening a Topic Idea
  • Purpose of Guide
  • Design Flaws to Avoid
  • Independent and Dependent Variables
  • Glossary of Research Terms
  • Reading Research Effectively
  • Narrowing a Topic Idea
  • Extending the Timeliness of a Topic Idea
  • Academic Writing Style
  • Applying Critical Thinking
  • Choosing a Title
  • Making an Outline
  • Paragraph Development
  • Research Process Video Series
  • Executive Summary
  • The C.A.R.S. Model
  • Background Information
  • The Research Problem/Question
  • Theoretical Framework
  • Citation Tracking
  • Content Alert Services
  • Evaluating Sources
  • Primary Sources
  • Secondary Sources
  • Tiertiary Sources
  • Scholarly vs. Popular Publications
  • Qualitative Methods
  • Quantitative Methods
  • Insiderness
  • Using Non-Textual Elements
  • Limitations of the Study
  • Common Grammar Mistakes
  • Writing Concisely
  • Avoiding Plagiarism
  • Footnotes or Endnotes?
  • Further Readings
  • Generative AI and Writing
  • USC Libraries Tutorials and Other Guides
  • Bibliography

Importance of Broadening the Research Topic

It is important to adopt a flexible approach when choosing a topic to investigate. The goal when writing any paper is to choose a research problem that is focused and time-limited. However, your starting point should not be so narrowly defined that you unnecessarily constrict your opportunity to investigate the topic thoroughly. A research problem that is too narrowly defined leads to any of the following problems :

  • You can't find enough information and what you do find is tangential or irrelevant.
  • You find information that is so specific that it can't lead to any significant conclusions.
  • Your sources cover so few ideas that you can't expand them into a significant paper.
  • The research problem is so case specific that it limits opportunities to generalize or apply the results to other contexts.
  • The significance of the research problem is limited to only a very small, unique population.

Ravitch, Sharon M. and Matthew Riggan. Reason and Rigor: How Conceptual Frameworks Guide Research . Los Angeles, CA: SAGE, 2017.

Strategies for Broadening the Research Topic

In general, an indication that a research problem is too narrowly defined is that you can't find any relevant or meaningful information about it. If this happens, don't immediately abandon your efforts to investigate the problem because it could very well be an excellent topic of study. A good way to begin is to look for parallels and opportunities for broader associations that apply to the initial research problem. A strategy for doing this is to ask yourself the basic six questions of who, what, where, when, how, and why.

Here is an example of how to apply the six questions strategy to broadening your topic. Let's use the research topic of how to investigate ways to improve trade relations between Peru and Bolivia as an example. Ask yourself:

  • Who? -- are there other countries involved in the relations between these two countries that might want to challenge or encourage this relationship? Are there particular individuals or special interest groups [e.g., politicians, union leaders, etc.] promoting trade relations or trying to inhibit it? [remember to ask either the individual who question, the collective who question, or the institutional who question].
  • What? -- what are the specific trading commodities you are examining? Are there commodities not currently traded between Peru and Bolivia that could be? What commodities are being traded but should be traded in greater volume? What barriers exist that may help or hinder the import-exports of specific commodities?
  • Where? -- where are examples of other bi-lateral trade agreements that could model the potential for closer trade relations between Peru and Bolivia? Where are the benefits most likely to be felt within each country? Note that the question of where can also relate to specific spatial and geographical issues, such as, are there any areas impeding transportation of goods in the region?
  • When? -- how long have these countries had or not had trade relations? How far into the future might a trade relationship last given other factors? The question of when can apply to either past issues or future areas of interest.
  • How? -- how might Peru and Bolivia forge these ties in relation to, for example, long-standing internal conflicts within each country? Note that the how question can also be framed as, "In what way might...." [e.g., In what way might improved trade relations lead to other forms of economic exchanges between the two countries?].
  • Why? -- what advantages can each country gain by pursuing active trade relations? Why might other countries be concerned about closer ties between these two countries? Asking why can illuminate the " So What? " question applied to your topic and, thus, provide a means of assessing significance.

Reflecting upon these six questions during your initial review of the literature can help you formulate ways to expand the parameters of your initial research problem, providing an opportunity to identify new avenues of investigation and centering your study around gaps in the literature when answers to questions cannot be found. Once you've identified additional directions in which to proceed with your topic, you can try narrowing it down again, if needed.

NOTE:   Do not determine on your own that a research problem is too narrowly defined . Always consult with a librarian before making this assumption because librarians are experts in finding information and interpreting it in relation to a research problem. As such, they can help guide you to undiscovered research or suggest ways to design a broader analysis of your research problem using resources you did not even know existed.

Booth, Wayne C. The Craft of Research . Fourth edition. Chicago, IL: The University of Chicago Press, 2016; Coming Up With Your Topic. Institute for Writing Rhetoric. Dartmouth College; Getting Started With Your Research: A Self-Help Guide to Quality Information, Jean and Alexander Heard Library. Vanderbilt University; Strategies for Broadening a Topic. University Libraries. Information Skills Modules. Virginia Tech University.

  • << Previous: Narrowing a Topic Idea
  • Next: Extending the Timeliness of a Topic Idea >>
  • Last Updated: May 22, 2024 12:03 PM
  • URL: https://libguides.usc.edu/writingguide

Site logo

45 Research Problem Examples & Inspiration

research problems examples and definition, explained below

A research problem is an issue of concern that is the catalyst for your research. It demonstrates why the research problem needs to take place in the first place.

Generally, you will write your research problem as a clear, concise, and focused statement that identifies an issue or gap in current knowledge that requires investigation.

The problem will likely also guide the direction and purpose of a study. Depending on the problem, you will identify a suitable methodology that will help address the problem and bring solutions to light.

Research Problem Examples

In the following examples, I’ll present some problems worth addressing, and some suggested theoretical frameworks and research methodologies that might fit with the study. Note, however, that these aren’t the only ways to approach the problems. Keep an open mind and consult with your dissertation supervisor!

chris

Psychology Problems

1. Social Media and Self-Esteem: “How does prolonged exposure to social media platforms influence the self-esteem of adolescents?”

  • Theoretical Framework : Social Comparison Theory
  • Methodology : Longitudinal study tracking adolescents’ social media usage and self-esteem measures over time, combined with qualitative interviews.

2. Sleep and Cognitive Performance: “How does sleep quality and duration impact cognitive performance in adults?”

  • Theoretical Framework : Cognitive Psychology
  • Methodology : Experimental design with controlled sleep conditions, followed by cognitive tests. Participant sleep patterns can also be monitored using actigraphy.

3. Childhood Trauma and Adult Relationships: “How does unresolved childhood trauma influence attachment styles and relationship dynamics in adulthood?

  • Theoretical Framework : Attachment Theory
  • Methodology : Mixed methods, combining quantitative measures of attachment styles with qualitative in-depth interviews exploring past trauma and current relationship dynamics.

4. Mindfulness and Stress Reduction: “How effective is mindfulness meditation in reducing perceived stress and physiological markers of stress in working professionals?”

  • Theoretical Framework : Humanist Psychology
  • Methodology : Randomized controlled trial comparing a group practicing mindfulness meditation to a control group, measuring both self-reported stress and physiological markers (e.g., cortisol levels).

5. Implicit Bias and Decision Making: “To what extent do implicit biases influence decision-making processes in hiring practices?

  • Theoretical Framework : Cognitive Dissonance Theory
  • Methodology : Experimental design using Implicit Association Tests (IAT) to measure implicit biases, followed by simulated hiring tasks to observe decision-making behaviors.

6. Emotional Regulation and Academic Performance: “How does the ability to regulate emotions impact academic performance in college students?”

  • Theoretical Framework : Cognitive Theory of Emotion
  • Methodology : Quantitative surveys measuring emotional regulation strategies, combined with academic performance metrics (e.g., GPA).

7. Nature Exposure and Mental Well-being: “Does regular exposure to natural environments improve mental well-being and reduce symptoms of anxiety and depression?”

  • Theoretical Framework : Biophilia Hypothesis
  • Methodology : Longitudinal study comparing mental health measures of individuals with regular nature exposure to those without, possibly using ecological momentary assessment for real-time data collection.

8. Video Games and Cognitive Skills: “How do action video games influence cognitive skills such as attention, spatial reasoning, and problem-solving?”

  • Theoretical Framework : Cognitive Load Theory
  • Methodology : Experimental design with pre- and post-tests, comparing cognitive skills of participants before and after a period of action video game play.

9. Parenting Styles and Child Resilience: “How do different parenting styles influence the development of resilience in children facing adversities?”

  • Theoretical Framework : Baumrind’s Parenting Styles Inventory
  • Methodology : Mixed methods, combining quantitative measures of resilience and parenting styles with qualitative interviews exploring children’s experiences and perceptions.

10. Memory and Aging: “How does the aging process impact episodic memory , and what strategies can mitigate age-related memory decline?

  • Theoretical Framework : Information Processing Theory
  • Methodology : Cross-sectional study comparing episodic memory performance across different age groups, combined with interventions like memory training or mnemonic strategies to assess potential improvements.

Education Problems

11. Equity and Access : “How do socioeconomic factors influence students’ access to quality education, and what interventions can bridge the gap?

  • Theoretical Framework : Critical Pedagogy
  • Methodology : Mixed methods, combining quantitative data on student outcomes with qualitative interviews and focus groups with students, parents, and educators.

12. Digital Divide : How does the lack of access to technology and the internet affect remote learning outcomes, and how can this divide be addressed?

  • Theoretical Framework : Social Construction of Technology Theory
  • Methodology : Survey research to gather data on access to technology, followed by case studies in selected areas.

13. Teacher Efficacy : “What factors contribute to teacher self-efficacy, and how does it impact student achievement?”

  • Theoretical Framework : Bandura’s Self-Efficacy Theory
  • Methodology : Quantitative surveys to measure teacher self-efficacy, combined with qualitative interviews to explore factors affecting it.

14. Curriculum Relevance : “How can curricula be made more relevant to diverse student populations, incorporating cultural and local contexts?”

  • Theoretical Framework : Sociocultural Theory
  • Methodology : Content analysis of curricula, combined with focus groups with students and teachers.

15. Special Education : “What are the most effective instructional strategies for students with specific learning disabilities?

  • Theoretical Framework : Social Learning Theory
  • Methodology : Experimental design comparing different instructional strategies, with pre- and post-tests to measure student achievement.

16. Dropout Rates : “What factors contribute to high school dropout rates, and what interventions can help retain students?”

  • Methodology : Longitudinal study tracking students over time, combined with interviews with dropouts.

17. Bilingual Education : “How does bilingual education impact cognitive development and academic achievement?

  • Methodology : Comparative study of students in bilingual vs. monolingual programs, using standardized tests and qualitative interviews.

18. Classroom Management: “What reward strategies are most effective in managing diverse classrooms and promoting a positive learning environment?

  • Theoretical Framework : Behaviorism (e.g., Skinner’s Operant Conditioning)
  • Methodology : Observational research in classrooms , combined with teacher interviews.

19. Standardized Testing : “How do standardized tests affect student motivation, learning, and curriculum design?”

  • Theoretical Framework : Critical Theory
  • Methodology : Quantitative analysis of test scores and student outcomes, combined with qualitative interviews with educators and students.

20. STEM Education : “What methods can be employed to increase interest and proficiency in STEM (Science, Technology, Engineering, and Mathematics) fields among underrepresented student groups?”

  • Theoretical Framework : Constructivist Learning Theory
  • Methodology : Experimental design comparing different instructional methods, with pre- and post-tests.

21. Social-Emotional Learning : “How can social-emotional learning be effectively integrated into the curriculum, and what are its impacts on student well-being and academic outcomes?”

  • Theoretical Framework : Goleman’s Emotional Intelligence Theory
  • Methodology : Mixed methods, combining quantitative measures of student well-being with qualitative interviews.

22. Parental Involvement : “How does parental involvement influence student achievement, and what strategies can schools use to increase it?”

  • Theoretical Framework : Reggio Emilia’s Model (Community Engagement Focus)
  • Methodology : Survey research with parents and teachers, combined with case studies in selected schools.

23. Early Childhood Education : “What are the long-term impacts of quality early childhood education on academic and life outcomes?”

  • Theoretical Framework : Erikson’s Stages of Psychosocial Development
  • Methodology : Longitudinal study comparing students with and without early childhood education, combined with observational research.

24. Teacher Training and Professional Development : “How can teacher training programs be improved to address the evolving needs of the 21st-century classroom?”

  • Theoretical Framework : Adult Learning Theory (Andragogy)
  • Methodology : Pre- and post-assessments of teacher competencies, combined with focus groups.

25. Educational Technology : “How can technology be effectively integrated into the classroom to enhance learning, and what are the potential drawbacks or challenges?”

  • Theoretical Framework : Technological Pedagogical Content Knowledge (TPACK)
  • Methodology : Experimental design comparing classrooms with and without specific technologies, combined with teacher and student interviews.

Sociology Problems

26. Urbanization and Social Ties: “How does rapid urbanization impact the strength and nature of social ties in communities?”

  • Theoretical Framework : Structural Functionalism
  • Methodology : Mixed methods, combining quantitative surveys on social ties with qualitative interviews in urbanizing areas.

27. Gender Roles in Modern Families: “How have traditional gender roles evolved in families with dual-income households?”

  • Theoretical Framework : Gender Schema Theory
  • Methodology : Qualitative interviews with dual-income families, combined with historical data analysis.

28. Social Media and Collective Behavior: “How does social media influence collective behaviors and the formation of social movements?”

  • Theoretical Framework : Emergent Norm Theory
  • Methodology : Content analysis of social media platforms, combined with quantitative surveys on participation in social movements.

29. Education and Social Mobility: “To what extent does access to quality education influence social mobility in socioeconomically diverse settings?”

  • Methodology : Longitudinal study tracking educational access and subsequent socioeconomic status, combined with qualitative interviews.

30. Religion and Social Cohesion: “How do religious beliefs and practices contribute to social cohesion in multicultural societies?”

  • Methodology : Quantitative surveys on religious beliefs and perceptions of social cohesion, combined with ethnographic studies.

31. Consumer Culture and Identity Formation: “How does consumer culture influence individual identity formation and personal values?”

  • Theoretical Framework : Social Identity Theory
  • Methodology : Mixed methods, combining content analysis of advertising with qualitative interviews on identity and values.

32. Migration and Cultural Assimilation: “How do migrants negotiate cultural assimilation and preservation of their original cultural identities in their host countries?”

  • Theoretical Framework : Post-Structuralism
  • Methodology : Qualitative interviews with migrants, combined with observational studies in multicultural communities.

33. Social Networks and Mental Health: “How do social networks, both online and offline, impact mental health and well-being?”

  • Theoretical Framework : Social Network Theory
  • Methodology : Quantitative surveys assessing social network characteristics and mental health metrics, combined with qualitative interviews.

34. Crime, Deviance, and Social Control: “How do societal norms and values shape definitions of crime and deviance, and how are these definitions enforced?”

  • Theoretical Framework : Labeling Theory
  • Methodology : Content analysis of legal documents and media, combined with ethnographic studies in diverse communities.

35. Technology and Social Interaction: “How has the proliferation of digital technology influenced face-to-face social interactions and community building?”

  • Theoretical Framework : Technological Determinism
  • Methodology : Mixed methods, combining quantitative surveys on technology use with qualitative observations of social interactions in various settings.

Nursing Problems

36. Patient Communication and Recovery: “How does effective nurse-patient communication influence patient recovery rates and overall satisfaction with care?”

  • Methodology : Quantitative surveys assessing patient satisfaction and recovery metrics, combined with observational studies on nurse-patient interactions.

37. Stress Management in Nursing: “What are the primary sources of occupational stress for nurses, and how can they be effectively managed to prevent burnout?”

  • Methodology : Mixed methods, combining quantitative measures of stress and burnout with qualitative interviews exploring personal experiences and coping mechanisms.

38. Hand Hygiene Compliance: “How effective are different interventions in improving hand hygiene compliance among nursing staff, and what are the barriers to consistent hand hygiene?”

  • Methodology : Experimental design comparing hand hygiene rates before and after specific interventions, combined with focus groups to understand barriers.

39. Nurse-Patient Ratios and Patient Outcomes: “How do nurse-patient ratios impact patient outcomes, including recovery rates, complications, and hospital readmissions?”

  • Methodology : Quantitative study analyzing patient outcomes in relation to staffing levels, possibly using retrospective chart reviews.

40. Continuing Education and Clinical Competence: “How does regular continuing education influence clinical competence and confidence among nurses?”

  • Methodology : Longitudinal study tracking nurses’ clinical skills and confidence over time as they engage in continuing education, combined with patient outcome measures to assess potential impacts on care quality.

Communication Studies Problems

41. Media Representation and Public Perception: “How does media representation of minority groups influence public perceptions and biases?”

  • Theoretical Framework : Cultivation Theory
  • Methodology : Content analysis of media representations combined with quantitative surveys assessing public perceptions and attitudes.

42. Digital Communication and Relationship Building: “How has the rise of digital communication platforms impacted the way individuals build and maintain personal relationships?”

  • Theoretical Framework : Social Penetration Theory
  • Methodology : Mixed methods, combining quantitative surveys on digital communication habits with qualitative interviews exploring personal relationship dynamics.

43. Crisis Communication Effectiveness: “What strategies are most effective in managing public relations during organizational crises, and how do they influence public trust?”

  • Theoretical Framework : Situational Crisis Communication Theory (SCCT)
  • Methodology : Case study analysis of past organizational crises, assessing communication strategies used and subsequent public trust metrics.

44. Nonverbal Cues in Virtual Communication: “How do nonverbal cues, such as facial expressions and gestures, influence message interpretation in virtual communication platforms?”

  • Theoretical Framework : Social Semiotics
  • Methodology : Experimental design using video conferencing tools, analyzing participants’ interpretations of messages with varying nonverbal cues.

45. Influence of Social Media on Political Engagement: “How does exposure to political content on social media platforms influence individuals’ political engagement and activism?”

  • Theoretical Framework : Uses and Gratifications Theory
  • Methodology : Quantitative surveys assessing social media habits and political engagement levels, combined with content analysis of political posts on popular platforms.

Before you Go: Tips and Tricks for Writing a Research Problem

This is an incredibly stressful time for research students. The research problem is going to lock you into a specific line of inquiry for the rest of your studies.

So, here’s what I tend to suggest to my students:

  • Start with something you find intellectually stimulating – Too many students choose projects because they think it hasn’t been studies or they’ve found a research gap. Don’t over-estimate the importance of finding a research gap. There are gaps in every line of inquiry. For now, just find a topic you think you can really sink your teeth into and will enjoy learning about.
  • Take 5 ideas to your supervisor – Approach your research supervisor, professor, lecturer, TA, our course leader with 5 research problem ideas and run each by them. The supervisor will have valuable insights that you didn’t consider that will help you narrow-down and refine your problem even more.
  • Trust your supervisor – The supervisor-student relationship is often very strained and stressful. While of course this is your project, your supervisor knows the internal politics and conventions of academic research. The depth of knowledge about how to navigate academia and get you out the other end with your degree is invaluable. Don’t underestimate their advice.

I’ve got a full article on all my tips and tricks for doing research projects right here – I recommend reading it:

  • 9 Tips on How to Choose a Dissertation Topic

Chris

Chris Drew (PhD)

Dr. Chris Drew is the founder of the Helpful Professor. He holds a PhD in education and has published over 20 articles in scholarly journals. He is the former editor of the Journal of Learning Development in Higher Education. [Image Descriptor: Photo of Chris]

  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 17 Behaviorism Examples
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 25 Positive Psychology Examples
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 15 Animism Examples
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 10 Magical Thinking Examples

Leave a Comment Cancel Reply

Your email address will not be published. Required fields are marked *

Root out friction in every digital experience, super-charge conversion rates, and optimize digital self-service

Uncover insights from any interaction, deliver AI-powered agent coaching, and reduce cost to serve

Increase revenue and loyalty with real-time insights and recommendations delivered to teams on the ground

Know how your people feel and empower managers to improve employee engagement, productivity, and retention

Take action in the moments that matter most along the employee journey and drive bottom line growth

Whatever they’re are saying, wherever they’re saying it, know exactly what’s going on with your people

Get faster, richer insights with qual and quant tools that make powerful market research available to everyone

Run concept tests, pricing studies, prototyping + more with fast, powerful studies designed by UX research experts

Track your brand performance 24/7 and act quickly to respond to opportunities and challenges in your market

Explore the platform powering Experience Management

  • Free Account
  • For Digital
  • For Customer Care
  • For Human Resources
  • For Researchers
  • Financial Services
  • All Industries

Popular Use Cases

  • Customer Experience
  • Employee Experience
  • Net Promoter Score
  • Voice of Customer
  • Customer Success Hub
  • Product Documentation
  • Training & Certification
  • XM Institute
  • Popular Resources
  • Customer Stories
  • Artificial Intelligence
  • Market Research
  • Partnerships
  • Marketplace

The annual gathering of the experience leaders at the world’s iconic brands building breakthrough business results, live in Salt Lake City.

  • English/AU & NZ
  • Español/Europa
  • Español/América Latina
  • Português Brasileiro
  • REQUEST DEMO

Academic Experience

How to identify and resolve research problems

Updated July 12, 2023

In this article, we’re going to take you through one of the most pertinent parts of conducting research: a research problem (also known as a research problem statement).

When trying to formulate a good research statement, and understand how to solve it for complex projects, it can be difficult to know where to start.

Not only are there multiple perspectives (from stakeholders to project marketers who want answers), you have to consider the particular context of the research topic: is it timely, is it relevant and most importantly of all, is it valuable?

In other words: are you looking at a research worthy problem?

The fact is, a well-defined, precise, and goal-centric research problem will keep your researchers, stakeholders, and business-focused and your results actionable.

And when it works well, it's a powerful tool to identify practical solutions that can drive change and secure buy-in from your workforce.

Free eBook: The ultimate guide to market research

What is a research problem?

In social research methodology and behavioral sciences , a research problem establishes the direction of research, often relating to a specific topic or opportunity for discussion.

For example: climate change and sustainability, analyzing moral dilemmas or wage disparity amongst classes could all be areas that the research problem focuses on.

As well as outlining the topic and/or opportunity, a research problem will explain:

  • why the area/issue needs to be addressed,
  • why the area/issue is of importance,
  • the parameters of the research study
  • the research objective
  • the reporting framework for the results and
  • what the overall benefit of doing so will provide (whether to society as a whole or other researchers and projects).

Having identified the main topic or opportunity for discussion, you can then narrow it down into one or several specific questions that can be scrutinized and answered through the research process.

What are research questions?

Generating research questions underpinning your study usually starts with problems that require further research and understanding while fulfilling the objectives of the study.

A good problem statement begins by asking deeper questions to gain insights about a specific topic.

For example, using the problems above, our questions could be:

"How will climate change policies influence sustainability standards across specific geographies?"

"What measures can be taken to address wage disparity without increasing inflation?"

Developing a research worthy problem is the first step - and one of the most important - in any kind of research.

It’s also a task that will come up again and again because any business research process is cyclical. New questions arise as you iterate and progress through discovering, refining, and improving your products and processes. A research question can also be referred to as a "problem statement".

Note: good research supports multiple perspectives through empirical data. It’s focused on key concepts rather than a broad area, providing readily actionable insight and areas for further research.

Research question or research problem?

As we've highlighted, the terms “research question” and “research problem” are often used interchangeably, becoming a vague or broad proposition for many.

The term "problem statement" is far more representative, but finds little use among academics.

Instead, some researchers think in terms of a single research problem and several research questions that arise from it.

As mentioned above, the questions are lines of inquiry to explore in trying to solve the overarching research problem.

Ultimately, this provides a more meaningful understanding of a topic area.

It may be useful to think of questions and problems as coming out of your business data – that’s the O-data (otherwise known as operational data) like sales figures and website metrics.

What's an example of a research problem?

Your overall research problem could be: "How do we improve sales across EMEA and reduce lost deals?"

This research problem then has a subset of questions, such as:

"Why do sales peak at certain times of the day?"

"Why are customers abandoning their online carts at the point of sale?"

As well as helping you to solve business problems, research problems (and associated questions) help you to think critically about topics and/or issues (business or otherwise). You can also use your old research to aid future research -- a good example is laying the foundation for comparative trend reports or a complex research project.

(Also, if you want to see the bigger picture when it comes to research problems, why not check out our ultimate guide to market research? In it you'll find out: what effective market research looks like, the use cases for market research, carrying out a research study, and how to examine and action research findings).

The research process: why are research problems important?

A research problem has two essential roles in setting your research project on a course for success.

1. They set the scope

The research problem defines what problem or opportunity you’re looking at and what your research goals are. It stops you from getting side-tracked or allowing the scope of research to creep off-course .

Without a strong research problem or problem statement, your team could end up spending resources unnecessarily, or coming up with results that aren’t actionable - or worse, harmful to your business - because the field of study is too broad.

2. They tie your work to business goals and actions

To formulate a research problem in terms of business decisions means you always have clarity on what’s needed to make those decisions. You can show the effects of what you’ve studied using real outcomes.

Then, by focusing your research problem statement on a series of questions tied to business objectives, you can reduce the risk of the research being unactionable or inaccurate.

It's also worth examining research or other scholarly literature (you’ll find plenty of similar, pertinent research online) to see how others have explored specific topics and noting implications that could have for your research.

Four steps to defining your research problem

Defining a research problem

Image credit: http://myfreeschooltanzania.blogspot.com/2014/11/defining-research-problem.html

1. Observe and identify

Businesses today have so much data that it can be difficult to know which problems to address first. Researchers also have business stakeholders who come to them with problems they would like to have explored. A researcher’s job is to sift through these inputs and discover exactly what higher-level trends and key concepts are worth investing in.

This often means asking questions and doing some initial investigation to decide which avenues to pursue. This could mean gathering interdisciplinary perspectives identifying additional expertise and contextual information.

Sometimes, a small-scale preliminary study might be worth doing to help get a more comprehensive understanding of the business context and needs, and to make sure your research problem addresses the most critical questions.

This could take the form of qualitative research using a few in-depth interviews , an environmental scan, or reviewing relevant literature.

The sales manager of a sportswear company has a problem: sales of trail running shoes are down year-on-year and she isn’t sure why. She approaches the company’s research team for input and they begin asking questions within the company and reviewing their knowledge of the wider market.

2. Review the key factors involved

As a marketing researcher, you must work closely with your team of researchers to define and test the influencing factors and the wider context involved in your study. These might include demographic and economic trends or the business environment affecting the question at hand. This is referred to as a relational research problem.

To do this, you have to identify the factors that will affect the research and begin formulating different methods to control them.

You also need to consider the relationships between factors and the degree of control you have over them. For example, you may be able to control the loading speed of your website but you can’t control the fluctuations of the stock market.

Doing this will help you determine whether the findings of your project will produce enough information to be worth the cost.

You need to determine:

  • which factors affect the solution to the research proposal.
  • which ones can be controlled and used for the purposes of the company, and to what extent.
  • the functional relationships between the factors.
  • which ones are critical to the solution of the research study.

The research team at the running shoe company is hard at work. They explore the factors involved and the context of why YoY sales are down for trail shoes, including things like what the company’s competitors are doing, what the weather has been like – affecting outdoor exercise – and the relative spend on marketing for the brand from year to year.

The final factor is within the company’s control, although the first two are not. They check the figures and determine marketing spend has a significant impact on the company.

3. Prioritize

Once you and your research team have a few observations, prioritize them based on their business impact and importance. It may be that you can answer more than one question with a single study, but don’t do it at the risk of losing focus on your overarching research problem.

Questions to ask:

  • Who? Who are the people with the problem? Are they end-users, stakeholders, teams within your business? Have you validated the information to see what the scale of the problem is?
  • What? What is its nature and what is the supporting evidence?
  • Why? What is the business case for solving the problem? How will it help?
  • Where? How does the problem manifest and where is it observed?

To help you understand all dimensions, you might want to consider focus groups or preliminary interviews with external (including consumers and existing customers) and internal (salespeople, managers, and other stakeholders) parties to provide what is sometimes much-needed insight into a particular set of questions or problems.

After observing and investigating, the running shoe researchers come up with a few candidate questions, including:

  • What is the relationship between US average temperatures and sales of our products year on year?
  • At present, how does our customer base rank Competitor X and Competitor Y’s trail running shoe compared to our brand?
  • What is the relationship between marketing spend and trail shoe product sales over the last 12 months?

They opt for the final question, because the variables involved are fully within the company’s control, and based on their initial research and stakeholder input, seem the most likely cause of the dive in sales. The research question is specific enough to keep the work on course towards an actionable result, but it allows for a few different avenues to be explored, such as the different budget allocations of offline and online marketing and the kinds of messaging used.

Get feedback from the key teams within your business to make sure everyone is aligned and has the same understanding of the research problem and questions, and the actions you hope to take based on the results. Now is also a good time to demonstrate the ROI of your research and lay out its potential benefits to your stakeholders.

Different groups may have different goals and perspectives on the issue. This step is vital for getting the necessary buy-in and pushing the project forward.

The running shoe company researchers now have everything they need to begin. They call a meeting with the sales manager and consult with the product team, marketing team, and C-suite to make sure everyone is aligned and has bought into the direction of the research topic. They identify and agree that the likely course of action will be a rethink of how marketing resources are allocated, and potentially testing out some new channels and messaging strategies .

Can you explore a broad area and is it practical to do so?

A broader research problem or report can be a great way to bring attention to prevalent issues, societal or otherwise, but are often undertaken by those with the resources to do so.

Take a typical government cybersecurity breach survey, for example. Most of these reports raise awareness of cybercrime, from the day-to-day threats businesses face to what security measures some organizations are taking. What these reports don't do, however, is provide actionable advice - mostly because every organization is different.

The point here is that while some researchers will explore a very complex issue in detail, others will provide only a snapshot to maintain interest and encourage further investigation. The "value" of the data is wholly determined by the recipients of it - and what information you choose to include.

To summarize, it can be practical to undertake a broader research problem, certainly, but it may not be possible to cover everything or provide the detail your audience needs. Likewise, a more systematic investigation of an issue or topic will be more valuable, but you may also find that you cover far less ground.

It's important to think about your research objectives and expected findings before going ahead.

Ensuring your research project is a success

A complex research project can be made significantly easier with clear research objectives, a descriptive research problem, and a central focus. All of which we've outlined in this article.

If you have previous research, even better. Use it as a benchmark

Remember: what separates a good research paper from an average one is actually very simple: valuable, empirical data that explores a prevalent societal or business issue and provides actionable insights.

And we can help.

Sophisticated research made simple with Qualtrics

Trusted by the world's best brands, our platform enables researchers from academic to corporate to tackle the hardest challenges and deliver the results that matter.

Our CoreXM platform supports the methods that define superior research and delivers insights in real-time. It's easy to use (thanks to drag-and-drop functionality) and requires no coding, meaning you'll be capturing data and gleaning insights in no time.

Satisfaction New York vs Massachusetts

It also excels in flexibility; you can track consumer behavior across segments , benchmark your company versus competitors , carry out complex academic research, and do much more, all from one system.

It's one platform with endless applications, so no matter your research problem, we've got the tools to help you solve it. And if you don't have a team of research experts in-house, our market research team has the practical knowledge and tools to help design the surveys and find the respondents you need.

Of course, you may want to know where to begin with your own market research . If you're struggling, make sure to download our ultimate guide using the link below.

It's got everything you need and there’s always information in our research methods knowledge base.

Scott Smith

Scott Smith, Ph.D. is a contributor to the Qualtrics blog.

Related Articles

April 1, 2023

How to write great survey questions (with examples)

February 8, 2023

Smoothing the transition from school to work with work-based learning

December 6, 2022

How customer experience helps bring Open Universities Australia’s brand promise to life

August 18, 2022

School safety, learning gaps top of mind for parents this back-to-school season

August 9, 2022

3 things that will improve your teachers’ school experience

August 2, 2022

Why a sense of belonging at school matters for K-12 students

July 14, 2022

Improve the student experience with simplified course evaluations

March 17, 2022

Understanding what’s important to college students

Stay up to date with the latest xm thought leadership, tips and news., request demo.

Ready to learn more about Qualtrics?

Sacred Heart University Library

Organizing Academic Research Papers: The Research Problem/Question

  • Purpose of Guide
  • Design Flaws to Avoid
  • Glossary of Research Terms
  • Narrowing a Topic Idea
  • Broadening a Topic Idea
  • Extending the Timeliness of a Topic Idea
  • Academic Writing Style
  • Choosing a Title
  • Making an Outline
  • Paragraph Development
  • Executive Summary
  • Background Information
  • The Research Problem/Question
  • Theoretical Framework
  • Citation Tracking
  • Content Alert Services
  • Evaluating Sources
  • Primary Sources
  • Secondary Sources
  • Tertiary Sources
  • What Is Scholarly vs. Popular?
  • Qualitative Methods
  • Quantitative Methods
  • Using Non-Textual Elements
  • Limitations of the Study
  • Common Grammar Mistakes
  • Avoiding Plagiarism
  • Footnotes or Endnotes?
  • Further Readings
  • Annotated Bibliography
  • Dealing with Nervousness
  • Using Visual Aids
  • Grading Someone Else's Paper
  • How to Manage Group Projects
  • Multiple Book Review Essay
  • Reviewing Collected Essays
  • About Informed Consent
  • Writing Field Notes
  • Writing a Policy Memo
  • Writing a Research Proposal
  • Acknowledgements

A research problem is a statement about an area of concern, a condition to be improved, a difficulty to be eliminated, or a troubling question that exists in scholarly literature, in theory, or in practice that points to the need for meaningful understanding and deliberate investigation. In some social science disciplines the research problem is typically posed in the form of a question. A research problem does not state how to do something, offer a vague or broad proposition, or present a value question.

Importance of...

The purpose of a problem statement is to:

  • Introduce the reader to the importance of the topic being studied . The reader is oriented to the significance of the study and the research questions or hypotheses to follow.
  • Places the problem into a particular context that defines the parameters of what is to be investigated.
  • Provides the framework for reporting the results and indicates what is probably necessary to conduct the study and explain how the findings will present this information.

In the social sciences, the research problem establishes the means by which you must answer the "So What?" question. The "So What?" question refers to a research problem surviving the relevancy test [the quality of a measurement procedure that provides repeatability and accuracy]. Note that answering the "So What" question requires a commitment on your part to not only show that you have researched the material, but that you have thought about its significance.

To survive the "So What" question, problem statements should possess the following attributes:

  • Clarity and precision [a well-written statement does not make sweeping generalizations and irresponsible statements],
  • Identification of what would be studied, while avoiding the use of value-laden words and terms,
  • Identification of an overarching question and key factors or variables,
  • Identification of key concepts and terms,
  • Articulation of the study's boundaries or parameters,
  • Some generalizability in regards to applicability and bringing results into general use,
  • Conveyance of the study's importance, benefits, and justification [regardless of the type of research, it is important to address the “so what” question by demonstrating that the research is not trivial],
  • Does not have unnecessary jargon; and,
  • Conveyance of more than the mere gathering of descriptive data providing only a snapshot of the issue or phenomenon under investigation.

Castellanos, Susie. Critical Writing and Thinking . The Writing Center. Dean of the College. Brown University; Ellis, Timothy J. and Yair Levy Nova Framework of Problem-Based Research: A Guide for Novice Researchers on the Development of a Research-Worthy Problem. Informing Science: the International Journal of an Emerging Transdiscipline 11 (2008); Thesis and Purpose Statements . The Writer’s Handbook. Writing Center. University of Wisconsin, Madison; Thesis Statements . The Writing Center. University of North Carolina; Tips and Examples for Writing Thesis Statements . The Writing Lab and The OWL. Purdue University.  

Structure and Writing Style

I.  Types and Content

There are four general conceptualizations of a research problem in the social sciences:

  • Casuist Research Problem -- this type of problem relates to the determination of right and wrong in questions of conduct or conscience by analyzing moral dilemmas through the application of general rules and the careful distinction of special cases.
  • Difference Research Problem -- typically asks the question, “Is there a difference between two or more groups or treatments?” This type of problem statement is used when the researcher compares or contrasts two or more phenomena.
  • Descriptive Research Problem -- typically asks the question, "what is...?" with the underlying purpose to describe a situation, state, or existence of a specific phenomenon.
  • Relational Research Problem -- suggests a relationship of some sort between two or more variables to be investigated. The underlying purpose is to investigate qualities/characteristics that are connected in some way.

A problem statement in the social sciences should contain :

  • A lead-in that helps ensure the reader will maintain interest over the study
  • A declaration of originality [e.g., mentioning a knowledge void, which would be supported by the literature review]
  • An indication of the central focus of the study, and
  • An explanation of the study's significance or the benefits to be derived from an investigating the problem.

II.  Sources of Problems for Investigation

Identifying a problem to study can be challenging, not because there is a lack of issues that could be investigated, but due to pursuing a goal of formulating a socially relevant and researchable problem statement that is unique and does not simply duplicate the work of others. To facilitate how you might select a problem from which to build a research study, consider these three broad sources of inspiration:

Deductions from Theory This relates to deductions made from social philosophy or generalizations embodied in life in society that the researcher is familiar with. These deductions from human behavior are then fitted within an empirical frame of reference through research. From a theory, the research can formulate a research problem or hypothesis stating the expected findings in certain empirical situations. The research asks the question: “What relationship between variables will be observed if theory aptly summarizes the state of affairs?” One can then design and carry out a systematic investigation to assess whether empirical data confirm or reject the hypothesis and hence the theory.

Interdisciplinary Perspectives Identifying a problem that forms the basis for a research study can come from academic movements and scholarship originating in disciplines outside of your primary area of study. A review of pertinent literature should include examining research from related disciplines, which can expose you to new avenues of exploration and analysis. An interdisciplinary approach to selecting a research problem offers an opportunity to construct a more comprehensive understanding of a very complex issue than any single discipline might provide.

Interviewing Practitioners The identification of research problems about particular topics can arise from formal or informal discussions with practitioners who provide insight into new directions for future research and how to make research findings increasingly relevant to practice. Discussions with experts in the field, such as, teachers, social workers, health care providers, etc., offers the chance to identify practical, “real worl” problems that may be understudied or ignored within academic circles. This approach also provides some practical knowledge which may help in the process of designing and conducting your study.

Personal Experience Your everyday experiences can give rise to worthwhile problems for investigation. Think critically about your own experiences and/or frustrations with an issue facing society, your community, or in your neighborhood. This can be derived, for example, from deliberate observations of certain relationships for which there is no clear explanation or witnessing an event that appears harmful to a person or group or that is out of the ordinary.

Relevant Literature The selection of a research problem can often be derived from an extensive and thorough review of pertinent research associated with your overall area of interest. This may reveal where gaps remain in our understanding of a topic. Research may be conducted to: 1) fill such gaps in knowledge; 2) evaluate if the methodologies employed in prior studies can be adapted to solve other problems; or, 3) determine if a similar study could be conducted in a different subject area or applied to different study sample [i.e., different groups of people]. Also, authors frequently conclude their studies by noting implications for further research; this can also be a valuable source of problems to investigate.

III.  What Makes a Good Research Statement?

A good problem statement begins by introducing the broad area in which your research is centered and then gradually leads the reader to the more narrow questions you are posing. The statement need not be lengthy but a good research problem should incorporate the following features:

Compelling topic Simple curiosity is not a good enough reason to pursue a research study. The problem that you choose to explore must be important to you and to a larger community you share. The problem chosen must be one that motivates you to address it. Supports multiple perspectives The problem most be phrased in a way that avoids dichotomies and instead supports the generation and exploration of multiple perspectives. A general rule of thumb is that a good research problem is one that would generate a variety of viewpoints from a composite audience made up of reasonable people. Researchable It seems a bit obvious, but you don't want to find yourself in the midst of investigating a complex  research project and realize that you don't have much to draw on for your research. Choose research problems that can be supported by the resources available to you. Not sure? Seek out help  from a librarian!

NOTE:   Do not confuse a research problem with a research topic. A topic is something to read and obtain information about whereas a problem is something to solve or framed as a question that must be answered.

IV.  Mistakes to Avoid

Beware of circular reasoning . Don’t state that the research problem as simply the absence of the thing you are suggesting. For example, if you propose, "The problem in this community is that it has no hospital."

This only leads to a research problem where:

  • The need is for a hospital
  • The objective is to create a hospital
  • The method is to plan for building a hospital, and
  • The evaluation is to measure if there is a hospital or not.

This is an example of a research problem that fails the "so what?" test because it does not reveal the relevance of why you are investigating the problem of having no hospital in the community [e.g., there's a hospital in the community ten miles away] and because the research problem does not elucidate the significance of why one should study the fact that no hospital exists in the community [e.g., that hospital in the community ten miles away has no emergency room].

Choosing and Refining Topics . Writing@CSU. Colorado State University; Ellis, Timothy J. and Yair Levy Nova Framework of Problem-Based Research: A Guide for Novice Researchers on the Development of a Research-Worthy Problem. Informing Science: the International Journal of an Emerging Transdiscipline 11 (2008); How to Write a Research Question . The Writing Center. George Mason University; Invention: Developing a Thesis Statement . The Reading/Writing Center. Hunter College; Problem Statements PowerPoint Presentation . The Writing Lab and The OWL. Purdue University; Procter, Margaret. Using Thesis Statements . University College Writing Centre. University of Toronto; Trochim, William M.K. Problem Formulation . Research Methods Knowledge Base. 2006; Thesis and Purpose Statements . The Writer’s Handbook. Writing Center. University of Wisconsin, Madison; Thesis Statements . The Writing Center. University of North Carolina; Tips and Examples for Writing Thesis Statements . The Writing Lab and The OWL. Purdue University.

  • << Previous: Background Information
  • Next: Theoretical Framework >>
  • Last Updated: Jul 18, 2023 11:58 AM
  • URL: https://library.sacredheart.edu/c.php?g=29803
  • QuickSearch
  • Library Catalog
  • Databases A-Z
  • Publication Finder
  • Course Reserves
  • Citation Linker
  • Digital Commons
  • Our Website

Research Support

  • Ask a Librarian
  • Appointments
  • Interlibrary Loan (ILL)
  • Research Guides
  • Databases by Subject
  • Citation Help

Using the Library

  • Reserve a Group Study Room
  • Renew Books
  • Honors Study Rooms
  • Off-Campus Access
  • Library Policies
  • Library Technology

User Information

  • Grad Students
  • Online Students
  • COVID-19 Updates
  • Staff Directory
  • News & Announcements
  • Library Newsletter

My Accounts

  • Interlibrary Loan
  • Staff Site Login

Sacred Heart University

FIND US ON  

Research Problem and Questions

  • First Online: 20 September 2022

Cite this chapter

research problems and questions

  • Habeeb Adewale Ajimotokan 2  

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

987 Accesses

The objectives of this chapter are to

Describe the research problem and questions;

Identify appropriate research problems and questions;

Specify the different sources for research problems;

Enumerate the criteria for selecting a problem for research; and

Describe the statement of problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Kothari, C. R. (2004). Research methodology: Methods and techniques . New Age International (P) Ltd.

Google Scholar  

Walliman, N. (2011). Research methods: The basics . Routledge—Taylor and Francis Group.

Pandey, P., & Pandey, M. M. (2015). Research methodology: Methods and techniques . Bridge Center.

Walliman, N. (2011). Your research project: Designing and planning your work . Sage Publications Ltd.

Download references

Author information

Authors and affiliations.

Department of Mechanical Engineering, University of Ilorin, Ilorin, Nigeria

Habeeb Adewale Ajimotokan

You can also search for this author in PubMed   Google Scholar

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Ajimotokan, H.A. (2023). Research Problem and Questions. In: Research Techniques. SpringerBriefs in Applied Sciences and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-13109-7_2

Download citation

DOI : https://doi.org/10.1007/978-3-031-13109-7_2

Published : 20 September 2022

Publisher Name : Springer, Cham

Print ISBN : 978-3-031-13108-0

Online ISBN : 978-3-031-13109-7

eBook Packages : Engineering Engineering (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

Research Problem vs. Research Question

What's the difference.

Research problem and research question are two essential components of any research study. The research problem refers to the issue or gap in knowledge that the researcher aims to address through their study. It identifies the area of research that requires further investigation and highlights the significance of the study. On the other hand, the research question is a specific inquiry that the researcher formulates to guide their investigation. It is a concise and focused query that helps to narrow down the research problem and provides a clear direction for the study. While the research problem sets the broader context, the research question provides a specific and measurable objective for the research study.

Further Detail

Introduction.

Research is a systematic process that involves the exploration and investigation of a particular topic or issue. It aims to generate new knowledge, solve problems, or answer specific questions. In any research endeavor, it is crucial to clearly define the research problem and research question. While they are closely related, they have distinct attributes that shape the research process. This article will delve into the characteristics of research problems and research questions, highlighting their similarities and differences.

Research Problem

A research problem is the foundation of any research study. It refers to an area of concern or a gap in knowledge that requires investigation. Identifying a research problem is the initial step in the research process, as it sets the direction and purpose of the study. A research problem should be specific, clear, and well-defined to guide the research process effectively.

One of the key attributes of a research problem is that it should be significant. It should address an issue that has practical or theoretical implications and contributes to the existing body of knowledge. A significant research problem has the potential to make a positive impact on society, industry, or academia.

Furthermore, a research problem should be researchable. This means that it should be feasible to investigate and gather relevant data to address the problem. It should be within the researcher's capabilities and resources to conduct the study. A research problem that is too broad or vague may hinder the research process and lead to inconclusive results.

Additionally, a research problem should be specific and well-defined. It should clearly state the variables or concepts under investigation and provide a clear focus for the study. A well-defined research problem helps in formulating research questions and hypotheses, as it narrows down the scope of the study.

Lastly, a research problem should be original. It should contribute to the existing body of knowledge by addressing a gap or extending previous research. Originality ensures that the research study adds value and novelty to the field, making it relevant and interesting to researchers and practitioners.

Research Question

A research question is a specific inquiry that guides the research process and aims to provide an answer or solution to the research problem. It is derived from the research problem and helps in focusing the study, collecting relevant data, and analyzing the findings. A well-formulated research question is crucial for conducting a successful research study.

Similar to a research problem, a research question should be clear and specific. It should be concise and focused on a particular aspect of the research problem. A clear research question helps in determining the appropriate research design, methodology, and data collection techniques.

Furthermore, a research question should be answerable. It should be feasible to gather data and evidence to address the research question. An answerable research question ensures that the research study is practical and achievable within the given constraints.

A research question should also be relevant. It should directly relate to the research problem and contribute to the existing body of knowledge. A relevant research question ensures that the study has significance and value in the field, making it meaningful to researchers and stakeholders.

Lastly, a research question should be specific to the research context. It should consider the scope, objectives, and limitations of the study. A specific research question helps in avoiding ambiguity and ensures that the research study remains focused and coherent.

While research problems and research questions share some similarities, they also have distinct attributes that differentiate them. Both research problems and research questions should be clear, specific, and relevant to the research study. They should address a gap in knowledge and contribute to the existing body of knowledge.

However, a research problem is broader in scope compared to a research question. It sets the overall direction and purpose of the study, while a research question focuses on a specific aspect or inquiry within the research problem. A research problem provides a broader context for the study, while a research question narrows down the focus and guides the investigation.

Another difference lies in their formulation. A research problem is typically formulated as a statement or a declarative sentence, highlighting the area of concern or gap in knowledge. On the other hand, a research question is formulated as an interrogative sentence, posing a specific inquiry that needs to be answered or explored.

Furthermore, a research problem is often derived from a literature review or an analysis of existing research. It identifies the gap or area of concern based on the current state of knowledge. On the contrary, a research question is derived from the research problem itself. It is formulated to address the specific aspect or inquiry identified in the research problem.

Lastly, a research problem is usually stated at the beginning of a research study, while research questions are developed during the research design phase. The research problem sets the foundation for the study, while research questions are refined and finalized based on the research problem and objectives.

In conclusion, research problems and research questions are essential components of any research study. While they share similarities in terms of being clear, specific, and relevant, they also have distinct attributes that shape the research process. A research problem sets the overall direction and purpose of the study, while research questions focus on specific inquiries within the research problem. Both are crucial in guiding the research process, collecting relevant data, and generating new knowledge. By understanding the attributes of research problems and research questions, researchers can effectively design and conduct their studies, contributing to the advancement of knowledge in their respective fields.

Comparisons may contain inaccurate information about people, places, or facts. Please report any issues.

University of Illinois at Urbana-Champaign Block I

Daniel Liberzon's blog

Some thoughts on academic life and research, how do i choose research problems to work on.

I often get this question, as I’m sure many other researchers do: how do you choose which research problems you want to work on? Bassam Bamieh gave a nice answer to this question on the latest episode of the inControl podcast (which I highly recommend, by the way). He said that there are two common approaches to this: one is to be driven by a specific important problem (often one arising in an application) and keep trying various methods to solve this problem; another is to have a preferred set of tools and keep applying them to various problems (which is like having a hammer and looking for nails). As I was listening to Bassam’s explanation, I was thinking that I belong to neither of these two camps. It’s actually a bit difficult to explain how I go about selecting research projects, and this is what this post is about. I may be somewhat closer to the second way of thinking, in the sense that I’m more likely to be motivated by a solution method than by a problem itself. But I don’t get very excited about applying the same set of techniques over and over again. When getting started on a new project, it is important for me to see novelty in it. And it’s not just about novelty; it’s also about beauty, or at least elegance. What I really enjoy is seeing a nice solution or approach to a problem, one that I haven’t seen before and that appeals to my mathematical taste. I want to stress that for me to appreciate a mathematical concept or technique, it doesn’t necessarily need to be tied to an original research contribution that I’m trying to make. A concept or idea may not be new—it doesn’t matter, as long as it’s new to me. I derive a lot of pleasure from learning beautiful mathematical constructions and results when reading papers and books written by other people, and they don’t need to be related to my own research. Even an elegant solution to a high-school-level math problem can leave a lasting impression. (I have two teenage children, so I think about elementary math problems, puzzles, etc. quite regularly.) Occasionally, though, this feeling of excitement and delight appears when I do research, and it is those moments that help me formulate new research problems and directions. I suppose I should give a few examples to illustrate and better explain this process. When I was starting my postdoc, I learned that switching between stable linear systems may lead to instability, but that this doesn’t happen if the individual matrices defining the switched system commute with each other. This sparked my long-lasting interest in developing stability criteria for switched systems based on commutation relations (as I explain in much more detail in this recent article , which recounts several other similar moments of inspiration). As another example, at the 2003 CDC in Maui I was presenting my work on quantized feedback systems, and after my talk Dragan Nesic came up to me and suggested that my results could be alternatively derived using small-gain theorems. This idea led to a beautiful and completely new (for me) way of analyzing control algorithms that I have been developing and studying for several years prior to that. It also motivated a general approach to stability analysis of hybrid systems based on small-gain theorems (whose development can be traced from our early and quite accessible 2005 CDC paper to a much more comprehensive 2014 TAC paper ). As a much more recent example, at the 2018 CDC in Miami Beach I was presenting our work with Xiaobin Gao and Tamer Başar on stability of slowly time-varying and switched systems. At the end of the talk, someone from the audience asked me what happens when fast variation or switching is also present in the system. I hadn’t thought about this issue and wasn’t able to give a coherent answer on the spot. But later Hyungbo Shim, who also attended my talk and heard the question, told me that he had done some work on averaging for systems with slow and fast time variation, which he thought could be combined with our approach to treat systems where both slow and fast switching and time variation are present. Hyungbo and I decided to join efforts and work this out, and we now have several papers published or in preparation on this topic ( one of which he presented just last week at the 2024 HSCC). I think these examples make it clear that I don’t really have a systematic method for finding good research problems; instead, good research problems occasionally find me, usually when I talk to other people or study their work. But the process is not completely random, as I do have certain criteria that help me decide which ideas to pursue and which ones to discard. An interesting additional observation is that many of the interactions and encounters that turn out to be useful are not planned in advance—which is why it’s very important to have in-person meetings. When our conferences went online during Covid, I felt very uninspired and could not imagine that our field would survive in that mode for very long. I’m able to work quite well remotely on an already existing project using Zoom and email, but that initial spark of inspiration tends to come only during face-to-face conversations (and still only very rarely). Of course, other people have very different approaches to finding good research problems to work on. I hope you find one that works for you and brings you joy.

Leave a Reply

You must be logged in to post a comment.

Photo of a person's hands typing on a laptop.

AI-assisted writing is quietly booming in academic journals. Here’s why that’s OK

research problems and questions

Lecturer in Bioethics, Monash University & Honorary fellow, Melbourne Law School, Monash University

Disclosure statement

Julian Koplin does not work for, consult, own shares in or receive funding from any company or organisation that would benefit from this article, and has disclosed no relevant affiliations beyond their academic appointment.

Monash University provides funding as a founding partner of The Conversation AU.

View all partners

If you search Google Scholar for the phrase “ as an AI language model ”, you’ll find plenty of AI research literature and also some rather suspicious results. For example, one paper on agricultural technology says:

As an AI language model, I don’t have direct access to current research articles or studies. However, I can provide you with an overview of some recent trends and advancements …

Obvious gaffes like this aren’t the only signs that researchers are increasingly turning to generative AI tools when writing up their research. A recent study examined the frequency of certain words in academic writing (such as “commendable”, “meticulously” and “intricate”), and found they became far more common after the launch of ChatGPT – so much so that 1% of all journal articles published in 2023 may have contained AI-generated text.

(Why do AI models overuse these words? There is speculation it’s because they are more common in English as spoken in Nigeria, where key elements of model training often occur.)

The aforementioned study also looks at preliminary data from 2024, which indicates that AI writing assistance is only becoming more common. Is this a crisis for modern scholarship, or a boon for academic productivity?

Who should take credit for AI writing?

Many people are worried by the use of AI in academic papers. Indeed, the practice has been described as “ contaminating ” scholarly literature.

Some argue that using AI output amounts to plagiarism. If your ideas are copy-pasted from ChatGPT, it is questionable whether you really deserve credit for them.

But there are important differences between “plagiarising” text authored by humans and text authored by AI. Those who plagiarise humans’ work receive credit for ideas that ought to have gone to the original author.

By contrast, it is debatable whether AI systems like ChatGPT can have ideas, let alone deserve credit for them. An AI tool is more like your phone’s autocomplete function than a human researcher.

The question of bias

Another worry is that AI outputs might be biased in ways that could seep into the scholarly record. Infamously, older language models tended to portray people who are female, black and/or gay in distinctly unflattering ways, compared with people who are male, white and/or straight.

This kind of bias is less pronounced in the current version of ChatGPT.

However, other studies have found a different kind of bias in ChatGPT and other large language models : a tendency to reflect a left-liberal political ideology.

Any such bias could subtly distort scholarly writing produced using these tools.

The hallucination problem

The most serious worry relates to a well-known limitation of generative AI systems: that they often make serious mistakes.

For example, when I asked ChatGPT-4 to generate an ASCII image of a mushroom, it provided me with the following output.

It then confidently told me I could use this image of a “mushroom” for my own purposes.

These kinds of overconfident mistakes have been referred to as “ AI hallucinations ” and “ AI bullshit ”. While it is easy to spot that the above ASCII image looks nothing like a mushroom (and quite a bit like a snail), it may be much harder to identify any mistakes ChatGPT makes when surveying scientific literature or describing the state of a philosophical debate.

Unlike (most) humans, AI systems are fundamentally unconcerned with the truth of what they say. If used carelessly, their hallucinations could corrupt the scholarly record.

Should AI-produced text be banned?

One response to the rise of text generators has been to ban them outright. For example, Science – one of the world’s most influential academic journals – disallows any use of AI-generated text .

I see two problems with this approach.

The first problem is a practical one: current tools for detecting AI-generated text are highly unreliable. This includes the detector created by ChatGPT’s own developers, which was taken offline after it was found to have only a 26% accuracy rate (and a 9% false positive rate ). Humans also make mistakes when assessing whether something was written by AI.

It is also possible to circumvent AI text detectors. Online communities are actively exploring how to prompt ChatGPT in ways that allow the user to evade detection. Human users can also superficially rewrite AI outputs, effectively scrubbing away the traces of AI (like its overuse of the words “commendable”, “meticulously” and “intricate”).

The second problem is that banning generative AI outright prevents us from realising these technologies’ benefits. Used well, generative AI can boost academic productivity by streamlining the writing process. In this way, it could help further human knowledge. Ideally, we should try to reap these benefits while avoiding the problems.

The problem is poor quality control, not AI

The most serious problem with AI is the risk of introducing unnoticed errors, leading to sloppy scholarship. Instead of banning AI, we should try to ensure that mistaken, implausible or biased claims cannot make it onto the academic record.

After all, humans can also produce writing with serious errors, and mechanisms such as peer review often fail to prevent its publication.

We need to get better at ensuring academic papers are free from serious mistakes, regardless of whether these mistakes are caused by careless use of AI or sloppy human scholarship. Not only is this more achievable than policing AI usage, it will improve the standards of academic research as a whole.

This would be (as ChatGPT might say) a commendable and meticulously intricate solution.

  • Artificial intelligence (AI)
  • Academic journals
  • Academic publishing
  • Hallucinations
  • Scholarly publishing
  • Academic writing
  • Large language models
  • Generative AI

research problems and questions

Lecturer / Senior Lecturer - Marketing

research problems and questions

Research Fellow

research problems and questions

Senior Research Fellow - Women's Health Services

research problems and questions

Assistant Editor - 1 year cadetship

research problems and questions

Executive Dean, Faculty of Health

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • v.53(4); 2010 Aug

Logo of canjsurg

Research questions, hypotheses and objectives

Patricia farrugia.

* Michael G. DeGroote School of Medicine, the

Bradley A. Petrisor

† Division of Orthopaedic Surgery and the

Forough Farrokhyar

‡ Departments of Surgery and

§ Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Ont

Mohit Bhandari

There is an increasing familiarity with the principles of evidence-based medicine in the surgical community. As surgeons become more aware of the hierarchy of evidence, grades of recommendations and the principles of critical appraisal, they develop an increasing familiarity with research design. Surgeons and clinicians are looking more and more to the literature and clinical trials to guide their practice; as such, it is becoming a responsibility of the clinical research community to attempt to answer questions that are not only well thought out but also clinically relevant. The development of the research question, including a supportive hypothesis and objectives, is a necessary key step in producing clinically relevant results to be used in evidence-based practice. A well-defined and specific research question is more likely to help guide us in making decisions about study design and population and subsequently what data will be collected and analyzed. 1

Objectives of this article

In this article, we discuss important considerations in the development of a research question and hypothesis and in defining objectives for research. By the end of this article, the reader will be able to appreciate the significance of constructing a good research question and developing hypotheses and research objectives for the successful design of a research study. The following article is divided into 3 sections: research question, research hypothesis and research objectives.

Research question

Interest in a particular topic usually begins the research process, but it is the familiarity with the subject that helps define an appropriate research question for a study. 1 Questions then arise out of a perceived knowledge deficit within a subject area or field of study. 2 Indeed, Haynes suggests that it is important to know “where the boundary between current knowledge and ignorance lies.” 1 The challenge in developing an appropriate research question is in determining which clinical uncertainties could or should be studied and also rationalizing the need for their investigation.

Increasing one’s knowledge about the subject of interest can be accomplished in many ways. Appropriate methods include systematically searching the literature, in-depth interviews and focus groups with patients (and proxies) and interviews with experts in the field. In addition, awareness of current trends and technological advances can assist with the development of research questions. 2 It is imperative to understand what has been studied about a topic to date in order to further the knowledge that has been previously gathered on a topic. Indeed, some granting institutions (e.g., Canadian Institute for Health Research) encourage applicants to conduct a systematic review of the available evidence if a recent review does not already exist and preferably a pilot or feasibility study before applying for a grant for a full trial.

In-depth knowledge about a subject may generate a number of questions. It then becomes necessary to ask whether these questions can be answered through one study or if more than one study needed. 1 Additional research questions can be developed, but several basic principles should be taken into consideration. 1 All questions, primary and secondary, should be developed at the beginning and planning stages of a study. Any additional questions should never compromise the primary question because it is the primary research question that forms the basis of the hypothesis and study objectives. It must be kept in mind that within the scope of one study, the presence of a number of research questions will affect and potentially increase the complexity of both the study design and subsequent statistical analyses, not to mention the actual feasibility of answering every question. 1 A sensible strategy is to establish a single primary research question around which to focus the study plan. 3 In a study, the primary research question should be clearly stated at the end of the introduction of the grant proposal, and it usually specifies the population to be studied, the intervention to be implemented and other circumstantial factors. 4

Hulley and colleagues 2 have suggested the use of the FINER criteria in the development of a good research question ( Box 1 ). The FINER criteria highlight useful points that may increase the chances of developing a successful research project. A good research question should specify the population of interest, be of interest to the scientific community and potentially to the public, have clinical relevance and further current knowledge in the field (and of course be compliant with the standards of ethical boards and national research standards).

FINER criteria for a good research question

Adapted with permission from Wolters Kluwer Health. 2

Whereas the FINER criteria outline the important aspects of the question in general, a useful format to use in the development of a specific research question is the PICO format — consider the population (P) of interest, the intervention (I) being studied, the comparison (C) group (or to what is the intervention being compared) and the outcome of interest (O). 3 , 5 , 6 Often timing (T) is added to PICO ( Box 2 ) — that is, “Over what time frame will the study take place?” 1 The PICOT approach helps generate a question that aids in constructing the framework of the study and subsequently in protocol development by alluding to the inclusion and exclusion criteria and identifying the groups of patients to be included. Knowing the specific population of interest, intervention (and comparator) and outcome of interest may also help the researcher identify an appropriate outcome measurement tool. 7 The more defined the population of interest, and thus the more stringent the inclusion and exclusion criteria, the greater the effect on the interpretation and subsequent applicability and generalizability of the research findings. 1 , 2 A restricted study population (and exclusion criteria) may limit bias and increase the internal validity of the study; however, this approach will limit external validity of the study and, thus, the generalizability of the findings to the practical clinical setting. Conversely, a broadly defined study population and inclusion criteria may be representative of practical clinical practice but may increase bias and reduce the internal validity of the study.

PICOT criteria 1

A poorly devised research question may affect the choice of study design, potentially lead to futile situations and, thus, hamper the chance of determining anything of clinical significance, which will then affect the potential for publication. Without devoting appropriate resources to developing the research question, the quality of the study and subsequent results may be compromised. During the initial stages of any research study, it is therefore imperative to formulate a research question that is both clinically relevant and answerable.

Research hypothesis

The primary research question should be driven by the hypothesis rather than the data. 1 , 2 That is, the research question and hypothesis should be developed before the start of the study. This sounds intuitive; however, if we take, for example, a database of information, it is potentially possible to perform multiple statistical comparisons of groups within the database to find a statistically significant association. This could then lead one to work backward from the data and develop the “question.” This is counterintuitive to the process because the question is asked specifically to then find the answer, thus collecting data along the way (i.e., in a prospective manner). Multiple statistical testing of associations from data previously collected could potentially lead to spuriously positive findings of association through chance alone. 2 Therefore, a good hypothesis must be based on a good research question at the start of a trial and, indeed, drive data collection for the study.

The research or clinical hypothesis is developed from the research question and then the main elements of the study — sampling strategy, intervention (if applicable), comparison and outcome variables — are summarized in a form that establishes the basis for testing, statistical and ultimately clinical significance. 3 For example, in a research study comparing computer-assisted acetabular component insertion versus freehand acetabular component placement in patients in need of total hip arthroplasty, the experimental group would be computer-assisted insertion and the control/conventional group would be free-hand placement. The investigative team would first state a research hypothesis. This could be expressed as a single outcome (e.g., computer-assisted acetabular component placement leads to improved functional outcome) or potentially as a complex/composite outcome; that is, more than one outcome (e.g., computer-assisted acetabular component placement leads to both improved radiographic cup placement and improved functional outcome).

However, when formally testing statistical significance, the hypothesis should be stated as a “null” hypothesis. 2 The purpose of hypothesis testing is to make an inference about the population of interest on the basis of a random sample taken from that population. The null hypothesis for the preceding research hypothesis then would be that there is no difference in mean functional outcome between the computer-assisted insertion and free-hand placement techniques. After forming the null hypothesis, the researchers would form an alternate hypothesis stating the nature of the difference, if it should appear. The alternate hypothesis would be that there is a difference in mean functional outcome between these techniques. At the end of the study, the null hypothesis is then tested statistically. If the findings of the study are not statistically significant (i.e., there is no difference in functional outcome between the groups in a statistical sense), we cannot reject the null hypothesis, whereas if the findings were significant, we can reject the null hypothesis and accept the alternate hypothesis (i.e., there is a difference in mean functional outcome between the study groups), errors in testing notwithstanding. In other words, hypothesis testing confirms or refutes the statement that the observed findings did not occur by chance alone but rather occurred because there was a true difference in outcomes between these surgical procedures. The concept of statistical hypothesis testing is complex, and the details are beyond the scope of this article.

Another important concept inherent in hypothesis testing is whether the hypotheses will be 1-sided or 2-sided. A 2-sided hypothesis states that there is a difference between the experimental group and the control group, but it does not specify in advance the expected direction of the difference. For example, we asked whether there is there an improvement in outcomes with computer-assisted surgery or whether the outcomes worse with computer-assisted surgery. We presented a 2-sided test in the above example because we did not specify the direction of the difference. A 1-sided hypothesis states a specific direction (e.g., there is an improvement in outcomes with computer-assisted surgery). A 2-sided hypothesis should be used unless there is a good justification for using a 1-sided hypothesis. As Bland and Atlman 8 stated, “One-sided hypothesis testing should never be used as a device to make a conventionally nonsignificant difference significant.”

The research hypothesis should be stated at the beginning of the study to guide the objectives for research. Whereas the investigators may state the hypothesis as being 1-sided (there is an improvement with treatment), the study and investigators must adhere to the concept of clinical equipoise. According to this principle, a clinical (or surgical) trial is ethical only if the expert community is uncertain about the relative therapeutic merits of the experimental and control groups being evaluated. 9 It means there must exist an honest and professional disagreement among expert clinicians about the preferred treatment. 9

Designing a research hypothesis is supported by a good research question and will influence the type of research design for the study. Acting on the principles of appropriate hypothesis development, the study can then confidently proceed to the development of the research objective.

Research objective

The primary objective should be coupled with the hypothesis of the study. Study objectives define the specific aims of the study and should be clearly stated in the introduction of the research protocol. 7 From our previous example and using the investigative hypothesis that there is a difference in functional outcomes between computer-assisted acetabular component placement and free-hand placement, the primary objective can be stated as follows: this study will compare the functional outcomes of computer-assisted acetabular component insertion versus free-hand placement in patients undergoing total hip arthroplasty. Note that the study objective is an active statement about how the study is going to answer the specific research question. Objectives can (and often do) state exactly which outcome measures are going to be used within their statements. They are important because they not only help guide the development of the protocol and design of study but also play a role in sample size calculations and determining the power of the study. 7 These concepts will be discussed in other articles in this series.

From the surgeon’s point of view, it is important for the study objectives to be focused on outcomes that are important to patients and clinically relevant. For example, the most methodologically sound randomized controlled trial comparing 2 techniques of distal radial fixation would have little or no clinical impact if the primary objective was to determine the effect of treatment A as compared to treatment B on intraoperative fluoroscopy time. However, if the objective was to determine the effect of treatment A as compared to treatment B on patient functional outcome at 1 year, this would have a much more significant impact on clinical decision-making. Second, more meaningful surgeon–patient discussions could ensue, incorporating patient values and preferences with the results from this study. 6 , 7 It is the precise objective and what the investigator is trying to measure that is of clinical relevance in the practical setting.

The following is an example from the literature about the relation between the research question, hypothesis and study objectives:

Study: Warden SJ, Metcalf BR, Kiss ZS, et al. Low-intensity pulsed ultrasound for chronic patellar tendinopathy: a randomized, double-blind, placebo-controlled trial. Rheumatology 2008;47:467–71.

Research question: How does low-intensity pulsed ultrasound (LIPUS) compare with a placebo device in managing the symptoms of skeletally mature patients with patellar tendinopathy?

Research hypothesis: Pain levels are reduced in patients who receive daily active-LIPUS (treatment) for 12 weeks compared with individuals who receive inactive-LIPUS (placebo).

Objective: To investigate the clinical efficacy of LIPUS in the management of patellar tendinopathy symptoms.

The development of the research question is the most important aspect of a research project. A research project can fail if the objectives and hypothesis are poorly focused and underdeveloped. Useful tips for surgical researchers are provided in Box 3 . Designing and developing an appropriate and relevant research question, hypothesis and objectives can be a difficult task. The critical appraisal of the research question used in a study is vital to the application of the findings to clinical practice. Focusing resources, time and dedication to these 3 very important tasks will help to guide a successful research project, influence interpretation of the results and affect future publication efforts.

Tips for developing research questions, hypotheses and objectives for research studies

  • Perform a systematic literature review (if one has not been done) to increase knowledge and familiarity with the topic and to assist with research development.
  • Learn about current trends and technological advances on the topic.
  • Seek careful input from experts, mentors, colleagues and collaborators to refine your research question as this will aid in developing the research question and guide the research study.
  • Use the FINER criteria in the development of the research question.
  • Ensure that the research question follows PICOT format.
  • Develop a research hypothesis from the research question.
  • Develop clear and well-defined primary and secondary (if needed) objectives.
  • Ensure that the research question and objectives are answerable, feasible and clinically relevant.

FINER = feasible, interesting, novel, ethical, relevant; PICOT = population (patients), intervention (for intervention studies only), comparison group, outcome of interest, time.

Competing interests: No funding was received in preparation of this paper. Dr. Bhandari was funded, in part, by a Canada Research Chair, McMaster University.

Vegetables and Fruits

Basket of food including grapes apples asparagus onions lettuce carrots melon bananas corn

  • Vegetables and fruits are an important part of a healthy diet, and variety is as important as quantity.
  • No single fruit or vegetable provides all of the nutrients you need to be healthy. Eat plenty every day.

A diet rich in vegetables and fruits can lower blood pressure, reduce the risk of heart disease and stroke, prevent some types of cancer, lower risk of eye and digestive problems, and have a positive effect upon blood sugar, which can help keep appetite in check. Eating non-starchy vegetables and fruits like apples, pears, and green leafy vegetables may even promote weight loss. [1] Their low glycemic loads prevent blood sugar spikes that can increase hunger.

At least nine different families of fruits and vegetables exist, each with potentially hundreds of different plant compounds that are beneficial to health. Eat a variety of types and colors of produce in order to give your body the mix of nutrients it needs. This not only ensures a greater diversity of beneficial plant chemicals but also creates eye-appealing meals.

research problems and questions

Tips to eat more vegetables and fruits each day

  • Keep fruit where you can see it . Place several ready-to-eat washed whole fruits in a bowl or store chopped colorful fruits in a glass bowl in the refrigerator to tempt a sweet tooth.
  • Explore the produce aisle and choose something new . Variety and color are key to a healthy diet. On most days, try to get at least one serving from each of the following categories: dark green leafy vegetables; yellow or orange fruits and vegetables; red fruits and vegetables; legumes (beans) and peas; and citrus fruits.
  • Skip the potatoes . Choose other vegetables that are packed with different nutrients and more slowly digested  carbohydrates .
  • Make it a meal . Try cooking new  recipes that include more vegetables. Salads, soups, and stir-fries are just a few ideas for increasing the number of tasty vegetables in your meals.

research problems and questions

5 common questions about fruits and vegetables.

Vegetables, fruits, and disease, cardiovascular disease.

There is compelling evidence that a diet rich in fruits and vegetables can lower the risk of heart disease and stroke.

  • A meta-analysis of cohort studies following 469,551 participants found that a higher intake of fruits and vegetables is associated with a reduced risk of death from cardiovascular disease, with an average reduction in risk of 4% for each additional serving per day of fruit and vegetables. [2]
  • The largest and longest study to date, done as part of the Harvard-based Nurses’ Health Study and Health Professionals Follow-up Study, included almost 110,000 men and women whose health and dietary habits were followed for 14 years.
  • The higher the average daily intake of fruits and vegetables, the lower the chances of developing cardiovascular disease. Compared with those in the lowest category of fruit and vegetable intake (less than 1.5 servings a day), those who averaged 8 or more servings a day were 30% less likely to have had a heart attack or stroke. [3]
  • Although all fruits and vegetables likely contributed to this benefit, green leafy vegetables, such as lettuce, spinach, Swiss chard, and mustard greens, were most strongly associated with decreased risk of cardiovascular disease. Cruciferous vegetables such as broccoli, cauliflower, cabbage, Brussels sprouts , bok choy, and kale ; and citrus fruits such as oranges, lemons, limes, and grapefruit (and their juices) also made important contributions. [3]
  • When researchers combined findings from the Harvard studies with several other long-term studies in the U.S. and Europe, and looked at coronary heart disease and stroke separately, they found a similar protective effect: Individuals who ate more than 5 servings of fruits and vegetables per day had roughly a 20% lower risk of coronary heart disease [4] and stroke, [5] compared with individuals who ate less than 3 servings per day.

Blood pressure

  • The  Dietary Approaches to Stop Hypertension (DASH) study [6] examined the effect on blood pressure of a diet that was rich in fruits, vegetables, and low-fat dairy products and that restricted the amount of saturated and total fat. The researchers found that people with high blood pressure who followed this diet reduced their systolic blood pressure (the upper number of a blood pressure reading) by about 11 mm Hg and their diastolic blood pressure (the lower number) by almost 6 mm Hg—as much as medications can achieve.
  • A randomized trial known as the Optimal Macronutrient Intake Trial for Heart Health (OmniHeart) showed that this fruit and vegetable-rich diet lowered blood pressure even more when some of the carbohydrate was replaced with healthy unsaturated fat or protein. [7]
  • In 2014 a meta-analysis of clinical trials and observational studies found that consumption of a vegetarian diet was associated with lower blood pressure. [8]

Numerous early studies revealed what appeared to be a strong link between eating fruits and vegetables and protection against cancer . Unlike case-control studies, cohort studies , which follow large groups of initially healthy individuals for years, generally provide more reliable information than case-control studies because they don’t rely on information from the past. And, in general, data from cohort studies have not consistently shown that a diet rich in fruits and vegetables prevents cancer.

  • For example, over a 14-year period in the Nurses’ Health Study and the Health Professionals Follow-up Study, men and women with the highest intake of fruits and vegetables (8+ servings a day) were just as likely to have developed cancer as those who ate the fewest daily servings (under 1.5). [3]
  • A meta-analysis of cohort studies found that a higher fruit and vegetable intake did not decrease the risk of deaths from cancer. [2]

A more likely possibility is that some types of fruits and vegetables may protect against certain cancers.

  • A study by Farvid and colleagues followed a Nurses’ Health Study II cohort of 90,476 premenopausal women for 22 years and found that those who ate the most fruit during adolescence (about 3 servings a day) compared with those who ate the lowest intakes (0.5 servings a day) had a 25% lower risk of developing breast cancer. There was a significant reduction in breast cancer in women who had eaten higher intakes of apples, bananas , grapes, and corn during adolescence, and oranges and kale during early adulthood. No protection was found from drinking fruit juices at younger ages. [9]
  • Farvid and colleagues followed 90, 534 premenopausal women from the Nurses’ Health Study II over 20 years and found that higher fiber intakes during adolescence and early adulthood were associated with a reduced risk of breast cancer later in life. When comparing the highest and lowest fiber intakes from fruits and vegetables, women with the highest fruit fiber intake had a 12% reduced risk of breast cancer; those with the highest vegetable fiber intake had an 11% reduced risk. [10]
  • After following 182,145 women in the Nurses’ Health Study I and II for 30 years, Farvid’s team also found that women who ate more than 5.5 servings of fruits and vegetables each day (especially cruciferous and yellow/orange vegetables) had an 11% lower risk of breast cancer than those who ate 2.5 or fewer servings. Vegetable intake was strongly associated with a 15% lower risk of estrogen-receptor-negative tumors for every two additional servings of vegetables eaten daily. A higher intake of fruits and vegetables was associated with a lower risk of other aggressive tumors including HER2-enriched and basal-like tumors. [11]
  • A report by the World Cancer Research Fund and the American Institute for Cancer Research suggests that non-starchy vegetables—such as lettuce and other leafy greens, broccoli, bok choy, cabbage, as well as garlic, onions, and the like—and fruits “probably” protect against several types of cancers, including those of the mouth, throat, voice box, esophagus, and stomach. Fruit probably also protects against lung cancer. [12]

Specific components of fruits and vegetables may also be protective against cancer. For example:

  • A line of research stemming from a finding from the Health Professionals Follow-up Study suggests that tomatoes may help protect men against prostate cancer, especially aggressive forms of it. [12] One of the pigments that give tomatoes their red hue—lycopene—could be involved in this protective effect. Although several studies other than the Health Professionals Study have also demonstrated a link between tomatoes or lycopene and prostate cancer, others have not or have found only a weak connection. [14]
  • Taken as a whole, however, these studies suggest that increased consumption of tomato-based products (especially cooked tomato products) and other lycopene-containing foods may reduce the occurrence of prostate cancer. [12] Lycopene is one of several carotenoids (compounds that the body can turn into vitamin A) found in brightly colored fruits and vegetables, and research suggests that foods containing carotenoids may protect against lung, mouth, and throat cancer. [12] But more research is needed to understand the exact relationship between fruits and vegetables, carotenoids, and cancer.

Some research looks specifically at whether individual fruits are associated with risk of type 2 diabetes. While there isn’t an abundance of research into this area yet, preliminary results are compelling.

  • A study of over 66,000 women in the Nurses’ Health Study, 85,104 women from the Nurses’ Health Study II, and 36,173 men from the Health Professionals Follow-up Study—who were free of major chronic diseases—found that greater consumption of whole fruits—especially blueberries, grapes, and apples—was associated with a lower risk of type 2 diabetes. Another important finding was that greater consumption of fruit juice was associated with a higher risk of type 2 diabetes. [15]
  • Additionally a study of over 70,000 female nurses aged 38-63 years, who were free of cardiovascular disease, cancer, and diabetes, showed that consumption of green leafy vegetables and fruit was associated with a lower risk of diabetes. While not conclusive, research also indicated that consumption of fruit juices may be associated with an increased risk among women. (16)
  • A study of over 2,300 Finnish men showed that vegetables and fruits, especially berries, may reduce the risk of type 2 diabetes. [17]

Data from the Nurses’ Health Studies and the Health Professional’s Follow-up Study show that women and men who increased their intakes of fruits and vegetables over a 24-year period were more likely to have lost weight than those who ate the same amount or those who decreased their intake. Berries, apples, pears, soy, and cauliflower were associated with weight loss while starchier vegetables like potatoes, corn, and peas were linked with weight gain. [1] However, keep in mind that adding more produce into the diet won’t necessarily help with weight loss unless it replaces another food, such as refined carbohydrates of white bread and crackers.

Gastrointestinal health

Fruits and vegetables contain indigestible fiber, which absorbs water and expands as it passes through the digestive system. This can calm symptoms of an irritable bowel and, by triggering regular bowel movements, can relieve or prevent constipation. [18] The bulking and softening action of insoluble fiber also decreases pressure inside the intestinal tract and may help prevent diverticulosis. [19]

Eating fruits and vegetables can also keep your eyes healthy, and may help prevent two common aging-related eye diseases—cataracts and macular degeneration—which afflict millions of Americans over age 65. [20-23] Lutein and zeaxanthin, in particular, seem to reduce risk of cataracts. [24]

  • Bertoia ML, Mukamal KJ, Cahill LE, Hou T, Ludwig DS, Mozaffarian D, Willett WC, Hu FB, Rimm EB. Changes in intake of fruits and vegetables and weight change in United States men and women followed for up to 24 years: analysis from three prospective cohort studies. PLoS medicine . 2015 Sep 22;12(9):e1001878.
  • Wang X, Ouyang Y, Liu J, Zhu M, Zhao G, Bao W, Hu FB. Fruit and vegetable consumption and mortality from all causes, cardiovascular disease, and cancer: systematic review and dose-response meta-analysis of prospective cohort studies. BMJ . 2014 Jul 29;349:g4490.
  • Hung HC, Joshipura KJ, Jiang R, Hu FB, Hunter D, Smith-Warner SA, Colditz GA, Rosner B, Spiegelman D, Willett WC. Fruit and vegetable intake and risk of major chronic disease. Journal of the National Cancer Institute . 2004 Nov 3;96(21):1577-84.
  • He FJ, Nowson CA, Lucas M, MacGregor GA. Increased consumption of fruit and vegetables is related to a reduced risk of coronary heart disease: meta-analysis of cohort studies. Journal of human hypertension . 2007 Sep;21(9):717.
  • He FJ, Nowson CA, MacGregor GA. Fruit and vegetable consumption and stroke: meta-analysis of cohort studies. The Lancet . 2006 Jan 28;367(9507):320-6.
  • Appel LJ, Moore TJ, Obarzanek E, Vollmer WM, Svetkey LP, Sacks FM, Bray GA, Vogt TM, Cutler JA, Windhauser MM, Lin PH. A clinical trial of the effects of dietary patterns on blood pressure. New England Journal of Medicine . 1997 Apr 17;336(16):1117-24.
  • Appel LJ, Sacks FM, Carey VJ, Obarzanek E, Swain JF, Miller ER, Conlin PR, Erlinger TP, Rosner BA, Laranjo NM, Charleston J. Effects of protein, monounsaturated fat, and carbohydrate intake on blood pressure and serum lipids: results of the OmniHeart randomized trial. JAMA . 2005 Nov 16;294(19):2455-64.
  • Yokoyama Y, Nishimura K, Barnard ND, Takegami M, Watanabe M, Sekikawa A, Okamura T, Miyamoto Y. Vegetarian diets and blood pressure: a meta-analysis. JAMA internal medicine. 2014 Apr 1;174(4):577-87.
  • Farvid MS, Chen WY, Michels KB, Cho E, Willett WC, Eliassen AH. Fruit and vegetable consumption in adolescence and early adulthood and risk of breast cancer: population based cohort study. BMJ . 2016 May 11;353:i2343.
  • Farvid MS, Eliassen AH, Cho E, Liao X, Chen WY, Willett WC. Dietary fiber intake in young adults and breast cancer risk. Pediatrics . 2016 Mar 1;137(3):e20151226.
  • Farvid MS, Chen WY, Rosner BA, Tamimi RM, Willett WC, Eliassen AH. Fruit and vegetable consumption and breast cancer incidence: Repeated measures over 30 years of follow‐up. International journal of cancer . 2018 Jul 6.
  • Wiseman M. The Second World Cancer Research Fund/American Institute for Cancer Research Expert Report. Food, Nutrition, Physical Activity, and the Prevention of Cancer: A Global Perspective: Nutrition Society and BAPEN Medical Symposium on ‘Nutrition support in cancer therapy’. Proceedings of the Nutrition Society . 2008 Aug;67(3):253-6.
  • Giovannucci E, Liu Y, Platz EA, Stampfer MJ, Willett WC. Risk factors for prostate cancer incidence and progression in the health professionals follow‐up study. International journal of cancer . 2007 Oct 1;121(7):1571-8.
  • Kavanaugh CJ, Trumbo PR, Ellwood KC. The US Food and Drug Administration’s evidence-based review for qualified health claims: tomatoes, lycopene, and cancer. Journal of the National Cancer Institute . 2007 Jul 18;99(14):1074-85.
  • Muraki I, Imamura F, Manson JE, Hu FB, Willett WC, van Dam RM, Sun Q. Fruit consumption and risk of type 2 diabetes: results from three prospective longitudinal cohort studies. BMJ . 2013 Aug 29;347:f5001.
  • Bazzano LA, Li TY, Joshipura KJ, Hu FB. Intake of fruit, vegetables, and fruit juices and risk of diabetes in women. Diabetes Care . 2008 Apr 3.
  • Mursu J, Virtanen JK, Tuomainen TP, Nurmi T, Voutilainen S. Intake of fruit, berries, and vegetables and risk of type 2 diabetes in Finnish men: the Kuopio Ischaemic Heart Disease Risk Factor Study–. The American journal of clinical nutrition . 2013 Nov 20;99(2):328-33.
  • Lembo A, Camilleri M. Chronic constipation. New England Journal of Medicine . 2003 Oct 2;349(14):1360-8.
  • Aldoori WH, Giovannucci EL, Rockett HR, Sampson L, Rimm EB, Willett AW. A prospective study of dietary fiber types and symptomatic diverticular disease in men. The Journal of nutrition . 1998 Oct 1;128(4):714-9.
  • Brown L, Rimm EB, Seddon JM, Giovannucci EL, Chasan-Taber L, Spiegelman D, Willett WC, Hankinson SE. A prospective study of carotenoid intake and risk of cataract extraction in US men–. The American journal of clinical nutrition . 1999 Oct 1;70(4):517-24.
  • Christen WG, Liu S, Schaumberg DA, Buring JE. Fruit and vegetable intake and the risk of cataract in women–. The American journal of clinical nutrition . 2005 Jun 1;81(6):1417-22.
  • Moeller SM, Taylor A, Tucker KL, McCullough ML, Chylack Jr LT, Hankinson SE, Willett WC, Jacques PF. Overall adherence to the dietary guidelines for Americans is associated with reduced prevalence of early age-related nuclear lens opacities in women. The Journal of nutrition . 2004 Jul 1;134(7):1812-9.
  • Cho E, Seddon JM, Rosner B, Willett WC, Hankinson SE. Prospective study of intake of fruits, vegetables, vitamins, and carotenoidsand risk of age-related maculopathy. Archives of Ophthalmology . 2004 Jun 1;122(6):883-92.
  • Christen WG, Liu S, Glynn RJ, Gaziano JM, Buring JE. Dietary carotenoids, vitamins C and E, and risk of cataract in women: a prospective study. Archives of Ophthalmology . 2008 Jan 1;126(1):102-9.

Terms of Use

The contents of this website are for educational purposes and are not intended to offer personal medical advice. You should seek the advice of your physician or other qualified health provider with any questions you may have regarding a medical condition. Never disregard professional medical advice or delay in seeking it because of something you have read on this website. The Nutrition Source does not recommend or endorse any products.

COMMENTS

  1. 10 Research Question Examples to Guide your Research Project

    The first question asks for a ready-made solution, and is not focused or researchable. The second question is a clearer comparative question, but note that it may not be practically feasible. For a smaller research project or thesis, it could be narrowed down further to focus on the effectiveness of drunk driving laws in just one or two countries.

  2. The Research Problem/Question

    A research problem is a definite or clear expression [statement] about an area of concern, a condition to be improved upon, a difficulty to be eliminated, or a troubling question that exists in scholarly literature, in theory, or within existing practice that points to a need for meaningful understanding and deliberate investigation.

  3. What is a Research Problem? Characteristics, Types, and Examples

    A research problem is at the heart of scientific inquiry. It guides the trajectory of an investigation, helping to define the research scope and identify the key questions that need to be answered. Read this detailed article to know more about what is a research problem, types, key characteristics, and how to define a research problem, with examples

  4. The Research Problem & Problem Statement

    A research problem can be theoretical in nature, focusing on an area of academic research that is lacking in some way. Alternatively, a research problem can be more applied in nature, focused on finding a practical solution to an established problem within an industry or an organisation. In other words, theoretical research problems are motivated by the desire to grow the overall body of ...

  5. Research Problem

    The purpose of research problems is to identify an area of study that requires further investigation and to formulate a clear, concise and specific research question. A research problem defines the specific issue or problem that needs to be addressed and serves as the foundation for the research project.

  6. 1. Choosing a Research Problem

    The research problem describes something that can be empirically verified and measured; it is often followed by a set of questions that underpin how you plan to approach investigating that problem. In short, the thesis statement states your opinion or argument about the research problem and summarizes how you plan to address it.

  7. Research Questions, Objectives & Aims (+ Examples)

    Research questions identify the problem, while hypotheses provide a focus for testing in the study. Reply. Saen Fanai on April 6, 2023 at 11:03 am Exactly what I need in this research journey, I look forward to more of your coaching videos. Reply. Abubakar Rofiat Opeyemi on April 30, 2023 at 11:05 am

  8. Formulation of Research Question

    A good research question (RQ) forms backbone of a good research, which in turn is vital in unraveling mysteries of nature and giving insight into a problem.[1,2,3,4] RQ identifies the problem to be studied and guides to the methodology. It leads to building up of an appropriate hypothesis (Hs).

  9. PDF Identifying a Research Problem and Question, and Searching Relevant

    A research question is a way of expressing your interest in a problem or phenom-enon. Research questions are not necessarily an attempt to answer the many philo-sophical questions that often arise in schools, and they are certainly not intended to be an avenue for grinding personal axes regarding classroom or school issues. You may have more ...

  10. A Practical Guide to Writing Quantitative and Qualitative Research

    To construct effective research questions and hypotheses, it is very important to 1) clarify the background and 2) identify the research problem at the outset of the research, within a specific timeframe.9 Then, 3) review or conduct preliminary research to collect all available knowledge about the possible research questions by studying ...

  11. Organizing Your Social Sciences Research Paper

    A good way to begin is to look for parallels and opportunities for broader associations that apply to the initial research problem. A strategy for doing this is to ask yourself the basic six questions of who, what, where, when, how, and why. Here is an example of how to apply the six questions strategy to broadening your topic.

  12. 45 Research Problem Examples & Inspiration (2024)

    45 Research Problem Examples & Inspiration. By Chris Drew (PhD) / November 30, 2023. A research problem is an issue of concern that is the catalyst for your research. It demonstrates why the research problem needs to take place in the first place. Generally, you will write your research problem as a clear, concise, and focused statement that ...

  13. Research Problems: How to Identify & Resolve

    2. Review the key factors involved. As a marketing researcher, you must work closely with your team of researchers to define and test the influencing factors and the wider context involved in your study. These might include demographic and economic trends or the business environment affecting the question at hand.

  14. How to write the research problem, research question, and ...

    Provide a background of the problem you wish to study. Explain why you have undertaken the study. Describes your research problem. Summarizes the existing knowledge related to your topic. Highlights the contribution that your research will make to your field. States your research question clearly. You can look up these resources to have a clear ...

  15. Research Problem and Questions

    The research problem is the questions or challenges that the proposed research is posed to answer or solve to fill the knowledge gap in existing studies or contribute to the existing knowledge body in the study area. Generally, a research problem can be referred to as a specific issue, difficulty, or challenge that a researcher or a team of researchers experiences and wants to solve in the ...

  16. Formulating a researchable question: A critical step for facilitating

    INTRODUCTION. A researchable question is an uncertainty about a problem that can be challenged, examined, and analyzed to provide useful information.[] A successful research project depends upon how well an investigator formulates the research question based on the problems faced in day-to-day research activities and clinical practice.

  17. The Research Problem/Question

    A research problem is a statement about an area of concern, a condition to be improved, a difficulty to be eliminated, or a troubling question that exists in scholarly literature, in theory, or in practice that points to the need for meaningful understanding and deliberate investigation. In some social science disciplines the research problem is typically posed in the form of a question.

  18. PDF Research Problem and Questions

    2.2 Research Problems. The research problem is the questions or challenges that the proposed research is posed to answer or solve to fill the knowledge gap in existing studies or contribute to the existing knowledge body in the study area. Generally, a research problem can be referred to as a specific issue, difficulty, or challenge that a ...

  19. (PDF) Identifying and Formulating the Research Problem

    identify and determine the problem to study. Identifying a research problem is important. because, as the issue or concern in a particular setting that motivates and guides the need. Parlindungan ...

  20. Research Problems and Hypotheses in Empirical Research

    Research problems and hypotheses are important means for attaining valuable knowledge. They are pointers or guides to such knowledge, or as formulated by Kerlinger ( 1986, p. 19): " … they direct investigation.". There are many kinds of problems and hypotheses, and they may play various roles in knowledge construction.

  21. Research Problem vs. Research Question

    It sets the overall direction and purpose of the study, while a research question focuses on a specific aspect or inquiry within the research problem. A research problem provides a broader context for the study, while a research question narrows down the focus and guides the investigation.

  22. How do I choose research problems to work on?

    I often get this question, as I'm sure many other researchers do: how do you choose which research problems you want to work on? Bassam Bamieh gave a nice answer to this question on the latest episode of the inControl podcast (which I highly recommend, by the way). He said that there are two common approaches to this: one is to be driven by a specific important problem (often one arising in ...

  23. AI-assisted writing is quietly booming in academic journals. Here's why

    The second problem is that banning generative AI outright prevents us from realising these technologies' benefits. Used well, generative AI can by streamlining the writing process. In this way ...

  24. Research questions, hypotheses and objectives

    Research question. Interest in a particular topic usually begins the research process, but it is the familiarity with the subject that helps define an appropriate research question for a study. 1 Questions then arise out of a perceived knowledge deficit within a subject area or field of study. 2 Indeed, Haynes suggests that it is important to know "where the boundary between current ...

  25. UNIVERSITY Assessment 02

    Answer & Explanation. For the health care problem of palliative and end-of-life care, some best practices and relevant information are as follows: 1. Pain and Symptom Management: - Comprehensive assessment and management of physical symptoms like pain, nausea, fatigue, and shortness of breath using pharmacological and non-pharmacological ...

  26. Fish oil supplements may cause harm, study finds. 'Is it time to dump

    For people without heart issues, regular use of fish oil supplements was associated with a 13% higher risk of developing atrial fibrillation and a 5% heightened risk of having a stroke, according ...

  27. How are asthma and heart health linked?

    Research suggests asthma is a risk factor for cardiovascular disease. However, questions remain about the link between the chronic lung disorder and heart health. ... "That's the million-dollar question," Jarjour said. "The problem is that you cannot ethically conduct studies where patients have persistent asthma and who are not being treated ...

  28. Vegetables and Fruits

    Eat plenty every day. A diet rich in vegetables and fruits can lower blood pressure, reduce the risk of heart disease and stroke, prevent some types of cancer, lower risk of eye and digestive problems, and have a positive effect upon blood sugar, which can help keep appetite in check. Eating non-starchy vegetables and fruits like apples, pears ...