Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • How to Write a Literature Review | Guide, Examples, & Templates

How to Write a Literature Review | Guide, Examples, & Templates

Published on January 2, 2023 by Shona McCombes . Revised on September 11, 2023.

What is a literature review? A literature review is a survey of scholarly sources on a specific topic. It provides an overview of current knowledge, allowing you to identify relevant theories, methods, and gaps in the existing research that you can later apply to your paper, thesis, or dissertation topic .

There are five key steps to writing a literature review:

  • Search for relevant literature
  • Evaluate sources
  • Identify themes, debates, and gaps
  • Outline the structure
  • Write your literature review

A good literature review doesn’t just summarize sources—it analyzes, synthesizes , and critically evaluates to give a clear picture of the state of knowledge on the subject.

Instantly correct all language mistakes in your text

Upload your document to correct all your mistakes in minutes

upload-your-document-ai-proofreader

Table of contents

What is the purpose of a literature review, examples of literature reviews, step 1 – search for relevant literature, step 2 – evaluate and select sources, step 3 – identify themes, debates, and gaps, step 4 – outline your literature review’s structure, step 5 – write your literature review, free lecture slides, other interesting articles, frequently asked questions, introduction.

  • Quick Run-through
  • Step 1 & 2

When you write a thesis , dissertation , or research paper , you will likely have to conduct a literature review to situate your research within existing knowledge. The literature review gives you a chance to:

  • Demonstrate your familiarity with the topic and its scholarly context
  • Develop a theoretical framework and methodology for your research
  • Position your work in relation to other researchers and theorists
  • Show how your research addresses a gap or contributes to a debate
  • Evaluate the current state of research and demonstrate your knowledge of the scholarly debates around your topic.

Writing literature reviews is a particularly important skill if you want to apply for graduate school or pursue a career in research. We’ve written a step-by-step guide that you can follow below.

Literature review guide

Don't submit your assignments before you do this

The academic proofreading tool has been trained on 1000s of academic texts. Making it the most accurate and reliable proofreading tool for students. Free citation check included.

of scientific literature review

Try for free

Writing literature reviews can be quite challenging! A good starting point could be to look at some examples, depending on what kind of literature review you’d like to write.

  • Example literature review #1: “Why Do People Migrate? A Review of the Theoretical Literature” ( Theoretical literature review about the development of economic migration theory from the 1950s to today.)
  • Example literature review #2: “Literature review as a research methodology: An overview and guidelines” ( Methodological literature review about interdisciplinary knowledge acquisition and production.)
  • Example literature review #3: “The Use of Technology in English Language Learning: A Literature Review” ( Thematic literature review about the effects of technology on language acquisition.)
  • Example literature review #4: “Learners’ Listening Comprehension Difficulties in English Language Learning: A Literature Review” ( Chronological literature review about how the concept of listening skills has changed over time.)

You can also check out our templates with literature review examples and sample outlines at the links below.

Download Word doc Download Google doc

Before you begin searching for literature, you need a clearly defined topic .

If you are writing the literature review section of a dissertation or research paper, you will search for literature related to your research problem and questions .

Make a list of keywords

Start by creating a list of keywords related to your research question. Include each of the key concepts or variables you’re interested in, and list any synonyms and related terms. You can add to this list as you discover new keywords in the process of your literature search.

  • Social media, Facebook, Instagram, Twitter, Snapchat, TikTok
  • Body image, self-perception, self-esteem, mental health
  • Generation Z, teenagers, adolescents, youth

Search for relevant sources

Use your keywords to begin searching for sources. Some useful databases to search for journals and articles include:

  • Your university’s library catalogue
  • Google Scholar
  • Project Muse (humanities and social sciences)
  • Medline (life sciences and biomedicine)
  • EconLit (economics)
  • Inspec (physics, engineering and computer science)

You can also use boolean operators to help narrow down your search.

Make sure to read the abstract to find out whether an article is relevant to your question. When you find a useful book or article, you can check the bibliography to find other relevant sources.

You likely won’t be able to read absolutely everything that has been written on your topic, so it will be necessary to evaluate which sources are most relevant to your research question.

For each publication, ask yourself:

  • What question or problem is the author addressing?
  • What are the key concepts and how are they defined?
  • What are the key theories, models, and methods?
  • Does the research use established frameworks or take an innovative approach?
  • What are the results and conclusions of the study?
  • How does the publication relate to other literature in the field? Does it confirm, add to, or challenge established knowledge?
  • What are the strengths and weaknesses of the research?

Make sure the sources you use are credible , and make sure you read any landmark studies and major theories in your field of research.

You can use our template to summarize and evaluate sources you’re thinking about using. Click on either button below to download.

Take notes and cite your sources

As you read, you should also begin the writing process. Take notes that you can later incorporate into the text of your literature review.

It is important to keep track of your sources with citations to avoid plagiarism . It can be helpful to make an annotated bibliography , where you compile full citation information and write a paragraph of summary and analysis for each source. This helps you remember what you read and saves time later in the process.

To begin organizing your literature review’s argument and structure, be sure you understand the connections and relationships between the sources you’ve read. Based on your reading and notes, you can look for:

  • Trends and patterns (in theory, method or results): do certain approaches become more or less popular over time?
  • Themes: what questions or concepts recur across the literature?
  • Debates, conflicts and contradictions: where do sources disagree?
  • Pivotal publications: are there any influential theories or studies that changed the direction of the field?
  • Gaps: what is missing from the literature? Are there weaknesses that need to be addressed?

This step will help you work out the structure of your literature review and (if applicable) show how your own research will contribute to existing knowledge.

  • Most research has focused on young women.
  • There is an increasing interest in the visual aspects of social media.
  • But there is still a lack of robust research on highly visual platforms like Instagram and Snapchat—this is a gap that you could address in your own research.

There are various approaches to organizing the body of a literature review. Depending on the length of your literature review, you can combine several of these strategies (for example, your overall structure might be thematic, but each theme is discussed chronologically).

Chronological

The simplest approach is to trace the development of the topic over time. However, if you choose this strategy, be careful to avoid simply listing and summarizing sources in order.

Try to analyze patterns, turning points and key debates that have shaped the direction of the field. Give your interpretation of how and why certain developments occurred.

If you have found some recurring central themes, you can organize your literature review into subsections that address different aspects of the topic.

For example, if you are reviewing literature about inequalities in migrant health outcomes, key themes might include healthcare policy, language barriers, cultural attitudes, legal status, and economic access.

Methodological

If you draw your sources from different disciplines or fields that use a variety of research methods , you might want to compare the results and conclusions that emerge from different approaches. For example:

  • Look at what results have emerged in qualitative versus quantitative research
  • Discuss how the topic has been approached by empirical versus theoretical scholarship
  • Divide the literature into sociological, historical, and cultural sources

Theoretical

A literature review is often the foundation for a theoretical framework . You can use it to discuss various theories, models, and definitions of key concepts.

You might argue for the relevance of a specific theoretical approach, or combine various theoretical concepts to create a framework for your research.

Like any other academic text , your literature review should have an introduction , a main body, and a conclusion . What you include in each depends on the objective of your literature review.

The introduction should clearly establish the focus and purpose of the literature review.

Depending on the length of your literature review, you might want to divide the body into subsections. You can use a subheading for each theme, time period, or methodological approach.

As you write, you can follow these tips:

  • Summarize and synthesize: give an overview of the main points of each source and combine them into a coherent whole
  • Analyze and interpret: don’t just paraphrase other researchers — add your own interpretations where possible, discussing the significance of findings in relation to the literature as a whole
  • Critically evaluate: mention the strengths and weaknesses of your sources
  • Write in well-structured paragraphs: use transition words and topic sentences to draw connections, comparisons and contrasts

In the conclusion, you should summarize the key findings you have taken from the literature and emphasize their significance.

When you’ve finished writing and revising your literature review, don’t forget to proofread thoroughly before submitting. Not a language expert? Check out Scribbr’s professional proofreading services !

This article has been adapted into lecture slides that you can use to teach your students about writing a literature review.

Scribbr slides are free to use, customize, and distribute for educational purposes.

Open Google Slides Download PowerPoint

If you want to know more about the research process , methodology , research bias , or statistics , make sure to check out some of our other articles with explanations and examples.

  • Sampling methods
  • Simple random sampling
  • Stratified sampling
  • Cluster sampling
  • Likert scales
  • Reproducibility

 Statistics

  • Null hypothesis
  • Statistical power
  • Probability distribution
  • Effect size
  • Poisson distribution

Research bias

  • Optimism bias
  • Cognitive bias
  • Implicit bias
  • Hawthorne effect
  • Anchoring bias
  • Explicit bias

A literature review is a survey of scholarly sources (such as books, journal articles, and theses) related to a specific topic or research question .

It is often written as part of a thesis, dissertation , or research paper , in order to situate your work in relation to existing knowledge.

There are several reasons to conduct a literature review at the beginning of a research project:

  • To familiarize yourself with the current state of knowledge on your topic
  • To ensure that you’re not just repeating what others have already done
  • To identify gaps in knowledge and unresolved problems that your research can address
  • To develop your theoretical framework and methodology
  • To provide an overview of the key findings and debates on the topic

Writing the literature review shows your reader how your work relates to existing research and what new insights it will contribute.

The literature review usually comes near the beginning of your thesis or dissertation . After the introduction , it grounds your research in a scholarly field and leads directly to your theoretical framework or methodology .

A literature review is a survey of credible sources on a topic, often used in dissertations , theses, and research papers . Literature reviews give an overview of knowledge on a subject, helping you identify relevant theories and methods, as well as gaps in existing research. Literature reviews are set up similarly to other  academic texts , with an introduction , a main body, and a conclusion .

An  annotated bibliography is a list of  source references that has a short description (called an annotation ) for each of the sources. It is often assigned as part of the research process for a  paper .  

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

McCombes, S. (2023, September 11). How to Write a Literature Review | Guide, Examples, & Templates. Scribbr. Retrieved August 21, 2024, from https://www.scribbr.com/dissertation/literature-review/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, what is a theoretical framework | guide to organizing, what is a research methodology | steps & tips, how to write a research proposal | examples & templates, get unlimited documents corrected.

✔ Free APA citation check included ✔ Unlimited document corrections ✔ Specialized in correcting academic texts

Literature Review in Scientific Research: An Overview

  • East African Journal of Education Studies 7(2):179-186
  • 7(2):179-186

EBIDOR UFOUMANEFE LAWANI at Niger Delta University

  • Niger Delta University

Ikhide Ilegbedion at Niger Delta University

Discover the world's research

  • 25+ million members
  • 160+ million publication pages
  • 2.3+ billion citations

Dwi Mariyono

  • Akmal Nur Alif Hidayatullah

Rachid Ejjami

  • Linda Corrin

Kate Thompson

  • Gwo-Jen Hwang

Jason M Lodge

  • PSYCHOL MARKET

Justin Paul

  • Caroline Gatrell

John E Prescott

  • Sally Thorne

Adrian V Hernandez

  • Katherine M. Marti
  • Yuani M. Roman
  • INT BUS REV

Alex Rialp Criado

  • Nazanin Firoozeh
  • Adeline Nazarenko
  • Fabrice Alizon

Béatrice Daille

  • Recruit researchers
  • Join for free
  • Login Email Tip: Most researchers use their institutional email address as their ResearchGate login Password Forgot password? Keep me logged in Log in or Continue with Google Welcome back! Please log in. Email · Hint Tip: Most researchers use their institutional email address as their ResearchGate login Password Forgot password? Keep me logged in Log in or Continue with Google No account? Sign up

of scientific literature review

What is a Literature Review? How to Write It (with Examples)

literature review

A literature review is a critical analysis and synthesis of existing research on a particular topic. It provides an overview of the current state of knowledge, identifies gaps, and highlights key findings in the literature. 1 The purpose of a literature review is to situate your own research within the context of existing scholarship, demonstrating your understanding of the topic and showing how your work contributes to the ongoing conversation in the field. Learning how to write a literature review is a critical tool for successful research. Your ability to summarize and synthesize prior research pertaining to a certain topic demonstrates your grasp on the topic of study, and assists in the learning process. 

Table of Contents

  • What is the purpose of literature review? 
  • a. Habitat Loss and Species Extinction: 
  • b. Range Shifts and Phenological Changes: 
  • c. Ocean Acidification and Coral Reefs: 
  • d. Adaptive Strategies and Conservation Efforts: 

How to write a good literature review 

  • Choose a Topic and Define the Research Question: 
  • Decide on the Scope of Your Review: 
  • Select Databases for Searches: 
  • Conduct Searches and Keep Track: 
  • Review the Literature: 
  • Organize and Write Your Literature Review: 
  • How to write a literature review faster with Paperpal? 
  • Frequently asked questions 

What is a literature review?

A well-conducted literature review demonstrates the researcher’s familiarity with the existing literature, establishes the context for their own research, and contributes to scholarly conversations on the topic. One of the purposes of a literature review is also to help researchers avoid duplicating previous work and ensure that their research is informed by and builds upon the existing body of knowledge.

of scientific literature review

What is the purpose of literature review?

A literature review serves several important purposes within academic and research contexts. Here are some key objectives and functions of a literature review: 2  

1. Contextualizing the Research Problem: The literature review provides a background and context for the research problem under investigation. It helps to situate the study within the existing body of knowledge. 

2. Identifying Gaps in Knowledge: By identifying gaps, contradictions, or areas requiring further research, the researcher can shape the research question and justify the significance of the study. This is crucial for ensuring that the new research contributes something novel to the field. 

Find academic papers related to your research topic faster. Try Research on Paperpal  

3. Understanding Theoretical and Conceptual Frameworks: Literature reviews help researchers gain an understanding of the theoretical and conceptual frameworks used in previous studies. This aids in the development of a theoretical framework for the current research. 

4. Providing Methodological Insights: Another purpose of literature reviews is that it allows researchers to learn about the methodologies employed in previous studies. This can help in choosing appropriate research methods for the current study and avoiding pitfalls that others may have encountered. 

5. Establishing Credibility: A well-conducted literature review demonstrates the researcher’s familiarity with existing scholarship, establishing their credibility and expertise in the field. It also helps in building a solid foundation for the new research. 

6. Informing Hypotheses or Research Questions: The literature review guides the formulation of hypotheses or research questions by highlighting relevant findings and areas of uncertainty in existing literature. 

Literature review example

Let’s delve deeper with a literature review example: Let’s say your literature review is about the impact of climate change on biodiversity. You might format your literature review into sections such as the effects of climate change on habitat loss and species extinction, phenological changes, and marine biodiversity. Each section would then summarize and analyze relevant studies in those areas, highlighting key findings and identifying gaps in the research. The review would conclude by emphasizing the need for further research on specific aspects of the relationship between climate change and biodiversity. The following literature review template provides a glimpse into the recommended literature review structure and content, demonstrating how research findings are organized around specific themes within a broader topic. 

Literature Review on Climate Change Impacts on Biodiversity:

Climate change is a global phenomenon with far-reaching consequences, including significant impacts on biodiversity. This literature review synthesizes key findings from various studies: 

a. Habitat Loss and Species Extinction:

Climate change-induced alterations in temperature and precipitation patterns contribute to habitat loss, affecting numerous species (Thomas et al., 2004). The review discusses how these changes increase the risk of extinction, particularly for species with specific habitat requirements. 

b. Range Shifts and Phenological Changes:

Observations of range shifts and changes in the timing of biological events (phenology) are documented in response to changing climatic conditions (Parmesan & Yohe, 2003). These shifts affect ecosystems and may lead to mismatches between species and their resources. 

c. Ocean Acidification and Coral Reefs:

The review explores the impact of climate change on marine biodiversity, emphasizing ocean acidification’s threat to coral reefs (Hoegh-Guldberg et al., 2007). Changes in pH levels negatively affect coral calcification, disrupting the delicate balance of marine ecosystems. 

d. Adaptive Strategies and Conservation Efforts:

Recognizing the urgency of the situation, the literature review discusses various adaptive strategies adopted by species and conservation efforts aimed at mitigating the impacts of climate change on biodiversity (Hannah et al., 2007). It emphasizes the importance of interdisciplinary approaches for effective conservation planning. 

of scientific literature review

Strengthen your literature review with factual insights. Try Research on Paperpal for free!    

Writing a literature review involves summarizing and synthesizing existing research on a particular topic. A good literature review format should include the following elements. 

Introduction: The introduction sets the stage for your literature review, providing context and introducing the main focus of your review. 

  • Opening Statement: Begin with a general statement about the broader topic and its significance in the field. 
  • Scope and Purpose: Clearly define the scope of your literature review. Explain the specific research question or objective you aim to address. 
  • Organizational Framework: Briefly outline the structure of your literature review, indicating how you will categorize and discuss the existing research. 
  • Significance of the Study: Highlight why your literature review is important and how it contributes to the understanding of the chosen topic. 
  • Thesis Statement: Conclude the introduction with a concise thesis statement that outlines the main argument or perspective you will develop in the body of the literature review. 

Body: The body of the literature review is where you provide a comprehensive analysis of existing literature, grouping studies based on themes, methodologies, or other relevant criteria. 

  • Organize by Theme or Concept: Group studies that share common themes, concepts, or methodologies. Discuss each theme or concept in detail, summarizing key findings and identifying gaps or areas of disagreement. 
  • Critical Analysis: Evaluate the strengths and weaknesses of each study. Discuss the methodologies used, the quality of evidence, and the overall contribution of each work to the understanding of the topic. 
  • Synthesis of Findings: Synthesize the information from different studies to highlight trends, patterns, or areas of consensus in the literature. 
  • Identification of Gaps: Discuss any gaps or limitations in the existing research and explain how your review contributes to filling these gaps. 
  • Transition between Sections: Provide smooth transitions between different themes or concepts to maintain the flow of your literature review. 

Write and Cite as you go with Paperpal Research. Start now for free.   

Conclusion: The conclusion of your literature review should summarize the main findings, highlight the contributions of the review, and suggest avenues for future research. 

  • Summary of Key Findings: Recap the main findings from the literature and restate how they contribute to your research question or objective. 
  • Contributions to the Field: Discuss the overall contribution of your literature review to the existing knowledge in the field. 
  • Implications and Applications: Explore the practical implications of the findings and suggest how they might impact future research or practice. 
  • Recommendations for Future Research: Identify areas that require further investigation and propose potential directions for future research in the field. 
  • Final Thoughts: Conclude with a final reflection on the importance of your literature review and its relevance to the broader academic community. 

what is a literature review

Conducting a literature review

Conducting a literature review is an essential step in research that involves reviewing and analyzing existing literature on a specific topic. It’s important to know how to do a literature review effectively, so here are the steps to follow: 1  

Choose a Topic and Define the Research Question:

  • Select a topic that is relevant to your field of study. 
  • Clearly define your research question or objective. Determine what specific aspect of the topic do you want to explore? 

Decide on the Scope of Your Review:

  • Determine the timeframe for your literature review. Are you focusing on recent developments, or do you want a historical overview? 
  • Consider the geographical scope. Is your review global, or are you focusing on a specific region? 
  • Define the inclusion and exclusion criteria. What types of sources will you include? Are there specific types of studies or publications you will exclude? 

Select Databases for Searches:

  • Identify relevant databases for your field. Examples include PubMed, IEEE Xplore, Scopus, Web of Science, and Google Scholar. 
  • Consider searching in library catalogs, institutional repositories, and specialized databases related to your topic. 

Conduct Searches and Keep Track:

  • Develop a systematic search strategy using keywords, Boolean operators (AND, OR, NOT), and other search techniques. 
  • Record and document your search strategy for transparency and replicability. 
  • Keep track of the articles, including publication details, abstracts, and links. Use citation management tools like EndNote, Zotero, or Mendeley to organize your references. 

Review the Literature:

  • Evaluate the relevance and quality of each source. Consider the methodology, sample size, and results of studies. 
  • Organize the literature by themes or key concepts. Identify patterns, trends, and gaps in the existing research. 
  • Summarize key findings and arguments from each source. Compare and contrast different perspectives. 
  • Identify areas where there is a consensus in the literature and where there are conflicting opinions. 
  • Provide critical analysis and synthesis of the literature. What are the strengths and weaknesses of existing research? 

Organize and Write Your Literature Review:

  • Literature review outline should be based on themes, chronological order, or methodological approaches. 
  • Write a clear and coherent narrative that synthesizes the information gathered. 
  • Use proper citations for each source and ensure consistency in your citation style (APA, MLA, Chicago, etc.). 
  • Conclude your literature review by summarizing key findings, identifying gaps, and suggesting areas for future research. 

Whether you’re exploring a new research field or finding new angles to develop an existing topic, sifting through hundreds of papers can take more time than you have to spare. But what if you could find science-backed insights with verified citations in seconds? That’s the power of Paperpal’s new Research feature!  

How to write a literature review faster with Paperpal?

Paperpal, an AI writing assistant, integrates powerful academic search capabilities within its writing platform. With the Research feature, you get 100% factual insights, with citations backed by 250M+ verified research articles, directly within your writing interface with the option to save relevant references in your Citation Library. By eliminating the need to switch tabs to find answers to all your research questions, Paperpal saves time and helps you stay focused on your writing.   

Here’s how to use the Research feature:  

  • Ask a question: Get started with a new document on paperpal.com. Click on the “Research” feature and type your question in plain English. Paperpal will scour over 250 million research articles, including conference papers and preprints, to provide you with accurate insights and citations. 
  • Review and Save: Paperpal summarizes the information, while citing sources and listing relevant reads. You can quickly scan the results to identify relevant references and save these directly to your built-in citations library for later access. 
  • Cite with Confidence: Paperpal makes it easy to incorporate relevant citations and references into your writing, ensuring your arguments are well-supported by credible sources. This translates to a polished, well-researched literature review. 

The literature review sample and detailed advice on writing and conducting a review will help you produce a well-structured report. But remember that a good literature review is an ongoing process, and it may be necessary to revisit and update it as your research progresses. By combining effortless research with an easy citation process, Paperpal Research streamlines the literature review process and empowers you to write faster and with more confidence. Try Paperpal Research now and see for yourself.  

Frequently asked questions

A literature review is a critical and comprehensive analysis of existing literature (published and unpublished works) on a specific topic or research question and provides a synthesis of the current state of knowledge in a particular field. A well-conducted literature review is crucial for researchers to build upon existing knowledge, avoid duplication of efforts, and contribute to the advancement of their field. It also helps researchers situate their work within a broader context and facilitates the development of a sound theoretical and conceptual framework for their studies.

Literature review is a crucial component of research writing, providing a solid background for a research paper’s investigation. The aim is to keep professionals up to date by providing an understanding of ongoing developments within a specific field, including research methods, and experimental techniques used in that field, and present that knowledge in the form of a written report. Also, the depth and breadth of the literature review emphasizes the credibility of the scholar in his or her field.  

Before writing a literature review, it’s essential to undertake several preparatory steps to ensure that your review is well-researched, organized, and focused. This includes choosing a topic of general interest to you and doing exploratory research on that topic, writing an annotated bibliography, and noting major points, especially those that relate to the position you have taken on the topic. 

Literature reviews and academic research papers are essential components of scholarly work but serve different purposes within the academic realm. 3 A literature review aims to provide a foundation for understanding the current state of research on a particular topic, identify gaps or controversies, and lay the groundwork for future research. Therefore, it draws heavily from existing academic sources, including books, journal articles, and other scholarly publications. In contrast, an academic research paper aims to present new knowledge, contribute to the academic discourse, and advance the understanding of a specific research question. Therefore, it involves a mix of existing literature (in the introduction and literature review sections) and original data or findings obtained through research methods. 

Literature reviews are essential components of academic and research papers, and various strategies can be employed to conduct them effectively. If you want to know how to write a literature review for a research paper, here are four common approaches that are often used by researchers.  Chronological Review: This strategy involves organizing the literature based on the chronological order of publication. It helps to trace the development of a topic over time, showing how ideas, theories, and research have evolved.  Thematic Review: Thematic reviews focus on identifying and analyzing themes or topics that cut across different studies. Instead of organizing the literature chronologically, it is grouped by key themes or concepts, allowing for a comprehensive exploration of various aspects of the topic.  Methodological Review: This strategy involves organizing the literature based on the research methods employed in different studies. It helps to highlight the strengths and weaknesses of various methodologies and allows the reader to evaluate the reliability and validity of the research findings.  Theoretical Review: A theoretical review examines the literature based on the theoretical frameworks used in different studies. This approach helps to identify the key theories that have been applied to the topic and assess their contributions to the understanding of the subject.  It’s important to note that these strategies are not mutually exclusive, and a literature review may combine elements of more than one approach. The choice of strategy depends on the research question, the nature of the literature available, and the goals of the review. Additionally, other strategies, such as integrative reviews or systematic reviews, may be employed depending on the specific requirements of the research.

The literature review format can vary depending on the specific publication guidelines. However, there are some common elements and structures that are often followed. Here is a general guideline for the format of a literature review:  Introduction:   Provide an overview of the topic.  Define the scope and purpose of the literature review.  State the research question or objective.  Body:   Organize the literature by themes, concepts, or chronology.  Critically analyze and evaluate each source.  Discuss the strengths and weaknesses of the studies.  Highlight any methodological limitations or biases.  Identify patterns, connections, or contradictions in the existing research.  Conclusion:   Summarize the key points discussed in the literature review.  Highlight the research gap.  Address the research question or objective stated in the introduction.  Highlight the contributions of the review and suggest directions for future research.

Both annotated bibliographies and literature reviews involve the examination of scholarly sources. While annotated bibliographies focus on individual sources with brief annotations, literature reviews provide a more in-depth, integrated, and comprehensive analysis of existing literature on a specific topic. The key differences are as follows: 

 Annotated Bibliography Literature Review 
Purpose List of citations of books, articles, and other sources with a brief description (annotation) of each source. Comprehensive and critical analysis of existing literature on a specific topic. 
Focus Summary and evaluation of each source, including its relevance, methodology, and key findings. Provides an overview of the current state of knowledge on a particular subject and identifies gaps, trends, and patterns in existing literature. 
Structure Each citation is followed by a concise paragraph (annotation) that describes the source’s content, methodology, and its contribution to the topic. The literature review is organized thematically or chronologically and involves a synthesis of the findings from different sources to build a narrative or argument. 
Length Typically 100-200 words Length of literature review ranges from a few pages to several chapters 
Independence Each source is treated separately, with less emphasis on synthesizing the information across sources. The writer synthesizes information from multiple sources to present a cohesive overview of the topic. 

References 

  • Denney, A. S., & Tewksbury, R. (2013). How to write a literature review.  Journal of criminal justice education ,  24 (2), 218-234. 
  • Pan, M. L. (2016).  Preparing literature reviews: Qualitative and quantitative approaches . Taylor & Francis. 
  • Cantero, C. (2019). How to write a literature review.  San José State University Writing Center . 

Paperpal is an AI writing assistant that help academics write better, faster with real-time suggestions for in-depth language and grammar correction. Trained on millions of research manuscripts enhanced by professional academic editors, Paperpal delivers human precision at machine speed.  

Try it for free or upgrade to  Paperpal Prime , which unlocks unlimited access to premium features like academic translation, paraphrasing, contextual synonyms, consistency checks and more. It’s like always having a professional academic editor by your side! Go beyond limitations and experience the future of academic writing.  Get Paperpal Prime now at just US$19 a month!

Related Reads:

  • Empirical Research: A Comprehensive Guide for Academics 
  • How to Write a Scientific Paper in 10 Steps 
  • How Long Should a Chapter Be?
  • How to Use Paperpal to Generate Emails & Cover Letters?

6 Tips for Post-Doc Researchers to Take Their Career to the Next Level

Self-plagiarism in research: what it is and how to avoid it, you may also like, academic integrity vs academic dishonesty: types & examples, dissertation printing and binding | types & comparison , what is a dissertation preface definition and examples , the ai revolution: authors’ role in upholding academic..., the future of academia: how ai tools are..., how to write a research proposal: (with examples..., how to write your research paper in apa..., how to choose a dissertation topic, how to write a phd research proposal, how to write an academic paragraph (step-by-step guide).

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • CAREER FEATURE
  • 04 December 2020
  • Correction 09 December 2020

How to write a superb literature review

Andy Tay is a freelance writer based in Singapore.

You can also search for this author in PubMed   Google Scholar

Colourful bookmarks on note pads

Credit: Getty

Literature reviews are important resources for scientists. They provide historical context for a field while offering opinions on its future trajectory. Creating them can provide inspiration for one’s own research, as well as some practice in writing. But few scientists are trained in how to write a review — or in what constitutes an excellent one. Even picking the appropriate software to use can be an involved decision (see ‘Tools and techniques’). So Nature asked editors and working scientists with well-cited reviews for their tips.

WENTING ZHAO: Be focused and avoid jargon

Assistant professor of chemical and biomedical engineering, Nanyang Technological University, Singapore.

When I was a research student, review writing improved my understanding of the history of my field. I also learnt about unmet challenges in the field that triggered ideas.

For example, while writing my first review 1 as a PhD student, I was frustrated by how poorly we understood how cells actively sense, interact with and adapt to nanoparticles used in drug delivery. This experience motivated me to study how the surface properties of nanoparticles can be modified to enhance biological sensing. When I transitioned to my postdoctoral research, this question led me to discover the role of cell-membrane curvature, which led to publications and my current research focus. I wouldn’t have started in this area without writing that review.

of scientific literature review

Collection: Careers toolkit

A common problem for students writing their first reviews is being overly ambitious. When I wrote mine, I imagined producing a comprehensive summary of every single type of nanomaterial used in biological applications. It ended up becoming a colossal piece of work, with too many papers discussed and without a clear way to categorize them. We published the work in the end, but decided to limit the discussion strictly to nanoparticles for biological sensing, rather than covering how different nanomaterials are used in biology.

My advice to students is to accept that a review is unlike a textbook: it should offer a more focused discussion, and it’s OK to skip some topics so that you do not distract your readers. Students should also consider editorial deadlines, especially for invited reviews: make sure that the review’s scope is not so extensive that it delays the writing.

A good review should also avoid jargon and explain the basic concepts for someone who is new to the field. Although I trained as an engineer, I’m interested in biology, and my research is about developing nanomaterials to manipulate proteins at the cell membrane and how this can affect ageing and cancer. As an ‘outsider’, the reviews that I find most useful for these biological topics are those that speak to me in accessible scientific language.

A man in glasses looking at the camera.

Bozhi Tian likes to get a variety of perspectives into a review. Credit: Aleksander Prominski

BOZHI TIAN: Have a process and develop your style

Associate professor of chemistry, University of Chicago, Illinois.

In my lab, we start by asking: what is the purpose of this review? My reasons for writing one can include the chance to contribute insights to the scientific community and identify opportunities for my research. I also see review writing as a way to train early-career researchers in soft skills such as project management and leadership. This is especially true for lead authors, because they will learn to work with their co-authors to integrate the various sections into a piece with smooth transitions and no overlaps.

After we have identified the need and purpose of a review article, I will form a team from the researchers in my lab. I try to include students with different areas of expertise, because it is useful to get a variety of perspectives. For example, in the review ‘An atlas of nano-enabled neural interfaces’ 2 , we had authors with backgrounds in biophysics, neuroengineering, neurobiology and materials sciences focusing on different sections of the review.

After this, I will discuss an outline with my team. We go through multiple iterations to make sure that we have scanned the literature sufficiently and do not repeat discussions that have appeared in other reviews. It is also important that the outline is not decided by me alone: students often have fresh ideas that they can bring to the table. Once this is done, we proceed with the writing.

I often remind my students to imagine themselves as ‘artists of science’ and encourage them to develop how they write and present information. Adding more words isn’t always the best way: for example, I enjoy using tables to summarize research progress and suggest future research trajectories. I’ve also considered including short videos in our review papers to highlight key aspects of the work. I think this can increase readership and accessibility because these videos can be easily shared on social-media platforms.

ANKITA ANIRBAN: Timeliness and figures make a huge difference

Editor, Nature Reviews Physics .

One of my roles as a journal editor is to evaluate proposals for reviews. The best proposals are timely and clearly explain why readers should pay attention to the proposed topic.

It is not enough for a review to be a summary of the latest growth in the literature: the most interesting reviews instead provide a discussion about disagreements in the field.

of scientific literature review

Careers Collection: Publishing

Scientists often centre the story of their primary research papers around their figures — but when it comes to reviews, figures often take a secondary role. In my opinion, review figures are more important than most people think. One of my favourite review-style articles 3 presents a plot bringing together data from multiple research papers (many of which directly contradict each other). This is then used to identify broad trends and suggest underlying mechanisms that could explain all of the different conclusions.

An important role of a review article is to introduce researchers to a field. For this, schematic figures can be useful to illustrate the science being discussed, in much the same way as the first slide of a talk should. That is why, at Nature Reviews, we have in-house illustrators to assist authors. However, simplicity is key, and even without support from professional illustrators, researchers can still make use of many free drawing tools to enhance the value of their review figures.

A woman wearing a lab coat smiles at the camera.

Yoojin Choi recommends that researchers be open to critiques when writing reviews. Credit: Yoojin Choi

YOOJIN CHOI: Stay updated and be open to suggestions

Research assistant professor, Korea Advanced Institute of Science and Technology, Daejeon.

I started writing the review ‘Biosynthesis of inorganic nanomaterials using microbial cells and bacteriophages’ 4 as a PhD student in 2018. It took me one year to write the first draft because I was working on the review alongside my PhD research and mostly on my own, with support from my adviser. It took a further year to complete the processes of peer review, revision and publication. During this time, many new papers and even competing reviews were published. To provide the most up-to-date and original review, I had to stay abreast of the literature. In my case, I made use of Google Scholar, which I set to send me daily updates of relevant literature based on key words.

Through my review-writing process, I also learnt to be more open to critiques to enhance the value and increase the readership of my work. Initially, my review was focused only on using microbial cells such as bacteria to produce nanomaterials, which was the subject of my PhD research. Bacteria such as these are known as biofactories: that is, organisms that produce biological material which can be modified to produce useful materials, such as magnetic nanoparticles for drug-delivery purposes.

of scientific literature review

Synchronized editing: the future of collaborative writing

However, when the first peer-review report came back, all three reviewers suggested expanding the review to cover another type of biofactory: bacteriophages. These are essentially viruses that infect bacteria, and they can also produce nanomaterials.

The feedback eventually led me to include a discussion of the differences between the various biofactories (bacteriophages, bacteria, fungi and microalgae) and their advantages and disadvantages. This turned out to be a great addition because it made the review more comprehensive.

Writing the review also led me to an idea about using nanomaterial-modified microorganisms to produce chemicals, which I’m still researching now.

PAULA MARTIN-GONZALEZ: Make good use of technology

PhD student, University of Cambridge, UK.

Just before the coronavirus lockdown, my PhD adviser and I decided to write a literature review discussing the integration of medical imaging with genomics to improve ovarian cancer management.

As I was researching the review, I noticed a trend in which some papers were consistently being cited by many other papers in the field. It was clear to me that those papers must be important, but as a new member of the field of integrated cancer biology, it was difficult to immediately find and read all of these ‘seminal papers’.

That was when I decided to code a small application to make my literature research more efficient. Using my code, users can enter a query, such as ‘ovarian cancer, computer tomography, radiomics’, and the application searches for all relevant literature archived in databases such as PubMed that feature these key words.

The code then identifies the relevant papers and creates a citation graph of all the references cited in the results of the search. The software highlights papers that have many citation relationships with other papers in the search, and could therefore be called seminal papers.

My code has substantially improved how I organize papers and has informed me of key publications and discoveries in my research field: something that would have taken more time and experience in the field otherwise. After I shared my code on GitHub, I received feedback that it can be daunting for researchers who are not used to coding. Consequently, I am hoping to build a more user-friendly interface in a form of a web page, akin to PubMed or Google Scholar, where users can simply input their queries to generate citation graphs.

Tools and techniques

Most reference managers on the market offer similar capabilities when it comes to providing a Microsoft Word plug-in and producing different citation styles. But depending on your working preferences, some might be more suitable than others.

Reference managers

Attribute

EndNote

Mendeley

Zotero

Paperpile

Cost

A one-time cost of around US$340 but comes with discounts for academics; around $150 for students

Free version available

Free version available

Low and comes with academic discounts

Level of user support

Extensive user tutorials available; dedicated help desk

Extensive user tutorials available; global network of 5,000 volunteers to advise users

Forum discussions to troubleshoot

Forum discussions to troubleshoot

Desktop version available for offline use?

Available

Available

Available

Unavailable

Document storage on cloud

Up to 2 GB (free version)

Up to 2 GB (free version)

Up to 300 MB (free version)

Storage linked to Google Drive

Compatible with Google Docs?

No

No

Yes

Yes

Supports collaborative working?

No group working

References can be shared or edited by a maximum of three other users (or more in the paid-for version)

No limit on the number of users

No limit on the number of users

Here is a comparison of the more popular collaborative writing tools, but there are other options, including Fidus Writer, Manuscript.io, Authorea and Stencila.

Collaborative writing tools

Attribute

Manubot

Overleaf

Google Docs

Cost

Free, open source

$15–30 per month, comes with academic discounts

Free, comes with a Google account

Writing language

Type and write in Markdown*

Type and format in LaTex*

Standard word processor

Can be used with a mobile device?

No

No

Yes

References

Bibliographies are built using DOIs, circumventing reference managers

Citation styles can be imported from reference managers

Possible but requires additional referencing tools in a plug-in, such as Paperpile

*Markdown and LaTex are code-based formatting languages favoured by physicists, mathematicians and computer scientists who code on a regular basis, and less popular in other disciplines such as biology and chemistry.

doi: https://doi.org/10.1038/d41586-020-03422-x

Interviews have been edited for length and clarity.

Updates & Corrections

Correction 09 December 2020 : An earlier version of the tables in this article included some incorrect details about the programs Zotero, Endnote and Manubot. These have now been corrected.

Hsing, I.-M., Xu, Y. & Zhao, W. Electroanalysis 19 , 755–768 (2007).

Article   Google Scholar  

Ledesma, H. A. et al. Nature Nanotechnol. 14 , 645–657 (2019).

Article   PubMed   Google Scholar  

Brahlek, M., Koirala, N., Bansal, N. & Oh, S. Solid State Commun. 215–216 , 54–62 (2015).

Choi, Y. & Lee, S. Y. Nature Rev. Chem . https://doi.org/10.1038/s41570-020-00221-w (2020).

Download references

Related Articles

of scientific literature review

  • Research management

How to harness AI’s potential in research — responsibly and ethically

How to harness AI’s potential in research — responsibly and ethically

Career Feature 23 AUG 24

Partners in drug discovery: how to collaborate with non-governmental organizations

Partners in drug discovery: how to collaborate with non-governmental organizations

Time to refocus for South Korean science

Time to refocus for South Korean science

Nature Index 21 AUG 24

South Korean science on the global stage

South Korean science on the global stage

How South Korea can build better gender diversity into research

How South Korea can build better gender diversity into research

The citation black market: schemes selling fake references alarm scientists

The citation black market: schemes selling fake references alarm scientists

News 20 AUG 24

Senior Researcher-Experimental Leukemia Modeling, Mullighan Lab

Memphis, Tennessee

St. Jude Children's Research Hospital (St. Jude)

of scientific literature review

Assistant or Associate Professor (Research-Educator)

The Center for Molecular Medicine and Genetics in the Wayne State University School of Medicine (http://genetics.wayne.edu/) is expanding its high-...

Detroit, Michigan

Wayne State University

Postdoctoral Fellow – Cancer Immunotherapy

Tampa, Florida

H. Lee Moffitt Cancer Center & Research Institute

of scientific literature review

Postdoctoral Associate - Specialist

Houston, Texas (US)

Baylor College of Medicine (BCM)

of scientific literature review

Postdoctoral Associate- CAR T Cells, Synthetic Biology

of scientific literature review

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Purdue Online Writing Lab Purdue OWL® College of Liberal Arts

Writing a Literature Review

OWL logo

Welcome to the Purdue OWL

This page is brought to you by the OWL at Purdue University. When printing this page, you must include the entire legal notice.

Copyright ©1995-2018 by The Writing Lab & The OWL at Purdue and Purdue University. All rights reserved. This material may not be published, reproduced, broadcast, rewritten, or redistributed without permission. Use of this site constitutes acceptance of our terms and conditions of fair use.

A literature review is a document or section of a document that collects key sources on a topic and discusses those sources in conversation with each other (also called synthesis ). The lit review is an important genre in many disciplines, not just literature (i.e., the study of works of literature such as novels and plays). When we say “literature review” or refer to “the literature,” we are talking about the research ( scholarship ) in a given field. You will often see the terms “the research,” “the scholarship,” and “the literature” used mostly interchangeably.

Where, when, and why would I write a lit review?

There are a number of different situations where you might write a literature review, each with slightly different expectations; different disciplines, too, have field-specific expectations for what a literature review is and does. For instance, in the humanities, authors might include more overt argumentation and interpretation of source material in their literature reviews, whereas in the sciences, authors are more likely to report study designs and results in their literature reviews; these differences reflect these disciplines’ purposes and conventions in scholarship. You should always look at examples from your own discipline and talk to professors or mentors in your field to be sure you understand your discipline’s conventions, for literature reviews as well as for any other genre.

A literature review can be a part of a research paper or scholarly article, usually falling after the introduction and before the research methods sections. In these cases, the lit review just needs to cover scholarship that is important to the issue you are writing about; sometimes it will also cover key sources that informed your research methodology.

Lit reviews can also be standalone pieces, either as assignments in a class or as publications. In a class, a lit review may be assigned to help students familiarize themselves with a topic and with scholarship in their field, get an idea of the other researchers working on the topic they’re interested in, find gaps in existing research in order to propose new projects, and/or develop a theoretical framework and methodology for later research. As a publication, a lit review usually is meant to help make other scholars’ lives easier by collecting and summarizing, synthesizing, and analyzing existing research on a topic. This can be especially helpful for students or scholars getting into a new research area, or for directing an entire community of scholars toward questions that have not yet been answered.

What are the parts of a lit review?

Most lit reviews use a basic introduction-body-conclusion structure; if your lit review is part of a larger paper, the introduction and conclusion pieces may be just a few sentences while you focus most of your attention on the body. If your lit review is a standalone piece, the introduction and conclusion take up more space and give you a place to discuss your goals, research methods, and conclusions separately from where you discuss the literature itself.

Introduction:

  • An introductory paragraph that explains what your working topic and thesis is
  • A forecast of key topics or texts that will appear in the review
  • Potentially, a description of how you found sources and how you analyzed them for inclusion and discussion in the review (more often found in published, standalone literature reviews than in lit review sections in an article or research paper)
  • Summarize and synthesize: Give an overview of the main points of each source and combine them into a coherent whole
  • Analyze and interpret: Don’t just paraphrase other researchers – add your own interpretations where possible, discussing the significance of findings in relation to the literature as a whole
  • Critically Evaluate: Mention the strengths and weaknesses of your sources
  • Write in well-structured paragraphs: Use transition words and topic sentence to draw connections, comparisons, and contrasts.

Conclusion:

  • Summarize the key findings you have taken from the literature and emphasize their significance
  • Connect it back to your primary research question

How should I organize my lit review?

Lit reviews can take many different organizational patterns depending on what you are trying to accomplish with the review. Here are some examples:

  • Chronological : The simplest approach is to trace the development of the topic over time, which helps familiarize the audience with the topic (for instance if you are introducing something that is not commonly known in your field). If you choose this strategy, be careful to avoid simply listing and summarizing sources in order. Try to analyze the patterns, turning points, and key debates that have shaped the direction of the field. Give your interpretation of how and why certain developments occurred (as mentioned previously, this may not be appropriate in your discipline — check with a teacher or mentor if you’re unsure).
  • Thematic : If you have found some recurring central themes that you will continue working with throughout your piece, you can organize your literature review into subsections that address different aspects of the topic. For example, if you are reviewing literature about women and religion, key themes can include the role of women in churches and the religious attitude towards women.
  • Qualitative versus quantitative research
  • Empirical versus theoretical scholarship
  • Divide the research by sociological, historical, or cultural sources
  • Theoretical : In many humanities articles, the literature review is the foundation for the theoretical framework. You can use it to discuss various theories, models, and definitions of key concepts. You can argue for the relevance of a specific theoretical approach or combine various theorical concepts to create a framework for your research.

What are some strategies or tips I can use while writing my lit review?

Any lit review is only as good as the research it discusses; make sure your sources are well-chosen and your research is thorough. Don’t be afraid to do more research if you discover a new thread as you’re writing. More info on the research process is available in our "Conducting Research" resources .

As you’re doing your research, create an annotated bibliography ( see our page on the this type of document ). Much of the information used in an annotated bibliography can be used also in a literature review, so you’ll be not only partially drafting your lit review as you research, but also developing your sense of the larger conversation going on among scholars, professionals, and any other stakeholders in your topic.

Usually you will need to synthesize research rather than just summarizing it. This means drawing connections between sources to create a picture of the scholarly conversation on a topic over time. Many student writers struggle to synthesize because they feel they don’t have anything to add to the scholars they are citing; here are some strategies to help you:

  • It often helps to remember that the point of these kinds of syntheses is to show your readers how you understand your research, to help them read the rest of your paper.
  • Writing teachers often say synthesis is like hosting a dinner party: imagine all your sources are together in a room, discussing your topic. What are they saying to each other?
  • Look at the in-text citations in each paragraph. Are you citing just one source for each paragraph? This usually indicates summary only. When you have multiple sources cited in a paragraph, you are more likely to be synthesizing them (not always, but often
  • Read more about synthesis here.

The most interesting literature reviews are often written as arguments (again, as mentioned at the beginning of the page, this is discipline-specific and doesn’t work for all situations). Often, the literature review is where you can establish your research as filling a particular gap or as relevant in a particular way. You have some chance to do this in your introduction in an article, but the literature review section gives a more extended opportunity to establish the conversation in the way you would like your readers to see it. You can choose the intellectual lineage you would like to be part of and whose definitions matter most to your thinking (mostly humanities-specific, but this goes for sciences as well). In addressing these points, you argue for your place in the conversation, which tends to make the lit review more compelling than a simple reporting of other sources.

Logo for University of Southern Queensland

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

7 Writing a Literature Review

Hundreds of original investigation research articles on health science topics are published each year. It is becoming harder and harder to keep on top of all new findings in a topic area and – more importantly – to work out how they all fit together to determine our current understanding of a topic. This is where literature reviews come in.

In this chapter, we explain what a literature review is and outline the stages involved in writing one. We also provide practical tips on how to communicate the results of a review of current literature on a topic in the format of a literature review.

7.1 What is a literature review?

Screenshot of journal article

Literature reviews provide a synthesis and evaluation  of the existing literature on a particular topic with the aim of gaining a new, deeper understanding of the topic.

Published literature reviews are typically written by scientists who are experts in that particular area of science. Usually, they will be widely published as authors of their own original work, making them highly qualified to author a literature review.

However, literature reviews are still subject to peer review before being published. Literature reviews provide an important bridge between the expert scientific community and many other communities, such as science journalists, teachers, and medical and allied health professionals. When the most up-to-date knowledge reaches such audiences, it is more likely that this information will find its way to the general public. When this happens, – the ultimate good of science can be realised.

A literature review is structured differently from an original research article. It is developed based on themes, rather than stages of the scientific method.

In the article Ten simple rules for writing a literature review , Marco Pautasso explains the importance of literature reviews:

Literature reviews are in great demand in most scientific fields. Their need stems from the ever-increasing output of scientific publications. For example, compared to 1991, in 2008 three, eight, and forty times more papers were indexed in Web of Science on malaria, obesity, and biodiversity, respectively. Given such mountains of papers, scientists cannot be expected to examine in detail every single new paper relevant to their interests. Thus, it is both advantageous and necessary to rely on regular summaries of the recent literature. Although recognition for scientists mainly comes from primary research, timely literature reviews can lead to new synthetic insights and are often widely read. For such summaries to be useful, however, they need to be compiled in a professional way (Pautasso, 2013, para. 1).

An example of a literature review is shown in Figure 7.1.

Video 7.1: What is a literature review? [2 mins, 11 secs]

Watch this video created by Steely Library at Northern Kentucky Library called ‘ What is a literature review? Note: Closed captions are available by clicking on the CC button below.

Examples of published literature reviews

  • Strength training alone, exercise therapy alone, and exercise therapy with passive manual mobilisation each reduce pain and disability in people with knee osteoarthritis: a systematic review
  • Traveler’s diarrhea: a clinical review
  • Cultural concepts of distress and psychiatric disorders: literature review and research recommendations for global mental health epidemiology

7.2 Steps of writing a literature review

Writing a literature review is a very challenging task. Figure 7.2 summarises the steps of writing a literature review. Depending on why you are writing your literature review, you may be given a topic area, or may choose a topic that particularly interests you or is related to a research project that you wish to undertake.

Chapter 6 provides instructions on finding scientific literature that would form the basis for your literature review.

Once you have your topic and have accessed the literature, the next stages (analysis, synthesis and evaluation) are challenging. Next, we look at these important cognitive skills student scientists will need to develop and employ to successfully write a literature review, and provide some guidance for navigating these stages.

Steps of writing a ltierature review which include: research, synthesise, read abstracts, read papers, evaualte findings and write

Analysis, synthesis and evaluation

Analysis, synthesis and evaluation are three essential skills required by scientists  and you will need to develop these skills if you are to write a good literature review ( Figure 7.3 ). These important cognitive skills are discussed in more detail in Chapter 9.

Diagram with the words analysis, synthesis and evaluation. Under analysis it says taking a process or thing and breaking it down. Under synthesis it says combining elements of separate material and under evaluation it says critiquing a product or process

The first step in writing a literature review is to analyse the original investigation research papers that you have gathered related to your topic.

Analysis requires examining the papers methodically and in detail, so you can understand and interpret aspects of the study described in each research article.

An analysis grid is a simple tool you can use to help with the careful examination and breakdown of each paper. This tool will allow you to create a concise summary of each research paper; see Table 7.1 for an example of  an analysis grid. When filling in the grid, the aim is to draw out key aspects of each research paper. Use a different row for each paper, and a different column for each aspect of the paper ( Tables 7.2 and 7.3 show how completed analysis grid may look).

Before completing your own grid, look at these examples and note the types of information that have been included, as well as the level of detail. Completing an analysis grid with a sufficient level of detail will help you to complete the synthesis and evaluation stages effectively. This grid will allow you to more easily observe similarities and differences across the findings of the research papers and to identify possible explanations (e.g., differences in methodologies employed) for observed differences between the findings of different research papers.

Table 7.1: Example of an analysis grid

[include details about the authors, date of publication and the rationale for the review] [summarise the aim of the experiment] [summarise the experiment design, include the subjects used and experimental groups] [summarise the main findings] [summarise the conclusion] [evaluate the paper’s findings, and highlight any terms or physiology concepts that you are unfamiliar with and should be included in your review]

A tab;e split into columns with annotated comments

Table 7.3: Sample filled-in analysis grid for research article by Ping and colleagues

Ping 2010
The effect of chronic caffeine supplementation on endurance performance has been studied extensively in different populations. However, concurrent research on the effects of acute supplementation of caffeine on cardiorespiratory responses during endurance exercise in hot and humid conditions is unavailable
To determine the effect of caffeine supplementation on cardiorespiratory responses during endurance running in hot and humid conditions 9 heat-adapted recreational male runners
Age 25.4±6.9 years
Weight (kg) 57.6±8.4
Non-users of caffeine (23.7±12.6 mg/day)
Randomised, double-blind placebo-controlled cross-over design (at least 7 days gap between trials to nullify effect of caffeine)
Caffeine (5 mg/kg) or placebo ingested as a capsule one hour before a running trial to exhaustion (70% VO2 max on a motorised treadmill in a heat-controlled laboratory (31 °C, 70% humidity)
Diet monitored for 3 days before first trial and repeated for 3 days before 2nd trial (to minimise variation in pre-exercise muscle glycogen)
Subjects asked to refrain from heavy exercise for 24 h before trials
Subjects drank 3 ml of cool water per kg of body weight every 20 min during running trial to stay hydrated
Heart rate (HR), core body temperature and rating of perceived exertion (RPE) were recorded at intervals of 10 mins, while oxygen consumption was measured at intervals of 20 min
Mean exhaustion time was 31.6% higher in the caffeine group:
• Placebo 83.6±21.4
• Caffeine 110.1±29.3
Running time to exhaustion was significantly higher (p
Ingestion of caffeine improved the endurance running performance, but did not affect heart rate, core body temperature, oxygen uptake or RPE. The lower RPE during the caffeine trial may be because of the positive effect of caffeine ingestion on nerve impulse transmission, as well as an analgesic effect and psychological effect. Perhaps this is the same reason subjects could sustain the treadmill running for longer in the caffeine trial.

Source: Ping, WC, Keong, CC & Bandyopadhyay, A 2010, ‘Effects of acute supplementation of caffeine on cardiorespiratory responses during endurance running in a hot and humid climate’, Indian Journal of Medical Research, vol. 132, pp. 36–41. Used under a CC-BY-NC-SA licence.

Step two of writing a literature review is synthesis.

Synthesis describes combining separate components or elements to form a connected whole.

You will use the results of your analysis to find themes to build your literature review around. Each of the themes identified will become a subheading within the body of your literature review.

A good place to start when identifying themes is with the dependent variables (results/findings) that were investigated in the research studies.

Because all of the research articles you are incorporating into your literature review are related to your topic, it is likely that they have similar study designs and have measured similar dependent variables. Review the ‘Results’ column of your analysis grid. You may like to collate the common themes in a synthesis grid (see, for example Table 7.4 ).

Table showing themes of the article including running performance, rating of perceived exertion, heart rate and oxygen uptake

Step three of writing a literature review is evaluation, which can only be done after carefully analysing your research papers and synthesising the common themes (findings).

During the evaluation stage, you are making judgements on the themes presented in the research articles that you have read. This includes providing physiological explanations for the findings. It may be useful to refer to the discussion section of published original investigation research papers, or another literature review, where the authors may mention tested or hypothetical physiological mechanisms that may explain their findings.

When the findings of the investigations related to a particular theme are inconsistent (e.g., one study shows that caffeine effects performance and another study shows that caffeine had no effect on performance) you should attempt to provide explanations of why the results differ, including physiological explanations. A good place to start is by comparing the methodologies to determine if there are any differences that may explain the differences in the findings (see the ‘Experimental design’ column of your analysis grid). An example of evaluation is shown in the examples that follow in this section, under ‘Running performance’ and ‘RPE ratings’.

When the findings of the papers related to a particular theme are consistent (e.g., caffeine had no effect on oxygen uptake in both studies) an evaluation should include an explanation of why the results are similar. Once again, include physiological explanations. It is still a good idea to compare methodologies as a background to the evaluation. An example of evaluation is shown in the following under ‘Oxygen consumption’.

Annotated paragraphs on running performance with annotated notes such as physiological explanation provided; possible explanation for inconsistent results

7.3 Writing your literature review

Once you have completed the analysis, and synthesis grids and written your evaluation of the research papers , you can combine synthesis and evaluation information to create a paragraph for a literature review ( Figure 7.4 ).

Bubble daigram showing connection between synethesis, evaulation and writing a paragraph

The following paragraphs are an example of combining the outcome of the synthesis and evaluation stages to produce a paragraph for a literature review.

Note that this is an example using only two papers – most literature reviews would be presenting information on many more papers than this ( (e.g., 106 papers in the review article by Bain and colleagues discussed later in this chapter). However, the same principle applies regardless of the number of papers reviewed.

Introduction paragraph showing where evaluation occurs

The next part of this chapter looks at the each section of a literature review and explains how to write them by referring to a review article that was published in Frontiers in Physiology and shown in Figure 7.1. Each section from the published article is annotated to highlight important features of the format of the review article, and identifies the synthesis and evaluation information.

In the examination of each review article section we will point out examples of how the authors have presented certain information and where they display application of important cognitive processes; we will use the colour code shown below:

Colour legend

This should be one paragraph that accurately reflects the contents of the review article.

An annotated abstract divided into relevant background information, identification of the problem, summary of recent literature on topic, purpose of the review

Introduction

The introduction should establish the context and importance of the review

An annotated introduction divided into relevant background information, identification of the issue and overview of points covered

Body of literature review

Annotated body of literature review with following comments annotated on the side: subheadings are included to separate body of review into themes; introductory sentences with general background information; identification of gap in current knowledge; relevant theoretical background information; syntheis of literature relating to the potential importance of cerebral metabolism; an evaluation; identification of gaps in knowledge; synthesis of findings related to human studies; author evaluation

The reference section provides a list of the references that you cited in the body of your review article. The format will depend on the journal of publication as each journal has their own specific referencing format.

It is important to accurately cite references in research papers to acknowledge your sources and ensure credit is appropriately given to authors of work you have referred to. An accurate and comprehensive reference list also shows your readers that you are well-read in your topic area and are aware of the key papers that provide the context to your research.

It is important to keep track of your resources and to reference them consistently in the format required by the publication in which your work will appear. Most scientists will use reference management software to store details of all of the journal articles (and other sources) they use while writing their review article. This software also automates the process of adding in-text references and creating a reference list. In the review article by Bain et al. (2014) used as an example in this chapter, the reference list contains 106 items, so you can imagine how much help referencing software would be. Chapter 5 shows you how to use EndNote, one example of reference management software.

Click the drop down below to review the terms learned from this chapter.

Copyright note:

  • The quotation from Pautasso, M 2013, ‘Ten simple rules for writing a literature review’, PLoS Computational Biology is use under a CC-BY licence. 
  • Content from the annotated article and tables are based on Schubert, MM, Astorino, TA & Azevedo, JJL 2013, ‘The effects of caffeinated ‘energy shots’ on time trial performance’, Nutrients, vol. 5, no. 6, pp. 2062–2075 (used under a CC-BY 3.0 licence ) and P ing, WC, Keong , CC & Bandyopadhyay, A 2010, ‘Effects of acute supplementation of caffeine on cardiorespiratory responses during endurance running in a hot and humid climate’, Indian Journal of Medical Research, vol. 132, pp. 36–41 (used under a CC-BY-NC-SA 4.0 licence ). 

Bain, A.R., Morrison, S.A., & Ainslie, P.N. (2014). Cerebral oxygenation and hyperthermia. Frontiers in Physiology, 5 , 92.

Pautasso, M. (2013). Ten simple rules for writing a literature review. PLoS Computational Biology, 9 (7), e1003149.

How To Do Science Copyright © 2022 by University of Southern Queensland is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

  • UConn Library
  • Scientific Research and Communication
  • Science Literature Reviews

Scientific Research and Communication — Science Literature Reviews

  • Essential Resources
  • The Scientific Method
  • Types of Scientific Papers
  • Organization of a Scientific Paper
  • Peer Review & Academic Journals
  • Primary and Secondary Sources
  • Scientific Information Literacy
  • Critical Reading Methods
  • Scientific Writing Guidebooks
  • Searching Strategies for Science Databases
  • Engineering Career Exploration
  • Qualitative Research: What is it?
  • Quantitative Research: What Is It?
  • AI Tools for Research
  • Avoiding Plagiarism

What is a literature review in the sciences?

To answer this question, please read the following content excerpted from the UCLA Undergraduate Science Journal guidelines .   Also, if you scroll down this page there is a link to a recorded webinar about science literature reviews. I have also included some links to books about engineering and STEM literature reviews at the bottom of this page.

Guide to Writing a Review Article: What is a Literature Review?

A literature review addresses a specific topic by evaluating research that others have done on it. As an author, you will weave your review article around a certain thesis or problem you wish to address, evaluate the quality and the meaning of the studies done before, and arrives at a conclusion about the problem based on the studies evaluated.

A literature review is not a summary and it is not a list. The author cannot simply cite the studies that have been done and the results that have been obtained. If you describe past research without evaluating it, then your “review” is little more than a book report. A literature review must be a synthesis of the results of your search, organized around your chosen theme.

The article should be your evaluation of the literature and of the issue at stake. This is a challenging piece of work. You must:

1. Organize information and relate it to your thesis or research question

2. Synthesize results into a summary of what is and isn’t known

3. Identify contradictions, inconsistencies, and gaps in the research

4. Identify and analyze controversy when it appears in the literature

5. Develop questions for further research

6. Draw conclusions based on your evaluation of the studies presented

Literature Review vs. Research Article

A literature review surveys research done by others in a particular area. You will read and evaluate studies done by others, instead of conducting a new study yourself. Research articles, on the other hand, present research that you have conducted yourself. A research article should contain enough background information and literature evaluation to shed light on your study, but the ultimate purpose of the paper is to report research done by you.

Asian woman looking into microscope completing cancer research

Photo by National Cancer Institute on Unsplash

  • UCLA Undergraduate Science Journal guidelines Click on the "Guide to Scientific Writing" link.

Below is a recorded webinar led by the science and engineering librarians from Western Michigan State University on science literature reviews:

Here is another video on literature reviews by Associate Professor Cecile Badenhorst of Memorial University of Newfoundland.  Dr. Badenhorst uses examples from research in the field of education, but the theoretical components she introduces are of interest to science students as well.

  • How to Write a Scientific Literature Review from University of Michigan Libraries
  • Engineering Literature Reviews Guide from University of Arizona

Books on Literature Reviews

Cover Art

Literature Review Examples

  • White Paper - Literature Review on Kinematic Properties of Road Users for Use on Safety-Related Models for Automated Driving Systems
  • A sensor ontology literature review
  • Literature review of fuel processing: hydrogen as fuel
  • << Previous: Scientific Writing Guidebooks
  • Next: Searching Strategies for Science Databases >>
  • Last Updated: Aug 22, 2024 3:23 PM
  • URL: https://guides.lib.uconn.edu/sciencecommunication

Creative Commons

  • Search Menu

Sign in through your institution

  • Advance Articles
  • Editor's Choice
  • CME Reviews
  • Best of 2021 collection
  • Abbreviated Breast MRI Virtual Collection
  • Contrast-enhanced Mammography Collection
  • Author Guidelines
  • Submission Site
  • Open Access
  • Self-Archiving Policy
  • Accepted Papers Resource Guide
  • About Journal of Breast Imaging
  • About the Society of Breast Imaging
  • Guidelines for Reviewers
  • Resources for Reviewers and Authors
  • Editorial Board
  • Advertising Disclaimer
  • Advertising and Corporate Services
  • Journals on Oxford Academic
  • Books on Oxford Academic

Society of Breast Imaging

  • < Previous

A Step-by-Step Guide to Writing a Scientific Review Article

  • Article contents
  • Figures & tables
  • Supplementary Data

Manisha Bahl, A Step-by-Step Guide to Writing a Scientific Review Article, Journal of Breast Imaging , Volume 5, Issue 4, July/August 2023, Pages 480–485, https://doi.org/10.1093/jbi/wbad028

  • Permissions Icon Permissions

Scientific review articles are comprehensive, focused reviews of the scientific literature written by subject matter experts. The task of writing a scientific review article can seem overwhelming; however, it can be managed by using an organized approach and devoting sufficient time to the process. The process involves selecting a topic about which the authors are knowledgeable and enthusiastic, conducting a literature search and critical analysis of the literature, and writing the article, which is composed of an abstract, introduction, body, and conclusion, with accompanying tables and figures. This article, which focuses on the narrative or traditional literature review, is intended to serve as a guide with practical steps for new writers. Tips for success are also discussed, including selecting a focused topic, maintaining objectivity and balance while writing, avoiding tedious data presentation in a laundry list format, moving from descriptions of the literature to critical analysis, avoiding simplistic conclusions, and budgeting time for the overall process.

  • narrative discourse

Society of Breast Imaging

Society of Breast Imaging members

Personal account.

  • Sign in with email/username & password
  • Get email alerts
  • Save searches
  • Purchase content
  • Activate your purchase/trial code
  • Add your ORCID iD

Institutional access

Sign in with a library card.

  • Sign in with username/password
  • Recommend to your librarian
  • Institutional account management
  • Get help with access

Access to content on Oxford Academic is often provided through institutional subscriptions and purchases. If you are a member of an institution with an active account, you may be able to access content in one of the following ways:

IP based access

Typically, access is provided across an institutional network to a range of IP addresses. This authentication occurs automatically, and it is not possible to sign out of an IP authenticated account.

Choose this option to get remote access when outside your institution. Shibboleth/Open Athens technology is used to provide single sign-on between your institution’s website and Oxford Academic.

  • Click Sign in through your institution.
  • Select your institution from the list provided, which will take you to your institution's website to sign in.
  • When on the institution site, please use the credentials provided by your institution. Do not use an Oxford Academic personal account.
  • Following successful sign in, you will be returned to Oxford Academic.

If your institution is not listed or you cannot sign in to your institution’s website, please contact your librarian or administrator.

Enter your library card number to sign in. If you cannot sign in, please contact your librarian.

Society Members

Society member access to a journal is achieved in one of the following ways:

Sign in through society site

Many societies offer single sign-on between the society website and Oxford Academic. If you see ‘Sign in through society site’ in the sign in pane within a journal:

  • Click Sign in through society site.
  • When on the society site, please use the credentials provided by that society. Do not use an Oxford Academic personal account.

If you do not have a society account or have forgotten your username or password, please contact your society.

Sign in using a personal account

Some societies use Oxford Academic personal accounts to provide access to their members. See below.

A personal account can be used to get email alerts, save searches, purchase content, and activate subscriptions.

Some societies use Oxford Academic personal accounts to provide access to their members.

Viewing your signed in accounts

Click the account icon in the top right to:

  • View your signed in personal account and access account management features.
  • View the institutional accounts that are providing access.

Signed in but can't access content

Oxford Academic is home to a wide variety of products. The institutional subscription may not cover the content that you are trying to access. If you believe you should have access to that content, please contact your librarian.

For librarians and administrators, your personal account also provides access to institutional account management. Here you will find options to view and activate subscriptions, manage institutional settings and access options, access usage statistics, and more.

Short-term Access

To purchase short-term access, please sign in to your personal account above.

Don't already have a personal account? Register

Month: Total Views:
May 2023 171
June 2023 115
July 2023 113
August 2023 5,013
September 2023 1,500
October 2023 1,810
November 2023 3,849
December 2023 308
January 2024 401
February 2024 312
March 2024 415
April 2024 361
May 2024 306
June 2024 283
July 2024 309
August 2024 192

Email alerts

Citing articles via.

  • Recommend to your Librarian
  • Journals Career Network

Affiliations

  • Online ISSN 2631-6129
  • Print ISSN 2631-6110
  • Copyright © 2024 Society of Breast Imaging
  • About Oxford Academic
  • Publish journals with us
  • University press partners
  • What we publish
  • New features  
  • Open access
  • Rights and permissions
  • Accessibility
  • Advertising
  • Media enquiries
  • Oxford University Press
  • Oxford Languages
  • University of Oxford

Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide

  • Copyright © 2024 Oxford University Press
  • Cookie settings
  • Cookie policy
  • Privacy policy
  • Legal notice

This Feature Is Available To Subscribers Only

Sign In or Create an Account

This PDF is available to Subscribers Only

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Harvey Cushing/John Hay Whitney Medical Library

  • Collections
  • Research Help

YSN Doctoral Programs: Steps in Conducting a Literature Review

  • Biomedical Databases
  • Global (Public Health) Databases
  • Soc. Sci., History, and Law Databases
  • Grey Literature
  • Trials Registers
  • Data and Statistics
  • Public Policy
  • Google Tips
  • Recommended Books
  • Steps in Conducting a Literature Review

What is a literature review?

A literature review is an integrated analysis -- not just a summary-- of scholarly writings and other relevant evidence related directly to your research question.  That is, it represents a synthesis of the evidence that provides background information on your topic and shows a association between the evidence and your research question.

A literature review may be a stand alone work or the introduction to a larger research paper, depending on the assignment.  Rely heavily on the guidelines your instructor has given you.

Why is it important?

A literature review is important because it:

  • Explains the background of research on a topic.
  • Demonstrates why a topic is significant to a subject area.
  • Discovers relationships between research studies/ideas.
  • Identifies major themes, concepts, and researchers on a topic.
  • Identifies critical gaps and points of disagreement.
  • Discusses further research questions that logically come out of the previous studies.

APA7 Style resources

Cover Art

APA Style Blog - for those harder to find answers

1. Choose a topic. Define your research question.

Your literature review should be guided by your central research question.  The literature represents background and research developments related to a specific research question, interpreted and analyzed by you in a synthesized way.

  • Make sure your research question is not too broad or too narrow.  Is it manageable?
  • Begin writing down terms that are related to your question. These will be useful for searches later.
  • If you have the opportunity, discuss your topic with your professor and your class mates.

2. Decide on the scope of your review

How many studies do you need to look at? How comprehensive should it be? How many years should it cover? 

  • This may depend on your assignment.  How many sources does the assignment require?

3. Select the databases you will use to conduct your searches.

Make a list of the databases you will search. 

Where to find databases:

  • use the tabs on this guide
  • Find other databases in the Nursing Information Resources web page
  • More on the Medical Library web page
  • ... and more on the Yale University Library web page

4. Conduct your searches to find the evidence. Keep track of your searches.

  • Use the key words in your question, as well as synonyms for those words, as terms in your search. Use the database tutorials for help.
  • Save the searches in the databases. This saves time when you want to redo, or modify, the searches. It is also helpful to use as a guide is the searches are not finding any useful results.
  • Review the abstracts of research studies carefully. This will save you time.
  • Use the bibliographies and references of research studies you find to locate others.
  • Check with your professor, or a subject expert in the field, if you are missing any key works in the field.
  • Ask your librarian for help at any time.
  • Use a citation manager, such as EndNote as the repository for your citations. See the EndNote tutorials for help.

Review the literature

Some questions to help you analyze the research:

  • What was the research question of the study you are reviewing? What were the authors trying to discover?
  • Was the research funded by a source that could influence the findings?
  • What were the research methodologies? Analyze its literature review, the samples and variables used, the results, and the conclusions.
  • Does the research seem to be complete? Could it have been conducted more soundly? What further questions does it raise?
  • If there are conflicting studies, why do you think that is?
  • How are the authors viewed in the field? Has this study been cited? If so, how has it been analyzed?

Tips: 

  • Review the abstracts carefully.  
  • Keep careful notes so that you may track your thought processes during the research process.
  • Create a matrix of the studies for easy analysis, and synthesis, across all of the studies.
  • << Previous: Recommended Books
  • Last Updated: Jun 20, 2024 9:08 AM
  • URL: https://guides.library.yale.edu/YSNDoctoral

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings
  • My Bibliography
  • Collections
  • Citation manager

Save citation to file

Email citation, add to collections.

  • Create a new collection
  • Add to an existing collection

Add to My Bibliography

Your saved search, create a file for external citation management software, your rss feed.

  • Search in PubMed
  • Search in NLM Catalog
  • Add to Search

How to write a good scientific review article

Affiliation.

  • 1 The FEBS Journal Editorial Office, Cambridge, UK.
  • PMID: 35792782
  • DOI: 10.1111/febs.16565

Literature reviews are valuable resources for the scientific community. With research accelerating at an unprecedented speed in recent years and more and more original papers being published, review articles have become increasingly important as a means to keep up to date with developments in a particular area of research. A good review article provides readers with an in-depth understanding of a field and highlights key gaps and challenges to address with future research. Writing a review article also helps to expand the writer's knowledge of their specialist area and to develop their analytical and communication skills, amongst other benefits. Thus, the importance of building review-writing into a scientific career cannot be overstated. In this instalment of The FEBS Journal's Words of Advice series, I provide detailed guidance on planning and writing an informative and engaging literature review.

© 2022 Federation of European Biochemical Societies.

PubMed Disclaimer

Similar articles

  • Rules to be adopted for publishing a scientific paper. Picardi N. Picardi N. Ann Ital Chir. 2016;87:1-3. Ann Ital Chir. 2016. PMID: 28474609
  • How to write an original article. Mateu Arrom L, Huguet J, Errando C, Breda A, Palou J. Mateu Arrom L, et al. Actas Urol Esp (Engl Ed). 2018 Nov;42(9):545-550. doi: 10.1016/j.acuro.2018.02.011. Epub 2018 May 18. Actas Urol Esp (Engl Ed). 2018. PMID: 29779648 Review. English, Spanish.
  • [Writing a scientific review, advice and recommendations]. Turale S. Turale S. Soins. 2013 Dec;(781):39-43. Soins. 2013. PMID: 24558688 French.
  • How to write a research paper. Alexandrov AV. Alexandrov AV. Cerebrovasc Dis. 2004;18(2):135-8. doi: 10.1159/000079266. Epub 2004 Jun 23. Cerebrovasc Dis. 2004. PMID: 15218279 Review.
  • How to write a review article. Williamson RC. Williamson RC. Hosp Med. 2001 Dec;62(12):780-2. doi: 10.12968/hosp.2001.62.12.2389. Hosp Med. 2001. PMID: 11810740 Review.
  • A scoping review of the methodological approaches used in retrospective chart reviews to validate adverse event rates in administrative data. Connolly A, Kirwan M, Matthews A. Connolly A, et al. Int J Qual Health Care. 2024 May 10;36(2):mzae037. doi: 10.1093/intqhc/mzae037. Int J Qual Health Care. 2024. PMID: 38662407 Free PMC article. Review.
  • Ado-tratuzumab emtansine beyond breast cancer: therapeutic role of targeting other HER2-positive cancers. Zheng Y, Zou J, Sun C, Peng F, Peng C. Zheng Y, et al. Front Mol Biosci. 2023 May 11;10:1165781. doi: 10.3389/fmolb.2023.1165781. eCollection 2023. Front Mol Biosci. 2023. PMID: 37251081 Free PMC article. Review.
  • Connecting authors with readers: what makes a good review for the Korean Journal of Women Health Nursing. Kim HK. Kim HK. Korean J Women Health Nurs. 2023 Mar;29(1):1-4. doi: 10.4069/kjwhn.2023.02.23. Epub 2023 Mar 31. Korean J Women Health Nurs. 2023. PMID: 37037445 Free PMC article. No abstract available.
  • Ketcham C, Crawford J. The impact of review articles. Lab Invest. 2007;87:1174-85. https://doi.org/10.1038/labinvest.3700688
  • Muka T, Glisic M, Milic J, Verhoog S, Bohlius J, Bramer W, et al. A 24-step guide on how to design, conduct, and successfully publish a systematic review and meta-analysis in medical research. Eur J Epidemiol. 2020;35:49-60. https://doi.org/10.1007/s10654-019-00576-5
  • Tawfik GM, Dila KAS, Mohamed MYF, Tam DNH, Kien ND, Ahmed AM, et al. A step by step guide for conducting a systematic review and meta-analysis with simulation data. Trop Med Health. 2019;47:46. https://doi.org/10.1186/s41182-019-0165-6
  • Zimba O, Gasparyan AY. Scientific authorship: a primer for researchers. Reumatologia. 2020;58(6):345-9. https://doi.org/10.5114/reum.2020.101999
  • Gasparyan AY, Yessirkepov M, Voronov AA, Maksaev AA, Kitas GD. Article-level metrics. J Korean Med Sci. 2021;36(11):e74.

Publication types

  • Search in MeSH

LinkOut - more resources

Full text sources.

  • Ovid Technologies, Inc.

full text provider logo

  • Citation Manager

NCBI Literature Resources

MeSH PMC Bookshelf Disclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.

Research Methods

  • Getting Started
  • Literature Review Research
  • Research Design
  • Research Design By Discipline
  • SAGE Research Methods
  • Teaching with SAGE Research Methods

Literature Review

  • What is a Literature Review?
  • What is NOT a Literature Review?
  • Purposes of a Literature Review
  • Types of Literature Reviews
  • Literature Reviews vs. Systematic Reviews
  • Systematic vs. Meta-Analysis

Literature Review  is a comprehensive survey of the works published in a particular field of study or line of research, usually over a specific period of time, in the form of an in-depth, critical bibliographic essay or annotated list in which attention is drawn to the most significant works.

Also, we can define a literature review as the collected body of scholarly works related to a topic:

  • Summarizes and analyzes previous research relevant to a topic
  • Includes scholarly books and articles published in academic journals
  • Can be an specific scholarly paper or a section in a research paper

The objective of a Literature Review is to find previous published scholarly works relevant to an specific topic

  • Help gather ideas or information
  • Keep up to date in current trends and findings
  • Help develop new questions

A literature review is important because it:

  • Explains the background of research on a topic.
  • Demonstrates why a topic is significant to a subject area.
  • Helps focus your own research questions or problems
  • Discovers relationships between research studies/ideas.
  • Suggests unexplored ideas or populations
  • Identifies major themes, concepts, and researchers on a topic.
  • Tests assumptions; may help counter preconceived ideas and remove unconscious bias.
  • Identifies critical gaps, points of disagreement, or potentially flawed methodology or theoretical approaches.
  • Indicates potential directions for future research.

All content in this section is from Literature Review Research from Old Dominion University 

Keep in mind the following, a literature review is NOT:

Not an essay 

Not an annotated bibliography  in which you summarize each article that you have reviewed.  A literature review goes beyond basic summarizing to focus on the critical analysis of the reviewed works and their relationship to your research question.

Not a research paper   where you select resources to support one side of an issue versus another.  A lit review should explain and consider all sides of an argument in order to avoid bias, and areas of agreement and disagreement should be highlighted.

A literature review serves several purposes. For example, it

  • provides thorough knowledge of previous studies; introduces seminal works.
  • helps focus one’s own research topic.
  • identifies a conceptual framework for one’s own research questions or problems; indicates potential directions for future research.
  • suggests previously unused or underused methodologies, designs, quantitative and qualitative strategies.
  • identifies gaps in previous studies; identifies flawed methodologies and/or theoretical approaches; avoids replication of mistakes.
  • helps the researcher avoid repetition of earlier research.
  • suggests unexplored populations.
  • determines whether past studies agree or disagree; identifies controversy in the literature.
  • tests assumptions; may help counter preconceived ideas and remove unconscious bias.

As Kennedy (2007) notes*, it is important to think of knowledge in a given field as consisting of three layers. First, there are the primary studies that researchers conduct and publish. Second are the reviews of those studies that summarize and offer new interpretations built from and often extending beyond the original studies. Third, there are the perceptions, conclusions, opinion, and interpretations that are shared informally that become part of the lore of field. In composing a literature review, it is important to note that it is often this third layer of knowledge that is cited as "true" even though it often has only a loose relationship to the primary studies and secondary literature reviews.

Given this, while literature reviews are designed to provide an overview and synthesis of pertinent sources you have explored, there are several approaches to how they can be done, depending upon the type of analysis underpinning your study. Listed below are definitions of types of literature reviews:

Argumentative Review      This form examines literature selectively in order to support or refute an argument, deeply imbedded assumption, or philosophical problem already established in the literature. The purpose is to develop a body of literature that establishes a contrarian viewpoint. Given the value-laden nature of some social science research [e.g., educational reform; immigration control], argumentative approaches to analyzing the literature can be a legitimate and important form of discourse. However, note that they can also introduce problems of bias when they are used to to make summary claims of the sort found in systematic reviews.

Integrative Review      Considered a form of research that reviews, critiques, and synthesizes representative literature on a topic in an integrated way such that new frameworks and perspectives on the topic are generated. The body of literature includes all studies that address related or identical hypotheses. A well-done integrative review meets the same standards as primary research in regard to clarity, rigor, and replication.

Historical Review      Few things rest in isolation from historical precedent. Historical reviews are focused on examining research throughout a period of time, often starting with the first time an issue, concept, theory, phenomena emerged in the literature, then tracing its evolution within the scholarship of a discipline. The purpose is to place research in a historical context to show familiarity with state-of-the-art developments and to identify the likely directions for future research.

Methodological Review      A review does not always focus on what someone said [content], but how they said it [method of analysis]. This approach provides a framework of understanding at different levels (i.e. those of theory, substantive fields, research approaches and data collection and analysis techniques), enables researchers to draw on a wide variety of knowledge ranging from the conceptual level to practical documents for use in fieldwork in the areas of ontological and epistemological consideration, quantitative and qualitative integration, sampling, interviewing, data collection and data analysis, and helps highlight many ethical issues which we should be aware of and consider as we go through our study.

Systematic Review      This form consists of an overview of existing evidence pertinent to a clearly formulated research question, which uses pre-specified and standardized methods to identify and critically appraise relevant research, and to collect, report, and analyse data from the studies that are included in the review. Typically it focuses on a very specific empirical question, often posed in a cause-and-effect form, such as "To what extent does A contribute to B?"

Theoretical Review      The purpose of this form is to concretely examine the corpus of theory that has accumulated in regard to an issue, concept, theory, phenomena. The theoretical literature review help establish what theories already exist, the relationships between them, to what degree the existing theories have been investigated, and to develop new hypotheses to be tested. Often this form is used to help establish a lack of appropriate theories or reveal that current theories are inadequate for explaining new or emerging research problems. The unit of analysis can focus on a theoretical concept or a whole theory or framework.

* Kennedy, Mary M. "Defining a Literature."  Educational Researcher  36 (April 2007): 139-147.

All content in this section is from The Literature Review created by Dr. Robert Larabee USC

Robinson, P. and Lowe, J. (2015),  Literature reviews vs systematic reviews.  Australian and New Zealand Journal of Public Health, 39: 103-103. doi: 10.1111/1753-6405.12393

of scientific literature review

What's in the name? The difference between a Systematic Review and a Literature Review, and why it matters . By Lynn Kysh from University of Southern California

Diagram for "What's in the name? The difference between a Systematic Review and a Literature Review, and why it matters"

Systematic review or meta-analysis?

A  systematic review  answers a defined research question by collecting and summarizing all empirical evidence that fits pre-specified eligibility criteria.

A  meta-analysis  is the use of statistical methods to summarize the results of these studies.

Systematic reviews, just like other research articles, can be of varying quality. They are a significant piece of work (the Centre for Reviews and Dissemination at York estimates that a team will take 9-24 months), and to be useful to other researchers and practitioners they should have:

  • clearly stated objectives with pre-defined eligibility criteria for studies
  • explicit, reproducible methodology
  • a systematic search that attempts to identify all studies
  • assessment of the validity of the findings of the included studies (e.g. risk of bias)
  • systematic presentation, and synthesis, of the characteristics and findings of the included studies

Not all systematic reviews contain meta-analysis. 

Meta-analysis is the use of statistical methods to summarize the results of independent studies. By combining information from all relevant studies, meta-analysis can provide more precise estimates of the effects of health care than those derived from the individual studies included within a review.  More information on meta-analyses can be found in  Cochrane Handbook, Chapter 9 .

A meta-analysis goes beyond critique and integration and conducts secondary statistical analysis on the outcomes of similar studies.  It is a systematic review that uses quantitative methods to synthesize and summarize the results.

An advantage of a meta-analysis is the ability to be completely objective in evaluating research findings.  Not all topics, however, have sufficient research evidence to allow a meta-analysis to be conducted.  In that case, an integrative review is an appropriate strategy. 

Some of the content in this section is from Systematic reviews and meta-analyses: step by step guide created by Kate McAllister.

  • << Previous: Getting Started
  • Next: Research Design >>
  • Last Updated: Jul 15, 2024 10:34 AM
  • URL: https://guides.lib.udel.edu/researchmethods

Enago Academy

How to Write a Good Scientific Literature Review

' src=

Nowadays, there is a huge demand for scientific literature reviews as they are especially appreciated by scholars or researchers when designing their research proposals. While finding information is less of a problem to them, discerning which paper or publication has enough quality has become one of the biggest issues. Literature reviews narrow the current knowledge on a certain field and examine the latest publications’ strengths and weaknesses. This way, they are priceless tools not only for those who are starting their research, but also for all those interested in recent publications. To be useful, literature reviews must be written in a professional way with a clear structure. The amount of work needed to write a scientific literature review must be considered before starting one since the tasks required can overwhelm many if the working method is not the best.

Designing and Writing a Scientific Literature Review

Writing a scientific review implies both researching for relevant academic content and writing , however, writing without having a clear objective is a common mistake. Sometimes, studying the situation and defining the work’s system is so important and takes equally as much time as that required in writing the final result. Therefore, we suggest that you divide your path into three steps.

Define goals and a structure

Think about your target and narrow down your topic. If you don’t choose a well-defined topic, you can find yourself dealing with a wide subject and plenty of publications about it. Remember that researchers usually deal with really specific fields of study.

It is time to be a critic and locate only pertinent publications. While researching for content consider publications that were written 3 years ago at the most. Write notes and summarize the content of each paper as that will help you in the next step.

Time to write

Check some literature review examples to decide how to start writing a good literature review . When your goals and structure are defined, begin writing without forgetting your target at any moment.

Related: Conducting a literature survey? Wish to learn more about scientific misconduct? Check out this resourceful infographic.

Here you have a to-do list to help you write your review :

Review Article

  • A scientific literature review usually includes a title, abstract, index, introduction, corpus, bibliography, and appendices (if needed).
  • Present the problem clearly.
  • Mention the paper’s methodology, research methods, analysis, instruments, etc.
  • Present literature review examples that can help you express your ideas.
  • Remember to cite accurately.
  • Limit your bias
  • While summarizing also identify strengths and weaknesses as this is critical.

Scholars and researchers are usually the best candidates to write scientific literature reviews, not only because they are experts in a certain field, but also because they know the exigencies and needs that researchers have while writing research proposals or looking for information among thousands of academic papers. Therefore, considering your experience as a researcher can help you understand how to write a scientific literature review.

Have you faced challenges while drafting your first literature review? How do you think can these tips help you in acing your next literature review? Let us know in the comments section below! You can also visit our  Q&A forum  for frequently asked questions related to copyrights answered by our team that comprises eminent researchers and publication experts.

of scientific literature review

Thank you for your information. It adds knowledge on critical review being a first time to do it, it helps a lot.

yes. i would like to ndertake the course Bio ststistics

Rate this article Cancel Reply

Your email address will not be published.

of scientific literature review

Enago Academy's Most Popular Articles

Best AI-Based Literature Review Tools

  • Reporting Research

AI Assistance in Academia for Searching Credible Scholarly Sources

The journey of academia is a grand quest for knowledge, more specifically an adventure to…

Writing a Literature Review

  • Manuscripts & Grants

Writing a Research Literature Review? — Here are tips to guide you through!

Literature review is both a process and a product. It involves searching within a defined…

article summarizer

  • AI in Academia

How to Scan Through Millions of Articles and Still Cut Down on Your Reading Time — Why not do it with an AI-based article summarizer?

Researcher 1: “It’s flooding articles every time I switch on my laptop!” Researcher 2: “Why…

literature mapping

How to Master at Literature Mapping: 5 Most Recommended Tools to Use

This article is also available in: Turkish, Spanish, Russian, and Portuguese

of scientific literature review

  • Old Webinars
  • Webinar Mobile App

Improving Your Chances of Publication in International Peer-reviewed Journals

Types of literature reviews Tips for writing review articles Role of meta-analysis Reporting guidelines

How to Scan Through Millions of Articles and Still Cut Down on Your Reading Time —…

of scientific literature review

Sign-up to read more

Subscribe for free to get unrestricted access to all our resources on research writing and academic publishing including:

  • 2000+ blog articles
  • 50+ Webinars
  • 10+ Expert podcasts
  • 50+ Infographics
  • 10+ Checklists
  • Research Guides

We hate spam too. We promise to protect your privacy and never spam you.

  • Industry News
  • Publishing Research
  • Promoting Research
  • Career Corner
  • Diversity and Inclusion
  • Infographics
  • Expert Video Library
  • Other Resources
  • Enago Learn
  • Upcoming & On-Demand Webinars
  • Peer Review Week 2024
  • Open Access Week 2023
  • Conference Videos
  • Enago Report
  • Journal Finder
  • Enago Plagiarism & AI Grammar Check
  • Editing Services
  • Publication Support Services
  • Research Impact
  • Translation Services
  • Publication solutions
  • AI-Based Solutions
  • Thought Leadership
  • Call for Articles
  • Call for Speakers
  • Author Training
  • Edit Profile

I am looking for Editing/ Proofreading services for my manuscript Tentative date of next journal submission:

of scientific literature review

In your opinion, what is the most effective way to improve integrity in the peer review process?

Loading metrics

Open Access

Ten Simple Rules for Writing a Literature Review

* E-mail: [email protected]

Affiliations Centre for Functional and Evolutionary Ecology (CEFE), CNRS, Montpellier, France, Centre for Biodiversity Synthesis and Analysis (CESAB), FRB, Aix-en-Provence, France

  • Marco Pautasso

PLOS

Published: July 18, 2013

  • https://doi.org/10.1371/journal.pcbi.1003149
  • Reader Comments

Figure 1

Citation: Pautasso M (2013) Ten Simple Rules for Writing a Literature Review. PLoS Comput Biol 9(7): e1003149. https://doi.org/10.1371/journal.pcbi.1003149

Editor: Philip E. Bourne, University of California San Diego, United States of America

Copyright: © 2013 Marco Pautasso. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was funded by the French Foundation for Research on Biodiversity (FRB) through its Centre for Synthesis and Analysis of Biodiversity data (CESAB), as part of the NETSEED research project. The funders had no role in the preparation of the manuscript.

Competing interests: The author has declared that no competing interests exist.

Literature reviews are in great demand in most scientific fields. Their need stems from the ever-increasing output of scientific publications [1] . For example, compared to 1991, in 2008 three, eight, and forty times more papers were indexed in Web of Science on malaria, obesity, and biodiversity, respectively [2] . Given such mountains of papers, scientists cannot be expected to examine in detail every single new paper relevant to their interests [3] . Thus, it is both advantageous and necessary to rely on regular summaries of the recent literature. Although recognition for scientists mainly comes from primary research, timely literature reviews can lead to new synthetic insights and are often widely read [4] . For such summaries to be useful, however, they need to be compiled in a professional way [5] .

When starting from scratch, reviewing the literature can require a titanic amount of work. That is why researchers who have spent their career working on a certain research issue are in a perfect position to review that literature. Some graduate schools are now offering courses in reviewing the literature, given that most research students start their project by producing an overview of what has already been done on their research issue [6] . However, it is likely that most scientists have not thought in detail about how to approach and carry out a literature review.

Reviewing the literature requires the ability to juggle multiple tasks, from finding and evaluating relevant material to synthesising information from various sources, from critical thinking to paraphrasing, evaluating, and citation skills [7] . In this contribution, I share ten simple rules I learned working on about 25 literature reviews as a PhD and postdoctoral student. Ideas and insights also come from discussions with coauthors and colleagues, as well as feedback from reviewers and editors.

Rule 1: Define a Topic and Audience

How to choose which topic to review? There are so many issues in contemporary science that you could spend a lifetime of attending conferences and reading the literature just pondering what to review. On the one hand, if you take several years to choose, several other people may have had the same idea in the meantime. On the other hand, only a well-considered topic is likely to lead to a brilliant literature review [8] . The topic must at least be:

  • interesting to you (ideally, you should have come across a series of recent papers related to your line of work that call for a critical summary),
  • an important aspect of the field (so that many readers will be interested in the review and there will be enough material to write it), and
  • a well-defined issue (otherwise you could potentially include thousands of publications, which would make the review unhelpful).

Ideas for potential reviews may come from papers providing lists of key research questions to be answered [9] , but also from serendipitous moments during desultory reading and discussions. In addition to choosing your topic, you should also select a target audience. In many cases, the topic (e.g., web services in computational biology) will automatically define an audience (e.g., computational biologists), but that same topic may also be of interest to neighbouring fields (e.g., computer science, biology, etc.).

Rule 2: Search and Re-search the Literature

After having chosen your topic and audience, start by checking the literature and downloading relevant papers. Five pieces of advice here:

  • keep track of the search items you use (so that your search can be replicated [10] ),
  • keep a list of papers whose pdfs you cannot access immediately (so as to retrieve them later with alternative strategies),
  • use a paper management system (e.g., Mendeley, Papers, Qiqqa, Sente),
  • define early in the process some criteria for exclusion of irrelevant papers (these criteria can then be described in the review to help define its scope), and
  • do not just look for research papers in the area you wish to review, but also seek previous reviews.

The chances are high that someone will already have published a literature review ( Figure 1 ), if not exactly on the issue you are planning to tackle, at least on a related topic. If there are already a few or several reviews of the literature on your issue, my advice is not to give up, but to carry on with your own literature review,

thumbnail

  • PPT PowerPoint slide
  • PNG larger image
  • TIFF original image

The bottom-right situation (many literature reviews but few research papers) is not just a theoretical situation; it applies, for example, to the study of the impacts of climate change on plant diseases, where there appear to be more literature reviews than research studies [33] .

https://doi.org/10.1371/journal.pcbi.1003149.g001

  • discussing in your review the approaches, limitations, and conclusions of past reviews,
  • trying to find a new angle that has not been covered adequately in the previous reviews, and
  • incorporating new material that has inevitably accumulated since their appearance.

When searching the literature for pertinent papers and reviews, the usual rules apply:

  • be thorough,
  • use different keywords and database sources (e.g., DBLP, Google Scholar, ISI Proceedings, JSTOR Search, Medline, Scopus, Web of Science), and
  • look at who has cited past relevant papers and book chapters.

Rule 3: Take Notes While Reading

If you read the papers first, and only afterwards start writing the review, you will need a very good memory to remember who wrote what, and what your impressions and associations were while reading each single paper. My advice is, while reading, to start writing down interesting pieces of information, insights about how to organize the review, and thoughts on what to write. This way, by the time you have read the literature you selected, you will already have a rough draft of the review.

Of course, this draft will still need much rewriting, restructuring, and rethinking to obtain a text with a coherent argument [11] , but you will have avoided the danger posed by staring at a blank document. Be careful when taking notes to use quotation marks if you are provisionally copying verbatim from the literature. It is advisable then to reformulate such quotes with your own words in the final draft. It is important to be careful in noting the references already at this stage, so as to avoid misattributions. Using referencing software from the very beginning of your endeavour will save you time.

Rule 4: Choose the Type of Review You Wish to Write

After having taken notes while reading the literature, you will have a rough idea of the amount of material available for the review. This is probably a good time to decide whether to go for a mini- or a full review. Some journals are now favouring the publication of rather short reviews focusing on the last few years, with a limit on the number of words and citations. A mini-review is not necessarily a minor review: it may well attract more attention from busy readers, although it will inevitably simplify some issues and leave out some relevant material due to space limitations. A full review will have the advantage of more freedom to cover in detail the complexities of a particular scientific development, but may then be left in the pile of the very important papers “to be read” by readers with little time to spare for major monographs.

There is probably a continuum between mini- and full reviews. The same point applies to the dichotomy of descriptive vs. integrative reviews. While descriptive reviews focus on the methodology, findings, and interpretation of each reviewed study, integrative reviews attempt to find common ideas and concepts from the reviewed material [12] . A similar distinction exists between narrative and systematic reviews: while narrative reviews are qualitative, systematic reviews attempt to test a hypothesis based on the published evidence, which is gathered using a predefined protocol to reduce bias [13] , [14] . When systematic reviews analyse quantitative results in a quantitative way, they become meta-analyses. The choice between different review types will have to be made on a case-by-case basis, depending not just on the nature of the material found and the preferences of the target journal(s), but also on the time available to write the review and the number of coauthors [15] .

Rule 5: Keep the Review Focused, but Make It of Broad Interest

Whether your plan is to write a mini- or a full review, it is good advice to keep it focused 16 , 17 . Including material just for the sake of it can easily lead to reviews that are trying to do too many things at once. The need to keep a review focused can be problematic for interdisciplinary reviews, where the aim is to bridge the gap between fields [18] . If you are writing a review on, for example, how epidemiological approaches are used in modelling the spread of ideas, you may be inclined to include material from both parent fields, epidemiology and the study of cultural diffusion. This may be necessary to some extent, but in this case a focused review would only deal in detail with those studies at the interface between epidemiology and the spread of ideas.

While focus is an important feature of a successful review, this requirement has to be balanced with the need to make the review relevant to a broad audience. This square may be circled by discussing the wider implications of the reviewed topic for other disciplines.

Rule 6: Be Critical and Consistent

Reviewing the literature is not stamp collecting. A good review does not just summarize the literature, but discusses it critically, identifies methodological problems, and points out research gaps [19] . After having read a review of the literature, a reader should have a rough idea of:

  • the major achievements in the reviewed field,
  • the main areas of debate, and
  • the outstanding research questions.

It is challenging to achieve a successful review on all these fronts. A solution can be to involve a set of complementary coauthors: some people are excellent at mapping what has been achieved, some others are very good at identifying dark clouds on the horizon, and some have instead a knack at predicting where solutions are going to come from. If your journal club has exactly this sort of team, then you should definitely write a review of the literature! In addition to critical thinking, a literature review needs consistency, for example in the choice of passive vs. active voice and present vs. past tense.

Rule 7: Find a Logical Structure

Like a well-baked cake, a good review has a number of telling features: it is worth the reader's time, timely, systematic, well written, focused, and critical. It also needs a good structure. With reviews, the usual subdivision of research papers into introduction, methods, results, and discussion does not work or is rarely used. However, a general introduction of the context and, toward the end, a recapitulation of the main points covered and take-home messages make sense also in the case of reviews. For systematic reviews, there is a trend towards including information about how the literature was searched (database, keywords, time limits) [20] .

How can you organize the flow of the main body of the review so that the reader will be drawn into and guided through it? It is generally helpful to draw a conceptual scheme of the review, e.g., with mind-mapping techniques. Such diagrams can help recognize a logical way to order and link the various sections of a review [21] . This is the case not just at the writing stage, but also for readers if the diagram is included in the review as a figure. A careful selection of diagrams and figures relevant to the reviewed topic can be very helpful to structure the text too [22] .

Rule 8: Make Use of Feedback

Reviews of the literature are normally peer-reviewed in the same way as research papers, and rightly so [23] . As a rule, incorporating feedback from reviewers greatly helps improve a review draft. Having read the review with a fresh mind, reviewers may spot inaccuracies, inconsistencies, and ambiguities that had not been noticed by the writers due to rereading the typescript too many times. It is however advisable to reread the draft one more time before submission, as a last-minute correction of typos, leaps, and muddled sentences may enable the reviewers to focus on providing advice on the content rather than the form.

Feedback is vital to writing a good review, and should be sought from a variety of colleagues, so as to obtain a diversity of views on the draft. This may lead in some cases to conflicting views on the merits of the paper, and on how to improve it, but such a situation is better than the absence of feedback. A diversity of feedback perspectives on a literature review can help identify where the consensus view stands in the landscape of the current scientific understanding of an issue [24] .

Rule 9: Include Your Own Relevant Research, but Be Objective

In many cases, reviewers of the literature will have published studies relevant to the review they are writing. This could create a conflict of interest: how can reviewers report objectively on their own work [25] ? Some scientists may be overly enthusiastic about what they have published, and thus risk giving too much importance to their own findings in the review. However, bias could also occur in the other direction: some scientists may be unduly dismissive of their own achievements, so that they will tend to downplay their contribution (if any) to a field when reviewing it.

In general, a review of the literature should neither be a public relations brochure nor an exercise in competitive self-denial. If a reviewer is up to the job of producing a well-organized and methodical review, which flows well and provides a service to the readership, then it should be possible to be objective in reviewing one's own relevant findings. In reviews written by multiple authors, this may be achieved by assigning the review of the results of a coauthor to different coauthors.

Rule 10: Be Up-to-Date, but Do Not Forget Older Studies

Given the progressive acceleration in the publication of scientific papers, today's reviews of the literature need awareness not just of the overall direction and achievements of a field of inquiry, but also of the latest studies, so as not to become out-of-date before they have been published. Ideally, a literature review should not identify as a major research gap an issue that has just been addressed in a series of papers in press (the same applies, of course, to older, overlooked studies (“sleeping beauties” [26] )). This implies that literature reviewers would do well to keep an eye on electronic lists of papers in press, given that it can take months before these appear in scientific databases. Some reviews declare that they have scanned the literature up to a certain point in time, but given that peer review can be a rather lengthy process, a full search for newly appeared literature at the revision stage may be worthwhile. Assessing the contribution of papers that have just appeared is particularly challenging, because there is little perspective with which to gauge their significance and impact on further research and society.

Inevitably, new papers on the reviewed topic (including independently written literature reviews) will appear from all quarters after the review has been published, so that there may soon be the need for an updated review. But this is the nature of science [27] – [32] . I wish everybody good luck with writing a review of the literature.

Acknowledgments

Many thanks to M. Barbosa, K. Dehnen-Schmutz, T. Döring, D. Fontaneto, M. Garbelotto, O. Holdenrieder, M. Jeger, D. Lonsdale, A. MacLeod, P. Mills, M. Moslonka-Lefebvre, G. Stancanelli, P. Weisberg, and X. Xu for insights and discussions, and to P. Bourne, T. Matoni, and D. Smith for helpful comments on a previous draft.

  • 1. Rapple C (2011) The role of the critical review article in alleviating information overload. Annual Reviews White Paper. Available: http://www.annualreviews.org/userimages/ContentEditor/1300384004941/Annual_Reviews_WhitePaper_Web_2011.pdf . Accessed May 2013.
  • View Article
  • Google Scholar
  • 7. Budgen D, Brereton P (2006) Performing systematic literature reviews in software engineering. Proc 28th Int Conf Software Engineering, ACM New York, NY, USA, pp. 1051–1052. doi: https://doi.org/10.1145/1134285.1134500 .
  • 16. Eco U (1977) Come si fa una tesi di laurea. Milan: Bompiani.
  • 17. Hart C (1998) Doing a literature review: releasing the social science research imagination. London: SAGE.
  • 21. Ridley D (2008) The literature review: a step-by-step guide for students. London: SAGE.

Research in the Biological and Life Sciences: A Guide for Cornell Researchers: Literature Reviews

  • Books and Dissertations
  • Databases and Journals
  • Locating Theses
  • Resource Not at Cornell?
  • Citing Sources
  • Staying Current
  • Measuring your research impact
  • Plagiarism and Copyright
  • Data Management
  • Literature Reviews
  • Evidence Synthesis and Systematic Reviews
  • Writing an Honors Thesis
  • Poster Making and Printing
  • Research Help

What is a Literature Review?

A literature review is a body of text that aims to review the critical points of current knowledge on a particular topic. Most often associated with science-oriented literature, such as a thesis, the literature review usually proceeds a research proposal, methodology and results section. Its ultimate goals is to bring the reader up to date with current literature on a topic and forms that basis for another goal, such as the justification for future research in the area. (retrieved from  http://en.wikipedia.org/wiki/Literature_review )

Writing a Literature Review

The literature review is the section of your paper in which you cite and briefly review the related research studies that have been conducted. In this space, you will describe the foundation on which  your  research will be/is built. You will:

  • discuss the work of others
  • evaluate their methods and findings
  • identify any gaps in their research
  • state how  your  research is different

The literature review should be selective and should group the cited studies in some logical fashion.

If you need some additional assistance writing your literature review, the Knight Institute for Writing in the Disciplines offers a  Graduate Writing Service .

Demystifying the Literature Review

For more information, visit our guide devoted to " Demystifying the Literature Review " which includes:

  • guide to conducting a literature review,
  • a recorded 1.5 hour workshop covering the steps of a literature review, a checklist for drafting your topic and search terms, citation management software for organizing your results, and database searching.

Online Resources

  • A Guide to Library Research at Cornell University
  • Literature Reviews: An Overview for Graduate Students North Carolina State University 
  • The Literature Review: A Few Tips on Conducting Written by Dena Taylor, Director, Health Sciences Writing Centre, and Margaret Procter, Coordinator, Writing Support, University of Toronto
  • How to Write a Literature Review University Library, University of California, Santa Cruz
  • Review of Literature The Writing Center, University of Wisconsin-Madison

Print Resources

of scientific literature review

  • << Previous: Writing
  • Next: Evidence Synthesis and Systematic Reviews >>
  • Last Updated: Oct 25, 2023 11:28 AM
  • URL: https://guides.library.cornell.edu/bio

Exploring the factors driving AI adoption in production: a systematic literature review and future research agenda

  • Open access
  • Published: 23 August 2024

Cite this article

You have full access to this open access article

of scientific literature review

  • Heidi Heimberger   ORCID: orcid.org/0000-0003-3390-0219 1 , 2 ,
  • Djerdj Horvat   ORCID: orcid.org/0000-0003-3747-3402 1 &
  • Frank Schultmann   ORCID: orcid.org/0000-0001-6405-9763 1  

Our paper analyzes the current state of research on artificial intelligence (AI) adoption from a production perspective. We represent a holistic view on the topic which is necessary to get a first understanding of AI in a production-context and to build a comprehensive view on the different dimensions as well as factors influencing its adoption. We review the scientific literature published between 2010 and May 2024 to analyze the current state of research on AI in production. Following a systematic approach to select relevant studies, our literature review is based on a sample of articles that contribute to production-specific AI adoption. Our results reveal that the topic has been emerging within the last years and that AI adoption research in production is to date still in an early stage. We are able to systematize and explain 35 factors with a significant role for AI adoption in production and classify the results in a framework. Based on the factor analysis, we establish a future research agenda that serves as a basis for future research and addresses open questions. Our paper provides an overview of the current state of the research on the adoption of AI in a production-specific context, which forms a basis for further studies as well as a starting point for a better understanding of the implementation of AI in practice.

Explore related subjects

  • Artificial Intelligence

Avoid common mistakes on your manuscript.

1 Introduction

The technological change resulting from deep digitisation and the increasing use of digital technologies has reached and transformed many sectors [ 1 ]. In manufacturing, the development of a new industrial age, characterized by extensive automation and digitisation of processes [ 2 ], is changing the sector’s ‘technological reality’ [ 3 ] by integrating a wide range of information and communication technologies (such as Industry 4.0-related technologies) into production processes [ 4 ].

Although the evolution of AI traces back to the year 1956 (as part of the Dartmouth Conference) [ 5 ], its development has progressed rapidly, especially since the 2010s [ 6 ]. Driven by improvements, such as the fast and low-cost development of smart hardware, the enhancement of algorithms as well as the capability to manage big data [ 7 ], there is an increasing number of AI applications available for implementation today [ 8 ]. The integration of AI into production processes promises to boost the productivity, efficiency as well as automation of processes [ 9 ], but is currently still in its infancy [ 10 ] and manufacturing firms seem to still be hesitant to adopt AI in a production-context. This appears to be driven by the high complexity of AI combined with the lack of practical knowledge about its implementation in production and several other influencing factors [ 11 , 12 ].

In the literature, many contributions analyze AI from a technological perspective, mainly addressing underlying models, algorithms, and developments of AI tools. Various authors characterise both machine learning and deep learning as key technologies of AI [ 8 , 13 ], which are often applied in combination with other AI technologies, such as natural language recognition. While promising areas for AI application already exist in various domains such as marketing [ 14 ], procurement [ 15 ], supply chain management [ 16 ] or innovation management [ 17 ], the integration of AI into production processes also provides significant performance potentials, particularly in the areas of maintenance [ 18 ], quality control [ 19 ] and production planning and management [ 20 ]. However, AI adoption requires important technological foundations, such as the provision of data and the necessary infrastructure, which must be ensured [ 11 , 12 , 21 ]. Although the state of the art literature provides important insights into possible fields of application of AI in production, the question remains: To what extent are these versatile applications already in use and what is required for their successful adoption?

Besides the technology perspective of AI, a more human-oriented field of discussion is debated in scientific literature [ 22 ]. While new technologies play an essential role in driving business growth in the digital transformation of the production industry, the increasing interaction between humans and intelligent machines (also referred to as ‘augmentation’) creates stress challenges [ 23 ] and impacts work [ 24 ], which thus creates managerial challenges in organizations [ 25 , 26 ]. One of the widely discussed topics in this context is the fear of AI threatening jobs (including production jobs), which was triggered by e.g. a study of Frey, Osborne [ 27 ]. Another issue associated to the fear of machines replacing humans is the lack of acceptance resulting from the mistrust of technologies [ 28 , 29 ]. This can also be linked to the various ethical challenges involved in working with AI [ 22 ]. This perspective, which focuses on the interplay between AI and humans [ 30 ], reveals the tension triggered by AI. Although this is discussed from different angles, the question remains how these aspects influence the adoption of AI in production.

Another thematic stream of current literature can be observed in a series of contributions on the organizational aspects of the technology. In comparison to the two research areas discussed above, the number of publications in this area seems to be smaller. This perspective focuses on issues to implement AI, such as the importance of a profound management structure [ 31 , 32 ], leadership [ 33 ], implications on the organizational culture [ 34 ] as well as the need for digital capabilities and special organizational skills [ 33 ]. Although some studies on the general adoption of AI without a sectoral focus have already been conducted (such as by Chen, Tajdini [ 35 ] or Kinkel, Baumgartner, Cherubini [ 36 ]) and hence, some initial factors influencing the adoption of AI can be derived, the contributions from this perspective are still scarce, are usually not specifically analyzed in the context of production or lack a comprehensive view on the organization in AI adoption.

While non-industry specific AI issues have been researched in recent years, the current literature misses a production-specific analysis of AI adoption, providing an understanding of the possibilities and issues related to integrating AI into the production context. Moreover, the existing literature tells us little about relevant mechanisms and factors underlying the adoption of AI in production processes, which include both technical, human-centered as well as organizational issues. As organizational understanding of AI in a business context is currently still in its early stages, it is difficult to find an aggregate view on the factors that can support companies in implementing AI initiatives in production [ 37 , 38 ]. Addressing this gap, we aim to systematise the current scientific knowledge on AI adoption, with a focus on production. By drawing on a systematic literature review (SLR), we examine existing studies on AI adoption in production and explore the main issues regarding adoption that are covered in the analyzed articles. Building on these findings, we conduct a comprehensive analysis of the existing studies with the aim of systematically investigating the key factors influencing the adoption of AI in production. This systematic approach paves the way for the formulation of a future research agenda.

Our SLR addresses three research questions (RQs). RQ1: What are the statistical characteristics of existing research on AI adoption in production? To answer this RQ, we conduct descriptive statistics of the analyzed studies and provide information on time trends, methods used in the research, and country specifications. RQ2: What factors influence the adoption of AI in production? RQ2 specifies the adoption factors and forms the core component of our analysis. By adoption factors, we mean the factors that influence the use of AI in production (both positively and negatively) and that must therefore be analyzed and taken into account. RQ3: What research topics are of importance to advance the research field of AI adoption in production? We address this RQ by using the analyzed literature as well as the key factors of AI adoption as a starting point to derive RQs that are not addressed and thus provide an outlook on the topic.

2 Methodology

In order to create a sound information base for both policy makers and practitioners on the topic of AI adoption in production, this paper follows the systematic approach of a SLR. For many fields, including management research, a SLR is an important tool to capture the diversity of existing knowledge on a specific topic for a scientific investigation [ 39 ]. The investigator often pursues multiple goals, such as capturing and assessing the existing environment and advancing the existing body of knowledge with a proprietary RQ [ 39 ] or identifying key research topics [ 40 ].

Our SLR aims to select, analyze, and synthesize findings from the existing literature on AI adoption in production over the past 24 years. In order to identify relevant data for our literature synthesis, we follow the systematic approach of the Preferred Reporting Items for Systematic reviews (PRISMA) [ 41 ]. In evaluating the findings, we draw on a mixed-methods approach, combining some quantitative analyses, especially on the descriptive aspects of the selected publications, as well as qualitative analyses aimed at evaluating and comparing the contents of the papers. Figure  1 graphically summarizes the methodological approach that guides the content of the following sub-chapters.

figure 1

Methodical procedure of our SLR following PRISMA [ 41 ]

2.1 Data identification

Following the development of the specific RQs, we searched for suitable publications. To locate relevant studies, we chose to conduct a publication analysis in the databases Scopus, Web of Science and ScienceDirect as these databases primarily contain international scientific articles and provide a broad overview of the interdisciplinary research field and its findings. To align the search with the RQs [ 42 ], we applied predefined key words to search the titles, abstracts, and keywords of Scopus, Web of Science and ScienceDirect articles. Our research team conducted several pre-tests to determine the final search commands for which the test results were on target and increased the efficiency of the search [ 42 ]. Using the combination of Boolean operators, we covered the three topics of AI, production, and adoption by searching combinations of ‘Artificial Intelligence’ AND ‘production or manufacturing’ AND ‘adopt*’ in the three scientific databases. Although ‘manufacturing’ tends to stand for the whole sector and ‘production’ refers to the process, the two terms are often used to describe the same context. We also follow the view of Burbidge, Falster, Riis, Svendsen [ 43 ] and use the terms synonymously in this paper and therefore also include both terms as keywords in the study location as well as in the analysis.

AI research has been credited with a resurgence since 2010 [ 6 ], which is the reason for our choice of time horizon. Due to the increase in publications within the last years, we selected articles published online from 2010 to May 8, 2024 for our analysis. As document types, we included conference papers, articles, reviews, book chapters, conference reviews as well as books, focusing exclusively on contributions in English in the final publication stage. The result of the study location is a list of 3,833 documents whose titles, abstracts, and keywords meet the search criteria and are therefore included in the next step of the analysis.

2.2 Data analysis

For these 3,833 documents, we then conducted an abstract analysis, ‘us[ing] a set of explicit selection criteria to assess the relevance of each study found to see if it actually does address the research question’ [ 42 ]. For this step, we again conducted double-blind screenings (including a minimum of two reviewers) as pilot searches so that all reviewers have the same understanding of the decision rules and make equal decisions regarding their inclusion for further analysis.

To ensure the paper’s focus on all three topics regarded in our research (AI, production, and adoption), we followed clearly defined rules of inclusion and exclusion that all reviewers had to follow in the review process. As a first requirement for inclusion, AI must be the technology in focus that is analysed in the publication. If AI was only mentioned and not further specified, we excluded the publication. With a second requirement, we checked the papers for the context of analysis, which in our case must be production. If the core focus is beyond production, the publication was also excluded from further analysis. The third prerequisite for further consideration of the publication is the analysis of the adoption of a technology in the paper. If technology adoption is not addressed or adoption factors are not considered, we excluded the paper. An article was only selected for full-text analysis if, after analyzing the titles, abstracts, and keywords, a clear focus on all three research areas was visible and the inclusion criteria were met for all three contexts.

By using this tripartite inclusion analysis, we were able to analyse the publications in a structured way and to reduce the 3,833 selected documents in our double-blind approach to 300 articles that were chosen for the full-text analysis. In the process of finding full versions of these publications, we had to exclude three papers as we could not access them. For the rest of the 297 articles we obtained full access and thus included them for further analysis. After a thorough examination of the full texts, we again had to exclude 249 publications because they did not meet our content-related inclusion criteria mentioned above, although the abstract analysis gave indications that they did. As a result, we finally obtained 47 selected papers on which we base the literature analysis and synthesis (see Fig.  1 ).

2.3 Descriptive analysis

Figure  2 summarises the results of the descriptive analysis on the selected literature regarding AI adoption in production that we analyse in our SLR. From Fig.  2 a), which illustrates annual publication trends (2010–2024), the increase in publications on AI adoption in production over the past 5 years is evident, yet slightly declining after a peak in 2022. After a steady increase until 2022, in which 11 articles are included in the final analysis, 2023 features ten articles, followed by three articles for 2024 until the cut-off date in May 2024. Of the 47 papers identified through our search, the majority (n = 33) are peer-reviewed journal articles and the remaining thirteen contributions conference proceedings and one book chapter (see Fig.  2 b)).

figure 2

Descriptive analyses of the selected articles addressing AI adoption in production

The identified contributions reveal some additional characteristics in terms of the authors country base (Fig.  2 c)) and research methods used (Fig.  2 d)). Almost four out of ten of the publications were written in collaboration with authors from several countries (n = 19). Six of the papers were published by authors from the United States, five from Germany and four from India. In terms of the applied research methods used by the researchers, a wide range of methods is used (see Fig.  2 c), with qualitative methods (n = 22) being the most frequently used.

2.4 Factor analysis

In order to derive a comprehensive list of factors that influence the use of AI in production at different levels, we follow a qualitative content analysis. It is based on inductive category development, avoiding prefabricated categories in order to allow new categories to emerge based on the content at hand [ 44 , 45 ]. To do this, we first read the entire text to gain an understanding of the content and then derive codes [ 46 ] that seem to capture key ideas [ 45 ]. The codes are subsequently sorted into distinct categories, each of which is clearly defined and establishes meaningful connections between different codes. Based on an iterative process with feedback loops, the assigned categories are continuously reviewed and updated as revisions are made [ 44 ].

Various factors at different levels are of significance to AI and influence technology adoption [ 47 , 48 ]. To identify the specific factors that are of importance for AI adoption in production, we analyze the selected contributions in terms of the factors considered, compare them with each other and consequently obtain a list of factors through a bottom-up approach. While some of the factors are based on empirical findings, others are expected factors that result from the research findings of the respective studies. Through our analysis, a list of 35 factors emerges that influence AI adoption in production which occur with varying frequency in the studies analyzed by our SLR. Table 1 visualizes each factor in the respective contributions sorted by the frequency of occurrence.

The presence of skills is considered a particularly important factor in AI adoption in the studies analyzed (n = 35). The availability of data (n = 25) as well as the need for ethical guidelines (n = 24) are also seen as key drivers of AI adoption, as data is seen as the basis for the implementation of AI and ethical issues must be addressed in handling such an advanced technology. As such, these three factors make up the accelerants of AI adoption in production that are most frequently cited in the studies analyzed.

Also of importance are issues of managerial support (n = 22), as well as performance measures and IT infrastructure (n = 20). Some factors were also mentioned, but only addressed by one study at a time: government support, industrial sector, product complexity, batch size, and R&D Intensity. These factors are often used as quantitatively measurable adoption factors, especially in empirical surveys, such the study by Kinkel, Baumgartner, Cherubini [ 36 ].

3 Factors influencing AI adoption

The 35 factors presented characteristically in Sect.  2.4 serve as the basis for our in-depth analysis and for developing a framework of influences on AI adoption in production which are grouped into supercategories. A supercategory describes a cluster of topics to which various factors of AI adoption in production can be assigned. We were able to define seven categories that influence AI adoption in production: the internal influences of ‘business and structure’, ‘organizational effectiveness’, ‘technology and system’, ‘data management’ as well as the external influences of the ‘regulatory environment’, ‘business environment’ and ‘economic environment’ (see Fig.  3 ). The factors that were mentioned most frequently (occurrence in at least half of the papers analyzed) are marked accordingly (*) in Fig.  3 .

figure 3

Framework of factors influencing AI adoption in production

3.1 Internal Environment

The internal influences on AI adoption in production refer to factors that an organization carries internally and that thus also influence adoption from within. Such factors can usually be influenced and clearly controlled by the organization itself.

3.1.1 Business and structure

The supercategory ‘business and structure’ includes the various factors and characteristics that impact a company’s performance, operations, and strategic decision-making. By considering and analyzing these business variables when implementing AI in production processes, companies can develop effective strategies to optimize their performance, increase their competitiveness, and adapt to changes in the business environment.

To understand and grasp the benefits in the use of AI, quantitative performance measures for the current and potential use of AI in industrial production systems help to clarify the value and potential benefits of AI use [ 49 , 54 , 74 , 79 , 91 ]. Assessing possible risks [ 77 ] as well as the monetary expected benefits for AI (e.g. Return on Investment (ROI)) in production plays an important role for adoption decisions in market-oriented companies [ 57 , 58 , 63 , 65 , 78 ]. Due to financial constraints, managers behave cautiously in their investments [ 78 ], so they need to evaluate AI adoption as financially viable to want to make the investment [ 61 , 63 , 93 ] and also drive acceptance [ 60 ]. AI systems can significantly improve cost–benefit structures in manufacturing, thereby increasing the profitability of production systems [ 73 ] and making companies more resilient [ 75 ]. However, in most cases, the adoption of AI requires high investments and the allocation of resources (s.a. personnel or financial) for this purpose [ 50 , 51 , 57 , 80 , 94 ]. Consequently, a lack of budgets and high expected transition costs often hinder the implementation of smart concepts [ 56 , 62 , 67 , 82 , 84 , 92 ]. It is up to management to provide necessary funding for AI adoption [ 53 , 59 , 79 ], which is required, for example, for skill development of employees [ 59 , 61 , 63 ], IT adaptation [ 62 , 66 ], AI development [ 74 ] or hardware deployment [ 68 ]. In their empirical study, Kinkel, Baumgartner, Cherubini [ 36 ] confirm a positive correlation between company size and the intensity in the use of AI technologies. Large companies generally stand out with a higher propensity to adopt [ 53 ] as they have less difficulties in comparison to small firms regarding the availability of resources [ 69 ], such as know-how, budget [ 68 , 84 ] and general data organization [ 68 ]. Others argue that small companies tend to be more open to change and are characterized by faster decision-making processes [ 68 , 93 ]. Product complexity also influences a company’s propensity for AI. Companies that produce rather simple products are more likely to digitize, which in turn offers good starting points for AI adoption. On the other hand, complex product manufacturers (often characterized by small batch sizes) are often less able to standardize and automate [ 36 ]. The company’s produced batch size has a similar influence on AI adoption. Small and medium batch sizes in particular hinder the integration of intelligent technologies, as less automation often prevails here as well. Nevertheless, even small and medium lot sizes can benefit economically from AI [ 36 ]. Since a high R&D intensity indicates a high innovation capability of a company, it is assumed to have a positive influence on AI adoption, as companies with a high R&D intensity already invest heavily in and use new innovations. This in turn speaks for existing competencies, know how and structures [ 36 ].

3.1.2 Organizational effectiveness

This supercategory focuses on the broader aspects that contribute to the effectiveness, development, and success of an organization when implementing AI in a production context. As the factors are interconnected and influence each other, decision makers should consider them carefully.

Users´ trust in AI is an essential factor to enable successful AI adoption and use in production [ 52 , 68 , 78 , 79 , 88 , 90 ]. From the users´ perspective, AI often exhibits the characteristics of a black box because its inherent processes are not fully understood [ 50 , 90 ] which can lead individuals to develop a fear towards the unknown [ 71 ]. Because of this lack of understanding, successful interaction between humans and AI is not guaranteed [ 90 ], as trust is a foundation for decisions that machines are intended to make autonomously [ 52 , 91 ]. To strengthen faith in AI systems [ 76 , 80 ], AI users can be involved in AI design processes in order to understand appropriate tools [ 54 , 90 ]. In this context, trust is also discussed in close connection with transparency and regulation [ 79 ]. User resistance is considered a barrier to implementing new information technologies, as adoption requires change [ 53 , 62 , 92 ]. Ignorance, as a kind of resistance to change, is a main obstacle to successful digital transformation [ 51 , 56 , 65 ]. Some employees may resist the change brought about by AI because they fear losing their jobs [ 52 ] or have other concerns [ 78 ]. Overcoming resistance to technology adoption requires organizational change and is critical for the success of adoption [ 50 , 51 , 62 , 67 , 71 , 80 ]. Therefore, change management is important to create awareness of the importance of AI adoption and increase acceptance of the workforce [ 66 , 68 , 74 , 83 ]. Management commitment is seen as a significant driver of technology adoption [ 53 , 59 , 81 , 82 , 86 ] and a lack of commitment can negatively impact user adoption and workforce trust and lead to skepticism towards technology [ 86 ]. The top management’s understanding and support for the benefits of the adopted technology [ 53 , 56 , 67 , 78 , 93 , 94 ] enhances AI adoption, can prioritize its implementation and also affects the performance of the AI-enabled application [ 55 , 60 , 83 ]. Preparing, enabling, and thus empowering the workforce, are considered the management’s responsibility in the adoption of digital technologies [ 59 , 75 ]. This requires intelligent leadership [ 52 ] as decision makers need to integrate their workforce into decision-making processes [ 75 ]. Guidelines can support managers by providing access to best practices that help in the adoption of AI [ 50 ]. Critical measures to manage organizational change include the empowerment of visionaries or appointed AI champions leading the change and the collaborative development of digital roadmaps [ 54 , 62 ]. To demonstrate management commitment, managers can create such a dedicated role, consisting of an individual or a small group that is actively and enthusiastically committed to AI adoption in production. This body is considered the adoption manager, point of contact and internal driver of adoption [ 62 , 74 , 80 ]. AI initiatives in production do not necessarily have to be initiated by management. Although management support is essential for successful AI adoption, employees can also actively drive integration initially and thus realize pilot projects or initial trials [ 66 , 80 ]. The development of strategies as well as roadmaps is considered another enabling and necessary factor for the adoption of AI in production [ 50 , 53 , 54 , 62 , 71 , 93 ]. While many major AI strategies already exist at country level to further promote research and development of AI [ 87 ], strategy development is also important at the firm level [ 76 , 77 , 81 ]. In this context, strategies should not be delegated top-down, but be developed in a collaborative manner, i.e. by engaging the workforce [ 75 ] and be in alignment with clear visions [ 91 , 94 ]. Roadmaps are used to improve planning, support implementation, facilitate the adoption of smart technologies in manufacturing [ 93 ] and should be integrated into both business and IT strategy [ 62 , 66 ]. In practice, clear adoption roadmaps that provide approaches on how to effectively integrate AI into existing strategies and businesses are often lacking [ 56 , 87 ]. The need for AI-related skills in organizations is a widely discussed topic in AI adoption analyses [ 79 ]. In this context, the literature points both at the need for specific skills in the development and design of AI applications [ 57 , 71 , 72 , 73 , 76 , 93 ] as well as the skills in using the technology [ 53 , 65 , 73 , 74 , 75 , 84 , 93 ] which availability in the firm is not always given [ 49 ]. AI requires new digital skills [ 36 , 50 , 52 , 55 , 56 , 59 , 61 , 63 , 66 , 78 , 80 ], where e.g. advanced analytics [ 64 , 75 , 81 ], programming skills [ 68 ] and cybersecurity skills [ 78 , 93 ] gain importance. The lack of skills required for AI is seen as a major challenge of digital transformation, as a skilled workforce is considered a key resource for companies [ 51 , 54 , 56 , 60 , 62 , 67 , 69 , 70 , 82 , 93 ]. This lack of a necessary skillset hinders the adoption of AI tools in production systems [ 58 , 77 ]. Closely related to skills is the need for new training concepts, which organizations need to consider when integrating digital technologies [ 49 , 50 , 51 , 56 , 59 , 63 , 71 , 74 , 75 ]. Firms must invest in qualification in order to create necessary competences [ 73 , 78 , 80 , 81 , 92 ]. Additionally, education must target and further develop the skills required for effectively integrating intelligent technologies into manufacturing processes [ 54 , 61 , 62 , 83 ]. Regarding this issue, academic institutions must develop fitting curricula for data driven manufacturing engineering [ 64 ]. Another driving factor of AI adoption is the innovation culture of an organization, which is influenced by various drivers. For example, companies that operate in an environment with high innovation rates, facing intense competitive pressures are considered more likely to see smart technologies as a tool for strategic change [ 83 , 91 , 93 ]. These firms often invest in more expensive and advanced smart technologies as the pressure and resulting competition forces them to innovate [ 93 ]. Another way of approach this is that innovation capability can also be supported and complemented by AI, for example by intelligent systems supporting humans in innovation or even innovating on their own [ 52 ].The entrepreneurial orientation of a firm is characterized in particular by innovativeness [ 66 ], productivity [ 63 ], risk-taking [ 86 ] as well as continuous improvement [ 50 ]. Such characteristics of an innovating culture are considered essential for companies to recognise dynamic changes in the market and make adoption decisions [ 51 , 71 , 81 , 84 , 86 , 94 ]. The prevalence of a digital mindset in companies is important for technology adoption, as digital transformation affects the entire organizational culture and behavior [ 59 , 80 , 92 ] and a lack of a digital culture [ 50 , 65 ] as well as a ‘passive mindset’ [ 78 ] can hinder the digital transformation of firms. Organizations need to develop a corresponding culture [ 66 , 67 , 71 ], also referred to as ‘AI-ready-culture’ [ 54 ], that promotes development and encourages people and data through the incorporation of technology [ 71 , 75 ]. With the increasing adoption of smart technologies, a ‘new digital normal’ is emerging, characterized by hybrid work models, more human–machine interactions and an increased use of digital technologies [ 75 , 83 ].

3.1.3 Technology and System

The ‘technology and system’ supercategory focuses on the broader issues related to the technology and infrastructure that support organizational operations and provide the technical foundation for AI deployment.

By IT infrastructure we refer to issues regarding the foundational systems and IT needed for AI adoption in production. Industrial firms and their IT systems must achieve a mature technological readiness in order to enable successful AI adoption [ 51 , 60 , 67 , 69 , 83 ]. A lack of appropriate IT infrastructure [ 68 , 71 , 78 , 91 ] or small maturity of Internet of Things (IoT) technologies [ 70 ]) hinders the efficient use of data in production firms [ 56 ] which is why firms must update their foundational information systems for successful AI adoption [ 53 , 54 , 62 , 66 , 72 , 75 ]. IT and data security are fundamental for AI adoption and must be provided [ 50 , 51 , 68 , 82 ]. This requires necessary developments that can ensure security during AI implementation while complying with legal requirements [ 52 , 72 , 78 ]. Generally, security concerns are common when implementing AI innovations [ 72 , 79 , 91 , 94 ]. This fear of a lack of security can also prevent the release of (e.g. customer) data in a production environment [ 56 ]. Additionally, as industrial production systems are vulnerable to failures as well as cyberattacks, companies need to address security and cybersecurity measures [ 49 , 76 , 88 , 89 ]. Developing user-friendly AI solutions can facilitate the adoption of smart solutions by increasing user understanding and making systems easy to use by employees as well as quick to integrate [ 50 , 72 , 84 ]. When developing user-friendly solutions which satisfy user needs [ 76 ], it is particularly important to understand and integrate the user perspective in the development process [ 90 ]. If employees find technical solutions easy to use, they are more confident in its use and perceived usefulness increases [ 53 , 67 , 68 ]. The compatibility of AI with a firm and its existing systems, i.e., the extent to which AI matches existing processes, structures, and infrastructures [ 53 , 54 , 56 , 60 , 78 , 80 , 82 , 83 , 93 , 94 ], is considered an important requirement for the adoption of AI in IT systems [ 91 ]. Along with compatibility also comes connectivity, which is intended to ensure the links within the overall network and avoid silo thinking [ 59 ]. Connectivity and interoperability of AI-based processes within the company’s IT manufacturing systems must be ensured at different system levels and are considered key factors in the development of AI applications for production [ 50 , 72 , 89 ]. The design of modular AI solutions can increase system compatibility [ 84 ]. Firms deciding for AI adoption must address safety issues [ 51 , 54 , 59 , 72 , 73 , 78 ]. This includes both safety in the use and operation of AI [ 60 , 69 ]. In order to address safety concerns of integrating AI solutions in industrial systems [ 49 ], systems must secure high reliability [ 71 ]. AI can also be integrated as a safety enabler, for example, by providing technologies to monitor health and safety in the workplace to prevent fatigue and injury [ 75 ].

3.1.4 Data management

Since AI adoption in the organization is strongly data-driven, the ‘data management’ supercategory is dedicated to the comprehensive aspects related to the effective and responsible management of data within the organization.

Data privacy must be guaranteed when creating AI applications based on industrial production data [ 49 , 58 , 59 , 60 , 72 , 76 , 78 , 79 , 82 , 88 , 89 , 91 , 94 ] as ‘[M]anufacturing industries generate large volumes of unstructured and sensitive data during their daily operations’ [ 89 ]. Closely related to this is the need for anonymization and confidentiality of data [ 61 , 69 , 70 , 78 ]. The availability of large, heterogeneous data sets is essential for the digital transformation of organizations [ 52 , 59 , 78 , 80 , 88 , 89 ] and is considered one of the key drivers of AI innovation [ 62 , 68 , 72 , 86 ]. In production systems, lack of data availability is often a barrier to AI adoption [ 58 , 70 , 77 ]. In order to enable AI to establish relationships between data, the availability of large input data that is critical [ 62 , 76 , 81 ]. New AI models are trained with this data and can adapt as well as improve as they receive new data [ 59 , 62 ]. Big data can thus significantly improve the quality of AI applications [ 59 , 71 ]. As more and more data is generated in manufacturing [ 85 ], AI opens up new opportunities for companies to make use of it [ 62 ]. However, operational data are often unstructured, as they come from different sources and exist in diverse formats [ 85 , 87 ]. This challenges data processing, as data quality and origin are key factors in the management of data [ 78 , 79 , 80 , 88 , 89 , 91 ]. To make production data valuable and usable for AI, consistency of data and thus data integrity is required across manufacturing systems [ 50 , 62 , 77 , 84 ]. Another key prerequisites for AI adoption is data governance [ 56 , 59 , 67 , 68 , 71 , 78 , 88 ] which is an important asset to make use of data in production [ 50 ] and ensure the complex management of heterogenous data sets [ 89 ]. The interoperability of data and thus the foundation for the compatibility of AI with existing systems, i.e., the extent to which AI matches existing processes, structures, and infrastructures [ 53 , 56 , 84 , 93 ], is considered another important requirement for the adoption of AI in IT systems. Data interoperability in production systems can be hindered by missing data standards as different machines use different formats [ 87 ]. Data processing refers to techniques used to preparing data for analysis which is essential to obtain consistent results from data analytics in production [ 58 , 72 , 80 , 81 , 84 ]. In this process, the numerous, heterogeneous data from different sensors are processed in such a way that they can be used for further analyses [ 87 ]. The capability of production firms to process data and information is thus important to enable AI adoption [ 77 , 86 , 93 ]. With the increasing data generation in the smart and connected factory, the strategic relevance of data analytics is gaining importance [ 55 , 69 , 78 ], as it is essential for AI systems in performing advanced data analyses [ 49 , 67 , 72 , 86 , 88 ]. Using analytics, valuable insights can be gained from the production data obtained using AI systems [ 58 , 77 , 87 ]. In order to enable the processing of big data, a profound data infrastructure is necessary [ 65 , 75 , 87 ]. Facilities must be equipped with sensors, that collect data and model information, which requires investments from firms [ 72 ]. In addition, production firms must build the necessary skills, culture and capabilities for data analytics [ 54 , 75 , 87 , 93 ]. Data storage, one of the foundations and prerequisites for smart manufacturing [ 54 , 68 , 71 , 74 ], must be ensured in order to manage the larg amounts of data and thus realize the adoption of intelligent technologies in production [ 50 , 59 , 72 , 78 , 84 , 87 , 88 , 89 ].

3.2 External environment

The external drivers of AI adoption in production influence the organization through conditions and events from outside the firm and are therefore difficult to control by the organization itself.

3.2.1 Regulatory environment

This supercategory captures the broader concept of establishing rules, standards, and frameworks that guide the behavior, actions, and operations of individuals, organizations, and societies when implementing AI.

AI adoption in production faces many ethical challenges [ 70 , 72 , 79 ]. AI applications must be compliant with the requirements of organizational ethical standards and laws [ 49 , 50 , 59 , 60 , 62 , 75 ] which is why certain issues must be examined in AI adoption and AI design [ 62 , 73 , 82 , 91 ] so that fairness and justice are guaranteed [ 78 , 79 , 92 ]. Social rights, cultural values and norms must not be violated in the process [ 49 , 52 , 53 , 81 ]. In this context, the explainability and transparency of AI decisions also plays an important role [ 50 , 54 , 58 , 70 , 78 , 89 ] and can address the characteristic of AI of a black box [ 90 ]. In addition, AI applications must be compliant with legal and regulatory requirements [ 51 , 52 , 59 , 77 , 81 , 82 , 91 ] and be developed accordingly [ 49 , 76 ] in order to make organization processes using AI clear and effective [ 65 ]. At present, policies and regulation of AI are still in its infancy [ 49 ] and missing federal regulatory guidelines, standards as well as incentives hinder the adoption of AI [ 67 ] which should be expanded simultaneously to the expansion of AI technology [ 60 ]. This also includes regulations on the handling of data (e.g. anonymization of data) [ 61 , 72 ].

3.2.2 Business environment

The factors in the ‘business environment’ supercategory refer to the external conditions and influences that affect the operations, decision making, and performance of the company seeking to implement AI in a production context.

Cooperation and collaboration can influence the success of digital technology adoption [ 52 , 53 , 59 , 72 ], which is why partnerships are important for adoption [ 53 , 59 ] and can positively influence its future success [ 52 , 67 ]. Both intraorganizational and interorganizational knowledge sharing can positively influence AI adoption [ 49 ]. In collaborations, companies can use a shared knowledge base where data and process sharing [ 51 , 59 , 94 ] as well as social support systems strengthen feedback loops between departments [ 79 , 80 ]. With regard to AI adoption in firms, vendors as well as service providers need to collaborate closely to improve the compatibility and operational capability of smart technologies across different industries [ 82 , 93 ]. Without external IT support, companies can rarely integrate AI into their production processes [ 66 ], which is why thorough support from vendors can significantly facilitate the integration of AI into existing manufacturing processes [ 80 , 91 ]. Public–private collaborations can also add value and governments can target AI dissemination [ 60 , 74 ]. The support of the government also positively influences AI adoption. This includes investing in research projects and policies, building a regulatory setting as well as creating a collaborative environment [ 60 ]. Production companies are constantly exposed to changing conditions, which is why the dynamics of the environment is another factor influencing the adoption of AI [ 52 , 63 , 72 , 86 ]. Environmental dynamics influence the operational performance of firms and can favor an entrepreneurial orientation of firms [ 86 ]. In order to respond to dynamics, companies need to develop certain capabilities and resources (i.e. dynamic capabilities) [ 86 ]. This requires the development of transparency, agility, as well as resilience to unpredictable changes, which was important in the case of the COVID-19 pandemic, for example, where companies had to adapt quickly to changing environments [ 75 ]. A firm’s environment (e.g. governments, partners or customers) can also pressure companies to adopt digital technologies [ 53 , 67 , 82 , 91 ]. Companies facing intense competition are considered more likely to invest in smart technologies, as rivalry pushes them to innovate and they hope to gain competitive advantages from adoption [ 36 , 66 , 82 , 93 ].

3.2.3 Economic environment

By considering both the industrial sector and country within the subcategory ‘economic environment’, production firms can analyze the interplay between the two and understand how drivers can influence the AI adoption process in their industrial sector’s performance within a particular country.

The industrial sector of a firm influences AI adoption in production from a structural perspective, as it indicates variations in product characteristics, governmental support, the general digitalization status, the production environment as well as the use of AI technologies within the sector [ 36 ]. Another factor that influences AI adoption is the country in which a company is located. This influences not only cultural aspects, the availability of know-how and technology orientation, but also regulations, laws, standards and subsidies [ 36 ]. From another perspective, AI can also contribute to the wider socio-economic growth of economies by making new opportunities easily available and thus equipping e.g. more rural areas with advanced capabilities [ 78 ].

3.3 Future research directions

The analysis of AI adoption in production requires a comprehensive analysis of the various factors that influence the introduction of the innovation. As discussed by Kinkel, Baumgartner, Cherubini [ 36 ], our research also concludes that organizational factors have a particularly important role to play. After evaluating the individual drivers of AI adoption in production in detail in this qualitative synthesis, we draw a conclusion from the results and derive a research agenda from the analysis to serve as a basis for future research. The RQs emerged from the analyzed factors and are presented in Table  2 . We developed the questions based on the literature review and identified research gaps for every factor that was most frequently mentioned. From the factors analyzed and RQs developed, the internal environment has a strong influence on AI adoption in production, and organizational factors play a major role here.

Looking at the supercategory ‘business and environment’, performance indicators and investments are considered drivers of AI adoption in production. Indicators to measure the performance of AI innovations are necessary here so that managers can perform cost–benefit analyses and make the right decision for their company. There is a need for research here to support possible calculations and show managers a comprehensive view of the costs and benefits of technology in production. In terms of budget, it should be noted that AI adoption involves a considerable financial outlay that must be carefully weighed and some capital must be available to carry out the necessary implementation efforts (e.g., staffing costs, machine retrofits, change management, and external IT service costs). Since AI adoption is a complex process and turnkey solutions can seldom be implemented easily and quickly, but require many changes (not only technologically but also on an organizational level), it is currently difficult to estimate the necessary budgets and thus make them available. Especially the factors of the supercategory ‘organizational effectiveness’ drive AI adoption in production. Trust of the workforce is considered an important driver, which must be created in order to successfully implement AI. This requires measures that can support management in building trust. Closely related to this are the necessary change management processes that must be initiated to accompany the changes in a targeted manner. Management itself must also play a clear role in the introduction of AI and communicate its support, as this also influences the adoption. The development of clear processes and measures can help here. Developing roadmaps for AI adoption can facilitate the adoption process and promote strategic integration with existing IT and business strategy. Here, best practice roadmaps and necessary action steps can be helpful for companies. Skills are considered the most important driver for AI adoption in manufacturing. Here, there is a lack of clear approaches that support companies in identifying the range of necessary skills and, associated with this, also opportunities to further develop these skills in the existing workforce. Also, building a culture of innovation requires closer research that can help companies foster a conducive environment for AI adoption and the integration of other smart technologies. Steps for developing a positive mindset require further research that can provide approaches for necessary action steps and measures in creating a positive digital culture. With regard to ‘technology and system’, the factors of IT infrastructure and security in particular are driving AI adoption in production. Existing IT systems must reach a certain maturity to enable AI adoption on a technical level. This calls for clear requirements that visualize for companies which systems and standards are in place and where developments are needed. Security must be continuously ensured, for which certain standards and action catalogs must be developed. With regard to the supercategory ‘data management’, the availability of data is considered the basis for successful AI adoption, as no AI can be successfully deployed without data. In the production context in particular, this requires developments that support companies in the provision of data, which usually arises from very heterogeneous sources and forms. Data analytics must also be closely examined, and production companies usually need external support in doing so. The multitude of data also requires big data storage capabilities. Here, groundwork is needed to show companies options about the possibilities of different storage options (e.g., on premis vs. cloud-based).

In the ‘regulatory environment’, ethics in particular is considered a driver of AI adoption in production. Here, fundamental ethical factors and frameworks need to be developed that companies can use as a guideline to ensure ethical standards throughout the process. Cooperations and environmental dynamism drive the supercategory ‘business environment’. Collaborations are necessary to successfully implement AI adoption and action is needed to create the necessary contact facilitation bodies. In a competitive environment, companies have to make quick decisions under strong pressure, which also affects AI adoption. Here, guidelines and also best practice approaches can help to simplify decisions and quickly demonstrate the advantage of the solutions. There is a need for research in this context.

4 Conclusions

The use of AI technologies in production continues to gain momentum as managers hope to increase efficiency, productivity and reduce costs [ 9 , 13 , 20 ]. Although the benefits of AI adoption speak for themselves, implementing AI is a complex decision that requires a lot of knowledge, capital and change [ 95 ] and is influenced by various internal and external factors. Therefore, managers are still cautious about implementing the technology in a production context. Our SLR seeks to examine the emergent phenomenon of AI in production with the precise aim of understanding the factors influencing AI adoption and the key topics discussed in the literature when analyzing AI in a production context. For this purpose, we use the current state of research and examine the existing studies based on the methodology of a systematic literature analysis and respond to three RQs.

We answer RQ1 by closely analyzing the literature selected in our SLR to identify trends in current research on AI adoption in production. In this process, it becomes clear that the topic is gaining importance and that research has increased over the last few years. In the field of production, AI is being examined from various angles and current research addresses aspects from a business, human and technical perspective. In our response to RQ2 we synthesized the existing literature to derive 35 factors that influence AI adoption in production at different levels from inside or outside the organization. In doing so, we find that AI adoption in production poses particularly significant challenges to organizational effectiveness compared to other digital technologies and that the relevance of data management takes on a new dimension. Production companies often operate more traditionally and are sometimes rigid when it comes to change [ 96 , 97 ], which can pose organizational challenges when adopting AI. In addition, the existing machines and systems are typically rather heterogeneous and are subject to different digitalization standards, which in turn can hinder the availability of the necessary data for AI implementation [ 98 , 99 ]. We address RQ3 by deriving a research agenda, which lays a foundation for further scientific research and deepening the understanding of AI adoption in production. The results of our analysis can further help managers to better understand AI adoption and to pay attention to the different factors that influence the adoption of this complex technology.

4.1 Contributions

Our paper takes the first step towards analysing the current state of the research on AI adoption from a production perspective. We represent a holistic view on the topic, which is necessary to get a better understanding of AI in a production-context and build a comprehensive view on the different dimensions as well as factors influencing its adoption. To the best of our knowledge, this is the first contribution that systematises research about the adoption of AI in production. As such, it makes an important contribution to current AI and production research, which is threefold:

First, we highlight the characteristics of studies conducted in recent years on the topic of AI adoption in production, from which several features and developments can be deduced. Our results confirm the topicality of the issue and the increasing relevance of research in the field.

Having laid the foundations for understanding AI in production, we focused our research on the identification and systematization of the most relevant factors influencing AI adoption in production at different levels. This brings us to the second contribution, our comprehensive factor analysis of AI adoption in production provides a framework for further research as well as a potential basis for managers to draw upon when adopting AI. By systematizing the relevant factors influencing AI adoption in production, we derived a set of 35 researched factors associated with AI adoption in production. These factors can be clustered in two areas of analysis and seven respective supercategories. The internal environment area includes four levels of analysis: ‘business and structure’ (focusing on financial aspects and firm characteristics), ‘organizational effectiveness’ (focusing on human-centred factors), ‘technology and system’ (based on the IT infrastructure and systems) as well as ‘data management’ (including all data related factors). Three categories are assigned to the external environment: the ‘regulatory environment’ (such as ethics and the regulatory forms), the ‘business environment’ (focused on cooperation activities and dynamics in the firm environment) and the ‘economic environment’ (related to sectoral and country specifics).

Third, the developed research plan as outlined in Table  2 serves as an additional outcome of the SLR, identifying key RQs in the analyzed areas that can serve as a foundation for researchers to expand the research area of AI adoption in production. These RQs are related to the mostly cited factors analyzed in our SLR and aim to broaden the understanding on the emerging topic.

The resulting insights can serve as the basis for strategic decisions by production companies looking to integrate AI into their processes. Our findings on the factors influencing AI adoption as well as the developed research agenda enhance the practical understanding of a production-specific adoption. Hence, they can serve as the basis for strategic decisions for companies on the path to an effective AI adoption. Managers can, for example, analyse the individual factors in light of their company as well as take necessary steps to develop further aspects in a targeted manner. Researchers, on the other hand, can use the future research agenda in order to assess open RQs and can expand the state of research on AI adoption in production.

4.2 Limitations

Since a literature review must be restricted in its scope in order to make the analyses feasible, our study provides a starting point for further research. Hence, there is a need for further qualitative and quantitative empirical research on the heterogeneous nature of how firms configure their AI adoption process. Along these lines, the following aspects would be of particular interest for future research to improve and further validate the analytical power of the proposed framework.

First, the lack of research on AI adoption in production leads to a limited number of papers included in this SLR. As visualized in Fig.  2 , the number of publications related to the adoption of AI in production has been increasing since 2018 but is, to date, still at an early stage. For this reason, only 47 papers published until May 2024 addressing the production-specific adoption of AI were identified and therefore included in our analysis for in-depth investigation. This rather small number of papers included in the full-text analysis gives a limited view on AI adoption in production but allows a more detailed analysis. As the number of publications in this research field increases, there seems to be a lot of research happening in this field which is why new findings might be constantly added and developed as relevant in the future [ 39 ]. Moreover, in order to research AI adoption from a more practical perspective and thus to build up a broader, continuously updated view on AI adoption in production, future literature analyses could include other publication formats, e.g. study reports of research institutions and companies, as well discussion papers.

Second, the scope of the application areas of AI in production has been increasing rapidly. Even though our overview of the three main areas covered in the recent literature serves as a good basis for identifying the most dominant fields for AI adoption in production, a more detailed analysis could provide a better overview of possibilities for manufacturing companies. Hence, a further systematisation as well as evaluation of application areas for AI in production can provide managers with the information needed to decide where AI applications might be of interest for the specific company needs.

Third, the systematisation of the 35 factors influencing AI adoption in production serve as a good ground for identifying relevant areas influenced by and in turn influencing the adoption of AI. Further analyses should be conducted in order to extend this view and extend the framework. For example, our review could be combined with explorative research methods (such as case studies in production firms) in order to add the practical insights from firms adopting AI. This integration of practical experiences can also help exploit and monitor more AI-specific factors by observing AI adoption processes. In enriching the factors through in-depth analyses, the results of the identified AI adoption factors could also be examined in light of theoretical contributions like the technology-organization-environment (TOE) framework [ 47 ] and other adoption theories.

Fourth, in order to examine the special relevance of identified factors for AI adoption process and thus to distinguish it from the common factors influencing the adoption of more general digital technologies, there is a further need for more in-depth (ethnographic) research into their impacts on the adoption processes, particularly in the production context. Similarly, further research could use the framework introduced in this paper as a basis to develop new indicators and measurement concepts as well as to examine their impacts on production performance using quantitative methods.

Benner MJ, Waldfogel J (2020) Changing the channel: digitization and the rise of “middle tail” strategies. Strat Mgmt J 86:1–24. https://doi.org/10.1002/smj.3130

Article   Google Scholar  

Roblek V, Meško M, Krapež A (2016) A complex view of industry 4.0. SAGE Open. https://doi.org/10.1177/2158244016653987

Oliveira BG, Liboni LB, Cezarino LO et al (2020) Industry 4.0 in systems thinking: from a narrow to a broad spectrum. Syst Res Behav Sci 37:593–606. https://doi.org/10.1002/sres.2703

Li B, Hou B, Yu W et al (2017) Applications of artificial intelligence in intelligent manufacturing: a review. Frontiers Inf Technol Electronic Eng 18:86–96. https://doi.org/10.1631/FITEE.1601885

Dhamija P, Bag S (2020) Role of artificial intelligence in operations environment: a review and bibliometric analysis. TQM 32:869–896. https://doi.org/10.1108/TQM-10-2019-0243

Collins C, Dennehy D, Conboy K et al (2021) Artificial intelligence in information systems research: a systematic literature review and research agenda. Int J Inf Manage 60:102383. https://doi.org/10.1016/j.ijinfomgt.2021.102383

Chien C-F, Dauzère-Pérès S, Huh WT et al (2020) Artificial intelligence in manufacturing and logistics systems: algorithms, applications, and case studies. Int J Prod Res 58:2730–2731. https://doi.org/10.1080/00207543.2020.1752488

Chen H (2019) Success factors impacting artificial intelligence adoption: perspective from the telecom industry in China, Old Dominion University

Sanchez M, Exposito E, Aguilar J (2020) Autonomic computing in manufacturing process coordination in industry 4.0 context. J Industrial Inf Integr. https://doi.org/10.1016/j.jii.2020.100159

Lee J, Davari H, Singh J et al (2018) Industrial artificial intelligence for industry 4.0-based manufacturing systems. Manufacturing Letters 18:20–23. https://doi.org/10.1016/j.mfglet.2018.09.002

Heimberger H, Horvat D, Schultmann F (2023) Assessing AI-readiness in production—A conceptual approach. In: Huang C-Y, Dekkers R, Chiu SF et al. (eds) intelligent and transformative production in pandemic times. Springer, Cham, pp 249–257

Horvat D, Heimberger H (2023) AI Readiness: An Integrated Socio-technical Framework. In: Deschamps F, Pinheiro de Lima E, Da Gouvêa Costa SE et al. (eds) Proceedings of the 11 th international conference on production research—Americas: ICPR Americas 2022, 1 st ed. 2023. Springer Nature Switzerland; Imprint Springer, Cham, pp 548–557

Wang J, Ma Y, Zhang L et al (2018) Deep learning for smart manufacturing: methods and applications. J Manuf Syst 48:144–156. https://doi.org/10.1016/J.JMSY.2018.01.003

Davenport T, Guha A, Grewal D et al (2020) How artificial intelligence will change the future of marketing. J Acad Mark Sci 48:24–42. https://doi.org/10.1007/s11747-019-00696-0

Cui R, Li M, Zhang S (2022) AI and procurement. Manufacturing Serv Operations Manag 24(691):706. https://doi.org/10.1287/msom.2021.0989

Pournader M, Ghaderi H, Hassanzadegan A et al (2021) Artificial intelligence applications in supply chain management. Int J Prod Econ 241:108250. https://doi.org/10.1016/j.ijpe.2021.108250

Su H, Li L, Tian S et al (2024) Innovation mechanism of AI empowering manufacturing enterprises: case study of an industrial internet platform. Inf Technol Manag. https://doi.org/10.1007/s10799-024-00423-4

Venkatesh V, Raman R, Cruz-Jesus F (2024) AI and emerging technology adoption: a research agenda for operations management. Int J Prod Res 62:5367–5377. https://doi.org/10.1080/00207543.2023.2192309

Senoner J, Netland T, Feuerriegel S (2022) Using explainable artificial intelligence to improve process quality: evidence from semiconductor manufacturing. Manage Sci 68:5704–5723. https://doi.org/10.1287/mnsc.2021.4190

Fosso Wamba S, Queiroz MM, Ngai EWT et al (2024) The interplay between artificial intelligence, production systems, and operations management resilience. Int J Prod Res 62:5361–5366. https://doi.org/10.1080/00207543.2024.2321826

Uren V, Edwards JS (2023) Technology readiness and the organizational journey towards AI adoption: an empirical study. Int J Inf Manage 68:102588. https://doi.org/10.1016/j.ijinfomgt.2022.102588

Berente N, Gu B, Recker J (2021) Managing artificial intelligence special issue managing AI. MIS Quarterly 45:1433–1450

Google Scholar  

Scafà M, Papetti A, Brunzini A et al (2019) How to improve worker’s well-being and company performance: a method to identify effective corrective actions. Procedia CIRP 81:162–167. https://doi.org/10.1016/j.procir.2019.03.029

Wang H, Qiu F (2023) AI adoption and labor cost stickiness: based on natural language and machine learning. Inf Technol Manag. https://doi.org/10.1007/s10799-023-00408-9

Lindebaum D, Vesa M, den Hond F (2020) Insights from “the machine stops ” to better understand rational assumptions in algorithmic decision making and its implications for organizations. Acad Manag Rev 45:247–263. https://doi.org/10.5465/amr.2018.0181

Baskerville RL, Myers MD, Yoo Y (2020) Digital first: the ontological reversal and new challenges for information systems research. MIS Quarterly 44:509–523

Frey CB, Osborne MA (2017) The future of employment: How susceptible are jobs to computerisation? Technol Forecast Soc Chang 114:254–280. https://doi.org/10.1016/J.TECHFORE.2016.08.019

Jarrahi MH (2018) Artificial intelligence and the future of work: human-AI symbiosis in organizational decision making. Bus Horiz 61:577–586. https://doi.org/10.1016/j.bushor.2018.03.007

Fügener A, Grahl J, Gupta A et al (2021) Will humans-in-the-loop become borgs? Merits and pitfalls of working with AI. MIS Quarterly 45:1527–1556

Klumpp M (2018) Automation and artificial intelligence in business logistics systems: human reactions and collaboration requirements. Int J Log Res Appl 21:224–242. https://doi.org/10.1080/13675567.2017.1384451

Schrettenbrunnner MB (2020) Artificial-Intelligence-driven management. IEEE Eng Manag Rev 48:15–19. https://doi.org/10.1109/EMR.2020.2990933

Li J, Li M, Wang X et al (2021) Strategic directions for AI: the role of CIOs and boards of directors. MIS Quarterly 45:1603–1644

Brock JK-U, von Wangenheim F (2019) Demystifying AI: What digital transformation leaders can teach you about realistic artificial intelligence. Calif Manage Rev 61:110–134. https://doi.org/10.1177/1536504219865226

Lee J, Suh T, Roy D et al (2019) Emerging technology and business model innovation: the case of artificial intelligence. JOItmC 5:44. https://doi.org/10.3390/joitmc5030044

Chen J, Tajdini S (2024) A moderated model of artificial intelligence adoption in firms and its effects on their performance. Inf Technol Manag. https://doi.org/10.1007/s10799-024-00422-5

Kinkel S, Baumgartner M, Cherubini E (2022) Prerequisites for the adoption of AI technologies in manufacturing—evidence from a worldwide sample of manufacturing companies. Technovation 110:102375. https://doi.org/10.1016/j.technovation.2021.102375

Mikalef P, Gupta M (2021) Artificial intelligence capability: Conceptualization, measurement calibration, and empirical study on its impact on organizational creativity and firm performance. Inf Manag 58:103434. https://doi.org/10.1016/j.im.2021.103434

McElheran K, Li JF, Brynjolfsson E et al (2024) AI adoption in America: Who, what, and where. Economics Manag Strategy 33:375–415. https://doi.org/10.1111/jems.12576

Tranfield D, Denyer D, Smart P (2003) Towards a methodology for developing evidence-informed management knowledge by means of systematic review. Br J Manag 14:207–222. https://doi.org/10.1111/1467-8551.00375

Cooper H, Hedges LV, Valentine JC (2009) Handbook of research synthesis and meta-analysis. Russell Sage Foundation, New York

Page MJ, McKenzie JE, Bossuyt PM et al (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372:n71. https://doi.org/10.1136/bmj.n71

Denyer D, Tranfield D (2011) Producing a systematic review. In: Buchanan DA, Bryman A (eds) The Sage handbook of organizational research methods. Sage Publications Inc, Thousand Oaks, CA, pp 671–689

Burbidge JL, Falster P, Riis JO et al (1987) Integration in manufacturing. Comput Ind 9:297–305. https://doi.org/10.1016/0166-3615(87)90103-5

Mayring P (2000) Qualitative content analysis. Forum qualitative Sozialforschung/Forum: Qualitative social research, Vol 1, No 2 (2000): Qualitative methods in various disciplines I: Psychology. https://doi.org/10.17169/fqs-1.2.1089

Hsieh H-F, Shannon SE (2005) Three approaches to qualitative content analysis. Qual Health Res 15:1277–1288. https://doi.org/10.1177/1049732305276687

Miles MB, Huberman AM (2009) Qualitative data analysis: An expanded sourcebook, 2nd edn. Sage, Thousand Oaks, Calif

Tornatzky LG, Fleischer M (1990) The processes of technological innovation. Issues in organization and management series. Lexington Books, Lexington, Mass.

Alsheibani S, Cheung Y, Messom C (2018) Artificial Intelligence Adoption: AI-readiness at Firm-Level: Research-in-Progress. Twenty-Second Pacific Asia Conference on Information Systems

Akinsolu MO (2023) Applied artificial intelligence in manufacturing and industrial production systems: PEST considerations for engineering managers. IEEE Eng Manag Rev 51:52–62. https://doi.org/10.1109/EMR.2022.3209891

Bettoni A, Matteri D, Montini E et al (2021) An AI adoption model for SMEs: a conceptual framework. IFAC-PapersOnLine 54:702–708. https://doi.org/10.1016/j.ifacol.2021.08.082

Boavida N, Candeias M (2021) Recent automation trends in portugal: implications on industrial productivity and employment in automotive sector. Societies 11:101. https://doi.org/10.3390/soc11030101

Botha AP (2019) A mind model for intelligent machine innovation using future thinking principles. Jnl of Manu Tech Mnagmnt 30:1250–1264. https://doi.org/10.1108/JMTM-01-2018-0021

Chatterjee S, Rana NP, Dwivedi YK et al (2021) Understanding AI adoption in manufacturing and production firms using an integrated TAM-TOE model. Technol Forecast Soc Chang 170:120880. https://doi.org/10.1016/j.techfore.2021.120880

Chiang LH, Braun B, Wang Z et al (2022) Towards artificial intelligence at scale in the chemical industry. AIChE J. https://doi.org/10.1002/aic.17644

Chouchene A, Carvalho A, Lima TM et al. (2020) Artificial intelligence for product quality inspection toward smart industries: quality control of vehicle Non-conformities. In: Garengo P (ed) 2020 9th International Conference on Industrial Technology and Management: ICITM 2020 February 11–13, 2020, Oxford, United Kingdom. IEEE, pp 127–131

Corti D, Masiero S, Gladysz B (2021) Impact of Industry 4.0 on Quality Management: identification of main challenges towards a Quality 4.0 approach. In: 2021 IEEE International Conference on Engineering, Technology and Innovation (ICE/ITMC). IEEE, pp 1–8

Demlehner Q, Schoemer D, Laumer S (2021) How can artificial intelligence enhance car manufacturing? A Delphi study-based identification and assessment of general use cases. Int J Inf Manage 58:102317. https://doi.org/10.1016/j.ijinfomgt.2021.102317

Dohale V, Akarte M, Gunasekaran A et al (2022) (2022) Exploring the role of artificial intelligence in building production resilience: learnings from the COVID-19 pandemic. Int J Prod Res 10(1080/00207543):2127961

Drobot AT (2020) Industrial Transformation and the Digital Revolution: A Focus on artificial intelligence, data science and data engineering. In: 2020 ITU Kaleidoscope: Industry-Driven Digital Transformation (ITU K). IEEE, pp 1–11

Ghani EK, Ariffin N, Sukmadilaga C (2022) Factors influencing artificial intelligence adoption in publicly listed manufacturing companies: a technology, organisation, and environment approach. IJAEFA 14:108–117

Hammer A, Karmakar S (2021) Automation, AI and the future of work in India. ER 43:1327–1341. https://doi.org/10.1108/ER-12-2019-0452

Hartley JL, Sawaya WJ (2019) Tortoise, not the hare: digital transformation of supply chain business processes. Bus Horiz 62:707–715. https://doi.org/10.1016/j.bushor.2019.07.006

Kyvik Nordås H, Klügl F (2021) Drivers of automation and consequences for jobs in engineering services: an agent-based modelling approach. Front Robot AI 8:637125. https://doi.org/10.3389/frobt.2021.637125

Mubarok K, Arriaga EF (2020) Building a smart and intelligent factory of the future with industry 4.0 technologies. J Phys Conf Ser. https://doi.org/10.1088/1742-6596/1569/3/032031

Muriel-Pera YdJ, Diaz-Piraquive FN, Rodriguez-Bernal LP et al. (2018) Adoption of strategies the fourth industrial revolution by micro, small and medium enterprises in bogota D.C. In: Lozano Garzón CA (ed) 2018 Congreso Internacional de Innovación y Tendencias en Ingeniería (CONIITI). IEEE, pp 1–6

Olsowski S, Schlögl S, Richter E et al. (2022) Investigating the Potential of AutoML as an Instrument for Fostering AI Adoption in SMEs. In: Uden L, Ting I-H, Feldmann B (eds) Knowledge Management in Organisations: 16th International Conference, KMO 2022, Hagen, Germany, July 11–14, 2022, Proceedings, 1st ed. 2022, vol 1593. Springer, Cham, pp 360–371

Rodríguez-Espíndola O, Chowdhury S, Dey PK et al (2022) Analysis of the adoption of emergent technologies for risk management in the era of digital manufacturing. Technol Forecast Soc Chang 178:121562. https://doi.org/10.1016/j.techfore.2022.121562

Schkarin T, Dobhan A (2022) Prerequisites for Applying Artificial Intelligence for Scheduling in Small- and Medium-sized Enterprises. In: Proceedings of the 24 th International Conference on Enterprise Information Systems. SCITEPRESS—Science and Technology Publications, pp 529–536

Sharma P, Shah J, Patel R (2022) Artificial intelligence framework for MSME sectors with focus on design and manufacturing industries. Mater Today: Proc 62:6962–6966. https://doi.org/10.1016/j.matpr.2021.12.360

Siaterlis G, Nikolakis N, Alexopoulos K et al. (2022) Adoption of AI in EU Manufacturing. Gaps and Challenges. In: Katalinic B (ed) Proceedings of the 33 rd International DAAAM Symposium 2022, vol 1. DAAAM International Vienna, pp 547–550

Tariq MU, Poulin M, Abonamah AA (2021) Achieving operational excellence through artificial intelligence: driving forces and barriers. Front Psychol 12:686624. https://doi.org/10.3389/fpsyg.2021.686624

Trakadas P, Simoens P, Gkonis P et al (2020) An artificial intelligence-based collaboration approach in industrial IoT manufacturing: key concepts. Architectural Ext Potential Applications Sens. https://doi.org/10.3390/s20195480

Vernim S, Bauer H, Rauch E et al (2022) A value sensitive design approach for designing AI-based worker assistance systems in manufacturing. Procedia Computer Sci 200:505–516. https://doi.org/10.1016/j.procs.2022.01.248

Williams G, Meisel NA, Simpson TW et al (2022) Design for artificial intelligence: proposing a conceptual framework grounded in data wrangling. J Computing Inf Sci Eng 10(1115/1):4055854

Wuest T, Romero D, Cavuoto LA et al (2020) Empowering the workforce in Post–COVID-19 smart manufacturing systems. Smart Sustain Manuf Syst 4:20200043. https://doi.org/10.1520/SSMS20200043

Javaid M, Haleem A, Singh RP (2023) A study on ChatGPT for Industry 4.0: background, potentials, challenges, and eventualities. J Economy Technol 1:127–143. https://doi.org/10.1016/j.ject.2023.08.001

Rathore AS, Nikita S, Thakur G et al (2023) Artificial intelligence and machine learning applications in biopharmaceutical manufacturing. Trends Biotechnol 41:497–510. https://doi.org/10.1016/j.tibtech.2022.08.007

Jan Z, Ahamed F, Mayer W et al (2023) Artificial intelligence for industry 4.0: systematic review of applications, challenges, and opportunities. Expert Syst Applications 216:119456

Waschull S, Emmanouilidis C (2023) Assessing human-centricity in AI enabled manufacturing systems: a socio-technical evaluation methodology. IFAC-PapersOnLine 56:1791–1796. https://doi.org/10.1016/j.ifacol.2023.10.1891

Stohr A, Ollig P, Keller R et al (2024) Generative mechanisms of AI implementation: a critical realist perspective on predictive maintenance. Inf Organ 34:100503. https://doi.org/10.1016/j.infoandorg.2024.100503

Pazhayattil AB, Konyu-Fogel G (2023) ML and AI Implementation Insights for Bio/Pharma Manufacturing. BioPharm International 36:24–29

Ronaghi MH (2023) The influence of artificial intelligence adoption on circular economy practices in manufacturing industries. Environ Dev Sustain 25:14355–14380. https://doi.org/10.1007/s10668-022-02670-3

Rath SP, Tripathy R, Jain NK (2024) Assessing the factors influencing the adoption of generative artificial intelligence (GenAI) in the manufacturing sector. In: Sharma SK, Dwivedi YK, Metri B et al (eds) Transfer, diffusion and adoption of next-generation digital technologies, vol 697. Springer Nature Switzerland, Cham

Bonnard R, Da Arantes MS, Lorbieski R et al (2021) Big data/analytics platform for Industry 4.0 implementation in advanced manufacturing context. Int J Adv Manuf Technol 117:1959–1973. https://doi.org/10.1007/s00170-021-07834-5

Confalonieri M, Barni A, Valente A et al. (2015) An AI based decision support system for preventive maintenance and production optimization in energy intensive manufacturing plants. In: 2015 IEEE international conference on engineering, technology and innovation/ international technology management conference (ICE/ITMC). IEEE, pp 1–8

Dubey R, Gunasekaran A, Childe SJ et al (2020) Big data analytics and artificial intelligence pathway to operational performance under the effects of entrepreneurial orientation and environmental dynamism: a study of manufacturing organisations. Int J Prod Econ 226:107599. https://doi.org/10.1016/j.ijpe.2019.107599

Lee J, Singh J, Azamfar M et al (2020) Industrial AI: a systematic framework for AI in industrial applications. China Mechanical Eng 31:37–48

Turner CJ, Emmanouilidis C, Tomiyama T et al (2019) Intelligent decision support for maintenance: an overview and future trends. Int J Comput Integr Manuf 32:936–959. https://doi.org/10.1080/0951192X.2019.1667033

Agostinho C, Dikopoulou Z, Lavasa E et al (2023) Explainability as the key ingredient for AI adoption in Industry 5.0 settings. Front Artif Intell. https://doi.org/10.3389/frai.2023.1264372

Csiszar A, Hein P, Wachter M et al. (2020) Towards a user-centered development process of machine learning applications for manufacturing domain experts. In: 2020 third international conference on artificial intelligence for industries (AI4I). IEEE, pp 36–39

Merhi MI (2023) Harfouche A (2023) Enablers of artificial intelligence adoption and implementation in production systems. Int J Prod Res. https://doi.org/10.1080/00207543.2023.2167014

Demlehner Q, Laumer S (2024) How the terminator might affect the car manufacturing industry: examining the role of pre-announcement bias for AI-based IS adoptions. Inf Manag 61:103881. https://doi.org/10.1016/j.im.2023.103881

Ghobakhloo M, Ching NT (2019) Adoption of digital technologies of smart manufacturing in SMEs. J Ind Inf Integr 16:100107. https://doi.org/10.1016/j.jii.2019.100107

Binsaeed RH, Yousaf Z, Grigorescu A et al (2023) Knowledge sharing key issue for digital technology and artificial intelligence adoption. Systems 11:316. https://doi.org/10.3390/systems11070316

Papadopoulos T, Sivarajah U, Spanaki K et al (2022) Editorial: artificial Intelligence (AI) and data sharing in manufacturing, production and operations management research. Int J Prod Res 60:4361–4364. https://doi.org/10.1080/00207543.2021.2010979

Chirumalla K (2021) Building digitally-enabled process innovation in the process industries: a dynamic capabilities approach. Technovation 105:102256. https://doi.org/10.1016/j.technovation.2021.102256

Fragapane G, Ivanov D, Peron M et al (2022) Increasing flexibility and productivity in Industry 4.0 production networks with autonomous mobile robots and smart intralogistics. Ann Oper Res 308:125–143. https://doi.org/10.1007/s10479-020-03526-7

Shahbazi Z, Byun Y-C (2021) Integration of Blockchain, IoT and machine learning for multistage quality control and enhancing security in smart manufacturing. Sensors (Basel). https://doi.org/10.3390/s21041467

Javaid M, Haleem A, Singh RP et al (2021) Significance of sensors for industry 4.0: roles, capabilities, and applications. Sensors Int 2:100110. https://doi.org/10.1016/j.sintl.2021.100110

Download references

Open Access funding enabled and organized by Projekt DEAL.

Author information

Authors and affiliations.

Business Unit Industrial Change and New Business Models, Competence Center Innovation and Knowledge Economy, Fraunhofer Institute for Systems and Innovation Research ISI, Breslauer Straße 48, 76139, Karlsruhe, Germany

Heidi Heimberger, Djerdj Horvat & Frank Schultmann

Karlsruhe Institute for Technology KIT, Institute for Industrial Production (IIP) - Chair of Business Administration, Production and Operations Management, Hertzstraße 16, 76187, Karlsruhe, Germany

Heidi Heimberger

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Heidi Heimberger .

Ethics declarations

Conflict of interest.

The authors report no conflict of interest.

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Heimberger, H., Horvat, D. & Schultmann, F. Exploring the factors driving AI adoption in production: a systematic literature review and future research agenda. Inf Technol Manag (2024). https://doi.org/10.1007/s10799-024-00436-z

Download citation

Accepted : 10 August 2024

Published : 23 August 2024

DOI : https://doi.org/10.1007/s10799-024-00436-z

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Artificial intelligence
  • Technology adoption
  • AI adoption
  • Adoption factors
  • Systematic literature review
  • Find a journal
  • Publish with us
  • Track your research

Warning: The NCBI web site requires JavaScript to function. more...

U.S. flag

An official website of the United States government

The .gov means it's official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you're on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings
  • Browse Titles

NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.

National Toxicology Program. NTP Monograph on the State of the Science Concerning Fluoride Exposure and Neurodevelopment and Cognition: A Systematic Review: NTP Monograph 08 [Internet]. Research Triangle Park (NC): National Toxicology Program; 2024 Aug.

Cover of NTP Monograph on the State of the Science Concerning Fluoride Exposure and Neurodevelopment and Cognition: A Systematic Review

NTP Monograph on the State of the Science Concerning Fluoride Exposure and Neurodevelopment and Cognition: A Systematic Review: NTP Monograph 08 [Internet].

  • View this report on the NTP website

The National Toxicology Program (NTP) conducted a systematic review of the published scientific literature because of public concern regarding the potential association between fluoride exposure and adverse neurodevelopmental and cognitive health effects.

NTP initially published a systematic review of the experimental animal literature in 2016 that was subsequently expanded to include human epidemiological studies, mechanistic studies, and newer experimental animal literature (see Appendix B , Table B-1 for document and review timeline). Because of the high public interest in fluoride’s benefits and potential risks, NTP asked the National Academies of Sciences, Engineering, and Medicine (NASEM) to conduct an independent evaluation of the draft NTP Monograph on Fluoride Exposure and Neurodevelopmental and Cognitive Health Effects (2019 draft monograph dated September 6, 2019) and the revised draft (2020 draft monograph dated September 16, 2020), which addressed the NASEM committee’s recommendations for improvement. The NASEM committee determined that, “Overall the revised monograph seems to include a wealth of evidence and a number of evaluations that support its main conclusion, but the monograph falls short of providing a clear and convincing argument that supports its assessments….” Thus, NTP has removed the hazard assessment step and retitled this systematic review of fluoride exposure and neurodevelopmental and cognitive health effects as a “state-of-the-science” document to indicate the change. This state-of-the-science document does not include the meta-analysis of epidemiological studies or hazard conclusions found in previous draft monographs; however, it provides a comprehensive and current assessment of the scientific literature on fluoride as an important resource to inform safe and appropriate use. The meta-analysis is a separate peer-reviewed journal publication ( DTT Meta-analysis, Taylor et al. 2024, in press ).

This is a work of the US government and distributed under the terms of the Public Domain

  • Cite this Page National Toxicology Program. NTP Monograph on the State of the Science Concerning Fluoride Exposure and Neurodevelopment and Cognition: A Systematic Review: NTP Monograph 08 [Internet]. Research Triangle Park (NC): National Toxicology Program; 2024 Aug. Preface.
  • PDF version of this title (19M)

Other titles in this collection

  • NTP Monographs

Recent Activity

  • Preface - NTP Monograph on the State of the Science Concerning Fluoride Exposure... Preface - NTP Monograph on the State of the Science Concerning Fluoride Exposure and Neurodevelopment and Cognition: A Systematic Review

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

Connect with NLM

National Library of Medicine 8600 Rockville Pike Bethesda, MD 20894

Web Policies FOIA HHS Vulnerability Disclosure

Help Accessibility Careers

statistics

The Australian National University

Current Students ANU College of Health & Medicine ANU College of Science

Canberra health services: literature review of older people (>65 years) with obesity accessing bariatric surgery and their health outcomes.

Conduct a literature review to help inform ACT Health’s activities relating to older people with obesity accessing bariatric surgery.

Student opportunity type

Degree level.

The Canberra Health Services (CHS) Department of Bariatric Medicine (DBM) is a publicly-funded and medically-led multi-disciplinary program for adults with class III obesity (defined as a body mass index [BMI] of ≥40kg/m2) and at least one obesity-related comorbidity.

The OMS provides medical reviews, case management, group education and individualised allied health support. There is an initial focus on lifestyle interventions (individual dietitian and exercise physiology/physiotherapy appointments and group psychology sessions) with some patients receiving more intensive interventions such as anti-obesity medications, Very Low Energy Diets and/or bariatric surgery. Access to interventions is dependent on several factors including the patient’s medical status and psychosocial capacity to engage.

Project: Literature Review of Older People (>65 years) with Obesity Accessing Bariatric Surgery and their Health Outcomes

Internship AvailabilitySemester 1, 2025
Internship Discipline/sChronic disease/obesity management
Internship LevelPostgraduate Coursework only
Available to International StudentsYes
Preferred Project Skills:
Clearances Required
Host SupervisorDr Louise Brightman, Department of Bariatric Medicine (DBM, formerly known as Obesity Management Service [OMS])
LocationBelconnen Community Health Centre, 56 Lathlain Street Belconnen, ACT 2617
Project Opportunities/Benefits for the Intern

 

The intern will conduct a literature review covering local and international research, clinical guidelines, and organisational reports to help inform ACT Health’s activities relating to addressing obesity and the impact it has on health outcomes. This information may then be used to help inform and/or improve DBM processes and policies.  It may also lead to formal research projects using DBM data in the future.  

  • New bachelor students
  • New masters students
  • Requesting permission to enrol
  • Structuring your degree
  • Forms, protocols & processes
  • Bachelor degree courses
  • Honours pathway
  • Master degree courses
  • Other courses
  • First year course guide
  • Direct entry Honours programs
  • Admission to honours
  • Scienceshop
  • Field Trips
  • Science coursework internship program
  • Science, Health & Medicine HDR Internships
  • Available placements
  • Past placements
  • COS Student ambassador
  • CHM Student ambassador
  • Career development
  • Other opportunities
  • Bachelor & Honours research
  • Postgraduate research
  • Scholarships
  • Finding a supervisor
  • College research links
  • Student Services
  • Student appointments
  • Accessibility contacts
  • Feedback & grievances

IMAGES

  1. Scientific Literature Review Aid From Skilled Helpers

    of scientific literature review

  2. 20+ SAMPLE Literature Reviews in PDF

    of scientific literature review

  3. 10 Steps to Mastering the Scientific Literature Review Process

    of scientific literature review

  4. How to Write a Good Scientific Literature Review

    of scientific literature review

  5. The Importance of Literature Review in Scientific Research Writing

    of scientific literature review

  6. 39 Best Literature Review Examples (Guide & Samples)

    of scientific literature review

COMMENTS

  1. Ten Simple Rules for Writing a Literature Review

    Literature reviews are in great demand in most scientific fields. Their need stems from the ever-increasing output of scientific publications .For example, compared to 1991, in 2008 three, eight, and forty times more papers were indexed in Web of Science on malaria, obesity, and biodiversity, respectively .Given such mountains of papers, scientists cannot be expected to examine in detail every ...

  2. How to Write a Literature Review

    Examples of literature reviews. Step 1 - Search for relevant literature. Step 2 - Evaluate and select sources. Step 3 - Identify themes, debates, and gaps. Step 4 - Outline your literature review's structure. Step 5 - Write your literature review.

  3. Literature Review in Scientific Research: An Overview

    A literature review is essential to any scientific research study, which entails an in-depth analysis and synthesis of the existing literature and studies related to the research topic. The ...

  4. What is a Literature Review? How to Write It (with Examples)

    A literature review is a critical analysis and synthesis of existing research on a particular topic. It provides an overview of the current state of knowledge, identifies gaps, and highlights key findings in the literature. 1 The purpose of a literature review is to situate your own research within the context of existing scholarship ...

  5. How to write a superb literature review

    The best proposals are timely and clearly explain why readers should pay attention to the proposed topic. It is not enough for a review to be a summary of the latest growth in the literature: the ...

  6. Writing a Literature Review

    Writing a Literature Review. A literature review is a document or section of a document that collects key sources on a topic and discusses those sources in conversation with each other (also called synthesis ). The lit review is an important genre in many disciplines, not just literature (i.e., the study of works of literature such as novels ...

  7. Writing a Scientific Review Article: Comprehensive Insights for

    2. Benefits of Review Articles to the Author. Analysing literature gives an overview of the "WHs": WHat has been reported in a particular field or topic, WHo the key writers are, WHat are the prevailing theories and hypotheses, WHat questions are being asked (and answered), and WHat methods and methodologies are appropriate and useful [].For new or aspiring researchers in a particular ...

  8. Writing a Literature Review

    7 Writing a Literature Review . Hundreds of original investigation research articles on health science topics are published each year. It is becoming harder and harder to keep on top of all new findings in a topic area and - more importantly - to work out how they all fit together to determine our current understanding of a topic.

  9. Literature Review: The What, Why and How-to Guide

    Example: Predictors and Outcomes of U.S. Quality Maternity Leave: A Review and Conceptual Framework: 10.1177/08948453211037398 ; Systematic review: "The authors of a systematic review use a specific procedure to search the research literature, select the studies to include in their review, and critically evaluate the studies they find." (p. 139).

  10. Science Literature Reviews

    A literature review addresses a specific topic by evaluating research that others have done on it. As an author, you will weave your review article around a certain thesis or problem you wish to address, evaluate the quality and the meaning of the studies done before, and arrives at a conclusion about the problem based on the studies evaluated ...

  11. A Step-by-Step Guide to Writing a Scientific Review Article

    Abstract. Scientific review articles are comprehensive, focused reviews of the scientific literature written by subject matter experts. The task of writing a scientific review article can seem overwhelming; however, it can be managed by using an organized approach and devoting sufficient time to the process.

  12. PDF LITERATURE REVIEWS

    scientific or scholarly revolution singlehandedly is our chief gal, we are bound to fail. Better to pursue the goals of normal science: ... The literature review is an opportunity to discover and craft your scholarly identity through the kinds of questions you engage, the discussions you enter, the critiques you launch, and the ...

  13. Steps in Conducting a Literature Review

    A literature review is an integrated analysis-- not just a summary-- of scholarly writings and other relevant evidence related directly to your research question.That is, it represents a synthesis of the evidence that provides background information on your topic and shows a association between the evidence and your research question.

  14. How to write a good scientific review article

    Literature reviews are valuable resources for the scientific community. With research accelerating at an unprecedented speed in recent years and more and more original papers being published, review articles have become increasingly important as a means to keep up to date with developments in a particular area of research.

  15. Literature Review Research

    Literature Review is a comprehensive survey of the works published in a particular field of study or line of research, usually over a specific period of time, in the form of an in-depth, critical bibliographic essay or annotated list in which attention is drawn to the most significant works.. Also, we can define a literature review as the collected body of scholarly works related to a topic:

  16. Guidance on Conducting a Systematic Literature Review

    Maria Watson is a PhD candidate in the Urban and Regional Science program at Texas A&M University. Her research interests include disaster recovery, public policy, and economic development. Literature reviews establish the foundation of academic inquires. However, in the planning field, we lack rigorous systematic reviews.

  17. Chapter 9 Methods for Literature Reviews

    Literature reviews play a critical role in scholarship because science remains, first and foremost, a cumulative endeavour (vom Brocke et al., 2009). As in any academic discipline, rigorous knowledge syntheses are becoming indispensable in keeping up with an exponentially growing eHealth literature, assisting practitioners, academics, and graduate students in finding, evaluating, and ...

  18. How to Write a Good Scientific Literature Review

    A scientific literature review usually includes a title, abstract, index, introduction, corpus, bibliography, and appendices (if needed). Present the problem clearly. Mention the paper's methodology, research methods, analysis, instruments, etc. Present literature review examples that can help you express your ideas. Remember to cite accurately.

  19. Ten Simple Rules for Writing a Literature Review

    Literature reviews are in great demand in most scientific fields. Their need stems from the ever-increasing output of scientific publications .For example, compared to 1991, in 2008 three, eight, and forty times more papers were indexed in Web of Science on malaria, obesity, and biodiversity, respectively .Given such mountains of papers, scientists cannot be expected to examine in detail every ...

  20. Literature Reviews

    A literature review is a body of text that aims to review the critical points of current knowledge on a particular topic. Most often associated with science-oriented literature, such as a thesis, the literature review usually proceeds a research proposal, methodology and results section. Its ultimate goals is to bring the reader up to date with ...

  21. How to write a good scientific review article

    Literature reviews are valuable resources for the scientific community. With research accelerating at an unprecedented speed in recent years and more and more original papers being published, review articles have become increasingly important as a means to keep up-to-date with developments in a particular area of research.

  22. Scientific literature

    Scientific literature encompasses a vast body of academic papers that spans various disciplines within the natural and social sciences. ... This evaluation, known as peer review, ensures the quality, validity, and reliability of the research before it becomes part of the scientific literature. Peer-reviewed publications contribute significantly ...

  23. Writing, reading, and critiquing reviews

    Literature reviews are foundational to any study. They describe what is known about given topic and lead us to identify a knowledge gap to study. All reviews require authors to be able accurately summarize, synthesize, interpret and even critique the research literature. 1, 2 In fact, for this editorial we have had to review the literature on ...

  24. Exploring the factors driving AI adoption in production: a ...

    We review the scientific literature published between 2010 and May 2024 to analyze the current state of research on AI in production. Following a systematic approach to select relevant studies, our literature review is based on a sample of articles that contribute to production-specific AI adoption. Our results reveal that the topic has been ...

  25. Advancing circular economy approaches in plastic waste ...

    The Systematic Literature Review (SLR) is using ROSES (Reporting Standards for Systematic Evidence Syntheses), a set of guidelines developed by Haddaway et al. (2018). Compared to other protocols, ROSES is the most appropriate review methodology to use, given that the topic of this study is approaches for managing plastic waste.

  26. Working through interpreters in old age psychiatry: A literature review

    This article presents a literature review on working through interpreters in old age psychiatry. The purpose of this paper is to systematically appraise the effect of use of interpreters for mental health problems in old age. The primary objective of the review is to assess the impact of a language barrier for assessment and management in relation to mental health problems in the old age.

  27. A systematic literature review of natural products for male sexual

    This study systematically reviewed the scientific literature on natural remedies for male sexual dysfunction (MSD), including conditions like erectile dysfunction, premature ejaculation, and reduced libido. Limited scientific evidence exists regarding the efficacy and safety of these natural products.

  28. Cureus

    This comprehensive review integrates current scientific literature on gut microbiota modulation as a therapeutic avenue for COPD management. Through a thorough discussion of studies investigating probiotics, prebiotics, synbiotics, antibiotics, dietary fiber, and fecal microbiota transplantation, this review summarizes the influence of these ...

  29. Preface

    This state-of-the-science document does not include the meta-analysis of epidemiological studies or hazard conclusions found in previous draft monographs; however, it provides a comprehensive and current assessment of the scientific literature on fluoride as an important resource to inform safe and appropriate use.

  30. Canberra Health Services: Literature Review of Older People (>65 years

    The intern will conduct a literature review covering local and international research, clinical guidelines, and organisational reports to help inform ACT Health's activities relating to addressing obesity and the impact it has on health outcomes. This information may then be used to help inform and/or improve DBM processes and policies.