Subscribe or renew today

Every print subscription comes with full digital access

Science News

Environment.

A massive ice cliff towers over a boat sailing in ice-encrusted waters in the background

A rapid shift in ocean currents could imperil the world’s largest ice shelf

Roughly the size of Spain, the Ross Ice Shelf stabilizes major glaciers along Antarctica’s coast — and is at risk of retreating, a new study finds.

A new U.S. tool maps where heat will be dangerous for your health

Heat waves cause more illness and death in u.s. cities with fewer trees, more stories in environment.

A photograph of flames near houses in Chino Hills, Calif., during the 2020 Blue Ridge Fire

‘On the Move’ examines how climate change will alter where people live

Journalist Abrahm Lustgarten explores which parts of the United States are most vulnerable to the effects of global warming and how people's lives might change.

a quillback rockfish

Eavesdropping on fish could help us keep better tabs on underwater worlds

Scientists are on a quest to log all the sounds of fish communication. The result could lead to better monitoring of ecosystems and fish behavior.

Against a night-black background, a hawkmoth hovers over a paper filter cone that is designed to mimic a night-blooming flower. The hawkmoth's long proboscis is reaching into the center of the cone.

How air pollution may make it harder for pollinators to find flowers

Certain air pollutants that build up at night can break down the same fragrance molecules that attract pollinators like hawk moths to primroses.

mountain pines in Pyrenees

Ancient trees’ gnarled, twisted shapes provide irreplaceable habitats

Traits that help trees live for hundreds of years also foster forest life, one reason why old growth forest conservation is crucial.

Picture of land slumping near Tehran, Iran.

Many but not all of the world’s aquifers are losing water

Many aquifers are quickly disappearing due to climate change and overuse, but some are rising because of improved resource management.

landscape change native prairie (left); cropland (right)

Landscape Explorer shows how much the American West has changed

The online tool stitches together historical images into a map that’s helping land managers make decisions about preservation and restoration.

an illustration of the purple-winged ground dove

This bird hasn’t been seen in 38 years. Its song may help track it down

Using bioacoustics, South American scientists are eavesdropping on a forest in hopes of hearing the song of the long-missing purple-winged ground dove.

A photo showing the flames of the Marshall Fire burning homes in a neighborhood at night.

Grassland and shrubland fires destroy more U.S. homes than forest fires

Grassland and shrubland fires destroyed nearly 11,000 homes in the contiguous United States from 1990 to 2020.

an underwater nursery made of metal bars in a tree-like shape holds pieces of corals on strings

Fake fog, ‘re-skinning’ and ‘sea-weeding’ could help coral reefs survive

Coral reefs are in global peril, but scientists around the world are working hard to find ways to help them survive the Anthropocene.

Subscribers, enter your e-mail address for full access to the Science News archives and digital editions.

Not a subscriber? Become one now .

Royal Society of Chemistry

2019 Best Papers published in the Environmental Science journals of the Royal Society of Chemistry

ORCID logo

In 2019, the Royal Society of Chemistry published 180, 196 and 293 papers in Environmental Science: Processes & Impacts , Environmental Science: Water Research & Technology , and Environmental Science: Nano , respectively. These papers covered a wide range of topics in environmental science, from biogeochemical cycling to water reuse to nanomaterial toxicity. And, yes, we also published papers on the topic of the environmental fate, behavior, and inactivation of viruses. 1–10 We are extremely grateful that so many authors have chosen our journals as outlets for publishing their research and are equally delighted at the high quality of the papers that we have had the privilege to publish.

Our Associate Editors, Editorial Boards, and Advisory Boards were enlisted to nominate and select the best papers from 2019. From this list, the three Editors-in-Chief selected an overall best paper from the entire Environmental Science portfolio. It is our pleasure to present the winners of the Best Papers in 2019 to you, our readers.

Overall Best Paper

In this paper, Johansson et al. examine sea spray aerosol as a potential transport vehicle for perfluoroalkyl carboxylic and sulfonic acids. The surfactant properties of these compounds are well known and, in fact, key to many of the technical applications for which they are used. The fact that these compounds are enriched at the air–water interface makes enrichment in sea spray aerosols seem reasonable. Johansson et al. systematically tested various perfluoroalkyl acids enrichment in aerosols under conditions relevant to sea spray formation, finding that longer chain lengths lead to higher aerosol enrichment factors. They augmented their experimental work with a global model, which further bolstered the conclusion that global transport of perfluoroalkyl acids by sea spray aerosol is and will continue to be an important process in determining the global distribution of these compounds.

Journal Best Papers

Environmental Science: Processes & Impacts

First Runner-up Best Paper: Yamakawa, Takami, Takeda, Kato, Kajii, Emerging investigator series: investigation of mercury emission sources using Hg isotopic compositions of atmospheric mercury at the Cape Hedo Atmosphere and Aerosol Monitoring Station (CHAAMS), Japan , Environ. Sci.: Processes Impacts , 2019, 21 , 809–818, DOI: 10.1039/C8EM00590G .

Second Runner-up Best Paper: Avery, Waring, DeCarlo, Seasonal variation in aerosol composition and concentration upon transport from the outdoor to indoor environment , Environ. Sci.: Processes Impacts , 2019, 21 , 528–547, DOI: 10.1039/C8EM00471D .

Best Review Article: Cousins, Ng, Wang, Scheringer, Why is high persistence alone a major cause of concern? Environ. Sci.: Processes Impacts , 2019, 21 , 781–792, DOI: 10.1039/C8EM00515J .

Environmental Science: Water Research & Technology

First Runner-up Best Paper: Yang, Lin, Tse, Dong, Yu, Hoffmann, Membrane-separated electrochemical latrine wastewater treatment , Environ. Sci.: Water Res. Technol. , 2019, 5 , 51–59, DOI: 10.1039/C8EW00698A .

Second Runner-up Best Paper: Genter, Marks, Clair-Caliot, Mugume, Johnston, Bain, Julian, Evaluation of the novel substrate RUG™ for the detection of Escherichia coli in water from temperate (Zurich, Switzerland) and tropical (Bushenyi, Uganda) field sites , Environ. Sci.: Water Res. Technol. , 2019, 5 , 1082–1091, DOI: 10.1039/C9EW00138G .

Best Review Article: Okoffo, O’Brien, O’Brien, Tscharke, Thomas, Wastewater treatment plants as a source of plastics in the environment: a review of occurrence, methods for identification, quantification and fate , Environ. Sci.: Water Res. Technol. , 2019, 5 , 1908–1931, DOI: 10.1039/C9EW00428A .

Environmental Science: Nano

First Runner-up Best Paper: Janković, Plata, Engineered nanomaterials in the context of global element cycles , Environ. Sci.: Nano , 2019, 6 , 2697–2711, DOI: 10.1039/C9EN00322C .

Second Runner-up Best Paper: González-Pleiter, Tamayo-Belda, Pulido-Reyes, Amariei, Leganés, Rosal, Fernández-Piñas, Secondary nanoplastics released from a biodegradable microplastic severely impact freshwater environments , Environ. Sci.: Nano , 2019, 6 , 1382–1392, DOI: 10.1039/C8EN01427B .

Best Review Article: Lv, Christie, Zhang, Uptake, translocation, and transformation of metal-based nanoparticles in plants: recent advances and methodological challenges , Environ. Sci.: Nano , 2019, 6 , 41–59, DOI: 10.1039/C8EN00645H .

Congratulations to the authors of these papers and a hearty thanks to all of our authors. As one can clearly see from the papers listed above, environmental science is a global effort and we are thrilled to have contributions from around the world. In these challenging times, we are proud to publish research that is not only great science, but also relevant to the health of the environment and the public. Finally, we also wish to extend our thanks to our community of editors, reviewers, and readers. We look forward to another outstanding year of Environmental Science , reading the work generated not just from our offices at home, but also from back in our laboratories and the field.

Kris McNeill, Editor-in-Chief

Paige Novak, Editor-in-Chief

Peter Vikesland, Editor-in-Chief

  • A. B Boehm, Risk-based water quality thresholds for coliphages in surface waters: effect of temperature and contamination aging, Environ. Sci.: Processes Impacts , 2019, 21 , 2031–2041,   10.1039/C9EM00376B .
  • L. Cai, C. Liu, G. Fan, C Liu and X. Sun, Preventing viral disease by ZnONPs through directly deactivating TMV and activating plant immunity in Nicotiana benthamiana , Environ. Sci.: Nano , 2019, 6 , 3653–3669,   10.1039/C9EN00850K .
  • L. W. Gassie, J. D. Englehardt, N. E. Brinkman, J. Garland and M. K. Perera, Ozone-UV net-zero water wash station for remote emergency response healthcare units: design, operation, and results, Environ. Sci.: Water Res. Technol. , 2019, 5 , 1971–1984,   10.1039/C9EW00126C .
  • L. M. Hornstra, T. Rodrigues da Silva, B. Blankert, L. Heijnen, E. Beerendonk, E. R. Cornelissen and G. Medema, Monitoring the integrity of reverse osmosis membranes using novel indigenous freshwater viruses and bacteriophages, Environ. Sci.: Water Res. Technol. , 2019, 5 , 1535–1544,   10.1039/C9EW00318E .
  • A. H. Hassaballah, J. Nyitrai, C. H. Hart, N. Dai and L. M. Sassoubre, A pilot-scale study of peracetic acid and ultraviolet light for wastewater disinfection, Environ. Sci.: Water Res. Technol. , 2019, 5 , 1453–1463,   10.1039/C9EW00341J .
  • W. Khan, J.-Y. Nam, H. Woo, H. Ryu, S. Kim, S. K. Maeng and H.-C. Kim, A proof of concept study for wastewater reuse using bioelectrochemical processes combined with complementary post-treatment technologies, Environ. Sci.: Water Res. Technol. , 2019, 5 , 1489–1498,   10.1039/C9EW00358D .
  • J. Heffron, B. McDermid and B. K. Mayer, Bacteriophage inactivation as a function of ferrous iron oxidation, Environ. Sci.: Water Res. Technol. , 2019, 5 , 1309–1317,   10.1039/C9EW00190E .
  • S. Torii, T. Hashimoto, A. T. Do, H. Furumai and H. Katayama, Impact of repeated pressurization on virus removal by reverse osmosis membranes for household water treatment, Environ. Sci.: Water Res. Technol. , 2019, 5 , 910–919,   10.1039/C8EW00944A .
  • J. Miao, H.-J. Jiang, Z.-W. Yang, D.-y. Shi, D. Yang, Z.-Q. Shen, J. Yin, Z.-G. Qiu, H.-R. Wang, J.-W. Li and M. Jin, Assessment of an electropositive granule media filter for concentrating viruses from large volumes of coastal water, Environ. Sci.: Water Res. Technol. , 2019, 5 , 325–333,   10.1039/C8EW00699G .
  • K. L. Nelson, A. B. Boehm, R. J. Davies-Colley, M. C. Dodd, T. Kohn, K. G. Linden, Y. Liu, P. A. Maraccini, K. McNeill, W. A. Mitch, T. H. Nguyen, K. M. Parker, R. A. Rodriguez, L. M. Sassoubre, A. I. Silverman, K. R. Wigginton and R. G. Zepp, Sunlight mediated inactivation of health relevant microorganisms in water: a review of mechanisms and modeling approaches, Environ. Sci.: Processes Impacts , 2018, 20 , 1089–1122,   10.1039/C8EM00047F .

Sustainable Environment Research

Call for papers: upcoming collection, nature-based solutions for climate change adaptation, guest edited by: pierre-antoine versini, amy oen, natalia rodriguez and daniela rizzi.

  • Most accessed

A novel multicriteria assessment framework for evaluating the performance of the EU in dealing with challenges of the low-carbon energy transition: an integrated Fermatean fuzzy approach

Authors: Mahyar Kamali Saraji and Dalia Streimikiene

Improving household water treatment: using zeolite to remove lead, fluoride and arsenic following optimized turbidity reduction in slow sand filtration

Authors: Charles Onyutha, Emmanuel Okello, Rebecca Atukwase, Pamella Nduhukiire, Michael Ecodu and Japheth Nkiriyehe Kwiringira

Enhancing solar still performance with Plexiglas and jute cloth additions: experimental study

Authors: Pankaj Dumka, Dhananjay R. Mishra, Bharat Singh, Rishika Chauhan, Md Irfanul Haque Siddiqui, L Natrayan and Mohd Asif Shah

The Correction to this article has been published in Sustainable Environment Research 2024 34 :5

Multicriteria decision-making tool for investigating the feasibility of the green roof systems in Egypt

Authors: Mahmoud Desouki, Mai Madkour, Ahmed Abdeen and Bahaa Elboshy

Hydrothermal synthesis of zeolites from residual waste generated via indirect carbonation of coal fly ash

Authors: Seonmi Shin and Myoung-Jin Kim

Most recent articles RSS

View all articles

Biological wastewater treatment and bioreactor design: a review

Authors: C. M. Narayanan and Vikas Narayan

A system for monitoring water quality in a large aquatic area using wireless sensor network technology

Authors: Alexander T. Demetillo, Michelle V. Japitana and Evelyn B. Taboada

A comprehensive review on indoor air quality monitoring systems for enhanced public health

Authors: Jagriti Saini, Maitreyee Dutta and Gonçalo Marques

Study of the feasibility of a rice husk recycling scheme in Japan to produce silica fertilizer for rice plants

Authors: Ryoko Sekifuji and Masafumi Tateda

Near infrared band of Landsat 8 as water index: a case study around Cordova and Lapu-Lapu City, Cebu, Philippines

Authors: Jeremy P. Mondejar and Alejandro F. Tongco

Most accessed articles RSS

Journal Announcement

2020-2022 Editor's Choice Articles

Archival Content

The archival content of Sustainable Environment Research can be located here . 

Aims and scope

The primary goal of Sustainable Environment Research (SER) is to publish high quality research articles associated with sustainable environmental science and technology and to contribute to improving environmental practice. The scope of SER includes issues of environmental science, technology, management and related fields, especially in response to sustainable water, energy and other natural resources. Potential topics include, but are not limited to:

1. Water and Wastewater

• Biological processes • Physical and chemical processes • Watershed management • Advanced and innovative treatment

2. Soil and Groundwater Pollution

• Contaminant fate and transport processes • Contaminant site investigation technology • Soil and groundwater remediation technology • Risk assessment in contaminant sites

3. Air Pollution and Climate Change

• Ambient air quality management • Greenhouse gases control • Gaseous and particulate pollution control • Indoor air quality management and control

4. Waste Management

• Waste reduction and minimization • Resource recovery and conservation • Solid waste treatment technology and disposal

5. Energy and Resources

• Sustainable energy • Local, regional and global sustainability • Environmental management system • Life-cycle assessment • Environmental policy instruments • Techno-economic assessment

journal cover

  • Editorial Board
  • Instructions for Editors
  • Sign up for article alerts and news from this journal
  • Follow SER on Linkedin

Affiliated with

New Content Item

Sustainable Environment Research  is affiliated with the  Chinese Institute of Environmental Engineering

Annual Journal Metrics

2022 Citation Impact 4.9 - 2-year Impact Factor 6.4 - 5-year Impact Factor 1.899 - SNIP (Source Normalized Impact per Paper) 0.865 - SJR (SCImago Journal Rank)

2023 Speed 23 days submission to first editorial decision for all manuscripts (Median) 147 days submission to accept (Median)

2023 Usage  354,574 downloads 25 Altmetric mentions 

ISSN: 2468-2039

  • Submission enquiries: Access here and click Contact Us
  • General enquiries: [email protected]

U.S. flag

An official website of the United States government

Here’s how you know

Official websites use .gov A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS A lock ( Lock A locked padlock ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

JavaScript appears to be disabled on this computer. Please click here to see any active alerts .

Climate Change Research

Fifth national climate assessment.

It's Earth Month!

Check out NCA5, the most comprehensive analysis of the state of climate change in the United States.

Explore NCA5

EPA’s Climate Change Research seeks to improve our understanding of how climate change impacts human health and the environment.

Air Quality

Fluffy clouds in front of a blue sky, slightly obscuring the sun.

Researching how changes in climate can affect air quality.

Community Resilience

Aerial view of Chicago cityscape on a sunny day

Research to empower communities to become more resilient to climate change.

Ecosystems & Water Quality

Florida nature preserve, wetland area.

Research to understand how climate change is affecting these resources now and in the future.

Windmills and industry smoke stacks

Researching how energy production will impact climate and the environment.

Human Health

Family silhouette and a sunset sky

Research to understand how a changing climate will impact human health.

Tools & Resources

Illustration of gears and puzzle pieces. Monotone blue color scheme.

Decision support tools, models & databases, research grants, outreach, and educational resources.

More Resources

  • Publications, Presentations, and Other Research Products in Science Inventory
  • Climate Change Research Milestones
  • EPA's Climate Change Homepage
  • EPA's Climate Adaptation Plan

Grad Coach

Research Topics & Ideas: Environment

100+ Environmental Science Research Topics & Ideas

Research topics and ideas within the environmental sciences

Finding and choosing a strong research topic is the critical first step when it comes to crafting a high-quality dissertation, thesis or research project. Here, we’ll explore a variety research ideas and topic thought-starters related to various environmental science disciplines, including ecology, oceanography, hydrology, geology, soil science, environmental chemistry, environmental economics, and environmental ethics.

NB – This is just the start…

The topic ideation and evaluation process has multiple steps . In this post, we’ll kickstart the process by sharing some research topic ideas within the environmental sciences. This is the starting point though. To develop a well-defined research topic, you’ll need to identify a clear and convincing research gap , along with a well-justified plan of action to fill that gap.

If you’re new to the oftentimes perplexing world of research, or if this is your first time undertaking a formal academic research project, be sure to check out our free dissertation mini-course. Also be sure to also sign up for our free webinar that explores how to develop a high-quality research topic from scratch.

Overview: Environmental Topics

  • Ecology /ecological science
  • Atmospheric science
  • Oceanography
  • Soil science
  • Environmental chemistry
  • Environmental economics
  • Environmental ethics
  • Examples  of dissertations and theses

Topics & Ideas: Ecological Science

  • The impact of land-use change on species diversity and ecosystem functioning in agricultural landscapes
  • The role of disturbances such as fire and drought in shaping arid ecosystems
  • The impact of climate change on the distribution of migratory marine species
  • Investigating the role of mutualistic plant-insect relationships in maintaining ecosystem stability
  • The effects of invasive plant species on ecosystem structure and function
  • The impact of habitat fragmentation caused by road construction on species diversity and population dynamics in the tropics
  • The role of ecosystem services in urban areas and their economic value to a developing nation
  • The effectiveness of different grassland restoration techniques in degraded ecosystems
  • The impact of land-use change through agriculture and urbanisation on soil microbial communities in a temperate environment
  • The role of microbial diversity in ecosystem health and nutrient cycling in an African savannah

Topics & Ideas: Atmospheric Science

  • The impact of climate change on atmospheric circulation patterns above tropical rainforests
  • The role of atmospheric aerosols in cloud formation and precipitation above cities with high pollution levels
  • The impact of agricultural land-use change on global atmospheric composition
  • Investigating the role of atmospheric convection in severe weather events in the tropics
  • The impact of urbanisation on regional and global atmospheric ozone levels
  • The impact of sea surface temperature on atmospheric circulation and tropical cyclones
  • The impact of solar flares on the Earth’s atmospheric composition
  • The impact of climate change on atmospheric turbulence and air transportation safety
  • The impact of stratospheric ozone depletion on atmospheric circulation and climate change
  • The role of atmospheric rivers in global water supply and sea-ice formation

Research topic evaluator

Topics & Ideas: Oceanography

  • The impact of ocean acidification on kelp forests and biogeochemical cycles
  • The role of ocean currents in distributing heat and regulating desert rain
  • The impact of carbon monoxide pollution on ocean chemistry and biogeochemical cycles
  • Investigating the role of ocean mixing in regulating coastal climates
  • The impact of sea level rise on the resource availability of low-income coastal communities
  • The impact of ocean warming on the distribution and migration patterns of marine mammals
  • The impact of ocean deoxygenation on biogeochemical cycles in the arctic
  • The role of ocean-atmosphere interactions in regulating rainfall in arid regions
  • The impact of ocean eddies on global ocean circulation and plankton distribution
  • The role of ocean-ice interactions in regulating the Earth’s climate and sea level

Research topic idea mega list

Tops & Ideas: Hydrology

  • The impact of agricultural land-use change on water resources and hydrologic cycles in temperate regions
  • The impact of agricultural groundwater availability on irrigation practices in the global south
  • The impact of rising sea-surface temperatures on global precipitation patterns and water availability
  • Investigating the role of wetlands in regulating water resources for riparian forests
  • The impact of tropical ranches on river and stream ecosystems and water quality
  • The impact of urbanisation on regional and local hydrologic cycles and water resources for agriculture
  • The role of snow cover and mountain hydrology in regulating regional agricultural water resources
  • The impact of drought on food security in arid and semi-arid regions
  • The role of groundwater recharge in sustaining water resources in arid and semi-arid environments
  • The impact of sea level rise on coastal hydrology and the quality of water resources

Research Topic Kickstarter - Need Help Finding A Research Topic?

Topics & Ideas: Geology

  • The impact of tectonic activity on the East African rift valley
  • The role of mineral deposits in shaping ancient human societies
  • The impact of sea-level rise on coastal geomorphology and shoreline evolution
  • Investigating the role of erosion in shaping the landscape and impacting desertification
  • The impact of mining on soil stability and landslide potential
  • The impact of volcanic activity on incoming solar radiation and climate
  • The role of geothermal energy in decarbonising the energy mix of megacities
  • The impact of Earth’s magnetic field on geological processes and solar wind
  • The impact of plate tectonics on the evolution of mammals
  • The role of the distribution of mineral resources in shaping human societies and economies, with emphasis on sustainability

Topics & Ideas: Soil Science

  • The impact of dam building on soil quality and fertility
  • The role of soil organic matter in regulating nutrient cycles in agricultural land
  • The impact of climate change on soil erosion and soil organic carbon storage in peatlands
  • Investigating the role of above-below-ground interactions in nutrient cycling and soil health
  • The impact of deforestation on soil degradation and soil fertility
  • The role of soil texture and structure in regulating water and nutrient availability in boreal forests
  • The impact of sustainable land management practices on soil health and soil organic matter
  • The impact of wetland modification on soil structure and function
  • The role of soil-atmosphere exchange and carbon sequestration in regulating regional and global climate
  • The impact of salinization on soil health and crop productivity in coastal communities

Topics & Ideas: Environmental Chemistry

  • The impact of cobalt mining on water quality and the fate of contaminants in the environment
  • The role of atmospheric chemistry in shaping air quality and climate change
  • The impact of soil chemistry on nutrient availability and plant growth in wheat monoculture
  • Investigating the fate and transport of heavy metal contaminants in the environment
  • The impact of climate change on biochemical cycling in tropical rainforests
  • The impact of various types of land-use change on biochemical cycling
  • The role of soil microbes in mediating contaminant degradation in the environment
  • The impact of chemical and oil spills on freshwater and soil chemistry
  • The role of atmospheric nitrogen deposition in shaping water and soil chemistry
  • The impact of over-irrigation on the cycling and fate of persistent organic pollutants in the environment

Topics & Ideas: Environmental Economics

  • The impact of climate change on the economies of developing nations
  • The role of market-based mechanisms in promoting sustainable use of forest resources
  • The impact of environmental regulations on economic growth and competitiveness
  • Investigating the economic benefits and costs of ecosystem services for African countries
  • The impact of renewable energy policies on regional and global energy markets
  • The role of water markets in promoting sustainable water use in southern Africa
  • The impact of land-use change in rural areas on regional and global economies
  • The impact of environmental disasters on local and national economies
  • The role of green technologies and innovation in shaping the zero-carbon transition and the knock-on effects for local economies
  • The impact of environmental and natural resource policies on income distribution and poverty of rural communities

Topics & Ideas: Environmental Ethics

  • The ethical foundations of environmentalism and the environmental movement regarding renewable energy
  • The role of values and ethics in shaping environmental policy and decision-making in the mining industry
  • The impact of cultural and religious beliefs on environmental attitudes and behaviours in first world countries
  • Investigating the ethics of biodiversity conservation and the protection of endangered species in palm oil plantations
  • The ethical implications of sea-level rise for future generations and vulnerable coastal populations
  • The role of ethical considerations in shaping sustainable use of natural forest resources
  • The impact of environmental justice on marginalized communities and environmental policies in Asia
  • The ethical implications of environmental risks and decision-making under uncertainty
  • The role of ethics in shaping the transition to a low-carbon, sustainable future for the construction industry
  • The impact of environmental values on consumer behaviour and the marketplace: a case study of the ‘bring your own shopping bag’ policy

Examples: Real Dissertation & Thesis Topics

While the ideas we’ve presented above are a decent starting point for finding a research topic, they are fairly generic and non-specific. So, it helps to look at actual dissertations and theses to see how this all comes together.

Below, we’ve included a selection of research projects from various environmental science-related degree programs to help refine your thinking. These are actual dissertations and theses, written as part of Master’s and PhD-level programs, so they can provide some useful insight as to what a research topic looks like in practice.

  • The physiology of microorganisms in enhanced biological phosphorous removal (Saunders, 2014)
  • The influence of the coastal front on heavy rainfall events along the east coast (Henson, 2019)
  • Forage production and diversification for climate-smart tropical and temperate silvopastures (Dibala, 2019)
  • Advancing spectral induced polarization for near surface geophysical characterization (Wang, 2021)
  • Assessment of Chromophoric Dissolved Organic Matter and Thamnocephalus platyurus as Tools to Monitor Cyanobacterial Bloom Development and Toxicity (Hipsher, 2019)
  • Evaluating the Removal of Microcystin Variants with Powdered Activated Carbon (Juang, 2020)
  • The effect of hydrological restoration on nutrient concentrations, macroinvertebrate communities, and amphibian populations in Lake Erie coastal wetlands (Berg, 2019)
  • Utilizing hydrologic soil grouping to estimate corn nitrogen rate recommendations (Bean, 2019)
  • Fungal Function in House Dust and Dust from the International Space Station (Bope, 2021)
  • Assessing Vulnerability and the Potential for Ecosystem-based Adaptation (EbA) in Sudan’s Blue Nile Basin (Mohamed, 2022)
  • A Microbial Water Quality Analysis of the Recreational Zones in the Los Angeles River of Elysian Valley, CA (Nguyen, 2019)
  • Dry Season Water Quality Study on Three Recreational Sites in the San Gabriel Mountains (Vallejo, 2019)
  • Wastewater Treatment Plan for Unix Packaging Adjustment of the Potential Hydrogen (PH) Evaluation of Enzymatic Activity After the Addition of Cycle Disgestase Enzyme (Miessi, 2020)
  • Laying the Genetic Foundation for the Conservation of Longhorn Fairy Shrimp (Kyle, 2021).

Looking at these titles, you can probably pick up that the research topics here are quite specific and narrowly-focused , compared to the generic ones presented earlier. To create a top-notch research topic, you will need to be precise and target a specific context with specific variables of interest . In other words, you’ll need to identify a clear, well-justified research gap.

Need more help?

If you’re still feeling a bit unsure about how to find a research topic for your environmental science dissertation or research project, be sure to check out our private coaching services below, as well as our Research Topic Kickstarter .

Need a helping hand?

research on environment

You Might Also Like:

Topic Kickstarter: Research topics in education

research topics on climate change and environment

Masango Dieudonne

I wish to learn things in a more advanced but simple way and with the hopes that I am in the right place.

Olusegunbukola Olubukola janet

Thank so much for the research topics. It really helped

saheed

the guides were really helpful

Nandir Elaine shelbut

Research topics on environmental geology

Blessing

Thanks for the research topics….I need a research topic on Geography

jeanne uwamahoro

I want the research on environmental planning and management

Mvuyisi

I want a topic on environmental sustainability

Micah Evelyn Joshua

It good coaching

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly

research on environment

Yale Environment Review (YER) is a student-run review that provides weekly updates on environmental research findings.

Biodiversity science and action.

research on environment

Biodiversity affects our global environment and economy but we lack the scientific knowledge and economic systems required to manage it effectively. Recent research reveals the magnitude of these shortcomings, the questions that must be addressed, and the urgent need for solutions.

By Michael Culbertson • April 21, 2024

Dasgupta, P., & Levin, S. (2023). Economic factors underlying biodiversity loss. Philosophical Transactions of the Royal Society of Britain , 378 : 20220197.

Dornelas, M., Chase, J.M., Gotelli, N.J., Magurran, A.E., McGill, B.J., Antao, L.H., Blowes, S.A., Daskalova, G.N., Leung, B., Martins, I.S., Moyes, F., Myers-Smith, I.H., Thomas, C.D., & Vellend, M. (2023). Looking back on biodiversity change: lessons for the road ahead. Philosophical Transactions of the Royal Society of Britain , 378 : 20220199. DOI: 10.1098/rstb.2022.0199

Karolyi, G.A., & Tobin-de la Puente, J., (2023). Biodiversity finance: A call for research into financing nature. Financial Management , 52 :231-251. DOI: 10.1111/fima.12417

The White House. (2023). National Strategy to Develop Statistics for Environmental-Economic Decisions: A U.S. System of Natural Capital Accounting and Associated Environmental-Economic Statistics . Office of Science and Technology Policy, Office of Management and Budget, Department of Commerce.

A recent paper in the Philosophical Transactions of the Royal Society of Britain shows that a revolution in economic thinking is required to manage biodiversity. Dr. Partha Dasgupta is a British economist at the University of Cambridge. He previously published the influential Dasgupta Report evaluating global biodiversity economics. Dr. Simon Levin is a professor of ecology and evolutionary biology at Princeton. Their paper argues that economic theory has treated civilization as separate from nature and should have valued natural assets more adequately. Models are overly confident and rely upon an assumption of unlimited growth. New technologies have increased GDP and extracted more resources than Earth’s systems can sustainably provide. Our ecosystems are sensitive and finite, and humans should treat them accordingly. They are a unique asset requiring purposeful management. Humans are “embedded in nature,” so we must include natural assets within the economic policy framework. For example, we should have access to natural resources in “inclusive wealth” assessments and calculate net present value in terms of well-being across generations.

These arguments reveal the underlying fallacy that leads to environmental degradation. The authors provide specific recommendations on how to build our global economy in a more sustainable direction. However, we do not want to fly unquestioningly. We must obtain reliable empirical evidence on how biodiversity functions in different regions and what financial instruments will produce effective results.

A second paper in the Philosophical Transactions takes up this very issue. Biodiversity specialist Dr. Maria Dornelas led a global team of scientists examining our ability to measure biodiversity changes across the planet. They noted that scientists have debated this issue for many years. Metanalyses performed decades ago yielded conflicting results on whether biodiversity was changing. Subsequent years have seen an explosion of new data and methods for measuring biodiversity, but these recent efforts have created a series of contemporary issues. The data shows substantial variation across different scales and according to other measurements. Many studies are compromised by sampling limitations and knowledge gaps. They also contain biases in measurement scale, conceptual frameworks, and factors assumed to create biodiversity change. As a result, we cannot reliably measure how biodiversity changes across different scales. This uncertainty reduces our ability to understand which economic changes are beneficial, how they are helpful, and how they compare to alternative options. If we cannot reliably measure biodiversity changes, how will we determine the effects of new economic developments? How can we meaningfully distinguish the impact of new policies from other influences?

Our economists will develop new accounting methods, and our scientists will produce high-quality data for us. However, we must still deploy specific financial and regulatory solutions to protect biodiversity. Andrew Karolyi is the Dean of the Cornell SC Johnson College of Business. John Tobin-de la Puente is an ecologist and corporate lawyer who previously worked as the global head of sustainability at Credit Suisse. These authors recently reviewed previous conceptualizations of biodiversity, attempts to value it, indices for measuring it, and policies trying to protect it . They acknowledge growing support for new protections like biodiversity credits. But they also point to a disturbing gap between current conservation spending and what is needed to protect biodiversity. This gap could be as large as several hundred billion dollars a year. They note that private capital may increase spending while public regulation may be able to control access to resources. However, the government still directs most funding to other problems like carbon sequestration, agriculture, and forestry. There is no current estimation for the extent of overlap or adjustment to biodiversity as a parallel metric. Thus, we do not have financial systems that directly maintain biodiversity benefits and mitigate losses. We need more understanding even to establish them. Dr. Karolyi and Dr. Tobin urgently call for new research connecting financial performance with the effects on biodiversity, uniform and reliable ways of quantifying biodiversity to measure the impact of solutions, and adequate evaluations of investments in terms of biodiversity results. Risk management and divestment also need to be better understood regarding biodiversity.

These authors provide a concrete list of problems for us to address. One could ask if acting on our current imperfect understanding is possible. Even creating some effective, preliminary solutions that we can later refine with future scientific precision or financial instruments may be worthwhile. But to do this, we must grasp the nature of the problem. It is not simply a crisis; it is an error of omission. A comparison with related issues like carbon sequestration illustrates just how far behind we are with biodiversity. We need institutions like the IPCC and UNFCCC to provide information and manage international policy. There is no large-scale biodiversity credit market, not even one we may criticize and improve. We do not understand how real-world situations will combine with policy to influence pricing, create new markets or restrict current ones, change human behavior regarding management and economic activity, and alter the populations of endangered or keystone species. Thus, the recent natural capital accounting report from the White House recommended further “specific guidance documents” for biodiversity.

Scientists and policymakers must work together to change our philosophical orientation, obtain reliable information, and deploy new financial instruments that effectively maintain biodiversity. This kind of collaboration will require systems thinking and interdisciplinary efforts. But we must do this under a new context while learning from other analogous conservation efforts. Environmental leaders must perform this work as soon as possible to have a real, measurable impact before it is too late. The biological reality of biodiversity requires us to produce something with a greater understanding of living ecology that is less reductionist in treating ecosystem elements as assets. It should also include other ways of seeing the natural world, including local connections, spirituality, aesthetic and cultural values, and traditional indigenous knowledge.

You might like these articles that share the same topics

research on environment

Recent studies at one of the BP-Deepwater Horizon oil spill sites has revealed that, preceding engineering activities diminished the resilience of the salt water marshes.

research on environment

The Great Lakes – our largest global reserve of freshwater – are under attack from invasive species, and a new study provides an estimate of what this will cost us.

research on environment

In Kansas, researchers are finding easy ways to minimize the negative impacts of wind energy while greatly surpassing the U.S. Department of Energy's 2030 goals.

research on environment

The invasive Burmese python has been linked to mammal declines Florida's Everglades National park. Researchers fear that some of the endangered species of the region may be in danger.

research on environment

Environmental Science and Pollution Research

Environmental Science and Pollution Research (ESPR) serves the international community in all broad areas of environmental science and related subjects with emphasis on chemical compounds.

  • Covers all areas of Environmental Science and related subjects.
  • Publishes on the natural sciences, but also includes the impacts of legislation, regulation, and the economy on pollution control.
  • Safeguards international and interdisciplinary character through a global network of editorial board members.
  • Official publication of the EuCheMS Division of Chemistry and the Environment.
  • Authors from participating institutions can publish Open Choice at no cost.
  • Philippe Garrigues

Societies and partnerships

New Content Item

Latest issue

Volume 31, Issue 17

Latest articles

Clean synthesis of silver nanoparticles (agnps) on polyamide fabrics by verbascum thapsus l. (mullein) extract: characterization, colorimetric, antibacterial, and colorfastness studies.

  • Mousa Sadeghi-Kiakhani
  • Elaheh Hashemi
  • Mohammad-Mahdi Norouzi

research on environment

Emerging organophosphite and organophosphate esters in takeaway food and the implications for human exposure

  • Jianqiang Geng
  • Minggang Li

research on environment

Geochemistry and the optics of geospatial analysis as a preposition of water quality on a macroscale

  • Liliana P. Lozano
  • Manal F. Abou Taleb
  • Luis F. O. Silva

research on environment

Research progress of persulfate activation technology

  • Shengke Yang

research on environment

A decision support system for localized planning of reclaimed water around wastewater treatment plants

  • Ria Ranjan Srivastava
  • Prabhat Kumar Singh

research on environment

Journal updates

Meet the editors.

Learn more about the ESPR editors!

Special Issues

We invite you to browse through recently published special issues of Environmental Science and Pollution Research: Click here to get an overview of ESPR issues! All manuscripts will be  peer reviewed as usual  and following the  journal's policies , with final decisions made by the Editor-in-Chief.

Special Issue Proposal Form

Neuer Inhalt

Call for Papers: Special Issue on Integrating Geospatial Intelligence and Machine Learning for Smart Environmental Monitoring and Management (IGIML23)

Journal information.

  • Astrophysics Data System (ADS)
  • Biological Abstracts
  • CAB Abstracts
  • Chemical Abstracts Service (CAS)
  • Current Contents/Agriculture, Biology & Environmental Sciences
  • EI Compendex
  • Engineering Village – GEOBASE
  • Google Scholar
  • INIS Atomindex
  • Japanese Science and Technology Agency (JST)
  • OCLC WorldCat Discovery Service
  • Science Citation Index Expanded (SCIE)
  • Semantic Scholar
  • TD Net Discovery Service
  • UGC-CARE List (India)

Rights and permissions

Springer policies

© Springer-Verlag GmbH Germany, part of Springer Nature

  • Find a journal
  • Publish with us
  • Track your research
  • Tools and Resources
  • Customer Services
  • Agriculture and the Environment
  • Case Studies
  • Chemistry and Toxicology
  • Environment and Human Health
  • Environmental Biology
  • Environmental Economics
  • Environmental Engineering
  • Environmental Ethics and Philosophy
  • Environmental History
  • Environmental Issues and Problems
  • Environmental Processes and Systems
  • Environmental Sociology and Psychology
  • Environments
  • Framing Concepts in Environmental Science
  • Management and Planning
  • Policy, Governance, and Law
  • Quantitative Analysis and Tools
  • Sustainability and Solutions
  • Share This Facebook LinkedIn Twitter

Article contents

The environment in health and well-being.

  • George Morris George Morris European Centre for Environment and Human Health, University of Exeter Medical School, Truro, United Kingdom
  •  and  Patrick Saunders Patrick Saunders University of Staffordshire, University of Birmingham, and WHO Collaborating Centre
  • https://doi.org/10.1093/acrefore/9780199389414.013.101
  • Published online: 29 March 2017

Most people today readily accept that their health and disease are products of personal characteristics such as their age, gender, and genetic inheritance; the choices they make; and, of course, a complex array of factors operating at the level of society. Individuals frequently have little or no control over the cultural, economic, and social influences that shape their lives and their health and well-being. The environment that forms the physical context for their lives is one such influence and comprises the places where people live, learn work, play, and socialize, the air they breathe, and the food and water they consume. Interest in the physical environment as a component of human health goes back many thousands of years and when, around two and a half millennia ago, humans started to write down ideas about health, disease, and their determinants, many of these ideas centered on the physical environment.

The modern public health movement came into existence in the 19th century as a response to the dreadful unsanitary conditions endured by the urban poor of the Industrial Revolution. These conditions nurtured disease, dramatically shortening life. Thus, a public health movement that was ultimately to change the health and prosperity of millions of people across the world was launched on an “environmental conceptualization” of health. Yet, although the physical environment, especially in towns and cities, has changed dramatically in the 200 years since the Industrial Revolution, so too has our understanding of the relationship between the environment and human health and the importance we attach to it.

The decades immediately following World War II were distinguished by declining influence for public health as a discipline. Health and disease were increasingly “individualized”—a trend that served to further diminish interest in the environment, which was no longer seen as an important component in the health concerns of the day. Yet, as the 20th century wore on, a range of factors emerged to r-establish a belief in the environment as a key issue in the health of Western society. These included new toxic and infectious threats acting at the population level but also the renaissance of a “socioecological model” of public health that demanded a much richer and often more subtle understanding of how local surroundings might act to both improve and damage human health and well-being.

Yet, just as society has begun to shape a much more sophisticated response to reunite health with place and, with this, shape new policies to address complex contemporary challenges, such as obesity, diminished mental health, and well-being and inequities, a new challenge has emerged. In its simplest terms, human activity now seriously threatens the planetary processes and systems on which humankind depends for health and well-being and, ultimately, survival. Ecological public health—the need to build health and well-being, henceforth on ecological principles—may be seen as the society’s greatest 21st-century imperative. Success will involve nothing less than a fundamental rethink of the interplay between society, the economy, and the environment. Importantly, it will demand an environmental conceptualization of the public health as no less radical than the environmental conceptualization that launched modern public health in the 19th century, only now the challenge presents on a vastly extended temporal and spatial scale.

  • environmental and human health
  • environment
  • environmental epidemiology
  • environmental health inequalities
  • ecological public health

Introduction

This article traces the development of ideas about the environment in human health and well-being over time. Our primary focus is the period since the early 19th century , sometimes termed the “modern public health era.” This has been not only a time of unprecedented scientific, technological, and societal transition but also a time during which perspectives on the relationship of humans to their environment, and its implications for their health and well-being, have undergone significant change.

Curiosity about the environment as a factor in human health and well-being, and indeed health-motivated interventions to manage the physical context for life, substantially predate the modern public health era. The archaeological record provides evidence of sewer lines, primitive toilets, and water-supply arrangements in settlements in Asia, the Middle East, South America, and Southern Europe, dating back many thousands of years (Rosen, 1993 ). Some religious traditions also imply recognition of the importance of environmental factors in health. For example, restrictions on the consumption of certain foods probably derive from a belief that these foods carried risks to health; a passage in the book of Leviticus conveys the existence of a belief in the relationship between the internal state of a house and the health of its occupants (Leviticus [14:33–45], quoted in Frumkin, 2005 ).

The sixty-two books of the “Hippocratic Corpus” dating from 430–330 bc are the accepted bedrock of Western medicine (Lloyd, 1983 ), not least because they departed from the purely supernatural explanations for health and disease which hitherto held sway. For the first time, ideas about medicine, diseases, and their causes were being written down. Among these were ideas about the environment and its relationship to mental and physical health (Lloyd, 1983 ; Rosen, 1993 ; Kessel, 2006 ). While scarcely a template for how societies would come to think about environment and health in the modern era, one Hippocratic text in particular, On Airs, Waters and Places , introduces several ideas that do retain currency. For example, the simple message that good health is unlikely to be achieved and maintained in poor environmental conditions is enduring. Also, through specific reference to the health relevance of changes in water, soil, vegetation, sunlight, winds, climate, and seasonality, On Airs, Waters and Places conceives an environment made up of distinct compartments and spatial scales from local to global, recognizing that perturbations in these compartments, and on these scales, may result in disease. Such thinking remains conceptually and operationally relevant today. Hazardous agents are still frequently addressed in “environmental compartments” such as water, soil, air, and food or by developing and applying environmental standards for the different categories of place where people work, live, learn, and socialize. In parts, the Hippocratic Corpus also presages the ecological perspectives now coloring 21st-century public health thinking. These include an understanding of the potential for human activity to impact negatively on the natural world and the importance of viewing the body within its environment as a composite whole.

Environment and Health in the Modern Public Health Era

Epidemiology is the basic science of public health and is concerned with the distribution of health and disease in populations across time and spaces, together with the determinants of that distribution. Environmental epidemiology is a subspecialty dealing with the effects of environmental exposures on health and disease, again, in populations. Since the early 19th century , the outputs of epidemiology have been key components of a “mixed economy of evidence” that has shaped and reshaped priorities and informed the decisions society takes to protect and improve population health (Petticrew et al., 2004 ; Baker & Nieuwenhuijsen, 2008 ).

In a classic paper from the 1990s, the respected epidemiologists, Mervyn and Ezra Susser, helpfully described different “epidemiological eras” in modern public health, each driven by a dominant paradigm concerning the causes of disease and supported by a particular analytical approach (Susser & Susser, 1996 ). This differentiation offers a useful framework within which to consider changing perspectives on the role of environment in health since the early 1900s.

The Environment in an “Era of Sanitary Statistics”

The Industrial Revolution came first to 19th-century Britain driven by technological innovation, abundant coal supplies, and supportive political/economic conditions. Also influential was a post-Reformation philosophy that extolled the work ethic and self-sufficiency. The events were to resonate throughout the world, bringing great prosperity to some, but others, especially the urban poor, endured poor housing, severe overcrowding, and an absence of wholesome water or sanitation. The growing industrial cities became crucibles of squalor, disease, and severely reduced life expectancy as their citizens suffered the ravages of typhus, tuberculosis, and successive cholera epidemics. Unhealthy working conditions and grossly polluted air also damaged health and compounded the misery of urban life at this time. Such challenges were common to all locations touched by the Industrial Revolution and became the catalyst for a new public health movement across Europe and North America (Rayner & Lang, 2012 ; Rosen, 1993 ).

Using the new science of medical statistics, investigators quickly established the locations with the poorest living conditions to be also those where disease and early death were most prevalent (Chadwick, 1842 ), fueling an ultimately transformational societal response—a “sanitary revolution” (Rosen, 1993 ). Such was the impact of this mix of slum clearance with the introduction of waterborne sewerage and piped water supplies that readers of the British Medical Journal , voting almost two centuries later, still chose it, from a shortlist of 15, as the most important medical milestone since the Journal was first published in 1840 . The 11,300 readers who voted even placed it above the discovery of antibiotics and the development of anaesthesia (Ferriman, 2007 ).

Despite its impact, the “sanitary revolution” was famously initiated and sustained on a biologically flawed paradigm regarding the mechanistic causes of disease. Yet “miasma” (the transmission of disease through noxious vapors), because it served as a metaphor for squalid insanitary conditions, still drove effective intervention (Morris et al., 2006 ; Nash, 2006 ). During this time, however, the emergence of epidemiology as the primary mode of inquiry of public health was also pivotal to success. Endorsing this view, Susser and Susser labeled the first half of the 19th century an “Era of Sanitary Statistics,” citing the frequent use of district-level data to link disease to, for example: filthy and degraded urban environments; overcrowding and poor housing and working conditions; and social factors like infant care (Susser & Susser, 1996 )).

Thus, recognition that the environment (physical and social) mattered for health and notions of a “permeable” human body in close connection with other organisms and the abiotic environment were embedded at the launch of the 19th-century public health movement. It is notable that the perspective of the reformers was quite properly “proximal,” that is, rooted in an acceptance of the importance of the local environment, physical and social. While the term “ecology” would not be coined until 1866 (Haekel, 1866 ) and “social ecology” much later still (Bookchin, 1990 ), the public health pioneers embraced what, in today’s terms, we would understand as a broadly socioecological perspective and discerned no conflict in this with their efforts to understand the immediate causes of disease and intervene in a focused way to prevent it (Nash, 2006 ).

Especially through the efforts to stop cholera, the sanitarians affirmed the pathogenic potential of unsanitary conditions and pioneered the epidemiological approach, initially as “environmental epidemiology” (Baker & Nieuwenhuijsen, 2008 ). Other legacies of the Era of Sanitary Statistics have been less enduring. Despite recent advocacy of a “precautionary principle” (see, e.g., Martuzzi, 2007 ; European Environment Agency, 2013 ), the willingness to act on the basis of strong suspicion of a societal-level environmental threat to population health has diminished, perhaps an inevitable casualty of increasing sophistication and “evidence-based” approaches in medicine and policy (Kessel, 2006 ; Brownson et al., 2009 ). Many of public health’s greatest triumphs have flowed from interventions that would have struggled to satisfy today’s evidential criteria. Also, despite a recent reconnection with such arguments, the inherent logic of seeing and tackling disease in its social and environmental context, so obvious to the pioneers of public health, has periodically been less visible in the rhetoric and actions of their successors.

It is appropriate at this point to emphasize the international character of the 19th-century public health movement. This movement can all too easily be presented as a British phenomenon, with seminal contributions from John Snow ( 1813–1858 ) on the investigation of cholera (Vinten-Johansen et al., 2003 ); William Farr ( 1807–1883 ), also on cholera but more widely on medical statistics (Susser & Adelstein,, 1975 ); Edward Jenner ( 1749–1823 ) on vaccination (Baxby, 2004 ), and Edwin Chadwick ( 1800–1890 ) on the assembly of data relating disease to the filth and squalor that came with poverty (Chadwick, 1842 ). In reality, public health, then as now, advanced through the contribution of many individuals in many nations. For example, the German pioneer of cellular biology, Rudolf Virchow ( 1821–1902 ), and his fellow countryman, the hygienist Johan Peter Frank ( 1745–1821 ), were hugely important (Rather, 1985 ). In France, Louis-Rene Vilerme ( 1782–1863 ), the doctor and pioneer of social epidemiology, highlighted links between poverty and death rates (Rosen, 1993 ) and, in the United States, the meticulous work of Lemuel Shattuck ( 1793–1859 ) bears direct comparison with that of Chadwick (Rayner & Lang, 2012 ).

It might be supposed that the consolidated outputs of European laboratories, especially in the decades between 1830 and 1870 , would have quickly expunged the miasmic paradigm from 19th-century medicine and public health. Yet, the concept of miasma was so inculcated in Western thought that, for many, it retained significant explanatory power. Thus, for much of the 19th century there was not a single settled view on disease contagion (e.g., see Kokayeff, 2013 ). Indeed, as late as 1869 some distinguished Medical Officers of Health in England still attributed diseases such as typhoid to “the insidious miasma of sewer gases” and dismissed germs as “pure nonsense.”

The Environment in an “Era of Infectious Disease Epidemiology”

Increasingly contested, the miasmic theory of disease was effectively supplanted in the 1880s by broad acceptance of the germ theory, ushering a new “Era of Infectious Disease Epidemiology” (Susser & Susser, 1996 ). In 1882 , Louis Pasteur’s techniques for growing organisms made it possible for Robert Koch ( 1843–1910 ) to demonstrate that a mycobacterium was the cause of tuberculosis and, shortly thereafter, to provide scientific proof that cholera was waterborne (Foster, 1970 ; Collard, 1976 ; Brock, 1999 ). In so doing, Koch established, what had been hypothesized by his teacher, Jacob Henle ( 1809–1885 ), some 40 years earlier that disease was microbial. Henle, Snow, Koch, and the biologist Ferdinand Cohn ( 1828–1898 ) are rightly seen as fathers of the science of medical microbiology that for a time would come to dominate thinking in medicine and public health (Rayner & Lang, 2012 ).

Initially at least, the germ theory did little to diminish interest in the environment as a determinant of health. Indeed, by revealing causal linkages between organisms isolated from their environmental carriers and specific diseases, it conferred scientific coherence on the established sanitary model and vindicated efforts to secure hygienic water, food, and housing. As Lesley Nash has observed, the germ theorists were initially content to meld the insights of bacteriology with longstanding environmental beliefs. Notions of a body in constant interaction with, and closely dependent on, its local social and physical context (in today’s terms a socioecological perspective) did not conflict with the narrower perspectives of laboratory science (Nash, 2006 ).

While relative contributions may be debated, over a short timeframe medical microbiology, isolation, immunization, and improving social/environmental conditions combined to sharply reduce the burden of infectious disease for Western society. Yet, by the early years of the 20th century , the capacity to examine disease at the microscopic level, which was the engine of diagnostics and therapeutics, was beginning to act on the very foundations that support public health. Medical science gradually made its focus the pathogenic agents of disease, moving attention away from the environment and eroding socioecological perspectives. Doctors seemed quite content to express health as an absence of disease, and medical science to project its role as the maintenance and reinforcement of “self-contained” human bodies (Nash, 2006 ). Through a growing tendency to see health, disease, and their determinants as attributes of individuals rather than characteristics of communities, wider society seemed almost complicit in an ‘individualization’ of health status. One implication of this blunting of a social/environmental thrust of public health was to divorce health from place, a development that would have profound implications in the very different epidemiological context that emerged following World War II.

The Environment in an Era of Chronic Disease Epidemiology

The dramatic reduction in infectious disease was certainly one reason why the epidemiological climate in Western society changed substantially in the mid- 20th century . But just as important was the emergence of a quite disparate set of pathologies believed to be of noncommunicable etiology. Coronary heart disease, cancers, and peptic ulcers, which became the targets in a new “Era of Chronic Disease Epidemiology” (Susser & Susser, 1996 ), were thought rather unlikely to have origins in exposure to what was an increasingly regulated and ostensibly improving physical environment. While the outputs of much postwar epidemiology seemed to endorse this view, it is useful, with hindsight, to recognize the influence of what might be seen as “fashions” in epidemiological inquiry. These fashions would influence how medical science and the wider society would come to regard diseases and their causes for a generation.

The response of the public health community to the new and alarming “noncommunicable” threats was, logically, to deploy descriptive epidemiology to reveal those most likely to be affected. Perhaps surprisingly, those who traditionally were most vulnerable to disease (the young, the old, the immunocompromised, etc.) did not appear to be at increased risk. Rather, the new epidemics disproportionately affected men in their middle years (Nabel & Braunwald, 2012 ). Supported by enhanced computing power and methodological advance (Susser & Susser, 1996 ), researchers began to converge on specific risk factors that correlated with diseases of greatest concern. Many, it seemed, were aspects of individual lifestyle and behaviors, ostensibly freely chosen. A particular attraction for the proponents of what was to become known as “risk factor epidemiology” was its capacity to represent, mathematically, the “relative risk” of contracting a disease between people exposed to a putative risk and those who were not. Some have dubbed this epidemiological approach to noncommunicable or chronic disease “black box epidemiology” because it can relate exposure to outcomes “without any necessary obligation to interpolate either intervening factors or even pathogenesis” (Susser & Susser, 1996 ). Another unfortunate characteristic of this approach to epidemiology is that, despite its laudable intent to understand and address disease in populations , its focus is on individuals within those populations. As a result, it fails to elucidate the societal forces whose influence and interplay shape the health and health-relevant choices of those individuals. When viewed through a policy lens, this mitigates in favor of simplistic solutions that target individuals divorced from context and that lack the traction to produce meaningful change.

In summary, the desire to create a mathematical measure of relative risk for a specific factor is understandable. However, risk factor epidemiology uses an approach that is much more flexible than material reality. In the real world, many different factors coexist and interact to create and destroy health. This is not, however, to deny risk factor epidemiology’s capacity, particularly in synergy with laboratory-based research, to break new ground. Notably, these methodologically driven approaches were key to elucidating links between smoking and lung cancer, heart disease and serum cholesterol, and between levels of prenatal folic acid intake and neural tube defects (Susser & Susser, 1996 ; Kessel, 2006 ; Perry, 1997 ).

The same basic criticism is voiced where similar “black box” epidemiological approaches are used to explore the contribution of a specific environmental agent, as in the case of much recent air pollution epidemiology (see below) (Kessel, 2006 ). Any specific pollutant under epidemiological investigation inevitably coexists with other pollutants and in a specific exposure context (e.g., prevailing climatic conditions). These coexisting factors may be critical in determining the health outcomes from exposure to the pollutant under investigation. Because the outputs of black box epidemiology are abstractions, the relative risk calculation represents an abstraction that can be limited in its capacity to inform policy.

The decades following World War II were a time of declining influence for public health and population perspectives, largely for reasons we have outlined. Yet, in its rhetoric and activities, the discipline of public health seemed at times almost complicit. Even its defining science of epidemiology seemed for a time more concerned to reinforce the insights of clinical medicine than to play the exploratory role on which its reputation had been founded (Susser & Susser, 1996 ). On the face of it, academic public health and the wider public health discipline had little to say about environment, no longer presenting it as an active component in the then current health challenges for Western society. As Nash has observed, physical environments were “recast as homogenous spaces which were traversed by pathogenic agents.” Nevertheless, divorced from the prevailing rhetoric, in many locations there was a parallel narrative depicting a workforce that continued to work at a local level, within established legal and administrative frameworks, to protect and maintain health-relevant environmental quality standards. However, the environmental health function was often set in the narrow, hazard-focused, and compartmentalized terms framed for it by laboratory science. The task was largely confined to identifying, monitoring, and controlling a limited set of toxic or infectious threats in their environmental carriers. Only when pathogenic organisms or toxic agents demonstrably escaped their industrial, agricultural, or marine confines to damage health and reinforce the porosity of the human body did environment briefly assume a higher profile.

Against this backdrop, it was not necessarily predictable or inevitable that environment would regain a central place in public health. Yet, by the end of the 20th century , a much richer understanding of the environmental contribution to human health and well-being had indeed emerged. This change cannot be attributed to a single factor in isolation. Some point to the key influence of Rachel Carson’s Silent Spring in 1962 (Carson, 1962 ), which expressed grave concern for the ecosystem effects of DDT, the linkage to potential human health effects, and the implications of a growing disconnect between humankind and nature. We do not deny the status of Carson’s work as a seminal text of a modern “environmentalism” that would rapidly gather pace and influence (Nash, 2006 ). However, we submit that it is only now, in the 21st century , when the reality of unprecedented anthropogenic damage to global processes and systems and its health implications is self-evident, that the health sector has fully made common cause with the environmentalist movement (e.g., see Butler et al., 2005 ; Butler & Harley, 2010 ) (We discuss this development later in this article under Ecological Public Health.

However, for reasons that are distinct from a mounting concern over anthropogenic threats to global environmental systems and processes, we argue that the closing decades of the 20th century and the early years of this century did see a rekindling of public health and societal interest in the local or proximal environment. This interest has continued into the 21st century . Developing interest in well-being as a concept, the belief that it is important and that it might be enhanced through the organized efforts of society, continues to engage the attention of academics and policymakers. Although well-being demonstrably impacts health and vice versa, well-being is about much more than health. Rather, it is a measure of what matters to people in every sphere of their lives. Despite its importance, well-being has proved a challenging target for policy. Some of its components are beyond the reach of policy. However, others, including aspects of the built and natural environment and people’s connection to it, are amenable to manipulation. Accordingly, research has been especially concerned to identify the qualities of their environment that are important for different people’s well-being, quality of life, and health at various life stages (Royal College of Physicians, 2016 ). Also, on a practical level, integrating the various well-being frameworks and indices that continue to emerge is an ongoing challenge. However, it is sufficient at this point simply to recognize that elevated concern for well-being and its connection to environment can only broaden and deepen concern for the environment in public health. It will continue to drive renewed interest in matters such as landscape, natural beauty and scenery; crime free, clean places; green, blue, and natural environments; and so on.

Reconnecting Health with Place

Five issues/developments merit particular mention for their role in reestablishing the local environment as a mainstream consideration in health in the developed world in the late 20th century . While recognizing that there is an interrelationship among some of the factors discussed, for simplicity, we discuss them separately here.

Air Pollution

In citing air pollution as a key factor in a late- 20th-century resurgence of interest in the environment, we recognize its much longer history as a contributor to ill health (Evelyn, 1661 ; Lloyd, 1983 ). We acknowledge, too, that accounts of the modern public health era since its inception have been suffused with references to air pollution events, their health implications, and the political and professional campaigns that have sought to mitigate risk (Kessel, 2006 ). However, despite a compelling case for action, the need for urgent intervention was only fully accepted after a number of high-profile air pollution episodes in the 20th century . In 1930 , a severe smog incident in Belgium’s Meuse Valley resulted in the death of sixty people. Prophetically, investigators were quick to highlight the potential for many more deaths, were such an incident to be repeated in a more highly populated area (Bell & Samet, 2005 ). In 1948 , a further twenty people were to die and many more suffer injury after an industrial pollution incident in Donora, Pennsylvania (Hamil, 2008 ), but the tipping point came four years later, with the London Smog of 1952 .

Between December 5 and December 9, a dense fog descended on London where it mixed with air, polluted by domestic and industrial emissions. The resulting thick smog was familiar to many urban dwellers, but in this case, a combination of cold weather and stagnant atmospheric conditions caused sulfur dioxide and smoke concentrations to reach and maintain extremely high levels for a sustained period. The smog had a paralyzing effect on the city’s transport system, and many other aspects of daily life were severely disrupted. But the most dramatic effects were on health. Death rates were to reach three times the normal level for the time of year, and demand for hospital beds far exceeded supply (Baker & Nieuwenhuijsen, 2008 ). While the smog dissipated after a few days, deaths rates remained high for several months thereafter. Subsequent analysis has revealed that, rather than the 3,000–4,000 deaths linked to the episode in at the time, a figure of 10,000–12,000 deaths is more probable (Bell et al., 2004 ).

The London smog is historically important, obviously because of the distressing toll in morbidity and mortality and because it catalyzed long-overdue legislative intervention in the UK in the form of the Clean Air Act of 1956 and the U.S. Clean Air Act 1963 . Critically, however, it reminded the public and politicians of the reality that, given the right conditions, population-level environmental exposures were still entirely capable of producing significant morbidity and mortality.

In combination with other factors, the clean air legislation that emerged in the wake of the smog reduced domestic and industrial fossil fuel emissions, and helped to secure significant reductions in background concentrations of smoke and sulfur dioxide (Royal College of Physicians, 2016 ). However, by the late 1980s, a new, more insidious, urban air pollution threat had begun to emerge. This pollution had its origins not in fixed-point emissions, but in the rapidly increasing numbers of motor vehicles and other fossil fuel-driven forms of transport in towns and cities. The pollutants of concern here, which lacked the visibility of the earlier sulfurous smogs, were fine particles, oxides of nitrogen, and ozone. So-called time-series analyses, using data on the temporal variation in environmental exposure and in health, aggregated over the same time period, were now applied to explore the issue of urban air pollution and health (e.g., see Pope et al., 1995 ; Dockery & Pope, 1996 ; Kessel, 2006 ). The studies revealed the cardiopulmonary effects of long-term exposure to much lower levels of ambient air pollution and, later, following further investigation, the absence of a threshold level for causing health effects. Recent outputs of ‘life-course’ epidemiology have also shown that air pollution affects health, not only through the exacerbation of symptoms in the elderly, but through various processes that have impacts from the womb, through childhood to adolescence, early adulthood, and on into middle and older age (Royal College of Physicians, 2016 ). Also, appreciation that air pollutants can be resident in the air for days or even weeks makes air pollution not simply a local problem, but one that demands source control at city, regional, and international levels. In the UK, for example, the equivalent of around 40,000 deaths every year can be attributed to fine particulates and NO 2 exposure from outdoor air (Royal College of Physicians, 2016 ).

Air pollution is probably the most thoroughly investigated of all environmental threats to health and well-being. Revelations about the true extent of its impact on health keep the issue in the headlines and emphasize the centrality of the physical environment within the public health project. Despite being a focus for academic interest and research fundings, the problem of urban air pollution is a very long way from resolution and is one factor that demands a fundamental reappraisal of how, as a species, we live, consume, and travel. (We discuss a wider, global dimension of the air pollution challenge later in this article.)

Everything Matters: The Environment as an Ingredient in Social Complexity

Another important and often overlooked reason for the late- 20th-century rekindling of interest in the environment and human health can be traced to developments within the wider discipline of public health. Ironically, the thinking behind what, by the 1990s, was being termed the “new public health” had its origins in much older ideas that gave prominence to the social structures in which health is created and destroyed (Baum, 1998 ; Awefeso, 2004 ). If we accept that health, disease, and social patterning in these matters are products of a complex interaction of influences at the level of society with the characteristics of individuals, then such complexity ought to be reflected in the policies and partnerships formed to address them. A growing number of analyses, beginning in the 1970s, would turn a spotlight on this complexity and fundamentally challenge the dominance of the biomedical/health care model and its capacity to solve the problems that beset public. These problems included the intractable burden of noncommunicable disease; growing levels of obesity; diminished psychological well-being; and, not least, stubborn and widening inequalities in the health and well-being of different social groups. Concern also mounted over containing rising, and potentially bankrupting, health care costs.

“A New Perspective on the Health of Canadians,” more commonly referred to as the Lalonde Report, after Canada’s then health minister Marc Lalonde, was published in 1974 (Lalonde, 1974 ). Despite its national focus, the report assumed wider relevance because of its analysis of one of public health’s greatest generic challenges, that of navigating among the many complex and interacting determinants of health to identify effective policies and actions. Implicitly offering a socioecological perspective, the Lalonde Report spoke of a “Health Field,” which included all matters that affect health and comprised four core elements: human biology, environment, lifestyle, and health care organization. Any issue, it was proposed, could be traced to one, or a combination, of these elements, allowing the creation of a “map of the health territory” for any problem (Lalonde, 1974 ). In this way, the contribution and interaction of the elements could be assessed. The analysis affirmed the health relevance of a complex environment comprising interacting physical and social dimensions in interaction with the human body. Lalonde’s message was logical and important, yet more than just an echo of an earlier, more inclusive, understanding of the determinants of health and disease. It recast these largely abandoned perspectives for a more scientific and sophisticated era. The proposal that thousands of “pieces” relevant to health and its determinants could be organized in “an orderly pattern” was alluring and progressive, as was the notion that the exercise alone would allow all contributors to more fully appreciate their roles and influence (Morris et al., 2006 ). In the ensuing years, Lalonde’s proposals for understanding and addressing complexity in the determinants of health have been refined and given greater policy relevance by others. In part, this has been through the development of conceptual models of the socioecological determinants of health. These models have been promoted as tools for presenting evidence that can make their implications more apparent (Evans & Stoddart, 1990 ; Dahlgren & Whitehead, 1991 ). In most of these representations, the local environment is accepted as a key driver of health and well-being (Morris et al., 2006 ).

Despite its inherent logic, the socioecological perspectives that emerged in the closing decades of the 20th century created scientific and policy challenges for all constituencies concerned with public health. There were obvious generic challenges, for example, around which of the models (each, necessarily, a gross simplification of a complex reality) might point to solutions (Morris et al., 2006 ; Evans & Stoddart, 1990 ; Reis et al., 2015 ); around the nature of evidence and its interpretation (Petticrew et al., 2004 ; Tannahill, 2008 ); and how, in practice, to traverse professional and policy silos to produce the interdisciplinary approaches that are inevitably required. In this connection, the task of motivating, supporting, and delivering effective intersectoral working, an abiding challenge for public health policy and practice, assumed a much higher profile in the late 20th century with the emergence of the socioecological model of health.

We emphasize that the continuing failure to adequately confront this challenge has the gravest implications for global public health. As Prüss-Üstün et al. recently observed, “Tackling environmental risks requires intersectoral collaboration. After nearly 50 years of actively promoting this concept, whether referred to as intersectoral action, breaking down silos or the nexus approach, it remains elusive as ever. The statement ‘intersectoral collaboration: loved by all, funded by no-one’ points to obstacles, mainly vested interests, that have burdened this approach ever since it was included as part of the WHO/UNICEF Alma Ata Declaration on Primary Health Care in 1978 . Environmental health, quintessentially intersectoral, has suffered most from this lack of progress” (Prüss-Üstün et al., 2016a ).

With specific reference to the role of the local environment, the recognition of socioecological complexity as the determinant of health meant that strict adherence to narrow hazard-focused and compartmentalized approaches became intellectually unsustainable. Yet, acceptance of the dynamic interaction of environment with other determinants of health demands a richer understanding of the environmental contribution than can be provided by toxicology or microbiology in isolation.

The Role of the Environment in Health Inequalities

The fact that the poorest, most degraded urban neighborhoods were those most blighted by disease and reduced life expectancy was clear even to the public health pioneers of the 19th century . Indeed, throughout much of the modern public health era, an acceptance of the importance of the environment for health and well-being has been accompanied by a recognition of the interplay between sociodemographic, economic, and physical factors in creating and sustaining health inequalities.

The term “health inequalities” refers to general differences in health, however caused. Where the differences in health are unfair, unjust, and avoidable, as they often are when linked to social variables, they should more properly be termed “health inequities.” However, in the extensive literature on the topic and in common usage, inequities are termed inequalities, and we adopt this convention here. Despite their importance, the emphasis on tackling health inequalities has varied considerably over time and according to place.

In 2008 , the final report of the Commission on the Social Determinants of Health (CSDH, 2008 ) elevated the global profile of health inequalities and emphasized the interplay of many societal-level factors in their creation in the 21st century . The significant achievements in public health across the world over nearly two centuries have not been shared equally between countries or by all social groups within countries. An important component has been the health-relevant differences in the physical context for people’s lives—the quality of the physical environment. Sometimes expressed in terms of environmental justice , or elsewhere as environmental health inequalities, attention to this area is key to tackling health inequalities across the world (CSDH, 2008 ; Morris & Braubach, 2012 ).

Estimates of the impact of environmental quality on health and well-being vary widely, depending on the definition of environment used. However, that impact is undeniable. Over a billion people in developing countries, for example, have inadequate access to water, and 2.6 billion lack basic sanitation . The World Health Organization estimates that environmental factors were responsible for 12.6 million deaths worldwide in 2012 , 23 percent of all deaths, and 22 percent of the total burden of disease. Addressing environmental risks could prevent 26 percent of all deaths of children under the age of 5 (Prüss-Üstün et al., 2016b ).

In addition, there is clear evidence that a “good” environment empowers health through access to environmental assets such as green spaces, access to a healthy diet, and safe environments in which to walk, cycle, play, and socialize. However, as these data suggest, there is also a fundamental equity dimension to the distribution of both the cause and distribution of environmental stressors, the susceptibility to exposure, and the adverse effects of those exposures. Deprived communities almost invariably live in poorer quality environments, with higher levels of indoor and outdoor air pollution, contaminated land, polluting industrial processes, overcrowded and poor quality housing, and lower levels of environmental assets (Prüss-Üstün et al., 2016a ; 2016b ; Royal College of Physicians, 2016 ; The Marmot Review Team, 2010 ). Populations in developed countries, including the former communist states of eastern Europe living in areas of high air pollution, are disproportionately deprived, for example (Kriger et al, 2014 ; Bell & Ebisu, 2012 ; Branis & Linhartova, 2012 ; Goodman et al., 2011 ). Poor indoor air quality is associated with unfit or inadequate housing standards, conditions that overwhelmingly affect the deprived (The Marmot Review Team, 2010 ). There is evidence that deprived communities are not only more exposed to environmental hazards but are also more susceptible to the effects of those exposures (Goodman et al., 2011 ; Carder et al., 2008 ; Richardson et al., 2011 ; 2013 ; Vinikoor-Imler et al., 2012 ). There are also concerns that stress, at both the individual and community level, can weaken the body’s defenses against external insult and influence the internal dose of toxicants (Gee & Payne-Sturges, 2004 ).

This effect is also seen in social and physical environments. An adequate and nutritious diet is essential to a healthy, productive, and fulfilling life, and it is a fundamental right predicated by a range of factors including personal knowledge, choice, convenience, availability, quality, cost, and social norms. The evidence is clear that deprivation compounds all these factors, with poorer people buying more unhealthy foods with fewer healthy components while being exposed to circumstances that make such “choices” inevitable (Rudge et al., 2013 ). The proportion of adults considered overweight or obese in 2008 in the 19 EU member states for which data were available ranged between 37 and 57 percent for women and between 51 and 69 percent for men ( EUROSTAT ). English children from deprived areas are almost twice as likely to be obese than those in affluent areas, and adult obesity is also associated with deprivation, particularly in women (Public Health England, 2016 ; National Obesity Observatory, 2013 ).

The poor in developed countries are adept at sourcing cheap calories and are exposed to a large numbers of local outlets selling cheap, calorie-dense takeaway food (Saunders et al., 2015 ). These meals are often super-sized and contain high levels of fats, sugar, and salt. At the same time, many of these areas provide limited access to healthy food options, creating a highly compromised public health environment (Saunders et al., 2015 ).

In addition, environmental stressors seem to have a cumulative impact, exacerbating this inequality. It is evident that poorer people have multiple health, social, and environmental stressors. It is entirely plausible that these stressors modify the effect of exposure to pollutants, as is reflected in the increased vulnerability of obese people to the effects of exposure to air pollutants, including increased risk of diseases such as cardiovascular events and respiratory symptoms (WHO, 2013 ; Jung et al., 2014 ). Long-term exposure to airborne pollutants has also been reported to increase the risk of obesity, and being overweight or obese is associated with an increased susceptibility to indoor air pollution in urban children with asthma (Lu et al., 2013 ).

The responsibility for, and relative benefits and costs of, environmental contamination are also important components of inequality. Environmental contamination may be tolerated by communities living in the vicinity of dirty industrial processes if they perceive a benefit in terms of local employment, although that trade-off has largely broken down in developed countries as those industries have declined in the 20th and 21st centuries. On a wider scale, the environmental consequences of contemporary affluent nations’ fuel economies are borne by those populations least able to bear them and with little or no responsibility for their causation (Patz et al., 2005 ). UNICEF has projected that 75–250 million Africans will be exposed to increased water stress due to climate change by 2020 (UNICEF, 2008 ), a phenomenon overwhelmingly caused by the First World. This is a gross injustice. These are also the same people with limited powers to prevent the dumping of rich countries’ waste in their communities. One appalling example is that of the “disposal” of 500 tons of toxic waste in and around Abidjan, the capital of Cote D’Ivoire, in 2006 . This poisonous cocktail of waste oil and contaminants was the result of the trading in, and processing of, hydrocarbon fuels by multinational commodity and shipping companies, criminal levels of cost cutting, and local political corruption, which led to 17 deaths and over 30,000 injuries in one of the poorest communities in the world (Bohand et al., 2007 ) There are many other examples, including the export, often illegally, of hundreds of thousands of tons of e-waste from Western countries to Africa, China, and Asia for recycling or disposal—transferring the costs and dangerous consequences of exposure to workers, including children, and local communities in these countries that do not have the technical or regulatory systems to deal safely with these toxic materials (ILO, 2012 ). Inuit mothers in northern Canada have elevated levels of chemicals such as PCBs—generated many hundreds, if not thousands, of miles away—in their breast milk (Johansen, 2002 ).

The redistribution of the environmental injustices historically endured by the poor also perversely appears to be affecting more affluent communities in the West. The huge expansion of “fracking” in North America, for example, may be leading to an export of risks from traditional “national sacrifice zones” to areas with no previous experience of such industry, creating “profound social, cultural, and economic shocks for middle class communities losing control over their environments” (Lave & Lutz, 2014 ). Despite their relative affluence, this would nonetheless be an injustice given the constraints on local democratic input and highly questionable direct economic benefits to those communities (Kinnaman, 2011 ; Lave & Lutz, 2014 ; Sovacool, 2014 ).

During a period when environmental catalysts for distress migrations are becoming more frequent (Thomas-Hope, 2011 ), there is a moral as well as a professional duty for the Environmental Health community to tackle these inequalities, which otherwise are likely to both widen and deepen.

The Health-Promoting Environment: Green, Blue, and Natural Spaces

While human communities have long valued access to natural resources such as green spaces, the industrialization of the 19th and early 20th centuries saw millions of people deprived of this access. This era did witness some far-sighted philanthropic gifting of areas of open recreational space for the working classes driven by a moral rather than evidence-based imperative. Though welcome, the distribution of, and access to, such resources was limited, inconsistent, unplanned, and vulnerable to the insecurities of voluntary funding. Subsequent local municipal development of parks and other open spaces increased access, and a greater understanding of the benefits of such access blossomed during the late 20th century as research demonstrated and quantified the public health dividends. Access to good-quality green spaces not only makes the places in which we live, work, and play more attractive, but also has a demonstrable effect on improving health and well-being. Green space is linked to lower levels of several diseases and conditions, including lower rates of mortality (Villeneuve et al., 2012 ), increased longevity in older people (Faculty of Public Health, 2011 ), improved mental health (Faculty of Public Health, 2011 ), better outcomes in disease treatment, and reduced medication (Faculty of Public Health, 2011 ), and it also helps reduce health inequalities (Mitchell & Popham, 2008 ; CABE, 2010 ). Plausible mechanisms for these benefits include the provision of a venue for physical activity, promotion of social contact, and the direct impacts of green spaces on psychological and physical health. Natural spaces also promote greater community cohesion and reduce social isolation, providing a platform for community activities, social interaction, physical activity, and recreation (Public Health England, 2014 ). Research from the United States has identified powerful associations between green space and major reductions in aggressive behavior, domestic abuse, and other crime in deprived urban areas (Kuo et al., 2001a , 2001b ).

And yet, there remain great inequalities in the distribution, use, and quality of this empowering resource. People living in the most deprived areas are less likely to live in the greenest areas and therefore have less opportunity to gain the health benefits of green space compared with people living in the least deprived areas (Public Health England, 2014 ). Children living in poor areas, for example, are nine times less likely than those living in affluent areas to have access to green space and places to play (National Children’s Bureau, 2013 ). It is entirely plausible that that this contributes to the sobering reality that children from deprived communities are up to three times as likely to be obese than those children growing up in affluent areas (National Children’s Bureau, 2013 ).

Accessibility, however, is not the same as availability or utility, nor is it simply a function of proximity. It is strongly impacted by the cost of access, whether it is actually physically available, opening times, and the ease of being able to get to it, for example, walking and good public transport. Deprived communities in particular appreciate the value of such spaces, but they tend to underuse them due to concerns about the safety and quality of the spaces (CABE, 2010 ). Experience has shown that quality of the green space is just as important, if not more so, than its size. Post-World War II urban developments in many countries have included large grassy areas, and substantially derelict former industrial sites have often been entirely grassed over. The sterility and sheer size of these sites, the cost of maintenance, and the lack of facilities have often led to misuse and subsequent abandonment by both communities and local municipalities.

The provision, maintenance, and promotion of good-quality and safe , publicly available spaces is not a subsidy; it is an investment delivering economic, health, and regeneration benefits . Research on Philadelphia estimated that maintaining city parks could achieve huge annual savings in health care costs, stormwater management, air pollution mitigation, and social cohesion benefits (The Trust for Public Land, 2008 ). The improved social cohesion associated with natural spaces also has economic benefits. A 2009 Scottish study estimated a £7.36 dividend for every £1 invested in conservation volunteering projects (Greenspace Scotland, 2009 ). It is clear from the evidence that increasing the use of good-quality green space for all social groups is likely to improve health outcomes and reduce health inequalities.

The Reemergence of the Infectious Threat

Among the developments that, for Western societies, consigned environment to the periphery of medical and public health interest in the post–World War II era, we highlighted the epidemiological transition in the mid- 20th century . Indeed, for a period in the 1960s and 1970s it seemed that infectious disease in the developed world had effectively been conquered (Fauci, 2001 ). It was even tempting to suggest that the developing world might eventually follow suit. Yet, within a relatively few years, the twin threats of emerging infectious disease and antibiotic resistance would shatter the earlier confidence and reestablish infection as a live threat to individuals, communities, and populations and one that presented, increasingly, on a global scale.

The term “emerging infectious disease” (EID) denotes an infectious disease, newly recognized as occurring in humans; one that has been previously recognized but is appearing for the first time in a new population or a different geographic area; one that now affects many more people; and/or one that is displaying new attributes, for example, in terms of its resistance or virulence ( adapted from The US Government & Global Emerging Infectious Disease Preparedness and Response ). Although the return of infection was not necessarily anticipated by a confident global community, many predisposing factors were clearly present. Changes in land use, growth and movement of populations, contacts between people and animals, international trade and travel, and, often, an absence of a public health infrastructure all played a part. Where such influences coincided, as in sub-Saharan Africa or parts of Asia, hotspots were created that were conducive to the emergence of infectious disease. Several hundred new infectious diseases appeared across the globe in the period between 1940 and 2004 , with the greatest number emerging in the 1980s (Jones et al., 2008 ). The 1980s was also the decade that notoriously witnessed the late 20th century ’s most sentinel infection event, the first reported cases of Human Immunodeficiency Virus/Acquired Immune Deficiency Syndrome (HIV/AIDS). By 2014 , AIDS alone would result in approximately 78 million cases worldwide . Although HIV/AIDS engendered particular alarm, the list of late- 20th-century EIDs of medical and public health significance is extensive. Variant Creutzfeldt-Jacob disease (vCJD), H5N1 Influenza and Ebola Virus Disease, the Northern Hemisphere debut of the mosquito-borne zoonotic viral disease, and West Nile Fever in New York City in 1999 were all public health and media events. The process continues unabated in the 21st century with the arrival of Severe Acute Respiratory Syndrome (SARS), H1N1 Influenza (“swine flu”), H7N9 Influenza (“bird flu”), and, despite having surfaced some 40 years earlier, Ebola revealed its potential as a global threat with the West African Outbreak of 2014–2015 . More recently still, the distressing incidence of microcephaly in South America putatively linked to the Zika virus simply emphasizes the abiding challenge posed by infection for public health and global economics (European Centre for Disease Control, 2016 ).

Antibiotic resistance has been a developing public health horror story over, perhaps, 50 years. The therapeutic use of antimicrobials and especially antibiotics was a key factor in slashing the burden of illness from infection in Western countries in the latter half of the 20th century . Yet all classes of organisms—fungi, protozoa, viruses, and bacteria—can develop antimicrobial resistance. Through their genetic processes, bacteria have derived multiple resistance mechanisms to antibiotics used in medicine and agriculture. The threat renders humankind vulnerable to a host of infections, notably in hospital settings where treatment options for many infections are now severely limited. As a consequence, even at the dawn of the 21st century , drug resistance was already being perceived as an increasing threat to global public health, involving all major microbial pathogens and antimicrobial drugs (Levy & Marshall, 2004 )

The challenges of EIDs and antimicrobial resistance are, unquestionably, game changers for medicine and public health in the 21st century . Importantly, they are among the factors that have revealed the true limitations of the biomedical model of health and disease in the 20th century and rekindled interest in the socioeconomic and environmental determinants of disease. HIV/AIDS merits special mention in this regard. Although it is believed to have origins in nonhuman primates in West Africa, it is not an environmental disease in the sense that there is a specific environmental reservoir. Medical sciences and epidemiology have shown transmission of the virus via unprotected sex, contaminated blood transfusions, hypodermic needles, and mother to child transmission during pregnancy, delivery, and breastfeeding. HIV (the infection) and AIDS (the disease) have shown the capacity to extend beyond the initially identified high-risk groups, potentially placing whole populations at risk. In some areas of sub-Saharan Africa where the infection is widespread, it impacts negatively on almost every aspect of society and the economy.

Over 30 years after it first emerged and despite concerted efforts, there is still no cure. In addition to banishing complacency, the infection and the disease call for a much wider perspective than that which took root in the postwar era of scientific positivism and medical paternalism. The failure to manage the threat stems in part from an incapacity to understand where to intervene to change behaviors and to see the disease in its social and environmental context.

Ecological Public Health

Earlier in this article, we identified five issues that helped reestablish awareness of the environment as a key component in the production of human health and well-being in the late 20th century . These issues, and our understanding of them, continue to evolve to challenge the public health community and wider society in the 21st century . In the most general terms, progress seems most likely where issues and challenges are framed with reference to a much wider range of pertinent factors by developing new approaches to evidence and its synthesis; by aligning institutional, physical, and educational infrastructures to the task; and by building governance structures in which all players are accountable and yet are encouraged to unite in common cause.

However, society must now embrace an additional and potentially more devastating threat to health and well-being. Human activity, including economic activity, is now directly and indirectly driving changes to the ecosystems and planetary processes on which we rely for health, well-being, and existence. For too long, human beings have lived, moved, consumed, and pursued health and well-being as if humankind is distinct and separate from nature rather than integral to it. The consequences of this disconnect for the natural world were graphically expressed by Rachel Carson in the 1960s and many others in the ensuing years (e.g., see Rockström et al., 2009 ; Steffen et al., 2015 ). However, developments in science and technology now reveal the true extent of the crisis, its accelerating nature, and its consequences both now and in the medium and longer term.

The term “ecological public health” is increasingly being used to encapsulate a need to build health and well-being, henceforth, on ecological principles. Rayner and Lang ( 2012 ) observe that, despite appearing difficult and complex, Ecological public health “is now the 21st century ’s unavoidable task.” Thus, the already complex challenge of navigating human social complexity to deliver health, well-being, and greater equity, which has defined public health in Western society for several decades, is made more challenging still. The relationship of the environment and human health and well-being must be understood and addressed on vastly extended temporal and spatial scales.

The notion that the planet is a finite resource on which human activity can place intolerable pressure and that the consequences of doing so are potentially catastrophic has been around for some time (e.g., see Carson, 1962 ; Meadows et al., 1972 ). A contemporary evolution of this thinking is expressed by Rockstrom and colleagues. Their sentinel paper, first published in 2009 (Rockström et al., 2009 ) and updated in 2015 (Steffen et al., 2015 ), lists the large earth system processes that are urgently in need of stewardship if humanity is to remain safe into the future. Where applicable, it proposes thresholds beyond which nonlinear, abrupt, and potentially catastrophic changes in these systems might be expected. This thinking is used as a basis for defining a “safe operating space for humanity.” The authors propose nine “planetary boundaries.” Three of these—climate change, ocean acidification, and stratospheric ozone depletion—are major planetary systems where evidence exists of large-scale thresholds in the history of the planet history of the planet. Also included are systems of a rather different sort. These are the slow variables that buffer and regulate planetary resilience. These slow variables comprise interference with the nitrogen and phosphorus cycles; land-use change; rate of biodiversity loss; and freshwater use. Two parameters, air pollution and chemical pollution, are especially difficult to quantify, meaning that thresholds cannot yet be defined. It is emphasized that, while for understandable reasons, the nine systems are often discussed independently, they are interrelated in ways meaning that changes in one system have profound implications for the others. Rockstrom and colleagues observe that in the preindustrial era, all nine parameters were within the safe operating boundaries, and yet by the 1950s, change was underway, most evidently in the nitrogen cycle. By 2009 , according to their analysis, three planetary boundaries had been transgressed: climate change; rate of biodiversity loss; and the nitrogen cycle.

An implicit challenge in limiting global ecosystem damage and its multiple implications is how to achieve recognition among the public and policymakers that the choices they make either directly or indirectly cause ecosystem damage and related environmental change (Morris et al., 2015 ). Climate change is simply the most striking example, but comparable challenges over communication exist in relation to other planetary process and systems. The fundamental rethink of society, the economy, and the environment, which is necessary if health and well-being are to be built on ecological principles, will happen only if the true implications for health and well-being of a “business as usual” approach are understood, communicated, and challenged. For any population, the environmental changes that may ultimately have profound implications may take place in countries and regions well beyond their borders or may not occur for some time, conferring a temporal and/or spatial remoteness that diminishes the sense of urgency. Appreciating the importance of these “distal” pathways of ecosystem damage to human health and well-being demands a greater understanding of ecosystem services (the benefits human beings get from the natural environment) and of why they matter. It also demands a much fuller appreciation of the global connectivity of social, economic, and ecological systems (Morris et al., 2015 ; Adger et al., 2009 ).

When initiating our discussion of the role of environment in health, we observed that the modern public health era was built on an environmental conceptualization of public health. It is now inconceivable that health, well-being, health care, and equity in any of these domains can be delivered without rediscovering an environmental conceptualization of public health for the 21st century .

For Western society, ecological public health is likely to require a rethink of society, the economy, and our stewardship of the natural environment (Rayner & Lang, 2012 ). At the very least, it will demand pursuit, through policy and action, of outcomes that recognize a ‘quadruple bottom line’ measured in health and well-being, environmental quality, equity, and sustainability. The extent to which we embrace ecological principles will be evidenced in policies that address how we live (for example, the energy efficiency of our homes), how we move (particularly our reluctance to substitute travel in fossil-fueled cars with more active forms of travel); how we consume (notably how we source and produce food) and, of course how we obtain and conserve energy.

Taking Stock

Despite being necessarily selective, this article has sought to illustrate how perspectives on the role of the environment in human health and well-being have evolved over the course of the modern public health era. Perspectives can be seen to shift owing to changes in the nature of environmental hazards and risks that are themselves products of the evolution of how societies live, move around, consume, source their energy, and so on. Our understanding of the health relevance of the built and natural environments is also shaped by advances in scientific understanding and technology and a much wider economic, social, cultural, and even political context. In structuring our account, we have adopted a loose framework based on the “epidemiological eras,” elegantly articulated by two of the 20th century ’s leading epidemiologists (Susser & Susser, 1996 ). These eras are differentiated according to the dominant paradigm of the time concerning the causes of disease, each underpinned by analytical approaches to understand and prioritize risk.

The importance accorded to the environment as a mainstream public health issue arguably reached its lowest point in the decades following World War II when the tendency to regard health and disease as characteristics of individuals, rather than communities or populations, gained prominence. This approach diverted attention from social and environmental factors, divorcing health from place. Notions that humans are self-contained and impervious to context have now been largely swept away, not least because denial of a socioecological perspective hugely undermined attempts to address the most serious contemporary health challenges. Also instrumental in challenging the notion of the self-contained body has been an environmentalist movement with a particular interest in pesticide and other chemical contamination of the biosphere. The toxic effects of chemical contamination reinforce the reality of a body that is permeable and invariably in a state of intimate exchange with its surroundings. As Nash ( 2006 ) has observed, “ the singular and self-contained body of the early 20th century came, by the end of that century to seem distressingly porous and vulnerable to the modern landscape” (p. 13). We would simply add that humans exhibit comparable porosity and vulnerability to the social and economic context in which they exist.

We recognize that our account contains only limited reference to the regulatory context that has been so central to controlling the environment for public health. We consider it appropriate to sound a warning in this regard. The processes through which environment is monitored and regulated to protect human health and well-being are sometimes taken for granted. Yet, since the 1980s, pressures have mounted in most Western nations to ‘deregulate’ markets to maximize profit. These pressures have led to environmental and public health regulation being increasingly perceived by governments and markets as “red tape” and a barrier to economic enterprise. Pressure to loosen or even abandon aspects of environmental regulation has weakened formal controls, leaving society vulnerable to corporate excess and irresponsibility, with often serious impacts on public health (Oldenkamp et al., 2016 ). This is not to argue that regulation should be static. Rather, it should adapt to changing technological, social, and economic circumstances and should be appropriately funded whether it relates to the quality of the air we breathe, the water we drink, the buildings we live, learn, and work in, or the nutritional aspects of the food we eat. Neither do we deny the potential to exploit citizen science and the power of new technology to supplement conventional regulation (e.g., enabling vulnerable individuals to avoid hazardous exposures and the opportunities for personal pollution monitoring to improve research).

Mainly anthropogenic damage to planetary resources and ecosystems demands that, wherever we are in the world, public health agencies must understand not just the proximal threats to health and well-being that have been the targets of public health intervention throughout the modern public health era. They must also understand and move to prevent, counteract, and contain more distal threats to health and well-being. The distal threats derive from changes to environments that appear remote in space or time or involve a complex interaction of social, environmental, and economic influences. These are no longer abstract considerations. The unprecedented global connectivity of economic and social systems and the growing understanding of ecosystem interdependencies demand that the implications of human activity for health and well-being be recognized, understood, and addressed on a vastly extended temporal and spatial scale.

Only by build health and well-being on ecological principles (Ecological Public Health) will society effectively address the more distal threats to health and well-being from global ecosystem damage; the socioecological complexity of the proximal environment and the interconnections between these.

Conclusions

In this necessarily brief and artificially linear account, our intention has been to reinforce the enduring importance of the environment for health and well-being. Along the way, we have identified three factors that have marginalized the environment as a component of health and disease. We suggest that they continue to represent clear and present threats, undermining public health and, in the case of the latter, an existential threat to humankind.

The Threat from Medical Reductionism

This tendency to think of disease almost exclusively in terms of pathogenic agents and organic dysfunction marginalizes any influence outside the crucible of the laboratory. This trend was most evident in the decades following World War II but remains an ever-present threat.

The Separation of Health from Place

Closely related to medical reductionism is the tendency to downplay the importance of local context for life. The idea that if local environment matters, it does not matter much and, that when it comes to health and disease, the real action is not out there in the neighborhood and among the community but “over here” in the laboratory and at the level of the individual. Such perspectives are divisive. They create artificial barriers between many academic disciplines, including some medical specialties, and those working to manage and improve the local social and environmental context within which “permeable” human beings live out their lives.

The Denial of Ecology

Science now permits humans to understand the true extent to which their activities are plundering natural resources and harming the planetary systems and processes on which they depend. The pace of change is such that health, well-being, heath care, or anything approaching equity in these things will not be sustained in the medium to longer term without radically rethinking society, the environment, and the economy. The global connectivity of social, economic, and environmental systems means, ultimately, that no one is insulated from the threat whether by distance or socioeconomic circumstance. Ecological public health, the pursuit of health and well-being on ecological principles, has been described as the 21st century ’s unavoidable task. It demands recognition of the dynamic interconnections between people and their environment. Manifestly, we depend on the environment we inhabit, and we powerfully affect it. Among the clearest impediments to delivering ecological public health and preserving a viable environment for future generations are the belief that we can manipulate and conquer the natural environment without consequence, and the irresponsible capitalist imperative that subverts regulatory standards and damages and exploits the environment for profit. Both are revealed as transparent absurdities by an ecological understanding and analysis.

  • Adger, W. N. , Eakin, H. , & Winkels, A. (2009). Nested and teleconnected vulnerabilities to environmental change . Frontiers in Ecology and the Environment , 7 (3), 150–157.
  • Awefeso, N. (2004). What’s new about the new public health? American Journal of Public Health , 94 , 705–709.
  • Baker, D. , & Nieuwenhuijsen, M. J. (Eds.). (2008). Environmental epidemiology: Study methods and application . New York: Oxford University Press.
  • Baum, F. (1998). The new public health: An Australian perspective . Oxford: Oxford University Press.
  • Baxby, D. (2004). Jenner, Edward (1749–1823). In Oxford Dictionary of National Biography . Oxford: Oxford University Press. Retrieved from http://www.oxforddnb.com/view/article/14749 .
  • Bell, M. L. , & Davis D. L. (2001). Reassessment of the lethal London fog of 1952: Novel indicators of acute and chronic consequences of acute exposure to air pollution. Environmental Health Perspectives , 109 (Suppl. 3), 389–394.
  • Bell, M. L. , Davis, D. L. , & Fletcher, T. (2004). A retrospective assessment of mortality from the London smog episode of 1952: The role of influenza and pollution. Environmental Health Perspectives , 112 , 6–8.
  • Bell, M. L. , & Ebisu, K. (2012). Environmental inequality in exposures to airborne particulate matter components in the United States. Environmental Health Perspectives , 120 , 1699–1704.
  • Bell, M. L. , & Samet, M. J. (2005). Air pollution in environmental health. In H. Frumkin (Ed.), From Global to Local (pp. 387–415). San Francisco: Jossey-Bass.
  • Bohand, X. , Monpeurt, C. , Bohand, S. , et al. (2007). Toxic waste and health effects in Abidjan City, Ivory Coast. Medecine Tropicale , 67 , 620–624.
  • Bookchin, M. (1990). The philosophy of social ecology: Essays on dialectical naturalism . Montreal: Black Rose Books.
  • Branis, M. , & Linhartova, M. (2012). Association between unemployment, income, education level, population size and air pollution in Czech cities: evidence for environmental inequality? A pilot national scale analysis. Health and Place , 18 , 1110–1114.
  • Brock, T. D. (1999). Robert Koch: A life in medicine and bacteriology . Washington, DC: ASM Press.
  • Brownson, R. C , Fielding, J. E. , & Maylahn, C. M. (2009). Evidence-based public health: A fundamental concept for public health practice. Annual Review of Public Health , 30 , 175–201.
  • Butler, C. D. , Corvalán, C. F. , & Koren, H. S. (2005): Human health and well-being in global ecological scenarios . Ecosystems , 8 (2), 153–164.
  • Butler, C. D. , & Harley, D. (2010) Primary, secondary and tertiary effects of eco-climatic change: The medical response . Postgraduate Medical Journal , 86 : 230–234.
  • CABE . (2010). Community green: Using local spaces to tackle inequality and improve health . London: CABE.
  • Carder, M. , McNamee, R. , Beverland, I. , et al. (2008). Does deprivation index modify the acute effect of black smoke on cardiorespiratory mortality? Occupational and Environmental Medicine , 67 , 104–110.
  • Carson, R. (1962). Silent spring . Boston: Houghton Mifflin.
  • Chadwick, E. (1842). Report to her majesty’s principal secretary of state for the Home Department from the Poor Law commissioners on an inquiry into the sanitary conditions of the labouring classes of Great Britain. London: HMSO.
  • Collard, P. (1976). The development of microbiology . Cambridge: Cambridge University Press.
  • Commission on Social Determinants of Health . (2008). Closing the gap in a generation: health equity through action on the social determinants of health. Final Report of the Commission on Social Determinants of Health. Retrieved from http://whqlibdoc.who.int/publications/2008/9789241563703_eng.pdf .
  • Dahlgren, G. , & Whitehead, M. (1991). Policies and strategies to promote social equity in health . Institute of Futures Studies. Department for Education and Skills, Stockholm.
  • Dockery, D. , & Pope, A. (1996). Epidemiology of acute health effects: Summary of time-series studies. In R. Wilson & J. D. Spengler (Eds.), Particles in our air. Concentration and health effects (pp. 123–147). Cambridge, MA: Harvard University Press.
  • EPA . Environmental justice . (2016). Retrieved from https://www.epa.gov/environmentaljustice .
  • EPA . Next generation air measuring research . (2016). Retrieved from https://www.epa.gov/sciencematters/epas-next-generation-air-measuring-research .
  • European Centre for Disease Control . (2016). Zika outbreak in the Americas and the Pacific . Retrieved from http://ecdc.europa.eu/en/healthtopics/zika_virus_infection/zika-outbreak/Pages/zika-outbreak.aspx .
  • European Environment Agency . (2013). Late lessons from early warnings: Science, precaution, innovation . Copenhagen: EEA.
  • Eurostat . Overweight and obesity BMI statistics . Retrieved from http://ec.europa.eu/eurostat/statistics-explained/index.php/Overweight_and_obesity_-_BMI_statistics .
  • Evans, R. , & Stoddart, G. (1990). Producing health, consuming health care. Social Science and Medicine , 31 , 1347–1363.
  • Evelyn, J. (1661). Fumifugium, or the inconvenience of aer or the smoake of London dissipated . London: Dorset Press for the National Society of Clean Air.
  • Faculty of Public Health and Natural England . (2011). Great outdoors: How our natural health service uses green space to improve wellbeing briefing statement . London: FPH.
  • Fauci A. S. (2001). Infectious diseases: considerations for the 21st century. Clinical Infectious Diseases , 32 , 675–685.
  • Ferriman, A. (2007). BMJ readers choose the “sanitary revolution” as greatest medical advance since 1840. British Medical Journal , 334 , 111.
  • Foster, W. D. (1970). A history of medical bacteriology and immunology . London: Heinemann.
  • Frumkin, H. (Ed.). (2005). Environmental health: From global to local . San Francisco: Jossey-Bass.
  • Gee, G. C. , & Payne-Sturges, D. C. (2004). Environmental health disparities: A framework integrating psychosocial and environmental concepts. Environmental Health Perspectives , 112 , 1645–1653.
  • Goodman, A. , Wilkinson, P. , Stafford, M. , & Tonne, C. (2011). Characterising socio-economic inequalities in exposure to air pollution: a comparison of socio-economic markers and scales of measurement. Health and Place , 17 , 767–774.
  • Greenspace Scotland . (2009). Social return on investment (SROI) analysis of the Greenlink, A partnership project managed by the Central Scotland Forest Trust (CSFT). Retrieved from http://1068899683.n263075.test.prositehosting.co.uk/wp-content/uploads/2013/04/Greenlink-SROI-Final-report-5-October-2009.pdf .
  • Haekel, E. (1866). Generelle morphologie der organismen . Berlin: Georg Reimer.
  • Hamil, S. D. (2008, November 1). Unveiling a museum, A Pennsylvania town remembers the smog that killed 20. New York Times . Retrieved from http://www.nytimes.com/2008/11/02/us/02smog.html?_r=0 .
  • International Labour Office . (2012). The global impact of e-waste: Addressing the challenge . Geneva: ILO.
  • James Hutton Institute . Greenhealth. Contribution of green and open space to public health and wellbeing. Retrieved from http://www.hutton.ac.uk/sites/default/files/files/projects/GreenHealth-Final-Report.pdf .
  • Johansen, B. E. (2002). The Inuit’s struggle with dioxins and other organic pollutants. American Indian Quarterly , 26 , 479–490.
  • Jones, K. E. , Patel, G. N. , Levy, M. A. , et al. (2008). Global trends in emerging infectious diseases. Nature , 451 , 990–993.
  • Levy, S. B. , & Marshall, B. (2004). Antimicrobial resistance worldwide: Cause. Challenges and responses. Natural Medicine , 12 (Suppl.), S122–S129).
  • Lloyd, G. E. R. (Ed.). (1983). Hippocratic writings (trans. J. Chadwick . & W. N. Mann ). London: Penguin.
  • Jung, K. H. , Perzanowski, M. , Rundle, A. , et al. (2014). Polycyclic aromatic hydrocarbon exposure, obesity and childhood asthma in an urban cohort. Environmental Research , 128 , 35–41.
  • Kessel, A. (2006). Air, the environment and public health. Cambridge: Cambridge University Press.
  • Kinnaman, T. C. (2011). The economic impact of shale gas extraction: A review of existing studies. Ecological Economics , 70 , 1243–1249.
  • Kokayeff, N. (2013). Dying to be discovered: Miasma vs germ theory. ESSAI , 10: Article 24. Retrieved from http://dc.cod.edu/cgi/viewcontent.cgi?article=1416&context=essai .
  • Kriger, N. , Waterman, P. D. , Gryparis, A. , et al. (2014). Black carbon exposure more strongly associated with census tract poverty compared to household income among US black, white, and Latino working class adults in Boston, MA (2003–2010). Environmental Pollution , 190 , 36–42.
  • Kuo, F. , & Sullivan, W. C. (2001a). Environment and crime in the inner city: Does vegetation reduce crime. Environmental Behavior , 33 , 343–367.
  • Kuo, F. E. , & Sullivan, W. C. (2001b). Aggression and violence in the inner city: Effects of environment via mental fatigue. Environmental Behavior , 33 , 543–571.
  • Lalonde, M. (1974). A new perspective on the health of Canadians. Ministry of Supply and Services Canada. Retrieved from http://www.phac-aspc.gc.ca/ph-sp/pube-pubf/perintrod-eng.php .
  • Lave, R. , & Lutz, B. (2014). Hydraulic fracturing: A critical physical geography review. Geography Compass , 8 , 739–754.
  • Leviticus [14:33–45] quoted in Frumkin, 2005.
  • Lu, K. D. , Breysse, P. N. , Diette, G. B. , et al. (2013). Being overweight increases susceptibility to indoor pollutants among urban children with asthma. Journal of Allergy and Clinical Immunology , 131 , 1017–1023.
  • Martuzzi, M. (2007). The precautionary principle: in action for public health. Occupational and Environmental Medicine , 64 , 569–570.
  • Meadows, D. H. , Meadows, D. L. , Randers, J. , et al. (1972). The limits to growth: A report for the Club of Rome’s project on the predicament of mankind . New York: Universe Books.
  • Mitchell, R. , & Popham, F. (2008). Effect of exposure to natural environment on health inequalities: An observational population study. The Lancet ; 372 , 1655–1660.
  • Morris, G. P. , Beck, S. A. , Hanlon, P , et al. (2006). Getting strategic about the environment and health. Public Health , 120 , 889–907.
  • Morris, G. P. , & Braubach, M. (2012). Environmental health inequalities in Europe. Geneva: World Health Organization. Retrieved from http://whqlibdoc.who.int/publications/2008/9789241563703_eng.pdf .
  • Morris, G. P. , Reis, S. , Beck, S. , Fleming, L. E. , Adger, W. D. , Benton, T. G. , & Depledge, M. H. (2015). Climate change and health in the UK. Scoping and communicating the longer-term “distal” dimensions. In S. Kovats (Eds.), Health Climate Change Impacts Summary Report Card, Living With Environmental Change . Retrieved from http://www.nerc.ac.uk/research/partnerships/ride/lwec/report-cards/health-source10/ .
  • Nabel, E. G. , & Braunwald, E. M. (2012). A tale of coronary heart disease and myocardial infarction. New England Journal of Medicine , 366 , 54–63.
  • Nash, L. (2006). Inescapable ecologies: A history of environment, disease and knowledge . Berkeley, CA: California University Press.
  • National Children’s Bureau . (2013). Greater expectations: Raising aspirations for our children . London: NCB.
  • National Obesity Observatory . (2013). National Child Measurement Programme changes in children’s body mass index between 2006/07 and 2011/12. Retrieved from http://www.noo.org.uk/uploads/doc/vid_17929_NCMP_Changes_children.pdf .
  • Oldenkamp, R. , van Zelm, R. , & Huijbregts, A. J. (2016). Valuing the human health damage caused by the fraud of Volkswagen. Environmental Pollution , 212 , 121–127.
  • Patz, J. A. , Campbell-Lendrum, D. , Holloway, T. , et al. (2005). Impact of regional climate change on human health. Nature , 438 , 310–317.
  • Perry, I. J. (1997). Risk factor epidemiology. The Lancet , 350 , 1256.
  • Petticrew, M. , Whitehead, M. , Macintyre, S. , et al. (2004). Evidence for public health policy on inequalities: 1: The reality according to policymakers. Journal of Epidemiology and Community Health , 58 , 811–816.
  • Pope, C. A. , Dockery, D. W. , & Schwartz, J. (1995). Review of epidemiological evidence of health effects of particulate air pollution . Inhalation Toxicology , 47 , 1–18.
  • Prüss-Üstün, A. , Wolf, J. , Corvalan, C. , Neville, T. , Bos, R. , & Neira, M. (2016a). Diseases due to unhealthy environments: An updated estimate of the global burden of disease attributable to environmental determinants of health . Journal of Public Health . Retrieved from http://jpubhealth.oxfordjournals.org/content/early/2016/09/12/pubmed.fdw085.full .
  • Prüss-Üstün, A. , et al. (2016b). Preventing disease through healthy environments: A global assessment of the burden of disease from environmental risks . Geneva: World Health Organization.
  • Public Health England . (2016). Health Inequalities. Retrieved from http://www.noo.org.uk/NOO_about_obesity/inequalities .
  • Public Health England and UCL Institute of Health Equity . (2014). Local action on health inequalities: Improving access to green spaces . London: PHE.
  • Rather, L. J. (1985). Rudolf Virchow: Collected essays on public health and epidemiology . Canton, MA: Science History Publications.
  • Rayner, G. , & Lang, T. (2012). Ecological public health: Reshaping the conditions for good health . Oxford: Routledge.
  • Reis, S. , Morris, G. , Fleming, L. E. , et al. (2015). “Integrating Health and Environmental Impact Analysis.” Public Health , 129 , 1383–1389.
  • Richardson, E. A. , Pearce, J. , & Kingham, S. (2011). Is particulate air pollution associated with health and health inequalities in New Zealand? Health and Place , 17 , 1137–1143.
  • Richardson, E. A. , Pearce, J. , Tunstall, H. , et al. (2013). Particulate air pollution and health inequalities: A Europe-wide ecological analysis. International Journal of Health Geographics , 12 , 34.
  • Rockström, J. , Steffen, W. , Noone, K. , et al. (2009). Planetary boundaries: Exploring the Safe Operating Space for Humanity . Ecology and Society 14 , 32.
  • Rosen, G. A. (1993). History of public health (Expanded ed.). Baltimore, MD: Johns Hopkins University Press. Originally published 1958.
  • Royal College of Physicians . (2016). Every breath we take: The lifelong impact of air pollution . Report of a working party. London: RCP.
  • Rudge, G. , Suglani, N. , Jenkinson, D. , et al. (2013). Are fast food outlets concentrated in more deprived areas? A geo-statistical analysis of an urban area in central England. Journal of Epidemiology and Community Health , 67 (Suppl. 1), A14.
  • Saunders, P. , Saunders, A. , & Middleton, J. (2015). Living in a ‘fat swamp’: exposure to multiple sources of accessible, cheap, energy-dense fast foods in a deprived community. British Journal of Nutrition , 113 , 1828–1834.
  • Sovacool, B. K. (2014). Cornucopia or curse? Reviewing the costs and benefits of shale gas hydraulic fracturing (fracking). Renewable and Sustainable Energy Reviews , 37 , 249–264.
  • Steffen, W. , et al. (2015). Planetary boundaries: Guiding human development on a changing planet. Science , 349 , 1286–1287.
  • Susser, M. , & Adelstein, A. (1975). An introduction to the work of William Farr. American Journal of Epidemiology , 101 , 469–476.
  • Susser, M. , & Susser, E. (1996). Choosing a future for epidemiology: I. Eras and paradigms. American Journal of Public Health , 86 , 668–673.
  • Tannahill, A. (2008). Beyond evidence to ethics: A decision-making framework for health promotion, public health and health improvement. Health Promotion International , 23 , 380–390.
  • The Marmot Review Team . (2010). Fair society, healthy lives: Strategic review of health inequalities in England post-2010 . Marmot Review Team, London.
  • The Trust for Public Land . (2008). How much value does the city of Philadelphia receive from its park and recreation system? Retrieved from http://cloud.tpl.org/pubs/ccpe_PhilaParkValueReport.pdf .
  • Thomas-Hope E. (2011). People on the move. Managing migration in today’s commonwealth . The second report of the Ramphal Commission on Migration and Development.
  • UNICEF . (2008). Our climate, our children, our responsibility. The implications of climate change for the world’s children . Retrieved from https://www.crin.org/en/docs/climate-change.pdf .
  • Villeneuve, P. J. , Jerrett, M. , Su, J. G. , et al. (2012). A cohort study relating urban green space with mortality in Ontario, Canada. Environmental Research , 115 , 51–58.
  • Vinikoor-Imler, L C. , Gray, S. C. , Edwards, S. E. , et al. (2012). The effects of exposure to particulate matter and neighbourhood deprivation on gestational hypertension. Paediatric and Perinatal Epidemiology , 26 , 91–100.
  • Vinten-Johansen, P. , Brody, H. , Paneth, N. , et al. (2003). Cholera, chloroform and the science of medicine: A life of John Snow . New York: Oxford University Press.
  • World Health Organization . (2013). Review of evidence on health aspects of air pollution—REVIHAAP Project . Bonn: World Health Organization. Retrieved from http://www.euro.who.int/__data/assets/pdf_file/0004/193108/REVIHAAP-Final-technical-report-final-version.pdf .
  • World Health Organization . (2016). Water sanitation and health . Retrieved from http://www.who.int/water_sanitation_health/en/ .
  • World Health Organization . (2016). Global Health Observatory (GHO) data: HIV/AIDS . Retrieved from http://www.who.int/gho/hiv/en .
  • World Health Organization Regional Office for Europe . (2012). Environmental health inequalities in Europe Assessment Report . Copenhagen: WHO.

Printed from Oxford Research Encyclopedias, Environmental Science. Under the terms of the licence agreement, an individual user may print out a single article for personal use (for details see Privacy Policy and Legal Notice).

date: 24 April 2024

  • Cookie Policy
  • Privacy Policy
  • Legal Notice
  • Accessibility
  • [66.249.64.20|91.193.111.216]
  • 91.193.111.216

Character limit 500 /500

Human Impacts on the Environment

Humans impact the physical environment in many ways: overpopulation, pollution, burning fossil fuels, and deforestation. Changes like these have triggered climate change, soil erosion, poor air quality, and undrinkable water. These negative impacts can affect human behavior and can prompt mass migrations or battles over clean water.

Help your students understand the impact humans have on the physical environment with these classroom resources.

Earth Science, Geology, Geography, Physical Geography

share this!

April 23, 2024

This article has been reviewed according to Science X's editorial process and policies . Editors have highlighted the following attributes while ensuring the content's credibility:

fact-checked

trusted source

written by researcher(s)

Ecosystems are deeply interconnected—environmental research, policy and management should be too

by Rebecca Gladstone-Gallagher, Conrad Pilditch and Simon Francis Thrush, The Conversation

Ecosystems are deeply interconnected—environmental research, policy and management should be too

Why are we crossing ecological boundaries that affect Earth's fundamental life-supporting capacity? Is it because we don't have enough information about how ecosystems respond to change? Or are we unable, even unwilling, to use that information better?

We have a lot to learn still, but as we show in our research , using current ecological knowledge more effectively could deliver substantial environmental gains.

Our work focuses on improving links between research and ecosystem management to identify key trigger points for action in a framework that joins land, freshwater and sea ecosystems.

Specifically, we investigate solutions to environmental and societal problems that stem from the disparities between scientific research , policy and management responses to environmental issues.

We need managers and policy makers to consider ecological tipping points and how they can cascade though ecosystems from land into rivers and lakes and, ultimately, the ocean.

Our work's standing among global research aimed at stopping ecosystem collapse has been recognized as one of 23 national champions in this year's Frontiers Planet Prize .

More holistic solutions

This issue came into focus when New Zealand set up research collaborations known as national science challenges a decade ago to solve "wicked" social and ecological problems.

The challenges focused on environmental issues were deliberately created to concentrate on separate ecosystem and management domains (marine, freshwater and land). But all included research groups addressing ecological tipping points.

This was our inspirational spark. Our research highlights the consequences of managing land, freshwater and sea ecosystems in socially constructed bubbles. We focus on solutions where social and ecological connections are at the forefront of environmental management practices and decisions.

An example is the movement of pollutants such as microplastics from the land to the sea. Most of the microplastics found along coasts and in harbors are blown or washed off the land. While this pollution is a well recognized environmental threat to the marine environment , we have not yet focused on strategies to reduce the load.

Our work points to the ignored but critical issue that people's impacts on land accumulate in the sea, but land management and consequent actions are not informed by these far-field effects.

This leads to lags in decision making which create undesirable environmental outcomes that are difficult to return from. But if we act on these connections, the environmental gains could be substantial.

Cyclones as a real-world example

As a result of massive soil erosion on the east coast of the North Island during Cyclone Bola in 1988, steep hillsides were retired from grazing and converted to pine plantations to help stabilize the land.

Fast forward three decades and a large proportion of the forest reached harvest at the same time. The exposed soil associated with clear felling was left draped in woody debris to protect it from rain.

However, Cyclone Gabrielle hit in February last year, with extreme rainfall washing both soil and woody debris into streams.

This destroyed habitats, transported vast amounts of silt and wrecked lowland farms, orchards and critical infrastructure. The debris also clogged harbors and coastal beaches, smothered seafloor habitats, destroyed fisheries and affected cultural and recreational values.

This real-world example demonstrates the severe consequences of lags in information flow and management responses. If land-use management decisions had considered the effects on other connected ecosystems and the potential for climate change to intensify those connections, the outcomes could have been different.

We could have implemented more diverse strategies in land use and put emphasis on restoring native forest and coastal wetlands.

Living with nature, not off it

Our vision is one where social and ecological connections across ecosystem domains are at the forefront of moving to a more sustainable future.

Living within planetary boundaries requires a paradigm shift in behaviors, including the way we link science and management to on-the-ground action. Crucially, we need to increase the speed at which new research is taken up and rapidly transition this into action that improves environmental outcomes at local scales.

This behavioral shift underpins the way to a more integrated, broad-scale ability to act and stay within planetary boundaries.

Our research shows we can, with trust and open minds, transcend the disciplinary silos to support new forms of research organization. The challenge now is to extend holistic approaches into new practices.

This means identifying opportunities where connected research can alter behaviors across society, from individuals to global finance and governance. Central to this transition is recognizing we are part of complex social and ecological systems and our actions have indirect effects and long-term consequences.

We need new research to provide this evidence. It will inevitably lead to new questions about fundamental ecological and integrated Earth processes.

We believe these holistic approaches will allow science to be more readily incorporated into decision making and ensure environmental perspectives are captured. This will lead to relevant, locally appropriate, integrated and robust environmental management actions.

Provided by The Conversation

Explore further

Feedback to editors

research on environment

Artificial intelligence helps scientists engineer plants to fight climate change

2 hours ago

research on environment

Ultrasensitive photonic crystal detects single particles down to 50 nanometers

3 hours ago

research on environment

Scientists map soil RNA to fungal genomes to understand forest ecosystems

4 hours ago

research on environment

Researchers show it's possible to teach old magnetic cilia new tricks

research on environment

Mantle heat may have boosted Earth's crust 3 billion years ago

research on environment

Study suggests that cells possess a hidden communication system

research on environment

Researcher finds that wood frogs evolved rapidly in response to road salts

research on environment

Imaging technique shows new details of peptide structures

5 hours ago

research on environment

Cows' milk particles used for effective oral delivery of drugs

research on environment

New research confirms plastic production is directly linked to plastic pollution

Relevant physicsforums posts, large eruption at ruang volcano, indonesia.

Apr 23, 2024

Unlocking the Secrets of Prof. Verschure's Rosetta Stones

Apr 22, 2024

Tidal friction and global warming

Apr 20, 2024

Iceland warming up again - quakes swarming

Apr 18, 2024

M 4.8 - Whitehouse Station, New Jersey, US

Apr 6, 2024

Major Earthquakes - 7.4 (7.2) Mag and 6.4 Mag near Hualien, Taiwan

Apr 5, 2024

More from Earth Sciences

Related Stories

research on environment

A new framework for customized marine conservation in local contexts

Aug 31, 2023

research on environment

Planning at multiple scales for healthy corals and communities

research on environment

Study shows impacts of invasive species transcend ecosystem boundaries

Apr 4, 2024

research on environment

New Zealand government wants to fast-track approvals of large infrastructure projects. That's bad news for biodiversity

Mar 19, 2024

research on environment

Assessment of China's protected areas needs refining, study finds

Feb 23, 2024

research on environment

Our oceans are in deep trouble—a 'mountains to sea' approach could make a real difference

Jun 7, 2023

Recommended for you

research on environment

Scientists demonstrate high-resolution lidar sees birth zone of cloud droplets, a first-ever remote observation

6 hours ago

research on environment

Climate change supercharged a heat dome, intensifying 2021 fire season, study finds

7 hours ago

research on environment

Airborne observations of Asian monsoon sees ozone-depleting substances lofting into the stratosphere

8 hours ago

research on environment

Modeling broader effects of wildfires in Siberia

10 hours ago

research on environment

Study shows it's not too late to save the West Antarctic Ice Sheet

Let us know if there is a problem with our content.

Use this form if you have come across a typo, inaccuracy or would like to send an edit request for the content on this page. For general inquiries, please use our contact form . For general feedback, use the public comments section below (please adhere to guidelines ).

Please select the most appropriate category to facilitate processing of your request

Thank you for taking time to provide your feedback to the editors.

Your feedback is important to us. However, we do not guarantee individual replies due to the high volume of messages.

E-mail the story

Your email address is used only to let the recipient know who sent the email. Neither your address nor the recipient's address will be used for any other purpose. The information you enter will appear in your e-mail message and is not retained by Phys.org in any form.

Newsletter sign up

Get weekly and/or daily updates delivered to your inbox. You can unsubscribe at any time and we'll never share your details to third parties.

More information Privacy policy

Donate and enjoy an ad-free experience

We keep our content available to everyone. Consider supporting Science X's mission by getting a premium account.

E-mail newsletter

Numbers, Facts and Trends Shaping Your World

Read our research on:

Full Topic List

Regions & Countries

  • Publications
  • Our Methods
  • Short Reads
  • Tools & Resources

Read Our Research On:

What the data says about Americans’ views of climate change

Activists display prints replicating solar panels during a rally to mark Earth Day at Lafayette Square in Washington, D.C., on April 23, 2022. (Gemunu Amarasinghe/AP File)

A recent report from the United Nations’ Intergovernmental Panel on Climate Change has underscored the need for international action to avoid increasingly severe climate impacts in the years to come. Steps outlined in the report, and by climate experts, include major reductions in greenhouse gas emissions from sectors such as energy production and transportation.

But how do Americans feel about climate change, and what steps do they think the United States should take to address it? Here are eight charts that illustrate Americans’ views on the issue, based on recent Pew Research Center surveys.

Pew Research Center published this collection of survey findings as part of its ongoing work to understand attitudes about climate change and energy issues. The most recent survey was conducted May 30-June 4, 2023, among 10,329 U.S. adults. Earlier findings have been previously published, and methodological information, including the sample sizes and field dates, can be found by following the links in the text.

Everyone who took part in the June 2023 survey is a member of the Center’s American Trends Panel (ATP), an online survey panel that is recruited through national, random sampling of residential addresses. This way, nearly all U.S. adults have a chance of selection. The survey is weighted to be representative of the U.S. adult population by gender, race, ethnicity, partisan affiliation, education and other categories. Read more about the ATP’s methodology .

Here are the questions used for this analysis , along with responses, and its methodology .

A majority of Americans support prioritizing the development of renewable energy sources. Two-thirds of U.S. adults say the country should prioritize developing renewable energy sources, such as wind and solar, over expanding the production of oil, coal and natural gas, according to a survey conducted in June 2023.

A bar chart showing that two-thirds of Americans prioritize developing alternative energy sources, like wind and solar.

In a previous Center survey conducted in 2022, nearly the same share of Americans (69%) favored the U.S. taking steps to become carbon neutral by 2050 , a goal outlined by President Joe Biden at the outset of his administration. Carbon neutrality means releasing no more carbon dioxide into the atmosphere than is removed.

Nine-in-ten Democrats and Democratic-leaning independents say the U.S. should prioritize developing alternative energy sources to address America’s energy supply. Among Republicans and Republican leaners, 42% support developing alternative energy sources, while 58% say the country should prioritize expanding exploration and production of oil, coal and natural gas.

There are important differences by age within the GOP. Two-thirds of Republicans under age 30 (67%) prioritize the development of alternative energy sources. By contrast, 75% of Republicans ages 65 and older prioritize expanding the production of oil, coal and natural gas.

Americans are reluctant to phase out fossil fuels altogether, but younger adults are more open to it. Overall, about three-in-ten adults (31%) say the U.S. should completely phase out oil, coal and natural gas. More than twice as many (68%) say the country should use a mix of energy sources, including fossil fuels and renewables.

A bar chart that shows younger U.S. adults are more open than older adults to phasing out fossil fuels completely.

While the public is generally reluctant to phase out fossil fuels altogether, younger adults are more supportive of this idea. Among Americans ages 18 to 29, 48% say the U.S. should exclusively use renewables, compared with 52% who say the U.S. should use a mix of energy sources, including fossil fuels.

There are age differences within both political parties on this question. Among Democrats and Democratic leaners, 58% of those ages 18 to 29 favor phasing out fossil fuels entirely, compared with 42% of Democrats 65 and older. Republicans of all age groups back continuing to use a mix of energy sources, including oil, coal and natural gas. However, about three-in-ten (29%) Republicans ages 18 to 29 say the U.S. should phase out fossil fuels altogether, compared with fewer than one-in-ten Republicans 50 and older.

There are multiple potential routes to carbon neutrality in the U.S. All involve major reductions to carbon emissions in sectors such as energy and transportation by increasing the use of things like wind and solar power and electric vehicles. There are also ways to potentially remove carbon from the atmosphere and store it, such as capturing it directly from the air or using trees and algae to facilitate carbon sequestration.

The public supports the federal government incentivizing wind and solar energy production. In many sectors, including energy and transportation, federal incentives and regulations significantly influence investment and development.

A bar chart showing that two-thirds of U.S. adults say the federal government should encourage production of wind and solar power.

Two-thirds of Americans think the federal government should encourage domestic production of wind and solar power. Just 7% say the government should discourage this, while 26% think it should neither encourage nor discourage it.

Views are more mixed on how the federal government should approach other activities that would reduce carbon emissions. On balance, more Americans think the government should encourage than discourage the use of electric vehicles and nuclear power production, though sizable shares say it should not exert an influence either way.

When it comes to oil and gas drilling, Americans’ views are also closely divided: 34% think the government should encourage drilling, while 30% say it should discourage this and 35% say it should do neither. Coal mining is the one activity included in the survey where public sentiment is negative on balance: More say the federal government should discourage than encourage coal mining (39% vs. 21%), while 39% say it should do neither.

Americans see room for multiple actors – including corporations and the federal government – to do more to address the impacts of climate change. Two-thirds of adults say large businesses and corporations are doing too little to reduce the effects of climate change. Far fewer say they are doing about the right amount (21%) or too much (10%).

A bar chart showing that two-thirds say large businesses and corporations are doing too little to reduce climate change effects.

Majorities also say their state elected officials (58%) and the energy industry (55%) are doing too little to address climate change, according to a March 2023 survey.

In a separate Center survey conducted in June 2023, a similar share of Americans (56%) said the federal government should do more to reduce the effects of global climate change.

When it comes to their own efforts, about half of Americans (51%) think they are doing about the right amount as an individual to help reduce the effects of climate change, according to the March 2023 survey. However, about four-in-ten (43%) say they are doing too little.

Democrats and Republicans have grown further apart over the last decade in their assessments of the threat posed by climate change. Overall, a majority of U.S. adults (54%) describe climate change as a major threat to the country’s well-being. This share is down slightly from 2020 but remains higher than in the early 2010s.

A line chart that shows 54% of Americans view climate change as a major threat, but the partisan divide has grown.

Nearly eight-in-ten Democrats (78%) describe climate change as a major threat to the country’s well-being, up from about six-in-ten (58%) a decade ago. By contrast, about one-in-four Republicans (23%) consider climate change a major threat, a share that’s almost identical to 10 years ago.

Concern over climate change has also risen internationally, as shown by separate Pew Research Center polling across 19 countries in 2022. People in many advanced economies express higher levels of concern than Americans . For instance, 81% of French adults and 73% of Germans describe climate change as a major threat.

Climate change is a lower priority for Americans than other national issues. While a majority of adults view climate change as a major threat, it is a lower priority than issues such as strengthening the economy and reducing health care costs.

Overall, 37% of Americans say addressing climate change should be a top priority for the president and Congress in 2023, and another 34% say it’s an important but lower priority. This ranks climate change 17th out of 21 national issues included in a Center survey from January.

As with views of the threat that climate change poses, there’s a striking contrast between how Republicans and Democrats prioritize the issue. For Democrats, it falls in the top half of priority issues, and 59% call it a top priority. By comparison, among Republicans, it ranks second to last, and just 13% describe it as a top priority.

Our analyses have found that partisan gaps on climate change are often widest on questions – such as this one – that measure the salience or importance of the issue. The gaps are more modest when it comes to some specific climate policies. For example, majorities of Republicans and Democrats alike say they would favor a proposal to provide a tax credit to businesses for developing technologies for carbon capture and storage.

A dot plot that shows climate change is a much lower priority for Republicans than for Democrats.

Perceptions of local climate impacts vary by Americans’ political affiliation and whether they believe that climate change is a serious problem. A majority of Americans (61%) say that global climate change is affecting their local community either a great deal or some. About four-in-ten (39%) see little or no impact in their own community.

A bar chart that shows Democrats more likely than Republicans to see local effects of climate change.

The perception that the effects of climate change are happening close to home is one factor that could drive public concern and calls for action on the issue. But perceptions are tied more strongly to people’s beliefs about climate change – and their partisan affiliation – than to local conditions.

For example, Americans living in the Pacific region – California, Washington, Oregon, Hawaii and Alaska – are more likely than those in other areas of the country to say that climate change is having a great deal of impact locally. But only Democrats in the Pacific region are more likely to say they are seeing effects of climate change where they live. Republicans in this region are no more likely than Republicans in other areas to say that climate change is affecting their local community.

Our previous surveys show that nearly all Democrats believe climate change is at least a somewhat serious problem, and a large majority believe that humans play a role in it. Republicans are much less likely to hold these beliefs, but views within the GOP do vary significantly by age and ideology. Younger Republicans and those who describe their views as moderate or liberal are much more likely than older and more conservative Republicans to describe climate change as at least a somewhat serious problem and to say human activity plays a role.

Democrats are also more likely than Republicans to report experiencing extreme weather events in their area over the past year – such as intense storms and floods, long periods of hot weather or droughts – and to see these events as connected with climate change.

About three-quarters of Americans support U.S. participation in international efforts to reduce the effects of climate change. Americans offer broad support for international engagement on climate change: 74% say they support U.S. participation in international efforts to reduce the effects of climate change.

A bar chart showing that about three-quarters of Americans support a U.S. role in global efforts to address climate change.

Still, there’s little consensus on how current U.S. efforts stack up against those of other large economies. About one-in-three Americans (36%) think the U.S. is doing more than other large economies to reduce the effects of global climate change, while 30% say the U.S. is doing less than other large economies and 32% think it is doing about as much as others. The U.S. is the second-largest carbon dioxide emitter , contributing about 13.5% of the global total.

When asked what they think the right balance of responsibility is, a majority of Americans (56%) say the U.S. should do about as much as other large economies to reduce the effects of climate change, while 27% think it should do more than others.

A previous Center survey found that while Americans favor international cooperation on climate change in general terms, their support has its limits. In January 2022 , 59% of Americans said that the U.S. does not have a responsibility to provide financial assistance to developing countries to help them build renewable energy sources.

In recent years, the UN conference on climate change has grappled with how wealthier nations should assist developing countries in dealing with climate change. The most recent convening in fall 2022, known as COP27, established a “loss and damage” fund for vulnerable countries impacted by climate change.

Note: This is an update of a post originally published April 22, 2022. Here are the questions used for this analysis , along with responses, and its methodology .

  • Climate, Energy & Environment
  • Environment & Climate
  • Partisanship & Issues
  • Political Issues

Alec Tyson's photo

Alec Tyson is an associate director of research at Pew Research Center

Cary Funk's photo

Cary Funk is director of science and society research at Pew Research Center

Brian Kennedy's photo

Brian Kennedy is a senior researcher focusing on science and society research at Pew Research Center

How Republicans view climate change and energy issues

How americans view future harms from climate change in their community and around the u.s., americans continue to have doubts about climate scientists’ understanding of climate change, growing share of americans favor more nuclear power, why some americans do not see urgency on climate change, most popular.

1615 L St. NW, Suite 800 Washington, DC 20036 USA (+1) 202-419-4300 | Main (+1) 202-857-8562 | Fax (+1) 202-419-4372 |  Media Inquiries

Research Topics

  • Age & Generations
  • Coronavirus (COVID-19)
  • Economy & Work
  • Family & Relationships
  • Gender & LGBTQ
  • Immigration & Migration
  • International Affairs
  • Internet & Technology
  • Methodological Research
  • News Habits & Media
  • Non-U.S. Governments
  • Other Topics
  • Politics & Policy
  • Race & Ethnicity
  • Email Newsletters

ABOUT PEW RESEARCH CENTER  Pew Research Center is a nonpartisan fact tank that informs the public about the issues, attitudes and trends shaping the world. It conducts public opinion polling, demographic research, media content analysis and other empirical social science research. Pew Research Center does not take policy positions. It is a subsidiary of  The Pew Charitable Trusts .

Copyright 2024 Pew Research Center

Terms & Conditions

Privacy Policy

Cookie Settings

Reprints, Permissions & Use Policy

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Wiley-Blackwell Online Open

Logo of blackwellopen

What really matters for successful research environments? A realist synthesis

Rola ajjawi.

1 Centre for Research in Assessment and Digital Learning (CRADLE), Deakin University, Geelong, Victoria, Australia

Paul E S Crampton

2 Research Department of Medical Education, University College London, London, UK

3 Monash Centre for Scholarship in Health Education (MCSHE), Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia

Charlotte E Rees

Associated data.

Table S2. MeSH terms and a selection of key terms utilised in the database searches.

Table S3. Inclusion and exclusion criteria with respect to topic, recentness and type of article.

Table S4. Refined inclusion and exclusion criteria to include contextual parameters.

Table S5. Studies by type: qualitative, quantitative and mixed‐methods.

Research environments, or cultures, are thought to be the most influential predictors of research productivity. Although several narrative and systematic reviews have begun to identify the characteristics of research‐favourable environments, these reviews have ignored the contextual complexities and multiplicity of environmental characteristics.

The current synthesis adopts a realist approach to explore what interventions work for whom and under what circumstances.

We conducted a realist synthesis of the international literature in medical education, education and medicine from 1992 to 2016, following five stages: (i) clarifying the scope; (ii) searching for evidence; (iii) assessing quality; (iv) extracting data, and (v) synthesising data.

We identified numerous interventions relating to research strategy, people, income, infrastructure and facilities (IIF), and collaboration. These interventions resulted in positive or negative outcomes depending on the context and mechanisms fired. We identified diverse contexts at the individual and institutional levels, but found that disciplinary contexts were less influential. There were a multiplicity of positive and negative mechanisms, along with three cross‐cutting mechanisms that regularly intersected: time; identity, and relationships. Outcomes varied widely and included both positive and negative outcomes across subjective (e.g. researcher identity) and objective (e.g. research quantity and quality) domains.

Conclusions

The interplay among mechanisms and contexts is central to understanding the outcomes of specific interventions, bringing novel insights to the literature. Researchers, research leaders and research organisations should prioritise the protection of time for research, enculturate researcher identities, and develop collaborative relationships to better foster successful research environments. Future research should further explore the interplay among time, identity and relationships.

Short abstract

This realist review shows when and why interventions related to research strategy; people; income, infrastructure and facilities; and collaboration result in positive or negative research environments. Findings indicate that protected time, researcher identities and collaborative relationships are important for fostering successful research environments.

Introduction

Research environments matter. Environmental considerations such as robust cultures of research quality and support for researchers are thought to be the most influential predictors of research productivity. 1 , 2 Over 25 years ago, Bland and Ruffin 1 identified 12 characteristics of research‐favourable environments in the international academic medicine literature spanning the period from the mid‐1960s to 1990 (Box 1 ). Although these characteristics are aspirational in flavour, how they interplay to influence research productivity within increasingly complex institutional structures is not yet known. Indeed, although existing reviews have begun to help us better understand what makes for successful research environments, this research has typically ignored the contextual complexities and multiplicity of environmental characteristics 1 , 3 , 4 , 5 , 6 , 7 and has focused on narrow markers of productivity such as the quantity of research outputs (e.g. ref. 7 ) The current realist synthesis, therefore, aims to address this gap in the research literature by reviewing more recent literature ( 1992–2016 ) and exploring the features of successful research environments in terms of which interventions work, for whom, how and in what circumstances.

Characteristics of successful research environments 1

  • Clear organisational research goals
  • Research productivity as a priority and at least equal priority to other activities
  • A robust research culture with shared research values
  • A positive group climate
  • Participative governance structures
  • Non‐hierarchical and decentralised structures
  • Good communication and professionally meaningful relationships between team members
  • Decent resources such as people, funding, research facilities and time
  • Larger group size, moderately established teams and diversity
  • Rewards for research success
  • Recruitment and selection of talented researchers
  • Research‐oriented leaders with research expertise and skill

The contextual background for understanding successful research environments

Against a backdrop of the mass production of education, reduced government funding for research and ‘new managerialist’ cultures in higher education, 8 , 9 increased scrutiny of the quantity and quality of research, the research environments in which research is produced and the impacts of research has become inevitable. 10 Indeed, in higher education institutions (HEIs) globally, research productivity is being measured as part of individual researcher and research group key performance indicators. 7 In many countries, such as Australia, Hong Kong, New Zealand and the UK, 11 HEI research is measured on a national scale through government‐led research assessments. Such research measurement has contributed to the allocation of funding to universities and differentiation of universities in the competitive marketplace, with some solidifying their institutional identities as ‘research‐intensive’ and others emphasising their relative ‘newcomer‐to‐research’ status (e.g. previously ‘teaching‐intensive’ universities). 9 , 12 , 13 Such institutional differentiation also parallels that of individual academics within universities, who are increasingly encouraged to take either ‘research‐active’ or ‘education‐focused’ career pathways. 8 , 9 It is these broader national and institutional constraints that inevitably impact on research environments at the level of units, centres, departments and schools within universities (the level of ‘research environment’ that we focus on in this paper). Table S1 provides definitions of key terms.

Key features of research environments identified in previous reviews

Evans defines a research environment as including: ‘shared values, assumptions, beliefs, rituals and other forms of behaviour whose central focus is the acceptance and recognition of research practice and output as valued, worthwhile and pre‐eminent activity.’ 14 Previous reviews have tended to focus on interventions aimed at individual researchers, such as research capacity building, 4 , 5 , 7 and with individual‐level outcomes, such as increased numbers of grants or publications. 4 , 5 , 7 These reviews have typically concluded that research capacity‐building interventions lead to positive research outcomes. 4 , 5 , 7 Furthermore, the reviews have identified both individual and institutional enablers to research. Individual enablers included researchers’ intrinsic motivation to conduct research. 6 , 7 Institutional enablers included peer support, encouragement and review, 7 mentoring and collaboration, 4 , 5 research leadership, 5 , 6 institutional structures, processes and systems supporting research, such as clear strategy, 5 , 6 protected time and financial support. 5 Although these reviews have begun to shed light on the features of successful research environments, they have significant limitations: (i) they either include studies of low to moderate quality 4 , 5 or fail to check the quality of studies included, 7 and (ii) they do not explore what works for whom and under what circumstances, but instead focus on what works and ignore the influence of the context in which interventions are implemented and ‘how’ outcomes come about. Indeed, Mazmanian et al. 4 concluded in their review: ‘…little is known about what works best and in what situations.’

Conceptual framework: a realist approach

Given the gaps in the research literature and the importance of promoting successful research environments for individuals’ careers, institutional prestige and the knowledge base of the community, we thought a realist synthesis would be most likely to elucidate how multiple complex interventions can influence success. Realism assumes the existence of an external reality (a real world), but one that is filtered (i.e. perceived, interpreted and responded to) through human senses, volitions, language and culture. 15 A realist approach enables the development and testing of theory for why interventions may or may not work, for whom and under what circumstances. 16 It does this through recognising that interventions do not directly cause outcomes; instead, participants’ reactions and responses to the opportunities provided by the intervention trigger outcomes. This approach can allow researchers to identify causal links in complex situations, such as those between interventions and the contexts in which they work, how they work (mechanisms) and their outcomes. 17 Although the context–mechanism–outcome (CMO) approach is not necessarily linear, it can help to provide explanations that privilege contextual variability. 18

Aligned with the goals of realist research, this synthesis aims to address the following research question: What are the features of successful research environments, for whom, how and in what circumstances?

We followed five stages of realist synthesis: (i) clarifying scope; (ii) searching for evidence; (iii) assessing quality; (iv) extracting data, and (v) synthesising data. 19 Our methods also follow the RAMESES ( r ealist a nd m eta‐narrative e vidence s ynthesis: e volving s tandards) reporting guidelines. 20

Clarifying the scope

We first clarified the scope of our realist synthesis by identifying relevant interventions based on the Research Excellence Framework (REF) 2014 environment assessment criteria. The REF is a national exercise assessing the quality of research produced by UK HEIs, its impact beyond academia, and the environment that supports research. The assessment criteria indicated in the REF2014 environment template included the unit's research strategy , its people (including staffing strategy, staff development and research students), its income, infrastructure and facilities (IIF), as well as features of collaboration . 21 These guided our search terms (see stage 2 below). We chose to use these quality markers as they informed the UK national assessment exercise, upon which other national exercises are often based. In addition, these criteria were explicit, considered and implementable, and were developed through consensus. Like other realist syntheses, 18 , 22 , 23 ours considered a multiplicity of different interventions rather than just one and some of the papers we reviewed combined multiple interventions.

Based on previous reviews, 1 , 4 , 5 , 7 our initial programme theory speculated that interventions aligned to having an explicit research strategy, staff development opportunities, funding and establishing research networks would be effective for creating successful research environments (Fig. ​ (Fig.1 1 gives further details of our initial programme theory).

An external file that holds a picture, illustration, etc.
Object name is MEDU-52-936-g001.jpg

Initial programme theory

Searching for empirical evidence

We devised search terms as a team and refined these iteratively with the help of a health librarian experienced in searching. We split the research question into three key concepts: (i) research environment; (ii) discipline, and (iii) research indicator (i.e. positive or negative). We then used variations of these terms to search the most relevant databases including MEDLINE, ProQuest, Scopus, CINAHL (Cumulative Index to Nursing and Allied Health Literature) and Web of Science. Table S2 illustrates the MeSH terms and provides a selection of key terms utilised in the database searches.

We were interested in comparing research cultures across the disciplines of medical education, education and medicine for two key reasons. Firstly, the discipline of medical education consists of a rich tapestry of epistemological approaches including biomedical sciences, social sciences and education, and medicine. 24 , 25 Secondly, there have been disciplinary arguments in the literature about whether medical education should be constructed as medicine or social science. 24 , 26

We agreed various inclusion and exclusion criteria with respect to topic, recentness and type of article (Table S3 ), as well as refined criteria to include contextual parameters (Table S4 ). We chose 1992 as the start date for our search period as 1992 saw the first published literature review about productive research environments in the academic medicine literature. 1

Study selection

The first top‐level search elicited 8527 journal articles across all databases. Once duplicate results had been removed, and ‘topic’ and ‘recentness’ study parameters reinforced, 420 articles remained. The searching and selection process is summarised in a PRISMA ( p referred r eporting i tems for s ystematic reviews and m eta‐ a nalyses) diagram (Fig. ​ (Fig.2). 2 ). Three research assistants and one of the authors (PESC) initially assessed relevance by reviewing abstracts using preliminary inclusion criteria. If any ambiguities were found by any of the reviewers, abstracts were checked by one of the other two researchers (RA and CER). Where divergent views existed, researchers discussed the reasons why and agreed on whether to include or exclude. A 10% sample of these 420 abstracts were double‐checked by an additional two researchers, including a number of articles previously excluded, for quality control purposes.

An external file that holds a picture, illustration, etc.
Object name is MEDU-52-936-g002.jpg

PRISMA flow diagram of the selection process

Assessment of quality

We assessed the journal articles for relevance and rigour. 20 We defined an article's relevance according to ‘whether it can contribute to theory building and/or testing’. 20 Following the relevance check and ‘type’ exclusions to original research papers, 100 articles remained, which were then assessed for rigour. Although we chose to narrow down to original research, we kept relevant articles such as systematic reviews and opinion pieces to inform the introduction and discussion sections of this paper.

We defined rigour as determining ‘whether the method used to generate the particular piece of data is credible and trustworthy’. 20 We used two pre‐validated tools to assess study quality: the Medical Education Research Study Quality Instrument (MERSQI) to assess the quality of quantitative research, 27 , 28 and the Critical Appraisal Skills Programme (CASP) qualitative checklist for qualitative and mixed‐method studies. 29 Both tools are used to consider the rigour of study design, sampling, type of data, data analysis and outcomes/findings, and have been employed in previous reviews. 23 , 30

Following the quality assessment, 47 articles remained and were then subjected to data extraction and synthesis. Five papers were excluded as they did not contribute to our theory building or lacked CMO configurations (CMOCs). We kept notes of the reasons for excluding studies and resolved doubts through discussion (Fig. ​ (Fig.2 2 ).

Data extraction

Two data‐rich articles containing multiple CMOCs were inductively and deductively (based on the initial programme theory) coded by all of us to ensure consistency. We then discussed any similarities and differences in our coding. As is inherent in the challenges of realist approaches, we found differences in our identifications of CMOCs, which often related to how one particular component (e.g. time) could be an outcome at one moment and a mechanism the next. This alerted us to overlapping constructs, which we then explored as we coded remaining papers. To collect data across all remaining papers, we extracted information relating to: study design, methods and sample size; study setting; intervention focus; contexts of the intervention; mechanisms generated in the results, and outcomes. The key CMOCs in all 42 articles were identified primarily from the results sections of the papers. The process of data extraction and analysis was iterative with repeated discussion among the researchers of the demi‐regularities (i.e. patterns of CMOCs) in relation to the initial programme theory and negotiations of any differences of opinion.

Data synthesis

Finally, we interrogated our data extraction to look for patterns across our data/papers. We used an interpretative approach to consider how our data compared with our initial programme theory in order to develop our modified programme theory.

Characteristics of the studies

The 42 papers represented the following disciplines: medical education ( n = 4, 10%); 31 , 32 , 33 , 34 education ( n = 18, 43%), 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 and medicine ( n = 20, 48%). 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64 , 65 , 66 , 67 , 68 , 69 , 70 , 71 , 72 There were 26 (62%) qualitative studies, 11 (26%) quantitative studies and five (12%) mixed‐methods studies (Table S5 ). The studies were from countries across the globe, including Australia ( n = 10, 24%), the USA ( n = 7, 17%), the UK ( n = 6, 14%), Canada ( n = 4, 10%), South Africa ( n = 4, 10%), Denmark ( n = 2, 5%), Turkey ( n = 2, 5%) and others ( n = 7, 17%) (e.g. Belgium, China, Germany, New Zealand and the Philippines). The research designs varied but common approaches included qualitative interviews, surveys, documentary/bibliographic analysis, case studies and mixed‐methods studies. Study participants included academics, teachers, health care professionals, senior directors, PhD students, early‐career researchers (ECRs) and senior researchers. Table S6 lists the individual contexts, interventions, mechanisms and outcomes identified from individual papers.

Extending our initial programme theory

A key finding from our realist synthesis was that the same interventions fired either positive or negative mechanisms leading to positive or negative outcomes, respectively, depending on context. Surprisingly, the CMOCs were mostly consistent across the three disciplines (i.e. medical education, education and medicine) with local contexts seemingly interplaying more strongly with outcomes. Therefore, we present these disciplinary contexts here as merged, but we highlight any differences by disciplinary context where relevant.

Having a research strategy promoted a successful research environment when it enabled appropriate resources (including time) and valuing of research; however, it had negative consequences when it too narrowly focused on outputs, incentives and rewards. In terms of people , individual researchers needed to be internally motivated and to have a sense of belonging, and protected time and access to capacity‐building activities in order to produce research. Lack of knowledge, researcher identity, networks and time, plus limited leadership support, acted as mechanisms leading to negative research outcomes. The presence of IIF was overwhelmingly indicated as necessary for successful research environments and their absence was typically detrimental. Interestingly, a few papers reported that external funding could have negative consequences because short‐term contracts, reduced job security and the use of temporary junior staff can lead to weak research environments. 40 , 67 , 71 Finally, collaboration was crucial for successful research mediated through trusting respectful relationships, supportive leadership and belongingness. Poor communication and competitive cultures, however, worked to undermine collaboration, leading to isolation and low self‐esteem, plus decreased research engagement and productivity. Table ​ Table1 1 highlights illustrative CMOCs for each intervention extending our initial programme theory.

Positive and negative context–mechanism–outcome configurations (CMOCs) for each intervention

CMOCs indicated in bold highlight the three cross‐cutting themes of time, identity and relationships.

ECRs = early‐career researchers.

Key cross‐cutting mechanisms: time, identity and relationships

As Table ​ Table1 1 shows, the same intervention can lead to positive or negative outcomes depending on the particular contexts and mechanisms triggered. This highlights greater complexity than is evident at first glance. Cross‐cutting these four interventions were three mechanisms that were regularly identified as critical to the success (or not) of a research environment: time; researcher identities, and relationships. We now present key findings for each of these cross‐cutting mechanisms and discuss how their inter‐relations lead to our modified programme theory (Fig. ​ (Fig.3). 3 ). Note that although we have tried to separate these three mechanisms for ease of reading, they were often messily entangled. Table ​ Table2 2 presents quotes illustrating the way in which each mechanism mediates outcomes within particular circumstances.

An external file that holds a picture, illustration, etc.
Object name is MEDU-52-936-g003.jpg

Modified programme theory. ECR = early‐career researcher

Time, identity and relationships as cross‐cutting mechanisms mediating successful research environments

Time was identified as an important mechanism for mobilising research outcomes across our three disciplines. Time was conceptualised severally including as: protected time; workload pressures influencing time available; efficient use of time; flexible use of time; making time, and time in career. The two most commonly considered aspects were protected time and workload implications. Protected time was largely talked about in the negative across a variety of contexts and disciplines, with lack of protected time leading to lack of researcher engagement or inactivity and reduced research productivity. 32 , 35 , 37 , 41 , 44 , 47 , 49 , 61 , 62 , 63 , 67 Also across a variety of contexts and disciplines, and acting as a positive mechanism, available protected time was found to lead to increased research productivity and active research engagement. 31 , 36 , 40 , 48 , 49 , 63 , 65 With regard to workload, limitations on the time available for research imposed by excessive other workloads led to reduced research activity, lower research productivity, poor‐quality research and reduced opportunity to attend research training. 40 , 41 , 47 , 49 , 60 , 67 Juggling of multiple responsibilities, such as clinical, teaching, administrative and leadership roles, also inhibited research productivity by diminishing the time available for research. 35 , 40 , 49 The alignment of research with other non‐research work was described as driving efficiencies in the use of time leading to greater research productivity (Table ​ (Table2, 2 , quote 1).

Identity was also an important mechanism for mobilising research outcomes across our three disciplines. Interpretations included personal identities (e.g. gender), professional identity (e.g. as a primary practitioner or a primary researcher), and social identity (e.g. sense of belongingness). Researcher identity was often referred to in relation to first‐career practitioners (and therefore second‐career researchers). Sharp et al. 48 defined these as participants recruited into higher education not directly from doctoral study but on the basis of their extensive ‘first‐order’ knowledge and pedagogical expertise. These were also practitioners conducting research in schools or hospitals. Identities were also referenced in relation to early, mid‐career or senior researchers. Academic staff working in academic institutions needed to develop a sense of researcher identity, belongingness, self‐efficacy for research and autonomy to increase their satisfaction, competence and research activity. 39 , 40 , 44 , 46 , 51 , 67 For first‐career practitioners (i.e. teachers, doctors), the research needed to be highly relevant and aligned to their primary identity work in order to motivate them. 53 , 59 , 62 , 65 This alignment was described as having a strong research–teaching nexus. 40 , 48 Linked to this concept was the need for first‐career practitioners to see the impact of research in relation to their primary work (e.g. patient‐ or student‐oriented) to facilitate motivation and to develop a researcher identity (Table ​ (Table2, 2 , quote 2). 36 , 37 , 41 , 49 , 53 , 54 , 67 Where research was seen as irrelevant to primary identity work (e.g. English language teaching, general practice), there was research disengagement. 37 , 48 , 52 , 59 , 67

Relationships

For all researchers and across our three disciplines, relationships were important in the mediating of successful research environments. 31 , 34 , 38 , 39 , 41 , 44 , 57 , 60 , 66 , 67 Positive research relationships were characterised by mutual trust and respect, 40 , 41 , 42 , 43 , 54 , 66 , 72 whereas others described them as friendships that take time to develop. 51 Mutually supportive relationships seemed to be particularly relevant to ECRs in terms of developing confidence, self‐esteem and research capacity and making identity transitions. 35 , 43 , 48 , 58 , 67 Relationships in the form of networks were considered to improve the quality of research through multicentre research and improved collaboration. 33 , 60 Supportive leadership as a particular form of relationship was an important mechanism in promoting a successful research environment. Supportive leaders needed to monitor workloads, set the vision, raise awareness of the value of research, and provide positive role‐modelling, thereby leading to increased productivity, promoting researcher identities and creating thriving research environments (Table ​ (Table2, 2 , quote 3). 31 , 34 , 37 , 38 , 40 , 41 , 43 , 44 , 46 , 48 , 49 , 53 , 55 , 62 Research leadership, however, could be influenced negatively by the context of compliance and counting in current university cultures damaging relationships, creating a loss of motivation, and raising feelings of devalue. Indeed, the failure of leaders to recognise researcher identities led to negative research productivity. 36 , 37 , 38 , 43 , 46 , 48 , 49

Intersections between time, identity and relationships within successful research environments

Time and identity.

Time and identity intersected in interesting ways. Firstly, time was a necessary enabler for the development of a researcher identity. 37 , 38 , 41 , 48 , 49 , 54 , 59 , 61 , 63 , 65 , 67 , 69 Secondly, those who identified as researchers (thus holding primary researcher identities) used their time efficiently to favour research activity outcomes despite a lack of protected time. 35 , 43 Conversely, for other professors who lacked personal determination and resilience for research, having protected time did not lead to better research activity. 43 This highlights the fact that time alone is insufficient to support a successful research environment, and that it is how time is utilised and prioritised by researchers that really matters (Table ​ (Table2, 2 , quote 4).

Identity and relationships

Interventions aimed at developing researcher identity consistently focused on relationship building across the three disciplines. The interventions that supported identity transitions into research included formal research training, 44 , 48 , 52 , 68 mentoring, 41 , 48 , 57 , 65 , 72 writing groups, 72 and collaboration with peers and other researchers, 39 , 41 , 43 operating through multiple mechanisms including relationships. The mechanisms included self‐esteem/confidence, increased networks, external recognition as a researcher, belongingness, and self‐efficacy. 35 , 41 , 43 , 44 , 45 , 52 , 57 Furthermore, our data suggest that leadership can be an enabler to the development of a researcher identity. In particular, leadership enabled research autonomy, recognition and empowerment, and fostered supportive mentoring environments, leading to researcher identity development and research productivity (Table ​ (Table2, 2 , quote 5). 34 , 38 , 46 , 48

Time and relationships

Relationships were developed and sustained over time (Table ​ (Table2, 2 , quote 6). Across the three disciplines, the role of leaders (managers, directors, deans) was to acknowledge and raise awareness of research, and then to prioritise time for research against competing demands, leading to effective research networks, cohesion and collaboration. 31 , 34 , 38 , 43 , 46 , 48 , 49 , 50 , 53 , 55 , 70 Second‐career PhD students who did not invest time in establishing relationships with researchers in their new disciplines (as they already had strong supportive networks in their original disciplines) found that they had limited research networks following graduation. 48

Summary of key findings

Our initial programme theory was based on previous literature reviews 1 , 4 , 5 , 6 , 7 and on the REF2014 criteria. 10 , 21 However, we were able to develop a modified programme theory on the basis of our realist synthesis, which highlights novel findings in terms of what really matters for successful research environments. Firstly, we found that key interventions led to both positive (subjective and objective) and negative (subjective and objective) outcomes in various contexts. Interestingly, we did not identify any outcomes relating to research impact despite impact nowadays being considered a prominent marker of research success, alongside quantitative metrics such as number of publications, grant income and h‐indices. 21 Secondly, we found that disciplinary contexts appeared to be less influential than individual, local and institutional contexts. Finally, our modified programme theory demonstrates a complex interplay among three cross‐cutting mechanisms (time, researcher identity and relationships) as mechanisms underpinning both successful and unsuccessful research environments.

Key findings and comparisons with the existing literature

Our research supports the findings of earlier reviews 1 , 5 , 6 , 7 regarding the importance of having a clear research strategy, an organisation that values research, research‐oriented leadership, access to resources (such as people, funding, research facilities and time), and meaningful relationships. However, our research extends these findings considerably by flagging up the indication that a clear linear relationship, whereby the presence of these interventions will necessarily result in a successful research environment, does not exist. For example, instituting a research strategy can have negative effects if the indicators are seen as overly narrow in focus or output‐oriented. 38 , 40 , 46 , 47 , 64 Similarly, project money can lead to the employment of more part‐time staff on fixed‐term contracts, which results in instability, turnover and lack of research team expertise. 40 , 67 , 71

Our findings indicate that the interplays among time, identity and relationships are important considerations when implementing interventions promoting research environments. Although time was identified as an important mechanism affecting research outcomes within the majority of papers, researcher identity positively affected research outcomes even in time‐poor situations. Indeed, we found that identity acted as a mechanism for research productivity that could overcome limited time through individuals efficiently finding time to prioritise research through their motivation and resilience. 35 , 43 Time was therefore more than just time spent doing research, but also included investment in developing a researcher identity and relationships with other researchers over time. 37 , 38 , 41 , 48 , 49 , 54 , 59 , 61 , 63 , 67 , 69 Relationship‐building interventions were also found to be effective in supporting difficult identity transitions into research faced by ECRs and those with first‐career practitioner backgrounds. Supportive leadership, as a particular form of relationship, could be seen as an enabler to the provision of protected time and a reasonable workload, allowing time for research and for researcher identity formation. 34 , 38 , 46 , 48 Indeed, our realist synthesis findings highlight the central importance of researcher identity and thus offer a novel explanation for why research environments may not flourish even in the presence of a research strategy, resources (e.g. time) and valuing of research.

Researcher identity is complex and intersects with other identities such as those of practitioner, teacher, leader and so on. Brew et al. 39 , 73 , 74 explored researcher identification and productivity by asking researchers if they considered themselves to be ‘research‐active’ and part of a research team. Those who identified as researchers prioritised their work differently: those who were highly productive prioritised research, whereas those in the low‐productivity group prioritised teaching. 73 Interestingly, highly productive researchers tended to view research as a social phenomenon with publications, presentations and grants being ‘traded’ in academic networks. Brew et al. 39 explain that: ‘…the trading view relates to a self‐generating researcher identity. Researcher identity develops in the act of publication, networks, collaborations and peer review. These activities support a person's identification as a researcher. They also, in turn, influence performance measures and metrics.’ Although the relationships among identity, identification and productivity are clearly complex, we explored a broader range of metrics in our realist synthesis than just productivity.

Methodological strengths and limitations

This is the first study to explore this important topic using realist synthesis to better understand the influence of context and how particular interventions lead to outcomes. We followed RAMESES 20 guidelines and adopted a rigorous team‐based approach to each analytic stage, conducting regular quality checks. The search was not exhaustive as we could have ‘exploded’ the interventions and performed a comprehensive review of each in its own right (e.g. mentoring). However, for pragmatic reasons and to answer our broad research questions, we chose not to do this, as suggested by Wong et al. 20 Although all members of the team had been involved in realist syntheses previously, the process remained messy as we dealt with complex phenomena. The messiness often lies in untangling CMOCs and identifying recurrent patterns in the large amounts of literature reviewed.

Implications for education and research

Our findings suggest that interventions related to research strategy, people, IIF and collaboration are supported under the ‘right’ conditions. We need to focus on time, identity and relationships (including leadership) in order to better mobilise the interventions to promote successful research environments.

Individuals need to reflect on how and why they identify as researchers, including their conceptions of research and their working towards the development of a researcher identity such that research is internally motivated rather than just externally driven. Those who are second‐career researchers or those with significant teaching or practitioner roles could seek to align research with their practice while they establish wider research networks.

We recommend that research leaders support individuals to develop their researcher identity, be seen to value research, recognise that research takes time, and provide access to opportunities promoting research capacity building, strong relationships and collaboration. Leaders, for example, may introduce interventions that promote researcher identities and build research relationships (e.g. collaborations, networking, mentoring, research groups etc.), paying attention to the ways in which competitive or collaborative cultures are fostered. Browne et al. 75 recently recommended discussions around four categories for promoting identity transition: reflection on self (values, experiences and expectations); consideration of the situation (circumstances, concerns); support (what is available and what is needed), and strategies (personal strategies to cope with change and thrive). With the professionalisation of medical education, 76 research units are increasingly likely to contain a mixture of first‐ and second‐career researchers, and our review suggests that discussions about conceptions of research and researcher identity would be valuable.

Finally, organisations need to value research and provide access to resources and research capacity‐building activities. Within the managerialist cultures of HEIs, compliance and counting have already become dominant discourses in terms of promotion and success. Policymakers should therefore consider ways in which HEIs recognise, incentivise and reward research in all its forms (including subjective and objective measures of quantity, quality and impact) to determine the full effects of their policies on research environments.

Future research would benefit from further exploration of the interplay among time, identities and relationships (including leadership) in different contexts using realist evaluation. 77 Specifically, as part of realist approaches, longitudinal audio‐diaries 78 could be employed to explore researcher identity transitions over time, particularly for first‐career practitioners transitioning into second‐career researchers.

Contributors

RA and CER were responsible for the conception of the synthesis. All authors contributed to the protocol development. RA and PESC carried out the database searches. All authors sifted for relevance and rigour, analysed the papers and contributed to the writing of the article. All authors approved the final manuscript for publication.

Conflicts of interest

Ethical approval.

not required.

Supporting information

Table S1. Definitions of key terms.

Table S6. Contexts, interventions, mechanisms and outcomes identified in individual studies.

Acknowledgements

we thank Andy Jackson, Learning and Teaching Librarian, University of Dundee, Dundee, UK, for his advice and help in developing our literature searches. We also thank Laura McDonald, Paul McLean and Eilidh Dear, who were medical students at the University of Dundee, for their help with database searches and with sifting papers for relevance and rigour. We would also like to thank Chau Khuong, Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia, for her work in designing Figs ​ Figs1 1 and ​ and3 3 .

Climate and environmental justice have left us better off. This Earth Day, let’s celebrate that success.

Subscribe to planet policy, manann donoghoe manann donoghoe senior research associate - brookings metro @manannanad.

April 22, 2024

When researchers, policymakers, and activists talk about climate, they are increasingly using terms such as “justice” and “equity.” These terms are now pervasive enough to appear in documents from groups as diverse as Extinction Rebellion , the United Nations , and Deloitte . But recent polling has found that relatively few Americans know what “climate justice” actually is.

With increasing claims of “greenwashing” directed at corporate America—and some state leaders fighting federal actions to advance climate justice—this Earth Day, it’s worth taking a closer look at climate and environmental justice (CEJ). When deployed in public policy and civic action, CEJ concepts can reveal the links between placed-based social injustices, climate impacts, and pollution, as well as offer pathways to inclusive and ultimately effective climate policy.

What is climate and environmental justice?

According to organizations such as the Intergovernmental Panel on Climate Change and Environmental Protection Agency (EPA) , climate and environmental justice is about ensuring that all people and communities are provided the support, resources, and opportunities they need to thrive under an unstable climate. It means that individuals—regardless of race, ethnicity, income, gender, age, sexuality, ability, or location—can share in the benefits and opportunities created by climate and environmental policies, such as community investment, green jobs, and access to renewable energy. It also means that the unequal burdens of climate impacts and pollutants are minimized.

CEJ is closely related to the environmental justice movement, which Robert D. Bullard and others founded in the late 1980s and early 1990s after documenting highly unequal distributions of toxic pollutants across racial groups in the U.S. South. It’s deeply connected to concepts such as environmental racism and sacrifice zones , which attempt to identify how harmful developments are unfairly concentrated in majority-Black and other historically marginalized communities. It is also associated with movements such as that for climate reparations , which combine climate justice with racial justice, reparations, and decolonization movements.

In the most basic sense, CEJ is about the equitable distribution of costs and benefits between demographic groups, regions, occupations, and sectors. But achieving that equitable distribution often requires addressing the lingering legacies of policies rooted in structural racism, such as residential segregation. This means asking questions such as: Which groups are included in decisionmaking processes that affect local land use? Who’s at the table when the plans for a new development are drawn up? How have historic policies shaped the flow of capital and resources across groups and regions? Who has a stake in the ownership of public assets like electricity utilities?

These are important questions to ask, because the current pattern of climate impacts and vulnerabilities within the U.S. is highly inequitable. That’s not a moral claim, but a statement of fact. A plethora of studies demonstrate that communities of color are more likely to be located in areas with a lack of green space and parklands, hotter heat waves , less affordable electricity , and lower rates of compensation after climate-related disasters. These disparities mean that as the impacts of climate change intensify, they’re likely to drive a wedge in health, wealth, and well-being between demographic groups, thus worsening the existing gaps in these areas.

Climate and environmental justice gains in 2023 are shaping policy

After decades of pressure by activists and civic organizations, Americans are seeing the benefits of CEJ. Below are just a handful of highlights from 2023 that demonstrate how government agencies and civic organizations have applied CEJ approaches to advance more effective and equitable climate and environmental policy, from the local to international level.

Human- and civil-rights-based arguments have gained traction in litigation

In 2023, coalitions of activists, citizens, and academics used human- and civil-rights-based arguments to win environmental protections for some states and communities. These successes set precedents that can inform future litigation strategies. In August, a coalition of young Montanans sued their state, arguing that it had contravened their constitution by favoring the fossil fuel sector over the health of residents and the environment. While the U.S. has the highest rate of climate litigation internationally, few of these cases make it to trial. This was the first time a U.S. court declared that laws barring state agencies from considering the links between climate change and fossil fuel projects were unconstitutional.

In another U.S. first, the UN declared that the DuPont and Chemours factories in Fayetteville, N.C. violated international human rights by knowingly polluting the lower Cape Fear River Basin for decades with the “forever chemical” PFAS . The declaration came after a local citizens group—Clean Cape Fear, with the assistance of the University of California, Berkeley Environmental Law Clinic— filed a complaint with the UN accusing the companies of withholding toxicity data that clearly demonstrated disparate impacts on residents.

In the past, litigators have not been able to successfully use rights-based arguments; for example, the EPA has been burdened under legal challenges when they’ve attempted to enforce civil rights . Yet the above successes demonstrate a growing momentum around linking environmental injustices to human and civil rights.

The Biden administration’s CEJ policies are taking effect

Justice and equity have been a pillar of the Biden administration’s approach to climate and environment policies. Over 2023, these policies started to take effect in tangible ways. The Greenhouse Gas Reduction Fund , designed to enable low-income and historically marginalized communities to benefit from climate investments,  has mobilized $14 billion to establish national clean financing institutions that provide affordable financing for energy projects in marginalized communities; issued $6 billion for technical assistance hubs that build capacity in communities for more effective climate infrastructure projects; and solicited notices of intent for $7 billion in solar investments in low-income and disadvantaged communities. Moreover, the EPA set stronger standards for local air quality, including soot pollution and methane emissions from the oil and gas sector, which are likely to directly improve the health of residents living alongside high-emitting industrial facilities.

The administration has also taken steps to embed CEJ across functions of government by releasing the National Climate Resilience Framework and establishing a White House Environmental Justice Advisory Council and Environmental Justice Interagency Council .

Disaster relief got an overhaul

After years of research showing failures in the ways that the Federal Emergency Management Agency (FEMA) distributes disaster relief (including our own research on the subject ), the agency made extensive changes to their processes.

Many of these changes are likely to directly make disaster relief more equitable. One of the most notable—increasing the flexibility of individual assistance—will get relief to people sooner, provide displacement assistance, and automatically provide $750 for basic needs. Other changes, such as expanding eligibility for assistance and simplifying the notoriously complicated individual assistance application process, will reduce the barriers to accessing relief and get funds to more families quicker.

Chicago launched a bold plan to advance environmental justice

Chicago’s EJ Action Plan Report , released in December 2023, is perhaps the most comprehensive city plan yet in attempting to remedy historic environmental injustices. The report details a plan to target resources toward newly designated “environmental justice neighborhoods” identified in the city’s Cumulative Impact Assessment . These neighborhoods—representing roughly 30% of census tracts across the city—rank high in cancer-causing pollutants and diesel emissions, are proximate to industrial facilities, and have demographic factors associated with vulnerability, such as high asthma and heart disease rates, low incomes, high housing stress, and a high proportion of non-white residents.

The action plan’s proposals are far-ranging and practical, including updating zoning regulations to offer greater protections to over-polluted and marginalized communities; placing air quality monitors in these neighborhoods to improve the enforcement of pollution standards; and creating a fund to invest in amenities that improve residents’ long-term health and well-being. The city’s next step will be to enshrine the action plan into city ordinances later this year. This is no small task, and Chicago’s progress may set a new standard for municipal environmental justice policies.

The international community has moved closer to phasing out fossil fuels

While many in the CEJ community were rightly disappointed at the outcomes of COP28—the largest global forum to negotiate national commitments to take climate action—the final agreement was the first to agree to “transition” away from fossil fuels. The U.S. also pledged to support “largely” phasing out fossil fuels, signaling the administration’s movement toward formally adopting this stance.

Committing to phase out fossil fuels in the U.S. would not only help to mitigate climate impacts, but it would also directly benefit those living amid the industry’s local pollutants. A 2022 study estimated that nearly 14 million Americans across 236 counties lived in areas with an increased cancer risk because of air pollution emitted by oil and gas extraction. And even more Americans live alongside refineries and other industrial processes that are further down the oil and gas supply chain.

The decision to include the phrase “transition away from fossil fuels” in the COP28 agreement comes after sustained pressure on the international community from civic organizations and nations facing pronounced or existential climate threats. One example is the fossil fuel non-proliferation treaty —somewhat of a parallel to the nuclear non-proliferation treaty of 1970—which continues to gain influence. Several countries have agreed signed the treaty, including Colombia and Vanuatu, as have cities and subnational and civil society organizations. In the U.S., cities and states including California, Maine, and Austin, Texas have signed the treaty.

The CEJ movement has been focused on prevention—now it needs to shift toward building

In 2022, 71% of Americans said their community had experienced an extreme weather event. In this sense, climate impacts are an equalizer, with a unifying quality that crosses ideological, class, and racial divides. Yet current policy gaps and a history of unaddressed inequities mean that the threshold for a disaster is a lot lower for some households than others. These disparities turn climate change into a dividing force.

The actions and policies above show how CEJ can overcome these divisions by building new and more equitable policy structures. Pioneers of the CEJ movement developed its focus around prevention issues such as stopping high-polluting industrial developments in low-income neighborhoods. While prevention is still an important goal, the movement now needs to reorient toward building—creating new policies that embed justice and equity as measurable targets. This would include, for example, where and how governments distribute public funds to finance and build climate-resilient infrastructure.

By embracing this new approach, on future Earth Days the CEJ community might not only reflect on the environmental damage prevented, but also on the advancements made toward a more equitable future.

Related Content

Joseph B. Keller, Manann Donoghoe, Andre M. Perry

January 29, 2024

Manann Donoghoe, Andre M. Perry, Samantha Gross, Ede Ijjasz-Vasquez, Joseph B. Keller, John W. McArthur, Sanjay Patnaik, Barry G. Rabe, Sophie Roehse, Kemal Kirişci, Landry Signé, David G. Victor

December 14, 2023

Manann Donoghoe, Justin Lall, Andre M. Perry

December 13, 2023

Brookings Metro

Brookings Initiative on Climate Research and Action Promoting equitable and effective climate action in every community

Carlos Martín, Carolyn Kousky, Karina French, Manann Donoghoe

April 23, 2024

The Brookings Institution, Washington DC

4:00 pm - 5:15 pm EDT

Abraão Vicente

March 22, 2024

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • NATURE INDEX
  • 11 October 2023

Where is the strongest research focus on the environment?

  • Simon Baker &

You can also search for this author in PubMed   Google Scholar

Senior editor, Nature Index

High-quality research from scientists in Australia, New Zealand and parts of Scandinavia tends to lean the most heavily towards tackling climate and conservation issues, according to an analysis of data in the Nature Index.

Of research published from 2015 to 2022 in 82 natural-science journals tracked by Nature Index, 4.7% of articles align with the four United Nations Sustainable Development Goals (SDGs) that are most closely related to climate change and conservation.

Some of the leading 25 countries and territories for publishing this research, however, are way ahead of this global average (see ‘Green focus’). The interactive chart shows the proportion (climate and conservation %) of a country or territory’s total Nature Index output (measured by the Nature Index metric Share ) that aligns with SDGs on Responsible Consumption and Production (SDG 12), Climate Action (SDG 13), Life Below Water (SDG 14) and Life On Land (SDG15).

Almost one-fifth of Nature Index research published by Norway, for instance, is related to these SDGs, and 14.5% of New Zealand’s output in the database align with the four goals. Finland and Denmark also have a high proportion of their research related to these topics.

research on environment

Nature Index 2023 Climate and conservation

These countries do have a relatively low volume of research output for SDGs 12–15 (as shown by the size of the bubbles), but Australia (10.4%) is notable for having higher output that is also well above the global average.

The biggest publishers of high-quality climate and conservation research — the United States and China — are closer to the global average, but fall either side of this line. Japan, meanwhile, is an example of a country with relatively high volume, but well below the average as a proportion of its total Nature Index output.

Digging into the data shows how this research breaks down between the four SDGs for each country and territory.

The following interactive charts (see ‘Goal specific’) show the proportion of a location’s total climate and conservation output in the Nature Index that relates to each SDG (SDG as proportion of all climate and conservation output), with the size of the bubbles showing the volume (measured by the Nature Index metric Share).

SDG 13 (Climate Action) tends to represent the greatest proportion of research on the wider topic: globally, 62% of all Nature Index output aligned with SDGs 12 to 15 aligns with SDG 13. The United States and China are both ahead of the average, but many countries in Europe lag behind. India has the highest percentage of its climate and conservation research in SDG 13.

Countries with easy access to extensive coastlines are among those with a skew towards SDG 14 (Life Below Water), including Australia, France and the United Kingdom, whereas Brazil, with its research focus on the Amazon rainforest, is an outlier for SDG 15 (Life On Land).

SDG 12 (Responsible Consumption and Production) tends to represent the smallest proportion of climate and conservation research, but Singapore and Belgium are the furthest ahead of the global average.

Data on research articles and their SDG alignment come from Digital Sciences’ Dimensions platform, which uses machine learning to automatically tag research papers if they align to certain SDGs. Some articles are tagged to more than one SDG, so percentages may not add up to 100.

doi: https://doi.org/10.1038/d41586-023-02869-y

This article is part of Nature Index 2023 Climate and conservation , an editorially independent supplement. Advertisers have no influence over the content.

Related Articles

research on environment

Partner content: Northern sentinels track Earth’s fastest-changing regions

Partner content: Climate extremes call for resilience and adaptation, not just repair

Partner content: The biologists mapping out climate-resilient trees for our cities

  • Biodiversity
  • Climate change
  • Atmospheric science
  • Environmental sciences
  • Ocean sciences

Hybrid speciation driven by multilocus introgression of ecological traits

Hybrid speciation driven by multilocus introgression of ecological traits

Article 17 APR 24

FSC-certified forest management benefits large mammals compared to non-FSC

FSC-certified forest management benefits large mammals compared to non-FSC

Article 10 APR 24

Jurassic shuotheriids show earliest dental diversification of mammaliaforms

Jurassic shuotheriids show earliest dental diversification of mammaliaforms

Article 03 APR 24

Ecologists: don’t lose touch with the joy of fieldwork

Ecologists: don’t lose touch with the joy of fieldwork

World View 24 APR 24

The Maldives is racing to create new land. Why are so many people concerned?

The Maldives is racing to create new land. Why are so many people concerned?

News Feature 24 APR 24

European ruling linking climate change to human rights could be a game changer — here’s how

European ruling linking climate change to human rights could be a game changer — here’s how

World View 23 APR 24

Lethal dust storms blanket Asia every spring — now AI could help predict them

Lethal dust storms blanket Asia every spring — now AI could help predict them

News 15 APR 24

Sea spray carries huge amounts of ‘forever chemicals’ into the air

Sea spray carries huge amounts of ‘forever chemicals’ into the air

Research Highlight 05 APR 24

Divisive Sun-dimming study at Harvard cancelled: what’s next?

Divisive Sun-dimming study at Harvard cancelled: what’s next?

News Explainer 27 MAR 24

Technician - Senior Technician in Cell and Molecular Biology

APPLICATION CLOSING DATE: 24.05.2024 Human Technopole (HT) is a distinguished life science research institute founded and supported by the Italian ...

Human Technopole

research on environment

Postdoctoral Fellow

The Dubal Laboratory of Neuroscience and Aging at the University of California, San Francisco (UCSF) seeks postdoctoral fellows to investigate the ...

San Francisco, California

University of California, San Francsico

research on environment

Postdoctoral Associate

Houston, Texas (US)

Baylor College of Medicine (BCM)

research on environment

Postdoctoral Research Fellow

Description Applications are invited for a postdoctoral fellow position at the Lunenfeld-Tanenbaum Research Institute, Sinai Health, to participate...

Toronto (City), Ontario (CA)

Sinai Health

research on environment

Postdoctoral Research Associate - Surgery

Memphis, Tennessee

St. Jude Children's Research Hospital (St. Jude)

research on environment

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

When it comes to sustainability and environmental impact, this Northeastern Ph.D. grad is at the ‘forefront of innovation’

  • Search Search

Looking at doctorate programs, Abhijeet Parvatker found a perfect match in Northeastern and Matthew Eckelman, a professor of civil, environmental and chemical engineering.

research on environment

  • Copy Link Link Copied!

Abhijeet Parvatker working on a laptop.

Before arriving at Northeastern University to pursue a doctoral degree, Abhijeet Parvatker worked as a research engineer at one of the world’s largest petrochemicals manufacturers. 

He was a part of a team that measured sustainability of the company’s products, primarily produced from natural gas.

“There is generally a lot of pressure from stakeholders to understand the environmental impacts that the products have,” Parvatker says. 

He used one of the most common methodologies — life-cycle assessment — that evaluates how a product or service impacts the environment over the course of its life cycle, from the moment raw materials are extracted to manufacture the product, to when it is discarded.

Although the life-cycle assessment methodology was standardized, Parvatker says, it was challenging to find the data needed to determine consumed energy, carbon dioxide emissions or toxicity. 

“I soon realized that there are a lot of gaps in this,” he says. “The methods to get to the data are not as evolved, and I wanted to do a Ph.D. with that focus.”

Headshot of Abhijeet Parvatker.

Looking at doctorate programs, Parvatker found Northeastern and Matthew Eckelman , a professor of civil, environmental and chemical engineering, who was doing research in the exact area he was interested in. 

From then on, his life’s work started to take on a larger meaning.

“It was a really good fit for a research project that I had just gotten funded from the National Science Foundation,” Eckelman says. “I felt like he had the experience to carry out this project.”

Parvatker’s research looks at developing new methods and models for generating data for life-cycle assessments and evaluating the sustainability of different chemicals and chemical manufacturing processes.

“There’s something like tens of thousands of chemicals in commerce,” Eckelman says. “We have inventory information on maybe a couple thousands.”  

It was a big and ambitious project, he says, but Parvatker has made a lot of progress. And it’s been extremely useful, Eckelman says, to the global community.

“I am always getting questions about papers that Abhijeet and I wrote together,” Eckelman says. “People wanting to use the data, wanting to adapt the techniques that we use to generate the data.”

Another project Parvatker worked on was analyzing the environmental impact of intravenous anesthetic drugs used by medical institutions.The health care sector makes a considerable contribution to America’s GDP, Eckelman says, which means that to reduce the country’s carbon dioxide output into the atmosphere, health care must become more sustainable. 

However, pharmaceutical companies don’t share much data about the inputs of chemicals they use in a drug, Parvatker says, for proprietary or other reasons.

He used chemical engineering principles, process design and physics and chemistry knowledge about these products to calculate inputs and outputs. He looked at 20 intravenous anesthetic drugs and about 140 different chemicals, building life-cycle inventory data for them.

“It’s still the largest study in the pharmaceutical sector for those chemicals,” he says.

Together, Parvatker and Eckelman wrote some of the first papers about the contribution of the health care industry to national and global emissions.

“These numbers are quoted all the time,” Eckelman says. “And then the National Academy of Medicine opened up this big effort called the Action Collaborative on Decarbonizing the U.S. Health Sector. And now we’re invited to be a part of that because of his work.”

Parvatker earned his undergraduate degree in chemical engineering back home in India and his master’s degree in advanced process integration and design from the University of Manchester before being accepted into Northeastern’s Ph.D. program.

Parvatker says the university takes experiential learning to the next level by encouraging students to apply their research in the real world through programs such as LEADERs .

Featured Stories

Brown water coming out of a faucet into a white sink.

Drinking water in low-income communities is more likely to be contaminated by ‘forever chemicals,’ research finds

Silhouette of a person at the Seattle Commencement ceremony in 2023 wearing a cap and gown.

Northeastern University announces speakers for global campus commencements, and college and school ceremonies

Gene Tunik and Matthew Yarossi conducting research.

Is AI revolutionizing rehabilitation care? This Northeastern expert is digging deep on the issue   

Illustration of Hans Van Der Sande squatting in front of a tortoise making observations.

This student spent co-op on an island helping protect sea turtles and other endangered species

Short for Leadership Education Advancing Discovery through Embedded Research, LEADERs is a customized internship program for Northeastern doctoral students and postdoctoral researchers.

Parvatker credits the program — and his internship at Wayfair that resulted from it — for introducing him to the world of sustainability consulting. At Wayfair, he was tasked with creating guidelines for vendors on the use of chemicals based on the U.S. and the EU regulations. He also gained experience in chemical safety and supply chain management.

After completing his doctoral degree program, Parvatker was offered a full-time job at Sphera Solutions, a provider of consulting services, data and software solutions for risk management and monitoring of environmental, social and governance performance. 

He currently manages a team of five sustainability consultants who help companies with large product portfolios address their sustainability challenges, automate calculations and reports on ESG with Sphera’s software. 

“Imagine companies that have tens of thousands and millions of products,” Parvatker says. “With some initial effort of six months to one year, you can scale the life-cycle assessment methodology to the entire product portfolio and calculate all the life-cycle assessment results for tens of thousands of products in hours.”

Parvatker loves working with different companies, different processes and different people.

“In this space of the implementation of this methodology, we are always at the forefront of innovation,” he says.

University News

research on environment

Recent Stories

research on environment

Kristy Ferraro, '24 PhD

Kristy Ferraro, '24 PhD

Unique Research on Calving Impacts on Nutrient Cycle Earns 2024 Bormann Prize

A study led by YSE doctoral candidate Kristy Ferraro demonstrates how plant-fungal associations in ecosystems can mitigate the impact of calving animals in nitrogen cycling.

  Listen to Article

In the expanding field of zoogeochemistry, which examines how animals interact with nutrient cycles, Kristy Ferraro had a novel idea. The Yale School of the Environment doctoral candidate developed a field experiment that would look at how plant-fungal ecology interacted with the nutrients introduced by calving animals — white tail deer — during spring green-up.

“Animals interact with ecosystems in so many different ways. They are constantly impacting, and are impacted by, the environments they live in,” Ferraro said. “Untangling the ways in which animals are supporting ecosystems or contributing to ecosystem function is important because it helps us understand their role. While we know that carcasses and waste can accelerate nutrient cycles and create nutrient hotspots, for large mammals, there hasn’t been much work on the role of placenta and natal fluid in ecosystem functions. There also hasn’t been any work on the interactive effects of animal inputs and the underlying plant-fungal associations. The research really extends beyond the question of how animals impact ecosystems to how ecosystems are modulating that impact.”

This groundbreaking interdisciplinary research, which was published in 2023 in the Journal of Animal Ecology, earned Ferraro the 2024 F. Herbert Bormann Prize. The award honors a YSE doctoral student whose work best exemplifies the legacy of Bormann, a plant ecologist who taught at YSE from 1966-1993 and whose research called the world’s attention to the threat of acid rain. Ferraro received the award at the 40th annual Research Day held at YSE April 12.

For the study, Ferraro and a team of YSE researchers placed animal placentas and simulated natal fluid at Yale-Myers Forest in plots dominated by one of two different plant-fungal associations common in northern forests — ericoid mycorrhizal (ErM) or ectomycorrhizal (EcM). They returned to the sites three months later to record nutrient concentrations in the vegetation in the plots, as well as the cycling of nutrients in the soil. They found that the calving materials act as fertilizers and create nutrient hotspots that ultimately create more nutritious plants for animals to eat. They also discovered that while the nutrients introduced by the calving did accelerate nitrogen cycling, in some cases the underlying plant-fungal associations mitigated the effects by slowing it down.

“Our study highlights one newly discovered piece of an infinite feedback loop between animals and ecosystems …  Specifically,  the underlying plant-fungal association can mediate the impacts of calving inputs,”  Ferraro said. 

The study was co-authored by Oswald Schmitz, Oastler Professor of Population and Community Ecology;  Mark Bradford, professor of soils and ecosystem ecology; Les Welker ’22,’24 MESc; and Eli Ward ’18 MFS, ’23 PhD.

Ferraro said she was thrilled to receive the Bormann prize for the research.

welker, ward, ferraro

From left: Les Welker ’22, ’24 MESc; Eli Ward '18 MFS, ’23 PhD; and Kristy Ferraro ’24 PhD conduct field research at Yale-Myers Forest examining how calving animals impact the nutrient cycle and how those impacts can be modulated by plant-fungal associations.

“What is special about the Bormann prize is the legacy it represents. Professor Bormann not only did interdisciplinary work, but he also did impactful work … and that’s the sort of work I want to do. I want to do work that not only brings disciplines together and helps us better understand conservation and ecology, but also makes us do better conservation and ecology,” she said.

Ferraro first had set her sights on studying caribou in Canada, but when the COVID-19 pandemic hit, she restructured her research and worked with Ward, a forest ecologist at the Connecticut Agricultural Experiment Station, to add the component of investigating plant-fungal interactions with zoogeochemistry at a site closer to home.

It wasn’t easy getting the materials for the study, Ferraro noted. Instead of white-tail deer placenta and natal fluid, the team substituted lamb placentas because it was easier to obtain. To get those, she had to call farmers around the state and ask them to freeze the placentas so she could obtain them and place them at the forest sites.

“We called about 50 sheep farmers around Connecticut to ask them to keep the materials, and we got a lot of varied responses. Some were like, ‘Absolutely not. That’s weird.’ But we ultimately found three really wonderful farmers who were super interested in the research and were really engaged,” she said.

Crab in a trap

After picking up the placentas from the farmers, sometimes out of buckets, the team then placed the placenta and simulated natal fluid in crab traps at the Yale-Myers plots that had the two different fungal associations (ErM and EcM).

“Not everyone has the stomach for it. I barely had the stomach for it. So that was the first hurdle,” Ferraro said.

They also set up camera traps to record animal interactions. The cameras revealed that some placentas were stolen by animals to nourish themselves.

“Turns out possums are really good at sticking their little hands into the cages,” Ferraro said, adding that racoons, coyotes, and turkeys also helped themselves to the placentas.

Despite the scavenging by animals, they found that the natal fluid itself had enough of an impact to bump up nutrient cycling and create nutrition hotspots in the surrounding plant material, but the impact was mediated by both plant-fungal associations, with ErM plant-fungal associations having a slower nutrient cycle compared to EcM.

The findings have important implications. As shrubs move north and spread due to climate change, the ErM plant-fungal associations that are underlyng shrub communities could mute the nutrient hotspots animals create as they did at Yale-Myers Forest, Ferraro said.

“Kristy’s research fits well with the spirit of the Bormann Award. Herb Bormann pioneered the use of experiments at scale to evaluate how human impacts, such as forest harvesting, leads to alterations of biogeochemical cycling across the landscape. Kristy also reports on an experiment, at scale, to evaluate effects of another human impact — forest management that supports deer populations — in boosting biogeochemical cycling. The work gives holistic insight into an animal species’ impact on biogeochemical processes in ecosystems,”  Schmitz said. 

Other Research Day award winners include doctoral students Destiny Treloar, who earned the Schmitz Prize for best oral presentation for her research on “Exploring the Relationship Between Sociodemographic Characteristics, Food Access, and Food Assistance Participation During the COVID-19 Pandemic in a Predominantly Hispanic/Latino City: Hialeah, Florida;  Lachlan Byrnes, for Best Poster on “Contrasting patterns of mortality in an Amazon-Cerrado forest edge during exceptional drought”; and Ananya Rao ’25 MESc, who received the Master’s Student Oral Presentation Prize for her research on “Leveraging Community Forest Resources Rights to augment NTFP-based livelihoods in Central India.”

  • Kristy Ferraro
  • Oswald Schmitz
  • Mark Bradford
  • Doctoral Program

Media Contact

Paige stein.

Chief Communications and Marketing Officer

Research in the News

A path in the Sinharaja rainforest in Sri Lanka

Climate Change Threatens Resilience of Sri Lankan Rainforests

 

An Inside Look at Beech Leaf Disease

An uncompleted construction project in India

Achieving Sustainable Urban Growth on a Global Scale

Connect with us.

  • Request Information
  • Register for Events

IMAGES

  1. What is the Scope of Environmental Studies?

    research on environment

  2. Actions You Can Take Immediately Towards a More Eco-Friendly Laboratory

    research on environment

  3. Environmental Studies

    research on environment

  4. Environmental Science Journals|Open Access|ARC Journals

    research on environment

  5. The Sustainable Development Goals

    research on environment

  6. 150+ Unique Environmental Science Research Topics

    research on environment

VIDEO

  1. PhD in Environmental science

  2. How to choose a lab for starting PhD ?

  3. The Environment: Ours to enjoy and protect

  4. Working in a Trusted Research Environment (TRE)

  5. Fundamental research making its way into the clinic 🏥

  6. Climate Change and the Agricultural Adaption

COMMENTS

  1. Environmental sciences

    Environmental science is the multidisciplinary study of all aspects of the Earth's physical and biological environments. It encompasses environmental chemistry, soil science, ecology ...

  2. Environmental Research

    A Multidisciplinary Journal of Environmental Sciences and Engineering. Environmental Research is a multi-disciplinary journal publishing high quality and novel information about anthropogenic issues of global relevance and applicability in a wide range of environmental disciplines, and …. View full aims & scope. $3590. Article publishing charge.

  3. Environmental studies

    A new study finds that strategically integrating floating solar panels on reservoirs could substitute 20-100% of Africa's planned hydropower by 2050. For the Zambezi watercourse, this approach ...

  4. Environment

    Environment How air pollution may make it harder for pollinators to find flowers ... membership organization dedicated to public engagement in scientific research and education (EIN 53-0196483 ...

  5. Top 100 in Earth, Environment and Ecology

    This collection highlights our most downloaded* Earth, environment and ecology papers published in 2022. Featuring authors from aroud the world, these papers showcase valuable research from an ...

  6. 2019 Best Papers published in the Environmental Science journals of the

    In 2019, the Royal Society of Chemistry published 180, 196 and 293 papers in Environmental Science: Processes & Impacts, Environmental Science: Water Research & Technology, and Environmental Science: Nano, respectively. These papers covered a wide range of topics in environmental science, from biogeochemical cycling to water reuse to ...

  7. Current Research in Environmental Sustainability

    7.2 Impact Factor. Current Opinion in Environmental Sustainability (COSUST) builds on Elsevier's reputation for excellence in scientific publishing and long-standing commitment to communicating high quality reproducible research. Established in 2010 as part of the Current Opinion and Research (CO+RE) suite of …. View full aims & scope.

  8. Home

    The primary goal of Sustainable Environment Research (SER) is to publish high quality research articles associated with sustainable environmental science and technology and to contribute to improving environmental practice. The scope of SER includes issues of environmental science, technology, management and related fields, especially in ...

  9. Climate Change Research

    Access Climate Change Research Tools & Resources. Contact Us to ask a question, provide feedback, or report a problem. Last updated on April 16, 2024. EPA conducts research to understand the environmental and health impacts of climate change and to provide sustainable solutions for adapting to and reducing the impact from a changing climate.

  10. Environmental Research

    Short-term air pollution exposure is associated with lower severity and mixed features of manic episodes in hospitalized bipolar patients: A cross-sectional study in Milan, Italy. Michele Carugno, Dario Palpella, Alessandro Ceresa, Angela Cecilia Pesatori, Massimiliano Buoli. Article 110943. View PDF. Article preview.

  11. 100+ Environmental Science Research Topics

    Topics & Ideas: Environmental Chemistry. The impact of cobalt mining on water quality and the fate of contaminants in the environment. The role of atmospheric chemistry in shaping air quality and climate change. The impact of soil chemistry on nutrient availability and plant growth in wheat monoculture.

  12. Addressing the Environmental Impact of Science Through a More Rigorous

    There is value in making explicit connections between the conduct of more rigorous, reproducible science and commitments to environmental sustainability. Shared research resources (also commonly known as cores) often have an institutional role in supporting researchers in the responsible conduct of research through training, informal mentorship ...

  13. Climate, Energy & Environment

    Large shares of Americans support the U.S. taking steps to address global climate change and prioritize renewable energy development in the country. Still, fewer than half are ready to phase out fossil fuels completely and 59% oppose ending the production of gas-powered cars. short readDec 7, 2022.

  14. Biodiversity Science and Action

    Yale Environment Review (YER) is a student-run review that provides weekly updates on environmental research findings. YER aims to bridge the gap between environmentally-related academic research and its application to policy and management. In order to increase access to specialized information, YER publishes readable and concise summaries of ...

  15. Home

    Environmental Science and Pollution Research (ESPR) serves the international community in all broad areas of environmental science and related subjects with emphasis on chemical compounds. Covers all areas of Environmental Science and related subjects. Publishes on the natural sciences, but also includes the impacts of legislation, regulation ...

  16. Environmental and Health Impacts of Air Pollution: A Review

    Environmental pollution occurs when changes in the physical, chemical, or biological constituents of the environment (air masses, temperature, climate, ... together with information coming from research in order to handle the problem effectively. At this point, international cooperation in terms of research, development, administration policy ...

  17. Earth and environmental sciences

    Earth and environmental sciences cover all aspects of Earth and planetary sciences, and broadly encompasses solid Earth processes, surface and atmospheric dynamics, Earth system history, climate ...

  18. Environmental issues are health issues: Making a case and setting an

    Increasing demands on ecosystems, decreasing biodiversity, and climate change are among the most pressing environmental issues of our time. As changing weather conditions are leading to increased vector-borne diseases and heat- and flood-related deaths, it is entering collective consciousness: environmental issues are human health issues. In public health, the field addressing these issues is ...

  19. The Environment in Health and Well-Being

    Introduction. This article traces the development of ideas about the environment in human health and well-being over time. Our primary focus is the period since the early 19th century, sometimes termed the "modern public health era."This has been not only a time of unprecedented scientific, technological, and societal transition but also a time during which perspectives on the relationship ...

  20. Human Impacts on the Environment

    Humans impact the physical environment in many ways: overpopulation, pollution, burning fossil fuels, and deforestation. Changes like these have triggered climate change, soil erosion, poor air quality, and undrinkable water. These negative impacts can affect human behavior and can prompt mass migrations or battles over clean water. Help your students understand the impact humans have on the ...

  21. Ecosystems are deeply interconnected—environmental research, policy and

    Our research highlights the consequences of managing land, freshwater and sea ecosystems in socially constructed bubbles. We focus on solutions where social and ecological connections are at the ...

  22. Environmental Education Research

    The mission of Environmental Education Research is toadvance research-based and scholarly understandings of environmental and sustainability education. The journal achieves this by publishing peer reviewed research and scholarship on all aspects of environmental education, sourced from around the world and diverse schools of thought and ...

  23. Effect of Environmental Enrichment on the Brain and on Learning and

    The research on the effects of environmental enrichment on suboptimal choice by pigeons has implications for the treatment of human addictive gambling behavior. Providing addicted humans with a more enriched environment (e.g., outdoor activities) may provide them with behavioral alternatives to gambling, or even drugs of abuse. ...

  24. Americans' views of climate change in 8 charts

    Nearly eight-in-ten Democrats (78%) describe climate change as a major threat to the country's well-being, up from about six-in-ten (58%) a decade ago. By contrast, about one-in-four Republicans (23%) consider climate change a major threat, a share that's almost identical to 10 years ago.

  25. Environmental Research

    2005 — Volumes 97-99. Page 1 of 3. Read the latest articles of Environmental Research at ScienceDirect.com, Elsevier's leading platform of peer-reviewed scholarly literature.

  26. What really matters for successful research environments? A realist

    Introduction. Research environments matter. Environmental considerations such as robust cultures of research quality and support for researchers are thought to be the most influential predictors of research productivity.1, 2 Over 25 years ago, Bland and Ruffin1 identified 12 characteristics of research‐favourable environments in the international academic medicine literature spanning the ...

  27. Climate and environmental justice have left us better off. This Earth

    After years of research showing failures in the ways that the Federal Emergency Management Agency (FEMA) distributes disaster relief (including our own research on the subject), the agency made ...

  28. Where is the strongest research focus on the environment?

    By. Simon Baker &. Bec Crew. High-quality research from scientists in Australia, New Zealand and parts of Scandinavia tends to lean the most heavily towards tackling climate and conservation ...

  29. How this Ph.D. Grad is Shaping the Future of Sustainability

    When it comes to sustainability and environmental impact, this Northeastern Ph.D. grad is at the 'forefront of innovation'. Looking at doctorate programs, Abhijeet Parvatker found a perfect match in Northeastern and Matthew Eckelman, a professor of civil, environmental and chemical engineering. by Alena Kuzub. April 24, 2024.

  30. Unique Research on Calving Impacts on Nutrient Cycle Earns 2024 Bormann

    The research really extends beyond the question of how animals impact ecosystems to how ecosystems are modulating that impact." This groundbreaking interdisciplinary research, which was published in 2023 in the Journal of Animal Ecology, earned Ferraro the 2024 F. Herbert Bormann Prize. The award honors a YSE doctoral student whose work best ...