Information

  • Author Services

Initiatives

You are accessing a machine-readable page. In order to be human-readable, please install an RSS reader.

All articles published by MDPI are made immediately available worldwide under an open access license. No special permission is required to reuse all or part of the article published by MDPI, including figures and tables. For articles published under an open access Creative Common CC BY license, any part of the article may be reused without permission provided that the original article is clearly cited. For more information, please refer to https://www.mdpi.com/openaccess .

Feature papers represent the most advanced research with significant potential for high impact in the field. A Feature Paper should be a substantial original Article that involves several techniques or approaches, provides an outlook for future research directions and describes possible research applications.

Feature papers are submitted upon individual invitation or recommendation by the scientific editors and must receive positive feedback from the reviewers.

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Original Submission Date Received: .

  • Active Journals
  • Find a Journal
  • Proceedings Series
  • For Authors
  • For Reviewers
  • For Editors
  • For Librarians
  • For Publishers
  • For Societies
  • For Conference Organizers
  • Open Access Policy
  • Institutional Open Access Program
  • Special Issues Guidelines
  • Editorial Process
  • Research and Publication Ethics
  • Article Processing Charges
  • Testimonials
  • Preprints.org
  • SciProfiles
  • Encyclopedia

recycling-logo

Article Menu

recycling research paper introduction

  • Subscribe SciFeed
  • Recommended Articles
  • Google Scholar
  • on Google Scholar
  • Table of Contents

Find support for a specific problem in the support section of our website.

Please let us know what you think of our products and services.

Visit our dedicated information section to learn more about MDPI.

JSmol Viewer

The importance of specific recycling information in designing a waste management scheme.

recycling research paper introduction

1. Introduction

2. information and recycling behaviour, 3. research methodology, 3.1. data collection, 3.2. data analysis, 4. result and discussion, 4.1. participants’ characteristics, 4.2. recycling information components, 4.2.1. “what” of waste recycling, waste: what does it mean.

“ It’s just looking at waste more as resource now rather than just say you pick it up chuck it on the ground; I mean that is industry now we try to move away from calling it waste. Now we see ourselves as resource industry rather than waste industry. So actually what we are trying to do to keep these materials in economy useful as long as possible ”. (Par_015)
“ One of the key achievements is something like reduction in disposal of biodegradable waste by given alternatives to other technologies like composting, AD stops co-disposal of solid and liquid waste going into the landfill thereby activation some other waste streams like spread the waste on land as fertiliser. So it has activated that particular industry, so that industry has employed so many people in terms of land spreading of waste on agricultural land which is one of the recovery avenues ”. (Par_013)
“ People know now that they can’t just throw your rubbish away, stuff got to be recycled whenever possible ”. (Par_006)

How Should We Frame Recycling?

“ In the UK you’ll find that a lot of people still don’t recycle although nowadays you’ve got street bins that household waste to go in, is still to getting people to realise we’ve got to recycle, that will be hardest ”. (Par_001)
“ I think recycling can be considered as just throwing away your trash, throwing away any thrash recycling is now I think considered as splitting up the type of trash ”. (Par_008)

What (Materials) Should We “Prepare” for Recycling?

“ I feel maybe people don’t know what materials they can recycle, so there’s a bit of confusion about can you recycle this, can you recycle that ”. (Par_008)
“ There is always a different system and different councils have different steps as well-some collect glass, some have to separate glass and some the collections (times) are different as well; some you’ve to walk around the corner to put your materials right there ”. (Par_002)
“ The main piece of legislation is Environmental Protection Act 1990 that put in place something like recycling targets, local authority recycling plans, it made landfill more regulated and try to bring in landfill tax. That was a big drive in terms of the change in industry ”. (Par_015)
“ Paper, cardboard, cereal boxes, newspapers, magazines—we don’t have many magazines, but tins, cans, aerosols, foil trays and what else yeah plastic bottles and glass we get ”. (Par_004)
“ Even though bins are provided it helps to put up the sign and specify what one goes into which kind of thing ”. (Par_006)

What Facilities Are Available for Recycling?

“ If it (the facility) is easily accessible, it’s feasible then I think a lot of more people will recycle ”. (Par_011)
“ At home at the moment we have general waste bin, we’ve got food waste as well that’s on street service and the recycling I’ll go around to (a supermarket’s name) just down there and recycle glass, paper, cardboard, tins, cans, plastic bottle and I’ve also got a drink cutting recycling bin for tetra packs ”. (Par_004)
“ A lot of recycling is down to the area where you live ”. (Par_006)
“ I think it’s very much depends on the area you live in whether you recycle or not, whether you’re wealthy or you live in a sort of less wealthy area ”. (Par_008)
“ We stay in apartment at home which is got communal bins, we recycle as best as we can, papers are; we collect papers and put them in the recycling bins, everything else no I don’t recycle at all ”. (Par_001)
“ Where I live on my street, there aren’t really any recycling bins either, we have one black general waste bin and is collected every second Tuesday; and many of my neighbours put their recycling in that bin and they all have cars however they don’t drive down which is five minutes-drive down to a sort of recycling centre ”. (Par_011)
“ If there’s not enough containers to service an area you going to have a problem. I think that’s where the real cost is—is the infrastructure on the ground where are not seeing a right investment or investment in right places both in real process and capabilities ”. (Par_002)
“ We just don’t have the bins, we don’t have storage facilities; if we do have glass bottles or plastic bottles we don’t have that facilities to store them, you know flats are like that, you don’t space for storage so you just have to put them in the general bin ”. (Par_001)
“ So what I do is that we have a balcony so anything we need to recycle we actually put on the balcony and then when we decide to make a trip to either (supermarket’s names) we take the recycling and put in the recycling centre ”. (Par_011)

4.2.2. “Where” of Waste Recycling Information

“ It has become more apparently feasible in the media in recent years ”. (Par_011)
“ I guess it kind of ties with the council given you specific bins to do this and I think you start to think more about it. And everywhere you look through the papers, media there’s always about do you do your bit for the environment be it recycling, do you turn the lights off and that kind of stuff? So I think the advertising campaigns are effective ”. (Par_005)
“ I think publicity, social media—all these kind of things—are far more prominent and has been for the last 10 years or something like that. The awareness comes from social media, council publications I guess they influence us ”. (Par_005)
“ Obviously, the recycling office is going to visit schools and especially the primary kids, you get them involved, you get them enthusiastic and you know they will say oh the kids will go home and tell the parents what to do and what not to do and things ”. (Par_004)
“ The kids are getting education at school, learning about recycling. They come to me then sometimes and ask me questions about can this go, which bin does this go ”. (Par_002)

4.2.3. “When” of Recycling Information

“ When that blue bin turned up with the green waste caddy, I don’t know anything about that as a householder; no leaflets through your door, no information about it; pull out the green caddy bin what the hell is this for, do I put my bag in that, there’s a little mesh thing sitting where does this go? Does it go in my utility room, do I fill what? I don’t even know how to use the system so the education we got from that was slightly that lustre, I think that’s the key thing as well as you know you got to get that education before you rolling out make sure everybody is aware of what they are going to do and then sustain it as well ”. (Par_002)

5. Conclusion

6. recommendations.

  • Information aiming at enhancing recycling participation should be more explicit in terms of what, when, and where including how to recycle
  • When designing and disseminating recycling information, information recipients should be made aware of the importance of recycling and why they should recycle in the first place. As a result, recycling information should be both prescriptive and procedural in terms of recycling (including the items to recycle) and participation
  • There is a need to constantly updating recycling information so as to keep up with dynamics of people’s behaviour in terms of waste generation and also to reflect seasonal patterns considering the effect of time and contexts on recycling information
  • In order to incentivize and to enhance recycling behaviour, there should be a mechanism for feedback on recycling performance
  • The provision of recycling information (and/or communication) should facilitate ease and accessibility of recycling schemes and should target perceived recyclers and non-recyclers.

Acknowledgments

Author contributions, conflicts of interest.

  • Oke, A. Workplace waste recycling behaviour: A meta-analytical review. Sustainability 2015 , 7 , 7175–7194. [ Google Scholar ] [ CrossRef ]
  • Stern, P. Toward a coherent theory of environmentally significant behavior. J. Soc. Issues 2000 , 56 , 407–424. [ Google Scholar ] [ CrossRef ]
  • Ekström, K.M. Waste Management and Sustainable Consumption: Reflections on Consumer Waste ; Routledge Taylor and Francis Group: New York, NY, USA, 2015. [ Google Scholar ]
  • Barr, S. What we buy, what we throw away and how we use our voice: Sustainable household waste management in the UK. Sustain. Dev. 2004 , 12 , 32–44. [ Google Scholar ] [ CrossRef ]
  • Knussen, C.; Yule, F. “I’m not in the habit of recycling” The role of habitual behavior in the disposal of household waste. Environ. Behav. 2008 , 40 , 683–702. [ Google Scholar ] [ CrossRef ]
  • Moore, D. Thirty Percent of Residents “Confused” about What Can Be Recycled. Chartered Institution of Wastes Management Journal, 2015. Available online: http://www.ciwm-journal.co.uk/thirty-percent-of-residents-confused-about-what-can-be-recycled/ (accessed on 5 July 2015).
  • Kollmuss, A.; Agyeman, J. Mind the gap: Why do people act environmentally and what are the barriers to pro-environmental behavior? Environ. Educ. Res. 2002 , 8 , 239–260. [ Google Scholar ] [ CrossRef ]
  • McDonald, S.; Oates, C.J.; Alevizou, P.J. No through road: A critical examination of researcher assumptions and approaches to researching sustainability. Rev. Mark. Res. 2016 , 13 , 139–168. [ Google Scholar ]
  • Garcés, C.; Lafuente, A.; Pedraja, M.; Rivera, P. Urban waste recycling behaviour: Antecedents of participation in a selective collection programme. Environ. Manag. 2002 , 30 , 378–390. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Vicente, P.; Reis, E. Factors influencing households’ participation in recycling. Waste Manag. Res. 2008 , 26 , 140–146. [ Google Scholar ] [ CrossRef ]
  • Berglund, C. The assessment of households’ recycling costs: The role of personal motives. Ecol. Econ. 2006 , 56 , 560–569. [ Google Scholar ] [ CrossRef ]
  • Nixon, H.; Saphores, J.D.M. Information and the decision to recycle: results from a survey of us households. J. Environ. Plan. Manag. 2009 , 52 , 257–277. [ Google Scholar ] [ CrossRef ]
  • McDonald, S.; Oates, C. Reasons for Non-Participation in a Kerbside Recycling Scheme. Resour. Conserv. Recycl. 2003 , 39 , 369–385. [ Google Scholar ] [ CrossRef ]
  • Thøgersen, J. Monetary Incentives and Recycling: Behavioural and psychological reactions to a performance-dependent garbage fee. J. Consum. Policy 2003 , 26 , 197–228. [ Google Scholar ] [ CrossRef ]
  • Kaplowitz, M.D.; Yeboah, F.K.; Thorp, L.; Wilson, A.M. Garnering input for recycling communication strategies at a big ten university. Resour. Conserv. Recycl. 2009 , 53 , 612–623. [ Google Scholar ] [ CrossRef ]
  • Mee, N.; Clewes, P.S.; Phillips, P.S.; Read, A.D. Effective implementation of a marketing communications strategy for kerbside recycling: A case study from Rushcliffe (UK). Resour. Conserv. Recycl. 2004 , 41 , 1–26. [ Google Scholar ] [ CrossRef ]
  • Perrin, D.; Barton, J. Issues associated with transforming household attitudes and opinions into materials recovery: A review of two kerbside recycling schemes. Resour. Conserv. Recycl. 2001 , 3 , 61–74. [ Google Scholar ] [ CrossRef ]
  • Evison, T.; Read, A.D. Local Authority Recycling and Waste-Awareness Publicity and Promotion. Resour. Conserv. Recycl. 2001 , 32 , 275–292. [ Google Scholar ] [ CrossRef ]
  • Grodzinska-Jurczak, M.; Tomal, P.; Tarabuła-fiertak, M.; Nieszporek, K.; Read, A.D. Effects of an Educational Campaign on Public Environmental Attitudes and Behaviour in Poland. Resour. Conserv. Recycl. 2005 , 46 , 182–197. [ Google Scholar ] [ CrossRef ]
  • McDonald, S. Green Behaviour: Differences in Recycling Behaviour between the Home and the Workplace. In Going Green: The Psychology of Sustainability in the Workplace ; Bartlett, D., Ed.; The British Psychological Society: Leicester, UK, 2011; pp. 59–64. [ Google Scholar ]
  • Austin, J.; Hatfield, D.; Grindie, A.; Bailey, J. Increasing recycling in office environments: The Effects of Specific Informative Cues. J. Appl. Behav. Anal. 1993 , 26 , 247–253. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Brothers, K.J.; Krantz, P.J.; McClannahan, L.E. Office paper recycling: A function of container proximity. J. Appl. Behav. Anal. 1994 , 1 , 153–160. [ Google Scholar ] [ CrossRef ]
  • Kelly, T.C.; Mason, I.G.; Leiss, M.W.; Ganesh, S. University community responses to on-campus resource recycling. Resour. Conserv. Recycl. 2006 , 47 , 42–55. [ Google Scholar ] [ CrossRef ]
  • Humphrey, C.R.; Bord, R.J.; Hammond, M.M.; Mann, S.H. Attitudes and Conditions for Cooperation in a Paper Recycling Program. Environ. Behav. 1977 , 9 , 107–124. [ Google Scholar ] [ CrossRef ]
  • De Young, R. Changing behavior and making it stick: The conceptualization and management of conservation behavior. Environ. Behav. 1993 , 25 , 485–505. [ Google Scholar ] [ CrossRef ]
  • Bryman, A. Social Research Methods , 4th ed.; Oxford University Press: Oxford, UK, 2012. [ Google Scholar ]
  • Creswell, J.W. A Concise Introduction to Mixed Methods Research ; Sage Publications: Thousand Oaks, CA, USA, 2014. [ Google Scholar ]
  • Tashakkori, A.; Teddlie, C. (Eds.) Sage Handbook of Mixed Methods in Social & Behavioral Research ; Sage Publications: Thousand Oaks, CA, USA, 2010.
  • Bowen, G.A. Naturalistic inquiry and the saturation concept: a research note. Qual. Res. 2008 , 1 , 137–152. [ Google Scholar ] [ CrossRef ]
  • Miles, M.B.; Huberman, A.M. Qualitative Data Analysis: An Expanded Sourcebook ; Sage Publications: Thousand Oaks, CA, USA, 1994. [ Google Scholar ]
  • Bryman, A. Social Research Methods , 5th ed.; Oxford University Press: Oxford, UK, 2016. [ Google Scholar ]
  • Strauss, A.; Corbin, J. Basics of Qualitative Research: Techniques and Procedures for Developing Grounded Theory ; Sage Publications: Thousand Oaks, CA, USA, 1998. [ Google Scholar ]
  • Charmaz, K. Constructing Grounded Theory: A Practical Guide through Qualitative Analysis ; Sage Publications: Thousand Oaks, CA, USA, 2006. [ Google Scholar ]
  • Lee, D.T.F.; Woo, J.; Mackenzie, A.E. The cultural context of adjusting to nursing home life: Chinese elders’ perspectives. Gerontologist 2002 , 5 , 667–675. [ Google Scholar ] [ CrossRef ]
  • Creswell, J. Qualitative Inquiry and Research Design: Choosing among Five Traditions ; Sage Publications: Thousand Oaks, CA, USA, 1998. [ Google Scholar ]
  • Guest, G.; Bunce, A.; Johnson, L. How many interviews are enough? An experiment with data saturation and variability. Field Methods 2006 , 1 , 59–82. [ Google Scholar ] [ CrossRef ]
  • Ritchie, J.; Lewis, J.; Nicholls, C.M.; Ormston, R. (Eds.) Qualitative Research Practice: A Guide for Social Science Students and Researchers ; Sage Publications: Thousand Oaks, CA, USA, 2013.
  • Pitkow, J.E.; Kehoe, C.M. Emerging trends in the WWW user population. Commun. ACM 1996 , 6 , 106–108. [ Google Scholar ] [ CrossRef ]
  • Smith, M.A.; Leigh, B. Virtual subjects: Using the Internet as an alternative source of subjects and research environment. Behav. Res. Methods Instrum. Comput. 1997 , 4 , 496–505. [ Google Scholar ] [ CrossRef ]
  • Oates, C. J.; McDonald, S. Recycling and the Domestic Division of Labour: Is Green Pink or Blue? Sociology 2006 , 40 , 417–433. [ Google Scholar ] [ CrossRef ]
  • The World Bank. What a Waste A Global Review of Solid Waste Management. Urban Development Series Knowledge Papers. 2012. Available online: http://www-wds.worldbank.org/external/default/WDSContentServer/WDSP/IB/2014/09/17/000442464_20140917123945/Rendered/PDF/681350REVISED00t0a0Waste020120Final.pdf (accessed on 4 January 2014).
  • Berger, I.E. The demographics of recycling and the structure of environmental behavior. Environ. Behav. 1997 , 29 , 515–531. [ Google Scholar ] [ CrossRef ]
  • The European Parliament and the Council of the European Union. Directive 2008/98/EC of the European Parliament and of the Council. 2008. Available online: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2008:312:0003:0030:EN:PDF (accessed on 22 May 2013).
  • De Young, R. Exploring the difference between recyclers and non-recyclers: The role of information. J. Environ. Syst. 1988 , 18 , 341–351. [ Google Scholar ] [ CrossRef ]
  • Mainieri, T.; Barnett, E.G.; Valdero, T.R.; Unipan, J.B.; Oskamp, S. Green buying: The influence of environmental concern on consumer behavior. J. Soc. Psychol. 1997 , 137 , 189–204. [ Google Scholar ] [ CrossRef ]
  • Grob, A. A structural model of environmental attitudes and behaviour. J. Environ. Psychol. 1995 , 15 , 209–220. [ Google Scholar ] [ CrossRef ]
  • Timlett, R.E.; Williams, I.D. Public participation and recycling performance in England: A comparison of tools for behaviour change. Resour. Conserv. Recycl. 2008 , 52 , 622–634. [ Google Scholar ] [ CrossRef ]
  • Chung, S.S.; Poon, C.S. Hong Kong citizens’ attitude towards waste recycling and waste minimization measures. Resour. Conserv. Recycl. 1994 , 10 , 377–400. [ Google Scholar ] [ CrossRef ]
  • Hage, O.; Söderholm, P.; Berglund, C. Norms and Economic Motivation in Household Recycling: Empirical Evidence from Sweden. Resour. Conserv. Recycl. 2008 , 53 , 155–165. [ Google Scholar ] [ CrossRef ]
  • Ebreo, A.; Vining, J. Motives as predictors of the public’s attitudes toward solid waste issues. Environ. Manag. 2000 , 25 , 153–168. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Barr, S. Factors influencing environmental attitudes and behaviors: A UK case study of household waste management. Environ. Behav. 2007 , 39 , 435–473. [ Google Scholar ] [ CrossRef ]
  • Knussen, C.; Yule, F.; Mackenzie, J.; Wells, M. An Analysis of Intentions to Recycle Household Waste: The roles of past behaviour, perceived habit, and perceived lack of facilities. J. Environ. Psychol. 2004 , 24 , 237–246. [ Google Scholar ] [ CrossRef ]
  • Luyben, P.; Cummings, S. Motivating beverage container recycling on a college campus. J. Environ. Syst. 1981 , 11 , 235–245. [ Google Scholar ] [ CrossRef ]
  • Iyer, E.S.; Kashyap, R.K. Consumer recycling: Role of incentives, information, and social class. J. Consum. Behav. 2007 , 6 , 32–47. [ Google Scholar ] [ CrossRef ]
  • Kalsher, M.J.; Rodocker, A.J.; Racicot, B.M.; Wogalter, M.S. Promoting Recycling Behavior in Office Environments. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting, Seattle, WA, USA, 11–15 October 1993; SAGE Publications: Thousand Oaks, CA, USA, 1993; pp. 484–488. [ Google Scholar ]
  • McDonald, S.; Ball, R. Public Participation in Plastics Recycling Schemes. Resour. Conserv. Recycl. 1998 , 22 , 123–141. [ Google Scholar ] [ CrossRef ]

Click here to enlarge figure

Participants’ Socio-demographic Information.
ParticipantsGenderAgeEducationEmployment StatusIncome (£)Ethnic Background
001Male56–65HNCFull-time25,000–49,999Scottish
002Male36–45Higher EducationFull-time50,000–99,999British
003Male46–55A/ASFull-time50,000–99,999British
004Female26–35Higher EducationFull-time25,000–49,999British
005Male46–55Higher EducationFull-time50,000–99,999British
006Male46–55DiplomaFull-time>100,000Scottish
007Male>65OtherPart-time<24,999Scottish
008Female16–25A/AS/higher or equivalentPart-time<24,999Asian
009Female26–35Higher EducationFull-time<24,999Scottish
010Male36–45GSCE or EquivalentFull-time25,000–49,999Scottish
011Female26–35Higher EducationPart-time<24,999Any other background
012Male56–65A/AS/higher or equivalentFull-time25,000–49,999Scottish
013Male36–45Higher EducationFull-time25,000–49,999African
014Male46–55Higher EducationFull-time25,000–49,999British
015Male26–35GSCE or EquivalentFull-time25,000–49,999Scottish

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

Share and Cite

Oke, A.; Kruijsen, J. The Importance of Specific Recycling Information in Designing a Waste Management Scheme. Recycling 2016 , 1 , 271-285. https://doi.org/10.3390/recycling1020271

Oke A, Kruijsen J. The Importance of Specific Recycling Information in Designing a Waste Management Scheme. Recycling . 2016; 1(2):271-285. https://doi.org/10.3390/recycling1020271

Oke, Adekunle, and Joanneke Kruijsen. 2016. "The Importance of Specific Recycling Information in Designing a Waste Management Scheme" Recycling 1, no. 2: 271-285. https://doi.org/10.3390/recycling1020271

Article Metrics

Article access statistics, further information, mdpi initiatives, follow mdpi.

MDPI

Subscribe to receive issue release notifications and newsletters from MDPI journals

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Philos Trans R Soc Lond B Biol Sci
  • v.364(1526); 2009 Jul 27

Plastics recycling: challenges and opportunities

Jefferson hopewell.

1 Eco Products Agency, 166 Park Street, Fitzroy North 3068, Australia

Robert Dvorak

2 Nextek Ltd, Level 3, 1 Quality Court, Chancery Lane, London WC2A 1HR, UK

Edward Kosior

Plastics are inexpensive, lightweight and durable materials, which can readily be moulded into a variety of products that find use in a wide range of applications. As a consequence, the production of plastics has increased markedly over the last 60 years. However, current levels of their usage and disposal generate several environmental problems. Around 4 per cent of world oil and gas production, a non-renewable resource, is used as feedstock for plastics and a further 3–4% is expended to provide energy for their manufacture. A major portion of plastic produced each year is used to make disposable items of packaging or other short-lived products that are discarded within a year of manufacture. These two observations alone indicate that our current use of plastics is not sustainable. In addition, because of the durability of the polymers involved, substantial quantities of discarded end-of-life plastics are accumulating as debris in landfills and in natural habitats worldwide.

Recycling is one of the most important actions currently available to reduce these impacts and represents one of the most dynamic areas in the plastics industry today. Recycling provides opportunities to reduce oil usage, carbon dioxide emissions and the quantities of waste requiring disposal. Here, we briefly set recycling into context against other waste-reduction strategies, namely reduction in material use through downgauging or product reuse, the use of alternative biodegradable materials and energy recovery as fuel.

While plastics have been recycled since the 1970s, the quantities that are recycled vary geographically, according to plastic type and application. Recycling of packaging materials has seen rapid expansion over the last decades in a number of countries. Advances in technologies and systems for the collection, sorting and reprocessing of recyclable plastics are creating new opportunities for recycling, and with the combined actions of the public, industry and governments it may be possible to divert the majority of plastic waste from landfills to recycling over the next decades.

1. Introduction

The plastics industry has developed considerably since the invention of various routes for the production of polymers from petrochemical sources. Plastics have substantial benefits in terms of their low weight, durability and lower cost relative to many other material types ( Andrady & Neal 2009 ; Thompson et al. 2009 a ). Worldwide polymer production was estimated to be 260 million metric tonnes per annum in the year 2007 for all polymers including thermoplastics, thermoset plastics, adhesives and coatings, but not synthetic fibres ( PlasticsEurope 2008 b ). This indicates a historical growth rate of about 9 per cent p.a. Thermoplastic resins constitute around two-thirds of this production and their usage is growing at about 5 per cent p.a. globally ( Andrady 2003 ).

Today, plastics are almost completely derived from petrochemicals produced from fossil oil and gas. Around 4 per cent of annual petroleum production is converted directly into plastics from petrochemical feedstock ( British Plastics Federation 2008 ). As the manufacture of plastics also requires energy, its production is responsible for the consumption of a similar additional quantity of fossil fuels. However, it can also be argued that use of lightweight plastics can reduce usage of fossil fuels, for example in transport applications when plastics replace heavier conventional materials such as steel ( Andrady & Neal 2009 ; Thompson et al. 2009 b ).

Approximately 50 per cent of plastics are used for single-use disposable applications, such as packaging, agricultural films and disposable consumer items, between 20 and 25% for long-term infrastructure such as pipes, cable coatings and structural materials, and the remainder for durable consumer applications with intermediate lifespan, such as in electronic goods, furniture, vehicles, etc. Post-consumer plastic waste generation across the European Union (EU) was 24.6 million tonnes in 2007 ( PlasticsEurope 2008 b ). Table 1 presents a breakdown of plastics consumption in the UK during the year 2000, and contributions to waste generation ( Waste Watch 2003 ). This confirms that packaging is the main source of waste plastics, but it is clear that other sources such as waste electronic and electrical equipment (WEEE) and end-of-life vehicles (ELV) are becoming significant sources of waste plastics.

Table 1.

Consumption of plastics and waste generation by sector in the UK in 2000 ( Waste Watch 2003 ).

usage waste arising
ktonne(%)ktonne(%)
packaging164037164058
building and construction10502428410
electrical and electronics35582007
furniture and housewares3358200 7
automotive and transport33581505
agriculture and horticulture3107933
other42510255 9
total44502820

Because plastics have only been mass-produced for around 60 years, their longevity in the environment is not known with certainty. Most types of plastics are not biodegradable ( Andrady 1994 ), and are in fact extremely durable, and therefore the majority of polymers manufactured today will persist for at least decades, and probably for centuries if not millennia. Even degradable plastics may persist for a considerable time depending on local environmental factors, as rates of degradation depend on physical factors, such as levels of ultraviolet light exposure, oxygen and temperature ( Swift & Wiles 2004 ), while biodegradable plastics require the presence of suitable micro-organisms. Therefore, degradation rates vary considerably between landfills, terrestrial and marine environments ( Kyrikou & Briassoulis 2007 ). Even when a plastic item degrades under the influence of weathering, it first breaks down into smaller pieces of plastic debris, but the polymer itself may not necessarily fully degrade in a meaningful timeframe. As a consequence, substantial quantities of end-of-life plastics are accumulating in landfills and as debris in the natural environment, resulting in both waste-management issues and environmental damage (see Barnes et al. 2009 ; Gregory 2009 ; Oehlmann et al. 2009 ; Ryan et al. 2009 ; Teuten et al. 2009 ; Thompson et al. 2009 b ).

Recycling is clearly a waste-management strategy, but it can also be seen as one current example of implementing the concept of industrial ecology, whereas in a natural ecosystem there are no wastes but only products ( Frosch & Gallopoulos 1989 ; McDonough & Braungart 2002 ). Recycling of plastics is one method for reducing environmental impact and resource depletion. Fundamentally, high levels of recycling, as with reduction in use, reuse and repair or re-manufacturing can allow for a given level of product service with lower material inputs than would otherwise be required. Recycling can therefore decrease energy and material usage per unit of output and so yield improved eco-efficiency ( WBCSD 2000 ). Although, it should be noted that the ability to maintain whatever residual level of material input, plus the energy inputs and the effects of external impacts on ecosystems will decide the ultimate sustainability of the overall system.

In this paper, we will review the current systems and technology for plastics recycling, life-cycle evidence for the eco-efficiency of plastics recycling, and briefly consider related economic and public interest issues. We will focus on production and disposal of packaging as this is the largest single source of waste plastics in Europe and represents an area of considerable recent expansion in recycling initiatives.

2. Waste management: overview

Even within the EU there are a wide range of waste-management prioritizations for the total municipal solid waste stream (MSW), from those heavily weighted towards landfill, to those weighted towards incineration ( figure 1 )—recycling performance also varies considerably. The average amount of MSW generated in the EU is 520 kg per person per year and projected to increase to 680 kg per person per year by 2020 ( EEA 2008 ). In the UK, total use of plastics in both domestic and commercial packaging is about 40 kg per person per year, hence it forms approximately 7–8% by weight, but a larger proportion by volume of the MSW stream ( Waste Watch 2003 ).

An external file that holds a picture, illustration, etc.
Object name is rstb20080311-g1.jpg

Rates of mechanical recycling and energy recovery as waste-management strategies for plastics waste in European nations ( PlasticsEurope 2008 b ).

Broadly speaking, waste plastics are recovered when they are diverted from landfills or littering. Plastic packaging is particularly noticeable as litter because of the lightweight nature of both flexible and rigid plastics. The amount of material going into the waste-management system can, in the first case, be reduced by actions that decrease the use of materials in products (e.g. substitution of heavy packaging formats with lighter ones, or downgauging of packaging). Designing products to enable reusing, repairing or re-manufacturing will result in fewer products entering the waste stream.

Once material enters the waste stream, recycling is the process of using recovered material to manufacture a new product. For organic materials like plastics, the concept of recovery can also be expanded to include energy recovery, where the calorific value of the material is utilized by controlled combustion as a fuel, although this results in a lesser overall environmental performance than material recovery as it does not reduce the demand for new (virgin) material. This thinking is the basis of the 4Rs strategy in waste management parlance—in the order of decreasing environmental desirability—reduce, reuse, recycle (materials) and recover (energy), with landfill as the least desirable management strategy.

It is also quite possible for the same polymer to cascade through multiple stages—e.g. manufacture into a re-usable container, which once entering the waste stream is collected and recycled into a durable application that when becoming waste in its turn, is recovered for energy.

(a) Landfill

Landfill is the conventional approach to waste management, but space for landfills is becoming scarce in some countries. A well-managed landfill site results in limited immediate environmental harm beyond the impacts of collection and transport, although there are long-term risks of contamination of soils and groundwater by some additives and breakdown by-products in plastics, which can become persistent organic pollutants ( Oehlmann et al. 2009 ; Teuten et al . 2009 ). A major drawback to landfills from a sustainability aspect is that none of the material resources used to produce the plastic is recovered—the material flow is linear rather than cyclic. In the UK, a landfill tax has been applied, which is currently set to escalate each year until 2010 in order to increase the incentive to divert wastes from landfill to recovery actions such as recycling ( DEFRA 2007 ).

(b) Incineration and energy recovery

Incineration reduces the need for landfill of plastics waste, however, there are concerns that hazardous substances may be released into the atmosphere in the process. For example, PVC and halogenated additives are typically present in mixed plastic waste leading to the risk of dioxins, other polychlorinated biphenyls and furans being released into the environment ( Gilpin et al. 2003 ). As a consequence primarily of this perceived pollution risk, incineration of plastic is less prevalent than landfill and mechanical recycling as a waste-management strategy. Japan and some European countries such as Denmark and Sweden are notable exceptions, with extensive incinerator infrastructure in place for dealing with MSW, including plastics.

Incineration can be used with recovery of some of the energy content in the plastic. The useful energy recovered can vary considerably depending on whether it is used for electricity generation, combined heat and power, or as solid refuse fuel for co-fuelling of blast furnaces or cement kilns. Liquefaction to diesel fuel or gasification through pyrolysis is also possible ( Arvanitoyannis & Bosnea 2001 ) and interest in this approach to produce diesel fuel is increasing, presumably owing to rising oil prices. Energy-recovery processes may be the most suitable way for dealing with highly mixed plastic such as some electronic and electrical wastes and automotive shredder residue.

(c) Downgauging

Reducing the amount of packaging used per item will reduce waste volumes. Economics dictate that most manufacturers will already use close to the minimum required material necessary for a given application (but see Thompson et al. 2009 b , Fig 1 ). This principle is, however, offset against aesthetics, convenience and marketing benefits that can lead to over-use of packaging, as well as the effect of existing investment in tooling and production process, which can also result in excessive packaging of some products.

(d) Re-use of plastic packaging

Forty years ago, re-use of post-consumer packaging in the form of glass bottles and jars was common. Limitations to the broader application of rigid container re-use are at least partially logistical, where distribution and collection points are distant from centralized product-filling factories and would result in considerable back-haul distances. In addition, the wide range of containers and packs for branding and marketing purposes makes direct take-back and refilling less feasible. Take-back and refilling schemes do exist in several European countries ( Institute for Local Self-Reliance 2002 ), including PET bottles as well as glass, but they are elsewhere generally considered a niche activity for local businesses rather than a realistic large-scale strategy to reduce packaging waste.

There is considerable scope for re-use of plastics used for the transport of goods, and for potential re-use or re-manufacture from some plastic components in high-value consumer goods such as vehicles and electronic equipment. This is evident in an industrial scale with re-use of containers and pallets in haulage (see Thompson et al. 2009 b ). Some shift away from single-use plastic carrier bags to reusable bags has also been observed, both because of voluntary behaviour change programmes, as in Australia ( Department of Environment and Heritage (Australia) 2008 ) and as a consequence of legislation, such as the plastic bag levy in Ireland ( Department of Environment Heritage and Local Government (Ireland) 2007 ), or the recent banning of lightweight carrier bags, for example in Bangladesh and China.

(e) Plastics recycling

Terminology for plastics recycling is complex and sometimes confusing because of the wide range of recycling and recovery activities ( table 2 ). These include four categories: primary (mechanical reprocessing into a product with equivalent properties), secondary (mechanical reprocessing into products requiring lower properties), tertiary (recovery of chemical constituents) and quaternary (recovery of energy). Primary recycling is often referred to as closed-loop recycling, and secondary recycling as downgrading. Tertiary recycling is either described as chemical or feedstock recycling and applies when the polymer is de-polymerized to its chemical constituents ( Fisher 2003 ). Quaternary recycling is energy recovery, energy from waste or valorization. Biodegradable plastics can also be composted, and this is a further example of tertiary recycling, and is also described as organic or biological recycling (see Song et al . 2009 ).

Table 2.

Terminology used in different types of plastics recycling and recovery.

ASTM D5033 definitionsequivalent ISO 15270 (draft) definitionsother equivalent terms
primary recyclingmechanical recyclingclosed-loop recycling
secondary recyclingmechanical recyclingdowngrading
tertiary recyclingchemical recyclingfeedstock recycling
quaternary recyclingenergy recoveryvalorization

It is possible in theory to closed-loop recycle most thermoplastics, however, plastic packaging frequently uses a wide variety of different polymers and other materials such as metals, paper, pigments, inks and adhesives that increases the difficulty. Closed-loop recycling is most practical when the polymer constituent can be (i) effectively separated from sources of contamination and (ii) stabilized against degradation during reprocessing and subsequent use. Ideally, the plastic waste stream for reprocessing would also consist of a narrow range of polymer grades to reduce the difficulty of replacing virgin resin directly. For example, all PET bottles are made from similar grades of PET suitable for both the bottle manufacturing process and reprocessing to polyester fibre, while HDPE used for blow moulding bottles is less-suited to injection moulding applications. As a result, the only parts of the post-consumer plastic waste stream that have routinely been recycled in a strictly closed-loop fashion are clear PET bottles and recently in the UK, HDPE milk bottles. Pre-consumer plastic waste such as industrial packaging is currently recycled to a greater extent than post-consumer packaging, as it is relatively pure and available from a smaller number of sources of relatively higher volume. The volumes of post-consumer waste are, however, up to five times larger than those generated in commerce and industry ( Patel et al. 2000 ) and so in order to achieve high overall recycling rates, post-consumer as well as post-industrial waste need to be collected and recycled.

In some instances recovered plastic that is not suitable for recycling into the prior application is used to make a new plastic product displacing all, or a proportion of virgin polymer resin—this can also be considered as primary recycling. Examples are plastic crates and bins manufactured from HDPE recovered from milk bottles, and PET fibre from recovered PET packaging. Downgrading is a term sometimes used for recycling when recovered plastic is put into an application that would not typically use virgin polymer—e.g. ‘plastic lumber’ as an alternative to higher cost/shorter lifetime timber, this is secondary recycling ( ASTM Standard D5033 ).

Chemical or feedstock recycling has the advantage of recovering the petrochemical constituents of the polymer, which can then be used to re-manufacture plastic or to make other synthetic chemicals. However, while technically feasible it has generally been found to be uneconomic without significant subsidies because of the low price of petrochemical feedstock compared with the plant and process costs incurred to produce monomers from waste plastic ( Patel et al. 2000 ). This is not surprising as it is effectively reversing the energy-intensive polymerization previously carried out during plastic manufacture.

Feedstock recycling of polyolefins through thermal-cracking has been performed in the UK through a facility initially built by BP and in Germany by BASF. However, the latter plant was closed in 1999 ( Aguado et al. 2007 ). Chemical recycling of PET has been more successful, as de-polymerization under milder conditions is possible. PET resin can be broken down by glycolysis, methanolysis or hydrolysis, for example to make unsaturated polyester resins ( Sinha et al. 2008 ). It can also be converted back into PET, either after de-polymerization, or by simply re-feeding the PET flake into the polymerization reactor, this can also remove volatile contaminants as the reaction occurs under high temperature and vacuum ( Uhde Inventa-Fischer 2007 ).

(f) Alternative materials

Biodegradable plastics have the potential to solve a number of waste-management issues, especially for disposable packaging that cannot be easily separated from organic waste in catering or from agricultural applications. It is possible to include biodegradable plastics in aerobic composting, or by anaerobic digestion with methane capture for energy use. However, biodegradable plastics also have the potential to complicate waste management when introduced without appropriate technical attributes, handling systems and consumer education. In addition, it is clear that there could be significant issues in sourcing sufficient biomass to replace a large proportion of the current consumption of polymers, as only 5 per cent of current European chemical production uses biomass as feedstock ( Soetaert & Vandamme 2006 ). This is a large topic that cannot be covered in this paper, except to note that it is desirable that compostable and degradable plastics are appropriately labelled and used in ways that complement, rather than compromise waste-management schemes (see Song et al . 2009 ).

3. Systems for plastic recycling

Plastic materials can be recycled in a variety of ways and the ease of recycling varies among polymer type, package design and product type. For example, rigid containers consisting of a single polymer are simpler and more economic to recycle than multi-layer and multi-component packages.

Thermoplastics, including PET, PE and PP all have high potential to be mechanically recycled. Thermosetting polymers such as unsaturated polyester or epoxy resin cannot be mechanically recycled, except to be potentially re-used as filler materials once they have been size-reduced or pulverized to fine particles or powders ( Rebeiz & Craft 1995 ). This is because thermoset plastics are permanently cross-linked in manufacture, and therefore cannot be re-melted and re-formed. Recycling of cross-linked rubber from car tyres back to rubber crumb for re-manufacture into other products does occur and this is expected to grow owing to the EU Directive on Landfill of Waste (1999/31/EC), which bans the landfill of tyres and tyre waste.

A major challenge for producing recycled resins from plastic wastes is that most different plastic types are not compatible with each other because of inherent immiscibility at the molecular level, and differences in processing requirements at a macro-scale. For example, a small amount of PVC contaminant present in a PET recycle stream will degrade the recycled PET resin owing to evolution of hydrochloric acid gas from the PVC at a higher temperature required to melt and reprocess PET. Conversely, PET in a PVC recycle stream will form solid lumps of undispersed crystalline PET, which significantly reduces the value of the recycled material.

Hence, it is often not technically feasible to add recovered plastic to virgin polymer without decreasing at least some quality attributes of the virgin plastic such as colour, clarity or mechanical properties such as impact strength. Most uses of recycled resin either blend the recycled resin with virgin resin—often done with polyolefin films for non-critical applications such as refuse bags, and non-pressure-rated irrigation or drainage pipes, or for use in multi-layer applications, where the recycled resin is sandwiched between surface layers of virgin resin.

The ability to substitute recycled plastic for virgin polymer generally depends on the purity of the recovered plastic feed and the property requirements of the plastic product to be made. This has led to current recycling schemes for post-consumer waste that concentrate on the most easily separated packages, such as PET soft-drink and water bottles and HDPE milk bottles, which can be positively identified and sorted out of a co-mingled waste stream. Conversely, there is limited recycling of multi-layer/multi-component articles because these result in contamination between polymer types. Post-consumer recycling therefore comprises of several key steps: collection, sorting, cleaning, size reduction and separation, and/or compatibilization to reduce contamination by incompatible polymers.

(a) Collection

Collection of plastic wastes can be done by ‘bring-schemes’ or through kerbside collection. Bring-schemes tend to result in low collection rates in the absence of either highly committed public behaviour or deposit-refund schemes that impose a direct economic incentive to participate. Hence, the general trend is for collection of recyclable materials through kerbside collection alongside MSW. To maximize the cost efficiency of these programmes, most kerbside collections are of co-mingled recyclables (paper/board, glass, aluminium, steel and plastic containers). While kerbside collection schemes have been very successful at recovering plastic bottle packaging from homes, in terms of the overall consumption typically only 30–40% of post-consumer plastic bottles are recovered, as a lot of this sort of packaging comes from food and beverage consumed away from home. For this reason, it is important to develop effective ‘on-the-go’ and ‘office recycling’ collection schemes if overall collection rates for plastic packaging are to increase.

(b) Sorting

Sorting of co-mingled rigid recyclables occurs by both automatic and manual methods. Automated pre-sorting is usually sufficient to result in a plastics stream separate from glass, metals and paper (other than when attached, e.g. as labels and closures). Generally, clear PET and unpigmented HDPE milk bottles are positively identified and separated out of the stream. Automatic sorting of containers is now widely used by material recovery facility operators and also by many plastic recycling facilities. These systems generally use Fourier-transform near-infrared (FT-NIR) spectroscopy for polymer type analysis and also use optical colour recognition camera systems to sort the streams into clear and coloured fractions. Optical sorters can be used to differentiate between clear, light blue, dark blue, green and other coloured PET containers. Sorting performance can be maximized using multiple detectors, and sorting in series. Other sorting technologies include X-ray detection, which is used for separation of PVC containers, which are 59 per cent chlorine by weight and so can be easily distinguished ( Arvanitoyannis & Bosnea 2001 ; Fisher 2003 ).

Most local authorities or material recovery facilities do not actively collect post-consumer flexible packaging as there are current deficiencies in the equipment that can easily separate flexibles. Many plastic recycling facilities use trommels and density-based air-classification systems to remove small amounts of flexibles such as some films and labels. There are, however, developments in this area and new technologies such as ballistic separators, sophisticated hydrocyclones and air-classifiers that will increase the ability to recover post-consumer flexible packaging ( Fisher 2003 ).

(c) Size reduction and cleaning

Rigid plastics are typically ground into flakes and cleaned to remove food residues, pulp fibres and adhesives. The latest generation of wash plants use only 2–3 m 3 of water per tonne of material, about one-half of that of previous equipment. Innovative technologies for the removal of organics and surface contaminants from flakes include ‘dry-cleaning’, which cleans surfaces through friction without using water.

(d) Further separation

After size reduction, a range of separation techniques can be applied. Sink/float separation in water can effectively separate polyolefins (PP, HDPE, L/LLDPE) from PVC, PET and PS. Use of different media can allow separation of PS from PET, but PVC cannot be removed from PET in this manner as their density ranges overlap. Other separation techniques such as air elutriation can also be used for removing low-density films from denser ground plastics ( Chandra & Roy 2007 ), e.g. in removing labels from PET flakes.

Technologies for reducing PVC contaminants in PET flake include froth flotation ( Drelich et al. 1998 ; Marques & Tenorio 2000 )[JH1], FT-NIR or Raman emission spectroscopic detectors to enable flake ejection and using differing electrostatic properties ( Park et al. 2007 ). For PET flake, thermal kilns can be used to selectively degrade minor amounts of PVC impurities, as PVC turns black on heating, enabling colour-sorting.

Various methods exist for flake-sorting, but traditional PET-sorting systems are predominantly restricted to separating; (i) coloured flakes from clear PET flakes and (ii) materials with different physical properties such as density from PET. New approaches such as laser-sorting systems can be used to remove other impurities such as silicones and nylon.

‘Laser-sorting’ uses emission spectroscopy to differentiate polymer types. These systems are likely to significantly improve the ability to separate complex mixtures as they can perform up to 860 000 spectra s −1 and can scan each individual flake. They have the advantage that they can be used to sort different plastics that are black—a problem with traditional automatic systems. The application of laser-sorting systems is likely to increase separation of WEEE and automotive plastics. These systems also have the capability to separate polymer by type or grade and can also separate polyolefinic materials such as PP from HDPE. However, this is still a very novel approach and currently is only used in a small number of European recycling facilities.

(e) Current advances in plastic recycling

Innovations in recycling technologies over the last decade include increasingly reliable detectors and sophisticated decision and recognition software that collectively increase the accuracy and productivity of automatic sorting—for example current FT-NIR detectors can operate for up to 8000 h between faults in the detectors.

Another area of innovation has been in finding higher value applications for recycled polymers in closed-loop processes, which can directly replace virgin polymer (see table 3 ). As an example, in the UK, since 2005 most PET sheet for thermoforming contains 50–70% recycled PET (rPET) through use of A/B/A layer sheet where the outer layers (A) are food-contact-approved virgin resin, and the inner layer (B) is rPET. Food-grade rPET is also now widely available in the market for direct food contact because of the development of ‘super-clean’ grades. These only have slight deterioration in clarity from virgin PET, and are being used at 30–50% replacement of virgin PET in many applications and at 100 per cent of the material in some bottles.

Table 3.

Comparing some environmental impacts of commodity polymer production and current ability for recycling from post-consumer sources.

LCI data cradle-to-gate (EU data)
polymerenergy (GJ tonne )water (kL tonne )CO -e (t tonne )Usage (ktonne)closed-loop recyclingeffectiveness in current recycling processes
PET82.7663.42160yeshigh with clear PET from bottles
coloured PET is mostly used for fibre
additional issues with CPET trays, PET-G
HDPE76.7321.95468somehigh with natural HDPE bottles, but more complex for opaque bottles and trays because of wide variety of grades and colour and mixtures with LDPE and PP
PVC56.7461.96509somepoor recovery because of cross-contamination with PET
PVC packages and labels present a major issue with PET bottle and mixed plastics recycling
LDPE78.1472.17899somepoor recovery rates, mostly as mixed polyolefins that can have sufficient properties for some applications. Most post-consumer flexible packaging not recovered
PP73.4432.07779in theorynot widely recycled yet from post-consumer, but has potential. Needs action on sorting and separation, plus development of further outlets for recycled PP
PS87.41403.42600in theorypoor, extremely difficult to cost-effectively separate from co-mingled collection, separate collection of industrial packaging and EPS foam can be effective
recycled plastics 8–55typical 3.5 typical 1.43130someconsiderable variability in energy, water and emissions from recycling processes as it is a developing industry and affected by efficiency of collection, process type and product mix, etc.

a CO 2 -e is GWP calculated as 100-yr equivalent to CO 2 emissions. All LCI data are specific to European industry and covers the production process of the raw materials, intermediates and final polymer, but not further processing and logistics ( PlasticsEurope 2008 a ).

b Usage was for the aggregate EU-15 countries across all market sectors in 2002.

c Typical values for water and greenhouse gas emissions from recycling activities to produce 1 kg PET from waste plastic ( Perugini et al. 2005 ).

A number of European countries including Germany, Austria, Norway, Italy and Spain are already collecting, in addition to their bottle streams, rigid packaging such as trays, tubs and pots as well as limited amounts of post-consumer flexible packaging such as films and wrappers. Recycling of this non-bottle packaging has become possible because of improvements in sorting and washing technologies and emerging markets for the recyclates. In the UK, the Waste Resource Action Programme (WRAP) has run an initial study of mixed plastics recycling and is now taking this to full-scale validation ( WRAP 2008 b ). The potential benefits of mixed plastics recycling in terms of resource efficiency, diversion from landfill and emission savings, are very high when one considers the fact that in the UK it is estimated that there is over one million tonne per annum of non-bottle plastic packaging ( WRAP 2008 a ) in comparison with 525 000 tonnes of plastic bottle waste ( WRAP 2007 ).

4. Ecological case for recycling

Life-cycle analysis can be a useful tool for assessing the potential benefits of recycling programmes. If recycled plastics are used to produce goods that would otherwise have been made from new (virgin) polymer, this will directly reduce oil usage and emissions of greenhouse gases associated with the production of the virgin polymer (less the emissions owing to the recycling activities themselves). However, if plastics are recycled into products that were previously made from other materials such as wood or concrete, then savings in requirements for polymer production will not be realized ( Fletcher & Mackay 1996 ). There may be other environmental costs or benefits of any such alternative material usage, but these are a distraction to our discussion of the benefits of recycling and would need to be considered on a case-by-case basis. Here, we will primarily consider recycling of plastics into products that would otherwise have been produced from virgin polymer.

Feedstock (chemical) recycling technologies satisfy the general principle of material recovery, but are more costly than mechanical recycling, and less energetically favourable as the polymer has to be depolymerized and then re-polymerized. Historically, this has required very significant subsidies because of the low price of petrochemicals in contrast to the high process and plant costs to chemically recycle polymers.

Energy recovery from waste plastics (by transformation to fuel or by direct combustion for electricity generation, use in cement kilns and blast furnaces, etc.) can be used to reduce landfill volumes, but does not reduce the demand for fossil fuels (as the waste plastic was made from petrochemicals; Garforth et al. 2004 ). There are also environmental and health concerns associated with their emissions.

One of the key benefits of recycling plastics is to reduce the requirement for plastics production. Table 3 provides data on some environmental impacts from production of virgin commodity plastics (up to the ‘factory gate’), and summarizes the ability of these resins to be recycled from post-consumer waste. In terms of energy use, recycling has been shown to save more energy than that produced by energy recovery even when including the energy used to collect, transport and re-process the plastic ( Morris 1996 ). Life-cycle analyses has also been used for plastic-recycling systems to evaluate the net environmental impacts ( Arena et al. 2003 ; Perugini et al. 2005 ) and these find greater positive environmental benefits for mechanical recycling over landfill and incineration with energy recovery.

It has been estimated that PET bottle recycling gives a net benefit in greenhouse gas emissions of 1.5 tonnes of CO 2 -e per tonne of recycled PET ( Department of Environment and Conservation (NSW) 2005 ) as well as reduction in landfill and net energy consumption. An average net reduction of 1.45 tonnes of CO 2 -e per tonne of recycled plastic has been estimated as a useful guideline to policy ( ACRR 2004 ), one basis for this value appears to have been a German life-cycle analysis (LCA) study ( Patel et al. 2000 ), which also found that most of the net energy and emission benefits arise from the substitution of virgin polymer production. A recent LCA specifically for PET bottle manufacture calculated that use of 100 per cent recycled PET instead of 100 per cent virgin PET would reduce the full life-cycle emissions from 446 to 327 g CO 2 per bottle, resulting in a 27 per cent relative reduction in emissions ( WRAP 2008 e ).

Mixed plastics, the least favourable source of recycled polymer could still provide a net benefit of the vicinity of 0.5 tonnes of CO 2 -e per tonne of recycled product ( WRAP 2008 c ). The higher eco-efficiency for bottle recycling is because of both the more efficient process for recycling bottles as opposed to mixed plastics and the particularly high emissions profile of virgin PET production. However, the mixed plastics recycling scenario still has a positive net benefit, which was considered superior to the other options studied, of both landfills and energy recovery as solid refuse fuel, so long as there is substitution of virgin polymer.

5. Public support for recycling

There is increasing public awareness on the need for sustainable production and consumption. This has encouraged local authorities to organize collection of recyclables, encouraged some manufacturers to develop products with recycled content, and other businesses to supply this public demand. Marketing studies of consumer preferences indicate that there is a significant, but not overwhelming proportion of people who value environmental values in their purchasing patterns. For such customers, confirmation of recycled content and suitability for recycling of the packaging can be a positive attribute, while exaggerated claims for recyclability (where the recyclability is potential, rather than actual) can reduce consumer confidence. It has been noted that participating in recycling schemes is an environmental behaviour that has wide participation among the general population and was 57 per cent in the UK in a 2006 survey ( WRAP 2008 d ), and 80 per cent in an Australian survey where kerbside collection had been in place for longer ( NEPC 2001 ).

Some governments use policy to encourage post-consumer recycling, such as the EU Directive on packaging and packaging waste (94/62/EC). This subsequently led Germany to set-up legislation for extended producer responsibility that resulted in the die Grüne Punkt (Green Dot) scheme to implement recovery and recycling of packaging. In the UK, producer responsibility was enacted through a scheme for generating and trading packaging recovery notes, plus more recently a landfill levy to fund a range of waste reduction activities. As a consequence of all the above trends, the market value of recycled polymer and hence the viability of recycling have increased markedly over the last few years.

Extended producer responsibility can also be enacted through deposit-refund schemes, covering for example, beverage containers, batteries and vehicle tyres. These schemes can be effective in boosting collection rates, for example one state of Australia has a container deposit scheme (that includes PET soft-drink bottles), as well as kerbside collection schemes. Here the collection rate of PET bottles was 74 per cent of sales, compared with 36 per cent of sales in other states with kerbside collection only. The proportion of bottles in litter was reduced as well compared to other states ( West 2007 ).

6. Economic issues relating to recycling

Two key economic drivers influence the viability of thermoplastics recycling. These are the price of the recycled polymer compared with virgin polymer and the cost of recycling compared with alternative forms of acceptable disposal. There are additional issues associated with variations in the quantity and quality of supply compared with virgin plastics. Lack of information about the availability of recycled plastics, its quality and suitability for specific applications, can also act as a disincentive to use recycled material.

Historically, the primary methods of waste disposal have been by landfill or incineration. Costs of landfill vary considerably among regions according to the underlying geology and land-use patterns and can influence the viability of recycling as an alternative disposal route. In Japan, for example, the excavation that is necessary for landfill is expensive because of the hard nature of the underlying volcanic bedrock; while in the Netherlands it is costly because of permeability from the sea. High disposal costs are an economic incentive towards either recycling or energy recovery.

Collection of used plastics from households is more economical in suburbs where the population density is sufficiently high to achieve economies of scale. The most efficient collection scheme can vary with locality, type of dwellings (houses or large multi-apartment buildings) and the type of sorting facilities available. In rural areas ‘bring schemes’ where the public deliver their own waste for recycling, for example when they visit a nearby town, are considered more cost-effective than kerbside collection. Many local authorities and some supermarkets in the UK operate ‘bring banks’, or even reverse-vending machines. These latter methods can be a good source of relatively pure recyclables, but are ineffective in providing high collection rates of post-consumer waste. In the UK, dramatic increases in collection of the plastic bottle waste stream was only apparent after the relatively recent implementation of kerbside recycling ( figure 2 ).

An external file that holds a picture, illustration, etc.
Object name is rstb20080311-g2.jpg

Growth in collection of plastic bottles, by bring and kerbside schemes in the UK ( WRAP 2008 d ).

The price of virgin plastic is influenced by the price of oil, which is the principle feedstock for plastic production. As the quality of recovered plastic is typically lower than that of virgin plastics, the price of virgin plastic sets the ceiling for prices of recovered plastic. The price of oil has increased significantly in the last few years, from a range of around USD 25 per barrel to a price band between USD 50–150 since 2005. Hence, although higher oil prices also increase the cost of collection and reprocessing to some extent, recycling has become relatively more financially attractive.

Technological advances in recycling can improve the economics in two main ways—by decreasing the cost of recycling (productivity/efficiency improvements) and by closing the gap between the value of recycled resin and virgin resin. The latter point is particularly enhanced by technologies for turning recovered plastic into food grade polymer by removing contamination—supporting closed-loop recycling. This technology has been proven for rPET from clear bottles ( WRAP 2008 b ), and more recently rHDPE from milk bottles ( WRAP 2006 ).

So, while over a decade ago recycling of plastics without subsidies was mostly only viable from post-industrial waste, or in locations where the cost of alternative forms of disposal were high, it is increasingly now viable on a much broader geographic scale, and for post-consumer waste.

7. Current trends in plastic recycling

In western Europe, plastic waste generation is growing at approximately 3 per cent per annum, roughly in line with long-term economic growth, whereas the amount of mechanical recycling increased strongly at a rate of approximately 7 per cent per annum. In 2003, however, this still amounted to only 14.8 per cent of the waste plastic generated (from all sources). Together with feedstock recycling (1.7 per cent) and energy recovery (22.5 per cent), this amounted to a total recovery rate of approximately 39 per cent from the 21.1 million tonnes of plastic waste generated in 2003 ( figure 3 ). This trend for both rates of mechanical recycling and energy recovery to increase is continuing, although so is the trend for increasing waste generation.

An external file that holds a picture, illustration, etc.
Object name is rstb20080311-g3.jpg

Volumes of plastic waste disposed to landfill, and recovered by various methods in Western Europe, 1993–2003 ( APME 2004 ).

8. Challenges and opportunities for improving plastic recycling

Effective recycling of mixed plastics waste is the next major challenge for the plastics recycling sector. The advantage is the ability to recycle a larger proportion of the plastic waste stream by expanding post-consumer collection of plastic packaging to cover a wider variety of materials and pack types. Product design for recycling has strong potential to assist in such recycling efforts. A study carried out in the UK found that the amount of packaging in a regular shopping basket that, even if collected, cannot be effectively recycled, ranged from 21 to 40% ( Local Government Association (UK) 2007 ). Hence, wider implementation of policies to promote the use of environmental design principles by industry could have a large impact on recycling performance, increasing the proportion of packaging that can economically be collected and diverted from landfill (see Shaxson et al. 2009 ). The same logic applies to durable consumer goods designing for disassembly, recycling and specifications for use of recycled resins are key actions to increase recycling.

Most post-consumer collection schemes are for rigid packaging as flexible packaging tends to be problematic during the collection and sorting stages. Most current material recovery facilities have difficulty handling flexible plastic packaging because of the different handling characteristics of rigid packaging. The low weight-to-volume ratio of films and plastic bags also makes it less economically viable to invest in the necessary collection and sorting facilities. However, plastic films are currently recycled from sources including secondary packaging such as shrink-wrap of pallets and boxes and some agricultural films, so this is feasible under the right conditions. Approaches to increasing the recycling of films and flexible packaging could include separate collection, or investment in extra sorting and processing facilities at recovery facilities for handling mixed plastic wastes. In order to have successful recycling of mixed plastics, high-performance sorting of the input materials needs to be performed to ensure that plastic types are separated to high levels of purity; there is, however, a need for the further development of endmarkets for each polymer recyclate stream.

The effectiveness of post-consumer packaging recycling could be dramatically increased if the diversity of materials were to be rationalized to a subset of current usage. For example, if rigid plastic containers ranging from bottles, jars to trays were all PET, HDPE and PP, without clear PVC or PS, which are problematic to sort from co-mingled recyclables, then all rigid plastic packaging could be collected and sorted to make recycled resins with minimal cross-contamination. The losses of rejected material and the value of the recycled resins would be enhanced. In addition, labels and adhesive materials should be selected to maximize recycling performance. Improvements in sorting/separation within recycling plants give further potential for both higher recycling volumes, and better eco-efficiency by decreasing waste fractions, energy and water use (see §3 ). The goals should be to maximize both the volume and quality of recycled resins.

9. Conclusions

In summary, recycling is one strategy for end-of-life waste management of plastic products. It makes increasing sense economically as well as environmentally and recent trends demonstrate a substantial increase in the rate of recovery and recycling of plastic wastes. These trends are likely to continue, but some significant challenges still exist from both technological factors and from economic or social behaviour issues relating to the collection of recyclable wastes, and substitution for virgin material.

Recycling of a wider range of post-consumer plastic packaging, together with waste plastics from consumer goods and ELVs will further enable improvement in recovery rates of plastic waste and diversion from landfills. Coupled with efforts to increase the use and specification of recycled grades as replacement of virgin plastic, recycling of waste plastics is an effective way to improve the environmental performance of the polymer industry.

One contribution of 15 to a Theme Issue ‘Plastics, the environment and human health’ .

  • ACRR 2004 Good practices guide on waste plastics recycling Brussels, Belgium: Association of Cities and Regions for Recycling [ Google Scholar ]
  • Aguado J., Serrano D. P., San Miguel G.2007 European trends in the feedstock recycling of plastic wastes . Global NEST J. 9 , 12–19 [ Google Scholar ]
  • Andrady A.1994 Assessment of environmental biodegradation of synthetic polymers . Polym. Rev. 34 , 25–76 ( doi:10.1080/15321799408009632 ) [ Google Scholar ]
  • Andrady A.2003 An environmental primer . In Plastics and the environment (ed. Andrady A.), pp. 3–76 Hoboken, NJ: Wiley Interscience [ Google Scholar ]
  • Andrady A. L., Neal M. A.2009 Applications and societal benefits of plastics . Phil. Trans. R. Soc. B 364 , 1977–1984 ( doi:10.1098/rstb.2008.0304 ) [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • APME 2004 An analysis of plastics consumption and recovery in Europe Brussels, Belgium: Association of Plastic Manufacturers Europe [ Google Scholar ]
  • Arena U., Mastellone M., Perugini F.2003 Life cycle assessment of a plastic packaging recycling system . Int. J. Life Cycle Assess. 8 , 92–98 ( doi:10.1007/BF02978432 ) [ Google Scholar ]
  • Arvanitoyannis I., Bosnea L.2001 Recycling of polymeric materials used for food packaging: current status and perspectives . Food Rev. Int. 17 , 291–346 ( doi:10.1081/FRI-100104703 ) [ Google Scholar ]
  • ASTM Standard D5033 2000 Standard guide to development of ASTM standards relating to recycling and use of recycled plastics West Conshohocken, PA: ASTM International; ( doi:10.1520/D5033-00 ) [ Google Scholar ]
  • British Plastics Federation. Oil consumption. 2008. See http://www.bpf.co.uk/Oil_Consumption.aspx . (20 October 2008)
  • Barnes D. K. A., Galgani F., Thompson R. C., Barlaz M.2009 Accumulation and fragmentation of plastic debris in global environments . Phil. Trans. R. Soc. B 364 , 1985–1998 ( doi:10.1098/rstb.2008.0205 ) [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Chanda M., Roy S.2007 Plastics technology handbook 4th edn Boca Raton, FL: CRC Press [ Google Scholar ]
  • DEFRA 2007 Waste strategy factsheets . See http://www.defra.gov.uk/environment/waste/strategy/factsheets/landfilltax.htm (26 November 2008)
  • Department of Environment and Conservation (NSW) 2005 Benefits of recycling Australia: Parramatta [ Google Scholar ]
  • Department of Environment and Heritage (Australia) 2008 Plastic bags . See http://www.ephc.gov.au/ephc/plastic_bags.html (26 November 2008)
  • Department of Environment Heritage and Local Government (Ireland) 2007 Plastic bags . See http://www.environ.ie/en/Environment/Waste/PlasticBags (26 November 2008)
  • Drelich J., Payne J., Kim T., Miller J.1998 Selective froth floatation of PVC from PVC/PET mixtures for the plastics recycling industry . Polym. Eng. Sci. 38 , 1378 ( doi:10.1002/pen.10308 ) [ Google Scholar ]
  • EEA 2008 Better management of municipal waste will reduce greenhouse gas emissions Copenhagen, Denmark: European Environment Agency [ Google Scholar ]
  • Fisher M.2003 Plastics recycling . In Plastics and the environment (ed. Andrady A.), pp. 563–627 Hoboken, NJ: Wiley Interscience [ Google Scholar ]
  • Fletcher B., Mackay M.1996 A model of plastics recycling: does recycling reduce the amount of waste? Resour. Conserv. Recycling 17 , 141–151 ( doi:10.1016/0921-3449(96)01068-3 ) [ Google Scholar ]
  • Frosch R., Gallopoulos N.1989 Strategies for manufacturing . Sci. Am. 261 , 144–152 [ Google Scholar ]
  • Garforth A., Ali S., Hernandez-Martinez J., Akah A.2004 Feedstock recycling of polymer wastes . Curr. Opin. Solid State Mater. Sci. 8 , 419–425 ( doi:10.1016/j.cossms.2005.04.003 ) [ Google Scholar ]
  • Gilpin R., Wagel D., Solch J.2003 Production, distribution, and fate of polycholorinated dibenzo-p-dioxins, dibenzofurans, and related organohalogens in the environment . In Dioxins and health (eds Schecter A., Gasiewicz T.), 2nd edn Hoboken, NJ: John Wiley & Sons Inc [ Google Scholar ]
  • Gregory M. R.2009 Environmental implications of plastic debris in marine settings—entanglement, ingestion, smothering, hangers-on, hitch-hiking and alien invasions . Phil. Trans. R. Soc. B 364 , 2013–2025 ( doi:10.1098/rstb.2008.0265 ) [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Institute for Local Self-Reliance 2002 Western Europe's experience with refillable beverage containers . See http://www.grrn.org/beverage/refillables/Europe.html (26 November 2008)
  • Kyrikou I., Briassoulis D.2007 Biodegradation of agricultural plastic films: a critical review . J. Polym. Environ. 15 , 125–150 ( doi:10.1007/s10924-007-0053-8 ) [ Google Scholar ]
  • Local Government Association (UK) 2007 War on waste: food packaging study UK: Local Government Authority [ Google Scholar ]
  • Marques G., Tenorio J.2000 Use of froth flotation to separate PVC/PET mixtures . Waste Management 20 , 265–269 ( doi:10.1016/S0956-053X(99)00333-5 ) [ Google Scholar ]
  • McDonough W., Braungart M.2002 Cradle to cradle: remaking the way we make things New York, NY: North Point Press [ Google Scholar ]
  • Morris J.1996 Recycling versus incineration: an energy conservation analysis . J. Hazard. Mater. 47 , 277–293 ( doi:10.1016/0304-3894(95)00116-6 ) [ Google Scholar ]
  • NEPC 2001 Report to the NEPC on the implementation of the National Environment Protection (used packaging materials) measure for New South Wales . Adelaide, Australia: Environment Protection and Heritage Council [ Google Scholar ]
  • Oehlmann J., et al.2009 A critical analysis of the biological impacts of plasticizers on wildlife . Phil. Trans. R. Soc. B 364 , 2047–2062 ( doi:10.1098/rstb.2008.0242 ) [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Park C.-H., Jeon H.-S., Park K.2007 PVC removal from mixed plastics by triboelectrostatic separation . J. Hazard. Mater. 144 , 470–476 ( doi:10.1016/j.jhazmat.2006.10.060 ) [ PubMed ] [ Google Scholar ]
  • Patel M., von Thienen N., Jochem E., Worrell E.2000 Recycling of plastics in Germany . Resour., Conserv. Recycling 29 , 65–90 ( doi:10.1016/S0921-3449(99)00058-0 ) [ Google Scholar ]
  • Perugini F., Mastellone M., Arena U.2005 A life cycle assessment of mechanical and feedstock recycling options for management of plastic packaging wastes . Environ. Progr. 24 , 137–154 ( doi:10.1002/ep.10078 ) [ Google Scholar ]
  • PlasticsEurope 2008a Eco-profiles of the European Plastics Industry . Brussels, Belgium: PlasticsEurope; See http://lca.plasticseurope.org/index.htm (1 November 2008) [ Google Scholar ]
  • PlasticsEurope 2008b The compelling facts about Plastics 2007: an analysis of plastics production, demand and recovery for 2007 in Europe . Brussels, Belgium: PlasticsEurope [ Google Scholar ]
  • Rebeiz K., Craft A.1995 Plastic waste management in construction: technological and institutional issues . Resour., Conserv. Recycling 15 , 245–257 ( doi:10.1016/0921-3449(95)00034-8 ) [ Google Scholar ]
  • Ryan P. G., Moore C. J., van Franeker J. A., Moloney C. L.2009 Monitoring the abundance of plastic debris in the marine environment . Phil. Trans. R. Soc. B 364 , 1999–2012 ( doi:10.1098/rstb.2008.0207 ) [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Shaxson L.2009 Structuring policy problems for plastics, the environment and human health: reflections from the UK . Phil. Trans. R. Soc. B 364 , 2141–2151 ( doi:10.1098/rstb.2008.0283 ) [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Sinha V., Patel M., Patel J.2008 PET waste management by chemical recycling: a review . J. Polym. Environ. ( doi:10.1007/s10924-008-0106-7 ) [ Google Scholar ]
  • Soetaert W., Vandamme E.2006 The impact of industrial biotechnology . Biotechnol. J. 1 , 756–769 ( doi:10.1002/biot.200600066 ) [ PubMed ] [ Google Scholar ]
  • Song J. H., Murphy R. J., Narayan R., Davies G. B. H.2009 Biodegradable and compostable alternatives to conventional plastics . Phil. Trans. R. Soc. B 364 , 2127–2139 ( doi:10.1098/rstb.2008.0289 ) [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Swift G., Wiles D.2004 Degradable polymers and plastics in landfill sites . Encyclopedia Polym. Sci. Technol. 9 , 40–51 [ Google Scholar ]
  • Teuten E. L., et al.2009 Transport and release of chemicals from plastics to the environment and to wildlife . Phil. Trans. R. Soc. B 364 , 2027–2045 ( doi:10.1098/rstb.2008.0284 ) [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Thompson R. C., Swan S. H., Moore C. J., vom Saal F. S.2009a Our plastic age . Phil. Trans. R. Soc. B 364 , 1973–1976 ( doi:10.1098/rstb.2009.0054 ) [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Thompson R. C., Moore C. J., vom Saal F. S., Swan S. H.2009b Plastics, the environment and human health: current consensus and future trends . Phil. Trans. R. Soc. B 364 , 2153–2166 ( doi:10.1098/rstb.2009.0053 ) [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Uhde Inventa-Fischer 2007 Flakes-to-resin (FTR)—recycling with FDA approval . See http://www.uhde-inventa-fischer.com/ (3 November 2008)
  • Waste Watch 2003 Plastics in the UK economy London, UK: Waste Watch & Recoup [ Google Scholar ]
  • WBCSD 2000 Eco-efficiency: creating more value with less impact . See http://www.wbcsd.org/includes/getTarget.asp?type=d&id=ODkwMQ (1 November 2008)
  • West D.2007 Container deposits: the common sense approach v.2.1 Sydney, Australia: The Boomerang Alliance [ Google Scholar ]
  • WRAP 2006 WRAP food grade HDPE recycling process: commercial feasibility study London, UK: Waste & Resources Action Programme [ Google Scholar ]
  • WRAP 2007. In Annual local authorities Plastics Collection Survey 2007 London, UK: Waste Reduction Action Plans [ Google Scholar ]
  • WRAP 2008a Domestic mixed plastics packaging: waste management options London, UK: Waste & Resources Action Programme [ Google Scholar ]
  • WRAP 2008b Large-scale demonstration of viability of recycled PET (rPET) in retail packaging . http://www.wrap.org.uk/retail/case_studies_research/rpet_retail.html .
  • WRAP 2008c LCA of management options for mixed waste plastics London, UK: Waste & Resources Action Programme, MDP017 [ Google Scholar ]
  • WRAP 2008d Local authorities Plastics Collection Survey London, UK: Waste & Resources Action Programme [ Google Scholar ]
  • WRAP 2008e Study reveals carbon impact of bottling Australian wine in the UK in PET and glass bottles . See http://www.wrap.org.uk/wrap_corporate/news/study_reveals_carbon.html (19 October 2008)

Encyclopedia Britannica

  • History & Society
  • Science & Tech
  • Biographies
  • Animals & Nature
  • Geography & Travel
  • Arts & Culture
  • Games & Quizzes
  • On This Day
  • One Good Fact
  • New Articles
  • Lifestyles & Social Issues
  • Philosophy & Religion
  • Politics, Law & Government
  • World History
  • Health & Medicine
  • Browse Biographies
  • Birds, Reptiles & Other Vertebrates
  • Bugs, Mollusks & Other Invertebrates
  • Environment
  • Fossils & Geologic Time
  • Entertainment & Pop Culture
  • Sports & Recreation
  • Visual Arts
  • Demystified
  • Image Galleries
  • Infographics
  • Top Questions
  • Britannica Kids
  • Saving Earth
  • Space Next 50
  • Student Center
  • Introduction
  • Ferrous metals
  • Nonferrous metals
  • Paper and other cellulose products
  • Construction and demolition waste
  • Domestic refuse

Plastic, glass, and metal containers in a recycling bin.

Our editors will review what you’ve submitted and determine whether to revise the article.

  • National Institute of Environmental Health Sciences - Kids Environment Kids Health - Recycle
  • Humanities LibreTexts - Does Recycling Actually Conserve or Preserve Things?
  • National Center for Biotechnology Information - PubMed Central - A Scientometric Review of Resource Recycling Industry
  • Econlib - Recycling
  • United States Environmental Protection Agency - Recycling Basics and Benefits
  • recycling - Children's Encyclopedia (Ages 8-11)
  • recycling - Student Encyclopedia (Ages 11 and up)
  • Table Of Contents

Plastic, glass, and metal containers in a recycling bin.

Recent News

recycling , recovery and reprocessing of waste materials for use in new products. The basic phases in recycling are the collection of waste materials, their processing or manufacture into new products, and the purchase of those products, which may then themselves be recycled. Typical materials that are recycled include iron and steel scrap, aluminum cans, glass bottles, paper , wood , and plastics . The materials reused in recycling serve as substitutes for raw materials obtained from such increasingly scarce natural resources as petroleum , natural gas , coal , mineral ores , and trees . Recycling can help reduce the quantities of solid waste deposited in landfills , which have become increasingly expensive . Recycling also reduces the pollution of air , water , and land resulting from waste disposal .

recycling research paper introduction

There are two broad types of recycling operations: internal and external. Internal recycling is the reuse in a manufacturing process of materials that are a waste product of that process. Internal recycling is common in the metals industry, for example. The manufacture of copper tubing results in a certain amount of waste in the form of tube ends and trimmings; this material is remelted and recast. Another form of internal recycling is seen in the distilling industry, in which, after the distillation, spent grain mash is dried and processed into an edible foodstuff for cattle.

recycling research paper introduction

External recycling is the reclaiming of materials from a product that has been worn out or rendered obsolete. An example of external recycling is the collection of old newspapers and magazines for repulping and their manufacture into new paper products. Aluminum cans and glass bottles are other examples of everyday objects that are externally recycled on a wide scale. These materials can be collected by any of three main methods: buy-back centres, which purchase waste materials that have been sorted and brought in by consumers; drop-off centres, where consumers can deposit waste materials but are not paid for them; and curbside collection, in which homes and businesses sort their waste materials and deposit them by the curb for collection by a central agency.

Explore how plastic is recycled into insulation and other building materials

Society’s choice of whether and how much to recycle depends basically on economic factors. Conditions of affluence and the presence of cheap raw materials encourage human beings’ tendency to simply discard used materials. Recycling becomes economically attractive when the cost of reprocessing waste or recycled material is less than the cost of treating and disposing of the materials or of processing new raw materials.

U.S. flag

An official website of the United States government

Here’s how you know

Official websites use .gov A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS A lock ( Lock A locked padlock ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

JavaScript appears to be disabled on this computer. Please click here to see any active alerts .

  • Recycling Basics and Benefits

Recycling is the process of collecting and processing materials that would otherwise be thrown away as trash and turning them into new products. Recycling can benefit your community, the economy, and the environment. Products should only be recycled if they cannot be reduced or reused. EPA promotes the waste management hierarchy , which ranks various waste management strategies from most to least environmentally preferred. The hierarchy prioritizes source reduction and the reuse of waste materials over recycling.

On this page:

In the United States in 2018, 292.4 million tons of trash were generated. 146.2 million tons ended up in landfills.

Benefits of Recycling

  • Recycling System Overview

Challenges to Recycling System

What is being done, environment.

Recycling provides many benefits to our environment. By recycling our materials, we create a healthier planet for ourselves and future generations. 

Conserve natural resources: Recycling reduces the need to extract resources such as timber, water, and minerals for new products.

Climate change: According to the most recent EPA data , the recycling and composting of municipal solid waste (MSW or trash) saved over 193 million metric tons of carbon dioxide equivalent in 2018. 

Energy savings: Recycling conserves energy. For example, recycling just 10 plastic bottles saves enough energy to power a laptop for more than 25 hours. To estimate how much energy you can save by recycling certain products, EPA developed the individual Waste Reduction Model (iWARM). 

Waste and pollution reduction: Recycling diverts waste away from landfills and incinerators, which reduces the harmful effects of pollution and emissions. 

EPA released significant findings on the economic benefits of the recycling industry with an update to the national Recycling Economic Information (REI) Study in 2020. This study analyzes the numbers of jobs, wages and tax revenues attributed to recycling. The study found that in a single year, recycling and reuse activities in the United States accounted for:

  • 681,000 jobs,
  • $37.8 billion in wages, and
  • $5.5 billion in tax revenues.

This equates to 1.17 jobs per 1,000 tons of materials recycled and $65.23 in wages and $9.42 in tax revenue for every ton of materials recycled. For more information, check out the full report .

Kids with recycling bin smiling

Environmental Justice: Across the country, waste management facilities are concentrated in underserved communities, and they can have negative impacts on human health, property values, aesthetic and recreation values, and land productivity. Recycling provides these areas with a healthier and more sustainable alternative.

International: Waste generated in the United States also affects communities in other countries. Recycled materials are exported to some countries that are not able to manage those materials in an environmentally sound manner.  

U.S. Recycling System Overview

The recycling process is made up of three steps that are repeated over and over again. This creates a continuous loop which is represented by the familiar chasing arrows recycling symbol. The three steps of the recycling process are described below.  

Step 1: Collection and Processing

Businesses and consumers generate recyclables that are then collected by either a private hauler or government entity. There are several methods for collecting recyclables, including curbside collection, drop-off centers, and deposit or refund programs. Visit How do I recycle... Common Recyclables for information on specific materials. 

After collection, recyclables are sent to a recovery facility to be sorted, cleaned, and processed into materials that can be used in manufacturing. Recyclables are bought and sold just like raw materials would be, and prices go up and down depending on supply and demand in the United States and around the world.

Step 2: Manufacturing

After processing, recyclables are made into new products at a recycling plant or similar facility. More and more of today's products are being manufactured with recycled content.

Recycled materials are also used in new ways such as recovered glass in asphalt to pave roads or recovered plastic in carpeting and park benches.

Step 3: Purchasing New Products Made from Recycled Materials

You help close the recycling loop by buying new products made from recycled materials. There are thousands of products that contain recycled content. When you go shopping, look for the following:

  • Products that can be easily recycled
  • Products that contain recycled content

Below are some of the terms used:

  • Recycled-content product - The product was manufactured with recycled materials either collected from a recycling program or from waste recovered during the normal manufacturing process. The label will sometimes include how much of the content came from recycled materials.
  • Post-consumer content - Very similar to recycled content, but the material comes only from recyclables collected from consumers or businesses through a recycling program.
  • Recyclable product - Products that can be collected, processed, and manufactured into new products after they have been used. These products do not necessarily contain recycled materials. Remember not all kinds of recyclables may be collected in your community, so be sure to check with your local recycling program before you buy.

Some common products you can find that are made with recycled content include the following:

  • Aluminum cans
  • Car bumpers
  • Cereal boxes
  • Comic books
  • Egg cartons
  • Glass containers
  • Laundry detergent bottles
  • Paper towels
  • Steel products

While the benefits of recycling are clear, the current system still faces many challenges. 

  • Many people are confused about what items can be recycled, where they can be recycled and how. This often leads to recyclables going in the trash or trash going in the recycling bin.
  • America’s recycling infrastructure has not kept pace with today’s waste stream. Communication between the manufacturers of new materials and products and the recycling industry needs to be improved to prepare for and optimally manage the recycling of new materials.
  • Domestic markets for recycled materials need to be strengthened in the United States. Historically, some of the recycled materials generated in the U.S. have been exported internationally. However, changing international policies have limited the export of materials. Improving communication among the different sectors of the recycling system is needed to strengthen the development of existing materials markets and to develop new innovative markets.
  • We need to better integrate recycled materials and end-of-life management into product and packaging designs. 
  • More consistent measurement methodologies are necessary to improve recycling system performance. These more standardized metrics can then be used to create effective goals and track progress.

The Bipartisan Infrastructure Law: Transforming U.S. Recycling and Waste Management:   The Bipartisan Infrastructure Law is a historic investment in the health, equity, and resilience of American communities. With unprecedented funding to support state and local waste management infrastructure and recycling programs, EPA will improve health and safety and help establish and increase recycling programs nationwide. 

National Recycling Strategy : EPA developed the National Recycling Strategy with a focus on advancing the national municipal solid waste recycling system. It identifies strategic objectives and actions to create a stronger, more resilient, and cost-effective recycling system.  

Draft Strategy to Prevent Plastics Pollution: This strategy builds upon EPA’s National Recycling Strategy and focuses on actions to reduce, reuse, collect, and capture plastic waste.

America Recycles Day : Every year on November 15, EPA reminds everyone of the importance and impact of recycling through education and outreach.

Basel Convention :  The United States is a signatory to the Basel Convention, but has not yet become a Party to the Convention. The Basel Convention establishes standards for the transboundary movement of various types of waste. 

  • Recycle Home
  • Reduce and Reuse Basics
  • Frequent Questions on Recycling
  • How Do I Recycle...
  • What You Can Do
  • Used Electronics
  • Used Batteries
  • Food Waste Prevention
  • Composting at Home
  • Students and Educators

Advertisement

Advertisement

A review of waste paper recycling networks focusing on quantitative methods and sustainability

  • Published: 13 October 2020
  • Volume 23 , pages 55–76, ( 2021 )

Cite this article

recycling research paper introduction

  • Cristiane Maria Defalque   ORCID: orcid.org/0000-0001-6984-5405 1 , 2 ,
  • Fernando Augusto Silva Marins 1 ,
  • Aneirson Francisco da Silva 1 &
  • Elen Yanina Aguirre Rodríguez 1  

1376 Accesses

7 Citations

Explore all metrics

A discussion is currently under way in the literature on the sustainable benefits of recycling material, particularly paper, which has high global consumption and polluting capacity. Optimized planning of waste paper recycling networks stimulates sustainable processing efficiency, motivating the investigation of quantitative methods to guide decision-making. The objective of this article is to review papers that present quantitative models for planning waste paper recycling networks considering optimization of the echelons of this process, to analyze the evolution of research, find research opportunities and contribute to future research. The article presents an analysis of five categories of the selected studies: I—evolution of publications; II—echelons considered in different waste paper recycling systems; III—the sustainability pillars considered in the objectives of the formulated model; IV—formulations and techniques used; and V—uncertainty analysis. The proposal for waste paper recycling networks involves summary of the echelons considered in selected articles, to help future analysis. Research suggestions involving sustainability objectives, especially considering social issues, using different solution techniques and considering uncertainty were identified. This study, by reviewing the articles and identifying possibilities for future research, contributes to the development of research using quantitative methods for the efficient management of waste paper recycling networks or similar arrangements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save.

  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime

Price includes VAT (Russian Federation)

Instant access to the full article PDF.

Rent this article via DeepDyve

Institutional subscriptions

recycling research paper introduction

Source: prepared by the authors. The data were obtained from Scopus— www.scopus.com and Web of Science— www.webofknowledge.com . The maps were built using VOSviewer [ 63 ]

recycling research paper introduction

Source: prepared by the authors

recycling research paper introduction

Source: prepared by the authors. Selected articles (Table 3 ) available in databases and other references described in “ Research method ”

recycling research paper introduction

Source: prepared by the author. Selected articles (Table 3 ) available in databases and other references described in “ Research method ”. Number of citations obtained from Scopus— www.scopus.com and Web of Science— www.webofknowledge.com

recycling research paper introduction

Source: prepared by the authors, based on echelons considered in the analyzed articles (Table 3 )

recycling research paper introduction

Source: prepared by the authors, based on echelons and operations verified in the analyzed articles (Table 3 )

recycling research paper introduction

Source: prepared by the authors, based on analyses of the selected articles (Table 3 )

recycling research paper introduction

Similar content being viewed by others

Waste prevention for sustainable resource and waste management.

recycling research paper introduction

Waste management and green technology: future trends in circular economy leading towards environmental sustainability

recycling research paper introduction

Measuring the recycling potential of industrial waste for long-term sustainability

European Parliament and Council (2008) Directive 2008/98/EC of 19 November 2008 on Waste and Repealing Certain Directives. Off J Eur Union L 312:3–30 https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32008L0098&from=RO . Accessed 18 Dec 2019

Brasil (2010) Lei nº 12.305, de 2 de agosto de 2010. Institui a Política Nacional de Resíduos Sólidos; altera a Lei nº 9.605, de 12 de fevereiro de 1998; e dá outras providências (in Portuguese). In: Brasília, DF. Presidência da República. . https://www.planalto.gov.br/ccivil_03/_ato2007-2010/2010/lei/l12305.htm . Accessed 18 Dec 2019

Brasil (2010) Decreto nº 7.404, de 23 de dezembro de 2010. Regulamenta a Lei nº 12.305, de 2 de agosto de 2010, que institui a Política Nacional de Resíduos Sólidos, cria o Comitê Interministerial da Política Nacional de Resíduos Sólidos e o Comitê Orientador para a Implantação dos Sistemas de Logística Reversa, e dá outras providências (in Portuguese). In: Brasília, DF. Presidência da República planalto.gov.br/ccivil_03/_ato2007–2010/2010/Decreto/D7404.htm. Accessed 18 Dec 2019

Govindan K, Soleimani H, Kannan D (2015) Reverse logistics and closed-loop supply chain: A comprehensive review to explore the future. Eur J Oper Res 240:603–626. https://doi.org/10.1016/j.ejor.2014.07.012

Article   MathSciNet   MATH   Google Scholar  

Ervasti I, Miranda R, Kauranen I (2016) A global, comprehensive review of literature related to paper recycling: A pressing need for a uniform system of terms and definitions. Waste Manag 48:64–71. https://doi.org/10.1016/J.WASMAN.2015.11.020

Article   Google Scholar  

Kara SS, Onut S (2010) A two-stage stochastic and robust programming approach to strategic planning of a reverse supply network: The case of paper recycling. Expert Syst Appl 37:6129–6137. https://doi.org/10.1016/j.eswa.2010.02.116

Rajeev A, Pati RK, Padhi SS, Govindan K (2017) Evolution of sustainability in supply chain management: A literature review. J Clean Prod 162:299–314. https://doi.org/10.1016/j.jclepro.2017.05.026

Elkington J (1997) Cannibals with Forks: The Triple Bottom Line of 21st Century Business. Capstone, Oxford, United Kingdom

Google Scholar  

IPIECA/API (2005) Oil and Gas Industry Guidance on Voluntary Sustainability Reporting. Using Environmental , Health & Safety , Social and Economic Performance Indicators. In: London, United Kingdom and Washington. DC, USA International Petroleum Industry Environmental Conservation Association and American Petroleum Institute. https://www.ingenieroambiental.com/4030/reporting_guide.pdf . Accessed 6 Oct 2017

Alumur SA, Nickel S, Saldanha-da-Gama F, Verter V (2012) Multi-period reverse logistics network design. Eur J Oper Res 220:67–78. https://doi.org/10.1016/j.ejor.2011.12.045

Melo MT, Nickel S, Saldanha-da-Gama F (2009) Facility location and supply chain management – A review. Eur J Oper Res 196:401–412. https://doi.org/10.1016/j.ejor.2008.05.007

Soleimani H, Govindan K, Saghafi H, Jafari H (2017) Fuzzy multi-objective sustainable and green closed-loop supply chain network design. Comput Ind Eng 109:191–203. https://doi.org/10.1016/j.cie.2017.04.038

Yu H, Solvang WD (2016) A general reverse logistics network design model for product reuse and recycling with environmental considerations. Int J Adv Manuf Technol 87:2693–2711. https://doi.org/10.1007/s00170-016-8612-6

Chen Y-W, Wang L-C, Wang A, Chen T-L (2017) A particle swarm approach for optimizing a multi-stage closed loop supply chain for the solar cell industry. Robot Comput Integr Manuf 43:111–123. https://doi.org/10.1016/j.rcim.2015.10.006

Hoornweg D, Bhada-Tata P (2012) What a Waste. A Global Review of Solid Waste Management.Urban Development Series Knowledge Papers; knowledge Papers No. 15.World Bank, Washington 281:44 p. https://doi.org/ https://doi.org/10.1111/febs.13058

Villanueva A, Wenzel H (2007) Paper waste – Recycling, incineration or landfilling? A review of existing life cycle assessments. Waste Manag 27:S29–S46. https://doi.org/10.1016/j.wasman.2007.02.019

Schmidt JH, Holm P, Merrild A, Christensen P (2007) Life cycle assessment of the waste hierarchy – A Danish case study on waste paper. Waste Manag 27:1519–1530. https://doi.org/10.1016/j.wasman.2006.09.004

Pati RK, Vrat P (2010) Economic paper blending optimization model with competing materials. Manag Environ Qual An Int J 21:602–617. https://doi.org/10.1108/14777831011067917

Sahamie R, Stindt D, Nuss C (2013) Transdisciplinary Research in Sustainable Operations - An Application to Closed-Loop Supply Chains. Bus Strateg Environ 22:245–268. https://doi.org/10.1002/bse.1771

Berglund C, Söderholm P, Nilsson M (2002) A note on inter-country differences in waste paper recovery and utilization. Resour Conserv Recycl 34:175–191. https://doi.org/10.1016/S0921-3449(01)00101-X

Ervasti I, Miranda R, Kauranen I (2016) Paper recycling framework, the “Wheel of Fiber”. J Environ Manage 174:35–44. https://doi.org/10.1016/j.jenvman.2016.03.004

Miranda R, Concepcion Monte M, Blanco A (2011) Impact of increased collection rates and the use of commingled collection systems on the quality of recovered paper. Part 1: Increased collection rates. Waste Manag 31:2208–2216. https://doi.org/10.1016/j.wasman.2011.06.006

Cormier D, Magnan M (1997) Investors’ assessment of implicit environmental liabilities: An empirical investigation. J Account Public Policy 16:215–241. https://doi.org/10.1016/S0278-4254(97)00002-1

ABNT (2009) NBR ISO 14040: Gestão ambiental - Avaliação do ciclo de vida - Princípios e estrutura (in Portuguese). In: Rio de Janeiro, Brazil Associação Brasileira de Normas Técnicas 1–22

Hart A, Clift R, Riddlestone S, Buntin J (2005) Use of Life Cycle Assessment to Develop Industrial Ecologies—A Case Study: Graphics Paper. Process Saf Environ Prot 83:359–363. https://doi.org/10.1205/psep.04391

Sevigné-Itoiz E, Gasol CM, Rieradevall J, Gabarrell X (2015) Methodology of supporting decision-making of waste management with material flow analysis (MFA) and consequential life cycle assessment (CLCA): case study of waste paper recycling. J Clean Prod 105:253–262. https://doi.org/10.1016/j.jclepro.2014.07.026

Berglund C, Söderholm P (2003) Complementing Empirical Evidence on Global Recycling and Trade of Waste Paper. World Dev 31:743–754. https://doi.org/10.1016/S0305-750X(03)00007-X

Van Beukering PJH, Bouman MN (2001) Empirical Evidence on Recycling and Trade of Paper and Lead in Developed and Developing Countries. World Dev 29:1717–1737. https://doi.org/10.1016/S0305-750X(01)00065-1

Nielsen L (2011) Classifications of Countries Based on Their Level of Development : How it is Done and How it Could be Done. Washington, DC, United States https://www.imf.org/external/pubs/ft/wp/2011/wp1131.pdf . Accessed 28 Dec 2019

Salema MIG, Barbosa-Povoa AP, Novais AQ (2007) An optimization model for the design of a capacitated multi-product reverse logistics network with uncertainty. Eur J Oper Res 179:1063–1077. https://doi.org/10.1016/j.ejor.2005.05.032

Article   MATH   Google Scholar  

Roghanian E, Pazhoheshfar P (2014) An optimization model for reverse logistics network under stochastic environment by using genetic algorithm. J Manuf Syst 33:348–356. https://doi.org/10.1016/j.jmsy.2014.02.007

Sheriff KMM, Subramanian N, Rahman S, Jayaram J (2017) Integrated optimization model and methodology for plastics recycling: Indian empirical evidence. J Clean Prod 153:707–717. https://doi.org/10.1016/j.jclepro.2016.07.137

Alwaeli M (2011) An Economic Analysis of Joined Costs and Beneficial Effects of Waste Recycling. Environ Prot Eng 37:92–103. https://www.researchgate.net/publication/287455009_An_economic_analysis_of_joined_costs_and_beneficial_effects_of_waste_recycling

Feitó-Cespón M, Sarache W, Piedra-Jimenez F, Cespón-Castro R (2017) Redesign of a sustainable reverse supply chain under uncertainty: A case study. J Clean Prod 151:206–217. https://doi.org/10.1016/j.jclepro.2017.03.057

Zhalechian M, Tavakkoli-Moghaddam R, Rahimi Y (2017) A self-adaptive evolutionary algorithm for a fuzzy multi-objective hub location problem: an integration of responsiveness and social responsibility. Eng Appl Artif Intell 62:1–16. https://doi.org/10.1016/j.engappai.2017.03.006

Govindan K, Paam P, Abtahi A-R (2016) A fuzzy multi-objective optimization model for sustainable reverse logistics network design. Ecol Indic 67:753–768. https://doi.org/10.1016/j.ecolind.2016.03.017

Farrokhi-Asl H, Tavakkoli-Moghaddam R, Asgarian B, Sangari E (2017) Metaheuristics for a bi-objective location-routing-problem in waste collection management. J Ind Prod Eng 34:239–252. https://doi.org/10.1080/21681015.2016.1253619

Hahler S, Fleischmann M (2017) Strategic grading in the product acquisition process of a reverse supply chain. Prod Oper Manag 26:1498–1511. https://doi.org/10.1111/poms.12699

John ST, Sridharan R, Kumar PNR (2017) Multi-period reverse logistics network design with emission cost. Int J Logist Manag 28:127–149. https://doi.org/10.1108/IJLM-08-2015-0143

Demirel N, Özceylan E, Paksoy T, Gökçen H (2014) A genetic algorithm approach for optimising a closed-loop supply chain network with crisp and fuzzy objectives. Int J Prod Res 52:3637–3664. https://doi.org/10.1080/00207543.2013.879616

Hosseinzadeh M, Roghanian E (2012) An Optimization Model for Reverse Logistics Network under Stochastic Environment Using Genetic Algorithm. Int J Res Bus Soc Sci 3:249–264

Moghaddam KS (2015) Fuzzy multi-objective model for supplier selection and order allocation in reverse logistics systems under supply and demand uncertainty. Expert Syst Appl 42:6237–6254. https://doi.org/10.1016/j.eswa.2015.02.010

Nadizadeh A, Kafash B (2017) Fuzzy capacitated location-routing problem with simultaneous pickup and delivery demands. Transp Lett. https://doi.org/10.1080/19427867.2016.1270798

Gooran AN, Rafiei H, Rabani M (2018) Modeling risk and uncertainty in designing reverse logistics problem. Decis Sci Lett 1:13–24. https://doi.org/10.5267/j.dsl.2017.5.001

Babazadeh R, Jolai F, Razmi J (2015) Developing scenario-based robust optimisation approaches for the reverse logistics network design problem under uncertain environments. Int J Serv Oper Manag 20:418. https://doi.org/10.1504/IJSOM.2015.068526

Pishvaee MS, Rabbani M, Torabi SA (2011) A robust optimization approach to closed-loop supply chain network design under uncertainty. Appl Math Model 35:637–649. https://doi.org/10.1016/j.apm.2010.07.013

Agrawal S, Singh RK, Murtaza Q (2015) A literature review and perspectives in reverse logistics. Resour Conserv Recycl 97:76–92. https://doi.org/10.1016/j.resconrec.2015.02.009

Akçalı E, Çetinkaya S, Üster H (2009) Network design for reverse and closed-loop supply chains: An annotated bibliography of models and solution approaches. Networks 53:231–248. https://doi.org/10.1002/net.20267

Barbosa-Póvoa AP, da Silva C, Carvalho A (2018) Opportunities and challenges in sustainable supply chain: An operations research perspective. Eur J Oper Res 268:399–431. https://doi.org/10.1016/j.ejor.2017.10.036

Dekker R, Bloemhof J, Mallidis I (2012) Operations Research for green logistics - An overview of aspects, issues, contributions and challenges. Eur J Oper Res 219:671–679. https://doi.org/10.1016/j.ejor.2011.11.010

Fleischmann M, Bloemhof-Ruwaard JM, Dekker R et al (1997) Quantitative models for reverse logistics: A review. Eur J Oper Res 103:1–17. https://doi.org/10.1016/S0377-2217(97)00230-0

Govindan K, Soleimani H (2017) A review of reverse logistics and closed-loop supply chains: a Journal of Cleaner Production focus. J Clean Prod 142:371–384. https://doi.org/10.1016/j.jclepro.2016.03.126

Govindan K, Fattahi M, Keyvanshokooh E (2017) Supply chain network design under uncertainty: A comprehensive review and future research directions. Eur J Oper Res 263:108–141. https://doi.org/10.1016/j.ejor.2017.04.009

Ilgin MA, Gupta SM (2010) Environmentally conscious manufacturing and product recovery (ECMPRO): A review of the state of the art. J Environ Manage 91:563–591. https://doi.org/10.1016/j.jenvman.2009.09.037

Jaehn F, Juopperi R (2019) A Description of Supply Chain Planning Problems in the Paper Industry with Literature Review. Asia-Pacific J Oper Res. https://doi.org/10.1142/S0217595919500040

Lyeme HA, Mushi A, Nkansah-Gyekye Y (2017) Review of multi-objective optimization models for solid waste management systems with environmental considerations. J Math Comput Sci 7:150–174. https://www.researchgate.net/publication/312525358_REVIEW_OF_MULTI-OBJECTIVE_OPTIMIZATION_MODELS_FOR_SOLID_WASTE_MANAGEMENT_SYSTEMS_WITH_ENVIRONMENTAL_CONSIDERATIONS

Singh A, Trivedi A (2016) Sustainable green supply chain management: trends and current practices. Compet Rev 26:265–288. https://doi.org/10.1108/CR-05-2015-0034

Stindt D, Sahamie R (2014) Review of research on closed loop supply chain management in the process industry. Flex Serv Manuf J 26:268–293. https://doi.org/10.1007/s10696-012-9137-4

Tang CS, Zhou S (2012) Research advances in environmentally and socially sustainable operations. Eur J Oper Res 223:585–594. https://doi.org/ https://doi.org/10.1016/j.ejor.2012.07.030

Van Engeland J, Beliën J, De Boeck L, De Jaeger S (2020) Literature review: Strategic network optimization models in waste reverse supply chains. Omega 91:1–22. https://doi.org/10.1016/j.omega.2018.12.001

Rutkowski J, Rutkowski E (2017) Recycling in Brasil: Paper and Plastic Supply Chain. Resources 6:43. https://doi.org/10.3390/resources6030043

Fleischmann M, Beullens P, Bloemhof-Ruwaard JM, Van Wassenhove LN (2001) The Impact of Product Recovery on Logistics Network Design. Prod OperManag 10:156–173. https://doi.org/10.1111/j.1937-5956.2001.tb00076.x

Van Eck NJ, Waltman L (2010) Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 84:523–538. https://doi.org/10.1007/s11192-009-0146-3

Bloemhof-Ruwaard JM, Van Wassenhove LN, Gabel HL, Weaver PM (1996) An environmental life cycle optimization model for the European pulp and paper industry. Omega 24:615–629. https://doi.org/10.1016/S0305-0483(96)00026-6

Frota Neto JQ, Bloemhof-Ruwaard JM, Van Nunen JAEE, Van Heck E (2008) Designing and evaluating sustainable logistics networks. Int J Prod Econ 111:195–208. https://doi.org/10.1016/j.ijpe.2006.10.014

Pati RK, Vrat P, Kumar P (2006) Economic analysis of paper recycling vis-à-vis wood as raw material. Int J Prod Econ 103:489–508. https://doi.org/10.1016/j.ijpe.2005.08.006

Zhou X, Zhou Y (2015) Designing a multi-echelon reverse logistics operation and network: A case study of office paper in Beijing. Resouces Conserv Recycl 100:58–69. https://doi.org/10.1016/j.resconrec.2015.04.009

Byström S, Lönnstedt L (1997) Paper recycling: environmental and economic impact. Resour Conserv Recycl 21:109–127. https://doi.org/10.1016/S0921-3449(97)00031-1

Safaei AS, Roozbeh A, Paydar MM (2017) A robust optimization model for the design of a cardboard closed-loop supply chain. J Clean Prod 166:1154–1168. https://doi.org/10.1016/j.jclepro.2017.08.085

Glassey CR, Gupta VK (1974) A Linear Programming Analysis of Paper Recycling. Manage Sci 21:392–408. https://doi.org/10.1287/mnsc.21.4.392

Kleineidam U, Lambert AJD, Blansjaar J et al (2000) Optimising product recycling chains by control theory. Int J Prod Econ 66:185–195. https://doi.org/10.1016/S0925-5273(99)00120-6

Pati RK, Vrat P, Kumar P (2008) A MILP Model for design of paper recycling network. Int J Ecol Dev 9:69–86. https://www.researchgate.net/publication/259296422_A_MILP_Model_for_design_of_paper_recycling_network

Pati RK, Vrat P, Kumar P (2009) Decision-Making Model For Economical Wastepaper Collection. Product A Q J Natl Product Counc 49:265–271. https://www.researchgate.net/publication/259296517_Decision_Support_Model_for_Economic_Waste_Paper_Collection

Suyabatmaz AÇ, Altekin FT, Şahin G (2014) Hybrid simulation-analytical modeling approaches for the reverse logistics network design of a third-party logistics provider. Comput Ind Eng 70:74–89. https://doi.org/10.1016/j.cie.2014.01.004

Li M, Wang X, Zhang X, Li X (2018) Optimization design of multi-echelon recycling networks for third-party reverse logistics provider in the context of binary path selection. Acad J Manuf Eng 16:97–105. https://auif.utcluj.ro/images/PDF_AJME_2018_16_1/L13.pdf

Takamatsu T, Shioya S, Tsujimoto Y (1982) Optimal inter-regional distribution of waste paper and board in the waste paper recycling system. Resour Conserv 8:95–110. https://doi.org/10.1016/0166-3097(82)90035-9

Wang C-H, Even JC, Adams SK (1995) A mixed-integer linear model for optimal processing and transport of secondary materials. Resour Conserv Recycl 15:65–78. https://doi.org/10.1016/0921-3449(95)00024-D

Pati RK, Vrat P, Kumar P (2007) Three-win strategy with optimisation approach for recycled paper manufacturer. Int J Environ Waste Manag 1:269. https://doi.org/10.1504/IJEWM.2007.013636

Bogh MB, Mikkelsen H, Wohlk S (2014) Collection of recyclables from cubes - A case study. Socioecon Plann Sci 48:127–134. https://doi.org/10.1016/j.seps.2014.02.001

Entezaminia A, Heidari M, Rahmani D (2017) Robust aggregate production planning in a green supply chain under uncertainty considering reverse logistics: a case study. Int J Adv Manuf Technol 90:1507–1528. https://doi.org/10.1007/s00170-016-9459-6

Georgiadis P (2013) An integrated system dynamics model for strategic capacity planning in closed-loop recycling networks: A dynamic analysis for the paper industry. Simul Model Pract Theory 32:116–137. https://doi.org/10.1016/j.simpat.2012.11.009

Kara SS, Onut S (2010) A stochastic optimization approach for paper recycling reverse logistics network design under uncertainty. Int J Environ Sci Technol 7:717–730. https://link.springer.com/article/ https://doi.org/10.1007/BF03326181#citeas

Pati RK, Vrat P, Kumar P (2004) Cost optimisation model in recycled waste reverse logistics system. Int J Bus Perform Manag 6:245. https://doi.org/10.1504/IJBPM.2004.005631

Pati RK, Vrat P, Kumar P (2006) Integrated chain analysis of recycled vis-à-vis wood pulp paper industry: An Indian manufacturer viewpoint. Int J Value Chain Manag 1:44–63. https://doi.org/10.1504/IJVCM.2006.009023

Pati RK, Vrat P, Kumar P (2008) A goal programming model for paper recycling system. Omega 36:405–417. https://doi.org/10.1016/j.omega.2006.04.014

Rahmani-Ahranjani A, Bozorgi-Amiri A, Seifbarghy M, Najafi E (2017) Managing Environmentally Conscious in Designing Closed-loop Supply Chain for the Paper Industry. Int J Eng 30:1038–1047. https://doi.org/10.5829/ije.2017.30.07a.13

Rahmani-Ahranjani A, Seifbarghy M, Bozorgi-Amiri A, Najafi E (2018) Closed-loop supply chain network design for the paper industry: A multi-objective stochastic robust approach. Sci Iran 25:2881–2903. https://doi.org/ https://doi.org/10.24200/sci.2017.4464

Rinsatitnon N, Dijaroen W, Limpiwun T, et al (2018) Reverse logistics implementation in the construction industry: Paper waste focus. Songklanakarin J Sci Technol 40:798–805. https://doi.org/ https://doi.org/10.14456/sjst-psu.2018.113

Schweiger K, Sahamie R (2013) A hybrid Tabu Search approach for the design of a paper recycling network. Transp Res Part E Logist Transp Rev 50:98. https://doi.org/10.1016/j.tre.2012.10.006

Sharma N, Balan S, Vrat P, Kumar P (2006) Analysis of bullwhip effect in reverse supply chain. J Adv Manag Res 3:18–33. https://doi.org/10.1108/97279810680001243

Tseng S-H, Wee HM, Song PS, Jeng S (2019) Optimal green supply-chain model design considering full truckload. Kybernetes 48:2150–2174. https://doi.org/10.1108/K-07-2018-0415

Rahman MO, Hussain A, Basri H (2014) A critical review on waste paper sorting techniques. Int J Environ Sci Technol 11:551–564. https://doi.org/10.1007/s13762-013-0222-3

UNCTADStat (2018) Development status groups and composition. In: United Nations Conf. Trade Dev. - UNCTADStat. https://unctadstat.unctad.org/EN/Classifications/DimCountries_DevelopmentStatus_Hierarchy.pdf . Accessed 26 Jan 2019

World Bank (2017) Data Bank World Bank.org Population 2017. https://databank.worldbank.org/data/download/POP.pdf . Accessed 28 Dec 2019

T&A (2017) A Indústria de Papel e Celulose na Índia (in Portuguese). In: T&A Consult. https://investexportbrasil.dpr.gov.br/arquivos/PesquisasMercado/PMRIndiaSetorPapeleiro2017.pdf . Accessed 28 Dec 2019

Dijkgraaf E, Gradus RHJM (2014) The Effectiveness of Dutch Municipal Recycling Policies. Soc Sci Res Netw. https://doi.org/10.2139/ssrn.2540085

Council for the Environment Infrastructure (2013) DUTCH LOGISTICS 2040: DESIGNED TO LAST. www.rli.nl . Accessed 3 Nov 2018

Bing X, Bloemhof JM, Ramos TRP et al (2016) Research challenges in municipal solid waste logistics management. Waste Manag 48:584–592. https://doi.org/10.1016/j.wasman.2015.11.025

Sharma VK, van Beukering P, Nag B (1997) Environmental and economic policy analysis of waste paper trade and recycling in India. Resour Conserv Recycl 21:55–70. https://doi.org/10.1016/S0921-3449(97)00025-6

Alwaeli M (2015) An Overview of Municipal Solid Waste Management in Poland. The Current Situation. Problems and Challenges Environ Prot Eng 41:181–193. https://doi.org/10.5277/epe150414

Alwaeli M (2009) Editorial. Waste Manag 29:3054–3055. https://doi.org/10.1016/j.wasman.2009.09.004

Levlin J-E, Read B, Grossmann H, et al (2010) COST Action E48 – The Future of Paper Recycling in Europe: Opportunities and Limitations. The Paper Industry Technical Association (PITA), Bury, Greater Manchester, England https://www.cost.eu/publications/the-future-of-paper-recycling-in-europe-opportunities-and-limitations . Accessed 31 Jul 2020

Feng H, Tomonari S (2013) Cause analysis of low collection rate of Chinese waste paper. pp 685–695. https://www.witpress.com/elibrary/wit-transactions-on-ecology-and-the-environment/173/24503 . Accessed 31 Jul 2020

Wu X (2013) Optimization of waste paper’s enzymatic deinking processes based on neural network and particle swarm optimization. Proc - 2013 Int Conf Mechatron Sci Electr Eng Comput MEC 2013:44–47. https://doi.org/10.1109/MEC.2013.6885048

Vashisth S, Bennington CPJ, Grace JR, Kerekes RJ (2011) Column Flotation Deinking: State-of-the-art and opportunities. Resour Conserv Recycl 55:1154–1177. https://doi.org/10.1016/j.resconrec.2011.06.013

Leu HG, Lin SH (1998) Cost-benefit analysis of resource material recycling. Resour Conserv Recycl 23:183–192. https://doi.org/10.1016/S0921-3449(98)00020-2

Fleischmann M, Bloemhof-Ruwaard JM, Beullens P, Dekker R (2004) Reverse Logistics Network Design. In: Dekker R, Fleischmann M, Inderfurth K, Van Wassenhove LN (eds) Reverse Logistics: Quantitative Models for Closed-Loop Supply Chains. Springer Berlin Heidelberg, Berlin, Heidelberg, Germany, pp 83–87. https://doi.org/ https://doi.org/10.1007/978-3-540-24803-3

Cheung WM, Pachisia V (2015) Facilitating waste paper recycling and repurposing via cost modelling of machine failure, labour availability and waste quantity. Resour Conserv Recycl 101:34–41. https://doi.org/10.1016/j.resconrec.2015.05.011

Ahluwalia PK, Nema AK (2011) Capacity planning for electronic waste management facilities under uncertainty: multi-objective multi-time-step model development. Waste Manag Res 29:694–709. https://doi.org/10.1177/0734242X10382592

Van Beukering PJH, Schoon E, Mani A (1996) The Informal Sector and Waste Paper Recovery in Bombay. Amsterdam, Netherlands. https://pubs.iied.org/pdfs/8124IIED.pdf . Accessed 28 Dec 2019

Dekker R, Fleischmann M, Inderfurth K, WassenhoveVLN (2004) Quantitative Models for Reverse Logistics Decision Making. In: Dekker R, Fleischmann M, Inderfurth K, Van Wassenhove LN (eds) Reverse Logistics: Quantitative Models for Closed-Loop Supply Chains. Springer Berlin Heidelberg, Berlin, Heidelberg, Germany, p 34. https://doi.org/ https://doi.org/10.1007/978-3-540-24803-3

Xu Z, Elomri A, Pokharel S et al (2017) Global reverse supply chain design for solid waste recycling under uncertainties and carbon emission constraint. Waste Manag 64:358–370. https://doi.org/10.1016/j.wasman.2017.02.024

Fleischmann M, Krikke HR, Dekker R, Flapper SDP (2000) A characterisation of logistics networks for product recovery. Omega 28:653–666. https://doi.org/10.1016/S0305-0483(00)00022-0

Alem D (2011) Programação estocástica e otimização robusta no planejamento da produção de empresas moveleiras (in Portuguese). https://teses.usp.br/teses/disponiveis/55/55134/tde-29112011-162103/publico/alem.pdf . Accessed 27 Dec 2019

Alem D, Morabito R (2015) Planejamento da produção sob incerteza: programação estocástica versus otimização robusta (in Portuguese). Gestão & Produção 22:539–551. https://doi.org/10.1590/0104-530X1211-14

da Silva AF, Marins FAS (2014) Revisão da literatura sobre modelos de Programação por Metas determinística e sob incerteza (in Portuguese). Production 25:92–112. https://doi.org/10.1590/S0103-65132014005000003

Download references

Acknowledgements

This study was financed in part by the National Council for Scientific and Technological Development (CNPq—302730/2018; CNPq—303350/2018-0), the São Paulo State Research Foundation (FAPESP—2018/06858-0; FAPESP—2018/14433-0) and the Coordination for the Improvement of Higher Education Personnel—Brazil (CAPES)—Finance Code 001.

Author information

Authors and affiliations.

Production Department, Engineering College-São Paulo State University, Avenida Ariberto Pereira da Cunha, 333, Portal das Colinas, Guaratinguetá, SP, 12516-410, Brazil

Cristiane Maria Defalque, Fernando Augusto Silva Marins, Aneirson Francisco da Silva & Elen Yanina Aguirre Rodríguez

Agulhas Negras Military Academy (Academia Militar das Agulhas Negras-AMAN), Rodovia Presidente Dutra, km 306, s/nº, Resende, RJ, 27534-970, Brazil

Cristiane Maria Defalque

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Cristiane Maria Defalque .

Ethics declarations

Conflict of interest.

The authors declare that they have no conflict of interest.

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Defalque, C.M., Marins, F.A.S., da Silva, A.F. et al. A review of waste paper recycling networks focusing on quantitative methods and sustainability. J Mater Cycles Waste Manag 23 , 55–76 (2021). https://doi.org/10.1007/s10163-020-01124-0

Download citation

Received : 29 April 2020

Accepted : 25 September 2020

Published : 13 October 2020

Issue Date : January 2021

DOI : https://doi.org/10.1007/s10163-020-01124-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Waste paper recycling
  • Network planning
  • Sustainability
  • Quantitative modeling
  • Literature review
  • Find a journal
  • Publish with us
  • Track your research

IMAGES

  1. Paper Recycling Technology Detailed Part 1

    recycling research paper introduction

  2. Research Paper: Recycling Program Articles

    recycling research paper introduction

  3. What is the Process of Recycling Paper? (Step by Step)

    recycling research paper introduction

  4. Recycling

    recycling research paper introduction

  5. Recycling Essay

    recycling research paper introduction

  6. (PDF) Technologies for Paper Recycling

    recycling research paper introduction

VIDEO

  1. LEVEL UP YOUR RESEARCH WRITING

  2. Text Recycling in Research Writing: Complications and Best Practices

  3. How to Write a Research Paper Introduction

  4. Introduction Paragraph

  5. How to Write a research paper Introduction Using MyWordAi

  6. 11th batch PCA

COMMENTS

  1. (PDF) Introduction to Recycling

    Recycling is. contributing to the sustainable management of wastes and, because of advances in. technologies and systems for segregating, collecting and reprocessing of recyclable. wastes, it is ...

  2. Full article: Recycling

    Target (1) in this research and development project was to increase recycling and reduce the production of waste. The driver (1) was legislation and the aim to decrease environmental impacts. The project reached the expected results (1); waste to landfill dramatically decreased and reuse increased. Figure 6.

  3. (PDF) Recycling of Plastic Waste: A Systematic Review Using

    Research into plastic recycling is rapidly increasing as ocean and land pollution and. ecosystem degradation from plastic waste is becoming a serious concern. In this study, we conducted. a ...

  4. A systematic review in recycling/reusing/re-manufacturing supply chain

    Recycling is a process that converts the used material into usable after processing. Waste recycling can help to solve the problem of scarcity of raw materials. Recycling rare earth metals plays a significant role in reverse logistics (Swain and Mishra Citation 2019). There is a very subtle difference between 'Recycling' and 'Reuse'.

  5. Waste Management and Recycling Initiatives Led by Students

    11.1 Introduction. In contemporary society, where environmental sustainability is of utmost significance, students are progressively spearheading campaigns for recycling and trash management. ... 11.8.1 The Paper Recycling and Composite Plant Initiative, Miranda House, University of Delhi. ... Choudhary, S. (2019). A research paper on solid ...

  6. Chemical recycling of waste plastics: current challenges and

    Technological challenges of chemical recycling. The comprehensive recycling of waste plastics entails a series of stages, including collection, sorting, pre-processing, deconstruction-reforming reactions, and product separation (Fig. 1 b). While considerable research efforts have been dedicated to catalytic technologies, there has been a ...

  7. PDF Introduction to Recycling

    1 Understanding Recycling. To support the survival and wellbeing of mankind, various technologies and systems have been invented. These technologies and systems have focused on several aspects of survival. One sector in which these technologies and systems, have contributed massively is the manufacturing sector.

  8. INTRODUCTION TO RECYCLING

    INTRODUCTION TO RECYCLING JACOB LEIDNER ORTECH Corp. 2395 Speakman Dr. Mississsauga, Ontario -CANADA ... amount of plastics recycling activities both at the research as well as commercial level. ... recycling rates of 35% for paper 23% for glass and 36% for metals, [6]. Recovery of

  9. The Importance of Specific Recycling Information in Designing a Waste

    Recycling information can be complex and often confusing which may subsequently reduce the participations in any waste recycling schemes. As a result, this research explored the roles as well as the importance of a holistic approach in designing recycling information using 15 expert-based (in-depth) interviews. The rationale was to offer a better understanding of what constitutes waste ...

  10. The future of recycling in the United States

    1. Recycling is not going away - it is now mainstream in most areas of the USA, and has become what is considered an essential public service, like police, fire, and street lighting; thus, recycling programmes cannot be turned off and on with the cycles and swings of the recycling market. 2.

  11. E-waste management: A review of recycling process, environmental and

    The rate of generation of e-waste at the global level has increased substantively in recent years. While previous estimates suggested an annual growth rate of 3-4 % (ASSOCHAM-NEC, 2018; Balde et al., 2017, 2015), by the year 2019, the growth rate of global e-waste generation has increased to around 6% (Forti et al., 2020).The global e-waste generated in 2019 is estimated comprising 17.4 Mt ...

  12. Waste paper for recycling: Overview and identification of potentially

    1. Introduction. Paper recycling is one of the most well-established recycling schemes applied to waste materials today. Recycled paper is an integral part of paper and pulp production, with estimated utilisation for recycling in Europe of about 72% in 2012 (an increase of 20% from 2000) (CEPI, 2013a).In addition to recycled paper being an important raw material for the paper industry (CEPI ...

  13. Full article: Waste segregation and potential for recycling -A case

    Recycling of plastics wastes, the other large waste stream, is also mentioned to reduce waste volume (Al-Salem et al., Citation 2009). Waste reuse and recycling can contribute to income generation and may help to reduce complications in handing and disposing of huge volume of solid wastes (Matter et al., Citation 2013; Wilson et al., Citation ...

  14. (PDF) Waste paper for recycling: Overview and identification of

    Introduction . Paper recycling is one of the most well-established re cycling schemes applied to waste materials . ... 3.8 Implications for waste paper recycling and needs for future research .

  15. Plastics recycling: challenges and opportunities

    Effective recycling of mixed plastics waste is the next major challenge for the plastics recycling sector. The advantage is the ability to recycle a larger proportion of the plastic waste stream by expanding post-consumer collection of plastic packaging to cover a wider variety of materials and pack types.

  16. Introduction to Recycling

    Recycling is both an economic as well as environmental activity. As an economic activity, recycling represents recovery of residual value from waste product. As an environmental activity, recycling is neither inherently positive nor negative. Life cycle assessment methodology can be applied to the recycling process just like to any other ...

  17. (PDF) Waste Paper Collection for Recycling: Overview and their Reuse

    The waste paper recycling market was valued at US$ 37,529.60 m illion in 2018 and is ex pected to grow at. a CAGR of 4.7% from 2019 to 2027 to rea ch US$ 56,140.38 million by 2027. [10 ...

  18. Fabric Waste Recycling: a Systematic Review of Methods, Applications

    Fabric waste recycling is one of the key aspects to consider in moving towards circular economy in textiles. The demand for fabric waste recycling is primarily driven by the resource recovery perspective and the detrimental environmental impact of disposal and landfilling. Despite the strong desire and demand for circularity in textiles, a holistic view of fabric waste recycling has not yet ...

  19. Recycling

    recycling, recovery and reprocessing of waste materials for use in new products. The basic phases in recycling are the collection of waste materials, their processing or manufacture into new products, and the purchase of those products, which may then themselves be recycled. Typical materials that are recycled include iron and steel scrap ...

  20. The impact of recycling in preserving the environment

    By recycling 1 tom office papers can save 18 trees, can reduce oil 474 gallon s, and save water of 7 ,400 gallons; 3. 1 ton steel can be recycled to save 1.78 oil barrels and

  21. Recycling Basics and Benefits

    The study found that in a single year, recycling and reuse activities in the United States accounted for: 681,000 jobs, $37.8 billion in wages, and. $5.5 billion in tax revenues. This equates to 1.17 jobs per 1,000 tons of materials recycled and $65.23 in wages and $9.42 in tax revenue for every ton of materials recycled.

  22. A review of waste paper recycling networks focusing on quantitative

    Based on heightened concern for sustainability, the trend for waste paper recovery and recycling is increasing [].Paper is a material with high recycling potential and also large polluting capacity [], and the sustainable benefits of its recycling have been widely discussed in the literature [16,17,18, 22].There is a vast body of research on waste paper management, including studies addressing ...

  23. (PDF) A review on concrete recycling

    A review on concrete recycling. Sara Shomal Zadeh 1, , Navid Joushideh, Behrokh Bahrami 1 and Sahel Niyafard 3. 1 Department of Civil and Environmental Engineering, Lamar University, Beaumont, TX ...