Ki Hikila | Knowledge in Assamese

  • Career guidance
  • Health and Wellness

Developing Critical Thinking Skills

  • 2 minute read

sunmag 5 v shkole malenkij telec bolshe proyavlyaet sposobnosti k tochnym naukam

  • April 18, 2024

In the fast-paced landscape of the modern workplace, the ability to think critically is a valuable asset that sets individuals apart. Developing critical thinking skills goes beyond mere problem-solving; it’s about approaching challenges with a sharp, analytical mind.

Table of Contents

The Essence of Critical Thinking

Sharpening the Cognitive Blade

Critical thinking is the art of objectively analyzing and evaluating information to form reasoned judgments. It involves the ability to question assumptions, consider various perspectives, and make informed decisions. In a world inundated with information, honing this skill becomes crucial for navigating the complexities of both personal and professional spheres.

Unpacking the Components

Breaking Down the Critical Thinking Toolkit

  • Analysis: Breaking down complex issues into manageable parts, allowing for a more in-depth understanding.
  • Evaluation: Assessing the credibility and reliability of information to make informed judgments.
  • Problem-Solving: Applying creative and logical solutions to challenges, fostering innovation.
  • Decision-Making: Weighing options and making sound choices based on careful consideration.

Nurturing Critical Thinking Skills in Education

From Classroom to Boardroom

1. Incorporating Case Studies

Integrating real-world scenarios into educational curricula provides students with practical challenges, encouraging them to apply critical thinking skills.

2. Encouraging Debate and Discussion

Classroom environments that foster open dialogue and respectful debate create opportunities for students to express and defend their perspectives.

Critical Thinking in the Workplace

Transcending Job Titles

1. Cross-Functional Collaboration

Encouraging collaboration among diverse teams enhances critical thinking by introducing varied perspectives and approaches.

2. Decision-Making Training

Organizations can invest in training programs that focus on enhancing employees’ decision-making skills, emphasizing critical thinking as a core competency.

FAQs: Unraveling Common Questions

Q: Can critical thinking be learned, or is it an inherent trait?

A: While some individuals may naturally gravitate toward critical thinking, it is a skill that can be developed through practice, education, and experience.

Q: How does critical thinking contribute to career advancement?

A: Employers value critical thinkers for their ability to solve complex problems, make informed decisions, and contribute to innovative solutions, making them invaluable assets in any professional setting.

Q: Are there specific industries where critical thinking is particularly essential?

A: Critical thinking is universally beneficial, but industries like finance, healthcare, and technology highly prioritize employees with strong analytical and problem-solving skills.

Embrace the Power of Critical Thought

As you embark on the journey of developing critical thinking skills, remember that it’s a continuous process of refinement. By integrating these skills into both educational and professional spheres, individuals can enhance their problem-solving capabilities, foster innovation, and become adept decision-makers.

Unleash your cognitive prowess – dive into the world of critical thinking and elevate your personal and professional journey.

Related Tags

  • Critical Thinking
  • Decision Making
  • Problem Solving
  • Professional Growth
  • Skills Development

' src=

Leave a Reply Cancel reply

You must be logged in to post a comment.

You May Also Like

57186404 sdytwkfijnq2ayd tc v huaf1cxoovtf2xpw6snsgq 2 1

  • 3 minute read

How to Choose the Right College or University

' src=

  • 5 minute read

Kidney Stones: How it forms?

critical thinking meaning in assamese

  • July 9, 2024

2925329384 1

Career Paths in Environmental Science

shutterstock 704294779 970x647 1

Exploring Career Paths in Psychology

meeting in fashion design studio p4bg6m7 1

Career Opportunities in the Fashion Industry

i 7 1 1

Exploring Career Paths in Engineering

  • April 15, 2024

3rd Asha Scholarship

  • Current Affairs- September,2024

SBI’s 3rd Asha Scholarship

NCC Youth for the Nation

  • 7 minute read

NCC: Youth for the Nation

Literature at BRICS 2024

Celebrating Literature at BRICS 2024

Mini Moon Asteroid 2024

Mini-Moon Asteroid 2024

HOME | ABOUT | CONTACT | SHARE Design and developed by MCA Department of Jorhat Engineering College 2023

Voice speed

Text translation, source text, translation results, document translation, drag and drop.

critical thinking meaning in assamese

Website translation

Enter a URL

Image translation

critical thinking meaning in assamese

Candrakanta Glosbe

Google Bing

• Candrakanta abhidhana : Assamese-English dictionary, University of Gauhati (1962)

• Dictionary Assamese and English by Miles Bronson (1867)

• Phrases in English and Assamese by Harriet Cutter, revised by Edward Clark (1877) + 1840 edition

• Brief vocabulary in English and Assamese by Susan Ward (1864)

• Some Assamese proverbs by Philip Richard Gurdon (1896)

• A linguistic study of 24 place names of Assam by Sarat Kumar Phukan, in International Symposium on languages and linguistics (2000)

→ Assamese keyboard (Bengali script with some variants, like the characters r and w )

• Wikipedia : Assamese language

• Dialects or variety of the Assamese language by Manash Jyoti Nirmalia, in Journal of Acharaya Narendra Dev Research Institute (2019)

• Fixing the Assamese language : "Tongue has no bone" (1800-1930) , by Bodhisattva Kar, in Studies in History (2008)

• Language and policies in 19 th -century Assam : war of words , by Madhumita Sengupta, in Indian Historical Review (2012)

• Representing Kamrupi : ideologies of grammar and the question of linguistic boundaries , in A multilingual nation translation and language dynamic in India (2017)

• Translation in Assamese : a brief account , by Biswadip Gogoi, in History of Translation in India (2017)

• Language and nationalism : comprehending the dynamics in 19 th -century Assam (2016)

• Linguistic nationalism in early-colonial Assam : the American Baptist Mission and Orunodoi , by Arnab Dasgupta, in Rupkatha journal on interdisciplinary studies in humanities (2021)

• Derivational morphology of Assamese lexical word categories by Palash Das & Madhumita Barbora, in Indian Journal of Language and Linguistics (2020)

• Assamese: its formation and development by Banikanta Kakati (1941)

• Grammatical notices of the Asamese language by Nathan Brown (1848)

The Assamese language is spoken in the State of Assam, in Northeast India. It's written with the Bengali script.

• Translation in Assamese : a brief account , by Biswadip Gogoi, in The history of translation in India (2017) NEW

• Aspects of early Assamese literature by Banikanta Kakati (1953)

• YouVersion : translation of the Bible into Assamese (2019) (+ audio)

• Hymns in Assamese , edited by the Baptist Mission (1850)

জন্মগত ভাবে সকলো মানুহ মৰ্যদা আৰু অধিকাৰত সমান আৰু স্বতন্ত্র। তেওঁলােকৰ বিবেক আছে, বুদ্ধি আছে। তেওঁলােকে প্রত্যেকে প্রত্যেকক ভাতৃ ভাবে ব্যৱহাৰ কৰা উচিত।

• Ethnicity, identity and cartography : possession/dispossession, homecoming/homelessness in contemporary Assam , by Parag Moni Sarma, in Studies of transition states and societies (2011)

• Becoming Hindu : the cultural politics of writing religion in colonial Assam , by Madhumita Sengupta, in Contributions to Indian Sociology (2021)

• The Assam Mission : papers and discussions , American Baptist Missionary Union (1886)

→ Inde

→ Bangladesh

→ languages of India

→ Bengali

→ Meitei

→ Hindi

critical thinking meaning in assamese

Internet Encyclopedia of Philosophy

Critical thinking.

Critical Thinking is the process of using and assessing reasons to evaluate statements, assumptions, and arguments in ordinary situations. The goal of this process is to help us have good beliefs, where “good” means that our beliefs meet certain goals of thought, such as truth, usefulness, or rationality. Critical thinking is widely regarded as a species of informal logic, although critical thinking makes use of some formal methods. In contrast with formal reasoning processes that are largely restricted to deductive methods—decision theory, logic, statistics—the process of critical thinking allows a wide range of reasoning methods, including formal and informal logic, linguistic analysis, experimental methods of the sciences, historical and textual methods, and philosophical methods, such as Socratic questioning and reasoning by counterexample.

The goals of critical thinking are also more diverse than those of formal reasoning systems. While formal methods focus on deductive validity and truth, critical thinkers may evaluate a statement’s truth, its usefulness, its religious value, its aesthetic value, or its rhetorical value. Because critical thinking arose primarily from the Anglo-American philosophical tradition (also known as “analytic philosophy”), contemporary critical thinking is largely concerned with a statement’s truth. But some thinkers, such as Aristotle (in Rhetoric ), give substantial attention to rhetorical value.

The primary subject matter of critical thinking is the proper use and goals of a range of reasoning methods, how they are applied in a variety of social contexts, and errors in reasoning. This article also discusses the scope and virtues of critical thinking.

Critical thinking should not be confused with Critical Theory. Critical Theory refers to a way of doing philosophy that involves a moral critique of culture. A “critical” theory, in this sense, is a theory that attempts to disprove or discredit a widely held or influential idea or way of thinking in society. Thus, critical race theorists and critical gender theorists offer critiques of traditional views and latent assumptions about race and gender. Critical theorists may use critical thinking methodology, but their subject matter is distinct, and they also may offer critical analyses of critical thinking itself.

Table of Contents

  • Argument and Evaluation
  • Categorical Logic
  • Propositional Logic
  • Modal Logic
  • Predicate Logic
  • Other Formal Systems
  • Generalization
  • Causal Reasoning
  • Formal Fallacies
  • Informal Fallacies
  • Heuristics and Biases
  • The Principle of Charity/Humility
  • The Principle of Caution
  • The Expansiveness of Critical Thinking
  • Productivity and the Limits of Rationality
  • Classical Approaches
  • The Paul/Elder Model
  • Other Approaches
  • References and Further Reading

The process of evaluating a statement traditionally begins with making sure we understand it; that is, a statement must express a clear meaning. A statement is generally regarded as clear if it expresses a proposition , which is the meaning the author of that statement intends to express, including definitions, referents of terms, and indexicals, such as subject, context, and time. There is significant controversy over what sort of “entity” propositions are, whether abstract objects or linguistic constructions or something else entirely. Whatever its metaphysical status, it is used here simply to refer to whatever meaning a speaker intends to convey in a statement.

The difficulty with identifying intended propositions is that we typically speak and think in natural languages (English, Swedish, French), and natural languages can be misleading. For instance, two different sentences in the same natural language may express the same proposition, as in these two English sentences:

Jamie is taller than his father. Jamie’s father is shorter than he.

Further, the same sentence in a natural language can express more than one proposition depending on who utters it at a time:

I am shorter than my father right now.

The pronoun “I” is an indexical; it picks out, or “indexes,” whoever utters the sentence and, therefore, expresses a different proposition for each new speaker who utters it. Similarly, “right now” is a temporal indexical; it indexes the time the sentence is uttered. The proposition it is used to express changes each new time the sentence is uttered and, therefore, may have a different truth value at different times (as, say, the speaker grows taller: “I am now five feet tall” may be true today, but false a year from now). Other indexical terms that can affect the meaning of the sentence include other pronouns (he, she, it) and definite articles (that, the).

Further still, different sentences in different natural languages may express the same proposition . For example, all of the following express the proposition “Snow is white”:

Snow is white. (English)

Der Schnee ist weiss. (German)

La neige est blanche. (French)

La neve é bianca. (Italian)

Finally, statements in natural languages are often vague or ambiguous , either of which can obscure the propositions actually intended by their authors. And even in cases where they are not vague or ambiguous, statements’ truth values sometimes vary from context to context. Consider the following example.

The English statement, “It is heavy,” includes the pronoun “it,” which (when used without contextual clues) is ambiguous because it can index any impersonal subject. If, in this case, “it” refers to the computer on which you are reading this right now, its author intends to express the proposition, “The computer on which you are reading this right now is heavy.” Further, the term “heavy” reflects an unspecified standard of heaviness (again, if contextual clues are absent). Assuming we are talking about the computer, it may be heavy relative to other computer models but not to automobiles. Further still, even if we identify or invoke a standard of heaviness by which to evaluate the appropriateness of its use in this context, there may be no weight at which an object is rightly regarded as heavy according to that standard. (For instance, is an object heavy because it weighs 5.3 pounds but not if it weighs 5.2 pounds? Or is it heavy when it is heavier than a mouse but lighter than an anvil?) This means “heavy” is a vague term. In order to construct a precise statement, vague terms (heavy, cold, tall) must often be replaced with terms expressing an objective standard (pounds, temperature, feet).

Part of the challenge of critical thinking is to clearly identify the propositions (meanings) intended by those making statements so we can effectively reason about them. The rules of language help us identify when a term or statement is ambiguous or vague, but they cannot, by themselves, help us resolve ambiguity or vagueness. In many cases, this requires assessing the context in which the statement is made or asking the author what she intends by the terms. If we cannot discern the meaning from the context and we cannot ask the author, we may stipulate a meaning, but this requires charity, to stipulate a plausible meaning, and humility, to admit when we discover that our stipulation is likely mistaken.

2. Argument and Evaluation

Once we are satisfied that a statement is clear, we can begin evaluating it. A statement can be evaluated according to a variety of standards. Commonly, statements are evaluated for truth, usefulness, or rationality. The most common of these goals is truth, so that is the focus of this article.

The truth of a statement is most commonly evaluated in terms of its relation to other statements and direct experiences. If a statement follows from or can be inferred from other statements that we already have good reasons to believe, then we have a reason to believe that statement. For instance, the statement “The ball is blue” can be derived from “The ball is blue and round.” Similarly, if a statement seems true in light of, or is implied by, an experience, then we have a reason to believe that statement. For instance, the experience of seeing a red car is a reason to believe, “The car is red.” (Whether these reasons are good enough for us to believe is a further question about justification , which is beyond the scope of this article, but see “ Epistemic Justification .”) Any statement we derive in these ways is called a conclusion . Though we regularly form conclusions from other statements and experiences—often without thinking about it—there is still a question of whether these conclusions are true: Did we draw those conclusions well? A common way to evaluate the truth of a statement is to identify those statements and experiences that support our conclusions and organize them into structures called arguments . (See also, “ Argument .”)

An argument is one or more statements (called premises ) intended to support the truth of another statement (the conclusion ). Premises comprise the evidence offered in favor of the truth of a conclusion. It is important to entertain any premises that are intended to support a conclusion, even if the attempt is unsuccessful. Unsuccessful attempts at supporting a proposition constitute bad arguments, but they are still arguments. The support intended for the conclusion may be formal or informal. In a formal, or deductive, argument, an arguer intends to construct an argument such that, if the premises are true, the conclusion must be true. This strong relationship between premises and conclusion is called validity . This relationship between the premises and conclusion is called “formal” because it is determined by the form (that is, the structure) of the argument (see §3). In an informal, or inductive , argument, the conclusion may be false even if the premises are true. In other words, whether an inductive argument is good depends on something more than the form of the argument. Therefore, all inductive arguments are invalid, but this does not mean they are bad arguments. Even if an argument is invalid, its premises can increase the probability that its conclusion is true. So, the form of inductive arguments is evaluated in terms of the strength the premises confer on the conclusion, and stronger inductive arguments are preferred to weaker ones (see §4). (See also, “ Deductive and Inductive Arguments .”)

Psychological states, such as sensations, memories, introspections, and intuitions often constitute evidence for statements. Although these states are not themselves statements, they can be expressed as statements. And when they are, they can be used in and evaluated by arguments. For instance, my seeing a red wall is evidence for me that, “There is a red wall,” but the physiological process of seeing is not a statement. Nevertheless, the experience of seeing a red wall can be expressed as the proposition, “I see a red wall” and can be included in an argument such as the following:

  • I see a red wall in front of me.
  • Therefore, there is a red wall in front of me.

This is an inductive argument, though not a strong one. We do not yet know whether seeing something (under these circumstances) is reliable evidence for the existence of what I am seeing. Perhaps I am “seeing” in a dream, in which case my seeing is not good evidence that there is a wall. For similar reasons, there is also reason to doubt whether I am actually seeing. To be cautious, we might say we seem to see a red wall.

To be good , an argument must meet two conditions: the conclusion must follow from the premises—either validly or with a high degree of likelihood—and the premises must be true. If the premises are true and the conclusion follows validly, the argument is sound . If the premises are true and the premises make the conclusion probable (either objectively or relative to alternative conclusions), the argument is cogent .

Here are two examples:

  • Earth is larger than its moon.
  • Our sun is larger than Earth.
  • Therefore, our sun is larger than Earth’s moon.

In example 1, the premises are true. And since “larger than” is a transitive relation, the structure of the argument guarantees that, if the premises are true, the conclusion must be true. This means the argument is also valid. Since it is both valid and has true premises, this deductive argument is sound.

  Example 2:

  • It is sunny in Montana about 205 days per year.
  • I will be in Montana in February.
  • Hence, it will probably be sunny when I am in Montana.

In example 2, premise 1 is true, and let us assume premise 2 is true. The phrase “almost always” indicates that a majority of days in Montana are sunny, so that, for any day you choose, it will probably be a sunny day. Premise 2 says I am choosing days in February to visit. Together, these premises strongly support (though they do not guarantee) the conclusion that it will be sunny when I am there, and so this inductive argument is cogent.

In some cases, arguments will be missing some important piece, whether a premise or a conclusion. For instance, imagine someone says, “Well, she asked you to go, so you have to go.” The idea that you have to go does not follow logically from the fact that she asked you to go without more information. What is it about her asking you to go that implies you have to go? Arguments missing important information are called enthymemes . A crucial part of critical thinking is identifying missing or assumed information in order to effectively evaluate an argument. In this example, the missing premise might be that, “She is your boss, and you have to do what she asks you to do.” Or it might be that, “She is the woman you are interested in dating, and if you want a real chance at dating her, you must do what she asks.” Before we can evaluate whether her asking implies that you have to go, we need to know this missing bit of information. And without that missing bit of information, we can simply reply, “That conclusion doesn’t follow from that premise.”

The two categories of reasoning associated with soundness and cogency—formal and informal, respectively—are considered, by some, to be the only two types of argument. Others add a third category, called abductive reasoning, according to which one reasons according to the rules of explanation rather than the rules of inference . Those who do not regard abductive reasoning as a third, distinct category typically regard it as a species of informal reasoning. Although abductive reasoning has unique features, here it is treated, for reasons explained in §4d, as a species of informal reasoning, but little hangs on this characterization for the purposes of this article.

3. Formal Reasoning

Although critical thinking is widely regarded as a type of informal reasoning, it nevertheless makes substantial use of formal reasoning strategies. Formal reasoning is deductive , which means an arguer intends to infer or derive a proposition from one or more propositions on the basis of the form or structure exhibited by the premises. Valid argument forms guarantee that particular propositions can be derived from them. Some forms look like they make such guarantees but fail to do so (we identify these as formal fallacies in §5a). If an arguer intends or supposes that a premise or set of premises guarantee a particular conclusion, we may evaluate that argument form as deductive even if the form fails to guarantee the conclusion, and is thus discovered to be invalid.

Before continuing in this section, it is important to note that, while formal reasoning provides a set of strict rules for drawing valid inferences, it cannot help us determine the truth of many of our original premises or our starting assumptions. And in fact, very little critical thinking that occurs in our daily lives (unless you are a philosopher, engineer, computer programmer, or statistician) involves formal reasoning. When we make decisions about whether to board an airplane, whether to move in with our significant others, whether to vote for a particular candidate, whether it is worth it to drive ten miles faster the speed limit even if I am fairly sure I will not get a ticket, whether it is worth it to cheat on a diet, or whether we should take a job overseas, we are reasoning informally. We are reasoning with imperfect information (I do not know much about my flight crew or the airplane’s history), with incomplete information (no one knows what the future is like), and with a number of built-in biases, some conscious (I really like my significant other right now), others unconscious (I have never gotten a ticket before, so I probably will not get one this time). Readers who are more interested in these informal contexts may want to skip to §4.

An argument form is a template that includes variables that can be replaced with sentences. Consider the following form (found within the formal system known as sentential logic ):

  • If p, then q.
  • Therefore, q.

This form was named modus ponens (Latin, “method of putting”) by medieval philosophers. p and q are variables that can be replaced with any proposition, however simple or complex. And as long as the variables are replaced consistently (that is, each instance of p is replaced with the same sentence and the same for q ), the conclusion (line 3), q , follows from these premises. To be more precise, the inference from the premises to the conclusion is valid . “Validity” describes a particular relationship between the premises and the conclusion, namely: in all cases , the conclusion follows necessarily from the premises, or, to use more technical language, the premises logically guarantee an instance of the conclusion.

Notice we have said nothing yet about truth . As critical thinkers, we are interested, primarily, in evaluating the truth of sentences that express propositions, but all we have discussed so far is a type of relationship between premises and conclusion (validity). This formal relationship is analogous to grammar in natural languages and is known in both fields as syntax . A sentence is grammatically correct if its syntax is appropriate for that language (in English, for example, a grammatically correct simple sentence has a subject and a predicate—“He runs.” “Laura is Chairperson.”—and it is grammatically correct regardless of what subject or predicate is used—“Jupiter sings.”—and regardless of whether the terms are meaningful—“Geflorble rowdies.”). Whether a sentence is meaningful, and therefore, whether it can be true or false, depends on its semantics , which refers to the meaning of individual terms (subjects and predicates) and the meaning that emerges from particular orderings of terms. Some terms are meaningless—geflorble; rowdies—and some orderings are meaningless even though their terms are meaningful—“Quadruplicity drinks procrastination,” and “Colorless green ideas sleep furiously.”.

Despite the ways that syntax and semantics come apart, if sentences are meaningful, then syntactic relationships between premises and conclusions allow reasoners to infer truth values for conclusions. Because of this, a more common definition of validity is this: it is not possible for all the premises to be true and the conclusion false . Formal logical systems in which syntax allows us to infer semantic values are called truth-functional or truth-preserving —proper syntax preserves truth throughout inferences.

The point of this is to note that formal reasoning only tells us what is true if we already know our premises are true. It cannot tell us whether our experiences are reliable or whether scientific experiments tell us what they seem to tell us. Logic can be used to help us determine whether a statement is true, but only if we already know some true things. This is why a broad conception of critical thinking is so important: we need many different tools to evaluate whether our beliefs are any good.

Consider, again, the form modus ponens , and replace p with “It is a cat” and q with “It is a mammal”:

  • If it is a cat, then it is a mammal.
  • It is a cat.
  • Therefore, it is a mammal.

In this case, we seem to “see” (in a metaphorical sense of see ) that the premises guarantee the truth of the conclusion. On reflection, it is also clear that the premises might not be true; for instance, if “it” picks out a rock instead of a cat, premise 1 is still true, but premise 2 is false. It is also possible for the conclusion to be true when the premises are false. For instance, if the “it” picks out a dog instead of a cat, the conclusion “It is a mammal” is true. But in that case, the premises do not guarantee that conclusion; they do not constitute a reason to believe the conclusion is true.

Summing up, an argument is valid if its premises logically guarantee an instance of its conclusion (syntactically), or if it is not possible for its premises to be true and its conclusion false (semantically). Logic is truth-preserving but not truth-detecting; we still need evidence that our premises are true to use logic effectively.

            A Brief Technical Point

Some readers might find it worth noting that the semantic definition of validity has two counterintuitive consequences. First, it implies that any argument with a necessarily true conclusion is valid. Notice that the condition is phrased hypothetically: if the premises are true, then the conclusion cannot be false. This condition is met if the conclusion cannot be false:

  • Two added to two equals four.

This is because the hypothetical (or “conditional”) statement would still be true even if the premises were false:

  • If it is blue, then it flies.
  • It is an airplane.

It is true of this argument that if the premises were true, the conclusion would be since the conclusion is true no matter what.

Second, the semantic formulation also implies that any argument with necessarily false premises is valid. The semantic condition for validity is met if the premises cannot be true:

  • Some bachelors are married.
  • Earth’s moon is heavier than Jupiter.

In this case, if the premise were true, the conclusion could not be false (this is because anything follows syntactically from a contradiction), and therefore, the argument is valid. There is nothing particularly problematic about these two consequences. But they highlight unexpected implications of our standard formulations of validity, and they show why there is more to good arguments than validity.

Despite these counterintuitive implications, valid reasoning is essential to thinking critically because it is a truth-preserving strategy: if deductive reasoning is applied to true premises, true conclusions will result.

There are a number of types of formal reasoning, but here we review only some of the most common: categorical logic, propositional logic, modal logic, and predicate logic.

a. Categorical Logic

Categorical logic is formal reasoning about categories or collections of subjects, where subjects refers to anything that can be regarded as a member of a class, whether objects, properties, or events or even a single object, property, or event. Categorical logic employs the quantifiers “all,” “some,” and “none” to refer to the members of categories, and categorical propositions are formulated in four ways:

A claims: All As are Bs (where the capitals “A” and “B” represent categories of subjects).

E claims: No As are Bs.

I claims: Some As are Bs.

O claims: Some As are not Bs.

Categorical syllogisms are syllogisms (two-premised formal arguments) that employ categorical propositions. Here are two examples:

  • All cats are mammals. (A claim) 1. No bachelors are married. (E claim)
  • Some cats are furry. (I claim) 2. All the people in this building are bachelors. (A claim)
  • Therefore, some mammals are furry. (I claim) 3. Thus, no people in this building are married. (E claim)

There are interesting limitations on what categorical logic can do. For instance, if one premise says that, “Some As are not Bs,” may we infer that some As are Bs, in what is known as an “existential assumption”? Aristotle seemed to think so ( De Interpretatione ), but this cannot be decided within the rules of the system. Further, and counterintuitively, it would mean that a proposition such as, “Some bachelors are not married,” is false since it implies that some bachelors are married.

Another limitation on categorical logic is that arguments with more than three categories cannot be easily evaluated for validity. The standard method for evaluating the validity of categorical syllogisms is the Venn diagram (named after John Venn, who introduced it in 1881), which expresses categorical propositions in terms of two overlapping circles and categorical arguments in terms of three overlapping circles, each circle representing a category of subjects.

Venn diagram for claim and Venn diagram for argument

A, B, and C represent categories of objects, properties, or events. The symbol “ ∩ ” comes from mathematical set theory to indicate “intersects with.” “A∩B” means all those As that are also Bs and vice versa. 

Though there are ways of constructing Venn diagrams with more than three categories, determining the validity of these arguments using Venn diagrams is very difficult (and often requires computers). These limitations led to the development of more powerful systems of formal reasoning.

b. Propositional Logic

Propositional, or sentential , logic has advantages and disadvantages relative to categorical logic. It is more powerful than categorical logic in that it is not restricted in the number of terms it can evaluate, and therefore, it is not restricted to the syllogistic form. But it is weaker than categorical logic in that it has no operators for quantifying over subjects, such as “all” or “some.” For those, we must appeal to predicate logic (see §3c below).

Basic propositional logic involves formal reasoning about propositions (as opposed to categories), and its most basic unit of evaluation is the atomic proposition . “Atom” means the smallest indivisible unit of something, and simple English statements (subject + predicate) are atomic wholes because if either part is missing, the word or words cease to be a statement, and therefore ceases to be capable of expressing a proposition. Atomic propositions are simple subject-predicate combinations, for instance, “It is a cat” and “I am a mammal.” Variable letters such as p and q in argument forms are replaced with semantically rich constants, indicated by capital letters, such as A and B . Consider modus ponens again (noting that the atomic propositions are underlined in the English argument):

1. If , then . 1. If it is a cat, then it is a mammal. 1. If C, then M
2. . 2. It is a cat. 2. C
3. Therefore, . 3. Therefore, it is a mammal. 3. M

As you can see from premise 1 of the Semantic Replacement, atomic propositions can be combined into more complex propositions using symbols that represent their logical relationships (such as “If…, then…”). These symbols are called “operators” or “connectives.” The five standard operators in basic propositional logic are:

“not” ~ or ¬ or It is not the case that p. ~p
“and” & or • Both p and q. p & q
“or” v Either p or q. p v q
“If…, then…” à or ⊃ If p, then q. p ⊃ q
“if and only if” ≡ or ⬌ or iff p if and only if q. p ≡ q

These operations allow us to identify valid relations among propositions: that is, they allow us to formulate a set of rules by which we can validly infer propositions from and validly replace them with others. These rules of inference (such as modus ponens ; modus tollens ; disjunctive syllogism) and rules of replacement (such as double negation; contraposition; DeMorgan’s Law) comprise the syntax of propositional logic, guaranteeing the validity of the arguments employing them.

Two Rules of Inference:

1. It is raining. 1. p 1. R
2. It is windy. 2. q 2. W
3. Therefore, it is raining and it is windy. 3. /.: (p & q) 3. /.: (R & W)
1. Either it is raining or my car is dirty. 1. (p v q) 1. (R v C)
2. My car is not dirty. 2. ~q 2. ~C
3. Therefore, it is raining. 3. /.: p 3. /.: R

Two Rules of Replacement:

if and only if . (p ⊃ q) ≡ (~p v q) (R ⊃ W) ≡ (~R v W)
It is not the case that if and only if . ~(p & q) ≡ (~p v ~q) ~(F & H) ≡ (~F v ~H)
It is not the case that he is either a lawyer or a nice guy if and only if he is neither a lawyer nor a nice guy. ~(p v q) ≡ (~p & ~q) ~(L v N) ≡ (~L & ~N)

For more, see “ Propositional Logic .”

c. Modal Logic

Standard propositional logic does not capture every type of proposition we wish to express (recall that it does not allow us to evaluate categorical quantifiers such as “all” or “some”). It also does not allow us to evaluate propositions expressed as possibly true or necessarily true, modifications that are called modal operators or modal quantifiers .

Modal logic refers to a family of formal propositional systems, the most prominent of which includes operators for necessity (□) and possibility (◊) (see §3d below for examples of other modal systems). If a proposition, p , is possibly true, ◊ p , it may or may not be true. If p is necessarily true, □ p , it must be true; it cannot be false. If p is necessarily false, either ~◊ p or □~ p , it must be false; it cannot be true.

There is a variety of modal systems, the weakest of which is called K (after Saul Kripke, who exerted important influence on the development of modal logic), and it involves only two additional rules:

Necessitation Rule:   If  A  is a theorem of  K , then so is □ A .

Distribution Axiom:  □( A ⊃ B ) ⊃ (□ A ⊃□ B ).  [If it is necessarily the case that if A, then B , then if it is necessarily the case that A, it is necessarily the case that B .]

Other systems maintain these rules and add others for increasing strength. For instance, the (S4) modal system includes axiom (4):

(4)  □ A ⊃ □□ A   [If it is necessarily the case that A, then it is necessarily necessary that A.]

An influential and intuitive way of thinking about modal concepts is the idea of “possible worlds” (see Plantinga, 1974; Lewis 1986). A world is just the set of all true propositions. The actual world is the set of all actually true propositions—everything that was true, is true, and (depending on what you believe about the future) will be true. A possible world is a way the actual world might have been. Imagine you wore green underwear today. The actual world might have been different in that way: you might have worn blue underwear. In this interpretation of modal quantifiers, there is a possible world in which you wore blue underwear instead of green underwear. And for every possibility like this, and every combination of those possibilities, there is a distinct possible world.

If a proposition is not possible, then there is no possible world in which that proposition is true. The statement, “That object is red all over and blue all over at the same time” is not true in any possible worlds. Therefore, it is not possible (~◊P), or, in other words, necessarily false (□~P). If a proposition is true in all possible worlds, it is necessarily true. For instance, the proposition, “Two plus two equal four,” is true in all possible worlds, so it is necessarily true (□P) or not possibly false (~◊~P).

All modal systems have a number of controversial implications, and there is not space to review them here. Here we need only note that modal logic is a type of formal reasoning that increases the power of propositional logic to capture more of what we attempt to express in natural languages. (For more, see “ Modal Logic: A Contemporary View .”)

d. Predicate Logic

Predicate logic, in particular, first-order predicate logic, is even more powerful than propositional logic. Whereas propositional logic treats propositions as atomic wholes, predicate logic allows reasoners to identify and refer to subjects of propositions, independently of their predicates. For instance, whereas the proposition, “Susan is witty,” would be replaced with a single upper-case letter, say “S,” in propositional logic, predicate logic would assign the subject “Susan” a lower-case letter, s, and the predicate “is witty” an upper-case letter, W, and the translation (or formula ) would be: Ws.

In addition to distinguishing subjects and predicates, first-order predicate logic allows reasoners to quantify over subjects. The quantifiers in predicate logic are “All…,” which is comparable to “All” quantifier in categorical logic and is sometimes symbolized with an upside-down A: ∀ (though it may not be symbolized at all), and “There is at least one…,” which is comparable to “Some” quantifier in categorical logic and is symbolized with a backward E: ∃. E and O claims are formed by employing the negation operator from propositional logic. In this formal system, the proposition, “Someone is witty,” for example, has the form: There is an x , such that x has the property of being witty, which is symbolized: (∃ x)(Wx). Similarly, the proposition, “Everyone is witty,” has the form: For all x, x has the property of being witty, which is symbolized (∀ x )( Wx ) or, without the ∀: ( x )( Wx ).

Predicate derivations are conducted according to the same rules of inference and replacement as propositional logic with the exception of four rules to accommodate adding and eliminating quantifiers.

Second-order predicate logic extends first-order predicate logic to allow critical thinkers to quantify over and draw inferences about subjects and predicates, including relations among subjects and predicates. In both first- and second-order logic, predicates typically take the form of properties (one-place predicates) or relations (two-place predicates), though there is no upper limit on place numbers. Second-order logic allows us to treat both as falling under quantifiers, such as e verything that is (specifically, that has the property of being) a tea cup and everything that is a bachelor is unmarried .

e. Other Formal Systems

It is worth noting here that the formal reasoning systems we have seen thus far (categorical, propositional, and predicate) all presuppose that truth is bivalent , that is, two-valued. The two values critical thinkers are most often concerned with are true and false , but any bivalent system is subject to the rules of inference and replacement of propositional logic. The most common alternative to truth values is the binary code of 1s and 0s used in computer programming. All logics that presuppose bivalence are called classical logics . In the next section, we see that not all formal systems are bivalent; there are non-classical logics . The existence of non-classical systems raises interesting philosophical questions about the nature of truth and the legitimacy of our basic rules of reasoning, but these questions are too far afield for this context. Many philosophers regard bivalent systems as legitimate for all but the most abstract and purely formal contexts. Included below is a brief description of three of the most common non-classical logics.

Tense logic , or temporal logic, is a formal modal system developed by Arthur Prior (1957, 1967, 1968) to accommodate propositional language about time. For example, in addition to standard propositional operators, tense logic includes four operators for indexing times: P “It has at some time been the case that…”; F “It will at some time be the case that…”; H “It has always been the case that…”; and G “It will always be the case that….”

Many-valued logic , or n -valued logic, is a family of formal logical systems that attempts to accommodate intuitions that suggest some propositions have values in addition to true and false. These are often motivated by intuitions that some propositions have neither of the classic truth values; their truth value is indeterminate (not just undeterminable, but neither true nor false), for example, propositions about the future such as, “There will be a sea battle tomorrow.” If the future does not yet exist, there is no fact about the future, and therefore, nothing for a proposition to express.

Fuzzy logic is a type of many-valued logic developed out of Lotfi Zadeh’s (1965) work on mathematical sets. Fuzzy logic attempts to accommodate intuitions that suggest some propositions have truth value in degrees, that is, some degree of truth between true and false. It is motivated by concerns about vagueness in reality, for example whether a certain color is red or some degree of red, or whether some temperature is hot or some degree of hotness.

Formal reasoning plays an important role in critical thinking, but not very often. There are significant limits to how we might use formal tools in our daily lives. If that is true, how do critical thinkers reason well when formal reasoning cannot help? That brings us to informal reasoning.

4. Informal Reasoning

Informal reasoning is inductive , which means that a proposition is inferred (but not derived) from one or more propositions on the basis of the strength provided by the premises (where “strength” means some degree of likelihood less than certainty or some degree of probability less than 1 but greater than 0; a proposition with 0% probability is necessarily false).

Particular premises grant strength to premises to the degree that they reflect certain relationships or structures in the world . For instance, if a particular type of event, p , is known to cause or indicate another type of event, q , then upon encountering an event of type p , we may infer that an event of type q is likely to occur. We may express this relationship among events propositionally as follows:

  • Events of type p typically cause or indicate events of type q .
  • An event of type p occurred.
  • Therefore, an event of type q probably occurred.

If the structure of the world (for instance, natural laws) makes premise 1 true, then, if premise 2 is true, we can reasonably (though not certainly) infer the conclusion.

Unlike formal reasoning, the adequacy of informal reasoning depends on how well the premises reflect relationships or structures in the world. And since we have not experienced every relationship among objects or events or every structure, we cannot infer with certainty that a particular conclusion follows from a true set of premises about these relationships or structures. We can only infer them to some degree of likelihood by determining to the best of our ability either their objective probability or their probability relative to alternative conclusions.

The objective probability of a conclusion refers to how likely, given the way the world is regardless of whether we know it , that conclusion is to be true. The epistemic probability of a conclusion refers to how likely that conclusion is to be true given what we know about the world , or more precisely, given our evidence for its objective likelihood.

Objective probabilities are determined by facts about the world and they are not truths of logic, so we often need evidence for objective probabilities. For instance, imagine you are about to draw a card from a standard playing deck of 52 cards. Given particular assumptions about the world (that this deck contains 52 cards and that one of them is the Ace of Spades), the objective likelihood that you will draw an Ace of Spades is 1/52. These assumptions allow us to calculate the objective probability of drawing an Ace of Spades regardless of whether we have ever drawn a card before. But these are assumptions about the world that are not guaranteed by logic: we have to actually count the cards, to be sure we count accurately and are not dreaming or hallucinating, and that our memory (once we have finished counting) reliably maintains our conclusions. None of these processes logically guarantees true beliefs. So, if our assumptions are correct, we know the objective probability of actually drawing an Ace of Spades in the real world. But since there is no logical guarantee that our assumptions are right, we are left only with the epistemic probability (the probability based on our evidence) of drawing that card. If our assumptions are right, then the objective probability is the same as our epistemic probability: 1/52. But even if we are right, objective and epistemic probabilities can come apart under some circumstances.

Imagine you draw a card without looking at it and lay it face down. What is the objective probability that that card is an Ace of Spades? The structure of the world has now settled the question, though you do not know the outcome. If it is an Ace of Spades, the objective probability is 1 (100%); it is the Ace of Spades. If it is not the Ace of Spades, the objective probability is 0 (0%); it is not the Ace of Spades. But what is the epistemic probability? Since you do not know any more about the world than you did before you drew the card, the epistemic probability is the same as before you drew it: 1/52.

Since much of the way the world is is hidden from us (like the card laid face down), and since it is not obvious that we perceive reality as it actually is (we do not know whether the actual coins we flip are evenly weighted or whether the actual dice we roll are unbiased), our conclusions about probabilities in the actual world are inevitably epistemic probabilities. We can certainly calculate objective probabilities about abstract objects (for instance, hypothetically fair coins and dice—and these calculations can be evaluated formally using probability theory and statistics), but as soon as we apply these calculations to the real world, we must accommodate the fact that our evidence is incomplete.

There are four well-established categories of informal reasoning: generalization, analogy, causal reasoning, and abduction.

a. Generalization

Generalization is a way of reasoning informally from instances of a type to a conclusion about the type. This commonly takes two forms: reasoning from a sample of a population to the whole population , and reasoning from past instances of an object or event to future instances of that object or event . The latter is sometimes called “enumerative induction” because it involves enumerating past instances of a type in order to draw an inference about a future instance. But this distinction is weak; both forms of generalization use past or current data to infer statements about future instances and whole current populations.

A popular instance of inductive generalization is the opinion poll: a sample of a population of people is polled with respect to some statement or belief. For instance, if we poll 57 sophomores enrolled at a particular college about their experiences of living in dorms, these 57 comprise our sample of the population of sophomores at that particular college. We want to be careful how we define our population given who is part of our sample. Not all college students are like sophomores, so it is not prudent to draw inferences about all college students from these sophomores. Similarly, sophomores at other colleges are not necessarily like sophomores at this college (it could be the difference between a liberal arts college and a research university), so it is prudent not to draw inferences about all sophomores from this sample at a particular college.

Let us say that 90% of the 57 sophomores we polled hate the showers in their dorms. From this information, we might generalize in the following way:

  • We polled 57 sophomores at Plato’s Academy. (the sample)
  • 90% of our sample hates the showers in their dorms. (the polling data)
  • Therefore, probably 90% of all sophomores at Plato’s Academy hate the showers in their dorms. (a generalization from our sample to the whole population of sophomores at Plato’s Academy)

Is this good evidence that 90% of all sophomores at that college hate the showers in their dorms?

A generalization is typically regarded as a good argument if its sample is representative of its population. A sample is representative if it is similar in the relevant respects to its population. A perfectly representative sample would include the whole population: the sample would be identical with the population, and thus, perfectly representative. In that case, no generalization is necessary. But we rarely have the time or resources to evaluate whole populations. And so, a sample is generally regarded as representative if it is large relative to its population and unbiased .

In our example, whether our inference is good depends, in part, on how many sophomores there are. Are there 100, 2,000? If there are only 100, then our sample size seems adequate—we have polled over half the population. Is our sample unbiased? That depends on the composition of the sample. Is it comprised only of women or only of men? If this college is not co-ed, that is not a problem. But if the college is co-ed and we have sampled only women, our sample is biased against men. We have information only about female freshmen dorm experiences, and therefore, we cannot generalize about male freshmen dorm experiences.

How large is large enough? This is a difficult question to answer. A poll of 1% of your high school does not seem large enough to be representative. You should probably gather more data. Yet a poll of 1% of your whole country is practically impossible (you are not likely to ever have enough grant money to conduct that poll). But could a poll of less than 1% be acceptable? This question is not easily answered, even by experts in the field. The simple answer is: the more, the better. The more complicated answer is: it depends on how many other factors you can control for, such as bias and hidden variables (see §4c for more on experimental controls).

Similarly, we might ask what counts as an unbiased sample. An overly simple answer is: the sample is taken randomly, that is, by using a procedure that prevents consciously or unconsciously favoring one segment of the population over another (flipping a coin, drawing lottery balls). But reality is not simple. In political polls, it is important not to use a selection procedure that results in a sample with a larger number of members of one political party than another relative to their distribution in the population, even if the resulting sample is random. For example, the two most prominent parties in the U.S. are the Democratic Party and the Republican Party. If 47% of the U.S. is Republican and 53% is Democrat, an unbiased sample would have approximately 47% Republicans and 53% Democrats. But notice that simply choosing at random may not guarantee that result; it could easily occur, just by choosing randomly, that our sample has 70% Democrats and 30% Republicans (suppose our computer chose, albeit randomly, from a highly Democratic neighborhood). Therefore, we want to control for representativeness in some criteria, such as gender, age, and education. And we explicitly want to avoid controlling for the results we are interested in; if we controlled for particular answers to the questions on our poll, we would not learn anything—we would get all and only the answers we controlled for.

Difficulties determining representativeness suggest that reliable generalizations are not easy to construct. If we generalize on the basis of samples that are too small or if we cannot control for bias, we commit the informal fallacy of hasty generalization (see §5b). In order to generalize well, it seems we need a bit of machinery to guarantee representativeness. In fact, it seems we need an experiment, one of the primary tools in causal reasoning (see §4c below).

Argument from Analogy , also called analogical reasoning , is a way of reasoning informally about events or objects based on their similarities. A classic instance of reasoning by analogy occurs in archaeology, when researchers attempt to determine whether a stone object is an artifact (a human-made item) or simply a rock. By comparing the features of an unknown stone with well-known artifacts, archaeologists can infer whether a particular stone is an artifact. Other examples include identifying animals’ tracks by their similarities with pictures in a guidebook and consumer reports on the reliability of products.

To see how arguments from analogy work in detail, imagine two people who, independently of one another, want to buy a new pickup truck. Each chooses a make and model he or she likes, and let us say they decide on the same truck. They then visit a number of consumer reporting websites to read reports on trucks matching the features of the make and model they chose, for instance, the year it was built, the size of the engine (6 cyl. or 8 cyl.), the type of transmission (2WD or 4WD), the fuel mileage, and the cab size (standard, extended, crew). Now, let us say one of our prospective buyers is interested in safety —he or she wants a tough, safe vehicle that will protect against injuries in case of a crash. The other potential buyer is interested in mechanical reliability —he or she does not want to spend a lot of time and money fixing mechanical problems.

With this in mind, here is how our two buyers might reason analogically about whether to purchase the truck (with some fake report data included):

  • The truck I have in mind was built in 2012, has a 6-cylinder engine, a 2WD transmission, and a king cab.
  • 62 people who bought trucks like this one posted consumer reports and have driven it for more than a year.
  • 88% of those 62 people report that the truck feels very safe.
  • Therefore, the truck I am looking at will likely be very safe.
  • 88% of those 62 people report that the truck has had no mechanical problems.
  • Therefore, the truck I am looking at will likely have no mechanical problems.

Are the features of these analogous vehicles (the ones reported on) sufficiently numerous and relevant for helping our prospective truck buyers decide whether to purchase the truck in question (the one on the lot)? Since we have some idea that the type of engine and transmission in a vehicle contribute to its mechanical reliability, Buyer 2 may have some relevant features on which to draw a reliable analogy. Fuel mileage and cab size are not obviously relevant, but engine specifications seem to be. Are these specifications numerous enough? That depends on whether anything else that we are not aware of contributes to overall reliability. Of course, if the trucks having the features we know also have all other relevant features we do not know (if there are any), then Buyer 2 may still be able to draw a reliable inference from analogy. Of course, we do not currently know this.

Alternatively, Buyer 1 seems to have very few relevant features on which to draw a reliable analogy. The features listed are not obviously related to safety. Are there safety options a buyer may choose but that are not included in the list? For example, can a buyer choose side-curtain airbags, or do such airbags come standard in this model? Does cab size contribute to overall safety? Although there are a number of similarities between the trucks, it is not obvious that we have identified features relevant to safety or whether there are enough of them. Further, reports of “feeling safe” are not equivalent to a truck actually being safe. Better evidence would be crash test data or data from actual accidents involving this truck. This information is not likely to be on a consumer reports website.

A further difficulty is that, in many cases, it is difficult to know whether many similarities are necessary if the similarities are relevant. For instance, if having lots of room for passengers is your primary concern, then any other features are relevant only insofar as they affect cab size. The features that affect cab size may be relatively small.

This example shows that arguments from analogy are difficult to formulate well. Arguments from analogy can be good arguments when critical thinkers identify a sufficient number of features of known objects that are also relevant to the feature inferred to be shared by the object in question. If a rock is shaped like a cutting tool, has marks consistent with shaping and sharpening, and has wear marks consistent with being held in a human hand, it is likely that rock is an artifact. But not all cases are as clear.

It is often difficult to determine whether the features we have identified are sufficiently numerous or relevant to our interests. To determine whether an argument from analogy is good, a person may need to identify a causal relationship between those features and the one in which she is interested (as in the case with a vehicle’s mechanical reliability). This usually takes the form of an experiment, which we explore below (§4c).

Difficulties with constructing reliable generalizations and analogies have led critical thinkers to develop sophisticated methods for controlling for the ways these arguments can go wrong. The most common way to avoid the pitfalls of these arguments is to identify the causal structures in the world that account for or underwrite successful generalizations and analogies. Causal arguments are the primary method of controlling for extraneous causal influences and identifying relevant causes. Their development and complexity warrant regarding them as a distinct form of informal reasoning.

c. Causal Reasoning

Causal arguments attempt to draw causal conclusions (that is, statements that express propositions about causes: x causes y ) from premises about relationships among events or objects. Though it is not always possible to construct a causal argument, when available, they have an advantage over other types of inductive arguments in that they can employ mechanisms (experiments) that reduce the risks involved in generalizations and analogies.

The interest in identifying causal relationships often begins with the desire to explain correlations among events (as pollen levels increase, so do allergy symptoms) or with the desire to replicate an event (building muscle, starting a fire) or to eliminate an event (polio, head trauma in football).

Correlations among events may be positive (where each event increases at roughly the same rate) or negative (where one event decreases in proportion to another’s increase). Correlations suggest a causal relationship among the events correlated.

But we must be careful; correlations are merely suggestive—other forces may be at work. Let us say the y-axis in the charts above represents the number of millionaires in the U.S. and the x-axis represents the amount of money U.S. citizens pay for healthcare each year. Without further analysis, a positive correlation between these two may lead someone to conclude that increasing wealth causes people to be more health conscious and to seek medical treatment more often. A negative correlation may lead someone to conclude that wealth makes people healthier and, therefore, that they need to seek medical care less frequently.

Unfortunately, correlations can occur without any causal structures (mere coincidence) or because of a third, as-yet-unidentified event (a cause common to both events, or “common cause”), or the causal relationship may flow in an unexpected direction (what seems like the cause is really the effect). In order to determine precisely which event (if any) is responsible for the correlation, reasoners must eliminate possible influences on the correlation by “controlling” for possible influences on the relationship (variables).

Critical thinking about causes begins by constructing hypotheses about the origins of particular events. A hypothesis is an explanation or event that would account for the event in question. For example, if the question is how to account for increased acne during adolescence, and we are not aware of the existence of hormones, we might formulate a number of hypotheses about why this happens: during adolescence, people’s diets change (parents no longer dictate their meals), so perhaps some types of food cause acne; during adolescence, people become increasingly anxious about how they appear to others, so perhaps anxiety or stress causes acne; and so on.

After we have formulated a hypothesis, we identify a test implication that will help us determine whether our hypothesis is correct. For instance, if some types of food cause acne, we might choose a particular food, say, chocolate, and say: if chocolate causes acne (hypothesis), then decreasing chocolate will decrease acne (test implication). We then conduct an experiment to see whether our test implication occurs.

Reasoning about our experiment would then look like one of the following arguments:

1. If H, then TI 1. If H, then TI.
2. TI. 2. Not-TI.
3. Therefore, probably H. 3. Therefore, probably Not-H.

There are a couple of important things to note about these arguments. First, despite appearances, both are inductive arguments. The one on the left commits the formal fallacy of affirming the consequent, so, at best, the premises confer only some degree of probability on the conclusion. The argument on the right looks to be deductive (on the face of it, it has the valid form modus tollens ), but it would be inappropriate to regard it deductively. This is because we are not evaluating a logical connection between H and TI, we are evaluating a causal connection—TI might be true or false regardless of H (we might have chosen an inappropriate test implication or simply gotten lucky), and therefore, we cannot conclude with certainty that H does not causally influence TI. Therefore, “If…, then…” statements in experiments must be read as causal conditionals and not material conditionals (the term for how we used conditionals above).

Second, experiments can go wrong in many ways, so no single experiment will grant a high degree of probability to its causal conclusion. Experiments may be biased by hidden variables (causes we did not consider or detect, such as age, diet, medical history, or lifestyle), auxiliary assumptions (the theoretical assumptions by which evaluating the results may be faulty), or underdetermination (there may be a number of hypotheses consistent with those results; for example, if it is actually sugar that causes acne, then chocolate bars, ice cream, candy, and sodas would yield the same test results). Because of this, experiments either confirm or disconfirm a hypothesis; that is, they give us some reason (but not a particularly strong reason) to believe our hypothesized causes are or are not the causes of our test implications, and therefore, of our observations (see Quine and Ullian, 1978). Because of this, experiments must be conducted many times, and only after we have a number of confirming or disconfirming results can we draw a strong inductive conclusion. (For more, see “ Confirmation and Induction .”)

Experiments may be formal or informal . In formal experiments, critical thinkers exert explicit control over experimental conditions: experimenters choose participants, include or exclude certain variables, and identify or introduce hypothesized events. Test subjects are selected according to control criteria (criteria that may affect the results and, therefore, that we want to mitigate, such as age, diet, and lifestyle) and divided into control groups (groups where the hypothesized cause is absent) and experimental groups (groups where the hypothesized cause is present, either because it is introduced or selected for).

Subjects are then placed in experimental conditions. For instance, in a randomized study, the control group receives a placebo (an inert medium) whereas the experimental group receives the hypothesized cause—the putative cause is introduced, the groups are observed, and the results are recorded and compared. When a hypothesized cause is dangerous (such as smoking) or its effects potentially irreversible (for instance, post-traumatic stress disorder), the experimental design must be restricted to selecting for the hypothesized cause already present in subjects, for example, in retrospective (backward-looking) and prospective (forward-looking) studies. In all types of formal experiments, subjects are observed under exposure to the test or placebo conditions for a specified time, and results are recorded and compared.

In informal experiments, critical thinkers do not have access to sophisticated equipment or facilities and, therefore, cannot exert explicit control over experimental conditions. They are left to make considered judgments about variables. The most common informal experiments are John Stuart Mill’s five methods of inductive reasoning, called Mill’s Methods, which he first formulated in A System of Logic (1843). Here is a very brief summary of Mill’s five methods:

(1) The Method of Agreement

If all conditions containing the event y also contain x , x is probably the cause of y .

For example:

“I’ve eaten from the same box of cereal every day this week, but all the times I got sick after eating cereal were times when I added strawberries. Therefore, the strawberries must be bad.”

(2) The Method of Difference

If all conditions lacking y also lack x , x is probably the cause of y .

“The organization turned all its tax forms in on time for years, that is, until our comptroller, George, left; after that, we were always late. Only after George left were we late. Therefore, George was probably responsible for getting our tax forms in on time.”

(3) The Joint Method of Agreement and Difference

If all conditions containing event y also contain event x , and all events lacking y also lack x , x is probably the cause of y .

“The conditions at the animal shelter have been pretty regular, except we had a string of about four months last year when the dogs barked all night, every night. But at the beginning of those four months we sheltered a redbone coonhound, and the barking stopped right after a family adopted her. All the times the redbone hound wasn’t present, there was no barking. Only the time she was present was there barking. Therefore, she probably incited all the other dogs to bark.”

(4) The Method of Concomitant Variation

If the frequency of event y increases and decreases as event x increases and decreases, respectively, x is probably the cause of y .

“We can predict the amount of alcohol sales by the rate of unemployment. As unemployment rises, so do alcohol sales. As unemployment drops, so do alcohol sales. Last quarter marked the highest unemployment in three years, and our sales last quarter are the highest they had been in those three years. Therefore, unemployment probably causes people to buy alcohol.”

(5) The Method of Residues

If a number of factors x , y , and z , may be responsible for a set of events A , B , and C , and if we discover reasons for thinking that x is the cause of A and y is the cause of B , then we have reason to believe z is the cause of C .

“The people who come through this medical facility are usually starving and have malaria, and a few have polio. We are particularly interested in treating the polio. Take this patient here: she is emaciated, which is caused by starvation; and she has a fever, which is caused by malaria. But notice that her muscles are deteriorating, and her bones are sore. This suggests she also has polio.”

d. Abduction

Not all inductive reasoning is inferential. In some cases, an explanation is needed before we can even begin drawing inferences. Consider Darwin’s idea of natural selection. Natural selection is not an object, like a blood vessel or a cellular wall, and it is not, strictly speaking, a single event. It cannot be detected in individual organisms or observed in a generation of offspring. Natural selection is an explanation of biodiversity that combines the process of heritable variation and environmental pressures to account for biomorphic change over long periods of time. With this explanation in hand, we can begin to draw some inferences. For instance, we can separate members of a single species of fruit flies, allow them to reproduce for several generations, and then observe whether the offspring of the two groups can reproduce. If we discover they cannot reproduce, this is likely due to certain mutations in their body types that prevent them from procreating. And since this is something we would expect if natural selection were true, we have one piece of confirming evidence for natural selection. But how do we know the explanations we come up with are worth our time?

Coined by C. S. Peirce (1839-1914), abduction , also called retroduction, or inference to the best explanation , refers to a way of reasoning informally that provides guidelines for evaluating explanations. Rather than appealing to types of arguments (generalization, analogy, causation), the value of an explanation depends on the theoretical virtues it exemplifies. A theoretical virtue is a quality that renders an explanation more or less fitting as an account of some event. What constitutes fittingness (or “loveliness,” as Peter Lipton (2004) calls it) is controversial, but many of the virtues are intuitively compelling, and abduction is a widely accepted tool of critical thinking.

The most widely recognized theoretical virtue is probably simplicity , historically associated with William of Ockham (1288-1347) and known as Ockham’s Razor . A legend has it that Ockham was asked whether his arguments for God’s existence prove that only one God exists or whether they allow for the possibility that many gods exist. He supposedly responded, “Do not multiply entities beyond necessity.” Though this claim is not found in his writings, Ockham is now famous for advocating that we restrict our beliefs about what is true to only what is absolutely necessary for explaining what we observe.

In contemporary theoretical use, the virtue of simplicity is invoked to encourage caution in how many mechanisms we introduce to explain an event. For example, if natural selection can explain the origin of biological diversity by itself, there is no need to hypothesize both natural selection and a divine designer. But if natural selection cannot explain the origin of, say, the duck-billed platypus, then some other mechanism must be introduced. Of course, not just any mechanism will do. It would not suffice to say the duck-billed platypus is explained by natural selection plus gremlins. Just why this is the case depends on other theoretical virtues; ideally, the virtues work together to help critical thinkers decide among competing hypotheses to test. Here is a brief sketch of some other theoretical virtues or ideals:

Conservatism – a good explanation does not contradict well-established views in a field.

Independent Testability – a good explanation is successful on different occasions under similar circumstances.

Fecundity – a good explanation leads to results that make even more research possible.

Explanatory Depth – a good explanation provides details of how an event occurs.

Explanatory Breadth – a good explanation also explains other, similar events.

Though abduction is structurally distinct from other inductive arguments, it functions similarly in practice: a good explanation provides a probabilistic reason to believe a proposition. This is why it is included here as a species of inductive reasoning. It might be thought that explanations only function to help critical thinkers formulate hypotheses, and do not, strictly speaking, support propositions. But there are intuitive examples of explanations that support propositions independently of however else they may be used. For example, a critical thinker may argue that material objects exist outside our minds is a better explanation of why we perceive what we do (and therefore, a reason to believe it) than that an evil demon is deceiving me , even if there is no inductive or deductive argument sufficient for believing that the latter is false. (For more, see “ Charles Sanders Peirce: Logic .”)

5. Detecting Poor Reasoning

Our attempts at thinking critically often go wrong, whether we are formulating our own arguments or evaluating the arguments of others. Sometimes it is in our interests for our reasoning to go wrong, such as when we would prefer someone to agree with us than to discover the truth value of a proposition. Other times it is not in our interests; we are genuinely interested in the truth, but we have unwittingly made a mistake in inferring one proposition from others. Whether our errors in reasoning are intentional or unintentional, such errors are called fallacies (from the Latin, fallax, which means “deceptive”). Recognizing and avoiding fallacies helps prevent critical thinkers from forming or maintaining defective beliefs.

Fallacies occur in a number of ways. An argument’s form may seem to us valid when it is not, resulting in a formal fallacy . Alternatively, an argument’s premises may seem to support its conclusion strongly but, due to some subtlety of meaning, do not, resulting in an informal fallacy . Additionally, some of our errors may be due to unconscious reasoning processes that may have been helpful in our evolutionary history, but do not function reliably in higher order reasoning. These unconscious reasoning processes are now widely known as heuristics and biases . Each type is briefly explained below.

a. Formal Fallacies

Formal fallacies occur when the form of an argument is presumed or seems to be valid (whether intentionally or unintentionally) when it is not. Formal fallacies are usually invalid variations of valid argument forms. Consider, for example, the valid argument form modus ponens (this is one of the rules of inference mentioned in §3b):

modus ponens (valid argument form)

1. p → q 1. If it is a cat, then it is a mammal.
2. p 2. It is a cat.
3. /.: q 3. Therefore, it is a mammal.

In modus ponens , we assume or “affirm” both the conditional and the left half of the conditional (called the antecedent ): (p à q) and p. From these, we can infer that q, the second half or consequent , is true. This a valid argument form: if the premises are true, the conclusion cannot be false.

Sometimes, however, we invert the conclusion and the second premise, affirming that the conditional, (p à q), and the right half of the conditional, q (the consequent), are true, and then inferring that the left half, p (the antecedent), is true. Note in the example below how the conclusion and second premise are switched. Switching them in this way creates a problem.

affirming the consequent
(valid argument form) (formal fallacy)
1. p → q 1. p → q
2. p 2. q q, the consequent of the conditional in premise 1, has been “affirmed” in premise 2
3. /.: q 3. /.: p (?)

To get an intuitive sense of why “affirming the consequent” is a problem, consider this simple example:

affirming the consequent

  • It is a mammal.
  • Therefore, it is a cat.(?)

From the fact that something is a mammal, we cannot conclude that it is a cat. It may be a dog or a mouse or a whale. The premises can be true and yet the conclusion can still be false. Therefore, this is not a valid argument form. But since it is an easy mistake to make, it is included in the set of common formal fallacies.

Here is a second example with the rule of inference called modus tollens . Modus tollens involves affirming a conditional, (p à q), and denying that conditional’s consequent: ~q. From these two premises, we can validly infer the denial of the antecedent: ~p. But if we switch the conclusion and the second premise, we get another fallacy, called denying the antecedent .

(valid argument form) (formal fallacy)
1. p → q 1. p → q p, the antecedent of the conditional in premise 1, has been “denied” in premise 2
2. ~q 2. ~p
3. ~p 3. /.: ~q(?)
1. If it is a cat, then it is a mammal. 1. If it is a cat, then it is a mammal.
2. It is not a mammal. 2. It is not a cat.
3. Therefore, it is not a cat. 3. Therefore, it is not a mammal.(?)

Technically, all informal reasoning is formally fallacious—all informal arguments are invalid. Nevertheless, since those who offer inductive arguments rarely presume they are valid, we do not regard them as reasoning fallaciously.

b. Informal Fallacies

Informal fallacies occur when the meaning of the terms used in the premises of an argument suggest a conclusion that does not actually follow from them (the conclusion either follows weakly or with no strength at all). Consider an example of the informal fallacy of equivocation , in which a word with two distinct meanings is used in both of its meanings:

  • Any law can be repealed by Congress.
  • Gravity is a law.
  • Therefore, gravity can be repealed by Congress.

In this case, the argument’s premises are true when the word “law” is rightly interpreted, but the conclusion does not follow because the word law has a different referent in premise 1 (political laws) than in premise 2 (a law of nature). This argument equivocates on the meaning of law and is, therefore, fallacious.

Consider, also, the informal fallacy of ad hominem , abusive, when an arguer appeals to a person’s character as a reason to reject her proposition:

“Elizabeth argues that humans do not have souls; they are simply material beings. But Elizabeth is a terrible person and often talks down to children and the elderly. Therefore, she could not be right that humans do not have souls.”

The argument might look like this:

  • Elizabeth is a terrible person and often talks down to children and the elderly.
  • Therefore, Elizabeth is not right that humans do not have souls.

The conclusion does not follow because whether Elizabeth is a terrible person is irrelevant to the truth of the proposition that humans do not have souls. Elizabeth’s argument for this statement is relevant, but her character is not.

Another way to evaluate this fallacy is to note that, as the argument stands, it is an enthymeme (see §2); it is missing a crucial premise, namely: If anyone is a terrible person, that person makes false statements. But this premise is clearly false. There are many ways in which one can be a terrible person, and not all of them imply that someone makes false statements. (In fact, someone could be terrible precisely because they are viciously honest.) Once we fill in the missing premise, we see the argument is not cogent because at least one premise is false.

Importantly, we face a number of informal fallacies on a daily basis, and without the ability to recognize them, their regularity can make them seem legitimate. Here are three others that only scratch the surface:

Appeal to the People: We are often encouraged to believe or do something just because everyone else does. We are encouraged to believe what our political party believes, what the people in our churches or synagogues or mosques believe, what people in our family believe, and so on. We are encouraged to buy things because they are “bestsellers” (lots of people buy them). But the fact that lots of people believe or do something is not, on its own, a reason to believe or do what they do.

Tu Quoque (You, too!): We are often discouraged from pursuing a conclusion or action if our own beliefs or actions are inconsistent with them. For instance, if someone attempts to argue that everyone should stop smoking, but that person smokes, their argument is often given less weight: “Well, you smoke! Why should everyone else quit?” But the fact that someone believes or does something inconsistent with what they advocate does not, by itself, discredit the argument. Hypocrites may have very strong arguments despite their personal inconsistencies.

Base Rate Neglect: It is easy to look at what happens after we do something or enact a policy and conclude that the act or policy caused those effects. Consider a law reducing speed limits from 75 mph to 55 mph in order to reduce highway accidents. And, in fact, in the three years after the reduction, highway accidents dropped 30%! This seems like a direct effect of the reduction. However, this is not the whole story. Imagine you looked back at the three years prior to the law and discovered that accidents had dropped 30% over that time, too. If that happened, it might not actually be the law that caused the reduction in accidents. The law did not change the trend in accident reduction. If we only look at the evidence after the law, we are neglecting the rate at which the event occurred without the law. The base rate of an event is the rate that the event occurs without the potential cause under consideration. To take another example, imagine you start taking cold medicine, and your cold goes away in a week. Did the cold medicine cause your cold to go away? That depends on how long colds normally last and when you took the medicine. In order to determine whether a potential cause had the effect you suspect, do not neglect to compare its putative effects with the effects observed without that cause.

For more on formal and informal fallacies and over 200 different types with examples, see “ Fallacies .”

c. Heuristics and Biases

In the 1960s, psychologists began to suspect there is more to human reasoning than conscious inference. Daniel Kahneman and Amos Tversky confirmed these suspicions with their discoveries that many of the standard assumptions about how humans reason in practice are unjustified. In fact, humans regularly violate these standard assumptions, the most significant for philosophers and economists being that humans are fairly good at calculating the costs and benefits of their behavior; that is, they naturally reason according to the dictates of Expected Utility Theory. Kahneman and Tversky showed that, in practice, reasoning is affected by many non-rational influences, such as the wording used to frame scenarios (framing bias) and information most vividly available to them (the availability heuristic).

Consider the difference in your belief about the likelihood of getting robbed before and after seeing a news report about a recent robbery, or the difference in your belief about whether you will be bitten by a shark the week before and after Discovery Channel’s “Shark Week.” For most of us, we are likely to regard their likelihood as higher after we have seen these things on television than before. Objectively, they are no more or less likely to happen regardless of our seeing them on television, but we perceive they are more likely because their possibility is more vivid to us. These are examples of the availability heuristic.

Since the 1960s, experimental psychologists and economists have conducted extensive research revealing dozens of these unconscious reasoning processes, including ordering bias , the representativeness heuristic , confirmation bias , attentional bias , and the anchoring effect . The field of behavioral economics, made popular by Dan Ariely (2008; 2010; 2012) and Richard Thaler and Cass Sunstein (2009), emerged from and contributes to heuristics and biases research and applies its insights to social and economic behaviors.

Ideally, recognizing and understanding these unconscious, non-rational reasoning processes will help us mitigate their undermining influence on our reasoning abilities (Gigerenzer, 2003). However, it is unclear whether we can simply choose to overcome them or whether we have to construct mechanisms that mitigate their influence (for instance, using double-blind experiments to prevent confirmation bias).

6. The Scope and Virtues of Good Reasoning

Whether the process of critical thinking is productive for reasoners—that is, whether it actually answers the questions they are interested in answering—often depends on a number of linguistic, psychological, and social factors. We encountered some of the linguistic factors in §1. In closing, let us consider some of the psychological and social factors that affect the success of applying the tools of critical thinking.

Not all psychological and social contexts are conducive for effective critical thinking. When reasoners are depressed or sad or otherwise emotionally overwhelmed, critical thinking can often be unproductive or counterproductive. For instance, if someone’s child has just died, it would be unproductive (not to mention cruel) to press the philosophical question of why a good God would permit innocents to suffer or whether the child might possibly have a soul that could persist beyond death. Other instances need not be so extreme to make the same point: your company’s holiday party (where most people would rather remain cordial and superficial) is probably not the most productive context in which to debate the president’s domestic policy or the morality of abortion.

The process of critical thinking is primarily about detecting truth, and truth may not always be of paramount value. In some cases, comfort or usefulness may take precedence over truth. The case of the loss of a child is a case where comfort seems to take precedence over truth. Similarly, consider the case of determining what the speed limit should be on interstate highways. Imagine we are trying to decide whether it is better to allow drivers to travel at 75 mph or to restrict them to 65. To be sure, there may be no fact of the matter as to which is morally better, and there may not be any difference in the rate of interstate deaths between states that set the limit at 65 and those that set it at 75. But given the nature of the law, a decision about which speed limit to set must be made. If there is no relevant difference between setting the limit at 65 and setting it at 75, critical thinking can only tell us that , not which speed limit to set. This shows that, in some cases, concern with truth gives way to practical or preferential concerns (for example, Should I make this decision on the basis of what will make citizens happy? Should I base it on whether I will receive more campaign contributions from the business community?). All of this suggests that critical thinking is most productive in contexts where participants are already interested in truth.

b. The Principle of Charity/Humility

Critical thinking is also most productive when people in the conversation regard themselves as fallible, subject to error, misinformation, and deception. The desire to be “right” has a powerful influence on our reasoning behavior. It is so strong that our minds bias us in favor of the beliefs we already hold even in the face of disconfirming evidence (a phenomenon known as “confirmation bias”). In his famous article, “The Ethics of Belief” (1878), W. K. Clifford notes that, “We feel much happier and more secure when we think we know precisely what to do, no matter what happens, than when we have lost our way and do not know where to turn. … It is the sense of power attached to a sense of knowing that makes men desirous of believing, and afraid of doubting” (2010: 354).

Nevertheless, when we are open to the possibility that we are wrong, that is, if we are humble about our conclusions and we interpret others charitably, we have a better chance at having rational beliefs in two senses. First, if we are genuinely willing to consider evidence that we are wrong—and we demonstrate that humility—then we are more likely to listen to others when they raise arguments against our beliefs. If we are certain we are right, there would be little reason to consider contrary evidence. But if we are willing to hear it, we may discover that we really are wrong and give up faulty beliefs for more reasonable ones.

Second, if we are willing to be charitable to arguments against our beliefs, then if our beliefs are unreasonable, we have an opportunity to see the ways in which they are unreasonable. On the other hand, if our beliefs are reasonable, then we can explain more effectively just how well they stand against the criticism. This is weakly analogous to competition in certain types of sporting events, such as basketball. If you only play teams that are far inferior to your own, you do not know how good your team really is. But if you can beat a well-respected team on fair terms, any confidence you have is justified.

c. The Principle of Caution

In our excitement over good arguments, it is easy to overextend our conclusions, that is, to infer statements that are not really warranted by our evidence. From an argument for a first, uncaused cause of the universe, it is tempting to infer the existence of a sophisticated deity such as that of the Judeo-Christian tradition. From an argument for the compatibilism of the free will necessary for moral responsibility and determinism, it is tempting to infer that we are actually morally responsible for our behaviors. From an argument for negative natural rights, it is tempting to infer that no violation of a natural right is justifiable. Therefore, it is prudent to continually check our conclusions to be sure they do not include more content than our premises allow us to infer.

Of course, the principle of caution must itself be used with caution. If applied too strictly, it may lead reasoners to suspend all belief, and refrain from interacting with one another and their world. This is not, strictly speaking, problematic; ancient skeptics, such as the Pyrrhonians, advocated suspending all judgments except those about appearances in hopes of experiencing tranquility. However, at least some judgments about the long-term benefits and harms seem indispensable even for tranquility, for instance, whether we should retaliate in self-defense against an attacker or whether we should try to help a loved one who is addicted to drugs or alcohol.

d. The Expansiveness of Critical Thinking

The importance of critical thinking cannot be overstated because its relevance extends into every area of life, from politics, to science, to religion, to ethics. Not only does critical thinking help us draw inferences for ourselves, it helps us identify and evaluate the assumptions behind statements, the moral implications of statements, and the ideologies to which some statements commit us. This can be a disquieting and difficult process because it forces us to wrestle with preconceptions that might not be accurate. Nevertheless, if the process is conducted well, it can open new opportunities for dialogue, sometimes called “critical spaces,” that allow people who might otherwise disagree to find beliefs in common from which to engage in a more productive conversation.

It is this possibility of creating critical spaces that allows philosophical approaches like Critical Theory to effectively challenge the way social, political, and philosophical debates are framed. For example, if a discussion about race or gender or sexuality or gender is framed in terms that, because of the origins those terms or the way they have functioned socially, alienate or disproportionately exclude certain members of the population, then critical space is necessary for being able to evaluate that framing so that a more productive dialogue can occur (see Foresman, Fosl, and Watson, 2010, ch. 10 for more on how critical thinking and Critical Theory can be mutually supportive).

e. Productivity and the Limits of Rationality

Despite the fact that critical thinking extends into every area of life, not every important aspect of our lives is easily or productively subjected to the tools of language and logic. Thinkers who are tempted to subject everything to the cold light of reason may discover they miss some of what is deeply enjoyable about living. The psychologist Abraham Maslow writes, “I suppose it is tempting, if the only tool you have is a hammer, to treat everything as if it were a nail” (1966: 16). But it is helpful to remember that language and logic are tools, not the projects themselves. Even formal reasoning systems depend on axioms that are not provable within their own systems (consider Euclidean geometry or Peano arithmetic). We must make some decisions about what beliefs to accept and how to live our lives on the basis of considerations outside of critical thinking.

Borrowing an example from William James (1896), consider the statement, “Religion X is true.” James says that, while some people find this statement interesting, and therefore, worth thinking critically about, others may not be able to consider the truth of the statement. For any particular religious tradition, we might not know enough about it to form a belief one way or the other, and even suspending judgment may be difficult, since it is not obvious what we are suspending judgment about.

If I say to you: ‘Be a theosophist or be a Mohammedan,’ it is probably a dead option, because for you neither hypothesis is likely to be alive. But if I say: ‘Be an agnostic or be a Christian,’ it is otherwise: trained as you are, each hypothesis makes some appeal, however small, to your belief (2010: 357).

Ignoring the circularity in his definition of “dead option,” James’s point seems to be that if you know nothing about a view or what statements it entails, no amount of logic or evidence could help you form a reasonable belief about that position.

We might criticize James at this point because his conclusion seems to imply that we have no duty to investigate dead options, that is, to discover if there is anything worth considering in them. If we are concerned with truth, the simple fact that we are not familiar with a proposition does not mean it is not true or potentially significant for us. But James’s argument is subtler than this criticism suggests. Even if you came to learn about a particularly foreign religious tradition, its tenets may be so contrary to your understanding of the world that you could not entertain them as possible beliefs of yours . For instance, you know perfectly well that, if some events had been different, Hitler would not have existed: his parents might have had no children, or his parents’ parents might have had no children. You know roughly what it would mean for Hitler not to have existed and the sort of events that could have made it true that he did not exist. But how much evidence would it take to convince you that, in fact, Hitler did not exist, that is, that your belief that Hitler did exist is false ? Could there be an argument strong enough? Not obviously. Since all the information we have about Hitler unequivocally points to his existence, any arguments against that belief would have to affect a very broad range of statements; they would have to be strong enough to make us skeptical of large parts of reality.

7. Approaches to Improving Reasoning through Critical Thinking

Recall that the goal of critical thinking is not just to study what makes reasons and statements good, but to help us improve our ability to reason, that is, to improve our ability to form, hold, and discard beliefs according to whether they meet the standards of good thinking. Some ways of approaching this latter goal are more effective than others. While the classical approach focuses on technical reasoning skills, the Paul/Elder model encourages us to think in terms of critical concepts, and irrationality approaches use empirical research on instances of poor reasoning to help us improve reasoning where it is least obvious we need it and where we need it most. Which approach or combination of approaches is most effective depends, as noted above, on the context and limits of critical thinking, but also on scientific evidence of their effectiveness. Those who teach critical thinking, of all people, should be engaged with the evidence relevant to determining which approaches are most effective.

a. Classical Approaches

The classic approach to critical thinking follows roughly the structure of this article: critical thinkers attempt to interpret statements or arguments clearly and charitably, and then they apply the tools of formal and informal logic and science, while carefully attempting to avoid fallacious inferences (see Weston, 2008; Walton, 2008; Watson and Arp, 2015). This approach requires spending extensive time learning and practicing technical reasoning strategies. It presupposes that reasoning is primarily a conscious activity, and that enhancing our skills in these areas will improve our ability to reason well in ordinary situations.

There are at least two concerns about this approach. First, it is highly time intensive relative to its payoff. Learning the terminology of systems like propositional and categorical logic and the names of the fallacies, and practicing applying these tools to hypothetical cases requires significant time and energy. And it is not obvious, given the problems with heuristics and biases, whether this practice alone makes us better reasoners in ordinary contexts. Second, many of the ways we reason poorly are not consciously accessible (recall the heuristics and biases discussion in §5c). Our biases, combined with the heuristics we rely on in ordinary situations, can only be detected in experimental settings, and addressing them requires restructuring the ways in which we engage with evidence (see Thaler and Sunstein, 2009).

b. The Paul/Elder Model

Richard Paul and Linda Elder (Paul and Elder, 2006; Paul, 2012) developed an alternative to the classical approach on the assumption that critical thinking is not something that is limited to academic study or to the discipline of philosophy. On their account, critical thinking is a broad set of conceptual skills and habits aimed at a set of standards that are widely regarded as virtues of thinking: clarity, accuracy, depth, fairness, and others. They define it simply as “the art of analyzing and evaluating thinking with a view to improving it” (2006: 4). Their approach, then, is to focus on the elements of thought and intellectual virtues that help us form beliefs that meet these standards.

The Paul/Elder model is made up of three sets of concepts: elements of thought, intellectual standards, and intellectual traits. In this model, we begin by identifying the features present in every act of thought. They use “thought” to mean critical thought aimed at forming beliefs, not just any act of thinking, musing, wishing, hoping, remembering. According to the model, every act of thought involves:

point of view concepts
purpose interpretation and inference
implications and consequences information
assumptions question at issue

These comprise the subject matter of critical thinking; that is, they are what we are evaluating when we are thinking critically. We then engage with this subject matter by subjecting them to what Paul and Elder call universal intellectual standards. These are evaluative goals we should be aiming at with our thinking:

clarity breadth
accuracy logic
precision significance
relevance fairness
depth

While in classical approaches, logic is the predominant means of thinking critically, in the Paul/Elder model, it is put on equal footing with eight other standards. Finally, Paul and Elder argue that it is helpful to approach the critical thinking process with a set of intellectual traits or virtues that dispose us to using elements and standards well.

intellectual humility intellectual perseverance
intellectual autonomy confidence in reason
intellectual integrity intellectual empathy
intellectual courage fairmindedness

To remind us that these are virtues of thought relevant to critical thinking, they use “intellectual” to distinguish these traits from their moral counterparts (moral integrity, moral courage, and so on).

The aim is that, as we become familiar with these three sets of concepts and apply them in everyday contexts, we become better at analyzing and evaluating statements and arguments in ordinary situations.

Like the classical approach, this approach presupposes that reasoning is primarily a conscious activity, and that enhancing our skills will improve our reasoning. This means that it still lacks the ability to address the empirical evidence that many of our reasoning errors cannot be consciously detected or corrected. It differs from the classical approach in that it gives the technical tools of logic a much less prominent role and places emphasis on a broader, and perhaps more intuitive, set of conceptual tools. Learning and learning to apply these concepts still requires a great deal of time and energy, though perhaps less than learning formal and informal logic. And these concepts are easy to translate into disciplines outside philosophy. Students of history, psychology, and economics can more easily recognize the relevance of asking questions about an author’s point of view and assumptions than perhaps determining whether the author is making a deductive or inductive argument. The question, then, is whether this approach improves our ability to think better than the classical approach.

c. Other Approaches

A third approach that is becoming popular is to focus on the ways we commonly reason poorly and then attempt to correct them. This can be called the Rationality Approach , and it takes seriously the empirical evidence (§5c) that many of our errors in reasoning are not due to a lack of conscious competence with technical skills or misusing those skills, but are due to subconscious dispositions to ignore or dismiss relevant information or to rely on irrelevant information.

One way to pursue this approach is to focus on beliefs that are statistically rare or “weird.” These include beliefs of fringe groups, such as conspiracy theorists, religious extremists, paranormal psychologists, and proponents of New Age metaphysics (see Gilovich, 1992; Vaughn and Schick, 2010; Coady, 2012). If we recognize the sorts of tendencies that lead to these controversial beliefs, we might be able to recognize and avoid similar tendencies in our own reasoning about less extreme beliefs, such as beliefs about financial investing, how statistics are used to justify business decisions, and beliefs about which public policies to vote for.

Another way to pursue this approach is to focus directly on the research on error, those ordinary beliefs that psychologists and behavioral economists have discovered we reason poorly, and to explore ways of changing how we frame decisions about what to believe (see Nisbett and Ross, 1980; Gilovich, 1992; Ariely, 2008; Kahneman, 2011). For example, in one study, psychologists found that judges issue more convictions just before lunch and the end of the day than in the morning or just after lunch (Danzinger, et al., 2010). Given that dockets do not typically organize cases from less significant crimes to more significant crimes, this evidence suggests that something as irrelevant as hunger can bias judicial decisions. Even though hunger has nothing to do with the truth of a belief, knowing that it can affect how we evaluate a belief can help us avoid that effect. This study might suggest something as simple as that we should avoid being hungry when making important decisions. The more we learn ways in which our brains use irrelevant information, the better we can organize our reasoning to avoid these mistakes. For more on how decisions can be improved by restructuring our decisions, see Thaler and Sunstein, 2009.

A fourth approach is to take more seriously the role that language plays in our reasoning. Arguments involve complex patterns of expression, and we have already seen how vagueness and ambiguity can undermine good reasoning (§1). The pragma-dialectics approach (or pragma-dialectical theory) is the view that the quality of an argument is not solely or even primarily a matter of its logical structure, but is more fundamentally a matter of whether it is a form of reasonable discourse (Van Eemeren and Grootendorst, 1992). The proponents of this view contend that, “The study of argumentation should … be construed as a special branch of linguistic pragmatics in which descriptive and normative perspectives on argumentative discourse are methodically integrated” (Van Eemeren and Grootendorst, 1995: 130).

The pragma-dialectics approach is a highly technical approach that uses insights from speech act theory, H. P. Grice’s philosophy of language, and the study of discourse analysis. Its use, therefore, requires a great deal of background in philosophy and linguistics. It has an advantage over other approaches in that it highlights social and practical dimensions of arguments that other approaches largely ignore. For example, argument is often public ( external ), in that it creates an opportunity for opposition, which influences people’s motives and psychological attitudes toward their arguments. Argument is also social in that it is part of a discourse in which two or more people try to arrive at an agreement. Argument is also functional ; it aims at a resolution that can only be accommodated by addressing all the aspects of disagreement or anticipated disagreement, which can include public and social elements. Argument also has a rhetorical role ( dialectical ) in that it is aimed at actually convincing others, which may have different requirements than simply identifying the conditions under which they should be convinced.

These four approaches are not mutually exclusive. All of them presuppose, for example, the importance of inductive reasoning and scientific evidence. Their distinctions turn largely on which aspects of statements and arguments should take precedence in the critical thinking process and on what information will help us have better beliefs.

8. References and Further Reading

  • Ariely, Dan. 2008. Predictably Irrational: The Hidden Forces that Shape Our Decisions. New York: Harper Perennial.
  • Ariely, Dan. 2010. The Upside of Irrationality. New York: Harper Perennial.
  • Ariely, Dan. 2012. The (Honest) Truth about Dishonesty. New York: Harper Perennial.
  • Aristotle. 2002. Categories and De Interpretatione, J. L. Akrill, editor. Oxford: University of Oxford Press.
  • Clifford, W. K. 2010. “The Ethics of Belief.” In Nils Ch. Rauhut and Robert Bass, eds., Readings on the Ultimate Questions: An Introduction to Philosophy, 3rd ed. Boston: Prentice Hall, 351-356.
  • Chomsky, Noam. 1957/2002. Syntactic Structures. Berlin: Mouton de Gruyter.
  • Coady, David. What To Believe Now: Applying Epistemology to Contemporary Issues. Malden, MA: Wiley-Blackwell, 2012.
  • Danzinger, Shai, Jonathan Levav, and Liora Avnaim-Pesso. 2011. “Extraneous Factors in Judicial Decisions.” Proceedings of the National Academy of Sciences of the United States of America. Vol. 108, No. 17, 6889-6892. doi: 10.1073/pnas.1018033108.
  • Foresman, Galen, Peter Fosl, and Jamie Carlin Watson. 2017. The Critical Thinking Toolkit. Malden, MA: Wiley-Blackwell.
  • Fogelin, Robert J. and Walter Sinnott-Armstrong. 2009. Understanding Arguments: An Introduction to Informal Logic, 8th ed. Belmont, CA: Wadsworth Cengage Learning.
  • Gigerenzer, Gerd. 2003. Calculated Risks: How To Know When Numbers Deceive You. New York: Simon and Schuster.
  • Gigerenzer, Gerd, Peter Todd, and the ABC Research Group. 2000. Simple Heuristics that Make Us Smart. Oxford University Press.
  • Gilovich, Thomas. 1992. How We Know What Isn’t So. New York: Free Press.
  • James, William. “The Will to Believe”, in Nils Ch. Rauhut and Robert Bass, eds., Readings on the Ultimate Questions: An Introduction to Philosophy, 3rd ed. Boston: Prentice Hall, 2010, 356-364.
  • Kahneman, Daniel. 2011. Thinking Fast and Slow. New York: Farrar, Strauss and Giroux.
  • Lewis, David. 1986. On the Plurality of Worlds. Oxford Blackwell.
  • Lipton, Peter. 2004. Inference to the Best Explanation, 2nd ed. London: Routledge.
  • Maslow, Abraham. 1966. The Psychology of Science: A Reconnaissance. New York: Harper & Row.
  • Mill, John Stuart. 2011. A System of Logic, Ratiocinative and Inductive. New York: Cambridge University Press.
  • Nisbett, Richard and Lee Ross. 1980. Human Inference: Strategies and Shortcomings of Social Judgment. Englewood Cliffs, NJ: Prentice Hall.
  • Paul, Richard. 2012. Critical Thinking: What Every Person Needs to Survive in a Rapidly Changing World. Tomales, CA: The Foundation for Critical Thinking.
  • Paul, Richard and Linda Elder. 2006. The Miniature Guide to Critical Thinking Concepts and Tools, 4th ed. Tomales, CA: The Foundation for Critical Thinking.
  • Plantinga, Alvin. 1974. The Nature of Necessity. Oxford Clarendon.
  • Prior, Arthur. 1957. Time and Modality. Oxford, UK: Oxford University Press.
  • Prior, Arthur. 1967. Past, Present and Future. Oxford, UK: Oxford University Press.
  • Prior, Arthur. 1968. Papers on Time and Tense. Oxford, UK: Oxford University Press.
  • Quine, W. V. O. and J. S. Ullian. 1978. The Web of Belief, 2nd ed. McGraw-Hill.
  • Russell, Bertrand. 1940/1996. An Inquiry into Meaning and Truth, 2nd ed. London: Routledge.
  • Thaler, Richard and Cass Sunstein. 2009. Nudge: Improving Decisions about Health, Wealth, and Happiness. New York: Penguin Books.
  • van Eemeren, Frans H. and Rob Grootendorst. 1992. Argumentation, Communication, and Fallacies: A Pragma-Dialectical Perspective. London: Routledge.
  • van Eemeren, Frans H. and Rob Grootendorst. 1995. “The Pragma-Dialectical Approach to Fallacies.” In Hans V. Hansen and Robert C. Pinto, eds. Fallacies: Classical and Contemporary Readings. Penn State University Press, 130-144.
  • Vaughn, Lewis and Theodore Schick. 2010. How To Think About Weird Things: Critical Thinking for a New Age, 6th ed. McGraw-Hill.
  • Walton, Douglas. 2008. Informal Logic: A Pragmatic Approach, 2nd ed. New York: Cambridge University Press.
  • Watson, Jamie Carlin and Robert Arp. 2015. Critical Thinking: An Introduction to Reasoning Well, 2nd ed. London: Bloomsbury Academic.
  • Weston, Anthony. 2008. A Rulebook for Arguments, 4th ed. Indianapolis: Hackett.
  • Zadeh, Lofti. 1965. “Fuzzy Sets and Systems.” In J. Fox, ed., System Theory. Brooklyn, NY: Polytechnic Press, 29-39.

Author Information

Jamie Carlin Watson Email: [email protected] University of Arkansas for Medical Sciences U. S. A.

An encyclopedia of philosophy articles written by professional philosophers.

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base
  • Working with sources
  • What Is Critical Thinking? | Definition & Examples

What Is Critical Thinking? | Definition & Examples

Published on May 30, 2022 by Eoghan Ryan . Revised on May 31, 2023.

Critical thinking is the ability to effectively analyze information and form a judgment .

To think critically, you must be aware of your own biases and assumptions when encountering information, and apply consistent standards when evaluating sources .

Critical thinking skills help you to:

  • Identify credible sources
  • Evaluate and respond to arguments
  • Assess alternative viewpoints
  • Test hypotheses against relevant criteria

Table of contents

Why is critical thinking important, critical thinking examples, how to think critically, other interesting articles, frequently asked questions about critical thinking.

Critical thinking is important for making judgments about sources of information and forming your own arguments. It emphasizes a rational, objective, and self-aware approach that can help you to identify credible sources and strengthen your conclusions.

Critical thinking is important in all disciplines and throughout all stages of the research process . The types of evidence used in the sciences and in the humanities may differ, but critical thinking skills are relevant to both.

In academic writing , critical thinking can help you to determine whether a source:

  • Is free from research bias
  • Provides evidence to support its research findings
  • Considers alternative viewpoints

Outside of academia, critical thinking goes hand in hand with information literacy to help you form opinions rationally and engage independently and critically with popular media.

Scribbr Citation Checker New

The AI-powered Citation Checker helps you avoid common mistakes such as:

  • Missing commas and periods
  • Incorrect usage of “et al.”
  • Ampersands (&) in narrative citations
  • Missing reference entries

critical thinking meaning in assamese

Critical thinking can help you to identify reliable sources of information that you can cite in your research paper . It can also guide your own research methods and inform your own arguments.

Outside of academia, critical thinking can help you to be aware of both your own and others’ biases and assumptions.

Academic examples

However, when you compare the findings of the study with other current research, you determine that the results seem improbable. You analyze the paper again, consulting the sources it cites.

You notice that the research was funded by the pharmaceutical company that created the treatment. Because of this, you view its results skeptically and determine that more independent research is necessary to confirm or refute them. Example: Poor critical thinking in an academic context You’re researching a paper on the impact wireless technology has had on developing countries that previously did not have large-scale communications infrastructure. You read an article that seems to confirm your hypothesis: the impact is mainly positive. Rather than evaluating the research methodology, you accept the findings uncritically.

Nonacademic examples

However, you decide to compare this review article with consumer reviews on a different site. You find that these reviews are not as positive. Some customers have had problems installing the alarm, and some have noted that it activates for no apparent reason.

You revisit the original review article. You notice that the words “sponsored content” appear in small print under the article title. Based on this, you conclude that the review is advertising and is therefore not an unbiased source. Example: Poor critical thinking in a nonacademic context You support a candidate in an upcoming election. You visit an online news site affiliated with their political party and read an article that criticizes their opponent. The article claims that the opponent is inexperienced in politics. You accept this without evidence, because it fits your preconceptions about the opponent.

There is no single way to think critically. How you engage with information will depend on the type of source you’re using and the information you need.

However, you can engage with sources in a systematic and critical way by asking certain questions when you encounter information. Like the CRAAP test , these questions focus on the currency , relevance , authority , accuracy , and purpose of a source of information.

When encountering information, ask:

  • Who is the author? Are they an expert in their field?
  • What do they say? Is their argument clear? Can you summarize it?
  • When did they say this? Is the source current?
  • Where is the information published? Is it an academic article? Is it peer-reviewed ?
  • Why did the author publish it? What is their motivation?
  • How do they make their argument? Is it backed up by evidence? Does it rely on opinion, speculation, or appeals to emotion ? Do they address alternative arguments?

Critical thinking also involves being aware of your own biases, not only those of others. When you make an argument or draw your own conclusions, you can ask similar questions about your own writing:

  • Am I only considering evidence that supports my preconceptions?
  • Is my argument expressed clearly and backed up with credible sources?
  • Would I be convinced by this argument coming from someone else?

If you want to know more about ChatGPT, AI tools , citation , and plagiarism , make sure to check out some of our other articles with explanations and examples.

  • ChatGPT vs human editor
  • ChatGPT citations
  • Is ChatGPT trustworthy?
  • Using ChatGPT for your studies
  • What is ChatGPT?
  • Chicago style
  • Paraphrasing

 Plagiarism

  • Types of plagiarism
  • Self-plagiarism
  • Avoiding plagiarism
  • Academic integrity
  • Consequences of plagiarism
  • Common knowledge

Don't submit your assignments before you do this

The academic proofreading tool has been trained on 1000s of academic texts. Making it the most accurate and reliable proofreading tool for students. Free citation check included.

critical thinking meaning in assamese

Try for free

Critical thinking refers to the ability to evaluate information and to be aware of biases or assumptions, including your own.

Like information literacy , it involves evaluating arguments, identifying and solving problems in an objective and systematic way, and clearly communicating your ideas.

Critical thinking skills include the ability to:

You can assess information and arguments critically by asking certain questions about the source. You can use the CRAAP test , focusing on the currency , relevance , authority , accuracy , and purpose of a source of information.

Ask questions such as:

  • Who is the author? Are they an expert?
  • How do they make their argument? Is it backed up by evidence?

A credible source should pass the CRAAP test  and follow these guidelines:

  • The information should be up to date and current.
  • The author and publication should be a trusted authority on the subject you are researching.
  • The sources the author cited should be easy to find, clear, and unbiased.
  • For a web source, the URL and layout should signify that it is trustworthy.

Information literacy refers to a broad range of skills, including the ability to find, evaluate, and use sources of information effectively.

Being information literate means that you:

  • Know how to find credible sources
  • Use relevant sources to inform your research
  • Understand what constitutes plagiarism
  • Know how to cite your sources correctly

Confirmation bias is the tendency to search, interpret, and recall information in a way that aligns with our pre-existing values, opinions, or beliefs. It refers to the ability to recollect information best when it amplifies what we already believe. Relatedly, we tend to forget information that contradicts our opinions.

Although selective recall is a component of confirmation bias, it should not be confused with recall bias.

On the other hand, recall bias refers to the differences in the ability between study participants to recall past events when self-reporting is used. This difference in accuracy or completeness of recollection is not related to beliefs or opinions. Rather, recall bias relates to other factors, such as the length of the recall period, age, and the characteristics of the disease under investigation.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Ryan, E. (2023, May 31). What Is Critical Thinking? | Definition & Examples. Scribbr. Retrieved September 18, 2024, from https://www.scribbr.com/working-with-sources/critical-thinking/

Is this article helpful?

Eoghan Ryan

Eoghan Ryan

Other students also liked, student guide: information literacy | meaning & examples, what are credible sources & how to spot them | examples, applying the craap test & evaluating sources, get unlimited documents corrected.

✔ Free APA citation check included ✔ Unlimited document corrections ✔ Specialized in correcting academic texts

Academia.edu no longer supports Internet Explorer.

To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to  upgrade your browser .

Enter the email address you signed up with and we'll email you a reset link.

  • We're Hiring!
  • Help Center

paper cover thumbnail

Assamese Language, Narrative and the Making of North East Frontier of India

Profile image of Manjeet Baruah

Related Papers

Abikal Borah

Manjeet Baruah’s Frontier Cultures: A Social History of Assamese Literature is another addition to the subject of Northeast India’s history, which has experienced extensive critical performances by a range of scholars in the recent past. However, Baruah uses new sources, experiments with methodology, takes a new, if not a very convincing, position and draws our attention towards certain shared ‘socio-spatial relationships’ which, according to him, various communities of Northeast India shared in the past or share even in the present. Furthermore, Baruah proposes to view the Northeast more as a ‘continental crossroad’ than as a frontier region of the Indian nation state.

critical thinking meaning in assamese

Jayeeta Sharma

In De-constructing the Nation: Politics and Cultural Mobilization in India John Zayos, Andrew Wyatt, and Vernon Hewitt, OUP 2004

Bhabani Books, Guwahati.

Chandan K U M A R Sharma

Puravritta: Journal of the Directorate of Archaeology and Museums, Government of West Bengal, vol. 1, pp. 115-32

Jae-Eun Shin

Like many other parts of India, modern history writing of Assam began with colonial intervention and the nationalist response to it. Since Assam was made a part of the Bengal Presidency in 1826, socio-geographical and historical investigations into the region were actively carried out under the auspices of Government. Though the early colonial accounts contain important information on the region, they are mostly administrative documents with descriptive contents. The period between the second half of the nineteenth century and the early twentieth century witnessed not only a gradual accumulation of historical materials, but also a rising popular awareness of Assamese history. During this time, Kāmarūpa known as the ancient kingdom of the Brahmaputra valley began to occupy the first page of the history of Assam unanimously and its importance was accentuated by the group of nationalist historians. Their main concern was to find out a proper place for Assam in the mainstream of Indian history and civilization. Kāmarūpa became an entrance through which Assam could connect herself with the rest of India. In the last century, there was a considerable progress in the quantitative compilation of historical information about Kāmarūpa gleaned from epigraphic and textual records and some archeological evidences. Nonetheless, barring a few, the history writings on Kāmarūpa have been limited to a dynastic history emphasizing a unilineal political continuity of Assam. The divergent perspectives could scarcely address fundamental problems of the colonial historical paradigm. Either a number of controversial issues remained unsolved or they were conveniently erased from the dominant history writings on Kāmarūpa. This article presents a critical review of historiography of Kāmarūpa in the colonial and post-colonial period of Assam.

Modern Asian Studies (2015), 49:4, pp. 931-962

Bérénice Guyot-Réchard

On 15 August 1950, just as India was celebrating its third independence anniversary, an earthquake of 8.6 magnitude struck the remote north-eastern state of Assam and its surrounding borderlands. Rivers came out of their bed and landslides blocked Himalayan valleys, destroying towns, villages, roads, fields, and tea gardens in their wake. Beyond the disaster’s shattering impact on the physical geography of the region, this paper explores how it participated in another reconfiguration — that of Assam’s place within India’s political geography and national imaginary. The Indian public had hitherto known very little about India’s remote ‘north-east frontier’; the cataclysm and subsequent relief measures served to carve out a space for it on Indian mental maps. Simultaneously, by forcing a large-scale encounter between Indian authorities and the people of the scarcely controlled eastern Himalayas, post-earthquake relief and rehabilitation led to unprecedented state expansion in this newly strategic borderland. Yet in the same breath, the aftermath of the disaster fuelled stereotypes about Assam and its hinterland that would eventually further their marginality within India and undermine their continued unity. The crystallisation of Assam’s image as a place irreducibly subject to the whims of nature, and more importantly incapable of taking care of itself (and hence, of its highland dependencies), would poison centre-state relations for decades to come. Imperfect and contradictory, the re-ordering of this border space from a colonial frontier to a component of independent India’s national space did not end marginality, but instead reinforced it.

Gauhati University Teachers' Association

Ankuran Dutta

Prajña Vol. XXVIII, 2018-19 ISSN 0976-9072 Annual Journal of Gauhati University Teachers’Association (GUTA) Published in April, 2019 Edited by Ankuran Dutta

Swinburne University of Technology Research Bank

Prof. Sanjib Goswami

This Ph.D. thesis focuses on contemporary ethnic and social conflict in India’s North East. t concentrates on the consequences of indirect rule colonialism and emphasises the ways in which colonial constructions of ‘native’ and ‘non-native’ identity still inform social and ethnic strife. This thesis’ first part focuses on history and historiography and outlines the ways in which indirect rule colonialism was implemented in colonial Assam after a shift away from an emphasis on Britain’s ‘civilizing mission’ targeting indigenous elites. A homogenising project was then replaced by one focusing on the management of colonial populations that were perceived as inherently distinct from each other. Indirect rule drew the boundaries separating different colonised constituencies. These boundaries proved resilient and this thesis outlines the ways in which indirect rule was later incorporated into the constitution and political practice of postcolonial India. Eventually, the governmental paradigm associated with indirect rule gave rise to a differentiated citizenship, a dual administration, and a triangular system of social relations comprising ‘indigenous’ groups, non-indigenous Assamese, and ‘migrants’. Using settler colonial studies as an interpretative paradigm, and a number of semi-structured interviews with community spokespersons, this thesis’ second part focuses on the ways in which different constituencies in India’s North East perceive ethnic identity, ongoing violence, ‘homeland’, and construct different narratives pertaining to social and ethnic conflict. Recurring unrest in India’s North East is thus contextualised in its historical dimension. Scholarly discourse has traditionally analysed these conflicts by focusing on a number of binaries: colonial / postcolonial, development / underdevelopment, civilised / uncivilised. Emphasising a triangular system of relationships, this thesis presents an alternative interpretation of the ongoing social and ethnic conflict.

Jelle J P Wouters

Charvak Charvak

The geographical, demographic and historical isolation of the region have exercised considerable influence on the growth of print media in North East.History of Print Media for the North East however remained less documented and read till today. Scholars of mainland India have less interest of conducting research on this area, while scholars of North East lack in terms of resources and scope. In this context, this paper seeks to offer a fundamental reading of the history of print media in the seven states of North East India. It is however by no means, a complete compendium of the history of press in North East India. It does offer only a rudimentary level of historical documentation and attempts to reflect the specificities of advent of print media in the seven sisters of North East India. It is a documentation of the summary of the advent of Print Media in North East both from primary and secondary data.

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

RELATED PAPERS

Cultural Constellations, Place-Making and Ethnicity in Eastern India, c. 1850-1927

Swarupa Gupta

Tapan Kumar Bose

Anindya Sinha

Lipokmar Dzuvichu and Manjeet Baruah (eds), Modern Practices in North East India: History, Culture, Representation, London and New York: Routledge, pp.23-55

Dr. Anjan Saikia

paper presented in a seminar of hundred years of edward gaits history of assam

paper presented in a seminar

Sarah Hilaly

Ashfaque Hossain

Asian Ethnicity

Suraj Gogoi

Journal of Folkloristics, (Vol: December) Gauhati University

The Indian Economic and Social History Review 57 (1), pp. 49–75

H. Srikanth

Partition Studies Quarterly

Dolly Kikon

Partha Thakuria

DVS Publishers

Monali Longmailai

Parasmoni Dutta

Landscape, Culture and Belonging

Duncan McDuie-Ra

Iwona Matejczuk

Nayanika Mathur , Jason Cons , Annu Jalais

Indian Historical Review

Madhumita Sengupta

amit baishya

Bengt G. Karlsson

CHIRON OLIVIER

Uddipana Goswami

madhumita das

Journal of Social and Policy Sciences 1:1

Pauthang Haokip

BANGARH: A Leading Ancient And Early Medieval City Of Eastern India

kartick chandra barman

RELATED TOPICS

  •   We're Hiring!
  •   Help Center
  • Find new research papers in:
  • Health Sciences
  • Earth Sciences
  • Cognitive Science
  • Mathematics
  • Computer Science
  • Academia ©2024

Instantly enhance your writing in real-time while you type. With LanguageTool

Get started for free

What Is Critical Thinking? | Meaning & Examples

White text over gray background reads "What is critical thinking?"

Critical thinking is the process of analyzing information logically and overcoming assumptions, biases, and logical fallacies. Developing critical thinking skills allows us to evaluate information as objectively as possible and reach well-founded conclusions.

Critical thinking example

Thinking critically is a crucial part of academic success, professional development, civic engagement, and personal decision-making.

Table of contents

What is critical thinking, why is critical thinking important, critical thinking strategies.

Critical thinking is the process of evaluating information and arguments in a disciplined and systematic way. It involves questioning assumptions, assessing evidence, and using logical reasoning to form well-reasoned judgments.

Key critical thinking skills:

  • Avoiding unfounded assumptions
  • Identifying and countering biases
  • Recognizing and refuting logical fallacies

These practices enable us to make informed decisions, analyze evidence objectively, consider multiple perspectives, reflect on our own biases, and seek reliable sources.

Critical thinking is enhanced by the deliberate study of biases, logical fallacies, and the different forms of reasoning:

  • Deductive reasoning: Drawing specific conclusions from general premises
  • Inductive reasoning: Generalizing from specific observations
  • Analogical reasoning: Drawing parallels between similar situations
  • Abductive reasoning: Inferring the most likely explanation from incomplete evidence

When assessing sources, critical thinking requires evaluating several factors:

  • Credibility: Check the author’s qualifications and the publication’s reputation.
  • Evidence: Verify that the information is supported by data and references.
  • Bias: Identify any potential biases or conflicts of interest.
  • Currency: Ensure the information is up-to-date and relevant.
  • Purpose: Understand the motivation behind the source and whether it aims to inform, persuade, or sell.

Critical thinking is crucial to decision-making and problem-solving in many domains of life. Social media disinformation and irresponsible uses of AI make it more important than ever to be able to distinguish between credible information and misleading or false content.

Developing critical thinking skills is an essential part of fostering independent thinking, allowing us to:

  • Make informed decisions
  • Solve complex problems
  • Evaluate the logic of arguments

In the process of developing these skills, we become less susceptible to biases, fallacies, and propaganda.

Examples of critical thinking

Critical thinking is an essential part of consuming any form of media, including news, marketing, entertainment, and social media. Media platforms are commonly used to promote biased or manipulative messages, often in a subtle way.

Critical thinking in media example

A news segment claims eating chocolate daily improves cognitive function. After reading more about the research, you find the study had a small sample size and was funded by a chocolate company, indicating bias. This leads you to conclude the claim is unreliable.

Critical thinking is fundamental in logic, math, law, science, and other academic and professional domains. The scientific method is a quintessential example of systematized critical thinking.

Critical thinking in science example

  • Formulate a hypothesis.
  • Design experiments.
  • Analyze data.
  • Draw conclusions.
  • Revise the hypothesis if necessary.

Academic research requires advanced critical thinking skills.

Critical thinking academic example

  • Evaluating the methodology of each study to determine their reliability and validity
  • Checking for potential biases, such as funding sources or conflicts of interest
  • Comparing the sample sizes and demographics of the studies to understand the context of their findings
  • Synthesizing the results, highlighting common trends and discrepancies, and considering the limitations of each study

Critical thinking enhances informed decision-making by equipping us to recognize biases, identify logical fallacies, evaluate evidence, consider alternative perspectives, and learn to identify credible sources.

Key strategies:

  • Recognize biases.
  • Identify logical fallacies.
  • Evaluate sources and evidence.
  • Consider alternative perspectives.

Recommended articles

Do you want to improve your business emails, learn the difference between commonly confused words, or strengthen your understanding of English grammar? Check out the articles below!

Style

Word Choice

Grammar

Magedah Shabo

Unleash the Professional Writer in You With LanguageTool

Go well beyond grammar and spell checking. Impress with clear, precise, and stylistically flawless writing instead.

Works on All Your Favorite Services

  • Thunderbird
  • Google Docs
  • Microsoft Word
  • Open Office
  • Libre Office

We Value Your Feedback

We’ve made a mistake, forgotten about an important detail, or haven’t managed to get the point across? Let’s help each other to perfect our writing.

Encyclopedia Britannica

  • History & Society
  • Science & Tech
  • Biographies
  • Animals & Nature
  • Geography & Travel
  • Arts & Culture
  • Games & Quizzes
  • On This Day
  • One Good Fact
  • New Articles
  • Lifestyles & Social Issues
  • Philosophy & Religion
  • Politics, Law & Government
  • World History
  • Health & Medicine
  • Browse Biographies
  • Birds, Reptiles & Other Vertebrates
  • Bugs, Mollusks & Other Invertebrates
  • Environment
  • Fossils & Geologic Time
  • Entertainment & Pop Culture
  • Sports & Recreation
  • Visual Arts
  • Demystified
  • Image Galleries
  • Infographics
  • Top Questions
  • Britannica Kids
  • Saving Earth
  • Space Next 50
  • Student Center
  • What was education like in ancient Athens?
  • How does social class affect education attainment?
  • When did education become compulsory?
  • What are alternative forms of education?
  • Do school vouchers offer students access to better education?

Girl student writing in her notebook in classroom in school.

critical thinking

Our editors will review what you’ve submitted and determine whether to revise the article.

  • Stanford Encyclopedia of Philosophy - Critical Thinking
  • Internet Encyclopedia of Philosophy - Critical Thinking
  • Monash University - Student Academic Success - What is critical thinking?
  • Oklahoma State University Pressbooks - Critical Thinking - Introduction to Critical Thinking
  • University of Louisville - Critical Thinking

critical thinking , in educational theory, mode of cognition using deliberative reasoning and impartial scrutiny of information to arrive at a possible solution to a problem. From the perspective of educators, critical thinking encompasses both a set of logical skills that can be taught and a disposition toward reflective open inquiry that can be cultivated . The term critical thinking was coined by American philosopher and educator John Dewey in the book How We Think (1910) and was adopted by the progressive education movement as a core instructional goal that offered a dynamic modern alternative to traditional educational methods such as rote memorization.

Critical thinking is characterized by a broad set of related skills usually including the abilities to

  • break down a problem into its constituent parts to reveal its underlying logic and assumptions
  • recognize and account for one’s own biases in judgment and experience
  • collect and assess relevant evidence from either personal observations and experimentation or by gathering external information
  • adjust and reevaluate one’s own thinking in response to what one has learned
  • form a reasoned assessment in order to propose a solution to a problem or a more accurate understanding of the topic at hand

Socrates

Theorists have noted that such skills are only valuable insofar as a person is inclined to use them. Consequently, they emphasize that certain habits of mind are necessary components of critical thinking. This disposition may include curiosity, open-mindedness, self-awareness, empathy , and persistence.

Although there is a generally accepted set of qualities that are associated with critical thinking, scholarly writing about the term has highlighted disagreements over its exact definition and whether and how it differs from related concepts such as problem solving . In addition, some theorists have insisted that critical thinking be regarded and valued as a process and not as a goal-oriented skill set to be used to solve problems. Critical-thinking theory has also been accused of reflecting patriarchal assumptions about knowledge and ways of knowing that are inherently biased against women.

Dewey, who also used the term reflective thinking , connected critical thinking to a tradition of rational inquiry associated with modern science . From the turn of the 20th century, he and others working in the overlapping fields of psychology , philosophy , and educational theory sought to rigorously apply the scientific method to understand and define the process of thinking. They conceived critical thinking to be related to the scientific method but more open, flexible, and self-correcting; instead of a recipe or a series of steps, critical thinking would be a wider set of skills, patterns, and strategies that allow someone to reason through an intellectual topic, constantly reassessing assumptions and potential explanations in order to arrive at a sound judgment and understanding.

In the progressive education movement in the United States , critical thinking was seen as a crucial component of raising citizens in a democratic society. Instead of imparting a particular series of lessons or teaching only canonical subject matter, theorists thought that teachers should train students in how to think. As critical thinkers, such students would be equipped to be productive and engaged citizens who could cooperate and rationally overcome differences inherent in a pluralistic society.

critical thinking meaning in assamese

Beginning in the 1970s and ’80s, critical thinking as a key outcome of school and university curriculum leapt to the forefront of U.S. education policy. In an atmosphere of renewed Cold War competition and amid reports of declining U.S. test scores, there were growing fears that the quality of education in the United States was falling and that students were unprepared. In response, a concerted effort was made to systematically define curriculum goals and implement standardized testing regimens , and critical-thinking skills were frequently included as a crucially important outcome of a successful education. A notable event in this movement was the release of the 1980 report of the Rockefeller Commission on the Humanities that called for the U.S. Department of Education to include critical thinking on its list of “basic skills.” Three years later the California State University system implemented a policy that required every undergraduate student to complete a course in critical thinking.

Critical thinking continued to be put forward as a central goal of education in the early 21st century. Its ubiquity in the language of education policy and in such guidelines as the Common Core State Standards in the United States generated some criticism that the concept itself was both overused and ill-defined. In addition, an argument was made by teachers, theorists, and others that educators were not being adequately trained to teach critical thinking.

Critical thinking definition

critical thinking meaning in assamese

Critical thinking, as described by Oxford Languages, is the objective analysis and evaluation of an issue in order to form a judgement.

Active and skillful approach, evaluation, assessment, synthesis, and/or evaluation of information obtained from, or made by, observation, knowledge, reflection, acumen or conversation, as a guide to belief and action, requires the critical thinking process, which is why it's often used in education and academics.

Some even may view it as a backbone of modern thought.

However, it's a skill, and skills must be trained and encouraged to be used at its full potential.

People turn up to various approaches in improving their critical thinking, like:

  • Developing technical and problem-solving skills
  • Engaging in more active listening
  • Actively questioning their assumptions and beliefs
  • Seeking out more diversity of thought
  • Opening up their curiosity in an intellectual way etc.

Is critical thinking useful in writing?

Critical thinking can help in planning your paper and making it more concise, but it's not obvious at first. We carefully pinpointed some the questions you should ask yourself when boosting critical thinking in writing:

  • What information should be included?
  • Which information resources should the author look to?
  • What degree of technical knowledge should the report assume its audience has?
  • What is the most effective way to show information?
  • How should the report be organized?
  • How should it be designed?
  • What tone and level of language difficulty should the document have?

Usage of critical thinking comes down not only to the outline of your paper, it also begs the question: How can we use critical thinking solving problems in our writing's topic?

Let's say, you have a Powerpoint on how critical thinking can reduce poverty in the United States. You'll primarily have to define critical thinking for the viewers, as well as use a lot of critical thinking questions and synonyms to get them to be familiar with your methods and start the thinking process behind it.

Are there any services that can help me use more critical thinking?

We understand that it's difficult to learn how to use critical thinking more effectively in just one article, but our service is here to help.

We are a team specializing in writing essays and other assignments for college students and all other types of customers who need a helping hand in its making. We cover a great range of topics, offer perfect quality work, always deliver on time and aim to leave our customers completely satisfied with what they ordered.

The ordering process is fully online, and it goes as follows:

  • Select the topic and the deadline of your essay.
  • Provide us with any details, requirements, statements that should be emphasized or particular parts of the essay writing process you struggle with.
  • Leave the email address, where your completed order will be sent to.
  • Select your prefered payment type, sit back and relax!

With lots of experience on the market, professionally degreed essay writers , online 24/7 customer support and incredibly low prices, you won't find a service offering a better deal than ours.

  • To save this word, you'll need to log in. Log In

critical thinking

Definition of critical thinking

Examples of critical thinking in a sentence.

These examples are programmatically compiled from various online sources to illustrate current usage of the word 'critical thinking.' Any opinions expressed in the examples do not represent those of Merriam-Webster or its editors. Send us feedback about these examples.

Word History

1815, in the meaning defined at sense 1

Dictionary Entries Near critical thinking

critical temperature

critical value

Cite this Entry

“Critical thinking.” Merriam-Webster.com Dictionary , Merriam-Webster, https://www.merriam-webster.com/dictionary/critical%20thinking. Accessed 19 Sep. 2024.

Subscribe to America's largest dictionary and get thousands more definitions and advanced search—ad free!

Play Quordle: Guess all four words in a limited number of tries.  Each of your guesses must be a real 5-letter word.

Can you solve 4 words at once?

Word of the day, approbation.

See Definitions and Examples »

Get Word of the Day daily email!

Popular in Grammar & Usage

Plural and possessive names: a guide, 31 useful rhetorical devices, more commonly misspelled words, absent letters that are heard anyway, how to use accents and diacritical marks, popular in wordplay, 8 words for lesser-known musical instruments, it's a scorcher words for the summer heat, 7 shakespearean insults to make life more interesting, 10 words from taylor swift songs (merriam's version), 9 superb owl words, games & quizzes.

Play Blossom: Solve today's spelling word game by finding as many words as you can using just 7 letters. Longer words score more points.

Dictionary Assamese - English

Translations from dictionary assamese - english, definitions, grammar.

In Glosbe you will find translations from Assamese into English coming from various sources. The translations are sorted from the most common to the less popular. We make every effort to ensure that each expression has definitions or information about the inflection.

In context translations Assamese - English, translated sentences

Glosbe dictionaries are unique. In Glosbe you can check not only Assamese or English translations. We also offer usage examples showing dozens of translated sentences. You can see not only the translation of the phrase you are searching for, but also how it is translated depending on the context.

Translation memory for Assamese - English languages

The translated sentences you will find in Glosbe come from parallel corpora (large databases with translated texts). Translation memory is like having the support of thousands of translators available in a fraction of a second.

Pronunciation, recordings

Often the text alone is not enough. We also need to hear what the phrase or sentence sounds like. In Glosbe you will find not only translations from the Assamese-English dictionary, but also audio recordings and high-quality computer readers.

Picture dictionary

A picture is worth more than a thousand words. In addition to text translations, in Glosbe you will find pictures that present searched terms.

Automatic Assamese - English translator

Do you need to translate a longer text? No problem, in Glosbe you will find a Assamese - English translator that will easily translate the article or file you are interested in.

It's nice to welcome you to the Glosbe Community. How about adding entries to the dictionary?

Add translation

Help us to build the best dictionary.

Glosbe is a community based project created by people just like you.

Please, add new entries to the dictionary.

Recent changes

Statistics of the assamese - english dictionary, language assamese, language english.

Bookmark this page

  • Call for Volunteers!
  • Our Team of Presenters
  • Fellows of the Foundation
  • Dr. Richard Paul
  • Dr. Linda Elder
  • Dr. Gerald Nosich
  • Contact Us - Office Information
  • Permission to Use Our Work
  • Create a CriticalThinking.Org Account
  • Contributions to the Foundation for Critical Thinking
  • Testimonials
  • Center for Critical Thinking
  • The National Council for Excellence in Critical Thinking
  • International Center for the Assessment of Higher Order Thinking
  • Library of Critical Thinking Resources
  • Professional Development
  • Inservice Information Request Form
  • Certification Online Course
  • The State of Critical Thinking Today
  • Higher Education
  • K-12 Instruction
  • Customized Webinars and Online Courses for Faculty
  • Business & Professional Groups
  • The Center for Critical Thinking Community Online
  • Certification in the Paul-Elder Approach to Critical Thinking
  • Professional Development Model - College and University
  • Professional Development Model for K-12
  • Workshop Descriptions
  • Online Courses in Critical Thinking
  • Critical Thinking Training for Law Enforcement
  • Consulting for Leaders and Key Personnel at Your Organization
  • Critical Thinking Therapy
  • Conferences & Events
  • Upcoming Learning Opportunities
  • 2024 Fall Academy on Critical Thinking
  • Daily Schedule
  • Transportation, Lodging, and Social Functions
  • Critical Thinking Therapy Release & Book Signing
  • Academy Presuppositions
  • Save the Date: 45th Annual International Conference on Critical Thinking
  • Presuppositions of the Conference
  • Call for Proposals
  • Conference Archives
  • 44th Annual International Conference on Critical Thinking
  • Focal Session Descriptions
  • Guest Presentation Program
  • Presuppositions of the 44th Annual International Conference on Critical Thinking
  • Recommended Reading
  • 43rd Annual International Conference on Critical Thinking
  • Register as an Ambassador
  • Testimonials from Past Attendees
  • Thank You to Our Donors
  • 42nd Annual International Conference on Critical Thinking
  • Overview of Sessions (Flyer)
  • Presuppositions of the Annual International Conference
  • Testimonials from Past Conferences
  • 41st Annual International Conference on Critical Thinking
  • Recommended Publications
  • Dedication to Our Donors
  • 40th Annual International Conference on Critical Thinking
  • Session Descriptions
  • Testimonials from Prior Conferences
  • International Critical Thinking Manifesto
  • Scholarships Available
  • 39th Annual International Conference on Critical Thinking
  • Travel and Lodging Info
  • FAQ & General Announcements
  • Focal and Plenary Session Descriptions
  • Program and Proceedings of the 39th Annual International Conference on Critical Thinking
  • The Venue: KU Leuven
  • Call for Critical Thinking Ambassadors
  • Conference Background Information
  • 38th Annual International Conference on Critical Thinking
  • Call for Ambassadors for Critical Thinking
  • Conference Focal Session Descriptions
  • Conference Concurrent Session Descriptions
  • Conference Roundtable Discussions
  • Conference Announcements and FAQ
  • Conference Program and Proceedings
  • Conference Daily Schedule
  • Conference Hotel Information
  • Conference Academic Credit
  • Conference Presuppositions
  • What Participants Have Said About the Conference
  • 37th Annual International Conference on Critical Thinking
  • Registration & Fees
  • FAQ and Announcements
  • Conference Presenters
  • 37th Conference Flyer
  • Program and Proceedings of the 37th Conference
  • 36th International Conference
  • Conference Sessions
  • Conference Flyer
  • Program and Proceedings
  • Academic Credit
  • 35th International Conference
  • Conference Session Descriptions
  • Available Online Sessions
  • Bertrand Russell Distinguished Scholar - Daniel Ellsberg
  • 35th International Conference Program
  • Concurrent Sessions
  • Posthumous Bertrand Russell Scholar
  • Hotel Information
  • Conference FAQs
  • Visiting UC Berkeley
  • 34th INTERNATIONAL CONFERENCE
  • Bertrand Russell Distinguished Scholar - Ralph Nader
  • Conference Concurrent Presenters
  • Conference Program
  • Conference Theme
  • Roundtable Discussions
  • Flyer for Bulletin Boards
  • 33rd INTERNATIONAL CONFERENCE
  • 33rd International Conference Program
  • 33rd International Conference Sessions
  • 33rd International Conference Presenters
  • The Bertrand Russell Distinguished Scholars Critical Thinking Conversations
  • 33rd International Conference - Fees & Registration
  • 33rd International Conference Concurrent Presenters
  • 33rd International Conference - Hotel Information
  • 33rd International Conference Flyer
  • 32nd INTERNATIONAL CONFERENCE
  • 32nd Annual Conference Sessions
  • 32nd Annual Conference Presenter Information
  • 32nd Conference Program
  • The Bertrand Russell Distinguished Scholars Critical Thinking Lecture Series
  • 32nd Annual Conference Concurrent Presenters
  • 32nd Annual Conference Academic Credit
  • 31st INTERNATIONAL CONFERENCE
  • 31st Conference Sessions
  • Comments about previous conferences
  • Conference Hotel (2011)
  • 31st Concurrent Presenters
  • Registration Fees
  • 31st International Conference
  • 30th INTERNATIONAL CONFERENCE ON CRITICAL THINKING
  • 30th International Conference Theme
  • 30th Conference Sessions
  • PreConference Sessions
  • 30th Concurrent Presenters
  • 30th Conference Presuppositions
  • Hilton Garden Inn
  • 29th International Conference
  • 29th Conference Theme
  • 29th Conference Sessions
  • 29th Preconference Sessions
  • 29th Conference Concurrent Sessions
  • 2008 International Conference on Critical Thinking
  • 2008 Preconference Sessions (28th Intl. Conference)
  • 2007 Conference on Critical Thinking (Main Page)
  • 2007 Conference Theme and sessions
  • 2007 Pre-Conference Workshops
  • 2006 Annual International Conference (archived)
  • 2006 International Conference Theme
  • 2005 International Conference (archived)
  • Prior Conference Programs (Pre 2000)
  • Workshop Archives
  • Spring 2022 Online Workshops
  • 2021 Online Workshops for Winter & Spring
  • 2019 Seminar for Military and Intelligence Trainers and Instructors
  • Transportation, Lodging, and Recreation
  • Seminar Flyer
  • 2013 Spring Workshops
  • Our Presenters
  • 2013 Spring Workshops - Hotel Information
  • 2013 Spring Workshops Flyer
  • 2013 Spring Workshops - Schedule
  • Spring Workshop 2012
  • 2012 Spring Workshop Strands
  • 2012 Spring Workshop Flier
  • 2011 Spring Workshop
  • Spring 2010 Workshop Strands
  • 2009 Spring Workshops on Critical Thinking
  • 2008 SPRING Workshops and Seminars on Critical Thinking
  • 2008 Ethical Reasoning Workshop
  • 2008 - On Richard Paul's Teaching Design
  • 2008 Engineering Reasoning Workshop
  • 2008 Academia sobre Formulando Preguntas Esenciales
  • Fellows Academy Archives
  • 2017 Fall International Fellows Academy
  • 4th International Fellows Academy - 2016
  • 3rd International Fellows Academy
  • 2nd International Fellows Academy
  • 1st International Fellows Academy
  • Academy Archives
  • October 2019 Critical Thinking Academy for Educators and Administrators
  • Transportation, Lodging, and Leisure
  • Advanced Seminar: Oxford Tutorial
  • Recreational Group Activities
  • Limited Scholarships Available
  • September 2019 Critical Thinking Educators and Administrators Academy
  • 2019 Critical Thinking Training for Trainers and Advanced Academy
  • Academy Flyer
  • Seattle, WA 2017 Spring Academy
  • San Diego, CA 2017 Spring Academy
  • 2016 Spring Academy -- Washington D.C.
  • 2016 Spring Academy -- Houston, TX
  • The 2nd International Academy on Critical Thinking (Oxford 2008)
  • 2007 National Academy on Critical Thinking Testing and Assessment
  • 2006 Cambridge Academy (archived)
  • 2006 Cambridge Academy Theme
  • 2006 Cambridge Academy Sessions
  • Accommodations at St. John's College
  • Assessment & Testing
  • A Model for the National Assessment of Higher Order Thinking
  • International Critical Thinking Essay Test
  • Online Critical Thinking Basic Concepts Test
  • Online Critical Thinking Basic Concepts Sample Test
  • Consequential Validity: Using Assessment to Drive Instruction
  • News & Announcements
  • Newest Pages Added to CriticalThinking.Org
  • Online Learning
  • Critical Thinking Online Courses
  • Critical Thinking Blog
  • 2019 Blog Entries
  • 2020 Blog Entries
  • 2021 Blog Entries
  • 2022 Blog Entries
  • 2023 Blog Entries
  • Online Courses for Your Students
  • 2023 Webinar Archives
  • 2022 Webinar Archives
  • 2021 Webinar Archive
  • 2020 Webinar Archive
  • Guided Study Groups
  • Critical Thinking Channel on YouTube
  • CT800: Fall 2024

Translate this page from English...

*Machine translated pages not guaranteed for accuracy. Click Here for our professional translations.

critical thinking meaning in assamese

Critical Thinking: Where to Begin

critical thinking meaning in assamese

  • For College and University Faculty
  • For College and University Students
  • For High School Teachers
  • For Jr. High School Teachers
  • For Elementary Teachers (Grades 4-6)
  • For Elementary Teachers (Kindergarten - 3rd Grade)
  • For Science and Engineering Instruction
  • For Business and Professional Development
  • For Nursing and Health Care
  • For Home Schooling and Home Study

If you are new to critical thinking or wish to deepen your conception of it, we recommend you review the content below and bookmark this page for future reference.

Our Conception of Critical Thinking...

getting started with critical thinking

"Critical thinking is the intellectually disciplined process of actively and skillfully conceptualizing, applying, analyzing, synthesizing, and/or evaluating information gathered from, or generated by, observation, experience, reflection, reasoning, or communication, as a guide to belief and action. In its exemplary form, it is based on universal intellectual values that transcend subject matter divisions: clarity, accuracy, precision, consistency, relevance, sound evidence, good reasons, depth, breadth, and fairness..."

"Critical thinking is self-guided, self-disciplined thinking which attempts to reason at the highest level of quality in a fairminded way. People who think critically attempt, with consistent and conscious effort, to live rationally, reasonably, and empathically. They are keenly aware of the inherently flawed nature of human thinking when left unchecked. They strive to diminish the power of their egocentric and sociocentric tendencies. They use the intellectual tools that critical thinking offers – concepts and principles that enable them to analyze, assess, and improve thinking. They work diligently to develop the intellectual virtues of intellectual integrity, intellectual humility, intellectual civility, intellectual empathy, intellectual sense of justice and confidence in reason. They realize that no matter how skilled they are as thinkers, they can always improve their reasoning abilities and they will at times fall prey to mistakes in reasoning, human irrationality, prejudices, biases, distortions, uncritically accepted social rules and taboos, self-interest, and vested interest.

They strive to improve the world in whatever ways they can and contribute to a more rational, civilized society. At the same time, they recognize the complexities often inherent in doing so. They strive never to think simplistically about complicated issues and always to consider the rights and needs of relevant others. They recognize the complexities in developing as thinkers, and commit themselves to life-long practice toward self-improvement. They embody the Socratic principle: The unexamined life is not worth living , because they realize that many unexamined lives together result in an uncritical, unjust, dangerous world."

Why Critical Thinking?

critical thinking meaning in assamese

The Problem:

Everyone thinks; it is our nature to do so. But much of our thinking, left to itself, is biased, distorted, partial, uninformed, or down-right prejudiced. Yet the quality of our lives and that of what we produce, make, or build depends precisely on the quality of our thought. Shoddy thinking is costly, both in money and in quality of life. Excellence in thought, however, must be systematically cultivated.

A Brief Definition:

Critical thinking is the art of analyzing and evaluating thinking with a view to improving it. The Result: 

  A well-cultivated critical thinker:

  • raises vital questions and problems, formulating them clearly and precisely;
  • gathers and assesses relevant information, using abstract ideas to interpret it effectively;
  • comes to well-reasoned conclusions and solutions, testing them against relevant criteria and standards;
  • thinks openmindedly within alternative systems of thought, recognizing and assessing, as need be, their assumptions, implications, and practical consequences; and
  • communicates effectively with others in figuring out solutions to complex problems.

Critical thinking is, in short, self-directed, self-disciplined, self-monitored, and self-corrective thinking. It requires rigorous standards of excellence and mindful command of their use. It entails effective communication and problem-solving abilities, and a commitment to overcoming our native egocentrism and sociocentrism. Read more about our concept of critical thinking .

The Essential Dimensions of Critical Thinking

critical thinking meaning in assamese

Our conception of critical thinking is based on the substantive approach developed by Dr. Richard Paul and his colleagues at the Center and Foundation for Critical Thinking over multiple decades. It is relevant to every subject, discipline, and profession, and to reasoning through the problems of everyday life. It entails five essential dimensions of critical thinking:

At the left is an overview of the first three dimensions. In sum, the elements or structures of thought enable us to "take our thinking apart" and analyze it. The intellectual standards are used to assess and evaluate the elements. The intellectual traits are dispositions of mind embodied by the fairminded critical thinker. To cultivate the mind, we need command of these essential dimensions, and we need to consistently apply them as we think through the many problems and issues in our lives.

The Elements of Reasoning and Intellectual Standards

critical thinking meaning in assamese

To learn more about the elements of thought and how to apply the intellectual standards, check out our interactive model. Simply click on the link below, scroll to the bottom of the page, and explore the model with your mouse.

Why the Analysis of Thinking Is Important If you want to think well, you must understand at least the rudiments of thought, the most basic structures out of which all thinking is made. You must learn how to take thinking apart. Analyzing the Logic of a Subject When we understand the elements of reasoning, we realize that all subjects, all disciplines, have a fundamental logic defined by the structures of thought embedded within them. Therefore, to lay bare a subject’s most fundamental logic, we should begin with these questions:

critical thinking meaning in assamese

Going Deeper...

critical thinking meaning in assamese

The Critical Thinking Bookstore  

Our online bookstore houses numerous books and teacher's manuals , Thinker's Guides , videos , and other educational materials .  

Learn From Our Fellows and Scholars

Watch our Event Calendar , which provides an overview of all upcoming conferences and academies hosted by the Foundation for Critical Thinking. Clicking an entry on the Event Calendar will bring up that event's details, and the option to register. For those interested in online learning, the Foundation offers accredited online courses in critical thinking for both educators and the general public, as well as an online test for evaluating basic comprehension of critical thinking concepts . We are in the process of developing more online learning tools and tests to offer the community.  

Utilizing this Website

This website contains large amounts research and an online library of articles , both of which are freely available to the public. We also invite you to become a member of the Critical Thinking Community , where you will gain access to more tools and materials.  If you cannot locate a resource on a specific topic or concept, try searching for it using our Search Tool . The Search Tool is at the upper-right of every page on the website.

critical thinking meaning in assamese

Hosting service

Enjoy all of the benefits of your Lucidea solution with secure, reliable, stress free hosting

Programs & incentives

No matter your size or budget, we’ve got you covered, today and tomorrow

Think Clearly Blog

Grants directory, our partners, critical thinking and the role of special librarians.

Lauren Hays

Lauren Hays

The value placed on the skill of critical thinking is immeasurable. Unfortunately, it can seem elusive to teach.

As librarians, we know critical thinking is necessary to be able to use information well, but helping individuals develop that skill can sometimes feel beyond what we can offer.

In this post, I want to highlight a few things about critical thinking that I believe may change your perspective on it—and on what our role should be as librarians in fostering its growth.

The Connection between Knowledge and Critical Thinking

Daniel Willingham is a Professor of Psychology at the University of Virginia. He has influenced my thoughts on critical thinking in profound ways. When I was going through school, I always felt that critical thinking was something one could learn. And while there certainly are ways of thinking that are skill-based and can be taught, critical thinking is something that requires more than just a certain set of skills.

What do I mean by that?

To highlight Dr. Willingham’s work, he states that we can remind students to think about both sides of an argument or evaluate works in a specific way. However, the ability to transfer those skills to new areas is often a struggle. This is because the ability to think critically about something requires knowledge of the subject. In other words, an individual must have content knowledge in order to think critically about the subject.

Dr. Willingham has written in much more detail about this, and I encourage you to read the recommended articles below.

What Does this Mean for Librarians?

For librarians, I believe the importance of content knowledge for critical thinking highlights the vital need for information literacy. In today’s information age, the amount of information we are bombarded with is amazing and can often make us think we are well informed on a topic. We know just enough to form an opinion.

However, many of us need to dig deeper into the nuances and complexities of a topic to have the ability to truly think critically about it. The ability to dig deeper into the nuances and complexities of a topic is much more than the ability to conduct a quick Google search. Instead, it means knowing how to follow an argument over time in different sources. It means knowing how to locate primary sources on a specific topic (and this varies greatly by field), it means knowing how to evaluate the authority of the author (this also varies by field), and means knowing how to identify when you have actually uncovered the different facets of a topic.

None of these skills is easy and they all take time to learn. This is where subject specific librarians are of such value. Special librarians are expert in the information landscapes of the sectors in which they work. Immersion in discipline-specific information landscapes can lead to critical thinking.

Recommended Reading:

  • How to Teach Critical Thinking by Daniel T. Willingham
  • Critical Thinking: Why Is it So Hard to Teach by Daniel T. Willingham

How Librarians Can Support AI Policy Development

by Lauren Hays | Sep 10, 2024

Librarians’ unique position at the intersection of information, technology, and academia makes them valuable contributors to AI policy development.

Interview with the Authors: Leachman and Libby on Training Library Staff

Interview with the Authors: Leachman and Libby on Training Library Staff

by Lauren Hays | Sep 3, 2024

Emily Leachman and Garrison Libby are the authors of A Complete Guide to Training Library Staff available later this year from Bloomsbury Press.

Intellectual Property and AI

Intellectual Property and AI

by Lauren Hays | Aug 27, 2024

Resources to help you think about intellectual property when you use AI, plus links to repositories of AI-generated images from a library expert.

“Back to School” Edition: Library Outreach Ideas

“Back to School” Edition: Library Outreach Ideas

by Lauren Hays | Aug 20, 2024

17 actionable methods for marketing libraries of all types, sizes, and budgets from a library expert and instructor

Leave a Comment

Submit a comment cancel reply.

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

Submit Comment

Pin It on Pinterest

COMMENTS

  1. Developing Critical Thinking Skills

    Explore the significance of critical thinking in personal and professional growth. Learn how to nurture this skill in education and the workplace.

  2. Assamese Dictionary

    assamesedictionary.in is an Assamese English Online Dictionary developed by Departmrnt of Computer Application Jorhat Engineering College (JEC), Assam. It has a library of more than 32,000 assamese words (oxomia xobdo). It also provides meaning of the assamese word with an english description and pronounciation of the word with sound. The words of 'Assamese Dictionary' have been collected ...

  3. Google Translate

    Google's service, offered free of charge, instantly translates words, phrases, and web pages between English and over 100 other languages.

  4. The English

    Translations from dictionary English - Assamese, definitions, grammar. In Glosbe you will find translations from English into Assamese coming from various sources. The translations are sorted from the most common to the less popular. We make every effort to ensure that each expression has definitions or information about the inflection.

  5. Assamese dictionary, language, grammar LEXILOGOS

    The Assamese language is spoken in the State of Assam, in Northeast India. It's written with the Bengali script. • Aspects of early Assamese literature by Banikanta Kakati (1953) • YouVersion: translation of the Bible into Assamese (2019) (+ audio) • Hymns in Assamese, edited by the Baptist Mission (1850)

  6. Critical thinking

    Critical thinking is the analysis of available facts, evidence, observations, and arguments in order to form a judgement by the application of rational, skeptical, and unbiased analyses and evaluation. [1] In modern times, the use of the phrase critical thinking can be traced to John Dewey, who used the phrase reflective thinking. [2] The application of critical thinking includes self-directed ...

  7. Critical Thinking

    Critical Theory refers to a way of doing philosophy that involves a moral critique of culture. A "critical" theory, in this sense, is a theory that attempts to disprove or discredit a widely held or influential idea or way of thinking in society. Thus, critical race theorists and critical gender theorists offer critiques of traditional ...

  8. What Is Critical Thinking?

    Critical thinking is the ability to effectively analyze information and form a judgment. To think critically, you must be aware of your own biases and assumptions when encountering information, and apply consistent standards when evaluating sources. Critical thinking skills help you to: Identify credible sources. Evaluate and respond to arguments.

  9. (PDF) Assamese Language, Narrative and the Making of North East

    Assamese Language, Narrative and the Making of North East Frontier of India ... which has experienced extensive critical performances by a range of scholars in the recent past. ... approach to cultural formation that came about since the nineteenth century through investing in the authenticity and meaning only of the manuscript rather than in ...

  10. think in Assamese

    thinking thinnaba thinness third third eye thirdly thirst Translation of "think" into Assamese . গমি-পিতি চা, গুণ্, চিন্তা are the top translations of "think" into Assamese. Sample translated sentence: How do you think the people have felt living here all these years without walls around their city? ↔ ...

  11. Defining Critical Thinking

    Critical thinking is, in short, self-directed, self-disciplined, self-monitored, and self-corrective thinking. It presupposes assent to rigorous standards of excellence and mindful command of their use. It entails effective communication and problem solving abilities and a commitment to overcome our native egocentrism and sociocentrism.

  12. What Is Critical Thinking?

    Critical thinking is the process of analyzing information logically and overcoming assumptions, biases, and logical fallacies. Developing critical thinking skills allows us to evaluate information as objectively as possible and reach well-founded conclusions. When researching a political candidate you support, you find an article criticizing ...

  13. Our Conception of Critical Thinking

    A Definition. Critical thinking is that mode of thinking — about any subject, content, or problem — in which the thinker improves the quality of his or her thinking by skillfully analyzing, assessing, and reconstructing it. Critical thinking is self-directed, self-disciplined, self-monitored, and self-corrective thinking.

  14. Critical thinking

    Critical thinking is characterized by a broad set of related skills usually including the abilities to. break down a problem into its constituent parts to reveal its underlying logic and assumptions. recognize and account for one's own biases in judgment and experience.

  15. Bridging critical thinking and transformative learning: The role of

    In recent decades, approaches to critical thinking have generally taken a practical turn, pivoting away from more abstract accounts - such as emphasizing the logical relations that hold between statements (Ennis, 1964) - and moving toward an emphasis on belief and action.According to the definition that Robert Ennis (2018) has been advocating for the last few decades, critical thinking is ...

  16. Using Critical Thinking in Essays and other Assignments

    Critical thinking, as described by Oxford Languages, is the objective analysis and evaluation of an issue in order to form a judgement. Active and skillful approach, evaluation, assessment, synthesis, and/or evaluation of information obtained from, or made by, observation, knowledge, reflection, acumen or conversation, as a guide to belief and action, requires the critical thinking process ...

  17. Critical thinking Definition & Meaning

    The meaning of CRITICAL THINKING is the act or practice of thinking critically (as by applying reason and questioning assumptions) in order to solve problems, evaluate information, discern biases, etc.. How to use critical thinking in a sentence.

  18. The Assamese

    Translations from dictionary Assamese - English, definitions, grammar. In Glosbe you will find translations from Assamese into English coming from various sources. The translations are sorted from the most common to the less popular. We make every effort to ensure that each expression has definitions or information about the inflection.

  19. Critical Thinking: Where to Begin

    A Brief Definition: Critical thinking is the art of analyzing and evaluating thinking with a view to improving it. A well-cultivated critical thinker: communicates effectively with others in figuring out solutions to complex problems. Critical thinking is, in short, self-directed, self-disciplined, self-monitored, and self-corrective thinking.

  20. Critical Thinking and the Role of Special Librarians

    Critical thinking theory posits that an individual must have content knowledge in order to think critically about the subject. ... What Does this Mean for Librarians? For librarians, I believe the importance of content knowledge for critical thinking highlights the vital need for information literacy. In today's information age, the amount of ...

  21. Critical Thinking: The Burmese Traditional Culture of Education

    "Buddhist monastery schools are the sec ond largest education institutions in Burma. A senior monk has suggested that critical thinking strategies are the method of the Buddha?s teaching. The presentati on will explore the practice of critical thinking teaching strategies in Burmese sc hools, and in refugee and migrant schools on the Thai-Burma border from 2002 to 2010. It will also report on ...