Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology

Research Methods | Definition, Types, Examples

Research methods are specific procedures for collecting and analysing data. Developing your research methods is an integral part of your research design . When planning your methods, there are two key decisions you will make.

First, decide how you will collect data . Your methods depend on what type of data you need to answer your research question :

  • Qualitative vs quantitative : Will your data take the form of words or numbers?
  • Primary vs secondary : Will you collect original data yourself, or will you use data that have already been collected by someone else?
  • Descriptive vs experimental : Will you take measurements of something as it is, or will you perform an experiment?

Second, decide how you will analyse the data .

  • For quantitative data, you can use statistical analysis methods to test relationships between variables.
  • For qualitative data, you can use methods such as thematic analysis to interpret patterns and meanings in the data.

Table of contents

Methods for collecting data, examples of data collection methods, methods for analysing data, examples of data analysis methods, frequently asked questions about methodology.

Data are the information that you collect for the purposes of answering your research question . The type of data you need depends on the aims of your research.

Qualitative vs quantitative data

Your choice of qualitative or quantitative data collection depends on the type of knowledge you want to develop.

For questions about ideas, experiences and meanings, or to study something that can’t be described numerically, collect qualitative data .

If you want to develop a more mechanistic understanding of a topic, or your research involves hypothesis testing , collect quantitative data .

Qualitative
Quantitative .

You can also take a mixed methods approach, where you use both qualitative and quantitative research methods.

Primary vs secondary data

Primary data are any original information that you collect for the purposes of answering your research question (e.g. through surveys , observations and experiments ). Secondary data are information that has already been collected by other researchers (e.g. in a government census or previous scientific studies).

If you are exploring a novel research question, you’ll probably need to collect primary data. But if you want to synthesise existing knowledge, analyse historical trends, or identify patterns on a large scale, secondary data might be a better choice.

Primary
Secondary

Descriptive vs experimental data

In descriptive research , you collect data about your study subject without intervening. The validity of your research will depend on your sampling method .

In experimental research , you systematically intervene in a process and measure the outcome. The validity of your research will depend on your experimental design .

To conduct an experiment, you need to be able to vary your independent variable , precisely measure your dependent variable, and control for confounding variables . If it’s practically and ethically possible, this method is the best choice for answering questions about cause and effect.

Descriptive
Experimental

Prevent plagiarism, run a free check.

Research methods for collecting data
Research method Primary or secondary? Qualitative or quantitative? When to use
Primary Quantitative To test cause-and-effect relationships.
Primary Quantitative To understand general characteristics of a population.
Interview/focus group Primary Qualitative To gain more in-depth understanding of a topic.
Observation Primary Either To understand how something occurs in its natural setting.
Secondary Either To situate your research in an existing body of work, or to evaluate trends within a research topic.
Either Either To gain an in-depth understanding of a specific group or context, or when you don’t have the resources for a large study.

Your data analysis methods will depend on the type of data you collect and how you prepare them for analysis.

Data can often be analysed both quantitatively and qualitatively. For example, survey responses could be analysed qualitatively by studying the meanings of responses or quantitatively by studying the frequencies of responses.

Qualitative analysis methods

Qualitative analysis is used to understand words, ideas, and experiences. You can use it to interpret data that were collected:

  • From open-ended survey and interview questions, literature reviews, case studies, and other sources that use text rather than numbers.
  • Using non-probability sampling methods .

Qualitative analysis tends to be quite flexible and relies on the researcher’s judgement, so you have to reflect carefully on your choices and assumptions.

Quantitative analysis methods

Quantitative analysis uses numbers and statistics to understand frequencies, averages and correlations (in descriptive studies) or cause-and-effect relationships (in experiments).

You can use quantitative analysis to interpret data that were collected either:

  • During an experiment.
  • Using probability sampling methods .

Because the data are collected and analysed in a statistically valid way, the results of quantitative analysis can be easily standardised and shared among researchers.

Research methods for analysing data
Research method Qualitative or quantitative? When to use
Quantitative To analyse data collected in a statistically valid manner (e.g. from experiments, surveys, and observations).
Meta-analysis Quantitative To statistically analyse the results of a large collection of studies.

Can only be applied to studies that collected data in a statistically valid manner.

Qualitative To analyse data collected from interviews, focus groups or textual sources.

To understand general themes in the data and how they are communicated.

Either To analyse large volumes of textual or visual data collected from surveys, literature reviews, or other sources.

Can be quantitative (i.e. frequencies of words) or qualitative (i.e. meanings of words).

Quantitative research deals with numbers and statistics, while qualitative research deals with words and meanings.

Quantitative methods allow you to test a hypothesis by systematically collecting and analysing data, while qualitative methods allow you to explore ideas and experiences in depth.

In mixed methods research , you use both qualitative and quantitative data collection and analysis methods to answer your research question .

A sample is a subset of individuals from a larger population. Sampling means selecting the group that you will actually collect data from in your research.

For example, if you are researching the opinions of students in your university, you could survey a sample of 100 students.

Statistical sampling allows you to test a hypothesis about the characteristics of a population. There are various sampling methods you can use to ensure that your sample is representative of the population as a whole.

The research methods you use depend on the type of data you need to answer your research question .

  • If you want to measure something or test a hypothesis , use quantitative methods . If you want to explore ideas, thoughts, and meanings, use qualitative methods .
  • If you want to analyse a large amount of readily available data, use secondary data. If you want data specific to your purposes with control over how they are generated, collect primary data.
  • If you want to establish cause-and-effect relationships between variables , use experimental methods. If you want to understand the characteristics of a research subject, use descriptive methods.

Methodology refers to the overarching strategy and rationale of your research project . It involves studying the methods used in your field and the theories or principles behind them, in order to develop an approach that matches your objectives.

Methods are the specific tools and procedures you use to collect and analyse data (e.g. experiments, surveys , and statistical tests ).

In shorter scientific papers, where the aim is to report the findings of a specific study, you might simply describe what you did in a methods section .

In a longer or more complex research project, such as a thesis or dissertation , you will probably include a methodology section , where you explain your approach to answering the research questions and cite relevant sources to support your choice of methods.

Is this article helpful?

More interesting articles.

  • A Quick Guide to Experimental Design | 5 Steps & Examples
  • Between-Subjects Design | Examples, Pros & Cons
  • Case Study | Definition, Examples & Methods
  • Cluster Sampling | A Simple Step-by-Step Guide with Examples
  • Confounding Variables | Definition, Examples & Controls
  • Construct Validity | Definition, Types, & Examples
  • Content Analysis | A Step-by-Step Guide with Examples
  • Control Groups and Treatment Groups | Uses & Examples
  • Controlled Experiments | Methods & Examples of Control
  • Correlation vs Causation | Differences, Designs & Examples
  • Correlational Research | Guide, Design & Examples
  • Critical Discourse Analysis | Definition, Guide & Examples
  • Cross-Sectional Study | Definitions, Uses & Examples
  • Data Cleaning | A Guide with Examples & Steps
  • Data Collection Methods | Step-by-Step Guide & Examples
  • Descriptive Research Design | Definition, Methods & Examples
  • Doing Survey Research | A Step-by-Step Guide & Examples
  • Ethical Considerations in Research | Types & Examples
  • Explanatory Research | Definition, Guide, & Examples
  • Explanatory vs Response Variables | Definitions & Examples
  • Exploratory Research | Definition, Guide, & Examples
  • External Validity | Types, Threats & Examples
  • Extraneous Variables | Examples, Types, Controls
  • Face Validity | Guide with Definition & Examples
  • How to Do Thematic Analysis | Guide & Examples
  • How to Write a Strong Hypothesis | Guide & Examples
  • Inclusion and Exclusion Criteria | Examples & Definition
  • Independent vs Dependent Variables | Definition & Examples
  • Inductive Reasoning | Types, Examples, Explanation
  • Inductive vs Deductive Research Approach (with Examples)
  • Internal Validity | Definition, Threats & Examples
  • Internal vs External Validity | Understanding Differences & Examples
  • Longitudinal Study | Definition, Approaches & Examples
  • Mediator vs Moderator Variables | Differences & Examples
  • Mixed Methods Research | Definition, Guide, & Examples
  • Multistage Sampling | An Introductory Guide with Examples
  • Naturalistic Observation | Definition, Guide & Examples
  • Operationalisation | A Guide with Examples, Pros & Cons
  • Population vs Sample | Definitions, Differences & Examples
  • Primary Research | Definition, Types, & Examples
  • Qualitative vs Quantitative Research | Examples & Methods
  • Quasi-Experimental Design | Definition, Types & Examples
  • Questionnaire Design | Methods, Question Types & Examples
  • Random Assignment in Experiments | Introduction & Examples
  • Reliability vs Validity in Research | Differences, Types & Examples
  • Reproducibility vs Replicability | Difference & Examples
  • Research Design | Step-by-Step Guide with Examples
  • Sampling Methods | Types, Techniques, & Examples
  • Semi-Structured Interview | Definition, Guide & Examples
  • Simple Random Sampling | Definition, Steps & Examples
  • Stratified Sampling | A Step-by-Step Guide with Examples
  • Structured Interview | Definition, Guide & Examples
  • Systematic Review | Definition, Examples & Guide
  • Systematic Sampling | A Step-by-Step Guide with Examples
  • Textual Analysis | Guide, 3 Approaches & Examples
  • The 4 Types of Reliability in Research | Definitions & Examples
  • The 4 Types of Validity | Types, Definitions & Examples
  • Transcribing an Interview | 5 Steps & Transcription Software
  • Triangulation in Research | Guide, Types, Examples
  • Types of Interviews in Research | Guide & Examples
  • Types of Research Designs Compared | Examples
  • Types of Variables in Research | Definitions & Examples
  • Unstructured Interview | Definition, Guide & Examples
  • What Are Control Variables | Definition & Examples
  • What Is a Case-Control Study? | Definition & Examples
  • What Is a Cohort Study? | Definition & Examples
  • What Is a Conceptual Framework? | Tips & Examples
  • What Is a Double-Barrelled Question?
  • What Is a Double-Blind Study? | Introduction & Examples
  • What Is a Focus Group? | Step-by-Step Guide & Examples
  • What Is a Likert Scale? | Guide & Examples
  • What is a Literature Review? | Guide, Template, & Examples
  • What Is a Prospective Cohort Study? | Definition & Examples
  • What Is a Retrospective Cohort Study? | Definition & Examples
  • What Is Action Research? | Definition & Examples
  • What Is an Observational Study? | Guide & Examples
  • What Is Concurrent Validity? | Definition & Examples
  • What Is Content Validity? | Definition & Examples
  • What Is Convenience Sampling? | Definition & Examples
  • What Is Convergent Validity? | Definition & Examples
  • What Is Criterion Validity? | Definition & Examples
  • What Is Deductive Reasoning? | Explanation & Examples
  • What Is Discriminant Validity? | Definition & Example
  • What Is Ecological Validity? | Definition & Examples
  • What Is Ethnography? | Meaning, Guide & Examples
  • What Is Non-Probability Sampling? | Types & Examples
  • What Is Participant Observation? | Definition & Examples
  • What Is Peer Review? | Types & Examples
  • What Is Predictive Validity? | Examples & Definition
  • What Is Probability Sampling? | Types & Examples
  • What Is Purposive Sampling? | Definition & Examples
  • What Is Qualitative Observation? | Definition & Examples
  • What Is Qualitative Research? | Methods & Examples
  • What Is Quantitative Observation? | Definition & Examples
  • What Is Quantitative Research? | Definition & Methods
  • What Is Quota Sampling? | Definition & Examples
  • What is Secondary Research? | Definition, Types, & Examples
  • What Is Snowball Sampling? | Definition & Examples
  • Within-Subjects Design | Explanation, Approaches, Examples

Statistical Methods for Data Analysis: a Comprehensive Guide

In today’s data-driven world, understanding statistical methods for data analysis is like having a superpower.

Whether you’re a student, a professional, or just a curious mind, diving into the realm of data can unlock insights and decisions that propel success.

Statistical methods for data analysis are the tools and techniques used to collect, analyze, interpret, and present data in a meaningful way.

From businesses optimizing operations to researchers uncovering new discoveries, these methods are foundational to making informed decisions based on data.

In this blog post, we’ll embark on a journey through the fascinating world of statistical analysis, exploring its key concepts, methodologies, and applications.

Introduction to Statistical Methods

At its core, statistical methods are the backbone of data analysis, helping us make sense of numbers and patterns in the world around us.

Whether you’re looking at sales figures, medical research, or even your fitness tracker’s data, statistical methods are what turn raw data into useful insights.

But before we dive into complex formulas and tests, let’s start with the basics.

Data comes in two main types: qualitative and quantitative data .

Qualitative vs Quantitative Data - a simple infographic

Quantitative data is all about numbers and quantities (like your height or the number of steps you walked today), while qualitative data deals with categories and qualities (like your favorite color or the breed of your dog).

And when we talk about measuring these data points, we use different scales like nominal, ordinal , interval , and ratio.

These scales help us understand the nature of our data—whether we’re ranking it (ordinal), simply categorizing it (nominal), or measuring it with a true zero point (ratio).

Scales of Data Measurement - an infographic

In a nutshell, statistical methods start with understanding the type and scale of your data.

This foundational knowledge sets the stage for everything from summarizing your data to making complex predictions.

Descriptive Statistics: Simplifying Data

What is Descriptive Statistics - an infographic

Imagine you’re at a party and you meet a bunch of new people.

When you go home, your roommate asks, “So, what were they like?” You could describe each person in detail, but instead, you give a summary: “Most were college students, around 20-25 years old, pretty fun crowd!”

That’s essentially what descriptive statistics does for data.

It summarizes and describes the main features of a collection of data in an easy-to-understand way. Let’s break this down further.

The Basics: Mean, Median, and Mode

  • Mean is just a fancy term for the average. If you add up everyone’s age at the party and divide by the number of people, you’ve got your mean age.
  • Median is the middle number in a sorted list. If you line up everyone from the youngest to the oldest and pick the person in the middle, their age is your median. This is super handy when someone’s age is way off the chart (like if your grandma crashed the party), as it doesn’t skew the data.
  • Mode is the most common age at the party. If you notice a lot of people are 22, then 22 is your mode. It’s like the age that wins the popularity contest.

Spreading the News: Range, Variance, and Standard Deviation

  • Range gives you an idea of how spread out the ages are. It’s the difference between the oldest and the youngest. A small range means everyone’s around the same age, while a big range means a wider variety.
  • Variance is a bit more complex. It measures how much the ages differ from the average age. A higher variance means ages are more spread out.
  • Standard Deviation is the square root of variance. It’s like variance but back on a scale that makes sense. It tells you, on average, how far each person’s age is from the mean age.

Picture Perfect: Graphical Representations

  • Histograms are like bar charts showing how many people fall into different age groups. They give you a quick glance at how ages are distributed.
  • Bar Charts are great for comparing different categories, like how many men vs. women were at the party.
  • Box Plots (or box-and-whisker plots) show you the median, the range, and if there are any outliers (like grandma).
  • Scatter Plots are used when you want to see if there’s a relationship between two things, like if bringing more snacks means people stay longer at the party.

Why Descriptive Statistics Matter?

Descriptive statistics are your first step in data analysis.

They help you understand your data at a glance and prepare you for deeper analysis.

Without them, you’re like someone trying to guess what a party was like without any context.

Whether you’re looking at survey responses, test scores, or party attendees, descriptive statistics give you the tools to summarize and describe your data in a way that’s easy to grasp.

This approach is crucial in educational settings, particularly for enhancing math learning outcomes. For those looking to deepen their understanding of math or seeking additional support, check out this link:  https://www.mathnasium.com/ math-tutors-near-me .

Remember, the goal of descriptive statistics is to simplify the complex.

Inferential Statistics: Beyond the Basics

Statistics Seminar Illustration

Let’s keep the party analogy rolling, but this time, imagine you couldn’t attend the party yourself.

You’re curious if the party was as fun as everyone said it would be.

Instead of asking every single attendee, you decide to ask a few friends who went.

Based on their experiences, you try to infer what the entire party was like.

This is essentially what inferential statistics does with data.

It allows you to make predictions or draw conclusions about a larger group (the population) based on a smaller group (a sample). Let’s dive into how this works.

Probability

Inferential statistics is all about playing the odds.

When you make an inference, you’re saying, “Based on my sample, there’s a certain probability that my conclusion about the whole population is correct.”

It’s like betting on whether the party was fun, based on a few friends’ opinions.

The Central Limit Theorem (CLT)

The Central Limit Theorem is the superhero of statistics.

It tells us that if you take enough samples from a population, the sample means (averages) will form a normal distribution (a bell curve), no matter what the population distribution looks like.

This is crucial because it allows us to use sample data to make inferences about the population mean with a known level of uncertainty.

Confidence Intervals

Imagine you’re pretty sure the party was fun, but you want to know how fun.

A confidence interval gives you a range of values within which you believe the true mean fun level of the party lies.

It’s like saying, “I’m 95% confident the party’s fun rating was between 7 and 9 out of 10.”

Hypothesis Testing

This is where you get to be a bit of a detective. You start with a hypothesis (a guess) about the population.

For example, your null hypothesis might be “the party was average fun.” Then you use your sample data to test this hypothesis.

If the data strongly suggests otherwise, you might reject the null hypothesis and accept the alternative hypothesis, which could be “the party was super fun.”

The p-value tells you how likely it is that your data would have occurred by random chance if the null hypothesis were true.

A low p-value (typically less than 0.05) indicates that your findings are significant—that is, unlikely to have happened by chance.

It’s like saying, “The chance that all my friends are exaggerating about the party being fun is really low, so the party probably was fun.”

Why Inferential Statistics Matter?

Inferential statistics let us go beyond just describing our data.

They allow us to make educated guesses about a larger population based on a sample.

This is incredibly useful in almost every field—science, business, public health, and yes, even planning your next party.

By using probability, the Central Limit Theorem, confidence intervals, hypothesis testing, and p-values, we can make informed decisions without needing to ask every single person in the population.

It saves time, resources, and helps us understand the world more scientifically.

Remember, while inferential statistics gives us powerful tools for making predictions, those predictions come with a level of uncertainty.

Being a good data scientist means understanding and communicating that uncertainty clearly.

So next time you hear about a party you missed, use inferential statistics to figure out just how much FOMO (fear of missing out) you should really feel!

Common Statistical Tests: Choosing Your Data’s Best Friend

Data Analysis Research and Statistics Concept

Alright, now that we’ve covered the basics of descriptive and inferential statistics, it’s time to talk about how we actually apply these concepts to make sense of data.

It’s like deciding on the best way to find out who was the life of the party.

You have several tools (tests) at your disposal, and choosing the right one depends on what you’re trying to find out and the type of data you have.

Let’s explore some of the most common statistical tests and when to use them.

T-Tests: Comparing Averages

Imagine you want to know if the average fun level was higher at this year’s party compared to last year’s.

A t-test helps you compare the means (averages) of two groups to see if they’re statistically different.

There are a couple of flavors:

  • Independent t-test : Use this when comparing two different groups, like this year’s party vs. last year’s party.
  • Paired t-test : Use this when comparing the same group at two different times or under two different conditions, like if you measured everyone’s fun level before and after the party.

ANOVA : When Three’s Not a Crowd.

But what if you had three or more parties to compare? That’s where ANOVA (Analysis of Variance) comes in handy.

It lets you compare the means across multiple groups at once to see if at least one of them is significantly different.

It’s like comparing the fun levels across several years’ parties to see if one year stood out.

Chi-Square Test: Categorically Speaking

Now, let’s say you’re interested in whether the type of music (pop, rock, electronic) affects party attendance.

Since you’re dealing with categories (types of music) and counts (number of attendees), you’ll use the Chi-Square test.

It’s great for seeing if there’s a relationship between two categorical variables.

Correlation and Regression: Finding Relationships

What if you suspect that the amount of snacks available at the party affects how long guests stay? To explore this, you’d use:

  • Correlation analysis to see if there’s a relationship between two continuous variables (like snacks and party duration). It tells you how closely related two things are.
  • Regression analysis goes a step further by not only showing if there’s a relationship but also how one variable predicts the other. It’s like saying, “For every extra bag of chips, guests stay an average of 10 minutes longer.”

Non-parametric Tests: When Assumptions Don’t Hold

All the tests mentioned above assume your data follows a normal distribution and meets other criteria.

But what if your data doesn’t play by these rules?

Enter non-parametric tests, like the Mann-Whitney U test (for comparing two groups when you can’t use a t-test) or the Kruskal-Wallis test (like ANOVA but for non-normal distributions).

Picking the Right Test

Choosing the right statistical test is crucial and depends on:

  • The type of data you have (categorical vs. continuous).
  • Whether you’re comparing groups or looking for relationships.
  • The distribution of your data (normal vs. non-normal).

Why These Tests Matter?

Just like you’d pick the right tool for a job, selecting the appropriate statistical test helps you make valid and reliable conclusions about your data.

Whether you’re trying to prove a point, make a decision, or just understand the world a bit better, these tests are your gateway to insights.

By mastering these tests, you become a detective in the world of data, ready to uncover the truth behind the numbers!

Regression Analysis: Predicting the Future

Regression Analysis

Ever wondered if you could predict how much fun you’re going to have at a party based on the number of friends going, or how the amount of snacks available might affect the overall party vibe?

That’s where regression analysis comes into play, acting like a crystal ball for your data.

What is Regression Analysis?

Regression analysis is a powerful statistical method that allows you to examine the relationship between two or more variables of interest.

Think of it as detective work, where you’re trying to figure out if, how, and to what extent certain factors (like snacks and music volume) predict an outcome (like the fun level at a party).

The Two Main Characters: Independent and Dependent Variables

  • Independent Variable(s): These are the predictors or factors that you suspect might influence the outcome. For example, the quantity of snacks.
  • Dependent Variable: This is the outcome you’re interested in predicting. In our case, it could be the fun level of the party.

Linear Regression: The Straight Line Relationship

The most basic form of regression analysis is linear regression .

It predicts the outcome based on a linear relationship between the independent and dependent variables.

If you plot this on a graph, you’d ideally see a straight line where, as the amount of snacks increases, so does the fun level (hopefully!).

  • Simple Linear Regression involves just one independent variable. It’s like saying, “Let’s see if just the number of snacks can predict the fun level.”
  • Multiple Linear Regression takes it up a notch by including more than one independent variable. Now, you’re looking at whether the quantity of snacks, type of music, and number of guests together can predict the fun level.

Logistic Regression: When Outcomes are Either/Or

Not all predictions are about numbers.

Sometimes, you just want to know if something will happen or not—will the party be a hit or a flop?

Logistic regression is used for these binary outcomes.

Instead of predicting a precise fun level, it predicts the probability of the party being a hit based on the same predictors (snacks, music, guests).

Making Sense of the Results

  • Coefficients: In regression analysis, each predictor has a coefficient, telling you how much the dependent variable is expected to change when that predictor changes by one unit, all else being equal.
  • R-squared : This value tells you how much of the variation in your dependent variable can be explained by the independent variables. A higher R-squared means a better fit between your model and the data.

Why Regression Analysis Rocks?

Regression analysis is like having a superpower. It helps you understand which factors matter most, which can be ignored, and how different factors come together to influence the outcome.

This insight is invaluable whether you’re planning a party, running a business, or conducting scientific research.

Bringing It All Together

Imagine you’ve gathered data on several parties, including the number of guests, type of music, and amount of snacks, along with a fun level rating for each.

By running a regression analysis, you can start to predict future parties’ success, tailoring your planning to maximize fun.

It’s a practical tool for making informed decisions based on past data, helping you throw legendary parties, optimize business strategies, or understand complex relationships in your research.

In essence, regression analysis helps turn your data into actionable insights, guiding you towards smarter decisions and better predictions.

So next time you’re knee-deep in data, remember: regression analysis might just be the key to unlocking its secrets.

Non-parametric Methods: Playing By Different Rules

So far, we’ve talked a lot about statistical methods that rely on certain assumptions about your data, like it being normally distributed (forming that classic bell curve) or having a specific scale of measurement.

But what happens when your data doesn’t fit these molds?

Maybe the scores from your last party’s karaoke contest are all over the place, or you’re trying to compare the popularity of various party games but only have rankings, not scores.

This is where non-parametric methods come to the rescue.

Breaking Free from Assumptions

Non-parametric methods are the rebels of the statistical world.

They don’t assume your data follows a normal distribution or that it meets strict requirements regarding measurement scales.

These methods are perfect for dealing with ordinal data (like rankings), nominal data (like categories), or when your data is skewed or has outliers that would throw off other tests.

When to Use Non-parametric Methods?

  • Your data is not normally distributed, and transformations don’t help.
  • You have ordinal data (like survey responses that range from “Strongly Disagree” to “Strongly Agree”).
  • You’re dealing with ranks or categories rather than precise measurements.
  • Your sample size is small, making it hard to meet the assumptions required for parametric tests.

Some Popular Non-parametric Tests

  • Mann-Whitney U Test: Think of it as the non-parametric counterpart to the independent samples t-test. Use this when you want to compare the differences between two independent groups on a ranking or ordinal scale.
  • Kruskal-Wallis Test: This is your go-to when you have three or more groups to compare, and it’s similar to an ANOVA but for ranked/ordinal data or when your data doesn’t meet ANOVA’s assumptions.
  • Spearman’s Rank Correlation: When you want to see if there’s a relationship between two sets of rankings, Spearman’s got your back. It’s like Pearson’s correlation for continuous data but designed for ranks.
  • Wilcoxon Signed-Rank Test: Use this for comparing two related samples when you can’t use the paired t-test, typically because the differences between pairs are not normally distributed.

The Beauty of Flexibility

The real charm of non-parametric methods is their flexibility.

They let you work with data that’s not textbook perfect, which is often the case in the real world.

Whether you’re analyzing customer satisfaction surveys, comparing the effectiveness of different marketing strategies, or just trying to figure out if people prefer pizza or tacos at parties, non-parametric tests provide a robust way to get meaningful insights.

Keeping It Real

It’s important to remember that while non-parametric methods are incredibly useful, they also come with their own limitations.

They might be more conservative, meaning you might need a larger effect to detect a significant result compared to parametric tests.

Plus, because they often work with ranks rather than actual values, some information about your data might get lost in translation.

Non-parametric methods are your statistical toolbox’s Swiss Army knife, ready to tackle data that doesn’t fit into the neat categories required by more traditional tests.

They remind us that in the world of data analysis, there’s more than one way to uncover insights and make informed decisions.

So, the next time you’re faced with skewed distributions or rankings instead of scores, remember that non-parametric methods have got you covered, offering a way to navigate the complexities of real-world data.

Data Cleaning and Preparation: The Unsung Heroes of Data Analysis

Before any party can start, there’s always a bit of housecleaning to do—sweeping the floors, arranging the furniture, and maybe even hiding those laundry piles you’ve been ignoring all week.

Similarly, in the world of data analysis, before we can dive into the fun stuff like statistical tests and predictive modeling, we need to roll up our sleeves and get our data nice and tidy.

This process of data cleaning and preparation might not be the most glamorous part of data science, but it’s absolutely critical.

Let’s break down what this involves and why it’s so important.

Why Clean and Prepare Data?

Imagine trying to analyze party RSVPs when half the responses are “yes,” a quarter are “Y,” and the rest are a creative mix of “yup,” “sure,” and “why not?”

Without standardization, it’s hard to get a clear picture of how many guests to expect.

The same goes for any data set. Cleaning ensures that your data is consistent, accurate, and ready for analysis.

Preparation involves transforming this clean data into a format that’s useful for your specific analysis needs.

The Steps to Sparkling Clean Data

  • Dealing with Missing Values: Sometimes, data is incomplete. Maybe a survey respondent skipped a question, or a sensor failed to record a reading. You’ll need to decide whether to fill in these gaps (imputation), ignore them, or drop the observations altogether.
  • Identifying and Handling Outliers: Outliers are data points that are significantly different from the rest. They might be errors, or they might be valuable insights. The challenge is determining which is which and deciding how to handle them—remove, adjust, or analyze separately.
  • Correcting Inconsistencies: This is like making sure all your RSVPs are in the same format. It could involve standardizing text entries, correcting typos, or converting all measurements to the same units.
  • Formatting Data: Your analysis might require data in a specific format. This could mean transforming data types (e.g., converting dates into a uniform format) or restructuring data tables to make them easier to work with.
  • Reducing Dimensionality: Sometimes, your data set might have more information than you actually need. Reducing dimensionality (through methods like Principal Component Analysis) can help simplify your data without losing valuable information.
  • Creating New Variables: You might need to derive new variables from your existing ones to better capture the relationships in your data. For example, turning raw survey responses into a numerical satisfaction score.

The Tools of the Trade

There are many tools available to help with data cleaning and preparation, ranging from spreadsheet software like Excel to programming languages like Python and R.

These tools offer functions and libraries specifically designed to make data cleaning as painless as possible.

Why It Matters

Skipping the data cleaning and preparation stage is like trying to cook without prepping your ingredients first.

Sure, you might end up with something edible, but it’s not going to be as good as it could have been.

Clean and well-prepared data leads to more accurate, reliable, and meaningful analysis results.

It’s the foundation upon which all good data analysis is built.

Data cleaning and preparation might not be the flashiest part of data science, but it’s where all successful data analysis projects begin.

By taking the time to thoroughly clean and prepare your data, you’re setting yourself up for clearer insights, better decisions, and, ultimately, more impactful outcomes.

Software Tools for Statistical Analysis: Your Digital Assistants

Diving into the world of data without the right tools can feel like trying to cook a gourmet meal without a kitchen.

Just as you need pots, pans, and a stove to create a culinary masterpiece, you need the right software tools to analyze data and uncover the insights hidden within.

These digital assistants range from user-friendly applications for beginners to powerful suites for the pros.

Let’s take a closer look at some of the most popular software tools for statistical analysis.

R and RStudio: The Dynamic Duo

  • R is like the Swiss Army knife of statistical analysis. It’s a programming language designed specifically for data analysis, graphics, and statistical modeling. Think of R as the kitchen where you’ll be cooking up your data analysis.
  • RStudio is an integrated development environment (IDE) for R. It’s like having the best kitchen setup with organized countertops (your coding space) and all your tools and ingredients within reach (packages and datasets).

Why They Rock:

R is incredibly powerful and can handle almost any data analysis task you throw at it, from the basics to the most advanced statistical models.

Plus, there’s a vast community of users, which means a wealth of tutorials, forums, and free packages to add on.

Python with pandas and scipy: The Versatile Virtuoso

  • Python is not just for programming; with the right libraries, it becomes an excellent tool for data analysis. It’s like a kitchen that’s not only great for baking but also equipped for gourmet cooking.
  • pandas is a library that provides easy-to-use data structures and data analysis tools for Python. Imagine it as your sous-chef, helping you to slice and dice data with ease.
  • scipy is another library used for scientific and technical computing. It’s like having a set of precision knives for the more intricate tasks.

Why They Rock: Python is known for its readability and simplicity, making it accessible for beginners. When combined with pandas and scipy, it becomes a powerhouse for data manipulation, analysis, and visualization.

SPSS: The Point-and-Click Professional

SPSS (Statistical Package for the Social Sciences) is a software package used for interactive, or batched, statistical analysis. Long produced by SPSS Inc., it was acquired by IBM in 2009.

Why It Rocks: SPSS is particularly user-friendly with its point-and-click interface, making it a favorite among non-programmers and researchers in the social sciences. It’s like having a kitchen gadget that does the job with the push of a button—no manual setup required.

SAS: The Corporate Chef

SAS (Statistical Analysis System) is a software suite developed for advanced analytics, multivariate analysis, business intelligence, data management, and predictive analytics.

Why It Rocks: SAS is a powerhouse in the corporate world, known for its stability, deep analytical capabilities, and support for large data sets. It’s like the industrial kitchen used by professional chefs to serve hundreds of guests.

Excel: The Accessible Apprentice

Excel might not be a specialized statistical software, but it’s widely accessible and capable of handling basic statistical analyses. Think of Excel as the microwave in your kitchen—it might not be fancy, but it gets the job done for quick and simple tasks.

Why It Rocks: Almost everyone has access to Excel and knows the basics, making it a great starting point for those new to data analysis. Plus, with add-ons like the Analysis ToolPak, Excel’s capabilities can be extended further into statistical territory.

Choosing Your Tool

Selecting the right software tool for statistical analysis is like choosing the right kitchen for your cooking style—it depends on your needs, expertise, and the complexity of your recipes (data).

Whether you’re a coding chef ready to tackle R or Python, or someone who prefers the straightforwardness of SPSS or Excel, there’s a tool out there that’s perfect for your data analysis kitchen.

Ethical Considerations

Digital Ethics and Privacy Abstract Concept

Embarking on a data analysis journey is like setting sail on the vast ocean of information.

Just as a captain needs a compass to navigate the seas safely and responsibly, a data analyst requires a strong sense of ethics to guide their exploration of data.

Ethical considerations in data analysis are the moral compass that ensures we respect privacy, consent, and integrity while uncovering the truths hidden within data. Let’s delve into why ethics are so crucial and what principles you should keep in mind.

Respect for Privacy

Imagine you’ve found a diary filled with personal secrets.

Reading it without permission would be a breach of privacy.

Similarly, when you’re handling data, especially personal or sensitive information, it’s essential to ensure that privacy is protected.

This means not only securing data against unauthorized access but also anonymizing data to prevent individuals from being identified.

Informed Consent

Before you can set sail, you need the ship owner’s permission.

In the world of data, this translates to informed consent. Participants should be fully aware of what their data will be used for and voluntarily agree to participate.

This is particularly important in research or when collecting data directly from individuals. It’s like asking for permission before you start the journey.

Data Integrity

Maintaining data integrity is like keeping the ship’s log accurate and unaltered during your voyage.

It involves ensuring the data is not corrupted or modified inappropriately and that any data analysis is conducted accurately and reliably.

Tampering with data or cherry-picking results to fit a narrative is not just unethical—it’s like falsifying the ship’s log, leading to mistrust and potentially dangerous outcomes.

Avoiding Bias

The sea is vast, and your compass must be calibrated correctly to avoid going off course. Similarly, avoiding bias in data analysis ensures your findings are valid and unbiased.

This means being aware of and actively addressing any personal, cultural, or statistical biases that might skew your analysis.

It’s about striving for objectivity and ensuring your journey is guided by truth, not preconceived notions.

Transparency and Accountability

A trustworthy captain is open about their navigational choices and ready to take responsibility for them.

In data analysis, this translates to transparency about your methods and accountability for your conclusions.

Sharing your methodologies, data sources, and any limitations of your analysis helps build trust and allows others to verify or challenge your findings.

Ethical Use of Findings

Finally, just as a captain must consider the impact of their journey on the wider world, you must consider how your data analysis will be used.

This means thinking about the potential consequences of your findings and striving to ensure they are used to benefit, not harm, society.

It’s about being mindful of the broader implications of your work and using data for good.

Navigating with a Moral Compass

In the realm of data analysis, ethical considerations form the moral compass that guides us through complex moral waters.

They ensure that our work respects individuals’ rights, contributes positively to society, and upholds the highest standards of integrity and professionalism.

Just as a captain navigates the seas with respect for the ocean and its dangers, a data analyst must navigate the world of data with a deep commitment to ethical principles.

This commitment ensures that the insights gained from data analysis serve to enlighten and improve, rather than exploit or harm.

Conclusion and Key Takeaways

And there you have it—a whirlwind tour through the fascinating landscape of statistical methods for data analysis.

From the grounding principles of descriptive and inferential statistics to the nuanced details of regression analysis and beyond, we’ve explored the tools and ethical considerations that guide us in turning raw data into meaningful insights.

The Takeaway

Think of data analysis as embarking on a grand adventure, one where numbers and facts are your map and compass.

Just as every explorer needs to understand the terrain, every aspiring data analyst must grasp these foundational concepts.

Whether it’s summarizing data sets with descriptive statistics, making predictions with inferential statistics, choosing the right statistical test, or navigating the ethical considerations that ensure our analyses benefit society, each aspect is a crucial step on your journey.

The Importance of Preparation

Remember, the key to a successful voyage is preparation.

Cleaning and preparing your data sets the stage for a smooth journey, while choosing the right software tools ensures you have the best equipment at your disposal.

And just as every responsible navigator respects the sea, every data analyst must navigate the ethical dimensions of their work with care and integrity.

Charting Your Course

As you embark on your own data analysis adventures, remember that the path you chart is unique to you.

Your questions will guide your journey, your curiosity will fuel your exploration, and the insights you gain will be your treasure.

The world of data is vast and full of mysteries waiting to be uncovered. With the tools and principles we’ve discussed, you’re well-equipped to start uncovering those mysteries, one data set at a time.

The Journey Ahead

The journey of statistical methods for data analysis is ongoing, and the landscape is ever-evolving.

As new methods emerge and our understanding deepens, there will always be new horizons to explore and new insights to discover.

But the fundamentals we’ve covered will remain your steadfast guide, helping you navigate the challenges and opportunities that lie ahead.

So set your sights on the questions that spark your curiosity, arm yourself with the tools of the trade, and embark on your data analysis journey with confidence.

About The Author

types of research methods statistics

Silvia Valcheva

Silvia Valcheva is a digital marketer with over a decade of experience creating content for the tech industry. She has a strong passion for writing about emerging software and technologies such as big data, AI (Artificial Intelligence), IoT (Internet of Things), process automation, etc.

Leave a Reply Cancel Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed .

Service update: Some parts of the Library’s website will be down for maintenance on August 11.

Secondary menu

  • Log in to your Library account
  • Hours and Maps
  • Connect from Off Campus
  • UC Berkeley Home

Search form

Research methods--quantitative, qualitative, and more: overview.

  • Quantitative Research
  • Qualitative Research
  • Data Science Methods (Machine Learning, AI, Big Data)
  • Text Mining and Computational Text Analysis
  • Evidence Synthesis/Systematic Reviews
  • Get Data, Get Help!

About Research Methods

This guide provides an overview of research methods, how to choose and use them, and supports and resources at UC Berkeley. 

As Patten and Newhart note in the book Understanding Research Methods , "Research methods are the building blocks of the scientific enterprise. They are the "how" for building systematic knowledge. The accumulation of knowledge through research is by its nature a collective endeavor. Each well-designed study provides evidence that may support, amend, refute, or deepen the understanding of existing knowledge...Decisions are important throughout the practice of research and are designed to help researchers collect evidence that includes the full spectrum of the phenomenon under study, to maintain logical rules, and to mitigate or account for possible sources of bias. In many ways, learning research methods is learning how to see and make these decisions."

The choice of methods varies by discipline, by the kind of phenomenon being studied and the data being used to study it, by the technology available, and more.  This guide is an introduction, but if you don't see what you need here, always contact your subject librarian, and/or take a look to see if there's a library research guide that will answer your question. 

Suggestions for changes and additions to this guide are welcome! 

START HERE: SAGE Research Methods

Without question, the most comprehensive resource available from the library is SAGE Research Methods.  HERE IS THE ONLINE GUIDE  to this one-stop shopping collection, and some helpful links are below:

  • SAGE Research Methods
  • Little Green Books  (Quantitative Methods)
  • Little Blue Books  (Qualitative Methods)
  • Dictionaries and Encyclopedias  
  • Case studies of real research projects
  • Sample datasets for hands-on practice
  • Streaming video--see methods come to life
  • Methodspace- -a community for researchers
  • SAGE Research Methods Course Mapping

Library Data Services at UC Berkeley

Library Data Services Program and Digital Scholarship Services

The LDSP offers a variety of services and tools !  From this link, check out pages for each of the following topics:  discovering data, managing data, collecting data, GIS data, text data mining, publishing data, digital scholarship, open science, and the Research Data Management Program.

Be sure also to check out the visual guide to where to seek assistance on campus with any research question you may have!

Library GIS Services

Other Data Services at Berkeley

D-Lab Supports Berkeley faculty, staff, and graduate students with research in data intensive social science, including a wide range of training and workshop offerings Dryad Dryad is a simple self-service tool for researchers to use in publishing their datasets. It provides tools for the effective publication of and access to research data. Geospatial Innovation Facility (GIF) Provides leadership and training across a broad array of integrated mapping technologies on campu Research Data Management A UC Berkeley guide and consulting service for research data management issues

General Research Methods Resources

Here are some general resources for assistance:

  • Assistance from ICPSR (must create an account to access): Getting Help with Data , and Resources for Students
  • Wiley Stats Ref for background information on statistics topics
  • Survey Documentation and Analysis (SDA) .  Program for easy web-based analysis of survey data.

Consultants

  • D-Lab/Data Science Discovery Consultants Request help with your research project from peer consultants.
  • Research data (RDM) consulting Meet with RDM consultants before designing the data security, storage, and sharing aspects of your qualitative project.
  • Statistics Department Consulting Services A service in which advanced graduate students, under faculty supervision, are available to consult during specified hours in the Fall and Spring semesters.

Related Resourcex

  • IRB / CPHS Qualitative research projects with human subjects often require that you go through an ethics review.
  • OURS (Office of Undergraduate Research and Scholarships) OURS supports undergraduates who want to embark on research projects and assistantships. In particular, check out their "Getting Started in Research" workshops
  • Sponsored Projects Sponsored projects works with researchers applying for major external grants.
  • Next: Quantitative Research >>
  • Last Updated: Sep 6, 2024 8:59 PM
  • URL: https://guides.lib.berkeley.edu/researchmethods

Research Methods: What are research methods?

  • What are research methods?
  • Searching specific databases

What are research methods

Research methods are the strategies, processes or techniques utilized in the collection of data or evidence for analysis in order to uncover new information or create better understanding of a topic.

There are different types of research methods which use different tools for data collection.

Types of research

  • Qualitative Research
  • Quantitative Research
  • Mixed Methods Research

Qualitative Research gathers data about lived experiences, emotions or behaviours, and the meanings individuals attach to them. It assists in enabling researchers to gain a better understanding of complex concepts, social interactions or cultural phenomena. This type of research is useful in the exploration of how or why things have occurred, interpreting events and describing actions.

Quantitative Research gathers numerical data which can be ranked, measured or categorised through statistical analysis. It assists with uncovering patterns or relationships, and for making generalisations. This type of research is useful for finding out how many, how much, how often, or to what extent.

Mixed Methods Research integrates both Q ualitative and Quantitative Research . It provides a holistic approach combining and analysing the statistical data with deeper contextualised insights. Using Mixed Methods also enables Triangulation,  or verification, of the data from two or more sources.

Finding Mixed Methods research in the Databases 

“mixed model*” OR “mixed design*” OR “multiple method*” OR multimethod* OR triangulat*

Data collection tools

Techniques or tools used for gathering research data include:

Qualitative Techniques or Tools Quantitative Techniques or Tools
: these can be structured, semi-structured or unstructured in-depth sessions with the researcher and a participant. Surveys or questionnaires: which ask the same questions to large numbers of participants or use Likert scales which measure opinions as numerical data.
: with several participants discussing a particular topic or a set of questions. Researchers can be facilitators or observers. Observation: which can either involve counting the number of times a specific phenomenon occurs, or the coding of observational data in order to translate it into numbers.
: On-site, in-context or role-play options. Document screening: sourcing numerical data from financial reports or counting word occurrences.
: Interrogation of correspondence (letters, diaries, emails etc) or reports. Experiments: testing hypotheses in laboratories, testing cause and effect relationships, through field experiments, or via quasi- or natural experiments.
: Remembrances or memories of experiences told to the researcher.  

SAGE research methods

  • SAGE research methods online This link opens in a new window Research methods tool to help researchers gather full-text resources, design research projects, understand a particular method and write up their research. Includes access to collections of video, business cases and eBooks,

Help and Information

Help and information

  • Next: Finding qualitative research >>
  • Last Updated: Aug 19, 2024 3:39 PM
  • URL: https://libguides.newcastle.edu.au/researchmethods

types of research methods statistics

How To Choose Your Research Methodology

Qualitative vs quantitative vs mixed methods.

By: Derek Jansen (MBA). Expert Reviewed By: Dr Eunice Rautenbach | June 2021

Without a doubt, one of the most common questions we receive at Grad Coach is “ How do I choose the right methodology for my research? ”. It’s easy to see why – with so many options on the research design table, it’s easy to get intimidated, especially with all the complex lingo!

In this post, we’ll explain the three overarching types of research – qualitative, quantitative and mixed methods – and how you can go about choosing the best methodological approach for your research.

Overview: Choosing Your Methodology

Understanding the options – Qualitative research – Quantitative research – Mixed methods-based research

Choosing a research methodology – Nature of the research – Research area norms – Practicalities

Free Webinar: Research Methodology 101

1. Understanding the options

Before we jump into the question of how to choose a research methodology, it’s useful to take a step back to understand the three overarching types of research – qualitative , quantitative and mixed methods -based research. Each of these options takes a different methodological approach.

Qualitative research utilises data that is not numbers-based. In other words, qualitative research focuses on words , descriptions , concepts or ideas – while quantitative research makes use of numbers and statistics. Qualitative research investigates the “softer side” of things to explore and describe, while quantitative research focuses on the “hard numbers”, to measure differences between variables and the relationships between them.

Importantly, qualitative research methods are typically used to explore and gain a deeper understanding of the complexity of a situation – to draw a rich picture . In contrast to this, quantitative methods are usually used to confirm or test hypotheses . In other words, they have distinctly different purposes. The table below highlights a few of the key differences between qualitative and quantitative research – you can learn more about the differences here.

  • Uses an inductive approach
  • Is used to build theories
  • Takes a subjective approach
  • Adopts an open and flexible approach
  • The researcher is close to the respondents
  • Interviews and focus groups are oftentimes used to collect word-based data.
  • Generally, draws on small sample sizes
  • Uses qualitative data analysis techniques (e.g. content analysis , thematic analysis , etc)
  • Uses a deductive approach
  • Is used to test theories
  • Takes an objective approach
  • Adopts a closed, highly planned approach
  • The research is disconnected from respondents
  • Surveys or laboratory equipment are often used to collect number-based data.
  • Generally, requires large sample sizes
  • Uses statistical analysis techniques to make sense of the data

Mixed methods -based research, as you’d expect, attempts to bring these two types of research together, drawing on both qualitative and quantitative data. Quite often, mixed methods-based studies will use qualitative research to explore a situation and develop a potential model of understanding (this is called a conceptual framework), and then go on to use quantitative methods to test that model empirically.

In other words, while qualitative and quantitative methods (and the philosophies that underpin them) are completely different, they are not at odds with each other. It’s not a competition of qualitative vs quantitative. On the contrary, they can be used together to develop a high-quality piece of research. Of course, this is easier said than done, so we usually recommend that first-time researchers stick to a single approach , unless the nature of their study truly warrants a mixed-methods approach.

The key takeaway here, and the reason we started by looking at the three options, is that it’s important to understand that each methodological approach has a different purpose – for example, to explore and understand situations (qualitative), to test and measure (quantitative) or to do both. They’re not simply alternative tools for the same job. 

Right – now that we’ve got that out of the way, let’s look at how you can go about choosing the right methodology for your research.

Methodology choices in research

2. How to choose a research methodology

To choose the right research methodology for your dissertation or thesis, you need to consider three important factors . Based on these three factors, you can decide on your overarching approach – qualitative, quantitative or mixed methods. Once you’ve made that decision, you can flesh out the finer details of your methodology, such as the sampling , data collection methods and analysis techniques (we discuss these separately in other posts ).

The three factors you need to consider are:

  • The nature of your research aims, objectives and research questions
  • The methodological approaches taken in the existing literature
  • Practicalities and constraints

Let’s take a look at each of these.

Factor #1: The nature of your research

As I mentioned earlier, each type of research (and therefore, research methodology), whether qualitative, quantitative or mixed, has a different purpose and helps solve a different type of question. So, it’s logical that the key deciding factor in terms of which research methodology you adopt is the nature of your research aims, objectives and research questions .

But, what types of research exist?

Broadly speaking, research can fall into one of three categories:

  • Exploratory – getting a better understanding of an issue and potentially developing a theory regarding it
  • Confirmatory – confirming a potential theory or hypothesis by testing it empirically
  • A mix of both – building a potential theory or hypothesis and then testing it

As a rule of thumb, exploratory research tends to adopt a qualitative approach , whereas confirmatory research tends to use quantitative methods . This isn’t set in stone, but it’s a very useful heuristic. Naturally then, research that combines a mix of both, or is seeking to develop a theory from the ground up and then test that theory, would utilize a mixed-methods approach.

Exploratory vs confirmatory research

Let’s look at an example in action.

If your research aims were to understand the perspectives of war veterans regarding certain political matters, you’d likely adopt a qualitative methodology, making use of interviews to collect data and one or more qualitative data analysis methods to make sense of the data.

If, on the other hand, your research aims involved testing a set of hypotheses regarding the link between political leaning and income levels, you’d likely adopt a quantitative methodology, using numbers-based data from a survey to measure the links between variables and/or constructs .

So, the first (and most important thing) thing you need to consider when deciding which methodological approach to use for your research project is the nature of your research aims , objectives and research questions. Specifically, you need to assess whether your research leans in an exploratory or confirmatory direction or involves a mix of both.

The importance of achieving solid alignment between these three factors and your methodology can’t be overstated. If they’re misaligned, you’re going to be forcing a square peg into a round hole. In other words, you’ll be using the wrong tool for the job, and your research will become a disjointed mess.

If your research is a mix of both exploratory and confirmatory, but you have a tight word count limit, you may need to consider trimming down the scope a little and focusing on one or the other. One methodology executed well has a far better chance of earning marks than a poorly executed mixed methods approach. So, don’t try to be a hero, unless there is a very strong underpinning logic.

Need a helping hand?

types of research methods statistics

Factor #2: The disciplinary norms

Choosing the right methodology for your research also involves looking at the approaches used by other researchers in the field, and studies with similar research aims and objectives to yours. Oftentimes, within a discipline, there is a common methodological approach (or set of approaches) used in studies. While this doesn’t mean you should follow the herd “just because”, you should at least consider these approaches and evaluate their merit within your context.

A major benefit of reviewing the research methodologies used by similar studies in your field is that you can often piggyback on the data collection techniques that other (more experienced) researchers have developed. For example, if you’re undertaking a quantitative study, you can often find tried and tested survey scales with high Cronbach’s alphas. These are usually included in the appendices of journal articles, so you don’t even have to contact the original authors. By using these, you’ll save a lot of time and ensure that your study stands on the proverbial “shoulders of giants” by using high-quality measurement instruments .

Of course, when reviewing existing literature, keep point #1 front of mind. In other words, your methodology needs to align with your research aims, objectives and questions. Don’t fall into the trap of adopting the methodological “norm” of other studies just because it’s popular. Only adopt that which is relevant to your research.

Factor #3: Practicalities

When choosing a research methodology, there will always be a tension between doing what’s theoretically best (i.e., the most scientifically rigorous research design ) and doing what’s practical , given your constraints . This is the nature of doing research and there are always trade-offs, as with anything else.

But what constraints, you ask?

When you’re evaluating your methodological options, you need to consider the following constraints:

  • Data access
  • Equipment and software
  • Your knowledge and skills

Let’s look at each of these.

Constraint #1: Data access

The first practical constraint you need to consider is your access to data . If you’re going to be undertaking primary research , you need to think critically about the sample of respondents you realistically have access to. For example, if you plan to use in-person interviews , you need to ask yourself how many people you’ll need to interview, whether they’ll be agreeable to being interviewed, where they’re located, and so on.

If you’re wanting to undertake a quantitative approach using surveys to collect data, you’ll need to consider how many responses you’ll require to achieve statistically significant results. For many statistical tests, a sample of a few hundred respondents is typically needed to develop convincing conclusions.

So, think carefully about what data you’ll need access to, how much data you’ll need and how you’ll collect it. The last thing you want is to spend a huge amount of time on your research only to find that you can’t get access to the required data.

Constraint #2: Time

The next constraint is time. If you’re undertaking research as part of a PhD, you may have a fairly open-ended time limit, but this is unlikely to be the case for undergrad and Masters-level projects. So, pay attention to your timeline, as the data collection and analysis components of different methodologies have a major impact on time requirements . Also, keep in mind that these stages of the research often take a lot longer than originally anticipated.

Another practical implication of time limits is that it will directly impact which time horizon you can use – i.e. longitudinal vs cross-sectional . For example, if you’ve got a 6-month limit for your entire research project, it’s quite unlikely that you’ll be able to adopt a longitudinal time horizon. 

Constraint #3: Money

As with so many things, money is another important constraint you’ll need to consider when deciding on your research methodology. While some research designs will cost near zero to execute, others may require a substantial budget .

Some of the costs that may arise include:

  • Software costs – e.g. survey hosting services, analysis software, etc.
  • Promotion costs – e.g. advertising a survey to attract respondents
  • Incentive costs – e.g. providing a prize or cash payment incentive to attract respondents
  • Equipment rental costs – e.g. recording equipment, lab equipment, etc.
  • Travel costs
  • Food & beverages

These are just a handful of costs that can creep into your research budget. Like most projects, the actual costs tend to be higher than the estimates, so be sure to err on the conservative side and expect the unexpected. It’s critically important that you’re honest with yourself about these costs, or you could end up getting stuck midway through your project because you’ve run out of money.

Budgeting for your research

Constraint #4: Equipment & software

Another practical consideration is the hardware and/or software you’ll need in order to undertake your research. Of course, this variable will depend on the type of data you’re collecting and analysing. For example, you may need lab equipment to analyse substances, or you may need specific analysis software to analyse statistical data. So, be sure to think about what hardware and/or software you’ll need for each potential methodological approach, and whether you have access to these.

Constraint #5: Your knowledge and skillset

The final practical constraint is a big one. Naturally, the research process involves a lot of learning and development along the way, so you will accrue knowledge and skills as you progress. However, when considering your methodological options, you should still consider your current position on the ladder.

Some of the questions you should ask yourself are:

  • Am I more of a “numbers person” or a “words person”?
  • How much do I know about the analysis methods I’ll potentially use (e.g. statistical analysis)?
  • How much do I know about the software and/or hardware that I’ll potentially use?
  • How excited am I to learn new research skills and gain new knowledge?
  • How much time do I have to learn the things I need to learn?

Answering these questions honestly will provide you with another set of criteria against which you can evaluate the research methodology options you’ve shortlisted.

So, as you can see, there is a wide range of practicalities and constraints that you need to take into account when you’re deciding on a research methodology. These practicalities create a tension between the “ideal” methodology and the methodology that you can realistically pull off. This is perfectly normal, and it’s your job to find the option that presents the best set of trade-offs.

Recap: Choosing a methodology

In this post, we’ve discussed how to go about choosing a research methodology. The three major deciding factors we looked at were:

  • Exploratory
  • Confirmatory
  • Combination
  • Research area norms
  • Hardware and software
  • Your knowledge and skillset

If you have any questions, feel free to leave a comment below. If you’d like a helping hand with your research methodology, check out our 1-on-1 research coaching service , or book a free consultation with a friendly Grad Coach.

types of research methods statistics

Psst... there’s more!

This post was based on one of our popular Research Bootcamps . If you're working on a research project, you'll definitely want to check this out ...

Dr. Zara

Very useful and informative especially for beginners

Goudi

Nice article! I’m a beginner in the field of cybersecurity research. I am a Telecom and Network Engineer and Also aiming for PhD scholarship.

Margaret Mutandwa

I find the article very informative especially for my decitation it has been helpful and an eye opener.

Anna N Namwandi

Hi I am Anna ,

I am a PHD candidate in the area of cyber security, maybe we can link up

Tut Gatluak Doar

The Examples shows by you, for sure they are really direct me and others to knows and practices the Research Design and prepration.

Tshepo Ngcobo

I found the post very informative and practical.

Baraka Mfilinge

I struggle so much with designs of the research for sure!

Joyce

I’m the process of constructing my research design and I want to know if the data analysis I plan to present in my thesis defense proposal possibly change especially after I gathered the data already.

Janine Grace Baldesco

Thank you so much this site is such a life saver. How I wish 1-1 coaching is available in our country but sadly it’s not.

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

types of research methods statistics

  • Print Friendly
  • Research Process
  • Manuscript Preparation
  • Manuscript Review
  • Publication Process
  • Publication Recognition
  • Language Editing Services
  • Translation Services

Elsevier QRcode Wechat

Choosing the Right Research Methodology: A Guide for Researchers

  • 3 minute read
  • 51.8K views

Table of Contents

Choosing an optimal research methodology is crucial for the success of any research project. The methodology you select will determine the type of data you collect, how you collect it, and how you analyse it. Understanding the different types of research methods available along with their strengths and weaknesses, is thus imperative to make an informed decision.

Understanding different research methods:

There are several research methods available depending on the type of study you are conducting, i.e., whether it is laboratory-based, clinical, epidemiological, or survey based . Some common methodologies include qualitative research, quantitative research, experimental research, survey-based research, and action research. Each method can be opted for and modified, depending on the type of research hypotheses and objectives.

Qualitative vs quantitative research:

When deciding on a research methodology, one of the key factors to consider is whether your research will be qualitative or quantitative. Qualitative research is used to understand people’s experiences, concepts, thoughts, or behaviours . Quantitative research, on the contrary, deals with numbers, graphs, and charts, and is used to test or confirm hypotheses, assumptions, and theories. 

Qualitative research methodology:

Qualitative research is often used to examine issues that are not well understood, and to gather additional insights on these topics. Qualitative research methods include open-ended survey questions, observations of behaviours described through words, and reviews of literature that has explored similar theories and ideas. These methods are used to understand how language is used in real-world situations, identify common themes or overarching ideas, and describe and interpret various texts. Data analysis for qualitative research typically includes discourse analysis, thematic analysis, and textual analysis. 

Quantitative research methodology:

The goal of quantitative research is to test hypotheses, confirm assumptions and theories, and determine cause-and-effect relationships. Quantitative research methods include experiments, close-ended survey questions, and countable and numbered observations. Data analysis for quantitative research relies heavily on statistical methods.

Analysing qualitative vs quantitative data:

The methods used for data analysis also differ for qualitative and quantitative research. As mentioned earlier, quantitative data is generally analysed using statistical methods and does not leave much room for speculation. It is more structured and follows a predetermined plan. In quantitative research, the researcher starts with a hypothesis and uses statistical methods to test it. Contrarily, methods used for qualitative data analysis can identify patterns and themes within the data, rather than provide statistical measures of the data. It is an iterative process, where the researcher goes back and forth trying to gauge the larger implications of the data through different perspectives and revising the analysis if required.

When to use qualitative vs quantitative research:

The choice between qualitative and quantitative research will depend on the gap that the research project aims to address, and specific objectives of the study. If the goal is to establish facts about a subject or topic, quantitative research is an appropriate choice. However, if the goal is to understand people’s experiences or perspectives, qualitative research may be more suitable. 

Conclusion:

In conclusion, an understanding of the different research methods available, their applicability, advantages, and disadvantages is essential for making an informed decision on the best methodology for your project. If you need any additional guidance on which research methodology to opt for, you can head over to Elsevier Author Services (EAS). EAS experts will guide you throughout the process and help you choose the perfect methodology for your research goals.

Why is data validation important in research

Why is data validation important in research?

Importance-of-Data-Collection

When Data Speak, Listen: Importance of Data Collection and Analysis Methods

You may also like.

what is a descriptive research design

Descriptive Research Design and Its Myriad Uses

Doctor doing a Biomedical Research Paper

Five Common Mistakes to Avoid When Writing a Biomedical Research Paper

Writing in Environmental Engineering

Making Technical Writing in Environmental Engineering Accessible

Risks of AI-assisted Academic Writing

To Err is Not Human: The Dangers of AI-assisted Academic Writing

Importance-of-Data-Collection

Writing a good review article

Scholarly Sources What are They and Where can You Find Them

Scholarly Sources: What are They and Where can You Find Them?

Input your search keywords and press Enter.

FIU Libraries Logo

  •   LibGuides
  •   A-Z List
  •   Help

Research Methods Help Guide

  • Quick Glossary

Introduction

Quantitative data, qualitative data.

  • Types of Research
  • Types of Studies
  • Helpful Resources
  • Get Help @ FIU

More Information

  • Qualitative vs Quantitative LibGuide by the Ebling Library, Health Sciences Learning Center at the University of Wisconsin-Madison.
  • Differences Between Qualitative and Quantitative Research Methods Table comparing qualitative and quantitative research methods, created by the Oak Ridge Institute for Science and Education.
  • Nursing Research: Quantitative and Qualitative Research Information provided by the University of Texas Arlington Libraries.

Internet link, free resource

  • Types of Variables From the UF Biostatistics Open Learning Textbook.
  • Qualitative vs Quantitative Methods: Two Opposites that Make a Perfect Match Article discussing the different philosophies behind qualitative and quantitative methods, and an example of how to blend them in the health sciences.

Database Guides

  • ERIC Search Guide by Ramces Marsilli Last Updated Aug 14, 2024 238 views this year
  • PsycINFO Guide by Sarah J. Hammill Last Updated Jun 17, 2024 6191 views this year

Studies can use quantitative data, qualititative data, or both types of data. Each approach has advantages and disadvantages. Explore the resources in the box at the left for more information.

Of the available library databases, only ERIC (for education topics) and PsycINFO (for psychology topics) allow you to limit your results by the type of data a study uses. Hover over the database name below for information on how to do so.

Note: database limits are helpful but not perfect. Rely on your own judgment when determining if data match the type you are seeking.

Login required

Numerical data.

 

Quantitative variables can be or .

: the variable can, in theory, be any value within a certain range. Can be measured. : the variable can only have certain values, usually whole numbers. Can be counted.
  • How to Analyze Quantitative Data

Non-numerical data.

 

 

Qualitative variables can be or .

: the variable does not have a specific order. : the variable has a specific order.
  • How to Analyze Qualitative Data
  • << Previous: Quick Glossary
  • Next: Types of Research >>
  • Last Updated: Aug 16, 2024 5:59 PM
  • URL: https://library.fiu.edu/researchmethods

Information

Fiu libraries floorplans, green library, modesto a. maidique campus.

Floor Resources
One
Two
Three
Four
Five
Six
Seven
Eight

Hubert Library, Biscayne Bay Campus

Floor Resources
One
Two
Three

Federal Depository Library Program logo

Directions: Green Library, MMC

Directions: Hubert Library, BBC

types of research methods statistics

Statistical Analysis in Research: Meaning, Methods and Types

Home » Videos » Statistical Analysis in Research: Meaning, Methods and Types

The scientific method is an empirical approach to acquiring new knowledge by making skeptical observations and analyses to develop a meaningful interpretation. It is the basis of research and the primary pillar of modern science. Researchers seek to understand the relationships between factors associated with the phenomena of interest. In some cases, research works with vast chunks of data, making it difficult to observe or manipulate each data point. As a result, statistical analysis in research becomes a means of evaluating relationships and interconnections between variables with tools and analytical techniques for working with large data. Since researchers use statistical power analysis to assess the probability of finding an effect in such an investigation, the method is relatively accurate. Hence, statistical analysis in research eases analytical methods by focusing on the quantifiable aspects of phenomena.

What is Statistical Analysis in Research? A Simplified Definition

Statistical analysis uses quantitative data to investigate patterns, relationships, and patterns to understand real-life and simulated phenomena. The approach is a key analytical tool in various fields, including academia, business, government, and science in general. This statistical analysis in research definition implies that the primary focus of the scientific method is quantitative research. Notably, the investigator targets the constructs developed from general concepts as the researchers can quantify their hypotheses and present their findings in simple statistics.

When a business needs to learn how to improve its product, they collect statistical data about the production line and customer satisfaction. Qualitative data is valuable and often identifies the most common themes in the stakeholders’ responses. On the other hand, the quantitative data creates a level of importance, comparing the themes based on their criticality to the affected persons. For instance, descriptive statistics highlight tendency, frequency, variation, and position information. While the mean shows the average number of respondents who value a certain aspect, the variance indicates the accuracy of the data. In any case, statistical analysis creates simplified concepts used to understand the phenomenon under investigation. It is also a key component in academia as the primary approach to data representation, especially in research projects, term papers and dissertations. 

Most Useful Statistical Analysis Methods in Research

Using statistical analysis methods in research is inevitable, especially in academic assignments, projects, and term papers. It’s always advisable to seek assistance from your professor or you can try research paper writing by CustomWritings before you start your academic project or write statistical analysis in research paper. Consulting an expert when developing a topic for your thesis or short mid-term assignment increases your chances of getting a better grade. Most importantly, it improves your understanding of research methods with insights on how to enhance the originality and quality of personalized essays. Professional writers can also help select the most suitable statistical analysis method for your thesis, influencing the choice of data and type of study.

Descriptive Statistics

Descriptive statistics is a statistical method summarizing quantitative figures to understand critical details about the sample and population. A description statistic is a figure that quantifies a specific aspect of the data. For instance, instead of analyzing the behavior of a thousand students, research can identify the most common actions among them. By doing this, the person utilizes statistical analysis in research, particularly descriptive statistics.

  • Measures of central tendency . Central tendency measures are the mean, mode, and media or the averages denoting specific data points. They assess the centrality of the probability distribution, hence the name. These measures describe the data in relation to the center.
  • Measures of frequency . These statistics document the number of times an event happens. They include frequency, count, ratios, rates, and proportions. Measures of frequency can also show how often a score occurs.
  • Measures of dispersion/variation . These descriptive statistics assess the intervals between the data points. The objective is to view the spread or disparity between the specific inputs. Measures of variation include the standard deviation, variance, and range. They indicate how the spread may affect other statistics, such as the mean.
  • Measures of position . Sometimes researchers can investigate relationships between scores. Measures of position, such as percentiles, quartiles, and ranks, demonstrate this association. They are often useful when comparing the data to normalized information.

Inferential Statistics

Inferential statistics is critical in statistical analysis in quantitative research. This approach uses statistical tests to draw conclusions about the population. Examples of inferential statistics include t-tests, F-tests, ANOVA, p-value, Mann-Whitney U test, and Wilcoxon W test. This

Common Statistical Analysis in Research Types

Although inferential and descriptive statistics can be classified as types of statistical analysis in research, they are mostly considered analytical methods. Types of research are distinguishable by the differences in the methodology employed in analyzing, assembling, classifying, manipulating, and interpreting data. The categories may also depend on the type of data used.

Predictive Analysis

Predictive research analyzes past and present data to assess trends and predict future events. An excellent example of predictive analysis is a market survey that seeks to understand customers’ spending habits to weigh the possibility of a repeat or future purchase. Such studies assess the likelihood of an action based on trends.

Prescriptive Analysis

On the other hand, a prescriptive analysis targets likely courses of action. It’s decision-making research designed to identify optimal solutions to a problem. Its primary objective is to test or assess alternative measures.

Causal Analysis

Causal research investigates the explanation behind the events. It explores the relationship between factors for causation. Thus, researchers use causal analyses to analyze root causes, possible problems, and unknown outcomes.

Mechanistic Analysis

This type of research investigates the mechanism of action. Instead of focusing only on the causes or possible outcomes, researchers may seek an understanding of the processes involved. In such cases, they use mechanistic analyses to document, observe, or learn the mechanisms involved.

Exploratory Data Analysis

Similarly, an exploratory study is extensive with a wider scope and minimal limitations. This type of research seeks insight into the topic of interest. An exploratory researcher does not try to generalize or predict relationships. Instead, they look for information about the subject before conducting an in-depth analysis.

The Importance of Statistical Analysis in Research

As a matter of fact, statistical analysis provides critical information for decision-making. Decision-makers require past trends and predictive assumptions to inform their actions. In most cases, the data is too complex or lacks meaningful inferences. Statistical tools for analyzing such details help save time and money, deriving only valuable information for assessment. An excellent statistical analysis in research example is a randomized control trial (RCT) for the Covid-19 vaccine. You can download a sample of such a document online to understand the significance such analyses have to the stakeholders. A vaccine RCT assesses the effectiveness, side effects, duration of protection, and other benefits. Hence, statistical analysis in research is a helpful tool for understanding data.

Sources and links For the articles and videos I use different databases, such as Eurostat, OECD World Bank Open Data, Data Gov and others. You are free to use the video I have made on your site using the link or the embed code. If you have any questions, don’t hesitate to write to me!

Support statistics and data, if you have reached the end and like this project, you can donate a coffee to “statistics and data”..

Copyright © 2022 Statistics and Data

Enago Academy

Effective Use of Statistics in Research – Methods and Tools for Data Analysis

' src=

Remember that impending feeling you get when you are asked to analyze your data! Now that you have all the required raw data, you need to statistically prove your hypothesis. Representing your numerical data as part of statistics in research will also help in breaking the stereotype of being a biology student who can’t do math.

Statistical methods are essential for scientific research. In fact, statistical methods dominate the scientific research as they include planning, designing, collecting data, analyzing, drawing meaningful interpretation and reporting of research findings. Furthermore, the results acquired from research project are meaningless raw data unless analyzed with statistical tools. Therefore, determining statistics in research is of utmost necessity to justify research findings. In this article, we will discuss how using statistical methods for biology could help draw meaningful conclusion to analyze biological studies.

Table of Contents

Role of Statistics in Biological Research

Statistics is a branch of science that deals with collection, organization and analysis of data from the sample to the whole population. Moreover, it aids in designing a study more meticulously and also give a logical reasoning in concluding the hypothesis. Furthermore, biology study focuses on study of living organisms and their complex living pathways, which are very dynamic and cannot be explained with logical reasoning. However, statistics is more complex a field of study that defines and explains study patterns based on the sample sizes used. To be precise, statistics provides a trend in the conducted study.

Biological researchers often disregard the use of statistics in their research planning, and mainly use statistical tools at the end of their experiment. Therefore, giving rise to a complicated set of results which are not easily analyzed from statistical tools in research. Statistics in research can help a researcher approach the study in a stepwise manner, wherein the statistical analysis in research follows –

1. Establishing a Sample Size

Usually, a biological experiment starts with choosing samples and selecting the right number of repetitive experiments. Statistics in research deals with basics in statistics that provides statistical randomness and law of using large samples. Statistics teaches how choosing a sample size from a random large pool of sample helps extrapolate statistical findings and reduce experimental bias and errors.

2. Testing of Hypothesis

When conducting a statistical study with large sample pool, biological researchers must make sure that a conclusion is statistically significant. To achieve this, a researcher must create a hypothesis before examining the distribution of data. Furthermore, statistics in research helps interpret the data clustered near the mean of distributed data or spread across the distribution. These trends help analyze the sample and signify the hypothesis.

3. Data Interpretation Through Analysis

When dealing with large data, statistics in research assist in data analysis. This helps researchers to draw an effective conclusion from their experiment and observations. Concluding the study manually or from visual observation may give erroneous results; therefore, thorough statistical analysis will take into consideration all the other statistical measures and variance in the sample to provide a detailed interpretation of the data. Therefore, researchers produce a detailed and important data to support the conclusion.

Types of Statistical Research Methods That Aid in Data Analysis

statistics in research

Statistical analysis is the process of analyzing samples of data into patterns or trends that help researchers anticipate situations and make appropriate research conclusions. Based on the type of data, statistical analyses are of the following type:

1. Descriptive Analysis

The descriptive statistical analysis allows organizing and summarizing the large data into graphs and tables . Descriptive analysis involves various processes such as tabulation, measure of central tendency, measure of dispersion or variance, skewness measurements etc.

2. Inferential Analysis

The inferential statistical analysis allows to extrapolate the data acquired from a small sample size to the complete population. This analysis helps draw conclusions and make decisions about the whole population on the basis of sample data. It is a highly recommended statistical method for research projects that work with smaller sample size and meaning to extrapolate conclusion for large population.

3. Predictive Analysis

Predictive analysis is used to make a prediction of future events. This analysis is approached by marketing companies, insurance organizations, online service providers, data-driven marketing, and financial corporations.

4. Prescriptive Analysis

Prescriptive analysis examines data to find out what can be done next. It is widely used in business analysis for finding out the best possible outcome for a situation. It is nearly related to descriptive and predictive analysis. However, prescriptive analysis deals with giving appropriate suggestions among the available preferences.

5. Exploratory Data Analysis

EDA is generally the first step of the data analysis process that is conducted before performing any other statistical analysis technique. It completely focuses on analyzing patterns in the data to recognize potential relationships. EDA is used to discover unknown associations within data, inspect missing data from collected data and obtain maximum insights.

6. Causal Analysis

Causal analysis assists in understanding and determining the reasons behind “why” things happen in a certain way, as they appear. This analysis helps identify root cause of failures or simply find the basic reason why something could happen. For example, causal analysis is used to understand what will happen to the provided variable if another variable changes.

7. Mechanistic Analysis

This is a least common type of statistical analysis. The mechanistic analysis is used in the process of big data analytics and biological science. It uses the concept of understanding individual changes in variables that cause changes in other variables correspondingly while excluding external influences.

Important Statistical Tools In Research

Researchers in the biological field find statistical analysis in research as the scariest aspect of completing research. However, statistical tools in research can help researchers understand what to do with data and how to interpret the results, making this process as easy as possible.

1. Statistical Package for Social Science (SPSS)

It is a widely used software package for human behavior research. SPSS can compile descriptive statistics, as well as graphical depictions of result. Moreover, it includes the option to create scripts that automate analysis or carry out more advanced statistical processing.

2. R Foundation for Statistical Computing

This software package is used among human behavior research and other fields. R is a powerful tool and has a steep learning curve. However, it requires a certain level of coding. Furthermore, it comes with an active community that is engaged in building and enhancing the software and the associated plugins.

3. MATLAB (The Mathworks)

It is an analytical platform and a programming language. Researchers and engineers use this software and create their own code and help answer their research question. While MatLab can be a difficult tool to use for novices, it offers flexibility in terms of what the researcher needs.

4. Microsoft Excel

Not the best solution for statistical analysis in research, but MS Excel offers wide variety of tools for data visualization and simple statistics. It is easy to generate summary and customizable graphs and figures. MS Excel is the most accessible option for those wanting to start with statistics.

5. Statistical Analysis Software (SAS)

It is a statistical platform used in business, healthcare, and human behavior research alike. It can carry out advanced analyzes and produce publication-worthy figures, tables and charts .

6. GraphPad Prism

It is a premium software that is primarily used among biology researchers. But, it offers a range of variety to be used in various other fields. Similar to SPSS, GraphPad gives scripting option to automate analyses to carry out complex statistical calculations.

This software offers basic as well as advanced statistical tools for data analysis. However, similar to GraphPad and SPSS, minitab needs command over coding and can offer automated analyses.

Use of Statistical Tools In Research and Data Analysis

Statistical tools manage the large data. Many biological studies use large data to analyze the trends and patterns in studies. Therefore, using statistical tools becomes essential, as they manage the large data sets, making data processing more convenient.

Following these steps will help biological researchers to showcase the statistics in research in detail, and develop accurate hypothesis and use correct tools for it.

There are a range of statistical tools in research which can help researchers manage their research data and improve the outcome of their research by better interpretation of data. You could use statistics in research by understanding the research question, knowledge of statistics and your personal experience in coding.

Have you faced challenges while using statistics in research? How did you manage it? Did you use any of the statistical tools to help you with your research data? Do write to us or comment below!

Frequently Asked Questions

Statistics in research can help a researcher approach the study in a stepwise manner: 1. Establishing a sample size 2. Testing of hypothesis 3. Data interpretation through analysis

Statistical methods are essential for scientific research. In fact, statistical methods dominate the scientific research as they include planning, designing, collecting data, analyzing, drawing meaningful interpretation and reporting of research findings. Furthermore, the results acquired from research project are meaningless raw data unless analyzed with statistical tools. Therefore, determining statistics in research is of utmost necessity to justify research findings.

Statistical tools in research can help researchers understand what to do with data and how to interpret the results, making this process as easy as possible. They can manage large data sets, making data processing more convenient. A great number of tools are available to carry out statistical analysis of data like SPSS, SAS (Statistical Analysis Software), and Minitab.

' src=

nice article to read

Holistic but delineating. A very good read.

Rate this article Cancel Reply

Your email address will not be published.

types of research methods statistics

Enago Academy's Most Popular Articles

Empowering Researchers, Enabling Progress: How Enago Academy contributes to the SDGs

  • Promoting Research
  • Thought Leadership
  • Trending Now

How Enago Academy Contributes to Sustainable Development Goals (SDGs) Through Empowering Researchers

The United Nations Sustainable Development Goals (SDGs) are a universal call to action to end…

Research Interviews for Data Collection

  • Reporting Research

Research Interviews: An effective and insightful way of data collection

Research interviews play a pivotal role in collecting data for various academic, scientific, and professional…

Planning Your Data Collection

Planning Your Data Collection: Designing methods for effective research

Planning your research is very important to obtain desirable results. In research, the relevance of…

best plagiarism checker

  • Language & Grammar

Best Plagiarism Checker Tool for Researchers — Top 4 to choose from!

While common writing issues like language enhancement, punctuation errors, grammatical errors, etc. can be dealt…

Year

  • Industry News
  • Publishing News

2022 in a Nutshell — Reminiscing the year when opportunities were seized and feats were achieved!

It’s beginning to look a lot like success! Some of the greatest opportunities to research…

2022 in a Nutshell — Reminiscing the year when opportunities were seized and feats…

types of research methods statistics

Sign-up to read more

Subscribe for free to get unrestricted access to all our resources on research writing and academic publishing including:

  • 2000+ blog articles
  • 50+ Webinars
  • 10+ Expert podcasts
  • 50+ Infographics
  • 10+ Checklists
  • Research Guides

We hate spam too. We promise to protect your privacy and never spam you.

  • Publishing Research
  • AI in Academia
  • Career Corner
  • Diversity and Inclusion
  • Infographics
  • Expert Video Library
  • Other Resources
  • Enago Learn
  • Upcoming & On-Demand Webinars
  • Peer Review Week 2024
  • Open Access Week 2023
  • Conference Videos
  • Enago Report
  • Journal Finder
  • Enago Plagiarism & AI Grammar Check
  • Editing Services
  • Publication Support Services
  • Research Impact
  • Translation Services
  • Publication solutions
  • AI-Based Solutions
  • Call for Articles
  • Call for Speakers
  • Author Training
  • Edit Profile

I am looking for Editing/ Proofreading services for my manuscript Tentative date of next journal submission:

types of research methods statistics

Which among these features would you prefer the most in a peer review assistant?

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • Types of Research Designs Compared | Guide & Examples

Types of Research Designs Compared | Guide & Examples

Published on June 20, 2019 by Shona McCombes . Revised on June 22, 2023.

When you start planning a research project, developing research questions and creating a  research design , you will have to make various decisions about the type of research you want to do.

There are many ways to categorize different types of research. The words you use to describe your research depend on your discipline and field. In general, though, the form your research design takes will be shaped by:

  • The type of knowledge you aim to produce
  • The type of data you will collect and analyze
  • The sampling methods , timescale and location of the research

This article takes a look at some common distinctions made between different types of research and outlines the key differences between them.

Table of contents

Types of research aims, types of research data, types of sampling, timescale, and location, other interesting articles.

The first thing to consider is what kind of knowledge your research aims to contribute.

Type of research What’s the difference? What to consider
Basic vs. applied Basic research aims to , while applied research aims to . Do you want to expand scientific understanding or solve a practical problem?
vs. Exploratory research aims to , while explanatory research aims to . How much is already known about your research problem? Are you conducting initial research on a newly-identified issue, or seeking precise conclusions about an established issue?
aims to , while aims to . Is there already some theory on your research problem that you can use to develop , or do you want to propose new theories based on your findings?

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

The next thing to consider is what type of data you will collect. Each kind of data is associated with a range of specific research methods and procedures.

Type of research What’s the difference? What to consider
Primary research vs secondary research Primary data is (e.g., through or ), while secondary data (e.g., in government or scientific publications). How much data is already available on your topic? Do you want to collect original data or analyze existing data (e.g., through a )?
, while . Is your research more concerned with measuring something or interpreting something? You can also create a research design that has elements of both.
vs Descriptive research gathers data , while experimental research . Do you want to identify characteristics, patterns and or test causal relationships between ?

Finally, you have to consider three closely related questions: how will you select the subjects or participants of the research? When and how often will you collect data from your subjects? And where will the research take place?

Keep in mind that the methods that you choose bring with them different risk factors and types of research bias . Biases aren’t completely avoidable, but can heavily impact the validity and reliability of your findings if left unchecked.

Type of research What’s the difference? What to consider
allows you to , while allows you to draw conclusions . Do you want to produce  knowledge that applies to many contexts or detailed knowledge about a specific context (e.g. in a )?
vs Cross-sectional studies , while longitudinal studies . Is your research question focused on understanding the current situation or tracking changes over time?
Field research vs laboratory research Field research takes place in , while laboratory research takes place in . Do you want to find out how something occurs in the real world or draw firm conclusions about cause and effect? Laboratory experiments have higher but lower .
Fixed design vs flexible design In a fixed research design the subjects, timescale and location are begins, while in a flexible design these aspects may . Do you want to test hypotheses and establish generalizable facts, or explore concepts and develop understanding? For measuring, testing and making generalizations, a fixed research design has higher .

Choosing between all these different research types is part of the process of creating your research design , which determines exactly how your research will be conducted. But the type of research is only the first step: next, you have to make more concrete decisions about your research methods and the details of the study.

Read more about creating a research design

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Normal distribution
  • Degrees of freedom
  • Null hypothesis
  • Discourse analysis
  • Control groups
  • Mixed methods research
  • Non-probability sampling
  • Quantitative research
  • Ecological validity

Research bias

  • Rosenthal effect
  • Implicit bias
  • Cognitive bias
  • Selection bias
  • Negativity bias
  • Status quo bias

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

McCombes, S. (2023, June 22). Types of Research Designs Compared | Guide & Examples. Scribbr. Retrieved September 9, 2024, from https://www.scribbr.com/methodology/types-of-research/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, what is a research design | types, guide & examples, qualitative vs. quantitative research | differences, examples & methods, what is a research methodology | steps & tips, "i thought ai proofreading was useless but..".

I've been using Scribbr for years now and I know it's a service that won't disappoint. It does a good job spotting mistakes”

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Indian J Anaesth
  • v.60(9); 2016 Sep

Basic statistical tools in research and data analysis

Zulfiqar ali.

Department of Anaesthesiology, Division of Neuroanaesthesiology, Sheri Kashmir Institute of Medical Sciences, Soura, Srinagar, Jammu and Kashmir, India

S Bala Bhaskar

1 Department of Anaesthesiology and Critical Care, Vijayanagar Institute of Medical Sciences, Bellary, Karnataka, India

Statistical methods involved in carrying out a study include planning, designing, collecting data, analysing, drawing meaningful interpretation and reporting of the research findings. The statistical analysis gives meaning to the meaningless numbers, thereby breathing life into a lifeless data. The results and inferences are precise only if proper statistical tests are used. This article will try to acquaint the reader with the basic research tools that are utilised while conducting various studies. The article covers a brief outline of the variables, an understanding of quantitative and qualitative variables and the measures of central tendency. An idea of the sample size estimation, power analysis and the statistical errors is given. Finally, there is a summary of parametric and non-parametric tests used for data analysis.

INTRODUCTION

Statistics is a branch of science that deals with the collection, organisation, analysis of data and drawing of inferences from the samples to the whole population.[ 1 ] This requires a proper design of the study, an appropriate selection of the study sample and choice of a suitable statistical test. An adequate knowledge of statistics is necessary for proper designing of an epidemiological study or a clinical trial. Improper statistical methods may result in erroneous conclusions which may lead to unethical practice.[ 2 ]

Variable is a characteristic that varies from one individual member of population to another individual.[ 3 ] Variables such as height and weight are measured by some type of scale, convey quantitative information and are called as quantitative variables. Sex and eye colour give qualitative information and are called as qualitative variables[ 3 ] [ Figure 1 ].

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g001.jpg

Classification of variables

Quantitative variables

Quantitative or numerical data are subdivided into discrete and continuous measurements. Discrete numerical data are recorded as a whole number such as 0, 1, 2, 3,… (integer), whereas continuous data can assume any value. Observations that can be counted constitute the discrete data and observations that can be measured constitute the continuous data. Examples of discrete data are number of episodes of respiratory arrests or the number of re-intubations in an intensive care unit. Similarly, examples of continuous data are the serial serum glucose levels, partial pressure of oxygen in arterial blood and the oesophageal temperature.

A hierarchical scale of increasing precision can be used for observing and recording the data which is based on categorical, ordinal, interval and ratio scales [ Figure 1 ].

Categorical or nominal variables are unordered. The data are merely classified into categories and cannot be arranged in any particular order. If only two categories exist (as in gender male and female), it is called as a dichotomous (or binary) data. The various causes of re-intubation in an intensive care unit due to upper airway obstruction, impaired clearance of secretions, hypoxemia, hypercapnia, pulmonary oedema and neurological impairment are examples of categorical variables.

Ordinal variables have a clear ordering between the variables. However, the ordered data may not have equal intervals. Examples are the American Society of Anesthesiologists status or Richmond agitation-sedation scale.

Interval variables are similar to an ordinal variable, except that the intervals between the values of the interval variable are equally spaced. A good example of an interval scale is the Fahrenheit degree scale used to measure temperature. With the Fahrenheit scale, the difference between 70° and 75° is equal to the difference between 80° and 85°: The units of measurement are equal throughout the full range of the scale.

Ratio scales are similar to interval scales, in that equal differences between scale values have equal quantitative meaning. However, ratio scales also have a true zero point, which gives them an additional property. For example, the system of centimetres is an example of a ratio scale. There is a true zero point and the value of 0 cm means a complete absence of length. The thyromental distance of 6 cm in an adult may be twice that of a child in whom it may be 3 cm.

STATISTICS: DESCRIPTIVE AND INFERENTIAL STATISTICS

Descriptive statistics[ 4 ] try to describe the relationship between variables in a sample or population. Descriptive statistics provide a summary of data in the form of mean, median and mode. Inferential statistics[ 4 ] use a random sample of data taken from a population to describe and make inferences about the whole population. It is valuable when it is not possible to examine each member of an entire population. The examples if descriptive and inferential statistics are illustrated in Table 1 .

Example of descriptive and inferential statistics

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g002.jpg

Descriptive statistics

The extent to which the observations cluster around a central location is described by the central tendency and the spread towards the extremes is described by the degree of dispersion.

Measures of central tendency

The measures of central tendency are mean, median and mode.[ 6 ] Mean (or the arithmetic average) is the sum of all the scores divided by the number of scores. Mean may be influenced profoundly by the extreme variables. For example, the average stay of organophosphorus poisoning patients in ICU may be influenced by a single patient who stays in ICU for around 5 months because of septicaemia. The extreme values are called outliers. The formula for the mean is

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g003.jpg

where x = each observation and n = number of observations. Median[ 6 ] is defined as the middle of a distribution in a ranked data (with half of the variables in the sample above and half below the median value) while mode is the most frequently occurring variable in a distribution. Range defines the spread, or variability, of a sample.[ 7 ] It is described by the minimum and maximum values of the variables. If we rank the data and after ranking, group the observations into percentiles, we can get better information of the pattern of spread of the variables. In percentiles, we rank the observations into 100 equal parts. We can then describe 25%, 50%, 75% or any other percentile amount. The median is the 50 th percentile. The interquartile range will be the observations in the middle 50% of the observations about the median (25 th -75 th percentile). Variance[ 7 ] is a measure of how spread out is the distribution. It gives an indication of how close an individual observation clusters about the mean value. The variance of a population is defined by the following formula:

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g004.jpg

where σ 2 is the population variance, X is the population mean, X i is the i th element from the population and N is the number of elements in the population. The variance of a sample is defined by slightly different formula:

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g005.jpg

where s 2 is the sample variance, x is the sample mean, x i is the i th element from the sample and n is the number of elements in the sample. The formula for the variance of a population has the value ‘ n ’ as the denominator. The expression ‘ n −1’ is known as the degrees of freedom and is one less than the number of parameters. Each observation is free to vary, except the last one which must be a defined value. The variance is measured in squared units. To make the interpretation of the data simple and to retain the basic unit of observation, the square root of variance is used. The square root of the variance is the standard deviation (SD).[ 8 ] The SD of a population is defined by the following formula:

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g006.jpg

where σ is the population SD, X is the population mean, X i is the i th element from the population and N is the number of elements in the population. The SD of a sample is defined by slightly different formula:

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g007.jpg

where s is the sample SD, x is the sample mean, x i is the i th element from the sample and n is the number of elements in the sample. An example for calculation of variation and SD is illustrated in Table 2 .

Example of mean, variance, standard deviation

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g008.jpg

Normal distribution or Gaussian distribution

Most of the biological variables usually cluster around a central value, with symmetrical positive and negative deviations about this point.[ 1 ] The standard normal distribution curve is a symmetrical bell-shaped. In a normal distribution curve, about 68% of the scores are within 1 SD of the mean. Around 95% of the scores are within 2 SDs of the mean and 99% within 3 SDs of the mean [ Figure 2 ].

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g009.jpg

Normal distribution curve

Skewed distribution

It is a distribution with an asymmetry of the variables about its mean. In a negatively skewed distribution [ Figure 3 ], the mass of the distribution is concentrated on the right of Figure 1 . In a positively skewed distribution [ Figure 3 ], the mass of the distribution is concentrated on the left of the figure leading to a longer right tail.

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g010.jpg

Curves showing negatively skewed and positively skewed distribution

Inferential statistics

In inferential statistics, data are analysed from a sample to make inferences in the larger collection of the population. The purpose is to answer or test the hypotheses. A hypothesis (plural hypotheses) is a proposed explanation for a phenomenon. Hypothesis tests are thus procedures for making rational decisions about the reality of observed effects.

Probability is the measure of the likelihood that an event will occur. Probability is quantified as a number between 0 and 1 (where 0 indicates impossibility and 1 indicates certainty).

In inferential statistics, the term ‘null hypothesis’ ( H 0 ‘ H-naught ,’ ‘ H-null ’) denotes that there is no relationship (difference) between the population variables in question.[ 9 ]

Alternative hypothesis ( H 1 and H a ) denotes that a statement between the variables is expected to be true.[ 9 ]

The P value (or the calculated probability) is the probability of the event occurring by chance if the null hypothesis is true. The P value is a numerical between 0 and 1 and is interpreted by researchers in deciding whether to reject or retain the null hypothesis [ Table 3 ].

P values with interpretation

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g011.jpg

If P value is less than the arbitrarily chosen value (known as α or the significance level), the null hypothesis (H0) is rejected [ Table 4 ]. However, if null hypotheses (H0) is incorrectly rejected, this is known as a Type I error.[ 11 ] Further details regarding alpha error, beta error and sample size calculation and factors influencing them are dealt with in another section of this issue by Das S et al .[ 12 ]

Illustration for null hypothesis

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g012.jpg

PARAMETRIC AND NON-PARAMETRIC TESTS

Numerical data (quantitative variables) that are normally distributed are analysed with parametric tests.[ 13 ]

Two most basic prerequisites for parametric statistical analysis are:

  • The assumption of normality which specifies that the means of the sample group are normally distributed
  • The assumption of equal variance which specifies that the variances of the samples and of their corresponding population are equal.

However, if the distribution of the sample is skewed towards one side or the distribution is unknown due to the small sample size, non-parametric[ 14 ] statistical techniques are used. Non-parametric tests are used to analyse ordinal and categorical data.

Parametric tests

The parametric tests assume that the data are on a quantitative (numerical) scale, with a normal distribution of the underlying population. The samples have the same variance (homogeneity of variances). The samples are randomly drawn from the population, and the observations within a group are independent of each other. The commonly used parametric tests are the Student's t -test, analysis of variance (ANOVA) and repeated measures ANOVA.

Student's t -test

Student's t -test is used to test the null hypothesis that there is no difference between the means of the two groups. It is used in three circumstances:

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g013.jpg

where X = sample mean, u = population mean and SE = standard error of mean

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g014.jpg

where X 1 − X 2 is the difference between the means of the two groups and SE denotes the standard error of the difference.

  • To test if the population means estimated by two dependent samples differ significantly (the paired t -test). A usual setting for paired t -test is when measurements are made on the same subjects before and after a treatment.

The formula for paired t -test is:

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g015.jpg

where d is the mean difference and SE denotes the standard error of this difference.

The group variances can be compared using the F -test. The F -test is the ratio of variances (var l/var 2). If F differs significantly from 1.0, then it is concluded that the group variances differ significantly.

Analysis of variance

The Student's t -test cannot be used for comparison of three or more groups. The purpose of ANOVA is to test if there is any significant difference between the means of two or more groups.

In ANOVA, we study two variances – (a) between-group variability and (b) within-group variability. The within-group variability (error variance) is the variation that cannot be accounted for in the study design. It is based on random differences present in our samples.

However, the between-group (or effect variance) is the result of our treatment. These two estimates of variances are compared using the F-test.

A simplified formula for the F statistic is:

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g016.jpg

where MS b is the mean squares between the groups and MS w is the mean squares within groups.

Repeated measures analysis of variance

As with ANOVA, repeated measures ANOVA analyses the equality of means of three or more groups. However, a repeated measure ANOVA is used when all variables of a sample are measured under different conditions or at different points in time.

As the variables are measured from a sample at different points of time, the measurement of the dependent variable is repeated. Using a standard ANOVA in this case is not appropriate because it fails to model the correlation between the repeated measures: The data violate the ANOVA assumption of independence. Hence, in the measurement of repeated dependent variables, repeated measures ANOVA should be used.

Non-parametric tests

When the assumptions of normality are not met, and the sample means are not normally, distributed parametric tests can lead to erroneous results. Non-parametric tests (distribution-free test) are used in such situation as they do not require the normality assumption.[ 15 ] Non-parametric tests may fail to detect a significant difference when compared with a parametric test. That is, they usually have less power.

As is done for the parametric tests, the test statistic is compared with known values for the sampling distribution of that statistic and the null hypothesis is accepted or rejected. The types of non-parametric analysis techniques and the corresponding parametric analysis techniques are delineated in Table 5 .

Analogue of parametric and non-parametric tests

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g017.jpg

Median test for one sample: The sign test and Wilcoxon's signed rank test

The sign test and Wilcoxon's signed rank test are used for median tests of one sample. These tests examine whether one instance of sample data is greater or smaller than the median reference value.

This test examines the hypothesis about the median θ0 of a population. It tests the null hypothesis H0 = θ0. When the observed value (Xi) is greater than the reference value (θ0), it is marked as+. If the observed value is smaller than the reference value, it is marked as − sign. If the observed value is equal to the reference value (θ0), it is eliminated from the sample.

If the null hypothesis is true, there will be an equal number of + signs and − signs.

The sign test ignores the actual values of the data and only uses + or − signs. Therefore, it is useful when it is difficult to measure the values.

Wilcoxon's signed rank test

There is a major limitation of sign test as we lose the quantitative information of the given data and merely use the + or – signs. Wilcoxon's signed rank test not only examines the observed values in comparison with θ0 but also takes into consideration the relative sizes, adding more statistical power to the test. As in the sign test, if there is an observed value that is equal to the reference value θ0, this observed value is eliminated from the sample.

Wilcoxon's rank sum test ranks all data points in order, calculates the rank sum of each sample and compares the difference in the rank sums.

Mann-Whitney test

It is used to test the null hypothesis that two samples have the same median or, alternatively, whether observations in one sample tend to be larger than observations in the other.

Mann–Whitney test compares all data (xi) belonging to the X group and all data (yi) belonging to the Y group and calculates the probability of xi being greater than yi: P (xi > yi). The null hypothesis states that P (xi > yi) = P (xi < yi) =1/2 while the alternative hypothesis states that P (xi > yi) ≠1/2.

Kolmogorov-Smirnov test

The two-sample Kolmogorov-Smirnov (KS) test was designed as a generic method to test whether two random samples are drawn from the same distribution. The null hypothesis of the KS test is that both distributions are identical. The statistic of the KS test is a distance between the two empirical distributions, computed as the maximum absolute difference between their cumulative curves.

Kruskal-Wallis test

The Kruskal–Wallis test is a non-parametric test to analyse the variance.[ 14 ] It analyses if there is any difference in the median values of three or more independent samples. The data values are ranked in an increasing order, and the rank sums calculated followed by calculation of the test statistic.

Jonckheere test

In contrast to Kruskal–Wallis test, in Jonckheere test, there is an a priori ordering that gives it a more statistical power than the Kruskal–Wallis test.[ 14 ]

Friedman test

The Friedman test is a non-parametric test for testing the difference between several related samples. The Friedman test is an alternative for repeated measures ANOVAs which is used when the same parameter has been measured under different conditions on the same subjects.[ 13 ]

Tests to analyse the categorical data

Chi-square test, Fischer's exact test and McNemar's test are used to analyse the categorical or nominal variables. The Chi-square test compares the frequencies and tests whether the observed data differ significantly from that of the expected data if there were no differences between groups (i.e., the null hypothesis). It is calculated by the sum of the squared difference between observed ( O ) and the expected ( E ) data (or the deviation, d ) divided by the expected data by the following formula:

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g018.jpg

A Yates correction factor is used when the sample size is small. Fischer's exact test is used to determine if there are non-random associations between two categorical variables. It does not assume random sampling, and instead of referring a calculated statistic to a sampling distribution, it calculates an exact probability. McNemar's test is used for paired nominal data. It is applied to 2 × 2 table with paired-dependent samples. It is used to determine whether the row and column frequencies are equal (that is, whether there is ‘marginal homogeneity’). The null hypothesis is that the paired proportions are equal. The Mantel-Haenszel Chi-square test is a multivariate test as it analyses multiple grouping variables. It stratifies according to the nominated confounding variables and identifies any that affects the primary outcome variable. If the outcome variable is dichotomous, then logistic regression is used.

SOFTWARES AVAILABLE FOR STATISTICS, SAMPLE SIZE CALCULATION AND POWER ANALYSIS

Numerous statistical software systems are available currently. The commonly used software systems are Statistical Package for the Social Sciences (SPSS – manufactured by IBM corporation), Statistical Analysis System ((SAS – developed by SAS Institute North Carolina, United States of America), R (designed by Ross Ihaka and Robert Gentleman from R core team), Minitab (developed by Minitab Inc), Stata (developed by StataCorp) and the MS Excel (developed by Microsoft).

There are a number of web resources which are related to statistical power analyses. A few are:

  • StatPages.net – provides links to a number of online power calculators
  • G-Power – provides a downloadable power analysis program that runs under DOS
  • Power analysis for ANOVA designs an interactive site that calculates power or sample size needed to attain a given power for one effect in a factorial ANOVA design
  • SPSS makes a program called SamplePower. It gives an output of a complete report on the computer screen which can be cut and paste into another document.

It is important that a researcher knows the concepts of the basic statistical methods used for conduct of a research study. This will help to conduct an appropriately well-designed study leading to valid and reliable results. Inappropriate use of statistical techniques may lead to faulty conclusions, inducing errors and undermining the significance of the article. Bad statistics may lead to bad research, and bad research may lead to unethical practice. Hence, an adequate knowledge of statistics and the appropriate use of statistical tests are important. An appropriate knowledge about the basic statistical methods will go a long way in improving the research designs and producing quality medical research which can be utilised for formulating the evidence-based guidelines.

Financial support and sponsorship

Conflicts of interest.

There are no conflicts of interest.

Qualitative vs Quantitative Research Methods & Data Analysis

Saul McLeod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul McLeod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Learn about our Editorial Process

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

The main difference between quantitative and qualitative research is the type of data they collect and analyze.

Quantitative data is information about quantities, and therefore numbers, and qualitative data is descriptive, and regards phenomenon which can be observed but not measured, such as language.
  • Quantitative research collects numerical data and analyzes it using statistical methods. The aim is to produce objective, empirical data that can be measured and expressed numerically. Quantitative research is often used to test hypotheses, identify patterns, and make predictions.
  • Qualitative research gathers non-numerical data (words, images, sounds) to explore subjective experiences and attitudes, often via observation and interviews. It aims to produce detailed descriptions and uncover new insights about the studied phenomenon.

On This Page:

What Is Qualitative Research?

Qualitative research is the process of collecting, analyzing, and interpreting non-numerical data, such as language. Qualitative research can be used to understand how an individual subjectively perceives and gives meaning to their social reality.

Qualitative data is non-numerical data, such as text, video, photographs, or audio recordings. This type of data can be collected using diary accounts or in-depth interviews and analyzed using grounded theory or thematic analysis.

Qualitative research is multimethod in focus, involving an interpretive, naturalistic approach to its subject matter. This means that qualitative researchers study things in their natural settings, attempting to make sense of, or interpret, phenomena in terms of the meanings people bring to them. Denzin and Lincoln (1994, p. 2)

Interest in qualitative data came about as the result of the dissatisfaction of some psychologists (e.g., Carl Rogers) with the scientific study of psychologists such as behaviorists (e.g., Skinner ).

Since psychologists study people, the traditional approach to science is not seen as an appropriate way of carrying out research since it fails to capture the totality of human experience and the essence of being human.  Exploring participants’ experiences is known as a phenomenological approach (re: Humanism ).

Qualitative research is primarily concerned with meaning, subjectivity, and lived experience. The goal is to understand the quality and texture of people’s experiences, how they make sense of them, and the implications for their lives.

Qualitative research aims to understand the social reality of individuals, groups, and cultures as nearly as possible as participants feel or live it. Thus, people and groups are studied in their natural setting.

Some examples of qualitative research questions are provided, such as what an experience feels like, how people talk about something, how they make sense of an experience, and how events unfold for people.

Research following a qualitative approach is exploratory and seeks to explain ‘how’ and ‘why’ a particular phenomenon, or behavior, operates as it does in a particular context. It can be used to generate hypotheses and theories from the data.

Qualitative Methods

There are different types of qualitative research methods, including diary accounts, in-depth interviews , documents, focus groups , case study research , and ethnography .

The results of qualitative methods provide a deep understanding of how people perceive their social realities and in consequence, how they act within the social world.

The researcher has several methods for collecting empirical materials, ranging from the interview to direct observation, to the analysis of artifacts, documents, and cultural records, to the use of visual materials or personal experience. Denzin and Lincoln (1994, p. 14)

Here are some examples of qualitative data:

Interview transcripts : Verbatim records of what participants said during an interview or focus group. They allow researchers to identify common themes and patterns, and draw conclusions based on the data. Interview transcripts can also be useful in providing direct quotes and examples to support research findings.

Observations : The researcher typically takes detailed notes on what they observe, including any contextual information, nonverbal cues, or other relevant details. The resulting observational data can be analyzed to gain insights into social phenomena, such as human behavior, social interactions, and cultural practices.

Unstructured interviews : generate qualitative data through the use of open questions.  This allows the respondent to talk in some depth, choosing their own words.  This helps the researcher develop a real sense of a person’s understanding of a situation.

Diaries or journals : Written accounts of personal experiences or reflections.

Notice that qualitative data could be much more than just words or text. Photographs, videos, sound recordings, and so on, can be considered qualitative data. Visual data can be used to understand behaviors, environments, and social interactions.

Qualitative Data Analysis

Qualitative research is endlessly creative and interpretive. The researcher does not just leave the field with mountains of empirical data and then easily write up his or her findings.

Qualitative interpretations are constructed, and various techniques can be used to make sense of the data, such as content analysis, grounded theory (Glaser & Strauss, 1967), thematic analysis (Braun & Clarke, 2006), or discourse analysis .

For example, thematic analysis is a qualitative approach that involves identifying implicit or explicit ideas within the data. Themes will often emerge once the data has been coded .

RESEARCH THEMATICANALYSISMETHOD

Key Features

  • Events can be understood adequately only if they are seen in context. Therefore, a qualitative researcher immerses her/himself in the field, in natural surroundings. The contexts of inquiry are not contrived; they are natural. Nothing is predefined or taken for granted.
  • Qualitative researchers want those who are studied to speak for themselves, to provide their perspectives in words and other actions. Therefore, qualitative research is an interactive process in which the persons studied teach the researcher about their lives.
  • The qualitative researcher is an integral part of the data; without the active participation of the researcher, no data exists.
  • The study’s design evolves during the research and can be adjusted or changed as it progresses. For the qualitative researcher, there is no single reality. It is subjective and exists only in reference to the observer.
  • The theory is data-driven and emerges as part of the research process, evolving from the data as they are collected.

Limitations of Qualitative Research

  • Because of the time and costs involved, qualitative designs do not generally draw samples from large-scale data sets.
  • The problem of adequate validity or reliability is a major criticism. Because of the subjective nature of qualitative data and its origin in single contexts, it is difficult to apply conventional standards of reliability and validity. For example, because of the central role played by the researcher in the generation of data, it is not possible to replicate qualitative studies.
  • Also, contexts, situations, events, conditions, and interactions cannot be replicated to any extent, nor can generalizations be made to a wider context than the one studied with confidence.
  • The time required for data collection, analysis, and interpretation is lengthy. Analysis of qualitative data is difficult, and expert knowledge of an area is necessary to interpret qualitative data. Great care must be taken when doing so, for example, looking for mental illness symptoms.

Advantages of Qualitative Research

  • Because of close researcher involvement, the researcher gains an insider’s view of the field. This allows the researcher to find issues that are often missed (such as subtleties and complexities) by the scientific, more positivistic inquiries.
  • Qualitative descriptions can be important in suggesting possible relationships, causes, effects, and dynamic processes.
  • Qualitative analysis allows for ambiguities/contradictions in the data, which reflect social reality (Denscombe, 2010).
  • Qualitative research uses a descriptive, narrative style; this research might be of particular benefit to the practitioner as she or he could turn to qualitative reports to examine forms of knowledge that might otherwise be unavailable, thereby gaining new insight.

What Is Quantitative Research?

Quantitative research involves the process of objectively collecting and analyzing numerical data to describe, predict, or control variables of interest.

The goals of quantitative research are to test causal relationships between variables , make predictions, and generalize results to wider populations.

Quantitative researchers aim to establish general laws of behavior and phenomenon across different settings/contexts. Research is used to test a theory and ultimately support or reject it.

Quantitative Methods

Experiments typically yield quantitative data, as they are concerned with measuring things.  However, other research methods, such as controlled observations and questionnaires , can produce both quantitative information.

For example, a rating scale or closed questions on a questionnaire would generate quantitative data as these produce either numerical data or data that can be put into categories (e.g., “yes,” “no” answers).

Experimental methods limit how research participants react to and express appropriate social behavior.

Findings are, therefore, likely to be context-bound and simply a reflection of the assumptions that the researcher brings to the investigation.

There are numerous examples of quantitative data in psychological research, including mental health. Here are a few examples:

Another example is the Experience in Close Relationships Scale (ECR), a self-report questionnaire widely used to assess adult attachment styles .

The ECR provides quantitative data that can be used to assess attachment styles and predict relationship outcomes.

Neuroimaging data : Neuroimaging techniques, such as MRI and fMRI, provide quantitative data on brain structure and function.

This data can be analyzed to identify brain regions involved in specific mental processes or disorders.

For example, the Beck Depression Inventory (BDI) is a clinician-administered questionnaire widely used to assess the severity of depressive symptoms in individuals.

The BDI consists of 21 questions, each scored on a scale of 0 to 3, with higher scores indicating more severe depressive symptoms. 

Quantitative Data Analysis

Statistics help us turn quantitative data into useful information to help with decision-making. We can use statistics to summarize our data, describing patterns, relationships, and connections. Statistics can be descriptive or inferential.

Descriptive statistics help us to summarize our data. In contrast, inferential statistics are used to identify statistically significant differences between groups of data (such as intervention and control groups in a randomized control study).

  • Quantitative researchers try to control extraneous variables by conducting their studies in the lab.
  • The research aims for objectivity (i.e., without bias) and is separated from the data.
  • The design of the study is determined before it begins.
  • For the quantitative researcher, the reality is objective, exists separately from the researcher, and can be seen by anyone.
  • Research is used to test a theory and ultimately support or reject it.

Limitations of Quantitative Research

  • Context: Quantitative experiments do not take place in natural settings. In addition, they do not allow participants to explain their choices or the meaning of the questions they may have for those participants (Carr, 1994).
  • Researcher expertise: Poor knowledge of the application of statistical analysis may negatively affect analysis and subsequent interpretation (Black, 1999).
  • Variability of data quantity: Large sample sizes are needed for more accurate analysis. Small-scale quantitative studies may be less reliable because of the low quantity of data (Denscombe, 2010). This also affects the ability to generalize study findings to wider populations.
  • Confirmation bias: The researcher might miss observing phenomena because of focus on theory or hypothesis testing rather than on the theory of hypothesis generation.

Advantages of Quantitative Research

  • Scientific objectivity: Quantitative data can be interpreted with statistical analysis, and since statistics are based on the principles of mathematics, the quantitative approach is viewed as scientifically objective and rational (Carr, 1994; Denscombe, 2010).
  • Useful for testing and validating already constructed theories.
  • Rapid analysis: Sophisticated software removes much of the need for prolonged data analysis, especially with large volumes of data involved (Antonius, 2003).
  • Replication: Quantitative data is based on measured values and can be checked by others because numerical data is less open to ambiguities of interpretation.
  • Hypotheses can also be tested because of statistical analysis (Antonius, 2003).

Antonius, R. (2003). Interpreting quantitative data with SPSS . Sage.

Black, T. R. (1999). Doing quantitative research in the social sciences: An integrated approach to research design, measurement and statistics . Sage.

Braun, V. & Clarke, V. (2006). Using thematic analysis in psychology . Qualitative Research in Psychology , 3, 77–101.

Carr, L. T. (1994). The strengths and weaknesses of quantitative and qualitative research : what method for nursing? Journal of advanced nursing, 20(4) , 716-721.

Denscombe, M. (2010). The Good Research Guide: for small-scale social research. McGraw Hill.

Denzin, N., & Lincoln. Y. (1994). Handbook of Qualitative Research. Thousand Oaks, CA, US: Sage Publications Inc.

Glaser, B. G., Strauss, A. L., & Strutzel, E. (1968). The discovery of grounded theory; strategies for qualitative research. Nursing research, 17(4) , 364.

Minichiello, V. (1990). In-Depth Interviewing: Researching People. Longman Cheshire.

Punch, K. (1998). Introduction to Social Research: Quantitative and Qualitative Approaches. London: Sage

Further Information

  • Mixed methods research
  • Designing qualitative research
  • Methods of data collection and analysis
  • Introduction to quantitative and qualitative research
  • Checklists for improving rigour in qualitative research: a case of the tail wagging the dog?
  • Qualitative research in health care: Analysing qualitative data
  • Qualitative data analysis: the framework approach
  • Using the framework method for the analysis of
  • Qualitative data in multi-disciplinary health research
  • Content Analysis
  • Grounded Theory
  • Thematic Analysis

Print Friendly, PDF & Email

  • Tips & Tricks
  • Website & Apps
  • ChatGPT Blogs
  • ChatGPT News
  • ChatGPT Tutorial

Types of Research Methods Explained with Examples

Research methods are the various strategies, techniques, and tools that researchers use to collect and analyze data . These methods help researchers find answers to their questions and gain a better understanding of different topics. Whether conducting experiments, surveys, or interviews, choosing the right research method is crucial for obtaining accurate and reliable results.

In the ever-evolving world of academia and professional inquiry, understanding the various research methods is crucial for anyone looking to delve into a new study or project. Research is a systematic investigation aimed at discovering and interpreting facts , plays a pivotal role in expanding our knowledge across various fields.

Table of Content

What is Research?

Types of research methods, types of research methodology, difference between qualitative and quantitative research.

This article will explore the different types of research methods , how they are used, and their importance in the world of research.

Research is the process of studying a subject in detail to discover new information or understand it better. This can be anything from studying plants or animals, to learning how people think and behave, to finding new ways to cure diseases. People do research by asking questions, collecting information, and then looking at that information to find answers or learn new things.

Research

This table provides a quick reference to understand the key aspects of each research type.

Research Methods Focus Methodology Applications
Qualitative Human behavior Interviews, Observations Social Sciences
Quantitative Data quantification Statistical Analysis Natural Sciences
Descriptive Phenomenon description Surveys, Observations Demographics
Analytical Underlying reasons Data Comparison Scientific Research
Applied Practical solutions Collaborative Research Healthcare
Fundamental Knowledge expansion Theoretical Research Physics, Math
Exploratory Undefined problems Secondary Research Product Development
Conclusive Decision-making Experiments, Testing Market Research

1. Qualitative Research

Qualitative research method is a methodological approach primarily used in fields like social sciences, anthropology, and psychology . It’s aimed at understanding human behavior and the motivations behind it. Qualitative research delves into the nature of phenomena through detailed, in-depth exploration.

Definition and Approach: Qualitative research focuses on understanding human behavior and the reasons that govern such behavior. It involves in-depth analysis of non-numerical data like texts, videos, or audio recordings.

Key Features:

  • Emphasis on exploring complex phenomena
  • Involves interviews, focus groups , and observations
  • Generates rich, detailed data that are often subjective

Applications: Widely used in social sciences, marketing, and user experience research.

2. Quantitative Research

Quantitative research method is a systematic approach used in various scientific fields to quantify data and generalize findings from a sample to a larger population.

Definition and Approach: Quantitative research is centered around quantifying data and generalizing results from a sample to the population of interest. It involves statistical analysis and numerical data .

  • Relies on structured data collection instruments
  • Large sample sizes for generalizability
  • Statistical methods to establish relationships between variables

Applications: Common in natural sciences, economics, and market research.

3. Descriptive Research

Descriptive research is a type of research method that is used to describe characteristics of a population or phenomenon being studied . It does not answer questions about how or why things are the way they are. Instead, it focuses on providing a snapshot of current conditions or describing what exists.

Definition and Approach: This Types of Research method aims to accurately describe characteristics of a particular phenomenon or population.

  • Provides detailed insights without explaining why or how something happens
  • Involves surveys and observations
  • Often used as a preliminary research method

Applications: Used in demographic studies, census, and organizational reporting.

4. Analytical Research

Analytical research is a type of research that s eeks to understand the underlying factors or causes behind phenomena or relationships . It goes beyond descriptive research by attempting to explain why things happen and how they happen.

Definition and Approach: Analytical research method goes beyond description to understand the underlying reasons or causes.

  • Involves comparing data and facts to make evaluations
  • Critical thinking is a key component
  • Often hypothesis-driven

Applications: Useful in scientific research, policy analysis, and business strategy.

5. Applied Research

Applied research is a type of scientific research method that aims to solve specific practical problems or address practical questions . Unlike fundamental research, which seeks to expand knowledge for knowledge’s sake, applied research is directed towards solving real-world issues .

Definition and Approach: Applied research focuses on finding solutions to practical problems.

  • Direct practical application
  • Often collaborative , involving stakeholders
  • Results are immediately applicable

Applications: Used in healthcare, engineering, and technology development.

6. Fundamental Research

Fundamental research, also known as basic research or pure research, is a type of scientific research method that aims to expand the existing knowledge base. It is driven by curiosity, interest in a particular subject, or the pursuit of knowledge for knowledge’s sake , rather than with a specific practical application in mind.

Definition and Approach: Also known as basic or pure research, it aims to expand knowledge without a direct application in mind.

  • Theoretical framework
  • Focus on understanding fundamental principles
  • Long-term in nature

Applications: Foundational in fields like physics, mathematics, and social sciences.

7. Exploratory Research

Exploratory research is a type of research method conducted for a problem that has not been clearly defined. Its primary goal is to gain insights and familiarity with the problem or to gain more information about a topic. Exploratory research is often conducted when a researcher or investigator does not know much about the issue and is looking to gather more information.

Definition and Approach: This type of research is conducted for a problem that has not been clearly defined.

  • Flexible and unstructured
  • Used to identify potential hypotheses
  • Relies on secondary research like reviewing available literature

Applications: Often the first step in social science research and product development.

8. Conclusive Research

Conclusive research, also known as confirmatory research, is a type of research method that aims to confirm or deny a hypotheses or provide answers to specific research questions. It is used to make conclusive decisions or draw conclusions about the relationships among variables.

Definition and Approach: Conclusive research is designed to provide information that is useful in decision-making.

  • Structured and methodical
  • Aims to test hypotheses
  • Involves experiments, surveys, and testing

Applications: Used in market research, clinical trials, and policy evaluations.

Here is detailed difference between the qualitative and quantitative research –

Focuses on exploring ideas, understanding concepts, and gathering insights. Involves the collection and analysis of numerical data to describe, predict, or control variables of interest.
To gain a deep understanding of underlying reasons, motivations, and opinions. To quantify data and generalize results from a sample to a larger population.
Non-numerical data such as words, images, or objects. Numerical data, often in the form of numbers and statistics.
Interviews, focus groups, observations, and review of documents or artifacts. Surveys, experiments, , and numerical measurements.
Interpretive, subjective analysis aimed at understanding context and complexity. Statistical, objective analysis focused on quantifying data and generalizing findings.
Descriptive, detailed narrative or thematic analysis. Statistical results, often presented in charts, tables, or graphs.
Generally smaller, focused on depth rather than breadth. Larger to ensure statistical significance and representativeness.
High flexibility in research design, allowing for changes as the study progresses. Structured and fixed design, with little room for changes once the study begins.
Exploratory, open-ended, and subjective. Conclusive, closed-ended, and objective.
Social sciences, humanities, psychology, and market research for understanding behaviors and experiences. Natural sciences, economics, and large-scale market research for testing hypotheses and making predictions.
Provides depth and detail, offers a more human touch and context, good for exploring new areas. Allows for a broader study, involving a greater number of subjects, and enhances generalizability of results.
Can be time-consuming, harder to generalize due to small sample size, and may be subject to researcher bias. May overlook the richness of context, less effective in understanding complex social phenomena.

Understanding the different types of research methods is crucial for anyone embarking on a research project. Each type has its unique approach, methodology, and application area, making it essential to choose the right type for your specific research question or problem. This guide serves as a starting point for researchers to explore and select the most suitable research method for their needs, ensuring effective and reliable outcomes.

Types of Research Methods – FAQs

What are the 4 main types of research methods.

There are four main types of Quantitative research:  Descriptive, Correlational, Causal-Comparative/Quasi-Experimental, and Experimental Research . attempts to establish cause- effect relationships among the variables. These types of design are very similar to true experiments, but with some key differences.

What are the 5 main purpose of research?

The primary purposes of basic research (as opposed to applied research) are  documentation, discovery, interpretation, and the research and development (R&D) of methods and systems for the advancement of human knowledge .

What are 7 C’s of research?

The 7 C’s define the principles that are essential for conducting rigorous and credible research. They are Curiosity, Clarity, Conciseness, Correctness, Completeness, Coherence, Credibility.
  • General Knowledge
  • SSC/Banking
  • tech-updates

Please Login to comment...

Types of irony explained (with examples), why can't a country print more currency - explained.

article_img

When is Easter 2024? - Date, Traditions, and Symbols Explained

What is youtube kids an app made just for kids, explained.

article_img

The Ballad of Songbirds and Snakes' Ending Explained: The Director and Producer Break It Down (Exclusive)

article_img

Project 2025 Explained: Impact on Public Health, Trump's Agenda, and Biden-Harris Opposition - Latest News

List of research institutes in india, studentship program for ayurveda research ken (spark), innovation in science pursuit for inspired research (inspire) programme, cognitive science research initiative (csri) - full form, history and objectives.

  • 105 Funny Things to Do to Make Someone Laugh
  • Best PS5 SSDs in 2024: Top Picks for Expanding Your Storage
  • Best Nintendo Switch Controllers in 2024
  • Xbox Game Pass Ultimate: Features, Benefits, and Pricing in 2024
  • #geekstreak2024 – 21 Days POTD Challenge Powered By Deutsche Bank

Improve your Coding Skills with Practice

 alt=

What kind of Experience do you want to share?

  • Privacy Policy

Research Method

Home » Quantitative Data – Types, Methods and Examples

Quantitative Data – Types, Methods and Examples

Table of Contents

 Quantitative Data

Quantitative Data

Definition:

Quantitative data refers to numerical data that can be measured or counted. This type of data is often used in scientific research and is typically collected through methods such as surveys, experiments, and statistical analysis.

Quantitative Data Types

There are two main types of quantitative data: discrete and continuous.

  • Discrete data: Discrete data refers to numerical values that can only take on specific, distinct values. This type of data is typically represented as whole numbers and cannot be broken down into smaller units. Examples of discrete data include the number of students in a class, the number of cars in a parking lot, and the number of children in a family.
  • Continuous data: Continuous data refers to numerical values that can take on any value within a certain range or interval. This type of data is typically represented as decimal or fractional values and can be broken down into smaller units. Examples of continuous data include measurements of height, weight, temperature, and time.

Quantitative Data Collection Methods

There are several common methods for collecting quantitative data. Some of these methods include:

  • Surveys : Surveys involve asking a set of standardized questions to a large number of people. Surveys can be conducted in person, over the phone, via email or online, and can be used to collect data on a wide range of topics.
  • Experiments : Experiments involve manipulating one or more variables and observing the effects on a specific outcome. Experiments can be conducted in a controlled laboratory setting or in the real world.
  • Observational studies : Observational studies involve observing and collecting data on a specific phenomenon without intervening or manipulating any variables. Observational studies can be conducted in a natural setting or in a laboratory.
  • Secondary data analysis : Secondary data analysis involves using existing data that was collected for a different purpose to answer a new research question. This method can be cost-effective and efficient, but it is important to ensure that the data is appropriate for the research question being studied.
  • Physiological measures: Physiological measures involve collecting data on biological or physiological processes, such as heart rate, blood pressure, or brain activity.
  • Computerized tracking: Computerized tracking involves collecting data automatically from electronic sources, such as social media, online purchases, or website analytics.

Quantitative Data Analysis Methods

There are several methods for analyzing quantitative data, including:

  • Descriptive statistics: Descriptive statistics are used to summarize and describe the basic features of the data, such as the mean, median, mode, standard deviation, and range.
  • Inferential statistics : Inferential statistics are used to make generalizations about a population based on a sample of data. These methods include hypothesis testing, confidence intervals, and regression analysis.
  • Data visualization: Data visualization involves creating charts, graphs, and other visual representations of the data to help identify patterns and trends. Common types of data visualization include histograms, scatterplots, and bar charts.
  • Time series analysis: Time series analysis involves analyzing data that is collected over time to identify patterns and trends in the data.
  • Multivariate analysis : Multivariate analysis involves analyzing data with multiple variables to identify relationships between the variables.
  • Factor analysis : Factor analysis involves identifying underlying factors or dimensions that explain the variation in the data.
  • Cluster analysis: Cluster analysis involves identifying groups or clusters of observations that are similar to each other based on multiple variables.

Quantitative Data Formats

Quantitative data can be represented in different formats, depending on the nature of the data and the purpose of the analysis. Here are some common formats:

  • Tables : Tables are a common way to present quantitative data, particularly when the data involves multiple variables. Tables can be used to show the frequency or percentage of data in different categories or to display summary statistics.
  • Charts and graphs: Charts and graphs are useful for visualizing quantitative data and can be used to highlight patterns and trends in the data. Some common types of charts and graphs include line charts, bar charts, scatterplots, and pie charts.
  • Databases : Quantitative data can be stored in databases, which allow for easy sorting, filtering, and analysis of large amounts of data.
  • Spreadsheets : Spreadsheets can be used to organize and analyze quantitative data, particularly when the data is relatively small in size. Spreadsheets allow for calculations and data manipulation, as well as the creation of charts and graphs.
  • Statistical software : Statistical software, such as SPSS, R, and SAS, can be used to analyze quantitative data. These programs allow for more advanced statistical analyses and data modeling, as well as the creation of charts and graphs.

Quantitative Data Gathering Guide

Here is a basic guide for gathering quantitative data:

  • Define the research question: The first step in gathering quantitative data is to clearly define the research question. This will help determine the type of data to be collected, the sample size, and the methods of data analysis.
  • Choose the data collection method: Select the appropriate method for collecting data based on the research question and available resources. This could include surveys, experiments, observational studies, or other methods.
  • Determine the sample size: Determine the appropriate sample size for the research question. This will depend on the level of precision needed and the variability of the population being studied.
  • Develop the data collection instrument: Develop a questionnaire or survey instrument that will be used to collect the data. The instrument should be designed to gather the specific information needed to answer the research question.
  • Pilot test the data collection instrument : Before collecting data from the entire sample, pilot test the instrument on a small group to identify any potential problems or issues.
  • Collect the data: Collect the data from the selected sample using the chosen data collection method.
  • Clean and organize the data : Organize the data into a format that can be easily analyzed. This may involve checking for missing data, outliers, or errors.
  • Analyze the data: Analyze the data using appropriate statistical methods. This may involve descriptive statistics, inferential statistics, or other types of analysis.
  • Interpret the results: Interpret the results of the analysis in the context of the research question. Identify any patterns, trends, or relationships in the data and draw conclusions based on the findings.
  • Communicate the findings: Communicate the findings of the analysis in a clear and concise manner, using appropriate tables, graphs, and other visual aids as necessary. The results should be presented in a way that is accessible to the intended audience.

Examples of Quantitative Data

Here are some examples of quantitative data:

  • Height of a person (measured in inches or centimeters)
  • Weight of a person (measured in pounds or kilograms)
  • Temperature (measured in Fahrenheit or Celsius)
  • Age of a person (measured in years)
  • Number of cars sold in a month
  • Amount of rainfall in a specific area (measured in inches or millimeters)
  • Number of hours worked in a week
  • GPA (grade point average) of a student
  • Sales figures for a product
  • Time taken to complete a task.
  • Distance traveled (measured in miles or kilometers)
  • Speed of an object (measured in miles per hour or kilometers per hour)
  • Number of people attending an event
  • Price of a product (measured in dollars or other currency)
  • Blood pressure (measured in millimeters of mercury)
  • Amount of sugar in a food item (measured in grams)
  • Test scores (measured on a numerical scale)
  • Number of website visitors per day
  • Stock prices (measured in dollars)
  • Crime rates (measured by the number of crimes per 100,000 people)

Applications of Quantitative Data

Quantitative data has a wide range of applications across various fields, including:

  • Scientific research: Quantitative data is used extensively in scientific research to test hypotheses and draw conclusions. For example, in biology, researchers might use quantitative data to measure the growth rate of cells or the effectiveness of a drug treatment.
  • Business and economics: Quantitative data is used to analyze business and economic trends, forecast future performance, and make data-driven decisions. For example, a company might use quantitative data to analyze sales figures and customer demographics to determine which products are most popular among which segments of their customer base.
  • Education: Quantitative data is used in education to measure student performance, evaluate teaching methods, and identify areas where improvement is needed. For example, a teacher might use quantitative data to track the progress of their students over the course of a semester and adjust their teaching methods accordingly.
  • Public policy: Quantitative data is used in public policy to evaluate the effectiveness of policies and programs, identify areas where improvement is needed, and develop evidence-based solutions. For example, a government agency might use quantitative data to evaluate the impact of a social welfare program on poverty rates.
  • Healthcare : Quantitative data is used in healthcare to evaluate the effectiveness of medical treatments, track the spread of diseases, and identify risk factors for various health conditions. For example, a doctor might use quantitative data to monitor the blood pressure levels of their patients over time and adjust their treatment plan accordingly.

Purpose of Quantitative Data

The purpose of quantitative data is to provide a numerical representation of a phenomenon or observation. Quantitative data is used to measure and describe the characteristics of a population or sample, and to test hypotheses and draw conclusions based on statistical analysis. Some of the key purposes of quantitative data include:

  • Measuring and describing : Quantitative data is used to measure and describe the characteristics of a population or sample, such as age, income, or education level. This allows researchers to better understand the population they are studying.
  • Testing hypotheses: Quantitative data is often used to test hypotheses and theories by collecting numerical data and analyzing it using statistical methods. This can help researchers determine whether there is a statistically significant relationship between variables or whether there is support for a particular theory.
  • Making predictions : Quantitative data can be used to make predictions about future events or trends based on past data. This is often done through statistical modeling or time series analysis.
  • Evaluating programs and policies: Quantitative data is often used to evaluate the effectiveness of programs and policies. This can help policymakers and program managers identify areas where improvements can be made and make evidence-based decisions about future programs and policies.

When to use Quantitative Data

Quantitative data is appropriate to use when you want to collect and analyze numerical data that can be measured and analyzed using statistical methods. Here are some situations where quantitative data is typically used:

  • When you want to measure a characteristic or behavior : If you want to measure something like the height or weight of a population or the number of people who smoke, you would use quantitative data to collect this information.
  • When you want to compare groups: If you want to compare two or more groups, such as comparing the effectiveness of two different medical treatments, you would use quantitative data to collect and analyze the data.
  • When you want to test a hypothesis : If you have a hypothesis or theory that you want to test, you would use quantitative data to collect data that can be analyzed statistically to determine whether your hypothesis is supported by the data.
  • When you want to make predictions: If you want to make predictions about future trends or events, such as predicting sales for a new product, you would use quantitative data to collect and analyze data from past trends to make your prediction.
  • When you want to evaluate a program or policy : If you want to evaluate the effectiveness of a program or policy, you would use quantitative data to collect data about the program or policy and analyze it statistically to determine whether it has had the intended effect.

Characteristics of Quantitative Data

Quantitative data is characterized by several key features, including:

  • Numerical values : Quantitative data consists of numerical values that can be measured and counted. These values are often expressed in terms of units, such as dollars, centimeters, or kilograms.
  • Continuous or discrete : Quantitative data can be either continuous or discrete. Continuous data can take on any value within a certain range, while discrete data can only take on certain values.
  • Objective: Quantitative data is objective, meaning that it is not influenced by personal biases or opinions. It is based on empirical evidence that can be measured and analyzed using statistical methods.
  • Large sample size: Quantitative data is often collected from a large sample size in order to ensure that the results are statistically significant and representative of the population being studied.
  • Statistical analysis: Quantitative data is typically analyzed using statistical methods to determine patterns, relationships, and other characteristics of the data. This allows researchers to make more objective conclusions based on empirical evidence.
  • Precision : Quantitative data is often very precise, with measurements taken to multiple decimal points or significant figures. This precision allows for more accurate analysis and interpretation of the data.

Advantages of Quantitative Data

Some advantages of quantitative data are:

  • Objectivity : Quantitative data is usually objective because it is based on measurable and observable variables. This means that different people who collect the same data will generally get the same results.
  • Precision : Quantitative data provides precise measurements of variables. This means that it is easier to make comparisons and draw conclusions from quantitative data.
  • Replicability : Since quantitative data is based on objective measurements, it is often easier to replicate research studies using the same or similar data.
  • Generalizability : Quantitative data allows researchers to generalize findings to a larger population. This is because quantitative data is often collected using random sampling methods, which help to ensure that the data is representative of the population being studied.
  • Statistical analysis : Quantitative data can be analyzed using statistical methods, which allows researchers to test hypotheses and draw conclusions about the relationships between variables.
  • Efficiency : Quantitative data can often be collected quickly and efficiently using surveys or other standardized instruments, which makes it a cost-effective way to gather large amounts of data.

Limitations of Quantitative Data

Some Limitations of Quantitative Data are as follows:

  • Limited context: Quantitative data does not provide information about the context in which the data was collected. This can make it difficult to understand the meaning behind the numbers.
  • Limited depth: Quantitative data is often limited to predetermined variables and questions, which may not capture the complexity of the phenomenon being studied.
  • Difficulty in capturing qualitative aspects: Quantitative data is unable to capture the subjective experiences and qualitative aspects of human behavior, such as emotions, attitudes, and motivations.
  • Possibility of bias: The collection and interpretation of quantitative data can be influenced by biases, such as sampling bias, measurement bias, or researcher bias.
  • Simplification of complex phenomena: Quantitative data may oversimplify complex phenomena by reducing them to numerical measurements and statistical analyses.
  • Lack of flexibility: Quantitative data collection methods may not allow for changes or adaptations in the research process, which can limit the ability to respond to unexpected findings or new insights.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Secondary Data

Secondary Data – Types, Methods and Examples

Primary Data

Primary Data – Types, Methods and Examples

Qualitative Data

Qualitative Data – Types, Methods and Examples

Research Information

Information in Research – Types and Examples

Research Data

Research Data – Types Methods and Examples

How to Use Data Triangulation in Qualitative Research

' src=

In qualitative research, data triangulation means approaching a question from multiple perspectives. 

It involves using more than one data source or method to investigate a theory or corroborate a finding. 

For something with such a mathematical-sounding name, it’s a pretty simple concept. But it’s a powerful one, too. Ask a group of five boaters why their watercraft sank in the sea and you’ll get five slightly different stories. Each individual tale holds the bias of its teller. Taken together, though, the individual accounts form a deeper and more accurate picture of what went wrong.

This logic applies to qualitative research. Since qualitative data isn’t as cut-and-dry as quantitative data , you need more than one perspective, data type, and method to shore it up. 

With triangulation, you give the results a stronger platform to stand on. 

When to Use Data Triangulation with Qualitative Data

If you ask me, there’s never a bad time to do data triangulation when you’re working with qualitative data. 

From a researcher’s point of view, triangulation can help you verify key details and strengthen your findings—and your argument.

And if you’re someone who uses qualitative data to inform your business decisions, gathering data from multiple sources is smart. It can help you make critical choices with a level of confidence you wouldn’t (and shouldn’t) have if you relied on just one source. 

In a 2014 journal article published in the Oncology Nursing Forum titled, “ The use of triangulation in qualitative research ,” authors Nancy Carter, et al., lay out two views of data triangulation. 

They argue that it’s both “the use of multiple methods or data sources in qualitative research to develop a comprehensive understanding of phenomena” and “a qualitative research strategy to test validity through the convergence of information from different sources.”

Put into simpler words, qualitative data triangulation helps us:

  • Gain a fuller understanding of a research topic or argument
  • Put our research to the test by comparing and contrasting it with different sources on the same topic

Well-rounded arguments benefit everyone, all the time. 

So if you’ve been on the fence about whether to draw sources from more than one place or use more than one method in your research, consider this your sign. 

Do it. 

How to Do Qualitative Data Triangulation 

Before you begin running qualitative data triangulation, it’s helpful to know the four types, as outlined by Carter et al.:

  • Method triangulation: Using two or more methods to gather data
  • Investigator triangulation: Relying on the involvement of more than one researcher to collect or analyze the data
  • Theory triangulation: Analyzing the data using different theoretical perspectives 
  • Data source triangulation: Drawing information from multiple data sources, including those from different times, places, and people

Knowing which type of triangulation to focus on can be tricky. 

We’ll explore each type in more detail and suggest questions to ask yourself when you’re tackling the beginning of the triangulation process. 

Method triangulation

Method triangulation means using a variety of research methods to study the same topic. In qualitative research, the most common data-gathering methods are:

  • Focus groups
  • Observation
  • Open-ended surveys or questionnaires

So, in qualitative research, method triangulation means gathering data using at least two of these methods. 

But method triangulation can also mean looping in non-qualitative forms of data collection, like demographic information or responses to closed-question (yes-or-no and/or multiple-choice) surveys. Since we’re focusing on qualitative data here, though, we’ll save mixed-method triangulation for another day.

Right now, our lens is firmly focused on qualitative research.

Use method triangulation when:  

  • Leaning heavily on one method will only give you a partial view of your research question or topic. Say you’re sending out a survey to find what people find most stressful about in-person grocery shopping. You get some interesting answers, but you want to dig deeper. You decide to send a group of shoppers into a store with cash and a grocery list to observe their lived, in-the-moment experiences. Along with the survey responses, you now have a more complete picture of common grocery-shopping stressors. 
  • You need to cross-validate findings from different methods . Imagine you’re doing in-depth interviews with employees to understand their job satisfaction. At the same time, you want to see if these self-reported experiences align with behaviors you can observe during the workday. You decide to pair the interviews with direct workplace observations. The goal? To see whether the employees’ daily actions match their satisfaction levels. If you see any inconsistencies, you can go over them with the interviewee for a more accurate picture of their experience. 

Investigator Triangulation 

The goal of investigator triangulation is to have more than one researcher (or team of researchers) analyze the same set of data. Like a peer review for a scholarly journal article, investigator triangulation helps reduce bias. This, in turn, strengthens the credibility of your research.

But you have to be careful not to invite researchers with your same opinions and biases to participate in this type of triangulation. You don’t want them to confirm everything you’ve researched. You want them to read it line by line, grappling with the information and pushing you to see it in a new light.

Reach out to people in different—but related—fields. Invite them to collaborate by analyzing your research and engaging with it from their own viewpoints. Listen carefully to what they have to say—don’t just dismiss it because you don’t see things the same way.

This is how you’ll get the most well-rounded analysis of your qualitative research.

Use investigator triangulation when: 

  • The research involves subjective interpretations or complex topics. If your data could be viewed differently depending on the researcher’s perspective, then you need fresh eyes to look at it. If you’re studying how patients perceive care in a hospital setting, for example, one researcher might focus on emotional aspects like empathy. Another might not consider this at all and instead focus on how efficient the care is. Both perspectives are important to your research.
  • The topic is sensitive or controversial. If you feel like your data is going to ignite a firestorm of controversy, you need extra eyes. Lots of them. The more scrutiny before the data gets published or used to inform a decision, the better. You want minimal personal bias—and maximum credibility .

Theory Triangulation 

With theory triangulation, you aren’t using different data collection methods or bringing in researchers with unique viewpoints. 

Instead, you’re changing the lens through which you see the data.

This approach challenges researchers to set aside their original theories for analyzing information. It invites them to use at least one additional, theoretical perspective when they sit down to interpret the data.

Researchers usually use theory triangulation when their topic spans more than one discipline. If you were studying human grocery shopping behavior, for instance, you could analyze the results through three lenses:

  • Psychological : Study how individual decision-making processes, emotions, and cognitive biases affect shopping choices. Does impulse buying play a role? What about decision fatigue?
  • Sociological : Examine the influence of social factors. Do cultural norms, peer pressure, or family dynamics affect shopping habits? Does social class impact purchasing behavior? If so, how?
  • Economic : Analyze the shoppers’ behavior through the lens of cost-benefit analysis, budget limits, and price sensitivity. How do incentives like discounts or promotions influence purchases—or not?

Basically, theory triangulation pushes you to consider things from viewpoints you hadn’t before. And it can make the results a lot meatier than if you relied on a single theory.

Use theory triangulation when: 

  • You are studying a complex topic that could use a few different theoretical perspectives to be understood. Say you’re looking at the factors behind employee motivation. You might use psychological theories like Maslow’s Hierarchy of Needs to explore intrinsic motivators. Next, you could use economic theories to study how external factors like financial incentives influence performance.
  • You want to compare or test the validity of multiple theories to see which framework best fits your data. Let’s imagine you’re studying educational outcomes. You could compare Constructivist Theory (focused on how students build knowledge) with Behaviorist Theory (focused on reinforcement and discipline), to see which one better explains student success.  

Data Source Triangulation 

With data source triangulation, your goal is to gather data from at least two sources, but probably more than that.

What does this look like in qualitative research?

It might mean gathering data from: 

  • Archival records
  • Textual analysis of policy/legal documents
  • Social media content
  • News articles, blogs, and other media content
  • The comments section of any forum, website, or blog
  • Case studies
  • Literature and artwork

The point of data source triangulation is to study one topic using these diverse data sources. (If you want to pull from quantitative data sources like web analytics and public databases, you can do that too.)

This is essentially another way to study your research question from multiple perspectives. But instead of a group of different researchers or a set of theories from multiple disciplines, those differing data sources are the other perspectives.

Use data source triangulation when:  

  • You need to collect data from different sources to gather perspectives on a topic—without direct interaction. For example, say you’re studying public perceptions of climate change. You want to capture the raw, unfiltered feelings and opinions behind this fraught topic. What better place to go than social media discussions, news articles (and their comments sections), and government reports? You’ll get tons of rich, probably brutally honest data without ever making your presence as a researcher known. 

You want to validate findings across existing qualitative data sources. Let’s say you’re studying stigmas on mental health issues. You’ve already used methodological triangulation to gather qualitative data from interviews and surveys. Now, you want to compare this data with themes from online forums, blog posts, and personal memoirs. The data found in these sources can help validate your findings—or bring up new questions and interesting discrepancies to explore.

Make your website better. Instantly.

Keep reading about user experience.

types of research methods statistics

In qualitative research, data triangulation means approaching a question from multiple perspectives.  It involves using more than one data source or method to investigate a…

types of research methods statistics

The 5 Best UI/UX Design Agencies Compared

UI/UX design agencies help bring brands to life and deliver optimized user experiences with well-researched and thoughtfully designed websites, apps, and products. All of the…

types of research methods statistics

When to Use the 4 Qualitative Data Collection Methods

Qualitative data collection methods are the different ways to gather descriptive, non-numerical data for your research.  Popular examples of qualitative data collection methods include surveys,…

types of research methods statistics

dscout Review–The Good and Bad

dscout is a great tool for doing qualitative user research, like live interviews or diary studies. But it isn’t the best choice for everyone.  If…

user-experience-1

Out Of All Tips to Improve User Experience, 7 Are Legit

Figuring out the most effective ways to improve the user experience can be hard. There is tons of information out there, and it gets overwhelming…

types of research methods statistics

Is Nominal Data Useful? Yes, In These Situations

Nominal data is descriptive information wherein rank and order don’t matter. Still confused? It helps to contrast nominal data with the other three main types…

user experience

What Is User Experience? Answers From 7 Top UX Designers

If you Google user experience the definition you’ll find is “the overall experience of a person using a product like a website or computer application,…

types of research methods statistics

How to Do Each Qualitative Data Coding Type (All Steps)

Qualitative data coding is the process of organizing all the descriptive data you collect during a research project.  It has nothing to do with computer…

types of research methods statistics

7 Qualitative Data Examples and Why They Work

Qualitative data presents information using descriptive language, images, and videos instead of numbers. To help make sense of this type of data—as opposed to quantitative…

types of research methods statistics

The 5 Best Usability Testing Tools Compared

Usability testing helps designers, product managers, and other teams figure out how easily users can use a website, app, or product.  With these tools, user…

types of research methods statistics

5 Qualitative Data Analysis Methods + When To Use Each

Qualitative data analysis is the work of organizing and interpreting descriptive data. Interview recordings, open-ended survey responses, and focus group observations all yield descriptive—qualitative—information. This…

types of research methods statistics

The 5 Best UX Research Tools Compared

UX research tools help designers, product managers, and other teams understand users and how they interact with a company’s products and services. The tools provide…

types of research methods statistics

Qualitative vs. Quantitative Data: 7 Key Differences

Qualitative data is information you can describe with words rather than numbers.  Quantitative data is information represented in a measurable way using numbers.  One type…

types of research methods statistics

6 Real Ways AI Has Improved the User Experience

It seems like every other company is bragging about their AI-enhanced user experiences. Consumers and the UX professionals responsible for designing great user experiences are…

types of research methods statistics

12 Key UX Metrics: What They Mean + How To Calculate Each

UX metrics help identify where users struggle when using an app or website and where they are successful. The data collected helps designers, developers, and…

Over 300,000 websites use Crazy Egg to improve what's working, fix what isn't and test new ideas.

IMAGES

  1. 7 Types of Statistical Analysis: Definition and Explanation

    types of research methods statistics

  2. 15 Types of Research Methods (2024)

    types of research methods statistics

  3. Types of Research Methodology: Uses, Types & Benefits

    types of research methods statistics

  4. Role of Statistics in Research

    types of research methods statistics

  5. Types of Research by Method

    types of research methods statistics

  6. Standard statistical tools in research and data analysis

    types of research methods statistics

VIDEO

  1. Q & A Session for Lecture 8/9/10 Part 1

  2. SSE Talks

  3. Scientific Method of Research

  4. Types of Qualitative Research Design || Research and Statistics || #nursingresearch #researchdesign

  5. Variable Properties

  6. Types of Research Articles

COMMENTS

  1. Research Methods

    Research methods are specific procedures for collecting and analyzing data. Developing your research methods is an integral part of your research design. When planning your methods, there are two key decisions you will make. First, decide how you will collect data. Your methods depend on what type of data you need to answer your research question:

  2. Introduction to Research Statistical Analysis: An Overview of the

    Introduction. Statistical analysis is necessary for any research project seeking to make quantitative conclusions. The following is a primer for research-based statistical analysis. It is intended to be a high-level overview of appropriate statistical testing, while not diving too deep into any specific methodology.

  3. Research Methods

    Research methods are specific procedures for collecting and analysing data. Developing your research methods is an integral part of your research design. When planning your methods, there are two key decisions you will make. First, decide how you will collect data. Your methods depend on what type of data you need to answer your research question:

  4. Research Data

    Research data refers to any information or evidence gathered through systematic investigation or experimentation to support or refute a hypothesis or answer a research question. It includes both primary and secondary data, and can be in various formats such as numerical, textual, audiovisual, or visual. Research data plays a critical role in ...

  5. Statistical Methods for Data Analysis: a Comprehensive Guide

    Introduction to Statistical Methods. At its core, statistical methods are the backbone of data analysis, helping us make sense of numbers and patterns in the world around us. Whether you're looking at sales figures, medical research, or even your fitness tracker's data, statistical methods are what turn raw data into useful insights.

  6. The Beginner's Guide to Statistical Analysis

    This article is a practical introduction to statistical analysis for students and researchers. We'll walk you through the steps using two research examples. The first investigates a potential cause-and-effect relationship, while the second investigates a potential correlation between variables. Example: Causal research question.

  7. Research Methods--Quantitative, Qualitative, and More: Overview

    About Research Methods. This guide provides an overview of research methods, how to choose and use them, and supports and resources at UC Berkeley. As Patten and Newhart note in the book Understanding Research Methods, "Research methods are the building blocks of the scientific enterprise. They are the "how" for building systematic knowledge.

  8. Research Methodology

    Research Methodology Types. Types of Research Methodology are as follows: Quantitative Research Methodology. This is a research methodology that involves the collection and analysis of numerical data using statistical methods. This type of research is often used to study cause-and-effect relationships and to make predictions.

  9. Qualitative vs. Quantitative Research

    When collecting and analyzing data, quantitative research deals with numbers and statistics, while qualitative research deals with words and meanings. Both are important for gaining different kinds of knowledge. Quantitative research. Quantitative research is expressed in numbers and graphs. It is used to test or confirm theories and assumptions.

  10. Research Methods: What are research methods?

    What are research methods. Research methods are the strategies, processes or techniques utilized in the collection of data or evidence for analysis in order to uncover new information or create better understanding of a topic. There are different types of research methods which use different tools for data collection.

  11. How To Choose The Right Research Methodology

    Mixed methods-based research, as you'd expect, attempts to bring these two types of research together, drawing on both qualitative and quantitative data.Quite often, mixed methods-based studies will use qualitative research to explore a situation and develop a potential model of understanding (this is called a conceptual framework), and then go on to use quantitative methods to test that ...

  12. Choosing the Right Research Methodology: A Guide

    Choosing an optimal research methodology is crucial for the success of any research project. The methodology you select will determine the type of data you collect, how you collect it, and how you analyse it. Understanding the different types of research methods available along with their strengths and weaknesses, is thus imperative to make an ...

  13. Quantitative Research

    Here are some key characteristics of quantitative research: Numerical data: Quantitative research involves collecting numerical data through standardized methods such as surveys, experiments, and observational studies. This data is analyzed using statistical methods to identify patterns and relationships.

  14. Research Methods

    Quantitative research methods are used to collect and analyze numerical data. This type of research is useful when the objective is to test a hypothesis, determine cause-and-effect relationships, and measure the prevalence of certain phenomena. Quantitative research methods include surveys, experiments, and secondary data analysis.

  15. FIU Libraries: Research Methods Help Guide: Types of Data

    Numerical data. Quantitative variables can be continuous or discrete. Continuous: the variable can, in theory, be any value within a certain range. Can be measured. Examples: height, weight, blood pressure, cholesterol. Discrete: the variable can only have certain values, usually whole numbers. Can be counted.

  16. Statistical Analysis in Research: Meaning, Methods and Types

    Statistical Analysis in Research: Meaning, Methods and Types. The scientific method is an empirical approach to acquiring new knowledge by making skeptical observations and analyses to develop a meaningful interpretation. It is the basis of research and the primary pillar of modern science. Researchers seek to understand the relationships ...

  17. Role of Statistics in Research

    Types of Statistical Research Methods. Statistical analysis is the process of analyzing samples of data into patterns or trends that help researchers anticipate situations and make appropriate research conclusions. Based on the type of data, statistical analyses are of the following type: 1. Descriptive Analysis

  18. Types of Research Designs Compared

    Other interesting articles. If you want to know more about statistics, methodology, or research bias, make sure to check out some of our other articles with explanations and examples. Statistics. Normal distribution. Skewness. Kurtosis. Degrees of freedom. Variance. Null hypothesis.

  19. Basic statistical tools in research and data analysis

    Statistical methods involved in carrying out a study include planning, designing, collecting data, analysing, drawing meaningful interpretation and reporting of the research findings. The statistical analysis gives meaning to the meaningless numbers, thereby breathing life into a lifeless data. The results and inferences are precise only if ...

  20. Qualitative vs Quantitative Research Methods & Data Analysis

    The main difference between quantitative and qualitative research is the type of data they collect and analyze. Quantitative data is information about quantities, and therefore numbers, and qualitative data is descriptive, and regards phenomenon which can be observed but not measured, such as language. Quantitative research collects numerical ...

  21. 7 Types of Statistical Analysis Techniques (And Process Steps)

    3. Data presentation. Data presentation is an extension of data cleaning, as it involves arranging the data for easy analysis. Here, you can use descriptive statistics tools to summarize the data. Data presentation can also help you determine the best way to present the data based on its arrangement. 4.

  22. Types of Research Methods Explained with Examples

    Statistical methods to establish relationships between variables; Applications: Common in natural sciences, economics, and market research. 3. Descriptive Research. Descriptive research is a type of research method that is used to describe characteristics of a population or phenomenon being studied. It does not answer questions about how or why ...

  23. What are Different Research Approaches? Comprehensive Review of

    numerical data is analyzed using mathematical methods. Besides, both qualitative and quantitative research approaches are designed to describe a topic; however, the last part of the definition is the difference which con-centrates on different types of analysis methods which is mathematical using statistics in quantitative research.

  24. Types of Research within Qualitative and Quantitative

    The data collected during the investigation creates the hypothesis for the researcher in this research design model. What is the basic methodology for a QUALITATIVE research design? 1. Identify a general research question. 2. Choose main methods, sites, and subjects for research. Determine methods of documentation of data and access to subjects. 3.

  25. Quantitative Data

    Quantitative data refers to numerical data that can be measured or counted. This type of data is often used in scientific research and is typically collected through methods such as surveys, experiments, and statistical analysis. Quantitative Data Types. There are two main types of quantitative data: discrete and continuous.

  26. How to Use Data Triangulation in Qualitative Research

    Method triangulation means using a variety of research methods to study the same topic. In qualitative research, the most common data-gathering methods are: Interviews; Focus groups; Observation; Open-ended surveys or questionnaires; So, in qualitative research, method triangulation means gathering data using at least two of these methods.

  27. Full article: A Systematic Review of Real-Time Deep Learning Methods

    Secure Transmission of Medical Data. Metrics Possibility of real-time analysis and detection. Accuracy of models. Categorization. Target organs covered. Techniques Used DL and its types. Time of Research and Publication Articles published in 2018 or later