• Privacy Policy

Mathematical Reasoning: A Complete Guide

Mathematical Reasoning

Mathematical Reasoning is the foundation of problem-solving and critical thinking in mathematics. It involves the ability to analyze, deduce, and draw conclusions from mathematical concepts, principles, and relationships. In this guide, we will explore the key aspects of mathematical reasoning, provide examples to illustrate its application, and discuss effective methods for developing strong mathematical reasoning skills.

Key Aspects of Mathematical Reasoning

Logical deduction :.

Mathematical reasoning involves using logical deduction to arrive at conclusions based on given information or premises. It requires the ability to follow a chain of reasoning step by step, ensuring that each step is based on sound logic.

Pattern Recognition :

Recognizing patterns and relationships is crucial for mathematical reasoning. Identifying trends and regularities helps in making conjectures and predictions, and aids in solving problems efficiently.

Abstraction :

Abstraction involves generalizing specific cases into broader concepts. It allows us to work with generalized properties rather than specific instances, making problem-solving more versatile.

Inductive and Deductive Reasoning :

Inductive reasoning involves making generalizations based on a set of specific observations, while deductive reasoning uses established principles to draw specific conclusions. Both are important for mathematical reasoning.

Counter examples :

Counterexamples are instances that disprove a conjecture or statement. Considering counterexamples is crucial to test the validity of a mathematical claim.

Mathematical proofs are rigorous arguments that establish the truth of a statement or proposition. Constructing and understanding proofs is a fundamental aspect of mathematical reasoning.

Examples Illustrating Mathematical Reasoning

Example: fibonacci numbers.

Consider the Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, ..

By observing the pattern, we notice that each term is the sum of the previous two terms. This pattern leads to a conjecture: the nth term is the sum of the (n-1)th and (n-2)th terms. We can prove this by mathematical induction.

Example: Prime Numbers

 Prime numbers are positive integers greater than 1 that have no divisors other than 1 and themselves. By using deductive reasoning, we can prove that there are infinitely many prime numbers. Suppose there are only finitely many primes. We can then consider the number obtained by multiplying all existing primes and adding 1. This number is either prime itself (contradicting the assumption) or has a prime factor that is not in our list, leading to a contradiction.

Example: Pythagorean Theorem

 The Pythagorean Theorem states that in a right-angled triangle, the square of the length of the hypotenuse is equal to the sum of the squares of the other two sides.

Mathematical Reasoning: One way to prove this theorem is using geometric reasoning. Consider a square with side lengths a + b, where a and b are the lengths of the triangle’s legs. The square can be divided into smaller squares and

rearranged to show that the area of the large square is equal to the sum of the areas of the two smaller squares.

Methods for Developing Strong Mathematical Reasoning Skills

Practice Problem-Solving:

Regularly solve a variety of mathematical problems. Start with simpler problems and gradually work your way up to more complex ones. This will help you develop pattern recognition and logical deduction skills.

Analyze Proofs:

Study different types of mathematical proofs. Understand the structure of a proof, from the assumptions to the conclusion. This will enhance your ability to construct rigorous arguments.

Explore Counterexamples :

When encountering a new conjecture, try to find counterexamples that might disprove it. This practice will help you refine your reasoning skills and think critically about mathematical statements.

Work Collaboratively :

Discuss mathematical problems and concepts with peers or mentors. Explaining your reasoning to others and listening to their perspectives can provide new insights and broaden your understanding.

Engage with Mathematical Literature :

Read mathematical books, papers, and articles. Exposing yourself to various mathematical ideas and approaches will expand your toolkit for reasoning.

Participate in Math Competitions:

Joining math competitions or problem-solving clubs can challenge you to think creatively and critically under time constraints.

Mathematical Reasoning is a fundamental skill that underlies all branches of mathematics. It involves logical deduction, pattern recognition, abstraction, and the ability to construct and understand proofs. By engaging with examples and following effective methods, you can develop strong mathematical reasoning skills that will serve you well in both academic and real-world problem-solving scenarios. Regular practice, thoughtful analysis, and a curious mindset are key to mastering this essential skill. Visit maths.ai to help in solving maths problems.

Related Posts

Integral Calculus

Integral Calculus: Examples and Methods

Vector

Understanding Vector: A Complete Guide

Algebra

Mastering Algebra: An In-Depth Manual

Leave a reply cancel reply.

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

problem solving and reasoning maths

Mathematical Reasoning & Problem Solving

In this lesson, we’ll discuss mathematical reasoning and methods of problem solving with an eye toward helping your students make the best use of their reasoning skills when it comes to tackling complex problems.

Previously Covered:

  • Over the course of the previous lesson, we reviewed some basics about chance and probability, as well as some basics about sampling, surveys, etc. We also covered some ideas about data sets, how they’re represented, and how to interpret the results.

Approaches to Problem Solving

When solving a mathematical problem, it is very common for a student to feel overwhelmed by the information or lack a clear idea about how to get started.

To help the students with their problem-solving “problem,” let’s look at some examples of mathematical problems and some general methods for solving problems:

Identify the following four-digit number when presented with the following information:

  • One of the four digits is a 1.
  • The digit in the hundreds place is three times the digit in the thousands place.
  • The digit in the ones place is four times the digit in the ten’s place.
  • The sum of all four digits is 13.
  • The digit 2 is in the thousands place.

Help your students identify and prioritize the information presented.

In this particular example, we want to look for concrete information. Clue #1 tells us that one digit is a 1, but we’re not sure of its location, so we see if we can find a clue with more concrete information.

We can see that clue #5 gives us that kind of information and is the only clue that does, so we start from there.

Because this clue tells us that the thousands place digit is 2, we search for clues relevant to this clue. Clue #2 tells us that the digit in the hundreds place is three times that of the thousands place digit, so it is 6.

So now we need to find the tens and ones place digits, and see that clue #3 tells us that the digit in the ones place is four times the digit in the tens place. But we remember that clue #1 tells us that there’s a one somewhere, and since one is not four times any digit, we see that the one must be in the tens place, which leads us to the conclusion that the digit in the ones place is four. So then we conclude that our number is:

If you were following closely, you would notice that clue #4 was never used. It is a nice way to check our answer, since the digits of 2614 do indeed add up to be thirteen, but we did not need this clue to solve the problem.

Recall that the clues’ relevance were identified and prioritized as follows:

  • clue #3 and clue #1

By identifying and prioritizing information, we were able to make the information given in the problem seem less overwhelming. We ordered the clues by relevance, with the most relevant clue providing us with a starting point to solve the problem. This method also utilized the more general method of breaking a problem into smaller and simpler parts to make it easier to solve.

Now let’s look at another mathematical problem and another general problem-solving method to help us solve it:

Two trees with heights of 20 m and 30 m respectively have ropes running from the top of each tree to the bottom of the other tree. The trees are 40 meters apart. We’ll assume that the ropes are pulled tight enough that we can ignore any bending or drooping. How high above the ground do the ropes intersect?

Let’s solve this problem by representing it in a visual way , in this case, a diagram:

You can see that we have a much simpler problem on our hands after drawing the diagram. A, B, C, D, E, and F are vertices of the triangles in the diagram. Now also notice that:

b = the base of triangle EFA

h = the height of triangle EFA and the height above the ground at which the ropes intersect

If we had not drawn this diagram, it would have been very hard to solve this problem, since we need the triangles and their properties to solve for h. Also, this diagram allows us to see that triangle BCA is similar to triangle EFC, and triangle DCA is similar to triangle EFA. Solving for h shows that the ropes intersect twelve meters above the ground.

Students frequently complain that mathematics is too difficult for them, because it is too abstract and unapproachable. Explaining mathematical reasoning and problem solving by using a variety of methods , such as words, numbers, symbols, charts, graphs, tables, diagrams, and concrete models can help students understand the problem better by making it more concrete and approachable.

Let’s try another one.

Given a pickle jar filled with marbles, about how many marbles does the jar contain?

Problems like this one require the student to make and use estimations . In this case, an estimation is all that is required, although, in more complex problems, estimates may help the student arrive at the final answer.

How would a student do this? A good estimation can be found by counting how many marbles are on the base of the jar and multiplying that by the number of marbles that make up the height of the marbles in the jar.

Now to make sure that we understand when and how to use these methods, let’s solve a problem on our own:

How many more faces does a cube have than a square pyramid?

Reveal Answer

The answer is B. To see how many more faces a cube has than a square pyramid, it is best to draw a diagram of a square pyramid and a cube:

From the diagrams above, we can see that the square pyramid has five faces and the cube has six. Therefore, the cube has one more face, so the answer is B.

Before we start having the same problem our model student in the beginning did—that is, being overwhelmed with too much information—let’s have a quick review of all the problem-solving methods we’ve discussed so far:

  • Sort and prioritize relevant and irrelevant information.
  • Represent a problem in different ways, such as words, symbols, concrete models, and diagrams.
  • Generate and use estimations to find solutions to mathematical problems.

Mathematical Mistakes

Along with learning methods and tools for solving mathematical problems, it is important to recognize and avoid ways to make mathematical errors. This section will review some common errors.

Circular Arguments

These involve drawing a conclusion from a premise that is itself dependent on the conclusion. In other words, you are not actually proving anything. Circular reasoning often looks like deductive reasoning, but a quick examination will reveal that it’s far from it. Consider the following argument:

  • Premise: Only an untrustworthy man would become an insurance salesman; the fact that insurance salesmen cannot be trusted is proof of this.
  • Conclusion: Therefore, insurance salesmen cannot be trusted.

While this may be a simplistic example, you can see that there’s no logical procession in a circular argument.

Assuming the Truth of the Converse

Simply put: The fact that A implies B doesn’t not necessarily mean that B implies A. For example, “All dogs are mammals; therefore, all mammals are dogs.”

Assuming the Truth of the Inverse

Watch out for this one. You cannot automatically assume the inverse of a given statement is true. Consider the following true statement:

If you grew up in Minnesota , you’ve seen snow.

Now, notice that the inverse of this statement is not necessarily true:

If you didn’t grow up in Minnesota , you’ve never seen snow.

Faulty Generalizations

This mistake (also known as inductive fallacy) can take many forms, the most common being assuming a general rule based on a specific instance: (“Bridge is a hard game; therefore, all card games are difficult.”) Be aware of more subtle forms of faulty generalizations.

Faulty Analogies

It’s a mistake to assume that because two things are alike in one respect that they are necessarily alike in other ways too. Consider the faulty analogy below:

People who absolutely have to have a cup of coffee in the morning to get going are as bad as alcoholics who can’t cope without drinking.

False (or tenuous) analogies are often used in persuasive arguments.

Now that we’ve gone over some common mathematical mistakes, let’s look at some correct and effective ways to use mathematical reasoning.

Let’s look at basic logic, its operations, some fundamental laws, and the rules of logic that help us prove statements and deduce the truth. First off, there are two different styles of proofs: direct and indirect .

Whether it’s a direct or indirect proof, the engine that drives the proof is the if-then structure of a logical statement. In formal logic, you’ll see the format using the letters p and q, representing statements, as in:

If p, then q

An arrow is used to indicate that q is derived from p, like this:

This would be the general form of many types of logical statements that would be similar to: “if Joe has 5 cents, then Joe has a nickel or Joe has 5 pennies “. Basically, a proof is a flow of implications starting with the statement p and ending with the statement q. The stepping stones we use to link these statements in a logical proof on the way are called axioms or postulates , which are accepted logical tools.

A direct proof will attempt to lay out the shortest number of steps between p and q.

The goal of an indirect proof is exactly the same—it wants to show that q follows from p; however, it goes about it in a different manner. An indirect proof also goes by the names “proof by contradiction” or reductio ad absurdum . This type of proof assumes that the opposite of what you want to prove is true, and then shows that this is untenable or absurd, so, in fact, your original statement must be true.

Let’s see how this works using the isosceles triangle below. The indirect proof assumption is in bold.

Given: Triangle ABC is isosceles with B marking the vertex

Prove: Angles A and C are congruent.

Now, let’s work through this, matching our statements with our reasons.

  • Triangle ABC is isosceles . . . . . . . . . . . . Given
  • Angle A is the vertex . . . . . . . . . . . . . . . . Given
  • Angles A and C are not congruent . . Indirect proof assumption
  • Line AB is equal to line BC . . . . . . . . . . . Legs of an isosceles triangle are congruent
  • Angles A and C are congruent . . . . . . . . The angles opposite congruent sides of a triangle are congruent
  • Contradiction . . . . . . . . . . . . . . . . . . . . . . Angles can’t be congruent and incongruent
  • Angles A and C are indeed congruent . . . The indirect proof assumption (step 3) is wrong
  • Therefore, if angles A and C are not incongruent, they are congruent.

“Always, Sometimes, and Never”

Some math problems work on the mechanics that statements are “always”, “sometimes” and “never” true.

Example: x < x 2 for all real numbers x

We may be tempted to say that this statement is “always” true, because by choosing different values of x, like -2 and 3, we see that:

Example: For all primes x ≥ 3, x is odd.

This statement is “always” true. The only prime that is not odd is two. If we had a prime x ≥ 3 that is not odd, it would be divisible by two, which would make x not prime.

  • Know and be able to identify common mathematical errors, such as circular arguments, assuming the truth of the converse, assuming the truth of the inverse, making faulty generalizations, and faulty use of analogical reasoning.
  • Be familiar with direct proofs and indirect proofs (proof by contradiction).
  • Be able to work with problems to identify “always,” “sometimes,” and “never” statements.

Is mathematical reasoning important to study?

Table of Contents

1.
2.
3.
4.
5.
6.
7.
8.
9.

January 18, 2021

Reading Time: 9 minutes

Introduction

The purpose of mathematics is not just to earn grades. Students who wish to aim high in life need to figure out their purpose. Broadly speaking, Mathematics is implemented in every sphere of life. Nowadays, organizations require measurable input and output for performance assessment, and career outcomes are not based on qualitative or verbal feedback.

Students need to gear up and prepare for a future that will depend solely on mathematics. The evolution of newer technologies like data science will bring a renewed emphasis on Mathematics.   

Concept of brain hemispheres between logic and creativity.

Mathematical reasoning, on the other hand, helps individuals build mathematical critical thinking and logical reasoning. A lack of mathematical reasoning skills may reflect not just in mathematics performance but also in Physics, Chemistry, or Economics.

In the subsequent sections, we will try to understand What is Mathematical reasoning and what are the basic terms used in mathematical reasoning. We will also have a look at different types of mathematical reasoning and go through mathematical reasoning questions and answers.

Later in the article, we will look at a few Frequently Asked Questions with solutions to solidify the idea behind learning mathematical reasoning.

  • The importance of developing mathematical thinking in children
  • Logical Reasoning: Topics, Examples, Syllabus, Questions
  • Slow Learners

Here is a downloadable PDF. After downloading, you will be able to read 'Mathematical Reasoning’ offline at your convenience and as many times as you want. Click on the download button to explore them.

📥

What is Mathematical Reasoning?

Mathematical reasoning is a critical skill that enables students to analyze a given hypothesis without any reference to a particular context or meaning. In layman's words, when a scientific inquiry or statement is examined, the reasoning is not based on an individual's opinion. Derivations and proofs require a factual and scientific basis. 

Mathematical critical thinking and logical reasoning are important skills that are required to solve maths reasoning questions. 

When we learn literature, we follow certain rules of grammar. Likewise, there are certain rules and parts of a scientific hypothesis. It is important to note that most books and texts written on mathematical reasoning follow scientific grammar or relevant terminologies and notations.

What are the basic terms used in Mathematical Reasoning?

In this section, the basic terminologies associated with Mathematical reasoning are discussed.

Any sentence in mathematics which follows the following rules is a statement.

A sentence needs to be either true or false but not both to be considered a mathematically accepted statement.

Any sentence which is either imperative or interrogative or exclamatory cannot be considered a mathematically validated statement. 

A Sentence containing one or many variables is termed an open statement. An open statement can become a statement if the variables present in the sentence are replaced by definite values

Example: The distance from the center of a circle to any point on the circumference of the circle is equal. 

Conjunction and Disjunction

Whenever statements are joined to make a new statement and all the conditions need to be fulfilled, it is a Conjunction. ‘And’, ‘with’ are commonly used to join such statements.

Whenever statements are joined to make a new statement and only one of the conditions needs to be fulfilled, it is a Disjunction. ‘Or’, ‘But’ are commonly used to join such statements.

The conjunction is true only if the original statements are found to be true. The conjunction is false if the original statement or statements are found to be false.

The conjunction is true if only one statement is found to be true. The conjunction is false if none of the original statements are found to be true.

Example: Square is a polygon and a parallelogram can also be a square.

These are a few mathematical terminologies that will help you comprehend and apply mathematical reasoning. These terms will also help you solve and understand reasoning questions.

What are the types of mathematical reasoning?

Inductive reasoning.

Inductive reasoning is based on observations and not any hypothesis. If any phenomena are observed for n number of times, it can be generalized. This generalization is based on observation and therefore it may be false. Inductive reasoning is a logical guess which can be backed up by using valid reasons.

Image of engineering objects on workplace top view.construction concept. engineering tools.vintage tone retro filter effect,soft focus(selective focus)

This type of reasoning is not used in geometry, for instance, one may observe a few right triangles and conclude all triangles to be right triangles. Therefore, other mathematical tools are used to prove geometrical results. An example of inductive reasoning will help elucidate the concept.

Example of Inductive Reasoning:

Statement:  I picked a ball from the bag and it happens to be a red ball. I picked a second red ball. A third ball from the bag is also red. Therefore, all the balls in the bag are red.

Reasoning : All the balls picked up from the bag are red. Therefore, we can say all the balls are red. This is an example of inductive reasoning where existing data is analyzed to come to a general conclusion.

Deductive Reasoning

Deductive reasoning is based on the exact opposite principles of induction. Unlike Inductive reasoning, Deductive reasoning is not based on simple generalizations. A Hypothesis is required or a statement that has to be true under specified conditions for deductive reasoning to be valid. In the case of Inductive reasoning, the conclusion may be false but Deductive reasoning is true in all cases.

Teacher helping student to construct a right angled triangle

Therefore, Deductive reading is used for geometrical and mathematical proofs. The following example will simplify the concepts discussed in this section.

Example of Deductive Reasoning:

Statement:  The sum of angles in a triangle is always equal to 180° and ABC is a Triangle.

Reasoning:  Here in the given statement we are considering two hypotheses, where the sum of angles in a triangle is said to be 180° and ABC is a triangle. Based on the given hypotheses we deduce that the sum of angles of ABC is 180°.

Abductive Reasoning

Abductive reasoning is a modified version of Inductive Reasoning and takes a more practical approach. In the case of inductive reasoning, the data or observation is complete but in real situations, most of the data is not available at the time of making a decision.

A student constructing objects on the paper

So based on the data and its availability, the conclusion may vary and reasoning may change.   

Example of Abductive Reasoning:

Statement: The heights of four students studying in a class were found to be 160cm, 162cm, 163 cm, 167 cm respectively. The measuring scale available had the least count of 1cm. 

Reasoning : As per the data and hypotheses available at the time of observation, the average height comes out to be 163cm. But once a new measuring scale was installed the least count was found to be 0.1 cm and the recorded height of students changed. This also impacted the Average height which came to be 63.8 cm. 

As discussed in this section, reasoning techniques are categorized in three major sections. An understanding of Inductive, Abductive and Deductive reasoning will help you solve any reasoning question. It is important to identify the reasoning technique which has to be used to solve a question from examination point of view. 

What are the types of reasoning statements?

Reasoning statements in mathematics are broadly classified into three types:

Simple Statements

Compound Statements

If-Then Statements

We will look into each type of reasoning statement along with their examples.

If the truth value of a statement or proposition does not directly depend on another statement, it is a simple statement. In other words, a simple statement should not be composed of simpler statements.

Therefore a simple statement can never be broken down into simpler statements. It is easiest to work with simple statements and direct reasoning approach can be implemented. A few examples have been provided to clear the concept of simple statements. 

Example 1: Square is a parallelogram.   

Reasoning: There are no modifiers in the given statement. Therefore we can say that the given statement is simple. 

Compound Statement

In simple words, the combination of simple statements is a compound statement. Therefore, such statements are made of either two or more simple statements joined together by connectives like 'and', 'or'.

A variety of connectives can be used instead of the two connectives as mentioned. These statements are crucial for Deduction reasoning in Mathematics. Have a look at the detailed example below for a better understanding:

Example 1: We have taken two simple statements that can be joined together by the use of a connector.

Statement 1:  Parallel lines do not intersect.

Statement 2: Transversal lines make equal alternate angles with parallel lines

Compound Statement:  Parallel lines do not intersect and Transversal lines make equal alternate angles with parallel lines.

Example 2: In this example, a compound statement is being dissected into its simple statement components. 

Compound Statement:  Triangle has three sides and the square has four sides.

The Simple Statements for this statement is:

Statement 1:  Triangle has three sides.

Statement 2:  The square has four sides. 

If-then Statement

Conditional statements where a hypothesis is followed by a conclusion are known as the If-then statement. If the hypothesis is true and the conclusion is false then the conditional statement is false. Likewise, if the hypothesis is false the whole statement is false.

Example 1: If 40% population is female then 60% population is male.

Reasoning: Here the 40% female is the hypothesis and if that condition is met then the conclusion is satisfying.

Sample Mathematical Reasoning Questions With Answers

Now that we have an understanding of Mathematical Reasoning and the various terminologies and reasoning associated, we will go through two sample questions with an explanation to understand maths and reasoning in depth.

Q1. Look at this series: 12, 10, 13, 11, 14, 12, … What number should come next?

A. 15 B. 16 C. 13 D. 10

Answer: Option D.

Explanation: First, 2 is subtracted, then 3 is added therefore when 3 is added to 12 it becomes 15. This is an example of an alternating number of subtraction series.

Q2. SQUARE:PERIMETER::CIRCLE :?

A.RADIUS B. CHORD C. SECTOR D. CIRCUMFERENCE

Answer: D.CIRCUMFERENCE. 

Explanation:  The boundary of a square is given by its perimeter just as the boundary of a circle is given by circumference.

Most kids study mathematics for the sake of grades. That will improve grades temporarily but cause great damage in the longer run. Kids need to ask questions to understand how a particular concept is being used. If children do not understand the concepts in their initial days, they will struggle at a later stage.

Practice Proofs

Proofs will help Children Ideate their own set of techniques to understand complex problems. Students need to focus on Geometry Proofs, results, and maths reasoning questions.

Cuemath Activities

Some kids do need additional support and tools. Sometimes kids underperform in mathematics due to stress and fear of bad grades. Such kids are unable to ask questions in class and eventually start lagging. Cuemath provides a customized learning journey for such kids.

The most basic concepts are cleared and corrected. Individual attention by professional Mathematics Teachers helps them cope better. Once a child gains confidence, mathematics is a cakewalk. 

Begin teaching mathematical reasoning at an early age to avoid struggling with it at a later stage. Children need to understand the principles of mathematics rather than mugging up proofs and theorems.

This will help them solve higher-order problems and develop mathematical aptitude. Over time you will find your child solving complex problems on their own without much intervention or assistance. 

About Cuemath

Cuemath, a student-friendly mathematics and coding platform, conducts regular  Online Classes  for academics and skill-development, and their Mental Math App, on both  iOS  and  Android , is a one-stop solution for kids to develop multiple skills. Understand the Cuemath fee structure and sign up for a free trial.

Frequently asked questions (FAQs)

What is a fallacy in mathematical reasoning.

Fallacy refers to errors in hypotheses caused due to logical inaccuracy.

Why is mathematical reasoning important?

Students have the potential to solve higher-order thinking questions which are frequently asked in competitive examinations. But a lack of mathematical reasoning skills may render their potential. Encouragement is needed to develop a student's natural inclination to strive for purpose and meaning.

The reasoning is the most fundamental and essential tool of mathematics. It helps one understand and justify mathematical theorems. A good grip in reasoning will help students apply the concepts they learn in the classroom. 

What are the two types of fallacy?

The two types of fallacies are as follows:

Formal fallacy: When the relationship between premises and conclusion is not valid or when premises are unsound, Formal fallacies are created.

Informal Fallacy: Misuse of language and evidence is classified as an Informal fallacy.

Reasoning Skills

Developing opportunities and ensuring progression in the development of reasoning skills

Achieving the aims of the new National Curriculum:

Developing opportunities and ensuring progression in the development of reasoning skills.

The aims of the National Curriculum are to develop fluency and the ability to reason mathematically and solve problems. Reasoning is not only important in its own right but impacts on the other two aims. Reasoning about what is already known in order to work out what is unknown will improve fluency; for example if I know what 12 × 12 is, I can apply reasoning to work out 12 × 13. The ability to reason also supports the application of mathematics and an ability to solve problems set in unfamiliar contexts.

Research by Nunes (2009) identified the ability to reason mathematically as the most important factor in a pupil’s success in mathematics. It is therefore crucial that opportunities to develop mathematical reasoning skills are integrated fully into the curriculum. Such skills support deep and sustainable learning and enable pupils to make connections in mathematics.

This resource is designed to highlight opportunities and strategies that develop aspects of reasoning throughout the National Curriculum programmes of study. The intention is to offer suggestions of how to enable pupils to become more proficient at reasoning throughout all of their mathematics learning rather than just at the end of a particular unit or topic.

We take the Progression Map for each of the National Curriculum topics, and augment it with a variety of reasoning activities (shaded sections) underneath the relevant programme of study statements for each year group. The overall aim is to support progression in reasoning skills. The activities also offer the opportunity for children to demonstrate depth of understanding, and you might choose to use them for assessment purposes as well as regular classroom activities.

Place Value Reasoning

Addition and subtraction reasoning, multiplication and division reasoning, fractions reasoning, ratio and proportion reasoning, measurement reasoning, geometry - properties of shapes reasoning, geometry - position direction and movement reasoning, statistics reasoning, algebra reasoning.

The strategies embedded in the activities are easily adaptable and can be integrated into your classroom routines. They have been gathered from a range of sources including real lessons, past questions, children’s work and other classroom practice.

Strategies include:

  • Spot the mistake / Which is correct?
  • True or false?
  • What comes next?
  • Do, then explain
  • Make up an example / Write more statements / Create a question / Another and another
  • Possible answers / Other possibilities
  • What do you notice?
  • Continue the pattern
  • Missing numbers / Missing symbols / Missing information/Connected calculations
  • Working backwards / Use the inverse / Undoing / Unpicking
  • Hard and easy questions
  • What else do you know? / Use a fact
  • Fact families
  • Convince me / Prove it / Generalising / Explain thinking
  • Make an estimate / Size of an answer
  • Always, sometimes, never
  • Making links / Application
  • Can you find?
  • What’s the same, what’s different?
  • Odd one out
  • Complete the pattern / Continue the pattern
  • Another and another
  • Testing conditions
  • The answer is…
  • Visualising

These strategies are a very powerful way of developing pupils’ reasoning skills and can be used flexibly. Many are transferable to different areas of mathematics and can be differentiated through the choice of different numbers and examples.

Nunes, T. (2009) Development of maths capabilities and confidence in primary school, Research Report DCSF-RR118 (PDF)

Is there anything wrong with this page?

Subscribe to our newsletter

Problem Solving in Mathematics Education

  • Open Access
  • First Online: 28 June 2016

Cite this chapter

You have full access to this open access chapter

problem solving and reasoning maths

  • Peter Liljedahl 6 ,
  • Manuel Santos-Trigo 7 ,
  • Uldarico Malaspina 8 &
  • Regina Bruder 9  

Part of the book series: ICME-13 Topical Surveys ((ICME13TS))

93k Accesses

15 Citations

Problem solving in mathematics education has been a prominent research field that aims at understanding and relating the processes involved in solving problems to students’ development of mathematical knowledge and problem solving competencies. The accumulated knowledge and field developments include conceptual frameworks to characterize learners’ success in problem solving activities, cognitive, metacognitive, social and affective analysis, curriculum proposals, and ways to foster problem solving approaches. In the survey, four interrelated areas are reviewed: (i) the relevance of heuristics in problem solving approaches—why are they important and what research tells us about their use? (ii) the need to characterize and foster creative problem solving approaches—what type of heuristics helps learners think of and practice creative solutions? (iii) the importance for learners to formulate and pursue their own problems; and (iv) the role played by the use of both multiple purpose and ad hoc mathematical action types of technologies in problem solving activities—what ways of reasoning do learners construct when they rely on the use of digital technologies and how technology and technology approaches can be reconciled?

You have full access to this open access chapter,  Download chapter PDF

  • Mathematical Problem
  • Prospective Teacher
  • Creative Process
  • Digital Technology
  • Mathematical Task

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Mathematical problem solving has long been seen as an important aspect of mathematics, the teaching of mathematics, and the learning of mathematics. It has infused mathematics curricula around the world with calls for the teaching of problem solving as well as the teaching of mathematics through problem solving. And as such, it has been of interest to mathematics education researchers for as long as our field has existed. More relevant, mathematical problem solving has played a part in every ICME conference, from 1969 until the forthcoming meeting in Hamburg, wherein mathematical problem solving will reside most centrally within the work of Topic Study 19: Problem Solving in Mathematics Education. This booklet is being published on the occasion of this Topic Study Group.

To this end, we have assembled four summaries looking at four distinct, yet inter-related, dimensions of mathematical problem solving. The first summary, by Regina Bruder, is a nuanced look at heuristics for problem solving. This notion of heuristics is carried into Peter Liljedahl’s summary, which looks specifically at a progression of heuristics leading towards more and more creative aspects of problem solving. This is followed by Luz Manuel Santos Trigo’s summary introducing us to problem solving in and with digital technologies. The last summary, by Uldarico Malaspina Jurado, documents the rise of problem posing within the field of mathematics education in general and the problem solving literature in particular.

Each of these summaries references in some critical and central fashion the works of George Pólya or Alan Schoenfeld. To the initiated researchers, this is no surprise. The seminal work of these researchers lie at the roots of mathematical problem solving. What is interesting, though, is the diverse ways in which each of the four aforementioned contributions draw on, and position, these works so as to fit into the larger scheme of their respective summaries. This speaks to not only the depth and breadth of these influential works, but also the diversity with which they can be interpreted and utilized in extending our thinking about problem solving.

Taken together, what follows is a topical survey of ideas representing the diversity of views and tensions inherent in a field of research that is both a means to an end and an end onto itself and is unanimously seen as central to the activities of mathematics.

1 Survey on the State-of-the-Art

1.1 role of heuristics for problem solving—regina bruder.

The origin of the word heuristic dates back to the time of Archimedes and is said to have come out of one of the famous stories told about this great mathematician and inventor. The King of Syracuse asked Archimedes to check whether his new wreath was really made of pure gold. Archimedes struggled with this task and it was not until he was at the bathhouse that he came up with the solution. As he entered the tub he noticed that he had displaced a certain amount of water. Brilliant as he was, he transferred this insight to the issue with the wreath and knew he had solved the problem. According to the legend, he jumped out of the tub and ran from the bathhouse naked screaming, “Eureka, eureka!”. Eureka and heuristic have the same root in the ancient Greek language and so it has been claimed that this is how the academic discipline of “heuristics” dealing with effective approaches to problem solving (so-called heurisms) was given its name. Pólya ( 1964 ) describes this discipline as follows:

Heuristics deals with solving tasks. Its specific goals include highlighting in general terms the reasons for selecting those moments in a problem the examination of which could help us find a solution. (p. 5)

This discipline has grown, in part, from examining the approaches to certain problems more in detail and comparing them with each other in order to abstract similarities in approach, or so-called heurisms. Pólya ( 1949 ), but also, inter alia, Engel ( 1998 ), König ( 1984 ) and Sewerin ( 1979 ) have formulated such heurisms for mathematical problem tasks. The problem tasks examined by the authors mentioned are predominantly found in the area of talent programmes, that is, they often go back to mathematics competitions.

In 1983 Zimmermann provided an overview of heuristic approaches and tools in American literature which also offered suggestions for mathematics classes. In the German-speaking countries, an approach has established itself, going back to Sewerin ( 1979 ) and König ( 1984 ), which divides school-relevant heuristic procedures into heuristic tools, strategies and principles, see also Bruder and Collet ( 2011 ).

Below is a review of the conceptual background of heuristics, followed by a description of the effect mechanisms of heurisms in problem-solving processes.

1.1.1 Research Review on the Promotion of Problem Solving

In the 20th century, there has been an advancement of research on mathematical problem solving and findings about possibilities to promote problem solving with varying priorities (c.f. Pehkonen 1991 ). Based on a model by Pólya ( 1949 ), in a first phase of research on problem solving, particularly in the 1960s and the 1970s, a series of studies on problem-solving processes placing emphasis on the importance of heuristic strategies (heurisms) in problem solving has been carried out. It was assumed that teaching and learning heuristic strategies, principles and tools would provide students with an orientation in problem situations and that this could thus improve students’ problem-solving abilities (c.f. for instance, Schoenfeld 1979 ). This approach, mostly researched within the scope of talent programmes for problem solving, was rather successful (c.f. for instance, Sewerin 1979 ). In the 1980s, requests for promotional opportunities in everyday teaching were given more and more consideration: “ problem solving must be the focus of school mathematics in the 1980s ” (NCTM 1980 ). For the teaching and learning of problem solving in regular mathematics classes, the current view according to which cognitive, heuristic aspects were paramount, was expanded by certain student-specific aspects, such as attitudes, emotions and self-regulated behaviour (c.f. Kretschmer 1983 ; Schoenfeld 1985 , 1987 , 1992 ). Kilpatrick ( 1985 ) divided the promotional approaches described in the literature into five methods which can also be combined with each other.

Osmosis : action-oriented and implicit imparting of problem-solving techniques in a beneficial learning environment

Memorisation : formation of special techniques for particular types of problem and of the relevant questioning when problem solving

Imitation : acquisition of problem-solving abilities through imitation of an expert

Cooperation : cooperative learning of problem-solving abilities in small groups

Reflection : problem-solving abilities are acquired in an action-oriented manner and through reflection on approaches to problem solving.

Kilpatrick ( 1985 ) views as success when heuristic approaches are explained to students, clarified by means of examples and trained through the presentation of problems. The need of making students aware of heuristic approaches is by now largely accepted in didactic discussions. Differences in varying approaches to promoting problem-solving abilities rather refer to deciding which problem-solving strategies or heuristics are to imparted to students and in which way, and not whether these should be imparted at all or not.

1.1.2 Heurisms as an Expression of Mental Agility

The activity theory, particularly in its advancement by Lompscher ( 1975 , 1985 ), offers a well-suited and manageable model to describe learning activities and differences between learners with regard to processes and outcomes in problem solving (c.f. Perels et al. 2005 ). Mental activity starts with a goal and the motive of a person to perform such activity. Lompscher divides actual mental activity into content and process. Whilst the content in mathematical problem-solving consists of certain concepts, connections and procedures, the process describes the psychological processes that occur when solving a problem. This course of action is described in Lompscher by various qualities, such as systematic planning, independence, accuracy, activity and agility. Along with differences in motivation and the availability of expertise, it appears that intuitive problem solvers possess a particularly high mental agility, at least with regard to certain contents areas.

According to Lompscher, “flexibility of thought” expresses itself

… by the capacity to change more or less easily from one aspect of viewing to another one or to embed one circumstance or component into different correlations, to understand the relativity of circumstances and statements. It allows to reverse relations, to more or less easily or quickly attune to new conditions of mental activity or to simultaneously mind several objects or aspects of a given activity (Lompscher 1975 , p. 36).

These typical manifestations of mental agility can be focused on in problem solving by mathematical means and can be related to the heurisms known from the analyses of approaches by Pólya et al. (c.f. also Bruder 2000 ):

Reduction : Successful problem solvers will intuitively reduce a problem to its essentials in a sensible manner. To achieve such abstraction, they often use visualisation and structuring aids, such as informative figures, tables, solution graphs or even terms. These heuristic tools are also very well suited to document in retrospect the approach adopted by the intuitive problem solvers in a way that is comprehensible for all.

Reversibility : Successful problem solvers are able to reverse trains of thought or reproduce these in reverse. They will do this in appropriate situations automatically, for instance, when looking for a key they have mislaid. A corresponding general heuristic strategy is working in reverse.

Minding of aspects : Successful problem solvers will mind several aspects of a given problem at the same time or easily recognise any dependence on things and vary them in a targeted manner. Sometimes, this is also a matter of removing barriers in favour of an idea that appears to be sustainable, that is, by simply “hanging on” to a certain train of thought even against resistance. Corresponding heurisms are, for instance, the principle of invariance, the principle of symmetry (Engel 1998 ), the breaking down or complementing of geometric figures to calculate surface areas, or certain terms used in binomial formulas.

Change of aspects : Successful problem solvers will possibly change their assumptions, criteria or aspects minded in order to find a solution. Various aspects of a given problem will be considered intuitively or the problem be viewed from a different perspective, which will prevent “getting stuck” and allow for new insights and approaches. For instance, many elementary geometric propositions can also be proved in an elegant vectorial manner.

Transferring : Successful problem solvers will be able more easily than others to transfer a well-known procedure to another, sometimes even very different context. They recognise more easily the “framework” or pattern of a given task. Here, this is about own constructions of analogies and continual tracing back from the unknown to the known.

Intuitive, that is, untrained good problem solvers, are, however, often unable to access these flexibility qualities consciously. This is why they are also often unable to explain how they actually solved a given problem.

To be able to solve problems successfully, a certain mental agility is thus required. If this is less well pronounced in a certain area, learning how to solve problems means compensating by acquiring heurisms. In this case, insufficient mental agility is partly “offset” through the application of knowledge acquired by means of heurisms. Mathematical problem-solving competences are thus acquired through the promotion of manifestations of mental agility (reduction, reversibility, minding of aspects and change of aspects). This can be achieved by designing sub-actions of problem solving in connection with a (temporarily) conscious application of suitable heurisms. Empirical evidence for the success of the active principle of heurisms has been provided by Collet ( 2009 ).

Against such background, learning how to solve problems can be established as a long-term teaching and learning process which basically encompasses four phases (Bruder and Collet 2011 ):

Intuitive familiarisation with heuristic methods and techniques.

Making aware of special heurisms by means of prominent examples (explicit strategy acquisition).

Short conscious practice phase to use the newly acquired heurisms with differentiated task difficulties.

Expanding the context of the strategies applied.

In the first phase, students are familiarised with heurisms intuitively by means of targeted aid impulses and questions (what helped us solve this problem?) which in the following phase are substantiated on the basis of model tasks, are given names and are thus made aware of their existence. The third phase serves the purpose of a certain familiarisation with the new heurisms and the experience of competence through individualised practising at different requirement levels, including in the form of homework over longer periods. A fourth and delayed fourth phase aims at more flexibility through the transfer to other contents and contexts and the increasingly intuitive use of the newly acquired heurisms, so that students can enrich their own problem-solving models in a gradual manner. The second and third phases build upon each other in close chronological order, whilst the first phase should be used in class at all times.

All heurisms can basically be described in an action-oriented manner by means of asking the right questions. The way of asking questions can thus also establish a certain kind of personal relation. Even if the teacher presents and suggests the line of basic questions with a prototypical wording each time, students should always be given the opportunity to find “their” wording for the respective heurism and take a note of it for themselves. A possible key question for the use of a heuristic tool would be: How to illustrate and structure the problem or how to present it in a different way?

Unfortunately, for many students, applying heuristic approaches to problem solving will not ensue automatically but will require appropriate early and long-term promoting. The results of current studies, where promotion approaches to problem solving are connected with self-regulation and metacognitive aspects, demonstrate certain positive effects of such combination on students. This field of research includes, for instance, studies by Lester et al. ( 1989 ), Verschaffel et al. ( 1999 ), the studies on teaching method IMPROVE by Mevarech and Kramarski ( 1997 , 2003 ) and also the evaluation of a teaching concept on learning how to solve problems by the gradual conscious acquisition of heurisms by Collet and Bruder ( 2008 ).

1.2 Creative Problem Solving—Peter Liljedahl

There is a tension between the aforementioned story of Archimedes and the heuristics presented in the previous section. Archimedes, when submersing himself in the tub and suddenly seeing the solution to his problem, wasn’t relying on osmosis, memorisation, imitation, cooperation, or reflection (Kilpatrick 1985 ). He wasn’t drawing on reduction, reversibility, minding of aspects, change of aspect, or transfer (Bruder 2000 ). Archimedes was stuck and it was only, in fact, through insight and sudden illumination that he managed to solve his problem. In short, Archimedes was faced with a problem that the aforementioned heuristics, and their kind, would not help him to solve.

According to some, such a scenario is the definition of a problem. For example, Resnick and Glaser ( 1976 ) define a problem as being something that you do not have the experience to solve. Mathematicians, in general, agree with this (Liljedahl 2008 ).

Any problem in which you can see how to attack it by deliberate effort, is a routine problem, and cannot be an important discover. You must try and fail by deliberate efforts, and then rely on a sudden inspiration or intuition or if you prefer to call it luck. (Dan Kleitman, participant cited in Liljedahl 2008 , p. 19).

Problems, then, are tasks that cannot be solved by direct effort and will require some creative insight to solve (Liljedahl 2008 ; Mason et al. 1982 ; Pólya 1965 ).

1.2.1 A History of Creativity in Mathematics Education

In 1902, the first half of what eventually came to be a 30 question survey was published in the pages of L’Enseignement Mathématique , the journal of the French Mathematical Society. The authors, Édouard Claparède and Théodore Flournoy, were two Swiss psychologists who were deeply interested in the topics of mathematical discovery, creativity and invention. Their hope was that a widespread appeal to mathematicians at large would incite enough responses for them to begin to formulate some theories about this topic. The first half of the survey centered on the reasons for becoming a mathematician (family history, educational influences, social environment, etc.), attitudes about everyday life, and hobbies. This was eventually followed, in 1904, by the publication of the second half of the survey pertaining, in particular, to mental images during periods of creative work. The responses were sorted according to nationality and published in 1908.

During this same period Henri Poincaré (1854–1912), one of the most noteworthy mathematicians of the time, had already laid much of the groundwork for his own pursuit of this same topic and in 1908 gave a presentation to the French Psychological Society in Paris entitled L’Invention mathématique —often mistranslated to Mathematical Creativity Footnote 1 (c.f. Poincaré 1952 ). At the time of the presentation Poincaré stated that he was aware of Claparède and Flournoy’s work, as well as their results, but expressed that they would only confirm his own findings. Poincaré’s presentation, as well as the essay it spawned, stands to this day as one of the most insightful, and thorough treatments of the topic of mathematical discovery, creativity, and invention.

Just at this time, I left Caen, where I was living, to go on a geological excursion under the auspices of the School of Mines. The incident of the travel made me forget my mathematical work. Having reached Coutances, we entered an omnibus to go some place or other. At the moment when I put my foot on the step, the idea came to me, without anything in my former thoughts seeming to have paved the way for it, that the transformations I had used to define the Fuschian functions were identical with those of non-Euclidean geometry. I did not verify the idea; I should not have had the time, as, upon taking my seat in the omnibus, I went on with the conversation already commenced, but I felt a perfect certainty. On my return to Caen, for conscience’ sake, I verified the results at my leisure. (Poincaré 1952 , p. 53)

So powerful was his presentation, and so deep were his insights into his acts of invention and discovery that it could be said that he not so much described the characteristics of mathematical creativity, as defined them. From that point forth mathematical creativity, or even creativity in general, has not been discussed seriously without mention of Poincaré’s name.

Inspired by this presentation, Jacques Hadamard (1865–1963), a contemporary and a friend of Poincaré’s, began his own empirical investigation into this fascinating phenomenon. Hadamard had been critical of Claparède and Flournoy’s work in that they had not adequately treated the topic on two fronts. As exhaustive as the survey appeared to be, Hadamard felt that it failed to ask some key questions—the most important of which was with regard to the reason for failures in the creation of mathematics. This seemingly innocuous oversight, however, led directly to his second and “most important criticism” (Hadamard 1945 ). He felt that only “first-rate men would dare to speak of” (p. 10) such failures. So, inspired by his good friend Poincaré’s treatment of the subject Hadamard retooled the survey and gave it to friends of his for consideration—mathematicians such as Henri Poincaré and Albert Einstein, whose prominence were beyond reproach. Ironically, the new survey did not contain any questions that explicitly dealt with failure. In 1943 Hadamard gave a series of lectures on mathematical invention at the École Libre des Hautes Études in New York City. These talks were subsequently published as The Psychology of Mathematical Invention in the Mathematical Field (Hadameard 1945 ).

Hadamard’s classic work treats the subject of invention at the crossroads of mathematics and psychology. It provides not only an entertaining look at the eccentric nature of mathematicians and their rituals, but also outlines the beliefs of mid twentieth-century mathematicians about the means by which they arrive at new mathematics. It is an extensive exploration and extended argument for the existence of unconscious mental processes. In essence, Hadamard took the ideas that Poincaré had posed and, borrowing a conceptual framework for the characterization of the creative process from the Gestaltists of the time (Wallas 1926 ), turned them into a stage theory. This theory still stands as the most viable and reasonable description of the process of mathematical creativity.

1.2.2 Defining Mathematical Creativity

The phenomena of mathematical creativity, although marked by sudden illumination, actually consist of four separate stages stretched out over time, of which illumination is but one stage. These stages are initiation, incubation, illumination, and verification (Hadamard 1945 ). The first of these stages, the initiation phase, consists of deliberate and conscious work. This would constitute a person’s voluntary, and seemingly fruitless, engagement with a problem and be characterized by an attempt to solve the problem by trolling through a repertoire of past experiences. This is an important part of the inventive process because it creates the tension of unresolved effort that sets up the conditions necessary for the ensuing emotional release at the moment of illumination (Hadamard 1945 ; Poincaré 1952 ).

Following the initiation stage the solver, unable to come up with a solution stops working on the problem at a conscious level and begins to work on it at an unconscious level (Hadamard 1945 ; Poincaré 1952 ). This is referred to as the incubation stage of the inventive process and can last anywhere from several minutes to several years. After the period of incubation a rapid coming to mind of a solution, referred to as illumination , may occur. This is accompanied by a feeling of certainty and positive emotions (Poincaré 1952 ). Although the processes of incubation and illumination are shrouded behind the veil of the unconscious there are a number of things that can be deduced about them. First and foremost is the fact that unconscious work does, indeed, occur. Poincaré ( 1952 ), as well as Hadamard ( 1945 ), use the very real experience of illumination, a phenomenon that cannot be denied, as evidence of unconscious work, the fruits of which appear in the flash of illumination. No other theory seems viable in explaining the sudden appearance of solution during a walk, a shower, a conversation, upon waking, or at the instance of turning the conscious mind back to the problem after a period of rest (Poincaré 1952 ). Also deducible is that unconscious work is inextricably linked to the conscious and intentional effort that precedes it.

There is another remark to be made about the conditions of this unconscious work: it is possible, and of a certainty it is only fruitful, if it is on the one hand preceded and on the other hand followed by a period of conscious work. These sudden inspirations never happen except after some days of voluntary effort which has appeared absolutely fruitless and whence nothing good seems to have come … (Poincaré 1952 , p. 56)

Hence, the fruitless efforts of the initiation phase are only seemingly so. They not only set up the aforementioned tension responsible for the emotional release at the time of illumination, but also create the conditions necessary for the process to enter into the incubation phase.

Illumination is the manifestation of a bridging that occurs between the unconscious mind and the conscious mind (Poincaré 1952 ), a coming to (conscious) mind of an idea or solution. What brings the idea forward to consciousness is unclear, however. There are theories of the aesthetic qualities of the idea, effective surprise/shock of recognition, fluency of processing, or breaking functional fixedness. For reasons of brevity I will only expand on the first of these.

Poincaré proposed that ideas that were stimulated during initiation remained stimulated during incubation. However, freed from the constraints of conscious thought and deliberate calculation, these ideas would begin to come together in rapid and random unions so that “their mutual impacts may produce new combinations” (Poincaré 1952 ). These new combinations, or ideas, would then be evaluated for viability using an aesthetic sieve, which allows through to the conscious mind only the “right combinations” (Poincaré 1952 ). It is important to note, however, that good or aesthetic does not necessarily mean correct. Correctness is evaluated during the verification stage.

The purpose of verification is not only to check for correctness. It is also a method by which the solver re-engages with the problem at the level of details. That is, during the unconscious work the problem is engaged with at the level of ideas and concepts. During verification the solver can examine these ideas in closer details. Poincaré succinctly describes both of these purposes.

As for the calculations, themselves, they must be made in the second period of conscious work, that which follows the inspiration, that in which one verifies the results of this inspiration and deduces their consequences. (Poincaré 1952 , p. 62)

Aside from presenting this aforementioned theory on invention, Hadamard also engaged in a far-reaching discussion on a number of interesting, and sometimes quirky, aspects of invention and discovery that he had culled from the results of his empirical study, as well as from pertinent literature. This discussion was nicely summarized by Newman ( 2000 ) in his commentary on the elusiveness of invention.

The celebrated phrenologist Gall said mathematical ability showed itself in a bump on the head, the location of which he specified. The psychologist Souriau, we are told, maintained that invention occurs by “pure chance”, a valuable theory. It is often suggested that creative ideas are conjured up in “mathematical dreams”, but this attractive hypothesis has not been verified. Hadamard reports that mathematicians were asked whether “noises” or “meteorological circumstances” helped or hindered research [..] Claude Bernard, the great physiologist, said that in order to invent “one must think aside”. Hadamard says this is a profound insight; he also considers whether scientific invention may perhaps be improved by standing or sitting or by taking two baths in a row. Helmholtz and Poincaré worked sitting at a table; Hadamard’s practice is to pace the room (“Legs are the wheels of thought”, said Emile Angier); the chemist J. Teeple was the two-bath man. (p. 2039)

1.2.3 Discourses on Creativity

Creativity is a term that can be used both loosely and precisely. That is, while there exists a common usage of the term there also exists a tradition of academic discourse on the subject. A common usage of creative refers to a process or a person whose products are original, novel, unusual, or even abnormal (Csíkszentmihályi 1996 ). In such a usage, creativity is assessed on the basis of the external and observable products of the process, the process by which the product comes to be, or on the character traits of the person doing the ‘creating’. Each of these usages—product, process, person—is the roots of the discourses (Liljedahl and Allan 2014 ) that I summarize here, the first of which concerns products.

Consider a mother who states that her daughter is creative because she drew an original picture. The basis of such a statement can lie either in the fact that the picture is unlike any the mother has ever seen or unlike any her daughter has ever drawn before. This mother is assessing creativity on the basis of what her daughter has produced. However, the standards that form the basis of her assessment are neither consistent nor stringent. There does not exist a universal agreement as to what she is comparing the picture to (pictures by other children or other pictures by the same child). Likewise, there is no standard by which the actual quality of the picture is measured. The academic discourse that concerns assessment of products, on the other hand, is both consistent and stringent (Csíkszentmihályi 1996 ). This discourse concerns itself more with a fifth, and as yet unmentioned, stage of the creative process; elaboration . Elaboration is where inspiration becomes perspiration (Csíkszentmihályi 1996 ). It is the act of turning a good idea into a finished product, and the finished product is ultimately what determines the creativity of the process that spawned it—that is, it cannot be a creative process if nothing is created. In particular, this discourse demands that the product be assessed against other products within its field, by the members of that field, to determine if it is original AND useful (Csíkszentmihályi 1996 ; Bailin 1994 ). If it is, then the product is deemed to be creative. Note that such a use of assessment of end product pays very little attention to the actual process that brings this product forth.

The second discourse concerns the creative process. The literature pertaining to this can be separated into two categories—a prescriptive discussion of the creativity process and a descriptive discussion of the creativity process. Although both of these discussions have their roots in the four stages that Wallas ( 1926 ) proposed makes up the creative process, they make use of these stages in very different ways. The prescriptive discussion of the creative process is primarily focused on the first of the four stages, initiation , and is best summarized as a cause - and - effect discussion of creativity, where the thinking processes during the initiation stage are the cause and the creative outcome are the effects (Ghiselin 1952 ). Some of the literature claims that the seeds of creativity lie in being able to think about a problem or situation analogically. Other literature claims that utilizing specific thinking tools such as imagination, empathy, and embodiment will lead to creative products. In all of these cases, the underlying theory is that the eventual presentation of a creative idea will be precipitated by the conscious and deliberate efforts during the initiation stage. On the other hand, the literature pertaining to a descriptive discussion of the creative process is inclusive of all four stages (Kneller 1965 ; Koestler 1964 ). For example, Csíkszentmihályi ( 1996 ), in his work on flow attends to each of the stages, with much attention paid to the fluid area between conscious and unconscious work, or initiation and incubation. His claim is that the creative process is intimately connected to the enjoyment that exists during times of sincere and consuming engagement with a situation, the conditions of which he describes in great detail.

The third, and final, discourse on creativity pertains to the person. This discourse is space dominated by two distinct characteristics, habit and genius. Habit has to do with the personal habits as well as the habits of mind of people that have been deemed to be creative. However, creative people are most easily identified through their reputation for genius. Consequently, this discourse is often dominated by the analyses of the habits of geniuses as is seen in the work of Ghiselin ( 1952 ), Koestler ( 1964 ), and Kneller ( 1965 ) who draw on historical personalities such as Albert Einstein, Henri Poincaré, Vincent Van Gogh, D.H. Lawrence, Samuel Taylor Coleridge, Igor Stravinsky, and Wolfgang Amadeus Mozart to name a few. The result of this sort of treatment is that creative acts are viewed as rare mental feats, which are produced by extraordinary individuals who use extraordinary thought processes.

These different discourses on creativity can be summed up in a tension between absolutist and relativist perspectives on creativity (Liljedahl and Sriraman 2006 ). An absolutist perspective assumes that creative processes are the domain of genius and are present only as precursors to the creation of remarkably useful and universally novel products. The relativist perspective, on the other hand, allows for every individual to have moments of creativity that may, or may not, result in the creation of a product that may, or may not, be either useful or novel.

Between the work of a student who tries to solve a problem in geometry or algebra and a work of invention, one can say there is only a difference of degree. (Hadamard 1945 , p. 104).

Regardless of discourse, however, creativity is not “part of the theories of logical forms” (Dewey 1938 ). That is, creativity is not representative of the lock-step logic and deductive reasoning that mathematical problem solving is often presumed to embody (Bibby 2002 ; Burton 1999 ). Couple this with the aforementioned demanding constraints as to what constitutes a problem, where then does that leave problem solving heuristics? More specifically, are there creative problem solving heuristics that will allow us to resolve problems that require illumination to solve? The short answer to this question is yes—there does exist such problem solving heuristics. To understand these, however, we must first understand the routine problem solving heuristics they are built upon. In what follows, I walk through the work of key authors and researchers whose work offers us insights into progressively more creative problem solving heuristics for solving true problems.

1.2.4 Problem Solving by Design

In a general sense, design is defined as the algorithmic and deductive approach to solving a problem (Rusbult 2000 ). This process begins with a clearly defined goal or objective after which there is a great reliance on relevant past experience, referred to as repertoire (Bruner 1964 ; Schön 1987 ), to produce possible options that will lead towards a solution of the problem (Poincaré 1952 ). These options are then examined through a process of conscious evaluations (Dewey 1933 ) to determine their suitability for advancing the problem towards the final goal. In very simple terms, problem solving by design is the process of deducing the solution from that which is already known.

Mayer ( 1982 ), Schoenfeld ( 1982 ), and Silver ( 1982 ) state that prior knowledge is a key element in the problem solving process. Prior knowledge influences the problem solver’s understanding of the problem as well as the choice of strategies that will be called upon in trying to solve the problem. In fact, prior knowledge and prior experiences is all that a solver has to draw on when first attacking a problem. As a result, all problem solving heuristics incorporate this resource of past experiences and prior knowledge into their initial attack on a problem. Some heuristics refine these ideas, and some heuristics extend them (c.f. Kilpatrick 1985 ; Bruder 2000 ). Of the heuristics that refine, none is more influential than the one created by George Pólya (1887–1985).

1.2.5 George Pólya: How to Solve It

In his book How to Solve It (1949) Pólya lays out a problem solving heuristic that relies heavily on a repertoire of past experience. He summarizes the four-step process of his heuristic as follows:

Understanding the Problem

First. You have to understand the problem.

What is the unknown? What are the data? What is the condition?

Is it possible to satisfy the condition? Is the condition sufficient to determine the unknown? Or is it insufficient? Or redundant? Or contradictory?

Draw a figure. Introduce suitable notation.

Separate the various parts of the condition. Can you write them down?

Devising a Plan

Second. Find the connection between the data and the unknown. You may be obliged to consider auxiliary problems if an immediate connection cannot be found. You should obtain eventually a plan of the solution.

Have you seen it before? Or have you seen the same problem in a slightly different form?

Do you know a related problem? Do you know a theorem that could be useful?

Look at the unknown! And try to think of a familiar problem having the same or a similar unknown.

Here is a problem related to yours and solved before. Could you use it? Could you use its result? Could you use its method? Should you introduce some auxiliary element in order to make its use possible?

Could you restate the problem? Could you restate it still differently? Go back to definitions.

If you cannot solve the proposed problem try to solve first some related problem. Could you imagine a more accessible related problem? A more general problem? A more special problem? An analogous problem? Could you solve a part of the problem? Keep only a part of the condition, drop the other part; how far is the unknown then determined, how can it vary? Could you derive something useful from the data? Could you think of other data appropriate to determine the unknown? Could you change the unknown or data, or both if necessary, so that the new unknown and the new data are nearer to each other?

Did you use all the data? Did you use the whole condition? Have you taken into account all essential notions involved in the problem?

Carrying Out the Plan

Third. Carry out your plan.

Carrying out your plan of the solution, check each step. Can you see clearly that the step is correct? Can you prove that it is correct?

Looking Back

Fourth. Examine the solution obtained.

Can you check the result? Can you check the argument?

Can you derive the solution differently? Can you see it at a glance?

Can you use the result, or the method, for some other problem?

The emphasis on auxiliary problems, related problems, and analogous problems that are, in themselves, also familiar problems is an explicit manifestation of relying on a repertoire of past experience. This use of familiar problems also requires an ability to deduce from these related problems a recognizable and relevant attribute that will transfer to the problem at hand. The mechanism that allows for this transfer of knowledge between analogous problems is known as analogical reasoning (English 1997 , 1998 ; Novick 1988 , 1990 , 1995 ; Novick and Holyoak 1991 ) and has been shown to be an effective, but not always accessible, thinking strategy.

Step four in Pólya’s heuristic, looking back, is also a manifestation of utilizing prior knowledge to solve problems, albeit an implicit one. Looking back makes connections “in memory to previously acquired knowledge [..] and further establishes knowledge in long-term memory that may be elaborated in later problem-solving encounters” (Silver 1982 , p. 20). That is, looking back is a forward-looking investment into future problem solving encounters, it sets up connections that may later be needed.

Pólya’s heuristic is a refinement on the principles of problem solving by design. It not only makes explicit the focus on past experiences and prior knowledge, but also presents these ideas in a very succinct, digestible, and teachable manner. This heuristic has become a popular, if not the most popular, mechanism by which problem solving is taught and learned.

1.2.6 Alan Schoenfeld: Mathematical Problem Solving

The work of Alan Schoenfeld is also a refinement on the principles of problem solving by design. However, unlike Pólya ( 1949 ) who refined these principles at a theoretical level, Schoenfeld has refined them at a practical and empirical level. In addition to studying taught problem solving strategies he has also managed to identify and classify a variety of strategies, mostly ineffectual, that students invoke naturally (Schoenfeld 1985 , 1992 ). In so doing, he has created a better understanding of how students solve problems, as well as a better understanding of how problems should be solved and how problem solving should be taught.

For Schoenfeld, the problem solving process is ultimately a dialogue between the problem solver’s prior knowledge, his attempts, and his thoughts along the way (Schoenfeld 1982 ). As such, the solution path of a problem is an emerging and contextually dependent process. This is a departure from the predefined and contextually independent processes of Pólya’s ( 1949 ) heuristics. This can be seen in Schoenfeld’s ( 1982 ) description of a good problem solver.

To examine what accounts for expertise in problem solving, you would have to give the expert a problem for which he does not have access to a solution schema. His behavior in such circumstances is radically different from what you would see when he works on routine or familiar “non-routine” problems. On the surface his performance is no longer proficient; it may even seem clumsy. Without access to a solution schema, he has no clear indication of how to start. He may not fully understand the problem, and may simply “explore it for a while until he feels comfortable with it. He will probably try to “match” it to familiar problems, in the hope it can be transformed into a (nearly) schema-driven solution. He will bring up a variety of plausible things: related facts, related problems, tentative approaches, etc. All of these will have to be juggled and balanced. He may make an attempt solving it in a particular way, and then back off. He may try two or three things for a couple of minutes and then decide which to pursue. In the midst of pursuing one direction he may go back and say “that’s harder than it should be” and try something else. Or, after the comment, he may continue in the same direction. With luck, after some aborted attempts, he will solve the problem. (p. 32-33)

Aside from demonstrating the emergent nature of the problem solving process, this passage also brings forth two consequences of Schoenfeld’s work. The first of these is the existence of problems for which the solver does not have “access to a solution schema”. Unlike Pólya ( 1949 ), who’s heuristic is a ‘one size fits all (problems)’ heuristic, Schoenfeld acknowledges that problem solving heuristics are, in fact, personal entities that are dependent on the solver’s prior knowledge as well as their understanding of the problem at hand. Hence, the problems that a person can solve through his or her personal heuristic are finite and limited.

The second consequence that emerges from the above passage is that if a person lacks the solution schema to solve a given problem s/he may still solve the problem with the help of luck . This is an acknowledgement, if only indirectly so, of the difference between problem solving in an intentional and mechanical fashion verses problem solving in a more creative fashion, which is neither intentional nor mechanical (Pehkonen 1997 ).

1.2.7 David Perkins: Breakthrough Thinking

As mentioned, many consider a problem that can be solved by intentional and mechanical means to not be worthy of the title ‘problem’. As such, a repertoire of past experiences sufficient for dealing with such a ‘problem’ would disqualify it from the ranks of ‘problems’ and relegate it to that of ‘exercises’. For a problem to be classified as a ‘problem’, then, it must be ‘problematic’. Although such an argument is circular it is also effective in expressing the ontology of mathematical ‘problems’.

Perkins ( 2000 ) also requires problems to be problematic. His book Archimedes’ Bathtub: The Art and Logic of Breakthrough Thinking (2000) deals with situations in which the solver has gotten stuck and no amount of intentional or mechanical adherence to the principles of past experience and prior knowledge is going to get them unstuck. That is, he deals with problems that, by definition, cannot be solved through a process of design [or through the heuristics proposed by Pólya ( 1949 ) and Schoenfeld ( 1985 )]. Instead, the solver must rely on the extra-logical process of what Perkins ( 2000 ) calls breakthrough thinking .

Perkins ( 2000 ) begins by distinguishing between reasonable and unreasonable problems. Although both are solvable, only reasonable problems are solvable through reasoning. Unreasonable problems require a breakthrough in order to solve them. The problem, however, is itself inert. It is neither reasonable nor unreasonable. That quality is brought to the problem by the solver. That is, if a student cannot solve a problem by direct effort then that problem is deemed to be unreasonable for that student. Perkins ( 2000 ) also acknowledges that what is an unreasonable problem for one person is a perfectly reasonable problem for another person; reasonableness is dependent on the person.

This is not to say that, once found, the solution cannot be seen as accessible through reason. During the actual process of solving, however, direct and deductive reasoning does not work. Perkins ( 2000 ) uses several classic examples to demonstrate this, the most famous being the problem of connecting nine dots in a 3 × 3 array with four straight lines without removing pencil from paper, the solution to which is presented in Fig.  1 .

Nine dots—four lines problem and solution

To solve this problem, Perkins ( 2000 ) claims that the solver must recognize that the constraint of staying within the square created by the 3 × 3 array is a self-imposed constraint. He further claims that until this is recognized no amount of reasoning is going to solve the problem. That is, at this point in the problem solving process the problem is unreasonable. However, once this self-imposed constraint is recognized the problem, and the solution, are perfectly reasonable. Thus, the solution of an, initially, unreasonable problem is reasonable.

The problem solving heuristic that Perkins ( 2000 ) has constructed to deal with solvable, but unreasonable, problems revolves around the idea of breakthrough thinking and what he calls breakthrough problems . A breakthrough problem is a solvable problem in which the solver has gotten stuck and will require an AHA! to get unstuck and solve the problem. Perkins ( 2000 ) poses that there are only four types of solvable unreasonable problems, which he has named wilderness of possibilities , the clueless plateau , narrow canyon of exploration , and oasis of false promise . The names for the first three of these types of problems are related to the Klondike gold rush in Alaska, a time and place in which gold was found more by luck than by direct and systematic searching.

The wilderness of possibilities is a term given to a problem that has many tempting directions but few actual solutions. This is akin to a prospector searching for gold in the Klondike. There is a great wilderness in which to search, but very little gold to be found. The clueless plateau is given to problems that present the solver with few, if any, clues as to how to solve it. The narrow canyon of exploration is used to describe a problem that has become constrained in such a way that no solution now exists. The nine-dot problem presented above is such a problem. The imposed constraint that the lines must lie within the square created by the array makes a solution impossible. This is identical to the metaphor of a prospector searching for gold within a canyon where no gold exists. The final type of problem gets its name from the desert. An oasis of false promise is a problem that allows the solver to quickly get a solution that is close to the desired outcome; thereby tempting them to remain fixed on the strategy that they used to get this almost-answer. The problem is, that like the canyon, the solution does not exist at the oasis; the solution strategy that produced an almost-answer is incapable of producing a complete answer. Likewise, a desert oasis is a false promise in that it is only a reprieve from the desolation of the dessert and not a final destination.

Believing that there are only four ways to get stuck, Perkins ( 2000 ) has designed a problem solving heuristic that will “up the chances” of getting unstuck. This heuristic is based on what he refers to as “the logic of lucking out” (p. 44) and is built on the idea of introspection. By first recognizing that they are stuck, and then recognizing that the reason they are stuck can only be attributed to one of four reasons, the solver can access four strategies for getting unstuck, one each for the type of problem they are dealing with. If the reason they are stuck is because they are faced with a wilderness of possibilities they are to begin roaming far, wide, and systematically in the hope of reducing the possible solution space to one that is more manageable. If they find themselves on a clueless plateau they are to begin looking for clues, often in the wording of the problem. When stuck in a narrow canyon of possibilities they need to re-examine the problem and see if they have imposed any constraints. Finally, when in an oasis of false promise they need to re-attack the problem in such a way that they stay away from the oasis.

Of course, there are nuances and details associated with each of these types of problems and the strategies for dealing with them. However, nowhere within these details is there mention of the main difficulty inherent in introspection; that it is much easier for the solver to get stuck than it is for them to recognize that they are stuck. Once recognized, however, the details of Perkins’ ( 2000 ) heuristic offer the solver some ways for recognizing why they are stuck.

1.2.8 John Mason, Leone Burton, and Kaye Stacey: Thinking Mathematically

The work of Mason et al. in their book Thinking Mathematically ( 1982 ) also recognizes the fact that for each individual there exists problems that will not yield to their intentional and mechanical attack. The heuristic that they present for dealing with this has two main processes with a number of smaller phases, rubrics, and states. The main processes are what they refer to as specializing and generalizing. Specializing is the process of getting to know the problem and how it behaves through the examination of special instances of the problem. This process is synonymous with problem solving by design and involves the repeated oscillation between the entry and attack phases of Mason et al. ( 1982 ) heuristic. The entry phase is comprised of ‘getting started’ and ‘getting involved’ with the problem by using what is immediately known about it. Attacking the problem involves conjecturing and testing a number of hypotheses in an attempt to gain greater understanding of the problem and to move towards a solution.

At some point within this process of oscillating between entry and attack the solver will get stuck, which Mason et al. ( 1982 ) refer to as “an honourable and positive state, from which much can be learned” (p. 55). The authors dedicate an entire chapter to this state in which they acknowledge that getting stuck occurs long before an awareness of being stuck develops. They proposes that the first step to dealing with being stuck is the simple act of writing STUCK!

The act of expressing my feelings helps to distance me from my state of being stuck. It frees me from incapacitating emotions and reminds me of actions that I can take. (p. 56)

The next step is to reengage the problem by examining the details of what is known, what is wanted, what can be introduced into the problem, and what has been introduced into the problem (imposed assumptions). This process is engaged in until an AHA!, which advances the problem towards a solution, is encountered. If, at this point, the problem is not completely solved the oscillation is then resumed.

At some point in this process an attack on the problem will yield a solution and generalizing can begin. Generalizing is the process by which the specifics of a solution are examined and questions as to why it worked are investigated. This process is synonymous with the verification and elaboration stages of invention and creativity. Generalization may also include a phase of review that is similar to Pólya’s ( 1949 ) looking back.

1.2.9 Gestalt: The Psychology of Problem Solving

The Gestalt psychology of learning believes that all learning is based on insights (Koestler 1964 ). This psychology emerged as a response to behaviourism, which claimed that all learning was a response to external stimuli. Gestalt psychologists, on the other hand, believed that there was a cognitive process involved in learning as well. With regards to problem solving, the Gestalt school stands firm on the belief that problem solving, like learning, is a product of insight and as such, cannot be taught. In fact, the theory is that not only can problem solving not be taught, but also that attempting to adhere to any sort of heuristic will impede the working out of a correct solution (Krutestkii 1976 ). Thus, there exists no Gestalt problem solving heuristic. Instead, the practice is to focus on the problem and the solution rather than on the process of coming up with a solution. Problems are solved by turning them over and over in the mind until an insight, a viable avenue of attack, presents itself. At the same time, however, there is a great reliance on prior knowledge and past experiences. The Gestalt method of problem solving, then, is at the same time very different and very similar to the process of design.

Gestalt psychology has not fared well during the evolution of cognitive psychology. Although it honours the work of the unconscious mind it does so at the expense of practicality. If learning is, indeed, entirely based on insight then there is little point in continuing to study learning. “When one begins by assuming that the most important cognitive phenomena are inaccessible, there really is not much left to talk about” (Schoenfeld 1985 , p. 273). However, of interest here is the Gestalt psychologists’ claim that focus on problem solving methods creates functional fixedness (Ashcraft 1989 ). Mason et al. ( 1982 ), as well as Perkins ( 2000 ) deal with this in their work on getting unstuck.

1.2.10 Final Comments

Mathematics has often been characterized as the most precise of all sciences. Lost in such a misconception is the fact that mathematics often has its roots in the fires of creativity, being born of the extra-logical processes of illumination and intuition. Problem solving heuristics that are based solely on the processes of logical and deductive reasoning distort the true nature of problem solving. Certainly, there are problems in which logical deductive reasoning is sufficient for finding a solution. But these are not true problems. True problems need the extra-logical processes of creativity, insight, and illumination, in order to produce solutions.

Fortunately, as elusive as such processes are, there does exist problem solving heuristics that incorporate them into their strategies. Heuristics such as those by Perkins ( 2000 ) and Mason et al. ( 1982 ) have found a way of combining the intentional and mechanical processes of problem solving by design with the extra-logical processes of creativity, illumination, and the AHA!. Furthermore, they have managed to do so without having to fully comprehend the inner workings of this mysterious process.

1.3 Digital Technologies and Mathematical Problem Solving—Luz Manuel Santos-Trigo

Mathematical problem solving is a field of research that focuses on analysing the extent to which problem solving activities play a crucial role in learners’ understanding and use of mathematical knowledge. Mathematical problems are central in mathematical practice to develop the discipline and to foster students learning (Pólya 1945 ; Halmos 1994 ). Mason and Johnston-Wilder ( 2006 ) pointed out that “The purpose of a task is to initiate mathematically fruitful activity that leads to a transformation in what learners are sensitized to notice and competent to carry out” (p. 25). Tasks are essential for learners to elicit their ideas and to engage them in mathematical thinking. In a problem solving approach, what matters is the learners’ goals and ways to interact with the tasks. That is, even routine tasks can be a departure point for learners to extend initial conditions and transform them into some challenging activities.

Thus, analysing and characterizing ways in which mathematical problems are formulated (Singer et al. 2015 ) and the process involved in pursuing and solving those problems generate important information to frame and structure learning environments to guide and foster learners’ construction of mathematical concepts and problem solving competences (Santos-Trigo 2014 ). Furthermore, mathematicians or discipline practitioners have often been interested in unveiling and sharing their own experience while developing the discipline. As a results, they have provided valuable information to characterize mathematical practices and their relations to what learning processes of the discipline entails. It is recognized that the work of Pólya ( 1945 ) offered not only bases to launch several research programs in problem solving (Schoenfeld 1992 ; Mason et al. 1982 ); but also it became an essential resource for teachers to orient and structure their mathematical lessons (Krulik and Reys 1980 ).

1.3.1 Research Agenda

A salient feature of a problem solving approach to learn mathematics is that teachers and students develop and apply an enquiry or inquisitive method to delve into mathematical concepts and tasks. How are mathematical problems or concepts formulated? What types of problems are important for teachers/learners to discuss and engage in mathematical reasoning? What mathematical processes and ways of reasoning are involved in understanding mathematical concepts and solving problems? What are the features that distinguish an instructional environment that fosters problem-solving activities? How can learners’ problem solving competencies be assessed? How can learners’ problem solving competencies be characterized and explained? How can learners use digital technologies to understand mathematics and to develop problem-solving competencies? What ways of reasoning do learners construct when they use digital technologies in problem solving approaches? These types of questions have been important in the problem solving research agenda and delving into them has led researchers to generate information and results to support and frame curriculum proposals and learning scenarios. The purpose of this section is to present and discuss important themes that emerged in problem solving approaches that rely on the systematic use of several digital technologies.

In the last 40 years, the accumulated knowledge in the problem solving field has shed lights on both a characterization of what mathematical thinking involves and how learners can construct a robust knowledge in problem solving environments (Schoenfeld 1992 ). In this process, the field has contributed to identify what types of transformations traditional learning scenarios might consider when teachers and students incorporate the use of digital technologies in mathematical classrooms. In this context, it is important to briefly review what main themes and developments the field has addressed and achieved during the last 40 years.

1.3.2 Problem Solving Developments

There are traces of mathematical problems and solutions throughout the history of civilization that explain the humankind interest for identifying and exploring mathematical relations (Kline 1972 ). Pólya ( 1945 ) reflects on his own practice as a mathematician to characterize the process of solving mathematical problems through four main phases: Understanding the problem, devising a plan, carrying out the plan, and looking back. Likewise, Pólya ( 1945 ) presents and discusses the role played by heuristic methods throughout all problem solving phases. Schoenfeld ( 1985 ) presents a problem solving research program based on Pólya’s ( 1945 ) ideas to investigate the extent to which problem solving heuristics help university students to solve mathematical problems and to develop a way of thinking that shows consistently features of mathematical practices. As a result, he explains the learners’ success or failure in problem solving activities can be characterized in terms their mathematical resources and ways to access them, cognitive and metacognitive strategies used to represent and explore mathematical tasks, and systems of beliefs about mathematics and solving problems. In addition, Schoenfeld ( 1992 ) documented that heuristics methods as illustrated in Pólya’s ( 1945 ) book are ample and general and do not include clear information and directions about how learners could assimilate, learn, and use them in their problem solving experiences. He suggested that students need to discuss what it means, for example, to think of and examining special cases (one important heuristic) in finding a closed formula for series or sequences, analysing relationships of roots of polynomials, or focusing on regular polygons or equilateral/right triangles to find general relations about these figures. That is, learners need to work on examples that lead them to recognize that the use of a particular heuristic often involves thinking of different type of cases depending on the domain or content involved. Lester and Kehle ( 2003 ) summarize themes and methodological shifts in problem solving research up to 1995. Themes include what makes a problem difficult for students and what it means to be successful problem solvers; studying and contrasting experts and novices’ problem solving approaches; learners’ metacognitive, beliefs systems and the influence of affective behaviours; and the role of context; and social interactions in problem solving environments. Research methods in problem solving studies have gone from emphasizing quantitative or statistical design to the use of cases studies and ethnographic methods (Krutestkii ( 1976 ). Teaching strategies also evolved from being centred on teachers to the active students’ engagement and collaboration approaches (NCTM 2000 ). Lesh and Zawojewski ( 2007 ) propose to extend problem solving approaches beyond class setting and they introduce the construct “model eliciting activities” to delve into the learners’ ideas and thinking as a way to engage them in the development of problem solving experiences. To this end, learners develop and constantly refine problem-solving competencies as a part of a learning community that promotes and values modelling construction activities. Recently, English and Gainsburg ( 2016 ) have discussed the importance of modeling eliciting activities to prepare and develop students’ problem solving experiences for 21st Century challenges and demands.

Törner et al. ( 2007 ) invited mathematics educators worldwide to elaborate on the influence and developments of problem solving in their countries. Their contributions show a close relationship between countries mathematical education traditions and ways to frame and implement problem solving approaches. In Chinese classrooms, for example, three instructional strategies are used to structure problem solving lessons: one problem multiple solutions , multiple problems one solution , and one problem multiple changes . In the Netherlands, the realistic mathematical approach permeates the students’ development of problem solving competencies; while in France, problem solving activities are structured in terms of two influential frameworks: The theory of didactical situations and anthropological theory of didactics.

In general, problem solving frameworks and instructional approaches came from analysing students’ problem solving experiences that involve or rely mainly on the use of paper and pencil work. Thus, there is a need to re-examined principles and frameworks to explain what learners develop in learning environments that incorporate systematically the coordinated use of digital technologies (Hoyles and Lagrange 2010 ). In this perspective, it becomes important to briefly describe and identify what both multiple purpose and ad hoc technologies can offer to the students in terms of extending learning environments and representing and exploring mathematical tasks. Specifically, a task is used to identify features of mathematical reasoning that emerge through the use digital technologies that include both mathematical action and multiple purpose types of technologies.

1.3.3 Background

Digital technologies are omnipresent and their use permeates and shapes several social and academic events. Mobile devices such as tablets or smart phones are transforming the way people communicate, interact and carry out daily activities. Churchill et al. ( 2016 ) pointed out that mobile technologies provide a set of tools and affordances to structure and support learning environments in which learners continuously interact to construct knowledge and solve problems. The tools include resources or online materials, efficient connectivity to collaborate and discuss problems, ways to represent, explore and store information, and analytical and administration tools to management learning activities. Schmidt and Cohen ( 2013 ) stated that nowadays it is difficult to imagine a life without mobile devices, and communication technologies are playing a crucial role in generating both cultural and technical breakthroughs. In education, the use of mobile artefacts and computers offers learners the possibility of continuing and extending peers and groups’ mathematical discussions beyond formal settings. In this process, learners can also consult online materials and interact with experts, peers or more experienced students while working on mathematical tasks. In addition, dynamic geometry systems (GeoGebra) provide learners a set of affordances to represent and explore dynamically mathematical problems. Leung and Bolite-Frant ( 2015 ) pointed out that tools help activate an interactive environment in which teachers and students’ mathematical experiences get enriched. Thus, the digital age brings new challenges to the mathematics education community related to the changes that technologies produce to curriculum, learning scenarios, and ways to represent, explore mathematical situations. In particular, it is important to characterize the type of reasoning that learners can develop as a result of using digital technologies in their process of learning concepts and solving mathematical problems.

1.3.4 A Focus on Mathematical Tasks

Mathematical tasks are essential elements for engaging learners in mathematical reasoning which involves representing objects, identifying and exploring their properties in order to detect invariants or relationships and ways to support them. Watson and Ohtani ( 2015 ) stated that task design involves discussions about mathematical content and students’ learning (cognitive perspective), about the students’ experiences to understand the nature of mathematical activities; and about the role that tasks played in teaching practices. In this context, tasks are the vehicle to present and discuss theoretical frameworks for supporting the use of digital technology, to analyse the importance of using digital technologies in extending learners’ mathematical discussions beyond formal settings, and to design ways to foster and assess the use of technologies in learners’ problem solving environments. In addition, it is important to discuss contents, concepts, representations and strategies involved in the process of using digital technologies in approaching the tasks. Similarly, it becomes essential to discuss what types of activities students will do to learn and solve the problems in an environment where the use of technologies fosters and values the participation and collaboration of all students. What digital technologies are important to incorporate in problem solving approaches? Dynamic Geometry Systems can be considered as a milestone in the development of digital technologies. Objects or mathematical situations can be represented dynamically through the use of a Dynamic Geometry System and learners or problem solvers can identify and examine mathematical relations that emerge from moving objects within the dynamic model (Moreno-Armella and Santos-Trigo 2016 ).

Leung and Bolite-Frant ( 2015 ) stated that “dynamic geometry software can be used in task design to cover a large epistemic spectrum from drawing precise robust geometrical figures to exploration of new geometric theorems and development of argumentation discourse” (p. 195). As a result, learners not only need to develop skills and strategies to construct dynamic configuration of problems; but also ways of relying on the tool’s affordances (quantifying parameters or objects attributes, generating loci, graphing objects behaviours, using sliders, or dragging particular elements within the configuration) in order to identify and support mathematical relations. What does it mean to represent and explore an object or mathematical situation dynamically?

A simple task that involves a rhombus and its inscribed circle is used to illustrate how a dynamic representation of these objects and embedded elements can lead learners to identify and examine mathematical properties of those objects in the construction of the configuration. To this end, learners are encouraged to pose and pursue questions to explain the behaviours of parameters or attributes of the family of objects that is generated as a result of moving a particular element within the configuration.

1.3.5 A Task: A Dynamic Rhombus

Figure  2 represents a rhombus APDB and its inscribed circle (O is intersection of diagonals AD and BP and the radius of the inscribed circle is the perpendicular segment from any side of the rhombus to point O), vertex P lies on a circle c centred at point A. Circle c is only a heuristic to generate a family of rhombuses. Thus, point P can be moved along circle c to generate a family of rhombuses. Indeed, based on the symmetry of the circle it is sufficient to move P on the semicircle B’CA to draw such a family of rhombuses.

A dynamic construction of a rhombus

1.3.6 Posing Questions

A goal in constructing a dynamic model or configuration of problems is always to identify and explore mathematical properties and relations that might result from moving objects within the model. How do the areas of both the rhombus and the inscribed circle behave when point P is moved along the arc B’CB? At what position of point P does the area of the rhombus or inscribed circle reach the maximum value? The coordinates of points S and Q (Fig.  3 ) are the x -value of point P and as y -value the corresponding area values of rhombus ABDP and the inscribed circle respectively. Figure  2 shows the loci of points S and Q when point P is moved along arc B’CB. Here, finding the locus via the use of GeoGebra is another heuristic to graph the area behaviour without making explicit the algebraic model of the area.

Graphic representation of the area variation of the family of rhombuses and inscribed circles generated when P is moved through arc B’CB

The area graphs provide information to visualize that in that family of generated rhombuses the maximum area value of the inscribed circle and rhombus is reached when the rhombus becomes a square (Fig.  4 ). That is, the controlled movement of particular objects is an important strategy to analyse the area variation of the family of rhombuses and their inscribed circles.

Visualizing the rhombus and the inscribed circle with maximum area

It is important to observe the identification of points P and Q in terms of the position of point P and the corresponding areas and the movement of point P was sufficient to generate both area loci. That is, the graph representation of the areas is achieved without having an explicit algebraic expression of the area variation. Clearly, the graphic representations provide information regarding the increasing or decreasing interval of both areas; it is also important to explore what properties both graphic representations hold. The goal is to argue that the area variation of the rhombus represents an ellipse and the area of the inscribed circle represents a parabola. An initial argument might involve selecting five points on each locus and using the tool to draw the corresponding conic section (Fig.  5 ). In this case, the tool affordances play an important role in generating the graphic representation of the areas’ behaviours and in identifying properties of those representations. In this context, the use of the tool can offer learners the opportunity to problematize (Santos-Trigo 2007 ) a simple mathematical object (rhombus) as a means to search for mathematical relations and ways to support them.

Drawing the conic section that passes through five points

1.3.7 Looking for Different Solutions Methods

Another line of exploration might involve asking for ways to construct a rhombus and its inscribed circle: Suppose that the side of the rhombus and the circle are given, how can you construct the rhombus that has that circle inscribed? Figure  6 shows the given data, segment A 1 B 1 and circle centred at O and radius OD. The initial goal is to draw the circle tangent to the given segment. To this end, segment AB is congruent to segment A 1 B 1 and on this segment a point P is chosen and a perpendicular to segment AB that passes through point P is drawn. Point C is on this perpendicular and the centre of a circle with radius OD and h is the perpendicular to line PC that passes through point C. Angle ACB changes when point P is moved along segment AB and point E and F are the intersection of line h and the circle with centre M the midpoint of AB and radius MA (Fig.  6 ).

Drawing segment AB tangent to the given circle

Figure  7 a shows the right triangle AFB as the base to construct the rhombus and the inscribed circle and Fig.  7 b shows the second solution based on triangle AEB.

a Drawing the rhombus and the inscribed circle. b Drawing the second solution

Another approach might involve drawing the given circle centred at the origin and the segment as EF with point E on the y-axis. Line OC is perpendicular to segment EF and the locus of point C when point E moves along the y-axis intersects the given circle (Fig.  8 a, b). Both figures show two solutions to draw the rhombus that circumscribe the given circle.

a and b Another solution that involves finding a locus of point C

In this example, the GeoGebra affordances not only are important to construct a dynamic model of the task; but also offer learners and opportunity to explore relations that emerge from moving objects within the model. As a result, learners can rely on different concepts and strategies to solve the tasks. The idea in presenting this rhombus task is to illustrate that the use of a Dynamic Geometry System provides affordances for learners to construct dynamic representation of mathematical objects or problems, to move elements within the representation to pose questions or conjectures to explain invariants or patterns among involved parameters; to search for arguments to support emerging conjectures, and to develop a proper language to communicate results.

1.3.8 Looking Back

Conceptual frameworks used to explain learners’ construction of mathematical knowledge need to capture or take into account the different ways of reasoning that students might develop as a result of using a set of tools during the learning experiences. Figure  9 show some digital technologies that learners can use for specific purpose at the different stages of problem solving activities.

The coordinated use of digital tools to engage learners in problem solving experiences

The use of a dynamic system (GeoGebra) provides a set of affordances for learners to conceptualize and represent mathematical objects and tasks dynamically. In this process, affordances such as moving objects orderly (dragging), finding loci of objects, quantifying objects attributes (lengths, areas, angles, etc.), using sliders to vary parameters, and examining family of objects became important to look for invariance or objects relationships. Likewise, analysing the parameters or objects behaviours within the configuration might lead learners to identify properties to support emerging mathematical relations. Thus, with the use of the tool, learners might conceptualize mathematical tasks as an opportunity for them to engage in mathematical activities that include constructing dynamic models of tasks, formulating conjectures, and always looking for different arguments to support them. Similarly, learners can use an online platform to share their ideas, problem solutions or questions in a digital wall and others students can also share ideas or solution methods and engaged in mathematical discussions that extend mathematical classroom activities.

1.4 Problem Posing: An Overview for Further Progress—Uldarico Malaspina Jurado

Problem posing and problem solving are two essential aspects of the mathematical activity; however, researchers in mathematics education have not emphasized their attention on problem posing as much as problem solving. In that sense, due to its importance in the development of mathematical thinking in students since the first grades, we agree with Ellerton’s statement ( 2013 ): “for too long, successful problem solving has been lauded as the goal; the time has come for problem posing to be given a prominent but natural place in mathematics curricula and classrooms” (pp. 100–101); and due to its importance in teacher training, with Abu-Elwan’s statement ( 1999 ):

While teacher educators generally recognize that prospective teachers require guidance in mastering the ability to confront and solve problems, what is often overlooked is the critical fact that, as teachers, they must be able to go beyond the role as problem solvers. That is, in order to promote a classroom situation where creative problem solving is the central focus, the practitioner must become skillful in discovering and correctly posing problems that need solutions. (p. 1)

Scientists like Einstein and Infeld ( 1938 ), recognized not only for their notable contributions in the fields they worked, but also for their reflections on the scientific activity, pointed out the importance of problem posing; thus it is worthwhile to highlight their statement once again:

The formulation of a problem is often more essential than its solution, which may be merely a matter of mathematical or experimental skills. To raise new questions, new possibilities, to regard old questions from a new angle, requires creative imagination and marks real advance in science. (p. 92)

Certainly, it is also relevant to remember mathematician Halmos’s statement ( 1980 ): “I do believe that problems are the heart of mathematics, and I hope that as teachers (…) we will train our students to be better problem posers and problem solvers than we are” (p. 524).

An important number of researchers in mathematics education has focused on the importance of problem posing, and we currently have numerous, very important publications that deal with different aspects of problem posing related to the mathematics education of students in all educational levels and to teacher training.

1.4.1 A Retrospective Look

Kilpatrick ( 1987 ) marked a historical milestone in research related to problem posing and points out that “problem formulating should be viewed not only as a goal of instruction but also as a means of instruction” (Kilpatrick 1987 , p. 123); and he also emphasizes that, as part of students’ education, all of them should be given opportunities to live the experience of discovering and posing their own problems. Drawing attention to the few systematic studies on problem posing performed until then, Kilpatrick contributes defining some aspects that required studying and investigating as steps prior to a theoretical building, though he warns, “attempts to teach problem-formulating skills, of course, need not await a theory” (p. 124).

Kilpatrick refers to the “Source of problems” and points out how virtually all problems students solve have been posed by another person; however, in real life “many problems, if not most, must be created or discovered by the solver, who gives the problem an initial formulation” (p. 124). He also points out that problems are reformulated as they are being solved, and he relates this to investigation, reminding us what Davis ( 1985 ) states that, “what typically happens in a prolonged investigation is that problem formulation and problem solution go hand in hand, each eliciting the other as the investigation progresses” (p. 23). He also relates it to the experiences of software designers, who formulate an appropriate sequence of sub-problems to solve a problem. He poses that a subject to be examined by teachers and researchers “is whether, by drawing students’ attention to the reformulating process and given them practice in it, we can improve their problem solving performance” (p. 130). He also points out that problems may be a mathematical formulation as a result of exploring a situation and, in that sense, “school exercises in constructing mathematical models of a situation presented by the teacher are intended to provide students with experiences in formulating problems.” (p. 131).

Another important section of Kilpatrick’s work ( 1987 ) is Processes of Problem Formulating , in which he considers association, analogy, generalization and contradiction. He believes the use of concept maps to represent concept organization, as cognitive scientists Novak and Gowin suggest, might help to comprehend such concepts, stimulate creative thinking about them, and complement the ideas Brown and Walter ( 1983 ) give for problem posing by association. Further, in the section “Understanding and developing problem formulating abilities”, he poses several questions, which have not been completely answered yet, like “Perhaps the central issue from the point of view of cognitive science is what happens when someone formulates the problem? (…) What is the relation between problem formulating, problem solving and structured knowledge base? How rich a knowledge base is needed for problem formulating? (…) How does experience in problem formulating add to knowledge base? (…) What metacognitive processes are needed for problem formulating?”

It is interesting to realize that some of these questions are among the unanswered questions proposed and analyzed by Cai et al. ( 2015 ) in Chap. 1 of the book Mathematical Problem Posing (Singer et al. 2015 ). It is worth stressing the emphasis on the need to know the cognitive processes in problem posing, an aspect that Kilpatrick had already posed in 1987, as we just saw.

1.4.2 Researches and Didactic Experiences

Currently, there are a great number of publications related to problem posing, many of which are research and didactic experiences that gather the questions posed by Kilpatrick, which we just commented. Others came up naturally as reflections raised in the framework of problem solving, facing the natural requirement of having appropriate problems to use results and suggestions of researches on problem solving, or as a response to a thoughtful attitude not to resign to solving and asking students to solve problems that are always created by others. Why not learn and teach mathematics posing one’s own problems?

1.4.3 New Directions of Research

Singer et al. ( 2013 ) provides a broad view about problem posing that links problem posing experiences to general mathematics education; to the development of abilities, attitudes and creativity; and also to its interrelation with problem solving, and studies on when and how problem-solving sessions should take place. Likewise, it provides information about research done regarding ways to pose new problems and about the need for teachers to develop abilities to handle complex situations in problem posing contexts.

Singer et al. ( 2013 ) identify new directions in problem posing research that go from problem-posing task design to the development of problem-posing frameworks to structure and guide teachers and students’ problem posing experiences. In a chapter of this book, Leikin refers to three different types of problem posing activities, associated with school mathematics research: (a) problem posing through proving; (b) problem posing for investigation; and (c) problem posing through investigation. This classification becomes evident in the problems posed in a course for prospective secondary school mathematics teachers by using a dynamic geometry environment. Prospective teachers posed over 25 new problems, several of which are discussed in the article. The author considers that, by developing this type of problem posing activities, prospective mathematics teachers may pose different problems related to a geometric object, prepare more interesting lessons for their students, and thus gradually develop their mathematical competence and their creativity.

1.4.4 Final Comments

This overview, though incomplete, allows us to see a part of what problem posing experiences involve and the importance of this area in students mathematical learning. An important task is to continue reflecting on the questions posed by Kilpatrick ( 1987 ), as well as on the ones that come up in the different researches aforementioned. To continue progressing in research on problem posing and contribute to a greater consolidation of this research line, it will be really important that all mathematics educators pay more attention to problem posing, seek to integrate approaches and results, and promote joint and interdisciplinary works. As Singer et al. ( 2013 ) say, going back to Kilpatrick’s proposal ( 1987 ),

Problem posing is an old issue. What is new is the awareness that problem posing needs to pervade the education systems around the world, both as a means of instruction (…) and as an object of instruction (…) with important targets in real-life situations. (p. 5)

Although it can be argued that there is a difference between creativity, discovery, and invention (see Liljedahl and Allan 2014 ) for the purposes of this book these will be assumed to be interchangeable.

Abu-Elwan, R. (1999). The development of mathematical problem posing skills for prospective middle school teachers. In A. Rogerson (Ed.), Proceedings of the International Conference on Mathematical Education into the 21st century: Social Challenges, Issues and Approaches , (Vol. 2, pp. 1–8), Cairo, Egypt.

Google Scholar  

Ashcraft, M. (1989). Human memory and cognition . Glenview, Illinois: Scott, Foresman and Company.

Bailin, S. (1994). Achieving extraordinary ends: An essay on creativity . Norwood, NJ: Ablex Publishing Corporation.

Bibby, T. (2002). Creativity and logic in primary-school mathematics: A view from the classroom. For the Learning of Mathematics, 22 (3), 10–13.

Brown, S., & Walter, M. (1983). The art of problem posing . Philadelphia: Franklin Institute Press.

Bruder, R. (2000). Akzentuierte Aufgaben und heuristische Erfahrungen. In W. Herget & L. Flade (Eds.), Mathematik lehren und lernen nach TIMSS. Anregungen für die Sekundarstufen (pp. 69–78). Berlin: Volk und Wissen.

Bruder, R. (2005). Ein aufgabenbasiertes anwendungsorientiertes Konzept für einen nachhaltigen Mathematikunterricht—am Beispiel des Themas “Mittelwerte”. In G. Kaiser & H. W. Henn (Eds.), Mathematikunterricht im Spannungsfeld von Evolution und Evaluation (pp. 241–250). Hildesheim, Berlin: Franzbecker.

Bruder, R., & Collet, C. (2011). Problemlösen lernen im Mathematikunterricht . Berlin: CornelsenVerlag Scriptor.

Bruner, J. (1964). Bruner on knowing . Cambridge, MA: Harvard University Press.

Burton, L. (1999). Why is intuition so important to mathematicians but missing from mathematics education? For the Learning of Mathematics, 19 (3), 27–32.

Cai, J., Hwang, S., Jiang, C., & Silber, S. (2015). Problem posing research in mathematics: Some answered and unanswered questions. In F.M. Singer, N. Ellerton, & J. Cai (Eds.), Mathematical problem posing: From research to effective practice (pp.3–34). Springer.

Churchill, D., Fox, B., & King, M. (2016). Framework for designing mobile learning environments. In D. Churchill, J. Lu, T. K. F. Chiu, & B. Fox (Eds.), Mobile learning design (pp. 20–36)., lecture notes in educational technology NY: Springer.

Chapter   Google Scholar  

Collet, C. (2009). Problemlösekompetenzen in Verbindung mit Selbstregulation fördern. Wirkungsanalysen von Lehrerfortbildungen. In G. Krummheuer, & A. Heinze (Eds.), Empirische Studien zur Didaktik der Mathematik , Band 2, Münster: Waxmann.

Collet, C., & Bruder, R. (2008). Longterm-study of an intervention in the learning of problem-solving in connection with self-regulation. In O. Figueras, J. L. Cortina, S. Alatorre, T. Rojano, & A. Sepúlveda (Eds.), Proceedings of the Joint Meeting of PME 32 and PME-NA XXX, (Vol. 2, pp. 353–360).

Csíkszentmihályi, M. (1996). Creativity: Flow and the psychology of discovery and invention . New York: Harper Perennial.

Davis, P. J. (1985). What do I know? A study of mathematical self-awareness. College Mathematics Journal, 16 (1), 22–41.

Article   Google Scholar  

Dewey, J. (1933). How we think . Boston, MA: D.C. Heath and Company.

Dewey, J. (1938). Logic: The theory of inquiry . New York, NY: Henry Holt and Company.

Einstein, A., & Infeld, L. (1938). The evolution of physics . New York: Simon and Schuster.

Ellerton, N. (2013). Engaging pre-service middle-school teacher-education students in mathematical problem posing: Development of an active learning framework. Educational Studies in Math, 83 (1), 87–101.

Engel, A. (1998). Problem-solving strategies . New York, Berlin und Heidelberg: Springer.

English, L. (1997). Children’s reasoning processes in classifying and solving comparison word problems. In L. D. English (Ed.), Mathematical reasoning: Analogies, metaphors, and images (pp. 191–220). Mahwah, NJ: Lawrence Erlbaum Associates Inc.

English, L. (1998). Reasoning by analogy in solving comparison problems. Mathematical Cognition, 4 (2), 125–146.

English, L. D. & Gainsburg, J. (2016). Problem solving in a 21st- Century mathematics education. In L. D. English & D. Kirshner (Eds.), Handbook of international research in mathematics education (pp. 313–335). NY: Routledge.

Ghiselin, B. (1952). The creative process: Reflections on invention in the arts and sciences . Berkeley, CA: University of California Press.

Hadamard, J. (1945). The psychology of invention in the mathematical field . New York, NY: Dover Publications.

Halmos, P. (1980). The heart of mathematics. American Mathematical Monthly, 87 , 519–524.

Halmos, P. R. (1994). What is teaching? The American Mathematical Monthly, 101 (9), 848–854.

Hoyles, C., & Lagrange, J.-B. (Eds.). (2010). Mathematics education and technology–Rethinking the terrain. The 17th ICMI Study . NY: Springer.

Kilpatrick, J. (1985). A retrospective account of the past 25 years of research on teaching mathematical problem solving. In E. Silver (Ed.), Teaching and learning mathematical problem solving: Multiple research perspectives (pp. 1–15). Hillsdale, New Jersey: Lawrence Erlbaum.

Kilpatrick, J. (1987). Problem formulating: Where do good problem come from? In A. H. Schoenfeld (Ed.), Cognitive science and mathematics education (pp. 123–147). Hillsdale, NJ: Erlbaum.

Kline, M. (1972). Mathematical thought from ancient to modern times . NY: Oxford University Press.

Kneller, G. (1965). The art and science of creativity . New York, NY: Holt, Reinhart, and Winstone Inc.

Koestler, A. (1964). The act of creation . New York, NY: The Macmillan Company.

König, H. (1984). Heuristik beim Lösen problemhafter Aufgaben aus dem außerunterrichtlichen Bereich . Technische Hochschule Chemnitz, Sektion Mathematik.

Kretschmer, I. F. (1983). Problemlösendes Denken im Unterricht. Lehrmethoden und Lernerfolge . Dissertation. Frankfurt a. M.: Peter Lang.

Krulik, S. A., & Reys, R. E. (Eds.). (1980). Problem solving in school mathematics. Yearbook of the national council of teachers of mathematics . Reston VA: NCTM.

Krutestkii, V. A. (1976). The psychology of mathematical abilities in school children . University of Chicago Press.

Lesh, R., & Zawojewski, J. S. (2007). Problem solving and modeling. In F. K. Lester, Jr. (Ed.), The second handbook of research on mathematics teaching and learning (pp. 763–804). National Council of Teachers of Mathematics, Charlotte, NC: Information Age Publishing.  

Lester, F., & Kehle, P. E. (2003). From problem solving to modeling: The evolution of thinking about research on complex mathematical activity. In R. Lesh & H. Doerr (Eds.), Beyond constructivism: Models and modeling perspectives on mathematics problem solving, learning and teaching (pp. 501–518). Mahwah, NJ: Lawrence Erlbaum.

Lester, F. K., Garofalo, J., & Kroll, D. (1989). The role of metacognition in mathematical problem solving: A study of two grade seven classes. Final report to the National Science Foundation, NSF Project No. MDR 85-50346. Bloomington: Indiana University, Mathematics Education Development Center.

Leung, A., & Bolite-Frant, J. (2015). Designing mathematical tasks: The role of tools. In A. Watson & M. Ohtani (Eds.), Task design in mathematics education (pp. 191–225). New York: Springer.

Liljedahl, P. (2008). The AHA! experience: Mathematical contexts, pedagogical implications . Saarbrücken, Germany: VDM Verlag.

Liljedahl, P., & Allan, D. (2014). Mathematical discovery. In E. Carayannis (Ed.), Encyclopedia of creativity, invention, innovation, and entrepreneurship . New York, NY: Springer.

Liljedahl, P., & Sriraman, B. (2006). Musings on mathematical creativity. For the Learning of Mathematics, 26 (1), 20–23.

Lompscher, J. (1975). Theoretische und experimentelle Untersuchungen zur Entwicklung geistiger Fähigkeiten . Berlin: Volk und Wissen. 2. Auflage.

Lompscher, J. (1985). Die Lerntätigkeit als dominierende Tätigkeit des jüngeren Schulkindes. In L. Irrlitz, W. Jantos, E. Köster, H. Kühn, J. Lompscher, G. Matthes, & G. Witzlack (Eds.), Persönlichkeitsentwicklung in der Lerntätigkeit . Berlin: Volk und Wissen.

Mason, J., & Johnston-Wilder, S. (2006). Designing and using mathematical tasks . St. Albans: Tarquin Publications.

Mason, J., Burton, L., & Stacey, K. (1982). Thinking mathematically . Harlow: Pearson Prentice Hall.

Mayer, R. (1982). The psychology of mathematical problem solving. In F. K. Lester & J. Garofalo (Eds.), Mathematical problem solving: Issues in research (pp. 1–13). Philadelphia, PA: Franklin Institute Press.

Mevarech, Z. R., & Kramarski, B. (1997). IMPROVE: A multidimensional method for teaching mathematics in heterogeneous classrooms. American Educational Research Journal, 34 (2), 365–394.

Mevarech, Z. R., & Kramarski, B. (2003). The effects of metacognitive training versus worked-out examples on students’ mathematical reasoning. British Journal of Educational Psychology, 73 , 449–471.

Moreno-Armella, L., & Santos-Trigo, M. (2016). The use of digital technologies in mathematical practices: Reconciling traditional and emerging approaches. In L. English & D. Kirshner (Eds.), Handbook of international research in mathematics education (3rd ed., pp. 595–616). New York: Taylor and Francis.

National Council of Teachers of Mathematics (NCTM). (1980). An agenda for action . Reston, VA: NCTM.

National Council of Teachers of Mathematics (NCTM). (2000). Principles and standards for school mathematics . Reston, VA: National Council of Teachers of Mathematics.

Newman, J. (2000). The world of mathematics (Vol. 4). New York, NY: Dover Publishing.

Novick, L. (1988). Analogical transfer, problem similarity, and expertise. Journal of Educational Psychology: Learning, Memory, and Cognition, 14 (3), 510–520.

Novick, L. (1990). Representational transfer in problem solving. Psychological Science, 1 (2), 128–132.

Novick, L. (1995). Some determinants of successful analogical transfer in the solution of algebra word problems. Thinking & Reasoning, 1 (1), 5–30.

Novick, L., & Holyoak, K. (1991). Mathematical problem solving by analogy. Journal of Experimental Psychology, 17 (3), 398–415.

Pehkonen, E. K. (1991). Developments in the understanding of problem solving. ZDM—The International Journal on Mathematics Education, 23 (2), 46–50.

Pehkonen, E. (1997). The state-of-art in mathematical creativity. Analysis, 97 (3), 63–67.

Perels, F., Schmitz, B., & Bruder, R. (2005). Lernstrategien zur Förderung von mathematischer Problemlösekompetenz. In C. Artelt & B. Moschner (Eds.), Lernstrategien und Metakognition. Implikationen für Forschung und Praxis (pp. 153–174). Waxmann education.

Perkins, D. (2000). Archimedes’ bathtub: The art of breakthrough thinking . New York, NY: W.W. Norton and Company.

Poincaré, H. (1952). Science and method . New York, NY: Dover Publications Inc.

Pólya, G. (1945). How to solve It . Princeton NJ: Princeton University.

Pólya, G. (1949). How to solve It . Princeton NJ: Princeton University.

Pólya, G. (1954). Mathematics and plausible reasoning . Princeton: Princeton University Press.

Pólya, G. (1964). Die Heuristik. Versuch einer vernünftigen Zielsetzung. Der Mathematikunterricht , X (1), 5–15.

Pólya, G. (1965). Mathematical discovery: On understanding, learning and teaching problem solving (Vol. 2). New York, NY: Wiley.

Resnick, L., & Glaser, R. (1976). Problem solving and intelligence. In L. B. Resnick (Ed.), The nature of intelligence (pp. 230–295). Hillsdale, NJ: Lawrence Erlbaum Associates.

Rusbult, C. (2000). An introduction to design . http://www.asa3.org/ASA/education/think/intro.htm#process . Accessed January 10, 2016.

Santos-Trigo, M. (2007). Mathematical problem solving: An evolving research and practice domain. ZDM—The International Journal on Mathematics Education , 39 (5, 6): 523–536.

Santos-Trigo, M. (2014). Problem solving in mathematics education. In S. Lerman (Ed.), Encyclopedia of mathematics education (pp. 496–501). New York: Springer.

Schmidt, E., & Cohen, J. (2013). The new digital age. Reshaping the future of people nations and business . NY: Alfred A. Knopf.

Schoenfeld, A. H. (1979). Explicit heuristic training as a variable in problem-solving performance. Journal for Research in Mathematics Education, 10 , 173–187.

Schoenfeld, A. H. (1982). Some thoughts on problem-solving research and mathematics education. In F. K. Lester & J. Garofalo (Eds.), Mathematical problem solving: Issues in research (pp. 27–37). Philadelphia: Franklin Institute Press.

Schoenfeld, A. H. (1985). Mathematical problem solving . Orlando, Florida: Academic Press Inc.

Schoenfeld, A. H. (1987). What’s all the fuss about metacognition? In A. H. Schoenfeld (Ed.), Cognitive science and mathematics education (pp. 189–215). Hillsdale, NJ: Lawrence Erlbaum Associates.

Schoenfeld, A. H. (1992). Learning to think mathematically: Problem solving, metacognition, and sense making in mathematics. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 334–370). New York, NY: Simon and Schuster.

Schön, D. (1987). Educating the reflective practitioner . San Fransisco, CA: Jossey-Bass Publishers.

Sewerin, H. (1979): Mathematische Schülerwettbewerbe: Beschreibungen, Analysen, Aufgaben, Trainingsmethoden mit Ergebnissen . Umfrage zum Bundeswettbewerb Mathematik. München: Manz.

Silver, E. (1982). Knowledge organization and mathematical problem solving. In F. K. Lester & J. Garofalo (Eds.), Mathematical problem solving: Issues in research (pp. 15–25). Philadelphia: Franklin Institute Press.

Singer, F., Ellerton, N., & Cai, J. (2013). Problem posing research in mathematics education: New questions and directions. Educational Studies in Mathematics, 83 (1), 9–26.

Singer, F. M., Ellerton, N. F., & Cai, J. (Eds.). (2015). Mathematical problem posing. From research to practice . NY: Springer.

Törner, G., Schoenfeld, A. H., & Reiss, K. M. (2007). Problem solving around the world: Summing up the state of the art. ZDM—The International Journal on Mathematics Education, 39 (1), 5–6.

Verschaffel, L., de Corte, E., Lasure, S., van Vaerenbergh, G., Bogaerts, H., & Ratinckx, E. (1999). Learning to solve mathematical application problems: A design experiment with fifth graders. Mathematical Thinking and Learning, 1 (3), 195–229.

Wallas, G. (1926). The art of thought . New York: Harcourt Brace.

Watson, A., & Ohtani, M. (2015). Themes and issues in mathematics education concerning task design: Editorial introduction. In A. Watson & M. Ohtani (Eds.), Task design in mathematics education, an ICMI Study 22 (pp. 3–15). NY: Springer.

Zimmermann, B. (1983). Problemlösen als eine Leitidee für den Mathematikunterricht. Ein Bericht über neuere amerikanische Beiträge. Der Mathematikunterricht, 3 (1), 5–45.

Further Reading

Boaler, J. (1997). Experiencing school mathematics: Teaching styles, sex, and setting . Buckingham, PA: Open University Press.

Borwein, P., Liljedahl, P., & Zhai, H. (2014). Mathematicians on creativity. Mathematical Association of America.

Burton, L. (1984). Thinking things through . London, UK: Simon & Schuster Education.

Feynman, R. (1999). The pleasure of finding things out . Cambridge, MA: Perseus Publishing.

Gardner, M. (1978). Aha! insight . New York, NY: W. H. Freeman and Company.

Gardner, M. (1982). Aha! gotcha: Paradoxes to puzzle and delight . New York, NY: W. H. Freeman and Company.

Gardner, H. (1993). Creating minds: An anatomy of creativity seen through the lives of Freud, Einstein, Picasso, Stravinsky, Eliot, Graham, and Ghandi . New York, NY: Basic Books.

Glas, E. (2002). Klein’s model of mathematical creativity. Science & Education, 11 (1), 95–104.

Hersh, D. (1997). What is mathematics, really? . New York, NY: Oxford University Press.

Root-Bernstein, R., & Root-Bernstein, M. (1999). Sparks of genius: The thirteen thinking tools of the world’s most creative people . Boston, MA: Houghton Mifflin Company.

Zeitz, P. (2006). The art and craft of problem solving . New York, NY: Willey.

Download references

Author information

Authors and affiliations.

Faculty of Education, Simon Fraser University, Burnaby, BC, Canada

Peter Liljedahl

Mathematics Education Department, Cinvestav-IPN, Centre for Research and Advanced Studies, Mexico City, Mexico

Manuel Santos-Trigo

Pontificia Universidad Católica del Perú, Lima, Peru

Uldarico Malaspina

Technical University Darmstadt, Darmstadt, Germany

Regina Bruder

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Peter Liljedahl .

Rights and permissions

Open Access This chapter is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/ ), which permits use, duplication, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, a link is provided to the Creative Commons license and any changes made are indicated.

The images or other third party material in this chapter are included in the work’s Creative Commons license, unless indicated otherwise in the credit line; if such material is not included in the work’s Creative Commons license and the respective action is not permitted by statutory regulation, users will need to obtain permission from the license holder to duplicate, adapt or reproduce the material.

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Liljedahl, P., Santos-Trigo, M., Malaspina, U., Bruder, R. (2016). Problem Solving in Mathematics Education. In: Problem Solving in Mathematics Education. ICME-13 Topical Surveys. Springer, Cham. https://doi.org/10.1007/978-3-319-40730-2_1

Download citation

DOI : https://doi.org/10.1007/978-3-319-40730-2_1

Published : 28 June 2016

Publisher Name : Springer, Cham

Print ISBN : 978-3-319-40729-6

Online ISBN : 978-3-319-40730-2

eBook Packages : Education Education (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research
  • Mathematics proficiencies

Introduction

The Australian Curriculum: Mathematics aims to be relevant and applicable to the 21st century. The inclusion of the proficiencies of understanding, fluency, problem-solving and reasoning in the curriculum is to ensure that student learning and student independence are at the centre of the curriculum. The curriculum focuses on developing increasingly sophisticated and refined mathematical understanding, fluency, reasoning, and problem-solving skills. These proficiencies enable students to respond to familiar and unfamiliar situations by employing mathematical strategies to make informed decisions and solve problems efficiently.

The proficiency strands describe the actions in which students can engage when learning and using the content of the Australian Curriculum: Mathematics.

Understanding

Students build a robust knowledge of adaptable and transferable mathematical concepts. They make connections between related concepts and progressively apply the familiar to develop new ideas. They develop an understanding of the relationship between the ‘why’ and the ‘how’ of mathematics. Students build understanding when they connect related ideas, when they represent concepts in different ways, when they identify commonalities and differences between aspects of content, when they describe their thinking mathematically and when they interpret mathematical information

Students develop skills in choosing appropriate procedures; carrying out procedures flexibly, accurately, efficiently and appropriately; and recalling factual knowledge and concepts readily. Students are fluent when they calculate answers efficiently, when they recognise robust ways of answering questions, when they choose appropriate methods and approximations, when they recall definitions and regularly use facts, and when they can manipulate expressions and equations to find solutions.

Problem-Solving

Students develop the ability to make choices, interpret, formulate, model and investigate problem situations, and communicate solutions effectively. Students formulate and solve problems when they use mathematics to represent unfamiliar or meaningful situations, when they design investigations and plan their approaches, when they apply their existing strategies to seek solutions, and when they verify that their answers are reasonable.

Students develop an increasingly sophisticated capacity for logical thought and actions, such as analysing, proving, evaluating, explaining, inferring, justifying and generalising. Students are reasoning mathematically when they explain their thinking, when they deduce and justify strategies used and conclusions reached, when they adapt the known to the unknown, when they transfer learning from one context to another, when they prove that something is true or false, and when they compare and contrast related ideas and explain their choices.

Useful Links

  • Australian Curriculum: Mathematics F–10
  • Review by Kaye Stacey of 'Adding it up: helping children learn mathematics' report
  • Peter Sullivan presentation: Designing learning experiences to exemplify the proficiencies
  • Peter Sullivan presentation: Create your own lessons
  • Peter Sullivan paper: Using the proficiencies to enrich mathematics teaching and assessment

Explore Mathematics proficiencies portfolios and illustrations

Understanding

University of Cambridge logo white

Or search by topic

Number and algebra.

  • Place value and the number system
  • Fractions, decimals, percentages, ratio and proportion
  • Calculations and numerical methods
  • Algebraic expressions, equations and formulae
  • Coordinates, functions and graphs
  • Patterns, sequences and structure
  • Properties of numbers

Geometry and measure

  • 3D geometry, shape and space
  • Transformations and constructions
  • Vectors and matrices
  • Measuring and calculating with units
  • Pythagoras and trigonometry
  • Angles, polygons, and geometrical proof

Probability and statistics

  • Handling, processing and representing data
  • Probability (spec_group)

Working mathematically

  • Thinking mathematically
  • Mathematical mindsets

Advanced mathematics

  • Decision mathematics and combinatorics
  • Advanced probability and statistics

For younger learners

  • Early years foundation stage

Problem Solving

Problem solving and the new curriculum

Problem solving and the new curriculum

Developing a classroom culture that supports a problem-solving approach to mathematics

Developing a classroom culture that supports a problem-solving approach to mathematics

Developing excellence in problem solving with young learners

Developing excellence in problem solving with young learners

Using NRICH Tasks to Develop Key Problem-solving Skills

Using NRICH Tasks to Develop Key Problem-solving Skills

Trial and Improvement at KS1

Trial and Improvement at KS1

Trial and Improvement at KS2

Trial and Improvement at KS2

Working Systematically

Working Systematically - Primary teachers

Number Patterns

Number Patterns

Working Backwards at KS1

Working Backwards at KS1

Working Backwards at KS2

Working Backwards at KS2

Reasoning

Visualising at KS1 - Primary teachers

Visualising at KS2

Visualising at KS2 - Primary teachers

Conjecturing and Generalising at KS1

Conjecturing and Generalising at KS1 - Primary teachers

Conjecturing and Generalising at KS2

Conjecturing and Generalising at KS2 - Primary teachers

Mathematical Problem Solving in the Early Years

Mathematical Problem Solving in the Early Years

Low threshold high ceiling - an introduction.

I'm Stuck!

What's all the talking about?

Group-worthy tasks and their potential to support children to develop independent problem-solving skills

Group-worthy tasks and their potential to support children to develop independent problem-solving skills

Developing the classroom culture: using the Dotty Six Activity as a springboard for investigation

Developing the classroom culture: using the Dotty Six Activity as a springboard for investigation

Mathletics United States Logo

Mathletics Problem-Solving and Reasoning

Mathletics has 700+ Problem-Solving and Reasoning questions to bring next-level mathematics thinking to your class.

Mathletics helps teachers bring Problem-Solving and Reasoning to life

problem solving and reasoning maths

Over 700 Problem-Solving and Reasoning Questions

Designed by our team of education specialists, Mathletics Problem-Solving and Reasoning activities help students master soft mathematics skills, develop critical thinking abilities, and shows them how mathematics can be applied to real life problem-solving.

Built for the Modern Learning Environment

Students can investigate the problem, show their working and thinking, and ask their teachers help all within their console. Automated marking, data-driven reporting, grouping and the ability to assign tasks enables educators to provide powerful, problem-solving reasoning lessons.

problem solving and reasoning maths

Endlessly Engaging for Students

Using best-practice gamification theory, Mathletics Problem-Solving and Reasoning questions engage, challenge and motivate students to think creatively, critically, and to discover the joy of using mathematics.

Get access to Problem-Solving and Reasoning in Mathletics

Encouraging today’s learners to become tomorrow’s thinkers.

problem solving and reasoning maths

Real-world thinking

Shows students how mathematics applies to problems of the real-world.

problem solving and reasoning maths

Preparing for the future

Prepares students to focus on solutions for their future work and careers.

problem solving and reasoning maths

Enhancing learning experiences

Turns ordinary questions into challenging and motivating learning experiences.

Mathletics Problem-Solving and Reasoning is made with every learner in mind

Mathletics Problem-Solving and Reasoning activities have been created to help, challenge and develop all students at every level of learning.

PSR for every student

Introducing simple problem-solving concepts.

Mathletics PSR opens young minds to the basic ideas of problem-solving and reasoning through captivating questions and imagery.

For young learners

Challenging students to think.

Mathletics PSR demonstrates to older students that mathematical ideas, concepts and questions can be expanded, played with and solved in completely different ways.

For older learners

Helping struggling students develop.

Educators can set their students challenges from any level of learning, helping those who need more time the chance to succeed at their own pace.

For struggling students

Problem-solving and reasoning makes mathematics extraordinary.

See how Mathletics Problem-Solving and Reasoning can help your students develop the most important skills of the digital age.

Get 30 Days of Free Access To Mathletics For Your School

Used by 120,000+ teachers, loved by 3,000,000+ students, Mathletics is the online math program that has captivated students with the love of learning for over 15 years – and it’s yours to try for free for 30 days.

  • Perfect for learners aged 4-14 – Find hundreds of resources, games and activities that introduce concepts, reinforce learning, reward mastery and encourage critical thinking for early through to secondary learners.

Save teachers time – with assisted marking, hundreds of maths resources and lessons, Mathletics does some of the heavy-lifting so you can focus on your students.

Provide detailed reporting – track student progress on a class and individual level to help create lesson plans and learning paths.

Captivate students – Mathletics uses gamified learning to engage and challenge students to achieve their best while having fun.

problem solving and reasoning maths

Privacy Overview

Oxford Education Blog

The latest news and views on education from oxford university press., the role of reasoning in supporting problem solving and fluency.

problem solving and reasoning maths

A recent webinar with Mike Askew explored the connection between reasoning, problem solving and fluency. This blog post summaries the key takeaways from this webinar.

Using reasoning to support fluency and problem solving 

You’ll probably be very familiar with the aims of the National Curriculum for mathematics in England: fluency, problem-solving and reasoning. An accepted logic of progression for these is for children to become fluent in the basics, apply this to problem-solving, and then reason about what they have done. However, this sequence tends towards treating reasoning as the icing on the cake, suggesting that it might be a final step that not all children in the class will reach. So let’s turn this logic on its head and consider the possibility that much mathematical reasoning is in actual fact independent of arithmetical fluency.

What does progress in mathematical reasoning look like?

Since we cannot actually ‘see’ children’s progression in learning, in the way we can see a journey’s progression on a SatNav, we often use metaphors to talk about progression in learning. One popular metaphor is to liken learning to ‘being on track’, with the implication that we can check if children going in the right direction, reaching ‘stations’ of fluency along the way. Or we talk about progression in learning as though it were similar to building up blocks, where some ideas provide the ‘foundations’ that can be ‘built upon’. 

Instead of thinking about reasoning as a series of stations along a train track or a pile of building blocks, we can instead take a gardening metaphor, and think about reasoning as an ‘unfolding’ of things. With this metaphor, just as the sunflower ‘emerges’ from the seed, so our mathematical reasoning is contained within our early experiences. A five-year-old may not be able to solve 3 divided by 4, but they will be able to share three chocolate bars between four friends – that early experience of ‘sharing chocolate’ contains the seeds of formal division leading to fractions. 1  

Of course, the five-year-old is not interested in how much chocolate each friend gets, but whether everyone gets the same amount – it’s the child’s interest in relationships between quantities, rather than the actual quantities that holds the seeds of thinking mathematically.  

The role of relationships in thinking mathematically

Quantitative relationships.

Quantitative relationships refer to how quantities relate to each other. Consider this example:

I have some friends round on Saturday for a tea party and buy a packet of biscuits, which we share equally. On Sunday, I have another tea party, we share a second, equivalent packet of the biscuits. We share out the same number of biscuits as yesterday, but there are more people at the table. Does each person get more or less biscuits? 2

Once people are reassured that this is not a trick question 3 then it is clear that if there are more people and the same quantity of biscuits, everyone must get a smaller amount to eat on Sunday than the Saturday crowd did. Note, importantly, we can reason this conclusion without knowing exact quantities, either of people or biscuits. 

This example had the change from Saturday to Sunday being that the number of biscuits stayed the same, while the number of people went up. As each of these quantities can do three things between Saturday and Sunday – go down, stay the same, go up – there are nine variations to the problem, summarised in this table, with the solution shown to the particular version above. 

problem solving and reasoning maths

Before reading on, you might like to take a moment to think about which of the other cells in the table can be filled in. (The solution is at the end of this blog).

It turns out that in 7 out of 9 cases, we can reason what will happen without doing any arithmetic. 4 We can then use this reasoning to help us understand what happens when we do put numbers in. For example, what we essentially have here is a division – quantity of biscuits divided between number of friends – and we can record the changes in the quantities of biscuits and/or people as fractions:

problem solving and reasoning maths

So, the two fractions represent 5 biscuits shared between 6 friends (5/6) and 5 biscuits shared between 8 (5/8). To reason through which of these fractions is bigger we can apply our quantitative reasoning here to see that everyone must get fewer biscuits on Sunday – there are more friends, but the same quantity of biscuits to go around. We do not need to generate images of each fraction to ‘see’ which is larger, and we certainly do not need to put them both over a common denominator of 48.  We can reason about these fractions, not as being static parts of an object, but as a result of a familiar action on the world and in doing so developing our understanding of fractions. This is exactly what MathsBeat does, using this idea of reasoning in context to help children understand what the abstract mathematics might look like.

Structural relationships : 

By   structural relationships,   I mean   how we can break up and deal with a quantity in structural ways. Try this:

Jot down a two-digit number (say, 32) Add the two digits (3 + 2 = 5) Subtract that sum from your original number (32 – 5 = 27) Do at least three more Do you notice anything about your answers?

If you’ve done this, then you’ll probably notice that all of your answers are multiples of nine (and, if like most folks, you just read on, then do check this is the case with a couple of numbers now).

This result might look like a bit of mathematical magic, but there must be a reason.

We might model this using three base tens, and two units, decomposing one of our tens into units in order to take away five units. But this probably gives us no sense of the underlying structure or any physical sensation of why we always end up with a multiple of nine.

problem solving and reasoning maths

If we approach this differently, thinking about where our five came from –three tens and two units – rather than decomposing one of the tens into units, we could start by taking away two, which cancels out.

And then rather than subtracting three from one of our tens, we could take away one from each ten, leaving us with three nines. And a moment’s reflection may reveal that this will work for any starting number: 45 – (4 + 5), well the, five within the nine being subtracted clears the five ones in 45, and the 4 matches the number of tens, and that will always be the case. Through the concrete, we begin to get the sense that this will always be true.

problem solving and reasoning maths

If we take this into more formal recording, we are ensuring that children have a real sense of what the structure is: a  structural sense , which complements their number sense. 

Decomposing and recomposing is one way of doing subtraction, but we’re going beyond this by really unpacking and laying bare the underlying structure: a really powerful way of helping children understand what’s going on.

So in summary, much mathematical reasoning is independent of arithmetical fluency.

This is a bold statement, but as you can see from the examples above, our reasoning doesn’t necessarily depend upon or change with different numbers. In fact, it stays exactly the same. We can even say something is true and have absolutely no idea how to do the calculation. (Is it true that 37.5 x 13.57 = 40 x 13.57 – 2.5 x 13.37?)

Maybe it’s time to reverse the logic and start to think about mathematics emerging from reasoning to problem-solving to fluency.

Head shot of the blog's author Mike Askew

Mike Askew:  Before moving into teacher education, Professor Mike Askew began his career as a primary school teacher. He now researches, speaks and writes on teaching and learning mathematics. Mike believes that all children can find mathematical activity engaging and enjoyable, and therefore develop the confidence in their ability to do maths. 

Mike is also the Series Editor of  MathsBeat , a new digitally-led maths mastery programme that has been designed and written to bring a consistent and coherent approach to the National Curriculum, covering all of the aims – fluency, problem solving and reasoning – thoroughly and comprehensively. MathsBeat’s clear progression and easy-to-follow sequence of tasks develops children’s knowledge, fluency and understanding with suggested prompts, actions and questions to give all children opportunities for deep learning. Find out more here .

You can watch Mike’s full webinar,  The role of reasoning in supporting problem solving and fluency , here . (Note: you will be taken to a sign-up page and asked to enter your details; this is so that we can email you a CPD certificate on competition of the webinar). 

Solution to  Changes from Saturday to Sunday and the result

problem solving and reasoning maths

 1 If you would like to read more about this, I recommend Lakoff, G., & Núñez, R. E. (2000). Where mathematics comes from: How the embodied mind brings mathematics into being. Basic Books.

2 Adapted from a problem in: Lamon, S. (2005). Teaching Fractions and Ratios for Understanding. Essential Content Knowledge and Instructional Strategies for Teachers, 2nd Edition. Routledge.

3 Because, of course in this mathematical world of friends, no one is on a diet or gluten intolerant!

4 The more/more and less/less solutions are determined by the actual quantities: biscuits going up by, say, 20 , but only one more friend turning up on Sunday is going to be very different by only having 1 more biscuit on Sunday but 20 more friends arriving. 

Share this:

One thought on “ the role of reasoning in supporting problem solving and fluency ”.

' src=

Hi Mike, I enjoyed reading your post, it has definitely given me a lot of insight into teaching and learning about mathematics, as I have struggled to understand generalisations and concepts when dealing solely with numbers, as a mathematics learner. I agree with you in that students’ ability to reason and develop an understanding of mathematical concepts, and retain a focus on mathematical ideas and why these ideas are important, especially when real-world connections are made, because this is relevant to students’ daily lives and it is something they are able to better understand rather than being presented with solely arithmetic problems and not being exposed to understanding the mathematics behind it. Henceforth, the ideas you have presented are ones I will take on when teaching: ensuring that students understand the importance of understanding mathematical ideas and use this to justify their responses, which I believe will help students develop confidence and strengthen their skills and ability to extend their thinking when learning about mathematics.

Comments are closed.

  • International
  • Education Jobs
  • Schools directory
  • Resources Education Jobs Schools directory News Search

Reasoning and Problem Solving Questions Collection - KS1 and KS2

Reasoning and Problem Solving Questions Collection - KS1 and KS2

Subject: Mathematics

Age range: 5-7

Resource type: Worksheet/Activity

White Rose Education's Shop

Last updated

10 March 2023

  • Share through email
  • Share through twitter
  • Share through linkedin
  • Share through facebook
  • Share through pinterest

problem solving and reasoning maths

These booklets each contain over 40 reasoning and problem solving questions suitable for KS1, KS2 and KS3 classes. These are the questions that we have been putting out each day in March 2016 on Twitter in the run up to SATS.

The answers are provided with some simple notes at the back of the booklet and for some problems supplementary questions and variation has been provided.

As always we welcome any feedback on the work we are doing and the materials that we are releasing. Thank you for taking an interest in our work. The White Rose Maths Hub Team

Creative Commons "Sharealike"

Your rating is required to reflect your happiness.

It's good to leave some feedback.

Something went wrong, please try again later.

TES Resource Team

We are pleased to let you know that your resource Reasoning and Problem Solving Questions Collection - KS1 and KS2, has been hand-picked by the Tes resources content team to be featured in https://www.tes.com/teaching-resources/blog/fluency-reasoning-and-problem-solving-primary-maths in April 2024 on https://www.tes.com/teaching-resources/blog. Congratulations on your resource being chosen and thank you for your ongoing contributions to the Tes Resources marketplace.

Empty reply does not make any sense for the end user

graceamfo18

A very good and engaging way to teach mastery of maths. Thank you for sharing

thank you for sharing, this is really good

Report this resource to let us know if it violates our terms and conditions. Our customer service team will review your report and will be in touch.

Not quite what you were looking for? Search by keyword to find the right resource:

We're sorry but you will need to enable Javascript to access all of the features of this site.

Stanford Online

Introduction to mathematical thinking.

HSTAR-Y0001

Stanford Graduate School of Education

The goal of the course is to help you develop a valuable mental ability – a powerful way of thinking that our ancestors have developed over three thousand years.

Mathematical thinking is not the same as doing mathematics – at least not as mathematics is typically presented in our school system. School math typically focuses on learning procedures to solve highly stereotyped problems. Professional mathematicians think a certain way to solve real problems, problems that can arise from the everyday world, or from science, or from within mathematics itself. The key to success in school math is to learn to think inside-the-box. In contrast, a key feature of mathematical thinking is thinking outside-the-box – a valuable ability in today's world. This course helps to develop that crucial way of thinking.

The course is offered in two versions. The eight-week-long Basic Course is designed for people who want to develop or improve mathematics-based, analytic thinking for professional or general life purposes. The ten-week-long Extended Course is aimed primarily at first-year students at college or university who are thinking of majoring in mathematics or a mathematically-dependent subject, or high school seniors who have such a college career in mind. The final two weeks are more intensive and require more mathematical background than the Basic Course. There is no need to make a formal election between the two. Simply skip or drop out of the final two weeks if you decide you want to complete only the Basic Course.

Subtitles for all video lectures available in: Portuguese (provided by  The Lemann Foundation ), English

Course Syllabus

Instructor's welcome and introduction

  •  Introductory material
  •  Analysis of language – the logical combinators
  •  Analysis of language – implication
  •  Analysis of language – equivalence
  •  Analysis of language – quantifiers
  •  Working with quantifiers
  •  Proofs
  •  Proofs involving quantifiers
  •  Elements of number theory
  • Beginning real analysis

Recommended Background

High school mathematics. Specific requirements are familiarity with elementary symbolic algebra, the concept of a number system (in particular, the characteristics of, and distinctions between, the natural numbers, the integers, the rational numbers, and the real numbers), and some elementary set theory (including inequalities and intervals of the real line). Students whose familiarity with these topics is somewhat rusty typically find that with a little extra effort they can pick up what is required along the way. The only heavy use of these topics is in the (optional) final two weeks of the Extended Course.

A good way to assess if your  basic  school background is adequate (even if currently rusty) is to glance at the topics in the book  Adding It Up: Helping Children Learn Mathematics  (free download), published by the US National Academies Press in 2001. Though aimed at K-8 mathematics teachers and teacher educators, it provides an excellent coverage of what constitutes a good basic mathematics education for life in the Twenty-First Century (which was the National Academies' aim in producing it).

Dr Keith Devlin, Co-founder and Executive Director H-STAR Institute

  • Engineering
  • Artificial Intelligence
  • Computer Science & Security
  • Business & Management
  • Energy & Sustainability
  • Data Science
  • Medicine & Health
  • Explore All
  • Technical Support
  • Master’s Application FAQs
  • Master’s Student FAQs
  • Master's Tuition & Fees
  • Grades & Policies
  • HCP History
  • Graduate Application FAQs
  • Graduate Student FAQs
  • Graduate Tuition & Fees
  • Community Standards Review Process
  • Academic Calendar
  • Exams & Homework FAQs
  • Enrollment FAQs
  • Tuition, Fees, & Payments
  • Custom & Executive Programs
  • Free Online Courses
  • Free Content Library
  • School of Engineering
  • Graduate School of Education
  • Stanford Doerr School of Sustainability
  • School of Humanities & Sciences
  • Stanford Human Centered Artificial Intelligence (HAI)
  • Graduate School of Business
  • Stanford Law School
  • School of Medicine
  • Learning Collaborations
  • Stanford Credentials
  • What is a digital credential?
  • Grades and Units Information
  • Our Community
  • Get Course Updates

Scholarships

Test Series NEW

Mathematical Reasoning

Mathematical Reasoning , often referred to as deductive reasoning, is a fundamental aspect of Mathematics. It's the process of logically analyzing mathematical statements and drawing conclusions based on established rules and principles. In essence, mathematical reasoning involves constructing logical arguments to prove mathematical statements or theorems.

  • 1.0 What is Mathematical Reasoning

Mathematical Reasoning , a crucial component of mathematics, involves the evaluation of the truth values of given statements. These reasoning tasks are prevalent in competitive exams such as JEE, offering enjoyable and straightforward problem-solving experiences. This article will teach mathematical reasoning and explore methods to tackle these questions with ease and proficiency.

  • 2.0 Mathematically Acceptable Statements

The provided statement, "The sum of two prime numbers is always even," is subject to ambiguity as it could either be true or false. This ambiguity arises from the fact that the sum of two prime numbers can result in either an even or an odd number. Mathematically acceptable statements must be true or false, but not simultaneously. Hence, a clear and unambiguous statement is a fundamental prerequisite for mathematical reasoning. This forms the essence of the definition of a mathematical statement.

  • 3.0 Types of Reasoning in Mathematics

In the realm of mathematics, reasoning primarily encompasses two major types:

  • Inductive Reasoning
  • Deductive Reasoning

While other forms of reasoning, such as intuition, counterfactual thinking, critical thinking, backwards induction, and abductive induction, play roles in decision-making processes, it is inductive and deductive reasoning that predominantly characterize mathematical reasoning. These two types of reasoning will be further elaborated upon below.

Note: Inductive reasoning involves non-rigorous logical inference, where statements are generalized based on observed patterns. In contrast, deductive reasoning employs rigorous logical deduction, where statements are deemed true if the assumptions leading to the deduction are true. In the realm of mathematics, deductive reasoning holds greater significance than inductive reasoning due to its precision and reliance on established truths.

  • 4.0 Statements

In the realm of mathematics, a statement is a declarative sentence with a truth value, either true or false, but not both simultaneously.  These statements form the basis of mathematical reasoning and are essential for constructing logical arguments and proofs. Examples of mathematical statements include "2 + 2 = 4," "Every prime number greater than 2 is odd," and "The square root of 9 is 3."

Simple Statement

A simple statement in mathematics is a declarative sentence that expresses a single fact and is either true or false. It does not contain any logical connectives such as "and" "or," or "if-then." For example, "5 is an odd number" and " The result of adding 5 and 3 is 8" are both simple statements.

Compound Statement

A compound statement in mathematics is formed by combining two or more simple statements using logical connectives such as "and" "or" or "if-then." The truthfulness of a compound statement relies on the truth values of its component’s simple statements and the logical connectives used. For example, "It is raining, and the sun is shining" and "If it is raining, then I will bring an umbrella" are both compound statements.

5.0 Basic Logical Connectives 

The basic logical connectives in mathematics include:

1. Conjunction (AND): Denoted by the symbol "∧" or sometimes "AND". This connective is true only when both of its component statements are true. For example, if P represents "It is sunny" and Q represents "It is warm," then P ∧ Q is true only when it is both sunny and warm.

2. Disjunction (OR): Denoted by the symbol "∨" or sometimes "OR". This connective is true if at least one of its component statements is true. For example, if P represents "It is raining" and Q represents "It is snowing," then P ∨ Q is true if it is either raining or snowing (or both).

3. Negation (NOT): Denoted by the symbol "~" or sometimes "NOT," this connective is used to form the negation of a statement. It reverses the truth value of the statement. For example, if P represents "It is cloudy," then ~P represents "It is not cloudy."

These basic logical connectives are used to form compound statements and are fundamental to mathematical reasoning and logic.

  • 6.0 Negation of Compound Statements

The negation of a compound statement is formed by negating each of its component simple statements and switching the logical connective. Here are some examples:

  • Negation of a Conjunction (AND): 

If the compound statement is P ∧ Q, then its negation is ~ (P ∧ Q), which is equivalent to (~P ∨ ~ Q).

  • Negation of a Disjunction (OR): 

If the compound statement is P ∨ Q, then its negation is ~ (P ∨ Q), which is equivalent to (~ P ∧ ~ Q).

  • Negation of an Implication (IF-THEN):

If the compound statement is P → Q, then its negation is ~ (P → Q), which is equivalent to (P ∧ ~ Q).

  • Negation of a Biconditional (IF AND ONLY IF): 

If the compound statement is P ↔ Q, then its negation is ~(P ↔ Q), which is equivalent to (P ∧ ~ Q) ∨ (~ P ∧ Q).

These rules for negating compound statements are fundamental in logic and are used extensively in mathematical reasoning.

  • 7.0 Truth Table

A truth table is a tabular representation of the possible truth values of a compound statement based on the truth values of its component propositions. Here's an example truth table for the logical connective "AND" (denoted by ∧):

T

T

T

T

F

F

F

T

F

F

F

F

In this truth table:

  • P and Q represent the truth values of two propositions.
  •  P ∧ Q represents the truth value of the compound statement "P AND Q."

Each row in the truth table corresponds to a different combination of truth values for P and Q. The truth value of P ∧ Q in each row is determined based on the truth values of P and Q according to the logical connective "AND."

Similar truth tables can be constructed for other logical connectives such as "OR" (denoted by ∨), "NOT" (denoted by ~), "IMPLIES" (denoted by →), and "IF AND ONLY IF" (denoted by ↔), as well as for compound statements involving multiple propositions. 

  • 8.0 Converse, Inverse and Contrapositive of the Conditional

(i) Converse: Converse of (p ⟶ q) is (q ⟶ p)

(ii) Inverse: Inverse of (p ⟶ q) is (~p ⟶ ~q)

(iii) Contrapositive: Contrapositive of (p ⟶ q) is (~q ⟶ ~p)

  • 9.0 Mathematical Reasoning Solved Questions

Example 1: Find the truth value of the statement “2 divides 4 and 3 + 7 = 8”

2 divides 4 is true and 3 + 7 = 8 is false. so, the given statement is false.

Example 2: Find truth value of compound statement “All natural numbers are even or odd”

p: all natural numbers are even, q: all natural numbers are odd.

Here compound statement (p ∨ q) is exclusive OR

Truth value of p is false and the truth value of q is also false.

So, truth value of compound statement (p ∨ q) is false.

Example 3: Find the truth values of (p ⟷ ~q) ⟷ (q ⟶ p).

T

T

F

F

T

F

T

F

T

T

T

T

F

T

F

T

F

F

F

F

T

F

T

F

Example 4: Write negation of following statements:

  • "All cats scratch" 
  •  “5 is a rational number”.
  • Some cats do not scratch.

There exists a cat which does not scratch.

At least one cat does not scratch.

  • 5 is an irrational number.

Example 5: Write the negation of the following compound statements:

  • All the students completed their homework and the teacher was present.
  • Square of an integer is positive or negative.
  • If my car is not in the workshop then I can go to college.

(i)  The component statements of the given statement are:

       p: All the students completed their homework.

       q: The teacher was present.

The given statement is p and q. so its negation is ~ p or ~ q = Some of the students did not complete their homework or the teacher was not present.

(ii) The component statement of the given statements are:

p: Square of an integer is positive.

q: Square of an integer is negative.

The given statement is p or q so its negation is ~p and ~q = There exists an integer whose square is neither positive nor negative.

(iii) Consider the following statements:

        p: My car is not in the workshop. 

        q: I can go to college.

The given statement in symbolic form is p ⟶ q

Now, ~ (p ⟶ q) = p ∧ (~q)

⇒ ~ (p ⟶ q): My car is not in workshop, and I cannot go to college.

Hence the negation of the given statements is “My car is not in the workshop and I cannot go to college”.

Example 6: Write Contrapositive of statements:

(i) "If it is raining then I will not come"

(ii) "If x = 5 and y = –2 then x-2y=9"

(iii) "If two number are not equal then their square is not equal"

(i) “If I will come then it is not raining.”

(ii) If x – 2y ≠ 9 then x ≠ 5 or y ≠ –2

(iii) “If the square of two numbers is equal then numbers are equal.”

On this page

  • 4.1 Simple Statement
  • 4.2 Compound Statement
  • 5.0 Basic Logical Connectives 

Mathematical reasoning is the process of logically analyzing mathematical statements and drawing conclusions based on established rules and principles.

The two main types of mathematical reasoning are inductive reasoning and deductive reasoning.

Inductive reasoning involves generalizing based on specific observations or examples. It is often used to form hypotheses or conjectures.

Deductive reasoning is the process of drawing conclusions by logically following from given premises or assumptions. It relies on established rules of logic to derive new statements or theorems.

Deductive reasoning is crucial in mathematics because it provides a rigorous framework for proving theorems and establishing mathematical truths. It ensures the validity and certainty of mathematical arguments.

You can improve your mathematical reasoning skills by practicing solving mathematical problems, studying mathematical proofs, and understanding logical principles.

Mathematical reasoning is used in various fields such as science, engineering, finance, and computer science to examine data, address issues, and arrive at well-informed conclusions.

Yes, mathematical reasoning skills, such as logical analysis and critical thinking, can be applied to solve problems in diverse areas such as philosophy, linguistics, and psychology.

Examples of famous mathematical proofs include Euclid's proof of the infinitude of prime numbers, Pythagoras' theorem, and Fermat's Last Theorem, all of which rely on deductive reasoning to establish mathematical truths.

Mastery-Aligned Maths Tutoring

“The best thing has been the increase in confidence and tutors being there to deal with any misunderstandings straight away."

FREE daily maths challenges

A new KS2 maths challenge every day. Perfect as lesson starters - no prep required!

FREE daily maths challenges

Maths Problem Solving At KS2: Strategies and Resources For Primary School Teachers

John Dabell

Maths problem solving KS2 is crucial to succeeding in national assessments. If your Key Stage 2 pupils are still struggling with reasoning and problem solving in Maths, here are some problem solving strategies to try with your classes; all aligned to Ofsted’s suggested primary school teaching strategies.

Reasoning and problem solving are widely understood to be one of the most important activities in school mathematics. As far back as 1982,  The Cockcroft Report , stated:

‘The ability to solve problems is at the heart of mathematics. Mathematics is only “useful” to the extent to which it can be applied to a particular situation and it is the ability to apply mathematics to a variety of situations to which we give the name “problem solving”. […] At each stage […] the teacher needs to help pupils to understand how to apply the concepts and skills which are being learned and how to make use of them to solve problems. These problems should relate both to the application of mathematics to everyday situations within the pupils’ experience, and also to situations which are unfamiliar.’

Thirty plus years later and problem solving is still the beating heart of the Maths curriculum and – along with fluency and reasoning – completes the triad of aims in the 2014 New National Curriculum.

Ofsted’s view on problem solving in the Maths curriculum

Despite its centrality, Ofsted report that ‘ problem solving is not emphasised enough in the Maths curriculum ’. Not surprisingly, problem solving isn’t taught that well either because teachers can lack confidence, or they tend to rely on a smaller range of tried and tested strategies they feel comfortable with but which may not always ‘hit home’. If you’re looking to provide further support to those learners who haven’t yet mastered problem solving, you probably need a range of different strategies, depending on both the problem being attempted and the aptitude of the pupil.

We’ve therefore created a free KS2 resource aimed at Maths Coordinators and KS2 teachers that teaches you when and how to use 9 key problem solving techniques:  The Ultimate Guide to Problem Solving Techniques

The context around KS2 problem solving

According to Jane Jones, former HMI and National Lead for Mathematics, in her presentation at the Jurassic Maths Hub:

  • Problems do not have to be set in real-life contexts, beware pseudo contexts.
  • Providing a range of puzzles and other problems helps pupils to reason strategically to approach problems, sequence unfolding solutions, and use recording to help their mathematical thinking for next steps.
  • It is particularly important that teachers and TAs stress reasoning, rather than just checking whether the final answer is correct.
  • Pupils of all ability need to learn how to solve problems – not just the high attainers or fastest workers.

The Ultimate Guide to Problem Solving Techniques

The Ultimate Guide to Problem Solving Techniques

9 ready-to-go problem solving techniques with accompanying tasks to get KS2 reasoning independently

How to approach KS2 maths problems

So what do we do? Well Ofsted advice is pretty clear on what to do when teaching problem solving. Jane Jones says we should:

  • Set problems as part of learning in all topics for all pupils.
  • Vary the ways in which you pose problems.
  • Try to resist prompting pupils too soon and focusing on getting ‘the answer’ – pupils need to build their confidence, skills and resilience in solving problems, so that they can apply them naturally in other situations.
  • Make sure you discuss alternative approaches with pupils to help develop their reasoning.
  • Ensure that problems for high attainers involve demanding reasoning and problem-solving skills, not just harder numbers.

Perhaps more than most topics in Maths, teaching pupils how to approach problem solving questions effectively requires a systematic approach. Pupils can face any number of multi-step word problems throughout their SATs and they will face them without our help. To truly give pupils the tools they need to approach problem solving in Maths we must ingrain techniques for  approaching  problems.

With this in mind, below are some methods and techniques for you to consider when teaching problem solving in your KS2 Maths lessons. For greater detail and details on how to teach this methods, download the  Ultimate Guide to Problem Solving Techniques

Models for approaching KS2 problem solving

Becoming self-assured and capable as a problem solver is an intricate business that requires a range of skills and experience. Children need something to follow. They can’t just pluck a plan of attack out of thin air which is why models of problem solving are important especially when made memorable. They help establish a pattern within pupils so that, when they see a problem, they feel confident in taking the steps towards solving it.

Find out how we encourage children to approach problem solving independently in our blog: 20 Maths Strategies KS2 That Guarantee Progress for All Pupils.

The most commonly used model is that of George Polya (1973), who proposed 4 stages in problem solving, namely:

  • Understand the problem
  • Devise a strategy for solving it
  • Carry out the strategy
  • Check the result

Many models have followed the Polya model and use acronyms to make the stages stick. Which model you use can depend on the age of the children you are teaching and sometimes the types of word problems they are trying to solve. Below are several examples of Polya model acronyms:

C – Circle the question words U – Underline key words B – Box any key numbers E – Evaluate (what steps do I take?) S – Solve and check (does my answer make sense and how can I double check?)

R – Read the problem correctly. I – Identify the relevant information. D – Determine the operation and unit for expressing the answer. E – Enter the correct numbers and calculate

I – Identify the problem D – Define the problem E – Examine the options A – Act on a plan L – Look at the consequences

R – Read and record the problem I – Illustrate your thinking with pictures, models, number lines etc C – Compute, calculate and check E – Explain your thinking

R – Read the question and underline the important bits U – Understand: think about what to do and write the number sentences you will need C –  Choose how you will work it out S – Solve the problem A – Answer C – Check

Q – Question – read it carefully U – Understand – underline or circle key elements A – Approximate – think about the size of your answer C – Calculate K – Know if the answer is sensible or not

T – Think about the problem and ponder E – Explore and get to the root of the problem A – Act by selecting a strategy R – Reassess and scrutinise and evaluate the efficiency of the method

The idea behind these problem solving models is the same: to give children a structure and to build an internal monitor so they have a business-like way of working through a problem. You can choose which is most appropriate for the age group and ability of the children you are teaching.

The model you choose is less important than knowing that pupils can draw upon a model to follow, ensuring they approach problems in a systematic and meaningful way. A far simpler model – that we use in the   Ultimate Guide to KS2 Problem Solving Techniques  – is UCR: Understand the problem, Communicate and Reflect.

You then need to give pupils lots of opportunities to practice this! You can find lots of FREE White Rose Maths aligned maths resources, problem solving activities and printable worksheets for KS1 and KS2 pupils in the Third Space Learning Maths Hub .

You might also be interested in:

  • 25 Fun Maths Problems For KS2 And KS3 (From Easy To Very Hard!)
  • 30 Problem Solving Maths Questions And Answers For GCSE
  • Why SSDD Problems Are Such An Effective Tool To Teach Problem Solving At KS3 & KS4

What’s included in the guide?

After reading the  Ultimate Guide to KS2 Problem Solving Techniques , we guarantee you will have a new problem solving technique to test out in class tomorrow. It provides question prompts and activities to try out, and shows you step by step how to teach these 9 techniques

  • Open ended problem solving
  • Using logical reasoning

Working backwards

Drawing a diagram

Drawing a table

Creating an organised list

Looking for a pattern

Acting it out

Guessing and checking

Cognitive Activation: getting KS2 pupils in the lightbulb zone

If you need more persuasion, pupils who use strategies that inspire them to think more deeply about maths problems are linked with higher Maths achievement. In 2015 The  National Education Research Foundation  (NFER) published ‘ PISA in Practice: Cognitive Activation in Maths ’. This shrewd report has largely slipped under the Maths radar but it offers considerable food for thought regarding what we can do as teachers to help mathematical literacy and boost higher mathematical achievement.

Cognitive Activation isn’t anything mysterious; just teaching problem solving strategies that pupils can think about and call upon when confronted by a Maths problem they are trying to solve. Cognitive It encourages us as teachers to develop problems that can be solved in more than one way and ‘may require different solutions in different contexts’. For this to work, exposing children to challenging content and encouraging a culture of exploratory talk is key. As is:

  • Giving pupils maths problem solving questions that require them to think for an extended time.
  • Asking pupils to use their own procedures for solving complex problems.
  • Creating a learning community where pupils are able to make mistakes.
  • Asking pupils to explain how they solved a problem and why they choose that method.
  • Presenting pupils with problems in different contexts and ask them to apply what they have learned to new contexts.
  • Giving pupils problems with no immediately obvious method of solution or multiple solutions.
  • Encouraging pupils to reflect on problems.

Sparking cognitive activation is the same as sparking a fire – once it is lit it can burn on its own. It does, however, require time, structure, and the use of several techniques for approaching problem solving. Techniques, such as open-ended problem solving, are usually learned by example so we advise you create several models to go through with pupils, as well as challenge questions for independent work. Many examples exist and we encourage you to explore more (e.g. analysing and investigating, creating a tree diagram, and using simpler numbers).

Read these:

  • How to develop maths reasoning skills in KS2 pupils
  • FREE CPD PowerPoint: Reasoning Problem Solving & Planning for Depth
  • KS3 Maths Problem Solving

That time, effort, and planning will – however – be well spent. Equipping pupils with the tools to solve problems they have never seen before is more akin to teaching for life than teaching for Maths. The skills they gain from being taught problem solving successfully will be skills they use and hone for the rest of their life – not just for their SATs.

For a range of problem solving techniques, complete with explanations, contextual uses, example problems and challenge questions – don’t forget to download our free  Ultimate Guide to KS2 problem solving and reasoning techniques  resource here.

KS2 problem Solving FAQs

Here are some techniques to teach problem solving to primary school pupils: Open ended problem solving Using logical reasoning Working backwards Drawing a diagram Drawing a table Creating an organised list Looking for a pattern Acting it out Guessing and checking

Ofsted say that teachers can encourage problem-solving by: Setting problems as part of learning in all topics for all pupils. Varying the ways in which you pose problems. Trying to resist prompting pupils too soon and focusing on getting ‘the answer’ – pupils need to build their confidence, skills and resilience in solving problems, so that they can apply them naturally in other situations. Making sure you discuss alternative approaches with pupils to help develop their reasoning. Ensuring that problems for high attainers involve demanding reasoning and problem-solving skills, not just harder numbers.

DO YOU HAVE STUDENTS WHO NEED MORE SUPPORT IN MATHS?

Every week Third Space Learning’s specialist online maths tutors support thousands of students across hundreds of schools with weekly online 1 to 1 maths lessons designed to plug gaps and boost progress.

Since 2013 these personalised one to 1 lessons have helped over 150,000 primary and secondary students become more confident, able mathematicians.

Learn how the programmes are aligned to maths mastery teaching or request a personalised quote for your school to speak to us about your school’s needs and how we can help.

Related articles

Maths Problem Solving: Engaging Your Students And Strengthening Their Mathematical Skills

Maths Problem Solving: Engaging Your Students And Strengthening Their Mathematical Skills

Free Year 7 Maths Test With Answers And Mark Scheme: Mixed Topic Questions

Free Year 7 Maths Test With Answers And Mark Scheme: Mixed Topic Questions

What Is A Number Square? Explained For Primary School Teachers, Parents & Pupils

What Is A Number Square? Explained For Primary School Teachers, Parents & Pupils

What Is Numicon? Explained For Primary School Teachers, Parents And Pupils

What Is Numicon? Explained For Primary School Teachers, Parents And Pupils

FREE Guide to Maths Mastery

All you need to know to successfully implement a mastery approach to mathematics in your primary school, at whatever stage of your journey.

Ideal for running staff meetings on mastery or sense checking your own approach to mastery.

Privacy Overview

Manipulatives in Maths - A Classroom Guide for Teachers

Three glass jars filled with different maths manipulatives like coloured coins, linking cubes and marbles

Mathematical manipulatives are touted as essential tools for learning, but let's be honest—we've all experienced that moment of dread when we hand them out. Suddenly, your carefully planned lesson turns into chaos: One pupil starts building a fortress with the base ten blocks while another is hiding all the shiny counters.

Yet, despite these challenges, manipulatives play an important role in maths education. They bridge the gap between abstract concepts and tangible understanding, helping pupils grasp basic number sense. In fact, the National Curriculum emphasises their importance across all key stages, recognising that hands-on learning is vital for developing maths fluency, reasoning, and problem-solving skills.

So, how can we take advantage of these tools without losing control of the classroom? Let's explore the world of maths manipulatives—what they are, why they matter, and how to use them effectively in your primary school lessons.

What are manipulatives?

It can sound complicated, but manipulatives are simply hands-on tools that make abstract mathematical concepts concrete and visual . They're the building blocks, quite literally in some cases, that help pupils wrap their heads around tricky number ideas through good old-fashioned play, exploration, and modelling.

These learning aids come in all shapes and sizes, from the humble counter to the more elaborate Cuisenaire rods . Their key purpose? To give pupils something tangible to manipulate as they grapple with mathematical concepts. Whether it's using multilink cubes to understand place value or fraction circles to visualise parts of a whole, manipulatives help bridge the gap between 'maths on paper' and 'maths in real life'.

Common manipulatives you'll find in primary classrooms include:

Multilink cubes

Cuisenaire rods, base ten blocks, bead strings.

  • Balance scales

Clock faces

Digit cards, hundred squares.

a table strewn with many different sorts of maths manipulatives.

These tools align perfectly with the National Curriculum's aims of developing mathematical fluency, reasoning, and problem-solving skills. By allowing pupils to physically interact with mathematical ideas, manipulatives help build a strong foundation for more complex concepts down the line. They're not just toys or distractions—they're powerful learning tools that can transform how your pupils understand and engage with maths.

Why are they important?

Over the past two decades, research has consistently shown the positive impact of using manipulatives in the classroom. A 2013 report published in the Journal of Educational Psychology identified "statistically significant results" when teachers used manipulatives compared with when they only used abstract maths symbols. This highlights the role that manipulatives play in supporting conceptual understanding and facilitating the progression from concrete to abstract thinking.

Alignment with CPA approach

The NCETM agrees that physical manipulatives should play a central role in maths teaching. "Manipulatives are not just for young pupils, and also not just for those who can't understand something. They can always be of help to build or deepen understanding of a mathematical concept."

This approach aligns perfectly with the concrete-pictorial-abstract (CPA) progression. Once children are confident using manipulatives or 'concrete' resources, they can then move onto pictorial representations or the 'seeing' stage. Here, visual representations of concrete objects are used to model problems. This stage encourages children to make a mental connection between the physical object they just handled and the abstract pictures , diagrams or models that represent the objects from the maths problem.

Enhance problem solving

But manipulatives do more than just support understanding—they're powerful tools for enhancing problem-solving skills. By allowing pupils to physically manipulate and visualise mathematical concepts, they can more easily devise strategies to tackle complex problems. This hands-on approach often leads to those 'aha!' moments we all love to see in our classrooms.

Support engagement

Moreover, manipulatives play an important role in fostering engagement and motivation. Let's face it—maths can sometimes seem dry and abstract to young learners. But introduce some colourful counters or interlocking cubes, and suddenly you've got a room full of eager mathematicians. This increased engagement is key to developing a positive attitude towards maths, which in turn supports long-term learning.

This deep understanding allows pupils to move beyond mere memorisation of facts and procedures, towards true mathematical fluency—where they can apply their knowledge flexibly and efficiently across a range of contexts.

In essence, manipulatives are not just helpful additions to our maths teaching toolkit—they're essential components in building a comprehensive, engaging, and effective mathematics education.

Types of manipulatives in primary mathematics

In this section, we'll break it common types of manipulatives into bite-sized pieces, just like we do for our pupils.

Physical manipulatives: the classics

These are the tangible, grab-them-with-your-hands resources that have been the backbone of maths classrooms for years. They're the ones that inevitably end up stuck between classroom seats and occasionally in someone's shoe.

Below is a list of common physical manipulatives in the classroom:

Ideal for teaching place value, addition, and subtraction with regrouping.

Fraction tiles

Excellent for comparing fractions and understanding equivalence.

Great for exploring 2D shapes, symmetry, and area.

An example of two geoboards, one using plastic and another using wood with rubber bands making shapes on both

Images: Wikipedia.org

Versatile tools for counting, measuring, and understanding volume.

Fantastic for developing number sense and exploring number relationships.

Essential for basic counting, sorting, and introducing simple addition and subtraction.

Useful for teaching multiplication, division, and fractions.

A set of Cuisenaire rods from one to seven. Each number has the identical rod count inside

Image: Pinterest

Helpful for developing number sense and practicing skip counting.

Useful for probability exercises and generating random numbers for various activities.

Great for pattern recognition, matching, and basic addition facts.

Essential for teaching time-telling and understanding intervals.

Two examples of clock face ideas for the classroom. One using a hula hoop and hands, another using plates and printable clock faces

Images: Pinterest & Pinterest

Useful for place value activities and forming large numbers.

Excellent for identifying number patterns and supporting multiplication and division.

Virtual manipulatives: a new kind of tool

Manipulatives have gone digital! These are interactive, online versions of our physical favourites. Think of them as the maths equivalent of e-books.

Some popular virtual manipulatives include:

Online number lines

These number lines are zoomable, clickable, and free of the uneven lines that are often result of our hand-drawn versions.

Digital base ten blocks

All the functionality without the risk of losing pieces under desks.

Interactive fraction tools

Slice and dice up pieces in any way imaginable.

Whether physical or virtual, the best manipulative is the one that helps your pupils understand the concept at hand. Whether that's a handful of multilink cubes or a fancy online simulator, if it's making those mathematical lightbulbs flicker on, you're on the right track!

Implementing manipulatives in the classroom - let them play!

Whether you have a bumper pack of manipulatives, a shared bank of resources or your very own DIY versions, it's important to teach children how to use them independently. Here are some best practices for integrating manipulatives effectively into your lessons:

  • Introduce gradually : Bring in manipulatives one at a time. If you don't have enough for each child, set up a 'maths table' where pupils can take turns exploring. This works particularly well with younger years where 'choosing tables' are common.
  • Allow for exploration : Give children a chance to play with and explore the manipulatives before using them for instruction. Through this exploration, they can start to imagine how the resource might be useful.
  • How could you use this?
  • How might this help you when adding or subtracting?
  • Why do you think they're different sizes - what could that represent?
  • Model usage : Once children are familiar with a resource, introduce a simple maths problem and ask them to use the manipulatives to solve it. Model the problem-solving process step-by-step, then guide children through it.
  • Scaffold learning : Start with highly structured activities, then gradually reduce support as pupils gain confidence. For instance, begin with direct instruction on how to use base ten blocks for place value, then move to guided practice, and finally independent problem-solving.
  • Year 1: Using counters or number lines to support addition and subtraction within 20.
  • Year 2: Use fraction tiles to help pupils recognise, find, name and write fractions of a length, shape, set of objects or quantity.
  • Year 3: Utilising place value charts (physical or digital) so pupils can recognise 3-digit numbers (100s, 10s and 1s).
  • Integrate into lesson plans : Don't treat manipulatives as an add-on. Instead, weave them into your lessons as essential tools for understanding. Plan specific points in your lessons where manipulatives will be most beneficial.
  • Support diverse learners : Manipulatives can be particularly helpful for English Language Learners (ELLs) and pupils with learning disabilities. They provide a universal language of mathematics that transcends verbal communication barriers.

An image of a maths manipulatives toolbox

Images: The Average Teacher

Manipulatives across Key Stages 1 and 2

Next, let's breakdown more examples of manipulatives in the classroom by Key Stage.

Key Stage 1 (Years 1-2): Laying the foundations

In these early years, it's all about getting hands-on with numbers and shapes.

  • Number and Place Value : Introduce counters, number lines, and base ten blocks. Pupils can observe how 10 ones form a 'ten stick', helping them grasp place value concepts.
  • Addition and Subtraction : Utilise multilink cubes for hands-on learning. Pupils can physically join or separate cubes to represent addition and subtraction operations.
  • Fractions : Fraction tiles can be effective tools for teaching fractions. They provide a visual and tactile representation of concepts like 'half' and 'quarter'.
  • Geometry : Employ geoboards for creating 2-D shapes. Pupils can then be asked to match these shapes on a 3-D surface to enhance spatial understanding.

Key Stage 2 (Years 3-6): Progressing with Purpose

As our mathematicians-in-training grow, so does the sophistication of our manipulatives. We're not ditching the basics, just building on them.

  • Multiplication and Division : Array cards and Cuisenaire rods are useful for these operations. For multiplying by 6, pupils can line up 6 rods of 4 to visualise the concept.
  • Fractions, Decimals, and Percentages : Fraction circles can be used alongside decimal place value charts. The 100 square is effective for teaching percentages.
  • Geometry : The geoboard is a helpful tool for teaching perimeter, area, and symmetry concepts in a hands-on manner.
  • Statistics : Data can be represented using multilink cube bar charts or human pictograms, making statistics more engaging for pupils.

CPA Journey: From Concrete to Pictorial to Abstract

Remember, our end goal is for pupils to solve problems without relying on physical props. Here's how we might progress:

  • Concrete : Pupils physically manipulate objects to solve a problem. For example, using counters to work out 5 + 3.
  • Pictorial : They draw a picture or diagram to represent the problem. Our 5 + 3 might become five circles and three circles.
  • Abstract : Finally, they use mathematical symbols and numbers alone. "5 + 3 = 8."

The beauty of this approach? Pupils can always 'go back' a stage if they're struggling with a new concept. Stuck on an abstract problem? Draw a picture! Need more practise? Grab those counters!

Remember, every child's journey through these stages is unique. Some might race through, others might linger longer at certain points. The key is to ensure they have a solid understanding at each stage before moving on.

Moving from the concrete, to pictorial, to abstract stages

An example of moving from the concrete, to pictorial, to abstract stages.

Manipulative manners

Once you have introduced your resources, speak as a class and explain that they should come up with a set of rules for how they are treated and used. Giving children ownership over the manipulatives as well as the respect to make their own rules will make them feel accountable and lessen the likelihood of negative behaviours when using manipulatives. Write the rules up as a class and display them so they can be referred to.

Storing manipulatives

NRICH recommends children having access to manipulatives “Give open access to all the resources and allow the children free reign in choosing what to use to model any problem they may be tackling. I would make sure that children of all ages had this access from 3 to 11 years old and beyond.” While this is exactly what teachers would like to replicate in their classrooms, not all classes learn in the same way and this isn’t always achievable due to space, budgets and children’s prior experiences of manipulatives.

Once you have introduced a manipulative, decide as a class where you should store it . You know what works best for your class, so consider different options such as communal drawers, a maths table, individual packs or a collection of manipulatives for each table. Set clear rules around using and treating manipulatives to ensure they are not broken or lost. Additionally, you could create a monitor for each resource so the children can take ownership and make sure they stay tidy and accounted for.

Images of examples of maths mastery areas and tables to use in your classroom

Creating a classroom culture that uses manipulatives will aid children’s fluency and help develop their ability to solve problems, reason mathematically and share! If manipulatives are introduced in a considered and gradual way, with clear boundaries from an early age, children should see them as part of everyday learning and they will not be a novelty. They will be seen as tools instead of toys — and hopefully no more multilink towers!

For the community, by the community

Maths — No Problem! Community Event Conference, 28 November at The Royal Society, London.

Community Event 2024

Lily Lanigan

Browse by Topic

Your teaching practice.

Boost your teaching confidence with the latest musings on pedagogy, classroom management, and teacher mental health.

Maths Mastery Stories

You’re part of a growing community. Get smart implementation advice and hear inspiring maths mastery stories from teachers just like you.

Teaching Tips

Learn practical maths teaching tips and strategies you can use in your classroom right away — from teachers who’ve been there.

Classroom Assessment

Identify where your learners are at and where to take them next with expert assessment advice from seasoned educators.

Your Learners

Help every learner succeed with strategies for managing behaviour, supporting mental health, and differentiating instruction for all attainment levels.

Teaching Maths for Mastery

Interested in Singapore maths, the CPA approach, bar modelling, or number bonds? Learn essential maths mastery theory and techniques here.

Deepen your mastery knowledge with our biweekly newsletter

Image of Cookies

By clicking “Accept All” , you agree to the storing of cookies on your device to enhance site navigation, analyze site usage and assist in our marketing efforts.

IMAGES

  1. The 2, 4 and 8 Times Tables

    problem solving and reasoning maths

  2. Fluency, Reasoning and Problem Solving: What They REALLY Look Like

    problem solving and reasoning maths

  3. Math Problem Solving Examples With Solutions For Grade 4

    problem solving and reasoning maths

  4. White Rose Maths

    problem solving and reasoning maths

  5. Solve Problems with Multiplication

    problem solving and reasoning maths

  6. White Rose Maths

    problem solving and reasoning maths

COMMENTS

  1. Fluency, Reasoning & Problem Solving: What They REALLY Are

    Learn how to teach and assess fluency, reasoning and problem solving in math, and why they are central to mathematical competency. Find out what they are, how to avoid performance vs learning, and what resources to use in the classroom.

  2. 6.1: Introduction on Mathematical Reasoning

    Mathematical reasoning plays a crucial role in problem-solving by providing a structured approach to analyzing and solving complex problems. It allows individuals to break down a problem into smaller, more manageable parts, identify patterns and relationships, and apply logical reasoning to reach a solution.

  3. 20 Effective Math Strategies For Problem Solving

    Here are five strategies to help students check their solutions. 1. Use the Inverse Operation. For simpler problems, a quick and easy problem solving strategy is to use the inverse operation. For example, if the operation to solve a word problem is 56 ÷ 8 = 7 students can check the answer is correct by multiplying 8 × 7.

  4. Mathematical Reasoning: A Complete Guide

    Mathematical Reasoning is the foundation of problem-solving and critical thinking in mathematics. It involves the ability to analyze, deduce, and draw conclusions from mathematical concepts, principles, and relationships. In this guide, we will explore the key aspects of mathematical reasoning, provide examples to illustrate its application ...

  5. Mathematical Reasoning & Problem Solving

    Explaining mathematical reasoning and problem solving by using a variety of methods, such as words, numbers, symbols, charts, graphs, tables, diagrams, and concrete models can help students understand the problem better by making it more concrete and approachable. Let's try another one.

  6. Problem Solving Reasoning

    What is Problem Solving Reasoning? As mentioned above, Problem Solving Reasoning is a tricy section under logical reasoning which involves solving problems by performing various mathematical operations. Important topics that come under problem solving reasoning are Inequality, Analogy, Series, Puzzle, and so on.

  7. Mathematical Reasoning : Meaning, Types & How to Solve Questions?

    Now that we have an understanding of Mathematical Reasoning and the various terminologies and reasoning associated, we will go through two sample questions with an explanation to understand maths and reasoning in depth. Q1. Look at this series: 12, 10, 13, 11, 14, 12, ….

  8. Reasoning Skills

    Reasoning about what is already known in order to work out what is unknown will improve fluency; for example if I know what 12 × 12 is, I can apply reasoning to work out 12 × 13. The ability to reason also supports the application of mathematics and an ability to solve problems set in unfamiliar contexts.

  9. Problem Solving in Mathematics Education

    1.3 Digital Technologies and Mathematical Problem Solving—Luz Manuel Santos-Trigo. Mathematical problem solving is a field of research that focuses on analysing the extent to which problem solving activities play a crucial role in learners' understanding and use of mathematical knowledge.

  10. Mathematics proficiencies

    The Australian Curriculum: Mathematics aims to be relevant and applicable to the 21st century. The inclusion of the proficiencies of understanding, fluency, problem-solving and reasoning in the curriculum is to ensure that student learning and student independence are at the centre of the curriculum. The curriculum focuses on developing ...

  11. Problem Solving

    The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

  12. Problem Solving: Inductive and Deductive Reasoning || Mathematics in

    In this video you will learn to define the terms and concepts problem solving and employ inductive and deductive reasoning in problem solving. References: Au...

  13. PDF KS2 Reasoning & Problem Solving Questions

    This booklet contains over 40 reasoning and problem solving questions suitable for KS2 and KS3 classes. These are the questions that we have been putting out each day in March 2016 on Twitter in the run up to SATS. The answers are provided with some simple notes at the ... The White Rose Maths Hub Team . KS2

  14. Fluency, Reasoning and Problem Solving: What They REALLY Look Like

    Learn how to teach and assess fluency, reasoning and problem solving in maths for primary school pupils. Find out the difference between biologically primary and secondary knowledge, and how to avoid common pitfalls and misconceptions.

  15. For Schools

    Used by 120,000+ teachers, loved by 3,000,000+ students, Mathletics is the online math program that has captivated students with the love of learning for over 15 years - and it's yours to try for free for 30 days. Perfect for learners aged 4-14 - Find hundreds of resources, games and activities that introduce concepts, reinforce learning ...

  16. Mathematics Improves Your Critical Thinking and Problem-Solving

    Mathematics provides a systematic and logical framework for problem-solving and critical thinking. The study of math helps to develop analytical skills, logical reasoning, and problem-solving abilities that can be applied to many areas of life.By using critical thinking skills to solve math problems, we can develop a deeper understanding of concepts, enhance our problem-solving skills, and ...

  17. Mathematical Reasoning: How To Teach It Effectively

    Mathematical reasoning helps students make connections and decide on the correct strategy to reach a solution. Math reasoning is sometimes seen as the glue that bonds students' mathematical skills together; it's also seen as bridging the gap between fluency and problem solving. It allows students to use their fluency to carry out math ...

  18. Fluency, reasoning and problem solving in primary maths

    Develop fluency, reasoning and problem solving in Maths with the mastery approach. The skills of fluency, reasoning and problem solving are well-known to all primary Maths teachers, and in mastery teaching they play an essential role. To help you develop your mastery approach, we have hand-picked this selection of Maths resources, with ...

  19. Thinking and Working Mathematically: definition & examples

    The problem solving strand and problem solving learning objectives have been removed from the curriculum and replaced with TWM and the 8 TWM characteristics. ... They should be convinced (or otherwise) through mathematical reasoning. The evidence presented can be simple (perhaps using equipment or drawings) or complex (using algebraic notation

  20. The role of reasoning in supporting problem solving and fluency

    Mike is also the Series Editor of MathsBeat, a new digitally-led maths mastery programme that has been designed and written to bring a consistent and coherent approach to the National Curriculum, covering all of the aims - fluency, problem solving and reasoning - thoroughly and comprehensively. MathsBeat's clear progression and easy-to ...

  21. Reasoning and Problem Solving Questions Collection

    pptx, 2.35 MB. pdf, 3.51 MB. These booklets each contain over 40 reasoning and problem solving questions suitable for KS1, KS2 and KS3 classes. These are the questions that we have been putting out each day in March 2016 on Twitter in the run up to SATS. The answers are provided with some simple notes at the back of the booklet and for some ...

  22. Introduction to Mathematical Thinking

    Professional mathematicians think a certain way to solve real problems, problems that can arise from the everyday world, or from science, or from within mathematics itself. The key to success in school math is to learn to think inside-the-box. In contrast, a key feature of mathematical thinking is thinking outside-the-box - a valuable ability ...

  23. Mathematical Reasoning

    1.0 What is Mathematical Reasoning. Mathematical Reasoning, a crucial component of mathematics, involves the evaluation of the truth values of given statements. These reasoning tasks are prevalent in competitive exams such as JEE, offering enjoyable and straightforward problem-solving experiences.

  24. Mathematics as a Complex Problem-Solving Activity

    The importance of problem-solving in learning mathematics comes from the belief that mathematics is primarily about reasoning, not memorization. Problem-solving allows students to develop understanding and explain the processes used to arrive at solutions, rather than remembering and applying a set of procedures.

  25. Maths Problem Solving KS2: Strategies & Resources

    Maths problem solving KS2 is crucial to succeeding in national assessments. If your Key Stage 2 pupils are still struggling with reasoning and problem solving in Maths, here are some problem solving strategies to try with your classes; all aligned to Ofsted's suggested primary school teaching strategies.

  26. Manipulatives in Maths

    Model usage: Once children are familiar with a resource, introduce a simple maths problem and ask them to use the manipulatives to solve it. Model the problem-solving process step-by-step, then guide children through it. Scaffold learning: Start with highly structured activities, then gradually reduce support as pupils gain confidence. For ...

  27. Exploration of Problem-Solving & Reasoning in Mathematics

    Title: Exploration of Problem Solving and Reasoning in Mathematics: A Personal Reflection Miss Ernita's instructional video on problem-solving and reasoning in mathematics was an illuminating journey into the difficult but mindblowing world of logical deduction and problem-solving strategies. Her articulate breakdown of inductive and deductive reasoning, coupled with practical examples ...