• U.S. Department of Health & Human Services

National Institutes of Health (NIH) - Turning Discovery into Health

  • Virtual Tour
  • Staff Directory
  • En Español

You are here

Science, health, and public trust.

September 8, 2021

Explaining How Research Works

Understanding Research infographic

We’ve heard “follow the science” a lot during the pandemic. But it seems science has taken us on a long and winding road filled with twists and turns, even changing directions at times. That’s led some people to feel they can’t trust science. But when what we know changes, it often means science is working.

Expaling How Research Works Infographic en español

Explaining the scientific process may be one way that science communicators can help maintain public trust in science. Placing research in the bigger context of its field and where it fits into the scientific process can help people better understand and interpret new findings as they emerge. A single study usually uncovers only a piece of a larger puzzle.

Questions about how the world works are often investigated on many different levels. For example, scientists can look at the different atoms in a molecule, cells in a tissue, or how different tissues or systems affect each other. Researchers often must choose one or a finite number of ways to investigate a question. It can take many different studies using different approaches to start piecing the whole picture together.

Sometimes it might seem like research results contradict each other. But often, studies are just looking at different aspects of the same problem. Researchers can also investigate a question using different techniques or timeframes. That may lead them to arrive at different conclusions from the same data.

Using the data available at the time of their study, scientists develop different explanations, or models. New information may mean that a novel model needs to be developed to account for it. The models that prevail are those that can withstand the test of time and incorporate new information. Science is a constantly evolving and self-correcting process.

Scientists gain more confidence about a model through the scientific process. They replicate each other’s work. They present at conferences. And papers undergo peer review, in which experts in the field review the work before it can be published in scientific journals. This helps ensure that the study is up to current scientific standards and maintains a level of integrity. Peer reviewers may find problems with the experiments or think different experiments are needed to justify the conclusions. They might even offer new ways to interpret the data.

It’s important for science communicators to consider which stage a study is at in the scientific process when deciding whether to cover it. Some studies are posted on preprint servers for other scientists to start weighing in on and haven’t yet been fully vetted. Results that haven't yet been subjected to scientific scrutiny should be reported on with care and context to avoid confusion or frustration from readers.

We’ve developed a one-page guide, "How Research Works: Understanding the Process of Science" to help communicators put the process of science into perspective. We hope it can serve as a useful resource to help explain why science changes—and why it’s important to expect that change. Please take a look and share your thoughts with us by sending an email to  [email protected].

Below are some additional resources:

  • Discoveries in Basic Science: A Perfectly Imperfect Process
  • When Clinical Research Is in the News
  • What is Basic Science and Why is it Important?
  • ​ What is a Research Organism?
  • What Are Clinical Trials and Studies?
  • Basic Research – Digital Media Kit
  • Decoding Science: How Does Science Know What It Knows? (NAS)
  • Can Science Help People Make Decisions ? (NAS)

Connect with Us

  • More Social Media from NIH

how does research help in scientific learning describe

Biomedical Beat Blog – National Institute of General Medical Sciences

Follow the process of discovery

Search this blog

How research works: understanding the process of science.

Have you ever wondered how research works? How scientists make discoveries about our health and the world around us? Whether they’re studying plants, animals, humans, or something else in our world, they follow the scientific method. But this method isn’t always—or even usually—a straight line, and often the answers are unexpected and lead to more questions. Let’s dive in to see how it all works.

Infographic explaining how research works and understanding the process of science.

The Question Scientists start with a question about something they observe in the world. They develop a hypothesis, which is a testable prediction of what the answer to their question will be. Often their predictions turn out to be correct, but sometimes searching for the answer leads to unexpected outcomes.

The Techniques To test their hypotheses, scientists conduct experiments. They use many different tools and techniques, and sometimes they need to invent a new tool to fully answer their question. They may also work with one or more scientists with different areas of expertise to approach the question from other angles and get a more complete answer to their question.

The Evidence Throughout their experiments, scientists collect and analyze their data. They reach conclusions based on those analyses and determine whether their results match the predictions from their hypothesis. Often these conclusions trigger new questions and new hypotheses to test.

Researchers share their findings with one another by publishing papers in scientific journals and giving presentations at meetings. Data sharing is very important for the scientific field, and although some results may seem insignificant, each finding is often a small piece of a larger puzzle. That small piece may spark a new question and ultimately lead to new findings.

Sometimes research results seem to contradict each other, but this doesn’t necessarily mean that the results are wrong. Instead, it often means that the researchers used different tools, methods, or timeframes to obtain their results. The results of a single study are usually unable to fully explain the complex systems in the world around us. We must consider how results from many research studies fit together. This perspective gives us a more complete picture of what’s really happening.

Even if the scientific process doesn’t answer the original question, the knowledge gained may help provide other answers that lead to new hypotheses and discoveries.

Learn more about the importance of communicating how this process works in the NIH News in Health article, “ Explaining How Research Works .”

how does research help in scientific learning describe

This post is a great supplement to Pathways: The Basic Science Careers Issue.

Pathways introduces the important role that scientists play in understanding the world around us, and all scientists use the scientific method as they make discoveries—which is explained in this post.

Learn more in our Educator’s Corner .

2 Replies to “How Research Works: Understanding the Process of Science”

Nice basic explanation. I believe informing the lay public on how science works, how parts of the body interact, etc. is a worthwhile endeavor. You all Rock! Now, we need to spread the word ‼️❗️‼️ Maybe eith a unique app. And one day, with VR and incentives to read & answer a couple questions.

As you know, the importance of an informed population is what will keep democracy alive. Plus it will improve peoples overall wellness & life outcomes.

Thanks for this clear explanation for the person who does not know science. Without getting too technical or advanced, it might be helpful to follow your explanation of replication with a reference to meta-analysis. You might say something as simple as, “Meta-analysis is a method for doing research on all the best research; meta-analytic research confirms the overall trend in results, even when the best studies show different results.”

Comments are closed.

Subscribe to Biomedical Beat

Get our latest blog posts delivered straight to your inbox! Sign Up Here

What Is Research, and Why Do People Do It?

  • Open Access
  • First Online: 03 December 2022

Cite this chapter

You have full access to this open access chapter

how does research help in scientific learning describe

  • James Hiebert 6 ,
  • Jinfa Cai 7 ,
  • Stephen Hwang 7 ,
  • Anne K Morris 6 &
  • Charles Hohensee 6  

Part of the book series: Research in Mathematics Education ((RME))

16k Accesses

Abstractspiepr Abs1

Every day people do research as they gather information to learn about something of interest. In the scientific world, however, research means something different than simply gathering information. Scientific research is characterized by its careful planning and observing, by its relentless efforts to understand and explain, and by its commitment to learn from everyone else seriously engaged in research. We call this kind of research scientific inquiry and define it as “formulating, testing, and revising hypotheses.” By “hypotheses” we do not mean the hypotheses you encounter in statistics courses. We mean predictions about what you expect to find and rationales for why you made these predictions. Throughout this and the remaining chapters we make clear that the process of scientific inquiry applies to all kinds of research studies and data, both qualitative and quantitative.

You have full access to this open access chapter,  Download chapter PDF

Part I. What Is Research?

Have you ever studied something carefully because you wanted to know more about it? Maybe you wanted to know more about your grandmother’s life when she was younger so you asked her to tell you stories from her childhood, or maybe you wanted to know more about a fertilizer you were about to use in your garden so you read the ingredients on the package and looked them up online. According to the dictionary definition, you were doing research.

Recall your high school assignments asking you to “research” a topic. The assignment likely included consulting a variety of sources that discussed the topic, perhaps including some “original” sources. Often, the teacher referred to your product as a “research paper.”

Were you conducting research when you interviewed your grandmother or wrote high school papers reviewing a particular topic? Our view is that you were engaged in part of the research process, but only a small part. In this book, we reserve the word “research” for what it means in the scientific world, that is, for scientific research or, more pointedly, for scientific inquiry .

Exercise 1.1

Before you read any further, write a definition of what you think scientific inquiry is. Keep it short—Two to three sentences. You will periodically update this definition as you read this chapter and the remainder of the book.

This book is about scientific inquiry—what it is and how to do it. For starters, scientific inquiry is a process, a particular way of finding out about something that involves a number of phases. Each phase of the process constitutes one aspect of scientific inquiry. You are doing scientific inquiry as you engage in each phase, but you have not done scientific inquiry until you complete the full process. Each phase is necessary but not sufficient.

In this chapter, we set the stage by defining scientific inquiry—describing what it is and what it is not—and by discussing what it is good for and why people do it. The remaining chapters build directly on the ideas presented in this chapter.

A first thing to know is that scientific inquiry is not all or nothing. “Scientificness” is a continuum. Inquiries can be more scientific or less scientific. What makes an inquiry more scientific? You might be surprised there is no universally agreed upon answer to this question. None of the descriptors we know of are sufficient by themselves to define scientific inquiry. But all of them give you a way of thinking about some aspects of the process of scientific inquiry. Each one gives you different insights.

An image of the book's description with the words like research, science, and inquiry and what the word research meant in the scientific world.

Exercise 1.2

As you read about each descriptor below, think about what would make an inquiry more or less scientific. If you think a descriptor is important, use it to revise your definition of scientific inquiry.

Creating an Image of Scientific Inquiry

We will present three descriptors of scientific inquiry. Each provides a different perspective and emphasizes a different aspect of scientific inquiry. We will draw on all three descriptors to compose our definition of scientific inquiry.

Descriptor 1. Experience Carefully Planned in Advance

Sir Ronald Fisher, often called the father of modern statistical design, once referred to research as “experience carefully planned in advance” (1935, p. 8). He said that humans are always learning from experience, from interacting with the world around them. Usually, this learning is haphazard rather than the result of a deliberate process carried out over an extended period of time. Research, Fisher said, was learning from experience, but experience carefully planned in advance.

This phrase can be fully appreciated by looking at each word. The fact that scientific inquiry is based on experience means that it is based on interacting with the world. These interactions could be thought of as the stuff of scientific inquiry. In addition, it is not just any experience that counts. The experience must be carefully planned . The interactions with the world must be conducted with an explicit, describable purpose, and steps must be taken to make the intended learning as likely as possible. This planning is an integral part of scientific inquiry; it is not just a preparation phase. It is one of the things that distinguishes scientific inquiry from many everyday learning experiences. Finally, these steps must be taken beforehand and the purpose of the inquiry must be articulated in advance of the experience. Clearly, scientific inquiry does not happen by accident, by just stumbling into something. Stumbling into something unexpected and interesting can happen while engaged in scientific inquiry, but learning does not depend on it and serendipity does not make the inquiry scientific.

Descriptor 2. Observing Something and Trying to Explain Why It Is the Way It Is

When we were writing this chapter and googled “scientific inquiry,” the first entry was: “Scientific inquiry refers to the diverse ways in which scientists study the natural world and propose explanations based on the evidence derived from their work.” The emphasis is on studying, or observing, and then explaining . This descriptor takes the image of scientific inquiry beyond carefully planned experience and includes explaining what was experienced.

According to the Merriam-Webster dictionary, “explain” means “(a) to make known, (b) to make plain or understandable, (c) to give the reason or cause of, and (d) to show the logical development or relations of” (Merriam-Webster, n.d. ). We will use all these definitions. Taken together, they suggest that to explain an observation means to understand it by finding reasons (or causes) for why it is as it is. In this sense of scientific inquiry, the following are synonyms: explaining why, understanding why, and reasoning about causes and effects. Our image of scientific inquiry now includes planning, observing, and explaining why.

An image represents the observation required in the scientific inquiry including planning and explaining.

We need to add a final note about this descriptor. We have phrased it in a way that suggests “observing something” means you are observing something in real time—observing the way things are or the way things are changing. This is often true. But, observing could mean observing data that already have been collected, maybe by someone else making the original observations (e.g., secondary analysis of NAEP data or analysis of existing video recordings of classroom instruction). We will address secondary analyses more fully in Chap. 4 . For now, what is important is that the process requires explaining why the data look like they do.

We must note that for us, the term “data” is not limited to numerical or quantitative data such as test scores. Data can also take many nonquantitative forms, including written survey responses, interview transcripts, journal entries, video recordings of students, teachers, and classrooms, text messages, and so forth.

An image represents the data explanation as it is not limited and takes numerous non-quantitative forms including an interview, journal entries, etc.

Exercise 1.3

What are the implications of the statement that just “observing” is not enough to count as scientific inquiry? Does this mean that a detailed description of a phenomenon is not scientific inquiry?

Find sources that define research in education that differ with our position, that say description alone, without explanation, counts as scientific research. Identify the precise points where the opinions differ. What are the best arguments for each of the positions? Which do you prefer? Why?

Descriptor 3. Updating Everyone’s Thinking in Response to More and Better Information

This descriptor focuses on a third aspect of scientific inquiry: updating and advancing the field’s understanding of phenomena that are investigated. This descriptor foregrounds a powerful characteristic of scientific inquiry: the reliability (or trustworthiness) of what is learned and the ultimate inevitability of this learning to advance human understanding of phenomena. Humans might choose not to learn from scientific inquiry, but history suggests that scientific inquiry always has the potential to advance understanding and that, eventually, humans take advantage of these new understandings.

Before exploring these bold claims a bit further, note that this descriptor uses “information” in the same way the previous two descriptors used “experience” and “observations.” These are the stuff of scientific inquiry and we will use them often, sometimes interchangeably. Frequently, we will use the term “data” to stand for all these terms.

An overriding goal of scientific inquiry is for everyone to learn from what one scientist does. Much of this book is about the methods you need to use so others have faith in what you report and can learn the same things you learned. This aspect of scientific inquiry has many implications.

One implication is that scientific inquiry is not a private practice. It is a public practice available for others to see and learn from. Notice how different this is from everyday learning. When you happen to learn something from your everyday experience, often only you gain from the experience. The fact that research is a public practice means it is also a social one. It is best conducted by interacting with others along the way: soliciting feedback at each phase, taking opportunities to present work-in-progress, and benefitting from the advice of others.

A second implication is that you, as the researcher, must be committed to sharing what you are doing and what you are learning in an open and transparent way. This allows all phases of your work to be scrutinized and critiqued. This is what gives your work credibility. The reliability or trustworthiness of your findings depends on your colleagues recognizing that you have used all appropriate methods to maximize the chances that your claims are justified by the data.

A third implication of viewing scientific inquiry as a collective enterprise is the reverse of the second—you must be committed to receiving comments from others. You must treat your colleagues as fair and honest critics even though it might sometimes feel otherwise. You must appreciate their job, which is to remain skeptical while scrutinizing what you have done in considerable detail. To provide the best help to you, they must remain skeptical about your conclusions (when, for example, the data are difficult for them to interpret) until you offer a convincing logical argument based on the information you share. A rather harsh but good-to-remember statement of the role of your friendly critics was voiced by Karl Popper, a well-known twentieth century philosopher of science: “. . . if you are interested in the problem which I tried to solve by my tentative assertion, you may help me by criticizing it as severely as you can” (Popper, 1968, p. 27).

A final implication of this third descriptor is that, as someone engaged in scientific inquiry, you have no choice but to update your thinking when the data support a different conclusion. This applies to your own data as well as to those of others. When data clearly point to a specific claim, even one that is quite different than you expected, you must reconsider your position. If the outcome is replicated multiple times, you need to adjust your thinking accordingly. Scientific inquiry does not let you pick and choose which data to believe; it mandates that everyone update their thinking when the data warrant an update.

Doing Scientific Inquiry

We define scientific inquiry in an operational sense—what does it mean to do scientific inquiry? What kind of process would satisfy all three descriptors: carefully planning an experience in advance; observing and trying to explain what you see; and, contributing to updating everyone’s thinking about an important phenomenon?

We define scientific inquiry as formulating , testing , and revising hypotheses about phenomena of interest.

Of course, we are not the only ones who define it in this way. The definition for the scientific method posted by the editors of Britannica is: “a researcher develops a hypothesis, tests it through various means, and then modifies the hypothesis on the basis of the outcome of the tests and experiments” (Britannica, n.d. ).

An image represents the scientific inquiry definition given by the editors of Britannica and also defines the hypothesis on the basis of the experiments.

Notice how defining scientific inquiry this way satisfies each of the descriptors. “Carefully planning an experience in advance” is exactly what happens when formulating a hypothesis about a phenomenon of interest and thinking about how to test it. “ Observing a phenomenon” occurs when testing a hypothesis, and “ explaining ” what is found is required when revising a hypothesis based on the data. Finally, “updating everyone’s thinking” comes from comparing publicly the original with the revised hypothesis.

Doing scientific inquiry, as we have defined it, underscores the value of accumulating knowledge rather than generating random bits of knowledge. Formulating, testing, and revising hypotheses is an ongoing process, with each revised hypothesis begging for another test, whether by the same researcher or by new researchers. The editors of Britannica signaled this cyclic process by adding the following phrase to their definition of the scientific method: “The modified hypothesis is then retested, further modified, and tested again.” Scientific inquiry creates a process that encourages each study to build on the studies that have gone before. Through collective engagement in this process of building study on top of study, the scientific community works together to update its thinking.

Before exploring more fully the meaning of “formulating, testing, and revising hypotheses,” we need to acknowledge that this is not the only way researchers define research. Some researchers prefer a less formal definition, one that includes more serendipity, less planning, less explanation. You might have come across more open definitions such as “research is finding out about something.” We prefer the tighter hypothesis formulation, testing, and revision definition because we believe it provides a single, coherent map for conducting research that addresses many of the thorny problems educational researchers encounter. We believe it is the most useful orientation toward research and the most helpful to learn as a beginning researcher.

A final clarification of our definition is that it applies equally to qualitative and quantitative research. This is a familiar distinction in education that has generated much discussion. You might think our definition favors quantitative methods over qualitative methods because the language of hypothesis formulation and testing is often associated with quantitative methods. In fact, we do not favor one method over another. In Chap. 4 , we will illustrate how our definition fits research using a range of quantitative and qualitative methods.

Exercise 1.4

Look for ways to extend what the field knows in an area that has already received attention by other researchers. Specifically, you can search for a program of research carried out by more experienced researchers that has some revised hypotheses that remain untested. Identify a revised hypothesis that you might like to test.

Unpacking the Terms Formulating, Testing, and Revising Hypotheses

To get a full sense of the definition of scientific inquiry we will use throughout this book, it is helpful to spend a little time with each of the key terms.

We first want to make clear that we use the term “hypothesis” as it is defined in most dictionaries and as it used in many scientific fields rather than as it is usually defined in educational statistics courses. By “hypothesis,” we do not mean a null hypothesis that is accepted or rejected by statistical analysis. Rather, we use “hypothesis” in the sense conveyed by the following definitions: “An idea or explanation for something that is based on known facts but has not yet been proved” (Cambridge University Press, n.d. ), and “An unproved theory, proposition, or supposition, tentatively accepted to explain certain facts and to provide a basis for further investigation or argument” (Agnes & Guralnik, 2008 ).

We distinguish two parts to “hypotheses.” Hypotheses consist of predictions and rationales . Predictions are statements about what you expect to find when you inquire about something. Rationales are explanations for why you made the predictions you did, why you believe your predictions are correct. So, for us “formulating hypotheses” means making explicit predictions and developing rationales for the predictions.

“Testing hypotheses” means making observations that allow you to assess in what ways your predictions were correct and in what ways they were incorrect. In education research, it is rarely useful to think of your predictions as either right or wrong. Because of the complexity of most issues you will investigate, most predictions will be right in some ways and wrong in others.

By studying the observations you make (data you collect) to test your hypotheses, you can revise your hypotheses to better align with the observations. This means revising your predictions plus revising your rationales to justify your adjusted predictions. Even though you might not run another test, formulating revised hypotheses is an essential part of conducting a research study. Comparing your original and revised hypotheses informs everyone of what you learned by conducting your study. In addition, a revised hypothesis sets the stage for you or someone else to extend your study and accumulate more knowledge of the phenomenon.

We should note that not everyone makes a clear distinction between predictions and rationales as two aspects of hypotheses. In fact, common, non-scientific uses of the word “hypothesis” may limit it to only a prediction or only an explanation (or rationale). We choose to explicitly include both prediction and rationale in our definition of hypothesis, not because we assert this should be the universal definition, but because we want to foreground the importance of both parts acting in concert. Using “hypothesis” to represent both prediction and rationale could hide the two aspects, but we make them explicit because they provide different kinds of information. It is usually easier to make predictions than develop rationales because predictions can be guesses, hunches, or gut feelings about which you have little confidence. Developing a compelling rationale requires careful thought plus reading what other researchers have found plus talking with your colleagues. Often, while you are developing your rationale you will find good reasons to change your predictions. Developing good rationales is the engine that drives scientific inquiry. Rationales are essentially descriptions of how much you know about the phenomenon you are studying. Throughout this guide, we will elaborate on how developing good rationales drives scientific inquiry. For now, we simply note that it can sharpen your predictions and help you to interpret your data as you test your hypotheses.

An image represents the rationale and the prediction for the scientific inquiry and different types of information provided by the terms.

Hypotheses in education research take a variety of forms or types. This is because there are a variety of phenomena that can be investigated. Investigating educational phenomena is sometimes best done using qualitative methods, sometimes using quantitative methods, and most often using mixed methods (e.g., Hay, 2016 ; Weis et al. 2019a ; Weisner, 2005 ). This means that, given our definition, hypotheses are equally applicable to qualitative and quantitative investigations.

Hypotheses take different forms when they are used to investigate different kinds of phenomena. Two very different activities in education could be labeled conducting experiments and descriptions. In an experiment, a hypothesis makes a prediction about anticipated changes, say the changes that occur when a treatment or intervention is applied. You might investigate how students’ thinking changes during a particular kind of instruction.

A second type of hypothesis, relevant for descriptive research, makes a prediction about what you will find when you investigate and describe the nature of a situation. The goal is to understand a situation as it exists rather than to understand a change from one situation to another. In this case, your prediction is what you expect to observe. Your rationale is the set of reasons for making this prediction; it is your current explanation for why the situation will look like it does.

You will probably read, if you have not already, that some researchers say you do not need a prediction to conduct a descriptive study. We will discuss this point of view in Chap. 2 . For now, we simply claim that scientific inquiry, as we have defined it, applies to all kinds of research studies. Descriptive studies, like others, not only benefit from formulating, testing, and revising hypotheses, but also need hypothesis formulating, testing, and revising.

One reason we define research as formulating, testing, and revising hypotheses is that if you think of research in this way you are less likely to go wrong. It is a useful guide for the entire process, as we will describe in detail in the chapters ahead. For example, as you build the rationale for your predictions, you are constructing the theoretical framework for your study (Chap. 3 ). As you work out the methods you will use to test your hypothesis, every decision you make will be based on asking, “Will this help me formulate or test or revise my hypothesis?” (Chap. 4 ). As you interpret the results of testing your predictions, you will compare them to what you predicted and examine the differences, focusing on how you must revise your hypotheses (Chap. 5 ). By anchoring the process to formulating, testing, and revising hypotheses, you will make smart decisions that yield a coherent and well-designed study.

Exercise 1.5

Compare the concept of formulating, testing, and revising hypotheses with the descriptions of scientific inquiry contained in Scientific Research in Education (NRC, 2002 ). How are they similar or different?

Exercise 1.6

Provide an example to illustrate and emphasize the differences between everyday learning/thinking and scientific inquiry.

Learning from Doing Scientific Inquiry

We noted earlier that a measure of what you have learned by conducting a research study is found in the differences between your original hypothesis and your revised hypothesis based on the data you collected to test your hypothesis. We will elaborate this statement in later chapters, but we preview our argument here.

Even before collecting data, scientific inquiry requires cycles of making a prediction, developing a rationale, refining your predictions, reading and studying more to strengthen your rationale, refining your predictions again, and so forth. And, even if you have run through several such cycles, you still will likely find that when you test your prediction you will be partly right and partly wrong. The results will support some parts of your predictions but not others, or the results will “kind of” support your predictions. A critical part of scientific inquiry is making sense of your results by interpreting them against your predictions. Carefully describing what aspects of your data supported your predictions, what aspects did not, and what data fell outside of any predictions is not an easy task, but you cannot learn from your study without doing this analysis.

An image represents the cycle of events that take place before making predictions, developing the rationale, and studying the prediction and rationale multiple times.

Analyzing the matches and mismatches between your predictions and your data allows you to formulate different rationales that would have accounted for more of the data. The best revised rationale is the one that accounts for the most data. Once you have revised your rationales, you can think about the predictions they best justify or explain. It is by comparing your original rationales to your new rationales that you can sort out what you learned from your study.

Suppose your study was an experiment. Maybe you were investigating the effects of a new instructional intervention on students’ learning. Your original rationale was your explanation for why the intervention would change the learning outcomes in a particular way. Your revised rationale explained why the changes that you observed occurred like they did and why your revised predictions are better. Maybe your original rationale focused on the potential of the activities if they were implemented in ideal ways and your revised rationale included the factors that are likely to affect how teachers implement them. By comparing the before and after rationales, you are describing what you learned—what you can explain now that you could not before. Another way of saying this is that you are describing how much more you understand now than before you conducted your study.

Revised predictions based on carefully planned and collected data usually exhibit some of the following features compared with the originals: more precision, more completeness, and broader scope. Revised rationales have more explanatory power and become more complete, more aligned with the new predictions, sharper, and overall more convincing.

Part II. Why Do Educators Do Research?

Doing scientific inquiry is a lot of work. Each phase of the process takes time, and you will often cycle back to improve earlier phases as you engage in later phases. Because of the significant effort required, you should make sure your study is worth it. So, from the beginning, you should think about the purpose of your study. Why do you want to do it? And, because research is a social practice, you should also think about whether the results of your study are likely to be important and significant to the education community.

If you are doing research in the way we have described—as scientific inquiry—then one purpose of your study is to understand , not just to describe or evaluate or report. As we noted earlier, when you formulate hypotheses, you are developing rationales that explain why things might be like they are. In our view, trying to understand and explain is what separates research from other kinds of activities, like evaluating or describing.

One reason understanding is so important is that it allows researchers to see how or why something works like it does. When you see how something works, you are better able to predict how it might work in other contexts, under other conditions. And, because conditions, or contextual factors, matter a lot in education, gaining insights into applying your findings to other contexts increases the contributions of your work and its importance to the broader education community.

Consequently, the purposes of research studies in education often include the more specific aim of identifying and understanding the conditions under which the phenomena being studied work like the observations suggest. A classic example of this kind of study in mathematics education was reported by William Brownell and Harold Moser in 1949 . They were trying to establish which method of subtracting whole numbers could be taught most effectively—the regrouping method or the equal additions method. However, they realized that effectiveness might depend on the conditions under which the methods were taught—“meaningfully” versus “mechanically.” So, they designed a study that crossed the two instructional approaches with the two different methods (regrouping and equal additions). Among other results, they found that these conditions did matter. The regrouping method was more effective under the meaningful condition than the mechanical condition, but the same was not true for the equal additions algorithm.

What do education researchers want to understand? In our view, the ultimate goal of education is to offer all students the best possible learning opportunities. So, we believe the ultimate purpose of scientific inquiry in education is to develop understanding that supports the improvement of learning opportunities for all students. We say “ultimate” because there are lots of issues that must be understood to improve learning opportunities for all students. Hypotheses about many aspects of education are connected, ultimately, to students’ learning. For example, formulating and testing a hypothesis that preservice teachers need to engage in particular kinds of activities in their coursework in order to teach particular topics well is, ultimately, connected to improving students’ learning opportunities. So is hypothesizing that school districts often devote relatively few resources to instructional leadership training or hypothesizing that positioning mathematics as a tool students can use to combat social injustice can help students see the relevance of mathematics to their lives.

We do not exclude the importance of research on educational issues more removed from improving students’ learning opportunities, but we do think the argument for their importance will be more difficult to make. If there is no way to imagine a connection between your hypothesis and improving learning opportunities for students, even a distant connection, we recommend you reconsider whether it is an important hypothesis within the education community.

Notice that we said the ultimate goal of education is to offer all students the best possible learning opportunities. For too long, educators have been satisfied with a goal of offering rich learning opportunities for lots of students, sometimes even for just the majority of students, but not necessarily for all students. Evaluations of success often are based on outcomes that show high averages. In other words, if many students have learned something, or even a smaller number have learned a lot, educators may have been satisfied. The problem is that there is usually a pattern in the groups of students who receive lower quality opportunities—students of color and students who live in poor areas, urban and rural. This is not acceptable. Consequently, we emphasize the premise that the purpose of education research is to offer rich learning opportunities to all students.

One way to make sure you will be able to convince others of the importance of your study is to consider investigating some aspect of teachers’ shared instructional problems. Historically, researchers in education have set their own research agendas, regardless of the problems teachers are facing in schools. It is increasingly recognized that teachers have had trouble applying to their own classrooms what researchers find. To address this problem, a researcher could partner with a teacher—better yet, a small group of teachers—and talk with them about instructional problems they all share. These discussions can create a rich pool of problems researchers can consider. If researchers pursued one of these problems (preferably alongside teachers), the connection to improving learning opportunities for all students could be direct and immediate. “Grounding a research question in instructional problems that are experienced across multiple teachers’ classrooms helps to ensure that the answer to the question will be of sufficient scope to be relevant and significant beyond the local context” (Cai et al., 2019b , p. 115).

As a beginning researcher, determining the relevance and importance of a research problem is especially challenging. We recommend talking with advisors, other experienced researchers, and peers to test the educational importance of possible research problems and topics of study. You will also learn much more about the issue of research importance when you read Chap. 5 .

Exercise 1.7

Identify a problem in education that is closely connected to improving learning opportunities and a problem that has a less close connection. For each problem, write a brief argument (like a logical sequence of if-then statements) that connects the problem to all students’ learning opportunities.

Part III. Conducting Research as a Practice of Failing Productively

Scientific inquiry involves formulating hypotheses about phenomena that are not fully understood—by you or anyone else. Even if you are able to inform your hypotheses with lots of knowledge that has already been accumulated, you are likely to find that your prediction is not entirely accurate. This is normal. Remember, scientific inquiry is a process of constantly updating your thinking. More and better information means revising your thinking, again, and again, and again. Because you never fully understand a complicated phenomenon and your hypotheses never produce completely accurate predictions, it is easy to believe you are somehow failing.

The trick is to fail upward, to fail to predict accurately in ways that inform your next hypothesis so you can make a better prediction. Some of the best-known researchers in education have been open and honest about the many times their predictions were wrong and, based on the results of their studies and those of others, they continuously updated their thinking and changed their hypotheses.

A striking example of publicly revising (actually reversing) hypotheses due to incorrect predictions is found in the work of Lee J. Cronbach, one of the most distinguished educational psychologists of the twentieth century. In 1955, Cronbach delivered his presidential address to the American Psychological Association. Titling it “Two Disciplines of Scientific Psychology,” Cronbach proposed a rapprochement between two research approaches—correlational studies that focused on individual differences and experimental studies that focused on instructional treatments controlling for individual differences. (We will examine different research approaches in Chap. 4 ). If these approaches could be brought together, reasoned Cronbach ( 1957 ), researchers could find interactions between individual characteristics and treatments (aptitude-treatment interactions or ATIs), fitting the best treatments to different individuals.

In 1975, after years of research by many researchers looking for ATIs, Cronbach acknowledged the evidence for simple, useful ATIs had not been found. Even when trying to find interactions between a few variables that could provide instructional guidance, the analysis, said Cronbach, creates “a hall of mirrors that extends to infinity, tormenting even the boldest investigators and defeating even ambitious designs” (Cronbach, 1975 , p. 119).

As he was reflecting back on his work, Cronbach ( 1986 ) recommended moving away from documenting instructional effects through statistical inference (an approach he had championed for much of his career) and toward approaches that probe the reasons for these effects, approaches that provide a “full account of events in a time, place, and context” (Cronbach, 1986 , p. 104). This is a remarkable change in hypotheses, a change based on data and made fully transparent. Cronbach understood the value of failing productively.

Closer to home, in a less dramatic example, one of us began a line of scientific inquiry into how to prepare elementary preservice teachers to teach early algebra. Teaching early algebra meant engaging elementary students in early forms of algebraic reasoning. Such reasoning should help them transition from arithmetic to algebra. To begin this line of inquiry, a set of activities for preservice teachers were developed. Even though the activities were based on well-supported hypotheses, they largely failed to engage preservice teachers as predicted because of unanticipated challenges the preservice teachers faced. To capitalize on this failure, follow-up studies were conducted, first to better understand elementary preservice teachers’ challenges with preparing to teach early algebra, and then to better support preservice teachers in navigating these challenges. In this example, the initial failure was a necessary step in the researchers’ scientific inquiry and furthered the researchers’ understanding of this issue.

We present another example of failing productively in Chap. 2 . That example emerges from recounting the history of a well-known research program in mathematics education.

Making mistakes is an inherent part of doing scientific research. Conducting a study is rarely a smooth path from beginning to end. We recommend that you keep the following things in mind as you begin a career of conducting research in education.

First, do not get discouraged when you make mistakes; do not fall into the trap of feeling like you are not capable of doing research because you make too many errors.

Second, learn from your mistakes. Do not ignore your mistakes or treat them as errors that you simply need to forget and move past. Mistakes are rich sites for learning—in research just as in other fields of study.

Third, by reflecting on your mistakes, you can learn to make better mistakes, mistakes that inform you about a productive next step. You will not be able to eliminate your mistakes, but you can set a goal of making better and better mistakes.

Exercise 1.8

How does scientific inquiry differ from everyday learning in giving you the tools to fail upward? You may find helpful perspectives on this question in other resources on science and scientific inquiry (e.g., Failure: Why Science is So Successful by Firestein, 2015).

Exercise 1.9

Use what you have learned in this chapter to write a new definition of scientific inquiry. Compare this definition with the one you wrote before reading this chapter. If you are reading this book as part of a course, compare your definition with your colleagues’ definitions. Develop a consensus definition with everyone in the course.

Part IV. Preview of Chap. 2

Now that you have a good idea of what research is, at least of what we believe research is, the next step is to think about how to actually begin doing research. This means how to begin formulating, testing, and revising hypotheses. As for all phases of scientific inquiry, there are lots of things to think about. Because it is critical to start well, we devote Chap. 2 to getting started with formulating hypotheses.

Agnes, M., & Guralnik, D. B. (Eds.). (2008). Hypothesis. In Webster’s new world college dictionary (4th ed.). Wiley.

Google Scholar  

Britannica. (n.d.). Scientific method. In Encyclopaedia Britannica . Retrieved July 15, 2022 from https://www.britannica.com/science/scientific-method

Brownell, W. A., & Moser, H. E. (1949). Meaningful vs. mechanical learning: A study in grade III subtraction . Duke University Press..

Cai, J., Morris, A., Hohensee, C., Hwang, S., Robison, V., Cirillo, M., Kramer, S. L., & Hiebert, J. (2019b). Posing significant research questions. Journal for Research in Mathematics Education, 50 (2), 114–120. https://doi.org/10.5951/jresematheduc.50.2.0114

Article   Google Scholar  

Cambridge University Press. (n.d.). Hypothesis. In Cambridge dictionary . Retrieved July 15, 2022 from https://dictionary.cambridge.org/us/dictionary/english/hypothesis

Cronbach, J. L. (1957). The two disciplines of scientific psychology. American Psychologist, 12 , 671–684.

Cronbach, L. J. (1975). Beyond the two disciplines of scientific psychology. American Psychologist, 30 , 116–127.

Cronbach, L. J. (1986). Social inquiry by and for earthlings. In D. W. Fiske & R. A. Shweder (Eds.), Metatheory in social science: Pluralisms and subjectivities (pp. 83–107). University of Chicago Press.

Hay, C. M. (Ed.). (2016). Methods that matter: Integrating mixed methods for more effective social science research . University of Chicago Press.

Merriam-Webster. (n.d.). Explain. In Merriam-Webster.com dictionary . Retrieved July 15, 2022, from https://www.merriam-webster.com/dictionary/explain

National Research Council. (2002). Scientific research in education . National Academy Press.

Weis, L., Eisenhart, M., Duncan, G. J., Albro, E., Bueschel, A. C., Cobb, P., Eccles, J., Mendenhall, R., Moss, P., Penuel, W., Ream, R. K., Rumbaut, R. G., Sloane, F., Weisner, T. S., & Wilson, J. (2019a). Mixed methods for studies that address broad and enduring issues in education research. Teachers College Record, 121 , 100307.

Weisner, T. S. (Ed.). (2005). Discovering successful pathways in children’s development: Mixed methods in the study of childhood and family life . University of Chicago Press.

Download references

Author information

Authors and affiliations.

School of Education, University of Delaware, Newark, DE, USA

James Hiebert, Anne K Morris & Charles Hohensee

Department of Mathematical Sciences, University of Delaware, Newark, DE, USA

Jinfa Cai & Stephen Hwang

You can also search for this author in PubMed   Google Scholar

Rights and permissions

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/ ), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Reprints and permissions

Copyright information

© 2023 The Author(s)

About this chapter

Hiebert, J., Cai, J., Hwang, S., Morris, A.K., Hohensee, C. (2023). What Is Research, and Why Do People Do It?. In: Doing Research: A New Researcher’s Guide. Research in Mathematics Education. Springer, Cham. https://doi.org/10.1007/978-3-031-19078-0_1

Download citation

DOI : https://doi.org/10.1007/978-3-031-19078-0_1

Published : 03 December 2022

Publisher Name : Springer, Cham

Print ISBN : 978-3-031-19077-3

Online ISBN : 978-3-031-19078-0

eBook Packages : Education Education (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research
  • Tutorial Review
  • Open access
  • Published: 24 January 2018

Teaching the science of learning

  • Yana Weinstein   ORCID: orcid.org/0000-0002-5144-968X 1 ,
  • Christopher R. Madan 2 , 3 &
  • Megan A. Sumeracki 4  

Cognitive Research: Principles and Implications volume  3 , Article number:  2 ( 2018 ) Cite this article

239k Accesses

90 Citations

767 Altmetric

Metrics details

The science of learning has made a considerable contribution to our understanding of effective teaching and learning strategies. However, few instructors outside of the field are privy to this research. In this tutorial review, we focus on six specific cognitive strategies that have received robust support from decades of research: spaced practice, interleaving, retrieval practice, elaboration, concrete examples, and dual coding. We describe the basic research behind each strategy and relevant applied research, present examples of existing and suggested implementation, and make recommendations for further research that would broaden the reach of these strategies.

Significance

Education does not currently adhere to the medical model of evidence-based practice (Roediger, 2013 ). However, over the past few decades, our field has made significant advances in applying cognitive processes to education. From this work, specific recommendations can be made for students to maximize their learning efficiency (Dunlosky, Rawson, Marsh, Nathan, & Willingham, 2013 ; Roediger, Finn, & Weinstein, 2012 ). In particular, a review published 10 years ago identified a limited number of study techniques that have received solid evidence from multiple replications testing their effectiveness in and out of the classroom (Pashler et al., 2007 ). A recent textbook analysis (Pomerance, Greenberg, & Walsh, 2016 ) took the six key learning strategies from this report by Pashler and colleagues, and found that very few teacher-training textbooks cover any of these six principles – and none cover them all, suggesting that these strategies are not systematically making their way into the classroom. This is the case in spite of multiple recent academic (e.g., Dunlosky et al., 2013 ) and general audience (e.g., Dunlosky, 2013 ) publications about these strategies. In this tutorial review, we present the basic science behind each of these six key principles, along with more recent research on their effectiveness in live classrooms, and suggest ideas for pedagogical implementation. The target audience of this review is (a) educators who might be interested in integrating the strategies into their teaching practice, (b) science of learning researchers who are looking for open questions to help determine future research priorities, and (c) researchers in other subfields who are interested in the ways that principles from cognitive psychology have been applied to education.

While the typical teacher may not be exposed to this research during teacher training, a small cohort of teachers intensely interested in cognitive psychology has recently emerged. These teachers are mainly based in the UK, and, anecdotally (e.g., Dennis (2016), personal communication), appear to have taken an interest in the science of learning after reading Make it Stick (Brown, Roediger, & McDaniel, 2014 ; see Clark ( 2016 ) for an enthusiastic review of this book on a teacher’s blog, and “Learning Scientists” ( 2016c ) for a collection). In addition, a grassroots teacher movement has led to the creation of “researchED” – a series of conferences on evidence-based education (researchED, 2013 ). The teachers who form part of this network frequently discuss cognitive psychology techniques and their applications to education on social media (mainly Twitter; e.g., Fordham, 2016 ; Penfound, 2016 ) and on their blogs, such as Evidence Into Practice ( https://evidenceintopractice.wordpress.com/ ), My Learning Journey ( http://reflectionsofmyteaching.blogspot.com/ ), and The Effortful Educator ( https://theeffortfuleducator.com/ ). In general, the teachers who write about these issues pay careful attention to the relevant literature, often citing some of the work described in this review.

These informal writings, while allowing teachers to explore their approach to teaching practice (Luehmann, 2008 ), give us a unique window into the application of the science of learning to the classroom. By examining these blogs, we can not only observe how basic cognitive research is being applied in the classroom by teachers who are reading it, but also how it is being misapplied, and what questions teachers may be posing that have gone unaddressed in the scientific literature. Throughout this review, we illustrate each strategy with examples of how it can be implemented (see Table  1 and Figs.  1 , 2 , 3 , 4 , 5 , 6 and 7 ), as well as with relevant teacher blog posts that reflect on its application, and draw upon this work to pin-point fruitful avenues for further basic and applied research.

Spaced practice schedule for one week. This schedule is designed to represent a typical timetable of a high-school student. The schedule includes four one-hour study sessions, one longer study session on the weekend, and one rest day. Notice that each subject is studied one day after it is covered in school, to create spacing between classes and study sessions. Copyright note: this image was produced by the authors

a Blocked practice and interleaved practice with fraction problems. In the blocked version, students answer four multiplication problems consecutively. In the interleaved version, students answer a multiplication problem followed by a division problem and then an addition problem, before returning to multiplication. For an experiment with a similar setup, see Patel et al. ( 2016 ). Copyright note: this image was produced by the authors. b Illustration of interleaving and spacing. Each color represents a different homework topic. Interleaving involves alternating between topics, rather than blocking. Spacing involves distributing practice over time, rather than massing. Interleaving inherently involves spacing as other tasks naturally “fill” the spaces between interleaved sessions. Copyright note: this image was produced by the authors, adapted from Rohrer ( 2012 )

Concept map illustrating the process and resulting benefits of retrieval practice. Retrieval practice involves the process of withdrawing learned information from long-term memory into working memory, which requires effort. This produces direct benefits via the consolidation of learned information, making it easier to remember later and causing improvements in memory, transfer, and inferences. Retrieval practice also produces indirect benefits of feedback to students and teachers, which in turn can lead to more effective study and teaching practices, with a focus on information that was not accurately retrieved. Copyright note: this figure originally appeared in a blog post by the first and third authors ( http://www.learningscientists.org/blog/2016/4/1-1 )

Illustration of “how” and “why” questions (i.e., elaborative interrogation questions) students might ask while studying the physics of flight. To help figure out how physics explains flight, students might ask themselves the following questions: “How does a plane take off?”; “Why does a plane need an engine?”; “How does the upward force (lift) work?”; “Why do the wings have a curved upper surface and a flat lower surface?”; and “Why is there a downwash behind the wings?”. Copyright note: the image of the plane was downloaded from Pixabay.com and is free to use, modify, and share

Three examples of physics problems that would be categorized differently by novices and experts. The problems in ( a ) and ( c ) look similar on the surface, so novices would group them together into one category. Experts, however, will recognize that the problems in ( b ) and ( c ) both relate to the principle of energy conservation, and so will group those two problems into one category instead. Copyright note: the figure was produced by the authors, based on figures in Chi et al. ( 1981 )

Example of how to enhance learning through use of a visual example. Students might view this visual representation of neural communications with the words provided, or they could draw a similar visual representation themselves. Copyright note: this figure was produced by the authors

Example of word properties associated with visual, verbal, and motor coding for the word “SPOON”. A word can evoke multiple types of representation (“codes” in dual coding theory). Viewing a word will automatically evoke verbal representations related to its component letters and phonemes. Words representing objects (i.e., concrete nouns) will also evoke visual representations, including information about similar objects, component parts of the object, and information about where the object is typically found. In some cases, additional codes can also be evoked, such as motor-related properties of the represented object, where contextual information related to the object’s functional intention and manipulation action may also be processed automatically when reading the word. Copyright note: this figure was produced by the authors and is based on Aylwin ( 1990 ; Fig.  2 ) and Madan and Singhal ( 2012a , Fig.  3 )

Spaced practice

The benefits of spaced (or distributed) practice to learning are arguably one of the strongest contributions that cognitive psychology has made to education (Kang, 2016 ). The effect is simple: the same amount of repeated studying of the same information spaced out over time will lead to greater retention of that information in the long run, compared with repeated studying of the same information for the same amount of time in one study session. The benefits of distributed practice were first empirically demonstrated in the 19 th century. As part of his extensive investigation into his own memory, Ebbinghaus ( 1885/1913 ) found that when he spaced out repetitions across 3 days, he could almost halve the number of repetitions necessary to relearn a series of 12 syllables in one day (Chapter 8). He thus concluded that “a suitable distribution of [repetitions] over a space of time is decidedly more advantageous than the massing of them at a single time” (Section 34). For those who want to read more about Ebbinghaus’s contribution to memory research, Roediger ( 1985 ) provides an excellent summary.

Since then, hundreds of studies have examined spacing effects both in the laboratory and in the classroom (Kang, 2016 ). Spaced practice appears to be particularly useful at large retention intervals: in the meta-analysis by Cepeda, Pashler, Vul, Wixted, and Rohrer ( 2006 ), all studies with a retention interval longer than a month showed a clear benefit of distributed practice. The “new theory of disuse” (Bjork & Bjork, 1992 ) provides a helpful mechanistic explanation for the benefits of spacing to learning. This theory posits that memories have both retrieval strength and storage strength. Whereas retrieval strength is thought to measure the ease with which a memory can be recalled at a given moment, storage strength (which cannot be measured directly) represents the extent to which a memory is truly embedded in the mind. When studying is taking place, both retrieval strength and storage strength receive a boost. However, the extent to which storage strength is boosted depends upon retrieval strength, and the relationship is negative: the greater the current retrieval strength, the smaller the gains in storage strength. Thus, the information learned through “cramming” will be rapidly forgotten due to high retrieval strength and low storage strength (Bjork & Bjork, 2011 ), whereas spacing out learning increases storage strength by allowing retrieval strength to wane before restudy.

Teachers can introduce spacing to their students in two broad ways. One involves creating opportunities to revisit information throughout the semester, or even in future semesters. This does involve some up-front planning, and can be difficult to achieve, given time constraints and the need to cover a set curriculum. However, spacing can be achieved with no great costs if teachers set aside a few minutes per class to review information from previous lessons. The second method involves putting the onus to space on the students themselves. Of course, this would work best with older students – high school and above. Because spacing requires advance planning, it is crucial that the teacher helps students plan their studying. For example, teachers could suggest that students schedule study sessions on days that alternate with the days on which a particular class meets (e.g., schedule review sessions for Tuesday and Thursday when the class meets Monday and Wednesday; see Fig.  1 for a more complete weekly spaced practice schedule). It important to note that the spacing effect refers to information that is repeated multiple times, rather than the idea of studying different material in one long session versus spaced out in small study sessions over time. However, for teachers and particularly for students planning a study schedule, the subtle difference between the two situations (spacing out restudy opportunities, versus spacing out studying of different information over time) may be lost. Future research should address the effects of spacing out studying of different information over time, whether the same considerations apply in this situation as compared to spacing out restudy opportunities, and how important it is for teachers and students to understand the difference between these two types of spaced practice.

It is important to note that students may feel less confident when they space their learning (Bjork, 1999 ) than when they cram. This is because spaced learning is harder – but it is this “desirable difficulty” that helps learning in the long term (Bjork, 1994 ). Students tend to cram for exams rather than space out their learning. One explanation for this is that cramming does “work”, if the goal is only to pass an exam. In order to change students’ minds about how they schedule their studying, it might be important to emphasize the value of retaining information beyond a final exam in one course.

Ideas for how to apply spaced practice in teaching have appeared in numerous teacher blogs (e.g., Fawcett, 2013 ; Kraft, 2015 ; Picciotto, 2009 ). In England in particular, as of 2013, high-school students need to be able to remember content from up to 3 years back on cumulative exams (General Certificate of Secondary Education (GCSE) and A-level exams; see CIFE, 2012 ). A-levels in particular determine what subject students study in university and which programs they are accepted into, and thus shape the path of their academic career. A common approach for dealing with these exams has been to include a “revision” (i.e., studying or cramming) period of a few weeks leading up to the high-stakes cumulative exams. Now, teachers who follow cognitive psychology are advocating a shift of priorities to spacing learning over time across the 3 years, rather than teaching a topic once and then intensely reviewing it weeks before the exam (Cox, 2016a ; Wood, 2017 ). For example, some teachers have suggested using homework assignments as an opportunity for spaced practice by giving students homework on previous topics (Rose, 2014 ). However, questions remain, such as whether spaced practice can ever be effective enough to completely alleviate the need or utility of a cramming period (Cox, 2016b ), and how one can possibly figure out the optimal lag for spacing (Benney, 2016 ; Firth, 2016 ).

There has been considerable research on the question of optimal lag, and much of it is quite complex; two sessions neither too close together (i.e., cramming) nor too far apart are ideal for retention. In a large-scale study, Cepeda, Vul, Rohrer, Wixted, and Pashler ( 2008 ) examined the effects of the gap between study sessions and the interval between study and test across long periods, and found that the optimal gap between study sessions was contingent on the retention interval. Thus, it is not clear how teachers can apply the complex findings on lag to their own classrooms.

A useful avenue of research would be to simplify the research paradigms that are used to study optimal lag, with the goal of creating a flexible, spaced-practice framework that teachers could apply and tailor to their own teaching needs. For example, an Excel macro spreadsheet was recently produced to help teachers plan for lagged lessons (Weinstein-Jones & Weinstein, 2017 ; see Weinstein & Weinstein-Jones ( 2017 ) for a description of the algorithm used in the spreadsheet), and has been used by teachers to plan their lessons (Penfound, 2017 ). However, one teacher who found this tool helpful also wondered whether the more sophisticated plan was any better than his own method of manually selecting poorly understood material from previous classes for later review (Lovell, 2017 ). This direction is being actively explored within personalized online learning environments (Kornell & Finn, 2016 ; Lindsey, Shroyer, Pashler, & Mozer, 2014 ), but teachers in physical classrooms might need less technologically-driven solutions to teach cohorts of students.

It seems teachers would greatly appreciate a set of guidelines for how to implement spacing in the curriculum in the most effective, but also the most efficient manner. While the cognitive field has made great advances in terms of understanding the mechanisms behind spacing, what teachers need more of are concrete evidence-based tools and guidelines for direct implementation in the classroom. These could include more sophisticated and experimentally tested versions of the software described above (Weinstein-Jones & Weinstein, 2017 ), or adaptable templates of spaced curricula. Moreover, researchers need to evaluate the effectiveness of these tools in a real classroom environment, over a semester or academic year, in order to give pedagogically relevant evidence-based recommendations to teachers.

Interleaving

Another scheduling technique that has been shown to increase learning is interleaving. Interleaving occurs when different ideas or problem types are tackled in a sequence, as opposed to the more common method of attempting multiple versions of the same problem in a given study session (known as blocking). Interleaving as a principle can be applied in many different ways. One such way involves interleaving different types of problems during learning, which is particularly applicable to subjects such as math and physics (see Fig.  2 a for an example with fractions, based on a study by Patel, Liu, & Koedinger, 2016 ). For example, in a study with college students, Rohrer and Taylor ( 2007 ) found that shuffling math problems that involved calculating the volume of different shapes resulted in better test performance 1 week later than when students answered multiple problems about the same type of shape in a row. This pattern of results has also been replicated with younger students, for example 7 th grade students learning to solve graph and slope problems (Rohrer, Dedrick, & Stershic, 2015 ). The proposed explanation for the benefit of interleaving is that switching between different problem types allows students to acquire the ability to choose the right method for solving different types of problems rather than learning only the method itself, and not when to apply it.

Do the benefits of interleaving extend beyond problem solving? The answer appears to be yes. Interleaving can be helpful in other situations that require discrimination, such as inductive learning. Kornell and Bjork ( 2008 ) examined the effects of interleaving in a task that might be pertinent to a student of the history of art: the ability to match paintings to their respective painters. Students who studied different painters’ paintings interleaved at study were more successful on a later identification test than were participants who studied the paintings blocked by painter. Birnbaum, Kornell, Bjork, and Bjork ( 2013 ) proposed the discriminative-contrast hypothesis to explain that interleaving enhances learning by allowing the comparison between exemplars of different categories. They found support for this hypothesis in a set of experiments with bird categorization: participants benefited from interleaving and also from spacing, but not when the spacing interrupted side-by-side comparisons of birds from different categories.

Another type of interleaving involves the interleaving of study and test opportunities. This type of interleaving has been applied, once again, to problem solving, whereby students alternate between attempting a problem and viewing a worked example (Trafton & Reiser, 1993 ); this pattern appears to be superior to answering a string of problems in a row, at least with respect to the amount of time it takes to achieve mastery of a procedure (Corbett, Reed, Hoffmann, MacLaren, & Wagner, 2010 ). The benefits of interleaving study and test opportunities – rather than blocking study followed by attempting to answer problems or questions – might arise due to a process known as “test-potentiated learning”. That is, a study opportunity that immediately follows a retrieval attempt may be more fruitful than when that same studying was not preceded by retrieval (Arnold & McDermott, 2013 ).

For problem-based subjects, the interleaving technique is straightforward: simply mix questions on homework and quizzes with previous materials (which takes care of spacing as well); for languages, mix vocabulary themes rather than blocking by theme (Thomson & Mehring, 2016 ). But interleaving as an educational strategy ought to be presented to teachers with some caveats. Research has focused on interleaving material that is somewhat related (e.g., solving different mathematical equations, Rohrer et al., 2015 ), whereas students sometimes ask whether they should interleave material from different subjects – a practice that has not received empirical support (Hausman & Kornell, 2014 ). When advising students how to study independently, teachers should thus proceed with caution. Since it is easy for younger students to confuse this type of unhelpful interleaving with the more helpful interleaving of related information, it may be best for teachers of younger grades to create opportunities for interleaving in homework and quiz assignments rather than putting the onus on the students themselves to make use of the technique. Technology can be very helpful here, with apps such as Quizlet, Memrise, Anki, Synap, Quiz Champ, and many others (see also “Learning Scientists”, 2017 ) that not only allow instructor-created quizzes to be taken by students, but also provide built-in interleaving algorithms so that the burden does not fall on the teacher or the student to carefully plan which items are interleaved when.

An important point to consider is that in educational practice, the distinction between spacing and interleaving can be difficult to delineate. The gap between the scientific and classroom definitions of interleaving is demonstrated by teachers’ own writings about this technique. When they write about interleaving, teachers often extend the term to connote a curriculum that involves returning to topics multiple times throughout the year (e.g., Kirby, 2014 ; see “Learning Scientists” ( 2016a ) for a collection of similar blog posts by several other teachers). The “interleaving” of topics throughout the curriculum produces an effect that is more akin to what cognitive psychologists call “spacing” (see Fig.  2 b for a visual representation of the difference between interleaving and spacing). However, cognitive psychologists have not examined the effects of structuring the curriculum in this way, and open questions remain: does repeatedly circling back to previous topics throughout the semester interrupt the learning of new information? What are some effective techniques for interleaving old and new information within one class? And how does one determine the balance between old and new information?

Retrieval practice

While tests are most often used in educational settings for assessment, a lesser-known benefit of tests is that they actually improve memory of the tested information. If we think of our memories as libraries of information, then it may seem surprising that retrieval (which happens when we take a test) improves memory; however, we know from a century of research that retrieving knowledge actually strengthens it (see Karpicke, Lehman, & Aue, 2014 ). Testing was shown to strengthen memory as early as 100 years ago (Gates, 1917 ), and there has been a surge of research in the last decade on the mnemonic benefits of testing, or retrieval practice . Most of the research on the effectiveness of retrieval practice has been done with college students (see Roediger & Karpicke, 2006 ; Roediger, Putnam, & Smith, 2011 ), but retrieval-based learning has been shown to be effective at producing learning for a wide range of ages, including preschoolers (Fritz, Morris, Nolan, & Singleton, 2007 ), elementary-aged children (e.g., Karpicke, Blunt, & Smith, 2016 ; Karpicke, Blunt, Smith, & Karpicke, 2014 ; Lipko-Speed, Dunlosky, & Rawson, 2014 ; Marsh, Fazio, & Goswick, 2012 ; Ritchie, Della Sala, & McIntosh, 2013 ), middle-school students (e.g., McDaniel, Thomas, Agarwal, McDermott, & Roediger, 2013 ; McDermott, Agarwal, D’Antonio, Roediger, & McDaniel, 2014 ), and high-school students (e.g., McDermott et al., 2014 ). In addition, the effectiveness of retrieval-based learning has been extended beyond simple testing to other activities in which retrieval practice can be integrated, such as concept mapping (Blunt & Karpicke, 2014 ; Karpicke, Blunt, et al., 2014 ; Ritchie et al., 2013 ).

A debate is currently ongoing as to the effectiveness of retrieval practice for more complex materials (Karpicke & Aue, 2015 ; Roelle & Berthold, 2017 ; Van Gog & Sweller, 2015 ). Practicing retrieval has been shown to improve the application of knowledge to new situations (e.g., Butler, 2010 ; Dirkx, Kester, & Kirschner, 2014 ); McDaniel et al., 2013 ; Smith, Blunt, Whiffen, & Karpicke, 2016 ); but see Tran, Rohrer, and Pashler ( 2015 ) and Wooldridge, Bugg, McDaniel, and Liu ( 2014 ), for retrieval practice studies that showed limited or no increased transfer compared to restudy. Retrieval practice effects on higher-order learning may be more sensitive than fact learning to encoding factors, such as the way material is presented during study (Eglington & Kang, 2016 ). In addition, retrieval practice may be more beneficial for higher-order learning if it includes more scaffolding (Fiechter & Benjamin, 2017 ; but see Smith, Blunt, et al., 2016 ) and targeted practice with application questions (Son & Rivas, 2016 ).

How does retrieval practice help memory? Figure  3 illustrates both the direct and indirect benefits of retrieval practice identified by the literature. The act of retrieval itself is thought to strengthen memory (Karpicke, Blunt, et al., 2014 ; Roediger & Karpicke, 2006 ; Smith, Roediger, & Karpicke, 2013 ). For example, Smith et al. ( 2013 ) showed that if students brought information to mind without actually producing it (covert retrieval), they remembered the information just as well as if they overtly produced the retrieved information (overt retrieval). Importantly, both overt and covert retrieval practice improved memory over control groups without retrieval practice, even when feedback was not provided. The fact that bringing information to mind in the absence of feedback or restudy opportunities improves memory leads researchers to conclude that it is the act of retrieval – thinking back to bring information to mind – that improves memory of that information.

The benefit of retrieval practice depends to a certain extent on successful retrieval (see Karpicke, Lehman, et al., 2014 ). For example, in Experiment 4 of Smith et al. ( 2013 ), students successfully retrieved 72% of the information during retrieval practice. Of course, retrieving 72% of the information was compared to a restudy control group, during which students were re-exposed to 100% of the information, creating a bias in favor of the restudy condition. Yet retrieval led to superior memory later compared to the restudy control. However, if retrieval success is extremely low, then it is unlikely to improve memory (e.g., Karpicke, Blunt, et al., 2014 ), particularly in the absence of feedback. On the other hand, if retrieval-based learning situations are constructed in such a way that ensures high levels of success, the act of bringing the information to mind may be undermined, thus making it less beneficial. For example, if a student reads a sentence and then immediately covers the sentence and recites it out loud, they are likely not retrieving the information but rather just keeping the information in their working memory long enough to recite it again (see Smith, Blunt, et al., 2016 for a discussion of this point). Thus, it is important to balance success of retrieval with overall difficulty in retrieving the information (Smith & Karpicke, 2014 ; Weinstein, Nunes, & Karpicke, 2016 ). If initial retrieval success is low, then feedback can help improve the overall benefit of practicing retrieval (Kang, McDermott, & Roediger, 2007 ; Smith & Karpicke, 2014 ). Kornell, Klein, and Rawson ( 2015 ), however, found that it was the retrieval attempt and not the correct production of information that produced the retrieval practice benefit – as long as the correct answer was provided after an unsuccessful attempt, the benefit was the same as for a successful retrieval attempt in this set of studies. From a practical perspective, it would be helpful for teachers to know when retrieval attempts in the absence of success are helpful, and when they are not. There may also be additional reasons beyond retrieval benefits that would push teachers towards retrieval practice activities that produce some success amongst students; for example, teachers may hesitate to give students retrieval practice exercises that are too difficult, as this may negatively affect self-efficacy and confidence.

In addition to the fact that bringing information to mind directly improves memory for that information, engaging in retrieval practice can produce indirect benefits as well (see Roediger et al., 2011 ). For example, research by Weinstein, Gilmore, Szpunar, and McDermott ( 2014 ) demonstrated that when students expected to be tested, the increased test expectancy led to better-quality encoding of new information. Frequent testing can also serve to decrease mind-wandering – that is, thoughts that are unrelated to the material that students are supposed to be studying (Szpunar, Khan, & Schacter, 2013 ).

Practicing retrieval is a powerful way to improve meaningful learning of information, and it is relatively easy to implement in the classroom. For example, requiring students to practice retrieval can be as simple as asking students to put their class materials away and try to write out everything they know about a topic. Retrieval-based learning strategies are also flexible. Instructors can give students practice tests (e.g., short-answer or multiple-choice, see Smith & Karpicke, 2014 ), provide open-ended prompts for the students to recall information (e.g., Smith, Blunt, et al., 2016 ) or ask their students to create concept maps from memory (e.g., Blunt & Karpicke, 2014 ). In one study, Weinstein et al. ( 2016 ) looked at the effectiveness of inserting simple short-answer questions into online learning modules to see whether they improved student performance. Weinstein and colleagues also manipulated the placement of the questions. For some students, the questions were interspersed throughout the module, and for other students the questions were all presented at the end of the module. Initial success on the short-answer questions was higher when the questions were interspersed throughout the module. However, on a later test of learning from that module, the original placement of the questions in the module did not matter for performance. As with spaced practice, where the optimal gap between study sessions is contingent on the retention interval, the optimum difficulty and level of success during retrieval practice may also depend on the retention interval. Both groups of students who answered questions performed better on the delayed test compared to a control group without question opportunities during the module. Thus, the important thing is for instructors to provide opportunities for retrieval practice during learning. Based on previous research, any activity that promotes the successful retrieval of information should improve learning.

Retrieval practice has received a lot of attention in teacher blogs (see “Learning Scientists” ( 2016b ) for a collection). A common theme seems to be an emphasis on low-stakes (Young, 2016 ) and even no-stakes (Cox, 2015 ) testing, the goal of which is to increase learning rather than assess performance. In fact, one well-known charter school in the UK has an official homework policy grounded in retrieval practice: students are to test themselves on subject knowledge for 30 minutes every day in lieu of standard homework (Michaela Community School, 2014 ). The utility of homework, particularly for younger children, is often a hotly debated topic outside of academia (e.g., Shumaker, 2016 ; but see Jones ( 2016 ) for an opposing viewpoint and Cooper ( 1989 ) for the original research the blog posts were based on). Whereas some research shows clear links between homework and academic achievement (Valle et al., 2016 ), other researchers have questioned the effectiveness of homework (Dettmers, Trautwein, & Lüdtke, 2009 ). Perhaps amending homework to involve retrieval practice might make it more effective; this remains an open empirical question.

One final consideration is that of test anxiety. While retrieval practice can be very powerful at improving memory, some research shows that pressure during retrieval can undermine some of the learning benefit. For example, Hinze and Rapp ( 2014 ) manipulated pressure during quizzing to create high-pressure and low-pressure conditions. On the quizzes themselves, students performed equally well. However, those in the high-pressure condition did not perform as well on a criterion test later compared to the low-pressure group. Thus, test anxiety may reduce the learning benefit of retrieval practice. Eliminating all high-pressure tests is probably not possible, but instructors can provide a number of low-stakes retrieval opportunities for students to help increase learning. The use of low-stakes testing can serve to decrease test anxiety (Khanna, 2015 ), and has recently been shown to negate the detrimental impact of stress on learning (Smith, Floerke, & Thomas, 2016 ). This is a particularly important line of inquiry to pursue for future research, because many teachers who are not familiar with the effectiveness of retrieval practice may be put off by the implied pressure of “testing”, which evokes the much maligned high-stakes standardized tests (e.g., McHugh, 2013 ).

Elaboration

Elaboration involves connecting new information to pre-existing knowledge. Anderson ( 1983 , p.285) made the following claim about elaboration: “One of the most potent manipulations that can be performed in terms of increasing a subject’s memory for material is to have the subject elaborate on the to-be-remembered material.” Postman ( 1976 , p. 28) defined elaboration most parsimoniously as “additions to nominal input”, and Hirshman ( 2001 , p. 4369) provided an elaboration on this definition (pun intended!), defining elaboration as “A conscious, intentional process that associates to-be-remembered information with other information in memory.” However, in practice, elaboration could mean many different things. The common thread in all the definitions is that elaboration involves adding features to an existing memory.

One possible instantiation of elaboration is thinking about information on a deeper level. The levels (or “depth”) of processing framework, proposed by Craik and Lockhart ( 1972 ), predicts that information will be remembered better if it is processed more deeply in terms of meaning, rather than shallowly in terms of form. The leves of processing framework has, however, received a number of criticisms (Craik, 2002 ). One major problem with this framework is that it is difficult to measure “depth”. And if we are not able to actually measure depth, then the argument can become circular: is it that something was remembered better because it was studied more deeply, or do we conclude that it must have been studied more deeply because it is remembered better? (See Lockhart & Craik, 1990 , for further discussion of this issue).

Another mechanism by which elaboration can confer a benefit to learning is via improvement in organization (Bellezza, Cheesman, & Reddy, 1977 ; Mandler, 1979 ). By this view, elaboration involves making information more integrated and organized with existing knowledge structures. By connecting and integrating the to-be-learned information with other concepts in memory, students can increase the extent to which the ideas are organized in their minds, and this increased organization presumably facilitates the reconstruction of the past at the time of retrieval.

Elaboration is such a broad term and can include so many different techniques that it is hard to claim that elaboration will always help learning. There is, however, a specific technique under the umbrella of elaboration for which there is relatively strong evidence in terms of effectiveness (Dunlosky et al., 2013 ; Pashler et al., 2007 ). This technique is called elaborative interrogation, and involves students questioning the materials that they are studying (Pressley, McDaniel, Turnure, Wood, & Ahmad, 1987 ). More specifically, students using this technique would ask “how” and “why” questions about the concepts they are studying (see Fig.  4 for an example on the physics of flight). Then, crucially, students would try to answer these questions – either from their materials or, eventually, from memory (McDaniel & Donnelly, 1996 ). The process of figuring out the answer to the questions – with some amount of uncertainty (Overoye & Storm, 2015 ) – can help learning. When using this technique, however, it is important that students check their answers with their materials or with the teacher; when the content generated through elaborative interrogation is poor, it can actually hurt learning (Clinton, Alibali, & Nathan, 2016 ).

Students can also be encouraged to self-explain concepts to themselves while learning (Chi, De Leeuw, Chiu, & LaVancher, 1994 ). This might involve students simply saying out loud what steps they need to perform to solve an equation. Aleven and Koedinger ( 2002 ) conducted two classroom studies in which students were either prompted by a “cognitive tutor” to provide self-explanations during a problem-solving task or not, and found that the self-explanations led to improved performance. According to the authors, this approach could scale well to real classrooms. If possible and relevant, students could even perform actions alongside their self-explanations (Cohen, 1981 ; see also the enactment effect, Hainselin, Picard, Manolli, Vankerkore-Candas, & Bourdin, 2017 ). Instructors can scaffold students in these types of activities by providing self-explanation prompts throughout to-be-learned material (O’Neil et al., 2014 ). Ultimately, the greatest potential benefit of accurate self-explanation or elaboration is that the student will be able to transfer their knowledge to a new situation (Rittle-Johnson, 2006 ).

The technical term “elaborative interrogation” has not made it into the vernacular of educational bloggers (a search on https://educationechochamberuncut.wordpress.com , which consolidates over 3,000 UK-based teacher blogs, yielded zero results for that term). However, a few teachers have blogged about elaboration more generally (e.g., Hobbiss, 2016 ) and deep questioning specifically (e.g., Class Teaching, 2013 ), just without using the specific terminology. This strategy in particular may benefit from a more open dialog between researchers and teachers to facilitate the use of elaborative interrogation in the classroom and to address possible barriers to implementation. In terms of advancing the scientific understanding of elaborative interrogation in a classroom setting, it would be informative to conduct a larger-scale intervention to see whether having students elaborate during reading actually helps their understanding. It would also be useful to know whether the students really need to generate their own elaborative interrogation (“how” and “why”) questions, versus answering questions provided by others. How long should students persist to find the answers? When is the right time to have students engage in this task, given the levels of expertise required to do it well (Clinton et al., 2016 )? Without knowing the answers to these questions, it may be too early for us to instruct teachers to use this technique in their classes. Finally, elaborative interrogation takes a long time. Is this time efficiently spent? Or, would it be better to have the students try to answer a few questions, pool their information as a class, and then move to practicing retrieval of the information?

Concrete examples

Providing supporting information can improve the learning of key ideas and concepts. Specifically, using concrete examples to supplement content that is more conceptual in nature can make the ideas easier to understand and remember. Concrete examples can provide several advantages to the learning process: (a) they can concisely convey information, (b) they can provide students with more concrete information that is easier to remember, and (c) they can take advantage of the superior memorability of pictures relative to words (see “Dual Coding”).

Words that are more concrete are both recognized and recalled better than abstract words (Gorman, 1961 ; e.g., “button” and “bound,” respectively). Furthermore, it has been demonstrated that information that is more concrete and imageable enhances the learning of associations, even with abstract content (Caplan & Madan, 2016 ; Madan, Glaholt, & Caplan, 2010 ; Paivio, 1971 ). Following from this, providing concrete examples during instruction should improve retention of related abstract concepts, rather than the concrete examples alone being remembered better. Concrete examples can be useful both during instruction and during practice problems. Having students actively explain how two examples are similar and encouraging them to extract the underlying structure on their own can also help with transfer. In a laboratory study, Berry ( 1983 ) demonstrated that students performed well when given concrete practice problems, regardless of the use of verbalization (akin to elaborative interrogation), but that verbalization helped students transfer understanding from concrete to abstract problems. One particularly important area of future research is determining how students can best make the link between concrete examples and abstract ideas.

Since abstract concepts are harder to grasp than concrete information (Paivio, Walsh, & Bons, 1994 ), it follows that teachers ought to illustrate abstract ideas with concrete examples. However, care must be taken when selecting the examples. LeFevre and Dixon ( 1986 ) provided students with both concrete examples and abstract instructions and found that when these were inconsistent, students followed the concrete examples rather than the abstract instructions, potentially constraining the application of the abstract concept being taught. Lew, Fukawa-Connelly, Mejí-Ramos, and Weber ( 2016 ) used an interview approach to examine why students may have difficulty understanding a lecture. Responses indicated that some issues were related to understanding the overarching topic rather than the component parts, and to the use of informal colloquialisms that did not clearly follow from the material being taught. Both of these issues could have potentially been addressed through the inclusion of a greater number of relevant concrete examples.

One concern with using concrete examples is that students might only remember the examples – especially if they are particularly memorable, such as fun or gimmicky examples – and will not be able to transfer their understanding from one example to another, or more broadly to the abstract concept. However, there does not seem to be any evidence that fun relevant examples actually hurt learning by harming memory for important information. Instead, fun examples and jokes tend to be more memorable, but this boost in memory for the joke does not seem to come at a cost to memory for the underlying concept (Baldassari & Kelley, 2012 ). However, two important caveats need to be highlighted. First, to the extent that the more memorable content is not relevant to the concepts of interest, learning of the target information can be compromised (Harp & Mayer, 1998 ). Thus, care must be taken to ensure that all examples and gimmicks are, in fact, related to the core concepts that the students need to acquire, and do not contain irrelevant perceptual features (Kaminski & Sloutsky, 2013 ).

The second issue is that novices often notice and remember the surface details of an example rather than the underlying structure. Experts, on the other hand, can extract the underlying structure from examples that have divergent surface features (Chi, Feltovich, & Glaser, 1981 ; see Fig.  5 for an example from physics). Gick and Holyoak ( 1983 ) tried to get students to apply a rule from one problem to another problem that appeared different on the surface, but was structurally similar. They found that providing multiple examples helped with this transfer process compared to only using one example – especially when the examples provided had different surface details. More work is also needed to determine how many examples are sufficient for generalization to occur (and this, of course, will vary with contextual factors and individual differences). Further research on the continuum between concrete/specific examples and more abstract concepts would also be informative. That is, if an example is not concrete enough, it may be too difficult to understand. On the other hand, if the example is too concrete, that could be detrimental to generalization to the more abstract concept (although a diverse set of very concrete examples may be able to help with this). In fact, in a controversial article, Kaminski, Sloutsky, and Heckler ( 2008 ) claimed that abstract examples were more effective than concrete examples. Later rebuttals of this paper contested whether the abstract versus concrete distinction was clearly defined in the original study (see Reed, 2008 , for a collection of letters on the subject). This ideal point along the concrete-abstract continuum might also interact with development.

Finding teacher blog posts on concrete examples proved to be more difficult than for the other strategies in this review. One optimistic possibility is that teachers frequently use concrete examples in their teaching, and thus do not think of this as a specific contribution from cognitive psychology; the one blog post we were able to find that discussed concrete examples suggests that this might be the case (Boulton, 2016 ). The idea of “linking abstract concepts with concrete examples” is also covered in 25% of teacher-training textbooks used in the US, according to the report by Pomerance et al. ( 2016 ); this is the second most frequently covered of the six strategies, after “posing probing questions” (i.e., elaborative interrogation). A useful direction for future research would be to establish how teachers are using concrete examples in their practice, and whether we can make any suggestions for improvement based on research into the science of learning. For example, if two examples are better than one (Bauernschmidt, 2017 ), are additional examples also needed, or are there diminishing returns from providing more examples? And, how can teachers best ensure that concrete examples are consistent with prior knowledge (Reed, 2008 )?

Dual coding

Both the memory literature and folk psychology support the notion of visual examples being beneficial—the adage of “a picture is worth a thousand words” (traced back to an advertising slogan from the 1920s; Meider, 1990 ). Indeed, it is well-understood that more information can be conveyed through a simple illustration than through several paragraphs of text (e.g., Barker & Manji, 1989 ; Mayer & Gallini, 1990 ). Illustrations can be particularly helpful when the described concept involves several parts or steps and is intended for individuals with low prior knowledge (Eitel & Scheiter, 2015 ; Mayer & Gallini, 1990 ). Figure  6 provides a concrete example of this, illustrating how information can flow through neurons and synapses.

In addition to being able to convey information more succinctly, pictures are also more memorable than words (Paivio & Csapo, 1969 , 1973 ). In the memory literature, this is referred to as the picture superiority effect , and dual coding theory was developed in part to explain this effect. Dual coding follows from the notion of text being accompanied by complementary visual information to enhance learning. Paivio ( 1971 , 1986 ) proposed dual coding theory as a mechanistic account for the integration of multiple information “codes” to process information. In this theory, a code corresponds to a modal or otherwise distinct representation of a concept—e.g., “mental images for ‘book’ have visual, tactual, and other perceptual qualities similar to those evoked by the referent objects on which the images are based” (Clark & Paivio, 1991 , p. 152). Aylwin ( 1990 ) provides a clear example of how the word “dog” can evoke verbal, visual, and enactive representations (see Fig.  7 for a similar example for the word “SPOON”, based on Aylwin, 1990 (Fig.  2 ) and Madan & Singhal, 2012a (Fig.  3 )). Codes can also correspond to emotional properties (Clark & Paivio, 1991 ; Paivio, 2013 ). Clark and Paivio ( 1991 ) provide a thorough review of dual coding theory and its relation to education, while Paivio ( 2007 ) provides a comprehensive treatise on dual coding theory. Broadly, dual coding theory suggests that providing multiple representations of the same information enhances learning and memory, and that information that more readily evokes additional representations (through automatic imagery processes) receives a similar benefit.

Paivio and Csapo ( 1973 ) suggest that verbal and imaginal codes have independent and additive effects on memory recall. Using visuals to improve learning and memory has been particularly applied to vocabulary learning (Danan, 1992 ; Sadoski, 2005 ), but has also shown success in other domains such as in health care (Hartland, Biddle, & Fallacaro, 2008 ). To take advantage of dual coding, verbal information should be accompanied by a visual representation when possible. However, while the studies discussed all indicate that the use of multiple representations of information is favorable, it is important to acknowledge that each representation also increases cognitive load and can lead to over-saturation (Mayer & Moreno, 2003 ).

Given that pictures are generally remembered better than words, it is important to ensure that the pictures students are provided with are helpful and relevant to the content they are expected to learn. McNeill, Uttal, Jarvin, and Sternberg ( 2009 ) found that providing visual examples decreased conceptual errors. However, McNeill et al. also found that when students were given visually rich examples, they performed more poorly than students who were not given any visual example, suggesting that the visual details can at times become a distraction and hinder performance. Thus, it is important to consider that images used in teaching are clear and not ambiguous in their meaning (Schwartz, 2007 ).

Further broadening the scope of dual coding theory, Engelkamp and Zimmer ( 1984 ) suggest that motor movements, such as “turning the handle,” can provide an additional motor code that can improve memory, linking studies of motor actions (enactment) with dual coding theory (Clark & Paivio, 1991 ; Engelkamp & Cohen, 1991 ; Madan & Singhal, 2012c ). Indeed, enactment effects appear to primarily occur during learning, rather than during retrieval (Peterson & Mulligan, 2010 ). Along similar lines, Wammes, Meade, and Fernandes ( 2016 ) demonstrated that generating drawings can provide memory benefits beyond what could otherwise be explained by visual imagery, picture superiority, and other memory enhancing effects. Providing convergent evidence, even when overt motor actions are not critical in themselves, words representing functional objects have been shown to enhance later memory (Madan & Singhal, 2012b ; Montefinese, Ambrosini, Fairfield, & Mammarella, 2013 ). This indicates that motoric processes can improve memory similarly to visual imagery, similar to memory differences for concrete vs. abstract words. Further research suggests that automatic motor simulation for functional objects is likely responsible for this memory benefit (Madan, Chen, & Singhal, 2016 ).

When teachers combine visuals and words in their educational practice, however, they may not always be taking advantage of dual coding – at least, not in the optimal manner. For example, a recent discussion on Twitter centered around one teacher’s decision to have 7 th Grade students replace certain words in their science laboratory report with a picture of that word (e.g., the instructions read “using a syringe …” and a picture of a syringe replaced the word; Turner, 2016a ). Other teachers argued that this was not dual coding (Beaven, 2016 ; Williams, 2016 ), because there were no longer two different representations of the information. The first teacher maintained that dual coding was preserved, because this laboratory report with pictures was to be used alongside the original, fully verbal report (Turner, 2016b ). This particular implementation – having students replace individual words with pictures – has not been examined in the cognitive literature, presumably because no benefit would be expected. In any case, we need to be clearer about implementations for dual coding, and more research is needed to clarify how teachers can make use of the benefits conferred by multiple representations and picture superiority.

Critically, dual coding theory is distinct from the notion of “learning styles,” which describe the idea that individuals benefit from instruction that matches their modality preference. While this idea is pervasive and individuals often subjectively feel that they have a preference, evidence indicates that the learning styles theory is not supported by empirical findings (e.g., Kavale, Hirshoren, & Forness, 1998 ; Pashler, McDaniel, Rohrer, & Bjork, 2008 ; Rohrer & Pashler, 2012 ). That is, there is no evidence that instructing students in their preferred learning style leads to an overall improvement in learning (the “meshing” hypothesis). Moreover, learning styles have come to be described as a myth or urban legend within psychology (Coffield, Moseley, Hall, & Ecclestone, 2004 ; Hattie & Yates, 2014 ; Kirschner & van Merriënboer, 2013 ; Kirschner, 2017 ); skepticism about learning styles is a common stance amongst evidence-informed teachers (e.g., Saunders, 2016 ). Providing evidence against the notion of learning styles, Kraemer, Rosenberg, and Thompson-Schill ( 2009 ) found that individuals who scored as “verbalizers” and “visualizers” did not perform any better on experimental trials matching their preference. Instead, it has recently been shown that learning through one’s preferred learning style is associated with elevated subjective judgements of learning, but not objective performance (Knoll, Otani, Skeel, & Van Horn, 2017 ). In contrast to learning styles, dual coding is based on providing additional, complementary forms of information to enhance learning, rather than tailoring instruction to individuals’ preferences.

Genuine educational environments present many opportunities for combining the strategies outlined above. Spacing can be particularly potent for learning if it is combined with retrieval practice. The additive benefits of retrieval practice and spacing can be gained by engaging in retrieval practice multiple times (also known as distributed practice; see Cepeda et al., 2006 ). Interleaving naturally entails spacing if students interleave old and new material. Concrete examples can be both verbal and visual, making use of dual coding. In addition, the strategies of elaboration, concrete examples, and dual coding all work best when used as part of retrieval practice. For example, in the concept-mapping studies mentioned above (Blunt & Karpicke, 2014 ; Karpicke, Blunt, et al., 2014 ), creating concept maps while looking at course materials (e.g., a textbook) was not as effective for later memory as creating concept maps from memory. When practicing elaborative interrogation, students can start off answering the “how” and “why” questions they pose for themselves using class materials, and work their way up to answering them from memory. And when interleaving different problem types, students should be practicing answering them rather than just looking over worked examples.

But while these ideas for strategy combinations have empirical bases, it has not yet been established whether the benefits of the strategies to learning are additive, super-additive, or, in some cases, incompatible. Thus, future research needs to (a) better formalize the definition of each strategy (particularly critical for elaboration and dual coding), (b) identify best practices for implementation in the classroom, (c) delineate the boundary conditions of each strategy, and (d) strategically investigate interactions between the six strategies we outlined in this manuscript.

Aleven, V. A., & Koedinger, K. R. (2002). An effective metacognitive strategy: learning by doing and explaining with a computer-based cognitive tutor. Cognitive Science, 26 , 147–179.

Article   Google Scholar  

Anderson, J. R. (1983). A spreading activation theory of memory. Journal of Verbal Learning and Verbal Behavior, 22 , 261–295.

Arnold, K. M., & McDermott, K. B. (2013). Test-potentiated learning: distinguishing between direct and indirect effects of tests. Journal of Experimental Psychology: Learning, Memory, and Cognition, 39 , 940–945.

PubMed   Google Scholar  

Aylwin, S. (1990). Imagery and affect: big questions, little answers. In P. J. Thompson, D. E. Marks, & J. T. E. Richardson (Eds.), Imagery: Current developments . New York: International Library of Psychology.

Google Scholar  

Baldassari, M. J., & Kelley, M. (2012). Make’em laugh? The mnemonic effect of humor in a speech. Psi Chi Journal of Psychological Research, 17 , 2–9.

Barker, P. G., & Manji, K. A. (1989). Pictorial dialogue methods. International Journal of Man-Machine Studies, 31 , 323–347.

Bauernschmidt, A. (2017). GUEST POST: two examples are better than one. [Blog post]. The Learning Scientists Blog . Retrieved from http://www.learningscientists.org/blog/2017/5/30-1 . Accessed 25 Dec 2017.

Beaven, T. (2016). @doctorwhy @FurtherEdagogy @doc_kristy Right, I thought the whole point of dual coding was to use TWO codes: pics + words of the SAME info? [Tweet]. Retrieved from https://twitter.com/TitaBeaven/status/807504041341308929 . Accessed 25 Dec 2017.

Bellezza, F. S., Cheesman, F. L., & Reddy, B. G. (1977). Organization and semantic elaboration in free recall. Journal of Experimental Psychology: Human Learning and Memory, 3 , 539–550.

Benney, D. (2016). (Trying to apply) spacing in a content heavy subject [Blog post]. Retrieved from https://mrbenney.wordpress.com/2016/10/16/trying-to-apply-spacing-in-science/ . Accessed 25 Dec 2017.

Berry, D. C. (1983). Metacognitive experience and transfer of logical reasoning. Quarterly Journal of Experimental Psychology, 35A , 39–49.

Birnbaum, M. S., Kornell, N., Bjork, E. L., & Bjork, R. A. (2013). Why interleaving enhances inductive learning: the roles of discrimination and retrieval. Memory & Cognition, 41 , 392–402.

Bjork, R. A. (1999). Assessing our own competence: heuristics and illusions. In D. Gopher & A. Koriat (Eds.), Attention and peformance XVII. Cognitive regulation of performance: Interaction of theory and application (pp. 435–459). Cambridge, MA: MIT Press.

Bjork, R. A. (1994). Memory and metamemory considerations in the training of human beings. In J. Metcalfe & A. Shimamura (Eds.), Metacognition: Knowing about knowing (pp. 185–205). Cambridge, MA: MIT Press.

Bjork, R. A., & Bjork, E. L. (1992). A new theory of disuse and an old theory of stimulus fluctuation. From learning processes to cognitive processes: Essays in honor of William K. Estes, 2 , 35–67.

Bjork, E. L., & Bjork, R. A. (2011). Making things hard on yourself, but in a good way: creating desirable difficulties to enhance learning. Psychology and the real world: Essays illustrating fundamental contributions to society , 56–64.

Blunt, J. R., & Karpicke, J. D. (2014). Learning with retrieval-based concept mapping. Journal of Educational Psychology, 106 , 849–858.

Boulton, K. (2016). What does cognitive overload look like in the humanities? [Blog post]. Retrieved from https://educationechochamberuncut.wordpress.com/2016/03/05/what-does-cognitive-overload-look-like-in-the-humanities-kris-boulton-2/ . Accessed 25 Dec 2017.

Brown, P. C., Roediger, H. L., & McDaniel, M. A. (2014). Make it stick . Cambridge, MA: Harvard University Press.

Book   Google Scholar  

Butler, A. C. (2010). Repeated testing produces superior transfer of learning relative to repeated studying. Journal of Experimental Psychology: Learning, Memory, and Cognition, 36 , 1118–1133.

Caplan, J. B., & Madan, C. R. (2016). Word-imageability enhances association-memory by recruiting hippocampal activity. Journal of Cognitive Neuroscience, 28 , 1522–1538.

Article   PubMed   Google Scholar  

Cepeda, N. J., Pashler, H., Vul, E., Wixted, J. T., & Rohrer, D. (2006). Distributed practice in verbal recall tasks: a review and quantitative synthesis. Psychological Bulletin, 132 , 354–380.

Cepeda, N. J., Vul, E., Rohrer, D., Wixted, J. T., & Pashler, H. (2008). Spacing effects in learning a temporal ridgeline of optimal retention. Psychological Science, 19 , 1095–1102.

Chi, M. T., De Leeuw, N., Chiu, M. H., & LaVancher, C. (1994). Eliciting self-explanations improves understanding. Cognitive Science, 18 , 439–477.

Chi, M. T., Feltovich, P. J., & Glaser, R. (1981). Categorization and representation of physics problems by experts and novices. Cognitive Science, 5 , 121–152.

CIFE. (2012). No January A level and other changes. Retrieved from http://www.cife.org.uk/cife-general-news/no-january-a-level-and-other-changes/ . Accessed 25 Dec 2017.

Clark, D. (2016). One book on learning that every teacher, lecturer & trainer should read (7 reasons) [Blog post]. Retrieved from http://donaldclarkplanb.blogspot.com/2016/03/one-book-on-learning-that-every-teacher.html . Accessed 25 Dec 2017.

Clark, J. M., & Paivio, A. (1991). Dual coding theory and education. Educational Psychology Review, 3 , 149–210.

Class Teaching. (2013). Deep questioning [Blog post]. Retrieved from https://classteaching.wordpress.com/2013/07/12/deep-questioning/ . Accessed 25 Dec 2017.

Clinton, V., Alibali, M. W., & Nathan, M. J. (2016). Learning about posterior probability: do diagrams and elaborative interrogation help? The Journal of Experimental Education, 84 , 579–599.

Coffield, F., Moseley, D., Hall, E., & Ecclestone, K. (2004). Learning styles and pedagogy in post-16 learning: a systematic and critical review . London: Learning & Skills Research Centre.

Cohen, R. L. (1981). On the generality of some memory laws. Scandinavian Journal of Psychology, 22 , 267–281.

Cooper, H. (1989). Synthesis of research on homework. Educational Leadership, 47 , 85–91.

Corbett, A. T., Reed, S. K., Hoffmann, R., MacLaren, B., & Wagner, A. (2010). Interleaving worked examples and cognitive tutor support for algebraic modeling of problem situations. In Proceedings of the Thirty-Second Annual Meeting of the Cognitive Science Society (pp. 2882–2887).

Cox, D. (2015). No stakes testing – not telling students their results [Blog post]. Retrieved from https://missdcoxblog.wordpress.com/2015/06/06/no-stakes-testing-not-telling-students-their-results/ . Accessed 25 Dec 2017.

Cox, D. (2016a). Ditch revision. Teach it well [Blog post]. Retrieved from https://missdcoxblog.wordpress.com/2016/01/09/ditch-revision-teach-it-well/ . Accessed 25 Dec 2017.

Cox, D. (2016b). ‘They need to remember this in three years time’: spacing & interleaving for the new GCSEs [Blog post]. Retrieved from https://missdcoxblog.wordpress.com/2016/03/25/they-need-to-remember-this-in-three-years-time-spacing-interleaving-for-the-new-gcses/ . Accessed 25 Dec 2017.

Craik, F. I. (2002). Levels of processing: past, present… future? Memory, 10 , 305–318.

Craik, F. I., & Lockhart, R. S. (1972). Levels of processing: a framework for memory research. Journal of Verbal Learning and Verbal Behavior, 11 , 671–684.

Danan, M. (1992). Reversed subtitling and dual coding theory: new directions for foreign language instruction. Language Learning, 42 , 497–527.

Dettmers, S., Trautwein, U., & Lüdtke, O. (2009). The relationship between homework time and achievement is not universal: evidence from multilevel analyses in 40 countries. School Effectiveness and School Improvement, 20 , 375–405.

Dirkx, K. J., Kester, L., & Kirschner, P. A. (2014). The testing effect for learning principles and procedures from texts. The Journal of Educational Research, 107 , 357–364.

Dunlosky, J. (2013). Strengthening the student toolbox: study strategies to boost learning. American Educator, 37 (3), 12–21.

Dunlosky, J., Rawson, K. A., Marsh, E. J., Nathan, M. J., & Willingham, D. T. (2013). Improving students’ learning with effective learning techniques: promising directions from cognitive and educational psychology. Psychological Science in the Public Interest, 14 , 4–58.

Ebbinghaus, H. (1913). Memory (HA Ruger & CE Bussenius, Trans.). New York: Columbia University, Teachers College. (Original work published 1885) . Retrieved from http://psychclassics.yorku.ca/Ebbinghaus/memory8.htm . Accessed 25 Dec 2017.

Eglington, L. G., & Kang, S. H. (2016). Retrieval practice benefits deductive inference. Educational Psychology Review , 1–14.

Eitel, A., & Scheiter, K. (2015). Picture or text first? Explaining sequential effects when learning with pictures and text. Educational Psychology Review, 27 , 153–180.

Engelkamp, J., & Cohen, R. L. (1991). Current issues in memory of action events. Psychological Research, 53 , 175–182.

Engelkamp, J., & Zimmer, H. D. (1984). Motor programme information as a separable memory unit. Psychological Research, 46 , 283–299.

Fawcett, D. (2013). Can I be that little better at……using cognitive science/psychology/neurology to plan learning? [Blog post]. Retrieved from http://reflectionsofmyteaching.blogspot.com/2013/09/can-i-be-that-little-better-atusing.html . Accessed 25 Dec 2017.

Fiechter, J. L., & Benjamin, A. S. (2017). Diminishing-cues retrieval practice: a memory-enhancing technique that works when regular testing doesn’t. Psychonomic Bulletin & Review , 1–9.

Firth, J. (2016). Spacing in teaching practice [Blog post]. Retrieved from http://www.learningscientists.org/blog/2016/4/12-1 . Accessed 25 Dec 2017.

Fordham, M. [mfordhamhistory]. (2016). Is there a meaningful distinction in psychology between ‘thinking’ & ‘critical thinking’? [Tweet]. Retrieved from https://twitter.com/mfordhamhistory/status/809525713623781377 . Accessed 25 Dec 2017.

Fritz, C. O., Morris, P. E., Nolan, D., & Singleton, J. (2007). Expanding retrieval practice: an effective aid to preschool children’s learning. The Quarterly Journal of Experimental Psychology, 60 , 991–1004.

Gates, A. I. (1917). Recitation as a factory in memorizing. Archives of Psychology, 6.

Gick, M. L., & Holyoak, K. J. (1983). Schema induction and analogical transfer. Cognitive Psychology, 15 , 1–38.

Gorman, A. M. (1961). Recognition memory for nouns as a function of abstractedness and frequency. Journal of Experimental Psychology, 61 , 23–39.

Hainselin, M., Picard, L., Manolli, P., Vankerkore-Candas, S., & Bourdin, B. (2017). Hey teacher, don’t leave them kids alone: action is better for memory than reading. Frontiers in Psychology , 8 .

Harp, S. F., & Mayer, R. E. (1998). How seductive details do their damage. Journal of Educational Psychology, 90 , 414–434.

Hartland, W., Biddle, C., & Fallacaro, M. (2008). Audiovisual facilitation of clinical knowledge: A paradigm for dispersed student education based on Paivio’s dual coding theory. AANA Journal, 76 , 194–198.

Hattie, J., & Yates, G. (2014). Visible learning and the science of how we learn . New York: Routledge.

Hausman, H., & Kornell, N. (2014). Mixing topics while studying does not enhance learning. Journal of Applied Research in Memory and Cognition, 3 , 153–160.

Hinze, S. R., & Rapp, D. N. (2014). Retrieval (sometimes) enhances learning: performance pressure reduces the benefits of retrieval practice. Applied Cognitive Psychology, 28 , 597–606.

Hirshman, E. (2001). Elaboration in memory. In N. J. Smelser & P. B. Baltes (Eds.), International encyclopedia of the social & behavioral sciences (pp. 4369–4374). Oxford: Pergamon.

Chapter   Google Scholar  

Hobbiss, M. (2016). Make it meaningful! Elaboration [Blog post]. Retrieved from https://hobbolog.wordpress.com/2016/06/09/make-it-meaningful-elaboration/ . Accessed 25 Dec 2017.

Jones, F. (2016). Homework – is it really that useless? [Blog post]. Retrieved from http://www.learningscientists.org/blog/2016/4/5-1 . Accessed 25 Dec 2017.

Kaminski, J. A., & Sloutsky, V. M. (2013). Extraneous perceptual information interferes with children’s acquisition of mathematical knowledge. Journal of Educational Psychology, 105 (2), 351–363.

Kaminski, J. A., Sloutsky, V. M., & Heckler, A. F. (2008). The advantage of abstract examples in learning math. Science, 320 , 454–455.

Kang, S. H. (2016). Spaced repetition promotes efficient and effective learning policy implications for instruction. Policy Insights from the Behavioral and Brain Sciences, 3 , 12–19.

Kang, S. H. K., McDermott, K. B., & Roediger, H. L. (2007). Test format and corrective feedback modify the effects of testing on long-term retention. European Journal of Cognitive Psychology, 19 , 528–558.

Karpicke, J. D., & Aue, W. R. (2015). The testing effect is alive and well with complex materials. Educational Psychology Review, 27 , 317–326.

Karpicke, J. D., Blunt, J. R., Smith, M. A., & Karpicke, S. S. (2014). Retrieval-based learning: The need for guided retrieval in elementary school children. Journal of Applied Research in Memory and Cognition, 3 , 198–206.

Karpicke, J. D., Lehman, M., & Aue, W. R. (2014). Retrieval-based learning: an episodic context account. In B. H. Ross (Ed.), Psychology of Learning and Motivation (Vol. 61, pp. 237–284). San Diego, CA: Elsevier Academic Press.

Karpicke, J. D., Blunt, J. R., & Smith, M. A. (2016). Retrieval-based learning: positive effects of retrieval practice in elementary school children. Frontiers in Psychology, 7 .

Kavale, K. A., Hirshoren, A., & Forness, S. R. (1998). Meta-analytic validation of the Dunn and Dunn model of learning-style preferences: a critique of what was Dunn. Learning Disabilities Research & Practice, 13 , 75–80.

Khanna, M. M. (2015). Ungraded pop quizzes: test-enhanced learning without all the anxiety. Teaching of Psychology, 42 , 174–178.

Kirby, J. (2014). One scientific insight for curriculum design [Blog post]. Retrieved from https://pragmaticreform.wordpress.com/2014/05/05/scientificcurriculumdesign/ . Accessed 25 Dec 2017.

Kirschner, P. A. (2017). Stop propagating the learning styles myth. Computers & Education, 106 , 166–171.

Kirschner, P. A., & van Merriënboer, J. J. G. (2013). Do learners really know best? Urban legends in education. Educational Psychologist, 48 , 169–183.

Knoll, A. R., Otani, H., Skeel, R. L., & Van Horn, K. R. (2017). Learning style, judgments of learning, and learning of verbal and visual information. British Journal of Psychology, 108 , 544-563.

Kornell, N., & Bjork, R. A. (2008). Learning concepts and categories is spacing the “enemy of induction”? Psychological Science, 19 , 585–592.

Kornell, N., & Finn, B. (2016). Self-regulated learning: an overview of theory and data. In J. Dunlosky & S. Tauber (Eds.), The Oxford Handbook of Metamemory (pp. 325–340). New York: Oxford University Press.

Kornell, N., Klein, P. J., & Rawson, K. A. (2015). Retrieval attempts enhance learning, but retrieval success (versus failure) does not matter. Journal of Experimental Psychology: Learning, Memory, and Cognition, 41 , 283–294.

Kraemer, D. J. M., Rosenberg, L. M., & Thompson-Schill, S. L. (2009). The neural correlates of visual and verbal cognitive styles. Journal of Neuroscience, 29 , 3792–3798.

Article   PubMed   PubMed Central   Google Scholar  

Kraft, N. (2015). Spaced practice and repercussions for teaching. Retrieved from http://nathankraft.blogspot.com/2015/08/spaced-practice-and-repercussions-for.html . Accessed 25 Dec 2017.

Learning Scientists. (2016a). Weekly Digest #3: How teachers implement interleaving in their curriculum [Blog post]. Retrieved from http://www.learningscientists.org/blog/2016/3/28/weekly-digest-3 . Accessed 25 Dec 2017.

Learning Scientists. (2016b). Weekly Digest #13: how teachers implement retrieval in their classrooms [Blog post]. Retrieved from http://www.learningscientists.org/blog/2016/6/5/weekly-digest-13 . Accessed 25 Dec 2017.

Learning Scientists. (2016c). Weekly Digest #40: teachers’ implementation of principles from “Make It Stick” [Blog post]. Retrieved from http://www.learningscientists.org/blog/2016/12/18-1 . Accessed 25 Dec 2017.

Learning Scientists. (2017). Weekly Digest #54: is there an app for that? Studying 2.0 [Blog post]. Retrieved from http://www.learningscientists.org/blog/2017/4/9/weekly-digest-54 . Accessed 25 Dec 2017.

LeFevre, J.-A., & Dixon, P. (1986). Do written instructions need examples? Cognition and Instruction, 3 , 1–30.

Lew, K., Fukawa-Connelly, T., Mejí-Ramos, J. P., & Weber, K. (2016). Lectures in advanced mathematics: Why students might not understand what the mathematics professor is trying to convey. Journal of Research in Mathematics Education, 47 , 162–198.

Lindsey, R. V., Shroyer, J. D., Pashler, H., & Mozer, M. C. (2014). Improving students’ long-term knowledge retention through personalized review. Psychological Science, 25 , 639–647.

Lipko-Speed, A., Dunlosky, J., & Rawson, K. A. (2014). Does testing with feedback help grade-school children learn key concepts in science? Journal of Applied Research in Memory and Cognition, 3 , 171–176.

Lockhart, R. S., & Craik, F. I. (1990). Levels of processing: a retrospective commentary on a framework for memory research. Canadian Journal of Psychology, 44 , 87–112.

Lovell, O. (2017). How do we know what to put on the quiz? [Blog Post]. Retrieved from http://www.ollielovell.com/olliesclassroom/know-put-quiz/ . Accessed 25 Dec 2017.

Luehmann, A. L. (2008). Using blogging in support of teacher professional identity development: a case study. The Journal of the Learning Sciences, 17 , 287–337.

Madan, C. R., Glaholt, M. G., & Caplan, J. B. (2010). The influence of item properties on association-memory. Journal of Memory and Language, 63 , 46–63.

Madan, C. R., & Singhal, A. (2012a). Motor imagery and higher-level cognition: four hurdles before research can sprint forward. Cognitive Processing, 13 , 211–229.

Madan, C. R., & Singhal, A. (2012b). Encoding the world around us: motor-related processing influences verbal memory. Consciousness and Cognition, 21 , 1563–1570.

Madan, C. R., & Singhal, A. (2012c). Using actions to enhance memory: effects of enactment, gestures, and exercise on human memory. Frontiers in Psychology, 3 .

Madan, C. R., Chen, Y. Y., & Singhal, A. (2016). ERPs differentially reflect automatic and deliberate processing of the functional manipulability of objects. Frontiers in Human Neuroscience, 10 .

Mandler, G. (1979). Organization and repetition: organizational principles with special reference to rote learning. In L. G. Nilsson (Ed.), Perspectives on Memory Research (pp. 293–327). New York: Academic Press.

Marsh, E. J., Fazio, L. K., & Goswick, A. E. (2012). Memorial consequences of testing school-aged children. Memory, 20 , 899–906.

Mayer, R. E., & Gallini, J. K. (1990). When is an illustration worth ten thousand words? Journal of Educational Psychology, 82 , 715–726.

Mayer, R. E., & Moreno, R. (2003). Nine ways to reduce cognitive load in multimedia learning. Educational Psychologist, 38 , 43–52.

McDaniel, M. A., & Donnelly, C. M. (1996). Learning with analogy and elaborative interrogation. Journal of Educational Psychology, 88 , 508–519.

McDaniel, M. A., Thomas, R. C., Agarwal, P. K., McDermott, K. B., & Roediger, H. L. (2013). Quizzing in middle-school science: successful transfer performance on classroom exams. Applied Cognitive Psychology, 27 , 360–372.

McDermott, K. B., Agarwal, P. K., D’Antonio, L., Roediger, H. L., & McDaniel, M. A. (2014). Both multiple-choice and short-answer quizzes enhance later exam performance in middle and high school classes. Journal of Experimental Psychology: Applied, 20 , 3–21.

McHugh, A. (2013). High-stakes tests: bad for students, teachers, and education in general [Blog post]. Retrieved from https://teacherbiz.wordpress.com/2013/07/01/high-stakes-tests-bad-for-students-teachers-and-education-in-general/ . Accessed 25 Dec 2017.

McNeill, N. M., Uttal, D. H., Jarvin, L., & Sternberg, R. J. (2009). Should you show me the money? Concrete objects both hurt and help performance on mathematics problems. Learning and Instruction, 19 , 171–184.

Meider, W. (1990). “A picture is worth a thousand words”: from advertising slogan to American proverb. Southern Folklore, 47 , 207–225.

Michaela Community School. (2014). Homework. Retrieved from http://mcsbrent.co.uk/homework-2/ . Accessed 25 Dec 2017.

Montefinese, M., Ambrosini, E., Fairfield, B., & Mammarella, N. (2013). The “subjective” pupil old/new effect: is the truth plain to see? International Journal of Psychophysiology, 89 , 48–56.

O’Neil, H. F., Chung, G. K., Kerr, D., Vendlinski, T. P., Buschang, R. E., & Mayer, R. E. (2014). Adding self-explanation prompts to an educational computer game. Computers In Human Behavior, 30 , 23–28.

Overoye, A. L., & Storm, B. C. (2015). Harnessing the power of uncertainty to enhance learning. Translational Issues in Psychological Science, 1 , 140–148.

Paivio, A. (1971). Imagery and verbal processes . New York: Holt, Rinehart and Winston.

Paivio, A. (1986). Mental representations: a dual coding approach . New York: Oxford University Press.

Paivio, A. (2007). Mind and its evolution: a dual coding theoretical approach . Mahwah: Erlbaum.

Paivio, A. (2013). Dual coding theory, word abstractness, and emotion: a critical review of Kousta et al. (2011). Journal of Experimental Psychology: General, 142 , 282–287.

Paivio, A., & Csapo, K. (1969). Concrete image and verbal memory codes. Journal of Experimental Psychology, 80 , 279–285.

Paivio, A., & Csapo, K. (1973). Picture superiority in free recall: imagery or dual coding? Cognitive Psychology, 5 , 176–206.

Paivio, A., Walsh, M., & Bons, T. (1994). Concreteness effects on memory: when and why? Journal of Experimental Psychology: Learning, Memory, and Cognition, 20 , 1196–1204.

Pashler, H., McDaniel, M., Rohrer, D., & Bjork, R. (2008). Learning styles: concepts and evidence. Psychological Science in the Public Interest, 9 , 105–119.

Pashler, H., Bain, P. M., Bottge, B. A., Graesser, A., Koedinger, K., McDaniel, M., & Metcalfe, J. (2007). Organizing instruction and study to improve student learning. IES practice guide. NCER 2007–2004. National Center for Education Research .

Patel, R., Liu, R., & Koedinger, K. (2016). When to block versus interleave practice? Evidence against teaching fraction addition before fraction multiplication. In Proceedings of the 38th Annual Meeting of the Cognitive Science Society, Philadelphia, PA .

Penfound, B. (2017). Journey to interleaved practice #2 [Blog Post]. Retrieved from https://fullstackcalculus.com/2017/02/03/journey-to-interleaved-practice-2/ . Accessed 25 Dec 2017.

Penfound, B. [BryanPenfound]. (2016). Does blocked practice/learning lessen cognitive load? Does interleaved practice/learning provide productive struggle? [Tweet]. Retrieved from https://twitter.com/BryanPenfound/status/808759362244087808 . Accessed 25 Dec 2017.

Peterson, D. J., & Mulligan, N. W. (2010). Enactment and retrieval. Memory & Cognition, 38 , 233–243.

Picciotto, H. (2009). Lagging homework [Blog post]. Retrieved from http://blog.mathedpage.org/2013/06/lagging-homework.html . Accessed 25 Dec 2017.

Pomerance, L., Greenberg, J., & Walsh, K. (2016). Learning about learning: what every teacher needs to know. Retrieved from http://www.nctq.org/dmsView/Learning_About_Learning_Report . Accessed 25 Dec 2017.

Postman, L. (1976). Methodology of human learning. In W. K. Estes (Ed.), Handbook of learning and cognitive processes (Vol. 3). Hillsdale: Erlbaum.

Pressley, M., McDaniel, M. A., Turnure, J. E., Wood, E., & Ahmad, M. (1987). Generation and precision of elaboration: effects on intentional and incidental learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 13 , 291–300.

Reed, S. K. (2008). Concrete examples must jibe with experience. Science, 322 , 1632–1633.

researchED. (2013). How it all began. Retrieved from http://www.researched.org.uk/about/our-story/ . Accessed 25 Dec 2017.

Ritchie, S. J., Della Sala, S., & McIntosh, R. D. (2013). Retrieval practice, with or without mind mapping, boosts fact learning in primary school children. PLoS One, 8 (11), e78976.

Rittle-Johnson, B. (2006). Promoting transfer: effects of self-explanation and direct instruction. Child Development, 77 , 1–15.

Roediger, H. L. (1985). Remembering Ebbinghaus. [Retrospective review of the book On Memory , by H. Ebbinghaus]. Contemporary Psychology, 30 , 519–523.

Roediger, H. L. (2013). Applying cognitive psychology to education translational educational science. Psychological Science in the Public Interest, 14 , 1–3.

Roediger, H. L., & Karpicke, J. D. (2006). The power of testing memory: basic research and implications for educational practice. Perspectives on Psychological Science, 1 , 181–210.

Roediger, H. L., Putnam, A. L., & Smith, M. A. (2011). Ten benefits of testing and their applications to educational practice. In J. Mester & B. Ross (Eds.), The psychology of learning and motivation: cognition in education (pp. 1–36). Oxford: Elsevier.

Roediger, H. L., Finn, B., & Weinstein, Y. (2012). Applications of cognitive science to education. In Della Sala, S., & Anderson, M. (Eds.), Neuroscience in education: the good, the bad, and the ugly . Oxford, UK: Oxford University Press.

Roelle, J., & Berthold, K. (2017). Effects of incorporating retrieval into learning tasks: the complexity of the tasks matters. Learning and Instruction, 49 , 142–156.

Rohrer, D. (2012). Interleaving helps students distinguish among similar concepts. Educational Psychology Review, 24(3), 355–367.

Rohrer, D., Dedrick, R. F., & Stershic, S. (2015). Interleaved practice improves mathematics learning. Journal of Educational Psychology, 107 , 900–908.

Rohrer, D., & Pashler, H. (2012). Learning styles: Where’s the evidence? Medical Education, 46 , 34–35.

Rohrer, D., & Taylor, K. (2007). The shuffling of mathematics problems improves learning. Instructional Science, 35 , 481–498.

Rose, N. (2014). Improving the effectiveness of homework [Blog post]. Retrieved from https://evidenceintopractice.wordpress.com/2014/03/20/improving-the-effectiveness-of-homework/ . Accessed 25 Dec 2017.

Sadoski, M. (2005). A dual coding view of vocabulary learning. Reading & Writing Quarterly, 21 , 221–238.

Saunders, K. (2016). It really is time we stopped talking about learning styles [Blog post]. Retrieved from http://martingsaunders.com/2016/10/it-really-is-time-we-stopped-talking-about-learning-styles/ . Accessed 25 Dec 2017.

Schwartz, D. (2007). If a picture is worth a thousand words, why are you reading this essay? Social Psychology Quarterly, 70 , 319–321.

Shumaker, H. (2016). Homework is wrecking our kids: the research is clear, let’s ban elementary homework. Salon. Retrieved from http://www.salon.com/2016/03/05/homework_is_wrecking_our_kids_the_research_is_clear_lets_ban_elementary_homework . Accessed 25 Dec 2017.

Smith, A. M., Floerke, V. A., & Thomas, A. K. (2016). Retrieval practice protects memory against acute stress. Science, 354 , 1046–1048.

Smith, M. A., Blunt, J. R., Whiffen, J. W., & Karpicke, J. D. (2016). Does providing prompts during retrieval practice improve learning? Applied Cognitive Psychology, 30 , 784–802.

Smith, M. A., & Karpicke, J. D. (2014). Retrieval practice with short-answer, multiple-choice, and hybrid formats. Memory, 22 , 784–802.

Smith, M. A., Roediger, H. L., & Karpicke, J. D. (2013). Covert retrieval practice benefits retention as much as overt retrieval practice. Journal of Experimental Psychology: Learning, Memory, and Cognition, 39 , 1712–1725.

Son, J. Y., & Rivas, M. J. (2016). Designing clicker questions to stimulate transfer. Scholarship of Teaching and Learning in Psychology, 2 , 193–207.

Szpunar, K. K., Khan, N. Y., & Schacter, D. L. (2013). Interpolated memory tests reduce mind wandering and improve learning of online lectures. Proceedings of the National Academy of Sciences, 110 , 6313–6317.

Thomson, R., & Mehring, J. (2016). Better vocabulary study strategies for long-term learning. Kwansei Gakuin University Humanities Review, 20 , 133–141.

Trafton, J. G., & Reiser, B. J. (1993). Studying examples and solving problems: contributions to skill acquisition . Technical report, Naval HCI Research Lab, Washington, DC, USA.

Tran, R., Rohrer, D., & Pashler, H. (2015). Retrieval practice: the lack of transfer to deductive inferences. Psychonomic Bulletin & Review, 22 , 135–140.

Turner, K. [doc_kristy]. (2016a). My dual coding (in red) and some y8 work @AceThatTest they really enjoyed practising the technique [Tweet]. Retrieved from https://twitter.com/doc_kristy/status/807220355395977216 . Accessed 25 Dec 2017.

Turner, K. [doc_kristy]. (2016b). @FurtherEdagogy @doctorwhy their work is revision work, they already have the words on a different page, to compliment not replace [Tweet]. Retrieved from https://twitter.com/doc_kristy/status/807360265100599301 . Accessed 25 Dec 2017.

Valle, A., Regueiro, B., Núñez, J. C., Rodríguez, S., Piñeiro, I., & Rosário, P. (2016). Academic goals, student homework engagement, and academic achievement in elementary school. Frontiers in Psychology, 7 .

Van Gog, T., & Sweller, J. (2015). Not new, but nearly forgotten: the testing effect decreases or even disappears as the complexity of learning materials increases. Educational Psychology Review, 27 , 247–264.

Wammes, J. D., Meade, M. E., & Fernandes, M. A. (2016). The drawing effect: evidence for reliable and robust memory benefits in free recall. Quarterly Journal of Experimental Psychology, 69 , 1752–1776.

Weinstein, Y., Gilmore, A. W., Szpunar, K. K., & McDermott, K. B. (2014). The role of test expectancy in the build-up of proactive interference in long-term memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 40 , 1039–1048.

Weinstein, Y., Nunes, L. D., & Karpicke, J. D. (2016). On the placement of practice questions during study. Journal of Experimental Psychology: Applied, 22 , 72–84.

Weinstein, Y., & Weinstein-Jones, F. (2017). Topic and quiz spacing spreadsheet: a planning tool for teachers [Blog Post]. Retrieved from http://www.learningscientists.org/blog/2017/5/11-1 . Accessed 25 Dec 2017.

Weinstein-Jones, F., & Weinstein, Y. (2017). Topic spacing spreadsheet for teachers [Excel macro]. Zenodo. http://doi.org/10.5281/zenodo.573764 . Accessed 25 Dec 2017.

Williams, D. [FurtherEdagogy]. (2016). @doctorwhy @doc_kristy word accompanying the visual? I’m unclear how removing words benefit? Would a flow chart better suit a scientific exp? [Tweet]. Retrieved from https://twitter.com/FurtherEdagogy/status/807356800509104128 . Accessed 25 Dec 2017.

Wood, B. (2017). And now for something a little bit different….[Blog post]. Retrieved from https://justateacherstandinginfrontofaclass.wordpress.com/2017/04/20/and-now-for-something-a-little-bit-different/ . Accessed 25 Dec 2017.

Wooldridge, C. L., Bugg, J. M., McDaniel, M. A., & Liu, Y. (2014). The testing effect with authentic educational materials: a cautionary note. Journal of Applied Research in Memory and Cognition, 3 , 214–221.

Young, C. (2016). Mini-tests. Retrieved from https://colleenyoung.wordpress.com/revision-activities/mini-tests/ . Accessed 25 Dec 2017.

Download references

Acknowledgements

Not applicable.

YW and MAS were partially supported by a grant from The IDEA Center.

Availability of data and materials

Author information, authors and affiliations.

Department of Psychology, University of Massachusetts Lowell, Lowell, MA, USA

Yana Weinstein

Department of Psychology, Boston College, Chestnut Hill, MA, USA

Christopher R. Madan

School of Psychology, University of Nottingham, Nottingham, UK

Department of Psychology, Rhode Island College, Providence, RI, USA

Megan A. Sumeracki

You can also search for this author in PubMed   Google Scholar

Contributions

YW took the lead on writing the “Spaced practice”, “Interleaving”, and “Elaboration” sections. CRM took the lead on writing the “Concrete examples” and “Dual coding” sections. MAS took the lead on writing the “Retrieval practice” section. All authors edited each others’ sections. All authors were involved in the conception and writing of the manuscript. All authors gave approval of the final version.

Corresponding author

Correspondence to Yana Weinstein .

Ethics declarations

Ethics approval and consent to participate, consent for publication, competing interests.

YW and MAS run a blog, “The Learning Scientists Blog”, which is cited in the tutorial review. The blog does not make money. Free resources on the strategies described in this tutorial review are provided on the blog. Occasionally, YW and MAS are invited by schools/school districts to present research findings from cognitive psychology applied to education.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/ ), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Cite this article.

Weinstein, Y., Madan, C.R. & Sumeracki, M.A. Teaching the science of learning. Cogn. Research 3 , 2 (2018). https://doi.org/10.1186/s41235-017-0087-y

Download citation

Received : 20 December 2016

Accepted : 02 December 2017

Published : 24 January 2018

DOI : https://doi.org/10.1186/s41235-017-0087-y

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

how does research help in scientific learning describe

  • Copy/Paste Link Link Copied

Using Research and Reason in Education: How Teachers Can Use Scientifically Based Research to Make Curricular & Instructional Decisions

Paula J. Stanovich and Keith E. Stanovich University of Toronto

Produced by RMC Research Corporation, Portsmouth, New Hampshire

This publication was produced under National Institute for Literacy Contract No. ED-00CO-0093 with RMC Research Corporation. Sandra Baxter served as the contracting officer's technical representative. The views expressed herein do not necessarily represent the policies of the National Institute for Literacy. No official endorsement by the National Institute for Literacy or any product, commodity, service, or enterprise is intended or should be inferred.

The National Institute for Literacy

Sandra Baxter, Interim Executive Director Lynn Reddy, Communications Director

To order copies of this booklet, contact the National Institute for Literacy at EdPubs, PO Box 1398, Jessup, MD 20794-1398. Call 800-228-8813 or email [email protected] .

The National Institute for Literacy, an independent federal organization, supports the development of high quality state, regional, and national literacy services so that all Americans can develop the literacy skills they need to succeed at work, at home, and in the community.

The Partnership for Reading, a project administered by the National Institute for Literacy, is a collaborative effort of the National Institute for Literacy, the National Institute of Child Health and Human Development, the U.S. Department of Education, and the U.S. Department of Health and Human Services to make evidence-based reading research available to educators, parents, policy makers, and others with an interest in helping all people learn to read well.

Editorial support provided by C. Ralph Adler and Elizabeth Goldman, and design/production support provided by Diane Draper and Bob Kozman, all of RMC Research Corporation.

Introduction

In the recent move toward standards-based reform in public education, many educational reform efforts require schools to demonstrate that they are achieving educational outcomes with students performing at a required level of achievement. Federal and state legislation, in particular, has codified this standards-based movement and tied funding and other incentives to student achievement.

At first, demonstrating student learning may seem like a simple task, but reflection reveals that it is a complex challenge requiring educators to use specific knowledge and skills. Standards-based reform has many curricular and instructional prerequisites. The curriculum must represent the most important knowledge, skills, and attributes that schools want their students to acquire because these learning outcomes will serve as the basis of assessment instruments. Likewise, instructional methods should be appropriate for the designed curriculum. Teaching methods should lead to students learning the outcomes that are the focus of the assessment standards.

Standards- and assessment-based educational reforms seek to obligate schools and teachers to supply evidence that their instructional methods are effective. But testing is only one of three ways to gather evidence about the effectiveness of instructional methods. Evidence of instructional effectiveness can come from any of the following sources:

  • Demonstrated student achievement in formal testing situations implemented by the teacher, school district, or state;
  • Published findings of research-based evidence that the instructional methods being used by teachers lead to student achievement; or
  • Proof of reason-based practice that converges with a research-based consensus in the scientific literature. This type of justification of educational practice becomes important when direct evidence may be lacking (a direct test of the instructional efficacy of a particular method is absent), but there is a theoretical link to research-based evidence that can be traced.

Each of these methods has its pluses and minuses. While testing seems the most straightforward, it is not necessarily the clear indicator of good educational practice that the public seems to think it is. The meaning of test results is often not immediately clear. For example, comparing averages or other indicators of overall performance from tests across classrooms, schools, or school districts takes no account of the resources and support provided to a school, school district, or individual professional. Poor outcomes do not necessarily indict the efforts of physicians in Third World countries who work with substandard equipment and supplies. Likewise, objective evidence of below-grade or below-standard mean performance of a group of students should not necessarily indict their teachers if essential resources and supports (e.g., curriculum materials, institutional aid, parental cooperation) to support teaching efforts were lacking. However, the extent to which children could learn effectively even in under-equipped schools is not known because evidence-based practices are, by and large, not implemented. That is, there is evidence that children experiencing academic difficulties can achieve more educationally if they are taught with effective methods; sadly, scientific research about what works does not usually find its way into most classrooms.

Testing provides a useful professional calibrator, but it requires great contextual sensitivity in interpretation. It is not the entire solution for assessing the quality of instructional efforts. This is why research-based and reason-based educational practice are also crucial for determining the quality and impact of programs. Teachers thus have the responsibility to be effective users and interpreters of research. Providing a survey and synthesis of the most effective practices for a variety of key curriculum goals (such as literacy and numeracy) would seem to be a helpful idea, but no document could provide all of that information. (Many excellent research syntheses exist, such as the National Reading Panel, 2000; Snow, Burns, & Griffin, 1998; Swanson, 1999, but the knowledge base about effective educational practices is constantly being updated, and many issues remain to be settled.)

As professionals, teachers can become more effective and powerful by developing the skills to recognize scientifically based practice and, when the evidence is not available, use some basic research concepts to draw conclusions on their own. This paper offers a primer for those skills that will allow teachers to become independent evaluators of educational research.

The Formal Scientific Method and Scientific Thinking in Educational Practice

When you go to your family physician with a medical complaint, you expect that the recommended treatment has proven to be effective with many other patients who have had the same symptoms. You may even ask why a particular medication is being recommended for you. The doctor may summarize the background knowledge that led to that recommendation and very likely will cite summary evidence from the drug's many clinical trials and perhaps even give you an overview of the theory behind the drug's success in treating symptoms like yours.

All of this discussion will probably occur in rather simple terms, but that does not obscure the fact that the doctor has provided you with data to support a theory about your complaint and its treatment. The doctor has shared knowledge of medical science with you. And while everyone would agree that the practice of medicine has its "artful" components (for example, the creation of a healing relationship between doctor and patient), we have come to expect and depend upon the scientific foundation that underpins even the artful aspects of medical treatment. Even when we do not ask our doctors specifically for the data, we assume it is there, supporting our course of treatment.

Actually, Vaughn and Dammann (2001) have argued that the correct analogy is to say that teaching is in part a craft, rather than an art. They point out that craft knowledge is superior to alternative forms of knowledge such as superstition and folklore because, among other things, craft knowledge is compatible with scientific knowledge and can be more easily integrated with it. One could argue that in this age of education reform and accountability, educators are being asked to demonstrate that their craft has been integrated with science--that their instructional models, methods, and materials can be likened to the evidence a physician should be able to produce showing that a specific treatment will be effective. As with medicine, constructing teaching practice on a firm scientific foundation does not mean denying the craft aspects of teaching.

Architecture is another professional practice that, like medicine and education, grew from being purely a craft to a craft based firmly on a scientific foundation. Architects wish to design beautiful buildings and environments, but they must also apply many foundational principles of engineering and adhere to structural principles. If they do not, their buildings, however beautiful they may be, will not stand. Similarly, a teacher seeks to design lessons that stimulate students and entice them to learn--lessons that are sometimes a beauty to behold. But if the lessons are not based in the science of pedagogy, they, like poorly constructed buildings, will fail.

Education is informed by formal scientific research through the use of archival research-based knowledge such as that found in peer-reviewed educational journals. Preservice teachers are first exposed to the formal scientific research in their university teacher preparation courses (it is hoped), through the instruction received from their professors, and in their course readings (e.g., textbooks, journal articles). Practicing teachers continue their exposure to the results of formal scientific research by subscribing to and reading professional journals, by enrolling in graduate programs, and by becoming lifelong learners.

Scientific thinking in practice is what characterizes reflective teachers--those who inquire into their own practice and who examine their own classrooms to find out what works best for them and their students. What follows in this document is, first, a "short course" on how to become an effective consumer of the archival literature that results from the conduct of formal scientific research in education and, second, a section describing how teachers can think scientifically in their ongoing reflection about their classroom practice.

Being able to access mechanisms that evaluate claims about teaching methods and to recognize scientific research and its findings is especially important for teachers because they are often confronted with the view that "anything goes" in the field of education--that there is no such thing as best practice in education, that there are no ways to verify what works best, that teachers should base their practice on intuition, or that the latest fad must be the best way to teach, please a principal, or address local school reform. The "anything goes" mentality actually represents a threat to teachers' professional autonomy. It provides a fertile environment for gurus to sell untested educational "remedies" that are not supported by an established research base.

Teachers as independent evaluators of research evidence

One factor that has impeded teachers from being active and effective consumers of educational science has been a lack of orientation and training in how to understand the scientific process and how that process results in the cumulative growth of knowledge that leads to validated educational practice. Educators have only recently attempted to resolve educational disputes scientifically, and teachers have not yet been armed with the skills to evaluate disputes on their own.

Educational practice has suffered greatly because its dominant model for resolving or adjudicating disputes has been more political (with its corresponding factions and interest groups) than scientific. The field's failure to ground practice in the attitudes and values of science has made educators susceptible to the "authority syndrome" as well as fads and gimmicks that ignore evidence-based practice.

When our ancestors needed information about how to act, they would ask their elders and other wise people. Contemporary society and culture are much more complex. Mass communication allows virtually anyone (on the Internet, through self-help books) to proffer advice, to appear to be a "wise elder." The current problem is how to sift through the avalanche of misguided and uninformed advice to find genuine knowledge. Our problem is not information; we have tons of information. What we need are quality control mechanisms.

Peer-reviewed research journals in various disciplines provide those mechanisms. However, even with mechanisms like these in behavioral science and education, it is all too easy to do an "end run" around the quality control they provide. Powerful information dissemination outlets such as publishing houses and mass media frequently do not discriminate between good and bad information. This provides a fertile environment for gurus to sell untested educational "remedies" that are not supported by an established research base and, often, to discredit science, scientific evidence, and the notion of research-based best practice in education. As Gersten (2001) notes, both seasoned and novice teachers are "deluged with misinformation" (p. 45).

We need tools for evaluating the credibility of these many and varied sources of information; the ability to recognize research-based conclusions is especially important. Acquiring those tools means understanding scientific values and learning methods for making inferences from the research evidence that arises through the scientific process. These values and methods were recently summarized by a panel of the National Academy of Sciences convened on scientific inquiry in education (Shavelson & Towne, 2002), and our discussion here will be completely consistent with the conclusions of that NAS panel.

The scientific criteria for evaluating knowledge claims are not complicated and could easily be included in initial teacher preparation programs, but they usually are not (which deprives teachers from an opportunity to become more efficient and autonomous in their work right at the beginning of their careers). These criteria include:

  • the publication of findings in refereed journals (scientific publications that employ a process of peer review),
  • the duplication of the results by other investigators, and
  • a consensus within a particular research community on whether there is a critical mass of studies that point toward a particular conclusion.

In their discussion of the evolution of the American Educational Research Association (AERA) conference and the importance of separating research evidence from opinion when making decisions about instructional practice, Levin and O'Donnell (2000) highlight the importance of enabling teachers to become independent evaluators of research evidence. Being aware of the importance of research published in peer-reviewed scientific journals is only the first step because this represents only the most minimal of criteria. Following is a review of some of the principles of research-based evaluation that teachers will find useful in their work.

Publicly verifiable research conclusions: Replication and Peer Review

Source credibility: the consumer protection of peer reviewed journals..

The front line of defense for teachers against incorrect information in education is the existence of peer-reviewed journals in education, psychology, and other related social sciences. These journals publish empirical research on topics relevant to classroom practice and human cognition and learning. They are the first place that teachers should look for evidence of validated instructional practices.

As a general quality control mechanism, peer review journals provide a "first pass" filter that teachers can use to evaluate the plausibility of educational claims. To put it more concretely, one ironclad criterion that will always work for teachers when presented with claims of uncertain validity is the question: Have findings supporting this method been published in recognized scientific journals that use some type of peer review procedure? The answer to this question will almost always separate pseudoscientific claims from the real thing.

In a peer review, authors submit a paper to a journal for publication, where it is critiqued by several scientists. The critiques are reviewed by an editor (usually a scientist with an extensive history of work in the specialty area covered by the journal). The editor then decides whether the weight of opinion warrants immediate publication, publication after further experimentation and statistical analysis, or rejection because the research is flawed or does not add to the knowledge base. Most journals carry a statement of editorial policy outlining their exact procedures for publication, so it is easy to check whether a journal is in fact, peer-reviewed.

Peer review is a minimal criterion, not a stringent one. Not all information in peer-reviewed scientific journals is necessarily correct, but it has at the very least undergone a cycle of peer criticism and scrutiny. However, it is because the presence of peer-reviewed research is such a minimal criterion that its absence becomes so diagnostic. The failure of an idea, a theory, an educational practice, behavioral therapy, or a remediation technique to have adequate documentation in the peer-reviewed literature of a scientific discipline is a very strong indication to be wary of the practice.

The mechanisms of peer review vary somewhat from discipline to discipline, but the underlying rationale is the same. Peer review is one way (replication of a research finding is another) that science institutionalizes the attitudes of objectivity and public criticism. Ideas and experimentation undergo a honing process in which they are submitted to other critical minds for evaluation. Ideas that survive this critical process have begun to meet the criterion of public verifiability. The peer review process is far from perfect, but it really is the only external consumer protection that teachers have.

The history of reading instruction illustrates the high cost that is paid when the peer-reviewed literature is ignored, when the normal processes of scientific adjudication are replaced with political debates and rhetorical posturing. A vast literature has been generated on best practices that foster children's reading acquisition (Adams, 1990; Anderson, Hiebert, Scott, & Wilkinson, 1985; Chard & Osborn, 1999; Cunningham & Allington, 1994; Ehri, Nunes, Stahl, & Willows, 2001; Moats, 1999; National Reading Panel, 2000; Pearson, 1993; Pressley, 1998; Pressley, Rankin, & Yokol, 1996; Rayner, Foorman, Perfetti, Pesetsky, & Seidenberg, 2002; Reading Coherence Initiative, 1999; Snow, Burns, & Griffin, 1998; Spear-Swerling & Sternberg, 2001). Yet much of this literature remains unknown to many teachers, contributing to the frustrating lack of clarity about accepted, scientifically validated findings and conclusions on reading acquisition.

Teachers should also be forewarned about the difference between professional education journals that are magazines of opinion in contrast to journals where primary reports of research, or reviews of research, are peer reviewed. For example, the magazines Phi Delta Kappan and Educational Leadership both contain stimulating discussions of educational issues, but neither is a peer-reviewed journal of original research. In contrast, the American Educational Research Journal (a flagship journal of the AERA) and the Journal of Educational Psychology (a flagship journal of the American Psychological Association) are both peer-reviewed journals of original research. Both are main sources for evidence on validated techniques of reading instruction and for research on aspects of the reading process that are relevant to a teacher's instructional decisions.

This is true, too, of presentations at conferences of educational organizations. Some are data-based presentations of original research. Others are speeches reflecting personal opinion about educational problems. While these talks can be stimulating and informative, they are not a substitute for empirical research on educational effectiveness.

Replication and the importance of public verifiability.

Research-based conclusions about educational practice are public in an important sense: they do not exist solely in the mind of a particular individual but have been submitted to the scientific community for criticism and empirical testing by others. Knowledge considered "special"--the province of the thought of an individual and immune from scrutiny and criticism by others--can never have the status of scientific knowledge. Research-based conclusions, when published in a peer reviewed journal, become part of the public realm, available to all, in a way that claims of "special expertise" are not.

Replication is the second way that science uses to make research-based conclusions concrete and "public." In order to be considered scientific, a research finding must be presented to other researchers in the scientific community in a way that enables them to attempt the same experiment and obtain the same results. When the same results occur, the finding has been replicated . This process ensures that a finding is not the result of the errors or biases of a particular investigator. Replicable findings become part of the converging evidence that forms the basis of a research-based conclusion about educational practice.

John Donne told us that "no man is an island." Similarly, in science, no researcher is an island. Each investigator is connected to the research community and its knowledge base. This interconnection enables science to grow cumulatively and for research-based educational practice to be built on a convergence of knowledge from a variety of sources. Researchers constantly build on previous knowledge in order to go beyond what is currently known. This process is possible only if research findings are presented in such a way that any investigator can use them to build on.

Philosopher Daniel Dennett (1995) has said that science is "making mistakes in public. Making mistakes for all to see, in the hopes of getting the others to help with the corrections" (p. 380). We might ask those proposing an educational innovation for the evidence that they have in fact "made some mistakes in public." Legitimate scientific disciplines can easily provide such evidence. For example, scientists studying the psychology of reading once thought that reading difficulties were caused by faulty eye movements. This hypothesis has been shown to be in error, as has another that followed it, that so-called visual reversal errors were a major cause of reading difficulty. Both hypotheses were found not to square with the empirical evidence (Rayner, 1998; Share & Stanovich, 1995). The hypothesis that reading difficulties can be related to language difficulties at the phonological level has received much more support (Liberman, 1999; National Reading Panel, 2000; Rayner, Foorman, Perfetti, Pesetsky, & Seidenberg, 2002; Shankweiler, 1999; Stanovich, 2000).

After making a few such "errors" in public, reading scientists have begun, in the last 20 years, to get it right. But the only reason teachers can have confidence that researchers are now "getting it right" is that researchers made it open, public knowledge when they got things wrong. Proponents of untested and pseudoscientific educational practices will never point to cases where they "got it wrong" because they are not committed to public knowledge in the way that actual science is. These proponents do not need, as Dennett says, "to get others to help in making the corrections" because they have no intention of correcting their beliefs and prescriptions based on empirical evidence.

Education is so susceptible to fads and unproven practices because of its tacit endorsement of a personalistic view of knowledge acquisition--one that is antithetical to the scientific value of the public verifiability of knowledge claims. Many educators believe that knowledge resides within particular individuals--with particularly elite insights--who then must be called upon to dispense this knowledge to others. Indeed, some educators reject public, depersonalized knowledge in social science because they believe it dehumanizes people. Science, however, with its conception of publicly verifiable knowledge, actually democratizes knowledge. It frees practitioners and researchers from slavish dependence on authority.

Subjective, personalized views of knowledge degrade the human intellect by creating conditions that subjugate it to an elite whose "personal" knowledge is not accessible to all (Bronowski, 1956, 1977; Dawkins, 1998; Gross, Levitt, & Lewis, 1997; Medawar, 1982, 1984, 1990; Popper, 1972; Wilson, 1998). Empirical science, by generating knowledge and moving it into the public domain, is a liberating force. Teachers can consult the research and decide for themselves whether the state of the literature is as the expert portrays it. All teachers can benefit from some rudimentary grounding in the most fundamental principles of scientific inference. With knowledge of a few uncomplicated research principles, such as control, manipulation, and randomization, anyone can enter the open, public discourse about empirical findings. In fact, with the exception of a few select areas such as the eye movement research mentioned previously, much of the work described in noted summaries of reading research (e.g., Adams, 1990; Snow, Burns, & Griffin, 1998) could easily be replicated by teachers themselves.

There are many ways that the criteria of replication and peer review can be utilized in education to base practitioner training on research-based best practice. Take continuing teacher education in the form of inservice sessions, for example. Teachers and principals who select speakers for professional development activities should ask speakers for the sources of their conclusions in the form of research evidence in peer-reviewed journals. They should ask speakers for bibliographies of the research evidence published on the practices recommended in their presentations.

The science behind research-based practice relies on systematic empiricism

Empiricism is the practice of relying on observation. Scientists find out about the world by examining it. The refusal by some scientists to look into Galileo's telescope is an example of how empiricism has been ignored at certain points in history. It was long believed that knowledge was best obtained through pure thought or by appealing to authority. Galileo claimed to have seen moons around the planet Jupiter. Another scholar, Francesco Sizi, attempted to refute Galileo, not with observations, but with the following argument:

There are seven windows in the head, two nostrils, two ears, two eyes and a mouth; so in the heavens there are two favorable stars, two unpropitious, two luminaries, and Mercury alone undecided and indifferent. From which and many other similar phenomena of nature such as the seven metals, etc., which it were tedious to enumerate, we gather that the number of planets is necessarily seven...ancient nations, as well as modern Europeans, have adopted the division of the week into seven days, and have named them from the seven planets; now if we increase the number of planets, this whole system falls to the ground...moreover, the satellites are invisible to the naked eye and therefore can have no influence on the earth and therefore would be useless and therefore do not exist. (Holton & Roller, 1958, p. 160)

Three centuries of the demonstrated power of the empirical approach give us an edge on poor Sizi. Take away those years of empiricism, and many of us might have been there nodding our heads and urging him on. In fact, the empirical approach is not necessarily obvious, which is why we often have to teach it, even in a society that is dominated by science.

Empiricism pure and simple is not enough, however. Observation itself is fine and necessary, but pure, unstructured observation of the natural world will not lead to scientific knowledge. Write down every observation you make from the time you get up in the morning to the time you go to bed on a given day. When you finish, you will have a great number of facts, but you will not have a greater understanding of the world. Scientific observation is termed systematic because it is structured so that the results of the observation reveal something about the underlying causal structure of events in the world. Observations are structured so that, depending upon the outcome of the observation, some theories of the causes of the outcome are supported and others rejected.

Teachers can benefit by understanding two things about research and causal inferences. The first is the simple (but sometimes obscured) fact that statements about best instructional practices are statements that contain a causal claim. These statements claim that one type of method or practice causes superior educational outcomes. Second, teachers must understand how the logic of the experimental method provides the critical support for making causal inferences.

Science addresses testable questions

Science advances by positing theories to account for particular phenomena in the world, by deriving predictions from these theories, by testing the predictions empirically, and by modifying the theories based on the tests (the sequence is typically theory -> prediction -> test -> theory modification). What makes a theory testable? A theory must have specific implications for observable events in the natural world.

Science deals only with a certain class of problem: the kind that is empirically solvable. That does not mean that different classes of problems are inherently solvable or unsolvable and that this division is fixed forever. Quite the contrary: some problems that are currently unsolvable may become solvable as theory and empirical techniques become more sophisticated. For example, decades ago historians would not have believed that the controversial issue of whether Thomas Jefferson had a child with his slave Sally Hemings was an empirically solvable question. Yet, by 1998, this problem had become solvable through advances in genetic technology, and a paper was published in the journal Nature (Foster, Jobling, Taylor, Donnelly, Deknijeff, Renemieremet, Zerjal, & Tyler-Smith, 1998) on the question.

The criterion of whether a problem is "testable" is called the falsifiability criterion: a scientific theory must always be stated in such a way that the predictions derived from it can potentially be shown to be false. The falsifiability criterion states that, for a theory to be useful, the predictions drawn from it must be specific. The theory must go out on a limb, so to speak, because in telling us what should happen, the theory must also imply that certain things will not happen. If these latter things do happen, it is a clear signal that something is wrong with the theory. It may need to be modified, or we may need to look for an entirely new theory. Either way, we will end up with a theory that is closer to the truth.

In contrast, if a theory does not rule out any possible observations, then the theory can never be changed, and we are frozen into our current way of thinking with no possibility of progress. A successful theory cannot posit or account for every possible happening. Such a theory robs itself of any predictive power.

What we are talking about here is a certain type of intellectual honesty. In science, the proponent of a theory is always asked to address this question before the data are collected: "What data pattern would cause you to give up, or at least to alter, this theory?" In the same way, the falsifiability criterion is a useful consumer protection for the teacher when evaluating claims of educational effectiveness. Proponents of an educational practice should be asked for evidence; they should also be willing to admit that contrary data will lead them to abandon the practice. True scientific knowledge is held tentatively and is subject to change based on contrary evidence. Educational remedies not based on scientific evidence will often fail to put themselves at risk by specifying what data patterns would prove them false.

Objectivity and intellectual honesty

Objectivity, another form of intellectual honesty in research, means that we let nature "speak for itself" without imposing our wishes on it--that we report the results of experimentation as accurately as we can and that we interpret them as fairly as possible. (The fact that this goal is unattainable for any single human being should not dissuade us from holding objectivity as a value.)

In the language of the general public, open-mindedness means being open to possible theories and explanations for a particular phenomenon. But in science it means that and something more. Philosopher Jonathan Adler (1998) teaches us that science values another aspect of open-mindedness even more highly: "What truly marks an open-minded person is the willingness to follow where evidence leads. The open-minded person is willing to defer to impartial investigations rather than to his own predilections...Scientific method is attunement to the world, not to ourselves" (p. 44).

Objectivity is critical to the process of science, but it does not mean that such attitudes must characterize each and every scientist for science as a whole to work. Jacob Bronowski (1973, 1977) often argued that the unique power of science to reveal knowledge about the world does not arise because scientists are uniquely virtuous (that they are completely objective or that they are never biased in interpreting findings, for example). It arises because fallible scientists are immersed in a process of checks and balances --a process in which scientists are always there to criticize and to root out errors. Philosopher Daniel Dennett (1999/2000) points out that "scientists take themselves to be just as weak and fallible as anybody else, but recognizing those very sources of error in themselvesÉthey have devised elaborate systems to tie their own hands, forcibly preventing their frailties and prejudices from infecting their results" (p. 42). More humorously, psychologist Ray Nickerson (1998) makes the related point that the vanities of scientists are actually put to use by the scientific process, by noting that it is "not so much the critical attitude that individual scientists have taken with respect to their own ideas that has given science its success...but more the fact that individual scientists have been highly motivated to demonstrate that hypotheses that are held by some other scientists are false" (p. 32). These authors suggest that the strength of scientific knowledge comes not because scientists are virtuous, but from the social process where scientists constantly cross-check each others' knowledge and conclusions.

The public criteria of peer review and replication of findings exist in part to keep checks on the objectivity of individual scientists. Individuals cannot hide bias and nonobjectivity by personalizing their claims and keeping them from public scrutiny. Science does not accept findings that have failed the tests of replication and peer review precisely because it wants to ensure that all findings in science are in the public domain, as defined above. Purveyors of pseudoscientific educational practices fail the test of objectivity and are often identifiable by their attempts to do an "end run" around the public mechanisms of science by avoiding established peer review mechanisms and the information-sharing mechanisms that make replication possible. Instead, they attempt to promulgate their findings directly to consumers, such as teachers.

The principle of converging evidence

The principle of converging evidence has been well illustrated in the controversies surrounding the teaching of reading. The methods of systematic empiricism employed in the study of reading acquisition are many and varied. They include case studies, correlational studies, experimental studies, narratives, quasi-experimental studies, surveys, epidemiological studies and many others. The results of many of these studies have been synthesized in several important research syntheses (Adams, 1990; Ehri et al., 2001; National Reading Panel, 2000; Pressley, 1998; Rayner et al., 2002; Reading Coherence Initiative, 1999; Share & Stanovich, 1995; Snow, Burns, & Griffin, 1998; Snowling, 2000; Spear-Swerling & Sternberg, 2001; Stanovich, 2000). These studies were used in a process of establishing converging evidence, a principle that governs the drawing of the conclusion that a particular educational practice is research-based.

The principle of converging evidence is applied in situations requiring a judgment about where the "preponderance of evidence" points. Most areas of science contain competing theories. The extent to which a particular study can be seen as uniquely supporting one particular theory depends on whether other competing explanations have been ruled out. A particular experimental result is never equally relevant to all competing theories. An experiment may be a very strong test of one or two alternative theories but a weak test of others. Thus, research is considered highly convergent when a series of experiments consistently supports a given theory while collectively eliminating the most important competing explanations. Although no single experiment can rule out all alternative explanations, taken collectively, a series of partially diagnostic experiments can lead to a strong conclusion if the data converge.

Contrast this idea of converging evidence with the mistaken view that a problem in science can be solved with a single, crucial experiment, or that a single critical insight can advance theory and overturn all previous knowledge. This view of scientific progress fits nicely with the operation of the news media, in which history is tracked by presenting separate, disconnected "events" in bite-sized units. This is a gross misunderstanding of scientific progress and, if taken too seriously, leads to misconceptions about how conclusions are reached about research-based practices.

One experiment rarely decides an issue, supporting one theory and ruling out all others. Issues are most often decided when the community of scientists gradually begins to agree that the preponderance of evidence supports one alternative theory rather than another. Scientists do not evaluate data from a single experiment that has finally been designed in the perfect way. They most often evaluate data from dozens of experiments, each containing some flaws but providing part of the answer.

Although there are many ways in which an experiment can go wrong (or become confounded ), a scientist with experience working on a particular problem usually has a good idea of what most of the critical factors are, and there are usually only a few. The idea of converging evidence tells us to examine the pattern of flaws running through the research literature because the nature of this pattern can either support or undermine the conclusions that we might draw.

For example, suppose that the findings from a number of different experiments were largely consistent in supporting a particular conclusion. Given the imperfect nature of experiments, we would evaluate the extent and nature of the flaws in these studies. If all the experiments were flawed in a similar way, this circumstance would undermine confidence in the conclusions drawn from them because the consistency of the outcome may simply have resulted from a particular, consistent flaw. On the other hand, if all the experiments were flawed in different ways, our confidence in the conclusions increases because it is less likely that the consistency in the results was due to a contaminating factor that confounded all the experiments. As Anderson and Anderson (1996) note, "When a conceptual hypothesis survives many potential falsifications based on different sets of assumptions, we have a robust effect." (p. 742).

Suppose that five different theoretical summaries (call them A, B, C, D, and E) of a given set of phenomena exist at one time and are investigated in a series of experiments. Suppose that one set of experiments represents a strong test of theories A, B, and C, and that the data largely refute theories A and B and support C. Imagine also that another set of experiments is a particularly strong test of theories C, D, and E, and that the data largely refute theories D and E and support C. In such a situation, we would have strong converging evidence for theory C. Not only do we have data supportive of theory C, but we have data that contradict its major competitors. Note that no one experiment tests all the theories, but taken together, the entire set of experiments allows a strong inference.

In contrast, if the two sets of experiments each represent strong tests of B, C, and E, and the data strongly support C and refute B and E, the overall support for theory C would be less strong than in our previous example. The reason is that, although data supporting theory C have been generated, there is no strong evidence ruling out two viable alternative theories (A and D). Thus research is highly convergent when a series of experiments consistently supports a given theory while collectively eliminating the most important competing explanations. Although no single experiment can rule out all alternative explanations, taken collectively, a series of partially diagnostic experiments can lead to a strong conclusion if the data converge in the manner of our first example.

Increasingly, the combining of evidence from disparate studies to form a conclusion is being done more formally by the use of the statistical technique termed meta-analysis (Cooper & Hedges, 1994; Hedges & Olkin, 1985; Hunter & Schmidt, 1990; Rosenthal, 1995; Schmidt, 1992; Swanson, 1999) which has been used extensively to establish whether various medical practices are research based. In a medical context, meta-analysis:

involves adding together the data from many clinical trials to create a single pool of data big enough to eliminate much of the statistical uncertainty that plagues individual trials...The great virtue of meta-analysis is that clear findings can emerge from a group of studies whose findings are scattered all over the map. (Plotkin,1996, p. 70)

The use of meta-analysis for determining the research validation of educational practices is just the same as in medicine. The effects obtained when one practice is compared against another are expressed in a common statistical metric that allows comparison of effects across studies. The findings are then statistically amalgamated in some standard ways (Cooper & Hedges, 1994; Hedges & Olkin, 1985; Swanson, 1999) and a conclusion about differential efficacy is reached if the amalgamation process passes certain statistical criteria. In some cases, of course, no conclusion can be drawn with confidence, and the result of the meta-analysis is inconclusive.

More and more commentators on the educational research literature are calling for a greater emphasis on meta-analysis as a way of dampening the contentious disputes about conflicting studies that plague education and other behavioral sciences (Kavale & Forness, 1995; Rosnow & Rosenthal, 1989; Schmidt, 1996; Stanovich, 2001; Swanson, 1999). The method is useful for ending disputes that seem to be nothing more than a "he-said, she-said" debate. An emphasis on meta-analysis has often revealed that we actually have more stable and useful findings than is apparent from a perusal of the conflicts in our journals.

The National Reading Panel (2000) found just this in their meta-analysis of the evidence surrounding several issues in reading education. For example, they concluded that the results of a meta-analysis of the results of 66 comparisons from 38 different studies indicated "solid support for the conclusion that systematic phonics instruction makes a bigger contribution to children's growth in reading than alternative programs providing unsystematic or no phonics instruction" (p. 2-84). In another section of their report, the National Reading Panel reported that a meta-analysis of 52 studies of phonemic awareness training indicated that "teaching children to manipulate the sounds in language helps them learn to read. Across the various conditions of teaching, testing, and participant characteristics, the effect sizes were all significantly greater than chance and ranged from large to small, with the majority in the moderate range. Effects of phonemic awareness training on reading lasted well beyond the end of training" (p. 2-5).

A statement by a task force of the American Psychological Association (Wilkinson, 1999) on statistical methods in psychology journals provides an apt summary for this section. The task force stated that investigators should not "interpret a single study's results as having importance independent of the effects reported elsewhere in the relevant literature" (p. 602). Science progresses by convergence upon conclusions. The outcomes of one study can only be interpreted in the context of the present state of the convergence on the particular issue in question.

The logic of the experimental method

Scientific thinking is based on the ideas of comparison, control, and manipulation . In a true experimental study, these characteristics of scientific investigation must be arranged to work in concert.

Comparison alone is not enough to justify a causal inference. In methodology texts, correlational investigations (which involve comparison only) are distinguished from true experimental investigations that warrant much stronger causal inferences because they involve comparison, control, and manipulation. The mere existence of a relationship between two variables does not guarantee that changes in one are causing changes in the other. Correlation does not imply causation.

There are two potential problems with drawing causal inferences from correlational evidence. The first is called the third-variable problem. It occurs when the correlation between the two variables does not indicate a direct causal path between them but arises because both variables are related to a third variable that has not even been measured.

The second reason is called the directionality problem. It creates potential interpretive difficulties because even if two variables have a direct causal relationship, the direction of that relationship is not indicated by the mere presence of the correlation. In short, a correlation between variables A and B could arise because changes in A are causing changes in B or because changes in B are causing changes in A. The mere presence of the correlation does not allow us to decide between these two possibilities.

The heart of the experimental method lies in manipulation and control. In contrast to a correlational study, where the investigator simply observes whether the natural fluctuation in two variables displays a relationship, the investigator in a true experiment manipulates the variable thought to be the cause (the independent variable) and looks for an effect on the variable thought to be the effect (the dependent variable ) while holding all other variables constant by control and randomization. This method removes the third-variable problem because, in the natural world, many different things are related. The experimental method may be viewed as a way of prying apart these naturally occurring relationships. It does so because it isolates one particular variable (the hypothesized cause) by manipulating it and holding everything else constant (control).

When manipulation is combined with a procedure known as random assignment (in which the subjects themselves do not determine which experimental condition they will be in but, instead, are randomly assigned to one of the experimental groups), scientists can rule out alternative explanations of data patterns. By using manipulation, experimental control, and random assignment, investigators construct stronger comparisons so that the outcome eliminates alternative theories and explanations.

The need for both correlational methods and true experiments

As strong as they are methodologically, studies employing true experimental logic are not the only type that can be used to draw conclusions. Correlational studies have value. The results from many different types of investigation, including correlational studies, can be amalgamated to derive a general conclusion. The basis for conclusion rests on the convergence observed from the variety of methods used. This is most certainly true in classroom and curriculum research. It is necessary to amalgamate the results from not only experimental investigations, but correlational studies, nonequivalent control group studies, time series designs, and various other quasi-experimental designs and multivariate correlational designs, All have their strengths and weaknesses. For example, it is often (but not always) the case that experimental investigations are high in internal validity, but limited in external validity, whereas correlational studies are often high in external validity, but low in internal validity.

Internal validity concerns whether we can infer a causal effect for a particular variable. The more a study employs the logic of a true experiment (i.e., includes manipulation, control, and randomization), the more we can make a strong causal inference. External validity concerns the generalizability of the conclusion to the population and setting of interest. Internal and external validity are often traded off across different methodologies. Experimental laboratory investigations are high in internal validity but may not fully address concerns about external validity. Field classroom investigations, on the other hand, are often quite high in external validity but because of the logistical difficulties involved in carrying them out, they are often quite low in internal validity. That is why we need to look for a convergence of results, not just consistency from one method. Convergence increases our confidence in the external and internal validity of our conclusions.

Again, this underscores why correlational studies can contribute to knowledge. First, some variables simply cannot be manipulated for ethical reasons (for instance, human malnutrition or physical disabilities). Other variables, such as birth order, sex, and age, are inherently correlational because they cannot be manipulated, and therefore the scientific knowledge concerning them must be based on correlational evidence. Finally, logistical difficulties in classroom and curriculum research often make it impossible to achieve the logic of the true experiment. However, this circumstance is not unique to educational or psychological research. Astronomers obviously cannot manipulate all the variables affecting the objects they study, yet they are able to arrive at conclusions.

Complex correlational techniques are essential in the absence of experimental research because complex correlational statistics such as multiple regression, path analysis, and structural equation modeling that allow for the partial control of third variables when those variables can be measured. These statistics allow us to recalculate the correlation between two variables after the influence of other variables is removed. If a potential third variable can be measured, complex correlational statistics can help us determine whether that third variable is determining the relationship. These correlational statistics and designs help to rule out certain causal hypotheses, even if they cannot demonstrate the true causal relation definitively.

Stages of scientific investigation: The Role of Case Studies and Qualitative Investigations

The educational literature includes many qualitative investigations that focus less on issues of causal explanation and variable control and more on thick description , in the manner of the anthropologist (Geertz, 1973, 1979). The context of a person's behavior is described as much as possible from the standpoint of the participant. Many different fields (e.g., anthropology, psychology, education) contain case studies where the focus is detailed description and contextualization of the situation of a single participant (or very few participants).

The usefulness of case studies and qualitative investigations is strongly determined by how far scientific investigation has advanced in a particular area. The insights gained from case studies or qualitative investigations may be quite useful in the early stages of an investigation of a certain problem. They can help us determine which variables deserve more intense study by drawing attention to heretofore unrecognized aspects of a person's behavior and by suggesting how understanding of behavior might be sharpened by incorporating the participant's perspective.

However, when we move from the early stages of scientific investigation, where case studies may be very useful, to the more mature stages of theory testing--where adjudicating between causal explanations is the main task--the situation changes drastically. Case studies and qualitative description are not useful at the later stages of scientific investigation because they cannot be used to confirm or disconfirm a particular causal theory. They lack the comparative information necessary to rule out alternative explanations.

Where qualitative investigations are useful relates strongly to a distinction in philosophy of science between the context of discovery and the context of justification . Qualitative research, case studies, and clinical observations support a context of discovery where, as Levin and O'Donnell (2000) note in an educational context, such research must be regarded as "preliminary/exploratory, observational, hypothesis generating" (p. 26). They rightly point to the essential importance of qualitative investigations because "in the early stages of inquiry into a research topic, one has to look before one can leap into designing interventions, making predictions, or testing hypotheses" (p. 26). The orientation provided by qualitative investigations is critical in such cases. Even more important, the results of quantitative investigations--which must sometimes abstract away some of the contextual features of a situation--are often contextualized by the thick situational description provided by qualitative work.

However, in the context of justification, variables must be measured precisely, large groups must be tested to make sure the conclusion generalizes and, most importantly, many variables must be controlled because alternative causal explanations must be ruled out. Gersten (2001) summarizes the value of qualitative research accurately when he says that "despite the rich insights they often provide, descriptive studies cannot be used as evidence for an intervention's efficacy...descriptive research can only suggest innovative strategies to teach students and lay the groundwork for development of such strategies" (p. 47). Qualitative research does, however, help to identify fruitful directions for future experimental studies.

Nevertheless, here is why the sole reliance on qualitative techniques to determine the effectiveness of curricula and instructional strategies has become problematic. As a researcher, you desire to do one of two things.

Objective A

The researcher wishes to make some type of statement about a relationship, however minimal. That is, you at least want to use terms like greater than, or less than, or equal to. You want to say that such and such an educational program or practice is better than another. "Better than" and "worse than" are, of course, quantitative statements--and, in the context of issues about what leads to or fosters greater educational achievement, they are causal statements as well . As quantitative causal statements, the support for such claims obviously must be found in the experimental logic that has been outlined above. To justify such statements, you must adhere to the canons of quantitative research logic.

Objective B

The researcher seeks to adhere to an exclusively qualitative path that abjures statements about relationships and never uses comparative terms of magnitude. The investigator desires to simply engage in thick description of a domain that may well prompt hypotheses when later work moves on to the more quantitative methods that are necessary to justify a causal inference.

Investigators pursuing Objective B are doing essential work. They provide quantitative information with suggestions for richer hypotheses to study. In education, however, investigators sometimes claim to be pursuing Objective B but slide over into Objective A without realizing they have made a crucial switch. They want to make comparative, or quantitative, statements, but have not carried out the proper types of investigation to justify them. They want to say that a certain educational program is better than another (that is, it causes better school outcomes). They want to give educational strictures that are assumed to hold for a population of students, not just to the single or few individuals who were the objects of the qualitative study. They want to condemn an educational practice (and, by inference, deem an alternative quantitatively and causally better). But instead of taking the necessary course of pursuing Objective A, they carry out their investigation in the manner of Objective B.

Let's recall why the use of single case or qualitative description as evidence in support of a particular causal explanation is inappropriate. The idea of alternative explanations is critical to an understanding of theory testing. The goal of experimental design is to structure events so that support of one particular explanation simultaneously disconfirms other explanations. Scientific progress can occur only if the data that are collected rule out some explanations. Science sets up conditions for the natural selection of ideas. Some survive empirical testing and others do not.

This is the honing process by which ideas are sifted so that those that contain the most truth are found. But there must be selection in this process: data collected as support for a particular theory must not leave many other alternative explanations as equally viable candidates. For this reason, scientists construct control or comparison groups in their experimentation. These groups are formed so that, when their results are compared with those from an experimental group, some alternative explanations are ruled out.

Case studies and qualitative description lack the comparative information necessary to prove that a particular theory or educational practice is superior, because they fail to test an alternative; they rule nothing out. Take the seminal work of Jean Piaget for example. His case studies were critical in pointing developmental psychology in new and important directions, but many of his theoretical conclusions and causal explanations did not hold up in controlled experiments (Bjorklund, 1995; Goswami, 1998; Siegler, 1991).

In summary, as educational psychologist Richard Mayer (2000) notes, "the domain of science includes both some quantitative and qualitative methodologies" (p. 39), and the key is to use each where it is most effective (see Kamil, 1995). Likewise, in their recent book on research-based best practices in comprehension instruction, Block and Pressley (2002) argue that future progress in understanding how comprehension works will depend on a healthy interaction between qualitative and quantitative approaches. They point out that getting an initial idea of the comprehension processes involved in hypertext and Web-based environments will involve detailed descriptive studies using think-alouds and assessments of qualitative decision making. Qualitative studies of real reading environments will set the stage for more controlled investigations of causal hypotheses.

The progression to more powerful methods

A final useful concept is the progression to more powerful research methods ("more powerful" in this context meaning more diagnostic of a causal explanation). Research on a particular problem often proceeds from weaker methods (ones less likely to yield a causal explanation) to ones that allow stronger causal inferences. For example, interest in a particular hypothesis may originally emerge from a particular case study of unusual interest. This is the proper role for case studies: to suggest hypotheses for further study with more powerful techniques and to motivate scientists to apply more rigorous methods to a research problem. Thus, following the case studies, researchers often undertake correlational investigations to verify whether the link between variables is real rather than the result of the peculiarities of a few case studies. If the correlational studies support the relationship between relevant variables, then researchers will attempt experiments in which variables are manipulated in order to isolate a causal relationship between the variables.

Summary of principles that support research-based inferences about best practice

Our sketch of the principles that support research-based inferences about best practice in education has revealed that:

  • Science progresses by investigating solvable, or testable, empirical problems.
  • To be testable, a theory must yield predictions that could possible be shown to be wrong.
  • The concepts in the theories in science evolve as evidence accumulates. Scientific knowledge is not infallible knowledge, but knowledge that has at least passed some minimal tests. The theories behind research-based practice can be proven wrong, and therefore they contain a mechanism for growth and advancement.
  • Theories are tested by systematic empiricism. The data obtained from empirical research are in the public domain in the sense that they are presented in a manner that allows replication and criticism by other scientists.
  • Data and theories in science are considered in the public domain only after publication in peer-reviewed scientific journals.
  • Empiricism is systematic because it strives for the logic of control and manipulation that characterizes a true experiment.
  • Correlational techniques are helpful when the logic of an experiment cannot be approximated, but because these techniques only help rule out hypotheses, they are considered weaker than true experimental methods.
  • Researchers use many different methods to arrive at their conclusions, and the strengths and weaknesses of these methods vary. Most often, conclusions are drawn only after a slow accumulation of data from many studies.

Scientific thinking in educational practice: Reason-based practice in the absence of direct evidence

Some areas in educational research, to date, lack a research-based consensus, for a number of reasons. Perhaps the problem or issue has not been researched extensively. Perhaps research into the issue is in the early stages of investigation, where descriptive studies are suggesting interesting avenues, but no controlled research justifying a causal inference has been completed. Perhaps many correlational studies and experiments have been conducted on the issue, but the research evidence has not yet converged in a consistent direction.

Even if teachers know the principles of scientific evaluation described earlier, the research literature sometimes fails to give them clear direction. They will have to fall back on their own reasoning processes as informed by their own teaching experiences. In those cases, teachers still have many ways of reasoning scientifically.

Tracing the link from scientific research to scientific thinking in practice

Scientific thinking in can be done in several ways. Earlier we discussed different types of professional publications that teachers can read to improve their practice. The most important defining feature of these outlets is whether they are peer reviewed. Another defining feature is whether the publication contains primary research rather than presenting opinion pieces or essays on educational issues. If a journal presents primary research, we can evaluate the research using the formal scientific principles outlined above.

If the journal is presenting opinion pieces about what constitutes best practice, we need to trace the link between those opinions and archival peer-reviewed research. We would look to see whether the authors have based their opinions on peer-reviewed research by reading the reference list. Do the authors provide a significant amount of original research citations (is their opinion based on more than one study)? Do the authors cite work other than their own (have the results been replicated)? Are the cited journals peer-reviewed? For example, in the case of best practice for reading instruction, if we came across an article in an opinion-oriented journal such as Intervention in School and Clinic, we might look to see if the authors have cited work that has appeared in such peer-reviewed journals as Journal of Educational Psychology , Elementary School Journal , Journal of Literacy Research , Scientific Studies of Reading , or the Journal of Learning Disabilities .

These same evaluative criteria can be applied to presenters at professional development workshops or papers given at conferences. Are they conversant with primary research in the area on which they are presenting? Can they provide evidence for their methods and does that evidence represent a scientific consensus? Do they understand what is required to justify causal statements? Are they open to the possibility that their claims could be proven false? What evidence would cause them to shift their thinking?

An important principle of scientific evaluation--the connectivity principle (Stanovich, 2001)--can be generalized to scientific thinking in the classroom. Suppose a teacher comes upon a new teaching method, curriculum component, or process. The method is advertised as totally new, which provides an explanation for the lack of direct empirical evidence for the method. A lack of direct empirical evidence should be grounds for suspicion, but should not immediately rule it out. The principle of connectivity means that the teacher now has another question to ask: "OK, there is no direct evidence for this method, but how is the theory behind it (the causal model of the effects it has) connected to the research consensus in the literature surrounding this curriculum area?" Even in the absence of direct empirical evidence on a particular method or technique, there could be a theoretical link to the consensus in the existing literature that would support the method.

For further tips on translating research into classroom practice, see Warby, Greene, Higgins, & Lovitt (1999). They present a format for selecting, reading, and evaluating research articles, and then importing the knowledge gained into the classroom.

Let's take an imaginary example from the domain of treatments for children with extreme reading difficulties. Imagine two treatments have been introduced to a teacher. No direct empirical tests of efficacy have been carried out using either treatment. The first, Treatment A, is a training program to facilitate the awareness of the segmental nature of language at the phonological level. The second, Treatment B, involves giving children training in vestibular sensitivity by having them walk on balance beams while blindfolded. Treatment A and B are equal in one respect--neither has had a direct empirical test of its efficacy, which reflects badly on both. Nevertheless, one of the treatments has the edge when it comes to the principle of connectivity. Treatment A makes contact with a broad consensus in the research literature that children with extraordinary reading difficulties are hampered because of insufficiently developed awareness of the segmental structure of language. Treatment B is not connected to any corresponding research literature consensus. Reason dictates that Treatment A is a better choice, even though neither has been directly tested.

Direct connections with research-based evidence and use of the connectivity principle when direct empirical evidence is absent give us necessary cross-checks on some of the pitfalls that arise when we rely solely on personal experience. Drawing upon personal experience is necessary and desirable in a veteran teacher, but it is not sufficient for making critical judgments about the effectiveness of an instructional strategy or curriculum. The insufficiency of personal experience becomes clear if we consider that the educational judgments--even of veteran teachers--often are in conflict. That is why we have to adjudicate conflicting knowledge claims using the scientific method.

Let us consider two further examples that demonstrate why we need controlled experimentation to verify even the most seemingly definitive personal observations. In the 1990s, considerable media and professional attention were directed at a method for aiding the communicative capacity of autistic individuals. This method is called facilitated communication. Autistic individuals who had previously been nonverbal were reported to have typed highly literate messages on a keyboard when their hands and arms were supported over the typewriter by a so-called facilitator. These startlingly verbal performances by autistic children who had previously shown very limited linguistic behavior raised incredible hopes among many parents of autistic children.

Unfortunately, claims for the efficacy of facilitated communication were disseminated by many media outlets before any controlled studies had been conducted. Since then, many studies have appeared in journals in speech science, linguistics, and psychology and each study has unequivocally demonstrated the same thing: the autistic child's performance is dependent upon tactile cueing from the facilitator. In the experiments, it was shown that when both child and facilitator were looking at the same drawing, the child typed the correct name of the drawing. When the viewing was occluded so that the child and the facilitator were shown different drawings, the child typed the name of the facilitator's drawing, not the one that the child herself was looking at (Beck & Pirovano, 1996; Burgess, Kirsch, Shane, Niederauer, Graham, & Bacon, 1998; Hudson, Melita, & Arnold, 1993; Jacobson, Mulick, & Schwartz, 1995; Wheeler, Jacobson, Paglieri, & Schwartz, 1993). The experimental studies directly contradicted the extensive case studies of the experiences of the facilitators of the children. These individuals invariably deny that they have inadvertently cued the children. Their personal experience, honest and heartfelt though it is, suggests the wrong model for explaining this outcome. The case study evidence told us something about the social connections between the children and their facilitators. But that is something different than what we got from the controlled experimental studies, which provided direct tests of the claim that the technique unlocks hidden linguistic skills in these children. Even if the claim had turned out to be true, the verification of the proof of its truth would not have come from the case studies or personal experiences, but from the necessary controlled studies.

Another example of the need for controlled experimentation to test the insights gleaned from personal experience is provided by the concept of learning styles--the idea that various modality preferences (or variants of this theme in terms of analytic/holistic processing or "learning styles") will interact with instructional methods, allowing teachers to individualize learning. The idea seems to "feel right" to many of us. It does seem to have some face validity, but it has never been demonstrated to work in practice. Its modern incarnation (see Gersten, 2001, Spear-Swerling & Sternberg, 2001) takes a particularly harmful form, one where students identified as auditory learners are matched with phonics instruction and visual and/or kinesthetic learners matched with holistic instruction. The newest form is particularly troublesome because the major syntheses of reading research demonstrate that many children can benefit from phonics-based instruction, not just "auditory" learners (National Reading Panel, 2000; Rayner et al., 2002; Stanovich, 2000). Excluding students identified as "visual/kinesthetic" learners from effective phonics instruction is a bad instructional practice--bad because it is not only not research based, it is actually contradicted by research.

A thorough review of the literature by Arter and Jenkins (1979) found no consistent evidence for the idea that modality strengths and weaknesses could be identified in a reliable and valid way that warranted differential instructional prescriptions. A review of the research evidence by Tarver and Dawson (1978) found likewise that the idea of modality preferences did not hold up to empirical scrutiny. They concluded, "This review found no evidence supporting an interaction between modality preference and method of teaching reading" (p. 17). Kampwirth and Bates (1980) confirmed the conclusions of the earlier reviews, although they stated their conclusions a little more baldly: "Given the rather general acceptance of this idea, and its common-sense appeal, one would presume that there exists a body of evidence to support it. UnfortunatelyÉno such firm evidence exists" (p. 598).

More recently, the idea of modality preferences (also referred to as learning styles, holistic versus analytic processing styles, and right versus left hemispheric processing) has again surfaced in the reading community. The focus of the recent implementations refers more to teaching to strengths, as opposed to remediating weaknesses (the latter being more the focus of the earlier efforts in the learning disabilities field). The research of the 1980s was summarized in an article by Steven Stahl (1988). His conclusions are largely negative because his review of the literature indicates that the methods that have been used in actual implementations of the learning styles idea have not been validated. Stahl concludes: "As intuitively appealing as this notion of matching instruction with learning style may be, past research has turned up little evidence supporting the claim that different teaching methods are more or less effective for children with different reading styles" (p. 317).

Obviously, such research reviews cannot prove that there is no possible implementation of the idea of learning styles that could work. However, the burden of proof in science rests on the investigator who is making a new claim about the nature of the world. It is not incumbent upon critics of a particular claim to show that it "couldn't be true." The question teachers might ask is, "Have the advocates for this new technique provided sufficient proof that it works?" Their burden of responsibility is to provide proof that their favored methods work. Teachers should not allow curricular advocates to avoid this responsibility by introducing confusion about where the burden of proof lies. For example, it is totally inappropriate and illogical to ask "Has anyone proved that it can't work?" One does not "prove a negative" in science. Instead, hypotheses are stated, and then must be tested by those asserting the hypotheses.

Reason-based practice in the classroom

Effective teachers engage in scientific thinking in their classrooms in a variety of ways: when they assess and evaluate student performance, develop Individual Education Plans (IEPs) for their students with disabilities, reflect on their practice, or engage in action research. For example, consider the assessment and evaluation activities in which teachers engage. The scientific mechanisms of systematic empiricism--iterative testing of hypotheses that are revised after the collection of data--can be seen when teachers plan for instruction: they evaluate their students' previous knowledge, develop hypotheses about the best methods for attaining lesson objectives, develop a teaching plan based on those hypotheses, observe the results, and base further instruction on the evidence collected.

This assessment cycle looks even more like the scientific method when teachers (as part of a multidisciplinary team) are developing and implementing an IEP for a student with a disability. The team must assess and evaluate the student's learning strengths and difficulties, develop hypotheses about the learning problems, select curriculum goals and objectives, base instruction on the hypotheses and the goals selected, teach, and evaluate the outcomes of that teaching. If the teaching is successful (goals and objectives are attained), the cycle continues with new goals. If the teaching has been unsuccessful (goals and objectives have not been achieved), the cycle begins again with new hypotheses. We can also see the principle of converging evidence here. No one piece of evidence might be decisive, but collectively the evidence might strongly point in one direction.

Scientific thinking in practice occurs when teachers engage in action research. Action research is research into one's own practice that has, as its main aim, the improvement of that practice. Stokes (1997) discusses how many advances in science came about as a result of "use-inspired research" which draws upon observations in applied settings. According to McNiff, Lomax, and Whitehead (1996), action research shares several characteristics with other types of research: "it leads to knowledge, it provides evidence to support this knowledge, it makes explicit the process of enquiry through which knowledge emerges, and it links new knowledge with existing knowledge" (p. 14). Notice the links to several important concepts: systematic empiricism, publicly verifiable knowledge, converging evidence, and the connectivity principle.

Teachers and Research Commonality in a "what works" epistemology

Many educational researchers have drawn attention to the epistemological commonalities between researchers and teachers (Gersten, Vaughn, Deshler, & Schiller, 1997; Stanovich, 1993/1994). A "what works" epistemology is a critical source of underlying unity in the world views of educators and researchers (Gersten & Dimino, 2001; Gersten, Chard, & Baker, 2000). Empiricism, broadly construed (as opposed to the caricature of white coats, numbers, and test tubes that is often used to discredit scientists) is about watching the world, manipulating it when possible, observing outcomes, and trying to associate outcomes with features observed and with manipulations. This is what the best teachers do. And this is true despite the grain of truth in the statement that "teaching is an art." As Berliner (1987) notes: "No one I know denies the artistic component to teaching. I now think, however, that such artistry should be research-based. I view medicine as an art, but I recognize that without its close ties to science it would be without success, status, or power in our society. Teaching, like medicine, is an art that also can be greatly enhanced by developing a close relationship to science (p. 4)."

In his review of the work of the Committee on the Prevention of Reading Difficulties for the National Research Council of the National Academy of Sciences (Snow, Burns, & Griffin, 1998), Pearson (1999) warned educators that resisting evaluation by hiding behind the "art of teaching" defense will eventually threaten teacher autonomy. Teachers need creativity, but they also need to demonstrate that they know what evidence is, and that they recognize that they practice in a profession based in behavioral science. While making it absolutely clear that he opposes legislative mandates, Pearson (1999) cautions:

We have a professional responsibility to forge best practice out of the raw materials provided by our most current and most valid readings of research...If professional groups wish to retain the privileges of teacher prerogative and choice that we value so dearly, then the price we must pay is constant attention to new knowledge as a vehicle for fine-tuning our individual and collective views of best practice. This is the path that other professions, such as medicine, have taken in order to maintain their professional prerogative, and we must take it, too. My fear is that if the professional groups in education fail to assume this responsibility squarely and openly, then we will find ourselves victims of the most onerous of legislative mandates (p. 245).

Those hostile to a research-based approach to educational practice like to imply that the insights of teachers and those of researchers conflict. Nothing could be farther from the truth. Take reading, for example. Teachers often do observe exactly what the research shows--that most of their children who are struggling with reading have trouble decoding words. In an address to the Reading Hall of Fame at the 1996 meeting of the International Reading Association, Isabel Beck (1996) illustrated this point by reviewing her own intellectual history (see Beck, 1998, for an archival version). She relates her surprise upon coming as an experienced teacher to the Learning Research and Development Center at the University of Pittsburgh and finding "that there were some people there (psychologists) who had not taught anyone to read, yet they were able to describe phenomena that I had observed in the course of teaching reading" (Beck, 1996, p. 5). In fact, what Beck was observing was the triangulation of two empirical approaches to the same issue--two perspectives on the same underlying reality. And she also came to appreciate how these two perspectives fit together: "What I knew were a number of whats--what some kids, and indeed adults, do in the early course of learning to read. And what the psychologists knew were some whys--why some novice readers might do what they do" (pp. 5-6).

Beck speculates on why the disputes about early reading instruction have dragged on so long without resolution and posits that it is due to the power of a particular kind of evidence--evidence from personal observation. The determination of whole language advocates is no doubt sustained because "people keep noticing the fact that some children or perhaps many children--in any event a subset of children--especially those who grow up in print-rich environments, don't seem to need much more of a boost in learning to read than to have their questions answered and to point things out to them in the course of dealing with books and various other authentic literacy acts" (Beck, 1996, p. 8). But Beck points out that it is equally true that proponents of the importance of decoding skills are also fueled by personal observation: "People keep noticing the fact that some children or perhaps many children--in any event a subset of children--don't seem to figure out the alphabetic principle, let alone some of the intricacies involved without having the system directly and systematically presented" (p. 8). But clearly we have lost sight of the basic fact that the two observations are not mutually exclusive--one doesn't negate the other. This is just the type of situation for which the scientific method was invented: a situation requiring a consensual view, triangulated across differing observations by different observers.

Teachers, like scientists, are ruthless pragmatists (Gersten & Dimino, 2001; Gersten, Chard, & Baker, 2000). They believe that some explanations and methods are better than others. They think there is a real world out there--a world in flux, obviously--but still one that is trackable by triangulating observations and observers. They believe that there are valid, if fallible, ways of finding out which educational practices are best. Teachers believe in a world that is predictable and controllable by manipulations that they use in their professional practice, just as scientists do. Researchers and educators are kindred spirits in their approach to knowledge, an important fact that can be used to forge a coalition to bring hard-won research knowledge to light in the classroom.

  • Adams, M. J. (1990). Beginning to read: Thinking and learning about print . Cambridge, MA: MIT Press.
  • Adler, J. E. (1998, January). Open minds and the argument from ignorance. Skeptical Inquirer , 22 (1), 41-44.
  • Anderson, C. A., & Anderson, K. B. (1996). Violent crime rate studies in philosophical context: A destructive testing approach to heat and Southern culture of violence effects. Journal of Personality and Social Psychology , 70 , 740-756.
  • Anderson, R. C., Hiebert, E. H., Scott, J., & Wilkinson, I. (1985). Becoming a nation of readers . Washington, D. C.: National Institute of Education.
  • Arter, A. and Jenkins, J. (1979). Differential diagnosis-prescriptive teaching: A critical appraisal, Review of Educational Research , 49 , 517-555.
  • Beck, A. R., & Pirovano, C. M. (1996). Facilitated communications' performance on a task of receptive language with children and youth with autism. Journal of Autism and Developmental Disorders , 26 , 497-512.
  • Beck, I. L. (1996, April). Discovering reading research: Why I didn't go to law school . Paper presented at the Reading Hall of Fame, International Reading Association, New Orleans.
  • Beck, I. (1998). Understanding beginning reading: A journey through teaching and research. In J. Osborn & F. Lehr (Eds.), Literacy for all: Issues in teaching and learning (pp. 11-31). New York: Guilford Press.
  • Berliner, D. C. (1987). Knowledge is power: A talk to teachers about a revolution in the teaching profession. In D. C. Berliner & B. V. Rosenshine (Eds.), Talks to teachers (pp. 3-33). New York: Random House.
  • Bjorklund, D. F. (1995). Children's thinking: Developmental function and individual differences (Second Edition) . Pacific Grove, CA: Brooks/Cole.
  • Block, C. C., & Pressley, M. (Eds.). (2002). Comprehension instruction: Research-based best practices . New York: Guilford Press.
  • Bronowski, J. (1956). Science and human values . New York: Harper & Row.
  • Bronowski, J. (1973). The ascent of man . Boston: Little, Brown.
  • Bronowski, J. (1977). A sense of the future . Cambridge: MIT Press.
  • Burgess, C. A., Kirsch, I., Shane, H., Niederauer, K., Graham, S., & Bacon, A. (1998). Facilitated communication as an ideomotor response. Psychological Science , 9 , 71-74.
  • Chard, D. J., & Osborn, J. (1999). Phonics and word recognition in early reading programs: Guidelines for accessibility. Learning Disabilities Research & Practice , 14 , 107-117.
  • Cooper, H. & Hedges, L. V. (Eds.), (1994). The handbook of research synthesis . New York: Russell Sage Foundation.
  • Cunningham, P. M., & Allington, R. L. (1994). Classrooms that work: They all can read and write . New York: HarperCollins.
  • Dawkins, R. (1998). Unweaving the rainbow . Boston: Houghton Mifflin.
  • Dennett, D. C. (1995). Darwin's dangerous idea: Evolution and the meanings of life . New York: Simon & Schuster.
  • Dennett, D. C. (1999/2000, Winter). Why getting it right matters. Free Inquiry , 20 (1), 40-43.
  • Ehri, L. C., Nunes, S., Stahl, S., & Willows, D. (2001). Systematic phonics instruction helps students learn to read: Evidence from the National Reading Panel's Meta-Analysis. Review of Educational Research , 71 , 393-447.
  • Foster, E. A., Jobling, M. A., Taylor, P. G., Donnelly, P., Deknijff, P., Renemieremet, J., Zerjal, T., & Tyler-Smith, C. (1998). Jefferson fathered slave's last child. Nature , 396 , 27-28.
  • Fraenkel, J. R., & Wallen, N. R. (1996). How to design and evaluate research in education (Third Edition). New York: McGraw-Hill.
  • Geertz, C. (1973). The interpretation of cultures . New York: Basic Books.
  • Geertz, C. (1979). From the native's point of view: On the nature of anthropological understanding. In P. Rabinow & W. Sullivan (Eds.), Interpretive social science (pp. 225-242). Berkeley: University of California Press.
  • Gersten, R. (2001). Sorting out the roles of research in the improvement of practice. Learning Disabilities: Research & Practice , 16 (1), 45-50.
  • Gersten, R., Chard, D., & Baker, S. (2000). Factors enhancing sustained use of research-based instructional practices. Journal of Learning Disabilities , 33 (5), 445-457.
  • Gersten, R., & Dimino, J. (2001). The realities of translating research into classroom practice. Learning Disabilities: Research & Practice , 16 (2), 120-130.
  • Gersten, R., Vaughn, S., Deshler, D., & Schiller, E. (1997).What we know about using research findings: Implications for improving special education practice. Journal of Learning Disabilities , 30 (5), 466-476.
  • Goswami, U. (1998). Cognition in children . Hove, England: Psychology Press.
  • Gross, P. R., Levitt, N., & Lewis, M. (1997). The flight from science and reason . New York: New York Academy of Science.
  • Hedges, L. V., & Olkin, I. (1985). Statistical Methods for Meta-Analysis . New York: Academic Press.
  • Holton, G., & Roller, D. (1958). Foundations of modern physical science . Reading, MA: Addison-Wesley.
  • Hudson, A., Melita, B., & Arnold, N. (1993). A case study assessing the validity of facilitated communication. Journal of Autism and Developmental Disorders , 23 , 165-173.
  • Hunter, J. E., & Schmidt, F. L. (1990). Methods of meta-analysis: Correcting error and bias in research findings . Newbury Park, CA: Sage.
  • Jacobson, J. W., Mulick, J. A., & Schwartz, A. A. (1995). A history of facilitated communication: Science, pseudoscience, and antiscience. American Psychologist , 50 , 750-765.
  • Kamil, M. L. (1995). Some alternatives to paradigm wars in literacy research. Journal of Reading Behavior , 27 , 243-261.
  • Kampwirth, R., and Bates, E. (1980). Modality preference and teaching method: A review of the research, Academic Therapy , 15 , 597-605.
  • Kavale, K. A., & Forness, S. R. (1995). The nature of learning disabilities: Critical elements of diagnosis and classification . Mahweh, NJ: Lawrence Erlbaum Associates.
  • Levin, J. R., & O'Donnell, A. M. (2000). What to do about educational research's credibility gaps? Issues in Education: Contributions from Educational Psychology , 5 , 1-87.
  • Liberman, A. M. (1999). The reading researcher and the reading teacher need the right theory of speech. Scientific Studies of Reading , 3 , 95-111.
  • Magee, B. (1985). Philosophy and the real world: An introduction to Karl Popper . LaSalle, IL: Open Court.
  • Mayer, R. E. (2000). What is the place of science in educational research? Educational Researcher , 29 (6), 38-39.
  • McNiff, J.,Lomax, P., & Whitehead, J. (1996). You and your action research project . London: Routledge.
  • Medawar, P. B. (1982). Pluto's republic . Oxford: Oxford University Press.
  • Medawar, P. B. (1984). The limits of science . New York: Harper & Row.
  • Medawar, P. B. (1990). The threat and the glory . New York: Harper Collins.
  • Moats, L. (1999). Teaching reading is rocket science . Washington, DC: American Federation of Teachers.
  • National Reading Panel: Reports of the Subgroups. (2000). Teaching children to read: An evidence-based assessment of the scientific research literature on reading and its implications for reading instruction . Washington, DC.
  • Nickerson, R. S. (1998). Confirmation bias: A ubiquitous phenomenon in many guises. Review of General Psychology , 2 , 175-220.
  • Pearson, P. D. (1993). Teaching and learning to read: A research perspective. Language Arts , 70 , 502-511.
  • Pearson, P. D. (1999). A historically based review of preventing reading difficulties in young children. Reading Research Quarterly , 34 , 231-246.
  • Plotkin, D. (1996, June). Good news and bad news about breast cancer. Atlantic Monthly , 53-82.
  • Popper, K. R. (1972). Objective knowledge . Oxford: Oxford University Press.
  • Pressley, M. (1998). Reading instruction that works: The case for balanced teaching . New York: Guilford Press.
  • Pressley, M., Rankin, J., & Yokol, L. (1996). A survey of the instructional practices of outstanding primary-level literacy teachers. Elementary School Journal , 96 , 363-384.
  • Rayner, K. (1998). Eye movements in reading and information processing: 20 Years of research. Psychological Bulletin , 124 , 372-422.
  • Rayner, K., Foorman, B. R., Perfetti, C. A., Pesetsky, D., & Seidenberg, M. S. (2002, March). How should reading be taught? Scientific American , 286 (3), 84-91.
  • Reading Coherence Initiative. (1999). Understanding reading: What research says about how children learn to read . Austin, TX: Southwest Educational Development Laboratory.
  • Rosenthal, R. (1995). Writing meta-analytic reviews. Psychological Bulletin , 118 , 183-192.
  • Rosnow, R. L., & Rosenthal, R. (1989). Statistical procedures and the justification of knowledge in psychological science. American Psychologist , 44 , 1276-1284.
  • Shankweiler, D. (1999). Words to meaning. Scientific Studies of Reading , 3 , 113-127.
  • Share, D. L., & Stanovich, K. E. (1995). Cognitive processes in early reading development: Accommodating individual differences into a model of acquisition. Issues in Education: Contributions from Educational Psychology , 1 , 1-57.
  • Shavelson, R. J., & Towne, L. (Eds.) (2002). Scientific research in education . Washington, DC: National Academy Press.
  • Siegler, R. S. (1991). Children's thinking (Second Edition) . Englewood Cliffs, NJ: Prentice Hall.
  • Snow, C. E., Burns, M. S., & Griffin, P. (Eds.). (1998). Preventing reading difficulties in young children . Washington, DC: National Academy Press.
  • Snowling, M. (2000). Dyslexia (Second Edition) . Oxford: Blackwell.
  • Spear-Swerling, L., & Sternberg, R. J. (2001). What science offers teachers of reading. Learning Disabilities: Research & Practice , 16 (1), 51-57.
  • Stahl, S. (December, 1988). Is there evidence to support matching reading styles and initial reading methods? Phi Delta Kappan , 317-327.
  • Stanovich, K. E. (1993/1994). Romance and reality. The Reading Teacher , 47 (4), 280-291.
  • Stanovich, K. E. (2000). Progress in understanding reading: Scientific foundations and new frontiers . New York: Guilford Press.
  • Stanovich, K. E. (2001). How to think straight about psychology (Sixth Edition). Boston: Allyn & Bacon.
  • Stokes, D. E. (1997). Pasteur's quadrant: Basic science and technological innovation . Washington, DC: Brookings Institution Press.
  • Swanson, H. L. (1999). Interventions for students with learning disabilities: A meta-analysis of treatment outcomes . New York: Guilford Press.
  • Tarver, S. G., & Dawson, E. (1978). Modality preference and the teaching of reading: A review, Journal of Learning Disabilities , 11, 17-29.
  • Vaughn, S., & Dammann, J. E. (2001). Science and sanity in special education. Behavioral Disorders , 27, 21-29.
  • Warby, D. B., Greene, M. T., Higgins, K., & Lovitt, T. C. (1999). Suggestions for translating research into classroom practices. Intervention in School and Clinic , 34 (4), 205-211.
  • Wheeler, D. L., Jacobson, J. W., Paglieri, R. A., & Schwartz, A. A. (1993). An experimental assessment of facilitated communication. Mental Retardation , 31 , 49-60.
  • Wilkinson, L. (1999). Statistical methods in psychology journals: Guidelines and explanations. American Psychologist , 54 , 595-604.
  • Wilson, E. O. (1998). Consilience: The unity of knowledge . New York: Knopf.

For additional copies of this document:

Contact the National Institute for Literacy at ED Pubs PO Box 1398, Jessup, Maryland 20794-1398

Phone 1-800-228-8813 Fax 301-430-1244 [email protected]

NICHD logo

Date Published: 2003 Date Posted: March 2010

Department of Education logo

  • Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

how does research help in scientific learning describe

Understanding Science

How science REALLY works...

  • Understanding Science 101

An overview

To understand what ​​ science is, just look around you. What do you see? Perhaps your hand on the mouse, a computer screen, papers, ballpoint pens, the family cat, the sun shining through the window …. Science is, in one sense, our knowledge of all that — all the stuff that is in the universe, including the tiniest subatomic particles in a single atom of the metal in your computer’s circuits, the nuclear reactions that formed the immense ball of gas that is our sun, and the complex chemical interactions and electrical fluctuations within your own body that allow you to read and understand these words. But science is not just a collection of knowledge. Just as importantly, science is also a reliable process by which we learn about all that stuff in the universe. And science is different from many other ways of learning because of the way it is done. Science relies on ​​ testing ideas with ​​ evidence gathered from the ​​ natural world . This website will help you learn more about science as a process of learning about the natural world and access the parts of science that affect your life.

Science helps to satisfy the natural curiosity with which we are all born: Why is the sky blue? How did the leopard get its spots? What is a solar eclipse? With science, we can answer such questions without resorting to magical explanations. And science can lead to technological advances, as well as helping us learn about enormously important and useful topics, such as our health, the environment, and natural hazards. Without science, the modern world would not be modern at all. Still, we have so much to learn. Millions of scientists all over the world are working to solve different parts of the puzzle of how the universe works, peering into its nooks and crannies and deploying their microscopes, telescopes, and other tools to unravel its secrets.

Science is complex and multi-faceted, but the most important characteristics of science are straightforward:

  • Science is a way of learning about what is in the natural world, how the natural world works, and how the natural world got to be the way it is. It is not simply a collection of facts ; rather it is a path to understanding.
  • Science focuses exclusively on the natural world and does not deal with supernatural explanations.
  • Although scientists work in many different ways, all science relies on testing ideas by figuring out what expectations are generated by an idea and making observations to find out whether those expectations hold true.
  • Accepted scientific ideas are reliable because they have been subjected to rigorous testing. But, as new evidence is acquired and new perspectives emerge, these ideas can be revised.
  • Science is a community endeavor. It relies on a system of checks and balances, which helps ensure that science moves in the direction of greater accuracy and understanding. This system is facilitated by diversity within the scientific community, which offers a broad range of perspectives on scientific ideas.

To many, science may seem like an arcane, ivory-towered institution — but that impression is based on a misunderstanding of science. In fact:

  • Science affects your life everyday in all sorts of different ways.
  • Science can be fun and is accessible to everyone.
  • You are probably already using scientific thinking in your everyday life – maybe without even knowing it.
  • Anyone can “do” science by investigating questions scientifically.

Where to begin?

Here are some places you may want to start your investigation:

  • What is science? Find out what makes science science .
  • How does it work? Probe the nuts and bolts of the process of science .
  • Why is it important? Learn how science affects your life everyday and how you can apply an understanding of the nature of science in your everyday life.

What is science?

Subscribe to our newsletter

  • The science flowchart
  • Science stories
  • Grade-level teaching guides
  • Teaching resource database
  • Journaling tool
  • Misconceptions

Logo for M Libraries Publishing

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

2.1 Psychologists Use the Scientific Method to Guide Their Research

Learning objectives.

  • Describe the principles of the scientific method and explain its importance in conducting and interpreting research.
  • Differentiate laws from theories and explain how research hypotheses are developed and tested.
  • Discuss the procedures that researchers use to ensure that their research with humans and with animals is ethical.

Psychologists aren’t the only people who seek to understand human behavior and solve social problems. Philosophers, religious leaders, and politicians, among others, also strive to provide explanations for human behavior. But psychologists believe that research is the best tool for understanding human beings and their relationships with others. Rather than accepting the claim of a philosopher that people do (or do not) have free will, a psychologist would collect data to empirically test whether or not people are able to actively control their own behavior. Rather than accepting a politician’s contention that creating (or abandoning) a new center for mental health will improve the lives of individuals in the inner city, a psychologist would empirically assess the effects of receiving mental health treatment on the quality of life of the recipients. The statements made by psychologists are empirical , which means they are based on systematic collection and analysis of data .

The Scientific Method

All scientists (whether they are physicists, chemists, biologists, sociologists, or psychologists) are engaged in the basic processes of collecting data and drawing conclusions about those data. The methods used by scientists have developed over many years and provide a common framework for developing, organizing, and sharing information. The scientific method is the set of assumptions, rules, and procedures scientists use to conduct research .

In addition to requiring that science be empirical, the scientific method demands that the procedures used be objective , or free from the personal bias or emotions of the scientist . The scientific method proscribes how scientists collect and analyze data, how they draw conclusions from data, and how they share data with others. These rules increase objectivity by placing data under the scrutiny of other scientists and even the public at large. Because data are reported objectively, other scientists know exactly how the scientist collected and analyzed the data. This means that they do not have to rely only on the scientist’s own interpretation of the data; they may draw their own, potentially different, conclusions.

Most new research is designed to replicate —that is, to repeat, add to, or modify—previous research findings. The scientific method therefore results in an accumulation of scientific knowledge through the reporting of research and the addition to and modifications of these reported findings by other scientists.

Laws and Theories as Organizing Principles

One goal of research is to organize information into meaningful statements that can be applied in many situations. Principles that are so general as to apply to all situations in a given domain of inquiry are known as laws . There are well-known laws in the physical sciences, such as the law of gravity and the laws of thermodynamics, and there are some universally accepted laws in psychology, such as the law of effect and Weber’s law. But because laws are very general principles and their validity has already been well established, they are themselves rarely directly subjected to scientific test.

The next step down from laws in the hierarchy of organizing principles is theory. A theory is an integrated set of principles that explains and predicts many, but not all, observed relationships within a given domain of inquiry . One example of an important theory in psychology is the stage theory of cognitive development proposed by the Swiss psychologist Jean Piaget. The theory states that children pass through a series of cognitive stages as they grow, each of which must be mastered in succession before movement to the next cognitive stage can occur. This is an extremely useful theory in human development because it can be applied to many different content areas and can be tested in many different ways.

Good theories have four important characteristics. First, good theories are general , meaning they summarize many different outcomes. Second, they are parsimonious , meaning they provide the simplest possible account of those outcomes. The stage theory of cognitive development meets both of these requirements. It can account for developmental changes in behavior across a wide variety of domains, and yet it does so parsimoniously—by hypothesizing a simple set of cognitive stages. Third, good theories provide ideas for future research . The stage theory of cognitive development has been applied not only to learning about cognitive skills, but also to the study of children’s moral (Kohlberg, 1966) and gender (Ruble & Martin, 1998) development.

Finally, good theories are falsifiable (Popper, 1959), which means the variables of interest can be adequately measured and the relationships between the variables that are predicted by the theory can be shown through research to be incorrect . The stage theory of cognitive development is falsifiable because the stages of cognitive reasoning can be measured and because if research discovers, for instance, that children learn new tasks before they have reached the cognitive stage hypothesized to be required for that task, then the theory will be shown to be incorrect.

No single theory is able to account for all behavior in all cases. Rather, theories are each limited in that they make accurate predictions in some situations or for some people but not in other situations or for other people. As a result, there is a constant exchange between theory and data: Existing theories are modified on the basis of collected data, and the new modified theories then make new predictions that are tested by new data, and so forth. When a better theory is found, it will replace the old one. This is part of the accumulation of scientific knowledge.

The Research Hypothesis

Theories are usually framed too broadly to be tested in a single experiment. Therefore, scientists use a more precise statement of the presumed relationship among specific parts of a theory—a research hypothesis—as the basis for their research. A research hypothesis is a specific and falsifiable prediction about the relationship between or among two or more variables , where a variable is any attribute that can assume different values among different people or across different times or places . The research hypothesis states the existence of a relationship between the variables of interest and the specific direction of that relationship. For instance, the research hypothesis “Using marijuana will reduce learning” predicts that there is a relationship between a variable “using marijuana” and another variable called “learning.” Similarly, in the research hypothesis “Participating in psychotherapy will reduce anxiety,” the variables that are expected to be related are “participating in psychotherapy” and “level of anxiety.”

When stated in an abstract manner, the ideas that form the basis of a research hypothesis are known as conceptual variables. Conceptual variables are abstract ideas that form the basis of research hypotheses . Sometimes the conceptual variables are rather simple—for instance, “age,” “gender,” or “weight.” In other cases the conceptual variables represent more complex ideas, such as “anxiety,” “cognitive development,” “learning,” self-esteem,” or “sexism.”

The first step in testing a research hypothesis involves turning the conceptual variables into measured variables , which are variables consisting of numbers that represent the conceptual variables . For instance, the conceptual variable “participating in psychotherapy” could be represented as the measured variable “number of psychotherapy hours the patient has accrued” and the conceptual variable “using marijuana” could be assessed by having the research participants rate, on a scale from 1 to 10, how often they use marijuana or by administering a blood test that measures the presence of the chemicals in marijuana.

Psychologists use the term operational definition to refer to a precise statement of how a conceptual variable is turned into a measured variable . The relationship between conceptual and measured variables in a research hypothesis is diagrammed in Figure 2.1 “Diagram of a Research Hypothesis” . The conceptual variables are represented within circles at the top of the figure, and the measured variables are represented within squares at the bottom. The two vertical arrows, which lead from the conceptual variables to the measured variables, represent the operational definitions of the two variables. The arrows indicate the expectation that changes in the conceptual variables (psychotherapy and anxiety in this example) will cause changes in the corresponding measured variables. The measured variables are then used to draw inferences about the conceptual variables.

Figure 2.1 Diagram of a Research Hypothesis

In this research hypothesis, the conceptual variable of attending psychotherapy is operationalized using the number of hours of psychotherapy the client has completed, and the conceptual variable of anxiety is operationalized using self-reported levels of anxiety. The research hypothesis is that more psychotherapy will be related to less reported anxiety.

In this research hypothesis, the conceptual variable of attending psychotherapy is operationalized using the number of hours of psychotherapy the client has completed, and the conceptual variable of anxiety is operationalized using self-reported levels of anxiety. The research hypothesis is that more psychotherapy will be related to less reported anxiety.

Table 2.1 “Examples of the Operational Definitions of Conceptual Variables That Have Been Used in Psychological Research” lists some potential operational definitions of conceptual variables that have been used in psychological research. As you read through this list, note that in contrast to the abstract conceptual variables, the measured variables are very specific. This specificity is important for two reasons. First, more specific definitions mean that there is less danger that the collected data will be misunderstood by others. Second, specific definitions will enable future researchers to replicate the research.

Table 2.1 Examples of the Operational Definitions of Conceptual Variables That Have Been Used in Psychological Research

Conducting Ethical Research

One of the questions that all scientists must address concerns the ethics of their research. Physicists are concerned about the potentially harmful outcomes of their experiments with nuclear materials. Biologists worry about the potential outcomes of creating genetically engineered human babies. Medical researchers agonize over the ethics of withholding potentially beneficial drugs from control groups in clinical trials. Likewise, psychologists are continually considering the ethics of their research.

Research in psychology may cause some stress, harm, or inconvenience for the people who participate in that research. For instance, researchers may require introductory psychology students to participate in research projects and then deceive these students, at least temporarily, about the nature of the research. Psychologists may induce stress, anxiety, or negative moods in their participants, expose them to weak electrical shocks, or convince them to behave in ways that violate their moral standards. And researchers may sometimes use animals in their research, potentially harming them in the process.

Decisions about whether research is ethical are made using established ethical codes developed by scientific organizations, such as the American Psychological Association, and federal governments. In the United States, the Department of Health and Human Services provides the guidelines for ethical standards in research. Some research, such as the research conducted by the Nazis on prisoners during World War II, is perceived as immoral by almost everyone. Other procedures, such as the use of animals in research testing the effectiveness of drugs, are more controversial.

Scientific research has provided information that has improved the lives of many people. Therefore, it is unreasonable to argue that because scientific research has costs, no research should be conducted. This argument fails to consider the fact that there are significant costs to not doing research and that these costs may be greater than the potential costs of conducting the research (Rosenthal, 1994). In each case, before beginning to conduct the research, scientists have attempted to determine the potential risks and benefits of the research and have come to the conclusion that the potential benefits of conducting the research outweigh the potential costs to the research participants.

Characteristics of an Ethical Research Project Using Human Participants

  • Trust and positive rapport are created between the researcher and the participant.
  • The rights of both the experimenter and participant are considered, and the relationship between them is mutually beneficial.
  • The experimenter treats the participant with concern and respect and attempts to make the research experience a pleasant and informative one.
  • Before the research begins, the participant is given all information relevant to his or her decision to participate, including any possibilities of physical danger or psychological stress.
  • The participant is given a chance to have questions about the procedure answered, thus guaranteeing his or her free choice about participating.
  • After the experiment is over, any deception that has been used is made public, and the necessity for it is explained.
  • The experimenter carefully debriefs the participant, explaining the underlying research hypothesis and the purpose of the experimental procedure in detail and answering any questions.
  • The experimenter provides information about how he or she can be contacted and offers to provide information about the results of the research if the participant is interested in receiving it. (Stangor, 2011)

This list presents some of the most important factors that psychologists take into consideration when designing their research. The most direct ethical concern of the scientist is to prevent harm to the research participants. One example is the well-known research of Stanley Milgram (1974) investigating obedience to authority. In these studies, participants were induced by an experimenter to administer electric shocks to another person so that Milgram could study the extent to which they would obey the demands of an authority figure. Most participants evidenced high levels of stress resulting from the psychological conflict they experienced between engaging in aggressive and dangerous behavior and following the instructions of the experimenter. Studies such as those by Milgram are no longer conducted because the scientific community is now much more sensitized to the potential of such procedures to create emotional discomfort or harm.

Another goal of ethical research is to guarantee that participants have free choice regarding whether they wish to participate in research. Students in psychology classes may be allowed, or even required, to participate in research, but they are also always given an option to choose a different study to be in, or to perform other activities instead. And once an experiment begins, the research participant is always free to leave the experiment if he or she wishes to. Concerns with free choice also occur in institutional settings, such as in schools, hospitals, corporations, and prisons, when individuals are required by the institutions to take certain tests, or when employees are told or asked to participate in research.

Researchers must also protect the privacy of the research participants. In some cases data can be kept anonymous by not having the respondents put any identifying information on their questionnaires. In other cases the data cannot be anonymous because the researcher needs to keep track of which respondent contributed the data. In this case one technique is to have each participant use a unique code number to identify his or her data, such as the last four digits of the student ID number. In this way the researcher can keep track of which person completed which questionnaire, but no one will be able to connect the data with the individual who contributed them.

Perhaps the most widespread ethical concern to the participants in behavioral research is the extent to which researchers employ deception. Deception occurs whenever research participants are not completely and fully informed about the nature of the research project before participating in it . Deception may occur in an active way, such as when the researcher tells the participants that he or she is studying learning when in fact the experiment really concerns obedience to authority. In other cases the deception is more passive, such as when participants are not told about the hypothesis being studied or the potential use of the data being collected.

Some researchers have argued that no deception should ever be used in any research (Baumrind, 1985). They argue that participants should always be told the complete truth about the nature of the research they are in, and that when participants are deceived there will be negative consequences, such as the possibility that participants may arrive at other studies already expecting to be deceived. Other psychologists defend the use of deception on the grounds that it is needed to get participants to act naturally and to enable the study of psychological phenomena that might not otherwise get investigated. They argue that it would be impossible to study topics such as altruism, aggression, obedience, and stereotyping without using deception because if participants were informed ahead of time what the study involved, this knowledge would certainly change their behavior. The codes of ethics of the American Psychological Association and other organizations allow researchers to use deception, but these codes also require them to explicitly consider how their research might be conducted without the use of deception.

Ensuring That Research Is Ethical

Making decisions about the ethics of research involves weighing the costs and benefits of conducting versus not conducting a given research project. The costs involve potential harm to the research participants and to the field, whereas the benefits include the potential for advancing knowledge about human behavior and offering various advantages, some educational, to the individual participants. Most generally, the ethics of a given research project are determined through a cost-benefit analysis , in which the costs are compared to the benefits. If the potential costs of the research appear to outweigh any potential benefits that might come from it, then the research should not proceed.

Arriving at a cost-benefit ratio is not simple. For one thing, there is no way to know ahead of time what the effects of a given procedure will be on every person or animal who participates or what benefit to society the research is likely to produce. In addition, what is ethical is defined by the current state of thinking within society, and thus perceived costs and benefits change over time. The U.S. Department of Health and Human Services regulations require that all universities receiving funds from the department set up an Institutional Review Board (IRB) to determine whether proposed research meets department regulations. The Institutional Review Board (IRB) is a committee of at least five members whose goal it is to determine the cost-benefit ratio of research conducted within an institution . The IRB approves the procedures of all the research conducted at the institution before the research can begin. The board may suggest modifications to the procedures, or (in rare cases) it may inform the scientist that the research violates Department of Health and Human Services guidelines and thus cannot be conducted at all.

One important tool for ensuring that research is ethical is the use of informed consent . A sample informed consent form is shown in Figure 2.2 “Sample Consent Form” . Informed consent , conducted before a participant begins a research session, is designed to explain the research procedures and inform the participant of his or her rights during the investigation . The informed consent explains as much as possible about the true nature of the study, particularly everything that might be expected to influence willingness to participate, but it may in some cases withhold some information that allows the study to work.

Figure 2.2 Sample Consent Form

The informed consent form explains the research procedures and informs the participant of his or her rights during the investigation.

The informed consent form explains the research procedures and informs the participant of his or her rights during the investigation.

Adapted from Stangor, C. (2011). Research methods for the behavioral sciences (4th ed.). Mountain View, CA: Cengage.

Because participating in research has the potential for producing long-term changes in the research participants, all participants should be fully debriefed immediately after their participation. The debriefing is a procedure designed to fully explain the purposes and procedures of the research and remove any harmful aftereffects of participation .

Research With Animals

Because animals make up an important part of the natural world, and because some research cannot be conducted using humans, animals are also participants in psychological research. Most psychological research using animals is now conducted with rats, mice, and birds, and the use of other animals in research is declining (Thomas & Blackman, 1992). As with ethical decisions involving human participants, a set of basic principles has been developed that helps researchers make informed decisions about such research; a summary is shown below.

APA Guidelines on Humane Care and Use of Animals in Research

The following are some of the most important ethical principles from the American Psychological Association’s guidelines on research with animals.

  • Psychologists acquire, care for, use, and dispose of animals in compliance with current federal, state, and local laws and regulations, and with professional standards.
  • Psychologists trained in research methods and experienced in the care of laboratory animals supervise all procedures involving animals and are responsible for ensuring appropriate consideration of their comfort, health, and humane treatment.
  • Psychologists ensure that all individuals under their supervision who are using animals have received instruction in research methods and in the care, maintenance, and handling of the species being used, to the extent appropriate to their role.
  • Psychologists make reasonable efforts to minimize the discomfort, infection, illness, and pain of animal subjects.
  • Psychologists use a procedure subjecting animals to pain, stress, or privation only when an alternative procedure is unavailable and the goal is justified by its prospective scientific, educational, or applied value.
  • Psychologists perform surgical procedures under appropriate anesthesia and follow techniques to avoid infection and minimize pain during and after surgery.
  • When it is appropriate that an animal’s life be terminated, psychologists proceed rapidly, with an effort to minimize pain and in accordance with accepted procedures. (American Psychological Association, 2002)

animal testing on a rabbit

Psychologists may use animals in their research, but they make reasonable efforts to minimize the discomfort the animals experience.

Because the use of animals in research involves a personal value, people naturally disagree about this practice. Although many people accept the value of such research (Plous, 1996), a minority of people, including animal-rights activists, believes that it is ethically wrong to conduct research on animals. This argument is based on the assumption that because animals are living creatures just as humans are, no harm should ever be done to them.

Most scientists, however, reject this view. They argue that such beliefs ignore the potential benefits that have and continue to come from research with animals. For instance, drugs that can reduce the incidence of cancer or AIDS may first be tested on animals, and surgery that can save human lives may first be practiced on animals. Research on animals has also led to a better understanding of the physiological causes of depression, phobias, and stress, among other illnesses. In contrast to animal-rights activists, then, scientists believe that because there are many benefits that accrue from animal research, such research can and should continue as long as the humane treatment of the animals used in the research is guaranteed.

Key Takeaways

  • Psychologists use the scientific method to generate, accumulate, and report scientific knowledge.
  • Basic research, which answers questions about behavior, and applied research, which finds solutions to everyday problems, inform each other and work together to advance science.
  • Research reports describing scientific studies are published in scientific journals so that other scientists and laypersons may review the empirical findings.
  • Organizing principles, including laws, theories and research hypotheses, give structure and uniformity to scientific methods.
  • Concerns for conducting ethical research are paramount. Researchers assure that participants are given free choice to participate and that their privacy is protected. Informed consent and debriefing help provide humane treatment of participants.
  • A cost-benefit analysis is used to determine what research should and should not be allowed to proceed.

Exercises and Critical Thinking

  • Give an example from personal experience of how you or someone you know have benefited from the results of scientific research.
  • Find and discuss a research project that in your opinion has ethical concerns. Explain why you find these concerns to be troubling.
  • Indicate your personal feelings about the use of animals in research. When should and should not animals be used? What principles have you used to come to these conclusions?

American Psychological Association. (2002). Ethical principles of psychologists. American Psychologist, 57 , 1060–1073.

Baumrind, D. (1985). Research using intentional deception: Ethical issues revisited. American Psychologist, 40 , 165–174.

Kohlberg, L. (1966). A cognitive-developmental analysis of children’s sex-role concepts and attitudes. In E. E. Maccoby (Ed.), The development of sex differences . Stanford, CA: Stanford University Press.

Milgram, S. (1974). Obedience to authority: An experimental view . New York, NY: Harper and Row.

Plous, S. (1996). Attitudes toward the use of animals in psychological research and education. Psychological Science, 7 , 352–358.

Popper, K. R. (1959). The logic of scientific discovery . New York, NY: Basic Books.

Rosenthal, R. (1994). Science and ethics in conducting, analyzing, and reporting psychological research. Psychological Science, 5 , 127–134.

Ruble, D., & Martin, C. (1998). Gender development. In W. Damon (Ed.), Handbook of child psychology (5th ed., pp. 933–1016). New York, NY: John Wiley & Sons.

Stangor, C. (2011). Research methods for the behavioral sciences (4th ed.). Mountain View, CA: Cengage.

Thomas, G., & Blackman, D. (1992). The future of animal studies in psychology. American Psychologist, 47 , 1678.

Introduction to Psychology Copyright © 2015 by University of Minnesota is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Module 2: Research Methods in Learning and Behavior

Module Overview

Module 2 will cover the critical issue of how research is conducted in the experimental analysis of behavior. To do this, we will discuss the scientific method, research designs, the apparatus we use, how we collect data, and dependent measures used to show that learning has occurred. We also will break down the structure of a research article and make a case for the use of both humans and animals in learning and behavior research.

Module Outline

2.1. The Scientific Method

2.2. research designs used in the experimental analysis of behavior, 2.3. dependent measures, 2.4. animal and human research.

Module Learning Outcomes

  • Describe the steps in the scientific method and how this process is utilized in the experimental analysis of behavior.
  • Describe specific research designs, data collection methods, and apparatus used in the experimental analysis of behavior.
  • Understand the basic structure of a research article.
  • List and describe dependent measures used in learning experiments.
  • Explain why animals are used in learning research.
  • Describe safeguards to protect human beings in scientific research.

Section Learning Objectives

  • Define scientific method.
  • Outline and describe the steps of the scientific method, defining all key terms.
  • Define functional relationship and explain how it produces a contingency.
  • Explain the concept of a behavioral definition.
  • Distinguish between stimuli and responses and define related concepts.
  • Distinguish types of contiguity, and the term from contingency.
  • Describe the typical phases in learning research.

2.1.1. The Steps of The Scientific Method

In Module 1, we learned that psychology was the scientific study of behavior and mental processes. We will spend quite a lot of time on the behavior and mental processes part, but before we proceed, it is prudent to elaborate more on what makes psychology scientific. It is safe to say that most people not within our discipline or a sister science would be surprised to learn that psychology utilizes the scientific method at all.

So what is the scientific method? Simply, the scientific method is a systematic method for gathering knowledge about the world around us. The key word here is that it is systematic, meaning there is a set way to use it. What is that way? Well, depending on what source you look at it can include a varying number of steps. For our purposes, the following will be used:

Table 2.1: The Steps of the Scientific Method

2.1.2. Making Cause and Effect Statements in the Experimental Analysis of Behavior

As you have seen, scientists seek to make causal statements about what they are studying. In the study of learning and behavior, we call this a functional relationship. This occurs when we can say a target behavior has changed due to the use of a procedure/treatment/strategy and this relationship has been replicated at least one other time. A contingency is when one thing occurs due to another. Think of it as an if-then statement. If I do X then Y will happen. We can also say that when we experience Y that X preceded it. Concerning a functional relationship, if I introduce a treatment, then the animal responds as such or if that animal pushes the lever, then she receives a food pellet.

To help arrive at a functional relationship, we have to understand what we are studying. In science, we say we operationally define our variables. In the realm of learning, we call this a behavioral definition, or a precise, objective, unambiguous description of the behavior. The key is that we must state our behavioral definition with enough precision that anyone can read it and be able to accurately measure the behavior when it occurs.

2.1.3. Frequently Used Terms in the Experimental Analysis of Behavior

In the experimental analysis of behavior, we frequently talk about an animal or person experiencing a trial. Simply, a trial is one instance or attempt at learning. Each time a rat is placed in a maze this is considered one trial. We can then determine if learning is occurring using different dependent measures described in Section 2.3. If a child is asked to complete a math problem and then a second is introduced, and then a third, each practice problem represents a trial.

As you saw in Module 1, behaviorism is the science of stimuli and responses. What do these terms indicate? Stimuli are the environmental events that have the potential to trigger behavior, called a response . If your significant other does something nice for you and you say, ‘Thank you,’ the kind act is the stimulus which leads to your response of thanking him/her. Stimuli have to be sensed to bring about a response. This occurs through the five senses — vision, hearing, touch, smell, and taste. Stimuli can take on two forms. Appetitive stimuli are those that an organism desires and seeks out while aversive stimuli are readily avoided. An example of the former would be food or water and the latter is exemplified by extremes of temperature, shock, or a spanking by a parent.

As you will come to see in Module 6, we can make a stimulus more desirable or undesirable, called an establishing operation , or make it less desirable or undesirable, called an abolishing operation . Such techniques are called motivating operations . Food may be seen as more attractive, desirable, or pleasant if we are hungry but less desirable (or more undesirable) if we are full. A punishment such as taking away video games is more undesirable if the child likes to play games such as Call of Duty or Madden but is less undesirable (or maybe even has no impact) if they do not enjoy video games. Linked to the discussion above, food is an appetitive stimulus and could be an establishing operation if we are hungry. A valued video game also represents an establishing operation if we threaten its removal, and we will want to avoid such punishment, which makes the threat an aversive stimulus.

As noted earlier, the response is simply the behavior that is made and can take on many different forms. A dog may learn to salivate (response) to the sound of a bell (stimulus). A person may begin going to the gym if he or she seeks to gain tokens to purchase back up reinforcers (more on this in Module 7). A person may work harder in the future if they received a compliment from their boss today (either through email and visual or spoken or through hearing).

Another important concept is contiguity and occurs when two events are associated with one another because they occur together closely, whether in time called temporal contiguity or in space called spatial contiguity . In the case of time, we may come to associate thanking someone for saying ‘good job’ if we hear others doing this and the two verbal behaviors occur very close in time. Usually, the ‘Thank you’ (or other response) follows the praise within seconds. In the case of space, we may learn to use a spatula to flip our hamburgers on the grill if the spatula is placed next to the stove and not in another room. Do not confuse contiguity with contingency. Though the terms look the same they have very different meanings.

Finally, in learning research, we often distinguish two phases — baseline and treatment. Baseline Phase occurs before any strategy or strategies are put into effect. This phase will essentially be used to compare against the treatment phase. We are also trying to find out exactly how much of the target behavior the person or animal is engaging in. Treatment Phase occurs when the strategy or strategies are used, or you might say when the manipulation is implemented. Note that in behavior modification we also talk about what is called the maintenance phase. More on this in Module 7.

  • List the five main research methods used in psychology.
  • Describe observational research, listing its advantages and disadvantages.
  • Describe the case study approach to research, listing its advantages and disadvantages.
  • Describe survey research, listing its advantages and disadvantages.
  • Describe correlational research, listing its advantages and disadvantages.
  • Describe experimental research, listing its advantages and disadvantages.
  • Define key terms related to experiments.
  • Describe specific types of experimental designs used in learning research.
  • Describe the ways we gather data in learning research (or applied behavior analysis).
  • Outline the types of apparatus used in learning experiments.
  • Outline the parts of a research article and describe their function.

Step 3 called on the scientist to test his or her hypothesis. Psychology as a discipline uses five main research designs to do just that. These include observational research, case studies, surveys, correlational designs, and experiments.

2.2.1. Observational Research

In terms of naturalistic observation , the scientist studies human or animal behavior in its natural environment which could include the home, school, or a forest. The researcher counts, measures, and rates behavior in a systematic way and at times uses multiple judges to ensure accuracy in how the behavior is being measured. This is called inter-rater reliability . The advantage of this method is that you witness behavior as it occurs and it is not tainted by the experimenter. The disadvantage is that it could take a long time for the behavior to occur and if the researcher is detected then this may influence the behavior of those being observed. In the case of the latter, the behavior of the observed becomes artificial .

Laboratory observation involves observing people or animals in a laboratory setting. The researcher might want to know more about parent-child interactions and so brings a mother and her child into the lab to engage in preplanned tasks such as playing with toys, eating a meal, or the mother leaving the room for a short period of time. The advantage of this method over the naturalistic method is that the experimenter can use sophisticated equipment and videotape the session to examine it later. The problem is that since the subjects know the experimenter is watching them, their behavior could become artificial.

2.2.2. Case Studies

Psychology can also utilize a detailed description of one person or a small group based on careful observation. The advantage of this method is that you arrive at a rich description of the behavior being investigated, but the disadvantage is that what you are learning may be unrepresentative of the larger population and so lacks generalizability . Again, bear in mind that you are studying one person or a very small group. Can you possibly make conclusions about all people from just one or even five or ten? The other issue is that the case study is subject to the bias of the researcher in terms of what is included in the final write up and what is left out. Despite these limitations, case studies can lead us to novel ideas about the cause of a behavior and help us to study unusual conditions that occur too infrequently to study with large sample sizes and in a systematic way.

2.2.3. Surveys/Self-Report Data

A survey is a questionnaire consisting of at least one scale with a number of questions that assess a psychological construct of interest such as parenting style, depression, locus of control, attitudes, or sensation-seeking behavior. It may be administered by paper and pencil or computer. Surveys allow for the collection of large amounts of data quickly, but the actual survey could be tedious for the participant, and social desirability , or when a participant answers questions dishonestly so that he/she is seen in a more favorable light, could be an issue. For instance, if you are asking high school students about their sexual activity, they may not give genuine answers for fear that their parents will find out. Or if you wanted to know about prejudiced attitudes of a group of people, you could use the survey method. You could alternatively gather this information via an interview in a structured, semi-structured, or unstructured fashion. Important to survey research is that you have random sampling, or when everyone in the population has an equal chance of being included in the sample. This helps the survey to be representative of the population, and in terms of key demographic variables such as gender, age, ethnicity, race, education level, and religious orientation. Surveys are not frequently used in the experimental analysis of behavior.

2.2.4. Correlational Research

This research method examines the relationship between two variables or two groups of variables. A numerical measure of the strength of this relationship is derived, called the correlation coefficient , and can range from -1.00, which indicates a perfect inverse relationship meaning that as one variable goes up the other goes down, to 0 or no relationship at all, to +1.00 or a perfect relationship in which as one variable goes up or down so does the other. In terms of a negative correlation we might say that as a parent becomes more rigid, controlling, and cold, the attachment of the child to parent goes down. In contrast, as a parent becomes warmer, more loving, and provides structure, the child becomes more attached. The advantage of correlational research is that you can correlate anything. The disadvantage is also that you can correlate anything. Variables that do not have any relationship to one another could be viewed as related. Yes. This is both an advantage and a disadvantage. For instance, we might correlate instances of making peanut butter and jelly sandwiches with someone we are attracted to sitting near us at lunch. Are the two related? Not likely, unless you make a really good PB&J, but then the person is probably only interested in you for food and not companionship. The main issue here is that correlation does not allow you to make a causal statement.

2.2.5. Experiments

An experiment is a controlled test of a hypothesis in which a researcher manipulates one variable and measures its effect on another. A variable is anything that varies over time or from one situation to the next. Patience could be an example of a variable. Though we may be patient in one situation, we may have less if a second situation occurs close in time. The first could have lowered our ability to cope making an emotional reaction quicker to occur even if the two situations are about the same in terms of impact. Another variable is weight. Anyone who has tried to shed some pounds and weighs in daily knows just how much weight can vary from day to day, or even on the same day. In terms of experiments, the variable that is manipulated is called the independent variable (IV) and the one that is measured is called the dependent variable (DV) .

A common feature of experiments is to have a control group that does not receive the treatment, or is not manipulated, and an experimental group that does receive the treatment or manipulation. If the experiment includes random assignment, participants have an equal chance of being placed in the control or experimental group. The control group allows the researcher to make a comparison to the experimental group, making a causal statement possible, and stronger.

Within the experimental analysis of behavior (and applied behavior analysis), experimental procedures take on several different forms. In discussing each, understand that we will use the following notations:

A will represent the baseline phase and B will represent the treatment phase.

  • A-B design — This is by far the most basic of all designs used in behavior modification and includes just one rotation from baseline to treatment phase and from that we see if the behavior changed in the predicted manner. The issue with this design is that no functional relationship can be established since there is no replication. It is possible that the change occurred not due to the treatment that was used, but due to an extraneous variable , or an unseen and unaccounted for factor on the results and specifically our DV.
  • A-B-A-B Reversal Design — In this design, the baseline and treatment phases are implemented twice. After the first treatment phase occurs, the individual(s) is/are taken back to baseline and then the treatment phase is implemented again. Replication is built into this design, allowing for a causal statement, but it may not be possible or ethical to take the person back to baseline after a treatment has been introduced, and one that likely is working well. What if you developed a successful treatment to reduce self-injurious behavior in children or to increase feelings of self-worth? You would want to know if the decrease in this behavior or increase in the positive thoughts was due to your treatment and not extraneous behaviors, but can you take the person back to baseline? Is it ethical to remove a treatment for something potentially harmful to the person? Now let’s say a teacher developed a new way to teach fractions to a fourth-grade class. Was it the educational paradigm or maybe additional help a child received from his/her parents or a tutor that accounts for improvement in performance? Well, we need to take the child back to baseline and see if the strategy works again, but can we? How can the child forget what has been learned already? ABAB Reversal Designs work well at establishing functional relationships if you can take the person back to baseline but are problematic if you cannot. An example of them working well includes establishing a system, such as a token economy (more on this later), to ensure your son does his chores, having success with it, and then taking it away. If the child stops doing chores and only restarts when the token economy is put back into place, then your system works. Note that with time the behavior of doing chores would occur on its own and the token economy would be fazed out.
  • Multiple-baseline designs — This design can take on three different forms. In an across-subjects design, there is a baseline and treatment phase for two or more subjects for the same target behavior. For example, an applied behavior analyst is testing a new intervention to reduce disruptions in the classroom. The intervention involves a combination of antecedent manipulations, prompts, social support, differential reinforcement, and time-outs. He uses the intervention on six problematic students in a 6th period math class. Secondly, the across-settings design has a baseline and treatment phase for two or more settings in the same person for which the same behavior is measured. What if this same specialist now tests the intervention with one student but across her other five classes which include social studies, gym, science, English, and shop. Finally, in an across-behaviors design , there is a baseline and treatment phase for two or more different behaviors the same participant makes. The intervention continues to show promise and now the ABA specialist wants to see if it can help the same student but with his problem with procrastination and inability to organize.
  • Changing-Criterion Design — In this design, the performance criteria changes as the subject achieves specific goals. The individual may go from having to workout at the gym 2 days a week to 3 days, then 4 days, and then finally 5 days. Once the goal of 2 days a week is met, the criterion changes to 3 days a week. In a learning study, a rat may have to press the lever 5 times to receive a food pellet and then once this is occurring regularly, the schedule changes to 10 times to receive the same food pellet. We are asking the rat to make more behaviors for the same consequence. The changing-criterion design has an A-B design but rules out extraneous variables since the person or animal continues meeting the changing criterion/new goals using the same treatment plan or experimental manipulation. Hence successfully moving from one goal to the next must be due to the strategies that were selected.

2.2.6. Ways We Gather Data

When we record, we need to decide what method we will use. Several strategies are possible to include continuous, product or outcome, and interval. First, in continuous recording, we watch a person or animal continuously throughout an observation period , or time when observations will be made, and all occurrences of the behavior are recorded. This technique allows you to record both frequency and duration. The frequency is reported as a rate, or the number of responses that occur per minute. Duration is the total time the behavior takes from start to finish. You can also record the intensity using a rating scale in which 1 is low intensity and 5 is high intensity. Finally, latency can be recorded by noting how long it took the person to engage in the desirable behavior, or to discontinue a problem behavior, from when the demand was uttered. You can also use real-time recording in which you write down the time when the behavior starts and when it ends, and then do this each time the behavior occurs. You can look at the number of start-stops to get the frequency and then average out the time each start-stop lasted to get the duration. For instance:

how does research help in scientific learning describe

Next is product or outcome recording . This technique can be used when there is a tangible outcome you are interested in, such as looking at how well a student has improved his long division skills by examining his homework assignment or a test. Or you might see if your friend’s plan to keep a cleaner house is working by inspecting his or her house randomly once a week. This will allow you to know if an experimental teaching technique works. It is an indirect assessment method meaning that the observer does not need to be present. You can also examine many types of behaviors. But because the observer is not present, you are not sure if the person did the work himself or herself. It may be that answers were looked up online, cheating occurred as in the case of a test, or someone else did the homework for the student such as a sibling, parent, or friend. Also, you have to make sure you are examining the result/outcome of the behavior and not the behavior itself.

Finally, interval recording occurs when you take the observation period and divide it up into shorter periods of time. The person or animal is observed, and the target behavior recorded based on whether it occurs during the entire interval, called whole interval recording, or some part of the interval, called partial interval recording. With the latter, you are not interested in the dimensions of duration and frequency. We also say the interval recording is continuous if each subsequent interval follows immediately after the current one. Let’s say you are studying students in a classroom. Your observation period is the 50 minutes the student is in his home economics class and you divide it up into ten, 5-minute intervals. If using whole, then the behavior must occur during the entire 5-minute interval. If using partial, it only must occur sometime during the 5-minute interval. You can also use what is called time sample recording in which you divide the observation period into intervals of time but then observe and record during part of each interval (the sample). There are periods of time in between the observation periods in which no observation and recording occur. As such, the recording is discontinuous. This is a useful method since the observer does not have to observe the entire interval and the level of behavior is reported as the percentage of intervals in which the behavior occurred. Also, more than one behavior can be observed.

2.2.7. The Apparatus We Use

What we need to understand next in relation to learning research is what types of apparatus’ are used. As you might expect, the maze is the primary tool and has been so for over 100 years. Through the use of mazes, we can determine general principles about learning that apply to not only animals such as rats, but to human beings too. The standard or classic maze is built on a large platform with vertical walls and a transparent ceiling. The rat begins at a start point or box and moves through the maze until it reaches the end or goal box. There may be a reward at the end such as food or water to encourage the rat to learn the maze. Through the use of such a maze, we can determine how many trials it takes for the rat to reach the goal box without making a mistake. As you will see, in Section 2.3, we can also determine how long it took the rat to run the maze.

An alternative to this design is what is called the T-maze which obtains its name from its characteristic T-structure. The rat begins in a start box and proceeds up the corridor until it reaches a decision point – go left or right. We might discover if rats have a side preference or how fast they can learn if food-deprived the night before. One arm would have a food pellet while the other would not. It is also a great way to distinguish place and response learning (Blodgett & McCutchan, 1947). Some forms of the T-maze have multiple T-junctions in which the rat can make the correct decision and continues in the maze or makes a wrong decision. The rat can use cues in the environment to learn how to correctly navigate the maze and once learned, the rat will make few errors and run through it very quickly (Gentry, Brown, & Lee, 1948; Stone & Nyswander, 1927).

Similar to the T-maze is what is called the Y-maze . Starting in one arm, the rat moves forward and then has to choose one of two arms. The turns are not as sharp as in a T-maze making learning a bit easier.  There is also a radial arm maze (Olton, 1987; Olton, Collison, & Werz, 1977) in which a rat starts in the center and can choose to enter any of 8, 12, or 16 spokes radiating out from this central location. It is a great test of short-term memory as the rat has to recall which arms have been visited and which have not. The rat successfully completes the maze when all arms have been visited.

One final maze is worth mentioning. The Morris water maze (Morris, 1984) is an apparatus that includes a large round tub of opaque water. There are two hidden platforms 1-2 cm under the water’s surface. The rat begins on a start platform and swims around until the other platform is located and it stands on it. It utilizes external cues placed outside the maze to find the end platform and run time is the typical dependent measure that is used.

To learn more about rat mazes, please visit: http://ratbehavior.org/RatsAndMazes.htm

Check this Out

Do you want to increase how fast rats learn their way through a multiple T-maze? Research has shown that you can do this by playing Mozart. Rats were exposed in utero plus 60 days to either a complex piece of music in the form of a sonata from Mozart, minimalist music, white noise, or silence. They were then tested over 5 days with 3 trials per day in a multiple T-maze. Results showed that rats exposed to Mozart completed the maze quicker and made fewer errors than the rats in the other conditions. The authors state that exposure to complex music facilitates spatial-temporal learning in rats and this matches results found in humans (Rauscher, Robinson, & Jens, 1998). Another line of research found that when rats were stressed they performed worse in water maze learning tasks than their non-stressed counterparts (Holscher, 1999).

So when you are studying for your quizzes or exams in this class (or other classes), play Mozart and minimize stress. These actions could result in a higher grade.

Outside of mazes, learning researchers may also utilize a Skinner Box . This is a small chamber used to conduct operant conditioning experiments with animals such as rats or pigeons. Inside the chamber, there is a lever for rats to push or a key for pigeons to peck which results in the delivery of food or water. The behavior of pushing or pecking is recorded through electronic equipment which allows for the behavior to be counted or quantified. This device is also called an operant conditioning chamber .

Finally, Edward Thorndike (1898) used a puzzle box to arrive at his law of effect or the idea that an organism will be more likely to repeat a behavior if it produced a satisfying effect in the past than if the effect was negative. This later became the foundation upon which operant conditioning was built. In his experiments, a hungry cat was placed in a box with a plate of fish outside the box. It was close enough that the cat could see and smell it but could not touch it. To get to the food, the cat had to figure out how to escape the box or which mechanism would help it to escape. Once free, the cat would take a bite, be placed back into the box, and then had to work to get out again. Thorndike discovered that the cat was able to get out quicker each time which demonstrated learning.

2.2.8. The Scientific Research Article

In scientific research, it is common practice to communicate the findings of our investigation. By reporting what we found in our study, other researchers can critique our methodology and address our limitations. Publishing allows psychology to grow its knowledge base about human behavior. We can also see where gaps still exist. We move it into the public domain so others can read and comment on it. Scientists can also replicate what we did and possibly extend our work if it is published.

As noted earlier, there are several ways to communicate our findings. We can do so at conferences in the form of posters or oral presentations, through newsletters from APA itself or one of its many divisions or other organizations, or through research journals and specifically scientific research articles. Published journal articles represent a form of communication between scientists and in them, the researchers describe how their work relates to previous research, how it replicates and/or extends this work, and what their work might mean theoretically.

Research articles begin with an abstract or a 150-250-word summary of the entire article. The purpose is to describe the experiment and allows the reader to decide whether he or she wants to read it further. The abstract provides a statement of purpose, overview of the methods, main results, and a brief statement of what these results mean. Keywords are also given that allow for students and other researchers alike to find the article when doing a search.

The abstract is followed by four major sections – Introduction, Method, Results, and Discussion. First, the introduction is designed to provide a summary of the current literature as it relates to the topic. It helps the reader to see how the researcher arrived at their hypothesis and the design of the study. Essentially, it gives the logic behind the decisions that were made.

Next, is the method section. Since replication is a required element of science, we must have a way to share information on our design and sample with readers. This is the essence of the method section and covers three major aspects of a study — the participants, materials or apparatus, and procedure. The reader needs to know who was in the study so that limitations related to the generalizability of the findings can be identified and investigated in the future. The researcher will also state the operational/behavioral definition, describe any groups that were used, identify random sampling or assignment procedures, and provide information about how a scale was scored or if a specific piece of apparatus was used, etc. Think of the method section as a cookbook. The participants are the ingredients, the materials or apparatus are whatever tools are needed, and the procedure is the instructions for how to bake the cake.

Third, is the results section. In this section, the researcher states the outcome of the experiment and whether it was statistically significant or not. The researchers can also present tables and figures. It is here we will find both descriptive and inferential statistics.

Finally, the discussion section starts by restating the main findings and hypothesis of the study. Next, is an interpretation of the findings and what their significance might be. Finally, the strengths and limitations of the study are stated which will allow the researcher to propose future directions or for other researchers to identify potential areas of exploration for their work. Whether you are writing a research paper for a class, preparing an article for publication, or reading a research article, the structure and function of a research article is the same. Understanding this will help you when reading articles in learning and behavior but also note, this same structure is used across disciplines.

  • List typical dependent measures used in learning experiments.
  • Describe the use of errors as a dependent measure.
  • Describe the use of frequency as a dependent measure.
  • Describe the use of intensity as a dependent measure.
  • Describe the use of duration/run time/speed as a dependent measure.
  • Describe the use of latency as a dependent measure.
  • Describe the use of topography as a dependent measure.
  • Describe the use of rate as a dependent measure.
  • Describe the use of fluency as a dependent measure.

As we have learned, experiments include dependent and independent variables. The independent variable is the manipulation we are making while the dependent variable is what is being measured to see the effect of the manipulation. So, what types of DVs might we use in the experimental analysis of behavior or applied behavior analysis? We will cover the following: errors, frequency, intensity, duration, latency, topography, rate, and fluency.

2.3.1. Errors

A very simple measure of learning is to assess the number of errors made. If an animal running a maze has learned the maze, he/she should make fewer errors or mistakes with each trial, compared to say the first trial when many errors were made. The same goes for a child learning how to do multiplication. There will be numerous errors at start and then fewer to none later.

2.3.2. Frequency

Frequency is a measure of how often a behavior occurs. If we want to run more often, we may increase the number of days we run each week from 3 to 5. In terms of behavior modification, I once had a student who wished to decrease the number of times he used expletives throughout the day.

2.3.3. Intensity

Intensity is a measure of how strong the response is. For instance, a person on a treadmill may increase the intensity from 5 mph to 6 mph meaning the belt moves quicker and so the runner will have to move faster to keep up. We might tell children in a classroom to use their inside voices or to speak softer as opposed to their playground voices when they can yell.

2.3.4. Duration/Run Time/Speed

Duration is a measure of how long the behavior lasts. A runner may run more often (frequency), faster (intensity), or may run longer (duration). In the case of the latter, the runner may wish to build endurance and run for increasingly longer periods of time. A parent may wish to decrease the amount of time a child plays video games or is on his/her phone before bed. For rats in a maze, the first few attempts will likely take longer to reach the goal box than later attempts once the path needed to follow is learned. In other words, duration, or run time, will go down which demonstrates learning.

2.3.5. Latency

Latency represents the time it takes for a behavior to follow from the presentation of a stimulus. For instance, if a parent tells a child to take out the trash and he does so 5 minutes later, then the latency for the behavior of walking the trash outside is 5 minutes.

2.3.6. Topography

Topography represents the physical form a behavior takes. For instance, if a child is being disruptive, in what way is this occurring? Could it be the child is talking out of turn, being aggressive with other students, fidgeting in his/her seat, etc? In the case of rats and pushing levers, the mere act of pushing may not be of interest, but which paw is used or how much pressure is applied to the lever?

2.3.7. Rate

Rate is a measure of the change in response over time, or how often a behavior occurs. We may wish the rat to push the lever more times per minute to earn food reinforcement. Initially, the rat was required to push the lever 20 times per minute and now the experimenter requires 35 times per minute to receive a food pellet. In humans, a measure of rate would be words typed per minute. I may start at 20 words per minute but with practice (representing learning) I could type 60 words per minute or more.

2.3.8. Fluency

Though I may type fast, do I type accurately? This is where fluency comes in. Think about a foreign language. If you are fluent you speak it well. So, fluency is a measure of the number of correct responses made per minute. I may make 20 errors per minute of typing but with practice, I not only get quicker (up to 60 words per minute) but more accurate and reduce mistakes measure to 5 errors per minute. A student taking a semester of Spanish may measure learning by how many verbs he can correctly conjugate in a minute. Initially, he could only conjugate 8 verbs per minute but by the end of the semester can conjugate 24.

  • Defend the use of animals in research.
  • Describe safeguards to protect human research subjects.

2.4.1. Animal Models of Behavior

Learning research frequently uses animal models. According to AnimalResearch.info , animals are used “…when there is a need to find out what happens in the whole, living body, which is far more complex than the sum of its parts. It is difficult, and in most cases simply not yet possible, to replace the use of living animals in research with alternative methods.” They cite four main reasons to use animals. First, to advance scientific understanding such as how living things work to apply that knowledge for the benefit of both humans and animals. They state, “Many basic cell processes are the same in all animals, and the bodies of animals are like humans in the way that they perform many vital functions such as breathing, digestion, movement, sight, hearing, and reproduction.”

Second, animals can serve as models to study disease. For example, “Dogs suffer from cancer, diabetes, cataracts, ulcers and bleeding disorders such as hemophilia, which make them natural candidates for research into these disorders. Cats suffer from some of the same visual impairments as humans.” Therefore, animal models help us to understand how diseases affect the body and how our immune system responds.

Third, animals can be used to develop and test potential treatments for these diseases. As the website says, “Data from animal studies is essential before new therapeutic techniques and surgical procedures can be tested on human patients.”

Finally, animals help protect the safety of people, other animals, and our environment. Before a new medicine can go to market, it must be tested to ensure that the benefits outweigh the harmful effects. Legally and ethically, we have to move away from in vitro testing of tissues and isolated organs to suitable animal models and then testing in humans.

In conducting research with animals, three principles are followed. First, when possible, animals should be replaced with alternative techniques such as cell cultures, tissue engineering, and computer modeling. Second, the number of animals used in research should be reduced to a minimum. We can do this by “re-examining the findings of studies already conducted (e.g. by systematic reviews), by improving animal models, and by use of good experimental design.” Finally, we should refine the way experiments are conducted to reduce any suffering the animals may experience as much as possible. This can include better housing and improving animal welfare. Outside of the obvious benefit to the animals, the quality of research findings can also increase due to reduced stress in the animals. This framework is called the 3Rs.

Please visit: http://www.animalresearch.info/en/

One way to guarantee these principles are followed is through what is called the Institutional Animal Care and Use Committee (IACUC). The IACUC is responsible for the oversight and review of the humane care and use of animals; upholds standards set forth in laws, policies, and guidance; inspects animal housing facilities; approves protocols for use of animals in research, teaching, or education; addresses animal welfare concerns of the public; and reports to the appropriate bodies within a university, accrediting organizations, or government agencies. At times, projects may have to be suspended if found to be noncompliant with the regulations and policies of that institution.

  • For more on the IACUC within the National Institutes of Health, please visit: https://olaw.nih.gov/resources/tutorial/iacuc.htm
  • For another article on the use of animals in research, please check out the following published in the National Academies Press – https://www.nap.edu/read/10089/chapter/3
  • The following is an article published on the ethics of animal research and discusses the 3Rs in more detail – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2002542/
  • And finally, here is a great article published by the Washington State University IACUC on the use of animals in research and teaching at WSU – https://research.wsu.edu/frequently-asked-questions-about-animal-care-and-use-at-washington-state-university/

2.4.2. Human Models of Behavior

Throughout this module, we have seen that it is important for researchers to understand the methods they are using. Equally important, they must understand and appreciate ethical standards in research. As we have seen already in Section 2.3.1, such standards exist for the use of animals in research. The American Psychological Association (APA) identifies high standards of ethics and conduct as one of its four main guiding principles or missions and as it relates to humans. To read about the other three, please visit https://www.apa.org/about/index.aspx . Studies such as Milgram’s obedience study, Zimbardo’s Stanford prison study, and others, have necessitated standards for the use of humans in research. The standards can be broken down in terms of when they should occur during the process of a person participating in the study.

2.4.2.1. Before participating. First, researchers must obtain informed consent or when the person agrees to participate because they are told what will happen to them. They are given information about any risks they face, or potential harm that could come to them, whether physical or psychological. They are also told about confidentiality or the person’s right not to be identified. Since most research is conducted with students taking introductory psychology courses, they have to be given the right to do something other than a research study to likely earn required credits for the class. This is called an alternative activity and could take the form of reading and summarizing a research article. The amount of time taken to do this should not exceed the amount of time the student would be expected to participate in a study.

2.4.2.2. While participating. Participants are afforded the ability to withdraw or the person’s right to exit the study if any discomfort is experienced.

2.4.2.3. After participating . Once their participation is over, participants should be debriefed or when the true purpose of the study is revealed and they are told where to go if they need assistance and how to reach the researcher if they have questions. So, can researchers deceive participants, or intentionally withhold the true purpose of the study from them? According to the APA, a minimal amount of deception is allowed.

Human research must be approved by an Institutional Review Board or IRB. It is the IRB that will determine whether the researcher is providing enough information for the participant to give consent that is truly informed, if debriefing is adequate, and if any deception is allowed or not. According to the Food and Drug Administration (FDA), “The purpose of IRB review is to assure, both in advance and by periodic review, that appropriate steps are taken to protect the rights and welfare of humans participating as subjects in the research. To accomplish this purpose, IRBs use a group process to review research protocols and related materials (e.g., informed consent documents and investigator brochures) to ensure the protection of the rights and welfare of human subjects of research.”

If you would like to learn more about how to use ethics in your research, please read: https://opentext.wsu.edu/carriecuttler/chapter/putting-ethics-into-practice/

To learn more about IRBs, please visit: https://www.fda.gov/RegulatoryInformation/Guidances/ucm126420.htm

 Module Recap

That’s it. In Module 2 we discussed the process of research used when studying learning and behavior. We learned about the scientific method and its steps which are universally used in all sciences and social sciences. Our breakdown consisted of six steps but be advised that other authors could combine steps or separate some of the ones in this module. Still, the overall spirit is the same. In the experimental analysis of behavior, we do talk about making a causal statement in the form of an If-Then statement, or respectfully we discuss functional relationships and contingencies. We also define our terms clearly, objectively, and precisely through a behavioral definition. In terms of research designs, psychology uses five main ones and our investigation of learning and behavior focuses on three of those designs, with experiment and observation being the main two. Methods by which we collect data, the apparatus we use, and later, who our participants/subjects are, were discussed. The structure of a research article was outlined which is consistent across disciplines and we covered some typical dependent variables or measures used in the study of learning and behavior. These include errors, frequency, intensity, duration, latency, topography, rate, and fluency.

Armed with this information we begin to explore the experimental analysis of behavior by investigating elicited behaviors and more in Module 3. From this, we will move to a discussion of respondent and then operant conditioning and finally observational learning. Before closing out with complementary cognitive processes we will engage in an exercise to see how the three models complement one another and are not competing with each other.

2nd edition

Creative Commons License

Share This Book

  • Increase Font Size
  • Privacy Policy

Research Method

Home » Scientific Research – Types, Purpose and Guide

Scientific Research – Types, Purpose and Guide

Table of Contents

Scientific Research

Scientific Research

Definition:

Scientific research is the systematic and empirical investigation of phenomena, theories, or hypotheses, using various methods and techniques in order to acquire new knowledge or to validate existing knowledge.

It involves the collection, analysis, interpretation, and presentation of data, as well as the formulation and testing of hypotheses. Scientific research can be conducted in various fields, such as natural sciences, social sciences, and engineering, and may involve experiments, observations, surveys, or other forms of data collection. The goal of scientific research is to advance knowledge, improve understanding, and contribute to the development of solutions to practical problems.

Types of Scientific Research

There are different types of scientific research, which can be classified based on their purpose, method, and application. In this response, we will discuss the four main types of scientific research.

Descriptive Research

Descriptive research aims to describe or document a particular phenomenon or situation, without altering it in any way. This type of research is usually done through observation, surveys, or case studies. Descriptive research is useful in generating ideas, understanding complex phenomena, and providing a foundation for future research. However, it does not provide explanations or causal relationships between variables.

Exploratory Research

Exploratory research aims to explore a new area of inquiry or develop initial ideas for future research. This type of research is usually conducted through observation, interviews, or focus groups. Exploratory research is useful in generating hypotheses, identifying research questions, and determining the feasibility of a larger study. However, it does not provide conclusive evidence or establish cause-and-effect relationships.

Experimental Research

Experimental research aims to test cause-and-effect relationships between variables by manipulating one variable and observing the effects on another variable. This type of research involves the use of an experimental group, which receives a treatment, and a control group, which does not receive the treatment. Experimental research is useful in establishing causal relationships, replicating results, and controlling extraneous variables. However, it may not be feasible or ethical to manipulate certain variables in some contexts.

Correlational Research

Correlational research aims to examine the relationship between two or more variables without manipulating them. This type of research involves the use of statistical techniques to determine the strength and direction of the relationship between variables. Correlational research is useful in identifying patterns, predicting outcomes, and testing theories. However, it does not establish causation or control for confounding variables.

Scientific Research Methods

Scientific research methods are used in scientific research to investigate phenomena, acquire knowledge, and answer questions using empirical evidence. Here are some commonly used scientific research methods:

Observational Studies

This method involves observing and recording phenomena as they occur in their natural setting. It can be done through direct observation or by using tools such as cameras, microscopes, or sensors.

Experimental Studies

This method involves manipulating one or more variables to determine the effect on the outcome. This type of study is often used to establish cause-and-effect relationships.

Survey Research

This method involves collecting data from a large number of people by asking them a set of standardized questions. Surveys can be conducted in person, over the phone, or online.

Case Studies

This method involves in-depth analysis of a single individual, group, or organization. Case studies are often used to gain insights into complex or unusual phenomena.

Meta-analysis

This method involves combining data from multiple studies to arrive at a more reliable conclusion. This technique can be used to identify patterns and trends across a large number of studies.

Qualitative Research

This method involves collecting and analyzing non-numerical data, such as interviews, focus groups, or observations. This type of research is often used to explore complex phenomena and to gain an understanding of people’s experiences and perspectives.

Quantitative Research

This method involves collecting and analyzing numerical data using statistical techniques. This type of research is often used to test hypotheses and to establish cause-and-effect relationships.

Longitudinal Studies

This method involves following a group of individuals over a period of time to observe changes and to identify patterns and trends. This type of study can be used to investigate the long-term effects of a particular intervention or exposure.

Data Analysis Methods

There are many different data analysis methods used in scientific research, and the choice of method depends on the type of data being collected and the research question. Here are some commonly used data analysis methods:

  • Descriptive statistics: This involves using summary statistics such as mean, median, mode, standard deviation, and range to describe the basic features of the data.
  • Inferential statistics: This involves using statistical tests to make inferences about a population based on a sample of data. Examples of inferential statistics include t-tests, ANOVA, and regression analysis.
  • Qualitative analysis: This involves analyzing non-numerical data such as interviews, focus groups, and observations. Qualitative analysis may involve identifying themes, patterns, or categories in the data.
  • Content analysis: This involves analyzing the content of written or visual materials such as articles, speeches, or images. Content analysis may involve identifying themes, patterns, or categories in the content.
  • Data mining: This involves using automated methods to analyze large datasets to identify patterns, trends, or relationships in the data.
  • Machine learning: This involves using algorithms to analyze data and make predictions or classifications based on the patterns identified in the data.

Application of Scientific Research

Scientific research has numerous applications in many fields, including:

  • Medicine and healthcare: Scientific research is used to develop new drugs, medical treatments, and vaccines. It is also used to understand the causes and risk factors of diseases, as well as to develop new diagnostic tools and medical devices.
  • Agriculture : Scientific research is used to develop new crop varieties, to improve crop yields, and to develop more sustainable farming practices.
  • Technology and engineering : Scientific research is used to develop new technologies and engineering solutions, such as renewable energy systems, new materials, and advanced manufacturing techniques.
  • Environmental science : Scientific research is used to understand the impacts of human activity on the environment and to develop solutions for mitigating those impacts. It is also used to monitor and manage natural resources, such as water and air quality.
  • Education : Scientific research is used to develop new teaching methods and educational materials, as well as to understand how people learn and develop.
  • Business and economics: Scientific research is used to understand consumer behavior, to develop new products and services, and to analyze economic trends and policies.
  • Social sciences : Scientific research is used to understand human behavior, attitudes, and social dynamics. It is also used to develop interventions to improve social welfare and to inform public policy.

How to Conduct Scientific Research

Conducting scientific research involves several steps, including:

  • Identify a research question: Start by identifying a question or problem that you want to investigate. This question should be clear, specific, and relevant to your field of study.
  • Conduct a literature review: Before starting your research, conduct a thorough review of existing research in your field. This will help you identify gaps in knowledge and develop hypotheses or research questions.
  • Develop a research plan: Once you have a research question, develop a plan for how you will collect and analyze data to answer that question. This plan should include a detailed methodology, a timeline, and a budget.
  • Collect data: Depending on your research question and methodology, you may collect data through surveys, experiments, observations, or other methods.
  • Analyze data: Once you have collected your data, analyze it using appropriate statistical or qualitative methods. This will help you draw conclusions about your research question.
  • Interpret results: Based on your analysis, interpret your results and draw conclusions about your research question. Discuss any limitations or implications of your findings.
  • Communicate results: Finally, communicate your findings to others in your field through presentations, publications, or other means.

Purpose of Scientific Research

The purpose of scientific research is to systematically investigate phenomena, acquire new knowledge, and advance our understanding of the world around us. Scientific research has several key goals, including:

  • Exploring the unknown: Scientific research is often driven by curiosity and the desire to explore uncharted territory. Scientists investigate phenomena that are not well understood, in order to discover new insights and develop new theories.
  • Testing hypotheses: Scientific research involves developing hypotheses or research questions, and then testing them through observation and experimentation. This allows scientists to evaluate the validity of their ideas and refine their understanding of the phenomena they are studying.
  • Solving problems: Scientific research is often motivated by the desire to solve practical problems or address real-world challenges. For example, researchers may investigate the causes of a disease in order to develop new treatments, or explore ways to make renewable energy more affordable and accessible.
  • Advancing knowledge: Scientific research is a collective effort to advance our understanding of the world around us. By building on existing knowledge and developing new insights, scientists contribute to a growing body of knowledge that can be used to inform decision-making, solve problems, and improve our lives.

Examples of Scientific Research

Here are some examples of scientific research that are currently ongoing or have recently been completed:

  • Clinical trials for new treatments: Scientific research in the medical field often involves clinical trials to test new treatments for diseases and conditions. For example, clinical trials may be conducted to evaluate the safety and efficacy of new drugs or medical devices.
  • Genomics research: Scientists are conducting research to better understand the human genome and its role in health and disease. This includes research on genetic mutations that can cause diseases such as cancer, as well as the development of personalized medicine based on an individual’s genetic makeup.
  • Climate change: Scientific research is being conducted to understand the causes and impacts of climate change, as well as to develop solutions for mitigating its effects. This includes research on renewable energy technologies, carbon capture and storage, and sustainable land use practices.
  • Neuroscience : Scientists are conducting research to understand the workings of the brain and the nervous system, with the goal of developing new treatments for neurological disorders such as Alzheimer’s disease and Parkinson’s disease.
  • Artificial intelligence: Researchers are working to develop new algorithms and technologies to improve the capabilities of artificial intelligence systems. This includes research on machine learning, computer vision, and natural language processing.
  • Space exploration: Scientific research is being conducted to explore the cosmos and learn more about the origins of the universe. This includes research on exoplanets, black holes, and the search for extraterrestrial life.

When to use Scientific Research

Some specific situations where scientific research may be particularly useful include:

  • Solving problems: Scientific research can be used to investigate practical problems or address real-world challenges. For example, scientists may investigate the causes of a disease in order to develop new treatments, or explore ways to make renewable energy more affordable and accessible.
  • Decision-making: Scientific research can provide evidence-based information to inform decision-making. For example, policymakers may use scientific research to evaluate the effectiveness of different policy options or to make decisions about public health and safety.
  • Innovation : Scientific research can be used to develop new technologies, products, and processes. For example, research on materials science can lead to the development of new materials with unique properties that can be used in a range of applications.
  • Knowledge creation : Scientific research is an important way of generating new knowledge and advancing our understanding of the world around us. This can lead to new theories, insights, and discoveries that can benefit society.

Advantages of Scientific Research

There are many advantages of scientific research, including:

  • Improved understanding : Scientific research allows us to gain a deeper understanding of the world around us, from the smallest subatomic particles to the largest celestial bodies.
  • Evidence-based decision making: Scientific research provides evidence-based information that can inform decision-making in many fields, from public policy to medicine.
  • Technological advancements: Scientific research drives technological advancements in fields such as medicine, engineering, and materials science. These advancements can improve quality of life, increase efficiency, and reduce costs.
  • New discoveries: Scientific research can lead to new discoveries and breakthroughs that can advance our knowledge in many fields. These discoveries can lead to new theories, technologies, and products.
  • Economic benefits : Scientific research can stimulate economic growth by creating new industries and jobs, and by generating new technologies and products.
  • Improved health outcomes: Scientific research can lead to the development of new medical treatments and technologies that can improve health outcomes and quality of life for people around the world.
  • Increased innovation: Scientific research encourages innovation by promoting collaboration, creativity, and curiosity. This can lead to new and unexpected discoveries that can benefit society.

Limitations of Scientific Research

Scientific research has some limitations that researchers should be aware of. These limitations can include:

  • Research design limitations : The design of a research study can impact the reliability and validity of the results. Poorly designed studies can lead to inaccurate or inconclusive results. Researchers must carefully consider the study design to ensure that it is appropriate for the research question and the population being studied.
  • Sample size limitations: The size of the sample being studied can impact the generalizability of the results. Small sample sizes may not be representative of the larger population, and may lead to incorrect conclusions.
  • Time and resource limitations: Scientific research can be costly and time-consuming. Researchers may not have the resources necessary to conduct a large-scale study, or may not have sufficient time to complete a study with appropriate controls and analysis.
  • Ethical limitations : Certain types of research may raise ethical concerns, such as studies involving human or animal subjects. Ethical concerns may limit the scope of the research that can be conducted, or require additional protocols and procedures to ensure the safety and well-being of participants.
  • Limitations of technology: Technology may limit the types of research that can be conducted, or the accuracy of the data collected. For example, certain types of research may require advanced technology that is not yet available, or may be limited by the accuracy of current measurement tools.
  • Limitations of existing knowledge: Existing knowledge may limit the types of research that can be conducted. For example, if there is limited knowledge in a particular field, it may be difficult to design a study that can provide meaningful results.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Documentary Research

Documentary Research – Types, Methods and...

Original Research

Original Research – Definition, Examples, Guide

Humanities Research

Humanities Research – Types, Methods and Examples

Historical Research

Historical Research – Types, Methods and Examples

Artistic Research

Artistic Research – Methods, Types and Examples

  • Partnerships

Effective teaching and its relation to our scientific understanding of learning

Effective teaching and its relation to our scientific understanding of learning

Effective teaching

Executive summary

  • A simple framework for thinking and talking about classroom learning might consist of: engagement for learning, building of new knowledge and understanding, and consolidation of learning.
  • In teacher training and development , we now have sufficient knowledge to begin explaining and promoting core classroom learning practices using scientifically informed concepts of learning .
  • help increase the focus on learning
  • provide the first defence against myths
  • provide an authentic foundation for insight and practice
  • inform classroom implementation of reform
  • support professionalism by empowering teachers with a scientific understanding of teaching and learning

A scientific focus on learning

On a global level, while many countries have increased their spending on education and increased the number of children attending school, the goal of ensuring the quality of provision has been more elusive 1 . For example, around half or more of children completing primary schooling in many countries (including India, Bangladesh, Pakistan, Kenya, and Tanzania) cannot read even the simplest texts or perform simple arithmetic. One economist estimates that, at the current rate of progress, it will be well over 100 years before students in developing countries can produce similar results in science exams as today’s students in developed countries 2 . In the last 1-2 decades, governments, scientists, and educators have become increasingly interested in developing a 21 st -century education system supported by more concrete evidence of how we learn. The different names attached to this interdisciplinary work include “Mind, Brain, and Education,” “Science of Learning,” “Neuroeducation,” and “Educational Neuroscience.” These names reflect how neuroscience, psychology, genetics, and many other disciplines are becoming increasingly relevant for our emerging scientific understanding of learning.

There are at least three practical ways in which a scientific understanding of learning can benefit teachers and students in the classroom:

It appears self-evident that a more scientific understanding of learning amongst teachers would help dissipate the many neuromyths , or unscientific ideas about the brain, that are prevalent in education. Many neuromyths are associated with poor practice, and they make a strong argument for including a basic understanding of the scientific principles of learning in teacher training and development 3,4 .

Despite increasing public interest, the public’s awareness of neuroscience is never likely to keep pace with our accelerating growth in understanding the brain. This suggests the problem of neuromyths is likely to grow, at least in countries where teacher training and development continue to omit a scientific understanding of learning. At present, much of the information that reaches teachers about the brain is from the public media 5 , making it impractical to consider “protecting” teachers from ideas related to neuroscience—even if this could be morally justified.

  • Interventions

Scientific research is applying new technologies and ideas to uncover fresh insights into how we learn. Neuroimaging, for example, allows us to study brain function while adults and children are acquiring skills such as mathematics and reading. By understanding underlying learning processes, we can better develop new interventions to enhance children’s achievements. There have been several experimental studies indicating promising ways to improve classroom learning. In some cases, we have scientifically based ideas for interventions well-tested in classrooms and shown to provide benefits. These include the spacing out and interleaving of learning sessions, testing regimes, and new reading approaches. Others have shown great promise under controlled laboratory conditions or small-scale educational applications, such as interventions based on exercise, sleep, or on providing particular schedules of reward. Large-scale trials are now underway in schools that are focused on these and other ideas 6 .

  • Informing the day-to-day practice of a teacher

Perhaps, however, the most significant benefit of underpinning education with a scientific understanding of learning may be its influence on the day-to-day practice of teachers. Ultimately, most would agree that a key determinant of a student achieving his or her potential is the quality of their teacher’s practice. Can a scientific understanding of learning help with this quality?

This brief will particularly focus on this last issue. It considers the readiness of our scientific knowledge to explain and provide insight into core principles in teaching that have been established elsewhere as benefiting learning outcomes.

Teaching quality and the understanding of learning

A recent review 7 of the international literature identified six attributes of good teaching, of which only two were supported by the strongest evidence:

  • (Pedagogical) content knowledge (Strong evidence of impact on student outcomes)

The most effective teachers have deep knowledge of the subjects they teach. When teachers’ knowledge falls below a certain level, it is a significant impediment to students’ learning. As well as a strong understanding of the material being taught, teachers must also understand the ways students think about the content, evaluate the thinking behind students’ own methods, and identify students’ common misconceptions.

  • Quality of instruction (Strong evidence of impact on student outcomes)

Quality of instruction includes elements such as effective questioning and use of assessment by teachers. Specific practices like reviewing previous learning, providing model responses for students, giving adequate time for practice to embed skills securely, and progressively introducing new learning (scaffolding) are also elements of high-quality instruction. 7

Knowledge of learning processes cannot substitute for knowledge of the topic being taught, but the definition of “pedagogical content knowledge” above includes both. It makes specific reference to understanding how students think about the content. In terms of “quality of instruction,” the Coe et al. (2014) report emphasizes elements such as effective questioning and use of assessment by teachers. High-quality instruction is considered to include specific practices, such as reviewing previous learning, providing model responses for students, giving adequate time for practice to embed skills securely, and progressively scaffolding new learning. The report also concludes there is moderate evidence for the effects of classroom climate and management, and some evidence for the impact of teacher beliefs and professional behaviors.

In short, current research demonstrates that student outcomes are significantly influenced by the understanding of the teacher and his/her evaluation of student thinking and learning. On this basis, informed consideration of students’ learning processes may be key to improving outcomes. Also, although specific practices can be prescribed to teachers, their effective implementation is likely to rely on understanding how they are supposed to operate. Simply identifying and prescribing “what works” may not be sufficient for ensuring the success of top-down educational reform. Indeed, rather than implement a “one size fits all” approach, teachers continuously adapt their teaching to the learner and the context, applying their own theory about their students’ mental processes and considering how they can influence these processes to scaffold learning 8 . It has been said that trying to teach without understanding learning is a bit like trying to fix a washing machine without knowing how it works 9 . Of course, teachers support learning behaviors that are much more complex than a washing machine. On this basis, the literature reviewed by Coe et al. (2014) and others support the notion that students benefit from teachers who understand learning processes.

A scientific understanding of learning is also particularly important for ensuring educational reform in a culturally diverse world. Respect for cultural diversity is emphasized by the Education-2030 targets (Target 4.7 10 ), and attention to diversity requires teachers to adapt teaching strategy. Indeed, teachers’ response to top-down reform is itself a process of cultural adaptation 11 , with practitioners integrating their own reflections, attitudes, and behaviors with the recommended changes 12 . In other words, teachers may take what they are given, but they will make it their own. This undermines any sense that a purely prescriptive approach to educational reform can ever be entirely successful. The success of reform will always rely, in large part, on teachers being sufficiently empowered with an understanding of learning. They will then be better positioned to interpret appropriately the processes by which learning practices are supposed to achieve their goals and to understand how these ideas may be adapted for their own students while preserving these processes.

The neuroscience of learning—with synaptic plasticity as the basis of learning and memory—can provide an inherently proactive and hopeful message. There is already some empirical evidence to suggest that teacher development within the neuroscience of learning can motivate teachers and their students to attend and participate more in the learning process. After receiving one such programme of development, secondary school teachers were more self-aware of how their own teaching behaviors had the capacity to change students’ brains as students experienced, modeled, utilized, and constructed their own knowledge 13 . When awareness of the brain’s plasticity is passed on to students, this can improve student awareness of their role in constructing their own abilities, which has been shown to improve their growth mindset and resilience in their academic studies, reduce dropout rates 14 , and improve self-concept and academic outcomes 15 .

What sort of knowledge might benefit teacher understanding, teaching quality, and student outcomes?

Given the above justification for all teachers to know more about the science of learning, it seems evident that a Science of Learning curriculum should be:

  • able to provide a basis for insight into how students think about and acquire learning content
  • able to provide insight into the processes underlying specific practices associated with effective teaching
  • aligned with current state-of-the-art scientific understanding
  • be accessible to educators who are not specialized in science, and who work in a range of contexts (e.g., age groups, topics, cultures)

Communication across the gap between neuroscience and education

Although the potential advantages are many, making scientific knowledge accessible to those who are not specialists in science is always challenging. There are inherent dangers of “boiled down” messages about the science leading to misinterpretations and poor practice in the classroom 4 . On the other hand, of course, messages that are too complex in their content or communication may communicate little or also be easily misunderstood. It is also possible that the scientific messages can become overly biased by the present preoccupations of the scientific field or the professional aims of scientists, leading to statements that are not as educationally relevant or as appropriate as they might be.

The language and terms of science regarding learning can also be quite different from those used by educators. Some words such as “attention” and even “learning” can have quite different definitions in the two domains 16 . In light of this, a simple theoretical framework is needed for classroom learning that is appropriately scientifically and educationally meaningful, so helping to map concepts helpfully across education/public domains and the sciences of mind and brain.

A simple framework for classroom learning

A simple framework for thinking and talking about learning in the classroom might comprise three categories of the underlying process, all of which can actively involve the teacher: (1) engagement for learning , (2) building of new knowledge and understanding , and (3) consolidation of learning . These are broad categories intended to help structure an understanding of the relevance of scientific insight for classroom practice. They attempt to minimize confusion of scientific and educational terms where these are not equivalent. For example, engagement is an educational term that is not often encountered in the scientific literature—it is not constrained by a scientific definition. A range of scientific aspects of learning can be drawn together under this broad educational heading. These include new insights into emotional processing and attention while allowing the discussion to consider these aspects as distinct but potentially related. The heading building of new knowledge and understanding might include Vygotskian/Bruner constructivist notions of an expert scaffolding a novice’s thinking 17 , but could also include more Piagetian approaches that involve, for example, exposure to cognitive conflict 18 . Consolidation of learning has appropriate and helpful scientific associations with memory consolidation processes, but might also include effects of educational practice such as automatization.

Figure 1: Consolidate, Build, Engage

Learning can be assumed to begin with engagement, and consolidation of new content is only likely after it has been initially represented in the student’s mind/brain (i.e., following the building of new knowledge and understanding). Therefore, these elements might be represented as operating in the sequence of engage -> build -> consolidate . However, it is also possible to consider some movement in the opposite direction (e.g., finding ways to engage children in practice that consolidates freshly learnt ideas). Also, different parts of a learning experience might involve processes in more than one category occurring simultaneously. Therefore, these categories of the learning experience are better represented as in Figure 1, with the possibility of moving freely between them.

The science of engagement, building, and consolidation

Scientific research that is relevant to each of these three areas has been briefly reviewed in preceding briefs 19 , 20 , 21 but the executive summaries of this review are reproduced in Table 1 for convenience:

Table 1. Scientific concepts identified with potential relevance to core teaching practices

Insight into the “how” of specific practices associated with effective teaching

To illustrate the potential helpfulness of a scientific understanding of learning, the explanatory power of the above insights will be examined regarding a selection of specific practices associated with effective teaching. The key questions are: (a) whether the particular practices can be explained in terms of this simple neurocognitive model of classroom learning, and (b) whether this deeper understanding of learning can potentially contribute to the implementation of the practice. Examples were drawn from two issues of the IAE-IBE Educational Practices Series, where practices are often referred to as “principles” 23,24 . Note that these were selected based on their generality (i.e., they were general in their potential application, and not tied to specific topics such as literacy or numeracy).

Example 1: Classroom instruction and teacher emotions

The seventh principle provided in IAE-IBE’s “Emotion and learning” in the Educational Practices Series 24 is “Provide high-quality lessons and make use of the positive emotions you experience as a teacher.” This is justified on the basis that the “motivational quality of instruction influences the perceived value of learning, thereby promoting enjoyment and reducing boredom.” Regarding teacher emotions, the report advises that “teachers should take care to show the positive emotions they feel about teaching and the subject matter, and make sure that they share positive emotions and enthusiasm with their students.”

As part of the communication underpinning the support of students’ thinking, a similar issue is considered under Build in Table 1:

  • Our mirror neuron system helps us read each other’s minds. Gestures and faces communicate knowledge and emotions both consciously and unconsciously, supporting the teacher’s transmission of concepts, confidence, and enthusiasm.             

This perspective has a slightly different emphasis that has implications for practice. It highlights the likely transmission of the teacher’s genuine emotion irrespective of their careful effort. This highlights the need for the teacher to maintain an active interest in the topics they teach, ensuring communication of genuine competence and enthusiasm.

Example 2: Guide student practice

The fifth principle of instruction provided in IAE-IBE’s “Principles of instruction” in the Educational Practices Series 23 is “Successful teachers spent more time guiding the students’ practice of new material.”

The review points out that more successful teachers check for student understanding, provide additional explanations and examples, and provide sufficient instruction for students to practice independently without difficulty. This notion of identifying where students’ understanding becomes limited (i.e., the current limit of their prior knowledge) and providing just enough support for them to move on as independently as possible reflects scientific understanding that:

Teachers can help students think meaningfully about new ideas by encouraging them to make connections with their prior knowledge. This is particularly important for children, whose neural circuitry for this connection-making process is still developing. Differences in learning and development will result in diverse individual differences within any class.

This understanding emphasizes the need to consider individual progress and differences in the rate of progress, and that different students will require different levels of scaffolding. Understanding the how/why of guidance may help practices of less successful teachers who, as highlighted in the report, provide fewer explanations, pass out worksheets, and simply tell students to work on the problems.

Example 3: Daily review

The first principle of instruction provided in IAE-IBE’s “Principles of instruction” the Educational Practices Series 23 is “Daily review can strengthen previous learning and can lead to fluent recall.” Review is recommended because practice helps us recall concepts and procedures effortlessly and automatically, and is linked to higher achievement scores. The report points out that the most effective teachers in studies of classroom instruction understand the importance of practice and begin their lessons with a five- to eight-minute review of previously covered material.

In the report, daily review is considered chiefly in terms of working memory. This explanation echoes the discussion regarding consolidation:

  • Practice and rehearsal of freshly learnt knowledge cause it to become automatically accessible. This frees up the brain’s limited capacity to pay conscious attention, and so be ready for further learning.

Scientific research has added to our understanding of why testing may be advantageous for learning:

  • Answering questions, applying knowledge in new situations, discussing it with others, or expressing it in new forms consolidate our learning by helping us to store it in different ways—making it easier to recall and apply it.

There are, however, further justifications for daily review, when considered from a perspective that includes the whole learning process. In terms of supporting students to build their knowledge and understanding:

  • Being aware of students’ prior knowledge is important for a teacher because this is the foundation on which the students’ new knowledge will build.

Daily review may also be important, therefore, to identify students’ prior knowledge (which may be different than the knowledge that has been taught) and so indicate where and how the building of new knowledge might resume (e.g., where additional support is needed).

A scientific understanding of the learning processes underlying daily review can also contribute to its implementation as in the following examples:

  • Daily review might benefit from using novel contexts and examples for testing.
  • Daily review might pay particular attention to knowledge that will soon be built upon.
  • Given the role of sleep in consolidation, morning review of the previous day’s learning may be more meaningful for informing the teacher than end-of-day review of the same day’s learning.
  • Review may benefit from an environment that diminishes anxiety and attracts the full engagement of the student (e.g., praise, game-like rewards).

Broader mapping of the extent to which scientific concepts can underpin core teaching practices

Science concepts were mapped to each of the 10 practices/principles identified in “Effective instruction” and “Emotions and learning” to determine the extent to which the identified scientific concepts could provide insight into core teaching principles. A scientific concept was considered to relate to the principle when it offered insight into how/why the principle works and/or might be implemented (see Table 2).

Coverage of principles/practices was almost, but not entirely, comprehensive. Principle 4 in “Principles of instruction” was “Provide models.” No basis for its underlying processes could be identified amongst the scientific concepts. Discussion of the principle included reference to guiding the student and also encouraging independent practice. These ideas could be supported by the scientific principles identified—and this is evident in the mapping of two other principles in this issue related to these references (Principles 5 and 9). However, Principle 4 made much of “worked examples” and the possibility of mixing worked examples and problems to solve. As with other principles in this text, this is well-supported by educational research as being an effective approach. The author, however, finds it difficult to explain the processes underlying this efficacy based on current scientific understanding of learning. This may highlight how the present type of mapping exercise may be useful in exposing areas where further scientific research might reveal some scientifically interesting and educationally valuable insight.

Also, a mapping was made when a scientific concept provided insight into how/why the principle generally works and/or might be implemented. That does not mean that all aspects of the principle/practice were necessarily explained by the scientific concepts identified.

It is also important to recognize that the extent of evidence underlying the scientific concepts is variable and often constrained to laboratory experiments. In most cases, the relevance of scientific research to classroom learning is itself a reasoned hypothesis that demands further testing. For example, direct evidence of variability in neural representations of material that has been tested (see author’s brief, “Consolidation of learning” ) is restricted to a single fMRI study with adults. This evidence is aligned with current psychological theory based on numerous behavioral studies. However, further imaging research study involving, say, children learning curriculum, would help validate this concept.

These caveats have practical significance for emphasising that these are early days for a scientifically informed approach to teaching and learning and help indicate where future research might be focused in areas that would be very pertinent to education. However, they do not dismiss the central claim made here: In teacher training and development, we now have sufficient knowledge to begin explaining and promoting core classroom learning practices using scientifically informed concepts of learning.

Table 2. Mapping of core scientific concepts to teaching principles as identified in Ref. 23,24

  • EFA. 2015 Global Monitoring Report – Education for All 2000-2015: Achievements and Challenge. (UNESCO, Paris, 2015).
  • Pritchett, L. The rebirth of education: School ain’t learning .  (Centre for Global Development, 2013).
  • Royal Society. Brain Waves Module 2: Neuroscience: Implications for education and lifelong learning. (Royal Society, London, 2011).
  • Howard-Jones, P. A. Neuroscience and education: Myths and messages. Nature Reviews Neuroscience 15, 817-824 (2014).
  • Dekker, S., Lee, N. C., Howard-Jones, P. A. & Jolles, J. Neuromyths in education: Prevalence and predictors of misconceptions among teachers. Frontiers in Psychology 3, doi:10.3389/fpsyg.2012.00429 (2012)
  • WellcomeTrust. (ed E. Philippou) (Wellcome Trust, London, 2014).
  • Coe, R., Aloisi, C., Higgins, S. & Major, L. E. What makes great teaching? Review of the underpinning research. (Centre for Evaluation Monitoring (CEM, Durham), Durham University, Sutton Trust (London), 2014).
  • Mevorach, M. & Strauss, S. Teacher educators’ in-action mental models in different teaching situations. Teachers and Teaching 18, 25-41, doi:10.1080/13540602.2011.622551 (2012).
  • Dehaene, S. Reading in the Brain . (Viking Penguin, 2009).
  • UNESCO-UNICEF. Education 2030: Incheon Declaration and Framework for Action for the implementation of Sustainable Development Goal 4. (2015).
  • Zhou, J. X. & Fischer, K. W. Culturally appropriate education: Insights from educational neuroscience. Mind Brain and Education 7, 225-231, doi:10.1111/mbe.12030 (2013).
  • Berry, J. W. in Acculturation: Advances in theory, measurement, and applied research (eds K. Chun, P. Balls-Orsanista, & G. Marin)  Pages: 17-37 (APA Press, 2003).
  • Dubinsky, J. M., Roehrig, G. & Varma, S. Infusing neuroscience into teacher professional development. Educational Researcher 42, 317-329, doi:10.3102/0013189×13499403 (2013).
  • Paunesku, D. et al. Mind-set interventions are a scalable treatment for academic underachievement. Psychological Science 26, 784-793, doi:10.1177/0956797615571017 (2015).
  • Blackwell, L. S., Trzesniewski, K. H. & Dweck, C. S. Implicit theories of intelligence predict achievement across an adolescent transition: A longitudinal study and an intervention. Child Development 78, 246-263 (2007).
  • Howard-Jones, P. A. Introducing Neuroeducational Research: Neuroscience, Education and the Brain from Contexts to Practice .  (Routledge, 2010).
  • Vygotsky, L. S. Mind in Society: The development of higher psychological processes . (Harvard University Press, 1978).
  • Piaget, J. & Cook, M. T. The origins of intelligence in children . (International University Press, 1952).
  • Howard-Jones, P. A. Engagement for Learning: Scientific insights with potential relevance for teachers’ engagement of students in their learning. (International Bureau of Education, Geneva, 2016).
  • Howard-Jones, P. A. Building of new knowledge and understanding: Scientific insights with potential relevance to teacher-guided construction of student thinking. (International Bureau of Education, Geneva, 2016).
  • Howard-Jones, P. A. Consolidation of learning: Scientific insights with potential relevance for supporting students’ consolidation of their learning. (International Bureau of Education, Geneva, 2016).
  • Fales, C. L., Becerril, K. E., Luking, K. R. & Barch, D. M. Emotional-stimulus processing in trait anxiety is modulated by stimulus valence during neuroimaging. Cogn. Emot. 24, 200-222, doi:10.1080/02699930903384691 (2010).
  • Rosenshine, B. Principles of Instruction. (International Academy of Education (IAE) and International Bureau of Education (IBE), Brussels and Geneva, 2010).
  • Pekrun, R. Emotions and Learning. (International Academy of Education (IAE) and International Bureau of Education (IBE), Brussels and Geneva, 2014).

What is the Scientific Method: How does it work and why is it important?

The scientific method is a systematic process involving steps like defining questions, forming hypotheses, conducting experiments, and analyzing data. It minimizes biases and enables replicable research, leading to groundbreaking discoveries like Einstein's theory of relativity, penicillin, and the structure of DNA. This ongoing approach promotes reason, evidence, and the pursuit of truth in science.

Updated on November 18, 2023

What is the Scientific Method: How does it work and why is it important?

Beginning in elementary school, we are exposed to the scientific method and taught how to put it into practice. As a tool for learning, it prepares children to think logically and use reasoning when seeking answers to questions.

Rather than jumping to conclusions, the scientific method gives us a recipe for exploring the world through observation and trial and error. We use it regularly, sometimes knowingly in academics or research, and sometimes subconsciously in our daily lives.

In this article we will refresh our memories on the particulars of the scientific method, discussing where it comes from, which elements comprise it, and how it is put into practice. Then, we will consider the importance of the scientific method, who uses it and under what circumstances.

What is the scientific method?

The scientific method is a dynamic process that involves objectively investigating questions through observation and experimentation . Applicable to all scientific disciplines, this systematic approach to answering questions is more accurately described as a flexible set of principles than as a fixed series of steps.

The following representations of the scientific method illustrate how it can be both condensed into broad categories and also expanded to reveal more and more details of the process. These graphics capture the adaptability that makes this concept universally valuable as it is relevant and accessible not only across age groups and educational levels but also within various contexts.

a graph of the scientific method

Steps in the scientific method

While the scientific method is versatile in form and function, it encompasses a collection of principles that create a logical progression to the process of problem solving:

  • Define a question : Constructing a clear and precise problem statement that identifies the main question or goal of the investigation is the first step. The wording must lend itself to experimentation by posing a question that is both testable and measurable.
  • Gather information and resources : Researching the topic in question to find out what is already known and what types of related questions others are asking is the next step in this process. This background information is vital to gaining a full understanding of the subject and in determining the best design for experiments. 
  • Form a hypothesis : Composing a concise statement that identifies specific variables and potential results, which can then be tested, is a crucial step that must be completed before any experimentation. An imperfection in the composition of a hypothesis can result in weaknesses to the entire design of an experiment.
  • Perform the experiments : Testing the hypothesis by performing replicable experiments and collecting resultant data is another fundamental step of the scientific method. By controlling some elements of an experiment while purposely manipulating others, cause and effect relationships are established.
  • Analyze the data : Interpreting the experimental process and results by recognizing trends in the data is a necessary step for comprehending its meaning and supporting the conclusions. Drawing inferences through this systematic process lends substantive evidence for either supporting or rejecting the hypothesis.
  • Report the results : Sharing the outcomes of an experiment, through an essay, presentation, graphic, or journal article, is often regarded as a final step in this process. Detailing the project's design, methods, and results not only promotes transparency and replicability but also adds to the body of knowledge for future research.
  • Retest the hypothesis : Repeating experiments to see if a hypothesis holds up in all cases is a step that is manifested through varying scenarios. Sometimes a researcher immediately checks their own work or replicates it at a future time, or another researcher will repeat the experiments to further test the hypothesis.

a chart of the scientific method

Where did the scientific method come from?

Oftentimes, ancient peoples attempted to answer questions about the unknown by:

  • Making simple observations
  • Discussing the possibilities with others deemed worthy of a debate
  • Drawing conclusions based on dominant opinions and preexisting beliefs

For example, take Greek and Roman mythology. Myths were used to explain everything from the seasons and stars to the sun and death itself.

However, as societies began to grow through advancements in agriculture and language, ancient civilizations like Egypt and Babylonia shifted to a more rational analysis for understanding the natural world. They increasingly employed empirical methods of observation and experimentation that would one day evolve into the scientific method . 

In the 4th century, Aristotle, considered the Father of Science by many, suggested these elements , which closely resemble the contemporary scientific method, as part of his approach for conducting science:

  • Study what others have written about the subject.
  • Look for the general consensus about the subject.
  • Perform a systematic study of everything even partially related to the topic.

a pyramid of the scientific method

By continuing to emphasize systematic observation and controlled experiments, scholars such as Al-Kindi and Ibn al-Haytham helped expand this concept throughout the Islamic Golden Age . 

In his 1620 treatise, Novum Organum , Sir Francis Bacon codified the scientific method, arguing not only that hypotheses must be tested through experiments but also that the results must be replicated to establish a truth. Coming at the height of the Scientific Revolution, this text made the scientific method accessible to European thinkers like Galileo and Isaac Newton who then put the method into practice.

As science modernized in the 19th century, the scientific method became more formalized, leading to significant breakthroughs in fields such as evolution and germ theory. Today, it continues to evolve, underpinning scientific progress in diverse areas like quantum mechanics, genetics, and artificial intelligence.

Why is the scientific method important?

The history of the scientific method illustrates how the concept developed out of a need to find objective answers to scientific questions by overcoming biases based on fear, religion, power, and cultural norms. This still holds true today.

By implementing this standardized approach to conducting experiments, the impacts of researchers’ personal opinions and preconceived notions are minimized. The organized manner of the scientific method prevents these and other mistakes while promoting the replicability and transparency necessary for solid scientific research.

The importance of the scientific method is best observed through its successes, for example: 

  • “ Albert Einstein stands out among modern physicists as the scientist who not only formulated a theory of revolutionary significance but also had the genius to reflect in a conscious and technical way on the scientific method he was using.” Devising a hypothesis based on the prevailing understanding of Newtonian physics eventually led Einstein to devise the theory of general relativity .
  • Howard Florey “Perhaps the most useful lesson which has come out of the work on penicillin has been the demonstration that success in this field depends on the development and coordinated use of technical methods.” After discovering a mold that prevented the growth of Staphylococcus bacteria, Dr. Alexander Flemimg designed experiments to identify and reproduce it in the lab, thus leading to the development of penicillin .
  • James D. Watson “Every time you understand something, religion becomes less likely. Only with the discovery of the double helix and the ensuing genetic revolution have we had grounds for thinking that the powers held traditionally to be the exclusive property of the gods might one day be ours. . . .” By using wire models to conceive a structure for DNA, Watson and Crick crafted a hypothesis for testing combinations of amino acids, X-ray diffraction images, and the current research in atomic physics, resulting in the discovery of DNA’s double helix structure .

Final thoughts

As the cases exemplify, the scientific method is never truly completed, but rather started and restarted. It gave these researchers a structured process that was easily replicated, modified, and built upon. 

While the scientific method may “end” in one context, it never literally ends. When a hypothesis, design, methods, and experiments are revisited, the scientific method simply picks up where it left off. Each time a researcher builds upon previous knowledge, the scientific method is restored with the pieces of past efforts.

By guiding researchers towards objective results based on transparency and reproducibility, the scientific method acts as a defense against bias, superstition, and preconceived notions. As we embrace the scientific method's enduring principles, we ensure that our quest for knowledge remains firmly rooted in reason, evidence, and the pursuit of truth.

The AJE Team

The AJE Team

See our "Privacy Policy"

Science of learning: Why do we care?

Subscribe to the center for universal education bulletin, helyn kim , helyn kim former brookings expert @helyn_kim eileen mcgivney , and em eileen mcgivney former research associate - center for universal education esther care esther care former nonresident senior fellow - global economy and development , center for universal education @care_esther.

March 28, 2017

Education needs to be informed by the science of learning . This was a strong message coming out of last month’s conference Learning and the Brain: The Science of How we Learn , and one that we hear often from people across the fields of psychology, education, neuroscience, and technology, as well as from practitioners working in the field and designing educational programs. Teaching and learning based on scientific evidence is key to developing the skills we know will be crucial for young people to thrive in a changing world . The science of learning can provide guidelines for moving beyond identifying what skills are important to answering how to teach those skills .

But what do we mean by the science of learning? Isn’t all education fundamentally about learning? The relatively young field of learning sciences draws from multiple disciplines to study the ways in which people acquire knowledge, skills, and competencies and to answer the questions of why some strategies for learning work better or worse than others.

Our current education systems were not built upon this knowledge. Many lament the fact that schools are set up like factories , a model fit for the 20th century but no longer sufficient in ensuring quality education and learning opportunities . Technologies have made the traditional model of teaching obsolete, where teachers are keepers of knowledge and uniformly provide content to students. The nature of the teaching profession is changing . Now, teachers must apply their pedagogical knowledge to foster skills that meet the demands and expectations of the 21st century, including embracing “ jaggedness .” This means understanding and nurturing the multiple pathways for learning and rates at which students progress, rather than assuming ages and stages are set.

Yet there remain many unknowns of transferring what we know about learning into the classroom. As cognitive neuroscientist Daniel Ansari put it at the Learning and the Brain conference, we need to understand both why different strategies work, but also how they work in the real world. Too often, the research and the practice do not align. Basic brain research on mechanisms of learning are conducted in artificial or non-authentic settings such as labs, with no clear links to real-world application. At the same time, applied research on education programs and practices might tell us what works, but without necessarily uncovering the underlying mechanisms that make it effective or not.

As the world increasingly engages with the need to teach skills more explicitly, how can the learning sciences help?

One way is to explore the nature of skills—what the building blocks are and how they develop and change over time. This has implications for how we approach the teaching (and assessment ) of these skills. Without a good understanding of how a skill progresses from basic to more complex forms, it is difficult to know where to begin. What skills establish a strong foundation for other skills to build on? How do we know if children are ready to learn the next set of skills in their trajectory? How do we scaffold students on to more complex forms? An understanding of how to use learning progressions that describe successively more complex forms of skills, as well as identify the subskills underlying the skills, can provide a progress map toward achieving the desired skills.

In addition to answering these questions about skills development and learning, we need to explore the links between research, policy, and practice to understand how to implement this on a large scale. One question that remains is how to translate an ambition toward a breadth of skills in policy documents to action on the ground and in classrooms. This could be done by better translating evidence into tools for policymakers, as well as looking at new mechanisms for policymakers to assess innovative approaches and scale them up in partnership with nongovernmental organizations and academics , such as “idea hubs .”

A recent OECD report finds that research on learning does not consistently inform the everyday practice of teachers, showing a further divide between learning sciences and schooling. To no fault of teachers, the science of learning is often not translated into digestible and practical strategies. Different approaches that focus on peer-to-peer learning between teachers and getting at the core of evidence-based teaching practices rather than an all-in-one prescribed initiative can be more effective at supporting teachers.

However, there remain many evidence gaps in all these areas. Uncovering the progression of skills, studying how governments identify effective practices and scale them up, and determining what works best for teachers to support their knowledge and practice are all areas where we can do a better job of learning about both the why and the how .

Related Content

Esther Care, Helyn Kim, Claire Scoular

August 1, 2018

Ghulam Omar Qargha

June 16, 2023

Fabiola Lara, Kate Anderson, Martin Henry, Seamus Hegarty

October 31, 2016

Global Education

Global Economy and Development

Center for Universal Education

Sopiko Beriashvili, Michael Trucano

April 26, 2024

Michael Trucano, Sopiko Beriashvili

April 25, 2024

Online only

9:00 am - 10:00 am EDT

IMAGES

  1. The scientific method is a process for experimentation

    how does research help in scientific learning describe

  2. Scientific Method: Definition and Examples

    how does research help in scientific learning describe

  3. Scientific Method

    how does research help in scientific learning describe

  4. The Scientific Method

    how does research help in scientific learning describe

  5. Steps of the Scientific Method

    how does research help in scientific learning describe

  6. Infographic: Steps in the Research Process

    how does research help in scientific learning describe

VIDEO

  1. Day 2: Basics of Scientific Research Writing (Batch 18)

  2. 📖🔥 Intro : Scientific Learning || Understand Variable Concept || Class 10

  3. What is research

  4. HOW TO READ and ANALYZE A RESEARCH STUDY

  5. What is scientific methods & steps of scientific methods

  6. Meaning & characteristics of scientific research || वैज्ञानिक शोध का अर्थ एवं विशेषताएँ

COMMENTS

  1. Explaining How Research Works

    Placing research in the bigger context of its field and where it fits into the scientific process can help people better understand and interpret new findings as they emerge. A single study usually uncovers only a piece of a larger puzzle. Questions about how the world works are often investigated on many different levels.

  2. How Research Works: Understanding the Process of Science

    Even if the scientific process doesn't answer the original question, the knowledge gained may help provide other answers that lead to new hypotheses and discoveries. Learn more about the importance of communicating how this process works in the NIH News in Health article, "Explaining How Research Works."

  3. PDF EFFECTIVE SCIENCE INSTRUCTION: WHAT DOES RESEARCH TELL US?

    This brief distills the research on science learning to inform a common vision of science instruction and to describe the extent to which K-12 science education currently reflects this vision. A final section on implications for policy makers and science education practitioners describes actions that could integrate the findings from research ...

  4. Processes of Learning and Learning in Science

    Understanding both the depth and breadth of scholarship on learning is central to addressing the committee's charge of investigating how citizen science can be poised to support science learning. In this chapter, we review the complex landscape of scholarship on learning in a way that highlights concepts relevant to the design of citizen science for learning. The concepts lay the groundwork ...

  5. What Is Research, and Why Do People Do It?

    Abstractspiepr Abs1. Every day people do research as they gather information to learn about something of interest. In the scientific world, however, research means something different than simply gathering information. Scientific research is characterized by its careful planning and observing, by its relentless efforts to understand and explain ...

  6. Teaching the science of learning

    The science of learning has made a considerable contribution to our understanding of effective teaching and learning strategies. However, few instructors outside of the field are privy to this research. In this tutorial review, we focus on six specific cognitive strategies that have received robust support from decades of research: spaced practice, interleaving, retrieval practice, elaboration ...

  7. How to Conduct Responsible Research: A Guide for Graduate Students

    Abstract. Researchers must conduct research responsibly for it to have an impact and to safeguard trust in science. Essential responsibilities of researchers include using rigorous, reproducible research methods, reporting findings in a trustworthy manner, and giving the researchers who contributed appropriate authorship credit.

  8. An Introduction to the Learning Sciences (Chapter 1)

    These questions are fundamental to scientific research in education (Shavelson & Towne, Reference Shavelson and Towne 2002). The chapters in Part II, "Methodologies," each describe a scientific methodology that has been widely used in LS research. Several of these methodologies were developed primarily by learning scientists and are closely ...

  9. Defining the Science of Learning: A scoping review

    USA. "The science of learning is an interdisciplinary field that aims to scientifically examine the way in which people naturally reason and learn, and to leverage those findings into effective teaching techniques.". "…leverage the way people naturally think and reason into effective pedagogy.".

  10. Using Research and Reason in Education: How Teachers Can Use ...

    Qualitative research does, however, help to identify fruitful directions for future experimental studies. Nevertheless, here is why the sole reliance on qualitative techniques to determine the effectiveness of curricula and instructional strategies has become problematic. As a researcher, you desire to do one of two things. Objective A

  11. PDF EFFECTIVE SCIENCE INSTRUCTION: WHAT DOES RESEARCH TELL US?

    A lesson on plant growth: sixth grade. Late in a unit on plant growth, a sixth grade class focused on the parts and functions of angiosperms. The lesson began with students finishing a two-week long lab activity from their text, in which they grew different types of seeds in a beaker with wet paper towels.

  12. Understanding Science 101

    Science is a way of learning about what is in the natural world, how the natural world works, and how the natural world got to be the way it is. It is not simply a collection of facts; rather it is a path to understanding. Science focuses exclusively on the natural world and does not deal with supernatural explanations.

  13. PDF Learning: Theory and Research

    people learn comes from research in many different disciplines. This chapter of the Teaching Guide introduces three central learning theories, as well as relevant research from the fields of neuroscience, anthropology, cognitive science, psychology, and education. In This Section Overview of Learning Theories Behaviorism Cognitive Constructivism

  14. 2.1 Psychologists Use the Scientific Method to Guide Their Research

    Learning Objectives. Describe the principles of the scientific method and explain its importance in conducting and interpreting research. Differentiate laws from theories and explain how research hypotheses are developed and tested. Discuss the procedures that researchers use to ensure that their research with humans and with animals is ethical.

  15. 7 Reasons Why Research Is Important

    Why Research Is Necessary and Valuable in Our Daily Lives. It's a tool for building knowledge and facilitating learning. It's a means to understand issues and increase public awareness. It helps us succeed in business. It allows us to disprove lies and support truths. It is a means to find, gauge, and seize opportunities.

  16. Module 2: Research Methods in Learning and Behavior

    Describe specific types of experimental designs used in learning research. Describe the ways we gather data in learning research (or applied behavior analysis). Outline the types of apparatus used in learning experiments. Outline the parts of a research article and describe their function. Step 3 called on the scientist to test his or her ...

  17. Scientific Research

    Scientific research is the systematic and empirical investigation of phenomena, theories, or hypotheses, using various methods and techniques in order to acquire new knowledge or to validate existing knowledge. It involves the collection, analysis, interpretation, and presentation of data, as well as the formulation and testing of hypotheses.

  18. IBE

    Executive summary. A simple framework for thinking and talking about classroom learning might consist of: engagement for learning, building of new knowledge and understanding, and consolidation of learning. In teacher training and development, we now have sufficient knowledge to begin explaining and promoting core classroom learning practices using scientifically informed concepts of learning.

  19. What is the Scientific Method: How does it work and why is it important

    Article. Research Process. The scientific method is a systematic process involving steps like defining questions, forming hypotheses, conducting experiments, and analyzing data. It minimizes biases and enables replicable research, leading to groundbreaking discoveries like Einstein's theory of relativity, penicillin, and the structure of DNA.

  20. Science of learning: Why do we care?

    Teaching and learning based on scientific evidence is key to developing the skills we know will be crucial for young people to thrive in a changing world. The science of learning can provide ...

  21. Beliefs about science: How does science instruction contribute?

    Research on student science learning suggests that students develop a repertoire of ideas about science rather than a cohesive view. This perspective resonates with the idea that students have complex cognitive ecologies about science based on varied sources and experiences. It stands in contrast to developmental accounts that view ...

  22. (PDF) The Scientific Approach Learning: How prospective science

    Novelty: This study's novelty was to describe each indicator of scientific literacy of the undergraduate students that was improved by using Socio-Scientific Issues in Problem-Based Learning.