Career Sidekick

Interview Questions

Comprehensive Interview Guide: 60+ Professions Explored in Detail

26 Good Examples of Problem Solving (Interview Answers)

By Biron Clark

Published: November 15, 2023

Employers like to hire people who can solve problems and work well under pressure. A job rarely goes 100% according to plan, so hiring managers will be more likely to hire you if you seem like you can handle unexpected challenges while staying calm and logical in your approach.

But how do they measure this?

They’re going to ask you interview questions about these problem solving skills, and they might also look for examples of problem solving on your resume and cover letter. So coming up, I’m going to share a list of examples of problem solving, whether you’re an experienced job seeker or recent graduate.

Then I’ll share sample interview answers to, “Give an example of a time you used logic to solve a problem?”

Problem-Solving Defined

It is the ability to identify the problem, prioritize based on gravity and urgency, analyze the root cause, gather relevant information, develop and evaluate viable solutions, decide on the most effective and logical solution, and plan and execute implementation. 

Problem-solving also involves critical thinking, communication, listening, creativity, research, data gathering, risk assessment, continuous learning, decision-making, and other soft and technical skills.

Solving problems not only prevent losses or damages but also boosts self-confidence and reputation when you successfully execute it. The spotlight shines on you when people see you handle issues with ease and savvy despite the challenges. Your ability and potential to be a future leader that can take on more significant roles and tackle bigger setbacks shine through. Problem-solving is a skill you can master by learning from others and acquiring wisdom from their and your own experiences. 

It takes a village to come up with solutions, but a good problem solver can steer the team towards the best choice and implement it to achieve the desired result.

Watch: 26 Good Examples of Problem Solving

Examples of problem solving scenarios in the workplace.

  • Correcting a mistake at work, whether it was made by you or someone else
  • Overcoming a delay at work through problem solving and communication
  • Resolving an issue with a difficult or upset customer
  • Overcoming issues related to a limited budget, and still delivering good work through the use of creative problem solving
  • Overcoming a scheduling/staffing shortage in the department to still deliver excellent work
  • Troubleshooting and resolving technical issues
  • Handling and resolving a conflict with a coworker
  • Solving any problems related to money, customer billing, accounting and bookkeeping, etc.
  • Taking initiative when another team member overlooked or missed something important
  • Taking initiative to meet with your superior to discuss a problem before it became potentially worse
  • Solving a safety issue at work or reporting the issue to those who could solve it
  • Using problem solving abilities to reduce/eliminate a company expense
  • Finding a way to make the company more profitable through new service or product offerings, new pricing ideas, promotion and sale ideas, etc.
  • Changing how a process, team, or task is organized to make it more efficient
  • Using creative thinking to come up with a solution that the company hasn’t used before
  • Performing research to collect data and information to find a new solution to a problem
  • Boosting a company or team’s performance by improving some aspect of communication among employees
  • Finding a new piece of data that can guide a company’s decisions or strategy better in a certain area

Problem Solving Examples for Recent Grads/Entry Level Job Seekers

  • Coordinating work between team members in a class project
  • Reassigning a missing team member’s work to other group members in a class project
  • Adjusting your workflow on a project to accommodate a tight deadline
  • Speaking to your professor to get help when you were struggling or unsure about a project
  • Asking classmates, peers, or professors for help in an area of struggle
  • Talking to your academic advisor to brainstorm solutions to a problem you were facing
  • Researching solutions to an academic problem online, via Google or other methods
  • Using problem solving and creative thinking to obtain an internship or other work opportunity during school after struggling at first

You can share all of the examples above when you’re asked questions about problem solving in your interview. As you can see, even if you have no professional work experience, it’s possible to think back to problems and unexpected challenges that you faced in your studies and discuss how you solved them.

Interview Answers to “Give an Example of an Occasion When You Used Logic to Solve a Problem”

Now, let’s look at some sample interview answers to, “Give me an example of a time you used logic to solve a problem,” since you’re likely to hear this interview question in all sorts of industries.

Example Answer 1:

At my current job, I recently solved a problem where a client was upset about our software pricing. They had misunderstood the sales representative who explained pricing originally, and when their package renewed for its second month, they called to complain about the invoice. I apologized for the confusion and then spoke to our billing team to see what type of solution we could come up with. We decided that the best course of action was to offer a long-term pricing package that would provide a discount. This not only solved the problem but got the customer to agree to a longer-term contract, which means we’ll keep their business for at least one year now, and they’re happy with the pricing. I feel I got the best possible outcome and the way I chose to solve the problem was effective.

Example Answer 2:

In my last job, I had to do quite a bit of problem solving related to our shift scheduling. We had four people quit within a week and the department was severely understaffed. I coordinated a ramp-up of our hiring efforts, I got approval from the department head to offer bonuses for overtime work, and then I found eight employees who were willing to do overtime this month. I think the key problem solving skills here were taking initiative, communicating clearly, and reacting quickly to solve this problem before it became an even bigger issue.

Example Answer 3:

In my current marketing role, my manager asked me to come up with a solution to our declining social media engagement. I assessed our current strategy and recent results, analyzed what some of our top competitors were doing, and then came up with an exact blueprint we could follow this year to emulate our best competitors but also stand out and develop a unique voice as a brand. I feel this is a good example of using logic to solve a problem because it was based on analysis and observation of competitors, rather than guessing or quickly reacting to the situation without reliable data. I always use logic and data to solve problems when possible. The project turned out to be a success and we increased our social media engagement by an average of 82% by the end of the year.

Answering Questions About Problem Solving with the STAR Method

When you answer interview questions about problem solving scenarios, or if you decide to demonstrate your problem solving skills in a cover letter (which is a good idea any time the job description mention problem solving as a necessary skill), I recommend using the STAR method to tell your story.

STAR stands for:

It’s a simple way of walking the listener or reader through the story in a way that will make sense to them. So before jumping in and talking about the problem that needed solving, make sure to describe the general situation. What job/company were you working at? When was this? Then, you can describe the task at hand and the problem that needed solving. After this, describe the course of action you chose and why. Ideally, show that you evaluated all the information you could given the time you had, and made a decision based on logic and fact.

Finally, describe a positive result you got.

Whether you’re answering interview questions about problem solving or writing a cover letter, you should only choose examples where you got a positive result and successfully solved the issue.

Example answer:

Situation : We had an irate client who was a social media influencer and had impossible delivery time demands we could not meet. She spoke negatively about us in her vlog and asked her followers to boycott our products. (Task : To develop an official statement to explain our company’s side, clarify the issue, and prevent it from getting out of hand). Action : I drafted a statement that balanced empathy, understanding, and utmost customer service with facts, logic, and fairness. It was direct, simple, succinct, and phrased to highlight our brand values while addressing the issue in a logical yet sensitive way.   We also tapped our influencer partners to subtly and indirectly share their positive experiences with our brand so we could counter the negative content being shared online.  Result : We got the results we worked for through proper communication and a positive and strategic campaign. The irate client agreed to have a dialogue with us. She apologized to us, and we reaffirmed our commitment to delivering quality service to all. We assured her that she can reach out to us anytime regarding her purchases and that we’d gladly accommodate her requests whenever possible. She also retracted her negative statements in her vlog and urged her followers to keep supporting our brand.

What Are Good Outcomes of Problem Solving?

Whenever you answer interview questions about problem solving or share examples of problem solving in a cover letter, you want to be sure you’re sharing a positive outcome.

Below are good outcomes of problem solving:

  • Saving the company time or money
  • Making the company money
  • Pleasing/keeping a customer
  • Obtaining new customers
  • Solving a safety issue
  • Solving a staffing/scheduling issue
  • Solving a logistical issue
  • Solving a company hiring issue
  • Solving a technical/software issue
  • Making a process more efficient and faster for the company
  • Creating a new business process to make the company more profitable
  • Improving the company’s brand/image/reputation
  • Getting the company positive reviews from customers/clients

Every employer wants to make more money, save money, and save time. If you can assess your problem solving experience and think about how you’ve helped past employers in those three areas, then that’s a great start. That’s where I recommend you begin looking for stories of times you had to solve problems.

Tips to Improve Your Problem Solving Skills

Throughout your career, you’re going to get hired for better jobs and earn more money if you can show employers that you’re a problem solver. So to improve your problem solving skills, I recommend always analyzing a problem and situation before acting. When discussing problem solving with employers, you never want to sound like you rush or make impulsive decisions. They want to see fact-based or data-based decisions when you solve problems.

Next, to get better at solving problems, analyze the outcomes of past solutions you came up with. You can recognize what works and what doesn’t. Think about how you can get better at researching and analyzing a situation, but also how you can get better at communicating, deciding the right people in the organization to talk to and “pull in” to help you if needed, etc.

Finally, practice staying calm even in stressful situations. Take a few minutes to walk outside if needed. Step away from your phone and computer to clear your head. A work problem is rarely so urgent that you cannot take five minutes to think (with the possible exception of safety problems), and you’ll get better outcomes if you solve problems by acting logically instead of rushing to react in a panic.

You can use all of the ideas above to describe your problem solving skills when asked interview questions about the topic. If you say that you do the things above, employers will be impressed when they assess your problem solving ability.

If you practice the tips above, you’ll be ready to share detailed, impressive stories and problem solving examples that will make hiring managers want to offer you the job. Every employer appreciates a problem solver, whether solving problems is a requirement listed on the job description or not. And you never know which hiring manager or interviewer will ask you about a time you solved a problem, so you should always be ready to discuss this when applying for a job.

Related interview questions & answers:

  • How do you handle stress?
  • How do you handle conflict?
  • Tell me about a time when you failed

Biron Clark

About the Author

Read more articles by Biron Clark

Continue Reading

15 Most Common Pharmacist Interview Questions and Answers

15 most common paralegal interview questions and answers, top 30+ funny interview questions and answers, 60 hardest interview questions and answers, 100+ best ice breaker questions to ask candidates, top 20 situational interview questions (& sample answers), 15 most common physical therapist interview questions and answers, 15 most common project manager interview questions and answers.

culture partners logo

Culture Development

Workplace problem-solving examples: real scenarios, practical solutions.

  • March 11, 2024

In today’s fast-paced and ever-changing work environment, problems are inevitable. From conflicts among employees to high levels of stress, workplace problems can significantly impact productivity and overall well-being. However, by developing the art of problem-solving and implementing practical solutions, organizations can effectively tackle these challenges and foster a positive work culture. In this article, we will delve into various workplace problem scenarios and explore strategies for resolution. By understanding common workplace problems and acquiring essential problem-solving skills, individuals and organizations can navigate these challenges with confidence and success.

Men in Hardhats

Understanding Workplace Problems

Before we can effectively solve workplace problems , it is essential to gain a clear understanding of the issues at hand. Identifying common workplace problems is the first step toward finding practical solutions. By recognizing these challenges, organizations can develop targeted strategies and initiatives to address them.

Identifying Common Workplace Problems

One of the most common workplace problems is conflict. Whether it stems from differences in opinions, miscommunication, or personality clashes, conflict can disrupt collaboration and hinder productivity. It is important to note that conflict is a natural part of any workplace, as individuals with different backgrounds and perspectives come together to work towards a common goal. However, when conflict is not managed effectively, it can escalate and create a toxic work environment.

In addition to conflict, workplace stress and burnout pose significant challenges. High workloads, tight deadlines, and a lack of work-life balance can all contribute to employee stress and dissatisfaction. When employees are overwhelmed and exhausted, their performance and overall well-being are compromised. This not only affects the individuals directly, but it also has a ripple effect on the entire organization.

Another common workplace problem is poor communication. Ineffective communication can lead to misunderstandings, delays, and errors. It can also create a sense of confusion and frustration among employees. Clear and open communication is vital for successful collaboration and the smooth functioning of any organization.

The Impact of Workplace Problems on Productivity

Workplace problems can have a detrimental effect on productivity levels. When conflicts are left unresolved, they can create a tense work environment, leading to decreased employee motivation and engagement. The negative energy generated by unresolved conflicts can spread throughout the organization, affecting team dynamics and overall performance.

Similarly, high levels of stress and burnout can result in decreased productivity, as individuals may struggle to focus and perform optimally. When employees are constantly under pressure and overwhelmed, their ability to think creatively and problem-solve diminishes. This can lead to a decline in the quality of work produced and an increase in errors and inefficiencies.

Poor communication also hampers productivity. When information is not effectively shared or understood, it can lead to misunderstandings, delays, and rework. This not only wastes time and resources but also creates frustration and demotivation among employees.

Furthermore, workplace problems can negatively impact employee morale and job satisfaction. When individuals are constantly dealing with conflicts, stress, and poor communication, their overall job satisfaction and engagement suffer. This can result in higher turnover rates, as employees seek a healthier and more supportive work environment.

In conclusion, workplace problems such as conflict, stress, burnout, and poor communication can significantly hinder productivity and employee well-being. Organizations must address these issues promptly and proactively to create a positive and productive work atmosphere. By fostering open communication, providing support for stress management, and promoting conflict resolution strategies, organizations can create a work environment that encourages collaboration, innovation, and employee satisfaction.

Office Supplies

The Art of Problem Solving in the Workplace

Now that we have a clear understanding of workplace problems, let’s explore the essential skills necessary for effective problem-solving in the workplace. By developing these skills and adopting a proactive approach, individuals can tackle problems head-on and find practical solutions.

Problem-solving in the workplace is a complex and multifaceted skill that requires a combination of analytical thinking, creativity, and effective communication. It goes beyond simply identifying problems and extends to finding innovative solutions that address the root causes.

Essential Problem-Solving Skills for the Workplace

To effectively solve workplace problems, individuals should possess a range of skills. These include strong analytical and critical thinking abilities, excellent communication and interpersonal skills, the ability to collaborate and work well in a team, and the capacity to adapt to change. By honing these skills, individuals can approach workplace problems with confidence and creativity.

Analytical and critical thinking skills are essential for problem-solving in the workplace. They involve the ability to gather and analyze relevant information, identify patterns and trends, and make logical connections. These skills enable individuals to break down complex problems into manageable components and develop effective strategies to solve them.

Effective communication and interpersonal skills are also crucial for problem-solving in the workplace. These skills enable individuals to clearly articulate their thoughts and ideas, actively listen to others, and collaborate effectively with colleagues. By fostering open and honest communication channels, individuals can better understand the root causes of problems and work towards finding practical solutions.

Collaboration and teamwork are essential for problem-solving in the workplace. By working together, individuals can leverage their diverse skills, knowledge, and perspectives to generate innovative solutions. Collaboration fosters a supportive and inclusive environment where everyone’s ideas are valued, leading to more effective problem-solving outcomes.

The ability to adapt to change is another important skill for problem-solving in the workplace. In today’s fast-paced and dynamic work environment, problems often arise due to changes in technology, processes, or market conditions. Individuals who can embrace change and adapt quickly are better equipped to find solutions that address the evolving needs of the organization.

The Role of Communication in Problem Solving

Communication is a key component of effective problem-solving in the workplace. By fostering open and honest communication channels, individuals can better understand the root causes of problems and work towards finding practical solutions. Active listening, clear and concise articulation of thoughts and ideas, and the ability to empathize are all valuable communication skills that facilitate problem-solving.

Active listening involves fully engaging with the speaker, paying attention to both verbal and non-verbal cues, and seeking clarification when necessary. By actively listening, individuals can gain a deeper understanding of the problem at hand and the perspectives of others involved. This understanding is crucial for developing comprehensive and effective solutions.

Clear and concise articulation of thoughts and ideas is essential for effective problem-solving communication. By expressing oneself clearly, individuals can ensure that their ideas are understood by others. This clarity helps to avoid misunderstandings and promotes effective collaboration.

Empathy is a valuable communication skill that plays a significant role in problem-solving. By putting oneself in the shoes of others and understanding their emotions and perspectives, individuals can build trust and rapport. This empathetic connection fosters a supportive and collaborative environment where everyone feels valued and motivated to contribute to finding solutions.

In conclusion, problem-solving in the workplace requires a combination of essential skills such as analytical thinking, effective communication, collaboration, and adaptability. By honing these skills and fostering open communication channels, individuals can approach workplace problems with confidence and creativity, leading to practical and innovative solutions.

Real Scenarios of Workplace Problems

Now, let’s explore some real scenarios of workplace problems and delve into strategies for resolution. By examining these practical examples, individuals can develop a deeper understanding of how to approach and solve workplace problems.

Conflict Resolution in the Workplace

Imagine a scenario where two team members have conflicting ideas on how to approach a project. The disagreement becomes heated, leading to a tense work environment. To resolve this conflict, it is crucial to encourage open dialogue between the team members. Facilitating a calm and respectful conversation can help uncover underlying concerns and find common ground. Collaboration and compromise are key in reaching a resolution that satisfies all parties involved.

In this particular scenario, let’s dive deeper into the dynamics between the team members. One team member, let’s call her Sarah, strongly believes that a more conservative and traditional approach is necessary for the project’s success. On the other hand, her colleague, John, advocates for a more innovative and out-of-the-box strategy. The clash between their perspectives arises from their different backgrounds and experiences.

As the conflict escalates, it is essential for a neutral party, such as a team leader or a mediator, to step in and facilitate the conversation. This person should create a safe space for both Sarah and John to express their ideas and concerns without fear of judgment or retribution. By actively listening to each other, they can gain a better understanding of the underlying motivations behind their respective approaches.

During the conversation, it may become apparent that Sarah’s conservative approach stems from a fear of taking risks and a desire for stability. On the other hand, John’s innovative mindset is driven by a passion for pushing boundaries and finding creative solutions. Recognizing these underlying motivations can help foster empathy and create a foundation for collaboration.

As the dialogue progresses, Sarah and John can begin to identify areas of overlap and potential compromise. They may realize that while Sarah’s conservative approach provides stability, John’s innovative ideas can inject fresh perspectives into the project. By combining their strengths and finding a middle ground, they can develop a hybrid strategy that incorporates both stability and innovation.

Ultimately, conflict resolution in the workplace requires effective communication, active listening, empathy, and a willingness to find common ground. By addressing conflicts head-on and fostering a collaborative environment, teams can overcome challenges and achieve their goals.

Dealing with Workplace Stress and Burnout

Workplace stress and burnout can be debilitating for individuals and organizations alike. In this scenario, an employee is consistently overwhelmed by their workload and experiencing signs of burnout. To address this issue, organizations should promote a healthy work-life balance and provide resources to manage stress effectively. Encouraging employees to take breaks, providing access to mental health support, and fostering a supportive work culture are all practical solutions to alleviate workplace stress.

In this particular scenario, let’s imagine that the employee facing stress and burnout is named Alex. Alex has been working long hours, often sacrificing personal time and rest to meet tight deadlines and demanding expectations. As a result, Alex is experiencing physical and mental exhaustion, reduced productivity, and a sense of detachment from work.

Recognizing the signs of burnout, Alex’s organization takes proactive measures to address the issue. They understand that employee well-being is crucial for maintaining a healthy and productive workforce. To promote a healthy work-life balance, the organization encourages employees to take regular breaks and prioritize self-care. They emphasize the importance of disconnecting from work during non-working hours and encourage employees to engage in activities that promote relaxation and rejuvenation.

Additionally, the organization provides access to mental health support services, such as counseling or therapy sessions. They recognize that stress and burnout can have a significant impact on an individual’s mental well-being and offer resources to help employees manage their stress effectively. By destigmatizing mental health and providing confidential support, the organization creates an environment where employees feel comfortable seeking help when needed.

Furthermore, the organization fosters a supportive work culture by promoting open communication and empathy. They encourage managers and colleagues to check in with each other regularly, offering support and understanding. Team members are encouraged to collaborate and share the workload, ensuring that no one person is overwhelmed with excessive responsibilities.

By implementing these strategies, Alex’s organization aims to alleviate workplace stress and prevent burnout. They understand that a healthy and balanced workforce is more likely to be engaged, productive, and satisfied. Through a combination of promoting work-life balance, providing mental health support, and fostering a supportive work culture, organizations can effectively address workplace stress and create an environment conducive to employee well-being.

Practical Solutions to Workplace Problems

Now that we have explored real scenarios, let’s discuss practical solutions that organizations can implement to address workplace problems. By adopting proactive strategies and establishing effective policies, organizations can create a positive work environment conducive to problem-solving and productivity.

Implementing Effective Policies for Problem Resolution

Organizations should have clear and well-defined policies in place to address workplace problems. These policies should outline procedures for conflict resolution, channels for reporting problems, and accountability measures. By ensuring that employees are aware of these policies and have easy access to them, organizations can facilitate problem-solving and prevent issues from escalating.

Promoting a Positive Workplace Culture

A positive workplace culture is vital for problem-solving. By fostering an environment of respect, collaboration, and open communication, organizations can create a space where individuals feel empowered to address and solve problems. Encouraging teamwork, recognizing and appreciating employees’ contributions, and promoting a healthy work-life balance are all ways to cultivate a positive workplace culture.

The Role of Leadership in Problem Solving

Leadership plays a crucial role in facilitating effective problem-solving within organizations. Different leadership styles can impact how problems are approached and resolved.

Leadership Styles and Their Impact on Problem-Solving

Leaders who adopt an autocratic leadership style may make decisions independently, potentially leaving their team members feeling excluded and undervalued. On the other hand, leaders who adopt a democratic leadership style involve their team members in the problem-solving process, fostering a sense of ownership and empowerment. By encouraging employee participation, organizations can leverage the diverse perspectives and expertise of their workforce to find innovative solutions to workplace problems.

Encouraging Employee Participation in Problem Solving

To harness the collective problem-solving abilities of an organization, it is crucial to encourage employee participation. Leaders can create opportunities for employees to contribute their ideas and perspectives through brainstorming sessions, team meetings, and collaborative projects. By valuing employee input and involving them in decision-making processes, organizations can foster a culture of inclusivity and drive innovative problem-solving efforts.

In today’s dynamic work environment, workplace problems are unavoidable. However, by understanding common workplace problems, developing essential problem-solving skills, and implementing practical solutions, individuals and organizations can navigate these challenges effectively. By fostering a positive work culture, implementing effective policies, and encouraging employee participation, organizations can create an environment conducive to problem-solving and productivity. With proactive problem-solving strategies in place, organizations can thrive and overcome obstacles, ensuring long-term success and growth.

Related Stories

  • April 17, 2024

Understanding the Organizational Culture Profile: A Deeper Look into Core Values

Culture statement examples: inspiring your business growth.

  • April 16, 2024

Fostering a Healthy Organizational Culture: Key Strategies and Benefits

What can we help you find.

helpful professor logo

39 Best Problem-Solving Examples

problem-solving examples and definition, explained below

Problem-solving is a process where you’re tasked with identifying an issue and coming up with the most practical and effective solution.

This indispensable skill is necessary in several aspects of life, from personal relationships to education to business decisions.

Problem-solving aptitude boosts rational thinking, creativity, and the ability to cooperate with others. It’s also considered essential in 21st Century workplaces.

If explaining your problem-solving skills in an interview, remember that the employer is trying to determine your ability to handle difficulties. Focus on explaining exactly how you solve problems, including by introducing your thoughts on some of the following frameworks and how you’ve applied them in the past.

Problem-Solving Examples

1. divergent thinking.

Divergent thinking refers to the process of coming up with multiple different answers to a single problem. It’s the opposite of convergent thinking, which would involve coming up with a singular answer .

The benefit of a divergent thinking approach is that it can help us achieve blue skies thinking – it lets us generate several possible solutions that we can then critique and analyze .

In the realm of problem-solving, divergent thinking acts as the initial spark. You’re working to create an array of potential solutions, even those that seem outwardly unrelated or unconventional, to get your brain turning and unlock out-of-the-box ideas.

This process paves the way for the decision-making stage, where the most promising ideas are selected and refined.

Go Deeper: Divervent Thinking Examples

2. Convergent Thinking

Next comes convergent thinking, the process of narrowing down multiple possibilities to arrive at a single solution.

This involves using your analytical skills to identify the best, most practical, or most economical solution from the pool of ideas that you generated in the divergent thinking stage.

In a way, convergent thinking shapes the “roadmap” to solve a problem after divergent thinking has supplied the “destinations.”

Have a think about which of these problem-solving skills you’re more adept at: divergent or convergent thinking?

Go Deeper: Convergent Thinking Examples

3. Brainstorming

Brainstorming is a group activity designed to generate a multitude of ideas regarding a specific problem. It’s divergent thinking as a group , which helps unlock even more possibilities.

A typical brainstorming session involves uninhibited and spontaneous ideation, encouraging participants to voice any possible solutions, no matter how unconventional they might appear.

It’s important in a brainstorming session to suspend judgment and be as inclusive as possible, allowing all participants to get involved.

By widening the scope of potential solutions, brainstorming allows better problem definition, more creative solutions, and helps to avoid thinking “traps” that might limit your perspective.

Go Deeper: Brainstorming Examples

4. Thinking Outside the Box

The concept of “thinking outside the box” encourages a shift in perspective, urging you to approach problems from an entirely new angle.

Rather than sticking to traditional methods and processes, it involves breaking away from conventional norms to cultivate unique solutions.

In problem-solving, this mindset can bypass established hurdles and bring you to fresh ideas that might otherwise remain undiscovered.

Think of it as going off the beaten track when regular routes present roadblocks to effective resolution.

5. Case Study Analysis

Analyzing case studies involves a detailed examination of real-life situations that bear relevance to the current problem at hand.

For example, if you’re facing a problem, you could go to another environment that has faced a similar problem and examine how they solved it. You’d then bring the insights from that case study back to your own problem.

This approach provides a practical backdrop against which theories and assumptions can be tested, offering valuable insights into how similar problems have been approached and resolved in the past.

See a Broader Range of Analysis Examples Here

6. Action Research

Action research involves a repetitive process of identifying a problem, formulating a plan to address it, implementing the plan, and then analyzing the results. It’s common in educational research contexts.

The objective is to promote continuous learning and improvement through reflection and action. You conduct research into your problem, attempt to apply a solution, then assess how well the solution worked. This becomes an iterative process of continual improvement over time.

For problem-solving, this method offers a way to test solutions in real-time and allows for changes and refinements along the way, based on feedback or observed outcomes. It’s a form of active problem-solving that integrates lessons learned into the next cycle of action.

Go Deeper: Action Research Examples

7. Information Gathering

Fundamental to solving any problem is the process of information gathering.

This involves collecting relevant data , facts, and details about the issue at hand, significantly aiding in the understanding and conceptualization of the problem.

In problem-solving, information gathering underpins every decision you make.

This process ensures your actions are based on concrete information and evidence, allowing for an informed approach to tackle the problem effectively.

8. Seeking Advice

Seeking advice implies turning to knowledgeable and experienced individuals or entities to gain insights on problem-solving.

It could include mentors, industry experts, peers, or even specialized literature.

The value in this process lies in leveraging different perspectives and proven strategies when dealing with a problem. Moreover, it aids you in avoiding pitfalls, saving time, and learning from others’ experiences.

9. Creative Thinking

Creative thinking refers to the ability to perceive a problem in a new way, identify unconventional patterns, or produce original solutions.

It encourages innovation and uniqueness, often leading to the most effective results.

When applied to problem-solving, creative thinking can help you break free from traditional constraints, ideal for potentially complex or unusual problems.

Go Deeper: Creative Thinking Examples

10. Conflict Resolution

Conflict resolution is a strategy developed to resolve disagreements and arguments, often involving communication, negotiation, and compromise.

When employed as a problem-solving technique, it can diffuse tension, clear bottlenecks, and create a collaborative environment.

Effective conflict resolution ensures that differing views or disagreements do not become roadblocks in the process of problem-solving.

Go Deeper: Conflict Resolution Examples

11. Addressing Bottlenecks

Bottlenecks refer to obstacles or hindrances that slow down or even halt a process.

In problem-solving, addressing bottlenecks involves identifying these impediments and finding ways to eliminate them.

This effort not only smooths the path to resolution but also enhances the overall efficiency of the problem-solving process.

For example, if your workflow is not working well, you’d go to the bottleneck – that one point that is most time consuming – and focus on that. Once you ‘break’ this bottleneck, the entire process will run more smoothly.

12. Market Research

Market research involves gathering and analyzing information about target markets, consumers, and competitors.

In sales and marketing, this is one of the most effective problem-solving methods. The research collected from your market (e.g. from consumer surveys) generates data that can help identify market trends, customer preferences, and competitor strategies.

In this sense, it allows a company to make informed decisions, solve existing problems, and even predict and prevent future ones.

13. Root Cause Analysis

Root cause analysis is a method used to identify the origin or the fundamental reason for a problem.

Once the root cause is determined, you can implement corrective actions to prevent the problem from recurring.

As a problem-solving procedure, root cause analysis helps you to tackle the problem at its source, rather than dealing with its surface symptoms.

Go Deeper: Root Cause Analysis Examples

14. Mind Mapping

Mind mapping is a visual tool used to structure information, helping you better analyze, comprehend and generate new ideas.

By laying out your thoughts visually, it can lead you to solutions that might not have been apparent with linear thinking.

In problem-solving, mind mapping helps in organizing ideas and identifying connections between them, providing a holistic view of the situation and potential solutions.

15. Trial and Error

The trial and error method involves attempting various solutions until you find one that resolves the problem.

It’s an empirical technique that relies on practical actions instead of theories or rules.

In the context of problem-solving, trial and error allows you the flexibility to test different strategies in real situations, gaining insights about what works and what doesn’t.

16. SWOT Analysis

SWOT is an acronym standing for Strengths, Weaknesses, Opportunities, and Threats.

It’s an analytic framework used to evaluate these aspects in relation to a particular objective or problem.

In problem-solving, SWOT Analysis helps you to identify favorable and unfavorable internal and external factors. It helps to craft strategies that make best use of your strengths and opportunities, whilst addressing weaknesses and threats.

Go Deeper: SWOT Analysis Examples

17. Scenario Planning

Scenario planning is a strategic planning method used to make flexible long-term plans.

It involves imagining, and then planning for, multiple likely future scenarios.

By forecasting various directions a problem could take, scenario planning helps manage uncertainty and is an effective tool for problem-solving in volatile conditions.

18. Six Thinking Hats

The Six Thinking Hats is a concept devised by Edward de Bono that proposes six different directions or modes of thinking, symbolized by six different hat colors.

Each hat signifies a different perspective, encouraging you to switch ‘thinking modes’ as you switch hats. This method can help remove bias and broaden perspectives when dealing with a problem.

19. Decision Matrix Analysis

Decision Matrix Analysis is a technique that allows you to weigh different factors when faced with several possible solutions.

After listing down the options and determining the factors of importance, each option is scored based on each factor.

Revealing a clear winner that both serves your objectives and reflects your values, Decision Matrix Analysis grounds your problem-solving process in objectivity and comprehensiveness.

20. Pareto Analysis

Also known as the 80/20 rule, Pareto Analysis is a decision-making technique.

It’s based on the principle that 80% of problems are typically caused by 20% of the causes, making it a handy tool for identifying the most significant issues in a situation.

Using this analysis, you’re likely to direct your problem-solving efforts more effectively, tackling the root causes producing most of the problem’s impact.

21. Critical Thinking

Critical thinking refers to the ability to analyze facts to form a judgment objectively.

It involves logical, disciplined thinking that is clear, rational, open-minded, and informed by evidence.

For problem-solving, critical thinking helps evaluate options and decide the most effective solution. It ensures your decisions are grounded in reason and facts, and not biased or irrational assumptions.

Go Deeper: Critical Thinking Examples

22. Hypothesis Testing

Hypothesis testing usually involves formulating a claim, testing it against actual data, and deciding whether to accept or reject the claim based on the results.

In problem-solving, hypotheses often represent potential solutions. Hypothesis testing provides verification, giving a statistical basis for decision-making and problem resolution.

Usually, this will require research methods and a scientific approach to see whether the hypothesis stands up or not.

Go Deeper: Types of Hypothesis Testing

23. Cost-Benefit Analysis

A cost-benefit analysis (CBA) is a systematic process of weighing the pros and cons of different solutions in terms of their potential costs and benefits.

It allows you to measure the positive effects against the negatives and informs your problem-solving strategy.

By using CBA, you can identify which solution offers the greatest benefit for the least cost, significantly improving efficacy and efficiency in your problem-solving process.

Go Deeper: Cost-Benefit Analysis Examples

24. Simulation and Modeling

Simulations and models allow you to create a simplified replica of real-world systems to test outcomes under controlled conditions.

In problem-solving, you can broadly understand potential repercussions of different solutions before implementation.

It offers a cost-effective way to predict the impacts of your decisions, minimizing potential risks associated with various solutions.

25. Delphi Method

The Delphi Method is a structured communication technique used to gather expert opinions.

The method involves a group of experts who respond to questionnaires about a problem. The responses are aggregated and shared with the group, and the process repeats until a consensus is reached.

This method of problem solving can provide a diverse range of insights and solutions, shaped by the wisdom of a collective expert group.

26. Cross-functional Team Collaboration

Cross-functional team collaboration involves individuals from different departments or areas of expertise coming together to solve a common problem or achieve a shared goal.

When you bring diverse skills, knowledge, and perspectives to a problem, it can lead to a more comprehensive and innovative solution.

In problem-solving, this promotes communal thinking and ensures that solutions are inclusive and holistic, with various aspects of the problem being addressed.

27. Benchmarking

Benchmarking involves comparing one’s business processes and performance metrics to the best practices from other companies or industries.

In problem-solving, it allows you to identify gaps in your own processes, determine how others have solved similar problems, and apply those solutions that have proven to be successful.

It also allows you to compare yourself to the best (the benchmark) and assess where you’re not as good.

28. Pros-Cons Lists

A pro-con analysis aids in problem-solving by weighing the advantages (pros) and disadvantages (cons) of various possible solutions.

This simple but powerful tool helps in making a balanced, informed decision.

When confronted with a problem, a pro-con analysis can guide you through the decision-making process, ensuring all possible outcomes and implications are scrutinized before arriving at the optimal solution. Thus, it helps to make the problem-solving process both methodical and comprehensive.

29. 5 Whys Analysis

The 5 Whys Analysis involves repeatedly asking the question ‘why’ (around five times) to peel away the layers of an issue and discover the root cause of a problem.

As a problem-solving technique, it enables you to delve into details that you might otherwise overlook and offers a simple, yet powerful, approach to uncover the origin of a problem.

For example, if your task is to find out why a product isn’t selling your first answer might be: “because customers don’t want it”, then you ask why again – “they don’t want it because it doesn’t solve their problem”, then why again – “because the product is missing a certain feature” … and so on, until you get to the root “why”.

30. Gap Analysis

Gap analysis entails comparing current performance with potential or desired performance.

You’re identifying the ‘gaps’, or the differences, between where you are and where you want to be.

In terms of problem-solving, a Gap Analysis can help identify key areas for improvement and design a roadmap of how to get from the current state to the desired one.

31. Design Thinking

Design thinking is a problem-solving approach that involves empathy, experimentation, and iteration.

The process focuses on understanding user needs, challenging assumptions , and redefining problems from a user-centric perspective.

In problem-solving, design thinking uncovers innovative solutions that may not have been initially apparent and ensures the solution is tailored to the needs of those affected by the issue.

32. Analogical Thinking

Analogical thinking involves the transfer of information from a particular subject (the analogue or source) to another particular subject (the target).

In problem-solving, you’re drawing parallels between similar situations and applying the problem-solving techniques used in one situation to the other.

Thus, it allows you to apply proven strategies to new, but related problems.

33. Lateral Thinking

Lateral thinking requires looking at a situation or problem from a unique, sometimes abstract, often non-sequential viewpoint.

Unlike traditional logical thinking methods, lateral thinking encourages you to employ creative and out-of-the-box techniques.

In solving problems, this type of thinking boosts ingenuity and drives innovation, often leading to novel and effective solutions.

Go Deeper: Lateral Thinking Examples

34. Flowcharting

Flowcharting is the process of visually mapping a process or procedure.

This form of diagram can show every step of a system, process, or workflow, enabling an easy tracking of the progress.

As a problem-solving tool, flowcharts help identify bottlenecks or inefficiencies in a process, guiding improved strategies and providing clarity on task ownership and process outcomes.

35. Multivoting

Multivoting, or N/3 voting, is a method where participants reduce a large list of ideas to a prioritized shortlist by casting multiple votes.

This voting system elevates the most preferred options for further consideration and decision-making.

As a problem-solving technique, multivoting allows a group to narrow options and focus on the most promising solutions, ensuring more effective and democratic decision-making.

36. Force Field Analysis

Force Field Analysis is a decision-making technique that identifies the forces for and against change when contemplating a decision.

The ‘forces’ represent the differing factors that can drive or hinder change.

In problem-solving, Force Field Analysis allows you to understand the entirety of the context, favoring a balanced view over a one-sided perspective. A comprehensive view of all the forces at play can lead to better-informed problem-solving decisions.

TRIZ, which stands for “The Theory of Inventive Problem Solving,” is a problem-solving, analysis, and forecasting methodology.

It focuses on finding contradictions inherent in a scenario. Then, you work toward eliminating the contraditions through finding innovative solutions.

So, when you’re tackling a problem, TRIZ provides a disciplined, systematic approach that aims for ideal solutions and not just acceptable ones. Using TRIZ, you can leverage patterns of problem-solving that have proven effective in different cases, pivoting them to solve the problem at hand.

38. A3 Problem Solving

A3 Problem Solving, derived from Lean Management, is a structured method that uses a single sheet of A3-sized paper to document knowledge from a problem-solving process.

Named after the international paper size standard of A3 (or 11-inch by 17-inch paper), it succinctly records all key details of the problem-solving process from problem description to the root cause and corrective actions.

Used in problem-solving, this provides a straightforward and logical structure for addressing the problem, facilitating communication between team members, ensuring all critical details are included, and providing a record of decisions made.

39. Scenario Analysis

Scenario Analysis is all about predicting different possible future events depending upon your decision.

To do this, you look at each course of action and try to identify the most likely outcomes or scenarios down the track if you take that course of action.

This technique helps forecast the impacts of various strategies, playing each out to their (logical or potential) end. It’s a good strategy for project managers who need to keep a firm eye on the horizon at all times.

When solving problems, Scenario Analysis assists in preparing for uncertainties, making sure your solution remains viable, regardless of changes in circumstances.

How to Answer “Demonstrate Problem-Solving Skills” in an Interview

When asked to demonstrate your problem-solving skills in an interview, the STAR method often proves useful. STAR stands for Situation, Task, Action, and Result.

Situation: Begin by describing a specific circumstance or challenge you encountered. Make sure to provide enough detail to allow the interviewer a clear understanding. You should select an event that adequately showcases your problem-solving abilities.

For instance, “In my previous role as a project manager, we faced a significant issue when our key supplier abruptly went out of business.”

Task: Explain what your responsibilities were in that situation. This serves to provide context, allowing the interviewer to understand your role and the expectations placed upon you.

For instance, “It was my task to ensure the project remained on track despite this setback. Alternative suppliers needed to be found without sacrificing quality or significantly increasing costs.”

Action: Describe the steps you took to manage the problem. Highlight your problem-solving process. Mention any creative approaches or techniques that you used.

For instance, “I conducted thorough research to identify potential new suppliers. After creating a shortlist, I initiated contact, negotiated terms, assessed samples for quality and made a selection. I also worked closely with the team to re-adjust the project timeline.”

Result: Share the outcomes of your actions. How did the situation end? Did your actions lead to success? It’s particularly effective if you can quantify these results.

For instance, “As a result of my active problem solving, we were able to secure a new supplier whose costs were actually 10% cheaper and whose quality was comparable. We adjusted the project plan and managed to complete the project just two weeks later than originally planned, despite the major vendor setback.”

Remember, when you’re explaining your problem-solving skills to an interviewer, what they’re really interested in is your approach to handling difficulties, your creativity and persistence in seeking a resolution, and your ability to carry your solution through to fruition. Tailoring your story to highlight these aspects will help exemplify your problem-solving prowess.

Go Deeper: STAR Interview Method Examples

Benefits of Problem-Solving

Problem-solving is beneficial for the following reasons (among others):

  • It can help you to overcome challenges, roadblocks, and bottlenecks in your life.
  • It can save a company money.
  • It can help you to achieve clarity in your thinking.
  • It can make procedures more efficient and save time.
  • It can strengthen your decision-making capacities.
  • It can lead to better risk management.

Whether for a job interview or school, problem-solving helps you to become a better thinking, solve your problems more effectively, and achieve your goals. Build up your problem-solving frameworks (I presented over 40 in this piece for you!) and work on applying them in real-life situations.

Chris

Chris Drew (PhD)

Dr. Chris Drew is the founder of the Helpful Professor. He holds a PhD in education and has published over 20 articles in scholarly journals. He is the former editor of the Journal of Learning Development in Higher Education. [Image Descriptor: Photo of Chris]

  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 5 Top Tips for Succeeding at University
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 50 Durable Goods Examples
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 100 Consumer Goods Examples
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 30 Globalization Pros and Cons

Leave a Comment Cancel Reply

Your email address will not be published. Required fields are marked *

Status.net

What is Problem Solving? (Steps, Techniques, Examples)

By Status.net Editorial Team on May 7, 2023 — 5 minutes to read

What Is Problem Solving?

Definition and importance.

Problem solving is the process of finding solutions to obstacles or challenges you encounter in your life or work. It is a crucial skill that allows you to tackle complex situations, adapt to changes, and overcome difficulties with ease. Mastering this ability will contribute to both your personal and professional growth, leading to more successful outcomes and better decision-making.

Problem-Solving Steps

The problem-solving process typically includes the following steps:

  • Identify the issue : Recognize the problem that needs to be solved.
  • Analyze the situation : Examine the issue in depth, gather all relevant information, and consider any limitations or constraints that may be present.
  • Generate potential solutions : Brainstorm a list of possible solutions to the issue, without immediately judging or evaluating them.
  • Evaluate options : Weigh the pros and cons of each potential solution, considering factors such as feasibility, effectiveness, and potential risks.
  • Select the best solution : Choose the option that best addresses the problem and aligns with your objectives.
  • Implement the solution : Put the selected solution into action and monitor the results to ensure it resolves the issue.
  • Review and learn : Reflect on the problem-solving process, identify any improvements or adjustments that can be made, and apply these learnings to future situations.

Defining the Problem

To start tackling a problem, first, identify and understand it. Analyzing the issue thoroughly helps to clarify its scope and nature. Ask questions to gather information and consider the problem from various angles. Some strategies to define the problem include:

  • Brainstorming with others
  • Asking the 5 Ws and 1 H (Who, What, When, Where, Why, and How)
  • Analyzing cause and effect
  • Creating a problem statement

Generating Solutions

Once the problem is clearly understood, brainstorm possible solutions. Think creatively and keep an open mind, as well as considering lessons from past experiences. Consider:

  • Creating a list of potential ideas to solve the problem
  • Grouping and categorizing similar solutions
  • Prioritizing potential solutions based on feasibility, cost, and resources required
  • Involving others to share diverse opinions and inputs

Evaluating and Selecting Solutions

Evaluate each potential solution, weighing its pros and cons. To facilitate decision-making, use techniques such as:

  • SWOT analysis (Strengths, Weaknesses, Opportunities, Threats)
  • Decision-making matrices
  • Pros and cons lists
  • Risk assessments

After evaluating, choose the most suitable solution based on effectiveness, cost, and time constraints.

Implementing and Monitoring the Solution

Implement the chosen solution and monitor its progress. Key actions include:

  • Communicating the solution to relevant parties
  • Setting timelines and milestones
  • Assigning tasks and responsibilities
  • Monitoring the solution and making adjustments as necessary
  • Evaluating the effectiveness of the solution after implementation

Utilize feedback from stakeholders and consider potential improvements. Remember that problem-solving is an ongoing process that can always be refined and enhanced.

Problem-Solving Techniques

During each step, you may find it helpful to utilize various problem-solving techniques, such as:

  • Brainstorming : A free-flowing, open-minded session where ideas are generated and listed without judgment, to encourage creativity and innovative thinking.
  • Root cause analysis : A method that explores the underlying causes of a problem to find the most effective solution rather than addressing superficial symptoms.
  • SWOT analysis : A tool used to evaluate the strengths, weaknesses, opportunities, and threats related to a problem or decision, providing a comprehensive view of the situation.
  • Mind mapping : A visual technique that uses diagrams to organize and connect ideas, helping to identify patterns, relationships, and possible solutions.

Brainstorming

When facing a problem, start by conducting a brainstorming session. Gather your team and encourage an open discussion where everyone contributes ideas, no matter how outlandish they may seem. This helps you:

  • Generate a diverse range of solutions
  • Encourage all team members to participate
  • Foster creative thinking

When brainstorming, remember to:

  • Reserve judgment until the session is over
  • Encourage wild ideas
  • Combine and improve upon ideas

Root Cause Analysis

For effective problem-solving, identifying the root cause of the issue at hand is crucial. Try these methods:

  • 5 Whys : Ask “why” five times to get to the underlying cause.
  • Fishbone Diagram : Create a diagram representing the problem and break it down into categories of potential causes.
  • Pareto Analysis : Determine the few most significant causes underlying the majority of problems.

SWOT Analysis

SWOT analysis helps you examine the Strengths, Weaknesses, Opportunities, and Threats related to your problem. To perform a SWOT analysis:

  • List your problem’s strengths, such as relevant resources or strong partnerships.
  • Identify its weaknesses, such as knowledge gaps or limited resources.
  • Explore opportunities, like trends or new technologies, that could help solve the problem.
  • Recognize potential threats, like competition or regulatory barriers.

SWOT analysis aids in understanding the internal and external factors affecting the problem, which can help guide your solution.

Mind Mapping

A mind map is a visual representation of your problem and potential solutions. It enables you to organize information in a structured and intuitive manner. To create a mind map:

  • Write the problem in the center of a blank page.
  • Draw branches from the central problem to related sub-problems or contributing factors.
  • Add more branches to represent potential solutions or further ideas.

Mind mapping allows you to visually see connections between ideas and promotes creativity in problem-solving.

Examples of Problem Solving in Various Contexts

In the business world, you might encounter problems related to finances, operations, or communication. Applying problem-solving skills in these situations could look like:

  • Identifying areas of improvement in your company’s financial performance and implementing cost-saving measures
  • Resolving internal conflicts among team members by listening and understanding different perspectives, then proposing and negotiating solutions
  • Streamlining a process for better productivity by removing redundancies, automating tasks, or re-allocating resources

In educational contexts, problem-solving can be seen in various aspects, such as:

  • Addressing a gap in students’ understanding by employing diverse teaching methods to cater to different learning styles
  • Developing a strategy for successful time management to balance academic responsibilities and extracurricular activities
  • Seeking resources and support to provide equal opportunities for learners with special needs or disabilities

Everyday life is full of challenges that require problem-solving skills. Some examples include:

  • Overcoming a personal obstacle, such as improving your fitness level, by establishing achievable goals, measuring progress, and adjusting your approach accordingly
  • Navigating a new environment or city by researching your surroundings, asking for directions, or using technology like GPS to guide you
  • Dealing with a sudden change, like a change in your work schedule, by assessing the situation, identifying potential impacts, and adapting your plans to accommodate the change.
  • How to Resolve Employee Conflict at Work [Steps, Tips, Examples]
  • How to Write Inspiring Core Values? 5 Steps with Examples
  • 30 Employee Feedback Examples (Positive & Negative)

35 problem-solving techniques and methods for solving complex problems

Problem solving workshop

Design your next session with SessionLab

Join the 150,000+ facilitators 
using SessionLab.

Recommended Articles

A step-by-step guide to planning a workshop, how to create an unforgettable training session in 8 simple steps, 47 useful online tools for workshop planning and meeting facilitation.

All teams and organizations encounter challenges as they grow. There are problems that might occur for teams when it comes to miscommunication or resolving business-critical issues . You may face challenges around growth , design , user engagement, and even team culture and happiness. In short, problem-solving techniques should be part of every team’s skillset.

Problem-solving methods are primarily designed to help a group or team through a process of first identifying problems and challenges , ideating possible solutions , and then evaluating the most suitable .

Finding effective solutions to complex problems isn’t easy, but by using the right process and techniques, you can help your team be more efficient in the process.

So how do you develop strategies that are engaging, and empower your team to solve problems effectively?

In this blog post, we share a series of problem-solving tools you can use in your next workshop or team meeting. You’ll also find some tips for facilitating the process and how to enable others to solve complex problems.

Let’s get started! 

How do you identify problems?

How do you identify the right solution.

  • Tips for more effective problem-solving

Complete problem-solving methods

  • Problem-solving techniques to identify and analyze problems
  • Problem-solving techniques for developing solutions

Problem-solving warm-up activities

Closing activities for a problem-solving process.

Before you can move towards finding the right solution for a given problem, you first need to identify and define the problem you wish to solve. 

Here, you want to clearly articulate what the problem is and allow your group to do the same. Remember that everyone in a group is likely to have differing perspectives and alignment is necessary in order to help the group move forward. 

Identifying a problem accurately also requires that all members of a group are able to contribute their views in an open and safe manner. It can be scary for people to stand up and contribute, especially if the problems or challenges are emotive or personal in nature. Be sure to try and create a psychologically safe space for these kinds of discussions.

Remember that problem analysis and further discussion are also important. Not taking the time to fully analyze and discuss a challenge can result in the development of solutions that are not fit for purpose or do not address the underlying issue.

Successfully identifying and then analyzing a problem means facilitating a group through activities designed to help them clearly and honestly articulate their thoughts and produce usable insight.

With this data, you might then produce a problem statement that clearly describes the problem you wish to be addressed and also state the goal of any process you undertake to tackle this issue.  

Finding solutions is the end goal of any process. Complex organizational challenges can only be solved with an appropriate solution but discovering them requires using the right problem-solving tool.

After you’ve explored a problem and discussed ideas, you need to help a team discuss and choose the right solution. Consensus tools and methods such as those below help a group explore possible solutions before then voting for the best. They’re a great way to tap into the collective intelligence of the group for great results!

Remember that the process is often iterative. Great problem solvers often roadtest a viable solution in a measured way to see what works too. While you might not get the right solution on your first try, the methods below help teams land on the most likely to succeed solution while also holding space for improvement.

Every effective problem solving process begins with an agenda . A well-structured workshop is one of the best methods for successfully guiding a group from exploring a problem to implementing a solution.

In SessionLab, it’s easy to go from an idea to a complete agenda . Start by dragging and dropping your core problem solving activities into place . Add timings, breaks and necessary materials before sharing your agenda with your colleagues.

The resulting agenda will be your guide to an effective and productive problem solving session that will also help you stay organized on the day!

problem solving example with solution

Tips for more effective problem solving

Problem-solving activities are only one part of the puzzle. While a great method can help unlock your team’s ability to solve problems, without a thoughtful approach and strong facilitation the solutions may not be fit for purpose.

Let’s take a look at some problem-solving tips you can apply to any process to help it be a success!

Clearly define the problem

Jumping straight to solutions can be tempting, though without first clearly articulating a problem, the solution might not be the right one. Many of the problem-solving activities below include sections where the problem is explored and clearly defined before moving on.

This is a vital part of the problem-solving process and taking the time to fully define an issue can save time and effort later. A clear definition helps identify irrelevant information and it also ensures that your team sets off on the right track.

Don’t jump to conclusions

It’s easy for groups to exhibit cognitive bias or have preconceived ideas about both problems and potential solutions. Be sure to back up any problem statements or potential solutions with facts, research, and adequate forethought.

The best techniques ask participants to be methodical and challenge preconceived notions. Make sure you give the group enough time and space to collect relevant information and consider the problem in a new way. By approaching the process with a clear, rational mindset, you’ll often find that better solutions are more forthcoming.  

Try different approaches  

Problems come in all shapes and sizes and so too should the methods you use to solve them. If you find that one approach isn’t yielding results and your team isn’t finding different solutions, try mixing it up. You’ll be surprised at how using a new creative activity can unblock your team and generate great solutions.

Don’t take it personally 

Depending on the nature of your team or organizational problems, it’s easy for conversations to get heated. While it’s good for participants to be engaged in the discussions, ensure that emotions don’t run too high and that blame isn’t thrown around while finding solutions.

You’re all in it together, and even if your team or area is seeing problems, that isn’t necessarily a disparagement of you personally. Using facilitation skills to manage group dynamics is one effective method of helping conversations be more constructive.

Get the right people in the room

Your problem-solving method is often only as effective as the group using it. Getting the right people on the job and managing the number of people present is important too!

If the group is too small, you may not get enough different perspectives to effectively solve a problem. If the group is too large, you can go round and round during the ideation stages.

Creating the right group makeup is also important in ensuring you have the necessary expertise and skillset to both identify and follow up on potential solutions. Carefully consider who to include at each stage to help ensure your problem-solving method is followed and positioned for success.

Document everything

The best solutions can take refinement, iteration, and reflection to come out. Get into a habit of documenting your process in order to keep all the learnings from the session and to allow ideas to mature and develop. Many of the methods below involve the creation of documents or shared resources. Be sure to keep and share these so everyone can benefit from the work done!

Bring a facilitator 

Facilitation is all about making group processes easier. With a subject as potentially emotive and important as problem-solving, having an impartial third party in the form of a facilitator can make all the difference in finding great solutions and keeping the process moving. Consider bringing a facilitator to your problem-solving session to get better results and generate meaningful solutions!

Develop your problem-solving skills

It takes time and practice to be an effective problem solver. While some roles or participants might more naturally gravitate towards problem-solving, it can take development and planning to help everyone create better solutions.

You might develop a training program, run a problem-solving workshop or simply ask your team to practice using the techniques below. Check out our post on problem-solving skills to see how you and your group can develop the right mental process and be more resilient to issues too!

Design a great agenda

Workshops are a great format for solving problems. With the right approach, you can focus a group and help them find the solutions to their own problems. But designing a process can be time-consuming and finding the right activities can be difficult.

Check out our workshop planning guide to level-up your agenda design and start running more effective workshops. Need inspiration? Check out templates designed by expert facilitators to help you kickstart your process!

In this section, we’ll look at in-depth problem-solving methods that provide a complete end-to-end process for developing effective solutions. These will help guide your team from the discovery and definition of a problem through to delivering the right solution.

If you’re looking for an all-encompassing method or problem-solving model, these processes are a great place to start. They’ll ask your team to challenge preconceived ideas and adopt a mindset for solving problems more effectively.

  • Six Thinking Hats
  • Lightning Decision Jam
  • Problem Definition Process
  • Discovery & Action Dialogue
Design Sprint 2.0
  • Open Space Technology

1. Six Thinking Hats

Individual approaches to solving a problem can be very different based on what team or role an individual holds. It can be easy for existing biases or perspectives to find their way into the mix, or for internal politics to direct a conversation.

Six Thinking Hats is a classic method for identifying the problems that need to be solved and enables your team to consider them from different angles, whether that is by focusing on facts and data, creative solutions, or by considering why a particular solution might not work.

Like all problem-solving frameworks, Six Thinking Hats is effective at helping teams remove roadblocks from a conversation or discussion and come to terms with all the aspects necessary to solve complex problems.

2. Lightning Decision Jam

Featured courtesy of Jonathan Courtney of AJ&Smart Berlin, Lightning Decision Jam is one of those strategies that should be in every facilitation toolbox. Exploring problems and finding solutions is often creative in nature, though as with any creative process, there is the potential to lose focus and get lost.

Unstructured discussions might get you there in the end, but it’s much more effective to use a method that creates a clear process and team focus.

In Lightning Decision Jam, participants are invited to begin by writing challenges, concerns, or mistakes on post-its without discussing them before then being invited by the moderator to present them to the group.

From there, the team vote on which problems to solve and are guided through steps that will allow them to reframe those problems, create solutions and then decide what to execute on. 

By deciding the problems that need to be solved as a team before moving on, this group process is great for ensuring the whole team is aligned and can take ownership over the next stages. 

Lightning Decision Jam (LDJ)   #action   #decision making   #problem solving   #issue analysis   #innovation   #design   #remote-friendly   The problem with anything that requires creative thinking is that it’s easy to get lost—lose focus and fall into the trap of having useless, open-ended, unstructured discussions. Here’s the most effective solution I’ve found: Replace all open, unstructured discussion with a clear process. What to use this exercise for: Anything which requires a group of people to make decisions, solve problems or discuss challenges. It’s always good to frame an LDJ session with a broad topic, here are some examples: The conversion flow of our checkout Our internal design process How we organise events Keeping up with our competition Improving sales flow

3. Problem Definition Process

While problems can be complex, the problem-solving methods you use to identify and solve those problems can often be simple in design. 

By taking the time to truly identify and define a problem before asking the group to reframe the challenge as an opportunity, this method is a great way to enable change.

Begin by identifying a focus question and exploring the ways in which it manifests before splitting into five teams who will each consider the problem using a different method: escape, reversal, exaggeration, distortion or wishful. Teams develop a problem objective and create ideas in line with their method before then feeding them back to the group.

This method is great for enabling in-depth discussions while also creating space for finding creative solutions too!

Problem Definition   #problem solving   #idea generation   #creativity   #online   #remote-friendly   A problem solving technique to define a problem, challenge or opportunity and to generate ideas.

4. The 5 Whys 

Sometimes, a group needs to go further with their strategies and analyze the root cause at the heart of organizational issues. An RCA or root cause analysis is the process of identifying what is at the heart of business problems or recurring challenges. 

The 5 Whys is a simple and effective method of helping a group go find the root cause of any problem or challenge and conduct analysis that will deliver results. 

By beginning with the creation of a problem statement and going through five stages to refine it, The 5 Whys provides everything you need to truly discover the cause of an issue.

The 5 Whys   #hyperisland   #innovation   This simple and powerful method is useful for getting to the core of a problem or challenge. As the title suggests, the group defines a problems, then asks the question “why” five times, often using the resulting explanation as a starting point for creative problem solving.

5. World Cafe

World Cafe is a simple but powerful facilitation technique to help bigger groups to focus their energy and attention on solving complex problems.

World Cafe enables this approach by creating a relaxed atmosphere where participants are able to self-organize and explore topics relevant and important to them which are themed around a central problem-solving purpose. Create the right atmosphere by modeling your space after a cafe and after guiding the group through the method, let them take the lead!

Making problem-solving a part of your organization’s culture in the long term can be a difficult undertaking. More approachable formats like World Cafe can be especially effective in bringing people unfamiliar with workshops into the fold. 

World Cafe   #hyperisland   #innovation   #issue analysis   World Café is a simple yet powerful method, originated by Juanita Brown, for enabling meaningful conversations driven completely by participants and the topics that are relevant and important to them. Facilitators create a cafe-style space and provide simple guidelines. Participants then self-organize and explore a set of relevant topics or questions for conversation.

6. Discovery & Action Dialogue (DAD)

One of the best approaches is to create a safe space for a group to share and discover practices and behaviors that can help them find their own solutions.

With DAD, you can help a group choose which problems they wish to solve and which approaches they will take to do so. It’s great at helping remove resistance to change and can help get buy-in at every level too!

This process of enabling frontline ownership is great in ensuring follow-through and is one of the methods you will want in your toolbox as a facilitator.

Discovery & Action Dialogue (DAD)   #idea generation   #liberating structures   #action   #issue analysis   #remote-friendly   DADs make it easy for a group or community to discover practices and behaviors that enable some individuals (without access to special resources and facing the same constraints) to find better solutions than their peers to common problems. These are called positive deviant (PD) behaviors and practices. DADs make it possible for people in the group, unit, or community to discover by themselves these PD practices. DADs also create favorable conditions for stimulating participants’ creativity in spaces where they can feel safe to invent new and more effective practices. Resistance to change evaporates as participants are unleashed to choose freely which practices they will adopt or try and which problems they will tackle. DADs make it possible to achieve frontline ownership of solutions.

7. Design Sprint 2.0

Want to see how a team can solve big problems and move forward with prototyping and testing solutions in a few days? The Design Sprint 2.0 template from Jake Knapp, author of Sprint, is a complete agenda for a with proven results.

Developing the right agenda can involve difficult but necessary planning. Ensuring all the correct steps are followed can also be stressful or time-consuming depending on your level of experience.

Use this complete 4-day workshop template if you are finding there is no obvious solution to your challenge and want to focus your team around a specific problem that might require a shortcut to launching a minimum viable product or waiting for the organization-wide implementation of a solution.

8. Open space technology

Open space technology- developed by Harrison Owen – creates a space where large groups are invited to take ownership of their problem solving and lead individual sessions. Open space technology is a great format when you have a great deal of expertise and insight in the room and want to allow for different takes and approaches on a particular theme or problem you need to be solved.

Start by bringing your participants together to align around a central theme and focus their efforts. Explain the ground rules to help guide the problem-solving process and then invite members to identify any issue connecting to the central theme that they are interested in and are prepared to take responsibility for.

Once participants have decided on their approach to the core theme, they write their issue on a piece of paper, announce it to the group, pick a session time and place, and post the paper on the wall. As the wall fills up with sessions, the group is then invited to join the sessions that interest them the most and which they can contribute to, then you’re ready to begin!

Everyone joins the problem-solving group they’ve signed up to, record the discussion and if appropriate, findings can then be shared with the rest of the group afterward.

Open Space Technology   #action plan   #idea generation   #problem solving   #issue analysis   #large group   #online   #remote-friendly   Open Space is a methodology for large groups to create their agenda discerning important topics for discussion, suitable for conferences, community gatherings and whole system facilitation

Techniques to identify and analyze problems

Using a problem-solving method to help a team identify and analyze a problem can be a quick and effective addition to any workshop or meeting.

While further actions are always necessary, you can generate momentum and alignment easily, and these activities are a great place to get started.

We’ve put together this list of techniques to help you and your team with problem identification, analysis, and discussion that sets the foundation for developing effective solutions.

Let’s take a look!

  • The Creativity Dice
  • Fishbone Analysis
  • Problem Tree
  • SWOT Analysis
  • Agreement-Certainty Matrix
  • The Journalistic Six
  • LEGO Challenge
  • What, So What, Now What?
  • Journalists

Individual and group perspectives are incredibly important, but what happens if people are set in their minds and need a change of perspective in order to approach a problem more effectively?

Flip It is a method we love because it is both simple to understand and run, and allows groups to understand how their perspectives and biases are formed. 

Participants in Flip It are first invited to consider concerns, issues, or problems from a perspective of fear and write them on a flip chart. Then, the group is asked to consider those same issues from a perspective of hope and flip their understanding.  

No problem and solution is free from existing bias and by changing perspectives with Flip It, you can then develop a problem solving model quickly and effectively.

Flip It!   #gamestorming   #problem solving   #action   Often, a change in a problem or situation comes simply from a change in our perspectives. Flip It! is a quick game designed to show players that perspectives are made, not born.

10. The Creativity Dice

One of the most useful problem solving skills you can teach your team is of approaching challenges with creativity, flexibility, and openness. Games like The Creativity Dice allow teams to overcome the potential hurdle of too much linear thinking and approach the process with a sense of fun and speed. 

In The Creativity Dice, participants are organized around a topic and roll a dice to determine what they will work on for a period of 3 minutes at a time. They might roll a 3 and work on investigating factual information on the chosen topic. They might roll a 1 and work on identifying the specific goals, standards, or criteria for the session.

Encouraging rapid work and iteration while asking participants to be flexible are great skills to cultivate. Having a stage for idea incubation in this game is also important. Moments of pause can help ensure the ideas that are put forward are the most suitable. 

The Creativity Dice   #creativity   #problem solving   #thiagi   #issue analysis   Too much linear thinking is hazardous to creative problem solving. To be creative, you should approach the problem (or the opportunity) from different points of view. You should leave a thought hanging in mid-air and move to another. This skipping around prevents premature closure and lets your brain incubate one line of thought while you consciously pursue another.

11. Fishbone Analysis

Organizational or team challenges are rarely simple, and it’s important to remember that one problem can be an indication of something that goes deeper and may require further consideration to be solved.

Fishbone Analysis helps groups to dig deeper and understand the origins of a problem. It’s a great example of a root cause analysis method that is simple for everyone on a team to get their head around. 

Participants in this activity are asked to annotate a diagram of a fish, first adding the problem or issue to be worked on at the head of a fish before then brainstorming the root causes of the problem and adding them as bones on the fish. 

Using abstractions such as a diagram of a fish can really help a team break out of their regular thinking and develop a creative approach.

Fishbone Analysis   #problem solving   ##root cause analysis   #decision making   #online facilitation   A process to help identify and understand the origins of problems, issues or observations.

12. Problem Tree 

Encouraging visual thinking can be an essential part of many strategies. By simply reframing and clarifying problems, a group can move towards developing a problem solving model that works for them. 

In Problem Tree, groups are asked to first brainstorm a list of problems – these can be design problems, team problems or larger business problems – and then organize them into a hierarchy. The hierarchy could be from most important to least important or abstract to practical, though the key thing with problem solving games that involve this aspect is that your group has some way of managing and sorting all the issues that are raised.

Once you have a list of problems that need to be solved and have organized them accordingly, you’re then well-positioned for the next problem solving steps.

Problem tree   #define intentions   #create   #design   #issue analysis   A problem tree is a tool to clarify the hierarchy of problems addressed by the team within a design project; it represents high level problems or related sublevel problems.

13. SWOT Analysis

Chances are you’ve heard of the SWOT Analysis before. This problem-solving method focuses on identifying strengths, weaknesses, opportunities, and threats is a tried and tested method for both individuals and teams.

Start by creating a desired end state or outcome and bare this in mind – any process solving model is made more effective by knowing what you are moving towards. Create a quadrant made up of the four categories of a SWOT analysis and ask participants to generate ideas based on each of those quadrants.

Once you have those ideas assembled in their quadrants, cluster them together based on their affinity with other ideas. These clusters are then used to facilitate group conversations and move things forward. 

SWOT analysis   #gamestorming   #problem solving   #action   #meeting facilitation   The SWOT Analysis is a long-standing technique of looking at what we have, with respect to the desired end state, as well as what we could improve on. It gives us an opportunity to gauge approaching opportunities and dangers, and assess the seriousness of the conditions that affect our future. When we understand those conditions, we can influence what comes next.

14. Agreement-Certainty Matrix

Not every problem-solving approach is right for every challenge, and deciding on the right method for the challenge at hand is a key part of being an effective team.

The Agreement Certainty matrix helps teams align on the nature of the challenges facing them. By sorting problems from simple to chaotic, your team can understand what methods are suitable for each problem and what they can do to ensure effective results. 

If you are already using Liberating Structures techniques as part of your problem-solving strategy, the Agreement-Certainty Matrix can be an invaluable addition to your process. We’ve found it particularly if you are having issues with recurring problems in your organization and want to go deeper in understanding the root cause. 

Agreement-Certainty Matrix   #issue analysis   #liberating structures   #problem solving   You can help individuals or groups avoid the frequent mistake of trying to solve a problem with methods that are not adapted to the nature of their challenge. The combination of two questions makes it possible to easily sort challenges into four categories: simple, complicated, complex , and chaotic .  A problem is simple when it can be solved reliably with practices that are easy to duplicate.  It is complicated when experts are required to devise a sophisticated solution that will yield the desired results predictably.  A problem is complex when there are several valid ways to proceed but outcomes are not predictable in detail.  Chaotic is when the context is too turbulent to identify a path forward.  A loose analogy may be used to describe these differences: simple is like following a recipe, complicated like sending a rocket to the moon, complex like raising a child, and chaotic is like the game “Pin the Tail on the Donkey.”  The Liberating Structures Matching Matrix in Chapter 5 can be used as the first step to clarify the nature of a challenge and avoid the mismatches between problems and solutions that are frequently at the root of chronic, recurring problems.

Organizing and charting a team’s progress can be important in ensuring its success. SQUID (Sequential Question and Insight Diagram) is a great model that allows a team to effectively switch between giving questions and answers and develop the skills they need to stay on track throughout the process. 

Begin with two different colored sticky notes – one for questions and one for answers – and with your central topic (the head of the squid) on the board. Ask the group to first come up with a series of questions connected to their best guess of how to approach the topic. Ask the group to come up with answers to those questions, fix them to the board and connect them with a line. After some discussion, go back to question mode by responding to the generated answers or other points on the board.

It’s rewarding to see a diagram grow throughout the exercise, and a completed SQUID can provide a visual resource for future effort and as an example for other teams.

SQUID   #gamestorming   #project planning   #issue analysis   #problem solving   When exploring an information space, it’s important for a group to know where they are at any given time. By using SQUID, a group charts out the territory as they go and can navigate accordingly. SQUID stands for Sequential Question and Insight Diagram.

16. Speed Boat

To continue with our nautical theme, Speed Boat is a short and sweet activity that can help a team quickly identify what employees, clients or service users might have a problem with and analyze what might be standing in the way of achieving a solution.

Methods that allow for a group to make observations, have insights and obtain those eureka moments quickly are invaluable when trying to solve complex problems.

In Speed Boat, the approach is to first consider what anchors and challenges might be holding an organization (or boat) back. Bonus points if you are able to identify any sharks in the water and develop ideas that can also deal with competitors!   

Speed Boat   #gamestorming   #problem solving   #action   Speedboat is a short and sweet way to identify what your employees or clients don’t like about your product/service or what’s standing in the way of a desired goal.

17. The Journalistic Six

Some of the most effective ways of solving problems is by encouraging teams to be more inclusive and diverse in their thinking.

Based on the six key questions journalism students are taught to answer in articles and news stories, The Journalistic Six helps create teams to see the whole picture. By using who, what, when, where, why, and how to facilitate the conversation and encourage creative thinking, your team can make sure that the problem identification and problem analysis stages of the are covered exhaustively and thoughtfully. Reporter’s notebook and dictaphone optional.

The Journalistic Six – Who What When Where Why How   #idea generation   #issue analysis   #problem solving   #online   #creative thinking   #remote-friendly   A questioning method for generating, explaining, investigating ideas.

18. LEGO Challenge

Now for an activity that is a little out of the (toy) box. LEGO Serious Play is a facilitation methodology that can be used to improve creative thinking and problem-solving skills. 

The LEGO Challenge includes giving each member of the team an assignment that is hidden from the rest of the group while they create a structure without speaking.

What the LEGO challenge brings to the table is a fun working example of working with stakeholders who might not be on the same page to solve problems. Also, it’s LEGO! Who doesn’t love LEGO! 

LEGO Challenge   #hyperisland   #team   A team-building activity in which groups must work together to build a structure out of LEGO, but each individual has a secret “assignment” which makes the collaborative process more challenging. It emphasizes group communication, leadership dynamics, conflict, cooperation, patience and problem solving strategy.

19. What, So What, Now What?

If not carefully managed, the problem identification and problem analysis stages of the problem-solving process can actually create more problems and misunderstandings.

The What, So What, Now What? problem-solving activity is designed to help collect insights and move forward while also eliminating the possibility of disagreement when it comes to identifying, clarifying, and analyzing organizational or work problems. 

Facilitation is all about bringing groups together so that might work on a shared goal and the best problem-solving strategies ensure that teams are aligned in purpose, if not initially in opinion or insight.

Throughout the three steps of this game, you give everyone on a team to reflect on a problem by asking what happened, why it is important, and what actions should then be taken. 

This can be a great activity for bringing our individual perceptions about a problem or challenge and contextualizing it in a larger group setting. This is one of the most important problem-solving skills you can bring to your organization.

W³ – What, So What, Now What?   #issue analysis   #innovation   #liberating structures   You can help groups reflect on a shared experience in a way that builds understanding and spurs coordinated action while avoiding unproductive conflict. It is possible for every voice to be heard while simultaneously sifting for insights and shaping new direction. Progressing in stages makes this practical—from collecting facts about What Happened to making sense of these facts with So What and finally to what actions logically follow with Now What . The shared progression eliminates most of the misunderstandings that otherwise fuel disagreements about what to do. Voila!

20. Journalists  

Problem analysis can be one of the most important and decisive stages of all problem-solving tools. Sometimes, a team can become bogged down in the details and are unable to move forward.

Journalists is an activity that can avoid a group from getting stuck in the problem identification or problem analysis stages of the process.

In Journalists, the group is invited to draft the front page of a fictional newspaper and figure out what stories deserve to be on the cover and what headlines those stories will have. By reframing how your problems and challenges are approached, you can help a team move productively through the process and be better prepared for the steps to follow.

Journalists   #vision   #big picture   #issue analysis   #remote-friendly   This is an exercise to use when the group gets stuck in details and struggles to see the big picture. Also good for defining a vision.

Problem-solving techniques for developing solutions 

The success of any problem-solving process can be measured by the solutions it produces. After you’ve defined the issue, explored existing ideas, and ideated, it’s time to narrow down to the correct solution.

Use these problem-solving techniques when you want to help your team find consensus, compare possible solutions, and move towards taking action on a particular problem.

  • Improved Solutions
  • Four-Step Sketch
  • 15% Solutions
  • How-Now-Wow matrix
  • Impact Effort Matrix

21. Mindspin  

Brainstorming is part of the bread and butter of the problem-solving process and all problem-solving strategies benefit from getting ideas out and challenging a team to generate solutions quickly. 

With Mindspin, participants are encouraged not only to generate ideas but to do so under time constraints and by slamming down cards and passing them on. By doing multiple rounds, your team can begin with a free generation of possible solutions before moving on to developing those solutions and encouraging further ideation. 

This is one of our favorite problem-solving activities and can be great for keeping the energy up throughout the workshop. Remember the importance of helping people become engaged in the process – energizing problem-solving techniques like Mindspin can help ensure your team stays engaged and happy, even when the problems they’re coming together to solve are complex. 

MindSpin   #teampedia   #idea generation   #problem solving   #action   A fast and loud method to enhance brainstorming within a team. Since this activity has more than round ideas that are repetitive can be ruled out leaving more creative and innovative answers to the challenge.

22. Improved Solutions

After a team has successfully identified a problem and come up with a few solutions, it can be tempting to call the work of the problem-solving process complete. That said, the first solution is not necessarily the best, and by including a further review and reflection activity into your problem-solving model, you can ensure your group reaches the best possible result. 

One of a number of problem-solving games from Thiagi Group, Improved Solutions helps you go the extra mile and develop suggested solutions with close consideration and peer review. By supporting the discussion of several problems at once and by shifting team roles throughout, this problem-solving technique is a dynamic way of finding the best solution. 

Improved Solutions   #creativity   #thiagi   #problem solving   #action   #team   You can improve any solution by objectively reviewing its strengths and weaknesses and making suitable adjustments. In this creativity framegame, you improve the solutions to several problems. To maintain objective detachment, you deal with a different problem during each of six rounds and assume different roles (problem owner, consultant, basher, booster, enhancer, and evaluator) during each round. At the conclusion of the activity, each player ends up with two solutions to her problem.

23. Four Step Sketch

Creative thinking and visual ideation does not need to be confined to the opening stages of your problem-solving strategies. Exercises that include sketching and prototyping on paper can be effective at the solution finding and development stage of the process, and can be great for keeping a team engaged. 

By going from simple notes to a crazy 8s round that involves rapidly sketching 8 variations on their ideas before then producing a final solution sketch, the group is able to iterate quickly and visually. Problem-solving techniques like Four-Step Sketch are great if you have a group of different thinkers and want to change things up from a more textual or discussion-based approach.

Four-Step Sketch   #design sprint   #innovation   #idea generation   #remote-friendly   The four-step sketch is an exercise that helps people to create well-formed concepts through a structured process that includes: Review key information Start design work on paper,  Consider multiple variations , Create a detailed solution . This exercise is preceded by a set of other activities allowing the group to clarify the challenge they want to solve. See how the Four Step Sketch exercise fits into a Design Sprint

24. 15% Solutions

Some problems are simpler than others and with the right problem-solving activities, you can empower people to take immediate actions that can help create organizational change. 

Part of the liberating structures toolkit, 15% solutions is a problem-solving technique that focuses on finding and implementing solutions quickly. A process of iterating and making small changes quickly can help generate momentum and an appetite for solving complex problems.

Problem-solving strategies can live and die on whether people are onboard. Getting some quick wins is a great way of getting people behind the process.   

It can be extremely empowering for a team to realize that problem-solving techniques can be deployed quickly and easily and delineate between things they can positively impact and those things they cannot change. 

15% Solutions   #action   #liberating structures   #remote-friendly   You can reveal the actions, however small, that everyone can do immediately. At a minimum, these will create momentum, and that may make a BIG difference.  15% Solutions show that there is no reason to wait around, feel powerless, or fearful. They help people pick it up a level. They get individuals and the group to focus on what is within their discretion instead of what they cannot change.  With a very simple question, you can flip the conversation to what can be done and find solutions to big problems that are often distributed widely in places not known in advance. Shifting a few grains of sand may trigger a landslide and change the whole landscape.

25. How-Now-Wow Matrix

The problem-solving process is often creative, as complex problems usually require a change of thinking and creative response in order to find the best solutions. While it’s common for the first stages to encourage creative thinking, groups can often gravitate to familiar solutions when it comes to the end of the process. 

When selecting solutions, you don’t want to lose your creative energy! The How-Now-Wow Matrix from Gamestorming is a great problem-solving activity that enables a group to stay creative and think out of the box when it comes to selecting the right solution for a given problem.

Problem-solving techniques that encourage creative thinking and the ideation and selection of new solutions can be the most effective in organisational change. Give the How-Now-Wow Matrix a go, and not just for how pleasant it is to say out loud. 

How-Now-Wow Matrix   #gamestorming   #idea generation   #remote-friendly   When people want to develop new ideas, they most often think out of the box in the brainstorming or divergent phase. However, when it comes to convergence, people often end up picking ideas that are most familiar to them. This is called a ‘creative paradox’ or a ‘creadox’. The How-Now-Wow matrix is an idea selection tool that breaks the creadox by forcing people to weigh each idea on 2 parameters.

26. Impact and Effort Matrix

All problem-solving techniques hope to not only find solutions to a given problem or challenge but to find the best solution. When it comes to finding a solution, groups are invited to put on their decision-making hats and really think about how a proposed idea would work in practice. 

The Impact and Effort Matrix is one of the problem-solving techniques that fall into this camp, empowering participants to first generate ideas and then categorize them into a 2×2 matrix based on impact and effort.

Activities that invite critical thinking while remaining simple are invaluable. Use the Impact and Effort Matrix to move from ideation and towards evaluating potential solutions before then committing to them. 

Impact and Effort Matrix   #gamestorming   #decision making   #action   #remote-friendly   In this decision-making exercise, possible actions are mapped based on two factors: effort required to implement and potential impact. Categorizing ideas along these lines is a useful technique in decision making, as it obliges contributors to balance and evaluate suggested actions before committing to them.

27. Dotmocracy

If you’ve followed each of the problem-solving steps with your group successfully, you should move towards the end of your process with heaps of possible solutions developed with a specific problem in mind. But how do you help a group go from ideation to putting a solution into action? 

Dotmocracy – or Dot Voting -is a tried and tested method of helping a team in the problem-solving process make decisions and put actions in place with a degree of oversight and consensus. 

One of the problem-solving techniques that should be in every facilitator’s toolbox, Dot Voting is fast and effective and can help identify the most popular and best solutions and help bring a group to a decision effectively. 

Dotmocracy   #action   #decision making   #group prioritization   #hyperisland   #remote-friendly   Dotmocracy is a simple method for group prioritization or decision-making. It is not an activity on its own, but a method to use in processes where prioritization or decision-making is the aim. The method supports a group to quickly see which options are most popular or relevant. The options or ideas are written on post-its and stuck up on a wall for the whole group to see. Each person votes for the options they think are the strongest, and that information is used to inform a decision.

All facilitators know that warm-ups and icebreakers are useful for any workshop or group process. Problem-solving workshops are no different.

Use these problem-solving techniques to warm up a group and prepare them for the rest of the process. Activating your group by tapping into some of the top problem-solving skills can be one of the best ways to see great outcomes from your session.

  • Check-in/Check-out
  • Doodling Together
  • Show and Tell
  • Constellations
  • Draw a Tree

28. Check-in / Check-out

Solid processes are planned from beginning to end, and the best facilitators know that setting the tone and establishing a safe, open environment can be integral to a successful problem-solving process.

Check-in / Check-out is a great way to begin and/or bookend a problem-solving workshop. Checking in to a session emphasizes that everyone will be seen, heard, and expected to contribute. 

If you are running a series of meetings, setting a consistent pattern of checking in and checking out can really help your team get into a groove. We recommend this opening-closing activity for small to medium-sized groups though it can work with large groups if they’re disciplined!

Check-in / Check-out   #team   #opening   #closing   #hyperisland   #remote-friendly   Either checking-in or checking-out is a simple way for a team to open or close a process, symbolically and in a collaborative way. Checking-in/out invites each member in a group to be present, seen and heard, and to express a reflection or a feeling. Checking-in emphasizes presence, focus and group commitment; checking-out emphasizes reflection and symbolic closure.

29. Doodling Together  

Thinking creatively and not being afraid to make suggestions are important problem-solving skills for any group or team, and warming up by encouraging these behaviors is a great way to start. 

Doodling Together is one of our favorite creative ice breaker games – it’s quick, effective, and fun and can make all following problem-solving steps easier by encouraging a group to collaborate visually. By passing cards and adding additional items as they go, the workshop group gets into a groove of co-creation and idea development that is crucial to finding solutions to problems. 

Doodling Together   #collaboration   #creativity   #teamwork   #fun   #team   #visual methods   #energiser   #icebreaker   #remote-friendly   Create wild, weird and often funny postcards together & establish a group’s creative confidence.

30. Show and Tell

You might remember some version of Show and Tell from being a kid in school and it’s a great problem-solving activity to kick off a session.

Asking participants to prepare a little something before a workshop by bringing an object for show and tell can help them warm up before the session has even begun! Games that include a physical object can also help encourage early engagement before moving onto more big-picture thinking.

By asking your participants to tell stories about why they chose to bring a particular item to the group, you can help teams see things from new perspectives and see both differences and similarities in the way they approach a topic. Great groundwork for approaching a problem-solving process as a team! 

Show and Tell   #gamestorming   #action   #opening   #meeting facilitation   Show and Tell taps into the power of metaphors to reveal players’ underlying assumptions and associations around a topic The aim of the game is to get a deeper understanding of stakeholders’ perspectives on anything—a new project, an organizational restructuring, a shift in the company’s vision or team dynamic.

31. Constellations

Who doesn’t love stars? Constellations is a great warm-up activity for any workshop as it gets people up off their feet, energized, and ready to engage in new ways with established topics. It’s also great for showing existing beliefs, biases, and patterns that can come into play as part of your session.

Using warm-up games that help build trust and connection while also allowing for non-verbal responses can be great for easing people into the problem-solving process and encouraging engagement from everyone in the group. Constellations is great in large spaces that allow for movement and is definitely a practical exercise to allow the group to see patterns that are otherwise invisible. 

Constellations   #trust   #connection   #opening   #coaching   #patterns   #system   Individuals express their response to a statement or idea by standing closer or further from a central object. Used with teams to reveal system, hidden patterns, perspectives.

32. Draw a Tree

Problem-solving games that help raise group awareness through a central, unifying metaphor can be effective ways to warm-up a group in any problem-solving model.

Draw a Tree is a simple warm-up activity you can use in any group and which can provide a quick jolt of energy. Start by asking your participants to draw a tree in just 45 seconds – they can choose whether it will be abstract or realistic. 

Once the timer is up, ask the group how many people included the roots of the tree and use this as a means to discuss how we can ignore important parts of any system simply because they are not visible.

All problem-solving strategies are made more effective by thinking of problems critically and by exposing things that may not normally come to light. Warm-up games like Draw a Tree are great in that they quickly demonstrate some key problem-solving skills in an accessible and effective way.

Draw a Tree   #thiagi   #opening   #perspectives   #remote-friendly   With this game you can raise awarness about being more mindful, and aware of the environment we live in.

Each step of the problem-solving workshop benefits from an intelligent deployment of activities, games, and techniques. Bringing your session to an effective close helps ensure that solutions are followed through on and that you also celebrate what has been achieved.

Here are some problem-solving activities you can use to effectively close a workshop or meeting and ensure the great work you’ve done can continue afterward.

  • One Breath Feedback
  • Who What When Matrix
  • Response Cards

How do I conclude a problem-solving process?

All good things must come to an end. With the bulk of the work done, it can be tempting to conclude your workshop swiftly and without a moment to debrief and align. This can be problematic in that it doesn’t allow your team to fully process the results or reflect on the process.

At the end of an effective session, your team will have gone through a process that, while productive, can be exhausting. It’s important to give your group a moment to take a breath, ensure that they are clear on future actions, and provide short feedback before leaving the space. 

The primary purpose of any problem-solving method is to generate solutions and then implement them. Be sure to take the opportunity to ensure everyone is aligned and ready to effectively implement the solutions you produced in the workshop.

Remember that every process can be improved and by giving a short moment to collect feedback in the session, you can further refine your problem-solving methods and see further success in the future too.

33. One Breath Feedback

Maintaining attention and focus during the closing stages of a problem-solving workshop can be tricky and so being concise when giving feedback can be important. It’s easy to incur “death by feedback” should some team members go on for too long sharing their perspectives in a quick feedback round. 

One Breath Feedback is a great closing activity for workshops. You give everyone an opportunity to provide feedback on what they’ve done but only in the space of a single breath. This keeps feedback short and to the point and means that everyone is encouraged to provide the most important piece of feedback to them. 

One breath feedback   #closing   #feedback   #action   This is a feedback round in just one breath that excels in maintaining attention: each participants is able to speak during just one breath … for most people that’s around 20 to 25 seconds … unless of course you’ve been a deep sea diver in which case you’ll be able to do it for longer.

34. Who What When Matrix 

Matrices feature as part of many effective problem-solving strategies and with good reason. They are easily recognizable, simple to use, and generate results.

The Who What When Matrix is a great tool to use when closing your problem-solving session by attributing a who, what and when to the actions and solutions you have decided upon. The resulting matrix is a simple, easy-to-follow way of ensuring your team can move forward. 

Great solutions can’t be enacted without action and ownership. Your problem-solving process should include a stage for allocating tasks to individuals or teams and creating a realistic timeframe for those solutions to be implemented or checked out. Use this method to keep the solution implementation process clear and simple for all involved. 

Who/What/When Matrix   #gamestorming   #action   #project planning   With Who/What/When matrix, you can connect people with clear actions they have defined and have committed to.

35. Response cards

Group discussion can comprise the bulk of most problem-solving activities and by the end of the process, you might find that your team is talked out! 

Providing a means for your team to give feedback with short written notes can ensure everyone is head and can contribute without the need to stand up and talk. Depending on the needs of the group, giving an alternative can help ensure everyone can contribute to your problem-solving model in the way that makes the most sense for them.

Response Cards is a great way to close a workshop if you are looking for a gentle warm-down and want to get some swift discussion around some of the feedback that is raised. 

Response Cards   #debriefing   #closing   #structured sharing   #questions and answers   #thiagi   #action   It can be hard to involve everyone during a closing of a session. Some might stay in the background or get unheard because of louder participants. However, with the use of Response Cards, everyone will be involved in providing feedback or clarify questions at the end of a session.

Save time and effort discovering the right solutions

A structured problem solving process is a surefire way of solving tough problems, discovering creative solutions and driving organizational change. But how can you design for successful outcomes?

With SessionLab, it’s easy to design engaging workshops that deliver results. Drag, drop and reorder blocks  to build your agenda. When you make changes or update your agenda, your session  timing   adjusts automatically , saving you time on manual adjustments.

Collaborating with stakeholders or clients? Share your agenda with a single click and collaborate in real-time. No more sending documents back and forth over email.

Explore  how to use SessionLab  to design effective problem solving workshops or  watch this five minute video  to see the planner in action!

problem solving example with solution

Over to you

The problem-solving process can often be as complicated and multifaceted as the problems they are set-up to solve. With the right problem-solving techniques and a mix of creative exercises designed to guide discussion and generate purposeful ideas, we hope we’ve given you the tools to find the best solutions as simply and easily as possible.

Is there a problem-solving technique that you are missing here? Do you have a favorite activity or method you use when facilitating? Let us know in the comments below, we’d love to hear from you! 

' src=

thank you very much for these excellent techniques

' src=

Certainly wonderful article, very detailed. Shared!

Leave a Comment Cancel reply

Your email address will not be published. Required fields are marked *

cycle of workshop planning steps

Going from a mere idea to a workshop that delivers results for your clients can feel like a daunting task. In this piece, we will shine a light on all the work behind the scenes and help you learn how to plan a workshop from start to finish. On a good day, facilitation can feel like effortless magic, but that is mostly the result of backstage work, foresight, and a lot of careful planning. Read on to learn a step-by-step approach to breaking the process of planning a workshop into small, manageable chunks.  The flow starts with the first meeting with a client to define the purposes of a workshop.…

problem solving example with solution

How does learning work? A clever 9-year-old once told me: “I know I am learning something new when I am surprised.” The science of adult learning tells us that, in order to learn new skills (which, unsurprisingly, is harder for adults to do than kids) grown-ups need to first get into a specific headspace.  In a business, this approach is often employed in a training session where employees learn new skills or work on professional development. But how do you ensure your training is effective? In this guide, we'll explore how to create an effective training session plan and run engaging training sessions. As team leader, project manager, or consultant,…

problem solving example with solution

Effective online tools are a necessity for smooth and engaging virtual workshops and meetings. But how do you choose the right ones? Do you sometimes feel that the good old pen and paper or MS Office toolkit and email leaves you struggling to stay on top of managing and delivering your workshop? Fortunately, there are plenty of online tools to make your life easier when you need to facilitate a meeting and lead workshops. In this post, we’ll share our favorite online tools you can use to make your job as a facilitator easier. In fact, there are plenty of free online workshop tools and meeting facilitation software you can…

Design your next workshop with SessionLab

Join the 150,000 facilitators using SessionLab

Sign up for free

Learn more

How it works

Transform your enterprise with the scalable mindsets, skills, & behavior change that drive performance.

Explore how BetterUp connects to your core business systems.

We pair AI with the latest in human-centered coaching to drive powerful, lasting learning and behavior change.

Build leaders that accelerate team performance and engagement.

Unlock performance potential at scale with AI-powered curated growth journeys.

Build resilience, well-being and agility to drive performance across your entire enterprise.

Transform your business, starting with your sales leaders.

Unlock business impact from the top with executive coaching.

Foster a culture of inclusion and belonging.

Accelerate the performance and potential of your agencies and employees.

See how innovative organizations use BetterUp to build a thriving workforce.

Discover how BetterUp measurably impacts key business outcomes for organizations like yours.

A demo is the first step to transforming your business. Meet with us to develop a plan for attaining your goals.

Request a demo

  • What is coaching?

Learn how 1:1 coaching works, who its for, and if it's right for you.

Accelerate your personal and professional growth with the expert guidance of a BetterUp Coach.

Types of Coaching

Navigate career transitions, accelerate your professional growth, and achieve your career goals with expert coaching.

Enhance your communication skills for better personal and professional relationships, with tailored coaching that focuses on your needs.

Find balance, resilience, and well-being in all areas of your life with holistic coaching designed to empower you.

Discover your perfect match : Take our 5-minute assessment and let us pair you with one of our top Coaches tailored just for you.

Find your Coach

Research, expert insights, and resources to develop courageous leaders within your organization.

Best practices, research, and tools to fuel individual and business growth.

View on-demand BetterUp events and learn about upcoming live discussions.

The latest insights and ideas for building a high-performing workplace.

  • BetterUp Briefing

The online magazine that helps you understand tomorrow's workforce trends, today.

Innovative research featured in peer-reviewed journals, press, and more.

Founded in 2022 to deepen the understanding of the intersection of well-being, purpose, and performance

We're on a mission to help everyone live with clarity, purpose, and passion.

Join us and create impactful change.

Read the buzz about BetterUp.

Meet the leadership that's passionate about empowering your workforce.

For Business

For Individuals

10 Problem-solving strategies to turn challenges on their head

Find my Coach

Jump to section

What is an example of problem-solving?

What are the 5 steps to problem-solving, 10 effective problem-solving strategies, what skills do efficient problem solvers have, how to improve your problem-solving skills.

Problems come in all shapes and sizes — from workplace conflict to budget cuts.

Creative problem-solving is one of the most in-demand skills in all roles and industries. It can boost an organization’s human capital and give it a competitive edge. 

Problem-solving strategies are ways of approaching problems that can help you look beyond the obvious answers and find the best solution to your problem . 

Let’s take a look at a five-step problem-solving process and how to combine it with proven problem-solving strategies. This will give you the tools and skills to solve even your most complex problems.

Good problem-solving is an essential part of the decision-making process . To see what a problem-solving process might look like in real life, let’s take a common problem for SaaS brands — decreasing customer churn rates.

To solve this problem, the company must first identify it. In this case, the problem is that the churn rate is too high. 

Next, they need to identify the root causes of the problem. This could be anything from their customer service experience to their email marketing campaigns. If there are several problems, they will need a separate problem-solving process for each one. 

Let’s say the problem is with email marketing — they’re not nurturing existing customers. Now that they’ve identified the problem, they can start using problem-solving strategies to look for solutions. 

This might look like coming up with special offers, discounts, or bonuses for existing customers. They need to find ways to remind them to use their products and services while providing added value. This will encourage customers to keep paying their monthly subscriptions.

They might also want to add incentives, such as access to a premium service at no extra cost after 12 months of membership. They could publish blog posts that help their customers solve common problems and share them as an email newsletter.

The company should set targets and a time frame in which to achieve them. This will allow leaders to measure progress and identify which actions yield the best results.

team-meeting-problem-solving-strategies

Perhaps you’ve got a problem you need to tackle. Or maybe you want to be prepared the next time one arises. Either way, it’s a good idea to get familiar with the five steps of problem-solving. 

Use this step-by-step problem-solving method with the strategies in the following section to find possible solutions to your problem.

1. Identify the problem

The first step is to know which problem you need to solve. Then, you need to find the root cause of the problem. 

The best course of action is to gather as much data as possible, speak to the people involved, and separate facts from opinions. 

Once this is done, formulate a statement that describes the problem. Use rational persuasion to make sure your team agrees .

2. Break the problem down 

Identifying the problem allows you to see which steps need to be taken to solve it. 

First, break the problem down into achievable blocks. Then, use strategic planning to set a time frame in which to solve the problem and establish a timeline for the completion of each stage.

3. Generate potential solutions

At this stage, the aim isn’t to evaluate possible solutions but to generate as many ideas as possible. 

Encourage your team to use creative thinking and be patient — the best solution may not be the first or most obvious one.

Use one or more of the different strategies in the following section to help come up with solutions — the more creative, the better.

4. Evaluate the possible solutions

Once you’ve generated potential solutions, narrow them down to a shortlist. Then, evaluate the options on your shortlist. 

There are usually many factors to consider. So when evaluating a solution, ask yourself the following questions:

  • Will my team be on board with the proposition?
  • Does the solution align with organizational goals ?
  • Is the solution likely to achieve the desired outcomes?
  • Is the solution realistic and possible with current resources and constraints?
  • Will the solution solve the problem without causing additional unintended problems?

woman-helping-her-colleague-problem-solving-strategies

5. Implement and monitor the solutions

Once you’ve identified your solution and got buy-in from your team, it’s time to implement it. 

But the work doesn’t stop there. You need to monitor your solution to see whether it actually solves your problem. 

Request regular feedback from the team members involved and have a monitoring and evaluation plan in place to measure progress.

If the solution doesn’t achieve your desired results, start this step-by-step process again.

There are many different ways to approach problem-solving. Each is suitable for different types of problems. 

The most appropriate problem-solving techniques will depend on your specific problem. You may need to experiment with several strategies before you find a workable solution.

Here are 10 effective problem-solving strategies for you to try:

  • Use a solution that worked before
  • Brainstorming
  • Work backward
  • Use the Kipling method
  • Draw the problem
  • Use trial and error
  • Sleep on it
  • Get advice from your peers
  • Use the Pareto principle
  • Add successful solutions to your toolkit

Let’s break each of these down.

1. Use a solution that worked before

It might seem obvious, but if you’ve faced similar problems in the past, look back to what worked then. See if any of the solutions could apply to your current situation and, if so, replicate them.

2. Brainstorming

The more people you enlist to help solve the problem, the more potential solutions you can come up with.

Use different brainstorming techniques to workshop potential solutions with your team. They’ll likely bring something you haven’t thought of to the table.

3. Work backward

Working backward is a way to reverse engineer your problem. Imagine your problem has been solved, and make that the starting point.

Then, retrace your steps back to where you are now. This can help you see which course of action may be most effective.

4. Use the Kipling method

This is a method that poses six questions based on Rudyard Kipling’s poem, “ I Keep Six Honest Serving Men .” 

  • What is the problem?
  • Why is the problem important?
  • When did the problem arise, and when does it need to be solved?
  • How did the problem happen?
  • Where is the problem occurring?
  • Who does the problem affect?

Answering these questions can help you identify possible solutions.

5. Draw the problem

Sometimes it can be difficult to visualize all the components and moving parts of a problem and its solution. Drawing a diagram can help.

This technique is particularly helpful for solving process-related problems. For example, a product development team might want to decrease the time they take to fix bugs and create new iterations. Drawing the processes involved can help you see where improvements can be made.

woman-drawing-mind-map-problem-solving-strategies

6. Use trial-and-error

A trial-and-error approach can be useful when you have several possible solutions and want to test them to see which one works best.

7. Sleep on it

Finding the best solution to a problem is a process. Remember to take breaks and get enough rest . Sometimes, a walk around the block can bring inspiration, but you should sleep on it if possible.

A good night’s sleep helps us find creative solutions to problems. This is because when you sleep, your brain sorts through the day’s events and stores them as memories. This enables you to process your ideas at a subconscious level. 

If possible, give yourself a few days to develop and analyze possible solutions. You may find you have greater clarity after sleeping on it. Your mind will also be fresh, so you’ll be able to make better decisions.

8. Get advice from your peers

Getting input from a group of people can help you find solutions you may not have thought of on your own. 

For solo entrepreneurs or freelancers, this might look like hiring a coach or mentor or joining a mastermind group. 

For leaders , it might be consulting other members of the leadership team or working with a business coach .

It’s important to recognize you might not have all the skills, experience, or knowledge necessary to find a solution alone. 

9. Use the Pareto principle

The Pareto principle — also known as the 80/20 rule — can help you identify possible root causes and potential solutions for your problems.

Although it’s not a mathematical law, it’s a principle found throughout many aspects of business and life. For example, 20% of the sales reps in a company might close 80% of the sales. 

You may be able to narrow down the causes of your problem by applying the Pareto principle. This can also help you identify the most appropriate solutions.

10. Add successful solutions to your toolkit

Every situation is different, and the same solutions might not always work. But by keeping a record of successful problem-solving strategies, you can build up a solutions toolkit. 

These solutions may be applicable to future problems. Even if not, they may save you some of the time and work needed to come up with a new solution.

three-colleagues-looking-at-computer-problem-solving-strategies

Improving problem-solving skills is essential for professional development — both yours and your team’s. Here are some of the key skills of effective problem solvers:

  • Critical thinking and analytical skills
  • Communication skills , including active listening
  • Decision-making
  • Planning and prioritization
  • Emotional intelligence , including empathy and emotional regulation
  • Time management
  • Data analysis
  • Research skills
  • Project management

And they see problems as opportunities. Everyone is born with problem-solving skills. But accessing these abilities depends on how we view problems. Effective problem-solvers see problems as opportunities to learn and improve.

Ready to work on your problem-solving abilities? Get started with these seven tips.

1. Build your problem-solving skills

One of the best ways to improve your problem-solving skills is to learn from experts. Consider enrolling in organizational training , shadowing a mentor , or working with a coach .

2. Practice

Practice using your new problem-solving skills by applying them to smaller problems you might encounter in your daily life. 

Alternatively, imagine problematic scenarios that might arise at work and use problem-solving strategies to find hypothetical solutions.

3. Don’t try to find a solution right away

Often, the first solution you think of to solve a problem isn’t the most appropriate or effective.

Instead of thinking on the spot, give yourself time and use one or more of the problem-solving strategies above to activate your creative thinking. 

two-colleagues-talking-at-corporate-event-problem-solving-strategies

4. Ask for feedback

Receiving feedback is always important for learning and growth. Your perception of your problem-solving skills may be different from that of your colleagues. They can provide insights that help you improve. 

5. Learn new approaches and methodologies

There are entire books written about problem-solving methodologies if you want to take a deep dive into the subject. 

We recommend starting with “ Fixed — How to Perfect the Fine Art of Problem Solving ” by Amy E. Herman. 

6. Experiment

Tried-and-tested problem-solving techniques can be useful. However, they don’t teach you how to innovate and develop your own problem-solving approaches. 

Sometimes, an unconventional approach can lead to the development of a brilliant new idea or strategy. So don’t be afraid to suggest your most “out there” ideas.

7. Analyze the success of your competitors

Do you have competitors who have already solved the problem you’re facing? Look at what they did, and work backward to solve your own problem. 

For example, Netflix started in the 1990s as a DVD mail-rental company. Its main competitor at the time was Blockbuster. 

But when streaming became the norm in the early 2000s, both companies faced a crisis. Netflix innovated, unveiling its streaming service in 2007. 

If Blockbuster had followed Netflix’s example, it might have survived. Instead, it declared bankruptcy in 2010.

Use problem-solving strategies to uplevel your business

When facing a problem, it’s worth taking the time to find the right solution. 

Otherwise, we risk either running away from our problems or headlong into solutions. When we do this, we might miss out on other, better options.

Use the problem-solving strategies outlined above to find innovative solutions to your business’ most perplexing problems.

If you’re ready to take problem-solving to the next level, request a demo with BetterUp . Our expert coaches specialize in helping teams develop and implement strategies that work.

Boost your productivity

Maximize your time and productivity with strategies from our expert coaches.

Elizabeth Perry, ACC

Elizabeth Perry is a Coach Community Manager at BetterUp. She uses strategic engagement strategies to cultivate a learning community across a global network of Coaches through in-person and virtual experiences, technology-enabled platforms, and strategic coaching industry partnerships. With over 3 years of coaching experience and a certification in transformative leadership and life coaching from Sofia University, Elizabeth leverages transpersonal psychology expertise to help coaches and clients gain awareness of their behavioral and thought patterns, discover their purpose and passions, and elevate their potential. She is a lifelong student of psychology, personal growth, and human potential as well as an ICF-certified ACC transpersonal life and leadership Coach.

8 creative solutions to your most challenging problems

5 problem-solving questions to prepare you for your next interview, what are metacognitive skills examples in everyday life, what is lateral thinking 7 techniques to encourage creative ideas, 31 examples of problem solving performance review phrases, learn what process mapping is and how to create one (+ examples), leadership activities that encourage employee engagement, can dreams help you solve problems 6 ways to try, how much do distractions cost 8 effects of lack of focus, similar articles, the pareto principle: how the 80/20 rule can help you do more with less, thinking outside the box: 8 ways to become a creative problem solver, experimentation brings innovation: create an experimental workplace, effective problem statements have these 5 components, contingency planning: 4 steps to prepare for the unexpected, stay connected with betterup, get our newsletter, event invites, plus product insights and research..

3100 E 5th Street, Suite 350 Austin, TX 78702

  • Platform Overview
  • Integrations
  • Powered by AI
  • BetterUp Lead
  • BetterUp Manage™
  • BetterUp Care™
  • Sales Performance
  • Diversity & Inclusion
  • Case Studies
  • Why BetterUp?
  • About Coaching
  • Find your Coach
  • Career Coaching
  • Communication Coaching
  • Life Coaching
  • News and Press
  • Leadership Team
  • Become a BetterUp Coach
  • BetterUp Labs
  • Center for Purpose & Performance
  • Leadership Training
  • Business Coaching
  • Contact Support
  • Contact Sales
  • Privacy Policy
  • Acceptable Use Policy
  • Trust & Security
  • Cookie Preferences
  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Best Family Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Guided Meditations
  • Verywell Mind Insights
  • 2023 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

Problem-Solving Strategies and Obstacles

Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

problem solving example with solution

Sean is a fact-checker and researcher with experience in sociology, field research, and data analytics.

problem solving example with solution

JGI / Jamie Grill / Getty Images

  • Application
  • Improvement

From deciding what to eat for dinner to considering whether it's the right time to buy a house, problem-solving is a large part of our daily lives. Learn some of the problem-solving strategies that exist and how to use them in real life, along with ways to overcome obstacles that are making it harder to resolve the issues you face.

What Is Problem-Solving?

In cognitive psychology , the term 'problem-solving' refers to the mental process that people go through to discover, analyze, and solve problems.

A problem exists when there is a goal that we want to achieve but the process by which we will achieve it is not obvious to us. Put another way, there is something that we want to occur in our life, yet we are not immediately certain how to make it happen.

Maybe you want a better relationship with your spouse or another family member but you're not sure how to improve it. Or you want to start a business but are unsure what steps to take. Problem-solving helps you figure out how to achieve these desires.

The problem-solving process involves:

  • Discovery of the problem
  • Deciding to tackle the issue
  • Seeking to understand the problem more fully
  • Researching available options or solutions
  • Taking action to resolve the issue

Before problem-solving can occur, it is important to first understand the exact nature of the problem itself. If your understanding of the issue is faulty, your attempts to resolve it will also be incorrect or flawed.

Problem-Solving Mental Processes

Several mental processes are at work during problem-solving. Among them are:

  • Perceptually recognizing the problem
  • Representing the problem in memory
  • Considering relevant information that applies to the problem
  • Identifying different aspects of the problem
  • Labeling and describing the problem

Problem-Solving Strategies

There are many ways to go about solving a problem. Some of these strategies might be used on their own, or you may decide to employ multiple approaches when working to figure out and fix a problem.

An algorithm is a step-by-step procedure that, by following certain "rules" produces a solution. Algorithms are commonly used in mathematics to solve division or multiplication problems. But they can be used in other fields as well.

In psychology, algorithms can be used to help identify individuals with a greater risk of mental health issues. For instance, research suggests that certain algorithms might help us recognize children with an elevated risk of suicide or self-harm.

One benefit of algorithms is that they guarantee an accurate answer. However, they aren't always the best approach to problem-solving, in part because detecting patterns can be incredibly time-consuming.

There are also concerns when machine learning is involved—also known as artificial intelligence (AI)—such as whether they can accurately predict human behaviors.

Heuristics are shortcut strategies that people can use to solve a problem at hand. These "rule of thumb" approaches allow you to simplify complex problems, reducing the total number of possible solutions to a more manageable set.

If you find yourself sitting in a traffic jam, for example, you may quickly consider other routes, taking one to get moving once again. When shopping for a new car, you might think back to a prior experience when negotiating got you a lower price, then employ the same tactics.

While heuristics may be helpful when facing smaller issues, major decisions shouldn't necessarily be made using a shortcut approach. Heuristics also don't guarantee an effective solution, such as when trying to drive around a traffic jam only to find yourself on an equally crowded route.

Trial and Error

A trial-and-error approach to problem-solving involves trying a number of potential solutions to a particular issue, then ruling out those that do not work. If you're not sure whether to buy a shirt in blue or green, for instance, you may try on each before deciding which one to purchase.

This can be a good strategy to use if you have a limited number of solutions available. But if there are many different choices available, narrowing down the possible options using another problem-solving technique can be helpful before attempting trial and error.

In some cases, the solution to a problem can appear as a sudden insight. You are facing an issue in a relationship or your career when, out of nowhere, the solution appears in your mind and you know exactly what to do.

Insight can occur when the problem in front of you is similar to an issue that you've dealt with in the past. Although, you may not recognize what is occurring since the underlying mental processes that lead to insight often happen outside of conscious awareness .

Research indicates that insight is most likely to occur during times when you are alone—such as when going on a walk by yourself, when you're in the shower, or when lying in bed after waking up.

How to Apply Problem-Solving Strategies in Real Life

If you're facing a problem, you can implement one or more of these strategies to find a potential solution. Here's how to use them in real life:

  • Create a flow chart . If you have time, you can take advantage of the algorithm approach to problem-solving by sitting down and making a flow chart of each potential solution, its consequences, and what happens next.
  • Recall your past experiences . When a problem needs to be solved fairly quickly, heuristics may be a better approach. Think back to when you faced a similar issue, then use your knowledge and experience to choose the best option possible.
  • Start trying potential solutions . If your options are limited, start trying them one by one to see which solution is best for achieving your desired goal. If a particular solution doesn't work, move on to the next.
  • Take some time alone . Since insight is often achieved when you're alone, carve out time to be by yourself for a while. The answer to your problem may come to you, seemingly out of the blue, if you spend some time away from others.

Obstacles to Problem-Solving

Problem-solving is not a flawless process as there are a number of obstacles that can interfere with our ability to solve a problem quickly and efficiently. These obstacles include:

  • Assumptions: When dealing with a problem, people can make assumptions about the constraints and obstacles that prevent certain solutions. Thus, they may not even try some potential options.
  • Functional fixedness : This term refers to the tendency to view problems only in their customary manner. Functional fixedness prevents people from fully seeing all of the different options that might be available to find a solution.
  • Irrelevant or misleading information: When trying to solve a problem, it's important to distinguish between information that is relevant to the issue and irrelevant data that can lead to faulty solutions. The more complex the problem, the easier it is to focus on misleading or irrelevant information.
  • Mental set: A mental set is a tendency to only use solutions that have worked in the past rather than looking for alternative ideas. A mental set can work as a heuristic, making it a useful problem-solving tool. However, mental sets can also lead to inflexibility, making it more difficult to find effective solutions.

How to Improve Your Problem-Solving Skills

In the end, if your goal is to become a better problem-solver, it's helpful to remember that this is a process. Thus, if you want to improve your problem-solving skills, following these steps can help lead you to your solution:

  • Recognize that a problem exists . If you are facing a problem, there are generally signs. For instance, if you have a mental illness , you may experience excessive fear or sadness, mood changes, and changes in sleeping or eating habits. Recognizing these signs can help you realize that an issue exists.
  • Decide to solve the problem . Make a conscious decision to solve the issue at hand. Commit to yourself that you will go through the steps necessary to find a solution.
  • Seek to fully understand the issue . Analyze the problem you face, looking at it from all sides. If your problem is relationship-related, for instance, ask yourself how the other person may be interpreting the issue. You might also consider how your actions might be contributing to the situation.
  • Research potential options . Using the problem-solving strategies mentioned, research potential solutions. Make a list of options, then consider each one individually. What are some pros and cons of taking the available routes? What would you need to do to make them happen?
  • Take action . Select the best solution possible and take action. Action is one of the steps required for change . So, go through the motions needed to resolve the issue.
  • Try another option, if needed . If the solution you chose didn't work, don't give up. Either go through the problem-solving process again or simply try another option.

You can find a way to solve your problems as long as you keep working toward this goal—even if the best solution is simply to let go because no other good solution exists.

Sarathy V. Real world problem-solving .  Front Hum Neurosci . 2018;12:261. doi:10.3389/fnhum.2018.00261

Dunbar K. Problem solving . A Companion to Cognitive Science . 2017. doi:10.1002/9781405164535.ch20

Stewart SL, Celebre A, Hirdes JP, Poss JW. Risk of suicide and self-harm in kids: The development of an algorithm to identify high-risk individuals within the children's mental health system . Child Psychiat Human Develop . 2020;51:913-924. doi:10.1007/s10578-020-00968-9

Rosenbusch H, Soldner F, Evans AM, Zeelenberg M. Supervised machine learning methods in psychology: A practical introduction with annotated R code . Soc Personal Psychol Compass . 2021;15(2):e12579. doi:10.1111/spc3.12579

Mishra S. Decision-making under risk: Integrating perspectives from biology, economics, and psychology . Personal Soc Psychol Rev . 2014;18(3):280-307. doi:10.1177/1088868314530517

Csikszentmihalyi M, Sawyer K. Creative insight: The social dimension of a solitary moment . In: The Systems Model of Creativity . 2015:73-98. doi:10.1007/978-94-017-9085-7_7

Chrysikou EG, Motyka K, Nigro C, Yang SI, Thompson-Schill SL. Functional fixedness in creative thinking tasks depends on stimulus modality .  Psychol Aesthet Creat Arts . 2016;10(4):425‐435. doi:10.1037/aca0000050

Huang F, Tang S, Hu Z. Unconditional perseveration of the short-term mental set in chunk decomposition .  Front Psychol . 2018;9:2568. doi:10.3389/fpsyg.2018.02568

National Alliance on Mental Illness. Warning signs and symptoms .

Mayer RE. Thinking, problem solving, cognition, 2nd ed .

Schooler JW, Ohlsson S, Brooks K. Thoughts beyond words: When language overshadows insight. J Experiment Psychol: General . 1993;122:166-183. doi:10.1037/0096-3445.2.166

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

PND Digest

From Dilemmas to Solutions: Problem-Solving Examples to Learn From

  • By Daria Burnett
  • May 21, 2023

Introduction to Problem-Solving

Life is full of challenges and dilemmas, both big and small.

But if there’s one skill that can help you navigate these, it’s problem-solving .

So, what exactly is problem-solving? And why is it such a crucial skill in daily life?

Understanding the Concept of Problem-Solving

Problem-solving is a mental process that involves identifying, analyzing, and resolving challenges or difficulties.

It’s like a journey that starts with a problem and ends with a solution.

It’s a skill that’s not just used in the field of psychology but in all aspects of life.

🔥 Ready to meet your Twin Flame?

Do you know what your Twin Flame soulmate looks like? 💓

Master Wang is a "psychic artist" and a master of astrology; he's famous in China for being able to draw anyone's soulmate.

Thousands of people have found love thanks to Master Wang's gift.

Don't delay! Yes, I want my Twin Flame soulmate drawing!

Whether you’re trying to decide on the best route to work, dealing with a disagreement with a friend, or figuring out how to fix a leaky faucet, you’re using your problem-solving skills.

When you’re faced with a problem, your brain goes through a series of steps to find a solution.

This process can be conscious or unconscious and can involve logical thinking, creativity, and prior knowledge.

Effective problem-solving can lead to better decisions and outcomes, making it a valuable tool in your personal and professional life.

Related Posts:

  • Your Path to Success: Best Career Options with a Psychology Degree
  • Type C Personality Traits: The Power of Positivity
  • Embrace the Change: Embodying the Democratic Leadership Style

Importance of Problem-Solving in Daily Life

Why is problem-solving so important in daily life? Well, it’s simple.

Problems are a part of life.

They arise in different shapes and sizes, and in different areas of life, including work, relationships, health, and personal growth.

Having strong problem-solving skills can help you navigate these challenges effectively and efficiently.

In your personal life, problem-solving can help you manage stress and conflict, make better decisions, and achieve your goals.

In the workplace, it can help you navigate complex projects, improve processes, and foster innovation.

Problem-solving is also a key skill in many professions and industries, from engineering and science to healthcare and customer service.

Don’t miss out on this unique astrological opportunity!

Are you tired of spinning your wheels and getting nowhere? Well, there’s a reason you can’t get to where you want to go.

Simply put, you’re out of sync: you're out of alignment with your astral configuration.

But: there’s a kind of map that can help you find your alignment. Think of it as your own personal blueprint to success and happiness: a personal blueprint that will help you live your most amazing life . Find out more here !

Moreover, problem-solving can contribute to your overall mental well-being.

It can give you a sense of control and agency, reduce feelings of stress and anxiety, and foster a positive attitude.

It’s also a key component of resilience, the ability to bounce back from adversity.

In conclusion, problem-solving is a fundamental skill in life.

It’s a tool you can use to tackle challenges, make informed decisions, and drive change.

By understanding the concept of problem-solving and recognizing its importance in daily life, you’re taking the first step toward becoming a more effective problem solver.

As we delve deeper into this topic, you’ll discover practical problem-solving examples, learn about different problem-solving techniques, and gain insights on how to improve your own problem-solving skills.

So, stay tuned and continue your exploration of introduction to psychology with us.

Stages of Problem-Solving

The process of problem-solving can be broken down into three key stages: identifying the problem , developing possible solutions , and implementing the best solution .

Each stage requires a different set of skills and strategies.

By understanding these stages, you can enhance your problem-solving abilities and tackle various challenges more effectively.

Identifying the Problem

The first step in problem-solving is recognizing that a problem exists.

This involves defining the issue clearly and understanding its root cause.

You might need to gather information, ask questions, and analyze the situation from multiple perspectives.

It can be helpful to write down the problem and think about how it impacts you or others involved.

For instance, if you’re struggling with time management, the problem might be that you have too many obligations and not enough time.

Or perhaps your methods of organizing your tasks aren’t effective.

It’s important to be as specific as possible when identifying the problem, as this will guide the rest of the problem-solving process.

Developing Possible Solutions

Once you’ve identified the problem, the next step is to brainstorm possible solutions.

This is where creativity comes into play.

Don’t limit yourself; even ideas that seem unrealistic or out of the box can lead to effective solutions.

Consider different strategies and approaches.

You could try using techniques like mind mapping, listing pros and cons, or consulting with others for fresh perspectives.

Remember, the goal is to generate a variety of options, not to choose a solution at this stage.

Implementing the Best Solution

The final stage of problem-solving is to select the best solution and put it into action.

Review the options you’ve developed, evaluate their potential effectiveness, and make a decision.

Keep in mind that the “best” solution isn’t necessarily the perfect one (as there might not be a perfect solution), but rather the one that seems most likely to achieve your desired outcome given the circumstances.

Once you’ve chosen a solution, plan out the steps needed to implement it and then take action.

Monitor the results and adjust your approach as necessary.

If the problem persists, don’t be discouraged; return to the previous stages, reassess the problem and your potential solutions, and try again.

Remember, problem-solving is a dynamic process that often involves trial and error.

It’s an essential skill in many areas of life, from everyday challenges to workplace dilemmas.

To learn more about the psychology behind problem-solving and decision-making, check out our introduction to psychology article.

Problem-Solving Examples

Understanding the concept of problem-solving is one thing, but seeing it in action is another.

To help you grasp the practical application of problem-solving strategies, let’s explore three different problem-solving examples from daily life, the workplace, and relationships.

Daily Life Problem-Solving Example

Imagine you’re trying to lose weight but struggle with late-night snacking.

The issue isn’t uncommon, but it’s hindering your progress towards your weight loss goal.

  • Identifying the Problem : Late-night snacking is causing you to consume extra calories, preventing weight loss.
  • Developing Possible Solutions : You could consider eating an earlier dinner, having a healthier snack option, or practicing mindful eating.
  • Implementing the Best Solution : After trying out different solutions, you find that preparing a healthy snack in advance minimizes your calorie intake and satisfies your late-night cravings, helping you stay on track with your weight loss goal.

Workplace Problem-Solving Example

Let’s consider a scenario where a team at work is failing to meet project deadlines consistently.

  • Identifying the Problem : The team is not completing projects on time, causing delays in the overall project timeline.
  • Developing Possible Solutions : The team could consider improving their time management skills, using project management tools, or redistributing tasks among team members.
  • Implementing the Best Solution : After trying out different strategies, the team finds that using a project management tool helps them stay organized, delegate tasks effectively, and complete projects within the given timeframe.

For more insights on effective management styles that can help in problem-solving at the workplace, check out our articles on autocratic leadership , democratic leadership style , and laissez faire leadership .

Relationship Problem-Solving Example

In a romantic relationship, conflicts can occasionally arise.

Let’s imagine a common issue where one partner feels the other isn’t spending enough quality time with them.

  • Identifying the Problem : One partner feels neglected due to a lack of quality time spent together.
  • Developing Possible Solutions : The couple could consider scheduling regular date nights, engaging in shared hobbies, or setting aside a specific time each day for undisturbed conversation.
  • Implementing the Best Solution : The couple decides to implement a daily “unplugged” hour where they focus solely on each other without distractions. This results in improved relationship satisfaction.

For more on navigating relationship challenges, check out our articles on anxious avoidant attachment and emotional awareness .

These problem-solving examples illustrate how the process of identifying a problem, developing possible solutions, and implementing the best solution can be applied to various situations.

By understanding and applying these strategies, you can improve your problem-solving skills and navigate challenges more effectively.

Techniques for Effective Problem-Solving

As you navigate the world of problem-solving, you’ll find that there are multiple techniques you can use to arrive at a solution.

Each technique offers a unique approach to identifying issues, generating potential solutions, and choosing the best course of action.

In this section, we’ll explore three common techniques: Brainstorming , Root Cause Analysis , and SWOT Analysis .

Brainstorming

Brainstorming is a free-thinking method used to generate a large number of ideas related to a specific problem.

You do this by suspending criticism and allowing your creativity to flow.

The aim is to produce as many ideas as possible, even if they seem far-fetched.

You then evaluate these ideas to identify the most beneficial solutions.

By using brainstorming, you can encourage out-of-the-box thinking and possibly discover innovative solutions to challenging problems.

Root Cause Analysis

Root Cause Analysis (RCA) is a method used to identify the underlying causes of a problem.

The goal is to address these root causes rather than the symptoms of the problem.

This technique helps to prevent the same issue from recurring in the future.

There are several RCA methods, such as the “5 Whys” technique, where you ask “why” multiple times until you uncover the root cause of the problem.

By identifying and addressing the root cause, you tackle the problem at its source, which can lead to more effective and long-lasting solutions.

SWOT Analysis

SWOT Analysis is a strategic planning technique that helps you identify your Strengths, Weaknesses, Opportunities, and Threats related to a problem.

This approach encourages you to examine the problem from different angles, helping you understand the resources you have at your disposal (Strengths), the areas where you could improve (Weaknesses), the external factors that could benefit you (Opportunities), and the external factors that could cause problems (Threats).

With this comprehensive understanding, you can develop a well-informed strategy to solve the problem.

Each of these problem-solving techniques provides a distinct approach to identifying and resolving issues.

By understanding and utilizing these methods, you can enhance your problem-solving skills and increase your effectiveness in dealing with challenges.

For more insights into effective problem-solving and other psychological topics, explore our introduction to psychology .

Improving Your Problem-Solving Skills

Learning to solve problems effectively is a skill that can be honed with time and practice.

The following are some ways to enhance your problem-solving capabilities.

Practice Makes Perfect

The saying “practice makes perfect” holds true when it comes to problem-solving.

The more problems you tackle, the better you’ll become at devising and implementing effective solutions.

Seek out opportunities to practice your problem-solving skills both in everyday life and in more complex situations.

This could involve resolving a dispute at work, figuring out a puzzle, or even strategizing in a board game.

Each problem you encounter is a new opportunity to apply and refine your skills.

Learning from Others’ Experiences

There’s much to be gained from observing how others approach problem-solving.

Whether it’s reading about problem solving examples from renowned psychologists or discussing strategies with colleagues, you can learn valuable techniques and perspectives from the experiences of others.

Consider participating in group activities that require problem-solving, such as escape rooms or team projects.

Observe how team members identify problems, brainstorm solutions, and decide on the best course of action.

Embracing a Growth Mindset

A key component of effective problem-solving is adopting a growth mindset.

This mindset, coined by psychologist Carol Dweck, is the belief that abilities and intelligence can be developed through dedication and hard work.

When you embrace a growth mindset, you view challenges as opportunities to learn and grow rather than as insurmountable obstacles.

Believing in your ability to develop and enhance your problem-solving skills over time can make the process less daunting and more rewarding.

So, when you encounter a problem, instead of thinking, “I can’t do this,” try thinking, “I can’t do this yet, but with effort and practice, I can learn.”

For more on the growth mindset, you might want to check out our article on what is intrinsic motivation which includes how a growth mindset can fuel your motivation to improve.

By practicing regularly, learning from others, and embracing a growth mindset, you can continually improve your problem-solving skills and become more adept at overcoming challenges you encounter.

50 Problem-Solving and Critical Thinking Examples

Critical thinking and problem solving are essential skills for success in the 21st century. Critical thinking is the ability to analyze information, evaluate evidence, and draw logical conclusions. Problem solving is the ability to apply critical thinking to find effective solutions to various challenges. Both skills require creativity, curiosity, and persistence. Developing critical thinking and problem solving skills can help students improve their academic performance, enhance their career prospects, and become more informed and engaged citizens.

problem solving example with solution

Sanju Pradeepa

Problem-Solving and Critical Thinking Examples

In today’s complex and fast-paced world, the ability to think critically and solve problems effectively has become a vital skill for success in all areas of life. Whether it’s navigating professional challenges, making sound decisions, or finding innovative solutions, critical thinking and problem-solving are key to overcoming obstacles and achieving desired outcomes. In this blog post, we will explore problem-solving and critical thinking examples.

Table of Contents

Developing the skills needed for critical thinking and problem solving.

Developing the skills needed for critical thinking and problem solving

It is not enough to simply recognize an issue; we must use the right tools and techniques to address it. To do this, we must learn how to define and identify the problem or task at hand, gather relevant information from reliable sources, analyze and compare data to draw conclusions, make logical connections between different ideas, generate a solution or action plan, and make a recommendation.

The first step in developing these skills is understanding what the problem or task is that needs to be addressed. This requires careful consideration of all available information in order to form an accurate picture of what needs to be done. Once the issue has been identified, gathering reliable sources of data can help further your understanding of it. Sources could include interviews with customers or stakeholders, surveys, industry reports, and analysis of customer feedback.

After collecting relevant information from reliable sources, it’s important to analyze and compare the data in order to draw meaningful conclusions about the situation at hand. This helps us better understand our options for addressing an issue by providing context for decision-making. Once you have analyzed the data you collected, making logical connections between different ideas can help you form a more complete picture of the situation and inform your potential solutions.

Once you have analyzed your options for addressing an issue based on all available data points, it’s time to generate a solution or action plan that takes into account considerations such as cost-effectiveness and feasibility. It’s also important to consider the risk factors associated with any proposed solutions in order to ensure that they are responsible before moving forward with implementation. Finally, once all the analysis has been completed, it is time to make a recommendation based on your findings, which should take into account any objectives set out by stakeholders at the beginning of this process as well as any other pertinent factors discovered throughout the analysis stage.

By following these steps carefully when faced with complex issues, one can effectively use critical thinking and problem-solving skills in order to achieve desired outcomes more efficiently than would otherwise be possible without them, while also taking responsibility for decisions made along the way.

what does critical thinking involve

What Does Critical Thinking Involve: 5 Essential Skill

Problem-solving and critical thinking examples.

Problem-Solving and Critical Thinking Examples

Problem-solving and critical thinking are key skills that are highly valued in any professional setting. These skills enable individuals to analyze complex situations, make informed decisions, and find innovative solutions. Here, we present 25 examples of problem-solving and critical thinking. problem-solving scenarios to help you cultivate and enhance these skills.

Ethical dilemma: A company faces a situation where a client asks for a product that does not meet quality standards. The team must decide how to address the client’s request without compromising the company’s credibility or values.

Brainstorming session: A team needs to come up with new ideas for a marketing campaign targeting a specific demographic. Through an organized brainstorming session, they explore various approaches and analyze their potential impact.

Troubleshooting technical issues : An IT professional receives a ticket indicating a network outage. They analyze the issue, assess potential causes (hardware, software, or connectivity), and solve the problem efficiently.

Negotiation : During contract negotiations, representatives from two companies must find common ground to strike a mutually beneficial agreement, considering the needs and limitations of both parties.

Project management: A project manager identifies potential risks and develops contingency plans to address unforeseen obstacles, ensuring the project stays on track.

Decision-making under pressure: In a high-stakes situation, a medical professional must make a critical decision regarding a patient’s treatment, weighing all available information and considering potential risks.

Conflict resolution: A team encounters conflicts due to differing opinions or approaches. The team leader facilitates a discussion to reach a consensus while considering everyone’s perspectives.

Data analysis: A data scientist is presented with a large dataset and is tasked with extracting valuable insights. They apply analytical techniques to identify trends, correlations, and patterns that can inform decision-making.

Customer service: A customer service representative encounters a challenging customer complaint and must employ active listening and problem-solving skills to address the issue and provide a satisfactory resolution.

Market research : A business seeks to expand into a new market. They conduct thorough market research, analyzing consumer behavior, competitor strategies, and economic factors to make informed market-entry decisions.

Creative problem-solvin g: An engineer faces a design challenge and must think outside the box to come up with a unique and innovative solution that meets project requirements.

Change management: During a company-wide transition, managers must effectively communicate the change, address employees’ concerns, and facilitate a smooth transition process.

Crisis management: When a company faces a public relations crisis, effective critical thinking is necessary to analyze the situation, develop a response strategy, and minimize potential damage to the company’s reputation.

Cost optimization : A financial analyst identifies areas where expenses can be reduced while maintaining operational efficiency, presenting recommendations for cost savings.

Time management : An employee has multiple deadlines to meet. They assess the priority of each task, develop a plan, and allocate time accordingly to achieve optimal productivity.

Quality control: A production manager detects an increase in product defects and investigates the root causes, implementing corrective actions to enhance product quality.

Strategic planning: An executive team engages in strategic planning to define long-term goals, assess market trends, and identify growth opportunities.

Cross-functional collaboration: Multiple teams with different areas of expertise must collaborate to develop a comprehensive solution, combining their knowledge and skills.

Training and development : A manager identifies skill gaps in their team and designs training programs to enhance critical thinking, problem-solving, and decision-making abilities.

Risk assessment : A risk management professional evaluates potential risks associated with a new business venture, weighing their potential impact and developing strategies to mitigate them.

Continuous improvement: An operations manager analyzes existing processes, identifies inefficiencies, and introduces improvements to enhance productivity and customer satisfaction.

Customer needs analysis: A product development team conducts extensive research to understand customer needs and preferences, ensuring that the resulting product meets those requirements.

Crisis decision-making: A team dealing with a crisis must think quickly, assess the situation, and make timely decisions with limited information.

Marketing campaign analysis : A marketing team evaluates the success of a recent campaign, analyzing key performance indicators to understand its impact on sales and customer engagement.

Constructive feedback: A supervisor provides feedback to an employee, highlighting areas for improvement and offering constructive suggestions for growth.

Conflict resolution in a team project: Team members engaged in a project have conflicting ideas on the approach. They must engage in open dialogue, actively listen to each other’s perspectives, and reach a compromise that aligns with the project’s goals.

Crisis response in a natural disaster: Emergency responders must think critically and swiftly in responding to a natural disaster, coordinating rescue efforts, allocating resources effectively, and prioritizing the needs of affected individuals.

Product innovation : A product development team conducts market research, studies consumer trends, and uses critical thinking to create innovative products that address unmet customer needs.

Supply chain optimization: A logistics manager analyzes the supply chain to identify areas for efficiency improvement, such as reducing transportation costs, improving inventory management, or streamlining order fulfillment processes.

Business strategy formulation: A business executive assesses market dynamics, the competitive landscape, and internal capabilities to develop a robust business strategy that ensures sustainable growth and competitiveness.

Crisis communication: In the face of a public relations crisis, an organization’s spokesperson must think critically to develop and deliver a transparent, authentic, and effective communication strategy to rebuild trust and manage reputation.

Social problem-solving: A group of volunteers addresses a specific social issue, such as poverty or homelessness, by critically examining its root causes, collaborating with stakeholders, and implementing sustainable solutions for the affected population.

Problem-Solving Mindset

Problem-Solving Mindset: How to Achieve It (15 Ways)

Risk assessment in investment decision-making: An investment analyst evaluates various investment opportunities, conducting risk assessments based on market trends, financial indicators, and potential regulatory changes to make informed investment recommendations.

Environmental sustainability: An environmental scientist analyzes the impact of industrial processes on the environment, develops strategies to mitigate risks, and promotes sustainable practices within organizations and communities.

Adaptation to technological advancements : In a rapidly evolving technological landscape, professionals need critical thinking skills to adapt to new tools, software, and systems, ensuring they can effectively leverage these advancements to enhance productivity and efficiency.

Productivity improvement: An operations manager leverages critical thinking to identify productivity bottlenecks within a workflow and implement process improvements to optimize resource utilization, minimize waste, and increase overall efficiency.

Cost-benefit analysis: An organization considering a major investment or expansion opportunity conducts a thorough cost-benefit analysis, weighing potential costs against expected benefits to make an informed decision.

Human resources management : HR professionals utilize critical thinking to assess job applicants, identify skill gaps within the organization, and design training and development programs to enhance the workforce’s capabilities.

Root cause analysis: In response to a recurring problem or inefficiency, professionals apply critical thinking to identify the root cause of the issue, develop remedial actions, and prevent future occurrences.

Leadership development: Aspiring leaders undergo critical thinking exercises to enhance their decision-making abilities, develop strategic thinking skills, and foster a culture of innovation within their teams.

Brand positioning : Marketers conduct comprehensive market research and consumer behavior analysis to strategically position a brand, differentiating it from competitors and appealing to target audiences effectively.

Resource allocation: Non-profit organizations distribute limited resources efficiently, critically evaluating project proposals, considering social impact, and allocating resources to initiatives that align with their mission.

Innovating in a mature market: A company operating in a mature market seeks to innovate to maintain a competitive edge. They cultivate critical thinking skills to identify gaps, anticipate changing customer needs, and develop new strategies, products, or services accordingly.

Analyzing financial statements : Financial analysts critically assess financial statements, analyze key performance indicators, and derive insights to support financial decision-making, such as investment evaluations or budget planning.

Crisis intervention : Mental health professionals employ critical thinking and problem-solving to assess crises faced by individuals or communities, develop intervention plans, and provide support during challenging times.

Data privacy and cybersecurity : IT professionals critically evaluate existing cybersecurity measures, identify vulnerabilities, and develop strategies to protect sensitive data from threats, ensuring compliance with privacy regulations.

Process improvement : Professionals in manufacturing or service industries critically evaluate existing processes, identify inefficiencies, and implement improvements to optimize efficiency, quality, and customer satisfaction.

Multi-channel marketing strategy : Marketers employ critical thinking to design and execute effective marketing campaigns across various channels such as social media, web, print, and television, ensuring a cohesive brand experience for customers.

Peer review: Researchers critically analyze and review the work of their peers, providing constructive feedback and ensuring the accuracy, validity, and reliability of scientific studies.

Project coordination : A project manager must coordinate multiple teams and resources to ensure seamless collaboration, identify potential bottlenecks, and find solutions to keep the project on schedule.  

These examples highlight the various contexts in which problem-solving and critical-thinking skills are necessary for success. By understanding and practicing these skills, individuals can enhance their ability to navigate challenges and make sound decisions in both personal and professional endeavors.

Conclusion:

Critical thinking and problem-solving are indispensable skills that empower individuals to overcome challenges, make sound decisions, and find innovative solutions. By honing these skills, one can navigate through the complexities of modern life and achieve success in both personal and professional endeavors. Embrace the power of critical thinking and problem-solving, and unlock the door to endless possibilities and growth.

  • Problem solving From Wikipedia, the free encyclopedia
  • Critical thinking From Wikipedia, the free encyclopedia
  • The Importance of Critical Thinking and Problem Solving Skills for Students (5 Minutes)

Believe in mind Newsletter

Let’s boost your self-growth with Believe in Mind.

Interested in self-reflection tips, learning hacks, and knowing ways to calm down your mind? We offer you the best content which you have been looking for.

Follow Me on

You May Like Also

Leave a Comment Cancel reply

Save my name, email, and website in this browser for the next time I comment.

loading

How it works

For Business

Join Mind Tools

Article • 10 min read

Creative Problem Solving

Finding innovative solutions to challenges.

By the Mind Tools Content Team

problem solving example with solution

Imagine that you're vacuuming your house in a hurry because you've got friends coming over. Frustratingly, you're working hard but you're not getting very far. You kneel down, open up the vacuum cleaner, and pull out the bag. In a cloud of dust, you realize that it's full... again. Coughing, you empty it and wonder why vacuum cleaners with bags still exist!

James Dyson, inventor and founder of Dyson® vacuum cleaners, had exactly the same problem, and he used creative problem solving to find the answer. While many companies focused on developing a better vacuum cleaner filter, he realized that he had to think differently and find a more creative solution. So, he devised a revolutionary way to separate the dirt from the air, and invented the world's first bagless vacuum cleaner. [1]

Creative problem solving (CPS) is a way of solving problems or identifying opportunities when conventional thinking has failed. It encourages you to find fresh perspectives and come up with innovative solutions, so that you can formulate a plan to overcome obstacles and reach your goals.

In this article, we'll explore what CPS is, and we'll look at its key principles. We'll also provide a model that you can use to generate creative solutions.

About Creative Problem Solving

Alex Osborn, founder of the Creative Education Foundation, first developed creative problem solving in the 1940s, along with the term "brainstorming." And, together with Sid Parnes, he developed the Osborn-Parnes Creative Problem Solving Process. Despite its age, this model remains a valuable approach to problem solving. [2]

The early Osborn-Parnes model inspired a number of other tools. One of these is the 2011 CPS Learner's Model, also from the Creative Education Foundation, developed by Dr Gerard J. Puccio, Marie Mance, and co-workers. In this article, we'll use this modern four-step model to explore how you can use CPS to generate innovative, effective solutions.

Why Use Creative Problem Solving?

Dealing with obstacles and challenges is a regular part of working life, and overcoming them isn't always easy. To improve your products, services, communications, and interpersonal skills, and for you and your organization to excel, you need to encourage creative thinking and find innovative solutions that work.

CPS asks you to separate your "divergent" and "convergent" thinking as a way to do this. Divergent thinking is the process of generating lots of potential solutions and possibilities, otherwise known as brainstorming. And convergent thinking involves evaluating those options and choosing the most promising one. Often, we use a combination of the two to develop new ideas or solutions. However, using them simultaneously can result in unbalanced or biased decisions, and can stifle idea generation.

For more on divergent and convergent thinking, and for a useful diagram, see the book "Facilitator's Guide to Participatory Decision-Making." [3]

Core Principles of Creative Problem Solving

CPS has four core principles. Let's explore each one in more detail:

  • Divergent and convergent thinking must be balanced. The key to creativity is learning how to identify and balance divergent and convergent thinking (done separately), and knowing when to practice each one.
  • Ask problems as questions. When you rephrase problems and challenges as open-ended questions with multiple possibilities, it's easier to come up with solutions. Asking these types of questions generates lots of rich information, while asking closed questions tends to elicit short answers, such as confirmations or disagreements. Problem statements tend to generate limited responses, or none at all.
  • Defer or suspend judgment. As Alex Osborn learned from his work on brainstorming, judging solutions early on tends to shut down idea generation. Instead, there's an appropriate and necessary time to judge ideas during the convergence stage.
  • Focus on "Yes, and," rather than "No, but." Language matters when you're generating information and ideas. "Yes, and" encourages people to expand their thoughts, which is necessary during certain stages of CPS. Using the word "but" – preceded by "yes" or "no" – ends conversation, and often negates what's come before it.

How to Use the Tool

Let's explore how you can use each of the four steps of the CPS Learner's Model (shown in figure 1, below) to generate innovative ideas and solutions.

Figure 1 – CPS Learner's Model

problem solving example with solution

Explore the Vision

Identify your goal, desire or challenge. This is a crucial first step because it's easy to assume, incorrectly, that you know what the problem is. However, you may have missed something or have failed to understand the issue fully, and defining your objective can provide clarity. Read our article, 5 Whys , for more on getting to the root of a problem quickly.

Gather Data

Once you've identified and understood the problem, you can collect information about it and develop a clear understanding of it. Make a note of details such as who and what is involved, all the relevant facts, and everyone's feelings and opinions.

Formulate Questions

When you've increased your awareness of the challenge or problem you've identified, ask questions that will generate solutions. Think about the obstacles you might face and the opportunities they could present.

Explore Ideas

Generate ideas that answer the challenge questions you identified in step 1. It can be tempting to consider solutions that you've tried before, as our minds tend to return to habitual thinking patterns that stop us from producing new ideas. However, this is a chance to use your creativity .

Brainstorming and Mind Maps are great ways to explore ideas during this divergent stage of CPS. And our articles, Encouraging Team Creativity , Problem Solving , Rolestorming , Hurson's Productive Thinking Model , and The Four-Step Innovation Process , can also help boost your creativity.

See our Brainstorming resources within our Creativity section for more on this.

Formulate Solutions

This is the convergent stage of CPS, where you begin to focus on evaluating all of your possible options and come up with solutions. Analyze whether potential solutions meet your needs and criteria, and decide whether you can implement them successfully. Next, consider how you can strengthen them and determine which ones are the best "fit." Our articles, Critical Thinking and ORAPAPA , are useful here.

4. Implement

Formulate a plan.

Once you've chosen the best solution, it's time to develop a plan of action. Start by identifying resources and actions that will allow you to implement your chosen solution. Next, communicate your plan and make sure that everyone involved understands and accepts it.

There have been many adaptations of CPS since its inception, because nobody owns the idea.

For example, Scott Isaksen and Donald Treffinger formed The Creative Problem Solving Group Inc . and the Center for Creative Learning , and their model has evolved over many versions. Blair Miller, Jonathan Vehar and Roger L. Firestien also created their own version, and Dr Gerard J. Puccio, Mary C. Murdock, and Marie Mance developed CPS: The Thinking Skills Model. [4] Tim Hurson created The Productive Thinking Model , and Paul Reali developed CPS: Competencies Model. [5]

Sid Parnes continued to adapt the CPS model by adding concepts such as imagery and visualization , and he founded the Creative Studies Project to teach CPS. For more information on the evolution and development of the CPS process, see Creative Problem Solving Version 6.1 by Donald J. Treffinger, Scott G. Isaksen, and K. Brian Dorval. [6]

Creative Problem Solving (CPS) Infographic

See our infographic on Creative Problem Solving .

problem solving example with solution

Creative problem solving (CPS) is a way of using your creativity to develop new ideas and solutions to problems. The process is based on separating divergent and convergent thinking styles, so that you can focus your mind on creating at the first stage, and then evaluating at the second stage.

There have been many adaptations of the original Osborn-Parnes model, but they all involve a clear structure of identifying the problem, generating new ideas, evaluating the options, and then formulating a plan for successful implementation.

[1] Entrepreneur (2012). James Dyson on Using Failure to Drive Success [online]. Available here . [Accessed May 27, 2022.]

[2] Creative Education Foundation (2015). The CPS Process [online]. Available here . [Accessed May 26, 2022.]

[3] Kaner, S. et al. (2014). 'Facilitator′s Guide to Participatory Decision–Making,' San Francisco: Jossey-Bass.

[4] Puccio, G., Mance, M., and Murdock, M. (2011). 'Creative Leadership: Skils That Drive Change' (2nd Ed.), Thousand Oaks, CA: Sage.

[5] OmniSkills (2013). Creative Problem Solving [online]. Available here . [Accessed May 26, 2022].

[6] Treffinger, G., Isaksen, S., and Dorval, B. (2010). Creative Problem Solving (CPS Version 6.1). Center for Creative Learning, Inc. & Creative Problem Solving Group, Inc. Available here .

You've accessed 1 of your 2 free resources.

Get unlimited access

Discover more content

What is problem solving.

Book Insights

The Back of the Napkin: Solving Problems and Selling Ideas With Pictures

Add comment

Comments (0)

Be the first to comment!

problem solving example with solution

Team Management

Learn the key aspects of managing a team, from building and developing your team, to working with different types of teams, and troubleshooting common problems.

Sign-up to our newsletter

Subscribing to the Mind Tools newsletter will keep you up-to-date with our latest updates and newest resources.

Subscribe now

Business Skills

Personal Development

Leadership and Management

Member Extras

Most Popular

Newest Releases

Article amtbj63

SWOT Analysis

Article at29cce

How to Build a Strong Culture in a Distributed Team

Mind Tools Store

About Mind Tools Content

Discover something new today

Top tips for delegating.

Delegate work to your team members effectively with these top tips

Ten Dos and Don'ts of Change Conversations

Tips for tackling discussions about change

How Emotionally Intelligent Are You?

Boosting Your People Skills

Self-Assessment

What's Your Leadership Style?

Learn About the Strengths and Weaknesses of the Way You Like to Lead

Recommended for you

Heart, smarts, guts, and luck.

Expert Interviews

Business Operations and Process Management

Strategy Tools

Customer Service

Business Ethics and Values

Handling Information and Data

Project Management

Knowledge Management

Self-Development and Goal Setting

Time Management

Presentation Skills

Learning Skills

Career Skills

Communication Skills

Negotiation, Persuasion and Influence

Working With Others

Difficult Conversations

Creativity Tools

Self-Management

Work-Life Balance

Stress Management and Wellbeing

Coaching and Mentoring

Change Management

Managing Conflict

Delegation and Empowerment

Performance Management

Leadership Skills

Developing Your Team

Talent Management

Problem Solving

Decision Making

Member Podcast

Problem solving skills and how to improve them (with examples)

What’s life without its challenges? All of us will at some point encounter professional and personal hurdles. That might mean resolving a conflict with coworkers or making a big life decision. With effective problem solving skills, you’ll find tricky situations easier to navigate, and welcome challenges as opportunities to learn, grow and thrive. 

In this guide, we dive into the importance of problem solving skills and look at examples that show how relevant they are to different areas of your life. We cover how to find creative solutions and implement them, as well as ways to refine your skills in communication and critical thinking. Ready to start solving problems? Read on.

What is problem solving? 

Before we cover strategies for improving problem solving skills, it's important to first have a clear understanding of the problem solving process. Here are the steps in solving a problem:

  • Recognise the issue you are facing 
  • Take a look at all the information to gain insights
  • Come up with solutions
  • Look at the pros and cons of each solution and how it might play out
  • Plan, organise and implement your solution
  • Continuously assess the effectiveness of the solution and make adjustments as needed

Problem solving skills

There’s more to problem solving than coming up with a quick fix. Effective problem solving requires wide range of skills and abilities, such as:

  • Critical thinking: the ability to think logically, analyse information and look at situations from different perspectives.
  • Creativity: being able to come up with innovative, out-of-the-box solutions.
  • Decision-making: making informed choices by considering all the available information.
  • Communication: being able to express ideas clearly and effectively.
  • Analytical skills: breaking down complex problems into smaller parts and examining each one.
  • Time management: allocating time and resources effectively to address problems.
  • Adaptability: being open to change and willing to adjust strategies.
  • Conflict resolution: skillfully managing conflicts and finding solutions that work for all.

Examples of problem solving skills

Problem solving skills in the workplace are invaluable, whether you need them for managing a team, dealing with clients or juggling deadlines. To get a better understanding of how you might use these skills in real-life scenarios, here are some problem solving examples that are common in the workplace.

  • Analytical thinking

Analytical thinking is something that comes naturally to some, while others have to work a little harder. It involves being able to look at problem solving from a logical perspective, breaking down the issues into manageable parts. 

Example scenarios of analytical thinking

Quality control: in a manufacturing facility, analytical thinking helps identify the causes of product defects in order to pinpoint solutions.

Market research: marketing teams rely on analytical thinking to examine consumer data, identify market trends and make informed decisions on ad campaigns.

  • Critical thinking

Critical thinkers are able to approach problems objectively, looking at different viewpoints without rushing to a decision. Critical thinking is an important aspect of problem solving, helping to uncover biases and assumptions and weigh up the quality of the information before making any decisions. 

Example scenarios of critical thinking

  • Strategic planning: in the boardroom, critical thinking is important for assessing economic trends, competitor threats and more. It guides leaders in making informed decisions about long-term company goals and growth strategies.
  • Conflict resolution: HR professionals often use critical thinking when dealing with workplace conflicts. They objectively analyse the issues at hand and find an appropriate solution.

Decision-making

Making decisions is often the hardest part of problem solving. How do you know which solution is the right one? It involves evaluating information, considering potential outcomes and choosing the most suitable option. Effective problem solving relies on making well-informed decisions.

Example scenarios of decision-making

  • Budget allocation: financial managers must decide how to allocate resources to various projects or departments. 
  • Negotiation: salespeople and procurement professionals negotiate terms, pricing and agreements with clients, suppliers and partners.

Research skills

Research skills are pivotal when it comes to problem solving, to ensure you have all the information you need to make an informed decision. These skills involve searching for relevant data, critically evaluating information sources, and drawing meaningful conclusions. 

Example scenarios of research skills

  • Product development: a tech startup uses research skills to conduct market research to identify gaps and opportunities in the market. 
  • Employee engagement: an HR manager uses research skills to conduct employee surveys and focus groups.

A little creative flair goes a long way. By thinking outside the box, you can approach problems from different angles. Creative thinking involves combining existing knowledge, experiences and perspectives in new and innovative ways to come up with inventive solutions. 

Example scenarios of creativity

  • Cost reduction: creative problem solvers within a manufacturing company might look at new ways to reduce production costs by using waste materials.
  • Customer experience: a retail chain might look at implementing interactive displays and engaging store layouts to increase customer satisfaction and sales.

Collaboration

It’s not always easy to work with other people, but collaboration is a key element in problem solving, allowing you to make use of different perspectives and areas of expertise to find solutions.

Example scenarios

  • Healthcare diagnosis: in a hospital setting, medical professionals collaborate to diagnose complex medical cases.
  • Project management: project managers coordinate efforts, allocate resources and address issues that may arise during a project's lifecycle.

Conflict Resolution

Being able to mediate conflicts is a great skill to have. It involves facilitating open communication, understanding different perspectives and finding solutions that work for everyone. Conflict resolution is essential for managing any differences in opinion that arise.

Example scenarios of conflict resolution

  • Client dispute: a customer might be dissatisfied with a product or service and demand a refund. The customer service representative addresses the issue through active listening  and negotiation to reach a solution.
  • Project delay: a project manager might face resistance from team members about a change in project scope and will need to find a middle ground before the project can continue.

Risk management

Risk management is essential across many workplaces. It involves analysing potential threats and opportunities, evaluating their impact and implementing strategies to minimise negative consequences. Risk management is closely tied to problem solving, as it addresses potential obstacles and challenges that may arise during the problem solving process.

Example scenarios of risk management

  • Project risk management: in a construction project, risk management involves identifying potential delays, cost overruns and safety hazards. Risk mitigation strategies are developed, such as scheduling buffers and establishing safety protocols. 
  • Financial risk management: in financial institutions, risk management assesses and manages risks associated with investments and lending.

Communication

Effective communication is a skill that will get you far in all areas of life. When it comes to problem solving, communication plays an important role in facilitating collaboration, sharing insights and ensuring that all stakeholders have the same expectations. 

Example scenarios of communication

  • Customer service improvement: in a retail environment, open communication channels result in higher customer satisfaction scores.
  • Safety enhancement: in a manufacturing facility, a robust communication strategy that includes safety briefings, incident reporting and employee training helps minimise accidents and injuries.

How to improve problem solving skills 

Ready to improve your problem solving skills? In this section we explore strategies and techniques that will give you a head start in developing better problem solving skills. 

Adopt the problem solving mindset

Developing a problem solving mindset will help you tackle challenges effectively . Start by accepting problems as opportunities for growth and learning, rather than as obstacles or setbacks. This will allow you to approach every challenge with a can-do attitude.

Patience is also essential, because it will allow you to work through the problem and its various solutions mindfully. Persistence is also important, so you can keep adapting your approach until you find the right solution.

Finally, don’t forget to ask questions. What do you need to know? What assumptions are you making? What can you learn from previous attempts? Approach problem solving as an opportunity to  acquire new skills . Stay curious, seek out solutions, explore new possibilities and remain open to different problem solving approaches.

Understand the problem

There’s no point trying to solve a problem you don’t understand. To analyse a problem effectively, you need to be able to define it. This allows you to break it down into smaller parts, making it easier to find causes and potential solutions. Start with a well-defined problem statement that is precise and specific. This will help you focus your efforts on the core issue, so you don’t waste time and resources on the wrong concerns.

Strategies for problem analysis

  • Start with the problem statement and ask ‘Why?’ multiple times to dig deeper.
  • Gather relevant data and information related to the problem. 
  • Include those affected by the problem in the analysis process.
  • Compare the current problem with similar situations or cases to gain valuable insights.
  • Use simulations to explore potential outcomes of different solutions.
  • Continuously gather feedback during the problem solving process. 

Develop critical thinking and creativity skills

Critical thinking and creativity are both important when it comes to looking at the problem objectively and thinking outside the box. Critical thinking encourages you to question assumptions, recognise biases and seek evidence to support your conclusions. Creative thinking allows you to look at the problem from different angles to reveal new insights and opportunities.

Enhance research and decision-making skills

Research and decision-making skills are pivotal in problem solving as they enable you to gather relevant information, analyse options and choose the best course of action. Research provides the information and data needed, and ensures that you have a comprehensive understanding of the problem and its context. Effective decision-making is about selecting the solution that best addresses the problem.

Strategies to improve research and decision-making skills

  • Clearly define what you want to achieve through research.
  • Use a variety of sources, including books, articles, research papers, interviews, surveys and online databases.
  • Evaluate the credibility and reliability of your information sources.
  • Incorporate risk assessment into your decision-making process. 
  • Seek input from experts, colleagues and mentors when making important decisions. 
  • After making decisions, reflect on the outcomes and lessons learned. Use this to improve your decision-making skills over time.

Strengthen collaboration skills

Being able to work with others is one of the most important skills to have at work. Collaboration skills enable everyone to work effectively as a team, share their perspectives and collectively find solutions. 

Tips for improving teamwork and collaboration

  • Define people’s roles and responsibilities within the team. 
  • Encourage an environment of open communication where team members feel comfortable sharing ideas.
  • Practise active listening by giving full attention to others when they speak. 
  • Hold regular check-in sessions to monitor progress, discuss challenges and make adjustments as needed.
  • Use collaboration tools and platforms to facilitate communication and document progress. 
  • Acknowledge and celebrate team achievements and milestones. 

Learn from past experiences

Once you’ve overcome a challenge, take the time to look back with a critical eye. How effective was the outcome? Could you have tweaked anything in your process? Learning from past experiences is important when it comes to problem solving. It involves reflecting on both successes and failures to gain insights, refine strategies and make more informed decisions in the future. 

Strategies for learning from past mistakes

  • After completing a problem solving effort, gather your team for a debriefing session. Discuss what went well and what could have been better.
  • Conduct a SWOT analysis (Strengths, Weaknesses, Opportunities, Threats) of resolved problems. 
  • Evaluate the outcomes of past solutions. Did they achieve the desired results? 
  • Commit to continuous learning and improvement. 

Leverage problem solving tools and resources

Problem-solving tools and resources are a great help when it comes to navigating complex challenges. These tools offer structured approaches, methodologies and resources that can streamline the process. 

Tools and resources for problem solving

  • Mind mapping: mind maps visually organise ideas, concepts and their relationships. 
  • SWOT (Strengths, Weaknesses, Opportunities, Threats) Analysis: helps in strategic planning and decision-making.
  • Fishbone diagram (Ishikawa Diagram): this tool visually represents the potential root causes of a problem, helping you identify underlying factors contributing to an issue.
  • Decision matrices:  these assist in evaluating options by assigning weights and scores to criteria and alternatives.
  • Process flowcharts: these allow you to see the steps of a process in sequence, helping identify where the problem is occuring.
  • Decision support software: software applications and tools, such as data analytics platforms, can help in data-driven decision-making and problem solving.
  • Online courses and training: allow you to acquire new skills and knowledge.

Regular practice

Practice makes perfect! Using your skills in real life allows you to refine them, adapt to new challenges and build confidence in your problem solving capabilities. Make sure to try out these skills whenever you can.

Practical problem solving exercises 

  • Do puzzles, riddles and brainteasers regularly. 
  • Identify real-life challenges or dilemmas you encounter and practice applying problem solving techniques to these situations.
  • Analyse case studies or scenarios relevant to your field or industry. 
  • Regularly review past problem solving experiences and consider what you learned from them. 
  • Attend workshops, webinars or training sessions focused on problem solving. 

How to highlight problem solving skills on a resumé

Effectively showcasing your problem solving skills on your resumé  is a great way to demonstrate your ability to address challenges and add value to a workplace. We'll explore how to demonstrate problem solving skills on your resumé, so you stand out from the crowd.

Incorporating problem solving skills in the resumé summary

A resumé summary is your introduction to potential employers and provides an opportunity to succinctly showcase your skills. The resumé summary is often the first section employers read. It offers a snapshot of your qualifications and sets the tone for the rest of your resumé.

Your resumé summary should be customised for different job applications, ensuring that you highlight the specific problem solving skills relevant to the position you’re applying for.

Example 1: Project manager with a proven track record of solving complex operational challenges. Skilled in identifying root causes, developing innovative solutions and leading teams to successful project completion.

Example 2: Detail-oriented data analyst with strong problem solving skills. Proficient in data-driven decision-making, quantitative analysis and using statistical tools to solve business problems.

Highlighting problem solving skills in the experience section

The experience section of your resumé presents the perfect opportunity to demonstrate your problem solving skills in action. 

  • Start with action verbs: begin each bullet point in your job descriptions with strong action verbs such as, analysed, implemented, resolved and optimised.
  • Quantify achievements: use numbers and percentages to illustrate the impact of your solutions. For example: Increased efficiency by 25% by implementing a new workflow process.
  • Emphasise challenges: describe the specific challenges or problems you faced in your roles. 
  • Solution-oriented language: mention the steps you took to find solutions and the outcomes achieved.

Including problem solving skills in the skills section

The skills section of your resumé should showcase your top abilities, including problem solving skills. Here are some tips for including these skills.

  • Use a subsection: within your skills section, you could create a subsection specifically dedicated to problem solving skills – especially if the role calls for these skills.
  • Be specific: when listing problem solving skills, be specific about the types of role-related problems you can address. 
  • Prioritise relevant skills: tailor the list of problem solving skills to match the requirements of the job you're applying for. 

Examples of problem solving skills to include:

  • Creative problem solving
  • Decision making
  • Root cause analysis
  • Strategic problem solving
  • Data-driven problem solving
  • Interpersonal conflict resolution
  • Adaptability
  • Communication skills
  • Problem solving tools
  • Negotiation skills

Demonstrating problem solving skills in project sections or case studies

Including a dedicated section for projects or case studies in your resumé allows you to provide specific examples of your problem solving skills in action. It goes beyond simply listing skills, to demonstrate how you are able to apply those skills to real-world challenges.

Example – Data Analysis

Case Study: Market Expansion Strategy

  • Challenge: the company was looking to expand into new markets but lacked data on consumer preferences and market dynamics.
  • Solution: conducted comprehensive market research, including surveys and competitor analysis. Applied this research to identify target customer segments and developed a data-driven market-entry strategy.
  • Result: successfully launched in two new markets, reaching our target of 30% market share within the first year.

Using problem solving skills in cover letters

A well-crafted cover letter is your first impression on any potential employer. Integrating problem solving skills can support your job application by showcasing your ability to address challenges and contribute effectively to their team. Here’s a quick run-down on what to include:

  • Begin your cover letter by briefly mentioning the position you're applying for and your enthusiasm for it.
  • Identify a specific challenge or issue that the company may be facing, to demonstrate your research and understanding of their needs.
  • Include a brief story or scenario from your past experiences where you successfully applied problem solving skills to address a similar challenge. 
  • Highlight the positive outcomes or results achieved through your problem solving efforts. 
  • Explain how your skills make you the ideal person to address their specific challenges.

Problem solving skills are essential in all areas of life, enabling you to overcome challenges, make informed decisions, settle conflicts and drive innovation. We've explored the significance of problem solving skills and how to improve, demonstrate and leverage them effectively. It’s an ever-evolving skill set that can be refined over time. 

By actively incorporating problem solving skills into your day-to-day, you can become a more effective problem solver at work and in your personal life as well.

What are some common problem solving techniques?

Common problem solving techniques include brainstorming, root cause analysis, SWOT analysis, decision matrices, the scientific method and the PDCA (Plan-Do-Check-Act) cycle. These techniques offer structured approaches to identify, analyse and address problems effectively.

How can I improve my critical thinking skills?

Improving critical thinking involves practising skills such as analysis, evaluation and problem solving. It helps to engage in activities like reading, solving puzzles, debating and self-reflection.

What are some common obstacles to problem solving?

Common obstacles to problem solving include biases, lack of information or resources, and resistance to change. Recognising and addressing these obstacles is essential for effective problem solving.

How can I overcome resistance to change when implementing a solution?

To overcome resistance to change, it's essential to communicate the benefits of the proposed solution clearly, involve stakeholders in the decision-making process, address concerns and monitor the implementation's progress to demonstrate its effectiveness.

How can problem solving skills benefit my career?

Top search terms, popular on seek, explore related topics, subscribe to career advice.

  • Book a Demo

></center></p><h2>17 Smart Problem-Solving Strategies: Master Complex Problems</h2><ul><li>March 3, 2024</li><li>Productivity</li><li>25 min read</li></ul><p><center><img style=

Struggling to overcome challenges in your life? We all face problems, big and small, on a regular basis.

So how do you tackle them effectively? What are some key problem-solving strategies and skills that can guide you?

Effective problem-solving requires breaking issues down logically, generating solutions creatively, weighing choices critically, and adapting plans flexibly based on outcomes. Useful strategies range from leveraging past solutions that have worked to visualizing problems through diagrams. Core skills include analytical abilities, innovative thinking, and collaboration.

Want to improve your problem-solving skills? Keep reading to find out 17 effective problem-solving strategies, key skills, common obstacles to watch for, and tips on improving your overall problem-solving skills.

Key Takeaways:

  • Effective problem-solving requires breaking down issues logically, generating multiple solutions creatively, weighing choices critically, and adapting plans based on outcomes.
  • Useful problem-solving strategies range from leveraging past solutions to brainstorming with groups to visualizing problems through diagrams and models.
  • Core skills include analytical abilities, innovative thinking, decision-making, and team collaboration to solve problems.
  • Common obstacles include fear of failure, information gaps, fixed mindsets, confirmation bias, and groupthink.
  • Boosting problem-solving skills involves learning from experts, actively practicing, soliciting feedback, and analyzing others’ success.
  • Onethread’s project management capabilities align with effective problem-solving tenets – facilitating structured solutions, tracking progress, and capturing lessons learned.

What Is Problem-Solving?

Problem-solving is the process of understanding an issue, situation, or challenge that needs to be addressed and then systematically working through possible solutions to arrive at the best outcome.

It involves critical thinking, analysis, logic, creativity, research, planning, reflection, and patience in order to overcome obstacles and find effective answers to complex questions or problems.

The ultimate goal is to implement the chosen solution successfully.

What Are Problem-Solving Strategies?

Problem-solving strategies are like frameworks or methodologies that help us solve tricky puzzles or problems we face in the workplace, at home, or with friends.

Imagine you have a big jigsaw puzzle. One strategy might be to start with the corner pieces. Another could be looking for pieces with the same colors. 

Just like in puzzles, in real life, we use different plans or steps to find solutions to problems. These strategies help us think clearly, make good choices, and find the best answers without getting too stressed or giving up.

Why Is It Important To Know Different Problem-Solving Strategies?

Why Is It Important To Know Different Problem-Solving Strategies

Knowing different problem-solving strategies is important because different types of problems often require different approaches to solve them effectively. Having a variety of strategies to choose from allows you to select the best method for the specific problem you are trying to solve.

This improves your ability to analyze issues thoroughly, develop solutions creatively, and tackle problems from multiple angles. Knowing multiple strategies also aids in overcoming roadblocks if your initial approach is not working.

Here are some reasons why you need to know different problem-solving strategies:

  • Different Problems Require Different Tools: Just like you can’t use a hammer to fix everything, some problems need specific strategies to solve them.
  • Improves Creativity: Knowing various strategies helps you think outside the box and come up with creative solutions.
  • Saves Time: With the right strategy, you can solve problems faster instead of trying things that don’t work.
  • Reduces Stress: When you know how to tackle a problem, it feels less scary and you feel more confident.
  • Better Outcomes: Using the right strategy can lead to better solutions, making things work out better in the end.
  • Learning and Growth: Each time you solve a problem, you learn something new, which makes you smarter and better at solving future problems.

Knowing different ways to solve problems helps you tackle anything that comes your way, making life a bit easier and more fun!

17 Effective Problem-Solving Strategies

Effective problem-solving strategies include breaking the problem into smaller parts, brainstorming multiple solutions, evaluating the pros and cons of each, and choosing the most viable option. 

Critical thinking and creativity are essential in developing innovative solutions. Collaboration with others can also provide diverse perspectives and ideas. 

By applying these strategies, you can tackle complex issues more effectively.

Now, consider a challenge you’re dealing with. Which strategy could help you find a solution? Here we will discuss key problem strategies in detail.

1. Use a Past Solution That Worked

Use a Past Solution That Worked

This strategy involves looking back at previous similar problems you have faced and the solutions that were effective in solving them.

It is useful when you are facing a problem that is very similar to something you have already solved. The main benefit is that you don’t have to come up with a brand new solution – you already know the method that worked before will likely work again.

However, the limitation is that the current problem may have some unique aspects or differences that mean your old solution is not fully applicable.

The ideal process is to thoroughly analyze the new challenge, identify the key similarities and differences versus the past case, adapt the old solution as needed to align with the current context, and then pilot it carefully before full implementation.

An example is using the same negotiation tactics from purchasing your previous home when putting in an offer on a new house. Key terms would be adjusted but overall it can save significant time versus developing a brand new strategy.

2. Brainstorm Solutions

Brainstorm Solutions

This involves gathering a group of people together to generate as many potential solutions to a problem as possible.

It is effective when you need creative ideas to solve a complex or challenging issue. By getting input from multiple people with diverse perspectives, you increase the likelihood of finding an innovative solution.

The main limitation is that brainstorming sessions can sometimes turn into unproductive gripe sessions or discussions rather than focusing on productive ideation —so they need to be properly facilitated.

The key to an effective brainstorming session is setting some basic ground rules upfront and having an experienced facilitator guide the discussion. Rules often include encouraging wild ideas, avoiding criticism of ideas during the ideation phase, and building on others’ ideas.

For instance, a struggling startup might hold a session where ideas for turnaround plans are generated and then formalized with financials and metrics.

3. Work Backward from the Solution

Work Backward from the Solution

This technique involves envisioning that the problem has already been solved and then working step-by-step backward toward the current state.

This strategy is particularly helpful for long-term, multi-step problems. By starting from the imagined solution and identifying all the steps required to reach it, you can systematically determine the actions needed. It lets you tackle a big hairy problem through smaller, reversible steps.

A limitation is that this approach may not be possible if you cannot accurately envision the solution state to start with.

The approach helps drive logical systematic thinking for complex problem-solving, but should still be combined with creative brainstorming of alternative scenarios and solutions.

An example is planning for an event – you would imagine the successful event occurring, then determine the tasks needed the week before, two weeks before, etc. all the way back to the present.

4. Use the Kipling Method

Use the Kipling Method

This method, named after author Rudyard Kipling, provides a framework for thoroughly analyzing a problem before jumping into solutions.

It consists of answering six fundamental questions: What, Where, When, How, Who, and Why about the challenge. Clearly defining these core elements of the problem sets the stage for generating targeted solutions.

The Kipling method enables a deep understanding of problem parameters and root causes before solution identification. By jumping to brainstorm solutions too early, critical information can be missed or the problem is loosely defined, reducing solution quality.

Answering the six fundamental questions illuminates all angles of the issue. This takes time but pays dividends in generating optimal solutions later tuned precisely to the true underlying problem.

The limitation is that meticulously working through numerous questions before addressing solutions can slow progress.

The best approach blends structured problem decomposition techniques like the Kipling method with spurring innovative solution ideation from a diverse team. 

An example is using this technique after a technical process failure – the team would systematically detail What failed, Where/When did it fail, How it failed (sequence of events), Who was involved, and Why it likely failed before exploring preventative solutions.

5. Try Different Solutions Until One Works (Trial and Error)

Try Different Solutions Until One Works (Trial and Error)

This technique involves attempting various potential solutions sequentially until finding one that successfully solves the problem.

Trial and error works best when facing a concrete, bounded challenge with clear solution criteria and a small number of discrete options to try. By methodically testing solutions, you can determine the faulty component.

A limitation is that it can be time-intensive if the working solution set is large.

The key is limiting the variable set first. For technical problems, this boundary is inherent and each element can be iteratively tested. But for business issues, artificial constraints may be required – setting decision rules upfront to reduce options before testing.

Furthermore, hypothesis-driven experimentation is far superior to blind trial and error – have logic for why Option A may outperform Option B.

Examples include fixing printer jams by testing different paper tray and cable configurations or resolving website errors by tweaking CSS/HTML line-by-line until the code functions properly.

6. Use Proven Formulas or Frameworks (Heuristics)

Use Proven Formulas or Frameworks (Heuristics)

Heuristics refers to applying existing problem-solving formulas or frameworks rather than addressing issues completely from scratch.

This allows leveraging established best practices rather than reinventing the wheel each time.

It is effective when facing recurrent, common challenges where proven structured approaches exist.

However, heuristics may force-fit solutions to non-standard problems.

For example, a cost-benefit analysis can be used instead of custom weighting schemes to analyze potential process improvements.

Onethread allows teams to define, save, and replicate configurable project templates so proven workflows can be reliably applied across problems with some consistency rather than fully custom one-off approaches each time.

Try One thread

Experience One thread full potential, with all its features unlocked. Sign up now to start your 14-day free trial!

7. Trust Your Instincts (Insight Problem-Solving)

Trust Your Instincts (Insight Problem-Solving)

Insight is a problem-solving technique that involves waiting patiently for an unexpected “aha moment” when the solution pops into your mind.

It works well for personal challenges that require intuitive realizations over calculated logic. The unconscious mind makes connections leading to flashes of insight when relaxing or doing mundane tasks unrelated to the actual problem.

Benefits include out-of-the-box creative solutions. However, the limitations are that insights can’t be forced and may never come at all if too complex. Critical analysis is still required after initial insights.

A real-life example would be a writer struggling with how to end a novel. Despite extensive brainstorming, they feel stuck. Eventually while gardening one day, a perfect unexpected plot twist sparks an ideal conclusion. However, once written they still carefully review if the ending flows logically from the rest of the story.

8. Reverse Engineer the Problem

Reverse Engineer the Problem

This approach involves deconstructing a problem in reverse sequential order from the current undesirable outcome back to the initial root causes.

By mapping the chain of events backward, you can identify the origin of where things went wrong and establish the critical junctures for solving it moving ahead. Reverse engineering provides diagnostic clarity on multi-step problems.

However, the limitation is that it focuses heavily on autopsying the past versus innovating improved future solutions.

An example is tracing back from a server outage, through the cascade of infrastructure failures that led to it finally terminating at the initial script error that triggered the crisis. This root cause would then inform the preventative measure.

9. Break Down Obstacles Between Current and Goal State (Means-End Analysis)

Break Down Obstacles Between Current and Goal State (Means-End Analysis)

This technique defines the current problem state and the desired end goal state, then systematically identifies obstacles in the way of getting from one to the other.

By mapping the barriers or gaps, you can then develop solutions to address each one. This methodically connects the problem to solutions.

A limitation is that some obstacles may be unknown upfront and only emerge later.

For example, you can list down all the steps required for a new product launch – current state through production, marketing, sales, distribution, etc. to full launch (goal state) – to highlight where resource constraints or other blocks exist so they can be addressed.

Onethread allows dividing big-picture projects into discrete, manageable phases, milestones, and tasks to simplify execution just as problems can be decomposed into more achievable components. Features like dependency mapping further reinforce interconnections.

Using Onethread’s issues and subtasks feature, messy problems can be decomposed into manageable chunks.

10. Ask “Why” Five Times to Identify the Root Cause (The 5 Whys)

Ask "Why" Five Times to Identify the Root Cause (The 5 Whys)

This technique involves asking “Why did this problem occur?” and then responding with an answer that is again met with asking “Why?” This process repeats five times until the root cause is revealed.

Continually asking why digs deeper from surface symptoms to underlying systemic issues.

It is effective for getting to the source of problems originating from human error or process breakdowns.

However, some complex issues may have multiple tangled root causes not solvable through this approach alone.

An example is a retail store experiencing a sudden decline in customers. Successively asking why five times may trace an initial drop to parking challenges, stemming from a city construction project – the true starting point to address.

11. Evaluate Strengths, Weaknesses, Opportunities, and Threats (SWOT Analysis)

Evaluate Strengths, Weaknesses, Opportunities, and Threats (SWOT Analysis)

This involves analyzing a problem or proposed solution by categorizing internal and external factors into a 2×2 matrix: Strengths, Weaknesses as the internal rows; Opportunities and Threats as the external columns.

Systematically identifying these elements provides balanced insight to evaluate options and risks. It is impactful when evaluating alternative solutions or developing strategy amid complexity or uncertainty.

The key benefit of SWOT analysis is enabling multi-dimensional thinking when rationally evaluating options. Rather than getting anchored on just the upsides or the existing way of operating, it urges a systematic assessment through four different lenses:

  • Internal Strengths: Our core competencies/advantages able to deliver success
  • Internal Weaknesses: Gaps/vulnerabilities we need to manage
  • External Opportunities: Ways we can differentiate/drive additional value
  • External Threats: Risks we must navigate or mitigate

Multiperspective analysis provides the needed holistic view of the balanced risk vs. reward equation for strategic decision making amid uncertainty.

However, SWOT can feel restrictive if not tailored and evolved for different issue types.

Teams should view SWOT analysis as a starting point, augmenting it further for distinct scenarios.

An example is performing a SWOT analysis on whether a small business should expand into a new market – evaluating internal capabilities to execute vs. risks in the external competitive and demand environment to inform the growth decision with eyes wide open.

12. Compare Current vs Expected Performance (Gap Analysis)

Compare Current vs Expected Performance (Gap Analysis)

This technique involves comparing the current state of performance, output, or results to the desired or expected levels to highlight shortfalls.

By quantifying the gaps, you can identify problem areas and prioritize address solutions.

Gap analysis is based on the simple principle – “you can’t improve what you don’t measure.” It enables facts-driven problem diagnosis by highlighting delta to goals, not just vague dissatisfaction that something seems wrong. And measurement immediately suggests improvement opportunities – address the biggest gaps first.

This data orientation also supports ROI analysis on fixing issues – the return from closing larger gaps outweighs narrowly targeting smaller performance deficiencies.

However, the approach is only effective if robust standards and metrics exist as the benchmark to evaluate against. Organizations should invest upfront in establishing performance frameworks.

Furthermore, while numbers are invaluable, the human context behind problems should not be ignored – quantitative versus qualitative gap assessment is optimally blended.

For example, if usage declines are noted during software gap analysis, this could be used as a signal to improve user experience through design.

13. Observe Processes from the Frontline (Gemba Walk)

Observe Processes from the Frontline (Gemba Walk)

A Gemba walk involves going to the actual place where work is done, directly observing the process, engaging with employees, and finding areas for improvement.

By experiencing firsthand rather than solely reviewing abstract reports, practical problems and ideas emerge.

The limitation is Gemba walks provide anecdotes not statistically significant data. It complements but does not replace comprehensive performance measurement.

An example is a factory manager inspecting the production line to spot jam areas based on direct reality rather than relying on throughput dashboards alone back in her office. Frontline insights prove invaluable.

14. Analyze Competitive Forces (Porter’s Five Forces)

Analyze Competitive Forces (Porter’s Five Forces)

This involves assessing the marketplace around a problem or business situation via five key factors: competitors, new entrants, substitute offerings, suppliers, and customer power.

Evaluating these forces illuminates risks and opportunities for strategy development and issue resolution. It is effective for understanding dynamic external threats and opportunities when operating in a contested space.

However, over-indexing on only external factors can overlook the internal capabilities needed to execute solutions.

A startup CEO, for example, may analyze market entry barriers, whitespace opportunities, and disruption risks across these five forces to shape new product rollout strategies and marketing approaches.

15. Think from Different Perspectives (Six Thinking Hats)

Think from Different Perspectives (Six Thinking Hats)

The Six Thinking Hats is a technique developed by Edward de Bono that encourages people to think about a problem from six different perspectives, each represented by a colored “thinking hat.”

The key benefit of this strategy is that it pushes team members to move outside their usual thinking style and consider new angles. This brings more diverse ideas and solutions to the table.

It works best for complex problems that require innovative solutions and when a team is stuck in an unproductive debate. The structured framework keeps the conversation flowing in a positive direction.

Limitations are that it requires training on the method itself and may feel unnatural at first. Team dynamics can also influence success – some members may dominate certain “hats” while others remain quiet.

A real-life example is a software company debating whether to build a new feature. The white hat focuses on facts, red on gut feelings, black on potential risks, yellow on benefits, green on new ideas, and blue on process. This exposes more balanced perspectives before deciding.

Onethread centralizes diverse stakeholder communication onto one platform, ensuring all voices are incorporated when evaluating project tradeoffs, just as problem-solving should consider multifaceted solutions.

16. Visualize the Problem (Draw it Out)

Visualize the Problem (Draw it Out)

Drawing out a problem involves creating visual representations like diagrams, flowcharts, and maps to work through challenging issues.

This strategy is helpful when dealing with complex situations with lots of interconnected components. The visuals simplify the complexity so you can thoroughly understand the problem and all its nuances.

Key benefits are that it allows more stakeholders to get on the same page regarding root causes and it sparks new creative solutions as connections are made visually.

However, simple problems with few variables don’t require extensive diagrams. Additionally, some challenges are so multidimensional that fully capturing every aspect is difficult.

A real-life example would be mapping out all the possible causes leading to decreased client satisfaction at a law firm. An intricate fishbone diagram with branches for issues like service delivery, technology, facilities, culture, and vendor partnerships allows the team to trace problems back to their origins and brainstorm targeted fixes.

17. Follow a Step-by-Step Procedure (Algorithms)

Follow a Step-by-Step Procedure (Algorithms)

An algorithm is a predefined step-by-step process that is guaranteed to produce the correct solution if implemented properly.

Using algorithms is effective when facing problems that have clear, binary right and wrong answers. Algorithms work for mathematical calculations, computer code, manufacturing assembly lines, and scientific experiments.

Key benefits are consistency, accuracy, and efficiency. However, they require extensive upfront development and only apply to scenarios with strict parameters. Additionally, human error can lead to mistakes.

For example, crew members of fast food chains like McDonald’s follow specific algorithms for food prep – from grill times to ingredient amounts in sandwiches, to order fulfillment procedures. This ensures uniform quality and service across all locations. However, if a step is missed, errors occur.

The Problem-Solving Process

The Problem-Solving Process

The problem-solving process typically includes defining the issue, analyzing details, creating solutions, weighing choices, acting, and reviewing results.

In the above, we have discussed several problem-solving strategies. For every problem-solving strategy, you have to follow these processes. Here’s a detailed step-by-step process of effective problem-solving:

Step 1: Identify the Problem

The problem-solving process starts with identifying the problem. This step involves understanding the issue’s nature, its scope, and its impact. Once the problem is clearly defined, it sets the foundation for finding effective solutions.

Identifying the problem is crucial. It means figuring out exactly what needs fixing. This involves looking at the situation closely, understanding what’s wrong, and knowing how it affects things. It’s about asking the right questions to get a clear picture of the issue. 

This step is important because it guides the rest of the problem-solving process. Without a clear understanding of the problem, finding a solution is much harder. It’s like diagnosing an illness before treating it. Once the problem is identified accurately, you can move on to exploring possible solutions and deciding on the best course of action.

Step 2: Break Down the Problem

Breaking down the problem is a key step in the problem-solving process. It involves dividing the main issue into smaller, more manageable parts. This makes it easier to understand and tackle each component one by one.

After identifying the problem, the next step is to break it down. This means splitting the big issue into smaller pieces. It’s like solving a puzzle by handling one piece at a time. 

By doing this, you can focus on each part without feeling overwhelmed. It also helps in identifying the root causes of the problem. Breaking down the problem allows for a clearer analysis and makes finding solutions more straightforward. 

Each smaller problem can be addressed individually, leading to an effective resolution of the overall issue. This approach not only simplifies complex problems but also aids in developing a systematic plan to solve them.

Step 3: Come up with potential solutions

Coming up with potential solutions is the third step in the problem-solving process. It involves brainstorming various options to address the problem, considering creativity and feasibility to find the best approach.

After breaking down the problem, it’s time to think of ways to solve it. This stage is about brainstorming different solutions. You look at the smaller issues you’ve identified and start thinking of ways to fix them. This is where creativity comes in. 

You want to come up with as many ideas as possible, no matter how out-of-the-box they seem. It’s important to consider all options and evaluate their pros and cons. This process allows you to gather a range of possible solutions. 

Later, you can narrow these down to the most practical and effective ones. This step is crucial because it sets the stage for deciding on the best solution to implement. It’s about being open-minded and innovative to tackle the problem effectively.

Step 4: Analyze the possible solutions

Analyzing the possible solutions is the fourth step in the problem-solving process. It involves evaluating each proposed solution’s advantages and disadvantages to determine the most effective and feasible option.

After coming up with potential solutions, the next step is to analyze them. This means looking closely at each idea to see how well it solves the problem. You weigh the pros and cons of every solution.

Consider factors like cost, time, resources, and potential outcomes. This analysis helps in understanding the implications of each option. It’s about being critical and objective, ensuring that the chosen solution is not only effective but also practical.

This step is vital because it guides you towards making an informed decision. It involves comparing the solutions against each other and selecting the one that best addresses the problem.

By thoroughly analyzing the options, you can move forward with confidence, knowing you’ve chosen the best path to solve the issue.

Step 5: Implement and Monitor the Solutions

Implementing and monitoring the solutions is the final step in the problem-solving process. It involves putting the chosen solution into action and observing its effectiveness, making adjustments as necessary.

Once you’ve selected the best solution, it’s time to put it into practice. This step is about action. You implement the chosen solution and then keep an eye on how it works. Monitoring is crucial because it tells you if the solution is solving the problem as expected. 

If things don’t go as planned, you may need to make some changes. This could mean tweaking the current solution or trying a different one. The goal is to ensure the problem is fully resolved. 

This step is critical because it involves real-world application. It’s not just about planning; it’s about doing and adjusting based on results. By effectively implementing and monitoring the solutions, you can achieve the desired outcome and solve the problem successfully.

Why This Process is Important

Following a defined process to solve problems is important because it provides a systematic, structured approach instead of a haphazard one. Having clear steps guides logical thinking, analysis, and decision-making to increase effectiveness. Key reasons it helps are:

  • Clear Direction: This process gives you a clear path to follow, which can make solving problems less overwhelming.
  • Better Solutions: Thoughtful analysis of root causes, iterative testing of solutions, and learning orientation lead to addressing the heart of issues rather than just symptoms.
  • Saves Time and Energy: Instead of guessing or trying random things, this process helps you find a solution more efficiently.
  • Improves Skills: The more you use this process, the better you get at solving problems. It’s like practicing a sport. The more you practice, the better you play.
  • Maximizes collaboration: Involving various stakeholders in the process enables broader inputs. Their communication and coordination are streamlined through organized brainstorming and evaluation.
  • Provides consistency: Standard methodology across problems enables building institutional problem-solving capabilities over time. Patterns emerge on effective techniques to apply to different situations.

The problem-solving process is a powerful tool that can help us tackle any challenge we face. By following these steps, we can find solutions that work and learn important skills along the way.

Key Skills for Efficient Problem Solving

Key Skills for Efficient Problem Solving

Efficient problem-solving requires breaking down issues logically, evaluating options, and implementing practical solutions.

Key skills include critical thinking to understand root causes, creativity to brainstorm innovative ideas, communication abilities to collaborate with others, and decision-making to select the best way forward. Staying adaptable, reflecting on outcomes, and applying lessons learned are also essential.

With practice, these capacities will lead to increased personal and team effectiveness in systematically addressing any problem.

 Let’s explore the powers you need to become a problem-solving hero!

Critical Thinking and Analytical Skills

Critical thinking and analytical skills are vital for efficient problem-solving as they enable individuals to objectively evaluate information, identify key issues, and generate effective solutions. 

These skills facilitate a deeper understanding of problems, leading to logical, well-reasoned decisions. By systematically breaking down complex issues and considering various perspectives, individuals can develop more innovative and practical solutions, enhancing their problem-solving effectiveness.

Communication Skills

Effective communication skills are essential for efficient problem-solving as they facilitate clear sharing of information, ensuring all team members understand the problem and proposed solutions. 

These skills enable individuals to articulate issues, listen actively, and collaborate effectively, fostering a productive environment where diverse ideas can be exchanged and refined. By enhancing mutual understanding, communication skills contribute significantly to identifying and implementing the most viable solutions.

Decision-Making

Strong decision-making skills are crucial for efficient problem-solving, as they enable individuals to choose the best course of action from multiple alternatives. 

These skills involve evaluating the potential outcomes of different solutions, considering the risks and benefits, and making informed choices. Effective decision-making leads to the implementation of solutions that are likely to resolve problems effectively, ensuring resources are used efficiently and goals are achieved.

Planning and Prioritization

Planning and prioritization are key for efficient problem-solving, ensuring resources are allocated effectively to address the most critical issues first. This approach helps in organizing tasks according to their urgency and impact, streamlining efforts towards achieving the desired outcome efficiently.

Emotional Intelligence

Emotional intelligence enhances problem-solving by allowing individuals to manage emotions, understand others, and navigate social complexities. It fosters a positive, collaborative environment, essential for generating creative solutions and making informed, empathetic decisions.

Leadership skills drive efficient problem-solving by inspiring and guiding teams toward common goals. Effective leaders motivate their teams, foster innovation, and navigate challenges, ensuring collective efforts are focused and productive in addressing problems.

Time Management

Time management is crucial in problem-solving, enabling individuals to allocate appropriate time to each task. By efficiently managing time, one can ensure that critical problems are addressed promptly without neglecting other responsibilities.

Data Analysis

Data analysis skills are essential for problem-solving, as they enable individuals to sift through data, identify trends, and extract actionable insights. This analytical approach supports evidence-based decision-making, leading to more accurate and effective solutions.

Research Skills

Research skills are vital for efficient problem-solving, allowing individuals to gather relevant information, explore various solutions, and understand the problem’s context. This thorough exploration aids in developing well-informed, innovative solutions.

Becoming a great problem solver takes practice, but with these skills, you’re on your way to becoming a problem-solving hero. 

How to Improve Your Problem-Solving Skills?

How to Improve Your Problem-Solving Skills

Improving your problem-solving skills can make you a master at overcoming challenges. Learn from experts, practice regularly, welcome feedback, try new methods, experiment, and study others’ success to become better.

Learning from Experts

Improving problem-solving skills by learning from experts involves seeking mentorship, attending workshops, and studying case studies. Experts provide insights and techniques that refine your approach, enhancing your ability to tackle complex problems effectively.

To enhance your problem-solving skills, learning from experts can be incredibly beneficial. Engaging with mentors, participating in specialized workshops, and analyzing case studies from seasoned professionals can offer valuable perspectives and strategies. 

Experts share their experiences, mistakes, and successes, providing practical knowledge that can be applied to your own problem-solving process. This exposure not only broadens your understanding but also introduces you to diverse methods and approaches, enabling you to tackle challenges more efficiently and creatively.

Improving problem-solving skills through practice involves tackling a variety of challenges regularly. This hands-on approach helps in refining techniques and strategies, making you more adept at identifying and solving problems efficiently.

One of the most effective ways to enhance your problem-solving skills is through consistent practice. By engaging with different types of problems on a regular basis, you develop a deeper understanding of various strategies and how they can be applied. 

This hands-on experience allows you to experiment with different approaches, learn from mistakes, and build confidence in your ability to tackle challenges.

Regular practice not only sharpens your analytical and critical thinking skills but also encourages adaptability and innovation, key components of effective problem-solving.

Openness to Feedback

Being open to feedback is like unlocking a secret level in a game. It helps you boost your problem-solving skills. Improving problem-solving skills through openness to feedback involves actively seeking and constructively responding to critiques. 

This receptivity enables you to refine your strategies and approaches based on insights from others, leading to more effective solutions. 

Learning New Approaches and Methodologies

Learning new approaches and methodologies is like adding new tools to your toolbox. It makes you a smarter problem-solver. Enhancing problem-solving skills by learning new approaches and methodologies involves staying updated with the latest trends and techniques in your field. 

This continuous learning expands your toolkit, enabling innovative solutions and a fresh perspective on challenges.

Experimentation

Experimentation is like being a scientist of your own problems. It’s a powerful way to improve your problem-solving skills. Boosting problem-solving skills through experimentation means trying out different solutions to see what works best. This trial-and-error approach fosters creativity and can lead to unique solutions that wouldn’t have been considered otherwise.

Analyzing Competitors’ Success

Analyzing competitors’ success is like being a detective. It’s a smart way to boost your problem-solving skills. Improving problem-solving skills by analyzing competitors’ success involves studying their strategies and outcomes. Understanding what worked for them can provide valuable insights and inspire effective solutions for your own challenges. 

Challenges in Problem-Solving

Facing obstacles when solving problems is common. Recognizing these barriers, like fear of failure or lack of information, helps us find ways around them for better solutions.

Fear of Failure

Fear of failure is like a big, scary monster that stops us from solving problems. It’s a challenge many face. Because being afraid of making mistakes can make us too scared to try new solutions. 

How can we overcome this? First, understand that it’s okay to fail. Failure is not the opposite of success; it’s part of learning. Every time we fail, we discover one more way not to solve a problem, getting us closer to the right solution. Treat each attempt like an experiment. It’s not about failing; it’s about testing and learning.

Lack of Information

Lack of information is like trying to solve a puzzle with missing pieces. It’s a big challenge in problem-solving. Because without all the necessary details, finding a solution is much harder. 

How can we fix this? Start by gathering as much information as you can. Ask questions, do research, or talk to experts. Think of yourself as a detective looking for clues. The more information you collect, the clearer the picture becomes. Then, use what you’ve learned to think of solutions. 

Fixed Mindset

A fixed mindset is like being stuck in quicksand; it makes solving problems harder. It means thinking you can’t improve or learn new ways to solve issues. 

How can we change this? First, believe that you can grow and learn from challenges. Think of your brain as a muscle that gets stronger every time you use it. When you face a problem, instead of saying “I can’t do this,” try thinking, “I can’t do this yet.” Look for lessons in every challenge and celebrate small wins. 

Everyone starts somewhere, and mistakes are just steps on the path to getting better. By shifting to a growth mindset, you’ll see problems as opportunities to grow. Keep trying, keep learning, and your problem-solving skills will soar!

Jumping to Conclusions

Jumping to conclusions is like trying to finish a race before it starts. It’s a challenge in problem-solving. That means making a decision too quickly without looking at all the facts. 

How can we avoid this? First, take a deep breath and slow down. Think about the problem like a puzzle. You need to see all the pieces before you know where they go. Ask questions, gather information, and consider different possibilities. Don’t choose the first solution that comes to mind. Instead, compare a few options. 

Feeling Overwhelmed

Feeling overwhelmed is like being buried under a mountain of puzzles. It’s a big challenge in problem-solving. When we’re overwhelmed, everything seems too hard to handle. 

How can we deal with this? Start by taking a step back. Breathe deeply and focus on one thing at a time. Break the big problem into smaller pieces, like sorting puzzle pieces by color. Tackle each small piece one by one. It’s also okay to ask for help. Sometimes, talking to someone else can give you a new perspective. 

Confirmation Bias

Confirmation bias is like wearing glasses that only let you see what you want to see. It’s a challenge in problem-solving. Because it makes us focus only on information that agrees with what we already believe, ignoring anything that doesn’t. 

How can we overcome this? First, be aware that you might be doing it. It’s like checking if your glasses are on right. Then, purposely look for information that challenges your views. It’s like trying on a different pair of glasses to see a new perspective. Ask questions and listen to answers, even if they don’t fit what you thought before.

Groupthink is like everyone in a group deciding to wear the same outfit without asking why. It’s a challenge in problem-solving. It means making decisions just because everyone else agrees, without really thinking it through. 

How can we avoid this? First, encourage everyone in the group to share their ideas, even if they’re different. It’s like inviting everyone to show their unique style of clothes. 

Listen to all opinions and discuss them. It’s okay to disagree; it helps us think of better solutions. Also, sometimes, ask someone outside the group for their thoughts. They might see something everyone in the group missed.

Overcoming obstacles in problem-solving requires patience, openness, and a willingness to learn from mistakes. By recognizing these barriers, we can develop strategies to navigate around them, leading to more effective and creative solutions.

What are the most common problem-solving techniques?

The most common techniques include brainstorming, the 5 Whys, mind mapping, SWOT analysis, and using algorithms or heuristics. Each approach has its strengths, suitable for different types of problems.

What’s the best problem-solving strategy for every situation?

There’s no one-size-fits-all strategy. The best approach depends on the problem’s complexity, available resources, and time constraints. Combining multiple techniques often yields the best results.

How can I improve my problem-solving skills?

Improve your problem-solving skills by practicing regularly, learning from experts, staying open to feedback, and continuously updating your knowledge on new approaches and methodologies.

Are there any tools or resources to help with problem-solving?

Yes, tools like mind mapping software, online courses on critical thinking, and books on problem-solving techniques can be very helpful. Joining forums or groups focused on problem-solving can also provide support and insights.

What are some common mistakes people make when solving problems?

Common mistakes include jumping to conclusions without fully understanding the problem, ignoring valuable feedback, sticking to familiar solutions without considering alternatives, and not breaking down complex problems into manageable parts.

Final Words

Mastering problem-solving strategies equips us with the tools to tackle challenges across all areas of life. By understanding and applying these techniques, embracing a growth mindset, and learning from both successes and obstacles, we can transform problems into opportunities for growth. Continuously improving these skills ensures we’re prepared to face and solve future challenges more effectively.

'  data-srcset=

Let's Get Started with Onethread

Onethread empowers you to plan, organise, and track projects with ease, ensuring you meet deadlines, allocate resources efficiently, and keep progress transparent.

By subscribing you agree to our  Privacy Policy .

Giving modern marketing teams superpowers with short links that stand out.

  • Live Product Demo

© Copyright 2023 Onethread, Inc

Math Problem Solving Strategies

In these lessons, we will learn some math problem solving strategies for example, Verbal Model (or Logical Reasoning), Algebraic Model, Block Model (or Singapore Math), Guess & Check Model and Find a Pattern Model.

Related Pages Solving Word Problems Using Block Models Heuristic Approach to Problem-Solving Algebra Lessons

Problem Solving Strategies

The strategies used in solving word problems:

  • What do you know?
  • What do you need to know?
  • Draw a diagram/picture

Solution Strategies Label Variables Verbal Model or Logical Reasoning Algebraic Model - Translate Verbal Model to Algebraic Model Solve and Check.

Solving Word Problems

Step 1: Identify (What is being asked?) Step 2: Strategize Step 3: Write the equation(s) Step 4: Answer the question Step 5: Check

Problem Solving Strategy: Guess And Check

Using the guess and check problem solving strategy to help solve math word problems.

Example: Jamie spent $40 for an outfit. She paid for the items using $10, $5 and $1 bills. If she gave the clerk 10 bills in all, how many of each bill did she use?

Problem Solving : Make A Table And Look For A Pattern

  • Identify - What is the question?
  • Plan - What strategy will I use to solve the problem?
  • Solve - Carry out your plan.
  • Verify - Does my answer make sense?

Example: Marcus ran a lemonade stand for 5 days. On the first day, he made $5. Every day after that he made $2 more than the previous day. How much money did Marcus made in all after 5 days?

Find A Pattern Model (Intermediate)

In this lesson, we will look at some intermediate examples of Find a Pattern method of problem-solving strategy.

Example: The figure shows a series of rectangles where each rectangle is bounded by 10 dots. a) How many dots are required for 7 rectangles? b) If the figure has 73 dots, how many rectangles would there be?

a) The number of dots required for 7 rectangles is 52.

b) If the figure has 73 dots, there would be 10 rectangles.

Example: Each triangle in the figure below has 3 dots. Study the pattern and find the number of dots for 7 layers of triangles.

The number of dots for 7 layers of triangles is 36.

Example: The table below shows numbers placed into groups I, II, III, IV, V and VI. In which groups would the following numbers belong? a) 25 b) 46 c) 269

Solution: The pattern is: The remainder when the number is divided by 6 determines the group. a) 25 ÷ 6 = 4 remainder 1 (Group I) b) 46 ÷ 6 = 7 remainder 4 (Group IV) c) 269 ÷ 6 = 44 remainder 5 (Group V)

Example: The following figures were formed using matchsticks.

a) Based on the above series of figures, complete the table below.

b) How many triangles are there if the figure in the series has 9 squares?

c) How many matchsticks would be used in the figure in the series with 11 squares?

b) The pattern is +2 for each additional square.   18 + 2 = 20   If the figure in the series has 9 squares, there would be 20 triangles.

c) The pattern is + 7 for each additional square   61 + (3 x 7) = 82   If the figure in the series has 11 squares, there would be 82 matchsticks.

Example: Seven ex-schoolmates had a gathering. Each one of them shook hands with all others once. How many handshakes were there?

Total = 6 + 5 + 4 + 3 + 2 + 1 = 21 handshakes.

The following video shows more examples of using problem solving strategies and models. Question 1: Approximate your average speed given some information Question 2: The table shows the number of seats in each of the first four rows in an auditorium. The remaining ten rows follow the same pattern. Find the number of seats in the last row. Question 3: You are hanging three pictures in the wall of your home that is 16 feet wide. The width of your pictures are 2, 3 and 4 feet. You want space between your pictures to be the same and the space to the left and right to be 6 inches more than between the pictures. How would you place the pictures?

The following are some other examples of problem solving strategies.

Explore it/Act it/Try it (EAT) Method (Basic) Explore it/Act it/Try it (EAT) Method (Intermediate) Explore it/Act it/Try it (EAT) Method (Advanced)

Finding A Pattern (Basic) Finding A Pattern (Intermediate) Finding A Pattern (Advanced)

Mathway Calculator Widget

We welcome your feedback, comments and questions about this site or page. Please submit your feedback or enquiries via our Feedback page.

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons
  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Mathematics LibreTexts

Module 1: Problem Solving Strategies

  • Last updated
  • Save as PDF
  • Page ID 10352

Unlike exercises, there is never a simple recipe for solving a problem. You can get better and better at solving problems, both by building up your background knowledge and by simply practicing. As you solve more problems (and learn how other people solved them), you learn strategies and techniques that can be useful. But no single strategy works every time.

Pólya’s How to Solve It

George Pólya was a great champion in the field of teaching effective problem solving skills. He was born in Hungary in 1887, received his Ph.D. at the University of Budapest, and was a professor at Stanford University (among other universities). He wrote many mathematical papers along with three books, most famously, “How to Solve it.” Pólya died at the age 98 in 1985.1

1. Image of Pólya by Thane Plambeck from Palo Alto, California (Flickr) [CC BY

Screen Shot 2018-08-30 at 4.43.05 PM.png

In 1945, Pólya published the short book How to Solve It , which gave a four-step method for solving mathematical problems:

First, you have to understand the problem.

After understanding, then make a plan.

Carry out the plan.

Look back on your work. How could it be better?

This is all well and good, but how do you actually do these steps?!?! Steps 1. and 2. are particularly mysterious! How do you “make a plan?” That is where you need some tools in your toolbox, and some experience to draw upon.

Much has been written since 1945 to explain these steps in more detail, but the truth is that they are more art than science. This is where math becomes a creative endeavor (and where it becomes so much fun). We will articulate some useful problem solving strategies, but no such list will ever be complete. This is really just a start to help you on your way. The best way to become a skilled problem solver is to learn the background material well, and then to solve a lot of problems!

Problem Solving Strategy 1 (Guess and Test)

Make a guess and test to see if it satisfies the demands of the problem. If it doesn't, alter the guess appropriately and check again. Keep doing this until you find a solution.

Mr. Jones has a total of 25 chickens and cows on his farm. How many of each does he have if all together there are 76 feet?

Step 1: Understanding the problem

We are given in the problem that there are 25 chickens and cows.

All together there are 76 feet.

Chickens have 2 feet and cows have 4 feet.

We are trying to determine how many cows and how many chickens Mr. Jones has on his farm.

Step 2: Devise a plan

Going to use Guess and test along with making a tab

Many times the strategy below is used with guess and test.

Make a table and look for a pattern:

Procedure: Make a table reflecting the data in the problem. If done in an orderly way, such a table will often reveal patterns and relationships that suggest how the problem can be solved.

Step 3: Carry out the plan:

Notice we are going in the wrong direction! The total number of feet is decreasing!

Better! The total number of feet are increasing!

Step 4: Looking back:

Check: 12 + 13 = 25 heads

24 + 52 = 76 feet.

We have found the solution to this problem. I could use this strategy when there are a limited number of possible answers and when two items are the same but they have one characteristic that is different.

Videos to watch:

1. Click on this link to see an example of “Guess and Test”

http://www.mathstories.com/strategies.htm

2. Click on this link to see another example of Guess and Test.

http://www.mathinaction.org/problem-solving-strategies.html

Check in question 1:

clipboard_e6298bbd7c7f66d9eb9affcd33892ef0d.png

Place the digits 8, 10, 11, 12, and 13 in the circles to make the sums across and vertically equal 31. (5 points)

Check in question 2:

Old McDonald has 250 chickens and goats in the barnyard. Altogether there are 760 feet . How many of each animal does he have? Make sure you use Polya’s 4 problem solving steps. (12 points)

Problem Solving Strategy 2 (Draw a Picture). Some problems are obviously about a geometric situation, and it is clear you want to draw a picture and mark down all of the given information before you try to solve it. But even for a problem that is not geometric thinking visually can help!

Videos to watch demonstrating how to use "Draw a Picture".

1. Click on this link to see an example of “Draw a Picture”

2. Click on this link to see another example of Draw a Picture.

Problem Solving Strategy 3 ( Using a variable to find the sum of a sequence.)

Gauss's strategy for sequences.

last term = fixed number ( n -1) + first term

The fix number is the the amount each term is increasing or decreasing by. "n" is the number of terms you have. You can use this formula to find the last term in the sequence or the number of terms you have in a sequence.

Ex: 2, 5, 8, ... Find the 200th term.

Last term = 3(200-1) +2

Last term is 599.

To find the sum of a sequence: sum = [(first term + last term) (number of terms)]/ 2

Sum = (2 + 599) (200) then divide by 2

Sum = 60,100

Check in question 3: (10 points)

Find the 320 th term of 7, 10, 13, 16 …

Then find the sum of the first 320 terms.

Problem Solving Strategy 4 (Working Backwards)

This is considered a strategy in many schools. If you are given an answer, and the steps that were taken to arrive at that answer, you should be able to determine the starting point.

Videos to watch demonstrating of “Working Backwards”

https://www.youtube.com/watch?v=5FFWTsMEeJw

Karen is thinking of a number. If you double it, and subtract 7, you obtain 11. What is Karen’s number?

1. We start with 11 and work backwards.

2. The opposite of subtraction is addition. We will add 7 to 11. We are now at 18.

3. The opposite of doubling something is dividing by 2. 18/2 = 9

4. This should be our answer. Looking back:

9 x 2 = 18 -7 = 11

5. We have the right answer.

Check in question 4:

Christina is thinking of a number.

If you multiply her number by 93, add 6, and divide by 3, you obtain 436. What is her number? Solve this problem by working backwards. (5 points)

Problem Solving Strategy 5 (Looking for a Pattern)

Definition: A sequence is a pattern involving an ordered arrangement of numbers.

We first need to find a pattern.

Ask yourself as you search for a pattern – are the numbers growing steadily larger? Steadily smaller? How is each number related?

Example 1: 1, 4, 7, 10, 13…

Find the next 2 numbers. The pattern is each number is increasing by 3. The next two numbers would be 16 and 19.

Example 2: 1, 4, 9, 16 … find the next 2 numbers. It looks like each successive number is increase by the next odd number. 1 + 3 = 4.

So the next number would be

25 + 11 = 36

Example 3: 10, 7, 4, 1, -2… find the next 2 numbers.

In this sequence, the numbers are decreasing by 3. So the next 2 numbers would be -2 -3 = -5

-5 – 3 = -8

Example 4: 1, 2, 4, 8 … find the next two numbers.

This example is a little bit harder. The numbers are increasing but not by a constant. Maybe a factor?

So each number is being multiplied by 2.

16 x 2 = 32

1. Click on this link to see an example of “Looking for a Pattern”

2. Click on this link to see another example of Looking for a Pattern.

Problem Solving Strategy 6 (Make a List)

Example 1 : Can perfect squares end in a 2 or a 3?

List all the squares of the numbers 1 to 20.

1 4 9 16 25 36 49 64 81 100 121 144 169 196 225 256 289 324 361 400.

Now look at the number in the ones digits. Notice they are 0, 1, 4, 5, 6, or 9. Notice none of the perfect squares end in 2, 3, 7, or 8. This list suggests that perfect squares cannot end in a 2, 3, 7 or 8.

How many different amounts of money can you have in your pocket if you have only three coins including only dimes and quarters?

Quarter’s dimes

0 3 30 cents

1 2 45 cents

2 1 60 cents

3 0 75 cents

Videos demonstrating "Make a List"

Check in question 5:

How many ways can you make change for 23 cents using only pennies, nickels, and dimes? (10 points)

Problem Solving Strategy 7 (Solve a Simpler Problem)

Geometric Sequences:

How would we find the nth term?

Solve a simpler problem:

1, 3, 9, 27.

1. To get from 1 to 3 what did we do?

2. To get from 3 to 9 what did we do?

Let’s set up a table:

Term Number what did we do

problem solving example with solution

Looking back: How would you find the nth term?

problem solving example with solution

Find the 10 th term of the above sequence.

Let L = the tenth term

problem solving example with solution

Problem Solving Strategy 8 (Process of Elimination)

This strategy can be used when there is only one possible solution.

I’m thinking of a number.

The number is odd.

It is more than 1 but less than 100.

It is greater than 20.

It is less than 5 times 7.

The sum of the digits is 7.

It is evenly divisible by 5.

a. We know it is an odd number between 1 and 100.

b. It is greater than 20 but less than 35

21, 23, 25, 27, 29, 31, 33, 35. These are the possibilities.

c. The sum of the digits is 7

21 (2+1=3) No 23 (2+3 = 5) No 25 (2 + 5= 7) Yes Using the same process we see there are no other numbers that meet this criteria. Also we notice 25 is divisible by 5. By using the strategy elimination, we have found our answer.

Check in question 6: (8 points)

Jose is thinking of a number.

The number is not odd.

The sum of the digits is divisible by 2.

The number is a multiple of 11.

It is greater than 5 times 4.

It is a multiple of 6

It is less than 7 times 8 +23

What is the number?

Click on this link for a quick review of the problem solving strategies.

https://garyhall.org.uk/maths-problem-solving-strategies.html

Solving Equations

What is an equation.

An equation says that two things are equal. It will have an equals sign "=" like this:

That equations says:

what is on the left (x − 2)  equals  what is on the right (4)

So an equation is like a statement " this equals that "

What is a Solution?

A Solution is a value we can put in place of a variable (such as x ) that makes the equation true .

Example: x − 2 = 4

When we put 6 in place of x we get:

which is true

So x = 6 is a solution.

How about other values for x ?

  • For x=5 we get "5−2=4" which is not true , so x=5 is not a solution .
  • For x=9 we get "9−2=4" which is not true , so x=9 is not a solution .

In this case x = 6 is the only solution.

You might like to practice solving some animated equations .

More Than One Solution

There can be more than one solution.

Example: (x−3)(x−2) = 0

When x is 3 we get:

(3−3)(3−2) = 0 × 1 = 0

And when x is 2 we get:

(2−3)(2−2) = (−1) × 0 = 0

which is also true

So the solutions are:

x = 3 , or x = 2

When we gather all solutions together it is called a Solution Set

The above solution set is: {2, 3}

Solutions Everywhere!

Some equations are true for all allowed values and are then called Identities

Example: sin(−θ) = −sin(θ) is one of the Trigonometric Identities

Let's try θ = 30°:

sin(−30°) = −0.5 and

−sin(30°) = −0.5

So it is true for θ = 30°

Let's try θ = 90°:

sin(−90°) = −1 and

−sin(90°) = −1

So it is also true for θ = 90°

Is it true for all values of θ ? Try some values for yourself!

How to Solve an Equation

There is no "one perfect way" to solve all equations.

A Useful Goal

But we often get success when our goal is to end up with:

x = something

In other words, we want to move everything except "x" (or whatever name the variable has) over to the right hand side.

Example: Solve 3x−6 = 9

Now we have x = something ,

and a short calculation reveals that x = 5

Like a Puzzle

In fact, solving an equation is just like solving a puzzle. And like puzzles, there are things we can (and cannot) do.

Here are some things we can do:

  • Add or Subtract the same value from both sides
  • Clear out any fractions by Multiplying every term by the bottom parts
  • Divide every term by the same nonzero value
  • Combine Like Terms
  • Expanding (the opposite of factoring) may also help
  • Recognizing a pattern, such as the difference of squares
  • Sometimes we can apply a function to both sides (e.g. square both sides)

Example: Solve √(x/2) = 3

And the more "tricks" and techniques you learn the better you will get.

Special Equations

There are special ways of solving some types of equations. Learn how to ...

  • solve Quadratic Equations
  • solve Radical Equations
  • solve Equations with Sine, Cosine and Tangent

Check Your Solutions

You should always check that your "solution" really is a solution.

How To Check

Take the solution(s) and put them in the original equation to see if they really work.

Example: solve for x:

2x x − 3 + 3 = 6 x − 3     (x≠3)

We have said x≠3 to avoid a division by zero.

Let's multiply through by (x − 3) :

2x + 3(x−3) = 6

Bring the 6 to the left:

2x + 3(x−3) − 6 = 0

Expand and solve:

2x + 3x − 9 − 6 = 0

5x − 15 = 0

5(x − 3) = 0

Which can be solved by having x=3

Let us check x=3 using the original question:

2 × 3 3 − 3 + 3  =   6 3 − 3

Hang On: 3 − 3 = 0 That means dividing by Zero!

And anyway, we said at the top that x≠3 , so ...

x = 3 does not actually work, and so:

There is No Solution!

That was interesting ... we thought we had found a solution, but when we looked back at the question we found it wasn't allowed!

This gives us a moral lesson:

"Solving" only gives us possible solutions, they need to be checked!

  • Note down where an expression is not defined (due to a division by zero, the square root of a negative number, or some other reason)
  • Show all the steps , so it can be checked later (by you or someone else)

Youtube

  • TPC and eLearning
  • Read Watch Interact
  • What's NEW at TPC?
  • Practice Review Test
  • Teacher-Tools
  • Subscription Selection
  • Seat Calculator
  • Ad Free Account
  • Edit Profile Settings
  • Classes (Version 2)
  • Student Progress Edit
  • Task Properties
  • Export Student Progress
  • Task, Activities, and Scores
  • Metric Conversions Questions
  • Metric System Questions
  • Metric Estimation Questions
  • Significant Digits Questions
  • Proportional Reasoning
  • Acceleration
  • Distance-Displacement
  • Dots and Graphs
  • Graph That Motion
  • Match That Graph
  • Name That Motion
  • Motion Diagrams
  • Pos'n Time Graphs Numerical
  • Pos'n Time Graphs Conceptual
  • Up And Down - Questions
  • Balanced vs. Unbalanced Forces
  • Change of State
  • Force and Motion
  • Mass and Weight
  • Match That Free-Body Diagram
  • Net Force (and Acceleration) Ranking Tasks
  • Newton's Second Law
  • Normal Force Card Sort
  • Recognizing Forces
  • Air Resistance and Skydiving
  • Solve It! with Newton's Second Law
  • Which One Doesn't Belong?
  • Component Addition Questions
  • Head-to-Tail Vector Addition
  • Projectile Mathematics
  • Trajectory - Angle Launched Projectiles
  • Trajectory - Horizontally Launched Projectiles
  • Vector Addition
  • Vector Direction
  • Which One Doesn't Belong? Projectile Motion
  • Forces in 2-Dimensions
  • Being Impulsive About Momentum
  • Explosions - Law Breakers
  • Hit and Stick Collisions - Law Breakers
  • Case Studies: Impulse and Force
  • Impulse-Momentum Change Table
  • Keeping Track of Momentum - Hit and Stick
  • Keeping Track of Momentum - Hit and Bounce
  • What's Up (and Down) with KE and PE?
  • Energy Conservation Questions
  • Energy Dissipation Questions
  • Energy Ranking Tasks
  • LOL Charts (a.k.a., Energy Bar Charts)
  • Match That Bar Chart
  • Words and Charts Questions
  • Name That Energy
  • Stepping Up with PE and KE Questions
  • Case Studies - Circular Motion
  • Circular Logic
  • Forces and Free-Body Diagrams in Circular Motion
  • Gravitational Field Strength
  • Universal Gravitation
  • Angular Position and Displacement
  • Linear and Angular Velocity
  • Angular Acceleration
  • Rotational Inertia
  • Balanced vs. Unbalanced Torques
  • Getting a Handle on Torque
  • Torque-ing About Rotation
  • Properties of Matter
  • Fluid Pressure
  • Buoyant Force
  • Sinking, Floating, and Hanging
  • Pascal's Principle
  • Flow Velocity
  • Bernoulli's Principle
  • Balloon Interactions
  • Charge and Charging
  • Charge Interactions
  • Charging by Induction
  • Conductors and Insulators
  • Coulombs Law
  • Electric Field
  • Electric Field Intensity
  • Polarization
  • Case Studies: Electric Power
  • Know Your Potential
  • Light Bulb Anatomy
  • I = ∆V/R Equations as a Guide to Thinking
  • Parallel Circuits - ∆V = I•R Calculations
  • Resistance Ranking Tasks
  • Series Circuits - ∆V = I•R Calculations
  • Series vs. Parallel Circuits
  • Equivalent Resistance
  • Period and Frequency of a Pendulum
  • Pendulum Motion: Velocity and Force
  • Energy of a Pendulum
  • Period and Frequency of a Mass on a Spring
  • Horizontal Springs: Velocity and Force
  • Vertical Springs: Velocity and Force
  • Energy of a Mass on a Spring
  • Decibel Scale
  • Frequency and Period
  • Closed-End Air Columns
  • Name That Harmonic: Strings
  • Rocking the Boat
  • Wave Basics
  • Matching Pairs: Wave Characteristics
  • Wave Interference
  • Waves - Case Studies
  • Color Addition and Subtraction
  • Color Filters
  • If This, Then That: Color Subtraction
  • Light Intensity
  • Color Pigments
  • Converging Lenses
  • Curved Mirror Images
  • Law of Reflection
  • Refraction and Lenses
  • Total Internal Reflection
  • Who Can See Who?
  • Formulas and Atom Counting
  • Atomic Models
  • Bond Polarity
  • Entropy Questions
  • Cell Voltage Questions
  • Heat of Formation Questions
  • Reduction Potential Questions
  • Oxidation States Questions
  • Measuring the Quantity of Heat
  • Hess's Law
  • Oxidation-Reduction Questions
  • Galvanic Cells Questions
  • Thermal Stoichiometry
  • Molecular Polarity
  • Quantum Mechanics
  • Balancing Chemical Equations
  • Bronsted-Lowry Model of Acids and Bases
  • Classification of Matter
  • Collision Model of Reaction Rates
  • Density Ranking Tasks
  • Dissociation Reactions
  • Complete Electron Configurations
  • Elemental Measures
  • Enthalpy Change Questions
  • Equilibrium Concept
  • Equilibrium Constant Expression
  • Equilibrium Calculations - Questions
  • Equilibrium ICE Table
  • Intermolecular Forces Questions
  • Ionic Bonding
  • Lewis Electron Dot Structures
  • Limiting Reactants
  • Line Spectra Questions
  • Mass Stoichiometry
  • Measurement and Numbers
  • Metals, Nonmetals, and Metalloids
  • Metric Estimations
  • Metric System
  • Molarity Ranking Tasks
  • Mole Conversions
  • Name That Element
  • Names to Formulas
  • Names to Formulas 2
  • Nuclear Decay
  • Particles, Words, and Formulas
  • Periodic Trends
  • Precipitation Reactions and Net Ionic Equations
  • Pressure Concepts
  • Pressure-Temperature Gas Law
  • Pressure-Volume Gas Law
  • Chemical Reaction Types
  • Significant Digits and Measurement
  • States Of Matter Exercise
  • Stoichiometry Law Breakers
  • Stoichiometry - Math Relationships
  • Subatomic Particles
  • Spontaneity and Driving Forces
  • Gibbs Free Energy
  • Volume-Temperature Gas Law
  • Acid-Base Properties
  • Energy and Chemical Reactions
  • Chemical and Physical Properties
  • Valence Shell Electron Pair Repulsion Theory
  • Writing Balanced Chemical Equations
  • Mission CG1
  • Mission CG10
  • Mission CG2
  • Mission CG3
  • Mission CG4
  • Mission CG5
  • Mission CG6
  • Mission CG7
  • Mission CG8
  • Mission CG9
  • Mission EC1
  • Mission EC10
  • Mission EC11
  • Mission EC12
  • Mission EC2
  • Mission EC3
  • Mission EC4
  • Mission EC5
  • Mission EC6
  • Mission EC7
  • Mission EC8
  • Mission EC9
  • Mission RL1
  • Mission RL2
  • Mission RL3
  • Mission RL4
  • Mission RL5
  • Mission RL6
  • Mission KG7
  • Mission RL8
  • Mission KG9
  • Mission RL10
  • Mission RL11
  • Mission RM1
  • Mission RM2
  • Mission RM3
  • Mission RM4
  • Mission RM5
  • Mission RM6
  • Mission RM8
  • Mission RM10
  • Mission LC1
  • Mission RM11
  • Mission LC2
  • Mission LC3
  • Mission LC4
  • Mission LC5
  • Mission LC6
  • Mission LC8
  • Mission SM1
  • Mission SM2
  • Mission SM3
  • Mission SM4
  • Mission SM5
  • Mission SM6
  • Mission SM8
  • Mission SM10
  • Mission KG10
  • Mission SM11
  • Mission KG2
  • Mission KG3
  • Mission KG4
  • Mission KG5
  • Mission KG6
  • Mission KG8
  • Mission KG11
  • Mission F2D1
  • Mission F2D2
  • Mission F2D3
  • Mission F2D4
  • Mission F2D5
  • Mission F2D6
  • Mission KC1
  • Mission KC2
  • Mission KC3
  • Mission KC4
  • Mission KC5
  • Mission KC6
  • Mission KC7
  • Mission KC8
  • Mission AAA
  • Mission SM9
  • Mission LC7
  • Mission LC9
  • Mission NL1
  • Mission NL2
  • Mission NL3
  • Mission NL4
  • Mission NL5
  • Mission NL6
  • Mission NL7
  • Mission NL8
  • Mission NL9
  • Mission NL10
  • Mission NL11
  • Mission NL12
  • Mission MC1
  • Mission MC10
  • Mission MC2
  • Mission MC3
  • Mission MC4
  • Mission MC5
  • Mission MC6
  • Mission MC7
  • Mission MC8
  • Mission MC9
  • Mission RM7
  • Mission RM9
  • Mission RL7
  • Mission RL9
  • Mission SM7
  • Mission SE1
  • Mission SE10
  • Mission SE11
  • Mission SE12
  • Mission SE2
  • Mission SE3
  • Mission SE4
  • Mission SE5
  • Mission SE6
  • Mission SE7
  • Mission SE8
  • Mission SE9
  • Mission VP1
  • Mission VP10
  • Mission VP2
  • Mission VP3
  • Mission VP4
  • Mission VP5
  • Mission VP6
  • Mission VP7
  • Mission VP8
  • Mission VP9
  • Mission WM1
  • Mission WM2
  • Mission WM3
  • Mission WM4
  • Mission WM5
  • Mission WM6
  • Mission WM7
  • Mission WM8
  • Mission WE1
  • Mission WE10
  • Mission WE2
  • Mission WE3
  • Mission WE4
  • Mission WE5
  • Mission WE6
  • Mission WE7
  • Mission WE8
  • Mission WE9
  • Vector Walk Interactive
  • Name That Motion Interactive
  • Kinematic Graphing 1 Concept Checker
  • Kinematic Graphing 2 Concept Checker
  • Graph That Motion Interactive
  • Two Stage Rocket Interactive
  • Rocket Sled Concept Checker
  • Force Concept Checker
  • Free-Body Diagrams Concept Checker
  • Free-Body Diagrams The Sequel Concept Checker
  • Skydiving Concept Checker
  • Elevator Ride Concept Checker
  • Vector Addition Concept Checker
  • Vector Walk in Two Dimensions Interactive
  • Name That Vector Interactive
  • River Boat Simulator Concept Checker
  • Projectile Simulator 2 Concept Checker
  • Projectile Simulator 3 Concept Checker
  • Hit the Target Interactive
  • Turd the Target 1 Interactive
  • Turd the Target 2 Interactive
  • Balance It Interactive
  • Go For The Gold Interactive
  • Egg Drop Concept Checker
  • Fish Catch Concept Checker
  • Exploding Carts Concept Checker
  • Collision Carts - Inelastic Collisions Concept Checker
  • Its All Uphill Concept Checker
  • Stopping Distance Concept Checker
  • Chart That Motion Interactive
  • Roller Coaster Model Concept Checker
  • Uniform Circular Motion Concept Checker
  • Horizontal Circle Simulation Concept Checker
  • Vertical Circle Simulation Concept Checker
  • Race Track Concept Checker
  • Gravitational Fields Concept Checker
  • Orbital Motion Concept Checker
  • Angular Acceleration Concept Checker
  • Balance Beam Concept Checker
  • Torque Balancer Concept Checker
  • Aluminum Can Polarization Concept Checker
  • Charging Concept Checker
  • Name That Charge Simulation
  • Coulomb's Law Concept Checker
  • Electric Field Lines Concept Checker
  • Put the Charge in the Goal Concept Checker
  • Circuit Builder Concept Checker (Series Circuits)
  • Circuit Builder Concept Checker (Parallel Circuits)
  • Circuit Builder Concept Checker (∆V-I-R)
  • Circuit Builder Concept Checker (Voltage Drop)
  • Equivalent Resistance Interactive
  • Pendulum Motion Simulation Concept Checker
  • Mass on a Spring Simulation Concept Checker
  • Particle Wave Simulation Concept Checker
  • Boundary Behavior Simulation Concept Checker
  • Slinky Wave Simulator Concept Checker
  • Simple Wave Simulator Concept Checker
  • Wave Addition Simulation Concept Checker
  • Standing Wave Maker Simulation Concept Checker
  • Color Addition Concept Checker
  • Painting With CMY Concept Checker
  • Stage Lighting Concept Checker
  • Filtering Away Concept Checker
  • InterferencePatterns Concept Checker
  • Young's Experiment Interactive
  • Plane Mirror Images Interactive
  • Who Can See Who Concept Checker
  • Optics Bench (Mirrors) Concept Checker
  • Name That Image (Mirrors) Interactive
  • Refraction Concept Checker
  • Total Internal Reflection Concept Checker
  • Optics Bench (Lenses) Concept Checker
  • Kinematics Preview
  • Velocity Time Graphs Preview
  • Moving Cart on an Inclined Plane Preview
  • Stopping Distance Preview
  • Cart, Bricks, and Bands Preview
  • Fan Cart Study Preview
  • Friction Preview
  • Coffee Filter Lab Preview
  • Friction, Speed, and Stopping Distance Preview
  • Up and Down Preview
  • Projectile Range Preview
  • Ballistics Preview
  • Juggling Preview
  • Marshmallow Launcher Preview
  • Air Bag Safety Preview
  • Colliding Carts Preview
  • Collisions Preview
  • Engineering Safer Helmets Preview
  • Push the Plow Preview
  • Its All Uphill Preview
  • Energy on an Incline Preview
  • Modeling Roller Coasters Preview
  • Hot Wheels Stopping Distance Preview
  • Ball Bat Collision Preview
  • Energy in Fields Preview
  • Weightlessness Training Preview
  • Roller Coaster Loops Preview
  • Universal Gravitation Preview
  • Keplers Laws Preview
  • Kepler's Third Law Preview
  • Charge Interactions Preview
  • Sticky Tape Experiments Preview
  • Wire Gauge Preview
  • Voltage, Current, and Resistance Preview
  • Light Bulb Resistance Preview
  • Series and Parallel Circuits Preview
  • Thermal Equilibrium Preview
  • Linear Expansion Preview
  • Heating Curves Preview
  • Electricity and Magnetism - Part 1 Preview
  • Electricity and Magnetism - Part 2 Preview
  • Vibrating Mass on a Spring Preview
  • Period of a Pendulum Preview
  • Wave Speed Preview
  • Slinky-Experiments Preview
  • Standing Waves in a Rope Preview
  • Sound as a Pressure Wave Preview
  • DeciBel Scale Preview
  • DeciBels, Phons, and Sones Preview
  • Sound of Music Preview
  • Shedding Light on Light Bulbs Preview
  • Models of Light Preview
  • Electromagnetic Radiation Preview
  • Electromagnetic Spectrum Preview
  • EM Wave Communication Preview
  • Digitized Data Preview
  • Light Intensity Preview
  • Concave Mirrors Preview
  • Object Image Relations Preview
  • Snells Law Preview
  • Reflection vs. Transmission Preview
  • Magnification Lab Preview
  • Reactivity Preview
  • Ions and the Periodic Table Preview
  • Periodic Trends Preview
  • Intermolecular Forces Preview
  • Melting Points and Boiling Points Preview
  • Reaction Rates Preview
  • Ammonia Factory Preview
  • Stoichiometry Preview
  • Gaining Teacher Access
  • Tasks and Classes
  • Tasks - Classic
  • Subscription
  • Subscription Locator
  • 1-D Kinematics
  • Newton's Laws
  • Vectors - Motion and Forces in Two Dimensions
  • Momentum and Its Conservation
  • Work and Energy
  • Circular Motion and Satellite Motion
  • Thermal Physics
  • Static Electricity
  • Electric Circuits
  • Vibrations and Waves
  • Sound Waves and Music
  • Light and Color
  • Reflection and Mirrors
  • About the Physics Interactives
  • Task Tracker
  • Usage Policy
  • Newtons Laws
  • Vectors and Projectiles
  • Forces in 2D
  • Momentum and Collisions
  • Circular and Satellite Motion
  • Balance and Rotation
  • Electromagnetism
  • Waves and Sound
  • Forces in Two Dimensions
  • Work, Energy, and Power
  • Circular Motion and Gravitation
  • Sound Waves
  • 1-Dimensional Kinematics
  • Circular, Satellite, and Rotational Motion
  • Einstein's Theory of Special Relativity
  • Waves, Sound and Light
  • QuickTime Movies
  • About the Concept Builders
  • Pricing For Schools
  • Directions for Version 2
  • Measurement and Units
  • Relationships and Graphs
  • Rotation and Balance
  • Vibrational Motion
  • Reflection and Refraction
  • Teacher Accounts
  • Task Tracker Directions
  • Kinematic Concepts
  • Kinematic Graphing
  • Wave Motion
  • Sound and Music
  • About CalcPad
  • 1D Kinematics
  • Vectors and Forces in 2D
  • Simple Harmonic Motion
  • Rotational Kinematics
  • Rotation and Torque
  • Rotational Dynamics
  • Electric Fields, Potential, and Capacitance
  • Transient RC Circuits
  • Light Waves
  • Units and Measurement
  • Stoichiometry
  • Molarity and Solutions
  • Thermal Chemistry
  • Acids and Bases
  • Kinetics and Equilibrium
  • Solution Equilibria
  • Oxidation-Reduction
  • Nuclear Chemistry
  • NGSS Alignments
  • 1D-Kinematics
  • Projectiles
  • Circular Motion
  • Magnetism and Electromagnetism
  • Graphing Practice
  • About the ACT
  • ACT Preparation
  • For Teachers
  • Other Resources
  • Newton's Laws of Motion
  • Work and Energy Packet
  • Static Electricity Review
  • Solutions Guide
  • Solutions Guide Digital Download
  • Motion in One Dimension
  • Work, Energy and Power
  • Frequently Asked Questions
  • Purchasing the Download
  • Purchasing the CD
  • Purchasing the Digital Download
  • About the NGSS Corner
  • NGSS Search
  • Force and Motion DCIs - High School
  • Energy DCIs - High School
  • Wave Applications DCIs - High School
  • Force and Motion PEs - High School
  • Energy PEs - High School
  • Wave Applications PEs - High School
  • Crosscutting Concepts
  • The Practices
  • Physics Topics
  • NGSS Corner: Activity List
  • NGSS Corner: Infographics
  • About the Toolkits
  • Position-Velocity-Acceleration
  • Position-Time Graphs
  • Velocity-Time Graphs
  • Newton's First Law
  • Newton's Second Law
  • Newton's Third Law
  • Terminal Velocity
  • Projectile Motion
  • Forces in 2 Dimensions
  • Impulse and Momentum Change
  • Momentum Conservation
  • Work-Energy Fundamentals
  • Work-Energy Relationship
  • Roller Coaster Physics
  • Satellite Motion
  • Electric Fields
  • Circuit Concepts
  • Series Circuits
  • Parallel Circuits
  • Describing-Waves
  • Wave Behavior Toolkit
  • Standing Wave Patterns
  • Resonating Air Columns
  • Wave Model of Light
  • Plane Mirrors
  • Curved Mirrors
  • Teacher Guide
  • Using Lab Notebooks
  • Current Electricity
  • Light Waves and Color
  • Reflection and Ray Model of Light
  • Refraction and Ray Model of Light
  • Classes (Legacy Version)
  • Teacher Resources
  • Subscriptions

problem solving example with solution

  • Newton's Laws
  • Einstein's Theory of Special Relativity
  • About Concept Checkers
  • School Pricing
  • Newton's Laws of Motion
  • Newton's First Law
  • Newton's Third Law
  • Sample Problems and Solutions
  • Kinematic Equations Introduction
  • Solving Problems with Kinematic Equations
  • Kinematic Equations and Free Fall
  • Kinematic Equations and Kinematic Graphs

UsingKinEqns1ThN.png

Check Your Understanding

Answer: d = 1720 m

Answer: a = 8.10 m/s/s

Answers: d = 33.1 m and v f = 25.5 m/s

Answers: a = 11.2 m/s/s and d = 79.8 m

Answer: t = 1.29 s

Answers: a = 243 m/s/s

Answer: a = 0.712 m/s/s

Answer: d = 704 m

Answer: d = 28.6 m

Answer: v i = 7.17 m/s

Answer: v i = 5.03 m/s and hang time = 1.03 s (except for in sports commericals)

Answer: a = 1.62*10 5 m/s/s

Answer: d = 48.0 m

Answer: t = 8.69 s

Answer: a = -1.08*10^6 m/s/s

Answer: d = -57.0 m (57.0 meters deep) 

Answer: v i = 47.6 m/s

Answer: a = 2.86 m/s/s and t = 30. 8 s

Answer: a = 15.8 m/s/s

Answer: v i = 94.4 mi/hr

Solutions to Above Problems

d = (0 m/s)*(32.8 s)+ 0.5*(3.20 m/s 2 )*(32.8 s) 2

Return to Problem 1

110 m = (0 m/s)*(5.21 s)+ 0.5*(a)*(5.21 s) 2

110 m = (13.57 s 2 )*a

a = (110 m)/(13.57 s 2 )

a = 8.10 m/ s 2

Return to Problem 2

d = (0 m/s)*(2.60 s)+ 0.5*(-9.8 m/s 2 )*(2.60 s) 2

d = -33.1 m (- indicates direction)

v f = v i + a*t

v f = 0 + (-9.8 m/s 2 )*(2.60 s)

v f = -25.5 m/s (- indicates direction)

Return to Problem 3

a = (46.1 m/s - 18.5 m/s)/(2.47 s)

a = 11.2 m/s 2

d = v i *t + 0.5*a*t 2

d = (18.5 m/s)*(2.47 s)+ 0.5*(11.2 m/s 2 )*(2.47 s) 2

d = 45.7 m + 34.1 m

(Note: the d can also be calculated using the equation v f 2 = v i 2 + 2*a*d)

Return to Problem 4

-1.40 m = (0 m/s)*(t)+ 0.5*(-1.67 m/s 2 )*(t) 2

-1.40 m = 0+ (-0.835 m/s 2 )*(t) 2

(-1.40 m)/(-0.835 m/s 2 ) = t 2

1.68 s 2 = t 2

Return to Problem 5

a = (444 m/s - 0 m/s)/(1.83 s)

a = 243 m/s 2

d = (0 m/s)*(1.83 s)+ 0.5*(243 m/s 2 )*(1.83 s) 2

d = 0 m + 406 m

Return to Problem 6

(7.10 m/s) 2 = (0 m/s) 2 + 2*(a)*(35.4 m)

50.4 m 2 /s 2 = (0 m/s) 2 + (70.8 m)*a

(50.4 m 2 /s 2 )/(70.8 m) = a

a = 0.712 m/s 2

Return to Problem 7

(65 m/s) 2 = (0 m/s) 2 + 2*(3 m/s 2 )*d

4225 m 2 /s 2 = (0 m/s) 2 + (6 m/s 2 )*d

(4225 m 2 /s 2 )/(6 m/s 2 ) = d

Return to Problem 8

d = (22.4 m/s + 0 m/s)/2 *2.55 s

d = (11.2 m/s)*2.55 s

Return to Problem 9

(0 m/s) 2 = v i 2 + 2*(-9.8 m/s 2 )*(2.62 m)

0 m 2 /s 2 = v i 2 - 51.35 m 2 /s 2

51.35 m 2 /s 2 = v i 2

v i = 7.17 m/s

Return to Problem 10

(0 m/s) 2 = v i 2 + 2*(-9.8 m/s 2 )*(1.29 m)

0 m 2 /s 2 = v i 2 - 25.28 m 2 /s 2

25.28 m 2 /s 2 = v i 2

v i = 5.03 m/s

To find hang time, find the time to the peak and then double it.

0 m/s = 5.03 m/s + (-9.8 m/s 2 )*t up

-5.03 m/s = (-9.8 m/s 2 )*t up

(-5.03 m/s)/(-9.8 m/s 2 ) = t up

t up = 0.513 s

hang time = 1.03 s

Return to Problem 11

(521 m/s) 2 = (0 m/s) 2 + 2*(a)*(0.840 m)

271441 m 2 /s 2 = (0 m/s) 2 + (1.68 m)*a

(271441 m 2 /s 2 )/(1.68 m) = a

a = 1.62*10 5 m /s 2

Return to Problem 12

  • (NOTE: the time required to move to the peak of the trajectory is one-half the total hang time - 3.125 s.)

First use:  v f  = v i  + a*t

0 m/s = v i  + (-9.8  m/s 2 )*(3.13 s)

0 m/s = v i  - 30.7 m/s

v i  = 30.7 m/s  (30.674 m/s)

Now use:  v f 2  = v i 2  + 2*a*d

(0 m/s) 2  = (30.7 m/s) 2  + 2*(-9.8  m/s 2 )*(d)

0 m 2 /s 2  = (940 m 2 /s 2 ) + (-19.6  m/s 2 )*d

-940  m 2 /s 2  = (-19.6  m/s 2 )*d

(-940  m 2 /s 2 )/(-19.6  m/s 2 ) = d

Return to Problem 13

-370 m = (0 m/s)*(t)+ 0.5*(-9.8 m/s 2 )*(t) 2

-370 m = 0+ (-4.9 m/s 2 )*(t) 2

(-370 m)/(-4.9 m/s 2 ) = t 2

75.5 s 2 = t 2

Return to Problem 14

(0 m/s) 2 = (367 m/s) 2 + 2*(a)*(0.0621 m)

0 m 2 /s 2 = (134689 m 2 /s 2 ) + (0.1242 m)*a

-134689 m 2 /s 2 = (0.1242 m)*a

(-134689 m 2 /s 2 )/(0.1242 m) = a

a = -1.08*10 6 m /s 2

(The - sign indicates that the bullet slowed down.)

Return to Problem 15

d = (0 m/s)*(3.41 s)+ 0.5*(-9.8 m/s 2 )*(3.41 s) 2

d = 0 m+ 0.5*(-9.8 m/s 2 )*(11.63 s 2 )

d = -57.0 m

(NOTE: the - sign indicates direction)

Return to Problem 16

(0 m/s) 2 = v i 2 + 2*(- 3.90 m/s 2 )*(290 m)

0 m 2 /s 2 = v i 2 - 2262 m 2 /s 2

2262 m 2 /s 2 = v i 2

v i = 47.6 m /s

Return to Problem 17

( 88.3 m/s) 2 = (0 m/s) 2 + 2*(a)*(1365 m)

7797 m 2 /s 2 = (0 m 2 /s 2 ) + (2730 m)*a

7797 m 2 /s 2 = (2730 m)*a

(7797 m 2 /s 2 )/(2730 m) = a

a = 2.86 m/s 2

88.3 m/s = 0 m/s + (2.86 m/s 2 )*t

(88.3 m/s)/(2.86 m/s 2 ) = t

t = 30. 8 s

Return to Problem 18

( 112 m/s) 2 = (0 m/s) 2 + 2*(a)*(398 m)

12544 m 2 /s 2 = 0 m 2 /s 2 + (796 m)*a

12544 m 2 /s 2 = (796 m)*a

(12544 m 2 /s 2 )/(796 m) = a

a = 15.8 m/s 2

Return to Problem 19

v f 2 = v i 2 + 2*a*d

(0 m/s) 2 = v i 2 + 2*(-9.8 m/s 2 )*(91.5 m)

0 m 2 /s 2 = v i 2 - 1793 m 2 /s 2

1793 m 2 /s 2 = v i 2

v i = 42.3 m/s

Now convert from m/s to mi/hr:

v i = 42.3 m/s * (2.23 mi/hr)/(1 m/s)

v i = 94.4 mi/hr

Return to Problem 20

IMAGES

  1. 39 Best Problem-Solving Examples (2024)

    problem solving example with solution

  2. What Is Problem-Solving? Steps, Processes, Exercises to do it Right

    problem solving example with solution

  3. Developing Problem-Solving Skills for Kids

    problem solving example with solution

  4. 10 Problem Solving Skills Examples: How To Improve

    problem solving example with solution

  5. 7 Steps to Improve Your Problem Solving Skills

    problem solving example with solution

  6. 8 Steps For Effective Problem Solving

    problem solving example with solution

VIDEO

  1. Problem Solving Example 3

  2. problem_solving_example_1

  3. PHYS2210

  4. 7.3 Work Energy Problem Solving & Example 7.9 Loop the Loop

  5. Example solution for fluid mechanics Q1

  6. problem solving

COMMENTS

  1. 26 Good Examples of Problem Solving (Interview Answers)

    Examples of Problem Solving Scenarios in the Workplace. Correcting a mistake at work, whether it was made by you or someone else. Overcoming a delay at work through problem solving and communication. Resolving an issue with a difficult or upset customer. Overcoming issues related to a limited budget, and still delivering good work through the ...

  2. Workplace Problem-Solving Examples: Real Scenarios, Practical Solutions

    Workplace Problem-Solving Examples: Real Scenarios, Practical Solutions. In today's fast-paced and ever-changing work environment, problems are inevitable. From conflicts among employees to high levels of stress, workplace problems can significantly impact productivity and overall well-being. However, by developing the art of problem-solving ...

  3. 39 Best Problem-Solving Examples (2024)

    Problem-Solving Examples 1. Divergent Thinking. Divergent thinking refers to the process of coming up with multiple different answers to a single problem.It's the opposite of convergent thinking, which would involve coming up with a singular answer.. The benefit of a divergent thinking approach is that it can help us achieve blue skies thinking - it lets us generate several possible ...

  4. What is Problem Solving? (Steps, Techniques, Examples)

    The problem-solving process typically includes the following steps: Identify the issue: Recognize the problem that needs to be solved. Analyze the situation: Examine the issue in depth, gather all relevant information, and consider any limitations or constraints that may be present. Generate potential solutions: Brainstorm a list of possible ...

  5. 35 problem-solving techniques and methods for solving complex problems

    Part of the liberating structures toolkit, 15% solutions is a problem-solving technique that focuses on finding and implementing solutions quickly. A process of iterating and making small changes quickly can help generate momentum and an appetite for solving complex problems. Problem-solving strategies can live and die on whether people are ...

  6. Problem-Solving Strategies: Definition and 5 Techniques to Try

    In general, effective problem-solving strategies include the following steps: Define the problem. Come up with alternative solutions. Decide on a solution. Implement the solution. Problem-solving ...

  7. 10 Problem-solving strategies to turn challenges on their head

    2. Break the problem down. Identifying the problem allows you to see which steps need to be taken to solve it. First, break the problem down into achievable blocks. Then, use strategic planning to set a time frame in which to solve the problem and establish a timeline for the completion of each stage. 3.

  8. The Problem-Solving Process

    Problem-solving is a mental process that involves discovering, analyzing, and solving problems. The ultimate goal of problem-solving is to overcome obstacles and find a solution that best resolves the issue. The best strategy for solving a problem depends largely on the unique situation. In some cases, people are better off learning everything ...

  9. What is Problem Solving? Steps, Process & Techniques

    Finding a suitable solution for issues can be accomplished by following the basic four-step problem-solving process and methodology outlined below. Step. Characteristics. 1. Define the problem. Differentiate fact from opinion. Specify underlying causes. Consult each faction involved for information. State the problem specifically.

  10. What Is Problem Solving?

    The first step in solving a problem is understanding what that problem actually is. You need to be sure that you're dealing with the real problem - not its symptoms. For example, if performance in your department is substandard, you might think that the problem lies with the individuals submitting work. However, if you look a bit deeper, the ...

  11. 72 Examples of Problem Solving

    Problem solving is the process of overcoming issues, mistakes, errors, failures and risks to move forward. This includes approaches such as troubleshooting, analysis, experimenting, rational thought, intuition and creativity designed to find solutions. The following are examples of problem solving followed by a list of problem solving techniques.

  12. 14 Effective Problem-Solving Strategies

    Here are some examples of problem-solving strategies you can practice using to see which works best for you in different situations: 1. Define the problem ... For example, one solution may receive a score of 10 in the timeliness factor because it meets all the requirements, while another solution may only receive a seven. ...

  13. Problem-Solving Strategies and Obstacles

    Assumptions: When dealing with a problem, people can make assumptions about the constraints and obstacles that prevent certain solutions. Thus, they may not even try some potential options. Functional fixedness: This term refers to the tendency to view problems only in their customary manner. Functional fixedness prevents people from fully seeing all of the different options that might be ...

  14. From Dilemmas to Solutions: Problem-Solving Examples to Learn From

    Moreover, problem-solving can contribute to your overall mental well-being. It can give you a sense of control and agency, reduce feelings of stress and anxiety, and foster a positive attitude. It's also a key component of resilience, the ability to bounce back from adversity. In conclusion, problem-solving is a fundamental skill in life.

  15. 50 Problem-Solving and Critical Thinking Examples

    These skills enable individuals to analyze complex situations, make informed decisions, and find innovative solutions. Here, we present 25 examples of problem-solving and critical thinking. problem-solving scenarios to help you cultivate and enhance these skills. Ethical dilemma: A company faces a situation where a client asks for a product ...

  16. Creative Problem Solving

    Creative problem solving (CPS) is a way of solving problems or identifying opportunities when conventional thinking has failed. It encourages you to find fresh perspectives and come up with innovative solutions, so that you can formulate a plan to overcome obstacles and reach your goals. In this article, we'll explore what CPS is, and we'll ...

  17. Problem solving skills and how to improve them (with examples)

    Example 1: Project manager with a proven track record of solving complex operational challenges. Skilled in identifying root causes, developing innovative solutions and leading teams to successful project completion. Example 2: Detail-oriented data analyst with strong problem solving skills.

  18. What Are Problem-Solving Skills? Definition and Examples

    Problem-Solving Skills Definition. Problem-solving skills are the ability to identify problems, brainstorm and analyze answers, and implement the best solutions. An employee with good problem-solving skills is both a self-starter and a collaborative teammate; they are proactive in understanding the root of a problem and work with others to ...

  19. 17 Smart Problem-Solving Strategies: Master Complex Problems

    Step 1: Identify the Problem. The problem-solving process starts with identifying the problem. This step involves understanding the issue's nature, its scope, and its impact. Once the problem is clearly defined, it sets the foundation for finding effective solutions.

  20. Math Problem Solving Strategies (video lessons, examples and solutions)

    The following video shows more examples of using problem solving strategies and models. Question 2: The table shows the number of seats in each of the first four rows in an auditorium. The remaining ten rows follow the same pattern. Find the number of seats in the last row. Question 3: You are hanging three pictures in the wall of your home ...

  21. Module 1: Problem Solving Strategies

    Problem Solving Strategy 8 (Process of Elimination) This strategy can be used when there is only one possible solution. Example: I'm thinking of a number. The number is odd. It is more than 1 but less than 100. It is greater than 20. It is less than 5 times 7. The sum of the digits is 7. It is evenly divisible by 5. a.

  22. Solving Equations

    What is a Solution? A Solution is a value we can put in place of a variable (such as x) that makes the equation true. Example: x − 2 = 4. ... Example: solve for x: 2xx − 3 + 3 = 6x − 3 (x≠3) We have said x≠3 to avoid a division by zero. Let's multiply through by (x − 3):

  23. Kinematic Equations: Sample Problems and Solutions

    A useful problem-solving strategy was presented for use with these equations and two examples were given that illustrated the use of the strategy. Then, the application of the kinematic equations and the problem-solving strategy to free-fall motion was discussed and illustrated. In this part of Lesson 6, several sample problems will be presented.