Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • What Is a Case Study? | Definition, Examples & Methods

What Is a Case Study? | Definition, Examples & Methods

Published on May 8, 2019 by Shona McCombes . Revised on November 20, 2023.

A case study is a detailed study of a specific subject, such as a person, group, place, event, organization, or phenomenon. Case studies are commonly used in social, educational, clinical, and business research.

A case study research design usually involves qualitative methods , but quantitative methods are sometimes also used. Case studies are good for describing , comparing, evaluating and understanding different aspects of a research problem .

Table of contents

When to do a case study, step 1: select a case, step 2: build a theoretical framework, step 3: collect your data, step 4: describe and analyze the case, other interesting articles.

A case study is an appropriate research design when you want to gain concrete, contextual, in-depth knowledge about a specific real-world subject. It allows you to explore the key characteristics, meanings, and implications of the case.

Case studies are often a good choice in a thesis or dissertation . They keep your project focused and manageable when you don’t have the time or resources to do large-scale research.

You might use just one complex case study where you explore a single subject in depth, or conduct multiple case studies to compare and illuminate different aspects of your research problem.

Case study examples
Research question Case study
What are the ecological effects of wolf reintroduction? Case study of wolf reintroduction in Yellowstone National Park
How do populist politicians use narratives about history to gain support? Case studies of Hungarian prime minister Viktor Orbán and US president Donald Trump
How can teachers implement active learning strategies in mixed-level classrooms? Case study of a local school that promotes active learning
What are the main advantages and disadvantages of wind farms for rural communities? Case studies of three rural wind farm development projects in different parts of the country
How are viral marketing strategies changing the relationship between companies and consumers? Case study of the iPhone X marketing campaign
How do experiences of work in the gig economy differ by gender, race and age? Case studies of Deliveroo and Uber drivers in London

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

what is a case study research design

Once you have developed your problem statement and research questions , you should be ready to choose the specific case that you want to focus on. A good case study should have the potential to:

  • Provide new or unexpected insights into the subject
  • Challenge or complicate existing assumptions and theories
  • Propose practical courses of action to resolve a problem
  • Open up new directions for future research

TipIf your research is more practical in nature and aims to simultaneously investigate an issue as you solve it, consider conducting action research instead.

Unlike quantitative or experimental research , a strong case study does not require a random or representative sample. In fact, case studies often deliberately focus on unusual, neglected, or outlying cases which may shed new light on the research problem.

Example of an outlying case studyIn the 1960s the town of Roseto, Pennsylvania was discovered to have extremely low rates of heart disease compared to the US average. It became an important case study for understanding previously neglected causes of heart disease.

However, you can also choose a more common or representative case to exemplify a particular category, experience or phenomenon.

Example of a representative case studyIn the 1920s, two sociologists used Muncie, Indiana as a case study of a typical American city that supposedly exemplified the changing culture of the US at the time.

While case studies focus more on concrete details than general theories, they should usually have some connection with theory in the field. This way the case study is not just an isolated description, but is integrated into existing knowledge about the topic. It might aim to:

  • Exemplify a theory by showing how it explains the case under investigation
  • Expand on a theory by uncovering new concepts and ideas that need to be incorporated
  • Challenge a theory by exploring an outlier case that doesn’t fit with established assumptions

To ensure that your analysis of the case has a solid academic grounding, you should conduct a literature review of sources related to the topic and develop a theoretical framework . This means identifying key concepts and theories to guide your analysis and interpretation.

There are many different research methods you can use to collect data on your subject. Case studies tend to focus on qualitative data using methods such as interviews , observations , and analysis of primary and secondary sources (e.g., newspaper articles, photographs, official records). Sometimes a case study will also collect quantitative data.

Example of a mixed methods case studyFor a case study of a wind farm development in a rural area, you could collect quantitative data on employment rates and business revenue, collect qualitative data on local people’s perceptions and experiences, and analyze local and national media coverage of the development.

The aim is to gain as thorough an understanding as possible of the case and its context.

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

In writing up the case study, you need to bring together all the relevant aspects to give as complete a picture as possible of the subject.

How you report your findings depends on the type of research you are doing. Some case studies are structured like a standard scientific paper or thesis , with separate sections or chapters for the methods , results and discussion .

Others are written in a more narrative style, aiming to explore the case from various angles and analyze its meanings and implications (for example, by using textual analysis or discourse analysis ).

In all cases, though, make sure to give contextual details about the case, connect it back to the literature and theory, and discuss how it fits into wider patterns or debates.

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Normal distribution
  • Degrees of freedom
  • Null hypothesis
  • Discourse analysis
  • Control groups
  • Mixed methods research
  • Non-probability sampling
  • Quantitative research
  • Ecological validity

Research bias

  • Rosenthal effect
  • Implicit bias
  • Cognitive bias
  • Selection bias
  • Negativity bias
  • Status quo bias

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

McCombes, S. (2023, November 20). What Is a Case Study? | Definition, Examples & Methods. Scribbr. Retrieved September 13, 2024, from https://www.scribbr.com/methodology/case-study/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, primary vs. secondary sources | difference & examples, what is a theoretical framework | guide to organizing, what is action research | definition & examples, get unlimited documents corrected.

✔ Free APA citation check included ✔ Unlimited document corrections ✔ Specialized in correcting academic texts

  • Privacy Policy

Research Method

Home » Case Study – Methods, Examples and Guide

Case Study – Methods, Examples and Guide

Table of Contents

Case Study Research

A case study is a research method that involves an in-depth examination and analysis of a particular phenomenon or case, such as an individual, organization, community, event, or situation.

It is a qualitative research approach that aims to provide a detailed and comprehensive understanding of the case being studied. Case studies typically involve multiple sources of data, including interviews, observations, documents, and artifacts, which are analyzed using various techniques, such as content analysis, thematic analysis, and grounded theory. The findings of a case study are often used to develop theories, inform policy or practice, or generate new research questions.

Types of Case Study

Types and Methods of Case Study are as follows:

Single-Case Study

A single-case study is an in-depth analysis of a single case. This type of case study is useful when the researcher wants to understand a specific phenomenon in detail.

For Example , A researcher might conduct a single-case study on a particular individual to understand their experiences with a particular health condition or a specific organization to explore their management practices. The researcher collects data from multiple sources, such as interviews, observations, and documents, and uses various techniques to analyze the data, such as content analysis or thematic analysis. The findings of a single-case study are often used to generate new research questions, develop theories, or inform policy or practice.

Multiple-Case Study

A multiple-case study involves the analysis of several cases that are similar in nature. This type of case study is useful when the researcher wants to identify similarities and differences between the cases.

For Example, a researcher might conduct a multiple-case study on several companies to explore the factors that contribute to their success or failure. The researcher collects data from each case, compares and contrasts the findings, and uses various techniques to analyze the data, such as comparative analysis or pattern-matching. The findings of a multiple-case study can be used to develop theories, inform policy or practice, or generate new research questions.

Exploratory Case Study

An exploratory case study is used to explore a new or understudied phenomenon. This type of case study is useful when the researcher wants to generate hypotheses or theories about the phenomenon.

For Example, a researcher might conduct an exploratory case study on a new technology to understand its potential impact on society. The researcher collects data from multiple sources, such as interviews, observations, and documents, and uses various techniques to analyze the data, such as grounded theory or content analysis. The findings of an exploratory case study can be used to generate new research questions, develop theories, or inform policy or practice.

Descriptive Case Study

A descriptive case study is used to describe a particular phenomenon in detail. This type of case study is useful when the researcher wants to provide a comprehensive account of the phenomenon.

For Example, a researcher might conduct a descriptive case study on a particular community to understand its social and economic characteristics. The researcher collects data from multiple sources, such as interviews, observations, and documents, and uses various techniques to analyze the data, such as content analysis or thematic analysis. The findings of a descriptive case study can be used to inform policy or practice or generate new research questions.

Instrumental Case Study

An instrumental case study is used to understand a particular phenomenon that is instrumental in achieving a particular goal. This type of case study is useful when the researcher wants to understand the role of the phenomenon in achieving the goal.

For Example, a researcher might conduct an instrumental case study on a particular policy to understand its impact on achieving a particular goal, such as reducing poverty. The researcher collects data from multiple sources, such as interviews, observations, and documents, and uses various techniques to analyze the data, such as content analysis or thematic analysis. The findings of an instrumental case study can be used to inform policy or practice or generate new research questions.

Case Study Data Collection Methods

Here are some common data collection methods for case studies:

Interviews involve asking questions to individuals who have knowledge or experience relevant to the case study. Interviews can be structured (where the same questions are asked to all participants) or unstructured (where the interviewer follows up on the responses with further questions). Interviews can be conducted in person, over the phone, or through video conferencing.

Observations

Observations involve watching and recording the behavior and activities of individuals or groups relevant to the case study. Observations can be participant (where the researcher actively participates in the activities) or non-participant (where the researcher observes from a distance). Observations can be recorded using notes, audio or video recordings, or photographs.

Documents can be used as a source of information for case studies. Documents can include reports, memos, emails, letters, and other written materials related to the case study. Documents can be collected from the case study participants or from public sources.

Surveys involve asking a set of questions to a sample of individuals relevant to the case study. Surveys can be administered in person, over the phone, through mail or email, or online. Surveys can be used to gather information on attitudes, opinions, or behaviors related to the case study.

Artifacts are physical objects relevant to the case study. Artifacts can include tools, equipment, products, or other objects that provide insights into the case study phenomenon.

How to conduct Case Study Research

Conducting a case study research involves several steps that need to be followed to ensure the quality and rigor of the study. Here are the steps to conduct case study research:

  • Define the research questions: The first step in conducting a case study research is to define the research questions. The research questions should be specific, measurable, and relevant to the case study phenomenon under investigation.
  • Select the case: The next step is to select the case or cases to be studied. The case should be relevant to the research questions and should provide rich and diverse data that can be used to answer the research questions.
  • Collect data: Data can be collected using various methods, such as interviews, observations, documents, surveys, and artifacts. The data collection method should be selected based on the research questions and the nature of the case study phenomenon.
  • Analyze the data: The data collected from the case study should be analyzed using various techniques, such as content analysis, thematic analysis, or grounded theory. The analysis should be guided by the research questions and should aim to provide insights and conclusions relevant to the research questions.
  • Draw conclusions: The conclusions drawn from the case study should be based on the data analysis and should be relevant to the research questions. The conclusions should be supported by evidence and should be clearly stated.
  • Validate the findings: The findings of the case study should be validated by reviewing the data and the analysis with participants or other experts in the field. This helps to ensure the validity and reliability of the findings.
  • Write the report: The final step is to write the report of the case study research. The report should provide a clear description of the case study phenomenon, the research questions, the data collection methods, the data analysis, the findings, and the conclusions. The report should be written in a clear and concise manner and should follow the guidelines for academic writing.

Examples of Case Study

Here are some examples of case study research:

  • The Hawthorne Studies : Conducted between 1924 and 1932, the Hawthorne Studies were a series of case studies conducted by Elton Mayo and his colleagues to examine the impact of work environment on employee productivity. The studies were conducted at the Hawthorne Works plant of the Western Electric Company in Chicago and included interviews, observations, and experiments.
  • The Stanford Prison Experiment: Conducted in 1971, the Stanford Prison Experiment was a case study conducted by Philip Zimbardo to examine the psychological effects of power and authority. The study involved simulating a prison environment and assigning participants to the role of guards or prisoners. The study was controversial due to the ethical issues it raised.
  • The Challenger Disaster: The Challenger Disaster was a case study conducted to examine the causes of the Space Shuttle Challenger explosion in 1986. The study included interviews, observations, and analysis of data to identify the technical, organizational, and cultural factors that contributed to the disaster.
  • The Enron Scandal: The Enron Scandal was a case study conducted to examine the causes of the Enron Corporation’s bankruptcy in 2001. The study included interviews, analysis of financial data, and review of documents to identify the accounting practices, corporate culture, and ethical issues that led to the company’s downfall.
  • The Fukushima Nuclear Disaster : The Fukushima Nuclear Disaster was a case study conducted to examine the causes of the nuclear accident that occurred at the Fukushima Daiichi Nuclear Power Plant in Japan in 2011. The study included interviews, analysis of data, and review of documents to identify the technical, organizational, and cultural factors that contributed to the disaster.

Application of Case Study

Case studies have a wide range of applications across various fields and industries. Here are some examples:

Business and Management

Case studies are widely used in business and management to examine real-life situations and develop problem-solving skills. Case studies can help students and professionals to develop a deep understanding of business concepts, theories, and best practices.

Case studies are used in healthcare to examine patient care, treatment options, and outcomes. Case studies can help healthcare professionals to develop critical thinking skills, diagnose complex medical conditions, and develop effective treatment plans.

Case studies are used in education to examine teaching and learning practices. Case studies can help educators to develop effective teaching strategies, evaluate student progress, and identify areas for improvement.

Social Sciences

Case studies are widely used in social sciences to examine human behavior, social phenomena, and cultural practices. Case studies can help researchers to develop theories, test hypotheses, and gain insights into complex social issues.

Law and Ethics

Case studies are used in law and ethics to examine legal and ethical dilemmas. Case studies can help lawyers, policymakers, and ethical professionals to develop critical thinking skills, analyze complex cases, and make informed decisions.

Purpose of Case Study

The purpose of a case study is to provide a detailed analysis of a specific phenomenon, issue, or problem in its real-life context. A case study is a qualitative research method that involves the in-depth exploration and analysis of a particular case, which can be an individual, group, organization, event, or community.

The primary purpose of a case study is to generate a comprehensive and nuanced understanding of the case, including its history, context, and dynamics. Case studies can help researchers to identify and examine the underlying factors, processes, and mechanisms that contribute to the case and its outcomes. This can help to develop a more accurate and detailed understanding of the case, which can inform future research, practice, or policy.

Case studies can also serve other purposes, including:

  • Illustrating a theory or concept: Case studies can be used to illustrate and explain theoretical concepts and frameworks, providing concrete examples of how they can be applied in real-life situations.
  • Developing hypotheses: Case studies can help to generate hypotheses about the causal relationships between different factors and outcomes, which can be tested through further research.
  • Providing insight into complex issues: Case studies can provide insights into complex and multifaceted issues, which may be difficult to understand through other research methods.
  • Informing practice or policy: Case studies can be used to inform practice or policy by identifying best practices, lessons learned, or areas for improvement.

Advantages of Case Study Research

There are several advantages of case study research, including:

  • In-depth exploration: Case study research allows for a detailed exploration and analysis of a specific phenomenon, issue, or problem in its real-life context. This can provide a comprehensive understanding of the case and its dynamics, which may not be possible through other research methods.
  • Rich data: Case study research can generate rich and detailed data, including qualitative data such as interviews, observations, and documents. This can provide a nuanced understanding of the case and its complexity.
  • Holistic perspective: Case study research allows for a holistic perspective of the case, taking into account the various factors, processes, and mechanisms that contribute to the case and its outcomes. This can help to develop a more accurate and comprehensive understanding of the case.
  • Theory development: Case study research can help to develop and refine theories and concepts by providing empirical evidence and concrete examples of how they can be applied in real-life situations.
  • Practical application: Case study research can inform practice or policy by identifying best practices, lessons learned, or areas for improvement.
  • Contextualization: Case study research takes into account the specific context in which the case is situated, which can help to understand how the case is influenced by the social, cultural, and historical factors of its environment.

Limitations of Case Study Research

There are several limitations of case study research, including:

  • Limited generalizability : Case studies are typically focused on a single case or a small number of cases, which limits the generalizability of the findings. The unique characteristics of the case may not be applicable to other contexts or populations, which may limit the external validity of the research.
  • Biased sampling: Case studies may rely on purposive or convenience sampling, which can introduce bias into the sample selection process. This may limit the representativeness of the sample and the generalizability of the findings.
  • Subjectivity: Case studies rely on the interpretation of the researcher, which can introduce subjectivity into the analysis. The researcher’s own biases, assumptions, and perspectives may influence the findings, which may limit the objectivity of the research.
  • Limited control: Case studies are typically conducted in naturalistic settings, which limits the control that the researcher has over the environment and the variables being studied. This may limit the ability to establish causal relationships between variables.
  • Time-consuming: Case studies can be time-consuming to conduct, as they typically involve a detailed exploration and analysis of a specific case. This may limit the feasibility of conducting multiple case studies or conducting case studies in a timely manner.
  • Resource-intensive: Case studies may require significant resources, including time, funding, and expertise. This may limit the ability of researchers to conduct case studies in resource-constrained settings.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Qualitative Research Methods

Qualitative Research Methods

Questionnaire

Questionnaire – Definition, Types, and Examples

Phenomenology

Phenomenology – Methods, Examples and Guide

Textual Analysis

Textual Analysis – Types, Examples and Guide

Experimental Research Design

Experimental Design – Types, Methods, Guide

Focus Groups in Qualitative Research

Focus Groups – Steps, Examples and Guide

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • BMC Med Res Methodol

Logo of bmcmrm

The case study approach

Sarah crowe.

1 Division of Primary Care, The University of Nottingham, Nottingham, UK

Kathrin Cresswell

2 Centre for Population Health Sciences, The University of Edinburgh, Edinburgh, UK

Ann Robertson

3 School of Health in Social Science, The University of Edinburgh, Edinburgh, UK

Anthony Avery

Aziz sheikh.

The case study approach allows in-depth, multi-faceted explorations of complex issues in their real-life settings. The value of the case study approach is well recognised in the fields of business, law and policy, but somewhat less so in health services research. Based on our experiences of conducting several health-related case studies, we reflect on the different types of case study design, the specific research questions this approach can help answer, the data sources that tend to be used, and the particular advantages and disadvantages of employing this methodological approach. The paper concludes with key pointers to aid those designing and appraising proposals for conducting case study research, and a checklist to help readers assess the quality of case study reports.

Introduction

The case study approach is particularly useful to employ when there is a need to obtain an in-depth appreciation of an issue, event or phenomenon of interest, in its natural real-life context. Our aim in writing this piece is to provide insights into when to consider employing this approach and an overview of key methodological considerations in relation to the design, planning, analysis, interpretation and reporting of case studies.

The illustrative 'grand round', 'case report' and 'case series' have a long tradition in clinical practice and research. Presenting detailed critiques, typically of one or more patients, aims to provide insights into aspects of the clinical case and, in doing so, illustrate broader lessons that may be learnt. In research, the conceptually-related case study approach can be used, for example, to describe in detail a patient's episode of care, explore professional attitudes to and experiences of a new policy initiative or service development or more generally to 'investigate contemporary phenomena within its real-life context' [ 1 ]. Based on our experiences of conducting a range of case studies, we reflect on when to consider using this approach, discuss the key steps involved and illustrate, with examples, some of the practical challenges of attaining an in-depth understanding of a 'case' as an integrated whole. In keeping with previously published work, we acknowledge the importance of theory to underpin the design, selection, conduct and interpretation of case studies[ 2 ]. In so doing, we make passing reference to the different epistemological approaches used in case study research by key theoreticians and methodologists in this field of enquiry.

This paper is structured around the following main questions: What is a case study? What are case studies used for? How are case studies conducted? What are the potential pitfalls and how can these be avoided? We draw in particular on four of our own recently published examples of case studies (see Tables ​ Tables1, 1 , ​ ,2, 2 , ​ ,3 3 and ​ and4) 4 ) and those of others to illustrate our discussion[ 3 - 7 ].

Example of a case study investigating the reasons for differences in recruitment rates of minority ethnic people in asthma research[ 3 ]

Minority ethnic people experience considerably greater morbidity from asthma than the White majority population. Research has shown however that these minority ethnic populations are likely to be under-represented in research undertaken in the UK; there is comparatively less marginalisation in the US.
To investigate approaches to bolster recruitment of South Asians into UK asthma studies through qualitative research with US and UK researchers, and UK community leaders.
Single intrinsic case study
Centred on the issue of recruitment of South Asian people with asthma.
In-depth interviews were conducted with asthma researchers from the UK and US. A supplementary questionnaire was also provided to researchers.
Framework approach.
Barriers to ethnic minority recruitment were found to centre around:
 1. The attitudes of the researchers' towards inclusion: The majority of UK researchers interviewed were generally supportive of the idea of recruiting ethnically diverse participants but expressed major concerns about the practicalities of achieving this; in contrast, the US researchers appeared much more committed to the policy of inclusion.
 2. Stereotypes and prejudices: We found that some of the UK researchers' perceptions of ethnic minorities may have influenced their decisions on whether to approach individuals from particular ethnic groups. These stereotypes centred on issues to do with, amongst others, language barriers and lack of altruism.
 3. Demographic, political and socioeconomic contexts of the two countries: Researchers suggested that the demographic profile of ethnic minorities, their political engagement and the different configuration of the health services in the UK and the US may have contributed to differential rates.
 4. Above all, however, it appeared that the overriding importance of the US National Institute of Health's policy to mandate the inclusion of minority ethnic people (and women) had a major impact on shaping the attitudes and in turn the experiences of US researchers'; the absence of any similar mandate in the UK meant that UK-based researchers had not been forced to challenge their existing practices and they were hence unable to overcome any stereotypical/prejudicial attitudes through experiential learning.

Example of a case study investigating the process of planning and implementing a service in Primary Care Organisations[ 4 ]

Health work forces globally are needing to reorganise and reconfigure in order to meet the challenges posed by the increased numbers of people living with long-term conditions in an efficient and sustainable manner. Through studying the introduction of General Practitioners with a Special Interest in respiratory disorders, this study aimed to provide insights into this important issue by focusing on community respiratory service development.
To understand and compare the process of workforce change in respiratory services and the impact on patient experience (specifically in relation to the role of general practitioners with special interests) in a theoretically selected sample of Primary Care Organisations (PCOs), in order to derive models of good practice in planning and the implementation of a broad range of workforce issues.
Multiple-case design of respiratory services in health regions in England and Wales.
Four PCOs.
Face-to-face and telephone interviews, e-mail discussions, local documents, patient diaries, news items identified from local and national websites, national workshop.
Reading, coding and comparison progressed iteratively.
 1. In the screening phase of this study (which involved semi-structured telephone interviews with the person responsible for driving the reconfiguration of respiratory services in 30 PCOs), the barriers of financial deficit, organisational uncertainty, disengaged clinicians and contradictory policies proved insurmountable for many PCOs to developing sustainable services. A key rationale for PCO re-organisation in 2006 was to strengthen their commissioning function and those of clinicians through Practice-Based Commissioning. However, the turbulence, which surrounded reorganisation was found to have the opposite desired effect.
 2. Implementing workforce reconfiguration was strongly influenced by the negotiation and contest among local clinicians and managers about "ownership" of work and income.
 3. Despite the intention to make the commissioning system more transparent, personal relationships based on common professional interests, past work history, friendships and collegiality, remained as key drivers for sustainable innovation in service development.
It was only possible to undertake in-depth work in a selective number of PCOs and, even within these selected PCOs, it was not possible to interview all informants of potential interest and/or obtain all relevant documents. This work was conducted in the early stages of a major NHS reorganisation in England and Wales and thus, events are likely to have continued to evolve beyond the study period; we therefore cannot claim to have seen any of the stories through to their conclusion.

Example of a case study investigating the introduction of the electronic health records[ 5 ]

Healthcare systems globally are moving from paper-based record systems to electronic health record systems. In 2002, the NHS in England embarked on the most ambitious and expensive IT-based transformation in healthcare in history seeking to introduce electronic health records into all hospitals in England by 2010.
To describe and evaluate the implementation and adoption of detailed electronic health records in secondary care in England and thereby provide formative feedback for local and national rollout of the NHS Care Records Service.
A mixed methods, longitudinal, multi-site, socio-technical collective case study.
Five NHS acute hospital and mental health Trusts that have been the focus of early implementation efforts.
Semi-structured interviews, documentary data and field notes, observations and quantitative data.
Qualitative data were analysed thematically using a socio-technical coding matrix, combined with additional themes that emerged from the data.
 1. Hospital electronic health record systems have developed and been implemented far more slowly than was originally envisioned.
 2. The top-down, government-led standardised approach needed to evolve to admit more variation and greater local choice for hospitals in order to support local service delivery.
 3. A range of adverse consequences were associated with the centrally negotiated contracts, which excluded the hospitals in question.
 4. The unrealistic, politically driven, timeline (implementation over 10 years) was found to be a major source of frustration for developers, implementers and healthcare managers and professionals alike.
We were unable to access details of the contracts between government departments and the Local Service Providers responsible for delivering and implementing the software systems. This, in turn, made it difficult to develop a holistic understanding of some key issues impacting on the overall slow roll-out of the NHS Care Record Service. Early adopters may also have differed in important ways from NHS hospitals that planned to join the National Programme for Information Technology and implement the NHS Care Records Service at a later point in time.

Example of a case study investigating the formal and informal ways students learn about patient safety[ 6 ]

There is a need to reduce the disease burden associated with iatrogenic harm and considering that healthcare education represents perhaps the most sustained patient safety initiative ever undertaken, it is important to develop a better appreciation of the ways in which undergraduate and newly qualified professionals receive and make sense of the education they receive.
To investigate the formal and informal ways pre-registration students from a range of healthcare professions (medicine, nursing, physiotherapy and pharmacy) learn about patient safety in order to become safe practitioners.
Multi-site, mixed method collective case study.
: Eight case studies (two for each professional group) were carried out in educational provider sites considering different programmes, practice environments and models of teaching and learning.
Structured in phases relevant to the three knowledge contexts:
Documentary evidence (including undergraduate curricula, handbooks and module outlines), complemented with a range of views (from course leads, tutors and students) and observations in a range of academic settings.
Policy and management views of patient safety and influences on patient safety education and practice. NHS policies included, for example, implementation of the National Patient Safety Agency's , which encourages organisations to develop an organisational safety culture in which staff members feel comfortable identifying dangers and reporting hazards.
The cultures to which students are exposed i.e. patient safety in relation to day-to-day working. NHS initiatives included, for example, a hand washing initiative or introduction of infection control measures.
 1. Practical, informal, learning opportunities were valued by students. On the whole, however, students were not exposed to nor engaged with important NHS initiatives such as risk management activities and incident reporting schemes.
 2. NHS policy appeared to have been taken seriously by course leaders. Patient safety materials were incorporated into both formal and informal curricula, albeit largely implicit rather than explicit.
 3. Resource issues and peer pressure were found to influence safe practice. Variations were also found to exist in students' experiences and the quality of the supervision available.
The curriculum and organisational documents collected differed between sites, which possibly reflected gatekeeper influences at each site. The recruitment of participants for focus group discussions proved difficult, so interviews or paired discussions were used as a substitute.

What is a case study?

A case study is a research approach that is used to generate an in-depth, multi-faceted understanding of a complex issue in its real-life context. It is an established research design that is used extensively in a wide variety of disciplines, particularly in the social sciences. A case study can be defined in a variety of ways (Table ​ (Table5), 5 ), the central tenet being the need to explore an event or phenomenon in depth and in its natural context. It is for this reason sometimes referred to as a "naturalistic" design; this is in contrast to an "experimental" design (such as a randomised controlled trial) in which the investigator seeks to exert control over and manipulate the variable(s) of interest.

Definitions of a case study

AuthorDefinition
Stake[ ] (p.237)
Yin[ , , ] (Yin 1999 p. 1211, Yin 1994 p. 13)
 •
 • (Yin 2009 p18)
Miles and Huberman[ ] (p. 25)
Green and Thorogood[ ] (p. 284)
George and Bennett[ ] (p. 17)"

Stake's work has been particularly influential in defining the case study approach to scientific enquiry. He has helpfully characterised three main types of case study: intrinsic , instrumental and collective [ 8 ]. An intrinsic case study is typically undertaken to learn about a unique phenomenon. The researcher should define the uniqueness of the phenomenon, which distinguishes it from all others. In contrast, the instrumental case study uses a particular case (some of which may be better than others) to gain a broader appreciation of an issue or phenomenon. The collective case study involves studying multiple cases simultaneously or sequentially in an attempt to generate a still broader appreciation of a particular issue.

These are however not necessarily mutually exclusive categories. In the first of our examples (Table ​ (Table1), 1 ), we undertook an intrinsic case study to investigate the issue of recruitment of minority ethnic people into the specific context of asthma research studies, but it developed into a instrumental case study through seeking to understand the issue of recruitment of these marginalised populations more generally, generating a number of the findings that are potentially transferable to other disease contexts[ 3 ]. In contrast, the other three examples (see Tables ​ Tables2, 2 , ​ ,3 3 and ​ and4) 4 ) employed collective case study designs to study the introduction of workforce reconfiguration in primary care, the implementation of electronic health records into hospitals, and to understand the ways in which healthcare students learn about patient safety considerations[ 4 - 6 ]. Although our study focusing on the introduction of General Practitioners with Specialist Interests (Table ​ (Table2) 2 ) was explicitly collective in design (four contrasting primary care organisations were studied), is was also instrumental in that this particular professional group was studied as an exemplar of the more general phenomenon of workforce redesign[ 4 ].

What are case studies used for?

According to Yin, case studies can be used to explain, describe or explore events or phenomena in the everyday contexts in which they occur[ 1 ]. These can, for example, help to understand and explain causal links and pathways resulting from a new policy initiative or service development (see Tables ​ Tables2 2 and ​ and3, 3 , for example)[ 1 ]. In contrast to experimental designs, which seek to test a specific hypothesis through deliberately manipulating the environment (like, for example, in a randomised controlled trial giving a new drug to randomly selected individuals and then comparing outcomes with controls),[ 9 ] the case study approach lends itself well to capturing information on more explanatory ' how ', 'what' and ' why ' questions, such as ' how is the intervention being implemented and received on the ground?'. The case study approach can offer additional insights into what gaps exist in its delivery or why one implementation strategy might be chosen over another. This in turn can help develop or refine theory, as shown in our study of the teaching of patient safety in undergraduate curricula (Table ​ (Table4 4 )[ 6 , 10 ]. Key questions to consider when selecting the most appropriate study design are whether it is desirable or indeed possible to undertake a formal experimental investigation in which individuals and/or organisations are allocated to an intervention or control arm? Or whether the wish is to obtain a more naturalistic understanding of an issue? The former is ideally studied using a controlled experimental design, whereas the latter is more appropriately studied using a case study design.

Case studies may be approached in different ways depending on the epistemological standpoint of the researcher, that is, whether they take a critical (questioning one's own and others' assumptions), interpretivist (trying to understand individual and shared social meanings) or positivist approach (orientating towards the criteria of natural sciences, such as focusing on generalisability considerations) (Table ​ (Table6). 6 ). Whilst such a schema can be conceptually helpful, it may be appropriate to draw on more than one approach in any case study, particularly in the context of conducting health services research. Doolin has, for example, noted that in the context of undertaking interpretative case studies, researchers can usefully draw on a critical, reflective perspective which seeks to take into account the wider social and political environment that has shaped the case[ 11 ].

Example of epistemological approaches that may be used in case study research

ApproachCharacteristicsCriticismsKey references
Involves questioning one's own assumptions taking into account the wider political and social environment.It can possibly neglect other factors by focussing only on power relationships and may give the researcher a position that is too privileged.Howcroft and Trauth[ ] Blakie[ ] Doolin[ , ]
Interprets the limiting conditions in relation to power and control that are thought to influence behaviour.Bloomfield and Best[ ]
Involves understanding meanings/contexts and processes as perceived from different perspectives, trying to understand individual and shared social meanings. Focus is on theory building.Often difficult to explain unintended consequences and for neglecting surrounding historical contextsStake[ ] Doolin[ ]
Involves establishing which variables one wishes to study in advance and seeing whether they fit in with the findings. Focus is often on testing and refining theory on the basis of case study findings.It does not take into account the role of the researcher in influencing findings.Yin[ , , ] Shanks and Parr[ ]

How are case studies conducted?

Here, we focus on the main stages of research activity when planning and undertaking a case study; the crucial stages are: defining the case; selecting the case(s); collecting and analysing the data; interpreting data; and reporting the findings.

Defining the case

Carefully formulated research question(s), informed by the existing literature and a prior appreciation of the theoretical issues and setting(s), are all important in appropriately and succinctly defining the case[ 8 , 12 ]. Crucially, each case should have a pre-defined boundary which clarifies the nature and time period covered by the case study (i.e. its scope, beginning and end), the relevant social group, organisation or geographical area of interest to the investigator, the types of evidence to be collected, and the priorities for data collection and analysis (see Table ​ Table7 7 )[ 1 ]. A theory driven approach to defining the case may help generate knowledge that is potentially transferable to a range of clinical contexts and behaviours; using theory is also likely to result in a more informed appreciation of, for example, how and why interventions have succeeded or failed[ 13 ].

Example of a checklist for rating a case study proposal[ 8 ]

Clarity: Does the proposal read well?
Integrity: Do its pieces fit together?
Attractiveness: Does it pique the reader's interest?
The case: Is the case adequately defined?
The issues: Are major research questions identified?
Data Resource: Are sufficient data sources identified?
Case Selection: Is the selection plan reasonable?
Data Gathering: Are data-gathering activities outlined?
Validation: Is the need and opportunity for triangulation indicated?
Access: Are arrangements for start-up anticipated?
Confidentiality: Is there sensitivity to the protection of people?
Cost: Are time and resource estimates reasonable?

For example, in our evaluation of the introduction of electronic health records in English hospitals (Table ​ (Table3), 3 ), we defined our cases as the NHS Trusts that were receiving the new technology[ 5 ]. Our focus was on how the technology was being implemented. However, if the primary research interest had been on the social and organisational dimensions of implementation, we might have defined our case differently as a grouping of healthcare professionals (e.g. doctors and/or nurses). The precise beginning and end of the case may however prove difficult to define. Pursuing this same example, when does the process of implementation and adoption of an electronic health record system really begin or end? Such judgements will inevitably be influenced by a range of factors, including the research question, theory of interest, the scope and richness of the gathered data and the resources available to the research team.

Selecting the case(s)

The decision on how to select the case(s) to study is a very important one that merits some reflection. In an intrinsic case study, the case is selected on its own merits[ 8 ]. The case is selected not because it is representative of other cases, but because of its uniqueness, which is of genuine interest to the researchers. This was, for example, the case in our study of the recruitment of minority ethnic participants into asthma research (Table ​ (Table1) 1 ) as our earlier work had demonstrated the marginalisation of minority ethnic people with asthma, despite evidence of disproportionate asthma morbidity[ 14 , 15 ]. In another example of an intrinsic case study, Hellstrom et al.[ 16 ] studied an elderly married couple living with dementia to explore how dementia had impacted on their understanding of home, their everyday life and their relationships.

For an instrumental case study, selecting a "typical" case can work well[ 8 ]. In contrast to the intrinsic case study, the particular case which is chosen is of less importance than selecting a case that allows the researcher to investigate an issue or phenomenon. For example, in order to gain an understanding of doctors' responses to health policy initiatives, Som undertook an instrumental case study interviewing clinicians who had a range of responsibilities for clinical governance in one NHS acute hospital trust[ 17 ]. Sampling a "deviant" or "atypical" case may however prove even more informative, potentially enabling the researcher to identify causal processes, generate hypotheses and develop theory.

In collective or multiple case studies, a number of cases are carefully selected. This offers the advantage of allowing comparisons to be made across several cases and/or replication. Choosing a "typical" case may enable the findings to be generalised to theory (i.e. analytical generalisation) or to test theory by replicating the findings in a second or even a third case (i.e. replication logic)[ 1 ]. Yin suggests two or three literal replications (i.e. predicting similar results) if the theory is straightforward and five or more if the theory is more subtle. However, critics might argue that selecting 'cases' in this way is insufficiently reflexive and ill-suited to the complexities of contemporary healthcare organisations.

The selected case study site(s) should allow the research team access to the group of individuals, the organisation, the processes or whatever else constitutes the chosen unit of analysis for the study. Access is therefore a central consideration; the researcher needs to come to know the case study site(s) well and to work cooperatively with them. Selected cases need to be not only interesting but also hospitable to the inquiry [ 8 ] if they are to be informative and answer the research question(s). Case study sites may also be pre-selected for the researcher, with decisions being influenced by key stakeholders. For example, our selection of case study sites in the evaluation of the implementation and adoption of electronic health record systems (see Table ​ Table3) 3 ) was heavily influenced by NHS Connecting for Health, the government agency that was responsible for overseeing the National Programme for Information Technology (NPfIT)[ 5 ]. This prominent stakeholder had already selected the NHS sites (through a competitive bidding process) to be early adopters of the electronic health record systems and had negotiated contracts that detailed the deployment timelines.

It is also important to consider in advance the likely burden and risks associated with participation for those who (or the site(s) which) comprise the case study. Of particular importance is the obligation for the researcher to think through the ethical implications of the study (e.g. the risk of inadvertently breaching anonymity or confidentiality) and to ensure that potential participants/participating sites are provided with sufficient information to make an informed choice about joining the study. The outcome of providing this information might be that the emotive burden associated with participation, or the organisational disruption associated with supporting the fieldwork, is considered so high that the individuals or sites decide against participation.

In our example of evaluating implementations of electronic health record systems, given the restricted number of early adopter sites available to us, we sought purposively to select a diverse range of implementation cases among those that were available[ 5 ]. We chose a mixture of teaching, non-teaching and Foundation Trust hospitals, and examples of each of the three electronic health record systems procured centrally by the NPfIT. At one recruited site, it quickly became apparent that access was problematic because of competing demands on that organisation. Recognising the importance of full access and co-operative working for generating rich data, the research team decided not to pursue work at that site and instead to focus on other recruited sites.

Collecting the data

In order to develop a thorough understanding of the case, the case study approach usually involves the collection of multiple sources of evidence, using a range of quantitative (e.g. questionnaires, audits and analysis of routinely collected healthcare data) and more commonly qualitative techniques (e.g. interviews, focus groups and observations). The use of multiple sources of data (data triangulation) has been advocated as a way of increasing the internal validity of a study (i.e. the extent to which the method is appropriate to answer the research question)[ 8 , 18 - 21 ]. An underlying assumption is that data collected in different ways should lead to similar conclusions, and approaching the same issue from different angles can help develop a holistic picture of the phenomenon (Table ​ (Table2 2 )[ 4 ].

Brazier and colleagues used a mixed-methods case study approach to investigate the impact of a cancer care programme[ 22 ]. Here, quantitative measures were collected with questionnaires before, and five months after, the start of the intervention which did not yield any statistically significant results. Qualitative interviews with patients however helped provide an insight into potentially beneficial process-related aspects of the programme, such as greater, perceived patient involvement in care. The authors reported how this case study approach provided a number of contextual factors likely to influence the effectiveness of the intervention and which were not likely to have been obtained from quantitative methods alone.

In collective or multiple case studies, data collection needs to be flexible enough to allow a detailed description of each individual case to be developed (e.g. the nature of different cancer care programmes), before considering the emerging similarities and differences in cross-case comparisons (e.g. to explore why one programme is more effective than another). It is important that data sources from different cases are, where possible, broadly comparable for this purpose even though they may vary in nature and depth.

Analysing, interpreting and reporting case studies

Making sense and offering a coherent interpretation of the typically disparate sources of data (whether qualitative alone or together with quantitative) is far from straightforward. Repeated reviewing and sorting of the voluminous and detail-rich data are integral to the process of analysis. In collective case studies, it is helpful to analyse data relating to the individual component cases first, before making comparisons across cases. Attention needs to be paid to variations within each case and, where relevant, the relationship between different causes, effects and outcomes[ 23 ]. Data will need to be organised and coded to allow the key issues, both derived from the literature and emerging from the dataset, to be easily retrieved at a later stage. An initial coding frame can help capture these issues and can be applied systematically to the whole dataset with the aid of a qualitative data analysis software package.

The Framework approach is a practical approach, comprising of five stages (familiarisation; identifying a thematic framework; indexing; charting; mapping and interpretation) , to managing and analysing large datasets particularly if time is limited, as was the case in our study of recruitment of South Asians into asthma research (Table ​ (Table1 1 )[ 3 , 24 ]. Theoretical frameworks may also play an important role in integrating different sources of data and examining emerging themes. For example, we drew on a socio-technical framework to help explain the connections between different elements - technology; people; and the organisational settings within which they worked - in our study of the introduction of electronic health record systems (Table ​ (Table3 3 )[ 5 ]. Our study of patient safety in undergraduate curricula drew on an evaluation-based approach to design and analysis, which emphasised the importance of the academic, organisational and practice contexts through which students learn (Table ​ (Table4 4 )[ 6 ].

Case study findings can have implications both for theory development and theory testing. They may establish, strengthen or weaken historical explanations of a case and, in certain circumstances, allow theoretical (as opposed to statistical) generalisation beyond the particular cases studied[ 12 ]. These theoretical lenses should not, however, constitute a strait-jacket and the cases should not be "forced to fit" the particular theoretical framework that is being employed.

When reporting findings, it is important to provide the reader with enough contextual information to understand the processes that were followed and how the conclusions were reached. In a collective case study, researchers may choose to present the findings from individual cases separately before amalgamating across cases. Care must be taken to ensure the anonymity of both case sites and individual participants (if agreed in advance) by allocating appropriate codes or withholding descriptors. In the example given in Table ​ Table3, 3 , we decided against providing detailed information on the NHS sites and individual participants in order to avoid the risk of inadvertent disclosure of identities[ 5 , 25 ].

What are the potential pitfalls and how can these be avoided?

The case study approach is, as with all research, not without its limitations. When investigating the formal and informal ways undergraduate students learn about patient safety (Table ​ (Table4), 4 ), for example, we rapidly accumulated a large quantity of data. The volume of data, together with the time restrictions in place, impacted on the depth of analysis that was possible within the available resources. This highlights a more general point of the importance of avoiding the temptation to collect as much data as possible; adequate time also needs to be set aside for data analysis and interpretation of what are often highly complex datasets.

Case study research has sometimes been criticised for lacking scientific rigour and providing little basis for generalisation (i.e. producing findings that may be transferable to other settings)[ 1 ]. There are several ways to address these concerns, including: the use of theoretical sampling (i.e. drawing on a particular conceptual framework); respondent validation (i.e. participants checking emerging findings and the researcher's interpretation, and providing an opinion as to whether they feel these are accurate); and transparency throughout the research process (see Table ​ Table8 8 )[ 8 , 18 - 21 , 23 , 26 ]. Transparency can be achieved by describing in detail the steps involved in case selection, data collection, the reasons for the particular methods chosen, and the researcher's background and level of involvement (i.e. being explicit about how the researcher has influenced data collection and interpretation). Seeking potential, alternative explanations, and being explicit about how interpretations and conclusions were reached, help readers to judge the trustworthiness of the case study report. Stake provides a critique checklist for a case study report (Table ​ (Table9 9 )[ 8 ].

Potential pitfalls and mitigating actions when undertaking case study research

Potential pitfallMitigating action
Selecting/conceptualising the wrong case(s) resulting in lack of theoretical generalisationsDeveloping in-depth knowledge of theoretical and empirical literature, justifying choices made
Collecting large volumes of data that are not relevant to the case or too little to be of any valueFocus data collection in line with research questions, whilst being flexible and allowing different paths to be explored
Defining/bounding the caseFocus on related components (either by time and/or space), be clear what is outside the scope of the case
Lack of rigourTriangulation, respondent validation, the use of theoretical sampling, transparency throughout the research process
Ethical issuesAnonymise appropriately as cases are often easily identifiable to insiders, informed consent of participants
Integration with theoretical frameworkAllow for unexpected issues to emerge and do not force fit, test out preliminary explanations, be clear about epistemological positions in advance

Stake's checklist for assessing the quality of a case study report[ 8 ]

1. Is this report easy to read?
2. Does it fit together, each sentence contributing to the whole?
3. Does this report have a conceptual structure (i.e. themes or issues)?
4. Are its issues developed in a series and scholarly way?
5. Is the case adequately defined?
6. Is there a sense of story to the presentation?
7. Is the reader provided some vicarious experience?
8. Have quotations been used effectively?
9. Are headings, figures, artefacts, appendices, indexes effectively used?
10. Was it edited well, then again with a last minute polish?
11. Has the writer made sound assertions, neither over- or under-interpreting?
12. Has adequate attention been paid to various contexts?
13. Were sufficient raw data presented?
14. Were data sources well chosen and in sufficient number?
15. Do observations and interpretations appear to have been triangulated?
16. Is the role and point of view of the researcher nicely apparent?
17. Is the nature of the intended audience apparent?
18. Is empathy shown for all sides?
19. Are personal intentions examined?
20. Does it appear individuals were put at risk?

Conclusions

The case study approach allows, amongst other things, critical events, interventions, policy developments and programme-based service reforms to be studied in detail in a real-life context. It should therefore be considered when an experimental design is either inappropriate to answer the research questions posed or impossible to undertake. Considering the frequency with which implementations of innovations are now taking place in healthcare settings and how well the case study approach lends itself to in-depth, complex health service research, we believe this approach should be more widely considered by researchers. Though inherently challenging, the research case study can, if carefully conceptualised and thoughtfully undertaken and reported, yield powerful insights into many important aspects of health and healthcare delivery.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

AS conceived this article. SC, KC and AR wrote this paper with GH, AA and AS all commenting on various drafts. SC and AS are guarantors.

Pre-publication history

The pre-publication history for this paper can be accessed here:

http://www.biomedcentral.com/1471-2288/11/100/prepub

Acknowledgements

We are grateful to the participants and colleagues who contributed to the individual case studies that we have drawn on. This work received no direct funding, but it has been informed by projects funded by Asthma UK, the NHS Service Delivery Organisation, NHS Connecting for Health Evaluation Programme, and Patient Safety Research Portfolio. We would also like to thank the expert reviewers for their insightful and constructive feedback. Our thanks are also due to Dr. Allison Worth who commented on an earlier draft of this manuscript.

  • Yin RK. Case study research, design and method. 4. London: Sage Publications Ltd.; 2009. [ Google Scholar ]
  • Keen J, Packwood T. Qualitative research; case study evaluation. BMJ. 1995; 311 :444–446. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Sheikh A, Halani L, Bhopal R, Netuveli G, Partridge M, Car J. et al. Facilitating the Recruitment of Minority Ethnic People into Research: Qualitative Case Study of South Asians and Asthma. PLoS Med. 2009; 6 (10):1–11. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Pinnock H, Huby G, Powell A, Kielmann T, Price D, Williams S, The process of planning, development and implementation of a General Practitioner with a Special Interest service in Primary Care Organisations in England and Wales: a comparative prospective case study. Report for the National Co-ordinating Centre for NHS Service Delivery and Organisation R&D (NCCSDO) 2008. http://www.sdo.nihr.ac.uk/files/project/99-final-report.pdf
  • Robertson A, Cresswell K, Takian A, Petrakaki D, Crowe S, Cornford T. et al. Prospective evaluation of the implementation and adoption of NHS Connecting for Health's national electronic health record in secondary care in England: interim findings. BMJ. 2010; 41 :c4564. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Pearson P, Steven A, Howe A, Sheikh A, Ashcroft D, Smith P. the Patient Safety Education Study Group. Learning about patient safety: organisational context and culture in the education of healthcare professionals. J Health Serv Res Policy. 2010; 15 :4–10. doi: 10.1258/jhsrp.2009.009052. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • van Harten WH, Casparie TF, Fisscher OA. The evaluation of the introduction of a quality management system: a process-oriented case study in a large rehabilitation hospital. Health Policy. 2002; 60 (1):17–37. doi: 10.1016/S0168-8510(01)00187-7. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Stake RE. The art of case study research. London: Sage Publications Ltd.; 1995. [ Google Scholar ]
  • Sheikh A, Smeeth L, Ashcroft R. Randomised controlled trials in primary care: scope and application. Br J Gen Pract. 2002; 52 (482):746–51. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • King G, Keohane R, Verba S. Designing Social Inquiry. Princeton: Princeton University Press; 1996. [ Google Scholar ]
  • Doolin B. Information technology as disciplinary technology: being critical in interpretative research on information systems. Journal of Information Technology. 1998; 13 :301–311. doi: 10.1057/jit.1998.8. [ CrossRef ] [ Google Scholar ]
  • George AL, Bennett A. Case studies and theory development in the social sciences. Cambridge, MA: MIT Press; 2005. [ Google Scholar ]
  • Eccles M. the Improved Clinical Effectiveness through Behavioural Research Group (ICEBeRG) Designing theoretically-informed implementation interventions. Implementation Science. 2006; 1 :1–8. doi: 10.1186/1748-5908-1-1. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Netuveli G, Hurwitz B, Levy M, Fletcher M, Barnes G, Durham SR, Sheikh A. Ethnic variations in UK asthma frequency, morbidity, and health-service use: a systematic review and meta-analysis. Lancet. 2005; 365 (9456):312–7. [ PubMed ] [ Google Scholar ]
  • Sheikh A, Panesar SS, Lasserson T, Netuveli G. Recruitment of ethnic minorities to asthma studies. Thorax. 2004; 59 (7):634. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Hellström I, Nolan M, Lundh U. 'We do things together': A case study of 'couplehood' in dementia. Dementia. 2005; 4 :7–22. doi: 10.1177/1471301205049188. [ CrossRef ] [ Google Scholar ]
  • Som CV. Nothing seems to have changed, nothing seems to be changing and perhaps nothing will change in the NHS: doctors' response to clinical governance. International Journal of Public Sector Management. 2005; 18 :463–477. doi: 10.1108/09513550510608903. [ CrossRef ] [ Google Scholar ]
  • Lincoln Y, Guba E. Naturalistic inquiry. Newbury Park: Sage Publications; 1985. [ Google Scholar ]
  • Barbour RS. Checklists for improving rigour in qualitative research: a case of the tail wagging the dog? BMJ. 2001; 322 :1115–1117. doi: 10.1136/bmj.322.7294.1115. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Mays N, Pope C. Qualitative research in health care: Assessing quality in qualitative research. BMJ. 2000; 320 :50–52. doi: 10.1136/bmj.320.7226.50. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Mason J. Qualitative researching. London: Sage; 2002. [ Google Scholar ]
  • Brazier A, Cooke K, Moravan V. Using Mixed Methods for Evaluating an Integrative Approach to Cancer Care: A Case Study. Integr Cancer Ther. 2008; 7 :5–17. doi: 10.1177/1534735407313395. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Miles MB, Huberman M. Qualitative data analysis: an expanded sourcebook. 2. CA: Sage Publications Inc.; 1994. [ Google Scholar ]
  • Pope C, Ziebland S, Mays N. Analysing qualitative data. Qualitative research in health care. BMJ. 2000; 320 :114–116. doi: 10.1136/bmj.320.7227.114. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Cresswell KM, Worth A, Sheikh A. Actor-Network Theory and its role in understanding the implementation of information technology developments in healthcare. BMC Med Inform Decis Mak. 2010; 10 (1):67. doi: 10.1186/1472-6947-10-67. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Malterud K. Qualitative research: standards, challenges, and guidelines. Lancet. 2001; 358 :483–488. doi: 10.1016/S0140-6736(01)05627-6. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Yin R. Case study research: design and methods. 2. Thousand Oaks, CA: Sage Publishing; 1994. [ Google Scholar ]
  • Yin R. Enhancing the quality of case studies in health services research. Health Serv Res. 1999; 34 :1209–1224. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Green J, Thorogood N. Qualitative methods for health research. 2. Los Angeles: Sage; 2009. [ Google Scholar ]
  • Howcroft D, Trauth E. Handbook of Critical Information Systems Research, Theory and Application. Cheltenham, UK: Northampton, MA, USA: Edward Elgar; 2005. [ Google Scholar ]
  • Blakie N. Approaches to Social Enquiry. Cambridge: Polity Press; 1993. [ Google Scholar ]
  • Doolin B. Power and resistance in the implementation of a medical management information system. Info Systems J. 2004; 14 :343–362. doi: 10.1111/j.1365-2575.2004.00176.x. [ CrossRef ] [ Google Scholar ]
  • Bloomfield BP, Best A. Management consultants: systems development, power and the translation of problems. Sociological Review. 1992; 40 :533–560. [ Google Scholar ]
  • Shanks G, Parr A. Proceedings of the European Conference on Information Systems. Naples; 2003. Positivist, single case study research in information systems: A critical analysis. [ Google Scholar ]

Academic Success Center

Research Writing and Analysis

  • NVivo Group and Study Sessions
  • SPSS This link opens in a new window
  • Statistical Analysis Group sessions
  • Using Qualtrics
  • Dissertation and Data Analysis Group Sessions
  • Defense Schedule - Commons Calendar This link opens in a new window
  • Research Process Flow Chart
  • Research Alignment Chapter 1 This link opens in a new window
  • Step 1: Seek Out Evidence
  • Step 2: Explain
  • Step 3: The Big Picture
  • Step 4: Own It
  • Step 5: Illustrate
  • Annotated Bibliography
  • Seminal Authors
  • Systematic Reviews & Meta-Analyses
  • How to Synthesize and Analyze
  • Synthesis and Analysis Practice
  • Synthesis and Analysis Group Sessions
  • Problem Statement
  • Purpose Statement
  • Conceptual Framework
  • Theoretical Framework
  • Locating Theoretical and Conceptual Frameworks This link opens in a new window
  • Quantitative Research Questions
  • Qualitative Research Questions
  • Trustworthiness of Qualitative Data
  • Analysis and Coding Example- Qualitative Data
  • Thematic Data Analysis in Qualitative Design
  • Dissertation to Journal Article This link opens in a new window
  • International Journal of Online Graduate Education (IJOGE) This link opens in a new window
  • Journal of Research in Innovative Teaching & Learning (JRIT&L) This link opens in a new window

Writing a Case Study

Hands holding a world globe

What is a case study?

A Map of the world with hands holding a pen.

A Case study is: 

  • An in-depth research design that primarily uses a qualitative methodology but sometimes​​ includes quantitative methodology.
  • Used to examine an identifiable problem confirmed through research.
  • Used to investigate an individual, group of people, organization, or event.
  • Used to mostly answer "how" and "why" questions.

What are the different types of case studies?

Man and woman looking at a laptop

Descriptive

This type of case study allows the researcher to:

How has the implementation and use of the instructional coaching intervention for elementary teachers impacted students’ attitudes toward reading?

Explanatory

This type of case study allows the researcher to:

Why do differences exist when implementing the same online reading curriculum in three elementary classrooms?

Exploratory

This type of case study allows the researcher to:

 

What are potential barriers to student’s reading success when middle school teachers implement the Ready Reader curriculum online?

Multiple Case Studies

or

Collective Case Study

This type of case study allows the researcher to:

How are individual school districts addressing student engagement in an online classroom?

Intrinsic

This type of case study allows the researcher to:

How does a student’s familial background influence a teacher’s ability to provide meaningful instruction?

Instrumental

This type of case study allows the researcher to:

How a rural school district’s integration of a reward system maximized student engagement?

Note: These are the primary case studies. As you continue to research and learn

about case studies you will begin to find a robust list of different types. 

Who are your case study participants?

Boys looking through a camera

 

This type of study is implemented to understand an individual by developing a detailed explanation of the individual’s lived experiences or perceptions.

 

 

 

This type of study is implemented to explore a particular group of people’s perceptions.

This type of study is implemented to explore the perspectives of people who work for or had interaction with a specific organization or company.

This type of study is implemented to explore participant’s perceptions of an event.

What is triangulation ? 

Validity and credibility are an essential part of the case study. Therefore, the researcher should include triangulation to ensure trustworthiness while accurately reflecting what the researcher seeks to investigate.

Triangulation image with examples

How to write a Case Study?

When developing a case study, there are different ways you could present the information, but remember to include the five parts for your case study.

Man holding his hand out to show five fingers.

 

Writing Icon Purple Circle w/computer inside

Was this resource helpful?

  • << Previous: Thematic Data Analysis in Qualitative Design
  • Next: Journal Article Reporting Standards (JARS) >>
  • Last Updated: Sep 7, 2024 9:42 AM
  • URL: https://resources.nu.edu/researchtools

NCU Library Home

Educational resources and simple solutions for your research journey

case study in research

What is a Case Study in Research? Definition, Methods, and Examples

Case study methodology offers researchers an exciting opportunity to explore intricate phenomena within specific contexts using a wide range of data sources and collection methods. It is highly pertinent in health and social sciences, environmental studies, social work, education, and business studies. Its diverse applications, such as advancing theory, program evaluation, and intervention development, make it an invaluable tool for driving meaningful research and fostering positive change.[ 1]  

Table of Contents

What is a Case Study?  

A case study method involves a detailed examination of a single subject, such as an individual, group, organization, event, or community, to explore and understand complex issues in real-life contexts. By focusing on one specific case, researchers can gain a deep understanding of the factors and dynamics at play, understanding their complex relationships, which might be missed in broader, more quantitative studies.  

When to do a Case Study?  

A case study design is useful when you want to explore a phenomenon in-depth and in its natural context. Here are some examples of when to use a case study :[ 2]  

  • Exploratory Research: When you want to explore a new topic or phenomenon, a case study can help you understand the subject deeply. For example , a researcher studying a newly discovered plant species might use a case study to document its characteristics and behavior.  
  • Descriptive Research: If you want to describe a complex phenomenon or process, a case study can provide a detailed and comprehensive description. For instance, a case study design   could describe the experiences of a group of individuals living with a rare disease.  
  • Explanatory Research: When you want to understand why a particular phenomenon occurs, a case study can help you identify causal relationships. A case study design could investigate the reasons behind the success or failure of a particular business strategy.  
  • Theory Building: Case studies can also be used to develop or refine theories. By systematically analyzing a series of cases, researchers can identify patterns and relationships that can contribute to developing new theories or refining existing ones.  
  • Critical Instance: Sometimes, a single case can be used to study a rare or unusual phenomenon, but it is important for theoretical or practical reasons. For example , the case of Phineas Gage, a man who survived a severe brain injury, has been widely studied to understand the relationship between the brain and behavior.  
  • Comparative Analysis: Case studies can also compare different cases or contexts. A case study example involves comparing the implementation of a particular policy in different countries to understand its effectiveness and identifying best practices.  

what is a case study research design

How to Create a Case Study – Step by Step  

Step 1: select a case  .

Careful case selection ensures relevance, insight, and meaningful contribution to existing knowledge in your field. Here’s how you can choose a case study design :[ 3]  

  • Define Your Objectives: Clarify the purpose of your case study and what you hope to achieve. Do you want to provide new insights, challenge existing theories, propose solutions to a problem, or explore new research directions?  
  • Consider Unusual or Outlying Cases: Focus on unusual, neglected, or outlying cases that can provide unique insights.  
  • Choose a Representative Case: Alternatively, select a common or representative case to exemplify a particular category, experience, or phenomenon.   
  • Avoid Bias: Ensure your selection process is unbiased using random or criteria-based selection.  
  • Be Clear and Specific: Clearly define the boundaries of your study design , including the scope, timeframe, and key stakeholders.   
  • Ethical Considerations: Consider ethical issues, such as confidentiality and informed consent.  

Step 2: Build a Theoretical Framework  

To ensure your case study has a solid academic foundation, it’s important to build a theoretical framework:   

  • Conduct a Literature Review: Identify key concepts and theories relevant to your case study .  
  • Establish Connections with Theory: Connect your case study with existing theories in the field.  
  • Guide Your Analysis and Interpretation: Use your theoretical framework to guide your analysis, ensuring your findings are grounded in established theories and concepts.   

Step 3: Collect Your Data  

To conduct a comprehensive case study , you can use various research methods. These include interviews, observations, primary and secondary sources analysis, surveys, and a mixed methods approach. The aim is to gather rich and diverse data to enable a detailed analysis of your case study .  

Step 4: Describe and Analyze the Case  

How you report your findings will depend on the type of research you’re conducting. Here are two approaches:   

  • Structured Approach: Follows a scientific paper format, making it easier for readers to follow your argument.  
  • Narrative Approach: A more exploratory style aiming to analyze meanings and implications.  

Regardless of the approach you choose, it’s important to include the following elements in your case study :   

  • Contextual Details: Provide background information about the case, including relevant historical, cultural, and social factors that may have influenced the outcome.  
  • Literature and Theory: Connect your case study to existing literature and theory in the field. Discuss how your findings contribute to or challenge existing knowledge.  
  • Wider Patterns or Debates: Consider how your case study fits into wider patterns or debates within the field. Discuss any implications your findings may have for future research or practice.  

what is a case study research design

What Are the Benefits of a Case Study   

Case studies offer a range of benefits , making them a powerful tool in research.  

1. In-Depth Analysis  

  • Comprehensive Understanding: Case studies allow researchers to thoroughly explore a subject, understanding the complexities and nuances involved.  
  • Rich Data: They offer rich qualitative and sometimes quantitative data, capturing the intricacies of real-life contexts.  

2. Contextual Insight  

  • Real-World Application: Case studies provide insights into real-world applications, making the findings highly relevant and practical.  
  • Context-Specific: They highlight how various factors interact within a specific context, offering a detailed picture of the situation.  

3. Flexibility  

  • Methodological Diversity: Case studies can use various data collection methods, including interviews, observations, document analysis, and surveys.  
  • Adaptability: Researchers can adapt the case study approach to fit the specific needs and circumstances of the research.  

4. Practical Solutions  

  • Actionable Insights: The detailed findings from case studies can inform practical solutions and recommendations for practitioners and policymakers.  
  • Problem-Solving: They help understand the root causes of problems and devise effective strategies to address them.  

5. Unique Cases  

  • Rare Phenomena: Case studies are particularly valuable for studying rare or unique cases that other research methods may not capture.  
  • Detailed Documentation: They document and preserve detailed information about specific instances that might otherwise be overlooked.  

What Are the Limitations of a Case Study   

While case studies offer valuable insights and a detailed understanding of complex issues, they have several limitations .  

1. Limited Generalizability  

  • Specific Context: Case studies often focus on a single case or a small number of cases, which may limit the generalization of findings to broader populations or different contexts.  
  • Unique Situations: The unique characteristics of the case may not be representative of other situations, reducing the applicability of the results.  

2. Subjectivity  

  • Researcher Bias: The researcher’s perspectives and interpretations can influence the analysis and conclusions, potentially introducing bias.  
  • Participant Bias: Participants’ responses and behaviors may be influenced by their awareness of being studied, known as the Hawthorne effect.  

3. Time-Consuming  

  • Data Collection and Analysis: Gathering detailed, in-depth data requires significant time and effort, making case studies more time-consuming than other research methods.  
  • Longitudinal Studies: If the case study observes changes over time, it can become even more prolonged.  

4. Resource Intensive  

  • Financial and Human Resources: Conducting comprehensive case studies may require significant financial investment and human resources, including trained researchers and participant access.  
  • Access to Data: Accessing relevant and reliable data sources can be challenging, particularly in sensitive or proprietary contexts.  

5. Replication Difficulties  

  • Unique Contexts: A case study’s specific and detailed context makes it difficult to replicate the study exactly, limiting the ability to validate findings through repetition.  
  • Variability: Differences in contexts, researchers, and methodologies can lead to variations in findings, complicating efforts to achieve consistent results.  

By acknowledging and addressing these limitations , researchers can enhance the rigor and reliability of their case study findings.  

Key Takeaways  

Case studies are valuable in research because they provide an in-depth, contextual analysis of a single subject, event, or organization. They allow researchers to explore complex issues in real-world settings, capturing detailed qualitative and quantitative data. This method is useful for generating insights, developing theories, and offering practical solutions to problems. They are versatile, applicable in diverse fields such as business, education, and health, and can complement other research methods by providing rich, contextual evidence. However, their findings may have limited generalizability due to the focus on a specific case.  

what is a case study research design

Frequently Asked Questions  

Q: What is a case study in research?  

A case study in research is an impactful tool for gaining a deep understanding of complex issues within their real-life context. It combines various data collection methods and provides rich, detailed insights that can inform theory development and practical applications.  

Q: What are the advantages of using case studies in research?  

Case studies are a powerful research method, offering advantages such as in-depth analysis, contextual insights, flexibility, rich data, and the ability to handle complex issues. They are particularly valuable for exploring new areas, generating hypotheses, and providing detailed, illustrative examples that can inform theory and practice.  

Q: Can case studies be used in quantitative research?  

While case studies are predominantly associated with qualitative research, they can effectively incorporate quantitative methods to provide a more comprehensive analysis. A mixed-methods approach leverages qualitative and quantitative research strengths, offering a powerful tool for exploring complex issues in a real-world context. For example , a new medical treatment case study can incorporate quantitative clinical outcomes (e.g., patient recovery rates and dosage levels) along with qualitative patient interviews.  

Q: What are the key components of a case study?  

A case study typically includes several key components:   

  • Introductio n, which provides an overview and sets the context by presenting the problem statement and research objectives;  
  • Literature review , which connects the study to existing theories and prior research;  
  • Methodology , which details the case study design , data collection methods, and analysis techniques;   
  • Findings , which present the data and results, including descriptions, patterns, and themes;   
  • Discussion and conclusion , which interpret the findings, discuss their implications, and offer conclusions, practical applications, limitations, and suggestions for future research.  

Together, these components ensure a comprehensive, systematic, and insightful exploration of the case.  

References  

  • de Vries, K. (2020). Case study methodology. In  Critical qualitative health research  (pp. 41-52). Routledge.  
  • Fidel, R. (1984). The case study method: A case study.  Library and Information Science Research ,  6 (3), 273-288.  
  • Thomas, G. (2021). How to do your case study.  How to do your case study , 1-320.  

Editage All Access is a subscription-based platform that unifies the best AI tools and services designed to speed up, simplify, and streamline every step of a researcher’s journey. The Editage All Access Pack is a one-of-a-kind subscription that unlocks full access to an AI writing assistant, literature recommender, journal finder, scientific illustration tool, and exclusive discounts on professional publication services from Editage.  

Based on 22+ years of experience in academia, Editage All Access empowers researchers to put their best research forward and move closer to success. Explore our top AI Tools pack, AI Tools + Publication Services pack, or Build Your Own Plan. Find everything a researcher needs to succeed, all in one place –  Get All Access now starting at just $14 a month !    

Related Posts

Peer Review Week 2024

Join Us for Peer Review Week 2024

Editage All Access Boosting Productivity for Academics in India

How Editage All Access is Boosting Productivity for Academics in India

what is a case study research design

The Ultimate Guide to Qualitative Research - Part 1: The Basics

what is a case study research design

  • Introduction and overview
  • What is qualitative research?
  • What is qualitative data?
  • Examples of qualitative data
  • Qualitative vs. quantitative research
  • Mixed methods
  • Qualitative research preparation
  • Theoretical perspective
  • Theoretical framework
  • Literature reviews

Research question

  • Conceptual framework
  • Conceptual vs. theoretical framework

Data collection

  • Qualitative research methods
  • Focus groups
  • Observational research

What is a case study?

Applications for case study research, what is a good case study, process of case study design, benefits and limitations of case studies.

  • Ethnographical research
  • Ethical considerations
  • Confidentiality and privacy
  • Power dynamics
  • Reflexivity

Case studies

Case studies are essential to qualitative research , offering a lens through which researchers can investigate complex phenomena within their real-life contexts. This chapter explores the concept, purpose, applications, examples, and types of case studies and provides guidance on how to conduct case study research effectively.

what is a case study research design

Whereas quantitative methods look at phenomena at scale, case study research looks at a concept or phenomenon in considerable detail. While analyzing a single case can help understand one perspective regarding the object of research inquiry, analyzing multiple cases can help obtain a more holistic sense of the topic or issue. Let's provide a basic definition of a case study, then explore its characteristics and role in the qualitative research process.

Definition of a case study

A case study in qualitative research is a strategy of inquiry that involves an in-depth investigation of a phenomenon within its real-world context. It provides researchers with the opportunity to acquire an in-depth understanding of intricate details that might not be as apparent or accessible through other methods of research. The specific case or cases being studied can be a single person, group, or organization – demarcating what constitutes a relevant case worth studying depends on the researcher and their research question .

Among qualitative research methods , a case study relies on multiple sources of evidence, such as documents, artifacts, interviews , or observations , to present a complete and nuanced understanding of the phenomenon under investigation. The objective is to illuminate the readers' understanding of the phenomenon beyond its abstract statistical or theoretical explanations.

Characteristics of case studies

Case studies typically possess a number of distinct characteristics that set them apart from other research methods. These characteristics include a focus on holistic description and explanation, flexibility in the design and data collection methods, reliance on multiple sources of evidence, and emphasis on the context in which the phenomenon occurs.

Furthermore, case studies can often involve a longitudinal examination of the case, meaning they study the case over a period of time. These characteristics allow case studies to yield comprehensive, in-depth, and richly contextualized insights about the phenomenon of interest.

The role of case studies in research

Case studies hold a unique position in the broader landscape of research methods aimed at theory development. They are instrumental when the primary research interest is to gain an intensive, detailed understanding of a phenomenon in its real-life context.

In addition, case studies can serve different purposes within research - they can be used for exploratory, descriptive, or explanatory purposes, depending on the research question and objectives. This flexibility and depth make case studies a valuable tool in the toolkit of qualitative researchers.

Remember, a well-conducted case study can offer a rich, insightful contribution to both academic and practical knowledge through theory development or theory verification, thus enhancing our understanding of complex phenomena in their real-world contexts.

What is the purpose of a case study?

Case study research aims for a more comprehensive understanding of phenomena, requiring various research methods to gather information for qualitative analysis . Ultimately, a case study can allow the researcher to gain insight into a particular object of inquiry and develop a theoretical framework relevant to the research inquiry.

Why use case studies in qualitative research?

Using case studies as a research strategy depends mainly on the nature of the research question and the researcher's access to the data.

Conducting case study research provides a level of detail and contextual richness that other research methods might not offer. They are beneficial when there's a need to understand complex social phenomena within their natural contexts.

The explanatory, exploratory, and descriptive roles of case studies

Case studies can take on various roles depending on the research objectives. They can be exploratory when the research aims to discover new phenomena or define new research questions; they are descriptive when the objective is to depict a phenomenon within its context in a detailed manner; and they can be explanatory if the goal is to understand specific relationships within the studied context. Thus, the versatility of case studies allows researchers to approach their topic from different angles, offering multiple ways to uncover and interpret the data .

The impact of case studies on knowledge development

Case studies play a significant role in knowledge development across various disciplines. Analysis of cases provides an avenue for researchers to explore phenomena within their context based on the collected data.

what is a case study research design

This can result in the production of rich, practical insights that can be instrumental in both theory-building and practice. Case studies allow researchers to delve into the intricacies and complexities of real-life situations, uncovering insights that might otherwise remain hidden.

Types of case studies

In qualitative research , a case study is not a one-size-fits-all approach. Depending on the nature of the research question and the specific objectives of the study, researchers might choose to use different types of case studies. These types differ in their focus, methodology, and the level of detail they provide about the phenomenon under investigation.

Understanding these types is crucial for selecting the most appropriate approach for your research project and effectively achieving your research goals. Let's briefly look at the main types of case studies.

Exploratory case studies

Exploratory case studies are typically conducted to develop a theory or framework around an understudied phenomenon. They can also serve as a precursor to a larger-scale research project. Exploratory case studies are useful when a researcher wants to identify the key issues or questions which can spur more extensive study or be used to develop propositions for further research. These case studies are characterized by flexibility, allowing researchers to explore various aspects of a phenomenon as they emerge, which can also form the foundation for subsequent studies.

Descriptive case studies

Descriptive case studies aim to provide a complete and accurate representation of a phenomenon or event within its context. These case studies are often based on an established theoretical framework, which guides how data is collected and analyzed. The researcher is concerned with describing the phenomenon in detail, as it occurs naturally, without trying to influence or manipulate it.

Explanatory case studies

Explanatory case studies are focused on explanation - they seek to clarify how or why certain phenomena occur. Often used in complex, real-life situations, they can be particularly valuable in clarifying causal relationships among concepts and understanding the interplay between different factors within a specific context.

what is a case study research design

Intrinsic, instrumental, and collective case studies

These three categories of case studies focus on the nature and purpose of the study. An intrinsic case study is conducted when a researcher has an inherent interest in the case itself. Instrumental case studies are employed when the case is used to provide insight into a particular issue or phenomenon. A collective case study, on the other hand, involves studying multiple cases simultaneously to investigate some general phenomena.

Each type of case study serves a different purpose and has its own strengths and challenges. The selection of the type should be guided by the research question and objectives, as well as the context and constraints of the research.

The flexibility, depth, and contextual richness offered by case studies make this approach an excellent research method for various fields of study. They enable researchers to investigate real-world phenomena within their specific contexts, capturing nuances that other research methods might miss. Across numerous fields, case studies provide valuable insights into complex issues.

Critical information systems research

Case studies provide a detailed understanding of the role and impact of information systems in different contexts. They offer a platform to explore how information systems are designed, implemented, and used and how they interact with various social, economic, and political factors. Case studies in this field often focus on examining the intricate relationship between technology, organizational processes, and user behavior, helping to uncover insights that can inform better system design and implementation.

Health research

Health research is another field where case studies are highly valuable. They offer a way to explore patient experiences, healthcare delivery processes, and the impact of various interventions in a real-world context.

what is a case study research design

Case studies can provide a deep understanding of a patient's journey, giving insights into the intricacies of disease progression, treatment effects, and the psychosocial aspects of health and illness.

Asthma research studies

Specifically within medical research, studies on asthma often employ case studies to explore the individual and environmental factors that influence asthma development, management, and outcomes. A case study can provide rich, detailed data about individual patients' experiences, from the triggers and symptoms they experience to the effectiveness of various management strategies. This can be crucial for developing patient-centered asthma care approaches.

Other fields

Apart from the fields mentioned, case studies are also extensively used in business and management research, education research, and political sciences, among many others. They provide an opportunity to delve into the intricacies of real-world situations, allowing for a comprehensive understanding of various phenomena.

Case studies, with their depth and contextual focus, offer unique insights across these varied fields. They allow researchers to illuminate the complexities of real-life situations, contributing to both theory and practice.

what is a case study research design

Whatever field you're in, ATLAS.ti puts your data to work for you

Download a free trial of ATLAS.ti to turn your data into insights.

Understanding the key elements of case study design is crucial for conducting rigorous and impactful case study research. A well-structured design guides the researcher through the process, ensuring that the study is methodologically sound and its findings are reliable and valid. The main elements of case study design include the research question , propositions, units of analysis, and the logic linking the data to the propositions.

The research question is the foundation of any research study. A good research question guides the direction of the study and informs the selection of the case, the methods of collecting data, and the analysis techniques. A well-formulated research question in case study research is typically clear, focused, and complex enough to merit further detailed examination of the relevant case(s).

Propositions

Propositions, though not necessary in every case study, provide a direction by stating what we might expect to find in the data collected. They guide how data is collected and analyzed by helping researchers focus on specific aspects of the case. They are particularly important in explanatory case studies, which seek to understand the relationships among concepts within the studied phenomenon.

Units of analysis

The unit of analysis refers to the case, or the main entity or entities that are being analyzed in the study. In case study research, the unit of analysis can be an individual, a group, an organization, a decision, an event, or even a time period. It's crucial to clearly define the unit of analysis, as it shapes the qualitative data analysis process by allowing the researcher to analyze a particular case and synthesize analysis across multiple case studies to draw conclusions.

Argumentation

This refers to the inferential model that allows researchers to draw conclusions from the data. The researcher needs to ensure that there is a clear link between the data, the propositions (if any), and the conclusions drawn. This argumentation is what enables the researcher to make valid and credible inferences about the phenomenon under study.

Understanding and carefully considering these elements in the design phase of a case study can significantly enhance the quality of the research. It can help ensure that the study is methodologically sound and its findings contribute meaningful insights about the case.

Ready to jumpstart your research with ATLAS.ti?

Conceptualize your research project with our intuitive data analysis interface. Download a free trial today.

Conducting a case study involves several steps, from defining the research question and selecting the case to collecting and analyzing data . This section outlines these key stages, providing a practical guide on how to conduct case study research.

Defining the research question

The first step in case study research is defining a clear, focused research question. This question should guide the entire research process, from case selection to analysis. It's crucial to ensure that the research question is suitable for a case study approach. Typically, such questions are exploratory or descriptive in nature and focus on understanding a phenomenon within its real-life context.

Selecting and defining the case

The selection of the case should be based on the research question and the objectives of the study. It involves choosing a unique example or a set of examples that provide rich, in-depth data about the phenomenon under investigation. After selecting the case, it's crucial to define it clearly, setting the boundaries of the case, including the time period and the specific context.

Previous research can help guide the case study design. When considering a case study, an example of a case could be taken from previous case study research and used to define cases in a new research inquiry. Considering recently published examples can help understand how to select and define cases effectively.

Developing a detailed case study protocol

A case study protocol outlines the procedures and general rules to be followed during the case study. This includes the data collection methods to be used, the sources of data, and the procedures for analysis. Having a detailed case study protocol ensures consistency and reliability in the study.

The protocol should also consider how to work with the people involved in the research context to grant the research team access to collecting data. As mentioned in previous sections of this guide, establishing rapport is an essential component of qualitative research as it shapes the overall potential for collecting and analyzing data.

Collecting data

Gathering data in case study research often involves multiple sources of evidence, including documents, archival records, interviews, observations, and physical artifacts. This allows for a comprehensive understanding of the case. The process for gathering data should be systematic and carefully documented to ensure the reliability and validity of the study.

Analyzing and interpreting data

The next step is analyzing the data. This involves organizing the data , categorizing it into themes or patterns , and interpreting these patterns to answer the research question. The analysis might also involve comparing the findings with prior research or theoretical propositions.

Writing the case study report

The final step is writing the case study report . This should provide a detailed description of the case, the data, the analysis process, and the findings. The report should be clear, organized, and carefully written to ensure that the reader can understand the case and the conclusions drawn from it.

Each of these steps is crucial in ensuring that the case study research is rigorous, reliable, and provides valuable insights about the case.

The type, depth, and quality of data in your study can significantly influence the validity and utility of the study. In case study research, data is usually collected from multiple sources to provide a comprehensive and nuanced understanding of the case. This section will outline the various methods of collecting data used in case study research and discuss considerations for ensuring the quality of the data.

Interviews are a common method of gathering data in case study research. They can provide rich, in-depth data about the perspectives, experiences, and interpretations of the individuals involved in the case. Interviews can be structured , semi-structured , or unstructured , depending on the research question and the degree of flexibility needed.

Observations

Observations involve the researcher observing the case in its natural setting, providing first-hand information about the case and its context. Observations can provide data that might not be revealed in interviews or documents, such as non-verbal cues or contextual information.

Documents and artifacts

Documents and archival records provide a valuable source of data in case study research. They can include reports, letters, memos, meeting minutes, email correspondence, and various public and private documents related to the case.

what is a case study research design

These records can provide historical context, corroborate evidence from other sources, and offer insights into the case that might not be apparent from interviews or observations.

Physical artifacts refer to any physical evidence related to the case, such as tools, products, or physical environments. These artifacts can provide tangible insights into the case, complementing the data gathered from other sources.

Ensuring the quality of data collection

Determining the quality of data in case study research requires careful planning and execution. It's crucial to ensure that the data is reliable, accurate, and relevant to the research question. This involves selecting appropriate methods of collecting data, properly training interviewers or observers, and systematically recording and storing the data. It also includes considering ethical issues related to collecting and handling data, such as obtaining informed consent and ensuring the privacy and confidentiality of the participants.

Data analysis

Analyzing case study research involves making sense of the rich, detailed data to answer the research question. This process can be challenging due to the volume and complexity of case study data. However, a systematic and rigorous approach to analysis can ensure that the findings are credible and meaningful. This section outlines the main steps and considerations in analyzing data in case study research.

Organizing the data

The first step in the analysis is organizing the data. This involves sorting the data into manageable sections, often according to the data source or the theme. This step can also involve transcribing interviews, digitizing physical artifacts, or organizing observational data.

Categorizing and coding the data

Once the data is organized, the next step is to categorize or code the data. This involves identifying common themes, patterns, or concepts in the data and assigning codes to relevant data segments. Coding can be done manually or with the help of software tools, and in either case, qualitative analysis software can greatly facilitate the entire coding process. Coding helps to reduce the data to a set of themes or categories that can be more easily analyzed.

Identifying patterns and themes

After coding the data, the researcher looks for patterns or themes in the coded data. This involves comparing and contrasting the codes and looking for relationships or patterns among them. The identified patterns and themes should help answer the research question.

Interpreting the data

Once patterns and themes have been identified, the next step is to interpret these findings. This involves explaining what the patterns or themes mean in the context of the research question and the case. This interpretation should be grounded in the data, but it can also involve drawing on theoretical concepts or prior research.

Verification of the data

The last step in the analysis is verification. This involves checking the accuracy and consistency of the analysis process and confirming that the findings are supported by the data. This can involve re-checking the original data, checking the consistency of codes, or seeking feedback from research participants or peers.

Like any research method , case study research has its strengths and limitations. Researchers must be aware of these, as they can influence the design, conduct, and interpretation of the study.

Understanding the strengths and limitations of case study research can also guide researchers in deciding whether this approach is suitable for their research question . This section outlines some of the key strengths and limitations of case study research.

Benefits include the following:

  • Rich, detailed data: One of the main strengths of case study research is that it can generate rich, detailed data about the case. This can provide a deep understanding of the case and its context, which can be valuable in exploring complex phenomena.
  • Flexibility: Case study research is flexible in terms of design , data collection , and analysis . A sufficient degree of flexibility allows the researcher to adapt the study according to the case and the emerging findings.
  • Real-world context: Case study research involves studying the case in its real-world context, which can provide valuable insights into the interplay between the case and its context.
  • Multiple sources of evidence: Case study research often involves collecting data from multiple sources , which can enhance the robustness and validity of the findings.

On the other hand, researchers should consider the following limitations:

  • Generalizability: A common criticism of case study research is that its findings might not be generalizable to other cases due to the specificity and uniqueness of each case.
  • Time and resource intensive: Case study research can be time and resource intensive due to the depth of the investigation and the amount of collected data.
  • Complexity of analysis: The rich, detailed data generated in case study research can make analyzing the data challenging.
  • Subjectivity: Given the nature of case study research, there may be a higher degree of subjectivity in interpreting the data , so researchers need to reflect on this and transparently convey to audiences how the research was conducted.

Being aware of these strengths and limitations can help researchers design and conduct case study research effectively and interpret and report the findings appropriately.

what is a case study research design

Ready to analyze your data with ATLAS.ti?

See how our intuitive software can draw key insights from your data with a free trial today.

Instant insights, infinite possibilities

What is case study research?

Last updated

8 February 2023

Reviewed by

Cathy Heath

Short on time? Get an AI generated summary of this article instead

Suppose a company receives a spike in the number of customer complaints, or medical experts discover an outbreak of illness affecting children but are not quite sure of the reason. In both cases, carrying out a case study could be the best way to get answers.

Organization

Case studies can be carried out across different disciplines, including education, medicine, sociology, and business.

Most case studies employ qualitative methods, but quantitative methods can also be used. Researchers can then describe, compare, evaluate, and identify patterns or cause-and-effect relationships between the various variables under study. They can then use this knowledge to decide what action to take. 

Another thing to note is that case studies are generally singular in their focus. This means they narrow focus to a particular area, making them highly subjective. You cannot always generalize the results of a case study and apply them to a larger population. However, they are valuable tools to illustrate a principle or develop a thesis.

Analyze case study research

Dovetail streamlines case study research to help you uncover and share actionable insights

  • What are the different types of case study designs?

Researchers can choose from a variety of case study designs. The design they choose is dependent on what questions they need to answer, the context of the research environment, how much data they already have, and what resources are available.

Here are the common types of case study design:

Explanatory

An explanatory case study is an initial explanation of the how or why that is behind something. This design is commonly used when studying a real-life phenomenon or event. Once the organization understands the reasons behind a phenomenon, it can then make changes to enhance or eliminate the variables causing it. 

Here is an example: How is co-teaching implemented in elementary schools? The title for a case study of this subject could be “Case Study of the Implementation of Co-Teaching in Elementary Schools.”

Descriptive

An illustrative or descriptive case study helps researchers shed light on an unfamiliar object or subject after a period of time. The case study provides an in-depth review of the issue at hand and adds real-world examples in the area the researcher wants the audience to understand. 

The researcher makes no inferences or causal statements about the object or subject under review. This type of design is often used to understand cultural shifts.

Here is an example: How did people cope with the 2004 Indian Ocean Tsunami? This case study could be titled "A Case Study of the 2004 Indian Ocean Tsunami and its Effect on the Indonesian Population."

Exploratory

Exploratory research is also called a pilot case study. It is usually the first step within a larger research project, often relying on questionnaires and surveys . Researchers use exploratory research to help narrow down their focus, define parameters, draft a specific research question , and/or identify variables in a larger study. This research design usually covers a wider area than others, and focuses on the ‘what’ and ‘who’ of a topic.

Here is an example: How do nutrition and socialization in early childhood affect learning in children? The title of the exploratory study may be “Case Study of the Effects of Nutrition and Socialization on Learning in Early Childhood.”

An intrinsic case study is specifically designed to look at a unique and special phenomenon. At the start of the study, the researcher defines the phenomenon and the uniqueness that differentiates it from others. 

In this case, researchers do not attempt to generalize, compare, or challenge the existing assumptions. Instead, they explore the unique variables to enhance understanding. Here is an example: “Case Study of Volcanic Lightning.”

This design can also be identified as a cumulative case study. It uses information from past studies or observations of groups of people in certain settings as the foundation of the new study. Given that it takes multiple areas into account, it allows for greater generalization than a single case study. 

The researchers also get an in-depth look at a particular subject from different viewpoints.  Here is an example: “Case Study of how PTSD affected Vietnam and Gulf War Veterans Differently Due to Advances in Military Technology.”

Critical instance

A critical case study incorporates both explanatory and intrinsic study designs. It does not have predetermined purposes beyond an investigation of the said subject. It can be used for a deeper explanation of the cause-and-effect relationship. It can also be used to question a common assumption or myth. 

The findings can then be used further to generalize whether they would also apply in a different environment.  Here is an example: “What Effect Does Prolonged Use of Social Media Have on the Mind of American Youth?”

Instrumental

Instrumental research attempts to achieve goals beyond understanding the object at hand. Researchers explore a larger subject through different, separate studies and use the findings to understand its relationship to another subject. This type of design also provides insight into an issue or helps refine a theory. 

For example, you may want to determine if violent behavior in children predisposes them to crime later in life. The focus is on the relationship between children and violent behavior, and why certain children do become violent. Here is an example: “Violence Breeds Violence: Childhood Exposure and Participation in Adult Crime.”

Evaluation case study design is employed to research the effects of a program, policy, or intervention, and assess its effectiveness and impact on future decision-making. 

For example, you might want to see whether children learn times tables quicker through an educational game on their iPad versus a more teacher-led intervention. Here is an example: “An Investigation of the Impact of an iPad Multiplication Game for Primary School Children.” 

  • When do you use case studies?

Case studies are ideal when you want to gain a contextual, concrete, or in-depth understanding of a particular subject. It helps you understand the characteristics, implications, and meanings of the subject.

They are also an excellent choice for those writing a thesis or dissertation, as they help keep the project focused on a particular area when resources or time may be too limited to cover a wider one. You may have to conduct several case studies to explore different aspects of the subject in question and understand the problem.

  • What are the steps to follow when conducting a case study?

1. Select a case

Once you identify the problem at hand and come up with questions, identify the case you will focus on. The study can provide insights into the subject at hand, challenge existing assumptions, propose a course of action, and/or open up new areas for further research.

2. Create a theoretical framework

While you will be focusing on a specific detail, the case study design you choose should be linked to existing knowledge on the topic. This prevents it from becoming an isolated description and allows for enhancing the existing information. 

It may expand the current theory by bringing up new ideas or concepts, challenge established assumptions, or exemplify a theory by exploring how it answers the problem at hand. A theoretical framework starts with a literature review of the sources relevant to the topic in focus. This helps in identifying key concepts to guide analysis and interpretation.

3. Collect the data

Case studies are frequently supplemented with qualitative data such as observations, interviews, and a review of both primary and secondary sources such as official records, news articles, and photographs. There may also be quantitative data —this data assists in understanding the case thoroughly.

4. Analyze your case

The results of the research depend on the research design. Most case studies are structured with chapters or topic headings for easy explanation and presentation. Others may be written as narratives to allow researchers to explore various angles of the topic and analyze its meanings and implications.

In all areas, always give a detailed contextual understanding of the case and connect it to the existing theory and literature before discussing how it fits into your problem area.

  • What are some case study examples?

What are the best approaches for introducing our product into the Kenyan market?

How does the change in marketing strategy aid in increasing the sales volumes of product Y?

How can teachers enhance student participation in classrooms?

How does poverty affect literacy levels in children?

Case study topics

Case study of product marketing strategies in the Kenyan market

Case study of the effects of a marketing strategy change on product Y sales volumes

Case study of X school teachers that encourage active student participation in the classroom

Case study of the effects of poverty on literacy levels in children

Should you be using a customer insights hub?

Do you want to discover previous research faster?

Do you share your research findings with others?

Do you analyze research data?

Start for free today, add your research, and get to key insights faster

Editor’s picks

Last updated: 18 April 2023

Last updated: 27 February 2023

Last updated: 22 August 2024

Last updated: 5 February 2023

Last updated: 16 August 2024

Last updated: 9 March 2023

Last updated: 30 April 2024

Last updated: 12 December 2023

Last updated: 11 March 2024

Last updated: 4 July 2024

Last updated: 6 March 2024

Last updated: 5 March 2024

Last updated: 13 May 2024

Latest articles

Related topics, .css-je19u9{-webkit-align-items:flex-end;-webkit-box-align:flex-end;-ms-flex-align:flex-end;align-items:flex-end;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-flex-direction:row;-ms-flex-direction:row;flex-direction:row;-webkit-box-flex-wrap:wrap;-webkit-flex-wrap:wrap;-ms-flex-wrap:wrap;flex-wrap:wrap;-webkit-box-pack:center;-ms-flex-pack:center;-webkit-justify-content:center;justify-content:center;row-gap:0;text-align:center;max-width:671px;}@media (max-width: 1079px){.css-je19u9{max-width:400px;}.css-je19u9>span{white-space:pre;}}@media (max-width: 799px){.css-je19u9{max-width:400px;}.css-je19u9>span{white-space:pre;}} decide what to .css-1kiodld{max-height:56px;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;}@media (max-width: 1079px){.css-1kiodld{display:none;}} build next, decide what to build next, log in or sign up.

Get started for free

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

Descriptive Research and Case Studies

Learning objectives.

  • Explain the importance and uses of descriptive research, especially case studies, in studying abnormal behavior

Types of Research Methods

There are many research methods available to psychologists in their efforts to understand, describe, and explain behavior and the cognitive and biological processes that underlie it. Some methods rely on observational techniques. Other approaches involve interactions between the researcher and the individuals who are being studied—ranging from a series of simple questions; to extensive, in-depth interviews; to well-controlled experiments.

The three main categories of psychological research are descriptive, correlational, and experimental research. Research studies that do not test specific relationships between variables are called descriptive, or qualitative, studies . These studies are used to describe general or specific behaviors and attributes that are observed and measured. In the early stages of research, it might be difficult to form a hypothesis, especially when there is not any existing literature in the area. In these situations designing an experiment would be premature, as the question of interest is not yet clearly defined as a hypothesis. Often a researcher will begin with a non-experimental approach, such as a descriptive study, to gather more information about the topic before designing an experiment or correlational study to address a specific hypothesis. Descriptive research is distinct from correlational research , in which psychologists formally test whether a relationship exists between two or more variables. Experimental research goes a step further beyond descriptive and correlational research and randomly assigns people to different conditions, using hypothesis testing to make inferences about how these conditions affect behavior. It aims to determine if one variable directly impacts and causes another. Correlational and experimental research both typically use hypothesis testing, whereas descriptive research does not.

Each of these research methods has unique strengths and weaknesses, and each method may only be appropriate for certain types of research questions. For example, studies that rely primarily on observation produce incredible amounts of information, but the ability to apply this information to the larger population is somewhat limited because of small sample sizes. Survey research, on the other hand, allows researchers to easily collect data from relatively large samples. While surveys allow results to be generalized to the larger population more easily, the information that can be collected on any given survey is somewhat limited and subject to problems associated with any type of self-reported data. Some researchers conduct archival research by using existing records. While existing records can be a fairly inexpensive way to collect data that can provide insight into a number of research questions, researchers using this approach have no control on how or what kind of data was collected.

Correlational research can find a relationship between two variables, but the only way a researcher can claim that the relationship between the variables is cause and effect is to perform an experiment. In experimental research, which will be discussed later, there is a tremendous amount of control over variables of interest. While performing an experiment is a powerful approach, experiments are often conducted in very artificial settings, which calls into question the validity of experimental findings with regard to how they would apply in real-world settings. In addition, many of the questions that psychologists would like to answer cannot be pursued through experimental research because of ethical concerns.

The three main types of descriptive studies are case studies, naturalistic observation, and surveys.

Clinical or Case Studies

Psychologists can use a detailed description of one person or a small group based on careful observation.  Case studies  are intensive studies of individuals and have commonly been seen as a fruitful way to come up with hypotheses and generate theories. Case studies add descriptive richness. Case studies are also useful for formulating concepts, which are an important aspect of theory construction. Through fine-grained knowledge and description, case studies can fully specify the causal mechanisms in a way that may be harder in a large study.

Sigmund Freud   developed  many theories from case studies (Anna O., Little Hans, Wolf Man, Dora, etc.). F or example, he conducted a case study of a man, nicknamed “Rat Man,”  in which he claimed that this patient had been cured by psychoanalysis.  T he nickname derives from the fact that among the patient’s many compulsions, he had an obsession with nightmarish fantasies about rats. 

Today, more commonly, case studies reflect an up-close, in-depth, and detailed examination of an individual’s course of treatment. Case studies typically include a complete history of the subject’s background and response to treatment. From the particular client’s experience in therapy, the therapist’s goal is to provide information that may help other therapists who treat similar clients.

Case studies are generally a single-case design, but can also be a multiple-case design, where replication instead of sampling is the criterion for inclusion. Like other research methodologies within psychology, the case study must produce valid and reliable results in order to be useful for the development of future research. Distinct advantages and disadvantages are associated with the case study in psychology.

A commonly described limit of case studies is that they do not lend themselves to generalizability . The other issue is that the case study is subject to the bias of the researcher in terms of how the case is written, and that cases are chosen because they are consistent with the researcher’s preconceived notions, resulting in biased research. Another common problem in case study research is that of reconciling conflicting interpretations of the same case history.

Despite these limitations, there are advantages to using case studies. One major advantage of the case study in psychology is the potential for the development of novel hypotheses of the  cause of abnormal behavior   for later testing. Second, the case study can provide detailed descriptions of specific and rare cases and help us study unusual conditions that occur too infrequently to study with large sample sizes. The major disadvantage is that case studies cannot be used to determine causation, as is the case in experimental research, where the factors or variables hypothesized to play a causal role are manipulated or controlled by the researcher. 

Link to Learning: Famous Case Studies

Some well-known case studies that related to abnormal psychology include the following:

  • Harlow— Phineas Gage
  • Breuer & Freud (1895)— Anna O.
  • Cleckley’s case studies: on psychopathy ( The Mask of Sanity ) (1941) and multiple personality disorder ( The Three Faces of Eve ) (1957)
  • Freud and  Little Hans
  • Freud and the  Rat Man
  • John Money and the  John/Joan case
  • Genie (feral child)
  • Piaget’s studies
  • Rosenthal’s book on the  murder of Kitty Genovese
  • Washoe (sign language)
  • Patient H.M.

Naturalistic Observation

If you want to understand how behavior occurs, one of the best ways to gain information is to simply observe the behavior in its natural context. However, people might change their behavior in unexpected ways if they know they are being observed. How do researchers obtain accurate information when people tend to hide their natural behavior? As an example, imagine that your professor asks everyone in your class to raise their hand if they always wash their hands after using the restroom. Chances are that almost everyone in the classroom will raise their hand, but do you think hand washing after every trip to the restroom is really that universal?

This is very similar to the phenomenon mentioned earlier in this module: many individuals do not feel comfortable answering a question honestly. But if we are committed to finding out the facts about handwashing, we have other options available to us.

Suppose we send a researcher to a school playground to observe how aggressive or socially anxious children interact with peers. Will our observer blend into the playground environment by wearing a white lab coat, sitting with a clipboard, and staring at the swings? We want our researcher to be inconspicuous and unobtrusively positioned—perhaps pretending to be a school monitor while secretly recording the relevant information. This type of observational study is called naturalistic observation : observing behavior in its natural setting. To better understand peer exclusion, Suzanne Fanger collaborated with colleagues at the University of Texas to observe the behavior of preschool children on a playground. How did the observers remain inconspicuous over the duration of the study? They equipped a few of the children with wireless microphones (which the children quickly forgot about) and observed while taking notes from a distance. Also, the children in that particular preschool (a “laboratory preschool”) were accustomed to having observers on the playground (Fanger, Frankel, & Hazen, 2012).

woman in black leather jacket sitting on concrete bench

It is critical that the observer be as unobtrusive and as inconspicuous as possible: when people know they are being watched, they are less likely to behave naturally. For example, psychologists have spent weeks observing the behavior of homeless people on the streets, in train stations, and bus terminals. They try to ensure that their naturalistic observations are unobtrusive, so as to minimize interference with the behavior they observe. Nevertheless, the presence of the observer may distort the behavior that is observed, and this must be taken into consideration (Figure 1).

The greatest benefit of naturalistic observation is the validity, or accuracy, of information collected unobtrusively in a natural setting. Having individuals behave as they normally would in a given situation means that we have a higher degree of ecological validity, or realism, than we might achieve with other research approaches. Therefore, our ability to generalize the findings of the research to real-world situations is enhanced. If done correctly, we need not worry about people modifying their behavior simply because they are being observed. Sometimes, people may assume that reality programs give us a glimpse into authentic human behavior. However, the principle of inconspicuous observation is violated as reality stars are followed by camera crews and are interviewed on camera for personal confessionals. Given that environment, we must doubt how natural and realistic their behaviors are.

The major downside of naturalistic observation is that they are often difficult to set up and control. Although something as simple as observation may seem like it would be a part of all research methods, participant observation is a distinct methodology that involves the researcher embedding themselves into a group in order to study its dynamics. For example, Festinger, Riecken, and Shacter (1956) were very interested in the psychology of a particular cult. However, this cult was very secretive and wouldn’t grant interviews to outside members. So, in order to study these people, Festinger and his colleagues pretended to be cult members, allowing them access to the behavior and psychology of the cult. Despite this example, it should be noted that the people being observed in a participant observation study usually know that the researcher is there to study them. [1]

Another potential problem in observational research is observer bias . Generally, people who act as observers are closely involved in the research project and may unconsciously skew their observations to fit their research goals or expectations. To protect against this type of bias, researchers should have clear criteria established for the types of behaviors recorded and how those behaviors should be classified. In addition, researchers often compare observations of the same event by multiple observers, in order to test inter-rater reliability : a measure of reliability that assesses the consistency of observations by different observers.

Often, psychologists develop surveys as a means of gathering data. Surveys are lists of questions to be answered by research participants, and can be delivered as paper-and-pencil questionnaires, administered electronically, or conducted verbally (Figure 3). Generally, the survey itself can be completed in a short time, and the ease of administering a survey makes it easy to collect data from a large number of people.

Surveys allow researchers to gather data from larger samples than may be afforded by other research methods . A sample is a subset of individuals selected from a population , which is the overall group of individuals that the researchers are interested in. Researchers study the sample and seek to generalize their findings to the population.

A sample online survey reads, “Dear visitor, your opinion is important to us. We would like to invite you to participate in a short survey to gather your opinions and feedback on your news consumption habits. The survey will take approximately 10-15 minutes. Simply click the “Yes” button below to launch the survey. Would you like to participate?” Two buttons are labeled “yes” and “no.”

There is both strength and weakness in surveys when compared to case studies. By using surveys, we can collect information from a larger sample of people. A larger sample is better able to reflect the actual diversity of the population, thus allowing better generalizability. Therefore, if our sample is sufficiently large and diverse, we can assume that the data we collect from the survey can be generalized to the larger population with more certainty than the information collected through a case study. However, given the greater number of people involved, we are not able to collect the same depth of information on each person that would be collected in a case study.

Another potential weakness of surveys is something we touched on earlier in this module: people do not always give accurate responses. They may lie, misremember, or answer questions in a way that they think makes them look good. For example, people may report drinking less alcohol than is actually the case.

Any number of research questions can be answered through the use of surveys. One real-world example is the research conducted by Jenkins, Ruppel, Kizer, Yehl, and Griffin (2012) about the backlash against the U.S. Arab-American community following the terrorist attacks of September 11, 2001. Jenkins and colleagues wanted to determine to what extent these negative attitudes toward Arab-Americans still existed nearly a decade after the attacks occurred. In one study, 140 research participants filled out a survey with 10 questions, including questions asking directly about the participant’s overt prejudicial attitudes toward people of various ethnicities. The survey also asked indirect questions about how likely the participant would be to interact with a person of a given ethnicity in a variety of settings (such as, “How likely do you think it is that you would introduce yourself to a person of Arab-American descent?”). The results of the research suggested that participants were unwilling to report prejudicial attitudes toward any ethnic group. However, there were significant differences between their pattern of responses to questions about social interaction with Arab-Americans compared to other ethnic groups: they indicated less willingness for social interaction with Arab-Americans compared to the other ethnic groups. This suggested that the participants harbored subtle forms of prejudice against Arab-Americans, despite their assertions that this was not the case (Jenkins et al., 2012).

Think it Over

Research has shown that parental depressive symptoms are linked to a number of negative child outcomes. A classmate of yours is interested in  the associations between parental depressive symptoms and actual child behaviors in everyday life [2] because this associations remains largely unknown. After reading this section, what do you think is the best way to better understand such associations? Which method might result in the most valid data?

clinical or case study:  observational research study focusing on one or a few people

correlational research:  tests whether a relationship exists between two or more variables

descriptive research:  research studies that do not test specific relationships between variables; they are used to describe general or specific behaviors and attributes that are observed and measured

experimental research:  tests a hypothesis to determine cause-and-effect relationships

generalizability:  inferring that the results for a sample apply to the larger population

inter-rater reliability:  measure of agreement among observers on how they record and classify a particular event

naturalistic observation:  observation of behavior in its natural setting

observer bias:  when observations may be skewed to align with observer expectations

population:  overall group of individuals that the researchers are interested in

sample:  subset of individuals selected from the larger population

survey:  list of questions to be answered by research participants—given as paper-and-pencil questionnaires, administered electronically, or conducted verbally—allowing researchers to collect data from a large number of people

CC Licensed Content, Shared Previously

  • Descriptive Research and Case Studies . Authored by : Sonja Ann Miller for Lumen Learning.  Provided by : Lumen Learning.  License :  CC BY-SA: Attribution-ShareAlike
  • Approaches to Research.  Authored by : OpenStax College.  Located at :  http://cnx.org/contents/[email protected]:iMyFZJzg@5/Approaches-to-Research .  License :  CC BY: Attribution .  License Terms : Download for free at http://cnx.org/contents/[email protected]
  • Descriptive Research.  Provided by : Boundless.  Located at :  https://www.boundless.com/psychology/textbooks/boundless-psychology-textbook/researching-psychology-2/types-of-research-studies-27/descriptive-research-124-12659/ .  License :  CC BY-SA: Attribution-ShareAlike
  • Case Study.  Provided by : Wikipedia.  Located at :  https://en.wikipedia.org/wiki/Case_study .  License :  CC BY-SA: Attribution-ShareAlike
  • Rat man.  Provided by : Wikipedia.  Located at :  https://en.wikipedia.org/wiki/Rat_Man#Legacy .  License :  CC BY-SA: Attribution-ShareAlike
  • Case study in psychology.  Provided by : Wikipedia.  Located at :  https://en.wikipedia.org/wiki/Case_study_in_psychology .  License :  CC BY-SA: Attribution-ShareAlike
  • Research Designs.  Authored by : Christie Napa Scollon.  Provided by : Singapore Management University.  Located at :  https://nobaproject.com/modules/research-designs#reference-6 .  Project : The Noba Project.  License :  CC BY-NC-SA: Attribution-NonCommercial-ShareAlike
  • Single subject design.  Provided by : Wikipedia.  Located at :  https://en.wikipedia.org/wiki/Single-subject_design .  License :  CC BY-SA: Attribution-ShareAlike
  • Single subject research.  Provided by : Wikipedia.  Located at :  https://en.wikipedia.org/wiki/Single-subject_research#A-B-A-B .  License :  Public Domain: No Known Copyright
  • Pills.  Authored by : qimono.  Provided by : Pixabay.  Located at :  https://pixabay.com/illustrations/pill-capsule-medicine-medical-1884775/ .  License :  CC0: No Rights Reserved
  • ABAB Design.  Authored by : Doc. Yu.  Provided by : Wikimedia.  Located at :  https://commons.wikimedia.org/wiki/File:A-B-A-B_Design.png .  License :  CC BY-SA: Attribution-ShareAlike
  • Scollon, C. N. (2020). Research designs. In R. Biswas-Diener & E. Diener (Eds), Noba textbook series: Psychology. Champaign, IL: DEF publishers. Retrieved from http://noba.to/acxb2thy ↵
  • Slatcher, R. B., & Trentacosta, C. J. (2011). A naturalistic observation study of the links between parental depressive symptoms and preschoolers' behaviors in everyday life. Journal of family psychology : JFP : journal of the Division of Family Psychology of the American Psychological Association (Division 43), 25(3), 444–448. https://doi.org/10.1037/a0023728 ↵

Descriptive Research and Case Studies Copyright © by Meredith Palm is licensed under a Creative Commons Attribution 4.0 International License , except where otherwise noted.

Share This Book

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology
  • Case Study | Definition, Examples & Methods

Case Study | Definition, Examples & Methods

Published on 5 May 2022 by Shona McCombes . Revised on 30 January 2023.

A case study is a detailed study of a specific subject, such as a person, group, place, event, organisation, or phenomenon. Case studies are commonly used in social, educational, clinical, and business research.

A case study research design usually involves qualitative methods , but quantitative methods are sometimes also used. Case studies are good for describing , comparing, evaluating, and understanding different aspects of a research problem .

Table of contents

When to do a case study, step 1: select a case, step 2: build a theoretical framework, step 3: collect your data, step 4: describe and analyse the case.

A case study is an appropriate research design when you want to gain concrete, contextual, in-depth knowledge about a specific real-world subject. It allows you to explore the key characteristics, meanings, and implications of the case.

Case studies are often a good choice in a thesis or dissertation . They keep your project focused and manageable when you don’t have the time or resources to do large-scale research.

You might use just one complex case study where you explore a single subject in depth, or conduct multiple case studies to compare and illuminate different aspects of your research problem.

Case study examples
Research question Case study
What are the ecological effects of wolf reintroduction? Case study of wolf reintroduction in Yellowstone National Park in the US
How do populist politicians use narratives about history to gain support? Case studies of Hungarian prime minister Viktor Orbán and US president Donald Trump
How can teachers implement active learning strategies in mixed-level classrooms? Case study of a local school that promotes active learning
What are the main advantages and disadvantages of wind farms for rural communities? Case studies of three rural wind farm development projects in different parts of the country
How are viral marketing strategies changing the relationship between companies and consumers? Case study of the iPhone X marketing campaign
How do experiences of work in the gig economy differ by gender, race, and age? Case studies of Deliveroo and Uber drivers in London

Prevent plagiarism, run a free check.

Once you have developed your problem statement and research questions , you should be ready to choose the specific case that you want to focus on. A good case study should have the potential to:

  • Provide new or unexpected insights into the subject
  • Challenge or complicate existing assumptions and theories
  • Propose practical courses of action to resolve a problem
  • Open up new directions for future research

Unlike quantitative or experimental research, a strong case study does not require a random or representative sample. In fact, case studies often deliberately focus on unusual, neglected, or outlying cases which may shed new light on the research problem.

If you find yourself aiming to simultaneously investigate and solve an issue, consider conducting action research . As its name suggests, action research conducts research and takes action at the same time, and is highly iterative and flexible. 

However, you can also choose a more common or representative case to exemplify a particular category, experience, or phenomenon.

While case studies focus more on concrete details than general theories, they should usually have some connection with theory in the field. This way the case study is not just an isolated description, but is integrated into existing knowledge about the topic. It might aim to:

  • Exemplify a theory by showing how it explains the case under investigation
  • Expand on a theory by uncovering new concepts and ideas that need to be incorporated
  • Challenge a theory by exploring an outlier case that doesn’t fit with established assumptions

To ensure that your analysis of the case has a solid academic grounding, you should conduct a literature review of sources related to the topic and develop a theoretical framework . This means identifying key concepts and theories to guide your analysis and interpretation.

There are many different research methods you can use to collect data on your subject. Case studies tend to focus on qualitative data using methods such as interviews, observations, and analysis of primary and secondary sources (e.g., newspaper articles, photographs, official records). Sometimes a case study will also collect quantitative data .

The aim is to gain as thorough an understanding as possible of the case and its context.

In writing up the case study, you need to bring together all the relevant aspects to give as complete a picture as possible of the subject.

How you report your findings depends on the type of research you are doing. Some case studies are structured like a standard scientific paper or thesis, with separate sections or chapters for the methods , results , and discussion .

Others are written in a more narrative style, aiming to explore the case from various angles and analyse its meanings and implications (for example, by using textual analysis or discourse analysis ).

In all cases, though, make sure to give contextual details about the case, connect it back to the literature and theory, and discuss how it fits into wider patterns or debates.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

McCombes, S. (2023, January 30). Case Study | Definition, Examples & Methods. Scribbr. Retrieved 9 September 2024, from https://www.scribbr.co.uk/research-methods/case-studies/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, correlational research | guide, design & examples, a quick guide to experimental design | 5 steps & examples, descriptive research design | definition, methods & examples.

  • Open access
  • Published: 27 June 2011

The case study approach

  • Sarah Crowe 1 ,
  • Kathrin Cresswell 2 ,
  • Ann Robertson 2 ,
  • Guro Huby 3 ,
  • Anthony Avery 1 &
  • Aziz Sheikh 2  

BMC Medical Research Methodology volume  11 , Article number:  100 ( 2011 ) Cite this article

793k Accesses

1115 Citations

42 Altmetric

Metrics details

The case study approach allows in-depth, multi-faceted explorations of complex issues in their real-life settings. The value of the case study approach is well recognised in the fields of business, law and policy, but somewhat less so in health services research. Based on our experiences of conducting several health-related case studies, we reflect on the different types of case study design, the specific research questions this approach can help answer, the data sources that tend to be used, and the particular advantages and disadvantages of employing this methodological approach. The paper concludes with key pointers to aid those designing and appraising proposals for conducting case study research, and a checklist to help readers assess the quality of case study reports.

Peer Review reports

Introduction

The case study approach is particularly useful to employ when there is a need to obtain an in-depth appreciation of an issue, event or phenomenon of interest, in its natural real-life context. Our aim in writing this piece is to provide insights into when to consider employing this approach and an overview of key methodological considerations in relation to the design, planning, analysis, interpretation and reporting of case studies.

The illustrative 'grand round', 'case report' and 'case series' have a long tradition in clinical practice and research. Presenting detailed critiques, typically of one or more patients, aims to provide insights into aspects of the clinical case and, in doing so, illustrate broader lessons that may be learnt. In research, the conceptually-related case study approach can be used, for example, to describe in detail a patient's episode of care, explore professional attitudes to and experiences of a new policy initiative or service development or more generally to 'investigate contemporary phenomena within its real-life context' [ 1 ]. Based on our experiences of conducting a range of case studies, we reflect on when to consider using this approach, discuss the key steps involved and illustrate, with examples, some of the practical challenges of attaining an in-depth understanding of a 'case' as an integrated whole. In keeping with previously published work, we acknowledge the importance of theory to underpin the design, selection, conduct and interpretation of case studies[ 2 ]. In so doing, we make passing reference to the different epistemological approaches used in case study research by key theoreticians and methodologists in this field of enquiry.

This paper is structured around the following main questions: What is a case study? What are case studies used for? How are case studies conducted? What are the potential pitfalls and how can these be avoided? We draw in particular on four of our own recently published examples of case studies (see Tables 1 , 2 , 3 and 4 ) and those of others to illustrate our discussion[ 3 – 7 ].

What is a case study?

A case study is a research approach that is used to generate an in-depth, multi-faceted understanding of a complex issue in its real-life context. It is an established research design that is used extensively in a wide variety of disciplines, particularly in the social sciences. A case study can be defined in a variety of ways (Table 5 ), the central tenet being the need to explore an event or phenomenon in depth and in its natural context. It is for this reason sometimes referred to as a "naturalistic" design; this is in contrast to an "experimental" design (such as a randomised controlled trial) in which the investigator seeks to exert control over and manipulate the variable(s) of interest.

Stake's work has been particularly influential in defining the case study approach to scientific enquiry. He has helpfully characterised three main types of case study: intrinsic , instrumental and collective [ 8 ]. An intrinsic case study is typically undertaken to learn about a unique phenomenon. The researcher should define the uniqueness of the phenomenon, which distinguishes it from all others. In contrast, the instrumental case study uses a particular case (some of which may be better than others) to gain a broader appreciation of an issue or phenomenon. The collective case study involves studying multiple cases simultaneously or sequentially in an attempt to generate a still broader appreciation of a particular issue.

These are however not necessarily mutually exclusive categories. In the first of our examples (Table 1 ), we undertook an intrinsic case study to investigate the issue of recruitment of minority ethnic people into the specific context of asthma research studies, but it developed into a instrumental case study through seeking to understand the issue of recruitment of these marginalised populations more generally, generating a number of the findings that are potentially transferable to other disease contexts[ 3 ]. In contrast, the other three examples (see Tables 2 , 3 and 4 ) employed collective case study designs to study the introduction of workforce reconfiguration in primary care, the implementation of electronic health records into hospitals, and to understand the ways in which healthcare students learn about patient safety considerations[ 4 – 6 ]. Although our study focusing on the introduction of General Practitioners with Specialist Interests (Table 2 ) was explicitly collective in design (four contrasting primary care organisations were studied), is was also instrumental in that this particular professional group was studied as an exemplar of the more general phenomenon of workforce redesign[ 4 ].

What are case studies used for?

According to Yin, case studies can be used to explain, describe or explore events or phenomena in the everyday contexts in which they occur[ 1 ]. These can, for example, help to understand and explain causal links and pathways resulting from a new policy initiative or service development (see Tables 2 and 3 , for example)[ 1 ]. In contrast to experimental designs, which seek to test a specific hypothesis through deliberately manipulating the environment (like, for example, in a randomised controlled trial giving a new drug to randomly selected individuals and then comparing outcomes with controls),[ 9 ] the case study approach lends itself well to capturing information on more explanatory ' how ', 'what' and ' why ' questions, such as ' how is the intervention being implemented and received on the ground?'. The case study approach can offer additional insights into what gaps exist in its delivery or why one implementation strategy might be chosen over another. This in turn can help develop or refine theory, as shown in our study of the teaching of patient safety in undergraduate curricula (Table 4 )[ 6 , 10 ]. Key questions to consider when selecting the most appropriate study design are whether it is desirable or indeed possible to undertake a formal experimental investigation in which individuals and/or organisations are allocated to an intervention or control arm? Or whether the wish is to obtain a more naturalistic understanding of an issue? The former is ideally studied using a controlled experimental design, whereas the latter is more appropriately studied using a case study design.

Case studies may be approached in different ways depending on the epistemological standpoint of the researcher, that is, whether they take a critical (questioning one's own and others' assumptions), interpretivist (trying to understand individual and shared social meanings) or positivist approach (orientating towards the criteria of natural sciences, such as focusing on generalisability considerations) (Table 6 ). Whilst such a schema can be conceptually helpful, it may be appropriate to draw on more than one approach in any case study, particularly in the context of conducting health services research. Doolin has, for example, noted that in the context of undertaking interpretative case studies, researchers can usefully draw on a critical, reflective perspective which seeks to take into account the wider social and political environment that has shaped the case[ 11 ].

How are case studies conducted?

Here, we focus on the main stages of research activity when planning and undertaking a case study; the crucial stages are: defining the case; selecting the case(s); collecting and analysing the data; interpreting data; and reporting the findings.

Defining the case

Carefully formulated research question(s), informed by the existing literature and a prior appreciation of the theoretical issues and setting(s), are all important in appropriately and succinctly defining the case[ 8 , 12 ]. Crucially, each case should have a pre-defined boundary which clarifies the nature and time period covered by the case study (i.e. its scope, beginning and end), the relevant social group, organisation or geographical area of interest to the investigator, the types of evidence to be collected, and the priorities for data collection and analysis (see Table 7 )[ 1 ]. A theory driven approach to defining the case may help generate knowledge that is potentially transferable to a range of clinical contexts and behaviours; using theory is also likely to result in a more informed appreciation of, for example, how and why interventions have succeeded or failed[ 13 ].

For example, in our evaluation of the introduction of electronic health records in English hospitals (Table 3 ), we defined our cases as the NHS Trusts that were receiving the new technology[ 5 ]. Our focus was on how the technology was being implemented. However, if the primary research interest had been on the social and organisational dimensions of implementation, we might have defined our case differently as a grouping of healthcare professionals (e.g. doctors and/or nurses). The precise beginning and end of the case may however prove difficult to define. Pursuing this same example, when does the process of implementation and adoption of an electronic health record system really begin or end? Such judgements will inevitably be influenced by a range of factors, including the research question, theory of interest, the scope and richness of the gathered data and the resources available to the research team.

Selecting the case(s)

The decision on how to select the case(s) to study is a very important one that merits some reflection. In an intrinsic case study, the case is selected on its own merits[ 8 ]. The case is selected not because it is representative of other cases, but because of its uniqueness, which is of genuine interest to the researchers. This was, for example, the case in our study of the recruitment of minority ethnic participants into asthma research (Table 1 ) as our earlier work had demonstrated the marginalisation of minority ethnic people with asthma, despite evidence of disproportionate asthma morbidity[ 14 , 15 ]. In another example of an intrinsic case study, Hellstrom et al.[ 16 ] studied an elderly married couple living with dementia to explore how dementia had impacted on their understanding of home, their everyday life and their relationships.

For an instrumental case study, selecting a "typical" case can work well[ 8 ]. In contrast to the intrinsic case study, the particular case which is chosen is of less importance than selecting a case that allows the researcher to investigate an issue or phenomenon. For example, in order to gain an understanding of doctors' responses to health policy initiatives, Som undertook an instrumental case study interviewing clinicians who had a range of responsibilities for clinical governance in one NHS acute hospital trust[ 17 ]. Sampling a "deviant" or "atypical" case may however prove even more informative, potentially enabling the researcher to identify causal processes, generate hypotheses and develop theory.

In collective or multiple case studies, a number of cases are carefully selected. This offers the advantage of allowing comparisons to be made across several cases and/or replication. Choosing a "typical" case may enable the findings to be generalised to theory (i.e. analytical generalisation) or to test theory by replicating the findings in a second or even a third case (i.e. replication logic)[ 1 ]. Yin suggests two or three literal replications (i.e. predicting similar results) if the theory is straightforward and five or more if the theory is more subtle. However, critics might argue that selecting 'cases' in this way is insufficiently reflexive and ill-suited to the complexities of contemporary healthcare organisations.

The selected case study site(s) should allow the research team access to the group of individuals, the organisation, the processes or whatever else constitutes the chosen unit of analysis for the study. Access is therefore a central consideration; the researcher needs to come to know the case study site(s) well and to work cooperatively with them. Selected cases need to be not only interesting but also hospitable to the inquiry [ 8 ] if they are to be informative and answer the research question(s). Case study sites may also be pre-selected for the researcher, with decisions being influenced by key stakeholders. For example, our selection of case study sites in the evaluation of the implementation and adoption of electronic health record systems (see Table 3 ) was heavily influenced by NHS Connecting for Health, the government agency that was responsible for overseeing the National Programme for Information Technology (NPfIT)[ 5 ]. This prominent stakeholder had already selected the NHS sites (through a competitive bidding process) to be early adopters of the electronic health record systems and had negotiated contracts that detailed the deployment timelines.

It is also important to consider in advance the likely burden and risks associated with participation for those who (or the site(s) which) comprise the case study. Of particular importance is the obligation for the researcher to think through the ethical implications of the study (e.g. the risk of inadvertently breaching anonymity or confidentiality) and to ensure that potential participants/participating sites are provided with sufficient information to make an informed choice about joining the study. The outcome of providing this information might be that the emotive burden associated with participation, or the organisational disruption associated with supporting the fieldwork, is considered so high that the individuals or sites decide against participation.

In our example of evaluating implementations of electronic health record systems, given the restricted number of early adopter sites available to us, we sought purposively to select a diverse range of implementation cases among those that were available[ 5 ]. We chose a mixture of teaching, non-teaching and Foundation Trust hospitals, and examples of each of the three electronic health record systems procured centrally by the NPfIT. At one recruited site, it quickly became apparent that access was problematic because of competing demands on that organisation. Recognising the importance of full access and co-operative working for generating rich data, the research team decided not to pursue work at that site and instead to focus on other recruited sites.

Collecting the data

In order to develop a thorough understanding of the case, the case study approach usually involves the collection of multiple sources of evidence, using a range of quantitative (e.g. questionnaires, audits and analysis of routinely collected healthcare data) and more commonly qualitative techniques (e.g. interviews, focus groups and observations). The use of multiple sources of data (data triangulation) has been advocated as a way of increasing the internal validity of a study (i.e. the extent to which the method is appropriate to answer the research question)[ 8 , 18 – 21 ]. An underlying assumption is that data collected in different ways should lead to similar conclusions, and approaching the same issue from different angles can help develop a holistic picture of the phenomenon (Table 2 )[ 4 ].

Brazier and colleagues used a mixed-methods case study approach to investigate the impact of a cancer care programme[ 22 ]. Here, quantitative measures were collected with questionnaires before, and five months after, the start of the intervention which did not yield any statistically significant results. Qualitative interviews with patients however helped provide an insight into potentially beneficial process-related aspects of the programme, such as greater, perceived patient involvement in care. The authors reported how this case study approach provided a number of contextual factors likely to influence the effectiveness of the intervention and which were not likely to have been obtained from quantitative methods alone.

In collective or multiple case studies, data collection needs to be flexible enough to allow a detailed description of each individual case to be developed (e.g. the nature of different cancer care programmes), before considering the emerging similarities and differences in cross-case comparisons (e.g. to explore why one programme is more effective than another). It is important that data sources from different cases are, where possible, broadly comparable for this purpose even though they may vary in nature and depth.

Analysing, interpreting and reporting case studies

Making sense and offering a coherent interpretation of the typically disparate sources of data (whether qualitative alone or together with quantitative) is far from straightforward. Repeated reviewing and sorting of the voluminous and detail-rich data are integral to the process of analysis. In collective case studies, it is helpful to analyse data relating to the individual component cases first, before making comparisons across cases. Attention needs to be paid to variations within each case and, where relevant, the relationship between different causes, effects and outcomes[ 23 ]. Data will need to be organised and coded to allow the key issues, both derived from the literature and emerging from the dataset, to be easily retrieved at a later stage. An initial coding frame can help capture these issues and can be applied systematically to the whole dataset with the aid of a qualitative data analysis software package.

The Framework approach is a practical approach, comprising of five stages (familiarisation; identifying a thematic framework; indexing; charting; mapping and interpretation) , to managing and analysing large datasets particularly if time is limited, as was the case in our study of recruitment of South Asians into asthma research (Table 1 )[ 3 , 24 ]. Theoretical frameworks may also play an important role in integrating different sources of data and examining emerging themes. For example, we drew on a socio-technical framework to help explain the connections between different elements - technology; people; and the organisational settings within which they worked - in our study of the introduction of electronic health record systems (Table 3 )[ 5 ]. Our study of patient safety in undergraduate curricula drew on an evaluation-based approach to design and analysis, which emphasised the importance of the academic, organisational and practice contexts through which students learn (Table 4 )[ 6 ].

Case study findings can have implications both for theory development and theory testing. They may establish, strengthen or weaken historical explanations of a case and, in certain circumstances, allow theoretical (as opposed to statistical) generalisation beyond the particular cases studied[ 12 ]. These theoretical lenses should not, however, constitute a strait-jacket and the cases should not be "forced to fit" the particular theoretical framework that is being employed.

When reporting findings, it is important to provide the reader with enough contextual information to understand the processes that were followed and how the conclusions were reached. In a collective case study, researchers may choose to present the findings from individual cases separately before amalgamating across cases. Care must be taken to ensure the anonymity of both case sites and individual participants (if agreed in advance) by allocating appropriate codes or withholding descriptors. In the example given in Table 3 , we decided against providing detailed information on the NHS sites and individual participants in order to avoid the risk of inadvertent disclosure of identities[ 5 , 25 ].

What are the potential pitfalls and how can these be avoided?

The case study approach is, as with all research, not without its limitations. When investigating the formal and informal ways undergraduate students learn about patient safety (Table 4 ), for example, we rapidly accumulated a large quantity of data. The volume of data, together with the time restrictions in place, impacted on the depth of analysis that was possible within the available resources. This highlights a more general point of the importance of avoiding the temptation to collect as much data as possible; adequate time also needs to be set aside for data analysis and interpretation of what are often highly complex datasets.

Case study research has sometimes been criticised for lacking scientific rigour and providing little basis for generalisation (i.e. producing findings that may be transferable to other settings)[ 1 ]. There are several ways to address these concerns, including: the use of theoretical sampling (i.e. drawing on a particular conceptual framework); respondent validation (i.e. participants checking emerging findings and the researcher's interpretation, and providing an opinion as to whether they feel these are accurate); and transparency throughout the research process (see Table 8 )[ 8 , 18 – 21 , 23 , 26 ]. Transparency can be achieved by describing in detail the steps involved in case selection, data collection, the reasons for the particular methods chosen, and the researcher's background and level of involvement (i.e. being explicit about how the researcher has influenced data collection and interpretation). Seeking potential, alternative explanations, and being explicit about how interpretations and conclusions were reached, help readers to judge the trustworthiness of the case study report. Stake provides a critique checklist for a case study report (Table 9 )[ 8 ].

Conclusions

The case study approach allows, amongst other things, critical events, interventions, policy developments and programme-based service reforms to be studied in detail in a real-life context. It should therefore be considered when an experimental design is either inappropriate to answer the research questions posed or impossible to undertake. Considering the frequency with which implementations of innovations are now taking place in healthcare settings and how well the case study approach lends itself to in-depth, complex health service research, we believe this approach should be more widely considered by researchers. Though inherently challenging, the research case study can, if carefully conceptualised and thoughtfully undertaken and reported, yield powerful insights into many important aspects of health and healthcare delivery.

Yin RK: Case study research, design and method. 2009, London: Sage Publications Ltd., 4

Google Scholar  

Keen J, Packwood T: Qualitative research; case study evaluation. BMJ. 1995, 311: 444-446.

Article   CAS   PubMed   PubMed Central   Google Scholar  

Sheikh A, Halani L, Bhopal R, Netuveli G, Partridge M, Car J, et al: Facilitating the Recruitment of Minority Ethnic People into Research: Qualitative Case Study of South Asians and Asthma. PLoS Med. 2009, 6 (10): 1-11.

Article   Google Scholar  

Pinnock H, Huby G, Powell A, Kielmann T, Price D, Williams S, et al: The process of planning, development and implementation of a General Practitioner with a Special Interest service in Primary Care Organisations in England and Wales: a comparative prospective case study. Report for the National Co-ordinating Centre for NHS Service Delivery and Organisation R&D (NCCSDO). 2008, [ http://www.sdo.nihr.ac.uk/files/project/99-final-report.pdf ]

Robertson A, Cresswell K, Takian A, Petrakaki D, Crowe S, Cornford T, et al: Prospective evaluation of the implementation and adoption of NHS Connecting for Health's national electronic health record in secondary care in England: interim findings. BMJ. 2010, 41: c4564-

Pearson P, Steven A, Howe A, Sheikh A, Ashcroft D, Smith P, the Patient Safety Education Study Group: Learning about patient safety: organisational context and culture in the education of healthcare professionals. J Health Serv Res Policy. 2010, 15: 4-10. 10.1258/jhsrp.2009.009052.

Article   PubMed   Google Scholar  

van Harten WH, Casparie TF, Fisscher OA: The evaluation of the introduction of a quality management system: a process-oriented case study in a large rehabilitation hospital. Health Policy. 2002, 60 (1): 17-37. 10.1016/S0168-8510(01)00187-7.

Stake RE: The art of case study research. 1995, London: Sage Publications Ltd.

Sheikh A, Smeeth L, Ashcroft R: Randomised controlled trials in primary care: scope and application. Br J Gen Pract. 2002, 52 (482): 746-51.

PubMed   PubMed Central   Google Scholar  

King G, Keohane R, Verba S: Designing Social Inquiry. 1996, Princeton: Princeton University Press

Doolin B: Information technology as disciplinary technology: being critical in interpretative research on information systems. Journal of Information Technology. 1998, 13: 301-311. 10.1057/jit.1998.8.

George AL, Bennett A: Case studies and theory development in the social sciences. 2005, Cambridge, MA: MIT Press

Eccles M, the Improved Clinical Effectiveness through Behavioural Research Group (ICEBeRG): Designing theoretically-informed implementation interventions. Implementation Science. 2006, 1: 1-8. 10.1186/1748-5908-1-1.

Article   PubMed Central   Google Scholar  

Netuveli G, Hurwitz B, Levy M, Fletcher M, Barnes G, Durham SR, Sheikh A: Ethnic variations in UK asthma frequency, morbidity, and health-service use: a systematic review and meta-analysis. Lancet. 2005, 365 (9456): 312-7.

Sheikh A, Panesar SS, Lasserson T, Netuveli G: Recruitment of ethnic minorities to asthma studies. Thorax. 2004, 59 (7): 634-

CAS   PubMed   PubMed Central   Google Scholar  

Hellström I, Nolan M, Lundh U: 'We do things together': A case study of 'couplehood' in dementia. Dementia. 2005, 4: 7-22. 10.1177/1471301205049188.

Som CV: Nothing seems to have changed, nothing seems to be changing and perhaps nothing will change in the NHS: doctors' response to clinical governance. International Journal of Public Sector Management. 2005, 18: 463-477. 10.1108/09513550510608903.

Lincoln Y, Guba E: Naturalistic inquiry. 1985, Newbury Park: Sage Publications

Barbour RS: Checklists for improving rigour in qualitative research: a case of the tail wagging the dog?. BMJ. 2001, 322: 1115-1117. 10.1136/bmj.322.7294.1115.

Mays N, Pope C: Qualitative research in health care: Assessing quality in qualitative research. BMJ. 2000, 320: 50-52. 10.1136/bmj.320.7226.50.

Mason J: Qualitative researching. 2002, London: Sage

Brazier A, Cooke K, Moravan V: Using Mixed Methods for Evaluating an Integrative Approach to Cancer Care: A Case Study. Integr Cancer Ther. 2008, 7: 5-17. 10.1177/1534735407313395.

Miles MB, Huberman M: Qualitative data analysis: an expanded sourcebook. 1994, CA: Sage Publications Inc., 2

Pope C, Ziebland S, Mays N: Analysing qualitative data. Qualitative research in health care. BMJ. 2000, 320: 114-116. 10.1136/bmj.320.7227.114.

Cresswell KM, Worth A, Sheikh A: Actor-Network Theory and its role in understanding the implementation of information technology developments in healthcare. BMC Med Inform Decis Mak. 2010, 10 (1): 67-10.1186/1472-6947-10-67.

Article   PubMed   PubMed Central   Google Scholar  

Malterud K: Qualitative research: standards, challenges, and guidelines. Lancet. 2001, 358: 483-488. 10.1016/S0140-6736(01)05627-6.

Article   CAS   PubMed   Google Scholar  

Yin R: Case study research: design and methods. 1994, Thousand Oaks, CA: Sage Publishing, 2

Yin R: Enhancing the quality of case studies in health services research. Health Serv Res. 1999, 34: 1209-1224.

Green J, Thorogood N: Qualitative methods for health research. 2009, Los Angeles: Sage, 2

Howcroft D, Trauth E: Handbook of Critical Information Systems Research, Theory and Application. 2005, Cheltenham, UK: Northampton, MA, USA: Edward Elgar

Book   Google Scholar  

Blakie N: Approaches to Social Enquiry. 1993, Cambridge: Polity Press

Doolin B: Power and resistance in the implementation of a medical management information system. Info Systems J. 2004, 14: 343-362. 10.1111/j.1365-2575.2004.00176.x.

Bloomfield BP, Best A: Management consultants: systems development, power and the translation of problems. Sociological Review. 1992, 40: 533-560.

Shanks G, Parr A: Positivist, single case study research in information systems: A critical analysis. Proceedings of the European Conference on Information Systems. 2003, Naples

Pre-publication history

The pre-publication history for this paper can be accessed here: http://www.biomedcentral.com/1471-2288/11/100/prepub

Download references

Acknowledgements

We are grateful to the participants and colleagues who contributed to the individual case studies that we have drawn on. This work received no direct funding, but it has been informed by projects funded by Asthma UK, the NHS Service Delivery Organisation, NHS Connecting for Health Evaluation Programme, and Patient Safety Research Portfolio. We would also like to thank the expert reviewers for their insightful and constructive feedback. Our thanks are also due to Dr. Allison Worth who commented on an earlier draft of this manuscript.

Author information

Authors and affiliations.

Division of Primary Care, The University of Nottingham, Nottingham, UK

Sarah Crowe & Anthony Avery

Centre for Population Health Sciences, The University of Edinburgh, Edinburgh, UK

Kathrin Cresswell, Ann Robertson & Aziz Sheikh

School of Health in Social Science, The University of Edinburgh, Edinburgh, UK

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Sarah Crowe .

Additional information

Competing interests.

The authors declare that they have no competing interests.

Authors' contributions

AS conceived this article. SC, KC and AR wrote this paper with GH, AA and AS all commenting on various drafts. SC and AS are guarantors.

Rights and permissions

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article.

Crowe, S., Cresswell, K., Robertson, A. et al. The case study approach. BMC Med Res Methodol 11 , 100 (2011). https://doi.org/10.1186/1471-2288-11-100

Download citation

Received : 29 November 2010

Accepted : 27 June 2011

Published : 27 June 2011

DOI : https://doi.org/10.1186/1471-2288-11-100

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Case Study Approach
  • Electronic Health Record System
  • Case Study Design
  • Case Study Site
  • Case Study Report

BMC Medical Research Methodology

ISSN: 1471-2288

what is a case study research design

Case Study Research Method in Psychology

Saul McLeod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul McLeod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Learn about our Editorial Process

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

On This Page:

Case studies are in-depth investigations of a person, group, event, or community. Typically, data is gathered from various sources using several methods (e.g., observations & interviews).

The case study research method originated in clinical medicine (the case history, i.e., the patient’s personal history). In psychology, case studies are often confined to the study of a particular individual.

The information is mainly biographical and relates to events in the individual’s past (i.e., retrospective), as well as to significant events that are currently occurring in his or her everyday life.

The case study is not a research method, but researchers select methods of data collection and analysis that will generate material suitable for case studies.

Freud (1909a, 1909b) conducted very detailed investigations into the private lives of his patients in an attempt to both understand and help them overcome their illnesses.

This makes it clear that the case study is a method that should only be used by a psychologist, therapist, or psychiatrist, i.e., someone with a professional qualification.

There is an ethical issue of competence. Only someone qualified to diagnose and treat a person can conduct a formal case study relating to atypical (i.e., abnormal) behavior or atypical development.

case study

 Famous Case Studies

  • Anna O – One of the most famous case studies, documenting psychoanalyst Josef Breuer’s treatment of “Anna O” (real name Bertha Pappenheim) for hysteria in the late 1800s using early psychoanalytic theory.
  • Little Hans – A child psychoanalysis case study published by Sigmund Freud in 1909 analyzing his five-year-old patient Herbert Graf’s house phobia as related to the Oedipus complex.
  • Bruce/Brenda – Gender identity case of the boy (Bruce) whose botched circumcision led psychologist John Money to advise gender reassignment and raise him as a girl (Brenda) in the 1960s.
  • Genie Wiley – Linguistics/psychological development case of the victim of extreme isolation abuse who was studied in 1970s California for effects of early language deprivation on acquiring speech later in life.
  • Phineas Gage – One of the most famous neuropsychology case studies analyzes personality changes in railroad worker Phineas Gage after an 1848 brain injury involving a tamping iron piercing his skull.

Clinical Case Studies

  • Studying the effectiveness of psychotherapy approaches with an individual patient
  • Assessing and treating mental illnesses like depression, anxiety disorders, PTSD
  • Neuropsychological cases investigating brain injuries or disorders

Child Psychology Case Studies

  • Studying psychological development from birth through adolescence
  • Cases of learning disabilities, autism spectrum disorders, ADHD
  • Effects of trauma, abuse, deprivation on development

Types of Case Studies

  • Explanatory case studies : Used to explore causation in order to find underlying principles. Helpful for doing qualitative analysis to explain presumed causal links.
  • Exploratory case studies : Used to explore situations where an intervention being evaluated has no clear set of outcomes. It helps define questions and hypotheses for future research.
  • Descriptive case studies : Describe an intervention or phenomenon and the real-life context in which it occurred. It is helpful for illustrating certain topics within an evaluation.
  • Multiple-case studies : Used to explore differences between cases and replicate findings across cases. Helpful for comparing and contrasting specific cases.
  • Intrinsic : Used to gain a better understanding of a particular case. Helpful for capturing the complexity of a single case.
  • Collective : Used to explore a general phenomenon using multiple case studies. Helpful for jointly studying a group of cases in order to inquire into the phenomenon.

Where Do You Find Data for a Case Study?

There are several places to find data for a case study. The key is to gather data from multiple sources to get a complete picture of the case and corroborate facts or findings through triangulation of evidence. Most of this information is likely qualitative (i.e., verbal description rather than measurement), but the psychologist might also collect numerical data.

1. Primary sources

  • Interviews – Interviewing key people related to the case to get their perspectives and insights. The interview is an extremely effective procedure for obtaining information about an individual, and it may be used to collect comments from the person’s friends, parents, employer, workmates, and others who have a good knowledge of the person, as well as to obtain facts from the person him or herself.
  • Observations – Observing behaviors, interactions, processes, etc., related to the case as they unfold in real-time.
  • Documents & Records – Reviewing private documents, diaries, public records, correspondence, meeting minutes, etc., relevant to the case.

2. Secondary sources

  • News/Media – News coverage of events related to the case study.
  • Academic articles – Journal articles, dissertations etc. that discuss the case.
  • Government reports – Official data and records related to the case context.
  • Books/films – Books, documentaries or films discussing the case.

3. Archival records

Searching historical archives, museum collections and databases to find relevant documents, visual/audio records related to the case history and context.

Public archives like newspapers, organizational records, photographic collections could all include potentially relevant pieces of information to shed light on attitudes, cultural perspectives, common practices and historical contexts related to psychology.

4. Organizational records

Organizational records offer the advantage of often having large datasets collected over time that can reveal or confirm psychological insights.

Of course, privacy and ethical concerns regarding confidential data must be navigated carefully.

However, with proper protocols, organizational records can provide invaluable context and empirical depth to qualitative case studies exploring the intersection of psychology and organizations.

  • Organizational/industrial psychology research : Organizational records like employee surveys, turnover/retention data, policies, incident reports etc. may provide insight into topics like job satisfaction, workplace culture and dynamics, leadership issues, employee behaviors etc.
  • Clinical psychology : Therapists/hospitals may grant access to anonymized medical records to study aspects like assessments, diagnoses, treatment plans etc. This could shed light on clinical practices.
  • School psychology : Studies could utilize anonymized student records like test scores, grades, disciplinary issues, and counseling referrals to study child development, learning barriers, effectiveness of support programs, and more.

How do I Write a Case Study in Psychology?

Follow specified case study guidelines provided by a journal or your psychology tutor. General components of clinical case studies include: background, symptoms, assessments, diagnosis, treatment, and outcomes. Interpreting the information means the researcher decides what to include or leave out. A good case study should always clarify which information is the factual description and which is an inference or the researcher’s opinion.

1. Introduction

  • Provide background on the case context and why it is of interest, presenting background information like demographics, relevant history, and presenting problem.
  • Compare briefly to similar published cases if applicable. Clearly state the focus/importance of the case.

2. Case Presentation

  • Describe the presenting problem in detail, including symptoms, duration,and impact on daily life.
  • Include client demographics like age and gender, information about social relationships, and mental health history.
  • Describe all physical, emotional, and/or sensory symptoms reported by the client.
  • Use patient quotes to describe the initial complaint verbatim. Follow with full-sentence summaries of relevant history details gathered, including key components that led to a working diagnosis.
  • Summarize clinical exam results, namely orthopedic/neurological tests, imaging, lab tests, etc. Note actual results rather than subjective conclusions. Provide images if clearly reproducible/anonymized.
  • Clearly state the working diagnosis or clinical impression before transitioning to management.

3. Management and Outcome

  • Indicate the total duration of care and number of treatments given over what timeframe. Use specific names/descriptions for any therapies/interventions applied.
  • Present the results of the intervention,including any quantitative or qualitative data collected.
  • For outcomes, utilize visual analog scales for pain, medication usage logs, etc., if possible. Include patient self-reports of improvement/worsening of symptoms. Note the reason for discharge/end of care.

4. Discussion

  • Analyze the case, exploring contributing factors, limitations of the study, and connections to existing research.
  • Analyze the effectiveness of the intervention,considering factors like participant adherence, limitations of the study, and potential alternative explanations for the results.
  • Identify any questions raised in the case analysis and relate insights to established theories and current research if applicable. Avoid definitive claims about physiological explanations.
  • Offer clinical implications, and suggest future research directions.

5. Additional Items

  • Thank specific assistants for writing support only. No patient acknowledgments.
  • References should directly support any key claims or quotes included.
  • Use tables/figures/images only if substantially informative. Include permissions and legends/explanatory notes.
  • Provides detailed (rich qualitative) information.
  • Provides insight for further research.
  • Permitting investigation of otherwise impractical (or unethical) situations.

Case studies allow a researcher to investigate a topic in far more detail than might be possible if they were trying to deal with a large number of research participants (nomothetic approach) with the aim of ‘averaging’.

Because of their in-depth, multi-sided approach, case studies often shed light on aspects of human thinking and behavior that would be unethical or impractical to study in other ways.

Research that only looks into the measurable aspects of human behavior is not likely to give us insights into the subjective dimension of experience, which is important to psychoanalytic and humanistic psychologists.

Case studies are often used in exploratory research. They can help us generate new ideas (that might be tested by other methods). They are an important way of illustrating theories and can help show how different aspects of a person’s life are related to each other.

The method is, therefore, important for psychologists who adopt a holistic point of view (i.e., humanistic psychologists ).

Limitations

  • Lacking scientific rigor and providing little basis for generalization of results to the wider population.
  • Researchers’ own subjective feelings may influence the case study (researcher bias).
  • Difficult to replicate.
  • Time-consuming and expensive.
  • The volume of data, together with the time restrictions in place, impacted the depth of analysis that was possible within the available resources.

Because a case study deals with only one person/event/group, we can never be sure if the case study investigated is representative of the wider body of “similar” instances. This means the conclusions drawn from a particular case may not be transferable to other settings.

Because case studies are based on the analysis of qualitative (i.e., descriptive) data , a lot depends on the psychologist’s interpretation of the information she has acquired.

This means that there is a lot of scope for Anna O , and it could be that the subjective opinions of the psychologist intrude in the assessment of what the data means.

For example, Freud has been criticized for producing case studies in which the information was sometimes distorted to fit particular behavioral theories (e.g., Little Hans ).

This is also true of Money’s interpretation of the Bruce/Brenda case study (Diamond, 1997) when he ignored evidence that went against his theory.

Breuer, J., & Freud, S. (1895).  Studies on hysteria . Standard Edition 2: London.

Curtiss, S. (1981). Genie: The case of a modern wild child .

Diamond, M., & Sigmundson, K. (1997). Sex Reassignment at Birth: Long-term Review and Clinical Implications. Archives of Pediatrics & Adolescent Medicine , 151(3), 298-304

Freud, S. (1909a). Analysis of a phobia of a five year old boy. In The Pelican Freud Library (1977), Vol 8, Case Histories 1, pages 169-306

Freud, S. (1909b). Bemerkungen über einen Fall von Zwangsneurose (Der “Rattenmann”). Jb. psychoanal. psychopathol. Forsch ., I, p. 357-421; GW, VII, p. 379-463; Notes upon a case of obsessional neurosis, SE , 10: 151-318.

Harlow J. M. (1848). Passage of an iron rod through the head.  Boston Medical and Surgical Journal, 39 , 389–393.

Harlow, J. M. (1868).  Recovery from the Passage of an Iron Bar through the Head .  Publications of the Massachusetts Medical Society. 2  (3), 327-347.

Money, J., & Ehrhardt, A. A. (1972).  Man & Woman, Boy & Girl : The Differentiation and Dimorphism of Gender Identity from Conception to Maturity. Baltimore, Maryland: Johns Hopkins University Press.

Money, J., & Tucker, P. (1975). Sexual signatures: On being a man or a woman.

Further Information

  • Case Study Approach
  • Case Study Method
  • Enhancing the Quality of Case Studies in Health Services Research
  • “We do things together” A case study of “couplehood” in dementia
  • Using mixed methods for evaluating an integrative approach to cancer care: a case study

Print Friendly, PDF & Email

  • Foundations
  • Write Paper

Search form

  • Experiments
  • Anthropology
  • Self-Esteem
  • Social Anxiety

what is a case study research design

Case Study Research Design

The case study research design have evolved over the past few years as a useful tool for investigating trends and specific situations in many scientific disciplines.

This article is a part of the guide:

  • Research Designs
  • Quantitative and Qualitative Research
  • Literature Review
  • Quantitative Research Design
  • Descriptive Research

Browse Full Outline

  • 1 Research Designs
  • 2.1 Pilot Study
  • 2.2 Quantitative Research Design
  • 2.3 Qualitative Research Design
  • 2.4 Quantitative and Qualitative Research
  • 3.1 Case Study
  • 3.2 Naturalistic Observation
  • 3.3 Survey Research Design
  • 3.4 Observational Study
  • 4.1 Case-Control Study
  • 4.2 Cohort Study
  • 4.3 Longitudinal Study
  • 4.4 Cross Sectional Study
  • 4.5 Correlational Study
  • 5.1 Field Experiments
  • 5.2 Quasi-Experimental Design
  • 5.3 Identical Twins Study
  • 6.1 Experimental Design
  • 6.2 True Experimental Design
  • 6.3 Double Blind Experiment
  • 6.4 Factorial Design
  • 7.1 Literature Review
  • 7.2 Systematic Reviews
  • 7.3 Meta Analysis

The case study has been especially used in social science, psychology, anthropology and ecology.

This method of study is especially useful for trying to test theoretical models by using them in real world situations. For example, if an anthropologist were to live amongst a remote tribe, whilst their observations might produce no quantitative data, they are still useful to science.

what is a case study research design

What is a Case Study?

Basically, a case study is an in depth study of a particular situation rather than a sweeping statistical survey . It is a method used to narrow down a very broad field of research into one easily researchable topic.

Whilst it will not answer a question completely, it will give some indications and allow further elaboration and hypothesis creation on a subject.

The case study research design is also useful for testing whether scientific theories and models actually work in the real world. You may come out with a great computer model for describing how the ecosystem of a rock pool works but it is only by trying it out on a real life pool that you can see if it is a realistic simulation.

For psychologists, anthropologists and social scientists they have been regarded as a valid method of research for many years. Scientists are sometimes guilty of becoming bogged down in the general picture and it is sometimes important to understand specific cases and ensure a more holistic approach to research .

H.M.: An example of a study using the case study research design.

Case Study

The Argument for and Against the Case Study Research Design

Some argue that because a case study is such a narrow field that its results cannot be extrapolated to fit an entire question and that they show only one narrow example. On the other hand, it is argued that a case study provides more realistic responses than a purely statistical survey.

The truth probably lies between the two and it is probably best to try and synergize the two approaches. It is valid to conduct case studies but they should be tied in with more general statistical processes.

For example, a statistical survey might show how much time people spend talking on mobile phones, but it is case studies of a narrow group that will determine why this is so.

The other main thing to remember during case studies is their flexibility. Whilst a pure scientist is trying to prove or disprove a hypothesis , a case study might introduce new and unexpected results during its course, and lead to research taking new directions.

The argument between case study and statistical method also appears to be one of scale. Whilst many 'physical' scientists avoid case studies, for psychology, anthropology and ecology they are an essential tool. It is important to ensure that you realize that a case study cannot be generalized to fit a whole population or ecosystem.

Finally, one peripheral point is that, when informing others of your results, case studies make more interesting topics than purely statistical surveys, something that has been realized by teachers and magazine editors for many years. The general public has little interest in pages of statistical calculations but some well placed case studies can have a strong impact.

How to Design and Conduct a Case Study

The advantage of the case study research design is that you can focus on specific and interesting cases. This may be an attempt to test a theory with a typical case or it can be a specific topic that is of interest. Research should be thorough and note taking should be meticulous and systematic.

The first foundation of the case study is the subject and relevance. In a case study, you are deliberately trying to isolate a small study group, one individual case or one particular population.

For example, statistical analysis may have shown that birthrates in African countries are increasing. A case study on one or two specific countries becomes a powerful and focused tool for determining the social and economic pressures driving this.

In the design of a case study, it is important to plan and design how you are going to address the study and make sure that all collected data is relevant. Unlike a scientific report, there is no strict set of rules so the most important part is making sure that the study is focused and concise; otherwise you will end up having to wade through a lot of irrelevant information.

It is best if you make yourself a short list of 4 or 5 bullet points that you are going to try and address during the study. If you make sure that all research refers back to these then you will not be far wrong.

With a case study, even more than a questionnaire or survey , it is important to be passive in your research. You are much more of an observer than an experimenter and you must remember that, even in a multi-subject case, each case must be treated individually and then cross case conclusions can be drawn .

How to Analyze the Results

Analyzing results for a case study tends to be more opinion based than statistical methods. The usual idea is to try and collate your data into a manageable form and construct a narrative around it.

Use examples in your narrative whilst keeping things concise and interesting. It is useful to show some numerical data but remember that you are only trying to judge trends and not analyze every last piece of data. Constantly refer back to your bullet points so that you do not lose focus.

It is always a good idea to assume that a person reading your research may not possess a lot of knowledge of the subject so try to write accordingly.

In addition, unlike a scientific study which deals with facts, a case study is based on opinion and is very much designed to provoke reasoned debate. There really is no right or wrong answer in a case study.

  • Psychology 101
  • Flags and Countries
  • Capitals and Countries

Martyn Shuttleworth (Apr 1, 2008). Case Study Research Design. Retrieved Sep 12, 2024 from Explorable.com: https://explorable.com/case-study-research-design

You Are Allowed To Copy The Text

The text in this article is licensed under the Creative Commons-License Attribution 4.0 International (CC BY 4.0) .

This means you're free to copy, share and adapt any parts (or all) of the text in the article, as long as you give appropriate credit and provide a link/reference to this page.

That is it. You don't need our permission to copy the article; just include a link/reference back to this page. You can use it freely (with some kind of link), and we're also okay with people reprinting in publications like books, blogs, newsletters, course-material, papers, wikipedia and presentations (with clear attribution).

Want to stay up to date? Follow us!

Get all these articles in 1 guide.

Want the full version to study at home, take to school or just scribble on?

Whether you are an academic novice, or you simply want to brush up your skills, this book will take your academic writing skills to the next level.

what is a case study research design

Download electronic versions: - Epub for mobiles and tablets - PDF version here

Save this course for later

Don't have time for it all now? No problem, save it as a course and come back to it later.

Footer bottom

  • Privacy Policy

what is a case study research design

  • Subscribe to our RSS Feed
  • Like us on Facebook
  • Follow us on Twitter
  • Case Reports

Case Study Research

  • November 2019
  • In book: Methodological Issues in Management Research: Advances, Challenges, and the Way Ahead (pp.163-179)
  • This person is not on ResearchGate, or hasn't claimed this research yet.

Satyendra C Pandey at Institute of Rural Management Anand

  • Institute of Rural Management Anand

Discover the world's research

  • 25+ million members
  • 160+ million publication pages
  • 2.3+ billion citations
  • Hangrengga Berlian
  • Bram Hertasning
  • Hibnu Nugroho

Azhari Aziz Samudra

  • Ida Bagus Gede Surya Peradantha
  • Sri Rochana Widyastutieningrum
  • Santosa Soewarlan
  • Ida Bagus Gde Yudha Triguna
  • Melisa Melisa

Rafiq Zulkarnaen

  • Edward Noel Mwamakula

Raiza Mtandi

  • Nondwe Nomnikelo Mzokwana

Dwiningtyas Padmaningrum

  • Rana Fathinah Maharani

Alois Danek

  • Jarmila Klugerová
  • Pier Franco Luigi Fraboni
  • Matthew Barsalou
  • Robert Perkin

Marie-José Avenier

  • Bob Algozzine

Elizabeth A Shanahan

  • Y.S. Lincoln
  • Sharan B. Merriam
  • Kathleen M. Eisenhardt
  • A.M. Huberman

Ruth Horowitz

  • Recruit researchers
  • Join for free
  • Login Email Tip: Most researchers use their institutional email address as their ResearchGate login Password Forgot password? Keep me logged in Log in or Continue with Google Welcome back! Please log in. Email · Hint Tip: Most researchers use their institutional email address as their ResearchGate login Password Forgot password? Keep me logged in Log in or Continue with Google No account? Sign up

what is a case study research design

Case Study Research: Methods and Designs

Case study research is a type of qualitative research design. It’s often used in the social sciences because it involves…

Case Study Method

Case study research is a type of qualitative research design. It’s often used in the social sciences because it involves observing subjects, or cases, in their natural setting, with minimal interference from the researcher.

In the case study method , researchers pose a specific question about an individual or group to test their theories or hypothesis. This can be done by gathering data from interviews with key informants.

Here’s what you need to know about case study research design .

What Is The Case Study Method?

Main approaches to data collection, case study research methods, how case studies are used, case study model.

Case study research is a great way to understand the nuances of a matter that can get lost in quantitative research methods. A case study is distinct from other qualitative studies in the following ways:

  • It’s interested in the effect of a set of circumstances on an individual or group.
  • It begins with a specific question about one or more cases.
  • It focuses on individual accounts and experiences.

Here are the primary features of case study research:

  • Case study research methods typically involve the researcher asking a few questions of one person or a small number of people—known as respondents—to test one hypothesis.
  • Case study in research methodology may apply triangulation to collect data, in which the researcher uses several sources, including documents and field data. This is then analyzed and interpreted to form a hypothesis that can be tested through further research or validated by other researchers.
  • The case study method requires clear concepts and theories to guide its methods. A well-defined research question is crucial when conducting a case study because the results of the study depend on it. The best approach to answering a research question is to challenge the existing theories, hypotheses or assumptions.
  • Concepts are defined using objective language with no reference to preconceived notions that individuals might have about them. The researcher sets out to discover by asking specific questions on how people think or perceive things in their given situation.

They commonly use the case study method in business, management, psychology, sociology, political science and other related fields.

A fundamental requirement of qualitative research is recording observations that provide an understanding of reality. When it comes to the case study method, there are two major approaches that can be used to collect data: document review and fieldwork.

A case study in research methodology also includes literature review, the process by which the researcher collects all data available through historical documents. These might include books, newspapers, journals, videos, photographs and other written material. The researcher may also record information using video cameras to capture events as they occur. The researcher can also go through materials produced by people involved in the case study to gain an insight into their lives and experiences.

Field research involves participating in interviews and observations directly. Observation can be done during telephone interviews, events or public meetings, visits to homes or workplaces, or by shadowing someone for a period of time. The researcher can conduct one-on-one interviews with individuals or group interviews where several people are interviewed at once.

Let’s look now at case study methodology.

The case study method can be divided into three stages: formulation of objectives; collection of data; and analysis and interpretation. The researcher first makes a judgment about what should be studied based on their knowledge. Next, they gather data through observations and interviews. Here are some of the common case study research methods:

One of the most basic methods is the survey. Respondents are asked to complete a questionnaire with open-ended and predetermined questions. It usually takes place through face-to-face interviews, mailed questionnaires or telephone interviews. It can even be done by an online survey.

2. Semi-structured Interview

For case study research a more complex method is the semi-structured interview. This involves the researcher learning about the topic by listening to what others have to say. This usually occurs through one-on-one interviews with the sample. Semi-structured interviews allow for greater flexibility and can obtain information that structured questionnaires can’t.

3. Focus Group Interview

Another method is the focus group interview, where the researcher asks a few people to take part in an open-ended discussion on certain themes or topics. The typical group size is 5–15 people. This method allows researchers to delve deeper into people’s opinions, views and experiences.

4. Participant Observation

Participant observation is another method that involves the researcher gaining insight into an experience by joining in and taking part in normal events. The people involved don’t always know they’re being studied, but the researcher observes and records what happens through field notes.

Case study research design can use one or several of these methods depending on the context.

Case studies are widely used in the social sciences. To understand the impact of socio-economic forces, interpersonal dynamics and other human conditions, sometimes there’s no other way than to study one case at a time and look for patterns and data afterward.

It’s for the same reasons that case studies are used in business. Here are a few uses:

  • Case studies can be used as tools to educate and give examples of situations and problems that might occur and how they were resolved. They can also be used for strategy development and implementation.
  • Case studies can evaluate the success of a program or project. They can help teams improve their collaboration by identifying areas that need improvements, such as team dynamics, communication, roles and responsibilities and leadership styles.
  • Case studies can explore how people’s experiences affect the working environment. Because the study involves observing and analyzing concrete details of life, they can inform theories on how an individual or group interacts with their environment.
  • Case studies can evaluate the sustainability of businesses. They’re useful for social, environmental and economic impact studies because they look at all aspects of a business or organization. This gives researchers a holistic view of the dynamics within an organization.
  • We can use case studies to identify problems in organizations or businesses. They can help spot problems that are invisible to customers, investors, managers and employees.
  • Case studies are used in education to show students how real-world issues or events can be sorted out. This enables students to identify and deal with similar situations in their lives.

And that’s not all. Case studies are incredibly versatile, which is why they’re used so widely.

Human beings are complex and they interact with each other in their everyday life in various ways. The researcher observes a case and tries to find out how the patterns of behavior are created, including their causal relations. Case studies help understand one or more specific events that have been observed. Here are some common methods:

1. Illustrative case study

This is where the researcher observes a group of people doing something. Studying an event or phenomenon this way can show cause-and-effect relationships between various variables.

2. Cumulative case study

A cumulative case study is one that involves observing the same set of phenomena over a period. Cumulative case studies can be very helpful in understanding processes, which are things that happen over time. For example, if there are behavioral changes in people who move from one place to another, the researcher might want to know why these changes occurred.

3. Exploratory case study

An exploratory case study collects information that will answer a question. It can help researchers better understand social, economic, political or other social phenomena.

There are several other ways to categorize case studies. They may be chronological case studies, where a researcher observes events over time. In the comparative case study, the researcher compares one or more groups of people, places, or things to draw conclusions about them. In an intervention case study, the researcher intervenes to change the behavior of the subjects. The study method depends on the needs of the research team.

Deciding how to analyze the information at our disposal is an important part of effective management. An understanding of the case study model can help. With Harappa’s Thinking Critically course, managers and young professionals receive input and training on how to level up their analytic skills. Knowledge of frameworks, reading real-life examples and lived wisdom of faculty come together to create a dynamic and exciting course that helps teams leap to the next level.

Explore Harappa Diaries to learn more about topics such as Objectives Of Research , What are Qualitative Research Methods , How To Make A Problem Statement and How To Improve your Cognitive Skills to upgrade your knowledge and skills.

Thriversitybannersidenav

  • Find course
  • Computer Science
  • Engineering
  • Life Sciences
  • Political Science

Social Sciences

  • 📚All Disciplines
  • Czech Republic

Netherlands

  • Switzerland
  • United Kingdom
  • 🌍All Countries
  • Top Destinations

what is a case study research design

Pluralist Case Study Designs for Qualitative Research

26 June - 30 June 2023

Radboud Summer School

Institution:

Radboud University

Course leader

Bareerah Hafeez Hoorani

Target group

Master PhD PostDoc Professional

Interested?

645 EUR, Fee for students and PhDs

995 EUR, Regular fee

Other relevant courses

Lugano, Switzerland

Advanced Skills for Research Data Management and Open Science in Social Sciences

25 November - 29 November 2024

Mannheim, Germany

Advanced Social Network Analysis

23 September - 27 September 2024

From Embeddings to LLMs: Advanced Text Analysis with Python

Stay up-to-date about our summer schools.

If you don’t want to miss out on new summer school courses, subscribe to our monthly newsletter.

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Open access
  • Published: 08 September 2024

Longitudinal analysis of teacher self-efficacy evolution during a STEAM professional development program: a qualitative case study

  • Haozhe Jiang   ORCID: orcid.org/0000-0002-7870-0993 1 ,
  • Ritesh Chugh   ORCID: orcid.org/0000-0003-0061-7206 2 ,
  • Xuesong Zhai   ORCID: orcid.org/0000-0002-4179-7859 1 , 3   nAff7 ,
  • Ke Wang 4 &
  • Xiaoqin Wang 5 , 6  

Humanities and Social Sciences Communications volume  11 , Article number:  1162 ( 2024 ) Cite this article

28 Accesses

Metrics details

Despite the widespread advocacy for the integration of arts and humanities (A&H) into science, technology, engineering, and mathematics (STEM) education on an international scale, teachers face numerous obstacles in practically integrating A&H into STEM teaching (IAT). To tackle the challenges, a comprehensive five-stage framework for teacher professional development programs focussed on IAT has been developed. Through the use of a qualitative case study approach, this study outlines the shifts in a participant teacher’s self-efficacy following their exposure to each stage of the framework. The data obtained from interviews and reflective analyses were analyzed using a seven-stage inductive method. The findings have substantiated the significant impact of a teacher professional development program based on the framework on teacher self-efficacy, evident in both individual performance and student outcomes observed over eighteen months. The evolution of teacher self-efficacy in IAT should be regarded as an open and multi-level system, characterized by interactions with teacher knowledge, skills and other entrenched beliefs. Building on our research findings, an enhanced model of teacher professional learning is proposed. The revised model illustrates that professional learning for STEAM teachers should be conceived as a continuous and sustainable process, characterized by the dynamic interaction among teaching performance, teacher knowledge, and teacher beliefs. The updated model further confirms the inseparable link between teacher learning and student learning within STEAM education. This study contributes to the existing body of literature on teacher self-efficacy, teacher professional learning models and the design of IAT teacher professional development programs.

Similar content being viewed by others

what is a case study research design

Primary and secondary school teachers’ perceptions of their social science training needs

what is a case study research design

Investigating how subject teachers transition to integrated STEM education: A hybrid qualitative study on primary and middle school teachers

what is a case study research design

The mediating role of teaching enthusiasm in the relationship between mindfulness, growth mindset, and psychological well-being of Chinese EFL teachers

Introduction.

In the past decade, there has been a surge in the advancement and widespread adoption of Science, Technology, Engineering, and Mathematics (STEM) education on a global scale (Jiang et al. 2021 ; Jiang et al. 2022 ; Jiang et al. 2023 ; Jiang et al. 2024a , b ; Zhan et al. 2023 ; Zhan and Niu 2023 ; Zhong et al. 2022 ; Zhong et al. 2024 ). Concurrently, there has been a growing chorus of advocates urging the integration of Arts and Humanities (A&H) into STEM education (e.g., Alkhabra et al. 2023 ; Land 2020 ; Park and Cho 2022 ; Uştu et al. 2021 ; Vaziri and Bradburn 2021 ). STEM education is frequently characterized by its emphasis on logic and analysis; however, it may be perceived as deficient in emotional and intuitive elements (Ozkan and Umdu Topsakal 2021 ). Through the integration of Arts and Humanities (A&H), the resulting STEAM approach has the potential to become more holistic, incorporating both rationality and emotional intelligence (Ozkan and Umdu Topsakal 2021 ). Many studies have confirmed that A&H can help students increase interest and develop their understanding of the contents in STEM fields, and thus, A&H can attract potential underrepresented STEM learners such as female students and minorities (Land 2020 ; Park and Cho 2022 ; Perignat and Katz-Buonincontro 2019 ). Despite the increasing interest in STEAM, the approaches to integrating A&H, which represent fundamentally different disciplines, into STEM are theoretically and practically ambiguous (Jacques et al. 2020 ; Uştu et al. 2021 ). Moreover, studies have indicated that the implementation of STEAM poses significant challenges, with STEM educators encountering difficulties in integrating A&H into their teaching practices (e.g., Boice et al. 2021 ; Duong et al. 2024 ; Herro et al. 2019 ; Jacques et al. 2020 ; Park and Cho 2022 ; Perignat and Katz-Buonincontro 2019 ). Hence, there is a pressing need to provide STEAM teachers with effective professional training.

Motivated by this gap, this study proposes a novel five-stage framework tailored for teacher professional development programs specifically designed to facilitate the integration of A&H into STEM teaching (IAT). Following the establishment of this framework, a series of teacher professional development programs were implemented. To explain the framework, a qualitative case study is employed, focusing on examining a specific teacher professional development program’s impact on a pre-service teacher’s self-efficacy. The case narratives, with a particular focus on the pre-service teacher’s changes in teacher self-efficacy, are organized chronologically, delineating stages before and after each stage of the teacher professional development program. More specifically, meaningful vignettes of the pre-service teacher’s learning and teaching experiences during the teacher professional development program are offered to help understand the five-stage framework. This study contributes to understanding teacher self-efficacy, teacher professional learning model and the design of IAT teacher professional development programs.

Theoretical background

The conceptualization of steam education.

STEM education can be interpreted through various lenses (e.g., Jiang et al. 2021 ; English 2016 ). As Li et al. (2020) claimed, on the one hand, STEM education can be defined as individual STEM disciplinary-based education (i.e., science education, technology education, engineering education and mathematics education). On the other hand, STEM education can also be defined as interdisciplinary or cross-disciplinary education where individual STEM disciplines are integrated (Jiang et al. 2021 ; English 2016 ). In this study, we view it as individual disciplinary-based education separately in science, technology, engineering and mathematics (English 2016 ).

STEAM education emerged as a new pedagogy during the Americans for the Arts-National Policy Roundtable discussion in 2007 (Perignat and Katz-Buonincontro 2019 ). This pedagogy was born out of the necessity to enhance students’ engagement, foster creativity, stimulate innovation, improve problem-solving abilities, and cultivate employability skills such as teamwork, communication and adaptability (Perignat and Katz-Buonincontro 2019 ). In particular, within the framework of STEAM education, the ‘A’ should be viewed as a broad concept that represents arts and humanities (A&H) (Herro and Quigley 2016 ; de la Garza 2021 , Park and Cho 2022 ). This conceptualization emphasizes the need to include humanities subjects alongside arts (Herro and Quigley 2016 ; de la Garza 2021 ; Park and Cho 2022 ). Sanz-Camarero et al. ( 2023 ) listed some important fields of A&H, including physical arts, fine arts, manual arts, sociology, politics, philosophy, history, psychology and so on.

In general, STEM education does not necessarily entail the inclusion of all STEM disciplines collectively (Ozkan and Umdu Topsakal 2021 ), and this principle also applies to STEAM education (Gates 2017 ; Perignat and Katz-Buonincontro 2019 ; Quigley et al. 2017 ; Smith and Paré 2016 ). As an illustration, Smith and Paré ( 2016 ) described a STEAM activity in which pottery (representing A&H) and mathematics were integrated, while other STEAM elements such as science, technology and engineering were not included. In our study, STEAM education is conceptualized as an interdisciplinary approach that involves the integration of one or more components of A&H into one or more STEM school subjects within educational activities (Ozkan and Umdu Topsakal 2021 ; Vaziri and Bradburn 2021 ). Notably, interdisciplinary collaboration entails integrating one or more elements from arts and humanities (A&H) with one or more STEM school subjects, cohesively united by a shared theme while maintaining their distinct identities (Perignat and Katz-Buonincontro 2019 ).

In our teacher professional development programs, we help mathematics, technology, and science pre-service teachers integrate one component of A&H into their disciplinary-based teaching practices. For instance, we help mathematics teachers integrate history (a component of A&H) into mathematics teaching. In other words, in our study, integrating A&H into STEM teaching (IAT) can be defined as integrating one component of A&H into the teaching of one of the STEM school subjects. The components of A&H and the STEM school subject are brought together under a common theme, but each of them remains discrete. Engineering is not taught as an individual subject in the K-12 curriculum in mainland China. Therefore, A&H is not integrated into engineering teaching in our teacher professional development programs.

Self-efficacy and teacher self-efficacy

Self-efficacy was initially introduced by Bandura ( 1977 ) as a key concept within his social cognitive theory. Bandura ( 1997 ) defined self-efficacy as “people’s beliefs about their capabilities to produce designated levels of performance that exercise influence over events that affect their lives” (p. 71). Based on Bandura’s ( 1977 ) theory, Tschannen-Moran et al. ( 1998 ) defined the concept of teacher self-efficacy Footnote 1 as “a teacher’s belief in her or his ability to organize and execute the courses of action required to successfully accomplish a specific teaching task in a particular context” (p. 233). Blonder et al. ( 2014 ) pointed out that this definition implicitly included teachers’ judgment of their ability to bring about desired outcomes in terms of students’ engagement and learning. Moreover, OECD ( 2018 ) defined teacher self-efficacy as “the beliefs that teachers have of their ability to enact certain teaching behavior that influences students’ educational outcomes, such as achievement, interest, and motivation” (p. 51). This definition explicitly included two dimensions: teachers’ judgment of the ability related to their teaching performance (i.e., enacting certain teaching behavior) and their influence on student outcomes.

It is argued that teacher self-efficacy should not be regarded as a general or overarching construct (Zee et al. 2017 ; Zee and Koomen 2016 ). Particularly, in the performance-driven context of China, teachers always connect their beliefs in their professional capabilities with the educational outcomes of their students (Liu et al. 2018 ). Therefore, we operationally conceptualize teacher self-efficacy as having two dimensions: self-efficacy in individual performance and student outcomes (see Table 1 ).

Most importantly, given its consistent association with actual teaching performance and student outcomes (Bray-Clark and Bates 2003 ; Kelley et al. 2020 ), teacher self-efficacy is widely regarded as a pivotal indicator of teacher success (Kelley et al. 2020 ). Moreover, the enhancement of teaching self-efficacy reflects the effectiveness of teacher professional development programs (Bray-Clark and Bates 2003 ; Kelley et al. 2020 ; Wong et al. 2022 ; Zhou et al. 2023 ). For instance, Zhou et al. ( 2023 ) claimed that in STEM teacher education, effective teacher professional development programs should bolster teachers’ self-efficacy “in teaching the content in the STEM discipline” (p. 2).

It has been documented that teachers frequently experience diminished confidence and comfort when teaching subject areas beyond their expertise (Kelley et al. 2020 ; Stohlmann et al. 2012 ). This diminished confidence extends to their self-efficacy in implementing interdisciplinary teaching approaches, such as integrated STEM teaching and IAT (Kelley et al. 2020 ). For instance, Geng et al. ( 2019 ) found that STEM teachers in Hong Kong exhibited low levels of self-efficacy, with only 5.53% of teachers rating their overall self-efficacy in implementing STEM education as higher than a score of 4 out of 5. Additionally, Hunter-Doniger and Sydow ( 2016 ) found that teachers may experience apprehension and lack confidence when incorporating A&H elements into the classroom context, particularly within the framework of IAT. Considering the critical importance of teacher self-efficacy in STEM and STEAM education (Kelley et al. 2020 ; Zakariya, 2020 ; Zhou et al. 2023 ), it is necessary to explore effective measures, frameworks and teacher professional development programs to help teachers improve their self-efficacy regarding interdisciplinary teaching (e.g., IAT).

Teacher professional learning models

The relationship between teachers’ professional learning and students’ outcomes (such as achievements, skills and attitudes) has been a subject of extensive discussion and research for many years (Clarke and Hollingsworth 2002 ). For instance, Clarke and Hollingsworth ( 2002 ) proposed and validated the Interconnected Model of Professional Growth, which illustrates that teacher professional development is influenced by the interaction among four interconnected domains: the personal domain (teacher knowledge, beliefs and attitudes), the domain of practice (professional experimentation), the domain of consequence (salient outcomes), and the external domain (sources of information, stimulus or support). Sancar et al. ( 2021 ) emphasized that teachers’ professional learning or development never occurs independently. In practice, this process is inherently intertwined with many variables, including student outcomes, in various ways (Sancar et al. 2021 ). However, many current teacher professional development programs exclude real in-class teaching and fail to establish a comprehensive link between teachers’ professional learning and student outcomes (Cai et al. 2020 ; Sancar et al. 2021 ). Sancar et al. ( 2021 ) claimed that exploring the complex relationships between teachers’ professional learning and student outcomes should be grounded in monitoring and evaluating real in-class teaching, rather than relying on teachers’ self-assessment. It is essential to understand these relationships from a holistic perspective within the context of real classroom teaching (Sancar et al. 2021 ). However, as Sancar et al. ( 2021 ) pointed out, such efforts in teacher education are often considered inadequate. Furthermore, in the field of STEAM education, such efforts are further exacerbated.

Cai et al. ( 2020 ) proposed a teacher professional learning model where student outcomes are emphasized. This model was developed based on Cai ( 2017 ), Philipp ( 2007 ) and Thompson ( 1992 ). It has also been used and justified in a series of teacher professional development programs (e.g., Calabrese et al. 2024 ; Hwang et al. 2024 ; Marco and Palatnik 2024 ; Örnek and Soylu 2021 ). The model posits that teachers typically increase their knowledge and modify their beliefs through professional teacher learning, subsequently improving their classroom instruction, enhancing teaching performance, and ultimately fostering improved student learning outcomes (Cai et al. 2020 ). Notably, this model can be updated in several aspects. Firstly, prior studies have exhibited the interplay between teacher knowledge and beliefs (e.g., Basckin et al. 2021 ; Taimalu and Luik 2019 ). This indicates that the increase in teacher knowledge and the change in teacher belief may not be parallel. The two processes can be intertwined. Secondly, the Interconnected Model of Professional Growth highlights that the personal domain and the domain of practice are interconnected (Clarke and Hollingsworth 2002 ). Liu et al. ( 2022 ) also confirmed that improvements in classroom instruction may, in turn, influence teacher beliefs. This necessitates a reconsideration of the relationships between classroom instruction, teacher knowledge and teacher beliefs in Cai et al.’s ( 2020 ) model. Thirdly, the Interconnected Model of Professional Growth also exhibits the connections between the domain of consequence and the personal domain (Clarke and Hollingsworth 2002 ). Hence, the improvement of learning outcomes may signify the end of teacher learning. For instance, students’ learning feedback may be a vital source of teacher self-efficacy (Bandura 1977 ). Therefore, the improvement of student outcomes may, in turn, affect teacher beliefs. The aforementioned arguments highlight the need for an updated model that integrates Cai et al.’s ( 2020 ) teacher professional learning model with Clarke and Hollingsworth’s ( 2002 ) Interconnected Model of Professional Growth. This integration may provide a holistic view of the teacher’s professional learning process, especially within the complex contexts of STEAM teacher education.

The framework for teacher professional development programs of integrating arts and humanities into STEM teaching

In this section, we present a framework for IAT teacher professional development programs, aiming to address the practical challenges associated with STEAM teaching implementation. Our framework incorporates the five features of effective teacher professional development programs outlined by Archibald et al. ( 2011 ), Cai et al. ( 2020 ), Darling-Hammond et al. ( 2017 ), Desimone and Garet ( 2015 ) and Roth et al. ( 2017 ). These features include: (a) alignment with shared goals (e.g., school, district, and national policies and practice), (b) emphasis on core content and modeling of teaching strategies for the content, (c) collaboration among teachers within a community, (d) adequate opportunities for active learning of new teaching strategies, and (e) embedded follow-up and continuous feedback. It is worth noting that two concepts, namely community of practice and lesson study, have been incorporated into our framework. Below, we delineate how these features are reflected in our framework.

(a) The Chinese government has issued a series of policies to facilitate STEAM education in K-12 schools (Jiang et al. 2021 ; Li and Chiang 2019 ; Lyu et al. 2024 ; Ro et al. 2022 ). The new curriculum standards released in 2022 mandate that all K-12 teachers implement interdisciplinary teaching, including STEAM education. Our framework for teacher professional development programs, which aims to help teachers integrate A&H into STEM teaching, closely aligns with these national policies and practices supporting STEAM education in K-12 schools.

(b) The core content of the framework is IAT. Specifically, as A&H is a broad concept, we divide it into several subcomponents, such as history, culture, and visual and performing arts (e.g., drama). We are implementing a series of teacher professional development programs to help mathematics, technology and science pre-service teachers integrate these subcomponents of A&H into their teaching Footnote 2 . Notably, pre-service teachers often lack teaching experience, making it challenging to master and implement new teaching strategies. Therefore, our framework provides five step-by-step stages designed to help them effectively model the teaching strategies of IAT.

(c) Our framework advocates for collaboration among teachers within a community of practice. Specifically, a community of practice is “a group of people who share an interest in a domain of human endeavor and engage in a process of collective learning that creates bonds between them” (Wenger et al. 2002 , p. 1). A teacher community of practice can be considered a group of teachers “sharing and critically observing their practices in growth-promoting ways” (Näykki et al. 2021 , p. 497). Long et al. ( 2021 ) claimed that in a teacher community of practice, members collaboratively share their teaching experiences and work together to address teaching problems. Our community of practice includes three types of members. (1) Mentors: These are professors and experts with rich experience in helping pre-service teachers practice IAT. (2) Pre-service teachers: Few have teaching experience before the teacher professional development programs. (3) In-service teachers: All in-service teachers are senior teachers with rich teaching experience. All the members work closely together to share and improve their IAT practice. Moreover, our community includes not only mentors and in-service teachers but also pre-service teachers. We encourage pre-service teachers to collaborate with experienced in-service teachers in various ways, such as developing IAT lesson plans, writing IAT case reports and so on. In-service teachers can provide cognitive and emotional support and share their practical knowledge and experience, which may significantly benefit the professional growth of pre-service teachers (Alwafi et al. 2020 ).

(d) Our framework offers pre-service teachers various opportunities to engage in lesson study, allowing them to actively design and implement IAT lessons. Based on the key points of effective lesson study outlined by Akiba et al. ( 2019 ), Ding et al. ( 2024 ), and Takahashi and McDougal ( 2016 ), our lesson study incorporates the following seven features. (1) Study of IAT materials: Pre-service teachers are required to study relevant IAT materials under the guidance of mentors. (2) Collaboration on lesson proposals: Pre-service teachers should collaborate with in-service teachers to develop comprehensive lesson proposals. (3) Observation and data collection: During the lesson, pre-service teachers are required to carefully observe and collect data on student learning and development. (4) Reflection and analysis: Pre-service teachers use the collected data to reflect on the lesson and their teaching effects. (5) Lesson revision and reteaching: If needed, pre-service teachers revise and reteach the lesson based on their reflections and data analysis. (6) Mentor and experienced in-service teacher involvement: Mentors and experienced in-service teachers, as knowledgeable others, are involved throughout the lesson study process. (7) Collaboration on reporting: Pre-service teachers collaborate with in-service teachers to draft reports and disseminate the results of the lesson study. Specifically, recognizing that pre-service teachers often lack teaching experience, we do not require them to complete all the steps of lesson study independently at once. Instead, we guide them through the lesson study process in a step-by-step manner, allowing them to gradually build their IAT skills and confidence. For instance, in Stage 1, pre-service teachers primarily focus on studying IAT materials. In Stage 2, they develop lesson proposals, observe and collect data, and draft reports. However, the implementation of IAT lessons is carried out by in-service teachers. This approach prevents pre-service teachers from experiencing failures due to their lack of teaching experience. In Stage 3, pre-service teachers implement, revise, and reteach IAT lessons, experiencing the lesson study process within a simulated environment. In Stage 4, pre-service teachers engage in lesson study in an actual classroom environment. However, their focus is limited to one micro-course during each lesson study session. It is not until the fifth stage that they experience a complete lesson study in an actual classroom environment.

(e) Our teacher professional development programs incorporate assessments specifically designed to evaluate pre-service teachers’ IAT practices. We use formative assessments to measure their understanding and application of IAT strategies. Pre-service teachers receive ongoing and timely feedback from peers, mentors, in-service teachers, and students, which helps them continuously refine their IAT practices throughout the program. Recognizing that pre-service teachers often have limited contact with real students and may not fully understand students’ learning needs, processes and outcomes, our framework requires them to actively collect and analyze student feedback. By doing so, they can make informed improvements to their instructional practice based on student feedback.

After undergoing three rounds of theoretical and practical testing and revision over the past five years, we have successfully finalized the optimization of the framework design (Zhou 2021 ). Throughout each cycle, we collected feedback from both participants and researchers on at least three occasions. Subsequently, we analyzed this feedback and iteratively refined the framework. For example, we enlisted the participation of in-service teachers to enhance the implementation of STEAM teaching, extended practice time through micro-teaching sessions, and introduced a stage of micro-course development within the framework to provide more opportunities for pre-service teachers to engage with real teaching situations. In this process, we continuously improved the coherence between each stage of the framework, ensuring that they mutually complement one another. The five-stage framework is described as follows.

Stage 1 Literature study

Pre-service teachers are provided with a series of reading materials from A&H. On a weekly basis, two pre-service teachers are assigned to present their readings and reflections to the entire group, followed by critical discussions thereafter. Mentors and all pre-service teachers discuss and explore strategies for translating the original A&H materials into viable instructional resources suitable for classroom use. Subsequently, pre-service teachers select topics of personal interest for further study under mentor guidance.

Stage 2 Case learning

Given that pre-service teachers have no teaching experience, collaborative efforts between in-service teachers and pre-service teachers are undertaken to design IAT lesson plans. Subsequently, the in-service teachers implement these plans. Throughout this process, pre-service teachers are afforded opportunities to engage in lesson plan implementation. Figure 1 illustrates the role of pre-service teachers in case learning. In the first step, pre-service teachers read about materials related to A&H, select suitable materials, and report their ideas on IAT lesson design to mentors, in-service teachers, and fellow pre-service teachers.

figure 1

Note: A&H refers to arts and humanities.

In the second step, they liaise with the in-service teachers responsible for implementing the lesson plan, discussing the integration of A&H into teaching practices. Pre-service teachers then analyze student learning objectives aligned with curriculum standards, collaboratively designing the IAT lesson plan with in-service teachers. Subsequently, pre-service teachers present lesson plans for feedback from mentors and other in-service teachers.

In the third step, pre-service teachers observe the lesson plan’s implementation, gathering and analyzing feedback from students and in-service teachers using an inductive approach (Merriam 1998 ). Feedback includes opinions on the roles and values of A&H, perceptions of the teaching effect, and recommendations for lesson plan implementation and modification. The second and third steps may iterate multiple times to refine the IAT lesson plan. In the fourth step, pre-service teachers consolidate all data, including various versions of teaching instructions, classroom videos, feedback, and discussion notes, composing reflection notes. Finally, pre-service teachers collaborate with in-service teachers to compile the IAT case report and submit it for publication.

Stage 3 Micro-teaching

Figure 2 illustrates the role of pre-service teachers in micro-teaching. Before entering the micro-classrooms Footnote 3 , all the discussions and communications occur within the pre-service teacher group, excluding mentors and in-service teachers. After designing the IAT lesson plan, pre-service teachers take turns implementing 40-min lesson plans in a simulated micro-classroom setting. Within this simulated environment, one pre-service teacher acts as the teacher, while others, including mentors, in-service teachers, and other fellow pre-service teachers, assume the role of students Footnote 4 . Following the simulated teaching, the implementer reviews the video of their session and self-assesses their performance. Subsequently, the implementer receives feedback from other pre-service teachers, mentors, and in-service teachers. Based on this feedback, the implementer revisits steps 2 and 3, revising the lesson plan and conducting the simulated teaching again. This iterative process typically repeats at least three times until the mentors, in-service teachers, and other pre-service teachers are satisfied with the implementation of the revised lesson plan. Finally, pre-service teachers complete reflection notes and submit a summary of their reflections on the micro-teaching experience. Each pre-service teacher is required to choose at least three topics and undergo at least nine simulated teaching sessions.

figure 2

Stage 4 Micro-course development

While pre-service teachers may not have the opportunity to execute the whole lesson plans in real classrooms, they can design and create five-minute micro-courses Footnote 5 before class, subsequently presenting these videos to actual students. The process of developing micro-courses closely mirrors that of developing IAT cases in the case learning stage (see Fig. 1 ). However, in Step 3, pre-service teachers assume dual roles, not only as observers of IAT lesson implementation but also as implementers of a five-minute IAT micro-course.

Stage 5 Classroom teaching

Pre-service teachers undertake the implementation of IAT lesson plans independently, a process resembling micro-teaching (see Fig. 2 ). However, pre-service teachers engage with real school students in partner schools Footnote 6 instead of simulated classrooms. Furthermore, they collect feedback not only from the mentors, in-service teachers, and fellow pre-service teachers but also from real students.

To provide our readers with a better understanding of the framework, we provide meaningful vignettes of a pre-service teacher’s learning and teaching experiences in one of the teacher professional development programs based on the framework. In addition, we choose teacher self-efficacy as an indicator to assess the framework’s effectiveness, detailing the pre-service teacher’s changes in teacher self-efficacy.

Research design

Research method.

Teacher self-efficacy can be measured both quantitatively and qualitatively (Bandura 1986 , 1997 ; Lee and Bobko 1994 ; Soprano and Yang 2013 ; Unfried et al. 2022 ). However, researchers and theorists in the area of teacher self-efficacy have called for more qualitative and longitudinal studies (Klassen et al. 2011 ). As some critiques stated, most studies were based on correlational and cross-sectional data obtained from self-report surveys, and qualitative studies of teacher efficacy were overwhelmingly neglected (Henson 2002 ; Klassen et al. 2011 ; Tschannen-Moran et al. 1998 ; Xenofontos and Andrews 2020 ). There is an urgent need for more longitudinal studies to shed light on the development of teacher efficacy (Klassen et al. 2011 ; Xenofontos and Andrews 2020 ).

This study utilized a longitudinal qualitative case study methodology to delve deeply into the context (Jiang et al. 2021 ; Corden and Millar 2007 ; Dicks et al. 2023 ; Henderson et al. 2012 ; Matusovich et al. 2010 ; Shirani and Henwood 2011 ), presenting details grounded in real-life situations and analyzing the inner relationships rather than generalize findings about the change of a large group of pre-service teachers’ self-efficacy.

Participant

This study forms a component of a broader multi-case research initiative examining teachers’ professional learning in the STEAM teacher professional development programs in China (Jiang et al. 2021 ; Wang et al. 2018 ; Wang et al. 2024 ). Within this context, one participant, Shuitao (pseudonym), is selected and reported in this current study. Shuitao was a first-year graduate student at a first-tier Normal university in Shanghai, China. Normal universities specialize in teacher education. Her graduate major was mathematics curriculum and instruction. Teaching practice courses are offered to students in this major exclusively during their third year of study. The selection of Shuitao was driven by three primary factors. Firstly, Shuitao attended the entire teacher professional development program and actively engaged in nearly all associated activities. Table 2 illustrates the timeline of the five stages in which Shuitao was involved. Secondly, her undergraduate major was applied mathematics, which was not related to mathematics teaching Footnote 7 . She possessed no prior teaching experience and had not undergone any systematic study of IAT before her involvement in the teacher professional development program. Thirdly, her other master’s courses during her first two years of study focused on mathematics education theory and did not include IAT Footnote 8 . Additionally, she scarcely participated in any other teaching practice outside of the teacher professional development program. As a pre-service teacher, Shuitao harbored a keen interest in IAT. Furthermore, she discovered that she possessed fewer teaching skills compared to her peers who had majored in education during their undergraduate studies. Hence, she had a strong desire to enhance her teaching skills. Consequently, Shuitao decided to participate in our teacher professional development program.

Shuitao was grouped with three other first-year graduate students during the teacher professional development program. She actively collaborated with them at every stage of the program. For instance, they advised each other on their IAT lesson designs, observed each other’s IAT practice and offered constructive suggestions for improvement.

Research question

Shuitao was a mathematics pre-service teacher who participated in one of our teacher professional development programs, focusing on integrating history into mathematics teaching (IHT) Footnote 9 . Notably, this teacher professional development program was designed based on our five-stage framework for teacher professional development programs of IAT. To examine the impact of this teacher professional development program on Shuitao’s self-efficacy related to IHT, this case study addresses the following research question:

What changes in Shuitao’s self-efficacy in individual performance regarding integrating history into mathematics teaching (SE-IHT-IP) may occur through participation in the teacher professional development program?

What changes in Shuitao’s self-efficacy in student outcomes regarding integrating history into mathematics teaching (SE-IHT-SO) may occur through participation in the teacher professional development program?

Data collection and analysis

Before Shuitao joined the teacher professional development program, a one-hour preliminary interview was conducted to guide her in self-narrating her psychological and cognitive state of IHT.

During the teacher professional development program, follow-up unstructured interviews were conducted once a month with Shuitao. All discussions in the development of IHT cases were recorded, Shuitao’s teaching and micro-teaching were videotaped, and the reflection notes, journals, and summary reports written by Shuitao were collected.

After completing the teacher professional development program, Shuitao participated in a semi-structured three-hour interview. The objectives of this interview were twofold: to reassess her self-efficacy and to explore the relationship between her self-efficacy changes and each stage of the teacher professional development program.

Interview data, discussions, reflection notes, journals, summary reports and videos, and analysis records were archived and transcribed before, during, and after the teacher professional development program.

In this study, we primarily utilized data from seven interviews: one conducted before the teacher professional development program, five conducted after each stage of the program, and one conducted upon completion of the program. Additionally, we reviewed Shuitao’s five reflective notes, which were written after each stage, as well as her final summary report that encompassed the entire teacher professional development program.

Merriam’s ( 1998 ) approach to coding data and inductive approach to retrieving possible concepts and themes were employed using a seven-stage method. Considering theoretical underpinnings in qualitative research is common when interpreting data (Strauss and Corbin 1990 ). First, a list based on our conceptual framework of teacher self-efficacy (see Table 1 ) was developed. The list included two codes (i.e., SE-IHT-IP and SE-IHT-SO). Second, all data were sorted chronologically, read and reread to be better understood. Third, texts were coded into multi-colored highlighting and comment balloons. Fourth, the data for groups of meanings, themes, and behaviors were examined. How these groups were connected within the conceptual framework of teacher self-efficacy was confirmed. Fifth, after comparing, confirming, and modifying, the selective codes were extracted and mapped onto the two categories according to the conceptual framework of teacher self-efficacy. Accordingly, changes in SE-IHT-IP and SE-IHT-SO at the five stages of the teacher professional development program were identified, respectively, and then the preliminary findings came (Strauss and Corbin 1990 ). In reality, in Shuitao’s narratives, SE-IHT-IP and SE-IHT-SO were frequently intertwined. Through our coding process, we differentiated between SE-IHT-IP and SE-IHT-SO, enabling us to obtain a more distinct understanding of how these two aspects of teacher self-efficacy evolved over time. This helped us address the two research questions effectively.

Reliability and validity

Two researchers independently analyzed the data to establish inter-rater reliability. The inter-rater reliability was established as kappa = 0.959. Stake ( 1995 ) suggested that the most critical assertions in a study require the greatest effort toward confirmation. In this study, three methods served this purpose and helped ensure the validity of the findings. The first way to substantiate the statement about the changes in self-efficacy was by revisiting each transcript to confirm whether the participant explicitly acknowledged the changes (Yin 2003 ). Such a check was repeated in the analysis of this study. The second way to confirm patterns in the data was by examining whether Shuitao’s statements were replicated in separate interviews (Morris and Usher 2011 ). The third approach involved presenting the preliminary conclusions to Shuitao and affording her the opportunity to provide feedback on the data and conclusions. This step aimed to ascertain whether we accurately grasped the true intentions of her statements and whether our subjective interpretations inadvertently influenced our analysis of her statements. Additionally, data from diverse sources underwent analysis by at least two researchers, with all researchers reaching consensus on each finding.

As each stage of our teacher professional development programs spanned a minimum of three months, numerous documented statements regarding the enhancement of Shuitao’s self-efficacy regarding IHT were recorded. Notably, what we present here offers only a concise overview of findings derived from our qualitative analysis. The changes in Shuitao’s SE-IHT-IP and SE-IHT-SO are organized chronologically, delineating the period before and during the teacher professional development program.

Before the teacher professional development program: “I have no confidence in IHT”

Before the teacher professional development program, Shuitao frequently expressed her lack of confidence in IHT. On the one hand, Shuitao expressed considerable apprehension about her individual performance in IHT. “How can I design and implement IHT lesson plans? I do not know anything [about it]…” With a sense of doubt, confusion and anxiety, Shuitao voiced her lack of confidence in her ability to design and implement an IHT case that would meet the requirements of the curriculum standards. Regarding the reasons for her lack of confidence, Shuitao attributed it to her insufficient theoretical knowledge and practical experience in IHT:

I do not know the basic approaches to IHT that I could follow… it is very difficult for me to find suitable historical materials… I am very confused about how to organize [historical] materials logically around the teaching goals and contents… [Furthermore,] I am [a] novice, [and] I have no IHT experience.

On the other hand, Shuitao articulated very low confidence in the efficacy of her IHT on student outcomes:

I think my IHT will have a limited impact on student outcomes… I do not know any specific effects [of history] other than making students interested in mathematics… In fact, I always think it is difficult for [my] students to understand the history… If students cannot understand [the history], will they feel bored?

This statement suggests that Shuitao did not fully grasp the significance of IHT. In fact, she knew little about the educational significance of history for students, and she harbored no belief that her IHT approach could positively impact students. In sum, her SE-IHT-SO was very low.

After stage 1: “I can do well in the first step of IHT”

After Stage 1, Shuitao indicated a slight improvement in her confidence in IHT. She attributed this improvement to her acquisition of theoretical knowledge in IHT, the approaches for selecting history-related materials, and an understanding of the educational value of history.

One of Shuitao’s primary concerns about implementing IHT before the teacher professional development program was the challenge of sourcing suitable history-related materials. However, after Stage 1, Shuitao explicitly affirmed her capability in this aspect. She shared her experience of organizing history-related materials related to logarithms as an example.

Recognizing the significance of suitable history-related materials in effective IHT implementation, Shuitao acknowledged that conducting literature studies significantly contributed to enhancing her confidence in undertaking this initial step. Furthermore, she expressed increased confidence in designing IHT lesson plans by utilizing history-related materials aligned with teaching objectives derived from the curriculum standards. In other words, her SE-IHT-IP was enhanced. She said:

After experiencing multiple discussions, I gradually know more about what kinds of materials are essential and should be emphasized, what kinds of materials should be adapted, and what kinds of materials should be omitted in the classroom instructions… I have a little confidence to implement IHT that could meet the requirements [of the curriculum standards] since now I can complete the critical first step [of IHT] well…

However, despite the improvement in her confidence in IHT following Stage 1, Shuitao also expressed some concerns. She articulated uncertainty regarding her performance in the subsequent stages of the teacher professional development program. Consequently, her confidence in IHT experienced only a modest increase.

After stage 2: “I participate in the development of IHT cases, and my confidence is increased a little bit more”

Following Stage 2, Shuitao reported further increased confidence in IHT. She attributed this growth to two main factors. Firstly, she successfully developed several instructional designs for IHT through collaboration with in-service teachers. These collaborative experiences enabled her to gain a deeper understanding of IHT approaches and enhance her pedagogical content knowledge in this area, consequently bolstering her confidence in her ability to perform effectively. Secondly, Shuitao observed the tangible impact of IHT cases on students in real classroom settings, which reinforced her belief in the efficacy of IHT. These experiences instilled in her a greater sense of confidence in her capacity to positively influence her students through her implementation of IHT. Shuitao remarked that she gradually understood how to integrate suitable history-related materials into her instructional designs (e.g., employ a genetic approach Footnote 10 ), considering it as the second important step of IHT. She shared her experience of developing IHT instructional design on the concept of logarithms. After creating several iterations of IHT instructional designs, Shuitao emphasized that her confidence in SE-IHT-IP has strengthened. She expressed belief in her ability to apply these approaches to IHT, as well as the pedagogical content knowledge of IHT, acquired through practical experience, in her future teaching endeavors. The following is an excerpt from the interview:

I learned some effective knowledge, skills, techniques and approaches [to IHT]… By employing these approaches, I thought I could [and] I had the confidence to integrate the history into instructional designs very well… For instance, [inspired] by the genetic approach, we designed a series of questions and tasks based on the history of logarithms. The introduction of the new concept of logarithms became very natural, and it perfectly met the requirements of our curriculum standards, [which] asked students to understand the necessity of learning the concept of logarithms…

Shuitao actively observed the classroom teaching conducted by her cooperating in-service teacher. She helped her cooperating in-service teacher in collecting and analyzing students’ feedback. Subsequently, discussions ensued on how to improve the instructional designs based on this feedback. The refined IHT instructional designs were subsequently re-implemented by the in-service teacher. After three rounds of developing IHT cases, Shuitao became increasingly convinced of the significance and efficacy of integrating history into teaching practices, as evidenced by the following excerpt:

The impacts of IHT on students are visible… For instance, more than 93% of the students mentioned in the open-ended questionnaires that they became more interested in mathematics because of the [historical] story of Napier… For another example, according to the results of our surveys, more than 75% of the students stated that they knew log a ( M  +  N ) = log a M  × log a N was wrong because of history… I have a little bit more confidence in the effects of my IHT on students.

This excerpt highlights that Shuitao’s SE-IHT-SO was enhanced. She attributed this enhancement to her realization of the compelling nature of history and her belief in her ability to effectively leverage its power to positively influence her students’ cognitive and emotional development. This also underscores the importance of reinforcing pre-service teachers’ awareness of the significance of history. Nonetheless, Shuiato elucidated that she still retained concerns regarding the effectiveness of her IHT implementation. Her following statement shed light on why her self-efficacy only experienced a marginal increase in this stage:

Knowing how to do it successfully and doing it successfully in practice are two totally different things… I can develop IHT instructional designs well, but I have no idea whether I can implement them well and whether I can introduce the history professionally in practice… My cooperation in-service teacher has a long history of teaching mathematics and gains rich experience in educational practices… If I cannot acquire some required teaching skills and capabilities, I still cannot influence my students powerfully.

After stage 3: “Practice makes perfect, and my SE-IHT-IP is steadily enhanced after a hit”

After successfully developing IHT instructional designs, the next critical step was the implementation of these designs. Drawing from her observations of her cooperating in-service teachers’ IHT implementations and discussions with other pre-service teachers, Shuitao developed her own IHT lesson plans. In Stage 3, she conducted simulated teaching sessions and evaluated her teaching performance ten times Footnote 11 . Shuitao claimed that her SE-IHT-IP steadily improved over the course of these sessions. According to Shuitao, two main processes in Stage 3 facilitated this steady enhancement of SE-IHT-IP.

On the one hand, through the repeated implementation of simulated teaching sessions, Shuitao’s teaching proficiency and fluency markedly improved. Shuitao first described the importance of teaching proficiency and fluency:

Since the detailed history is not included in our curriculum standards and textbooks, if I use my historical materials in class, I have to teach more contents than traditional teachers. Therefore, I have to teach proficiently so that teaching pace becomes a little faster than usual… I have to teach fluently so as to use each minute efficiently in my class. Otherwise, I cannot complete the teaching tasks required [by curriculum standards].

As Shuitao said, at the beginning of Stage 3, her self-efficacy even decreased because she lacked teaching proficiency and fluency and was unable to complete the required teaching tasks:

In the first few times of simulated teaching, I always needed to think for a second about what I should say next when I finish one sentence. I also felt very nervous when I stood in the front of the classrooms. This made my narration of the historical story between Briggs and Napier not fluent at all. I paused many times to look for some hints on my notes… All these made me unable to complete the required teaching tasks… My [teaching] confidence took a hit.

Shuitao quoted the proverb, “practice makes perfect”, and she emphasized that it was repeated practice that improved her teaching proficiency and fluency:

I thought I had no other choice but to practice IHT repeatedly… [At the end of Stage 3,] I could naturally remember most words that I should say when teaching the topics that I selected… My teaching proficiency and fluency was improved through my repeated review of my instructional designs and implementation of IHT in the micro-classrooms… With the improvement [of my teaching proficiency and fluency], I could complete the teaching tasks, and my confidence was increased as well.

In addition, Shuitao also mentioned that through this kind of self-exploration in simulated teaching practice, her teaching skills and capabilities (e.g., blackboard writing, abilities of language organization abilities, etc.) improved. This process was of great help to her enhancement of SE-IHT-IP.

On the other hand, Shuitao’s simulated teaching underwent assessment by herself, with mentors, in-service teachers and fellow pre-service teachers. This comprehensive evaluation process played a pivotal role in enhancing her individual performance and self-efficacy. Reflecting on this aspect, Shuitao articulated the following sentiments in one of her reflection reports:

By watching the videos, conducting self-assessment, and collecting feedback from others, I can understand what I should improve or emphasize in my teaching. [Then,] I think my IHT can better meet the requirements [of curriculum standards]… I think my teaching performance is getting better and better.

After stage 4: “My micro-courses influenced students positively, and my SE-IHT-SO is steadily enhanced”

In Stage 4, Shuitao commenced by creating 5-min micro-course videos. Subsequently, she played these videos in her cooperating in-service teachers’ authentic classroom settings and collected student feedback. This micro-course was played at the end of her cooperating in-service teachers’ lesson Footnote 12 . Shuitao wrote in her reflections that this micro-course of logarithms helped students better understand the nature of mathematics:

According to the results of our surveys, many students stated that they knew the development and evolution of the concept of logarithms is a long process and many mathematicians from different countries have contributed to the development of the concept of logarithms… This indicated that my micro-course helped students better understand the nature of mathematics… My micro-course about the history informed students that mathematics is an evolving and human subject and helped them understand the dynamic development of the [mathematics] concept…

Meanwhile, Shuitao’s micro-course positively influenced some students’ beliefs towards mathematics. As evident from the quote below, integrating historical context into mathematics teaching transformed students’ perception of the subject, boosting Shuitao’s confidence too.

Some students’ responses were very exciting… [O]ne [typical] response stated, he always regarded mathematics as abstract, boring, and dreadful subject; but after seeing the photos of mathematicians and great men and learning the development of the concept of logarithms through the micro-course, he found mathematics could be interesting. He wanted to learn more the interesting history… Students’ such changes made me confident.

Furthermore, during post-class interviews, several students expressed their recognition of the significance of the logarithms concept to Shuitao, attributing this realization to the insights provided by prominent figures in the micro-courses. They also conveyed their intention to exert greater effort in mastering the subject matter. This feedback made Shuitao believe that her IHT had the potential to positively influence students’ attitudes towards learning mathematics.

In summary, Stage 4 marked Shuitao’s first opportunity to directly impact students through her IHT in authentic classroom settings. Despite implementing only brief 5-min micro-courses integrating history during each session, the effectiveness of her short IHT implementation was validated by student feedback. Shuitao unequivocally expressed that students actively engaged with her micro-courses and that these sessions positively influenced them, including attitudes and motivation toward mathematics learning, understanding of mathematics concepts, and beliefs regarding mathematics. These collective factors contributed to a steady enhancement of her confidence in SE-IHT-SO.

After stage 5: “My overall self-efficacy is greatly enhanced”

Following Stage 5, Shuitao reported a significant increase in her overall confidence in IHT, attributing it to gaining mastery through successful implementations of IHT in real classroom settings. On the one hand, Shuitao successfully designed and executed her IHT lesson plans, consistently achieving the teaching objectives mandated by curriculum standards. This significantly enhanced her SE-IHT-IP. On the other hand, as Shuitao’s IHT implementation directly influenced her students, her confidence in SE-IHT-SO experienced considerable improvement.

According to Bandura ( 1997 ), mastery experience is the most powerful source of self-efficacy. Shuitao’s statements confirmed this. As she claimed, her enhanced SE-IHT-IP in Stage 5 mainly came from the experience of successful implementations of IHT in real classrooms:

[Before the teacher professional development program,] I had no idea about implementing IHT… Now, I successfully implemented IHT in senior high school [classrooms] many times… I can complete the teaching tasks and even better completed the teaching objectives required [by the curriculum standards]… The successful experience greatly enhances my confidence to perform well in my future implementation of IHT… Yeah, I think the successful teaching practice experience is the strongest booster of my confidence.

At the end of stage 5, Shuitao’s mentors and in-service teachers gave her a high evaluation. For instance, after Shuitao’s IHT implementation of the concept of logarithms, all mentors and in-service teachers consistently provided feedback that her IHT teaching illustrated the necessity of learning the concept of logarithms and met the requirements of the curriculum standards very well. This kind of verbal persuasion (Bandura 1997 ) enhanced her SE-IHT-IP.

Similarly, Shuitao’s successful experience of influencing students positively through IHT, as one kind of mastery experience, powerfully enhanced her SE-IHT-SO. She described her changes in SE-IHT-SO as follows:

I could not imagine my IHT could be so influential [before]… But now, my IHT implementation directly influenced students in so many aspects… When I witnessed students’ real changes in various cognitive and affective aspects, my confidence was greatly improved.

Shuitao described the influence of her IHT implementation of the concept of logarithms on her students. The depiction is grounded in the outcomes of surveys conducted by Shuitao following her implementation. Shuitao asserted that these results filled her with excitement and confidence regarding her future implementation of IHT.

In summary, following Stage 5 of the teacher professional development program, Shuitao experienced a notable enhancement in her overall self-efficacy, primarily attributed to her successful practical experience in authentic classroom settings during this stage.

A primary objective of our teacher professional development programs is to equip pre-service teachers with the skills and confidence needed to effectively implement IAT. Our findings show that one teacher professional development program, significantly augmented a participant’s TSE-IHT across two dimensions: individual performance and student outcomes. Considering the pressing need to provide STEAM teachers with effective professional training (e.g., Boice et al. 2021 ; Duong et al. 2024 ; Herro et al. 2019 ; Jacques et al. 2020 ; Park and Cho 2022 ; Perignat and Katz-Buonincontro 2019 ), the proposed five-stage framework holds significant promise in both theoretical and practical realms. Furthermore, this study offers a viable solution to address the prevalent issue of low levels of teacher self-efficacy in interdisciplinary teaching, including IAT, which is critical in STEAM education (Zhou et al. 2023 ). This study holds the potential to make unique contributions to the existing body of literature on teacher self-efficacy, teacher professional learning models and the design of teacher professional development programs of IAT.

Firstly, this study enhances our understanding of the development of teacher self-efficacy. Our findings further confirm the complexity of the development of teacher self-efficacy. On the one hand, the observed enhancement of the participant’s teacher self-efficacy did not occur swiftly but unfolded gradually through a protracted, incremental process. Moreover, it is noteworthy that the participant’s self-efficacy exhibited fluctuations, underscoring that the augmentation of teacher self-efficacy is neither straightforward nor linear. On the other hand, the study elucidated that the augmentation of teacher self-efficacy constitutes an intricate, multi-level system that interacts with teacher knowledge, skills, and other beliefs. This finding resonates with prior research on teacher self-efficacy (Morris et al. 2017 ; Xenofontos and Andrews 2020 ). For example, our study revealed that Shuitao’s enhancement of SE-IHT-SO may always be interwoven with her continuous comprehension of the significance of the A&H in classroom settings. Similarly, the participant progressively acknowledged the educational value of A&H in classroom contexts in tandem with the stepwise enhancement of SE-IHT-SO. Factors such as the participant’s pedagogical content knowledge of IHT, instructional design, and teaching skills were also identified as pivotal components of SE-IHT-IP. This finding corroborates Morris and Usher ( 2011 ) assertion that sustained improvements in self-efficacy stem from developing teachers’ skills and knowledge. With the bolstering of SE-IHT-IP, the participant’s related teaching skills and content knowledge also exhibited improvement.

Methodologically, many researchers advocate for qualitative investigations into self-efficacy (e.g., Philippou and Pantziara 2015; Klassen et al. 2011 ; Wyatt 2015 ; Xenofontos and Andrews 2020 ). While acknowledging limitations in sample scope and the generalizability of the findings, this study offers a longitudinal perspective on the stage-by-stage development of teacher self-efficacy and its interactions with different factors (i.e., teacher knowledge, skills, and beliefs), often ignored by quantitative studies. Considering that studies of self-efficacy have been predominantly quantitative, typically drawing on survey techniques and pre-determined scales (Xenofontos and Andrews, 2020 ; Zhou et al. 2023 ), this study highlights the need for greater attention to qualitative studies so that more cultural, situational and contextual factors in the development of self-efficacy can be captured.

Our study provides valuable practical implications for enhancing pre-service teachers’ self-efficacy. We conceptualize teacher self-efficacy in two primary dimensions: individual performance and student outcomes. On the one hand, pre-service teachers can enhance their teaching qualities, boosting their self-efficacy in individual performance. The adage “practice makes perfect” underscores the necessity of ample teaching practice opportunities for pre-service teachers who lack prior teaching experience. Engaging in consistent and reflective practice helps them develop confidence in their teaching qualities. On the other hand, pre-service teachers should focus on positive feedback from their students, reinforcing their self-efficacy in individual performance. Positive student feedback serves as an affirmation of their teaching effectiveness and encourages continuous improvement. Furthermore, our findings highlight the significance of mentors’ and peers’ positive feedback as critical sources of teacher self-efficacy. Mentors and peers play a pivotal role in the professional growth of pre-service teachers by actively encouraging them and recognizing their teaching achievements. Constructive feedback from experienced mentors and supportive peers fosters a collaborative learning environment and bolsters the self-confidence of pre-service teachers. Additionally, our research indicates that pre-service teachers’ self-efficacy may fluctuate. Therefore, mentors should be prepared to help pre-service teachers manage teaching challenges and setbacks, and alleviate any teaching-related anxiety. Mentors can help pre-service teachers build resilience and maintain a positive outlook on their teaching journey through emotional support and guidance. Moreover, a strong correlation exists between teacher self-efficacy and teacher knowledge and skills. Enhancing pre-service teachers’ knowledge base and instructional skills is crucial for bolstering their overall self-efficacy.

Secondly, this study also responds to the appeal to understand teachers’ professional learning from a holistic perspective and interrelate teachers’ professional learning process with student outcome variables (Sancar et al. 2021 ), and thus contributes to the understanding of the complexity of STEAM teachers’ professional learning. On the one hand, we have confirmed Cai et al.’s ( 2020 ) teacher professional learning model in a new context, namely STEAM teacher education. Throughout the teacher professional development program, the pre-service teacher, Shuitao, demonstrated an augmentation in her knowledge, encompassing both content knowledge and pedagogical understanding concerning IHT. Moreover, her beliefs regarding IHT transformed as a result of her engagement in teacher learning across the five stages. This facilitated her in executing effective IHT teaching and improving her students’ outcomes. On the other hand, notably, in our studies (including this current study and some follow-up studies), student feedback is a pivotal tool to assist teachers in discerning the impact they are effectuating. This enables pre-service teachers to grasp the actual efficacy of their teaching efforts and subsequently contributes significantly to the augmentation of their self-efficacy. Such steps have seldom been conducted in prior studies (e.g., Cai et al. 2020 ), where student outcomes are often perceived solely as the results of teachers’ instruction rather than sources informing teacher beliefs. Additionally, this study has validated both the interaction between teaching performance and teacher beliefs and between teacher knowledge and teacher beliefs. These aspects were overlooked in Cai et al.’s ( 2020 ) model. More importantly, while Clarke and Hollingsworth’s ( 2002 ) Interconnected Model of Professional Growth illustrates the connections between the domain of consequence and the personal domain, as well as between the personal domain and the domain of practice, it does not adequately clarify the complex relationships among the factors within the personal domain (e.g., the interaction between teacher knowledge and teacher beliefs). Therefore, our study also supplements Clarke and Hollingsworth’s ( 2002 ) model by addressing these intricacies. Based on our findings, an updated model of teacher professional learning has been proposed, as shown in Fig. 3 . This expanded model indicates that teacher learning should be an ongoing and sustainable process, with the enhancement of student learning not marking the conclusion of teacher learning, but rather serving as the catalyst for a new phase of learning. In this sense, we advocate for further research to investigate the tangible impacts of teacher professional development programs on students and how those impacts stimulate subsequent cycles of teacher learning.

figure 3

Note: Paths in blue were proposed by Cai et al. ( 2020 ), and paths in yellow are proposed and verified in this study.

Thirdly, in light of the updated model of teacher professional learning (see Fig. 3 ), this study provides insights into the design of teacher professional development programs of IAT. According to Huang et al. ( 2022 ), to date, very few studies have set goals to “develop a comprehensive understanding of effective designs” for STEM (or STEAM) teacher professional development programs (p. 15). To fill this gap, this study proposes a novel and effective five-stage framework for teacher professional development programs of IAT. This framework provides a possible and feasible solution to the challenges of STEAM teacher professional development programs’ design and planning, and teachers’ IAT practice (Boice et al. 2021 ; Herro et al. 2019 ; Jacques et al. 2020 ; Park and Cho 2022 ; Perignat and Katz-Buonincontro 2019 ).

Specifically, our five-stage framework incorporates at least six important features. Firstly, teacher professional development programs should focus on specific STEAM content. Given the expansive nature of STEAM, teacher professional development programs cannot feasibly encompass all facets of its contents. Consistent with recommendations by Cai et al. ( 2020 ), Desimone et al. ( 2002 ) and Garet et al. ( 2001 ), an effective teacher professional development program should prioritize content focus. Our five-stage framework is centered on IAT. Throughout an 18-month duration, each pre-service teacher is limited to selecting one subcomponent of A&H, such as history, for integration into their subject teaching (i.e., mathematics teaching, technology teaching or science teaching) within one teacher professional development program. Secondly, in response to the appeals that teacher professional development programs should shift from emphasizing teaching and instruction to emphasizing student learning (Cai et al. 2020 ; Calabrese et al. 2024 ; Hwang et al. 2024 ; Marco and Palatnik 2024 ; Örnek and Soylu 2021 ), our framework requires pre-service teachers to pay close attention to the effects of IAT on student learning outcomes, and use students’ feedback as the basis of improving their instruction. Thirdly, prior studies found that teacher education with a preference for theory led to pre-service teachers’ dissatisfaction with the quality of teacher professional development program and hindered the development of pre-service teachers’ teaching skills and teaching beliefs, which also widened the gap between theory and practice (Hennissen et al. 2017 ; Ord and Nuttall 2016 ). In this regard, our five-stage framework connects theory and teaching practice closely. In particular, pre-service teachers can experience the values of IAT not only through theoretical learning but also through diverse teaching practices. Fourthly, we build a teacher community of practice tailored for pre-service teachers. Additionally, we aim to encourage greater participation of in-service teachers in such teacher professional development programs designed for pre-service educators in STEAM teacher education. By engaging in such programs, in-service teachers can offer valuable teaching opportunities for pre-service educators and contribute their insights and experiences from teaching practice. Importantly, pre-service teachers stand to gain from the in-service teachers’ familiarity with textbooks, subject matter expertise, and better understanding of student dynamics. Fifthly, our five-stage framework lasts for an extended period, spanning 18 months. This duration ensures that pre-service teachers engage in a sustained and comprehensive learning journey. Lastly, our framework facilitates a practical understanding of “integration” by offering detailed, sequential instructions for blending two disciplines in teaching. For example, our teacher professional development programs prioritize systematic learning of pedagogical theories and simulated teaching experiences before pre-service teachers embark on real STEAM teaching endeavors. This approach is designed to mitigate the risk of unsuccessful experiences during initial teaching efforts, thereby safeguarding pre-service teachers’ teacher self-efficacy. Considering the complexity of “integration” in interdisciplinary teaching practices, including IAT (Han et al. 2022 ; Ryu et al. 2019 ), we believe detailed stage-by-stage and step-by-step instructions are crucial components of relevant pre-service teacher professional development programs. Notably, this aspect, emphasizing structural instructional guidance, has not been explicitly addressed in prior research (e.g., Cai et al. 2020 ). Figure 4 illustrates the six important features outlined in this study, encompassing both established elements and the novel addition proposed herein, describing an effective teacher professional development program.

figure 4

Note: STEAM refers to science, technology, engineering, arts and humanities, and mathematics.

The successful implementation of this framework is also related to the Chinese teacher education system and cultural background. For instance, the Chinese government has promoted many university-school collaboration initiatives, encouraging in-service teachers to provide guidance and practical opportunities for pre-service teachers (Lu et al. 2019 ). Influenced by Confucian values emphasizing altruism, many experienced in-service teachers in China are eager to assist pre-service teachers, helping them better realize their teaching career aspirations. It is reported that experienced in-service teachers in China show significantly higher motivation than their international peers when mentoring pre-service teachers (Lu et al. 2019 ). Therefore, for the successful implementation of this framework in other countries, it is crucial for universities to forge close collaborative relationships with K-12 schools and actively involve K-12 teachers in pre-service teacher education.

Notably, approximately 5% of our participants dropped out midway as they found that the IAT practice was too challenging or felt overwhelmed by the number of required tasks in the program. Consequently, we are exploring options to potentially simplify this framework in future iterations.

Without minimizing the limitations of this study, it is important to recognize that a qualitative longitudinal case study can be a useful means of shedding light on the development of a pre-service STEAM teacher’s self-efficacy. However, this methodology did not allow for a pre-post or a quasi-experimental design, and the effectiveness of our five-stage framework could not be confirmed quantitatively. In the future, conducting more experimental or design-based studies could further validate the effectiveness of our framework and broaden our findings. Furthermore, future studies should incorporate triangulation methods and utilize multiple data sources to enhance the reliability and validity of the findings. Meanwhile, owing to space limitations, we could only report the changes in Shuitao’s SE-IHT-IP and SE-IHT-SO here, and we could not describe the teacher self-efficacy of other participants regarding IAT. While nearly all of the pre-service teachers experienced an improvement in their teacher self-efficacy concerning IAT upon participating in our teacher professional development programs, the processes of their change were not entirely uniform. We will need to report the specific findings of these variations in the future. Further studies are also needed to explore the factors contributing to these variations. Moreover, following this study, we are implementing more teacher professional development programs of IAT. Future studies can explore the impact of this framework on additional aspects of pre-service STEAM teachers’ professional development. This will help gain a more comprehensive understanding of its effectiveness and potential areas for further improvement. Additionally, our five-stage framework was initially developed and implemented within the Chinese teacher education system. Future research should investigate how this framework can be adapted in other educational systems and cultural contexts.

The impetus behind this study stems from the burgeoning discourse advocating for the integration of A&H disciplines into STEM education on a global scale (e.g., Land 2020 ; Park and Cho 2022 ; Uştu et al. 2021 ; Vaziri and Bradburn 2021 ). Concurrently, there exists a pervasive concern regarding the challenges teachers face in implementing STEAM approaches, particularly in the context of IAT practices (e.g., Boice et al. 2021 ; Herro et al. 2019 ; Jacques et al. 2020 ; Park and Cho 2022 ; Perignat and Katz-Buonincontro 2019 ). To tackle this challenge, we first proposed a five-stage framework designed for teacher professional development programs of IAT. Then, utilizing this innovative framework, we implemented a series of teacher professional development programs. Drawing from the recommendations of Bray-Clark and Bates ( 2003 ), Kelley et al. ( 2020 ) and Zhou et al. ( 2023 ), we have selected teacher self-efficacy as a key metric to examine the effectiveness of the five-stage framework. Through a qualitative longitudinal case study, we scrutinized the influence of a specific teacher professional development program on the self-efficacy of a single pre-service teacher over an 18-month period. Our findings revealed a notable enhancement in teacher self-efficacy across both individual performance and student outcomes. The observed enhancement of the participant’s teacher self-efficacy did not occur swiftly but unfolded gradually through a prolonged, incremental process. Building on our findings, an updated model of teacher learning has been proposed. The updated model illustrates that teacher learning should be viewed as a continuous and sustainable process, wherein teaching performance, teacher beliefs, and teacher knowledge dynamically interact with one another. The updated model also confirms that teacher learning is inherently intertwined with student learning in STEAM education. Furthermore, this study also summarizes effective design features of STEAM teacher professional development programs.

Data availability

The datasets generated and/or analyzed during this study are not publicly available due to general data protection regulations, but are available from the corresponding author on reasonable request.

In their review article, Morris et al. ( 2017 ) equated “teaching self-efficacy” and “teacher self-efficacy” as synonymous concepts. This perspective is also adopted in this study.

An effective teacher professional development program should have specific, focused, and clear content instead of broad and scattered ones. Therefore, each pre-service teacher can only choose to integrate one subcomponent of A&H into their teaching in one teacher professional development program. For instance, Shuitao, a mathematics pre-service teacher, participated in one teacher professional development program focused on integrating history into mathematics teaching. However, she did not explore the integration of other subcomponents of A&H into her teaching during her graduate studies.

In the micro-classrooms, multi-angle, and multi-point high-definition video recorders are set up to record the teaching process.

In micro-teaching, mentors, in-service teachers, and other fellow pre-service teachers take on the roles of students.

In China, teachers can video record one section of a lesson and play them in formal classes. This is a practice known as a micro-course. For instance, in one teacher professional development program of integrating history into mathematics teaching, micro-courses encompass various mathematics concepts, methods, ideas, history-related material and related topics. Typically, teachers use these micro-courses to broaden students’ views, foster inquiry-based learning, and cultivate critical thinking skills. Such initiatives play an important role in improving teaching quality.

Many university-school collaboration initiatives in China focus on pre-service teachers’ practicum experiences (Lu et al. 2019 ). Our teacher professional development program is also supported by many K-12 schools in Shanghai. Personal information in videos is strictly protected.

In China, students are not required to pursue a graduate major that matches their undergraduate major. Most participants in our teacher professional development programs did not pursue undergraduate degrees in education-related fields.

Shuitao’s university reserves Wednesday afternoons for students to engage in various programs or clubs, as classes are not scheduled during this time. Similarly, our teacher professional development program activities are planned for Wednesday afternoons to avoid overlapping with participants’ other coursework commitments.

History is one of the most important components of A&H (Park and Cho 2022 ).

To learn more about genetic approach (i.e., genetic principle), see Jankvist ( 2009 ).

For the assessment process, see Fig. 2 .

Shuitao’s cooperating in-service teacher taught the concept of logarithms in Stage 2. In Stage 4, the teaching objective of her cooperating in-service teacher’s review lesson was to help students review the concept of logarithms to prepare students for the final exam.

Akiba M, Murata A, Howard C, Wilkinson B, Fabrega J (2019) Race to the top and lesson study implementation in Florida: District policy and leadership for teacher professional development. In: Huang R, Takahashi A, daPonte JP (eds) Theory and practice of lesson study in mathematics, pp. 731–754. Springer, Cham. https://doi.org/10.1007/978-3-030-04031-4_35

Alkhabra YA, Ibrahem UM, Alkhabra SA (2023) Augmented reality technology in enhancing learning retention and critical thinking according to STEAM program. Humanit Soc Sci Commun 10:174. https://doi.org/10.1057/s41599-023-01650-w

Article   Google Scholar  

Alwafi EM, Downey C, Kinchin G (2020) Promoting pre-service teachers’ engagement in an online professional learning community: Support from practitioners. J Professional Cap Community 5(2):129–146. https://doi.org/10.1108/JPCC-10-2019-0027

Archibald S, Coggshall JG, Croft A, Goe L (2011) High-quality professional development for all teachers: effectively allocating resources. National Comprehensive Center for Teacher Quality, Washington, DC

Google Scholar  

Bandura A (1977) Self-efficacy: Toward a unifying theory of behavioral change. Psychological Rev 84:191–215. https://doi.org/10.1016/0146-6402(78)90002-4

Article   CAS   Google Scholar  

Bandura A (1986) The explanatory and predictive scope of self-efficacy theory. J Soc Clin Psychol 4:359–373. https://doi.org/10.1521/jscp.1986.4.3.359

Bandura A (1997) Self-efficacy: The exercise of control. Freeman, New York

Basckin C, Strnadová I, Cumming TM (2021) Teacher beliefs about evidence-based practice: A systematic review. Int J Educ Res 106:101727. https://doi.org/10.1016/j.ijer.2020.101727

Bray-Clark N, Bates R (2003) Self-efficacy beliefs and teacher effectiveness: Implications for professional development. Prof Educ 26(1):13–22

Blonder R, Benny N, Jones MG (2014) Teaching self-efficacy of science teachers. In: Evans R, Luft J, Czerniak C, Pea C (eds), The role of science teachers’ beliefs in international classrooms: From teacher actions to student learning, Sense Publishers, Rotterdam, Zuid-Holland, pp. 3–16

Boice KL, Jackson JR, Alemdar M, Rao AE, Grossman S, Usselman M (2021) Supporting teachers on their STEAM journey: A collaborative STEAM teacher training program. Educ Sci 11(3):105. https://doi.org/10.3390/educsci11030105

Cai J (2017) Longitudinally investigating the effect of teacher professional development on instructional practice and student learning: A focus on mathematical problem posing. The University of Delaware, Newark, DE

Cai J, Chen T, Li X, Xu R, Zhang S, Hu Y, Zhang L, Song N (2020) Exploring the impact of a problem-posing workshop on elementary school mathematics teachers’ conceptions on problem posing and lesson design. Int J Educ Res 102:101404. https://doi.org/10.1016/j.ijer.2019.02.004

Calabrese JE, Capraro MM, Viruru R (2024) Semantic structure and problem posing: Preservice teachers’ experience. School Sci Math. https://doi.org/10.1111/ssm.12648

Clarke D, Hollingsworth H (2002) Elaborating a model of teacher professional growth. Teach Teach Educ 18(8):947–967. https://doi.org/10.1016/S0742-051X(02)00053-7

Corden A, Millar J (2007) Time and change: A review of the qualitative longitudinal research literature for social policy. Soc Policy Soc 6(4):583–592. https://doi.org/10.1017/S1474746407003910

Darling-Hammond L, Hyler ME, Gardner M (2017) Effective teacher professional development. Learning Policy Institute, Palo Alto, CA

Book   Google Scholar  

de la Garza A (2021) Internationalizing the curriculum for STEAM (STEM+ Arts and Humanities): From intercultural competence to cultural humility. J Stud Int Educ 25(2):123–135. https://doi.org/10.1177/1028315319888468

Article   MathSciNet   Google Scholar  

Desimone LM, Garet MS (2015) Best practices in teachers’ professional development in the United States. Psychol, Soc, Educ 7(3):252–263

Desimone LM, Porter AC, Garet MS, Yoon KS, Birman BF (2002) Effects of professional development on teachers’ instruction: Results from a three-year longitudinal study. Educ Evaluation Policy Anal 24(2):81–112. https://doi.org/10.3102/01623737024002081

Dicks SG, Northam HL, van Haren FM, Boer DP (2023) The bereavement experiences of families of potential organ donors: a qualitative longitudinal case study illuminating opportunities for family care. Int J Qualitative Stud Health Well-being 18(1):1–24. https://doi.org/10.1080/17482631.2022.2149100

Ding M, Huang R, Pressimone Beckowski C, Li X, Li Y (2024) A review of lesson study in mathematics education from 2015 to 2022: implementation and impact. ZDM Math Educ 56:87–99. https://doi.org/10.1007/s11858-023-01538-8

Duong NH, Nam NH, Trung TT (2024) Factors affecting the implementation of STEAM education among primary school teachers in various countries and Vietnamese educators: comparative analysis. Education 3–13. https://doi.org/10.1080/03004279.2024.2318239

English LD (2016) STEM education K-12: Perspectives on integration. Int J STEM Educ 3:3. https://doi.org/10.1186/s40594-016-0036-1

Garet MS, Porter AC, Desimone L, Birman BF, Yoon KS (2001) What makes professional development effective? Results from a national sample of teachers. Am Educ Res J 38(4):915–945. https://doi.org/10.3102/00028312038004915

Gates AE (2017) Benefits of a STEAM collaboration in Newark, New Jersey: Volcano simulation through a glass-making experience. J Geosci Educ 65(1):4–11. https://doi.org/10.5408/16-188.1

Geng J, Jong MSY, Chai CS (2019) Hong Kong teachers’ self-efficacy and concerns about STEM education. Asia-Pac Educ Researcher 28:35–45. https://doi.org/10.1007/s40299-018-0414-1

Han J, Kelley T, Knowles JG (2022) Building a sustainable model of integrated stem education: investigating secondary school STEM classes after an integrated STEM project. Int J Technol Design Educ. https://doi.org/10.1007/s10798-022-09777-8

Henderson S, Holland J, McGrellis S, Sharpe S, Thomson R (2012) Storying qualitative longitudinal research: Sequence, voice and motif. Qualitative Res 12(1):16–34. https://doi.org/10.1177/1468794111426232

Hennissen P, Beckers H, Moerkerke G (2017) Linking practice to theory in teacher education: A growth in cognitive structures. Teach Teach Educ 63:314–325. https://doi.org/10.1016/j.tate.2017.01.008

Henson RK (2002) From adolescent angst to adulthood: Substantive implications and measurement dilemmas in the development of teacher efficacy research. Educ Psychologist 37:137–150. https://doi.org/10.1207/S15326985EP3703_1

Herro D, Quigley C (2016) Innovating with STEAM in middle school classrooms: remixing education. Horizon 24(3):190–204. https://doi.org/10.1108/OTH-03-2016-0008

Herro D, Quigley C, Cian H (2019) The challenges of STEAM instruction: Lessons from the field. Action Teach Educ 41(2):172–190. https://doi.org/10.1080/01626620.2018.1551159

Huang B, Jong MSY, Tu YF, Hwang GJ, Chai CS, Jiang MYC (2022) Trends and exemplary practices of STEM teacher professional development programs in K-12 contexts: A systematic review of empirical studies. Comput Educ 189:104577. https://doi.org/10.1016/j.compedu.2022.104577

Hunter-Doniger T, Sydow L (2016) A journey from STEM to STEAM: A middle school case study. Clearing House 89(4-5):159–166. https://doi.org/10.1080/00098655.2016.1170461

Hwang S, Xu R, Yao Y, Cai J (2024) Learning to teach through problem posing: A teacher’s journey in a networked teacher−researcher partnership. J Math Behav 73:101120. https://doi.org/10.1016/j.jmathb.2023.101120

Jacques LA, Cian H, Herro DC, Quigley C (2020) The impact of questioning techniques on STEAM instruction. Action Teach Educ 42(3):290–308. https://doi.org/10.1080/01626620.2019.1638848

Jankvist UT (2009) A categorization of the “whys” and “hows” of using history in mathematics education. Educ Stud Math 71:235–261. https://doi.org/10.1007/s10649-008-9174-9

Jiang H, Chugh R, Turnbull D, Wang X, Chen S (2023) Modeling the impact of intrinsic coding interest on STEM career interest: evidence from senior high school students in two large Chinese cities. Educ Inf Technol 28:2639–2659. https://doi.org/10.1007/s10639-022-11277-0

Jiang H, Chugh R, Turnbull D, Wang X, Chen S (2024a) Exploring the effects of technology-related informal mathematics learning activities: A structural equation modeling analysis. Int J Sci Math Educ . Advance online publication. https://doi.org/10.1007/s10763-024-10456-4

Jiang H, Islam AYMA, Gu X, Guan J (2024b) How do thinking styles and STEM attitudes have effects on computational thinking? A structural equation modeling analysis. J Res Sci Teach 61:645–673. https://doi.org/10.1002/tea.21899

Jiang H, Turnbull D, Wang X, Chugh R, Dou Y, Chen S (2022) How do mathematics interest and self-efficacy influence coding interest and self-efficacy? A structural equation modeling analysis. Int J Educ Res 115:102058. https://doi.org/10.1016/j.ijer.2022.102058

Jiang H, Wang K, Wang X, Lei X, Huang Z (2021) Understanding a STEM teacher’s emotions and professional identities: A three-year longitudinal case study. Int J STEM Educ 8:51. https://doi.org/10.1186/s40594-021-00309-9

Kelley TR, Knowles JG, Holland JD, Han J (2020) Increasing high school teachers self-efficacy for integrated STEM instruction through a collaborative community of practice. Int J STEM Educ 7:14. https://doi.org/10.1186/s40594-020-00211-w

Klassen RM, Tze VMC, Betts SM, Gordon KA (2011) Teacher efficacy research 1998–2009: Signs of progress or unfulfilled promise? Educ Psychol Rev 23(1):21–43. https://doi.org/10.1007/s10648-010-9141-8

Land M (2020) The importance of integrating the arts into STEM curriculum. In: Stewart AJ, Mueller MP, Tippins DJ (eds), Converting STEM into STEAM programs, pp. 11–19. Springer. https://doi.org/10.1007/978-3-030-25101-7_2

Lee C, Bobko P (1994) Self-efficacy beliefs: Comparison of five measures. J Appl Psychol 79(3):364–369. https://doi.org/10.1037/0021-9010.79.3.364

Li W, Chiang FK (2019) Preservice teachers’ perceptions of STEAM education and attitudes toward STEAM disciplines and careers in China. In: Sengupta P, Shanahan MC, Kim B, (eds), Critical, transdisciplinary and embodied approaches in STEM education. Springer. https://doi.org/10.1007/978-3-030-29489-2_5

Liu M, Zwart R, Bronkhorst L, Wubbels T (2022) Chinese student teachers’ beliefs and the role of teaching experiences in the development of their beliefs. Teach Teach Educ 109:103525. https://doi.org/10.1016/j.tate.2021.103525

Liu S, Xu X, Stronge J (2018) The influences of teachers’ perceptions of using student achievement data in evaluation and their self-efficacy on job satisfaction: evidence from China. Asia Pac Educ Rev 19:493–509. https://doi.org/10.1007/s12564-018-9552-7

Long T, Zhao G, Yang X, Zhao R, Chen Q (2021) Bridging the belief-action gap in a teachers’ professional learning community on teaching of thinking. Professional Dev Educ 47(5):729–744. https://doi.org/10.1080/19415257.2019.1647872

Lu L, Wang F, Ma Y, Clarke A, Collins J (2019) Exploring Chinese teachers’ commitment to being a cooperating teacher in a university-government-school initiative for rural practicum placements. In: Liu WC, Goh CCM (eds), Teachers’ perceptions, experience and learning, pp. 33–54. Routledge, London

Lyu S, Niu S, Yuan J, Zhan Z (2024) Developing professional capital through technology-enabled university-school-enterprise collaboration: an innovative model for C-STEAM preservice teacher education in the Greater Bay area. Asia Pacific J Innov Entrepreneurship. https://doi.org/10.1108/APJIE-01-2024-0014

Marco N, Palatnik A (2024) From “learning to variate” to “variate for learning”: Teachers learning through collaborative, iterative context-based mathematical problem posing. J Math Behav 73:101119. https://doi.org/10.1016/j.jmathb.2023.101119

Merriam SB (1998) Qualitative research and case study applications in education. Jossey-Bass Publishers, Hoboken, New Jersey

Morris DB, Usher EL (2011) Developing teaching self-efficacy in research institutions: A study of award-winning professors. Contemp Educ Psychol 36(3):232–245. https://doi.org/10.1016/j.cedpsych.2010.10.005

Morris DB, Usher EL, Chen JA (2017) Reconceptualizing the sources of teaching self-efficacy: A critical review of emerging literature. Educ Psychol Rev 29(4):795–833. https://doi.org/10.1007/s10648-016-9378-y

Matusovich HM, Streveler RA, Miller RL (2010) Why do students choose engineering? A qualitative, longitudinal investigation of students’ motivational values. J Eng Educ 99(4):289–303. https://doi.org/10.1002/j.2168-9830.2010.tb01064.x

Näykki P, Kontturi H, Seppänen V, Impiö N, Järvelä S (2021) Teachers as learners–a qualitative exploration of pre-service and in-service teachers’ continuous learning community OpenDigi. J Educ Teach 47(4):495–512. https://doi.org/10.1080/02607476.2021.1904777

OECD (2018) Teaching and learning international survey (TALIS) 2018 conceptual framework. OECD, Paris

Örnek T, Soylu Y (2021) A model design to be used in teaching problem posing to develop problem-posing skills. Think Skills Creativity 41:100905. https://doi.org/10.1016/j.tsc.2021.100905

Ord K, Nuttall J (2016) Bodies of knowledge: The concept of embodiment as an alternative to theory/practice debates in the preparation of teachers. Teach Teach Educ 60:355–362. https://doi.org/10.1016/j.tate.2016.05.019

Ozkan G, Umdu Topsakal U (2021) Investigating the effectiveness of STEAM education on students’ conceptual understanding of force and energy topics. Res Sci Technol Educ 39(4):441–460. https://doi.org/10.1080/02635143.2020.1769586

Park W, Cho H (2022) The interaction of history and STEM learning goals in teacher-developed curriculum materials: opportunities and challenges for STEAM education. Asia Pacific Educ Rev. https://doi.org/10.1007/s12564-022-09741-0

Perignat E, Katz-Buonincontro J (2019) STEAM in practice and research: An integrative literature review. Think Skills Creativity 31:31–43. https://doi.org/10.1016/j.tsc.2018.10.002

Philipp RA (2007) Mathematics teachers’ beliefs and affect. In: Lester Jr FK, (ed), Second handbook of research on mathematics teaching and learning, pp. 257–315. Information Age, Charlotte, NC

Quigley CF, Herro D, Jamil FM (2017) Developing a conceptual model of STEAM teaching practices. Sch Sci Math 117(1–2):1–12. https://doi.org/10.1111/ssm.12201

Ro S, Xiao S, Zhou Z (2022) Starting up STEAM in China: A case study of technology entrepreneurship for STEAM education in China. In: Ray P, Shaw R (eds), Technology entrepreneurship and sustainable development, pp. 115–136. Springer. https://doi.org/10.1007/978-981-19-2053-0_6

Roth KJ, Bintz J, Wickler NI, Hvidsten C, Taylor J, Beardsley PM, Wilson CD (2017) Design principles for effective video-based professional development. Int J STEM Educ 4:31. https://doi.org/10.1186/s40594-017-0091-2

Article   PubMed   PubMed Central   Google Scholar  

Ryu M, Mentzer N, Knobloch N (2019) Preservice teachers’ experiences of STEM integration: Challenges and implications for integrated STEM teacher preparation. Int J Technol Des Educ, 29:493–512. https://doi.org/10.1007/s10798-018-9440-9

Sancar R, Atal D, Deryakulu D (2021) A new framework for teachers’ professional development. Teach Teach Educ 101:103305. https://doi.org/10.1016/j.tate.2021.103305

Sanz-Camarero R, Ortiz-Revilla J, Greca IM (2023) The place of the arts within integrated education. Arts Educ Policy Rev. https://doi.org/10.1080/10632913.2023.2260917

Shirani F, Henwood K (2011) Continuity and change in a qualitative longitudinal study of fatherhood: relevance without responsibility. Int J Soc Res Methodol 14(1):17–29. https://doi.org/10.1080/13645571003690876

Smith CE, Paré JN (2016) Exploring Klein bottles through pottery: A STEAM investigation. Math Teach 110(3):208–214. https://doi.org/10.5951/mathteacher.110.3.0208

Soprano K, Yang L (2013) Inquiring into my science teaching through action research: A case study on one pre-service teacher’s inquiry-based science teaching and self-efficacy. Int J Sci Math Educ 11(6):1351–1368. https://doi.org/10.1007/s10763-012-9380-x

Stake RE (1995) The art of case study research. Sage Publication, Thousand Oaks, California

Stohlmann M, Moore T, Roehrig G (2012) Considerations for teaching integrated STEM education. J Pre Coll Eng Educ Res 2(1):28–34. https://doi.org/10.5703/1288284314653

Strauss AL, Corbin JM (1990) Basics of qualitative research. Sage Publications, Thousand Oaks, California

Taimalu M, Luik P (2019) The impact of beliefs and knowledge on the integration of technology among teacher educators: A path analysis. Teach Teach Educ 79:101–110. https://doi.org/10.1016/j.tate.2018.12.012

Takahashi A, McDougal T (2016) Collaborative lesson research: Maximizing the impact of lesson study. ZDM Math Educ 48:513–526. https://doi.org/10.1007/s11858-015-0752-x

Thompson AG (1992) Teachers’ beliefs and conceptions: A synthesis of the research. In: Grouws DA (ed), Handbook of research on mathematics teaching and learning, pp. 127–146. Macmillan, New York

Tschannen-Moran M, Woolfolk Hoy A, Hoy WK (1998) Teacher efficacy: Its meaning and measure. Rev Educ Res 68:202–248. https://doi.org/10.3102/00346543068002202

Unfried A, Rachmatullah A, Alexander A, Wiebe E (2022) An alternative to STEBI-A: validation of the T-STEM science scale. Int J STEM Educ 9:24. https://doi.org/10.1186/s40594-022-00339-x

Uştu H, Saito T, Mentiş Taş A (2021) Integration of art into STEM education at primary schools: an action research study with primary school teachers. Syst Pract Action Res. https://doi.org/10.1007/s11213-021-09570-z

Vaziri H, Bradburn NM (2021) Flourishing effects of integrating the arts and humanities in STEM Education: A review of past studies and an agenda for future research. In: Tay L, Pawelski JO (eds), The Oxford handbook of the positive humanities, pp. 71–82. Oxford University Press, Oxford

Wang K, Wang X, Li Y, Rugh MS (2018) A framework for integrating the history of mathematics into teaching in Shanghai. Educ Stud Math 98:135–155. https://doi.org/10.1007/s10649-018-9811-x

Wang Z, Jiang H, Jin W, Jiang J, Liu J, Guan J, Liu Y, Bin E (2024) Examining the antecedents of novice stem teachers’ job satisfaction: The roles of personality traits, perceived social support, and work engagement. Behav Sci 14(3):214. https://doi.org/10.3390/bs14030214

Wenger E, McDermott R, Snyder WM (2002) Cultivating communities of practice. Harvard Business School Press, Boston, MA

Wong JT, Bui NN, Fields DT, Hughes BS (2022) A learning experience design approach to online professional development for teaching science through the arts: Evaluation of teacher content knowledge, self-efficacy and STEAM perceptions. J Sci Teacher Educ. https://doi.org/10.1080/1046560X.2022.2112552

Wyatt M (2015) Using qualitative research methods to assess the degree of fit between teachers’ reported self-efficacy beliefs and their practical knowledge during teacher education. Aust J Teach Educ 40(1):117–145

Xenofontos C, Andrews P (2020) The discursive construction of mathematics teacher self-efficacy. Educ Stud Math 105(2):261–283. https://doi.org/10.1007/s10649-020-09990-z

Yin R (2003) Case study research: Design and methods. Sage Publications, Thousand Oaks, California

Zakariya YF (2020) Effects of school climate and teacher self-efficacy on job satisfaction of mostly STEM teachers: a structural multigroup invariance approach. Int J STEM Educ 7:10. https://doi.org/10.1186/s40594-020-00209-4

Zee M, de Jong PF, Koomen HM (2017) From externalizing student behavior to student-specific teacher self-efficacy: The role of teacher-perceived conflict and closeness in the student–teacher relationship. Contemp Educ Psychol 51:37–50. https://doi.org/10.1016/j.cedpsych.2017.06.009

Zee M, Koomen HM (2016) Teacher self-efficacy and its effects on classroom processes, student academic adjustment, and teacher well-being: A synthesis of 40 years of research. Rev Educ Res 86(4):981–1015. https://doi.org/10.3102/0034654315626801

Zhan Z, Li Y, Mei H, Lyu S (2023) Key competencies acquired from STEM education: gender-differentiated parental expectations. Humanit Soc Sci Commun 10:464. https://doi.org/10.1057/s41599-023-01946-x

Zhan Z, Niu S (2023) Subject integration and theme evolution of STEM education in K-12 and higher education research. Humanit Soc Sci Commun 10:781. https://doi.org/10.1057/s41599-023-02303-8

Zhong B, Liu X, Li X (2024) Effects of reverse engineering pedagogy on students’ learning performance in STEM education: The bridge-design project as an example. Heliyon 10(2):e24278. https://doi.org/10.1016/j.heliyon.2024.e24278

Zhong B, Liu X, Zhan Z, Ke Q, Wang F (2022) What should a Chinese top-level design in STEM Education look like? Humanit Soc Sci Commun 9:261. https://doi.org/10.1057/s41599-022-01279-1

Zhou B (2021) Cultivation of Ed. M. to bring up “famous subject teachers”: practical exploration and policy suggestions. Teach Educ Res 33(5):19–26. https://doi.org/10.13445/j.cnki.t.e.r.2021.05.003

Zhou X, Shu L, Xu Z, Padrón Y (2023) The effect of professional development on in-service STEM teachers’ self-efficacy: a meta-analysis of experimental studies. Int J STEM Educ 10:37. https://doi.org/10.1186/s40594-023-00422-x

Download references

Acknowledgements

This research is funded by 2021 National Natural Science Foundation of China (Grant No.62177042), 2024 Zhejiang Provincial Natural Science Foundation of China (Grant No. Y24F020039), and 2024 Zhejiang Educational Science Planning Project (Grant No. 2024SCG247).

Author information

Xuesong Zhai

Present address: School of Education, City University of Macau, Macau, China

Authors and Affiliations

College of Education, Zhejiang University, Hangzhou, China

Haozhe Jiang & Xuesong Zhai

School of Engineering and Technology, CML‑NET & CREATE Research Centres, Central Queensland University, North Rockhampton, QLD, Australia

Ritesh Chugh

Hangzhou International Urbanology Research Center & Zhejiang Urban Governance Studies Center, Hangzhou, China

Department of Teacher Education, Nicholls State University, Thibodaux, LA, USA

School of Mathematical Sciences, East China Normal University, Shanghai, China

Xiaoqin Wang

College of Teacher Education, Faculty of Education, East China Normal University, Shanghai, China

You can also search for this author in PubMed   Google Scholar

Contributions

Conceptualization - Haozhe Jiang; methodology - Haozhe Jiang; software - Xuesong Zhai; formal analysis - Haozhe Jiang & Ke Wang; investigation - Haozhe Jiang; resources - Haozhe Jiang, Xuesong Zhai & Xiaoqin Wang; data curation - Haozhe Jiang & Ke Wang; writing—original draft preparation - Haozhe Jiang & Ritesh Chugh; writing—review and editing - Ritesh Chugh & Ke Wang; visualization - Haozhe Jiang, Ke Wang & Xiaoqin Wang; supervision - Xuesong Zhai & Xiaoqin Wang; project administration - Xuesong Zhai & Xiaoqin Wang; and funding acquisition - Xuesong Zhai & Xiaoqin Wang. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Xuesong Zhai .

Ethics declarations

Competing interests.

The authors declare no competing interests.

Ethical approval

This research was approved by the Committee for Human Research of East China Normal University (Number: HR 347-2022). The procedures used in this study adhere to the tenets of the Declaration of Helsinki.

Informed consent

Written informed consent was obtained from all participants in this study before data collection.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/ .

Reprints and permissions

About this article

Cite this article.

Jiang, H., Chugh, R., Zhai, X. et al. Longitudinal analysis of teacher self-efficacy evolution during a STEAM professional development program: a qualitative case study. Humanit Soc Sci Commun 11 , 1162 (2024). https://doi.org/10.1057/s41599-024-03655-5

Download citation

Received : 27 April 2024

Accepted : 12 August 2024

Published : 08 September 2024

DOI : https://doi.org/10.1057/s41599-024-03655-5

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

what is a case study research design

IMAGES

  1. Case Study Research Design And Methods at Aaron Weber blog

    what is a case study research design

  2. Case Study Research Design

    what is a case study research design

  3. How to Create a Case Study + 14 Case Study Templates

    what is a case study research design

  4. Case Study

    what is a case study research design

  5. 25 Types of Research Designs (2024)

    what is a case study research design

  6. Case Study Research Example : Case Study Research Example Web Design

    what is a case study research design

VIDEO

  1. Who Owns Antarctica Continent ? #shorts #why #who

  2. What is research design? #how to design a research advantages of research design

  3. (2/75) Why is the literacy rate in Kerala so high #shorts #kerala #literacy

  4. Most hated Tree in india. #shorts #facts #plants

  5. Most Controversial island "Kachchatheevu" #short #india #shrilanka

  6. different type of studies in #pharmacovigilance Post authorization safety study #PASS

COMMENTS

  1. What Is a Case Study?

    A case study is a detailed study of a specific subject, such as a person, group, place, event, organization, or phenomenon. Case studies are commonly used in social, educational, clinical, and business research. A case study research design usually involves qualitative methods, but quantitative methods are sometimes also used.

  2. Case Study

    Defnition: A case study is a research method that involves an in-depth examination and analysis of a particular phenomenon or case, such as an individual, organization, community, event, or situation. It is a qualitative research approach that aims to provide a detailed and comprehensive understanding of the case being studied.

  3. The case study approach

    A case study is a research approach that is used to generate an in-depth, multi-faceted understanding of a complex issue in its real-life context. It is an established research design that is used extensively in a wide variety of disciplines, particularly in the social sciences. A case study can be defined in a variety of ways (Table 5), the ...

  4. Case Study Methods and Examples

    The purpose of case study research is twofold: (1) to provide descriptive information and (2) to suggest theoretical relevance. Rich description enables an in-depth or sharpened understanding of the case. It is unique given one characteristic: case studies draw from more than one data source. Case studies are inherently multimodal or mixed ...

  5. Case Study Method: A Step-by-Step Guide for Business Researchers

    Case study method is the most widely used method in academia for researchers interested in qualitative research (Baskarada, 2014).Research students select the case study as a method without understanding array of factors that can affect the outcome of their research.

  6. Case Study Methodology of Qualitative Research: Key Attributes and

    A case study is one of the most commonly used methodologies of social research. This article attempts to look into the various dimensions of a case study research strategy, the different epistemological strands which determine the particular case study type and approach adopted in the field, discusses the factors which can enhance the effectiveness of a case study research, and the debate ...

  7. LibGuides: Research Writing and Analysis: Case Study

    A Case study is: An in-depth research design that primarily uses a qualitative methodology but sometimes includes quantitative methodology. Used to examine an identifiable problem confirmed through research. Used to investigate an individual, group of people, organization, or event. Used to mostly answer "how" and "why" questions.

  8. What is a Case Study in Research? Definition, Methods & Examples

    Definition, Methods, and Examples. Case study methodology offers researchers an exciting opportunity to explore intricate phenomena within specific contexts using a wide range of data sources and collection methods. It is highly pertinent in health and social sciences, environmental studies, social work, education, and business studies.

  9. What is a Case Study?

    Case studies play a significant role in knowledge development across various disciplines. Analysis of cases provides an avenue for researchers to explore phenomena within their context based on the collected data. Analysis of qualitative data from case study research can contribute to knowledge development.

  10. Perspectives from Researchers on Case Study Design

    Case study research is typically extensive; it draws on multiple methods of data collection and involves multiple data sources. The researcher begins by identifying a specific case or set of cases to be studied. Each case is an entity that is described within certain parameters, such as a specific time frame, place, event, and process.

  11. Designing research with case study methods

    The purpose of case study research is twofold: (1) to provide descriptive information and (2) to suggest theoretical relevance. Rich description enables an in-depth or sharpened understanding of the case. Robert Yin, methodologist most associated with case study research, differentiates between descriptive, exploratory and explanatory case studies:

  12. PDF Case Study Design Essentials: Definition, Research Questions, Propositions

    Definition of the Case Study. "An empirical inquiry that investigates a contemporary phenomenon (e.g., a "case") within its real-life context; when the boundaries between phenomenon and context are not clearly evident" (Yin, 2014, p.16) "A case study is an in-depth description and analysis of a bounded system" (Merriam, 2015, p.37).

  13. How to Use Case Studies in Research: Guide and Examples

    The case study provides an in-depth review of the issue at hand and adds real-world examples in the area the researcher wants the audience to understand. The researcher makes no inferences or causal statements about the object or subject under review. This type of design is often used to understand cultural shifts.

  14. Planning Qualitative Research: Design and Decision Making for New

    A case study can be a complete research project in itself, such as in the study of a particular organization, community, or program. Case studies are also often used for evaluation purposes, for example, in an external review. ... Case study research and applications: Design and methods (6th ed). Sage. Google Scholar. Cite article Cite article ...

  15. (PDF) Qualitative Case Study Methodology: Study Design and

    McMaster University, West Hamilton, Ontario, Canada. Qualitative case study methodology prov ides tools for researchers to study. complex phenomena within their contexts. When the approach is ...

  16. Descriptive Research and Case Studies

    Case studies are generally a single-case design, but can also be a multiple-case design, where replication instead of sampling is the criterion for inclusion. Like other research methodologies within psychology, the case study must produce valid and reliable results in order to be useful for the development of future research.

  17. Case Study

    A case study is a detailed study of a specific subject, such as a person, group, place, event, organisation, or phenomenon. Case studies are commonly used in social, educational, clinical, and business research. A case study research design usually involves qualitative methods, but quantitative methods are sometimes also used.

  18. (PDF) Case Study Research Defined [White Paper]

    The case study design is preferred as a research strategy when "how," "why," and "what" questions are the interest of the researcher. Discover the world's research.

  19. The case study approach

    A case study is a research approach that is used to generate an in-depth, multi-faceted understanding of a complex issue in its real-life context. It is an established research design that is used extensively in a wide variety of disciplines, particularly in the social sciences. A case study can be defined in a variety of ways (Table 5), the ...

  20. Case Study Research Method in Psychology

    Case studies are in-depth investigations of a person, group, event, or community. Typically, data is gathered from various sources using several methods (e.g., observations & interviews). The case study research method originated in clinical medicine (the case history, i.e., the patient's personal history). In psychology, case studies are ...

  21. Case Study Research Design

    The case study research design is also useful for testing whether scientific theories and models actually work in the real world. You may come out with a great computer model for describing how the ecosystem of a rock pool works but it is only by trying it out on a real life pool that you can see if it is a realistic simulation.

  22. (PDF) Case Study Research

    This study employed a qualitative case study methodology. The case study method is a research strategy that aims to gain an in-depth understanding of a specific phenomenon by collecting and ...

  23. Case Study Research: Methods and Designs

    Case study research is a type of qualitative research design. It's often used in the social sciences because it involves observing subjects, or cases, in their natural setting, with minimal interference from the researcher. In the case study method, researchers pose a specific question about an individual or group to test their theories or ...

  24. Case Study Method: A Step-by-Step Guide for Business Researchers

    To conclude, there are two main objectives of this study. First is to provide a step-by-step guideline to research students for conducting case study. Second, an analysis of authors' multiple case studies is presented in order to provide an application of step-by-step guideline. This article has been divided into two sections.

  25. Pluralist Case Study Designs for Qualitative Research

    In this course, we will move beyond well accepted qualitative case study design templates (namely positivistic, interpretivist and critical realist templates) to develop and use a 'bricolage' approach for your case study research. Course leader. Bareerah Hafeez Hoorani. Target group. Master PhD PostDoc Professional

  26. Longitudinal analysis of teacher self-efficacy evolution ...

    This study forms a component of a broader multi-case research initiative examining teachers' professional learning in the STEAM teacher professional development programs in China (Jiang et al ...

  27. Learning Chemistry of Metals in the Context of Forging: An Ethnographic

    The ethnographic case study is defined as a research design that is dependent on prolonged observation, participation, and engagement in a natural setting within a bounded system . The researcher's observation is at the centre of the research method to understand the sociocultural experience of a cultural group or a subcultural group.