Logo of Peer Recognized

Peer Recognized

Make a name in academia

How to Write a Research Paper: the LEAP approach (+cheat sheet)

In this article I will show you how to write a research paper using the four LEAP writing steps. The LEAP academic writing approach is a step-by-step method for turning research results into a published paper .

The LEAP writing approach has been the cornerstone of the 70 + research papers that I have authored and the 3700+ citations these paper have accumulated within 9 years since the completion of my PhD. I hope the LEAP approach will help you just as much as it has helped me to make an real, tangible impact with my research.

What is the LEAP research paper writing approach?

I designed the LEAP writing approach not only for merely writing the papers. My goal with the writing system was to show young scientists how to first think about research results and then how to efficiently write each section of the research paper.

In other words, you will see how to write a research paper by first analyzing the results and then building a logical, persuasive arguments. In this way, instead of being afraid of writing research paper, you will be able to rely on the paper writing process to help you with what is the most demanding task in getting published – thinking.

The four research paper writing steps according to the LEAP approach:

LEAP research paper writing step 1: L

I will show each of these steps in detail. And you will be able to download the LEAP cheat sheet for using with every paper you write.

But before I tell you how to efficiently write a research paper, I want to show you what is the problem with the way scientists typically write a research paper and why the LEAP approach is more efficient.

How scientists typically write a research paper (and why it isn’t efficient)

Writing a research paper can be tough, especially for a young scientist. Your reasoning needs to be persuasive and thorough enough to convince readers of your arguments. The description has to be derived from research evidence, from prior art, and from your own judgment. This is a tough feat to accomplish.

The figure below shows the sequence of the different parts of a typical research paper. Depending on the scientific journal, some sections might be merged or nonexistent, but the general outline of a research paper will remain very similar.

Outline of a research paper, including Title, Abstract, Keywords, Introduction, Objective, Methods, Results, Discussion, Conclusions, References and Annexes

Here is the problem: Most people make the mistake of writing in this same sequence.

While the structure of scientific articles is designed to help the reader follow the research, it does little to help the scientist write the paper. This is because the layout of research articles starts with the broad (introduction) and narrows down to the specifics (results). See in the figure below how the research paper is structured in terms of the breath of information that each section entails.

How to write a research paper according to the LEAP approach

For a scientist, it is much easier to start writing a research paper with laying out the facts in the narrow sections (i.e. results), step back to describe them (i.e. write the discussion), and step back again to explain the broader picture in the introduction.

For example, it might feel intimidating to start writing a research paper by explaining your research’s global significance in the introduction, while it is easy to plot the figures in the results. When plotting the results, there is not much room for wiggle: the results are what they are.

Starting to write a research papers from the results is also more fun because you finally get to see and understand the complete picture of the research that you have worked on.

Most importantly, following the LEAP approach will help you first make sense of the results yourself and then clearly communicate them to the readers. That is because the sequence of writing allows you to slowly understand the meaning of the results and then develop arguments for presenting to your readers.

I have personally been able to write and submit a research article in three short days using this method.

Step 1: Lay Out the Facts

LEAP research paper writing step 1: Prepare charts and graphics, and describe what you see

You have worked long hours on a research project that has produced results and are no doubt curious to determine what they exactly mean. There is no better way to do this than by preparing figures, graphics and tables. This is what the first LEAP step is focused on – diving into the results.

How to p repare charts and tables for a research paper

Your first task is to try out different ways of visually demonstrating the research results. In many fields, the central items of a journal paper will be charts that are based on the data generated during research. In other fields, these might be conceptual diagrams, microscopy images, schematics and a number of other types of scientific graphics which should visually communicate the research study and its results to the readers. If you have reasonably small number of data points, data tables might be useful as well.

Tips for preparing charts and tables

  • Try multiple chart types but in the finished paper only use the one that best conveys the message you want to present to the readers
  • Follow the eight chart design progressions for selecting and refining a data chart for your paper: https://peerrecognized.com/chart-progressions
  • Prepare scientific graphics and visualizations for your paper using the scientific graphic design cheat sheet: https://peerrecognized.com/tools-for-creating-scientific-illustrations/

How to describe the results of your research

Now that you have your data charts, graphics and tables laid out in front of you – describe what you see in them. Seek to answer the question: What have I found?  Your statements should progress in a logical sequence and be backed by the visual information. Since, at this point, you are simply explaining what everyone should be able to see for themselves, you can use a declarative tone: The figure X demonstrates that…

Tips for describing the research results :

  • Answer the question: “ What have I found? “
  • Use declarative tone since you are simply describing observations

Step 2: Explain the results

LEAP research paper writing step 2: Define the message, discuss the results, write conclusions, refine the objective, and describe methodology

The core aspect of your research paper is not actually the results; it is the explanation of their meaning. In the second LEAP step, you will do some heavy lifting by guiding the readers through the results using logic backed by previous scientific research.

How to define the Message of a research paper

To define the central message of your research paper, imagine how you would explain your research to a colleague in 20 seconds . If you succeed in effectively communicating your paper’s message, a reader should be able to recount your findings in a similarly concise way even a year after reading it. This clarity will increase the chances that someone uses the knowledge you generated, which in turn raises the likelihood of citations to your research paper. 

Tips for defining the paper’s central message :

  • Write the paper’s core message in a single sentence or two bullet points
  • Write the core message in the header of the research paper manuscript

How to write the Discussion section of a research paper

In the discussion section you have to demonstrate why your research paper is worthy of publishing. In other words, you must now answer the all-important So what? question . How well you do so will ultimately define the success of your research paper.

Here are three steps to get started with writing the discussion section:

  • Write bullet points of the things that convey the central message of the research article (these may evolve into subheadings later on).
  • Make a list with the arguments or observations that support each idea.
  • Finally, expand on each point to make full sentences and paragraphs.

Tips for writing the discussion section:

  • What is the meaning of the results?
  • Was the hypothesis confirmed?
  • Write bullet points that support the core message
  • List logical arguments for each bullet point, group them into sections
  • Instead of repeating research timeline, use a presentation sequence that best supports your logic
  • Convert arguments to full paragraphs; be confident but do not overhype
  • Refer to both supportive and contradicting research papers for maximum credibility

How to write the Conclusions of a research paper

Since some readers might just skim through your research paper and turn directly to the conclusions, it is a good idea to make conclusion a standalone piece. In the first few sentences of the conclusions, briefly summarize the methodology and try to avoid using abbreviations (if you do, explain what they mean).

After this introduction, summarize the findings from the discussion section. Either paragraph style or bullet-point style conclusions can be used. I prefer the bullet-point style because it clearly separates the different conclusions and provides an easy-to-digest overview for the casual browser. It also forces me to be more succinct.

Tips for writing the conclusion section :

  • Summarize the key findings, starting with the most important one
  • Make conclusions standalone (short summary, avoid abbreviations)
  • Add an optional take-home message and suggest future research in the last paragraph

How to refine the Objective of a research paper

The objective is a short, clear statement defining the paper’s research goals. It can be included either in the final paragraph of the introduction, or as a separate subsection after the introduction. Avoid writing long paragraphs with in-depth reasoning, references, and explanation of methodology since these belong in other sections. The paper’s objective can often be written in a single crisp sentence.

Tips for writing the objective section :

  • The objective should ask the question that is answered by the central message of the research paper
  • The research objective should be clear long before writing a paper. At this point, you are simply refining it to make sure it is addressed in the body of the paper.

How to write the Methodology section of your research paper

When writing the methodology section, aim for a depth of explanation that will allow readers to reproduce the study . This means that if you are using a novel method, you will have to describe it thoroughly. If, on the other hand, you applied a standardized method, or used an approach from another paper, it will be enough to briefly describe it with reference to the detailed original source.

Remember to also detail the research population, mention how you ensured representative sampling, and elaborate on what statistical methods you used to analyze the results.

Tips for writing the methodology section :

  • Include enough detail to allow reproducing the research
  • Provide references if the methods are known
  • Create a methodology flow chart to add clarity
  • Describe the research population, sampling methodology, statistical methods for result analysis
  • Describe what methodology, test methods, materials, and sample groups were used in the research.

Step 3: Advertize the research

Step 3 of the LEAP writing approach is designed to entice the casual browser into reading your research paper. This advertising can be done with an informative title, an intriguing abstract, as well as a thorough explanation of the underlying need for doing the research within the introduction.

LEAP research paper writing step 3: Write introduction, prepare the abstract, compose title, and prepare highlights and graphical abstract

How to write the Introduction of a research paper

The introduction section should leave no doubt in the mind of the reader that what you are doing is important and that this work could push scientific knowledge forward. To do this convincingly, you will need to have a good knowledge of what is state-of-the-art in your field. You also need be able to see the bigger picture in order to demonstrate the potential impacts of your research work.

Think of the introduction as a funnel, going from wide to narrow, as shown in the figure below:

  • Start with a brief context to explain what do we already know,
  • Follow with the motivation for the research study and explain why should we care about it,
  • Explain the research gap you are going to bridge within this research paper,
  • Describe the approach you will take to solve the problem.

Context - Motivation - Research gap - Approach funnel for writing the introduction

Tips for writing the introduction section :

  • Follow the Context – Motivation – Research gap – Approach funnel for writing the introduction
  • Explain how others tried and how you plan to solve the research problem
  • Do a thorough literature review before writing the introduction
  • Start writing the introduction by using your own words, then add references from the literature

How to prepare the Abstract of a research paper

The abstract acts as your paper’s elevator pitch and is therefore best written only after the main text is finished. In this one short paragraph you must convince someone to take on the time-consuming task of reading your whole research article. So, make the paper easy to read, intriguing, and self-explanatory; avoid jargon and abbreviations.

How to structure the abstract of a research paper:

  • The abstract is a single paragraph that follows this structure:
  • Problem: why did we research this
  • Methodology: typically starts with the words “Here we…” that signal the start of own contribution.
  • Results: what we found from the research.
  • Conclusions: show why are the findings important

How to compose a research paper Title

The title is the ultimate summary of a research paper. It must therefore entice someone looking for information to click on a link to it and continue reading the article. A title is also used for indexing purposes in scientific databases, so a representative and optimized title will play large role in determining if your research paper appears in search results at all.

Tips for coming up with a research paper title:

  • Capture curiosity of potential readers using a clear and descriptive title
  • Include broad terms that are often searched
  • Add details that uniquely identify the researched subject of your research paper
  • Avoid jargon and abbreviations
  • Use keywords as title extension (instead of duplicating the words) to increase the chance of appearing in search results

How to prepare Highlights and Graphical Abstract

Highlights are three to five short bullet-point style statements that convey the core findings of the research paper. Notice that the focus is on the findings, not on the process of getting there.

A graphical abstract placed next to the textual abstract visually summarizes the entire research paper in a single, easy-to-follow figure. I show how to create a graphical abstract in my book Research Data Visualization and Scientific Graphics.

Tips for preparing highlights and graphical abstract:

  • In highlights show core findings of the research paper (instead of what you did in the study).
  • In graphical abstract show take-home message or methodology of the research paper. Learn more about creating a graphical abstract in this article.

Step 4: Prepare for submission

LEAP research paper writing step 4: Select the journal, fulfill journal requirements, write a cover letter, suggest reviewers, take a break and edit, address review comments.

Sometimes it seems that nuclear fusion will stop on the star closest to us (read: the sun will stop to shine) before a submitted manuscript is published in a scientific journal. The publication process routinely takes a long time, and after submitting the manuscript you have very little control over what happens. To increase the chances of a quick publication, you must do your homework before submitting the manuscript. In the fourth LEAP step, you make sure that your research paper is published in the most appropriate journal as quickly and painlessly as possible.

How to select a scientific Journal for your research paper

The best way to find a journal for your research paper is it to review which journals you used while preparing your manuscript. This source listing should provide some assurance that your own research paper, once published, will be among similar articles and, thus, among your field’s trusted sources.

research paper and reports

After this initial selection of hand-full of scientific journals, consider the following six parameters for selecting the most appropriate journal for your research paper (read this article to review each step in detail):

  • Scope and publishing history
  • Ranking and Recognition
  • Publishing time
  • Acceptance rate
  • Content requirements
  • Access and Fees

How to select a journal for your research paper:

  • Use the six parameters to select the most appropriate scientific journal for your research paper
  • Use the following tools for journal selection: https://peerrecognized.com/journals
  • Follow the journal’s “Authors guide” formatting requirements

How to Edit you manuscript

No one can write a finished research paper on their first attempt. Before submitting, make sure to take a break from your work for a couple of days, or even weeks. Try not to think about the manuscript during this time. Once it has faded from your memory, it is time to return and edit. The pause will allow you to read the manuscript from a fresh perspective and make edits as necessary.

I have summarized the most useful research paper editing tools in this article.

Tips for editing a research paper:

  • Take time away from the research paper to forget about it; then returning to edit,
  • Start by editing the content: structure, headings, paragraphs, logic, figures
  • Continue by editing the grammar and language; perform a thorough language check using academic writing tools
  • Read the entire paper out loud and correct what sounds weird

How to write a compelling Cover Letter for your paper

Begin the cover letter by stating the paper’s title and the type of paper you are submitting (review paper, research paper, short communication). Next, concisely explain why your study was performed, what was done, and what the key findings are. State why the results are important and what impact they might have in the field. Make sure you mention how your approach and findings relate to the scope of the journal in order to show why the article would be of interest to the journal’s readers.

I wrote a separate article that explains what to include in a cover letter here. You can also download a cover letter template from the article.

Tips for writing a cover letter:

  • Explain how the findings of your research relate to journal’s scope
  • Tell what impact the research results will have
  • Show why the research paper will interest the journal’s audience
  • Add any legal statements as required in journal’s guide for authors

How to Answer the Reviewers

Reviewers will often ask for new experiments, extended discussion, additional details on the experimental setup, and so forth. In principle, your primary winning tactic will be to agree with the reviewers and follow their suggestions whenever possible. After all, you must earn their blessing in order to get your paper published.

Be sure to answer each review query and stick to the point. In the response to the reviewers document write exactly where in the paper you have made any changes. In the paper itself, highlight the changes using a different color. This way the reviewers are less likely to re-read the entire article and suggest new edits.

In cases when you don’t agree with the reviewers, it makes sense to answer more thoroughly. Reviewers are scientifically minded people and so, with enough logical and supported argument, they will eventually be willing to see things your way.

Tips for answering the reviewers:

  • Agree with most review comments, but if you don’t, thoroughly explain why
  • Highlight changes in the manuscript
  • Do not take the comments personally and cool down before answering

The LEAP research paper writing cheat sheet

Imagine that you are back in grad school and preparing to take an exam on the topic: “How to write a research paper”. As an exemplary student, you would, most naturally, create a cheat sheet summarizing the subject… Well, I did it for you.

This one-page summary of the LEAP research paper writing technique will remind you of the key research paper writing steps. Print it out and stick it to a wall in your office so that you can review it whenever you are writing a new research paper.

The LEAP research paper writing cheat sheet

Now that we have gone through the four LEAP research paper writing steps, I hope you have a good idea of how to write a research paper. It can be an enjoyable process and once you get the hang of it, the four LEAP writing steps should even help you think about and interpret the research results. This process should enable you to write a well-structured, concise, and compelling research paper.

Have fund with writing your next research paper. I hope it will turn out great!

Learn writing papers that get cited

The LEAP writing approach is a blueprint for writing research papers. But to be efficient and write papers that get cited, you need more than that.

My name is Martins Zaumanis and in my interactive course Research Paper Writing Masterclass I will show you how to  visualize  your research results,  frame a message  that convinces your readers, and write  each section  of the paper. Step-by-step.

And of course – you will learn to respond the infamous  Reviewer No.2.

Research Paper Writing Masterclass by Martins Zaumanis

Hey! My name is Martins Zaumanis and I am a materials scientist in Switzerland ( Google Scholar ). As the first person in my family with a PhD, I have first-hand experience of the challenges starting scientists face in academia. With this blog, I want to help young researchers succeed in academia. I call the blog “Peer Recognized”, because peer recognition is what lifts academic careers and pushes science forward.

Besides this blog, I have written the Peer Recognized book series and created the Peer Recognized Academy offering interactive online courses.

Related articles:

Six journal selection steps

One comment

  • Pingback: Research Paper Outline with Key Sentence Skeleton (+Paper Template)

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

I want to join the Peer Recognized newsletter!

This site uses Akismet to reduce spam. Learn how your comment data is processed .

Privacy Overview

CookieDurationDescription
cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.

Copyright © 2024 Martins Zaumanis

Contacts:  [email protected]  

Privacy Policy 

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts

Research articles

research paper and reports

Microwaves induced epitaxial growth of urchin like MIL-53(Al) crystals on ceramic supports

  • Limor Ben Neon
  • Martin Drobek

research paper and reports

‘The mirror of the soul?’ Inferring sadness in the eyes

  • Jonas Moosavi
  • Annika Resch
  • Marina A. Pavlova

The association between mobile phone usage duration, neck muscle endurance, and neck pain among university students

  • Seval Cevik
  • Ilknur Erak

research paper and reports

Association between change in heart rate over years and life span in the Paris Prospective 1, the Whitehall 1, and Framingham studies

  • Eugenie Valentin
  • Xavier Jouven

research paper and reports

Developing an image-based grading scale for peripheral drusen to investigate associations of peripheral drusen type with age-related macular degeneration

  • Paripoorna Sharma
  • Fritz Gerald P. Kalaw
  • Shyamanga Borooah

research paper and reports

Prevalence, clinical features, and survival outcome trends of 627 patients with primary cutaneous lymphoma over 29 years: a retrospective review from single tertiary center in Korea

  • Ik Jun Moon
  • Chong Hyun Won
  • Woo Jin Lee

research paper and reports

Physics-Informed Masked Autoencoder for active sparse imaging

  • Luke McEvoy
  • Daniel Tafone
  • Yuping Huang

research paper and reports

The synergistic effect of triglyceride-glucose index and HbA1c on blood pressure control in patients with hypertension: a retrospective cohort study

  • Jinghan Hai
  • Xiaofeng Li

research paper and reports

The effect of exogenous gibberellin and its synthesis inhibitor treatments for morphological and physiological characteristics of Tartary buckwheat

  • Jingang Tang
  • Kaifeng Huang

research paper and reports

First insight into the whole genome sequence variations in clarithromycin resistant Helicobacter pylori clinical isolates in Russia

  • Daria Starkova
  • Nikita Gladyshev
  • Alena Svarval

research paper and reports

A meta-analysis of performance advantages on athletes in multiple object tracking tasks

  • Hui Juan Liu

research paper and reports

Understanding period product use among young women in rural and urban India from a geospatial perspective

  • Sourav Biswas
  • Asraful Alam
  • Lakshminarayan Satpati

research paper and reports

Knowledge, attitudes, and practice of physicians and pharmacists regarding the prevention and treatment of cardiovascular toxicity associated with cancer treatment

research paper and reports

Prediction model of weight control experience in men with obesity in their 30 s and 40 s using decision tree analysis

  • Myeunghee Han

research paper and reports

Ssc-miR-101-3p inhibits hypoxia-induced apoptosis and inflammatory response in alveolar type-II epithelial cells of Tibetan pigs via targeting FOXO3

  • Haonan Yuan
  • Yangnan Yang

research paper and reports

Various distance between generalized Diophantine fuzzy sets using multiple criteria decision making and their real life applications

  • Murugan Palanikumar
  • Nasreen Kausar
  • Fikadu Tesgera Tolasa

research paper and reports

Preparation and performance control of ultra-low near-infrared reflectivity coatings with super-hydrophobic and outstanding mechanical properties

  • Weigang Zhang
  • Yueting Zhuang
  • Qianfeng Zhang

research paper and reports

Biochar carbon nanodots for catalytic acetalization of biodiesel by-product crude glycerol to solketal: process optimization by RSM and life cycle cost analysis

  • Supongsenla Ao
  • Shiva Prasad Gouda
  • Samuel Lalthazuala Rokhum

research paper and reports

Adaptive condition-aware high-dimensional decoupling remote sensing image object detection algorithm

  • Chenshuai Bai
  • Xiaofeng Bai

research paper and reports

Functional prediction of response to therapy prior to therapeutic intervention is associated with improved survival in patients with high-grade glioma

  • Aubrey Ledford
  • Analiz Rodriguez
  • Teresa M. DesRochers

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

research paper and reports

  • Privacy Policy

Research Method

Home » Research Paper – Structure, Examples and Writing Guide

Research Paper – Structure, Examples and Writing Guide

Table of Contents

Research Paper

Research Paper

Definition:

Research Paper is a written document that presents the author’s original research, analysis, and interpretation of a specific topic or issue.

It is typically based on Empirical Evidence, and may involve qualitative or quantitative research methods, or a combination of both. The purpose of a research paper is to contribute new knowledge or insights to a particular field of study, and to demonstrate the author’s understanding of the existing literature and theories related to the topic.

Structure of Research Paper

The structure of a research paper typically follows a standard format, consisting of several sections that convey specific information about the research study. The following is a detailed explanation of the structure of a research paper:

The title page contains the title of the paper, the name(s) of the author(s), and the affiliation(s) of the author(s). It also includes the date of submission and possibly, the name of the journal or conference where the paper is to be published.

The abstract is a brief summary of the research paper, typically ranging from 100 to 250 words. It should include the research question, the methods used, the key findings, and the implications of the results. The abstract should be written in a concise and clear manner to allow readers to quickly grasp the essence of the research.

Introduction

The introduction section of a research paper provides background information about the research problem, the research question, and the research objectives. It also outlines the significance of the research, the research gap that it aims to fill, and the approach taken to address the research question. Finally, the introduction section ends with a clear statement of the research hypothesis or research question.

Literature Review

The literature review section of a research paper provides an overview of the existing literature on the topic of study. It includes a critical analysis and synthesis of the literature, highlighting the key concepts, themes, and debates. The literature review should also demonstrate the research gap and how the current study seeks to address it.

The methods section of a research paper describes the research design, the sample selection, the data collection and analysis procedures, and the statistical methods used to analyze the data. This section should provide sufficient detail for other researchers to replicate the study.

The results section presents the findings of the research, using tables, graphs, and figures to illustrate the data. The findings should be presented in a clear and concise manner, with reference to the research question and hypothesis.

The discussion section of a research paper interprets the findings and discusses their implications for the research question, the literature review, and the field of study. It should also address the limitations of the study and suggest future research directions.

The conclusion section summarizes the main findings of the study, restates the research question and hypothesis, and provides a final reflection on the significance of the research.

The references section provides a list of all the sources cited in the paper, following a specific citation style such as APA, MLA or Chicago.

How to Write Research Paper

You can write Research Paper by the following guide:

  • Choose a Topic: The first step is to select a topic that interests you and is relevant to your field of study. Brainstorm ideas and narrow down to a research question that is specific and researchable.
  • Conduct a Literature Review: The literature review helps you identify the gap in the existing research and provides a basis for your research question. It also helps you to develop a theoretical framework and research hypothesis.
  • Develop a Thesis Statement : The thesis statement is the main argument of your research paper. It should be clear, concise and specific to your research question.
  • Plan your Research: Develop a research plan that outlines the methods, data sources, and data analysis procedures. This will help you to collect and analyze data effectively.
  • Collect and Analyze Data: Collect data using various methods such as surveys, interviews, observations, or experiments. Analyze data using statistical tools or other qualitative methods.
  • Organize your Paper : Organize your paper into sections such as Introduction, Literature Review, Methods, Results, Discussion, and Conclusion. Ensure that each section is coherent and follows a logical flow.
  • Write your Paper : Start by writing the introduction, followed by the literature review, methods, results, discussion, and conclusion. Ensure that your writing is clear, concise, and follows the required formatting and citation styles.
  • Edit and Proofread your Paper: Review your paper for grammar and spelling errors, and ensure that it is well-structured and easy to read. Ask someone else to review your paper to get feedback and suggestions for improvement.
  • Cite your Sources: Ensure that you properly cite all sources used in your research paper. This is essential for giving credit to the original authors and avoiding plagiarism.

Research Paper Example

Note : The below example research paper is for illustrative purposes only and is not an actual research paper. Actual research papers may have different structures, contents, and formats depending on the field of study, research question, data collection and analysis methods, and other factors. Students should always consult with their professors or supervisors for specific guidelines and expectations for their research papers.

Research Paper Example sample for Students:

Title: The Impact of Social Media on Mental Health among Young Adults

Abstract: This study aims to investigate the impact of social media use on the mental health of young adults. A literature review was conducted to examine the existing research on the topic. A survey was then administered to 200 university students to collect data on their social media use, mental health status, and perceived impact of social media on their mental health. The results showed that social media use is positively associated with depression, anxiety, and stress. The study also found that social comparison, cyberbullying, and FOMO (Fear of Missing Out) are significant predictors of mental health problems among young adults.

Introduction: Social media has become an integral part of modern life, particularly among young adults. While social media has many benefits, including increased communication and social connectivity, it has also been associated with negative outcomes, such as addiction, cyberbullying, and mental health problems. This study aims to investigate the impact of social media use on the mental health of young adults.

Literature Review: The literature review highlights the existing research on the impact of social media use on mental health. The review shows that social media use is associated with depression, anxiety, stress, and other mental health problems. The review also identifies the factors that contribute to the negative impact of social media, including social comparison, cyberbullying, and FOMO.

Methods : A survey was administered to 200 university students to collect data on their social media use, mental health status, and perceived impact of social media on their mental health. The survey included questions on social media use, mental health status (measured using the DASS-21), and perceived impact of social media on their mental health. Data were analyzed using descriptive statistics and regression analysis.

Results : The results showed that social media use is positively associated with depression, anxiety, and stress. The study also found that social comparison, cyberbullying, and FOMO are significant predictors of mental health problems among young adults.

Discussion : The study’s findings suggest that social media use has a negative impact on the mental health of young adults. The study highlights the need for interventions that address the factors contributing to the negative impact of social media, such as social comparison, cyberbullying, and FOMO.

Conclusion : In conclusion, social media use has a significant impact on the mental health of young adults. The study’s findings underscore the need for interventions that promote healthy social media use and address the negative outcomes associated with social media use. Future research can explore the effectiveness of interventions aimed at reducing the negative impact of social media on mental health. Additionally, longitudinal studies can investigate the long-term effects of social media use on mental health.

Limitations : The study has some limitations, including the use of self-report measures and a cross-sectional design. The use of self-report measures may result in biased responses, and a cross-sectional design limits the ability to establish causality.

Implications: The study’s findings have implications for mental health professionals, educators, and policymakers. Mental health professionals can use the findings to develop interventions that address the negative impact of social media use on mental health. Educators can incorporate social media literacy into their curriculum to promote healthy social media use among young adults. Policymakers can use the findings to develop policies that protect young adults from the negative outcomes associated with social media use.

References :

  • Twenge, J. M., & Campbell, W. K. (2019). Associations between screen time and lower psychological well-being among children and adolescents: Evidence from a population-based study. Preventive medicine reports, 15, 100918.
  • Primack, B. A., Shensa, A., Escobar-Viera, C. G., Barrett, E. L., Sidani, J. E., Colditz, J. B., … & James, A. E. (2017). Use of multiple social media platforms and symptoms of depression and anxiety: A nationally-representative study among US young adults. Computers in Human Behavior, 69, 1-9.
  • Van der Meer, T. G., & Verhoeven, J. W. (2017). Social media and its impact on academic performance of students. Journal of Information Technology Education: Research, 16, 383-398.

Appendix : The survey used in this study is provided below.

Social Media and Mental Health Survey

  • How often do you use social media per day?
  • Less than 30 minutes
  • 30 minutes to 1 hour
  • 1 to 2 hours
  • 2 to 4 hours
  • More than 4 hours
  • Which social media platforms do you use?
  • Others (Please specify)
  • How often do you experience the following on social media?
  • Social comparison (comparing yourself to others)
  • Cyberbullying
  • Fear of Missing Out (FOMO)
  • Have you ever experienced any of the following mental health problems in the past month?
  • Do you think social media use has a positive or negative impact on your mental health?
  • Very positive
  • Somewhat positive
  • Somewhat negative
  • Very negative
  • In your opinion, which factors contribute to the negative impact of social media on mental health?
  • Social comparison
  • In your opinion, what interventions could be effective in reducing the negative impact of social media on mental health?
  • Education on healthy social media use
  • Counseling for mental health problems caused by social media
  • Social media detox programs
  • Regulation of social media use

Thank you for your participation!

Applications of Research Paper

Research papers have several applications in various fields, including:

  • Advancing knowledge: Research papers contribute to the advancement of knowledge by generating new insights, theories, and findings that can inform future research and practice. They help to answer important questions, clarify existing knowledge, and identify areas that require further investigation.
  • Informing policy: Research papers can inform policy decisions by providing evidence-based recommendations for policymakers. They can help to identify gaps in current policies, evaluate the effectiveness of interventions, and inform the development of new policies and regulations.
  • Improving practice: Research papers can improve practice by providing evidence-based guidance for professionals in various fields, including medicine, education, business, and psychology. They can inform the development of best practices, guidelines, and standards of care that can improve outcomes for individuals and organizations.
  • Educating students : Research papers are often used as teaching tools in universities and colleges to educate students about research methods, data analysis, and academic writing. They help students to develop critical thinking skills, research skills, and communication skills that are essential for success in many careers.
  • Fostering collaboration: Research papers can foster collaboration among researchers, practitioners, and policymakers by providing a platform for sharing knowledge and ideas. They can facilitate interdisciplinary collaborations and partnerships that can lead to innovative solutions to complex problems.

When to Write Research Paper

Research papers are typically written when a person has completed a research project or when they have conducted a study and have obtained data or findings that they want to share with the academic or professional community. Research papers are usually written in academic settings, such as universities, but they can also be written in professional settings, such as research organizations, government agencies, or private companies.

Here are some common situations where a person might need to write a research paper:

  • For academic purposes: Students in universities and colleges are often required to write research papers as part of their coursework, particularly in the social sciences, natural sciences, and humanities. Writing research papers helps students to develop research skills, critical thinking skills, and academic writing skills.
  • For publication: Researchers often write research papers to publish their findings in academic journals or to present their work at academic conferences. Publishing research papers is an important way to disseminate research findings to the academic community and to establish oneself as an expert in a particular field.
  • To inform policy or practice : Researchers may write research papers to inform policy decisions or to improve practice in various fields. Research findings can be used to inform the development of policies, guidelines, and best practices that can improve outcomes for individuals and organizations.
  • To share new insights or ideas: Researchers may write research papers to share new insights or ideas with the academic or professional community. They may present new theories, propose new research methods, or challenge existing paradigms in their field.

Purpose of Research Paper

The purpose of a research paper is to present the results of a study or investigation in a clear, concise, and structured manner. Research papers are written to communicate new knowledge, ideas, or findings to a specific audience, such as researchers, scholars, practitioners, or policymakers. The primary purposes of a research paper are:

  • To contribute to the body of knowledge : Research papers aim to add new knowledge or insights to a particular field or discipline. They do this by reporting the results of empirical studies, reviewing and synthesizing existing literature, proposing new theories, or providing new perspectives on a topic.
  • To inform or persuade: Research papers are written to inform or persuade the reader about a particular issue, topic, or phenomenon. They present evidence and arguments to support their claims and seek to persuade the reader of the validity of their findings or recommendations.
  • To advance the field: Research papers seek to advance the field or discipline by identifying gaps in knowledge, proposing new research questions or approaches, or challenging existing assumptions or paradigms. They aim to contribute to ongoing debates and discussions within a field and to stimulate further research and inquiry.
  • To demonstrate research skills: Research papers demonstrate the author’s research skills, including their ability to design and conduct a study, collect and analyze data, and interpret and communicate findings. They also demonstrate the author’s ability to critically evaluate existing literature, synthesize information from multiple sources, and write in a clear and structured manner.

Characteristics of Research Paper

Research papers have several characteristics that distinguish them from other forms of academic or professional writing. Here are some common characteristics of research papers:

  • Evidence-based: Research papers are based on empirical evidence, which is collected through rigorous research methods such as experiments, surveys, observations, or interviews. They rely on objective data and facts to support their claims and conclusions.
  • Structured and organized: Research papers have a clear and logical structure, with sections such as introduction, literature review, methods, results, discussion, and conclusion. They are organized in a way that helps the reader to follow the argument and understand the findings.
  • Formal and objective: Research papers are written in a formal and objective tone, with an emphasis on clarity, precision, and accuracy. They avoid subjective language or personal opinions and instead rely on objective data and analysis to support their arguments.
  • Citations and references: Research papers include citations and references to acknowledge the sources of information and ideas used in the paper. They use a specific citation style, such as APA, MLA, or Chicago, to ensure consistency and accuracy.
  • Peer-reviewed: Research papers are often peer-reviewed, which means they are evaluated by other experts in the field before they are published. Peer-review ensures that the research is of high quality, meets ethical standards, and contributes to the advancement of knowledge in the field.
  • Objective and unbiased: Research papers strive to be objective and unbiased in their presentation of the findings. They avoid personal biases or preconceptions and instead rely on the data and analysis to draw conclusions.

Advantages of Research Paper

Research papers have many advantages, both for the individual researcher and for the broader academic and professional community. Here are some advantages of research papers:

  • Contribution to knowledge: Research papers contribute to the body of knowledge in a particular field or discipline. They add new information, insights, and perspectives to existing literature and help advance the understanding of a particular phenomenon or issue.
  • Opportunity for intellectual growth: Research papers provide an opportunity for intellectual growth for the researcher. They require critical thinking, problem-solving, and creativity, which can help develop the researcher’s skills and knowledge.
  • Career advancement: Research papers can help advance the researcher’s career by demonstrating their expertise and contributions to the field. They can also lead to new research opportunities, collaborations, and funding.
  • Academic recognition: Research papers can lead to academic recognition in the form of awards, grants, or invitations to speak at conferences or events. They can also contribute to the researcher’s reputation and standing in the field.
  • Impact on policy and practice: Research papers can have a significant impact on policy and practice. They can inform policy decisions, guide practice, and lead to changes in laws, regulations, or procedures.
  • Advancement of society: Research papers can contribute to the advancement of society by addressing important issues, identifying solutions to problems, and promoting social justice and equality.

Limitations of Research Paper

Research papers also have some limitations that should be considered when interpreting their findings or implications. Here are some common limitations of research papers:

  • Limited generalizability: Research findings may not be generalizable to other populations, settings, or contexts. Studies often use specific samples or conditions that may not reflect the broader population or real-world situations.
  • Potential for bias : Research papers may be biased due to factors such as sample selection, measurement errors, or researcher biases. It is important to evaluate the quality of the research design and methods used to ensure that the findings are valid and reliable.
  • Ethical concerns: Research papers may raise ethical concerns, such as the use of vulnerable populations or invasive procedures. Researchers must adhere to ethical guidelines and obtain informed consent from participants to ensure that the research is conducted in a responsible and respectful manner.
  • Limitations of methodology: Research papers may be limited by the methodology used to collect and analyze data. For example, certain research methods may not capture the complexity or nuance of a particular phenomenon, or may not be appropriate for certain research questions.
  • Publication bias: Research papers may be subject to publication bias, where positive or significant findings are more likely to be published than negative or non-significant findings. This can skew the overall findings of a particular area of research.
  • Time and resource constraints: Research papers may be limited by time and resource constraints, which can affect the quality and scope of the research. Researchers may not have access to certain data or resources, or may be unable to conduct long-term studies due to practical limitations.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Research Project

Research Project – Definition, Writing Guide and...

What is a Hypothesis

What is a Hypothesis – Types, Examples and...

Conceptual Framework

Conceptual Framework – Types, Methodology and...

Limitations in Research

Limitations in Research – Types, Examples and...

Data Verification

Data Verification – Process, Types and Examples

Literature Review

Literature Review – Types Writing Guide and...

Research report guide: Definition, types, and tips

Last updated

5 March 2024

Reviewed by

Short on time? Get an AI generated summary of this article instead

From successful product launches or software releases to planning major business decisions, research reports serve many vital functions. They can summarize evidence and deliver insights and recommendations to save companies time and resources. They can reveal the most value-adding actions a company should take.

However, poorly constructed reports can have the opposite effect! Taking the time to learn established research-reporting rules and approaches will equip you with in-demand skills. You’ll be able to capture and communicate information applicable to numerous situations and industries, adding another string to your resume bow.

  • What are research reports?

A research report is a collection of contextual data, gathered through organized research, that provides new insights into a particular challenge (which, for this article, is business-related). Research reports are a time-tested method for distilling large amounts of data into a narrow band of focus.

Their effectiveness often hinges on whether the report provides:

Strong, well-researched evidence

Comprehensive analysis

Well-considered conclusions and recommendations

Though the topic possibilities are endless, an effective research report keeps a laser-like focus on the specific questions or objectives the researcher believes are key to achieving success. Many research reports begin as research proposals, which usually include the need for a report to capture the findings of the study and recommend a course of action.

A description of the research method used, e.g., qualitative, quantitative, or other

Statistical analysis

Causal (or explanatory) research (i.e., research identifying relationships between two variables)

Inductive research, also known as ‘theory-building’

Deductive research, such as that used to test theories

Action research, where the research is actively used to drive change

  • Importance of a research report

Research reports can unify and direct a company's focus toward the most appropriate strategic action. Of course, spending resources on a report takes up some of the company's human and financial resources. Choosing when a report is called for is a matter of judgment and experience.

Some development models used heavily in the engineering world, such as Waterfall development, are notorious for over-relying on research reports. With Waterfall development, there is a linear progression through each step of a project, and each stage is precisely documented and reported on before moving to the next.

The pace of the business world is faster than the speed at which your authors can produce and disseminate reports. So how do companies strike the right balance between creating and acting on research reports?

The answer lies, again, in the report's defined objectives. By paring down your most pressing interests and those of your stakeholders, your research and reporting skills will be the lenses that keep your company's priorities in constant focus.

Honing your company's primary objectives can save significant amounts of time and align research and reporting efforts with ever-greater precision.

Some examples of well-designed research objectives are:

Proving whether or not a product or service meets customer expectations

Demonstrating the value of a service, product, or business process to your stakeholders and investors

Improving business decision-making when faced with a lack of time or other constraints

Clarifying the relationship between a critical cause and effect for problematic business processes

Prioritizing the development of a backlog of products or product features

Comparing business or production strategies

Evaluating past decisions and predicting future outcomes

  • Features of a research report

Research reports generally require a research design phase, where the report author(s) determine the most important elements the report must contain.

Just as there are various kinds of research, there are many types of reports.

Here are the standard elements of almost any research-reporting format:

Report summary. A broad but comprehensive overview of what readers will learn in the full report. Summaries are usually no more than one or two paragraphs and address all key elements of the report. Think of the key takeaways your primary stakeholders will want to know if they don’t have time to read the full document.

Introduction. Include a brief background of the topic, the type of research, and the research sample. Consider the primary goal of the report, who is most affected, and how far along the company is in meeting its objectives.

Methods. A description of how the researcher carried out data collection, analysis, and final interpretations of the data. Include the reasons for choosing a particular method. The methods section should strike a balance between clearly presenting the approach taken to gather data and discussing how it is designed to achieve the report's objectives.

Data analysis. This section contains interpretations that lead readers through the results relevant to the report's thesis. If there were unexpected results, include here a discussion on why that might be. Charts, calculations, statistics, and other supporting information also belong here (or, if lengthy, as an appendix). This should be the most detailed section of the research report, with references for further study. Present the information in a logical order, whether chronologically or in order of importance to the report's objectives.

Conclusion. This should be written with sound reasoning, often containing useful recommendations. The conclusion must be backed by a continuous thread of logic throughout the report.

  • How to write a research paper

With a clear outline and robust pool of research, a research paper can start to write itself, but what's a good way to start a research report?

Research report examples are often the quickest way to gain inspiration for your report. Look for the types of research reports most relevant to your industry and consider which makes the most sense for your data and goals.

The research report outline will help you organize the elements of your report. One of the most time-tested report outlines is the IMRaD structure:

Introduction

...and Discussion

Pay close attention to the most well-established research reporting format in your industry, and consider your tone and language from your audience's perspective. Learn the key terms inside and out; incorrect jargon could easily harm the perceived authority of your research paper.

Along with a foundation in high-quality research and razor-sharp analysis, the most effective research reports will also demonstrate well-developed:

Internal logic

Narrative flow

Conclusions and recommendations

Readability, striking a balance between simple phrasing and technical insight

How to gather research data for your report

The validity of research data is critical. Because the research phase usually occurs well before the writing phase, you normally have plenty of time to vet your data.

However, research reports could involve ongoing research, where report authors (sometimes the researchers themselves) write portions of the report alongside ongoing research.

One such research-report example would be an R&D department that knows its primary stakeholders are eager to learn about a lengthy work in progress and any potentially important outcomes.

However you choose to manage the research and reporting, your data must meet robust quality standards before you can rely on it. Vet any research with the following questions in mind:

Does it use statistically valid analysis methods?

Do the researchers clearly explain their research, analysis, and sampling methods?

Did the researchers provide any caveats or advice on how to interpret their data?

Have you gathered the data yourself or were you in close contact with those who did?

Is the source biased?

Usually, flawed research methods become more apparent the further you get through a research report.

It's perfectly natural for good research to raise new questions, but the reader should have no uncertainty about what the data represents. There should be no doubt about matters such as:

Whether the sampling or analysis methods were based on sound and consistent logic

What the research samples are and where they came from

The accuracy of any statistical functions or equations

Validation of testing and measuring processes

When does a report require design validation?

A robust design validation process is often a gold standard in highly technical research reports. Design validation ensures the objects of a study are measured accurately, which lends more weight to your report and makes it valuable to more specialized industries.

Product development and engineering projects are the most common research-report examples that typically involve a design validation process. Depending on the scope and complexity of your research, you might face additional steps to validate your data and research procedures.

If you’re including design validation in the report (or report proposal), explain and justify your data-collection processes. Good design validation builds greater trust in a research report and lends more weight to its conclusions.

Choosing the right analysis method

Just as the quality of your report depends on properly validated research, a useful conclusion requires the most contextually relevant analysis method. This means comparing different statistical methods and choosing the one that makes the most sense for your research.

Most broadly, research analysis comes down to quantitative or qualitative methods (respectively: measurable by a number vs subjectively qualified values). There are also mixed research methods, which bridge the need for merging hard data with qualified assessments and still reach a cohesive set of conclusions.

Some of the most common analysis methods in research reports include:

Significance testing (aka hypothesis analysis), which compares test and control groups to determine how likely the data was the result of random chance.

Regression analysis , to establish relationships between variables, control for extraneous variables , and support correlation analysis.

Correlation analysis (aka bivariate testing), a method to identify and determine the strength of linear relationships between variables. It’s effective for detecting patterns from complex data, but care must be exercised to not confuse correlation with causation.

With any analysis method, it's important to justify which method you chose in the report. You should also provide estimates of the statistical accuracy (e.g., the p-value or confidence level of quantifiable data) of any data analysis.

This requires a commitment to the report's primary aim. For instance, this may be achieving a certain level of customer satisfaction by analyzing the cause and effect of changes to how service is delivered. Even better, use statistical analysis to calculate which change is most positively correlated with improved levels of customer satisfaction.

  • Tips for writing research reports

There's endless good advice for writing effective research reports, and it almost all depends on the subjective aims of the people behind the report. Due to the wide variety of research reports, the best tips will be unique to each author's purpose.

Consider the following research report tips in any order, and take note of the ones most relevant to you:

No matter how in depth or detailed your report might be, provide a well-considered, succinct summary. At the very least, give your readers a quick and effective way to get up to speed.

Pare down your target audience (e.g., other researchers, employees, laypersons, etc.), and adjust your voice for their background knowledge and interest levels

For all but the most open-ended research, clarify your objectives, both for yourself and within the report.

Leverage your team members’ talents to fill in any knowledge gaps you might have. Your team is only as good as the sum of its parts.

Justify why your research proposal’s topic will endure long enough to derive value from the finished report.

Consolidate all research and analysis functions onto a single user-friendly platform. There's no reason to settle for less than developer-grade tools suitable for non-developers.

What's the format of a research report?

The research-reporting format is how the report is structured—a framework the authors use to organize their data, conclusions, arguments, and recommendations. The format heavily determines how the report's outline develops, because the format dictates the overall structure and order of information (based on the report's goals and research objectives).

What's the purpose of a research-report outline?

A good report outline gives form and substance to the report's objectives, presenting the results in a readable, engaging way. For any research-report format, the outline should create momentum along a chain of logic that builds up to a conclusion or interpretation.

What's the difference between a research essay and a research report?

There are several key differences between research reports and essays:

Research report:

Ordered into separate sections

More commercial in nature

Often includes infographics

Heavily descriptive

More self-referential

Usually provides recommendations

Research essay

Does not rely on research report formatting

More academically minded

Normally text-only

Less detailed

Omits discussion of methods

Usually non-prescriptive 

Should you be using a customer insights hub?

Do you want to discover previous research faster?

Do you share your research findings with others?

Do you analyze research data?

Start for free today, add your research, and get to key insights faster

Editor’s picks

Last updated: 18 April 2023

Last updated: 27 February 2023

Last updated: 22 August 2024

Last updated: 5 February 2023

Last updated: 16 August 2024

Last updated: 9 March 2023

Last updated: 30 April 2024

Last updated: 12 December 2023

Last updated: 11 March 2024

Last updated: 4 July 2024

Last updated: 6 March 2024

Last updated: 5 March 2024

Last updated: 13 May 2024

Latest articles

Related topics, .css-je19u9{-webkit-align-items:flex-end;-webkit-box-align:flex-end;-ms-flex-align:flex-end;align-items:flex-end;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-flex-direction:row;-ms-flex-direction:row;flex-direction:row;-webkit-box-flex-wrap:wrap;-webkit-flex-wrap:wrap;-ms-flex-wrap:wrap;flex-wrap:wrap;-webkit-box-pack:center;-ms-flex-pack:center;-webkit-justify-content:center;justify-content:center;row-gap:0;text-align:center;max-width:671px;}@media (max-width: 1079px){.css-je19u9{max-width:400px;}.css-je19u9>span{white-space:pre;}}@media (max-width: 799px){.css-je19u9{max-width:400px;}.css-je19u9>span{white-space:pre;}} decide what to .css-1kiodld{max-height:56px;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;}@media (max-width: 1079px){.css-1kiodld{display:none;}} build next, decide what to build next, log in or sign up.

Get started for free

Uncomplicated Reviews of Educational Research Methods

  • Writing a Research Report

.pdf version of this page

This review covers the basic elements of a research report. This is a general guide for what you will see in journal articles or dissertations. This format assumes a mixed methods study, but you can leave out either quantitative or qualitative sections if you only used a single methodology.

This review is divided into sections for easy reference. There are five MAJOR parts of a Research Report:

1.    Introduction 2.    Review of Literature 3.    Methods 4.    Results 5.    Discussion

As a general guide, the Introduction, Review of Literature, and Methods should be about 1/3 of your paper, Discussion 1/3, then Results 1/3.

Section 1 : Cover Sheet (APA format cover sheet) optional, if required.

Section 2: Abstract (a basic summary of the report, including sample, treatment, design, results, and implications) (≤ 150 words) optional, if required.

Section 3 : Introduction (1-3 paragraphs) •    Basic introduction •    Supportive statistics (can be from periodicals) •    Statement of Purpose •    Statement of Significance

Section 4 : Research question(s) or hypotheses •    An overall research question (optional) •    A quantitative-based (hypotheses) •    A qualitative-based (research questions) Note: You will generally have more than one, especially if using hypotheses.

Section 5: Review of Literature ▪    Should be organized by subheadings ▪    Should adequately support your study using supporting, related, and/or refuting evidence ▪    Is a synthesis, not a collection of individual summaries

Section 6: Methods ▪    Procedure: Describe data gathering or participant recruitment, including IRB approval ▪    Sample: Describe the sample or dataset, including basic demographics ▪    Setting: Describe the setting, if applicable (generally only in qualitative designs) ▪    Treatment: If applicable, describe, in detail, how you implemented the treatment ▪    Instrument: Describe, in detail, how you implemented the instrument; Describe the reliability and validity associated with the instrument ▪    Data Analysis: Describe type of procedure (t-test, interviews, etc.) and software (if used)

Section 7: Results ▪    Restate Research Question 1 (Quantitative) ▪    Describe results ▪    Restate Research Question 2 (Qualitative) ▪    Describe results

Section 8: Discussion ▪    Restate Overall Research Question ▪    Describe how the results, when taken together, answer the overall question ▪    ***Describe how the results confirm or contrast the literature you reviewed

Section 9: Recommendations (if applicable, generally related to practice)

Section 10: Limitations ▪    Discuss, in several sentences, the limitations of this study. ▪    Research Design (overall, then info about the limitations of each separately) ▪    Sample ▪    Instrument/s ▪    Other limitations

Section 11: Conclusion (A brief closing summary)

Section 12: References (APA format)

Share this:

About research rundowns.

Research Rundowns was made possible by support from the Dewar College of Education at Valdosta State University .

  • Experimental Design
  • What is Educational Research?
  • Writing Research Questions
  • Mixed Methods Research Designs
  • Qualitative Coding & Analysis
  • Qualitative Research Design
  • Correlation
  • Effect Size
  • Instrument, Validity, Reliability
  • Mean & Standard Deviation
  • Significance Testing (t-tests)
  • Steps 1-4: Finding Research
  • Steps 5-6: Analyzing & Organizing
  • Steps 7-9: Citing & Writing

Create a free website or blog at WordPress.com.

' src=

  • Already have a WordPress.com account? Log in now.
  • Subscribe Subscribed
  • Copy shortlink
  • Report this content
  • View post in Reader
  • Manage subscriptions
  • Collapse this bar

research paper and reports

How To Write A Research Paper

Step-By-Step Tutorial With Examples + FREE Template

By: Derek Jansen (MBA) | Expert Reviewer: Dr Eunice Rautenbach | March 2024

For many students, crafting a strong research paper from scratch can feel like a daunting task – and rightly so! In this post, we’ll unpack what a research paper is, what it needs to do , and how to write one – in three easy steps. 🙂 

Overview: Writing A Research Paper

What (exactly) is a research paper.

  • How to write a research paper
  • Stage 1 : Topic & literature search
  • Stage 2 : Structure & outline
  • Stage 3 : Iterative writing
  • Key takeaways

Let’s start by asking the most important question, “ What is a research paper? ”.

Simply put, a research paper is a scholarly written work where the writer (that’s you!) answers a specific question (this is called a research question ) through evidence-based arguments . Evidence-based is the keyword here. In other words, a research paper is different from an essay or other writing assignments that draw from the writer’s personal opinions or experiences. With a research paper, it’s all about building your arguments based on evidence (we’ll talk more about that evidence a little later).

Now, it’s worth noting that there are many different types of research papers , including analytical papers (the type I just described), argumentative papers, and interpretative papers. Here, we’ll focus on analytical papers , as these are some of the most common – but if you’re keen to learn about other types of research papers, be sure to check out the rest of the blog .

With that basic foundation laid, let’s get down to business and look at how to write a research paper .

Research Paper Template

Overview: The 3-Stage Process

While there are, of course, many potential approaches you can take to write a research paper, there are typically three stages to the writing process. So, in this tutorial, we’ll present a straightforward three-step process that we use when working with students at Grad Coach.

These three steps are:

  • Finding a research topic and reviewing the existing literature
  • Developing a provisional structure and outline for your paper, and
  • Writing up your initial draft and then refining it iteratively

Let’s dig into each of these.

Need a helping hand?

research paper and reports

Step 1: Find a topic and review the literature

As we mentioned earlier, in a research paper, you, as the researcher, will try to answer a question . More specifically, that’s called a research question , and it sets the direction of your entire paper. What’s important to understand though is that you’ll need to answer that research question with the help of high-quality sources – for example, journal articles, government reports, case studies, and so on. We’ll circle back to this in a minute.

The first stage of the research process is deciding on what your research question will be and then reviewing the existing literature (in other words, past studies and papers) to see what they say about that specific research question. In some cases, your professor may provide you with a predetermined research question (or set of questions). However, in many cases, you’ll need to find your own research question within a certain topic area.

Finding a strong research question hinges on identifying a meaningful research gap – in other words, an area that’s lacking in existing research. There’s a lot to unpack here, so if you wanna learn more, check out the plain-language explainer video below.

Once you’ve figured out which question (or questions) you’ll attempt to answer in your research paper, you’ll need to do a deep dive into the existing literature – this is called a “ literature search ”. Again, there are many ways to go about this, but your most likely starting point will be Google Scholar .

If you’re new to Google Scholar, think of it as Google for the academic world. You can start by simply entering a few different keywords that are relevant to your research question and it will then present a host of articles for you to review. What you want to pay close attention to here is the number of citations for each paper – the more citations a paper has, the more credible it is (generally speaking – there are some exceptions, of course).

how to use google scholar

Ideally, what you’re looking for are well-cited papers that are highly relevant to your topic. That said, keep in mind that citations are a cumulative metric , so older papers will often have more citations than newer papers – just because they’ve been around for longer. So, don’t fixate on this metric in isolation – relevance and recency are also very important.

Beyond Google Scholar, you’ll also definitely want to check out academic databases and aggregators such as Science Direct, PubMed, JStor and so on. These will often overlap with the results that you find in Google Scholar, but they can also reveal some hidden gems – so, be sure to check them out.

Once you’ve worked your way through all the literature, you’ll want to catalogue all this information in some sort of spreadsheet so that you can easily recall who said what, when and within what context. If you’d like, we’ve got a free literature spreadsheet that helps you do exactly that.

Don’t fixate on an article’s citation count in isolation - relevance (to your research question) and recency are also very important.

Step 2: Develop a structure and outline

With your research question pinned down and your literature digested and catalogued, it’s time to move on to planning your actual research paper .

It might sound obvious, but it’s really important to have some sort of rough outline in place before you start writing your paper. So often, we see students eagerly rushing into the writing phase, only to land up with a disjointed research paper that rambles on in multiple

Now, the secret here is to not get caught up in the fine details . Realistically, all you need at this stage is a bullet-point list that describes (in broad strokes) what you’ll discuss and in what order. It’s also useful to remember that you’re not glued to this outline – in all likelihood, you’ll chop and change some sections once you start writing, and that’s perfectly okay. What’s important is that you have some sort of roadmap in place from the start.

You need to have a rough outline in place before you start writing your paper - or you’ll end up with a disjointed research paper that rambles on.

At this stage you might be wondering, “ But how should I structure my research paper? ”. Well, there’s no one-size-fits-all solution here, but in general, a research paper will consist of a few relatively standardised components:

  • Introduction
  • Literature review
  • Methodology

Let’s take a look at each of these.

First up is the introduction section . As the name suggests, the purpose of the introduction is to set the scene for your research paper. There are usually (at least) four ingredients that go into this section – these are the background to the topic, the research problem and resultant research question , and the justification or rationale. If you’re interested, the video below unpacks the introduction section in more detail. 

The next section of your research paper will typically be your literature review . Remember all that literature you worked through earlier? Well, this is where you’ll present your interpretation of all that content . You’ll do this by writing about recent trends, developments, and arguments within the literature – but more specifically, those that are relevant to your research question . The literature review can oftentimes seem a little daunting, even to seasoned researchers, so be sure to check out our extensive collection of literature review content here .

With the introduction and lit review out of the way, the next section of your paper is the research methodology . In a nutshell, the methodology section should describe to your reader what you did (beyond just reviewing the existing literature) to answer your research question. For example, what data did you collect, how did you collect that data, how did you analyse that data and so on? For each choice, you’ll also need to justify why you chose to do it that way, and what the strengths and weaknesses of your approach were.

Now, it’s worth mentioning that for some research papers, this aspect of the project may be a lot simpler . For example, you may only need to draw on secondary sources (in other words, existing data sets). In some cases, you may just be asked to draw your conclusions from the literature search itself (in other words, there may be no data analysis at all). But, if you are required to collect and analyse data, you’ll need to pay a lot of attention to the methodology section. The video below provides an example of what the methodology section might look like.

By this stage of your paper, you will have explained what your research question is, what the existing literature has to say about that question, and how you analysed additional data to try to answer your question. So, the natural next step is to present your analysis of that data . This section is usually called the “results” or “analysis” section and this is where you’ll showcase your findings.

Depending on your school’s requirements, you may need to present and interpret the data in one section – or you might split the presentation and the interpretation into two sections. In the latter case, your “results” section will just describe the data, and the “discussion” is where you’ll interpret that data and explicitly link your analysis back to your research question. If you’re not sure which approach to take, check in with your professor or take a look at past papers to see what the norms are for your programme.

Alright – once you’ve presented and discussed your results, it’s time to wrap it up . This usually takes the form of the “ conclusion ” section. In the conclusion, you’ll need to highlight the key takeaways from your study and close the loop by explicitly answering your research question. Again, the exact requirements here will vary depending on your programme (and you may not even need a conclusion section at all) – so be sure to check with your professor if you’re unsure.

Step 3: Write and refine

Finally, it’s time to get writing. All too often though, students hit a brick wall right about here… So, how do you avoid this happening to you?

Well, there’s a lot to be said when it comes to writing a research paper (or any sort of academic piece), but we’ll share three practical tips to help you get started.

First and foremost , it’s essential to approach your writing as an iterative process. In other words, you need to start with a really messy first draft and then polish it over multiple rounds of editing. Don’t waste your time trying to write a perfect research paper in one go. Instead, take the pressure off yourself by adopting an iterative approach.

Secondly , it’s important to always lean towards critical writing , rather than descriptive writing. What does this mean? Well, at the simplest level, descriptive writing focuses on the “ what ”, while critical writing digs into the “ so what ” – in other words, the implications . If you’re not familiar with these two types of writing, don’t worry! You can find a plain-language explanation here.

Last but not least, you’ll need to get your referencing right. Specifically, you’ll need to provide credible, correctly formatted citations for the statements you make. We see students making referencing mistakes all the time and it costs them dearly. The good news is that you can easily avoid this by using a simple reference manager . If you don’t have one, check out our video about Mendeley, an easy (and free) reference management tool that you can start using today.

Recap: Key Takeaways

We’ve covered a lot of ground here. To recap, the three steps to writing a high-quality research paper are:

  • To choose a research question and review the literature
  • To plan your paper structure and draft an outline
  • To take an iterative approach to writing, focusing on critical writing and strong referencing

Remember, this is just a b ig-picture overview of the research paper development process and there’s a lot more nuance to unpack. So, be sure to grab a copy of our free research paper template to learn more about how to write a research paper.

A.LKARYOUNI

Can you help me with a full paper template for this Abstract:

Background: Energy and sports drinks have gained popularity among diverse demographic groups, including adolescents, athletes, workers, and college students. While often used interchangeably, these beverages serve distinct purposes, with energy drinks aiming to boost energy and cognitive performance, and sports drinks designed to prevent dehydration and replenish electrolytes and carbohydrates lost during physical exertion.

Objective: To assess the nutritional quality of energy and sports drinks in Egypt.

Material and Methods: A cross-sectional study assessed the nutrient contents, including energy, sugar, electrolytes, vitamins, and caffeine, of sports and energy drinks available in major supermarkets in Cairo, Alexandria, and Giza, Egypt. Data collection involved photographing all relevant product labels and recording nutritional information. Descriptive statistics and appropriate statistical tests were employed to analyze and compare the nutritional values of energy and sports drinks.

Results: The study analyzed 38 sports drinks and 42 energy drinks. Sports drinks were significantly more expensive than energy drinks, with higher net content and elevated magnesium, potassium, and vitamin C. Energy drinks contained higher concentrations of caffeine, sugars, and vitamins B2, B3, and B6.

Conclusion: Significant nutritional differences exist between sports and energy drinks, reflecting their intended uses. However, these beverages’ high sugar content and calorie loads raise health concerns. Proper labeling, public awareness, and responsible marketing are essential to guide safe consumption practices in Egypt.

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly
  • Academic Skills
  • Reading, writing and referencing

Research reports

This resource will help you identify the common elements and basic format of a research report.

Research reports generally follow a similar structure and have common elements, each with a particular purpose. Learn more about each of these elements below.

Common elements of reports

Your title should be brief, topic-specific, and informative, clearly indicating the purpose and scope of your study. Include key words in your title so that search engines can easily access your work. For example:  Measurement of water around Station Pier.

An abstract is a concise summary that helps readers to quickly assess the content and direction of your paper. It should be brief, written in a single paragraph and cover: the scope and purpose of your report; an overview of methodology; a summary of the main findings or results; principal conclusions or significance of the findings; and recommendations made.

The information in the abstract must be presented in the same order as it is in your report. The abstract is usually written last when you have developed your arguments and synthesised the results.

The introduction creates the context for your research. It should provide sufficient background to allow the reader to understand and evaluate your study without needing to refer to previous publications. After reading the introduction your reader should understand exactly what your research is about, what you plan to do, why you are undertaking this research and which methods you have used. Introductions generally include:

  • The rationale for the present study. Why are you interested in this topic? Why is this topic worth investigating?
  • Key terms and definitions.
  • An outline of the research questions and hypotheses; the assumptions or propositions that your research will test.

Not all research reports have a separate literature review section. In shorter research reports, the review is usually part of the Introduction.

A literature review is a critical survey of recent relevant research in a particular field. The review should be a selection of carefully organised, focused and relevant literature that develops a narrative ‘story’ about your topic. Your review should answer key questions about the literature:

  • What is the current state of knowledge on the topic?
  • What differences in approaches / methodologies are there?
  • Where are the strengths and weaknesses of the research?
  • What further research is needed? The review may identify a gap in the literature which provides a rationale for your study and supports your research questions and methodology.

The review is not just a summary of all you have read. Rather, it must develop an argument or a point of view that supports your chosen methodology and research questions.

The purpose of this section is to detail how you conducted your research so that others can understand and replicate your approach.

You need to briefly describe the subjects (if appropriate), any equipment or materials used and the approach taken. If the research method or method of data analysis is commonly used within your field of study, then simply reference the procedure. If, however, your methods are new or controversial then you need to describe them in more detail and provide a rationale for your approach. The methodology is written in the past tense and should be as concise as possible.

This section is a concise, factual summary of your findings, listed under headings appropriate to your research questions. It’s common to use tables and graphics. Raw data or details about the method of statistical analysis used should be included in the Appendices.

Present your results in a consistent manner. For example, if you present the first group of results as percentages, it will be confusing for the reader and difficult to make comparisons of data if later results are presented as fractions or as decimal values.

In general, you won’t discuss your results here. Any analysis of your results usually occurs in the Discussion section.

Notes on visual data representation:

  • Graphs and tables may be used to reveal trends in your data, but they must be explained and referred to in adjacent accompanying text.
  • Figures and tables do not simply repeat information given in the text: they summarise, amplify or complement it.
  • Graphs are always referred to as ‘Figures’, and both axes must be clearly labelled.
  • Tables must be numbered, and they must be able to stand-alone or make sense without your reader needing to read all of the accompanying text.

The Discussion responds to the hypothesis or research question. This section is where you interpret your results, account for your findings and explain their significance within the context of other research. Consider the adequacy of your sampling techniques, the scope and long-term implications of your study, any problems with data collection or analysis and any assumptions on which your study was based. This is also the place to discuss any disappointing results and address limitations.

Checklist for the discussion

  • To what extent was each hypothesis supported?
  • To what extent are your findings validated or supported by other research?
  • Were there unexpected variables that affected your results?
  • On reflection, was your research method appropriate?
  • Can you account for any differences between your results and other studies?

Conclusions in research reports are generally fairly short and should follow on naturally from points raised in the Discussion. In this section you should discuss the significance of your findings. To what extent and in what ways are your findings useful or conclusive? Is further research required? If so, based on your research experience, what suggestions could you make about improvements to the scope or methodology of future studies?

Also, consider the practical implications of your results and any recommendations you could make. For example, if your research is on reading strategies in the primary school classroom, what are the implications of your results for the classroom teacher? What recommendations could you make for teachers?

A Reference List contains all the resources you have cited in your work, while a Bibliography is a wider list containing all the resources you have consulted (but not necessarily cited) in the preparation of your work. It is important to check which of these is required, and the preferred format, style of references and presentation requirements of your own department.

Appendices (singular ‘Appendix’) provide supporting material to your project. Examples of such materials include:

  • Relevant letters to participants and organisations (e.g. regarding the ethics or conduct of the project).
  • Background reports.
  • Detailed calculations.

Different types of data are presented in separate appendices. Each appendix must be titled, labelled with a number or letter, and referred to in the body of the report.

Appendices are placed at the end of a report, and the contents are generally not included in the word count.

Fi nal ti p

While there are many common elements to research reports, it’s always best to double check the exact requirements for your task. You may find that you don’t need some sections, can combine others or have specific requirements about referencing, formatting or word limits.

Two people looking over study materials

Looking for one-on-one advice?

Get tailored advice from an Academic Skills Adviser by booking an Individual appointment, or get quick feedback from one of our Academic Writing Mentors via email through our Writing advice service.

Go to Student appointments

How to Write and Publish a Research Paper for a Peer-Reviewed Journal

  • Open access
  • Published: 30 April 2020
  • Volume 36 , pages 909–913, ( 2021 )

Cite this article

You have full access to this open access article

research paper and reports

  • Clara Busse   ORCID: orcid.org/0000-0002-0178-1000 1 &
  • Ella August   ORCID: orcid.org/0000-0001-5151-1036 1 , 2  

281k Accesses

16 Citations

709 Altmetric

Explore all metrics

Communicating research findings is an essential step in the research process. Often, peer-reviewed journals are the forum for such communication, yet many researchers are never taught how to write a publishable scientific paper. In this article, we explain the basic structure of a scientific paper and describe the information that should be included in each section. We also identify common pitfalls for each section and recommend strategies to avoid them. Further, we give advice about target journal selection and authorship. In the online resource 1 , we provide an example of a high-quality scientific paper, with annotations identifying the elements we describe in this article.

Similar content being viewed by others

research paper and reports

How to Choose the Right Journal

research paper and reports

The Point Is…to Publish?

research paper and reports

Writing and publishing a scientific paper

Explore related subjects.

  • Artificial Intelligence

Avoid common mistakes on your manuscript.

Introduction

Writing a scientific paper is an important component of the research process, yet researchers often receive little formal training in scientific writing. This is especially true in low-resource settings. In this article, we explain why choosing a target journal is important, give advice about authorship, provide a basic structure for writing each section of a scientific paper, and describe common pitfalls and recommendations for each section. In the online resource 1 , we also include an annotated journal article that identifies the key elements and writing approaches that we detail here. Before you begin your research, make sure you have ethical clearance from all relevant ethical review boards.

Select a Target Journal Early in the Writing Process

We recommend that you select a “target journal” early in the writing process; a “target journal” is the journal to which you plan to submit your paper. Each journal has a set of core readers and you should tailor your writing to this readership. For example, if you plan to submit a manuscript about vaping during pregnancy to a pregnancy-focused journal, you will need to explain what vaping is because readers of this journal may not have a background in this topic. However, if you were to submit that same article to a tobacco journal, you would not need to provide as much background information about vaping.

Information about a journal’s core readership can be found on its website, usually in a section called “About this journal” or something similar. For example, the Journal of Cancer Education presents such information on the “Aims and Scope” page of its website, which can be found here: https://www.springer.com/journal/13187/aims-and-scope .

Peer reviewer guidelines from your target journal are an additional resource that can help you tailor your writing to the journal and provide additional advice about crafting an effective article [ 1 ]. These are not always available, but it is worth a quick web search to find out.

Identify Author Roles Early in the Process

Early in the writing process, identify authors, determine the order of authors, and discuss the responsibilities of each author. Standard author responsibilities have been identified by The International Committee of Medical Journal Editors (ICMJE) [ 2 ]. To set clear expectations about each team member’s responsibilities and prevent errors in communication, we also suggest outlining more detailed roles, such as who will draft each section of the manuscript, write the abstract, submit the paper electronically, serve as corresponding author, and write the cover letter. It is best to formalize this agreement in writing after discussing it, circulating the document to the author team for approval. We suggest creating a title page on which all authors are listed in the agreed-upon order. It may be necessary to adjust authorship roles and order during the development of the paper. If a new author order is agreed upon, be sure to update the title page in the manuscript draft.

In the case where multiple papers will result from a single study, authors should discuss who will author each paper. Additionally, authors should agree on a deadline for each paper and the lead author should take responsibility for producing an initial draft by this deadline.

Structure of the Introduction Section

The introduction section should be approximately three to five paragraphs in length. Look at examples from your target journal to decide the appropriate length. This section should include the elements shown in Fig.  1 . Begin with a general context, narrowing to the specific focus of the paper. Include five main elements: why your research is important, what is already known about the topic, the “gap” or what is not yet known about the topic, why it is important to learn the new information that your research adds, and the specific research aim(s) that your paper addresses. Your research aim should address the gap you identified. Be sure to add enough background information to enable readers to understand your study. Table 1 provides common introduction section pitfalls and recommendations for addressing them.

figure 1

The main elements of the introduction section of an original research article. Often, the elements overlap

Methods Section

The purpose of the methods section is twofold: to explain how the study was done in enough detail to enable its replication and to provide enough contextual detail to enable readers to understand and interpret the results. In general, the essential elements of a methods section are the following: a description of the setting and participants, the study design and timing, the recruitment and sampling, the data collection process, the dataset, the dependent and independent variables, the covariates, the analytic approach for each research objective, and the ethical approval. The hallmark of an exemplary methods section is the justification of why each method was used. Table 2 provides common methods section pitfalls and recommendations for addressing them.

Results Section

The focus of the results section should be associations, or lack thereof, rather than statistical tests. Two considerations should guide your writing here. First, the results should present answers to each part of the research aim. Second, return to the methods section to ensure that the analysis and variables for each result have been explained.

Begin the results section by describing the number of participants in the final sample and details such as the number who were approached to participate, the proportion who were eligible and who enrolled, and the number of participants who dropped out. The next part of the results should describe the participant characteristics. After that, you may organize your results by the aim or by putting the most exciting results first. Do not forget to report your non-significant associations. These are still findings.

Tables and figures capture the reader’s attention and efficiently communicate your main findings [ 3 ]. Each table and figure should have a clear message and should complement, rather than repeat, the text. Tables and figures should communicate all salient details necessary for a reader to understand the findings without consulting the text. Include information on comparisons and tests, as well as information about the sample and timing of the study in the title, legend, or in a footnote. Note that figures are often more visually interesting than tables, so if it is feasible to make a figure, make a figure. To avoid confusing the reader, either avoid abbreviations in tables and figures, or define them in a footnote. Note that there should not be citations in the results section and you should not interpret results here. Table 3 provides common results section pitfalls and recommendations for addressing them.

Discussion Section

Opposite the introduction section, the discussion should take the form of a right-side-up triangle beginning with interpretation of your results and moving to general implications (Fig.  2 ). This section typically begins with a restatement of the main findings, which can usually be accomplished with a few carefully-crafted sentences.

figure 2

Major elements of the discussion section of an original research article. Often, the elements overlap

Next, interpret the meaning or explain the significance of your results, lifting the reader’s gaze from the study’s specific findings to more general applications. Then, compare these study findings with other research. Are these findings in agreement or disagreement with those from other studies? Does this study impart additional nuance to well-accepted theories? Situate your findings within the broader context of scientific literature, then explain the pathways or mechanisms that might give rise to, or explain, the results.

Journals vary in their approach to strengths and limitations sections: some are embedded paragraphs within the discussion section, while some mandate separate section headings. Keep in mind that every study has strengths and limitations. Candidly reporting yours helps readers to correctly interpret your research findings.

The next element of the discussion is a summary of the potential impacts and applications of the research. Should these results be used to optimally design an intervention? Does the work have implications for clinical protocols or public policy? These considerations will help the reader to further grasp the possible impacts of the presented work.

Finally, the discussion should conclude with specific suggestions for future work. Here, you have an opportunity to illuminate specific gaps in the literature that compel further study. Avoid the phrase “future research is necessary” because the recommendation is too general to be helpful to readers. Instead, provide substantive and specific recommendations for future studies. Table 4 provides common discussion section pitfalls and recommendations for addressing them.

Follow the Journal’s Author Guidelines

After you select a target journal, identify the journal’s author guidelines to guide the formatting of your manuscript and references. Author guidelines will often (but not always) include instructions for titles, cover letters, and other components of a manuscript submission. Read the guidelines carefully. If you do not follow the guidelines, your article will be sent back to you.

Finally, do not submit your paper to more than one journal at a time. Even if this is not explicitly stated in the author guidelines of your target journal, it is considered inappropriate and unprofessional.

Your title should invite readers to continue reading beyond the first page [ 4 , 5 ]. It should be informative and interesting. Consider describing the independent and dependent variables, the population and setting, the study design, the timing, and even the main result in your title. Because the focus of the paper can change as you write and revise, we recommend you wait until you have finished writing your paper before composing the title.

Be sure that the title is useful for potential readers searching for your topic. The keywords you select should complement those in your title to maximize the likelihood that a researcher will find your paper through a database search. Avoid using abbreviations in your title unless they are very well known, such as SNP, because it is more likely that someone will use a complete word rather than an abbreviation as a search term to help readers find your paper.

After you have written a complete draft, use the checklist (Fig. 3 ) below to guide your revisions and editing. Additional resources are available on writing the abstract and citing references [ 5 ]. When you feel that your work is ready, ask a trusted colleague or two to read the work and provide informal feedback. The box below provides a checklist that summarizes the key points offered in this article.

figure 3

Checklist for manuscript quality

Data Availability

Michalek AM (2014) Down the rabbit hole…advice to reviewers. J Cancer Educ 29:4–5

Article   Google Scholar  

International Committee of Medical Journal Editors. Defining the role of authors and contributors: who is an author? http://www.icmje.org/recommendations/browse/roles-and-responsibilities/defining-the-role-of-authosrs-and-contributors.html . Accessed 15 January, 2020

Vetto JT (2014) Short and sweet: a short course on concise medical writing. J Cancer Educ 29(1):194–195

Brett M, Kording K (2017) Ten simple rules for structuring papers. PLoS ComputBiol. https://doi.org/10.1371/journal.pcbi.1005619

Lang TA (2017) Writing a better research article. J Public Health Emerg. https://doi.org/10.21037/jphe.2017.11.06

Download references

Acknowledgments

Ella August is grateful to the Sustainable Sciences Institute for mentoring her in training researchers on writing and publishing their research.

Code Availability

Not applicable.

Author information

Authors and affiliations.

Department of Maternal and Child Health, University of North Carolina Gillings School of Global Public Health, 135 Dauer Dr, 27599, Chapel Hill, NC, USA

Clara Busse & Ella August

Department of Epidemiology, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI, 48109-2029, USA

Ella August

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Ella August .

Ethics declarations

Conflicts of interests.

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

(PDF 362 kb)

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Busse, C., August, E. How to Write and Publish a Research Paper for a Peer-Reviewed Journal. J Canc Educ 36 , 909–913 (2021). https://doi.org/10.1007/s13187-020-01751-z

Download citation

Published : 30 April 2020

Issue Date : October 2021

DOI : https://doi.org/10.1007/s13187-020-01751-z

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Manuscripts
  • Scientific writing
  • Find a journal
  • Publish with us
  • Track your research

Logo for BCcampus Open Publishing

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

Chapter 11: Presenting Your Research

Writing a Research Report in American Psychological Association (APA) Style

Learning Objectives

  • Identify the major sections of an APA-style research report and the basic contents of each section.
  • Plan and write an effective APA-style research report.

In this section, we look at how to write an APA-style empirical research report , an article that presents the results of one or more new studies. Recall that the standard sections of an empirical research report provide a kind of outline. Here we consider each of these sections in detail, including what information it contains, how that information is formatted and organized, and tips for writing each section. At the end of this section is a sample APA-style research report that illustrates many of these principles.

Sections of a Research Report

Title page and abstract.

An APA-style research report begins with a  title page . The title is centred in the upper half of the page, with each important word capitalized. The title should clearly and concisely (in about 12 words or fewer) communicate the primary variables and research questions. This sometimes requires a main title followed by a subtitle that elaborates on the main title, in which case the main title and subtitle are separated by a colon. Here are some titles from recent issues of professional journals published by the American Psychological Association.

  • Sex Differences in Coping Styles and Implications for Depressed Mood
  • Effects of Aging and Divided Attention on Memory for Items and Their Contexts
  • Computer-Assisted Cognitive Behavioural Therapy for Child Anxiety: Results of a Randomized Clinical Trial
  • Virtual Driving and Risk Taking: Do Racing Games Increase Risk-Taking Cognitions, Affect, and Behaviour?

Below the title are the authors’ names and, on the next line, their institutional affiliation—the university or other institution where the authors worked when they conducted the research. As we have already seen, the authors are listed in an order that reflects their contribution to the research. When multiple authors have made equal contributions to the research, they often list their names alphabetically or in a randomly determined order.

In some areas of psychology, the titles of many empirical research reports are informal in a way that is perhaps best described as “cute.” They usually take the form of a play on words or a well-known expression that relates to the topic under study. Here are some examples from recent issues of the Journal Psychological Science .

  • “Smells Like Clean Spirit: Nonconscious Effects of Scent on Cognition and Behavior”
  • “Time Crawls: The Temporal Resolution of Infants’ Visual Attention”
  • “Scent of a Woman: Men’s Testosterone Responses to Olfactory Ovulation Cues”
  • “Apocalypse Soon?: Dire Messages Reduce Belief in Global Warming by Contradicting Just-World Beliefs”
  • “Serial vs. Parallel Processing: Sometimes They Look Like Tweedledum and Tweedledee but They Can (and Should) Be Distinguished”
  • “How Do I Love Thee? Let Me Count the Words: The Social Effects of Expressive Writing”

Individual researchers differ quite a bit in their preference for such titles. Some use them regularly, while others never use them. What might be some of the pros and cons of using cute article titles?

For articles that are being submitted for publication, the title page also includes an author note that lists the authors’ full institutional affiliations, any acknowledgments the authors wish to make to agencies that funded the research or to colleagues who commented on it, and contact information for the authors. For student papers that are not being submitted for publication—including theses—author notes are generally not necessary.

The  abstract  is a summary of the study. It is the second page of the manuscript and is headed with the word  Abstract . The first line is not indented. The abstract presents the research question, a summary of the method, the basic results, and the most important conclusions. Because the abstract is usually limited to about 200 words, it can be a challenge to write a good one.

Introduction

The  introduction  begins on the third page of the manuscript. The heading at the top of this page is the full title of the manuscript, with each important word capitalized as on the title page. The introduction includes three distinct subsections, although these are typically not identified by separate headings. The opening introduces the research question and explains why it is interesting, the literature review discusses relevant previous research, and the closing restates the research question and comments on the method used to answer it.

The Opening

The  opening , which is usually a paragraph or two in length, introduces the research question and explains why it is interesting. To capture the reader’s attention, researcher Daryl Bem recommends starting with general observations about the topic under study, expressed in ordinary language (not technical jargon)—observations that are about people and their behaviour (not about researchers or their research; Bem, 2003 [1] ). Concrete examples are often very useful here. According to Bem, this would be a poor way to begin a research report:

Festinger’s theory of cognitive dissonance received a great deal of attention during the latter part of the 20th century (p. 191)

The following would be much better:

The individual who holds two beliefs that are inconsistent with one another may feel uncomfortable. For example, the person who knows that he or she enjoys smoking but believes it to be unhealthy may experience discomfort arising from the inconsistency or disharmony between these two thoughts or cognitions. This feeling of discomfort was called cognitive dissonance by social psychologist Leon Festinger (1957), who suggested that individuals will be motivated to remove this dissonance in whatever way they can (p. 191).

After capturing the reader’s attention, the opening should go on to introduce the research question and explain why it is interesting. Will the answer fill a gap in the literature? Will it provide a test of an important theory? Does it have practical implications? Giving readers a clear sense of what the research is about and why they should care about it will motivate them to continue reading the literature review—and will help them make sense of it.

Breaking the Rules

Researcher Larry Jacoby reported several studies showing that a word that people see or hear repeatedly can seem more familiar even when they do not recall the repetitions—and that this tendency is especially pronounced among older adults. He opened his article with the following humourous anecdote:

A friend whose mother is suffering symptoms of Alzheimer’s disease (AD) tells the story of taking her mother to visit a nursing home, preliminary to her mother’s moving there. During an orientation meeting at the nursing home, the rules and regulations were explained, one of which regarded the dining room. The dining room was described as similar to a fine restaurant except that tipping was not required. The absence of tipping was a central theme in the orientation lecture, mentioned frequently to emphasize the quality of care along with the advantages of having paid in advance. At the end of the meeting, the friend’s mother was asked whether she had any questions. She replied that she only had one question: “Should I tip?” (Jacoby, 1999, p. 3)

Although both humour and personal anecdotes are generally discouraged in APA-style writing, this example is a highly effective way to start because it both engages the reader and provides an excellent real-world example of the topic under study.

The Literature Review

Immediately after the opening comes the  literature review , which describes relevant previous research on the topic and can be anywhere from several paragraphs to several pages in length. However, the literature review is not simply a list of past studies. Instead, it constitutes a kind of argument for why the research question is worth addressing. By the end of the literature review, readers should be convinced that the research question makes sense and that the present study is a logical next step in the ongoing research process.

Like any effective argument, the literature review must have some kind of structure. For example, it might begin by describing a phenomenon in a general way along with several studies that demonstrate it, then describing two or more competing theories of the phenomenon, and finally presenting a hypothesis to test one or more of the theories. Or it might describe one phenomenon, then describe another phenomenon that seems inconsistent with the first one, then propose a theory that resolves the inconsistency, and finally present a hypothesis to test that theory. In applied research, it might describe a phenomenon or theory, then describe how that phenomenon or theory applies to some important real-world situation, and finally suggest a way to test whether it does, in fact, apply to that situation.

Looking at the literature review in this way emphasizes a few things. First, it is extremely important to start with an outline of the main points that you want to make, organized in the order that you want to make them. The basic structure of your argument, then, should be apparent from the outline itself. Second, it is important to emphasize the structure of your argument in your writing. One way to do this is to begin the literature review by summarizing your argument even before you begin to make it. “In this article, I will describe two apparently contradictory phenomena, present a new theory that has the potential to resolve the apparent contradiction, and finally present a novel hypothesis to test the theory.” Another way is to open each paragraph with a sentence that summarizes the main point of the paragraph and links it to the preceding points. These opening sentences provide the “transitions” that many beginning researchers have difficulty with. Instead of beginning a paragraph by launching into a description of a previous study, such as “Williams (2004) found that…,” it is better to start by indicating something about why you are describing this particular study. Here are some simple examples:

Another example of this phenomenon comes from the work of Williams (2004).

Williams (2004) offers one explanation of this phenomenon.

An alternative perspective has been provided by Williams (2004).

We used a method based on the one used by Williams (2004).

Finally, remember that your goal is to construct an argument for why your research question is interesting and worth addressing—not necessarily why your favourite answer to it is correct. In other words, your literature review must be balanced. If you want to emphasize the generality of a phenomenon, then of course you should discuss various studies that have demonstrated it. However, if there are other studies that have failed to demonstrate it, you should discuss them too. Or if you are proposing a new theory, then of course you should discuss findings that are consistent with that theory. However, if there are other findings that are inconsistent with it, again, you should discuss them too. It is acceptable to argue that the  balance  of the research supports the existence of a phenomenon or is consistent with a theory (and that is usually the best that researchers in psychology can hope for), but it is not acceptable to  ignore contradictory evidence. Besides, a large part of what makes a research question interesting is uncertainty about its answer.

The Closing

The  closing  of the introduction—typically the final paragraph or two—usually includes two important elements. The first is a clear statement of the main research question or hypothesis. This statement tends to be more formal and precise than in the opening and is often expressed in terms of operational definitions of the key variables. The second is a brief overview of the method and some comment on its appropriateness. Here, for example, is how Darley and Latané (1968) [2] concluded the introduction to their classic article on the bystander effect:

These considerations lead to the hypothesis that the more bystanders to an emergency, the less likely, or the more slowly, any one bystander will intervene to provide aid. To test this proposition it would be necessary to create a situation in which a realistic “emergency” could plausibly occur. Each subject should also be blocked from communicating with others to prevent his getting information about their behaviour during the emergency. Finally, the experimental situation should allow for the assessment of the speed and frequency of the subjects’ reaction to the emergency. The experiment reported below attempted to fulfill these conditions. (p. 378)

Thus the introduction leads smoothly into the next major section of the article—the method section.

The  method section  is where you describe how you conducted your study. An important principle for writing a method section is that it should be clear and detailed enough that other researchers could replicate the study by following your “recipe.” This means that it must describe all the important elements of the study—basic demographic characteristics of the participants, how they were recruited, whether they were randomly assigned, how the variables were manipulated or measured, how counterbalancing was accomplished, and so on. At the same time, it should avoid irrelevant details such as the fact that the study was conducted in Classroom 37B of the Industrial Technology Building or that the questionnaire was double-sided and completed using pencils.

The method section begins immediately after the introduction ends with the heading “Method” (not “Methods”) centred on the page. Immediately after this is the subheading “Participants,” left justified and in italics. The participants subsection indicates how many participants there were, the number of women and men, some indication of their age, other demographics that may be relevant to the study, and how they were recruited, including any incentives given for participation.

Three ways of organizing an APA-style method. Long description available.

After the participants section, the structure can vary a bit. Figure 11.1 shows three common approaches. In the first, the participants section is followed by a design and procedure subsection, which describes the rest of the method. This works well for methods that are relatively simple and can be described adequately in a few paragraphs. In the second approach, the participants section is followed by separate design and procedure subsections. This works well when both the design and the procedure are relatively complicated and each requires multiple paragraphs.

What is the difference between design and procedure? The design of a study is its overall structure. What were the independent and dependent variables? Was the independent variable manipulated, and if so, was it manipulated between or within subjects? How were the variables operationally defined? The procedure is how the study was carried out. It often works well to describe the procedure in terms of what the participants did rather than what the researchers did. For example, the participants gave their informed consent, read a set of instructions, completed a block of four practice trials, completed a block of 20 test trials, completed two questionnaires, and were debriefed and excused.

In the third basic way to organize a method section, the participants subsection is followed by a materials subsection before the design and procedure subsections. This works well when there are complicated materials to describe. This might mean multiple questionnaires, written vignettes that participants read and respond to, perceptual stimuli, and so on. The heading of this subsection can be modified to reflect its content. Instead of “Materials,” it can be “Questionnaires,” “Stimuli,” and so on.

The  results section  is where you present the main results of the study, including the results of the statistical analyses. Although it does not include the raw data—individual participants’ responses or scores—researchers should save their raw data and make them available to other researchers who request them. Several journals now encourage the open sharing of raw data online.

Although there are no standard subsections, it is still important for the results section to be logically organized. Typically it begins with certain preliminary issues. One is whether any participants or responses were excluded from the analyses and why. The rationale for excluding data should be described clearly so that other researchers can decide whether it is appropriate. A second preliminary issue is how multiple responses were combined to produce the primary variables in the analyses. For example, if participants rated the attractiveness of 20 stimulus people, you might have to explain that you began by computing the mean attractiveness rating for each participant. Or if they recalled as many items as they could from study list of 20 words, did you count the number correctly recalled, compute the percentage correctly recalled, or perhaps compute the number correct minus the number incorrect? A third preliminary issue is the reliability of the measures. This is where you would present test-retest correlations, Cronbach’s α, or other statistics to show that the measures are consistent across time and across items. A final preliminary issue is whether the manipulation was successful. This is where you would report the results of any manipulation checks.

The results section should then tackle the primary research questions, one at a time. Again, there should be a clear organization. One approach would be to answer the most general questions and then proceed to answer more specific ones. Another would be to answer the main question first and then to answer secondary ones. Regardless, Bem (2003) [3] suggests the following basic structure for discussing each new result:

  • Remind the reader of the research question.
  • Give the answer to the research question in words.
  • Present the relevant statistics.
  • Qualify the answer if necessary.
  • Summarize the result.

Notice that only Step 3 necessarily involves numbers. The rest of the steps involve presenting the research question and the answer to it in words. In fact, the basic results should be clear even to a reader who skips over the numbers.

The  discussion  is the last major section of the research report. Discussions usually consist of some combination of the following elements:

  • Summary of the research
  • Theoretical implications
  • Practical implications
  • Limitations
  • Suggestions for future research

The discussion typically begins with a summary of the study that provides a clear answer to the research question. In a short report with a single study, this might require no more than a sentence. In a longer report with multiple studies, it might require a paragraph or even two. The summary is often followed by a discussion of the theoretical implications of the research. Do the results provide support for any existing theories? If not, how  can  they be explained? Although you do not have to provide a definitive explanation or detailed theory for your results, you at least need to outline one or more possible explanations. In applied research—and often in basic research—there is also some discussion of the practical implications of the research. How can the results be used, and by whom, to accomplish some real-world goal?

The theoretical and practical implications are often followed by a discussion of the study’s limitations. Perhaps there are problems with its internal or external validity. Perhaps the manipulation was not very effective or the measures not very reliable. Perhaps there is some evidence that participants did not fully understand their task or that they were suspicious of the intent of the researchers. Now is the time to discuss these issues and how they might have affected the results. But do not overdo it. All studies have limitations, and most readers will understand that a different sample or different measures might have produced different results. Unless there is good reason to think they  would have, however, there is no reason to mention these routine issues. Instead, pick two or three limitations that seem like they could have influenced the results, explain how they could have influenced the results, and suggest ways to deal with them.

Most discussions end with some suggestions for future research. If the study did not satisfactorily answer the original research question, what will it take to do so? What  new  research questions has the study raised? This part of the discussion, however, is not just a list of new questions. It is a discussion of two or three of the most important unresolved issues. This means identifying and clarifying each question, suggesting some alternative answers, and even suggesting ways they could be studied.

Finally, some researchers are quite good at ending their articles with a sweeping or thought-provoking conclusion. Darley and Latané (1968) [4] , for example, ended their article on the bystander effect by discussing the idea that whether people help others may depend more on the situation than on their personalities. Their final sentence is, “If people understand the situational forces that can make them hesitate to intervene, they may better overcome them” (p. 383). However, this kind of ending can be difficult to pull off. It can sound overreaching or just banal and end up detracting from the overall impact of the article. It is often better simply to end when you have made your final point (although you should avoid ending on a limitation).

The references section begins on a new page with the heading “References” centred at the top of the page. All references cited in the text are then listed in the format presented earlier. They are listed alphabetically by the last name of the first author. If two sources have the same first author, they are listed alphabetically by the last name of the second author. If all the authors are the same, then they are listed chronologically by the year of publication. Everything in the reference list is double-spaced both within and between references.

Appendices, Tables, and Figures

Appendices, tables, and figures come after the references. An  appendix  is appropriate for supplemental material that would interrupt the flow of the research report if it were presented within any of the major sections. An appendix could be used to present lists of stimulus words, questionnaire items, detailed descriptions of special equipment or unusual statistical analyses, or references to the studies that are included in a meta-analysis. Each appendix begins on a new page. If there is only one, the heading is “Appendix,” centred at the top of the page. If there is more than one, the headings are “Appendix A,” “Appendix B,” and so on, and they appear in the order they were first mentioned in the text of the report.

After any appendices come tables and then figures. Tables and figures are both used to present results. Figures can also be used to illustrate theories (e.g., in the form of a flowchart), display stimuli, outline procedures, and present many other kinds of information. Each table and figure appears on its own page. Tables are numbered in the order that they are first mentioned in the text (“Table 1,” “Table 2,” and so on). Figures are numbered the same way (“Figure 1,” “Figure 2,” and so on). A brief explanatory title, with the important words capitalized, appears above each table. Each figure is given a brief explanatory caption, where (aside from proper nouns or names) only the first word of each sentence is capitalized. More details on preparing APA-style tables and figures are presented later in the book.

Sample APA-Style Research Report

Figures 11.2, 11.3, 11.4, and 11.5 show some sample pages from an APA-style empirical research report originally written by undergraduate student Tomoe Suyama at California State University, Fresno. The main purpose of these figures is to illustrate the basic organization and formatting of an APA-style empirical research report, although many high-level and low-level style conventions can be seen here too.

""

Key Takeaways

  • An APA-style empirical research report consists of several standard sections. The main ones are the abstract, introduction, method, results, discussion, and references.
  • The introduction consists of an opening that presents the research question, a literature review that describes previous research on the topic, and a closing that restates the research question and comments on the method. The literature review constitutes an argument for why the current study is worth doing.
  • The method section describes the method in enough detail that another researcher could replicate the study. At a minimum, it consists of a participants subsection and a design and procedure subsection.
  • The results section describes the results in an organized fashion. Each primary result is presented in terms of statistical results but also explained in words.
  • The discussion typically summarizes the study, discusses theoretical and practical implications and limitations of the study, and offers suggestions for further research.
  • Practice: Look through an issue of a general interest professional journal (e.g.,  Psychological Science ). Read the opening of the first five articles and rate the effectiveness of each one from 1 ( very ineffective ) to 5 ( very effective ). Write a sentence or two explaining each rating.
  • Practice: Find a recent article in a professional journal and identify where the opening, literature review, and closing of the introduction begin and end.
  • Practice: Find a recent article in a professional journal and highlight in a different colour each of the following elements in the discussion: summary, theoretical implications, practical implications, limitations, and suggestions for future research.

Long Descriptions

Figure 11.1 long description: Table showing three ways of organizing an APA-style method section.

In the simple method, there are two subheadings: “Participants” (which might begin “The participants were…”) and “Design and procedure” (which might begin “There were three conditions…”).

In the typical method, there are three subheadings: “Participants” (“The participants were…”), “Design” (“There were three conditions…”), and “Procedure” (“Participants viewed each stimulus on the computer screen…”).

In the complex method, there are four subheadings: “Participants” (“The participants were…”), “Materials” (“The stimuli were…”), “Design” (“There were three conditions…”), and “Procedure” (“Participants viewed each stimulus on the computer screen…”). [Return to Figure 11.1]

  • Bem, D. J. (2003). Writing the empirical journal article. In J. M. Darley, M. P. Zanna, & H. R. Roediger III (Eds.),  The compleat academic: A practical guide for the beginning social scientist  (2nd ed.). Washington, DC: American Psychological Association. ↵
  • Darley, J. M., & Latané, B. (1968). Bystander intervention in emergencies: Diffusion of responsibility.  Journal of Personality and Social Psychology, 4 , 377–383. ↵

A type of research article which describes one or more new empirical studies conducted by the authors.

The page at the beginning of an APA-style research report containing the title of the article, the authors’ names, and their institutional affiliation.

A summary of a research study.

The third page of a manuscript containing the research question, the literature review, and comments about how to answer the research question.

An introduction to the research question and explanation for why this question is interesting.

A description of relevant previous research on the topic being discusses and an argument for why the research is worth addressing.

The end of the introduction, where the research question is reiterated and the method is commented upon.

The section of a research report where the method used to conduct the study is described.

The main results of the study, including the results from statistical analyses, are presented in a research article.

Section of a research report that summarizes the study's results and interprets them by referring back to the study's theoretical background.

Part of a research report which contains supplemental material.

Research Methods in Psychology - 2nd Canadian Edition Copyright © 2015 by Paul C. Price, Rajiv Jhangiani, & I-Chant A. Chiang is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

research paper and reports

The Writing Center • University of North Carolina at Chapel Hill

Scientific Reports

What this handout is about.

This handout provides a general guide to writing reports about scientific research you’ve performed. In addition to describing the conventional rules about the format and content of a lab report, we’ll also attempt to convey why these rules exist, so you’ll get a clearer, more dependable idea of how to approach this writing situation. Readers of this handout may also find our handout on writing in the sciences useful.

Background and pre-writing

Why do we write research reports.

You did an experiment or study for your science class, and now you have to write it up for your teacher to review. You feel that you understood the background sufficiently, designed and completed the study effectively, obtained useful data, and can use those data to draw conclusions about a scientific process or principle. But how exactly do you write all that? What is your teacher expecting to see?

To take some of the guesswork out of answering these questions, try to think beyond the classroom setting. In fact, you and your teacher are both part of a scientific community, and the people who participate in this community tend to share the same values. As long as you understand and respect these values, your writing will likely meet the expectations of your audience—including your teacher.

So why are you writing this research report? The practical answer is “Because the teacher assigned it,” but that’s classroom thinking. Generally speaking, people investigating some scientific hypothesis have a responsibility to the rest of the scientific world to report their findings, particularly if these findings add to or contradict previous ideas. The people reading such reports have two primary goals:

  • They want to gather the information presented.
  • They want to know that the findings are legitimate.

Your job as a writer, then, is to fulfill these two goals.

How do I do that?

Good question. Here is the basic format scientists have designed for research reports:

  • Introduction

Methods and Materials

This format, sometimes called “IMRAD,” may take slightly different shapes depending on the discipline or audience; some ask you to include an abstract or separate section for the hypothesis, or call the Discussion section “Conclusions,” or change the order of the sections (some professional and academic journals require the Methods section to appear last). Overall, however, the IMRAD format was devised to represent a textual version of the scientific method.

The scientific method, you’ll probably recall, involves developing a hypothesis, testing it, and deciding whether your findings support the hypothesis. In essence, the format for a research report in the sciences mirrors the scientific method but fleshes out the process a little. Below, you’ll find a table that shows how each written section fits into the scientific method and what additional information it offers the reader.

states your hypothesis explains how you derived that hypothesis and how it connects to previous research; gives the purpose of the experiment/study
details how you tested your hypothesis clarifies why you performed your study in that particular way
provides raw (i.e., uninterpreted) data collected (perhaps) expresses the data in table form, as an easy-to-read figure, or as percentages/ratios
considers whether the data you obtained support the hypothesis explores the implications of your finding and judges the potential limitations of your experimental design

Thinking of your research report as based on the scientific method, but elaborated in the ways described above, may help you to meet your audience’s expectations successfully. We’re going to proceed by explicitly connecting each section of the lab report to the scientific method, then explaining why and how you need to elaborate that section.

Although this handout takes each section in the order in which it should be presented in the final report, you may for practical reasons decide to compose sections in another order. For example, many writers find that composing their Methods and Results before the other sections helps to clarify their idea of the experiment or study as a whole. You might consider using each assignment to practice different approaches to drafting the report, to find the order that works best for you.

What should I do before drafting the lab report?

The best way to prepare to write the lab report is to make sure that you fully understand everything you need to about the experiment. Obviously, if you don’t quite know what went on during the lab, you’re going to find it difficult to explain the lab satisfactorily to someone else. To make sure you know enough to write the report, complete the following steps:

  • What are we going to do in this lab? (That is, what’s the procedure?)
  • Why are we going to do it that way?
  • What are we hoping to learn from this experiment?
  • Why would we benefit from this knowledge?
  • Consult your lab supervisor as you perform the lab. If you don’t know how to answer one of the questions above, for example, your lab supervisor will probably be able to explain it to you (or, at least, help you figure it out).
  • Plan the steps of the experiment carefully with your lab partners. The less you rush, the more likely it is that you’ll perform the experiment correctly and record your findings accurately. Also, take some time to think about the best way to organize the data before you have to start putting numbers down. If you can design a table to account for the data, that will tend to work much better than jotting results down hurriedly on a scrap piece of paper.
  • Record the data carefully so you get them right. You won’t be able to trust your conclusions if you have the wrong data, and your readers will know you messed up if the other three people in your group have “97 degrees” and you have “87.”
  • Consult with your lab partners about everything you do. Lab groups often make one of two mistakes: two people do all the work while two have a nice chat, or everybody works together until the group finishes gathering the raw data, then scrams outta there. Collaborate with your partners, even when the experiment is “over.” What trends did you observe? Was the hypothesis supported? Did you all get the same results? What kind of figure should you use to represent your findings? The whole group can work together to answer these questions.
  • Consider your audience. You may believe that audience is a non-issue: it’s your lab TA, right? Well, yes—but again, think beyond the classroom. If you write with only your lab instructor in mind, you may omit material that is crucial to a complete understanding of your experiment, because you assume the instructor knows all that stuff already. As a result, you may receive a lower grade, since your TA won’t be sure that you understand all the principles at work. Try to write towards a student in the same course but a different lab section. That student will have a fair degree of scientific expertise but won’t know much about your experiment particularly. Alternatively, you could envision yourself five years from now, after the reading and lectures for this course have faded a bit. What would you remember, and what would you need explained more clearly (as a refresher)?

Once you’ve completed these steps as you perform the experiment, you’ll be in a good position to draft an effective lab report.

Introductions

How do i write a strong introduction.

For the purposes of this handout, we’ll consider the Introduction to contain four basic elements: the purpose, the scientific literature relevant to the subject, the hypothesis, and the reasons you believed your hypothesis viable. Let’s start by going through each element of the Introduction to clarify what it covers and why it’s important. Then we can formulate a logical organizational strategy for the section.

The inclusion of the purpose (sometimes called the objective) of the experiment often confuses writers. The biggest misconception is that the purpose is the same as the hypothesis. Not quite. We’ll get to hypotheses in a minute, but basically they provide some indication of what you expect the experiment to show. The purpose is broader, and deals more with what you expect to gain through the experiment. In a professional setting, the hypothesis might have something to do with how cells react to a certain kind of genetic manipulation, but the purpose of the experiment is to learn more about potential cancer treatments. Undergraduate reports don’t often have this wide-ranging a goal, but you should still try to maintain the distinction between your hypothesis and your purpose. In a solubility experiment, for example, your hypothesis might talk about the relationship between temperature and the rate of solubility, but the purpose is probably to learn more about some specific scientific principle underlying the process of solubility.

For starters, most people say that you should write out your working hypothesis before you perform the experiment or study. Many beginning science students neglect to do so and find themselves struggling to remember precisely which variables were involved in the process or in what way the researchers felt that they were related. Write your hypothesis down as you develop it—you’ll be glad you did.

As for the form a hypothesis should take, it’s best not to be too fancy or complicated; an inventive style isn’t nearly so important as clarity here. There’s nothing wrong with beginning your hypothesis with the phrase, “It was hypothesized that . . .” Be as specific as you can about the relationship between the different objects of your study. In other words, explain that when term A changes, term B changes in this particular way. Readers of scientific writing are rarely content with the idea that a relationship between two terms exists—they want to know what that relationship entails.

Not a hypothesis:

“It was hypothesized that there is a significant relationship between the temperature of a solvent and the rate at which a solute dissolves.”

Hypothesis:

“It was hypothesized that as the temperature of a solvent increases, the rate at which a solute will dissolve in that solvent increases.”

Put more technically, most hypotheses contain both an independent and a dependent variable. The independent variable is what you manipulate to test the reaction; the dependent variable is what changes as a result of your manipulation. In the example above, the independent variable is the temperature of the solvent, and the dependent variable is the rate of solubility. Be sure that your hypothesis includes both variables.

Justify your hypothesis

You need to do more than tell your readers what your hypothesis is; you also need to assure them that this hypothesis was reasonable, given the circumstances. In other words, use the Introduction to explain that you didn’t just pluck your hypothesis out of thin air. (If you did pluck it out of thin air, your problems with your report will probably extend beyond using the appropriate format.) If you posit that a particular relationship exists between the independent and the dependent variable, what led you to believe your “guess” might be supported by evidence?

Scientists often refer to this type of justification as “motivating” the hypothesis, in the sense that something propelled them to make that prediction. Often, motivation includes what we already know—or rather, what scientists generally accept as true (see “Background/previous research” below). But you can also motivate your hypothesis by relying on logic or on your own observations. If you’re trying to decide which solutes will dissolve more rapidly in a solvent at increased temperatures, you might remember that some solids are meant to dissolve in hot water (e.g., bouillon cubes) and some are used for a function precisely because they withstand higher temperatures (they make saucepans out of something). Or you can think about whether you’ve noticed sugar dissolving more rapidly in your glass of iced tea or in your cup of coffee. Even such basic, outside-the-lab observations can help you justify your hypothesis as reasonable.

Background/previous research

This part of the Introduction demonstrates to the reader your awareness of how you’re building on other scientists’ work. If you think of the scientific community as engaging in a series of conversations about various topics, then you’ll recognize that the relevant background material will alert the reader to which conversation you want to enter.

Generally speaking, authors writing journal articles use the background for slightly different purposes than do students completing assignments. Because readers of academic journals tend to be professionals in the field, authors explain the background in order to permit readers to evaluate the study’s pertinence for their own work. You, on the other hand, write toward a much narrower audience—your peers in the course or your lab instructor—and so you must demonstrate that you understand the context for the (presumably assigned) experiment or study you’ve completed. For example, if your professor has been talking about polarity during lectures, and you’re doing a solubility experiment, you might try to connect the polarity of a solid to its relative solubility in certain solvents. In any event, both professional researchers and undergraduates need to connect the background material overtly to their own work.

Organization of this section

Most of the time, writers begin by stating the purpose or objectives of their own work, which establishes for the reader’s benefit the “nature and scope of the problem investigated” (Day 1994). Once you have expressed your purpose, you should then find it easier to move from the general purpose, to relevant material on the subject, to your hypothesis. In abbreviated form, an Introduction section might look like this:

“The purpose of the experiment was to test conventional ideas about solubility in the laboratory [purpose] . . . According to Whitecoat and Labrat (1999), at higher temperatures the molecules of solvents move more quickly . . . We know from the class lecture that molecules moving at higher rates of speed collide with one another more often and thus break down more easily [background material/motivation] . . . Thus, it was hypothesized that as the temperature of a solvent increases, the rate at which a solute will dissolve in that solvent increases [hypothesis].”

Again—these are guidelines, not commandments. Some writers and readers prefer different structures for the Introduction. The one above merely illustrates a common approach to organizing material.

How do I write a strong Materials and Methods section?

As with any piece of writing, your Methods section will succeed only if it fulfills its readers’ expectations, so you need to be clear in your own mind about the purpose of this section. Let’s review the purpose as we described it above: in this section, you want to describe in detail how you tested the hypothesis you developed and also to clarify the rationale for your procedure. In science, it’s not sufficient merely to design and carry out an experiment. Ultimately, others must be able to verify your findings, so your experiment must be reproducible, to the extent that other researchers can follow the same procedure and obtain the same (or similar) results.

Here’s a real-world example of the importance of reproducibility. In 1989, physicists Stanley Pons and Martin Fleischman announced that they had discovered “cold fusion,” a way of producing excess heat and power without the nuclear radiation that accompanies “hot fusion.” Such a discovery could have great ramifications for the industrial production of energy, so these findings created a great deal of interest. When other scientists tried to duplicate the experiment, however, they didn’t achieve the same results, and as a result many wrote off the conclusions as unjustified (or worse, a hoax). To this day, the viability of cold fusion is debated within the scientific community, even though an increasing number of researchers believe it possible. So when you write your Methods section, keep in mind that you need to describe your experiment well enough to allow others to replicate it exactly.

With these goals in mind, let’s consider how to write an effective Methods section in terms of content, structure, and style.

Sometimes the hardest thing about writing this section isn’t what you should talk about, but what you shouldn’t talk about. Writers often want to include the results of their experiment, because they measured and recorded the results during the course of the experiment. But such data should be reserved for the Results section. In the Methods section, you can write that you recorded the results, or how you recorded the results (e.g., in a table), but you shouldn’t write what the results were—not yet. Here, you’re merely stating exactly how you went about testing your hypothesis. As you draft your Methods section, ask yourself the following questions:

  • How much detail? Be precise in providing details, but stay relevant. Ask yourself, “Would it make any difference if this piece were a different size or made from a different material?” If not, you probably don’t need to get too specific. If so, you should give as many details as necessary to prevent this experiment from going awry if someone else tries to carry it out. Probably the most crucial detail is measurement; you should always quantify anything you can, such as time elapsed, temperature, mass, volume, etc.
  • Rationale: Be sure that as you’re relating your actions during the experiment, you explain your rationale for the protocol you developed. If you capped a test tube immediately after adding a solute to a solvent, why did you do that? (That’s really two questions: why did you cap it, and why did you cap it immediately?) In a professional setting, writers provide their rationale as a way to explain their thinking to potential critics. On one hand, of course, that’s your motivation for talking about protocol, too. On the other hand, since in practical terms you’re also writing to your teacher (who’s seeking to evaluate how well you comprehend the principles of the experiment), explaining the rationale indicates that you understand the reasons for conducting the experiment in that way, and that you’re not just following orders. Critical thinking is crucial—robots don’t make good scientists.
  • Control: Most experiments will include a control, which is a means of comparing experimental results. (Sometimes you’ll need to have more than one control, depending on the number of hypotheses you want to test.) The control is exactly the same as the other items you’re testing, except that you don’t manipulate the independent variable-the condition you’re altering to check the effect on the dependent variable. For example, if you’re testing solubility rates at increased temperatures, your control would be a solution that you didn’t heat at all; that way, you’ll see how quickly the solute dissolves “naturally” (i.e., without manipulation), and you’ll have a point of reference against which to compare the solutions you did heat.

Describe the control in the Methods section. Two things are especially important in writing about the control: identify the control as a control, and explain what you’re controlling for. Here is an example:

“As a control for the temperature change, we placed the same amount of solute in the same amount of solvent, and let the solution stand for five minutes without heating it.”

Structure and style

Organization is especially important in the Methods section of a lab report because readers must understand your experimental procedure completely. Many writers are surprised by the difficulty of conveying what they did during the experiment, since after all they’re only reporting an event, but it’s often tricky to present this information in a coherent way. There’s a fairly standard structure you can use to guide you, and following the conventions for style can help clarify your points.

  • Subsections: Occasionally, researchers use subsections to report their procedure when the following circumstances apply: 1) if they’ve used a great many materials; 2) if the procedure is unusually complicated; 3) if they’ve developed a procedure that won’t be familiar to many of their readers. Because these conditions rarely apply to the experiments you’ll perform in class, most undergraduate lab reports won’t require you to use subsections. In fact, many guides to writing lab reports suggest that you try to limit your Methods section to a single paragraph.
  • Narrative structure: Think of this section as telling a story about a group of people and the experiment they performed. Describe what you did in the order in which you did it. You may have heard the old joke centered on the line, “Disconnect the red wire, but only after disconnecting the green wire,” where the person reading the directions blows everything to kingdom come because the directions weren’t in order. We’re used to reading about events chronologically, and so your readers will generally understand what you did if you present that information in the same way. Also, since the Methods section does generally appear as a narrative (story), you want to avoid the “recipe” approach: “First, take a clean, dry 100 ml test tube from the rack. Next, add 50 ml of distilled water.” You should be reporting what did happen, not telling the reader how to perform the experiment: “50 ml of distilled water was poured into a clean, dry 100 ml test tube.” Hint: most of the time, the recipe approach comes from copying down the steps of the procedure from your lab manual, so you may want to draft the Methods section initially without consulting your manual. Later, of course, you can go back and fill in any part of the procedure you inadvertently overlooked.
  • Past tense: Remember that you’re describing what happened, so you should use past tense to refer to everything you did during the experiment. Writers are often tempted to use the imperative (“Add 5 g of the solid to the solution”) because that’s how their lab manuals are worded; less frequently, they use present tense (“5 g of the solid are added to the solution”). Instead, remember that you’re talking about an event which happened at a particular time in the past, and which has already ended by the time you start writing, so simple past tense will be appropriate in this section (“5 g of the solid were added to the solution” or “We added 5 g of the solid to the solution”).
  • Active: We heated the solution to 80°C. (The subject, “we,” performs the action, heating.)
  • Passive: The solution was heated to 80°C. (The subject, “solution,” doesn’t do the heating–it is acted upon, not acting.)

Increasingly, especially in the social sciences, using first person and active voice is acceptable in scientific reports. Most readers find that this style of writing conveys information more clearly and concisely. This rhetorical choice thus brings two scientific values into conflict: objectivity versus clarity. Since the scientific community hasn’t reached a consensus about which style it prefers, you may want to ask your lab instructor.

How do I write a strong Results section?

Here’s a paradox for you. The Results section is often both the shortest (yay!) and most important (uh-oh!) part of your report. Your Materials and Methods section shows how you obtained the results, and your Discussion section explores the significance of the results, so clearly the Results section forms the backbone of the lab report. This section provides the most critical information about your experiment: the data that allow you to discuss how your hypothesis was or wasn’t supported. But it doesn’t provide anything else, which explains why this section is generally shorter than the others.

Before you write this section, look at all the data you collected to figure out what relates significantly to your hypothesis. You’ll want to highlight this material in your Results section. Resist the urge to include every bit of data you collected, since perhaps not all are relevant. Also, don’t try to draw conclusions about the results—save them for the Discussion section. In this section, you’re reporting facts. Nothing your readers can dispute should appear in the Results section.

Most Results sections feature three distinct parts: text, tables, and figures. Let’s consider each part one at a time.

This should be a short paragraph, generally just a few lines, that describes the results you obtained from your experiment. In a relatively simple experiment, one that doesn’t produce a lot of data for you to repeat, the text can represent the entire Results section. Don’t feel that you need to include lots of extraneous detail to compensate for a short (but effective) text; your readers appreciate discrimination more than your ability to recite facts. In a more complex experiment, you may want to use tables and/or figures to help guide your readers toward the most important information you gathered. In that event, you’ll need to refer to each table or figure directly, where appropriate:

“Table 1 lists the rates of solubility for each substance”

“Solubility increased as the temperature of the solution increased (see Figure 1).”

If you do use tables or figures, make sure that you don’t present the same material in both the text and the tables/figures, since in essence you’ll just repeat yourself, probably annoying your readers with the redundancy of your statements.

Feel free to describe trends that emerge as you examine the data. Although identifying trends requires some judgment on your part and so may not feel like factual reporting, no one can deny that these trends do exist, and so they properly belong in the Results section. Example:

“Heating the solution increased the rate of solubility of polar solids by 45% but had no effect on the rate of solubility in solutions containing non-polar solids.”

This point isn’t debatable—you’re just pointing out what the data show.

As in the Materials and Methods section, you want to refer to your data in the past tense, because the events you recorded have already occurred and have finished occurring. In the example above, note the use of “increased” and “had,” rather than “increases” and “has.” (You don’t know from your experiment that heating always increases the solubility of polar solids, but it did that time.)

You shouldn’t put information in the table that also appears in the text. You also shouldn’t use a table to present irrelevant data, just to show you did collect these data during the experiment. Tables are good for some purposes and situations, but not others, so whether and how you’ll use tables depends upon what you need them to accomplish.

Tables are useful ways to show variation in data, but not to present a great deal of unchanging measurements. If you’re dealing with a scientific phenomenon that occurs only within a certain range of temperatures, for example, you don’t need to use a table to show that the phenomenon didn’t occur at any of the other temperatures. How useful is this table?

A table labeled Effect of Temperature on Rate of Solubility with temperature of solvent values in 10-degree increments from -20 degrees Celsius to 80 degrees Celsius that does not show a corresponding rate of solubility value until 50 degrees Celsius.

As you can probably see, no solubility was observed until the trial temperature reached 50°C, a fact that the text part of the Results section could easily convey. The table could then be limited to what happened at 50°C and higher, thus better illustrating the differences in solubility rates when solubility did occur.

As a rule, try not to use a table to describe any experimental event you can cover in one sentence of text. Here’s an example of an unnecessary table from How to Write and Publish a Scientific Paper , by Robert A. Day:

A table labeled Oxygen requirements of various species of Streptomyces showing the names of organisms and two columns that indicate growth under aerobic conditions and growth under anaerobic conditions with a plus or minus symbol for each organism in the growth columns to indicate value.

As Day notes, all the information in this table can be summarized in one sentence: “S. griseus, S. coelicolor, S. everycolor, and S. rainbowenski grew under aerobic conditions, whereas S. nocolor and S. greenicus required anaerobic conditions.” Most readers won’t find the table clearer than that one sentence.

When you do have reason to tabulate material, pay attention to the clarity and readability of the format you use. Here are a few tips:

  • Number your table. Then, when you refer to the table in the text, use that number to tell your readers which table they can review to clarify the material.
  • Give your table a title. This title should be descriptive enough to communicate the contents of the table, but not so long that it becomes difficult to follow. The titles in the sample tables above are acceptable.
  • Arrange your table so that readers read vertically, not horizontally. For the most part, this rule means that you should construct your table so that like elements read down, not across. Think about what you want your readers to compare, and put that information in the column (up and down) rather than in the row (across). Usually, the point of comparison will be the numerical data you collect, so especially make sure you have columns of numbers, not rows.Here’s an example of how drastically this decision affects the readability of your table (from A Short Guide to Writing about Chemistry , by Herbert Beall and John Trimbur). Look at this table, which presents the relevant data in horizontal rows:

A table labeled Boyle's Law Experiment: Measuring Volume as a Function of Pressure that presents the trial number, length of air sample in millimeters, and height difference in inches of mercury, each of which is presented in rows horizontally.

It’s a little tough to see the trends that the author presumably wants to present in this table. Compare this table, in which the data appear vertically:

A table labeled Boyle's Law Experiment: Measuring Volume as a Function of Pressure that presents the trial number, length of air sample in millimeters, and height difference in inches of mercury, each of which is presented in columns vertically.

The second table shows how putting like elements in a vertical column makes for easier reading. In this case, the like elements are the measurements of length and height, over five trials–not, as in the first table, the length and height measurements for each trial.

  • Make sure to include units of measurement in the tables. Readers might be able to guess that you measured something in millimeters, but don’t make them try.
1058
432
7
  • Don’t use vertical lines as part of the format for your table. This convention exists because journals prefer not to have to reproduce these lines because the tables then become more expensive to print. Even though it’s fairly unlikely that you’ll be sending your Biology 11 lab report to Science for publication, your readers still have this expectation. Consequently, if you use the table-drawing option in your word-processing software, choose the option that doesn’t rely on a “grid” format (which includes vertical lines).

How do I include figures in my report?

Although tables can be useful ways of showing trends in the results you obtained, figures (i.e., illustrations) can do an even better job of emphasizing such trends. Lab report writers often use graphic representations of the data they collected to provide their readers with a literal picture of how the experiment went.

When should you use a figure?

Remember the circumstances under which you don’t need a table: when you don’t have a great deal of data or when the data you have don’t vary a lot. Under the same conditions, you would probably forgo the figure as well, since the figure would be unlikely to provide your readers with an additional perspective. Scientists really don’t like their time wasted, so they tend not to respond favorably to redundancy.

If you’re trying to decide between using a table and creating a figure to present your material, consider the following a rule of thumb. The strength of a table lies in its ability to supply large amounts of exact data, whereas the strength of a figure is its dramatic illustration of important trends within the experiment. If you feel that your readers won’t get the full impact of the results you obtained just by looking at the numbers, then a figure might be appropriate.

Of course, an undergraduate class may expect you to create a figure for your lab experiment, if only to make sure that you can do so effectively. If this is the case, then don’t worry about whether to use figures or not—concentrate instead on how best to accomplish your task.

Figures can include maps, photographs, pen-and-ink drawings, flow charts, bar graphs, and section graphs (“pie charts”). But the most common figure by far, especially for undergraduates, is the line graph, so we’ll focus on that type in this handout.

At the undergraduate level, you can often draw and label your graphs by hand, provided that the result is clear, legible, and drawn to scale. Computer technology has, however, made creating line graphs a lot easier. Most word-processing software has a number of functions for transferring data into graph form; many scientists have found Microsoft Excel, for example, a helpful tool in graphing results. If you plan on pursuing a career in the sciences, it may be well worth your while to learn to use a similar program.

Computers can’t, however, decide for you how your graph really works; you have to know how to design your graph to meet your readers’ expectations. Here are some of these expectations:

  • Keep it as simple as possible. You may be tempted to signal the complexity of the information you gathered by trying to design a graph that accounts for that complexity. But remember the purpose of your graph: to dramatize your results in a manner that’s easy to see and grasp. Try not to make the reader stare at the graph for a half hour to find the important line among the mass of other lines. For maximum effectiveness, limit yourself to three to five lines per graph; if you have more data to demonstrate, use a set of graphs to account for it, rather than trying to cram it all into a single figure.
  • Plot the independent variable on the horizontal (x) axis and the dependent variable on the vertical (y) axis. Remember that the independent variable is the condition that you manipulated during the experiment and the dependent variable is the condition that you measured to see if it changed along with the independent variable. Placing the variables along their respective axes is mostly just a convention, but since your readers are accustomed to viewing graphs in this way, you’re better off not challenging the convention in your report.
  • Label each axis carefully, and be especially careful to include units of measure. You need to make sure that your readers understand perfectly well what your graph indicates.
  • Number and title your graphs. As with tables, the title of the graph should be informative but concise, and you should refer to your graph by number in the text (e.g., “Figure 1 shows the increase in the solubility rate as a function of temperature”).
  • Many editors of professional scientific journals prefer that writers distinguish the lines in their graphs by attaching a symbol to them, usually a geometric shape (triangle, square, etc.), and using that symbol throughout the curve of the line. Generally, readers have a hard time distinguishing dotted lines from dot-dash lines from straight lines, so you should consider staying away from this system. Editors don’t usually like different-colored lines within a graph because colors are difficult and expensive to reproduce; colors may, however, be great for your purposes, as long as you’re not planning to submit your paper to Nature. Use your discretion—try to employ whichever technique dramatizes the results most effectively.
  • Try to gather data at regular intervals, so the plot points on your graph aren’t too far apart. You can’t be sure of the arc you should draw between the plot points if the points are located at the far corners of the graph; over a fifteen-minute interval, perhaps the change occurred in the first or last thirty seconds of that period (in which case your straight-line connection between the points is misleading).
  • If you’re worried that you didn’t collect data at sufficiently regular intervals during your experiment, go ahead and connect the points with a straight line, but you may want to examine this problem as part of your Discussion section.
  • Make your graph large enough so that everything is legible and clearly demarcated, but not so large that it either overwhelms the rest of the Results section or provides a far greater range than you need to illustrate your point. If, for example, the seedlings of your plant grew only 15 mm during the trial, you don’t need to construct a graph that accounts for 100 mm of growth. The lines in your graph should more or less fill the space created by the axes; if you see that your data is confined to the lower left portion of the graph, you should probably re-adjust your scale.
  • If you create a set of graphs, make them the same size and format, including all the verbal and visual codes (captions, symbols, scale, etc.). You want to be as consistent as possible in your illustrations, so that your readers can easily make the comparisons you’re trying to get them to see.

How do I write a strong Discussion section?

The discussion section is probably the least formalized part of the report, in that you can’t really apply the same structure to every type of experiment. In simple terms, here you tell your readers what to make of the Results you obtained. If you have done the Results part well, your readers should already recognize the trends in the data and have a fairly clear idea of whether your hypothesis was supported. Because the Results can seem so self-explanatory, many students find it difficult to know what material to add in this last section.

Basically, the Discussion contains several parts, in no particular order, but roughly moving from specific (i.e., related to your experiment only) to general (how your findings fit in the larger scientific community). In this section, you will, as a rule, need to:

Explain whether the data support your hypothesis

  • Acknowledge any anomalous data or deviations from what you expected

Derive conclusions, based on your findings, about the process you’re studying

  • Relate your findings to earlier work in the same area (if you can)

Explore the theoretical and/or practical implications of your findings

Let’s look at some dos and don’ts for each of these objectives.

This statement is usually a good way to begin the Discussion, since you can’t effectively speak about the larger scientific value of your study until you’ve figured out the particulars of this experiment. You might begin this part of the Discussion by explicitly stating the relationships or correlations your data indicate between the independent and dependent variables. Then you can show more clearly why you believe your hypothesis was or was not supported. For example, if you tested solubility at various temperatures, you could start this section by noting that the rates of solubility increased as the temperature increased. If your initial hypothesis surmised that temperature change would not affect solubility, you would then say something like,

“The hypothesis that temperature change would not affect solubility was not supported by the data.”

Note: Students tend to view labs as practical tests of undeniable scientific truths. As a result, you may want to say that the hypothesis was “proved” or “disproved” or that it was “correct” or “incorrect.” These terms, however, reflect a degree of certainty that you as a scientist aren’t supposed to have. Remember, you’re testing a theory with a procedure that lasts only a few hours and relies on only a few trials, which severely compromises your ability to be sure about the “truth” you see. Words like “supported,” “indicated,” and “suggested” are more acceptable ways to evaluate your hypothesis.

Also, recognize that saying whether the data supported your hypothesis or not involves making a claim to be defended. As such, you need to show the readers that this claim is warranted by the evidence. Make sure that you’re very explicit about the relationship between the evidence and the conclusions you draw from it. This process is difficult for many writers because we don’t often justify conclusions in our regular lives. For example, you might nudge your friend at a party and whisper, “That guy’s drunk,” and once your friend lays eyes on the person in question, she might readily agree. In a scientific paper, by contrast, you would need to defend your claim more thoroughly by pointing to data such as slurred words, unsteady gait, and the lampshade-as-hat. In addition to pointing out these details, you would also need to show how (according to previous studies) these signs are consistent with inebriation, especially if they occur in conjunction with one another. To put it another way, tell your readers exactly how you got from point A (was the hypothesis supported?) to point B (yes/no).

Acknowledge any anomalous data, or deviations from what you expected

You need to take these exceptions and divergences into account, so that you qualify your conclusions sufficiently. For obvious reasons, your readers will doubt your authority if you (deliberately or inadvertently) overlook a key piece of data that doesn’t square with your perspective on what occurred. In a more philosophical sense, once you’ve ignored evidence that contradicts your claims, you’ve departed from the scientific method. The urge to “tidy up” the experiment is often strong, but if you give in to it you’re no longer performing good science.

Sometimes after you’ve performed a study or experiment, you realize that some part of the methods you used to test your hypothesis was flawed. In that case, it’s OK to suggest that if you had the chance to conduct your test again, you might change the design in this or that specific way in order to avoid such and such a problem. The key to making this approach work, though, is to be very precise about the weakness in your experiment, why and how you think that weakness might have affected your data, and how you would alter your protocol to eliminate—or limit the effects of—that weakness. Often, inexperienced researchers and writers feel the need to account for “wrong” data (remember, there’s no such animal), and so they speculate wildly about what might have screwed things up. These speculations include such factors as the unusually hot temperature in the room, or the possibility that their lab partners read the meters wrong, or the potentially defective equipment. These explanations are what scientists call “cop-outs,” or “lame”; don’t indicate that the experiment had a weakness unless you’re fairly certain that a) it really occurred and b) you can explain reasonably well how that weakness affected your results.

If, for example, your hypothesis dealt with the changes in solubility at different temperatures, then try to figure out what you can rationally say about the process of solubility more generally. If you’re doing an undergraduate lab, chances are that the lab will connect in some way to the material you’ve been covering either in lecture or in your reading, so you might choose to return to these resources as a way to help you think clearly about the process as a whole.

This part of the Discussion section is another place where you need to make sure that you’re not overreaching. Again, nothing you’ve found in one study would remotely allow you to claim that you now “know” something, or that something isn’t “true,” or that your experiment “confirmed” some principle or other. Hesitate before you go out on a limb—it’s dangerous! Use less absolutely conclusive language, including such words as “suggest,” “indicate,” “correspond,” “possibly,” “challenge,” etc.

Relate your findings to previous work in the field (if possible)

We’ve been talking about how to show that you belong in a particular community (such as biologists or anthropologists) by writing within conventions that they recognize and accept. Another is to try to identify a conversation going on among members of that community, and use your work to contribute to that conversation. In a larger philosophical sense, scientists can’t fully understand the value of their research unless they have some sense of the context that provoked and nourished it. That is, you have to recognize what’s new about your project (potentially, anyway) and how it benefits the wider body of scientific knowledge. On a more pragmatic level, especially for undergraduates, connecting your lab work to previous research will demonstrate to the TA that you see the big picture. You have an opportunity, in the Discussion section, to distinguish yourself from the students in your class who aren’t thinking beyond the barest facts of the study. Capitalize on this opportunity by putting your own work in context.

If you’re just beginning to work in the natural sciences (as a first-year biology or chemistry student, say), most likely the work you’ll be doing has already been performed and re-performed to a satisfactory degree. Hence, you could probably point to a similar experiment or study and compare/contrast your results and conclusions. More advanced work may deal with an issue that is somewhat less “resolved,” and so previous research may take the form of an ongoing debate, and you can use your own work to weigh in on that debate. If, for example, researchers are hotly disputing the value of herbal remedies for the common cold, and the results of your study suggest that Echinacea diminishes the symptoms but not the actual presence of the cold, then you might want to take some time in the Discussion section to recapitulate the specifics of the dispute as it relates to Echinacea as an herbal remedy. (Consider that you have probably already written in the Introduction about this debate as background research.)

This information is often the best way to end your Discussion (and, for all intents and purposes, the report). In argumentative writing generally, you want to use your closing words to convey the main point of your writing. This main point can be primarily theoretical (“Now that you understand this information, you’re in a better position to understand this larger issue”) or primarily practical (“You can use this information to take such and such an action”). In either case, the concluding statements help the reader to comprehend the significance of your project and your decision to write about it.

Since a lab report is argumentative—after all, you’re investigating a claim, and judging the legitimacy of that claim by generating and collecting evidence—it’s often a good idea to end your report with the same technique for establishing your main point. If you want to go the theoretical route, you might talk about the consequences your study has for the field or phenomenon you’re investigating. To return to the examples regarding solubility, you could end by reflecting on what your work on solubility as a function of temperature tells us (potentially) about solubility in general. (Some folks consider this type of exploration “pure” as opposed to “applied” science, although these labels can be problematic.) If you want to go the practical route, you could end by speculating about the medical, institutional, or commercial implications of your findings—in other words, answer the question, “What can this study help people to do?” In either case, you’re going to make your readers’ experience more satisfying, by helping them see why they spent their time learning what you had to teach them.

Works consulted

We consulted these works while writing this handout. This is not a comprehensive list of resources on the handout’s topic, and we encourage you to do your own research to find additional publications. Please do not use this list as a model for the format of your own reference list, as it may not match the citation style you are using. For guidance on formatting citations, please see the UNC Libraries citation tutorial . We revise these tips periodically and welcome feedback.

American Psychological Association. 2010. Publication Manual of the American Psychological Association . 6th ed. Washington, DC: American Psychological Association.

Beall, Herbert, and John Trimbur. 2001. A Short Guide to Writing About Chemistry , 2nd ed. New York: Longman.

Blum, Deborah, and Mary Knudson. 1997. A Field Guide for Science Writers: The Official Guide of the National Association of Science Writers . New York: Oxford University Press.

Booth, Wayne C., Gregory G. Colomb, Joseph M. Williams, Joseph Bizup, and William T. FitzGerald. 2016. The Craft of Research , 4th ed. Chicago: University of Chicago Press.

Briscoe, Mary Helen. 1996. Preparing Scientific Illustrations: A Guide to Better Posters, Presentations, and Publications , 2nd ed. New York: Springer-Verlag.

Council of Science Editors. 2014. Scientific Style and Format: The CSE Manual for Authors, Editors, and Publishers , 8th ed. Chicago & London: University of Chicago Press.

Davis, Martha. 2012. Scientific Papers and Presentations , 3rd ed. London: Academic Press.

Day, Robert A. 1994. How to Write and Publish a Scientific Paper , 4th ed. Phoenix: Oryx Press.

Porush, David. 1995. A Short Guide to Writing About Science . New York: Longman.

Williams, Joseph, and Joseph Bizup. 2017. Style: Lessons in Clarity and Grace , 12th ed. Boston: Pearson.

You may reproduce it for non-commercial use if you use the entire handout and attribute the source: The Writing Center, University of North Carolina at Chapel Hill

Make a Gift

  • Mission and history
  • Platform features
  • Library Advisory Group
  • What’s in JSTOR
  • For Librarians
  • For Publishers

Open research reports

JSTOR hosts a growing curated collection of more than 50,000 open research reports from 187 think tanks and research institutes from around the world. These publications are freely accessible to everyone on JSTOR and discoverable as their own content type alongside journals, books, and primary sources. We update research reports on our platform each month as they become available through contributing institutes.

Download the list (xlsx) of contributing policy institutes.

Research reports provide current analysis on many of today’s most discussed and debated issues from a diversity of ideological and international perspectives representing 40 countries and 29 languages. A sample of topics would include: climate change, border security, fake news, cybersecurity, electric vehicles, artificial intelligence, energy policy, gender issues, terrorism, remote learning, recent trends in business and economics, and various public health issues, including COVID-19.

Although the briefs, papers, and reports published by these institutes are not peer-reviewed, they are written by policy experts and members of the academic community who are fellows in residence. This is content that impacts policy, both foreign and domestic. It is also increasingly used by faculty in their classrooms for its currency, breadth, and accessibility.

JSTOR’s research reports cover seven Areas of Focus: Business & Economics, Critical Race & Ethnic Studies, Education, Gender & Sexuality, Public Health, Security Studies, and Sustainability.

Browse research reports

Research Reports: Definition and How to Write Them

Research Reports

Reports are usually spread across a vast horizon of topics but are focused on communicating information about a particular topic and a niche target market. The primary motive of research reports is to convey integral details about a study for marketers to consider while designing new strategies.

Certain events, facts, and other information based on incidents need to be relayed to the people in charge, and creating research reports is the most effective communication tool. Ideal research reports are extremely accurate in the offered information with a clear objective and conclusion. These reports should have a clean and structured format to relay information effectively.

What are Research Reports?

Research reports are recorded data prepared by researchers or statisticians after analyzing the information gathered by conducting organized research, typically in the form of surveys or qualitative methods .

A research report is a reliable source to recount details about a conducted research. It is most often considered to be a true testimony of all the work done to garner specificities of research.

The various sections of a research report are:

  • Background/Introduction
  • Implemented Methods
  • Results based on Analysis
  • Deliberation

Learn more: Quantitative Research

Components of Research Reports

Research is imperative for launching a new product/service or a new feature. The markets today are extremely volatile and competitive due to new entrants every day who may or may not provide effective products. An organization needs to make the right decisions at the right time to be relevant in such a market with updated products that suffice customer demands.

The details of a research report may change with the purpose of research but the main components of a report will remain constant. The research approach of the market researcher also influences the style of writing reports. Here are seven main components of a productive research report:

  • Research Report Summary: The entire objective along with the overview of research are to be included in a summary which is a couple of paragraphs in length. All the multiple components of the research are explained in brief under the report summary.  It should be interesting enough to capture all the key elements of the report.
  • Research Introduction: There always is a primary goal that the researcher is trying to achieve through a report. In the introduction section, he/she can cover answers related to this goal and establish a thesis which will be included to strive and answer it in detail.  This section should answer an integral question: “What is the current situation of the goal?”.  After the research design was conducted, did the organization conclude the goal successfully or they are still a work in progress –  provide such details in the introduction part of the research report.
  • Research Methodology: This is the most important section of the report where all the important information lies. The readers can gain data for the topic along with analyzing the quality of provided content and the research can also be approved by other market researchers . Thus, this section needs to be highly informative with each aspect of research discussed in detail.  Information needs to be expressed in chronological order according to its priority and importance. Researchers should include references in case they gained information from existing techniques.
  • Research Results: A short description of the results along with calculations conducted to achieve the goal will form this section of results. Usually, the exposition after data analysis is carried out in the discussion part of the report.

Learn more: Quantitative Data

  • Research Discussion: The results are discussed in extreme detail in this section along with a comparative analysis of reports that could probably exist in the same domain. Any abnormality uncovered during research will be deliberated in the discussion section.  While writing research reports, the researcher will have to connect the dots on how the results will be applicable in the real world.
  • Research References and Conclusion: Conclude all the research findings along with mentioning each and every author, article or any content piece from where references were taken.

Learn more: Qualitative Observation

15 Tips for Writing Research Reports

Writing research reports in the manner can lead to all the efforts going down the drain. Here are 15 tips for writing impactful research reports:

  • Prepare the context before starting to write and start from the basics:  This was always taught to us in school – be well-prepared before taking a plunge into new topics. The order of survey questions might not be the ideal or most effective order for writing research reports. The idea is to start with a broader topic and work towards a more specific one and focus on a conclusion or support, which a research should support with the facts.  The most difficult thing to do in reporting, without a doubt is to start. Start with the title, the introduction, then document the first discoveries and continue from that. Once the marketers have the information well documented, they can write a general conclusion.
  • Keep the target audience in mind while selecting a format that is clear, logical and obvious to them:  Will the research reports be presented to decision makers or other researchers? What are the general perceptions around that topic? This requires more care and diligence. A researcher will need a significant amount of information to start writing the research report. Be consistent with the wording, the numbering of the annexes and so on. Follow the approved format of the company for the delivery of research reports and demonstrate the integrity of the project with the objectives of the company.
  • Have a clear research objective: A researcher should read the entire proposal again, and make sure that the data they provide contributes to the objectives that were raised from the beginning. Remember that speculations are for conversations, not for research reports, if a researcher speculates, they directly question their own research.
  • Establish a working model:  Each study must have an internal logic, which will have to be established in the report and in the evidence. The researchers’ worst nightmare is to be required to write research reports and realize that key questions were not included.

Learn more: Quantitative Observation

  • Gather all the information about the research topic. Who are the competitors of our customers? Talk to other researchers who have studied the subject of research, know the language of the industry. Misuse of the terms can discourage the readers of research reports from reading further.
  • Read aloud while writing. While reading the report, if the researcher hears something inappropriate, for example, if they stumble over the words when reading them, surely the reader will too. If the researcher can’t put an idea in a single sentence, then it is very long and they must change it so that the idea is clear to everyone.
  • Check grammar and spelling. Without a doubt, good practices help to understand the report. Use verbs in the present tense. Consider using the present tense, which makes the results sound more immediate. Find new words and other ways of saying things. Have fun with the language whenever possible.
  • Discuss only the discoveries that are significant. If some data are not really significant, do not mention them. Remember that not everything is truly important or essential within research reports.

Learn more: Qualitative Data

  • Try and stick to the survey questions. For example, do not say that the people surveyed “were worried” about an research issue , when there are different degrees of concern.
  • The graphs must be clear enough so that they understand themselves. Do not let graphs lead the reader to make mistakes: give them a title, include the indications, the size of the sample, and the correct wording of the question.
  • Be clear with messages. A researcher should always write every section of the report with an accuracy of details and language.
  • Be creative with titles – Particularly in segmentation studies choose names “that give life to research”. Such names can survive for a long time after the initial investigation.
  • Create an effective conclusion: The conclusion in the research reports is the most difficult to write, but it is an incredible opportunity to excel. Make a precise summary. Sometimes it helps to start the conclusion with something specific, then it describes the most important part of the study, and finally, it provides the implications of the conclusions.
  • Get a couple more pair of eyes to read the report. Writers have trouble detecting their own mistakes. But they are responsible for what is presented. Ensure it has been approved by colleagues or friends before sending the find draft out.

Learn more: Market Research and Analysis

MORE LIKE THIS

Microsoft customer voice vs questionpro: choosing the best.

Aug 29, 2024

statistical methods

Statistical Methods: What It Is, Process, Analyze & Present

Aug 28, 2024

research paper and reports

Velodu and QuestionPro: Connecting Data with a Human Touch

Google Forms vs QuestionPro

Google Forms vs QuestionPro: Which is Best for Your Needs?

Other categories.

  • Academic Research
  • Artificial Intelligence
  • Assessments
  • Brand Awareness
  • Case Studies
  • Communities
  • Consumer Insights
  • Customer effort score
  • Customer Engagement
  • Customer Experience
  • Customer Loyalty
  • Customer Research
  • Customer Satisfaction
  • Employee Benefits
  • Employee Engagement
  • Employee Retention
  • Friday Five
  • General Data Protection Regulation
  • Insights Hub
  • Life@QuestionPro
  • Market Research
  • Mobile diaries
  • Mobile Surveys
  • New Features
  • Online Communities
  • Question Types
  • Questionnaire
  • QuestionPro Products
  • Release Notes
  • Research Tools and Apps
  • Revenue at Risk
  • Survey Templates
  • Training Tips
  • Tuesday CX Thoughts (TCXT)
  • Uncategorized
  • What’s Coming Up
  • Workforce Intelligence
  • U.S. Locations
  • UMGC Europe
  • Learn Online
  • Find Answers
  • 855-655-8682
  • Current Students

Online Guide to Writing and Research

The research process, explore more of umgc.

  • Online Guide to Writing

Structuring the Research Paper

Formal research structure.

These are the primary purposes for formal research:

enter the discourse, or conversation, of other writers and scholars in your field

learn how others in your field use primary and secondary resources

find and understand raw data and information

Top view of textured wooden desk prepared for work and exploration - wooden pegs, domino, cubes and puzzles with blank notepads,  paper and colourful pencils lying on it.

For the formal academic research assignment, consider an organizational pattern typically used for primary academic research.  The pattern includes the following: introduction, methods, results, discussion, and conclusions/recommendations.

Usually, research papers flow from the general to the specific and back to the general in their organization. The introduction uses a general-to-specific movement in its organization, establishing the thesis and setting the context for the conversation. The methods and results sections are more detailed and specific, providing support for the generalizations made in the introduction. The discussion section moves toward an increasingly more general discussion of the subject, leading to the conclusions and recommendations, which then generalize the conversation again.

Sections of a Formal Structure

The introduction section.

Many students will find that writing a structured  introduction  gets them started and gives them the focus needed to significantly improve their entire paper. 

Introductions usually have three parts:

presentation of the problem statement, the topic, or the research inquiry

purpose and focus of your paper

summary or overview of the writer’s position or arguments

In the first part of the introduction—the presentation of the problem or the research inquiry—state the problem or express it so that the question is implied. Then, sketch the background on the problem and review the literature on it to give your readers a context that shows them how your research inquiry fits into the conversation currently ongoing in your subject area. 

In the second part of the introduction, state your purpose and focus. Here, you may even present your actual thesis. Sometimes your purpose statement can take the place of the thesis by letting your reader know your intentions. 

The third part of the introduction, the summary or overview of the paper, briefly leads readers through the discussion, forecasting the main ideas and giving readers a blueprint for the paper. 

The following example provides a blueprint for a well-organized introduction.

Example of an Introduction

Entrepreneurial Marketing: The Critical Difference

In an article in the Harvard Business Review, John A. Welsh and Jerry F. White remind us that “a small business is not a little big business.” An entrepreneur is not a multinational conglomerate but a profit-seeking individual. To survive, he must have a different outlook and must apply different principles to his endeavors than does the president of a large or even medium-sized corporation. Not only does the scale of small and big businesses differ, but small businesses also suffer from what the Harvard Business Review article calls “resource poverty.” This is a problem and opportunity that requires an entirely different approach to marketing. Where large ad budgets are not necessary or feasible, where expensive ad production squanders limited capital, where every marketing dollar must do the work of two dollars, if not five dollars or even ten, where a person’s company, capital, and material well-being are all on the line—that is, where guerrilla marketing can save the day and secure the bottom line (Levinson, 1984, p. 9).

By reviewing the introductions to research articles in the discipline in which you are writing your research paper, you can get an idea of what is considered the norm for that discipline. Study several of these before you begin your paper so that you know what may be expected. If you are unsure of the kind of introduction your paper needs, ask your professor for more information.  The introduction is normally written in present tense.

THE METHODS SECTION

The methods section of your research paper should describe in detail what methodology and special materials if any, you used to think through or perform your research. You should include any materials you used or designed for yourself, such as questionnaires or interview questions, to generate data or information for your research paper. You want to include any methodologies that are specific to your particular field of study, such as lab procedures for a lab experiment or data-gathering instruments for field research. The methods section is usually written in the past tense.

THE RESULTS SECTION

How you present the results of your research depends on what kind of research you did, your subject matter, and your readers’ expectations. 

Quantitative information —data that can be measured—can be presented systematically and economically in tables, charts, and graphs. Quantitative information includes quantities and comparisons of sets of data. 

Qualitative information , which includes brief descriptions, explanations, or instructions, can also be presented in prose tables. This kind of descriptive or explanatory information, however, is often presented in essay-like prose or even lists.

There are specific conventions for creating tables, charts, and graphs and organizing the information they contain. In general, you should use them only when you are sure they will enlighten your readers rather than confuse them. In the accompanying explanation and discussion, always refer to the graphic by number and explain specifically what you are referring to; you can also provide a caption for the graphic. The rule of thumb for presenting a graphic is first to introduce it by name, show it, and then interpret it. The results section is usually written in the past tense.

THE DISCUSSION SECTION

Your discussion section should generalize what you have learned from your research. One way to generalize is to explain the consequences or meaning of your results and then make your points that support and refer back to the statements you made in your introduction. Your discussion should be organized so that it relates directly to your thesis. You want to avoid introducing new ideas here or discussing tangential issues not directly related to the exploration and discovery of your thesis. The discussion section, along with the introduction, is usually written in the present tense.

THE CONCLUSIONS AND RECOMMENDATIONS SECTION

Your conclusion ties your research to your thesis, binding together all the main ideas in your thinking and writing. By presenting the logical outcome of your research and thinking, your conclusion answers your research inquiry for your reader. Your conclusions should relate directly to the ideas presented in your introduction section and should not present any new ideas.

You may be asked to present your recommendations separately in your research assignment. If so, you will want to add some elements to your conclusion section. For example, you may be asked to recommend a course of action, make a prediction, propose a solution to a problem, offer a judgment, or speculate on the implications and consequences of your ideas. The conclusions and recommendations section is usually written in the present tense.

Key Takeaways

  • For the formal academic research assignment, consider an organizational pattern typically used for primary academic research. 
  •  The pattern includes the following: introduction, methods, results, discussion, and conclusions/recommendations.

Mailing Address: 3501 University Blvd. East, Adelphi, MD 20783 This work is licensed under a  Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License . © 2022 UMGC. All links to external sites were verified at the time of publication. UMGC is not responsible for the validity or integrity of information located at external sites.

Table of Contents: Online Guide to Writing

Chapter 1: College Writing

How Does College Writing Differ from Workplace Writing?

What Is College Writing?

Why So Much Emphasis on Writing?

Chapter 2: The Writing Process

Doing Exploratory Research

Getting from Notes to Your Draft

Introduction

Prewriting - Techniques to Get Started - Mining Your Intuition

Prewriting: Targeting Your Audience

Prewriting: Techniques to Get Started

Prewriting: Understanding Your Assignment

Rewriting: Being Your Own Critic

Rewriting: Creating a Revision Strategy

Rewriting: Getting Feedback

Rewriting: The Final Draft

Techniques to Get Started - Outlining

Techniques to Get Started - Using Systematic Techniques

Thesis Statement and Controlling Idea

Writing: Getting from Notes to Your Draft - Freewriting

Writing: Getting from Notes to Your Draft - Summarizing Your Ideas

Writing: Outlining What You Will Write

Chapter 3: Thinking Strategies

A Word About Style, Voice, and Tone

A Word About Style, Voice, and Tone: Style Through Vocabulary and Diction

Critical Strategies and Writing

Critical Strategies and Writing: Analysis

Critical Strategies and Writing: Evaluation

Critical Strategies and Writing: Persuasion

Critical Strategies and Writing: Synthesis

Developing a Paper Using Strategies

Kinds of Assignments You Will Write

Patterns for Presenting Information

Patterns for Presenting Information: Critiques

Patterns for Presenting Information: Discussing Raw Data

Patterns for Presenting Information: General-to-Specific Pattern

Patterns for Presenting Information: Problem-Cause-Solution Pattern

Patterns for Presenting Information: Specific-to-General Pattern

Patterns for Presenting Information: Summaries and Abstracts

Supporting with Research and Examples

Writing Essay Examinations

Writing Essay Examinations: Make Your Answer Relevant and Complete

Writing Essay Examinations: Organize Thinking Before Writing

Writing Essay Examinations: Read and Understand the Question

Chapter 4: The Research Process

Planning and Writing a Research Paper

Planning and Writing a Research Paper: Ask a Research Question

Planning and Writing a Research Paper: Cite Sources

Planning and Writing a Research Paper: Collect Evidence

Planning and Writing a Research Paper: Decide Your Point of View, or Role, for Your Research

Planning and Writing a Research Paper: Draw Conclusions

Planning and Writing a Research Paper: Find a Topic and Get an Overview

Planning and Writing a Research Paper: Manage Your Resources

Planning and Writing a Research Paper: Outline

Planning and Writing a Research Paper: Survey the Literature

Planning and Writing a Research Paper: Work Your Sources into Your Research Writing

Research Resources: Where Are Research Resources Found? - Human Resources

Research Resources: What Are Research Resources?

Research Resources: Where Are Research Resources Found?

Research Resources: Where Are Research Resources Found? - Electronic Resources

Research Resources: Where Are Research Resources Found? - Print Resources

Structuring the Research Paper: Formal Research Structure

Structuring the Research Paper: Informal Research Structure

The Nature of Research

The Research Assignment: How Should Research Sources Be Evaluated?

The Research Assignment: When Is Research Needed?

The Research Assignment: Why Perform Research?

Chapter 5: Academic Integrity

Academic Integrity

Giving Credit to Sources

Giving Credit to Sources: Copyright Laws

Giving Credit to Sources: Documentation

Giving Credit to Sources: Style Guides

Integrating Sources

Practicing Academic Integrity

Practicing Academic Integrity: Keeping Accurate Records

Practicing Academic Integrity: Managing Source Material

Practicing Academic Integrity: Managing Source Material - Paraphrasing Your Source

Practicing Academic Integrity: Managing Source Material - Quoting Your Source

Practicing Academic Integrity: Managing Source Material - Summarizing Your Sources

Types of Documentation

Types of Documentation: Bibliographies and Source Lists

Types of Documentation: Citing World Wide Web Sources

Types of Documentation: In-Text or Parenthetical Citations

Types of Documentation: In-Text or Parenthetical Citations - APA Style

Types of Documentation: In-Text or Parenthetical Citations - CSE/CBE Style

Types of Documentation: In-Text or Parenthetical Citations - Chicago Style

Types of Documentation: In-Text or Parenthetical Citations - MLA Style

Types of Documentation: Note Citations

Chapter 6: Using Library Resources

Finding Library Resources

Chapter 7: Assessing Your Writing

How Is Writing Graded?

How Is Writing Graded?: A General Assessment Tool

The Draft Stage

The Draft Stage: The First Draft

The Draft Stage: The Revision Process and the Final Draft

The Draft Stage: Using Feedback

The Research Stage

Using Assessment to Improve Your Writing

Chapter 8: Other Frequently Assigned Papers

Reviews and Reaction Papers: Article and Book Reviews

Reviews and Reaction Papers: Reaction Papers

Writing Arguments

Writing Arguments: Adapting the Argument Structure

Writing Arguments: Purposes of Argument

Writing Arguments: References to Consult for Writing Arguments

Writing Arguments: Steps to Writing an Argument - Anticipate Active Opposition

Writing Arguments: Steps to Writing an Argument - Determine Your Organization

Writing Arguments: Steps to Writing an Argument - Develop Your Argument

Writing Arguments: Steps to Writing an Argument - Introduce Your Argument

Writing Arguments: Steps to Writing an Argument - State Your Thesis or Proposition

Writing Arguments: Steps to Writing an Argument - Write Your Conclusion

Writing Arguments: Types of Argument

Appendix A: Books to Help Improve Your Writing

Dictionaries

General Style Manuals

Researching on the Internet

Special Style Manuals

Writing Handbooks

Appendix B: Collaborative Writing and Peer Reviewing

Collaborative Writing: Assignments to Accompany the Group Project

Collaborative Writing: Informal Progress Report

Collaborative Writing: Issues to Resolve

Collaborative Writing: Methodology

Collaborative Writing: Peer Evaluation

Collaborative Writing: Tasks of Collaborative Writing Group Members

Collaborative Writing: Writing Plan

General Introduction

Peer Reviewing

Appendix C: Developing an Improvement Plan

Working with Your Instructor’s Comments and Grades

Appendix D: Writing Plan and Project Schedule

Devising a Writing Project Plan and Schedule

Reviewing Your Plan with Others

By using our website you agree to our use of cookies. Learn more about how we use cookies by reading our  Privacy Policy .

project

Our Advantages

check

Secure Payments

cards

For security reasons we do not store any credit card information.

A complete guide to research papers writing

Research the topic, research the sources, organise your information, craft the outline, compose the introduction, compose the body, compose the conclusion, how not to write a research paper.

A research paper is an academic paper where you provide the results of your own investigation regarding a specific topic. It can be a master’s paper or even a dissertation. Your knowledge is not enough to craft an A+ paper, you will need to read and analyze dozens of reliable resources. This task may make you spend long sleepless nights over the project. We know how hard it can be to cope with such a complicated writing task, so we’re always ready to assist you

We are a team of experienced writers. We have written over a hundred of research papers for students from different countries. Placing an order will take a few minutes of your time and it will save you from hard work. Here’s the variant of how we can provide you research paper writing services:

  • You place an order on the website and indicate all the requirements;
  • We find you a research paper writer that will fit your requirements;
  • The writer does the research and writes the text of the paper;
  • You get the research paper in time and offer some edits if needed.

Get a high-quality text from the best research paper writing services.

How to write a research paper: a step-by-step guide

In this section of the page, we’ll give you a complete guide to write a good research paper. You will see how to craft the paper from scratch. Follow the guide from the first step to the last one or pick up only the steps that you need for the paper.

Many students treat this stage of research papers writing as the easiest one and they face a lot of difficulties when doing the research in the future. Your goal here is to find the topic that hasn’t been discovered before, but the one that will give you the chance to find enough reliable sources. Your topic should be up-to-date and it should be interesting for your readers. It’s a big misconception to think that no one will ever read your paper. The right topic will make people look inside.

A research paper writer always does the research when crafting a paper

Start your research with crafting a list of primary and secondary sources. The first list include books, articles from scientists or famous researchers and all the recommendations from your professor. The second list will include the rest of sources that are somehow related to the topic, but you cannot fully rely on them. It means you can use information for analyzing the topic from various points of view to come to your own conclusion.

There are three major ways of how you can keep all the information in order:

  • Taking notes;
  • Prioritizing your information from the most to the least relevant;
  • Making bibliography cards.

If you don’t try to put everything in order, you will have to start your research somewhere from the middle as you won’t be able to keep in mind so much data. You can use a pen and your notebook or you can use any software for planning or word processing.

When you have everything in the right order, it’s time to plan your paper and think how it will look like. An outline is a detailed plan where you will add quotations, some core statements and the thesis. If you order only an outline from the research paper writing service, you will easily craft the text as you will get the background information that you will complete. Your outline should represent the structure of your paper with as much detail as possible.

Read the tips to write a research paper with ease.

Start your paper with writing how important the topic of your research is. Give your readers a few reasons why they should view your paper. Write a few sentences about prior researches that you have found during the research stage. And finish the introduction with the thesis statement. Express the core idea of the paper and your position towards it. Don’t make any hints at the conclusions as your readers will lose their interest.

Use the outline and write each section of the body separately. We recommend you using a ladder of abstraction technique. It means to start with general information and finish with some specific facts. You can do it within one section. To make your text readable, divide it into paragraphs. Use transitions between them to make them logically connected. When you finish, read the text and think if it’s easy to understand.

Make a summary of the thesis statement and all the arguments that you have provided in the body part of the paper. Professional research paper writers always write one phrase about the significance of the research to remind readers about it. You can finish your paper in a traditional way by stating of there’s anything for the further research. Or you can finish your conclusion with a question to your readers about the need to do any researches in the future. It’s good to discuss it with your professor.

Research papers writing is easy thanks to a complete guide on this page.

Most of the students make the same mistakes. The first is presence of grammar errors or misspelling. You can do a super great research and provide fantastic solutions to some problems, but you will spoil the overall impression. The next is procrastination. Most of the students are sure that they can manage cope with the task in one night before the deadline. And one more common mistake is using slangs and jargons. It’s an academic piece of writing, so mind you style.

  • USC Libraries
  • Research Guides

Organizing Your Social Sciences Research Paper

  • Reading Research Effectively
  • Purpose of Guide
  • Design Flaws to Avoid
  • Independent and Dependent Variables
  • Glossary of Research Terms
  • Narrowing a Topic Idea
  • Broadening a Topic Idea
  • Extending the Timeliness of a Topic Idea
  • Academic Writing Style
  • Applying Critical Thinking
  • Choosing a Title
  • Making an Outline
  • Paragraph Development
  • Research Process Video Series
  • Executive Summary
  • The C.A.R.S. Model
  • Background Information
  • The Research Problem/Question
  • Theoretical Framework
  • Citation Tracking
  • Content Alert Services
  • Evaluating Sources
  • Primary Sources
  • Secondary Sources
  • Tiertiary Sources
  • Scholarly vs. Popular Publications
  • Qualitative Methods
  • Quantitative Methods
  • Insiderness
  • Using Non-Textual Elements
  • Limitations of the Study
  • Common Grammar Mistakes
  • Writing Concisely
  • Avoiding Plagiarism
  • Footnotes or Endnotes?
  • Further Readings
  • Generative AI and Writing
  • USC Libraries Tutorials and Other Guides
  • Bibliography

Reading a Scholarly Article or Research Paper

Identifying a research problem to investigate requires a preliminary search for and critical review of the literature in order to gain an understanding about how scholars have examined a topic. Scholars rarely structure research studies in a way that can be followed like a story; they are complex and detail-intensive and often written in a descriptive and conclusive narrative form. However, in the social and behavioral sciences, journal articles and stand-alone research reports are generally organized in a consistent format that makes it easier to compare and contrast studies and interpret their findings.

General Reading Strategies

W hen you first read an article or research paper, focus on asking specific questions about each section. This strategy can help with overall comprehension and with understanding how the content relates [or does not relate] to the problem you want to investigate. As you review more and more studies, the process of understanding and critically evaluating the research will become easier because the content of what you review will begin to coalescence around common themes and patterns of analysis. Below are recommendations on how to read each section of a research paper effectively. Note that the sections to read are out of order from how you will find them organized in a journal article or research paper.

1.  Abstract

The abstract summarizes the background, methods, results, discussion, and conclusions of a scholarly article or research paper. Use the abstract to filter out sources that may have appeared useful when you began searching for information but, in reality, are not relevant. Questions to consider when reading the abstract are:

  • Is this study related to my question or area of research?
  • What is this study about and why is it being done ?
  • What is the working hypothesis or underlying thesis?
  • What is the primary finding of the study?
  • Are there words or terminology that I can use to either narrow or broaden the parameters of my search for more information?

2.  Introduction

If, after reading the abstract, you believe the paper may be useful, focus on examining the research problem and identifying the questions the author is trying to address. This information is usually located within the first few paragraphs of the introduction or in the concluding paragraph. Look for information about how and in what way this relates to what you are investigating. In addition to the research problem, the introduction should provide the main argument and theoretical framework of the study and, in the last paragraphs of the introduction, describe what the author(s) intend to accomplish. Questions to consider when reading the introduction include:

  • What is this study trying to prove or disprove?
  • What is the author(s) trying to test or demonstrate?
  • What do we already know about this topic and what gaps does this study try to fill or contribute a new understanding to the research problem?
  • Why should I care about what is being investigated?
  • Will this study tell me anything new related to the research problem I am investigating?

3.  Literature Review

The literature review describes and critically evaluates what is already known about a topic. Read the literature review to obtain a big picture perspective about how the topic has been studied and to begin the process of seeing where your potential study fits within the domain of prior research. Questions to consider when reading the literature review include:

  • W hat other research has been conducted about this topic and what are the main themes that have emerged?
  • What does prior research reveal about what is already known about the topic and what remains to be discovered?
  • What have been the most important past findings about the research problem?
  • How has prior research led the author(s) to conduct this particular study?
  • Is there any prior research that is unique or groundbreaking?
  • Are there any studies I could use as a model for designing and organizing my own study?

4.  Discussion/Conclusion

The discussion and conclusion are usually the last two sections of text in a scholarly article or research report. They reveal how the author(s) interpreted the findings of their research and presented recommendations or courses of action based on those findings. Often in the conclusion, the author(s) highlight recommendations for further research that can be used to develop your own study. Questions to consider when reading the discussion and conclusion sections include:

  • What is the overall meaning of the study and why is this important? [i.e., how have the author(s) addressed the " So What? " question].
  • What do you find to be the most important ways that the findings have been interpreted?
  • What are the weaknesses in their argument?
  • Do you believe conclusions about the significance of the study and its findings are valid?
  • What limitations of the study do the author(s) describe and how might this help formulate my own research?
  • Does the conclusion contain any recommendations for future research?

5.  Methods/Methodology

The methods section describes the materials, techniques, and procedures for gathering information used to examine the research problem. If what you have read so far closely supports your understanding of the topic, then move on to examining how the author(s) gathered information during the research process. Questions to consider when reading the methods section include:

  • Did the study use qualitative [based on interviews, observations, content analysis], quantitative [based on statistical analysis], or a mixed-methods approach to examining the research problem?
  • What was the type of information or data used?
  • Could this method of analysis be repeated and can I adopt the same approach?
  • Is enough information available to repeat the study or should new data be found to expand or improve understanding of the research problem?

6.  Results

After reading the above sections, you should have a clear understanding of the general findings of the study. Therefore, read the results section to identify how key findings were discussed in relation to the research problem. If any non-textual elements [e.g., graphs, charts, tables, etc.] are confusing, focus on the explanations about them in the text. Questions to consider when reading the results section include:

  • W hat did the author(s) find and how did they find it?
  • Does the author(s) highlight any findings as most significant?
  • Are the results presented in a factual and unbiased way?
  • Does the analysis of results in the discussion section agree with how the results are presented?
  • Is all the data present and did the author(s) adequately address gaps?
  • What conclusions do you formulate from this data and does it match with the author's conclusions?

7.  References

The references list the sources used by the author(s) to document what prior research and information was used when conducting the study. After reviewing the article or research paper, use the references to identify additional sources of information on the topic and to examine critically how these sources supported the overall research agenda. Questions to consider when reading the references include:

  • Do the sources cited by the author(s) reflect a diversity of disciplinary viewpoints, i.e., are the sources all from a particular field of study or do the sources reflect multiple areas of study?
  • Are there any unique or interesting sources that could be incorporated into my study?
  • What other authors are respected in this field, i.e., who has multiple works cited or is cited most often by others?
  • What other research should I review to clarify any remaining issues or that I need more information about?

NOTE:   A final strategy in reviewing research is to copy and paste the title of the source [journal article, book, research report] into Google Scholar . If it appears, look for a "cited by" reference followed by a hyperlinked number under the record [e.g., Cited by 45]. This number indicates how many times the study has been subsequently cited in other, more recently published works. This strategy, known as citation tracking, can be an effective means of expanding your review of pertinent literature based on a study you have found useful and how scholars have cited it. The same strategies described above can be applied to reading articles you find in the list of cited by references.

Reading Tip

Specific Reading Strategies

Effectively reading scholarly research is an acquired skill that involves attention to detail and an ability to comprehend complex ideas, data, and theoretical concepts in a way that applies logically to the research problem you are investigating. Here are some specific reading strategies to consider.

As You are Reading

  • Focus on information that is most relevant to the research problem; skim over the other parts.
  • As noted above, read content out of order! This isn't a novel; you want to start with the spoiler to quickly assess the relevance of the study.
  • Think critically about what you read and seek to build your own arguments; not everything may be entirely valid, examined effectively, or thoroughly investigated.
  • Look up the definitions of unfamiliar words, concepts, or terminology. A good scholarly source is Credo Reference .

Taking notes as you read will save time when you go back to examine your sources. Here are some suggestions:

  • Mark or highlight important text as you read [e.g., you can use the highlight text  feature in a PDF document]
  • Take notes in the margins [e.g., Adobe Reader offers pop-up sticky notes].
  • Highlight important quotations; consider using different highlighting colors to differentiate between quotes and other types of important text.
  • Summarize key points about the study at the end of the paper. To save time, these can be in the form of a concise bulleted list of statements [e.g., intro provides useful historical background; lit review has important sources; good conclusions].

Write down thoughts that come to mind that may help clarify your understanding of the research problem. Here are some examples of questions to ask yourself:

  • Do I understand all of the terminology and key concepts?
  • Do I understand the parts of this study most relevant to my topic?
  • What specific problem does the research address and why is it important?
  • Are there any issues or perspectives the author(s) did not consider?
  • Do I have any reason to question the validity or reliability of this research?
  • How do the findings relate to my research interests and to other works which I have read?

Adapted from text originally created by Holly Burt, Behavioral Sciences Librarian, USC Libraries, April 2018.

Another Reading Tip

When is it Important to Read the Entire Article or Research Paper

Laubepin argues, "Very few articles in a field are so important that every word needs to be read carefully." * However, this implies that some studies are worth reading carefully if they directly relate to understanding the research problem. As arduous as it may seem, there are valid reasons for reading a study from beginning to end. Here are some examples:

  • Studies Published Very Recently .  The author(s) of a recent, well written study will provide a survey of the most important or impactful prior research in the literature review section. This can establish an understanding of how scholars in the past addressed the research problem. In addition, the most recently published sources will highlight what is known and what gaps in understanding currently exist about a topic, usually in the form of the need for further research in the conclusion .
  • Surveys of the Research Problem .  Some papers provide a comprehensive analytical overview of the research problem. Reading this type of study can help you understand underlying issues and discover why scholars have chosen to investigate the topic. This is particularly important if the study was published recently because the author(s) should cite all or most of the important prior research on the topic. Note that, if it is a long-standing problem, there may be studies that specifically review the literature to identify gaps that remain. These studies often include the word "review" in their title [e.g., Hügel, Stephan, and Anna R. Davies. "Public Participation, Engagement, and Climate Change Adaptation: A Review of the Research Literature." Wiley Interdisciplinary Reviews: Climate Change 11 (July-August 2020): https://doi.org/10.1002/ wcc.645].
  • Highly Cited .  If you keep coming across the same citation to a study while you are reviewing the literature, this implies it was foundational in establishing an understanding of the research problem or the study had a significant impact within the literature [either positive or negative]. Carefully reading a highly cited source can help you understand how the topic emerged and how it motivated scholars to further investigate the problem. It also could be a study you need to cite as foundational in your own paper to demonstrate to the reader that you understand the roots of the problem.
  • Historical Overview .  Knowing the historical background of a research problem may not be the focus of your analysis. Nevertheless, carefully reading a study that provides a thorough description and analysis of the history behind an event, issue, or phenomenon can add important context to understanding the topic and what aspect of the problem you may want to examine further.
  • Innovative Methodological Design .  Some studies are significant and should be read in their entirety because the author(s) designed a unique or innovative approach to researching the problem. This may justify reading the entire study because it can motivate you to think creatively about also pursuing an alternative or non-traditional approach to examining your topic of interest. These types of studies are generally easy to identify because they are often cited in others works because of their unique approach to examining the research problem.
  • Cross-disciplinary Approach .  R eviewing studies produced outside of your discipline is an essential component of investigating research problems in the social and behavioral sciences. Consider reading a study that was conducted by author(s) based in a different discipline [e.g., an anthropologist studying political cultures; a study of hiring practices in companies published in a sociology journal]. This approach can generate a new understanding or a unique perspective about the topic . If you are not sure how to search for studies published in a discipline outside of your major or of the course you are taking, contact a librarian for assistance.

* Laubepin, Frederique. How to Read (and Understand) a Social Science Journal Article . Inter-University Consortium for Political and Social Research (ISPSR), 2013

Shon, Phillip Chong Ho. How to Read Journal Articles in the Social Sciences: A Very Practical Guide for Students . 2nd edition. Thousand Oaks, CA: Sage, 2015; Lockhart, Tara, and Mary Soliday. "The Critical Place of Reading in Writing Transfer (and Beyond): A Report of Student Experiences." Pedagogy 16 (2016): 23-37; Maguire, Moira, Ann Everitt Reynolds, and Brid Delahunt. "Reading to Be: The Role of Academic Reading in Emergent Academic and Professional Student Identities." Journal of University Teaching and Learning Practice 17 (2020): 5-12.

  • << Previous: 1. Choosing a Research Problem
  • Next: Narrowing a Topic Idea >>
  • Last Updated: Aug 29, 2024 11:05 AM
  • URL: https://libguides.usc.edu/writingguide
  • University of Michigan Library
  • Research Guides

The Library Research Process, Step-by-Step

  • Finding Articles
  • Finding & Exploring a Topic
  • Finding Books
  • Evaluating Sources
  • Reading Scholarly Articles
  • Understanding & Using a Citation Style

Peer Reviewed and Scholarly Articles

What are they? Peer-reviewed articles, also known as scholarly or refereed articles are papers that describe a research study. 

Why are peer-reviewed articles useful? They report on original research that have been reviewed by other experts before they are accepted for publication, so you can reasonably be assured that they contain valid information. 

How do you find them?  Many of the library's databases contain scholarly articles! You'll find more about searching databases below.

Watch: Peer Review in 3 Minutes

Why watch this video?

We are often told that scholarly and peer-reviewed sources are the most credible, but, it's sometimes hard to understand why they are credible and why we should trust these sources more than others. This video takes an in depth approach at explaining the peer review process. 

Hot Tip: Check out the Reading Scholarly Articles page for guidance on how to read and understand a scholarly article.

Using Library Databases

What Are Library Databases? 

Databases are similar to search engines but primarily search scholarly journals, magazines, newspapers and other sources. Some databases are subject specific while others are multi-disciplinary (searching across multiple fields and content types). 

You can view our most popularly used databases on the Library's Home Page , or view a list of all of our databases organized by subject or alphabetically at  U-M Library Databases .

Popular Multidisciplinary Databases

Many students use ProQuest , JSTOR , and Google Scholar for their initial search needs. These are multi-disciplinary and not subject-specific, and they can supply a very large number of  search results.

Subject-Specific Databases

Some popular subject-specific databases include PsycINFO for psychology and psychiatry related topics and  PubMed for health sciences topics. 

Why Should You Use Library Databases?

Unlike a Google search, the Library Databases will grant you access to high quality credible sources. 

The sources you'll find in library databases include:

  • Scholarly journal articles
  • Newspaper articles
  • Theses & dissertations
  • Empirical evidence

Database Filters & Limits Most databases have Filters/Limits. You can use these to narrow down your search to the specific dates, article type, or population that you are researching.

Here is an example of limits in a database, all databases look slightly different but most have these options:

research paper and reports

Keywords and Starting a Search

What are Keywords?

  • Natural language words that describe your topic 
  • Allows for a more flexible search - looks for anywhere the words appear in the record
  • Can lead to a broader search, but may yield irrelevant results

Keyword searching  is how we normally start a search. Pull out important words or phrases from your topic to find your keywords.

Tips for Searching with Keywords:

  • Example: "climate change"
  • Example:  "climate change" AND policy
  • Example: comput* will return all words starting with four letters; computing, computer, compute, etc.  
  • Example: wom?n will find both woman and women.

What are Subject Headings?

  • Pre-defined "controlled vocabulary" that describe what an item is  about 
  • Makes for a less flexible search - only the subject fields will be searched
  • Targeted search; results are usually more relevant to the topic, but may miss some variations

Subject Terms and/or Headings are pre-defined terms that are used to describe the content of an item. These terms are a controlled vocabulary and function similarly to hashtags on social media. Look carefully at the results from your search. If you find an article that is relevant to the topic you want to write about, take a look at the subject headings. 

Hot Tip: Make a copy of this Google Doc to help you find and develop your topic's keywords.

More Database Recommendations

Need articles for your library research project, but not sure where to start? We recommend these top ten article databases for kicking off your research. If you can't find what you need searching in one of these top ten databases, browse the list of all library databases by subject (academic discipline) or title .

  • U-M Library Articles Search This link opens in a new window Use Articles Search to locate scholarly and popular articles, as well as reference works and materials from open access archives.
  • ABI/INFORM Global This link opens in a new window Indexes 3,000+ business-related periodicals (with full text for 2,000+), including Wall Street Journal.
  • Academic OneFile This link opens in a new window Provides indexing for over 8,000 scholarly journals, industry periodicals, general interest magazines and newspapers.
  • Access World News [NewsBank] This link opens in a new window Full text of 600+ U.S. newspapers and 260+ English-language newspapers from other countries worldwide.
  • CQ Researcher This link opens in a new window Noted for its in-depth, unbiased coverage of health, social trends, criminal justice, international affairs, education, the environment, technology, and the economy.
  • Gale Health and Wellness This link opens in a new window
  • Humanities Abstracts (with Full Text) This link opens in a new window Covers 700 periodicals in art, film, journalism, linguistics, music, performing arts, philosophy, religion, history, literature, etc.
  • JSTOR This link opens in a new window Full-text access to the archives of 2,600+ journals and 35,000+ books in the arts, humanities, social sciences and sciences.
  • ProQuest Research Library This link opens in a new window Indexes over 5,000 journals and magazines, academic and popular, with full text included for over 3,600.
  • PsycInfo (APA) This link opens in a new window Premier resource for surveying the literature of psychology and adjunct fields. Covers 1887-present. Produced by the APA.
  • Publications
  • News and Events
  • Education and Outreach

Software Engineering Institute

Sei digital library, latest publications, embracing ai: unlocking scalability and transformation through generative text, imagery, and synthetic audio, august 28, 2024 • webcast, by tyler brooks , shannon gallagher , dominic a. ross.

In this webcast, Tyler Brooks, Shannon Gallagher, and Dominic Ross aim to demystify AI and illustrate its transformative power in achieving scalability, adapting to changing landscapes, and driving digital innovation.

Counter AI: What Is It and What Can You Do About It?

August 27, 2024 • white paper, by nathan m. vanhoudnos , carol j. smith , matt churilla , shing-hon lau , lauren mcilvenny , greg touhill.

This paper describes counter artificial intelligence (AI) and provides recommendations on what can be done about it.

Using Quality Attribute Scenarios for ML Model Test Case Generation

August 27, 2024 • conference paper, by rachel brower-sinning , grace lewis , sebastián echeverría , ipek ozkaya.

This paper presents an approach based on quality attribute (QA) scenarios to elicit and define system- and model-relevant test cases for ML models.

3 API Security Risks (and How to Protect Against Them)

August 27, 2024 • podcast, by mckinley sconiers-hasan.

McKinley Sconiers-Hasan discusses three API risks and how to address them through the lens of zero trust.

Lessons Learned in Coordinated Disclosure for Artificial Intelligence and Machine Learning Systems

August 20, 2024 • white paper, by allen d. householder , vijay s. sarvepalli , jeff havrilla , matt churilla , lena pons , shing-hon lau , nathan m. vanhoudnos , andrew kompanek , lauren mcilvenny.

In this paper, the authors describe lessons learned from coordinating AI and ML vulnerabilities at the SEI's CERT/CC.

On the Design, Development, and Testing of Modern APIs

July 30, 2024 • white paper, by alejandro gomez , alex vesey.

This white paper discusses the design, desired qualities, development, testing, support, and security of modern application programming interfaces (APIs).

Evaluating Large Language Models for Cybersecurity Tasks: Challenges and Best Practices

July 26, 2024 • podcast, by jeff gennari , samuel j. perl.

Jeff Gennari and Sam Perl discuss applications for LLMs in cybersecurity, potential challenges, and recommendations for evaluating LLMs.

Capability-based Planning for Early-Stage Software Development

July 24, 2024 • podcast, by anandi hira , bill nichols.

This SEI podcast introduces capability-based planning (CBP) and its use and application in software acquisition.

A Model Problem for Assurance Research: An Autonomous Humanitarian Mission Scenario

July 23, 2024 • technical note, by gabriel moreno , anton hristozov , john e. robert , mark h. klein.

This report describes a model problem to support research in large-scale assurance.

Safeguarding Against Recent Vulnerabilities Related to Rust

June 28, 2024 • podcast, by david svoboda.

David Svoboda discusses two vulnerabilities related to Rust, their sources, and how to mitigate them.

Research Paper Topics

Research Paper Topics for 2024: Explore Ideas Across Various Fields

research paper and reports

When you start writing a research paper, it’s like diving into a big pool of exploration and analysis. A good research paper goes beyond just gathering facts. It’s more about exploring a topic, asking the right questions, and coming up with thoughtful answers. Whether you're looking at historical events, scientific discoveries, or cultural trends, the trick is to find interesting research topics that catch your interest and keep you motivated throughout the process.

This article is here to help with that sometimes tricky job of picking a topic. We’ll cover a variety of interesting research topics from different areas, making it easier for you to find one that not only fits your assignment but also grabs your attention.

But let’s be honest, picking the right topic isn’t always easy. If you’re still unsure after reading this article, EssayService is a great place to turn for help, whether you need assistance choosing a topic or writing the entire paper.

How to Pick a Topic for a Research Paper

Choosing the right topic can make or break your research paper. Here's how to make it easier:

  • Start with your interests: Pick a few areas or subjects that genuinely interest you. Narrow it down to the one that excites you the most. If you’re interested, it’ll show in your writing.
  • Check for resources: Before committing, do a quick search to ensure there are enough references available. You’ll want a topic that’s well-discussed so you have plenty of material to work with.
  • Stick to guidelines: Make sure your topic fits within any guidelines your teacher has set. Whether it's avoiding certain subjects or meeting specific requirements, this step is crucial for getting your paper off to a good start.

If you’re looking for easy research paper topics, keep these tips in mind to ensure you choose one that’s both manageable and engaging.

What Are Good Research Topics?

Choosing a successful research topic isn’t just about what sounds interesting — it’s about finding a topic that will help you produce a strong, insightful paper. Good research topic ideas should tick a few key boxes to ensure they’re both impactful and manageable.

Feature Description
🔍 Specific and Focused Narrow down broad areas like “climate change” to something more specific, like “the impact of urban development on local microclimates.” This gives your research a clear direction.
✨ Unique Angle Instead of rehashing well-covered topics like “social media and mental health,” explore a niche, such as “the effects of social media detox on productivity in college students.”
🌍 Significant Impact Choose topics that matter, like “renewable energy adoption in developing countries,” which could contribute to important discussions in your field or society.
📚 Accessible Sources Make sure there’s enough material available by checking databases for studies on topics like “the history of vaccine development” to ensure you have the resources you need.
🔥 Current and Relevant Focus on emerging issues, such as “the role of AI in cybersecurity,” which are timely and likely to interest both readers and reviewers.

Best Research Paper Topics for 2024

In 2024, new challenges and innovations are shaping the world around us, making it an exciting time to dive into research. Here are 15 detailed and highly relevant topics that will keep your paper ahead of the curve:

  • The impact of remote work on urban development in major U.S. cities.
  • Ethical implications of AI-driven decision-making in healthcare.
  • The role of social media algorithms in shaping public opinion during elections.
  • Effects of climate change on global food security and crop yields.
  • The influence of blockchain technology on supply chain transparency.
  • Mental health outcomes related to long-term social media use among teenagers.
  • Renewable energy adoption in emerging economies and its impact on local communities.
  • The rise of electric vehicles and its effect on traditional automotive industries.
  • Privacy concerns surrounding the use of biometric data in consumer devices.
  • The evolution of cybersecurity threats in the age of quantum computing.
  • Gender disparities in STEM education and their long-term effects on the workforce.
  • The economic impact of climate migration on coastal regions.
  • Implications of CRISPR technology in human genetic modification.
  • The effectiveness of universal basic income trials in reducing poverty.
  • The role of telemedicine in improving access to healthcare in rural areas.

College Research Paper Topics

These topics explore some of the most relevant and intriguing issues facing college students today, offering plenty of angles to explore in your research:

  • How student loan debt shapes career paths and financial stability after graduation.
  • Comparing online learning to traditional classrooms: What works best for today’s college students?
  • Social media’s influence on mental health and academic success among college students.
  • Diversity and inclusion: How initiatives are changing campus life and student experiences.
  • University sustainability efforts: How climate change is driving new campus policies.
  • The rise of esports: Transforming college athletics and student engagement.
  • Campus housing: How living arrangements affect academic success and student retention.
  • Balancing part-time jobs with academics: The impact on college students’ grades and well-being.
  • Navigating controversial topics: The importance of academic freedom in college debates.
  • Digital vs. traditional libraries: How technology is reshaping student research habits.
  • Study abroad programs: Enhancing global awareness and boosting future career opportunities.
  • Evaluating campus mental health services: Are they meeting students’ needs?
  • Fraternities and sororities: Examining their influence on college culture and student life.
  • Free college tuition: Exploring the economic and social outcomes in different countries.
  • Standardized testing: How it’s affecting college admissions and the diversity of student bodies.

research paper and reports

Research Paper Topics By Subject

Choosing a good research topic that aligns with your academic focus can make your work more relevant and engaging. Below, you’ll find topics organized by subject to help you get started.

Research Paper Topics on Health

Health is a dynamic field with ongoing developments and challenges, making it a rich area for research. These topics cover a range of health-related issues, from public health policies to advancements in medical technology:

  • How COVID-19 has changed the approach to mental health care.
  • Adoption rates of telemedicine among different age groups.
  • Antibiotic-resistant bacteria: Exploring new treatment options.
  • Barriers to healthcare access in low-income neighborhoods.
  • Ethical dilemmas in using genetic testing for personalized treatments.
  • Success rates of mental health programs in high schools.
  • Comparing dietary patterns in managing type 2 diabetes across cultures.
  • Teen vaping trends and their connection to lung health issues.
  • Strategies for supporting healthcare needs in rapidly aging populations.
  • Tracking climate-related health issues in coastal communities.
  • Innovations in vaccine development for emerging diseases.
  • Social isolation during pandemics and its link to anxiety disorders.
  • Recent changes in U.S. healthcare laws and their influence on patient choices.
  • Exploring how traditional beliefs shape approaches to medical treatment.
  • Evaluating progress in global vaccination campaigns against childhood diseases.

Research Paper Topics on Medicine

Medicine is a vast field with plenty of areas to explore. Here are some specific topics that focus on medical advancements, practices, and challenges:

  • New techniques in minimally invasive surgery for heart conditions.
  • Developments in gene therapy for treating inherited diseases.
  • Challenges in diagnosing and treating rare diseases.
  • The role of AI in improving diagnostic accuracy in radiology.
  • Progress in personalized cancer treatments based on genetic profiling.
  • The rise of antibiotic alternatives in treating infections.
  • Stem cell research advancements for spinal cord injuries.
  • Managing chronic pain: Exploring non-opioid treatment options.
  • Trends in telemedicine for rural healthcare delivery.
  • Breakthroughs in vaccine technology for emerging viruses.
  • Long-term outcomes of organ transplants in pediatric patients.
  • Advances in robotic surgery and their impact on patient recovery.
  • New approaches to treating drug-resistant tuberculosis.
  • Innovations in prenatal care and fetal surgery techniques.
  • The future of regenerative medicine and tissue engineering.

Research Paper Topics on Media

Explore the ever-changing world of media with these fresh and relevant topics. Each one dives into the trends and challenges shaping how we consume and create content today.

  • Analyze the impact of TikTok on modern marketing strategies.
  • Investigate the role of influencers in shaping public opinion during elections.
  • Explore the effects of streaming services on traditional cable TV viewership.
  • Examine how social media platforms handle misinformation and its consequences.
  • Study the rise of podcasts and their influence on news consumption.
  • Compare the portrayal of mental health in TV shows across different cultures.
  • Track the evolution of digital journalism and its impact on print media.
  • Look into the ethics of deepfake technology in video production.
  • Research the effects of binge-watching on viewer behavior and mental health.
  • Explore the relationship between video game streaming and the gaming industry.
  • Analyze the shift from traditional news outlets to social media for breaking news.
  • Investigate how algorithms curate personalized content and influence user behavior.
  • Study the changing landscape of advertising in the age of ad-blockers.
  • Examine the role of memes in political discourse and cultural commentary.
  • Explore the use of virtual reality in media and entertainment.

Research Paper Topics on Politics

Politics is a field that’s constantly evolving, with new issues and debates emerging all the time. Whether you're interested in global dynamics, domestic policies, or the role of technology in politics, there’s no shortage of interesting topics to explore:

  • How social media is influencing voter behavior in recent elections.
  • The rise and impact of grassroots movements on political change.
  • Fake news and its role in shaping public perception of political events.
  • The effects of immigration policies on relationships between countries.
  • Populism’s growth in global politics and what it means for the future.
  • How economic inequality contributes to political instability.
  • The power of political lobbying in creating and shaping laws.
  • Challenges faced by democracies under authoritarian regimes.
  • Youth activism and its growing influence in modern politics.
  • How climate change policies are impacting national security.
  • The role of technology in improving election security and voter turnout.
  • Government approval ratings and their connection to pandemic responses.
  • Influence of international organizations on a country’s domestic policies.
  • Shifts in global trade agreements and their effects on international relations.
  • The impact of gerrymandering on election results and fairness.

Research Paper Ideas on Technology

Technology is rapidly transforming our world, offering endless opportunities for research. Here are some intriguing ideas to explore:

  • The ethics of artificial intelligence in decision-making processes.
  • How blockchain technology is revolutionizing financial transactions.
  • The role of 5G networks in shaping the future of communication.
  • Cybersecurity challenges in the era of smart homes and IoT devices.
  • The environmental impact of cryptocurrency mining.
  • Virtual reality’s influence on education and training programs.
  • How autonomous vehicles are changing urban planning and infrastructure.
  • The potential of quantum computing in solving complex global problems.
  • Social media algorithms and their impact on public discourse.
  • The digital divide: Access to technology in rural versus urban areas.
  • How wearable tech is transforming personal health management.
  • The implications of deepfake technology in media and politics.
  • The future of remote work and its long-term effects on productivity.
  • Advancements in drone technology for disaster management and rescue operations.
  • The role of big data in personalizing online shopping experiences.

Research Topic Ideas on Culture

Whether you’re interested in examining specific cultural practices or looking at how modern trends reshape traditional customs, these research topics will provide you with a focused and detailed starting point:

  • Adoption of traditional Japanese tea ceremonies in contemporary urban settings.
  • Practices of food preservation among Inuit communities in the Arctic.
  • The revival of Celtic languages in Wales and Ireland through education programs.
  • Depiction of queer relationships in Netflix original series from 2015 to 2024.
  • Evolution of traditional African hairstyles in Black communities across the U.S.
  • Transformation of street art in Berlin post-German reunification.
  • Cultural significance of Día de los Muertos celebrations in Mexican-American neighborhoods.
  • Popularity of Korean skincare routines among Western beauty bloggers.
  • Modern interpretations of Norse mythology in Scandinavian literature.
  • Changes in wedding rituals among Indian diaspora in the UK.
  • Resurgence of indigenous Australian painting techniques in contemporary art.
  • Representation of disability in children’s books published in the last decade.
  • Use of traditional Māori patterns in New Zealand’s fashion industry.
  • Changes in burial customs in urbanized areas of Southeast Asia.
  • Incorporation of First Nations symbols in Canadian public architecture.

Research Paper Topics on Math

If you're looking to explore the depth and applications of math, these research topics are both specific and engaging:

  • Applications of fractal geometry in modeling natural phenomena.
  • Mathematical approaches to solving complex optimization problems in logistics.
  • Development of new algorithms for large-scale data encryption.
  • Mathematical modeling of population dynamics in ecology.
  • The use of game theory in economic decision-making processes.
  • Exploring the mathematics behind machine learning algorithms.
  • Advancements in numerical methods for solving partial differential equations.
  • Topological data analysis and its applications in computational biology.
  • Mathematical analysis of voting systems and fairness.
  • The role of number theory in modern cryptography.
  • Predictive models for financial markets using stochastic calculus.
  • Mathematical foundations of quantum computing and quantum algorithms.
  • Applications of chaos theory in weather prediction.
  • Geometry of space-time in the context of general relativity.
  • Mathematical techniques for analyzing big data in social networks.

Research Paper Topics on Art

Art is full of fascinating details and stories waiting to be explored. If you’re into art research, here are some research topics that might catch your interest:

  • How Caravaggio used light and shadow in his religious paintings.
  • The way Cubism shaped Picasso’s "Les Demoiselles d’Avignon."
  • Gustav Klimt’s "The Kiss" and its ties to Viennese culture.
  • Hokusai’s woodblock techniques in "The Great Wave off Kanagawa."
  • Bauhaus principles that still influence graphic design today.
  • Emotions and color in Mark Rothko’s abstract paintings.
  • Leonora Carrington’s role in the Surrealist movement.
  • Gaudí’s architectural genius in designing La Sagrada Familia.
  • Industrial scenes captured in Charles Sheeler’s Precisionist art.
  • Jean-Michel Basquiat’s take on graffiti and cultural identity.
  • Frida Kahlo’s evolving self-portraits through her life.
  • Claude Monet’s unique use of light in his Impressionist works.
  • Diego Rivera’s murals as powerful political statements.
  • The simplicity and impact of Donald Judd’s minimalist sculptures.
  • How African art influenced Henri Matisse during his Fauvist period.

Research Topics on Sports

Sports offer a wide range of topics that are both intriguing and highly relevant. Here are some specific research ideas to consider if you're looking to explore the world of sports:

  • The biomechanics behind sprinting techniques in elite athletes.
  • The psychological effects of team sports on adolescent development.
  • Injury prevention strategies in professional football (soccer).
  • The impact of altitude training on endurance performance in marathon runners.
  • Gender equity in sports: The evolution of women’s participation in the Olympics.
  • The role of nutrition in recovery and performance for endurance athletes.
  • How advanced analytics are changing strategies in basketball.
  • The effects of early specialization in youth sports on long-term athletic development.
  • The influence of sports media coverage on public perceptions of athletes.
  • Technology in sports: The use of wearable devices to monitor athlete performance.
  • Doping scandals and their long-term impact on athletes' careers.
  • Mental health challenges faced by retired professional athletes.
  • The economics of hosting major sporting events like the World Cup or Olympics.
  • How climate change is affecting outdoor sports events and training schedules.
  • The evolution of sports science in enhancing athlete training programs.

In 2024, some of the most popular research topics include the impact of technology on sports, the psychological aspects of team dynamics, and the evolution of gender equity in athletics. 

If you’re still unsure about which topic to choose or need help with your essay, EssayService is a great option. Our research paper writing service can assist with everything from selecting the perfect topic to crafting a well-written paper, making the whole process a lot easier.

Frequently asked questions

She was flawless! first time using a website like this, I've ordered article review and i totally adored it! grammar punctuation, content - everything was on point

This writer is my go to, because whenever I need someone who I can trust my task to - I hire Joy. She wrote almost every paper for me for the last 2 years

Term paper done up to a highest standard, no revisions, perfect communication. 10s across the board!!!!!!!

I send him instructions and that's it. my paper was done 10 hours later, no stupid questions, he nailed it.

Sometimes I wonder if Michael is secretly a professor because he literally knows everything. HE DID SO WELL THAT MY PROF SHOWED MY PAPER AS AN EXAMPLE. unbelievable, many thanks

Law Essay Topics

New posts to your inbox!

Stay in touch

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base
  • Academic writing
  • How to write a lab report

How To Write A Lab Report | Step-by-Step Guide & Examples

Published on May 20, 2021 by Pritha Bhandari . Revised on July 23, 2023.

A lab report conveys the aim, methods, results, and conclusions of a scientific experiment. The main purpose of a lab report is to demonstrate your understanding of the scientific method by performing and evaluating a hands-on lab experiment. This type of assignment is usually shorter than a research paper .

Lab reports are commonly used in science, technology, engineering, and mathematics (STEM) fields. This article focuses on how to structure and write a lab report.

Instantly correct all language mistakes in your text

Upload your document to correct all your mistakes in minutes

upload-your-document-ai-proofreader

Table of contents

Structuring a lab report, introduction, other interesting articles, frequently asked questions about lab reports.

The sections of a lab report can vary between scientific fields and course requirements, but they usually contain the purpose, methods, and findings of a lab experiment .

Each section of a lab report has its own purpose.

  • Title: expresses the topic of your study
  • Abstract : summarizes your research aims, methods, results, and conclusions
  • Introduction: establishes the context needed to understand the topic
  • Method: describes the materials and procedures used in the experiment
  • Results: reports all descriptive and inferential statistical analyses
  • Discussion: interprets and evaluates results and identifies limitations
  • Conclusion: sums up the main findings of your experiment
  • References: list of all sources cited using a specific style (e.g. APA )
  • Appendices : contains lengthy materials, procedures, tables or figures

Although most lab reports contain these sections, some sections can be omitted or combined with others. For example, some lab reports contain a brief section on research aims instead of an introduction, and a separate conclusion is not always required.

If you’re not sure, it’s best to check your lab report requirements with your instructor.

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

Your title provides the first impression of your lab report – effective titles communicate the topic and/or the findings of your study in specific terms.

Create a title that directly conveys the main focus or purpose of your study. It doesn’t need to be creative or thought-provoking, but it should be informative.

  • The effects of varying nitrogen levels on tomato plant height.
  • Testing the universality of the McGurk effect.
  • Comparing the viscosity of common liquids found in kitchens.

An abstract condenses a lab report into a brief overview of about 150–300 words. It should provide readers with a compact version of the research aims, the methods and materials used, the main results, and the final conclusion.

Think of it as a way of giving readers a preview of your full lab report. Write the abstract last, in the past tense, after you’ve drafted all the other sections of your report, so you’ll be able to succinctly summarize each section.

To write a lab report abstract, use these guiding questions:

  • What is the wider context of your study?
  • What research question were you trying to answer?
  • How did you perform the experiment?
  • What did your results show?
  • How did you interpret your results?
  • What is the importance of your findings?

Nitrogen is a necessary nutrient for high quality plants. Tomatoes, one of the most consumed fruits worldwide, rely on nitrogen for healthy leaves and stems to grow fruit. This experiment tested whether nitrogen levels affected tomato plant height in a controlled setting. It was expected that higher levels of nitrogen fertilizer would yield taller tomato plants.

Levels of nitrogen fertilizer were varied between three groups of tomato plants. The control group did not receive any nitrogen fertilizer, while one experimental group received low levels of nitrogen fertilizer, and a second experimental group received high levels of nitrogen fertilizer. All plants were grown from seeds, and heights were measured 50 days into the experiment.

The effects of nitrogen levels on plant height were tested between groups using an ANOVA. The plants with the highest level of nitrogen fertilizer were the tallest, while the plants with low levels of nitrogen exceeded the control group plants in height. In line with expectations and previous findings, the effects of nitrogen levels on plant height were statistically significant. This study strengthens the importance of nitrogen for tomato plants.

Your lab report introduction should set the scene for your experiment. One way to write your introduction is with a funnel (an inverted triangle) structure:

  • Start with the broad, general research topic
  • Narrow your topic down your specific study focus
  • End with a clear research question

Begin by providing background information on your research topic and explaining why it’s important in a broad real-world or theoretical context. Describe relevant previous research on your topic and note how your study may confirm it or expand it, or fill a gap in the research field.

This lab experiment builds on previous research from Haque, Paul, and Sarker (2011), who demonstrated that tomato plant yield increased at higher levels of nitrogen. However, the present research focuses on plant height as a growth indicator and uses a lab-controlled setting instead.

Next, go into detail on the theoretical basis for your study and describe any directly relevant laws or equations that you’ll be using. State your main research aims and expectations by outlining your hypotheses .

Based on the importance of nitrogen for tomato plants, the primary hypothesis was that the plants with the high levels of nitrogen would grow the tallest. The secondary hypothesis was that plants with low levels of nitrogen would grow taller than plants with no nitrogen.

Your introduction doesn’t need to be long, but you may need to organize it into a few paragraphs or with subheadings such as “Research Context” or “Research Aims.”

Prevent plagiarism. Run a free check.

A lab report Method section details the steps you took to gather and analyze data. Give enough detail so that others can follow or evaluate your procedures. Write this section in the past tense. If you need to include any long lists of procedural steps or materials, place them in the Appendices section but refer to them in the text here.

You should describe your experimental design, your subjects, materials, and specific procedures used for data collection and analysis.

Experimental design

Briefly note whether your experiment is a within-subjects  or between-subjects design, and describe how your sample units were assigned to conditions if relevant.

A between-subjects design with three groups of tomato plants was used. The control group did not receive any nitrogen fertilizer. The first experimental group received a low level of nitrogen fertilizer, while the second experimental group received a high level of nitrogen fertilizer.

Describe human subjects in terms of demographic characteristics, and animal or plant subjects in terms of genetic background. Note the total number of subjects as well as the number of subjects per condition or per group. You should also state how you recruited subjects for your study.

List the equipment or materials you used to gather data and state the model names for any specialized equipment.

List of materials

35 Tomato seeds

15 plant pots (15 cm tall)

Light lamps (50,000 lux)

Nitrogen fertilizer

Measuring tape

Describe your experimental settings and conditions in detail. You can provide labelled diagrams or images of the exact set-up necessary for experimental equipment. State how extraneous variables were controlled through restriction or by fixing them at a certain level (e.g., keeping the lab at room temperature).

Light levels were fixed throughout the experiment, and the plants were exposed to 12 hours of light a day. Temperature was restricted to between 23 and 25℃. The pH and carbon levels of the soil were also held constant throughout the experiment as these variables could influence plant height. The plants were grown in rooms free of insects or other pests, and they were spaced out adequately.

Your experimental procedure should describe the exact steps you took to gather data in chronological order. You’ll need to provide enough information so that someone else can replicate your procedure, but you should also be concise. Place detailed information in the appendices where appropriate.

In a lab experiment, you’ll often closely follow a lab manual to gather data. Some instructors will allow you to simply reference the manual and state whether you changed any steps based on practical considerations. Other instructors may want you to rewrite the lab manual procedures as complete sentences in coherent paragraphs, while noting any changes to the steps that you applied in practice.

If you’re performing extensive data analysis, be sure to state your planned analysis methods as well. This includes the types of tests you’ll perform and any programs or software you’ll use for calculations (if relevant).

First, tomato seeds were sown in wooden flats containing soil about 2 cm below the surface. Each seed was kept 3-5 cm apart. The flats were covered to keep the soil moist until germination. The seedlings were removed and transplanted to pots 8 days later, with a maximum of 2 plants to a pot. Each pot was watered once a day to keep the soil moist.

The nitrogen fertilizer treatment was applied to the plant pots 12 days after transplantation. The control group received no treatment, while the first experimental group received a low concentration, and the second experimental group received a high concentration. There were 5 pots in each group, and each plant pot was labelled to indicate the group the plants belonged to.

50 days after the start of the experiment, plant height was measured for all plants. A measuring tape was used to record the length of the plant from ground level to the top of the tallest leaf.

In your results section, you should report the results of any statistical analysis procedures that you undertook. You should clearly state how the results of statistical tests support or refute your initial hypotheses.

The main results to report include:

  • any descriptive statistics
  • statistical test results
  • the significance of the test results
  • estimates of standard error or confidence intervals

The mean heights of the plants in the control group, low nitrogen group, and high nitrogen groups were 20.3, 25.1, and 29.6 cm respectively. A one-way ANOVA was applied to calculate the effect of nitrogen fertilizer level on plant height. The results demonstrated statistically significant ( p = .03) height differences between groups.

Next, post-hoc tests were performed to assess the primary and secondary hypotheses. In support of the primary hypothesis, the high nitrogen group plants were significantly taller than the low nitrogen group and the control group plants. Similarly, the results supported the secondary hypothesis: the low nitrogen plants were taller than the control group plants.

These results can be reported in the text or in tables and figures. Use text for highlighting a few key results, but present large sets of numbers in tables, or show relationships between variables with graphs.

You should also include sample calculations in the Results section for complex experiments. For each sample calculation, provide a brief description of what it does and use clear symbols. Present your raw data in the Appendices section and refer to it to highlight any outliers or trends.

The Discussion section will help demonstrate your understanding of the experimental process and your critical thinking skills.

In this section, you can:

  • Interpret your results
  • Compare your findings with your expectations
  • Identify any sources of experimental error
  • Explain any unexpected results
  • Suggest possible improvements for further studies

Interpreting your results involves clarifying how your results help you answer your main research question. Report whether your results support your hypotheses.

  • Did you measure what you sought out to measure?
  • Were your analysis procedures appropriate for this type of data?

Compare your findings with other research and explain any key differences in findings.

  • Are your results in line with those from previous studies or your classmates’ results? Why or why not?

An effective Discussion section will also highlight the strengths and limitations of a study.

  • Did you have high internal validity or reliability?
  • How did you establish these aspects of your study?

When describing limitations, use specific examples. For example, if random error contributed substantially to the measurements in your study, state the particular sources of error (e.g., imprecise apparatus) and explain ways to improve them.

The results support the hypothesis that nitrogen levels affect plant height, with increasing levels producing taller plants. These statistically significant results are taken together with previous research to support the importance of nitrogen as a nutrient for tomato plant growth.

However, unlike previous studies, this study focused on plant height as an indicator of plant growth in the present experiment. Importantly, plant height may not always reflect plant health or fruit yield, so measuring other indicators would have strengthened the study findings.

Another limitation of the study is the plant height measurement technique, as the measuring tape was not suitable for plants with extreme curvature. Future studies may focus on measuring plant height in different ways.

The main strengths of this study were the controls for extraneous variables, such as pH and carbon levels of the soil. All other factors that could affect plant height were tightly controlled to isolate the effects of nitrogen levels, resulting in high internal validity for this study.

Your conclusion should be the final section of your lab report. Here, you’ll summarize the findings of your experiment, with a brief overview of the strengths and limitations, and implications of your study for further research.

Some lab reports may omit a Conclusion section because it overlaps with the Discussion section, but you should check with your instructor before doing so.

If you want to know more about AI for academic writing, AI tools, or fallacies make sure to check out some of our other articles with explanations and examples or go directly to our tools!

  • Ad hominem fallacy
  • Post hoc fallacy
  • Appeal to authority fallacy
  • False cause fallacy
  • Sunk cost fallacy
  • Deep learning
  • Generative AI
  • Machine learning
  • Reinforcement learning
  • Supervised vs. unsupervised learning

 (AI) Tools

  • Grammar Checker
  • Paraphrasing Tool
  • Text Summarizer
  • AI Detector
  • Plagiarism Checker
  • Citation Generator

A lab report conveys the aim, methods, results, and conclusions of a scientific experiment . Lab reports are commonly assigned in science, technology, engineering, and mathematics (STEM) fields.

The purpose of a lab report is to demonstrate your understanding of the scientific method with a hands-on lab experiment. Course instructors will often provide you with an experimental design and procedure. Your task is to write up how you actually performed the experiment and evaluate the outcome.

In contrast, a research paper requires you to independently develop an original argument. It involves more in-depth research and interpretation of sources and data.

A lab report is usually shorter than a research paper.

The sections of a lab report can vary between scientific fields and course requirements, but it usually contains the following:

  • Abstract: summarizes your research aims, methods, results, and conclusions
  • References: list of all sources cited using a specific style (e.g. APA)
  • Appendices: contains lengthy materials, procedures, tables or figures

The results chapter or section simply and objectively reports what you found, without speculating on why you found these results. The discussion interprets the meaning of the results, puts them in context, and explains why they matter.

In qualitative research , results and discussion are sometimes combined. But in quantitative research , it’s considered important to separate the objective results from your interpretation of them.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Bhandari, P. (2023, July 23). How To Write A Lab Report | Step-by-Step Guide & Examples. Scribbr. Retrieved August 26, 2024, from https://www.scribbr.com/academic-writing/lab-report/

Is this article helpful?

Pritha Bhandari

Pritha Bhandari

Other students also liked, guide to experimental design | overview, steps, & examples, how to write an apa methods section, how to write an apa results section, "i thought ai proofreading was useless but..".

I've been using Scribbr for years now and I know it's a service that won't disappoint. It does a good job spotting mistakes”

NTRS - NASA Technical Reports Server

Available downloads, related records.

IMAGES

  1. FREE 8+ Sample Scientific Reports in PDF

    research paper and reports

  2. 7+ Sample Research Report Templates

    research paper and reports

  3. FREE Research Report Templates & Examples

    research paper and reports

  4. FREE 17+ Sample Research Reports in PDF

    research paper and reports

  5. 7+ Research Report Templates

    research paper and reports

  6. How to write research paper report

    research paper and reports

VIDEO

  1. Publishing Research Papers To Journals

  2. Write an outline for a research paper

  3. How to do research? and How to write a research paper?

  4. How to Write a Research Paper

  5. How to write a research paper during bachelor’s degree?

  6. Report Writing

COMMENTS

  1. How to Write a Research Paper: the LEAP approach (+cheat sheet)

    Step 1: Lay Out the Facts. You have worked long hours on a research project that has produced results and are no doubt curious to determine what they exactly mean. There is no better way to do this than by preparing figures, graphics and tables. This is what the first LEAP step is focused on - diving into the results.

  2. Research articles

    Genotyping single point mutations in rd1 and rd8 mice using melting curve analysis of qPCR fragments. Melanie E. Schwämmle. Felicitas Bucher. Gottfried Martin. Article Open Access 28 Aug 2024.

  3. How to Write a Research Paper

    Conduct preliminary research. Develop a thesis statement. Create a research paper outline. Write a first draft of the research paper. Write the introduction. Write a compelling body of text. Write the conclusion. The second draft. The revision process.

  4. Research Report

    Research paper is a type of research report. A research paper is a document that presents the results of a research study or investigation. Research papers can be written in a variety of fields, including science, social science, humanities, and business. They typically follow a standard format that includes an introduction, literature review ...

  5. Research Paper

    Definition: Research Paper is a written document that presents the author's original research, analysis, and interpretation of a specific topic or issue. It is typically based on Empirical Evidence, and may involve qualitative or quantitative research methods, or a combination of both. The purpose of a research paper is to contribute new ...

  6. Research Report: Definition, Types, Guide

    A research report is a collection of contextual data, gathered through organized research, that provides new insights into a particular challenge (which, for this article, is business-related). Research reports are a time-tested method for distilling large amounts of data into a narrow band of focus. Their effectiveness often hinges on whether ...

  7. Writing a Research Report

    There are five MAJOR parts of a Research Report: 1. Introduction 2. Review of Literature 3. Methods 4. Results 5. Discussion. As a general guide, the Introduction, Review of Literature, and Methods should be about 1/3 of your paper, Discussion 1/3, then Results 1/3. Section 1: Cover Sheet (APA format cover sheet) optional, if required.

  8. The Ultimate Guide to Writing a Research Paper

    What is a research paper? A research paper is a type of academic writing that provides an in-depth analysis, evaluation, or interpretation of a single topic, based on empirical evidence. Research papers are similar to analytical essays, except that research papers emphasize the use of statistical data and preexisting research, along with a strict code for citations.

  9. Research Paper Format

    Formatting a Chicago paper. The main guidelines for writing a paper in Chicago style (also known as Turabian style) are: Use a standard font like 12 pt Times New Roman. Use 1 inch margins or larger. Apply double line spacing. Indent every new paragraph ½ inch. Place page numbers in the top right or bottom center.

  10. How To Write A Research Paper (FREE Template

    Step 1: Find a topic and review the literature. As we mentioned earlier, in a research paper, you, as the researcher, will try to answer a question.More specifically, that's called a research question, and it sets the direction of your entire paper. What's important to understand though is that you'll need to answer that research question with the help of high-quality sources - for ...

  11. Writing a Research Paper Introduction

    Table of contents. Step 1: Introduce your topic. Step 2: Describe the background. Step 3: Establish your research problem. Step 4: Specify your objective (s) Step 5: Map out your paper. Research paper introduction examples. Frequently asked questions about the research paper introduction.

  12. Writing up a Research Report

    As your report is a research paper, it is perfectly fine to state your research question and research aim in the introduction, so that everything that follows can be understood in light of those research questions. It should also indicate your type of conclusion and point of view. Again, in line with the directive of "no surprises", try to ...

  13. Research reports

    An outline of the research questions and hypotheses; the assumptions or propositions that your research will test. Literature Review. Not all research reports have a separate literature review section. In shorter research reports, the review is usually part of the Introduction. A literature review is a critical survey of recent relevant ...

  14. How to Write and Publish a Research Paper for a Peer ...

    Communicating research findings is an essential step in the research process. Often, peer-reviewed journals are the forum for such communication, yet many researchers are never taught how to write a publishable scientific paper. In this article, we explain the basic structure of a scientific paper and describe the information that should be included in each section. We also identify common ...

  15. PDF How to Write an Effective Research REport

    Abstract. This guide for writers of research reports consists of practical suggestions for writing a report that is clear, concise, readable, and understandable. It includes suggestions for terminology and notation and for writing each section of the report—introduction, method, results, and discussion. Much of the guide consists of ...

  16. Writing a Research Report in American Psychological Association (APA

    An APA-style research report begins with a ... This student paper does not include the author note on the title page. The abstract appears on its own page. Figure 11.3 Introduction and Method. Note that the introduction is headed with the full title, and the method section begins immediately after the introduction ends. ...

  17. Scientific Reports

    Here is the basic format scientists have designed for research reports: Introduction; ... Scientific Papers and Presentations, 3rd ed. London: Academic Press. Day, Robert A. 1994. How to Write and Publish a Scientific Paper, 4th ed. Phoenix: Oryx Press. Porush, David. 1995.

  18. Open research reports

    Open research reports. JSTOR hosts a growing curated collection of more than 50,000 open research reports from 187 think tanks and research institutes from around the world. These publications are freely accessible to everyone on JSTOR and discoverable as their own content type alongside journals, books, and primary sources. We update research ...

  19. How to Write a Report: A Guide to Report Formats with Examples

    The key is to search only for reputable sources: official documents, other reports, research papers, case studies, books from respected authors, etc. Feel free to use research cited in other similar reports. You can often find a lot of information online through search engines, but a quick trip to the library can also help in a pinch.

  20. Write a Research Paper

    Read Writing a Research Paper for Your Science Fair Project to learn about the purpose of a research paper and how to write one. Review How to Write a Bibliography in APA and MLA styles With Examples to learn how to properly cite resources in your paper using in-text citations. Answer the following questions to check your learning:

  21. Research Reports: Definition and How to Write Them

    Research reports are recorded data prepared by researchers or statisticians after analyzing the information gathered by conducting organized research, typically in the form of surveys or qualitative methods. A research report is a reliable source to recount details about a conducted research. It is most often considered to be a true testimony ...

  22. Structuring the Research Paper: Formal Research Structure

    Formal Research Structure. These are the primary purposes for formal research: enter the discourse, or conversation, of other writers and scholars in your field. learn how others in your field use primary and secondary resources. find and understand raw data and information. For the formal academic research assignment, consider an ...

  23. How to write a research paper: tips and tricks

    You get the research paper in time and offer some edits if needed. How to write a research paper: a step-by-step guide. In this section of the page, we'll give you a complete guide to write a good research paper. You will see how to craft the paper from scratch. Follow the guide from the first step to the last one or pick up only the steps ...

  24. Organizing Your Social Sciences Research Paper

    However, in the social and behavioral sciences, journal articles and stand-alone research reports are generally organized in a consistent format that makes it easier to compare and contrast studies and interpret their findings. ... After reviewing the article or research paper, use the references to identify additional sources of information on ...

  25. Finding Articles

    Peer-reviewed articles, also known as scholarly or refereed articles are papers that describe a research study. ... Report a problem. University of Michigan Library. 818 Hatcher Graduate Library South 913 S. University Avenue Ann Arbor, MI 48109-1190 (734) 764-0400 Send us an email.

  26. SEI Digital Library

    The SEI Digital Library provides access to more than 6,000 documents from three decades of research into best practices in software engineering. These documents include technical reports, presentations, webcasts, podcasts and other materials searchable by user-supplied keywords and organized by topic, publication type, publication year, and author.

  27. 165 Research Paper Topics for Students [2024]

    Find research paper topics for 2024. Explore relevant ideas across various fields, including technology, culture & sports, to kickstart your academic writing. ... Annotated bibliography Case study Discussion post Dissertation Personal statement Persuasive speech Report Research proposal Research paper Capstone project.

  28. Research Publications

    The researchers at Bosch Research regularly publish scientific publications, often in collaboration with research and scientific institutions. Discover our publications on the key research areas of automation, digitalization and connectivity, artificial intelligence, electrification, climate action and sustainability as well as healthcare.

  29. How To Write A Lab Report

    The main purpose of a lab report is to demonstrate your understanding of the scientific method by performing and evaluating a hands-on lab experiment. This type of assignment is usually shorter than a research paper. Lab reports are commonly used in science, technology, engineering, and mathematics (STEM) fields.

  30. NTRS

    The primary contribution of this paper is an initial analysis of integrating digitally enabled cooperative operations (or digital operations for short) with Visual Flight Rules (VFR) and Instrument Flight Rules (IFR) operations in the terminal airspace around a Class D airport, specifically around Fort Worth Alliance airport (KAFW). Enabled by connected digital technologies and automated ...