• Correlational Research Designs: Types, Examples & Methods

busayo.longe

A human mind is a powerful tool that allows you to sift through seemingly unrelated variables and establish a connection with regards to a specific subject at hand. This skill is what comes to play when we talk about correlational research.

Correlational research is something that we do every day; think about how you establish a connection between the doorbell ringing at a particular time and the milkman’s arrival. As such, it is expedient to understand the different types of correlational research that are available and more importantly, how to go about it. 

What is Correlational Research?

Correlational research is a type of research method that involves observing two variables in order to establish a statistically corresponding relationship between them. The aim of correlational research is to identify variables that have some sort of relationship do the extent that a change in one creates some change in the other. 

This type of research is descriptive, unlike experimental research that relies entirely on scientific methodology and hypothesis. For example, correlational research may reveal the statistical relationship between high-income earners and relocation; that is, the more people earn, the more likely they are to relocate or not. 

What are the Types of Correlational Research?

Essentially, there are 3 types of correlational research which are positive correlational research, negative correlational research, and no correlational research. Each of these types is defined by peculiar characteristics. 

  • Positive Correlational Research

Positive correlational research is a research method involving 2 variables that are statistically corresponding where an increase or decrease in 1 variable creates a like change in the other. An example is when an increase in workers’ remuneration results in an increase in the prices of goods and services and vice versa.  

  • Negative Correlational Research

Negative correlational research is a research method involving 2 variables that are statistically opposite where an increase in one of the variables creates an alternate effect or decrease in the other variable. An example of a negative correlation is if the rise in goods and services causes a decrease in demand and vice versa. 

  • Zero Correlational Research

Zero correlational research is a type of correlational research that involves 2 variables that are not necessarily statistically connected. In this case, a change in one of the variables may not trigger a corresponding or alternate change in the other variable.

Zero correlational research caters for variables with vague statistical relationships. For example, wealth and patience can be variables under zero correlational research because they are statistically independent. 

Sporadic change patterns that occur in variables with zero correlational are usually by chance and not as a result of corresponding or alternate mutual inclusiveness. 

Correlational research can also be classified based on data collection methods. Based on these, there are 3 types of correlational research: Naturalistic observation research, survey research and archival research. 

What are the Data Collection Methods in Correlational research? 

Data collection methods in correlational research are the research methodologies adopted by persons carrying out correlational research in order to determine the linear statistical relationship between 2 variables. These data collection methods are used to gather information in correlational research. 

The 3 methods of data collection in correlational research are naturalistic observation method, archival data method, and the survey method. All of these would be clearly explained in the subsequent paragraphs. 

  • Naturalistic Observation

Naturalistic observation is a correlational research methodology that involves observing people’s behaviors as shown in the natural environment where they exist, over a period of time. It is a type of research-field method that involves the researcher paying closing attention to natural behavior patterns of the subjects under consideration.

This method is extremely demanding as the researcher must take extra care to ensure that the subjects do not suspect that they are being observed else they deviate from their natural behavior patterns. It is best for all subjects under observation to remain anonymous in order to avoid a breach of privacy. 

The major advantages of the naturalistic observation method are that it allows the researcher to fully observe the subjects (variables) in their natural state. However, it is a very expensive and time-consuming process plus the subjects can become aware of this act at any time and may act contrary. 

  • Archival Data

Archival data is a type of correlational research method that involves making use of already gathered information about the variables in correlational research. Since this method involves using data that is already gathered and analyzed, it is usually straight to the point. 

For this method of correlational research, the research makes use of earlier studies conducted by other researchers or the historical records of the variables being analyzed. This method helps a researcher to track already determined statistical patterns of the variables or subjects. 

This method is less expensive, saves time and provides the researcher with more disposable data to work with. However, it has the problem of data accuracy as important information may be missing from previous research since the researcher has no control over the data collection process. 

  • Survey Method

The survey method is the most common method of correlational research; especially in fields like psychology. It involves random sampling of the variables or the subjects in the research in which the participants fill a questionnaire centered on the subjects of interest. 

This method is very flexible as researchers can gather large amounts of data in very little time. However, it is subject to survey response bias and can also be affected by biased survey questions or under-representation of survey respondents or participants. 

These would be properly explained under data collection methods in correlational research. 

Examples of Correlational Research

Correlational research examples are numerous and highlight several instances where a correlational study may be carried out in order to determine the statistical behavioral trend with regards to the variables under consideration. Here are 3 case examples of correlational research. 

  • You want to know if wealthy people are less likely to be patient. From your experience, you believe that wealthy people are impatient. However, you want to establish a statistical pattern that proves or disproves your belief. In this case, you can carry out correlational research to identify a trend that links both variables. 
  • You want to know if there’s a correlation between how much people earn and the number of children that they have. You do not believe that people with more spending power have more children than people with less spending power. 

You think that how much people earn hardly determines the number of children that they have. Yet, carrying out correlational research on both variables could reveal any correlational relationship that exists between them. 

  • You believe that domestic violence causes a brain hemorrhage. You cannot carry out an experiment as it would be unethical to deliberately subject people to domestic violence. 

However, you can carry out correlational research to find out if victims of domestic violence suffer brain hemorrhage more than non-victims. 

What are the Characteristics of Correlational Research? 

  • Correlational Research is non-experimental

Correlational research is non-experimental as it does not involve manipulating variables using a scientific methodology in order to agree or disagree with a hypothesis. In correlational research, the researcher simply observes and measures the natural relationship between 2 variables; without subjecting either of the variables to external conditioning. 

  • Correlational Research is Backward-looking

Correlational research doesn’t take the future into consideration as it only observes and measures the recent historical relationship that exists between 2 variables. In this sense, the statistical pattern resulting from correlational research is backward-looking and can seize to exist at any point, going forward. 

Correlational research observes and measures historical patterns between 2 variables such as the relationship between high-income earners and tax payment. Correlational research may reveal a positive relationship between the aforementioned variables but this may change at any point in the future. 

  • Correlational Research is Dynamic

Statistical patterns between 2 variables that result from correlational research are ever-changing. The correlation between 2 variables changes on a daily basis and such, it cannot be used as a fixed data for further research. 

For example, the 2 variables can have a negative correlational relationship for a period of time, maybe 5 years. After this time, the correlational relationship between them can become positive; as observed in the relationship between bonds and stocks. 

  • Data resulting from correlational research are not constant and cannot be used as a standard variable for further research. 

What is the Correlation Coefficient? 

A correlation coefficient is an important value in correlational research that indicates whether the inter-relationship between 2 variables is positive, negative or non-existent. It is usually represented with the sign [r] and is part of a range of possible correlation coefficients from -1.0 to +1.0. 

The strength of a correlation between quantitative variables is typically measured using a statistic called Pearson’s Correlation Coefficient (or Pearson’s r) . A positive correlation is indicated by a value of 1.0, a perfect negative correlation is indicated by a value of -1.0 while zero correlation is indicated by a value of 0.0. 

It is important to note that a correlation coefficient only reflects the linear relationship between 2 variables; it does not capture non-linear relationships and cannot separate dependent and independent variables. The correlation coefficient helps you to determine the degree of statistical relationship that exists between variables. 

What are the Advantages of Correlational Research?

  • In cases where carrying out experimental research is unethical, correlational research  can be used to determine the relationship between 2 variables. For example, when studying humans, carrying out an experiment can be seen as unsafe or unethical; hence, choosing correlational research would be the best option. 
  • Through correlational research, you can easily determine the statistical relationship between 2 variables.
  • Carrying out correlational research is less time-consuming and less expensive than experimental research. This becomes a strong advantage when working with a minimum of researchers and funding or when keeping the number of variables in a study very low. 
  • Correlational research allows the researcher to carry out shallow data gathering using different methods such as a short survey. A short survey does not require the researcher to personally administer it so this allows the researcher to work with a few people. 

What are the Disadvantages of Correlational Research? 

  • Correlational research is limiting in nature as it can only be used to determine the statistical relationship between 2 variables. It cannot be used to establish a relationship between more than 2 variables. 
  • It does not account for cause and effect between 2 variables as it doesn’t highlight which of the 2 variables is responsible for the statistical pattern that is observed. For example, finding that education correlates positively with vegetarianism doesn’t explain whether being educated leads to becoming a vegetarian or whether vegetarianism leads to more education.
  • Reasons for either can be assumed, but until more research is done, causation can’t be determined. Also, a third, unknown variable might be causing both. For instance, living in the state of Detroit can lead to both education and vegetarianism.
  • Correlational research depends on past statistical patterns to determine the relationship between variables. As such, its data cannot be fully depended on for further research. 
  • In correlational research, the researcher has no control over the variables. Unlike experimental research, correlational research only allows the researcher to observe the variables for connecting statistical patterns without introducing a catalyst. 
  • The information received from correlational research is limited. Correlational research only shows the relationship between variables and does not equate to causation. 

What are the Differences between Correlational and Experimental Research?  

  • Methodology

The major difference between correlational research and experimental research is methodology. In correlational research, the researcher looks for a statistical pattern linking 2 naturally-occurring variables while in experimental research, the researcher introduces a catalyst and monitors its effects on the variables. 

  • Observation

In correlational research, the researcher passively observes the phenomena and measures whatever relationship that occurs between them. However, in experimental research, the researcher actively observes phenomena after triggering a change in the behavior of the variables. 

In experimental research, the researcher introduces a catalyst and monitors its effects on the variables, that is, cause and effect. In correlational research, the researcher is not interested in cause and effect as it applies; rather, he or she identifies recurring statistical patterns connecting the variables in research. 

  • Number of Variables

research caters to an unlimited number of variables. Correlational research, on the other hand, caters to only 2 variables. 

  • Experimental research is causative while correlational research is relational.
  • Correlational research is preliminary and almost always precedes experimental research. 
  • Unlike correlational research, experimental research allows the researcher to control the variables.

How to Use Online Forms for Correlational Research

One of the most popular methods of conducting correlational research is by carrying out a survey which can be made easier with the use of an online form. Surveys for correlational research involve generating different questions that revolve around the variables under observation and, allowing respondents to provide answers to these questions. 

Using an online form for your correlational research survey would help the researcher to gather more data in minimum time. In addition, the researcher would be able to reach out to more survey respondents than is plausible with printed correlational research survey forms . 

In addition, the researcher would be able to swiftly process and analyze all responses in order to objectively establish the statistical pattern that links the variables in the research. Using an online form for correlational research also helps the researcher to minimize the cost incurred during the research period. 

To use an online form for a correlational research survey, you would need to sign up on a data-gathering platform like Formplus . Formplus allows you to create custom forms for correlational research surveys using the Formplus builder. 

You can customize your correlational research survey form by adding background images, new color themes or your company logo to make it appear even more professional. In addition, Formplus also has a survey form template that you can edit for a correlational research study. 

You can create different types of survey questions including open-ended questions , rating questions, close-ended questions and multiple answers questions in your survey in the Formplus builder. After creating your correlational research survey, you can share the personalized link with respondents via email or social media.

Formplus also enables you to collect offline responses in your form.

Conclusion 

Correlational research enables researchers to establish the statistical pattern between 2 seemingly interconnected variables; as such, it is the starting point of any type of research. It allows you to link 2 variables by observing their behaviors in the most natural state. 

Unlike experimental research, correlational research does not emphasize the causative factor affecting 2 variables and this makes the data that results from correlational research subject to constant change. However, it is quicker, easier, less expensive and more convenient than experimental research. 

It is important to always keep the aim of your research at the back of your mind when choosing the best type of research to adopt. If you simply need to observe how the variables react to change then, experimental research is the best type to subscribe for. 

It is best to conduct correlational research using an online correlational research survey form as this makes the data-gathering process, more convenient. Formplus is a great online data-gathering platform that you can use to create custom survey forms for correlational research. 

Logo

Connect to Formplus, Get Started Now - It's Free!

  • characteristics of correlational research
  • types of correlational research
  • what is correlational research
  • busayo.longe

Formplus

You may also like:

Recall Bias: Definition, Types, Examples & Mitigation

This article will discuss the impact of recall bias in studies and the best ways to avoid them during research.

research design types correlation

Extrapolation in Statistical Research: Definition, Examples, Types, Applications

In this article we’ll look at the different types and characteristics of extrapolation, plus how it contrasts to interpolation.

Exploratory Research: What are its Method & Examples?

Overview on exploratory research, examples and methodology. Shows guides on how to conduct exploratory research with online surveys

What is Pure or Basic Research? + [Examples & Method]

Simple guide on pure or basic research, its methods, characteristics, advantages, and examples in science, medicine, education and psychology

Formplus - For Seamless Data Collection

Collect data the right way with a versatile data collection tool. try formplus and transform your work productivity today..

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology
  • Correlational Research | Guide, Design & Examples

Correlational Research | Guide, Design & Examples

Published on 5 May 2022 by Pritha Bhandari . Revised on 5 December 2022.

A correlational research design investigates relationships between variables without the researcher controlling or manipulating any of them.

A correlation reflects the strength and/or direction of the relationship between two (or more) variables. The direction of a correlation can be either positive or negative.

Table of contents

Correlational vs experimental research, when to use correlational research, how to collect correlational data, how to analyse correlational data, correlation and causation, frequently asked questions about correlational research.

Correlational and experimental research both use quantitative methods to investigate relationships between variables. But there are important differences in how data is collected and the types of conclusions you can draw.

Prevent plagiarism, run a free check.

Correlational research is ideal for gathering data quickly from natural settings. That helps you generalise your findings to real-life situations in an externally valid way.

There are a few situations where correlational research is an appropriate choice.

To investigate non-causal relationships

You want to find out if there is an association between two variables, but you don’t expect to find a causal relationship between them.

Correlational research can provide insights into complex real-world relationships, helping researchers develop theories and make predictions.

To explore causal relationships between variables

You think there is a causal relationship between two variables, but it is impractical, unethical, or too costly to conduct experimental research that manipulates one of the variables.

Correlational research can provide initial indications or additional support for theories about causal relationships.

To test new measurement tools

You have developed a new instrument for measuring your variable, and you need to test its reliability or validity .

Correlational research can be used to assess whether a tool consistently or accurately captures the concept it aims to measure.

There are many different methods you can use in correlational research. In the social and behavioural sciences, the most common data collection methods for this type of research include surveys, observations, and secondary data.

It’s important to carefully choose and plan your methods to ensure the reliability and validity of your results. You should carefully select a representative sample so that your data reflects the population you’re interested in without bias .

In survey research , you can use questionnaires to measure your variables of interest. You can conduct surveys online, by post, by phone, or in person.

Surveys are a quick, flexible way to collect standardised data from many participants, but it’s important to ensure that your questions are worded in an unbiased way and capture relevant insights.

Naturalistic observation

Naturalistic observation is a type of field research where you gather data about a behaviour or phenomenon in its natural environment.

This method often involves recording, counting, describing, and categorising actions and events. Naturalistic observation can include both qualitative and quantitative elements, but to assess correlation, you collect data that can be analysed quantitatively (e.g., frequencies, durations, scales, and amounts).

Naturalistic observation lets you easily generalise your results to real-world contexts, and you can study experiences that aren’t replicable in lab settings. But data analysis can be time-consuming and unpredictable, and researcher bias may skew the interpretations.

Secondary data

Instead of collecting original data, you can also use data that has already been collected for a different purpose, such as official records, polls, or previous studies.

Using secondary data is inexpensive and fast, because data collection is complete. However, the data may be unreliable, incomplete, or not entirely relevant, and you have no control over the reliability or validity of the data collection procedures.

After collecting data, you can statistically analyse the relationship between variables using correlation or regression analyses, or both. You can also visualise the relationships between variables with a scatterplot.

Different types of correlation coefficients and regression analyses are appropriate for your data based on their levels of measurement and distributions .

Correlation analysis

Using a correlation analysis, you can summarise the relationship between variables into a correlation coefficient : a single number that describes the strength and direction of the relationship between variables. With this number, you’ll quantify the degree of the relationship between variables.

The Pearson product-moment correlation coefficient, also known as Pearson’s r , is commonly used for assessing a linear relationship between two quantitative variables.

Correlation coefficients are usually found for two variables at a time, but you can use a multiple correlation coefficient for three or more variables.

Regression analysis

With a regression analysis , you can predict how much a change in one variable will be associated with a change in the other variable. The result is a regression equation that describes the line on a graph of your variables.

You can use this equation to predict the value of one variable based on the given value(s) of the other variable(s). It’s best to perform a regression analysis after testing for a correlation between your variables.

It’s important to remember that correlation does not imply causation . Just because you find a correlation between two things doesn’t mean you can conclude one of them causes the other, for a few reasons.

Directionality problem

If two variables are correlated, it could be because one of them is a cause and the other is an effect. But the correlational research design doesn’t allow you to infer which is which. To err on the side of caution, researchers don’t conclude causality from correlational studies.

Third variable problem

A confounding variable is a third variable that influences other variables to make them seem causally related even though they are not. Instead, there are separate causal links between the confounder and each variable.

In correlational research, there’s limited or no researcher control over extraneous variables . Even if you statistically control for some potential confounders, there may still be other hidden variables that disguise the relationship between your study variables.

Although a correlational study can’t demonstrate causation on its own, it can help you develop a causal hypothesis that’s tested in controlled experiments.

A correlation reflects the strength and/or direction of the association between two or more variables.

  • A positive correlation means that both variables change in the same direction.
  • A negative correlation means that the variables change in opposite directions.
  • A zero correlation means there’s no relationship between the variables.

A correlational research design investigates relationships between two variables (or more) without the researcher controlling or manipulating any of them. It’s a non-experimental type of quantitative research .

Controlled experiments establish causality, whereas correlational studies only show associations between variables.

  • In an experimental design , you manipulate an independent variable and measure its effect on a dependent variable. Other variables are controlled so they can’t impact the results.
  • In a correlational design , you measure variables without manipulating any of them. You can test whether your variables change together, but you can’t be sure that one variable caused a change in another.

In general, correlational research is high in external validity while experimental research is high in internal validity .

A correlation is usually tested for two variables at a time, but you can test correlations between three or more variables.

A correlation coefficient is a single number that describes the strength and direction of the relationship between your variables.

Different types of correlation coefficients might be appropriate for your data based on their levels of measurement and distributions . The Pearson product-moment correlation coefficient (Pearson’s r ) is commonly used to assess a linear relationship between two quantitative variables.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

Bhandari, P. (2022, December 05). Correlational Research | Guide, Design & Examples. Scribbr. Retrieved 21 May 2024, from https://www.scribbr.co.uk/research-methods/correlational-research-design/

Is this article helpful?

Pritha Bhandari

Pritha Bhandari

Other students also liked, a quick guide to experimental design | 5 steps & examples, quasi-experimental design | definition, types & examples, qualitative vs quantitative research | examples & methods.

Logo for M Libraries Publishing

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

7.2 Correlational Research

Learning objectives.

  • Define correlational research and give several examples.
  • Explain why a researcher might choose to conduct correlational research rather than experimental research or another type of nonexperimental research.

What Is Correlational Research?

Correlational research is a type of nonexperimental research in which the researcher measures two variables and assesses the statistical relationship (i.e., the correlation) between them with little or no effort to control extraneous variables. There are essentially two reasons that researchers interested in statistical relationships between variables would choose to conduct a correlational study rather than an experiment. The first is that they do not believe that the statistical relationship is a causal one. For example, a researcher might evaluate the validity of a brief extraversion test by administering it to a large group of participants along with a longer extraversion test that has already been shown to be valid. This researcher might then check to see whether participants’ scores on the brief test are strongly correlated with their scores on the longer one. Neither test score is thought to cause the other, so there is no independent variable to manipulate. In fact, the terms independent variable and dependent variable do not apply to this kind of research.

The other reason that researchers would choose to use a correlational study rather than an experiment is that the statistical relationship of interest is thought to be causal, but the researcher cannot manipulate the independent variable because it is impossible, impractical, or unethical. For example, Allen Kanner and his colleagues thought that the number of “daily hassles” (e.g., rude salespeople, heavy traffic) that people experience affects the number of physical and psychological symptoms they have (Kanner, Coyne, Schaefer, & Lazarus, 1981). But because they could not manipulate the number of daily hassles their participants experienced, they had to settle for measuring the number of daily hassles—along with the number of symptoms—using self-report questionnaires. Although the strong positive relationship they found between these two variables is consistent with their idea that hassles cause symptoms, it is also consistent with the idea that symptoms cause hassles or that some third variable (e.g., neuroticism) causes both.

A common misconception among beginning researchers is that correlational research must involve two quantitative variables, such as scores on two extraversion tests or the number of hassles and number of symptoms people have experienced. However, the defining feature of correlational research is that the two variables are measured—neither one is manipulated—and this is true regardless of whether the variables are quantitative or categorical. Imagine, for example, that a researcher administers the Rosenberg Self-Esteem Scale to 50 American college students and 50 Japanese college students. Although this “feels” like a between-subjects experiment, it is a correlational study because the researcher did not manipulate the students’ nationalities. The same is true of the study by Cacioppo and Petty comparing college faculty and factory workers in terms of their need for cognition. It is a correlational study because the researchers did not manipulate the participants’ occupations.

Figure 7.2 “Results of a Hypothetical Study on Whether People Who Make Daily To-Do Lists Experience Less Stress Than People Who Do Not Make Such Lists” shows data from a hypothetical study on the relationship between whether people make a daily list of things to do (a “to-do list”) and stress. Notice that it is unclear whether this is an experiment or a correlational study because it is unclear whether the independent variable was manipulated. If the researcher randomly assigned some participants to make daily to-do lists and others not to, then it is an experiment. If the researcher simply asked participants whether they made daily to-do lists, then it is a correlational study. The distinction is important because if the study was an experiment, then it could be concluded that making the daily to-do lists reduced participants’ stress. But if it was a correlational study, it could only be concluded that these variables are statistically related. Perhaps being stressed has a negative effect on people’s ability to plan ahead (the directionality problem). Or perhaps people who are more conscientious are more likely to make to-do lists and less likely to be stressed (the third-variable problem). The crucial point is that what defines a study as experimental or correlational is not the variables being studied, nor whether the variables are quantitative or categorical, nor the type of graph or statistics used to analyze the data. It is how the study is conducted.

Figure 7.2 Results of a Hypothetical Study on Whether People Who Make Daily To-Do Lists Experience Less Stress Than People Who Do Not Make Such Lists

Results of a Hypothetical Study on Whether People Who Make Daily To-Do Lists Experience Less Stress Than People Who Do Not Make Such Lists

Data Collection in Correlational Research

Again, the defining feature of correlational research is that neither variable is manipulated. It does not matter how or where the variables are measured. A researcher could have participants come to a laboratory to complete a computerized backward digit span task and a computerized risky decision-making task and then assess the relationship between participants’ scores on the two tasks. Or a researcher could go to a shopping mall to ask people about their attitudes toward the environment and their shopping habits and then assess the relationship between these two variables. Both of these studies would be correlational because no independent variable is manipulated. However, because some approaches to data collection are strongly associated with correlational research, it makes sense to discuss them here. The two we will focus on are naturalistic observation and archival data. A third, survey research, is discussed in its own chapter.

Naturalistic Observation

Naturalistic observation is an approach to data collection that involves observing people’s behavior in the environment in which it typically occurs. Thus naturalistic observation is a type of field research (as opposed to a type of laboratory research). It could involve observing shoppers in a grocery store, children on a school playground, or psychiatric inpatients in their wards. Researchers engaged in naturalistic observation usually make their observations as unobtrusively as possible so that participants are often not aware that they are being studied. Ethically, this is considered to be acceptable if the participants remain anonymous and the behavior occurs in a public setting where people would not normally have an expectation of privacy. Grocery shoppers putting items into their shopping carts, for example, are engaged in public behavior that is easily observable by store employees and other shoppers. For this reason, most researchers would consider it ethically acceptable to observe them for a study. On the other hand, one of the arguments against the ethicality of the naturalistic observation of “bathroom behavior” discussed earlier in the book is that people have a reasonable expectation of privacy even in a public restroom and that this expectation was violated.

Researchers Robert Levine and Ara Norenzayan used naturalistic observation to study differences in the “pace of life” across countries (Levine & Norenzayan, 1999). One of their measures involved observing pedestrians in a large city to see how long it took them to walk 60 feet. They found that people in some countries walked reliably faster than people in other countries. For example, people in the United States and Japan covered 60 feet in about 12 seconds on average, while people in Brazil and Romania took close to 17 seconds.

Because naturalistic observation takes place in the complex and even chaotic “real world,” there are two closely related issues that researchers must deal with before collecting data. The first is sampling. When, where, and under what conditions will the observations be made, and who exactly will be observed? Levine and Norenzayan described their sampling process as follows:

Male and female walking speed over a distance of 60 feet was measured in at least two locations in main downtown areas in each city. Measurements were taken during main business hours on clear summer days. All locations were flat, unobstructed, had broad sidewalks, and were sufficiently uncrowded to allow pedestrians to move at potentially maximum speeds. To control for the effects of socializing, only pedestrians walking alone were used. Children, individuals with obvious physical handicaps, and window-shoppers were not timed. Thirty-five men and 35 women were timed in most cities. (p. 186)

Precise specification of the sampling process in this way makes data collection manageable for the observers, and it also provides some control over important extraneous variables. For example, by making their observations on clear summer days in all countries, Levine and Norenzayan controlled for effects of the weather on people’s walking speeds.

The second issue is measurement. What specific behaviors will be observed? In Levine and Norenzayan’s study, measurement was relatively straightforward. They simply measured out a 60-foot distance along a city sidewalk and then used a stopwatch to time participants as they walked over that distance. Often, however, the behaviors of interest are not so obvious or objective. For example, researchers Robert Kraut and Robert Johnston wanted to study bowlers’ reactions to their shots, both when they were facing the pins and then when they turned toward their companions (Kraut & Johnston, 1979). But what “reactions” should they observe? Based on previous research and their own pilot testing, Kraut and Johnston created a list of reactions that included “closed smile,” “open smile,” “laugh,” “neutral face,” “look down,” “look away,” and “face cover” (covering one’s face with one’s hands). The observers committed this list to memory and then practiced by coding the reactions of bowlers who had been videotaped. During the actual study, the observers spoke into an audio recorder, describing the reactions they observed. Among the most interesting results of this study was that bowlers rarely smiled while they still faced the pins. They were much more likely to smile after they turned toward their companions, suggesting that smiling is not purely an expression of happiness but also a form of social communication.

A woman bowling

Naturalistic observation has revealed that bowlers tend to smile when they turn away from the pins and toward their companions, suggesting that smiling is not purely an expression of happiness but also a form of social communication.

sieneke toering – bowling big lebowski style – CC BY-NC-ND 2.0.

When the observations require a judgment on the part of the observers—as in Kraut and Johnston’s study—this process is often described as coding . Coding generally requires clearly defining a set of target behaviors. The observers then categorize participants individually in terms of which behavior they have engaged in and the number of times they engaged in each behavior. The observers might even record the duration of each behavior. The target behaviors must be defined in such a way that different observers code them in the same way. This is the issue of interrater reliability. Researchers are expected to demonstrate the interrater reliability of their coding procedure by having multiple raters code the same behaviors independently and then showing that the different observers are in close agreement. Kraut and Johnston, for example, video recorded a subset of their participants’ reactions and had two observers independently code them. The two observers showed that they agreed on the reactions that were exhibited 97% of the time, indicating good interrater reliability.

Archival Data

Another approach to correlational research is the use of archival data , which are data that have already been collected for some other purpose. An example is a study by Brett Pelham and his colleagues on “implicit egotism”—the tendency for people to prefer people, places, and things that are similar to themselves (Pelham, Carvallo, & Jones, 2005). In one study, they examined Social Security records to show that women with the names Virginia, Georgia, Louise, and Florence were especially likely to have moved to the states of Virginia, Georgia, Louisiana, and Florida, respectively.

As with naturalistic observation, measurement can be more or less straightforward when working with archival data. For example, counting the number of people named Virginia who live in various states based on Social Security records is relatively straightforward. But consider a study by Christopher Peterson and his colleagues on the relationship between optimism and health using data that had been collected many years before for a study on adult development (Peterson, Seligman, & Vaillant, 1988). In the 1940s, healthy male college students had completed an open-ended questionnaire about difficult wartime experiences. In the late 1980s, Peterson and his colleagues reviewed the men’s questionnaire responses to obtain a measure of explanatory style—their habitual ways of explaining bad events that happen to them. More pessimistic people tend to blame themselves and expect long-term negative consequences that affect many aspects of their lives, while more optimistic people tend to blame outside forces and expect limited negative consequences. To obtain a measure of explanatory style for each participant, the researchers used a procedure in which all negative events mentioned in the questionnaire responses, and any causal explanations for them, were identified and written on index cards. These were given to a separate group of raters who rated each explanation in terms of three separate dimensions of optimism-pessimism. These ratings were then averaged to produce an explanatory style score for each participant. The researchers then assessed the statistical relationship between the men’s explanatory style as college students and archival measures of their health at approximately 60 years of age. The primary result was that the more optimistic the men were as college students, the healthier they were as older men. Pearson’s r was +.25.

This is an example of content analysis —a family of systematic approaches to measurement using complex archival data. Just as naturalistic observation requires specifying the behaviors of interest and then noting them as they occur, content analysis requires specifying keywords, phrases, or ideas and then finding all occurrences of them in the data. These occurrences can then be counted, timed (e.g., the amount of time devoted to entertainment topics on the nightly news show), or analyzed in a variety of other ways.

Key Takeaways

  • Correlational research involves measuring two variables and assessing the relationship between them, with no manipulation of an independent variable.
  • Correlational research is not defined by where or how the data are collected. However, some approaches to data collection are strongly associated with correlational research. These include naturalistic observation (in which researchers observe people’s behavior in the context in which it normally occurs) and the use of archival data that were already collected for some other purpose.

Discussion: For each of the following, decide whether it is most likely that the study described is experimental or correlational and explain why.

  • An educational researcher compares the academic performance of students from the “rich” side of town with that of students from the “poor” side of town.
  • A cognitive psychologist compares the ability of people to recall words that they were instructed to “read” with their ability to recall words that they were instructed to “imagine.”
  • A manager studies the correlation between new employees’ college grade point averages and their first-year performance reports.
  • An automotive engineer installs different stick shifts in a new car prototype, each time asking several people to rate how comfortable the stick shift feels.
  • A food scientist studies the relationship between the temperature inside people’s refrigerators and the amount of bacteria on their food.
  • A social psychologist tells some research participants that they need to hurry over to the next building to complete a study. She tells others that they can take their time. Then she observes whether they stop to help a research assistant who is pretending to be hurt.

Kanner, A. D., Coyne, J. C., Schaefer, C., & Lazarus, R. S. (1981). Comparison of two modes of stress measurement: Daily hassles and uplifts versus major life events. Journal of Behavioral Medicine, 4 , 1–39.

Kraut, R. E., & Johnston, R. E. (1979). Social and emotional messages of smiling: An ethological approach. Journal of Personality and Social Psychology, 37 , 1539–1553.

Levine, R. V., & Norenzayan, A. (1999). The pace of life in 31 countries. Journal of Cross-Cultural Psychology, 30 , 178–205.

Pelham, B. W., Carvallo, M., & Jones, J. T. (2005). Implicit egotism. Current Directions in Psychological Science, 14 , 106–110.

Peterson, C., Seligman, M. E. P., & Vaillant, G. E. (1988). Pessimistic explanatory style is a risk factor for physical illness: A thirty-five year longitudinal study. Journal of Personality and Social Psychology, 55 , 23–27.

Research Methods in Psychology Copyright © 2016 by University of Minnesota is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

6.2 Correlational Research

Learning objectives.

  • Define correlational research and give several examples.
  • Explain why a researcher might choose to conduct correlational research rather than experimental research or another type of non-experimental research.
  • Interpret the strength and direction of different correlation coefficients.
  • Explain why correlation does not imply causation.

What Is Correlational Research?

Correlational research is a type of non-experimental research in which the researcher measures two variables and assesses the statistical relationship (i.e., the correlation) between them with little or no effort to control extraneous variables. There are many reasons that researchers interested in statistical relationships between variables would choose to conduct a correlational study rather than an experiment. The first is that they do not believe that the statistical relationship is a causal one or are not interested in causal relationships. Recall two goals of science are to describe and to predict and the correlational research strategy allows researchers to achieve both of these goals. Specifically, this strategy can be used to describe the strength and direction of the relationship between two variables and if there is a relationship between the variables then the researchers can use scores on one variable to predict scores on the other (using a statistical technique called regression).

Another reason that researchers would choose to use a correlational study rather than an experiment is that the statistical relationship of interest is thought to be causal, but the researcher  cannot  manipulate the independent variable because it is impossible, impractical, or unethical. For example, while I might be interested in the relationship between the frequency people use cannabis and their memory abilities I cannot ethically manipulate the frequency that people use cannabis. As such, I must rely on the correlational research strategy; I must simply measure the frequency that people use cannabis and measure their memory abilities using a standardized test of memory and then determine whether the frequency people use cannabis use is statistically related to memory test performance. 

Correlation is also used to establish the reliability and validity of measurements. For example, a researcher might evaluate the validity of a brief extraversion test by administering it to a large group of participants along with a longer extraversion test that has already been shown to be valid. This researcher might then check to see whether participants’ scores on the brief test are strongly correlated with their scores on the longer one. Neither test score is thought to cause the other, so there is no independent variable to manipulate. In fact, the terms  independent variable  and dependent variabl e  do not apply to this kind of research.

Another strength of correlational research is that it is often higher in external validity than experimental research. Recall there is typically a trade-off between internal validity and external validity. As greater controls are added to experiments, internal validity is increased but often at the expense of external validity. In contrast, correlational studies typically have low internal validity because nothing is manipulated or control but they often have high external validity. Since nothing is manipulated or controlled by the experimenter the results are more likely to reflect relationships that exist in the real world.

Finally, extending upon this trade-off between internal and external validity, correlational research can help to provide converging evidence for a theory. If a theory is supported by a true experiment that is high in internal validity as well as by a correlational study that is high in external validity then the researchers can have more confidence in the validity of their theory. As a concrete example, correlational studies establishing that there is a relationship between watching violent television and aggressive behavior have been complemented by experimental studies confirming that the relationship is a causal one (Bushman & Huesmann, 2001) [1] .  These converging results provide strong evidence that there is a real relationship (indeed a causal relationship) between watching violent television and aggressive behavior.

Data Collection in Correlational Research

Again, the defining feature of correlational research is that neither variable is manipulated. It does not matter how or where the variables are measured. A researcher could have participants come to a laboratory to complete a computerized backward digit span task and a computerized risky decision-making task and then assess the relationship between participants’ scores on the two tasks. Or a researcher could go to a shopping mall to ask people about their attitudes toward the environment and their shopping habits and then assess the relationship between these two variables. Both of these studies would be correlational because no independent variable is manipulated. 

Correlations Between Quantitative Variables

Correlations between quantitative variables are often presented using scatterplots . Figure 6.3 shows some hypothetical data on the relationship between the amount of stress people are under and the number of physical symptoms they have. Each point in the scatterplot represents one person’s score on both variables. For example, the circled point in Figure 6.3 represents a person whose stress score was 10 and who had three physical symptoms. Taking all the points into account, one can see that people under more stress tend to have more physical symptoms. This is a good example of a positive relationship , in which higher scores on one variable tend to be associated with higher scores on the other. A  negative relationship  is one in which higher scores on one variable tend to be associated with lower scores on the other. There is a negative relationship between stress and immune system functioning, for example, because higher stress is associated with lower immune system functioning.

Figure 2.2 Scatterplot Showing a Hypothetical Positive Relationship Between Stress and Number of Physical Symptoms

Figure 6.3 Scatterplot Showing a Hypothetical Positive Relationship Between Stress and Number of Physical Symptoms. The circled point represents a person whose stress score was 10 and who had three physical symptoms. Pearson’s r for these data is +.51.

The strength of a correlation between quantitative variables is typically measured using a statistic called  Pearson’s Correlation Coefficient (or Pearson’s  r ) . As Figure 6.4 shows, Pearson’s r ranges from −1.00 (the strongest possible negative relationship) to +1.00 (the strongest possible positive relationship). A value of 0 means there is no relationship between the two variables. When Pearson’s  r  is 0, the points on a scatterplot form a shapeless “cloud.” As its value moves toward −1.00 or +1.00, the points come closer and closer to falling on a single straight line. Correlation coefficients near ±.10 are considered small, values near ± .30 are considered medium, and values near ±.50 are considered large. Notice that the sign of Pearson’s  r  is unrelated to its strength. Pearson’s  r  values of +.30 and −.30, for example, are equally strong; it is just that one represents a moderate positive relationship and the other a moderate negative relationship. With the exception of reliability coefficients, most correlations that we find in Psychology are small or moderate in size. The website http://rpsychologist.com/d3/correlation/ , created by Kristoffer Magnusson, provides an excellent interactive visualization of correlations that permits you to adjust the strength and direction of a correlation while witnessing the corresponding changes to the scatterplot.

Figure 2.3 Range of Pearson’s r, From −1.00 (Strongest Possible Negative Relationship), Through 0 (No Relationship), to +1.00 (Strongest Possible Positive Relationship)

Figure 6.4 Range of Pearson’s r, From −1.00 (Strongest Possible Negative Relationship), Through 0 (No Relationship), to +1.00 (Strongest Possible Positive Relationship)

There are two common situations in which the value of Pearson’s  r  can be misleading. Pearson’s  r  is a good measure only for linear relationships, in which the points are best approximated by a straight line. It is not a good measure for nonlinear relationships, in which the points are better approximated by a curved line. Figure 6.5, for example, shows a hypothetical relationship between the amount of sleep people get per night and their level of depression. In this example, the line that best approximates the points is a curve—a kind of upside-down “U”—because people who get about eight hours of sleep tend to be the least depressed. Those who get too little sleep and those who get too much sleep tend to be more depressed. Even though Figure 6.5 shows a fairly strong relationship between depression and sleep, Pearson’s  r  would be close to zero because the points in the scatterplot are not well fit by a single straight line. This means that it is important to make a scatterplot and confirm that a relationship is approximately linear before using Pearson’s  r . Nonlinear relationships are fairly common in psychology, but measuring their strength is beyond the scope of this book.

Figure 2.4 Hypothetical Nonlinear Relationship Between Sleep and Depression

Figure 6.5 Hypothetical Nonlinear Relationship Between Sleep and Depression

The other common situations in which the value of Pearson’s  r  can be misleading is when one or both of the variables have a limited range in the sample relative to the population. This problem is referred to as  restriction of range . Assume, for example, that there is a strong negative correlation between people’s age and their enjoyment of hip hop music as shown by the scatterplot in Figure 6.6. Pearson’s  r  here is −.77. However, if we were to collect data only from 18- to 24-year-olds—represented by the shaded area of Figure 6.6—then the relationship would seem to be quite weak. In fact, Pearson’s  r  for this restricted range of ages is 0. It is a good idea, therefore, to design studies to avoid restriction of range. For example, if age is one of your primary variables, then you can plan to collect data from people of a wide range of ages. Because restriction of range is not always anticipated or easily avoidable, however, it is good practice to examine your data for possible restriction of range and to interpret Pearson’s  r  in light of it. (There are also statistical methods to correct Pearson’s  r  for restriction of range, but they are beyond the scope of this book).

Figure 12.10 Hypothetical Data Showing How a Strong Overall Correlation Can Appear to Be Weak When One Variable Has a Restricted Range

Figure 6.6 Hypothetical Data Showing How a Strong Overall Correlation Can Appear to Be Weak When One Variable Has a Restricted Range.The overall correlation here is −.77, but the correlation for the 18- to 24-year-olds (in the blue box) is 0.

Correlation Does Not Imply Causation

You have probably heard repeatedly that “Correlation does not imply causation.” An amusing example of this comes from a 2012 study that showed a positive correlation (Pearson’s r = 0.79) between the per capita chocolate consumption of a nation and the number of Nobel prizes awarded to citizens of that nation [2] . It seems clear, however, that this does not mean that eating chocolate causes people to win Nobel prizes, and it would not make sense to try to increase the number of Nobel prizes won by recommending that parents feed their children more chocolate.

There are two reasons that correlation does not imply causation. The first is called the  directionality problem . Two variables,  X  and  Y , can be statistically related because X  causes  Y  or because  Y  causes  X . Consider, for example, a study showing that whether or not people exercise is statistically related to how happy they are—such that people who exercise are happier on average than people who do not. This statistical relationship is consistent with the idea that exercising causes happiness, but it is also consistent with the idea that happiness causes exercise. Perhaps being happy gives people more energy or leads them to seek opportunities to socialize with others by going to the gym. The second reason that correlation does not imply causation is called the  third-variable problem . Two variables,  X  and  Y , can be statistically related not because  X  causes  Y , or because  Y  causes  X , but because some third variable,  Z , causes both  X  and  Y . For example, the fact that nations that have won more Nobel prizes tend to have higher chocolate consumption probably reflects geography in that European countries tend to have higher rates of per capita chocolate consumption and invest more in education and technology (once again, per capita) than many other countries in the world. Similarly, the statistical relationship between exercise and happiness could mean that some third variable, such as physical health, causes both of the others. Being physically healthy could cause people to exercise and cause them to be happier. Correlations that are a result of a third-variable are often referred to as  spurious correlations.

Some excellent and funny examples of spurious correlations can be found at http://www.tylervigen.com  (Figure 6.7  provides one such example).

Figure 2.5 Example of a Spurious Correlation Source: http://tylervigen.com/spurious-correlations (CC-BY 4.0)

“Lots of Candy Could Lead to Violence”

Although researchers in psychology know that correlation does not imply causation, many journalists do not. One website about correlation and causation, http://jonathan.mueller.faculty.noctrl.edu/100/correlation_or_causation.htm , links to dozens of media reports about real biomedical and psychological research. Many of the headlines suggest that a causal relationship has been demonstrated when a careful reading of the articles shows that it has not because of the directionality and third-variable problems.

One such article is about a study showing that children who ate candy every day were more likely than other children to be arrested for a violent offense later in life. But could candy really “lead to” violence, as the headline suggests? What alternative explanations can you think of for this statistical relationship? How could the headline be rewritten so that it is not misleading?

As you have learned by reading this book, there are various ways that researchers address the directionality and third-variable problems. The most effective is to conduct an experiment. For example, instead of simply measuring how much people exercise, a researcher could bring people into a laboratory and randomly assign half of them to run on a treadmill for 15 minutes and the rest to sit on a couch for 15 minutes. Although this seems like a minor change to the research design, it is extremely important. Now if the exercisers end up in more positive moods than those who did not exercise, it cannot be because their moods affected how much they exercised (because it was the researcher who determined how much they exercised). Likewise, it cannot be because some third variable (e.g., physical health) affected both how much they exercised and what mood they were in (because, again, it was the researcher who determined how much they exercised). Thus experiments eliminate the directionality and third-variable problems and allow researchers to draw firm conclusions about causal relationships.

Key Takeaways

  • Correlational research involves measuring two variables and assessing the relationship between them, with no manipulation of an independent variable.
  • Correlation does not imply causation. A statistical relationship between two variables,  X  and  Y , does not necessarily mean that  X  causes  Y . It is also possible that  Y  causes  X , or that a third variable,  Z , causes both  X  and  Y .
  • While correlational research cannot be used to establish causal relationships between variables, correlational research does allow researchers to achieve many other important objectives (establishing reliability and validity, providing converging evidence, describing relationships and making predictions)
  • Correlation coefficients can range from -1 to +1. The sign indicates the direction of the relationship between the variables and the numerical value indicates the strength of the relationship.
  • A cognitive psychologist compares the ability of people to recall words that they were instructed to “read” with their ability to recall words that they were instructed to “imagine.”
  • A manager studies the correlation between new employees’ college grade point averages and their first-year performance reports.
  • An automotive engineer installs different stick shifts in a new car prototype, each time asking several people to rate how comfortable the stick shift feels.
  • A food scientist studies the relationship between the temperature inside people’s refrigerators and the amount of bacteria on their food.
  • A social psychologist tells some research participants that they need to hurry over to the next building to complete a study. She tells others that they can take their time. Then she observes whether they stop to help a research assistant who is pretending to be hurt.

2. Practice: For each of the following statistical relationships, decide whether the directionality problem is present and think of at least one plausible third variable.

  • People who eat more lobster tend to live longer.
  • People who exercise more tend to weigh less.
  • College students who drink more alcohol tend to have poorer grades.
  • Bushman, B. J., & Huesmann, L. R. (2001). Effects of televised violence on aggression. In D. Singer & J. Singer (Eds.), Handbook of children and the media (pp. 223–254). Thousand Oaks, CA: Sage. ↵
  • Messerli, F. H. (2012). Chocolate consumption, cognitive function, and Nobel laureates. New England Journal of Medicine, 367 , 1562-1564. ↵

Creative Commons License

Share This Book

  • Increase Font Size

U.S. flag

An official website of the United States government

The .gov means it's official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you're on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings
  • Browse Titles

NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.

Lau F, Kuziemsky C, editors. Handbook of eHealth Evaluation: An Evidence-based Approach [Internet]. Victoria (BC): University of Victoria; 2017 Feb 27.

Cover of Handbook of eHealth Evaluation: An Evidence-based Approach

Handbook of eHealth Evaluation: An Evidence-based Approach [Internet].

Chapter 12 methods for correlational studies.

Francis Lau .

12.1. Introduction

Correlational studies aim to find out if there are differences in the characteristics of a population depending on whether or not its subjects have been exposed to an event of interest in the naturalistic setting. In eHealth, correlational studies are often used to determine whether the use of an eHealth system is associated with a particular set of user characteristics and/or quality of care patterns ( Friedman & Wyatt, 2006 ). An example is a computerized provider order entry ( cpoe ) study to differentiate the background, usage and performance between clinical users and non-users of the cpoe system after its implementation in a hospital.

Correlational studies are different from comparative studies in that the evaluator does not control the allocation of subjects into comparison groups or assignment of the intervention to specific groups. Instead, the evaluator defines a set of variables including an outcome of interest then tests for hypothesized relations among these variables. The outcome is known as the dependent variable and the variables being tested for association are the independent variables. Correlational studies are similar to comparative studies in that they take on an objectivist view where the variables can be defined, measured and analyzed for the presence of hypothesized relations. As such, correlational studies face the same challenges as comparative studies in terms of their internal and external validity. Of particular importance are the issues of design choices, selection bias, confounders, and reporting consistency.

In this chapter we describe the basic types of correlational studies seen in the eHealth literature and their methodological considerations. Also included are three case examples to show how these studies are done.

12.2. Types of Correlational Studies

Correlational studies, better known as observational studies in epidemiology, are used to examine event exposure, disease prevalence and risk factors in a population ( Elwood, 2007 ). In eHealth, the exposure typically refers to the use of an eHealth system by a population of subjects in a given setting. These subjects may be patients, providers or organizations identified through a set of variables that are thought to differ in their measured values depending on whether or not the subjects were “exposed” to the eHealth system.

There are three basic types of correlational studies that are used in eHealth evaluation: cohort, cross-sectional, and case-control studies ( Vandenbroucke et al., 2014 ). These are described below.

  • Cohort studies – A sample of subjects is observed over time where those exposed and not exposed to the eHealth system are compared for differences in one or more predefined outcomes, such as adverse event rates. Cohort studies may be prospective in nature where subjects are followed for a time period into the future or retrospective for a period into the past. The comparisons are typically made at the beginning of the study as baseline measures, then repeated over time at predefined intervals for differences and trends. Some cohort studies involve only a single group of subjects. Their focus is to describe the characteristics of subjects based on a set of variables, such as the pattern of ehr use by providers and their quality of care in an organization over a given time period.
  • Cross-sectional studies – These are considered a type of cohort study where only one comparison is made between exposed and unexposed subjects. They provide a snapshot of the outcome and the associated characteristics of the cohort at a specific point in time.
  • Case-control studies – Subjects in a sample that are exposed to the eHealth system are matched with those not exposed but otherwise similar in composition, then compared for differences in some predefined outcomes. Case-control studies are retrospective in nature where subjects already exposed to the event are selected then matched with unexposed subjects, using historical cases to ensure they have similar characteristics.

A cross-sectional survey is a type of cross-sectional study where the data source is drawn from postal questionnaires and interviews. This topic will be covered in the chapter on methods for survey studies.

12.3. Methodological Considerations

While correlational studies are considered less rigorous than rct s, they are the preferred designs when it is neither feasible nor ethical to conduct experimental trials. Key methodological issues arise in terms of: (a) design options, (b) biases and confounders, (c) controlling for confounding effects, (d) adherence to good practices, and (e) reporting consistency. These issues are discussed below.

12.3.1. Design Options

There are growing populations with multiple chronic conditions and healthcare interventions. They have made it difficult to design rct s with sufficient sample size and long-term follow-up to account for all the variability this phenomenon entails. Also rct s are intended to test the efficacy of an intervention in a restricted sample of subjects under ideal settings. They have limited generalizability to the population at large in routine settings ( Fleurence, Naci, & Jansen, 2010 ). As such, correlational studies, especially those involving the use of routinely collected ehr data from the general population, have become viable alternatives to rct s. There are advantages and disadvantages to each of the three design options presented above. They are listed below.

  • Cohort studies – These studies typically follow the cohorts over time, which allow one to examine causal relationships between exposure and one or more outcomes. They also allow one to measure change in exposure and outcomes over time. However, these studies can be costly and time-consuming to conduct if the outcomes are rare or occur in the future. With prospective cohorts they can be prone to dropout. With retrospective cohorts accurate historical records are required which may not be available or complete ( Levin, 2003a ).
  • Case-control studies – These studies are suited to examine infrequent or rare outcomes since they are selected at the outset to ensure sufficient cases. Yet the selection of exposed and matching cases can be problematic, as not all relevant characteristics are known. Moreover, the cases may not be representative of the population of interest. The focus on exposed cases that occur infrequently may overestimate their risks ( Levin, 2003b ).
  • Cross-sectional studies – These studies are easier and quicker to conduct than others as they involve a one-time effort over a short period using a sample from the population of interest. They can be used to generate hypotheses and examine multiple outcomes and characteristics at the same time with no loss to follow-up. On the other hand, these studies only give a snapshot of the situation at one time point, making it difficult for causal inference of the exposure and outcomes. The results might be different had another time period been chosen ( Levin, 2006 ).

12.3.2. Biases and Confounders

Shamliyan, Kane, and Dickinson (2010) conducted a systematic review on tools used to assess the quality of observational studies. Despite the large number of quality scales and checklists found in the literature, they concluded that the universal concerns are in the areas of selection bias, confounding, and misclassification. These concerns, also mentioned by Vandenbroucke and colleagues (2014) in their reporting guidelines for observational studies, are summarized below.

  • Selection bias – When subjects are selected through their exposure to the event rather than by random or concealed allocation, there is a risk that the subjects are not comparable due to the presence of systematic differences in their baseline characteristics. For example, a correlational study that examines the association between ehr use and quality of care may have younger providers with more computer savvy in the exposed group because they use ehr more and with more facility than those in the unexposed group. It is also possible to have sicker patients in the exposed group since they require more frequent ehr use than unexposed patients who may be healthier and have less need for the ehr . This is sometimes referred to as response bias, where the characteristics of subjects agreed to be in the study are different from those who declined to take part.
  • Confounding – Extraneous factors that influence the outcome but are also associated with the exposure are said to have a confounding effect. One such type is confounding by indication where sicker patients are both more likely to receive treatments and also more likely to have adverse outcomes. For example, a study of cds alerts and adverse drug events may find a positive but spurious association due to the inclusion of sicker patients with multiple conditions and medications, which increases their chance of adverse events regardless of cds alerts.
  • Misclassification – When there are systematic differences in the completeness or accuracy of the data recorded on the subjects, there is a risk of misclassification in their exposures or outcomes. This is also known as information or detection bias. An example is where sicker patients may have more complete ehr data because they received more tests, treatments and outcome tracking than those who are healthier and require less attention. As such, the exposure and outcomes of sicker patients may be overestimated.

It is important to note that bias and confounding are not synonymous. Bias is caused by finding the wrong association from flawed information or subject selection. Confounding is factually correct with respect to the relationship found, but is incorrect in its interpretation due to an extraneous factor that is associated with both the exposure and outcome.

12.3.3. Controlling for Confounding Effects

There are three common methods to control for confounding effects. These are by matching, stratification, and modelling. They are described below ( Higgins & Green, 2011 ).

  • Matching – The selection of subjects with similar characteristics so that they are comparable; the matching can be done at the individual subject level where each exposed subject is matched with one or more unexposed subjects as controls. It can also be done at the group level with equal numbers of exposed and unexposed subjects. Another way to match subjects is by propensity score, that is, a measure derived from a set of characteristics in the subjects. An example is the retrospective cohort study by Zhou, Leith, Li, and Tom (2015) to examine the association between caregiver phr use and healthcare utilization by pediatric patients. In that study, a propensity score-matching algorithm was used to match phr -registered children to non-registered children. The matching model used registration as the outcome variable and all child and caregiver characteristics as the independent variables.
  • Stratification – Subjects are categorized into subgroups based on a set of characteristics such as age and sex then analyzed for the effect within each subgroup. An example is the retrospective cohort study by Staes et al. (2008) , examining the impact of computerized alerts on the quality of outpatient lab monitoring for transplant patients. In that study, the before/after comparison of the timeliness of reporting and clinician responses was stratified by the type of test (creatinine, cyclosporine A, and tacrolimus) and report source (hospital laboratory or other labs).
  • Modelling – The use of statistical models to compute adjusted effects while accounting for relevant characteristics such as age and sex differences among subjects. An example is the retrospective cohort study by Beck and colleagues (2012) to compare documentation consistency and care plan improvement before and after the implementation of an electronic asthma-specific history and physical template. In that study, before/after group characteristics were compared for differences using t -tests for continuous variables and χ 2 statistics for categorical variables. Logistic regression was used to adjust for group differences in age, gender, insurance, albuterol use at admission, and previous hospitalization.

12.3.4. Adherence to Good Practices in Prospective Observational Studies

The ispor Good Research Practices Task Force published a set of recommendations in designing, conducting and reporting prospective observational studies for comparative effectiveness research ( Berger et al., 2012 ) that are relevant to eHealth evaluation. Their key recommendations are listed below.

  • Key policy questions should be defined to allow inferences to be drawn.
  • Hypothesis testing protocol design to include the hypothesis/questions, treatment groups and outcomes, measured and unmeasured confounders, primary analyses, and required sample size.
  • Rationale for prospective observational study design over others (e.g., rct ) is based on question, feasibility, intervention characteristics and ability to answer the question versus cost and timeliness.
  • Study design choice is able to address potential biases and confounders through the use of inception cohorts, multiple comparator groups, matching designs and unaffected outcomes.
  • Explanation of study design and analytic choices is transparent.
  • Study execution is carried out in ways that ensure relevance and reasonable follow-up is not different from the usual practice.
  • Study registration takes place on publicly available sites prior to its initiation.

12.3.5. The Need for Reporting Consistency

Vandenbroucke et al. (2014) published an expanded version of the Strengthening the Reporting of Observational Studies in Epidemiology ( strobe ) statement to improve the reporting of observational studies that can be applied in eHealth evaluation. It is made up of 22 items, of which 18 are common to cohort, case-control and cross-sectional studies, with four being specific to each of the three designs. The 22 reporting items are listed below (for details refer to the cited reference).

  • Title and abstract – one item that covers the type of design used, and a summary of what was done and found.
  • Introduction – two items on study background/rationale, objectives and/or hypotheses.
  • Methods – nine items on design, setting, participants, variables, data sources/measurement, bias, study size, quantitative variables and statistical methods used.
  • Results – five items on participants, descriptive, outcome data, main results and other analyses.
  • Discussion – four items on key results, limitations, interpretation and generalizability.
  • Other information – one item on funding source.

The four items specific to study design relate to the reporting of participants, statistical methods, descriptive results and outcome data. They are briefly described below for the three types of designs.

  • Cohort studies – Participant eligibility criteria and sources, methods of selection, follow-up and handling dropouts, description of follow-up time and duration, and number of outcome events or summary measures over time. For matched studies include matching criteria and number of exposed and unexposed subjects.
  • Cross-sectional studies – Participant eligibility criteria, sources and methods of selection, analytical methods accounting for sampling strategy as needed, and number of outcome events or summary measures.
  • Case-control studies – Participant eligibility criteria, sources and methods of case/control selection with rationale for choices, methods of matching cases/controls, and number of exposures by category or summary measures of exposures. For matched studies include matching criteria and number of controls per case.

12.4. Case Examples

12.4.1. cohort study of automated immunosuppressive care.

Park and colleagues (2010) conducted a retrospective cohort study to examine the association between the use of a cds (clinical decision support) system in post-liver transplant immunosuppressive care and the rates of rejection episode and drug toxicity. The study is summarized below.

  • Setting – A liver transplant program in the United States that had implemented an automated cds system to manage immunosuppressive therapy for its post-liver transplant recipients after discharge. The system consolidated all clinical information to expedite immunosuppressive review, ordering, and follow-up with recipients. Prior to automation, a paper charting system was used that involved manually tracking lab tests, transcribing results into a paper spreadsheet, finding physicians to review results and orders, and contacting recipients to notify them of changes.
  • Subjects – The study population included recipients of liver transplants between 2004 and 2008 who received outpatient immunosuppressive therapy that included tacrolimus medications.
  • Design – A retrospective cohort study with a before/after design to compare recipients managed by the paper charting system against those managed by the cds system for up to one year after discharge.
  • Measures – The outcome variables were the percentages of recipients with at least one rejection and/or tacrolimus toxicity episode during the one-year follow-up period. The independent variables included recipient, intraoperative, donor and postoperative characteristics, and use of paper charting or cds . Examples of recipient variables were age, gender, body mass index, presence of diabetes and hypertension, and pre-transplant lab results. Examples of intraoperative data were blood type match, type of transplant and volume of blood transfused. Examples of donor data included percentage of fat in the liver. Examples of post-transplantation data included the type of immunosuppressive induction therapy and the management method.
  • Analysis – Mean, standard deviation and t -tests were computed for continuous variables after checking for normal distribution. Percentages and Fisher’s exact test were computed for categorical variables. Autoregressive integrated moving average analysis was done to determine change in outcomes over time. Logistic regression with variables thought to be clinically relevant was used to identify significant univariable and multivariable factors associated with the outcomes. P values of less than 0.05 were considered significant.
  • Findings – Overall, the cds system was associated with significantly fewer episodes of rejection and tacrolimus toxicity. The integrated moving average analysis showed a significant decrease in outcome rates after the cds system was implemented compared with paper charting. Multivariable analysis showed the cds system had lower odds of a rejection episode than paper charting ( or 0.20; p < 0.01) and lower odds of tacrolimus toxicity ( or 0.5; p < 0.01). Other significant non-system related factors included the use of specific drugs, the percentage of fat in the donor liver and the volume of packed red cells transfused.

12.4.2. Cross-sectional Analysis of EHR Documentation and Care Quality

Linder, Schnipper, and Middleton (2012) conducted a cross-sectional study to examine the association between the type of ehr documentation used by physicians and the quality of care provided. The study is summarized below.

  • Setting – An integrated primary care practice-based research network affiliated with an academic centre in the United States. The network uses an in-house ehr system with decision support for preventive services, chronic care management, and medication monitoring and alerts. The ehr data include problem and medication lists, coded allergies and lab tests.
  • Subjects – Physicians and patients from 10 primary care practices that were part of an rct to examine the use of a decision support tool to manage patients with coronary artery disease and diabetes ( cad/DM ). Eligible patients were those with cad/DM in their ehr problem list prior to the rct start date.
  • Design – A nine-month retrospective cross-sectional analysis of ehr data collected from the rct . Three physician documentation styles were defined based on 188,554 visit notes in the ehr : (a) dictation, (b) structured documentation, and (c) free text note. Physicians were divided into three groups based on their predominant style defined as more than 25% of their notes composed by a given method.
  • Measures – The outcome variables were 15 ehr -based cad/DM quality measures assessed 30 days after primary care visits. They covered quality of documentation, medication use, lab testing, physiologic measures, and vaccinations. Measures collected prior to the day of visit were eligible and considered fulfilled with the presence of coded ehr data on vital signs, medications, allergies, problem lists, lab tests, and vaccinations. Independent variables on physicians and patients were included as covariates. For physicians, they included age, gender, training level, proportion of cad/DM patients in their panel, total patient visits, and self-reported experience with the ehr . For patients, they included socio-demographic factors, the number of clinic visits and hospitalizations, the number of problems and medications in the ehr , and whether their physician was in the intervention group.
  • Analysis – Baseline characteristics of physicians and patients were compared using descriptive statistics. Continuous variables were compared using anova . For categorical variables, Fisher’s exact test was used for physician variables and χ 2 test for patient variables. Multivariate logistic regression models were used for each quality measure to adjust for patient and physician clustering and potential confounders. Bonferroni procedure was used to account for multiple comparisons for the 15 quality measures.
  • Findings – During the study period, 234 physicians documented 18,569 visits from 7,000 cad/DM patients. Of these physicians, 146 (62%) typed free-text notes, 68 (25%) used structured documentation, and 20 (9%) dictated notes. After adjusting for cluster effect, physicians who dictated their notes had the worst quality of care in all 15 measures. In particular, physicians who dictated notes were significantly worse in three of 15 measures (antiplatelet medication, tobacco use, diabetic eye exam); physicians who used structured documentation were better in three measures (blood pressure, body mass, diabetic foot exam); and those who used free-text were better in one measure (influenza vaccination). In summary, physicians who dictated notes had worse quality of care than those with structured documentation.

12.4.3. Case-control Comparison of Internet Portal Use

Nielsen, Halamka, and Kinkel (2012) conducted a case-control study to evaluate whether there was an association between active Internet patient portal use by Multiple Sclerosis ( ms ) patients and medical resource utilization. Patient predictors and barriers to portal use were also identified. The study is summarized below.

  • Setting – An academic ms centre in the United States with an in-house Internet patient portal site that was accessed by ms patients to schedule clinic appointments, request prescription refills and referrals, view test results, upload personal health information, and communicate with providers via secure e-mails.
  • Subjects – 240 adult ms patients actively followed during 2008 and 2009 were randomly selected from the ehr ; 120 of these patients had submitted at least one message during that period and were defined as portal users. Another 120 patients who did not enrol in the portal or send any message were selected as non-users for comparison.
  • Design – A retrospective case-control study facilitated through a chart review comparing portal users against non-users from the same period. Patient demographic and clinical information was extracted from the ehr , while portal usage, including feature access type and frequency and e-mail message content, were provided by it staff.
  • Measures – Patient variables included age, gender, race, insurance type, employment status, number of medical problems, disease duration, psychiatric history, number of medications, and physical disability scores. Provider variables included prescription type and frequency. Portal usage variables included feature access type and frequency for test results, appointments, prescription requests and logins, and categorized messaging contents.
  • Analysis – Comparison of patient demographic, clinical and medical resource utilization data from users and non-users were made using descriptive statistics, Wilcoxon rank sum test, Fisher’s exact test and χ 2 test. Multivariate logistic regression was used to identify patient predictors and barriers to portal use. Provider prescribing habits against patient’s psychiatric history and portal use were examined by two-way analysis of variance. All statistical tests used p value of 0.05 with no adjustment made for multiple comparisons. A logistic multivariate regression model was created to predict portal use based on patient demographics, clinical condition, socio-economic status, and physical disability metrics.
  • Findings – Portal users were mostly young professionals with little physical disability. The most frequently used feature was secure patient-provider messaging, often for medication requests or refills, and self-reported side effects. Predictors and barriers of portal use were the number of medications prescribed ( or 1.69, p < 0.0001), Caucasian ethnicity ( or 5.04, p = 0.007), arm and hand disability ( or 0.23, p = 0.01), and impaired vision ( or 0.31, p = 0.01). For medical resource utilization, portal users had more frequent clinic visits, medication use and prescriptions from centre staff providers. Patients with a history of psychiatric disease were prescribed more ms medications than those without any history ( p < 0.0001). In summary, ms patients used the Internet more than the general population, but physical disability limited their access and need to be addressed.

12.4.4. Limitations

A general limitation of a correlational study is that it can determine association between exposure and outcomes but cannot predict causation. The more specific limitations of the three case examples cited by the authors are listed below.

  • Automated immunosuppressive care – Baseline differences existed between groups with unknown effects; possible other unmeasured confounders; possible Hawthorne effects from focus on immunosuppressive care.
  • ehr documentation and care quality – Small sample size; only three documentation styles were considered (e.g., scribe and voice recognition software were excluded) and unsure if they were stable during study period; quality measures specific to cad/DM conditions only; complex methods of adjusting for clustering and confounding that did not account for unmeasured confounders; the level of physician training (e.g., attending versus residents) not adjusted.
  • Internet portal use – Small sample size not representative of the study population; referral centre site could over-represent complex patients requiring advanced care; all patients had health insurance.

12.5. Summary

In this chapter we described cohort, case-control and cross-sectional studies as three types of correlational studies used in eHealth evaluation. The methodological issues addressed include bias and confounding, controlling for confounders, adherence to good practices and consistency in reporting. Three case examples were included to show how eHealth correlational studies are done.

1 ISPOR – International Society for Pharmacoeconomics and Outcomes Research

  • Beck A. F., Sauers H. S., Kahn R. S., Yau C., Weiser J., Simmons J.M. Improved documentation and care planning with an asthma-specific history and physical. Hospital Pediatrics. 2012; 2 (4):194–201. [ PubMed : 24313025 ]
  • Berger M. L., Dreyer N., Anderson F., Towse A., Sedrakyan A., Normand S.L. Prospective observational studies to address comparative effectiveness: The ispor good research practices task force report. Value in Health. 2012; 15 (2):217–230. Retrieved from http://www ​.sciencedirect ​.com/science/article ​/pii/S1098301512000071 . [ PubMed : 22433752 ]
  • Elwood M. Critical appraisal of epidemiological studies and clinical studies. 3rd ed. Oxford: Oxford University Press; 2007.
  • Fleurence R. L., Naci H., Jansen J.P. The critical role of observational evidence in comparative effectiveness research. Health Affairs. 2010; 29 (10):1826–1833. [ PubMed : 20921482 ]
  • Friedman C. P., Wyatt J.C. Evaluation methods in biomedical informatics. 2nd ed. New York: Springer Science + Business Media, Inc; 2006.
  • Higgins J. P. T., Green S., editors. Cochrane handbook for systematic reviews of interventions. London: The Cochrane Collaboration; 2011. (Version 5.1.0, updated March 2011) Retrieved from http://handbook ​.cochrane.org/
  • Levin K. A. Study design iv : Cohort studies. Evidence-based Dentistry. 2003a; 7 :51–52. [ PubMed : 16858385 ]
  • Levin K. A. Study design v : Case-control studies. Evidence-based Dentistry. 2003b; 7 :83–84. [ PubMed : 17003803 ]
  • Levin K. A. Study design iii : Cross-sectional studies. Evidence-based Dentistry. 2006; 7 :24–25. [ PubMed : 16557257 ]
  • Linder J. A., Schnipper J. L., Middleton B. Method of electronic health record documentation and quality of primary care. Journal of the American Medical Informatics Association. 2012; 19 (6):1019–1024. [ PMC free article : PMC3534457 ] [ PubMed : 22610494 ]
  • Nielsen A. S., Halamka J. D., Kinkel R.P. Internet portal use in an academic multiple sclerosis center. Journal of the American Medical Informatics Association. 2012; 19 (1):128–133. [ PMC free article : PMC3240754 ] [ PubMed : 21571744 ]
  • Park E. S., Peccoud M. R., Wicks K. A., Halldorson J. B., Carithers R. L. Jr., Reyes J. D., Perkins J.D. Use of an automated clinical management system improves outpatient immunosuppressive care following liver transplantation. Journal of the American Medical Informatics Association. 2010; 17 (4):396–402. [ PMC free article : PMC2995663 ] [ PubMed : 20595306 ]
  • Shamliyan T., Kane R. L., Dickinson S. A systematic review of tools used to assess the quality of observational studies that examine incidence or prevalence and risk factors for diseases. Journal of Clinical Epidemiology. 2010; 63 (10):1061–1070. [ PubMed : 20728045 ]
  • Staes C. J., Evans R. S., Rocha B. H. S. C., Sorensen J. B., Huff S. M., Arata J., Narus S.P. Computerized alerts improve outpatient laboratory monitoring of transplant patients. Journal of the American Medical Informatics Association. 2008; 15 (3):324–332. [ PMC free article : PMC2410008 ] [ PubMed : 18308982 ]
  • Vandenbroucke J. P., von Elm E., Altman D. G., Gotzsche P. C., Mulrow C. D., Pocock S. J., Egger M. for the strobe Initiative. Strengthening the reporting of observational studies in epidemiology ( strobe ): explanation and elaboration. International Journal of Surgery. 2014; 12 (12):1500–1524. Retrieved from http://www.sciencedirect.com/science/article/pii/ s174391911400212x . [ PubMed : 25046751 ]
  • Zhou Y. Y., Leith W. M., Li H., Tom J.O. Personal health record use for children and health care utilization: propensity score-matched cohort analysis. Journal of the American Medical Informatics Association. 2015; 22 (4):748–754. [ PubMed : 25656517 ]

This publication is licensed under a Creative Commons License, Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0): see https://creativecommons.org/licenses/by-nc/4.0/

  • Cite this Page Lau F. Chapter 12 Methods for Correlational Studies. In: Lau F, Kuziemsky C, editors. Handbook of eHealth Evaluation: An Evidence-based Approach [Internet]. Victoria (BC): University of Victoria; 2017 Feb 27.
  • PDF version of this title (4.5M)
  • Disable Glossary Links

In this Page

  • Introduction
  • Types of Correlational Studies
  • Methodological Considerations
  • Case Examples

Related information

  • PMC PubMed Central citations
  • PubMed Links to PubMed

Recent Activity

  • Chapter 12 Methods for Correlational Studies - Handbook of eHealth Evaluation: A... Chapter 12 Methods for Correlational Studies - Handbook of eHealth Evaluation: An Evidence-based Approach

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

Connect with NLM

National Library of Medicine 8600 Rockville Pike Bethesda, MD 20894

Web Policies FOIA HHS Vulnerability Disclosure

Help Accessibility Careers

statistics

What is Correlational Research? (+ Design, Examples)

Appinio Research · 04.03.2024 · 30min read

What is Correlational Research Design Examples

Ever wondered how researchers explore connections between different factors without manipulating them? Correlational research offers a window into understanding the relationships between variables in the world around us. From examining the link between exercise habits and mental well-being to exploring patterns in consumer behavior, correlational studies help us uncover insights that shape our understanding of human behavior, inform decision-making, and drive innovation. In this guide, we'll dive into the fundamentals of correlational research, exploring its definition, importance, ethical considerations, and practical applications across various fields. Whether you're a student delving into research methods or a seasoned researcher seeking to expand your methodological toolkit, this guide will equip you with the knowledge and skills to conduct and interpret correlational studies effectively.

What is Correlational Research?

Correlational research is a methodological approach used in scientific inquiry to examine the relationship between two or more variables. Unlike experimental research, which seeks to establish cause-and-effect relationships through manipulation and control of variables, correlational research focuses on identifying and quantifying the degree to which variables are related to one another. This method allows researchers to investigate associations, patterns, and trends in naturalistic settings without imposing experimental manipulations.

Importance of Correlational Research

Correlational research plays a crucial role in advancing scientific knowledge across various disciplines. Its importance stems from several key factors:

  • Exploratory Analysis :  Correlational studies provide a starting point for exploring potential relationships between variables. By identifying correlations, researchers can generate hypotheses and guide further investigation into causal mechanisms and underlying processes.
  • Predictive Modeling :  Correlation coefficients can be used to predict the behavior or outcomes of one variable based on the values of another variable. This predictive ability has practical applications in fields such as economics, psychology, and epidemiology, where forecasting future trends or outcomes is essential.
  • Diagnostic Purposes:  Correlational analyses can help identify patterns or associations that may indicate the presence of underlying conditions or risk factors. For example, correlations between certain biomarkers and disease outcomes can inform diagnostic criteria and screening protocols in healthcare.
  • Theory Development:  Correlational research contributes to theory development by providing empirical evidence for proposed relationships between variables. Researchers can refine and validate theoretical models in their respective fields by systematically examining correlations across different contexts and populations.
  • Ethical Considerations:  In situations where experimental manipulation is not feasible or ethical, correlational research offers an alternative approach to studying naturally occurring phenomena. This allows researchers to address research questions that may otherwise be inaccessible or impractical to investigate.

Correlational vs. Causation in Research

It's important to distinguish between correlation and causation in research. While correlational studies can identify relationships between variables, they cannot establish causal relationships on their own. Several factors contribute to this distinction:

  • Directionality:  Correlation does not imply the direction of causation. A correlation between two variables does not indicate which variable is causing the other; it merely suggests that they are related in some way. Additional evidence, such as experimental manipulation or longitudinal studies , is needed to establish causality.
  • Third Variables:  Correlations may be influenced by third variables, also known as confounding variables, that are not directly measured or controlled in the study. These third variables can create spurious correlations or obscure true causal relationships between the variables of interest.
  • Temporal Sequence:  Causation requires a temporal sequence, with the cause preceding the effect in time. Correlational studies alone cannot establish the temporal order of events, making it difficult to determine whether one variable causes changes in another or vice versa.

Understanding the distinction between correlation and causation is critical for interpreting research findings accurately and drawing valid conclusions about the relationships between variables. While correlational research provides valuable insights into associations and patterns, establishing causation typically requires additional evidence from experimental studies or other research designs.

Key Concepts in Correlation

Understanding key concepts in correlation is essential for conducting meaningful research and interpreting results accurately.

Correlation Coefficient

The correlation coefficient is a statistical measure that quantifies the strength and direction of the relationship between two variables. It's denoted by the symbol  r  and ranges from -1 to +1.

  • A correlation coefficient of  -1  indicates a perfect negative correlation, meaning that as one variable increases, the other decreases in a perfectly predictable manner.
  • A coefficient of  +1  signifies a perfect positive correlation, where both variables increase or decrease together in perfect sync.
  • A coefficient of  0  implies no correlation, indicating no systematic relationship between the variables.

Strength and Direction of Correlation

The strength of correlation refers to how closely the data points cluster around a straight line on the scatterplot. A correlation coefficient close to -1 or +1 indicates a strong relationship between the variables, while a coefficient close to 0 suggests a weak relationship.

  • Strong correlation:  When the correlation coefficient approaches -1 or +1, it indicates a strong relationship between the variables. For example, a correlation coefficient of -0.9 suggests a strong negative relationship, while a coefficient of +0.8 indicates a strong positive relationship.
  • Weak correlation:  A correlation coefficient close to 0 indicates a weak or negligible relationship between the variables. For instance, a coefficient of -0.1 or +0.1 suggests a weak correlation where the variables are minimally related.

The direction of correlation determines how the variables change relative to each other.

  • Positive correlation:  When one variable increases, the other variable also tends to increase. Conversely, when one variable decreases, the other variable tends to decrease. This is represented by a positive correlation coefficient.
  • Negative correlation:  In a negative correlation, as one variable increases, the other variable tends to decrease. Similarly, when one variable decreases, the other variable tends to increase. This relationship is indicated by a negative correlation coefficient.

Scatterplots

A scatterplot is a graphical representation of the relationship between two variables. Each data point on the plot represents the values of both variables for a single observation. By plotting the data points on a Cartesian plane, you can visualize patterns and trends in the relationship between the variables.

  • Interpretation:  When examining a scatterplot, observe the pattern of data points. If the points cluster around a straight line, it indicates a strong correlation. However, if the points are scattered randomly, it suggests a weak or no correlation.
  • Outliers:  Identify any outliers or data points that deviate significantly from the overall pattern. Outliers can influence the correlation coefficient and may warrant further investigation to determine their impact on the relationship between variables.
  • Line of Best Fit:  In some cases, you may draw a line of best fit through the data points to visually represent the overall trend in the relationship. This line can help illustrate the direction and strength of the correlation between the variables.

Understanding these key concepts will enable you to interpret correlation coefficients accurately and draw meaningful conclusions from your data.

How to Design a Correlational Study?

When embarking on a correlational study, careful planning and consideration are crucial to ensure the validity and reliability of your research findings.

Research Question Formulation

Formulating clear and focused research questions is the cornerstone of any successful correlational study. Your research questions should articulate the variables you intend to investigate and the nature of the relationship you seek to explore. When formulating your research questions:

  • Be Specific:  Clearly define the variables you are interested in studying and the population to which your findings will apply.
  • Be Testable:  Ensure that your research questions are empirically testable using correlational methods. Avoid vague or overly broad questions that are difficult to operationalize.
  • Consider Prior Research:  Review existing literature to identify gaps or unanswered questions in your area of interest. Your research questions should build upon prior knowledge and contribute to advancing the field.

For example, if you're interested in examining the relationship between sleep duration and academic performance among college students, your research question might be: "Is there a significant correlation between the number of hours of sleep per night and GPA among undergraduate students?"

Participant Selection

Selecting an appropriate sample of participants is critical to ensuring the generalizability and validity of your findings. Consider the following factors when selecting participants for your correlational study:

  • Population Characteristics:  Identify the population of interest for your study and ensure that your sample reflects the demographics and characteristics of this population.
  • Sampling Method:  Choose a sampling method that is appropriate for your research question and accessible, given your resources and constraints. Standard sampling methods include random sampling, stratified sampling, and convenience sampling.
  • Sample Size:   Determine the appropriate sample size based on factors such as the effect size you expect to detect, the desired level of statistical power, and practical considerations such as time and budget constraints.

For example, suppose you're studying the relationship between exercise habits and mental health outcomes in adults aged 18-65. In that case, you might use stratified random sampling to ensure representation from different age groups within the population.

Variables Identification

Identifying and operationalizing the variables of interest is essential for conducting a rigorous correlational study. When identifying variables for your research:

  • Independent and Dependent Variables:  Clearly distinguish between independent variables (factors that are hypothesized to influence the outcome) and dependent variables (the outcomes or behaviors of interest).
  • Control Variables:  Identify any potential confounding variables or extraneous factors that may influence the relationship between your independent and dependent variables. These variables should be controlled for in your analysis.
  • Measurement Scales:  Determine the appropriate measurement scales for your variables (e.g., nominal, ordinal, interval, or ratio) and select valid and reliable measures for assessing each construct.

For instance, if you're investigating the relationship between socioeconomic status (SES) and academic achievement, SES would be your independent variable, while academic achievement would be your dependent variable. You might measure SES using a composite index based on factors such as income, education level, and occupation.

Data Collection Methods

Selecting appropriate data collection methods is essential for obtaining reliable and valid data for your correlational study. When choosing data collection methods:

  • Quantitative vs. Qualitative :  Determine whether quantitative or qualitative methods are best suited to your research question and objectives. Correlational studies typically involve quantitative data collection methods like surveys, questionnaires, or archival data analysis.
  • Instrument Selection:  Choose measurement instruments that are valid, reliable, and appropriate for your variables of interest. Pilot test your instruments to ensure clarity and comprehension among your target population.
  • Data Collection Procedures :  Develop clear and standardized procedures for data collection to minimize bias and ensure consistency across participants and time points.

For example, if you're examining the relationship between smartphone use and sleep quality among adolescents, you might administer a self-report questionnaire assessing smartphone usage patterns and sleep quality indicators such as sleep duration and sleep disturbances.

Crafting a well-designed correlational study is essential for yielding meaningful insights into the relationships between variables. By meticulously formulating research questions , selecting appropriate participants, identifying relevant variables, and employing effective data collection methods, researchers can ensure the validity and reliability of their findings.

With Appinio , conducting correlational research becomes even more seamless and efficient. Our intuitive platform empowers researchers to gather real-time consumer insights in minutes, enabling them to make informed decisions with confidence.

Experience the power of Appinio and unlock valuable insights for your research endeavors. Schedule a demo today and revolutionize the way you conduct correlational studies!

Book a Demo

How to Analyze Correlational Data?

Once you have collected your data in a correlational study, the next crucial step is to analyze it effectively to draw meaningful conclusions about the relationship between variables.

How to Calculate Correlation Coefficients?

The correlation coefficient is a numerical measure that quantifies the strength and direction of the relationship between two variables. There are different types of correlation coefficients, including Pearson's correlation coefficient (for linear relationships), Spearman's rank correlation coefficient (for ordinal data ), and Kendall's tau (for non-parametric data). Here, we'll focus on calculating Pearson's correlation coefficient (r), which is commonly used for interval or ratio-level data.

To calculate Pearson's correlation coefficient (r), you can use statistical software such as SPSS, R, or Excel. However, if you prefer to calculate it manually, you can use the following formula:

r = Σ((X - X̄)(Y - Ȳ)) / ((n - 1) * (s_X * s_Y))
  • X  and  Y  are the scores of the two variables,
  • X̄  and  Ȳ  are the means of X and Y, respectively,
  • n  is the number of data points,
  • s_X  and  s_Y  are the standard deviations of X and Y, respectively.

Interpreting Correlation Results

Once you have calculated the correlation coefficient (r), it's essential to interpret the results correctly. When interpreting correlation results:

  • Magnitude:  The absolute value of the correlation coefficient (r) indicates the strength of the relationship between the variables. A coefficient close to 1 or -1 suggests a strong correlation, while a coefficient close to 0 indicates a weak or no correlation.
  • Direction:  The sign of the correlation coefficient (positive or negative) indicates the direction of the relationship between the variables. A positive correlation coefficient indicates a positive relationship (as one variable increases, the other tends to increase), while a negative correlation coefficient indicates a negative relationship (as one variable increases, the other tends to decrease).
  • Statistical Significance :  Assess the statistical significance of the correlation coefficient to determine whether the observed relationship is likely to be due to chance. This is typically done using hypothesis testing, where you compare the calculated correlation coefficient to a critical value based on the sample size and desired level of significance (e.g.,  α =0.05).

Statistical Significance

Determining the statistical significance of the correlation coefficient involves conducting hypothesis testing to assess whether the observed correlation is likely to occur by chance. The most common approach is to use a significance level (alpha,  α ) of 0.05, which corresponds to a 5% chance of obtaining the observed correlation coefficient if there is no true relationship between the variables.

To test the null hypothesis that the correlation coefficient is zero (i.e., no correlation), you can use inferential statistics such as the t-test or z-test. If the calculated p-value is less than the chosen significance level (e.g.,  p <0.05), you can reject the null hypothesis and conclude that the correlation coefficient is statistically significant.

Remember that statistical significance does not necessarily imply practical significance or the strength of the relationship. Even a statistically significant correlation with a small effect size may not be meaningful in practical terms.

By understanding how to calculate correlation coefficients, interpret correlation results, and assess statistical significance, you can effectively analyze correlational data and draw accurate conclusions about the relationships between variables in your study.

Correlational Research Limitations

As with any research methodology, correlational studies have inherent considerations and limitations that researchers must acknowledge and address to ensure the validity and reliability of their findings.

Third Variables

One of the primary considerations in correlational research is the presence of third variables, also known as confounding variables. These are extraneous factors that may influence or confound the observed relationship between the variables under study. Failing to account for third variables can lead to spurious correlations or erroneous conclusions about causality.

For example, consider a correlational study examining the relationship between ice cream consumption and drowning incidents. While these variables may exhibit a positive correlation during the summer months, the true causal factor is likely to be a third variable—such as hot weather—that influences both ice cream consumption and swimming activities, thereby increasing the risk of drowning.

To address the influence of third variables, researchers can employ various strategies, such as statistical control techniques, experimental designs (when feasible), and careful operationalization of variables.

Causal Inferences

Correlation does not imply causation—a fundamental principle in correlational research. While correlational studies can identify relationships between variables, they cannot determine causality. This is because correlation merely describes the degree to which two variables co-vary; it does not establish a cause-and-effect relationship between them.

For example, consider a correlational study that finds a positive relationship between the frequency of exercise and self-reported happiness. While it may be tempting to conclude that exercise causes happiness, it's equally plausible that happier individuals are more likely to exercise regularly. Without experimental manipulation and control over potential confounding variables, causal inferences cannot be made.

To strengthen causal inferences in correlational research, researchers can employ longitudinal designs, experimental methods (when ethical and feasible), and theoretical frameworks to guide their interpretations.

Sample Size and Representativeness

The size and representativeness of the sample are critical considerations in correlational research. A small or non-representative sample may limit the generalizability of findings and increase the risk of sampling bias .

For example, if a correlational study examines the relationship between socioeconomic status (SES) and educational attainment using a sample composed primarily of high-income individuals, the findings may not accurately reflect the broader population's experiences. Similarly, an undersized sample may lack the statistical power to detect meaningful correlations or relationships.

To mitigate these issues, researchers should aim for adequate sample sizes based on power analyses, employ random or stratified sampling techniques to enhance representativeness and consider the demographic characteristics of the target population when interpreting findings.

Ensure your survey delivers accurate insights by using our Sample Size Calculator . With customizable options for margin of error, confidence level, and standard deviation, you can determine the optimal sample size to ensure representative results. Make confident decisions backed by robust data.

Reliability and Validity

Ensuring the reliability and validity of measures is paramount in correlational research. Reliability refers to the consistency and stability of measurement over time, whereas validity pertains to the accuracy and appropriateness of measurement in capturing the intended constructs.

For example, suppose a correlational study utilizes self-report measures of depression and anxiety. In that case, it's essential to assess the measures' reliability (e.g., internal consistency, test-retest reliability) and validity (e.g., content validity, criterion validity) to ensure that they accurately reflect participants' mental health status.

To enhance reliability and validity in correlational research, researchers can employ established measurement scales, pilot-test instruments, use multiple measures of the same construct, and assess convergent and discriminant validity.

By addressing these considerations and limitations, researchers can enhance the robustness and credibility of their correlational studies and make more informed interpretations of their findings.

Correlational Research Examples and Applications

Correlational research is widely used across various disciplines to explore relationships between variables and gain insights into complex phenomena. We'll examine examples and applications of correlational studies, highlighting their practical significance and impact on understanding human behavior and societal trends across various industries and use cases.

Psychological Correlational Studies

In psychology, correlational studies play a crucial role in understanding various aspects of human behavior, cognition, and mental health. Researchers use correlational methods to investigate relationships between psychological variables and identify factors that may contribute to or predict specific outcomes.

For example, a psychological correlational study might examine the relationship between self-esteem and depression symptoms among adolescents. By administering self-report measures of self-esteem and depression to a sample of teenagers and calculating the correlation coefficient between the two variables, researchers can assess whether lower self-esteem is associated with higher levels of depression symptoms.

Other examples of psychological correlational studies include investigating the relationship between:

  • Parenting styles and academic achievement in children
  • Personality traits and job performance in the workplace
  • Stress levels and coping strategies among college students

These studies provide valuable insights into the factors influencing human behavior and mental well-being, informing interventions and treatment approaches in clinical and counseling settings.

Business Correlational Studies

Correlational research is also widely utilized in the business and management fields to explore relationships between organizational variables and outcomes. By examining correlations between different factors within an organization, researchers can identify patterns and trends that may impact performance, productivity, and profitability.

For example, a business correlational study might investigate the relationship between employee satisfaction and customer loyalty in a retail setting. By surveying employees to assess their job satisfaction levels and analyzing customer feedback and purchase behavior, researchers can determine whether higher employee satisfaction is correlated with increased customer loyalty and retention.

Other examples of business correlational studies include examining the relationship between:

  • Leadership styles and employee motivation
  • Organizational culture and innovation
  • Marketing strategies and brand perception

These studies provide valuable insights for organizations seeking to optimize their operations, improve employee engagement, and enhance customer satisfaction.

Marketing Correlational Studies

In marketing, correlational studies are instrumental in understanding consumer behavior, identifying market trends, and optimizing marketing strategies. By examining correlations between various marketing variables, researchers can uncover insights that drive effective advertising campaigns, product development, and brand management.

For example, a marketing correlational study might explore the relationship between social media engagement and brand loyalty among millennials. By collecting data on millennials' social media usage, brand interactions, and purchase behaviors, researchers can analyze whether higher levels of social media engagement correlate with increased brand loyalty and advocacy.

Another example of a marketing correlational study could focus on investigating the relationship between pricing strategies and customer satisfaction in the retail sector. By analyzing data on pricing fluctuations, customer feedback , and sales performance, researchers can assess whether pricing strategies such as discounts or promotions impact customer satisfaction and repeat purchase behavior.

Other potential areas of inquiry in marketing correlational studies include examining the relationship between:

  • Product features and consumer preferences
  • Advertising expenditures and brand awareness
  • Online reviews and purchase intent

These studies provide valuable insights for marketers seeking to optimize their strategies, allocate resources effectively, and build strong relationships with consumers in an increasingly competitive marketplace. By leveraging correlational methods, marketers can make data-driven decisions that drive business growth and enhance customer satisfaction.

Correlational Research Ethical Considerations

Ethical considerations are paramount in all stages of the research process, including correlational studies. Researchers must adhere to ethical guidelines to ensure the rights, well-being, and privacy of participants are protected. Key ethical considerations to keep in mind include:

  • Informed Consent:  Obtain informed consent from participants before collecting any data. Clearly explain the purpose of the study, the procedures involved, and any potential risks or benefits. Participants should have the right to withdraw from the study at any time without consequence.
  • Confidentiality:  Safeguard the confidentiality of participants' data. Ensure that any personal or sensitive information collected during the study is kept confidential and is only accessible to authorized individuals. Use anonymization techniques when reporting findings to protect participants' privacy.
  • Voluntary Participation:  Ensure that participation in the study is voluntary and not coerced. Participants should not feel pressured to take part in the study or feel that they will suffer negative consequences for declining to participate.
  • Avoiding Harm:  Take measures to minimize any potential physical, psychological, or emotional harm to participants. This includes avoiding deceptive practices, providing appropriate debriefing procedures (if necessary), and offering access to support services if participants experience distress.
  • Deception:  If deception is necessary for the study, it must be justified and minimized. Deception should be disclosed to participants as soon as possible after data collection, and any potential risks associated with the deception should be mitigated.
  • Researcher Integrity:  Maintain integrity and honesty throughout the research process. Avoid falsifying data, manipulating results, or engaging in any other unethical practices that could compromise the integrity of the study.
  • Respect for Diversity:  Respect participants' cultural, social, and individual differences. Ensure that research protocols are culturally sensitive and inclusive, and that participants from diverse backgrounds are represented and treated with respect.
  • Institutional Review:  Obtain ethical approval from institutional review boards or ethics committees before commencing the study. Adhere to the guidelines and regulations set forth by the relevant governing bodies and professional organizations.

Adhering to these ethical considerations ensures that correlational research is conducted responsibly and ethically, promoting trust and integrity in the scientific community.

Correlational Research Best Practices and Tips

Conducting a successful correlational study requires careful planning, attention to detail, and adherence to best practices in research methodology. Here are some tips and best practices to help you conduct your correlational research effectively:

  • Clearly Define Variables:  Clearly define the variables you are studying and operationalize them into measurable constructs. Ensure that your variables are accurately and consistently measured to avoid ambiguity and ensure reliability.
  • Use Valid and Reliable Measures:  Select measurement instruments that are valid and reliable for assessing your variables of interest. Pilot test your measures to ensure clarity, comprehension, and appropriateness for your target population.
  • Consider Potential Confounding Variables:  Identify and control for potential confounding variables that could influence the relationship between your variables of interest. Consider including control variables in your analysis to isolate the effects of interest.
  • Ensure Adequate Sample Size:  Determine the appropriate sample size based on power analyses and considerations of statistical power. Larger sample sizes increase the reliability and generalizability of your findings.
  • Random Sampling:  Whenever possible, use random sampling techniques to ensure that your sample is representative of the population you are studying. If random sampling is not feasible, carefully consider the characteristics of your sample and the extent to which findings can be generalized.
  • Statistical Analysis :  Choose appropriate statistical techniques for analyzing your data, taking into account the nature of your variables and research questions. Consult with a statistician if necessary to ensure the validity and accuracy of your analyses.
  • Transparent Reporting:  Transparently report your methods, procedures, and findings in accordance with best practices in research reporting. Clearly articulate your research questions, methods, results, and interpretations to facilitate reproducibility and transparency.
  • Peer Review:  Seek feedback from colleagues, mentors, or peer reviewers throughout the research process. Peer review helps identify potential flaws or biases in your study design, analysis, and interpretation, improving your research's overall quality and credibility.

By following these best practices and tips, you can conduct your correlational research with rigor, integrity, and confidence, leading to valuable insights and contributions to your field.

Conclusion for Correlational Research

Correlational research serves as a powerful tool for uncovering connections between variables in the world around us. By examining the relationships between different factors, researchers can gain valuable insights into human behavior, health outcomes, market trends, and more. While correlational studies cannot establish causation on their own, they provide a crucial foundation for generating hypotheses, predicting outcomes, and informing decision-making in various fields. Understanding the principles and practices of correlational research empowers researchers to explore complex phenomena, advance scientific knowledge, and address real-world challenges. Moreover, embracing ethical considerations and best practices in correlational research ensures the integrity, validity, and reliability of study findings. By prioritizing informed consent, confidentiality, and participant well-being, researchers can conduct studies that uphold ethical standards and contribute meaningfully to the body of knowledge. Incorporating transparent reporting, peer review, and continuous learning further enhances the quality and credibility of correlational research. Ultimately, by leveraging correlational methods responsibly and ethically, researchers can unlock new insights, drive innovation, and make a positive impact on society.

How to Collect Data for Correlational Research in Minutes?

Discover the revolutionary power of Appinio , the real-time market research platform. With Appinio, conducting your own correlational research has never been easier or more exciting. Gain access to real-time consumer insights, empowering you to make data-driven decisions in minutes. Here's why Appinio stands out:

  • From questions to insights in minutes:  Say goodbye to lengthy research processes. With Appinio, you can gather valuable insights swiftly, allowing you to act on them immediately.
  • Intuitive platform for everyone:  No need for a PhD in research. Appinio's user-friendly interface makes it accessible to anyone, empowering you to conduct professional-grade research effortlessly.
  • Extensive reach, global impact:  Define your target group from over 1200 characteristics and survey consumers in over 90 countries. With Appinio, the world is your research playground.

Register now EN

Get free access to the platform!

Join the loop 💌

Be the first to hear about new updates, product news, and data insights. We'll send it all straight to your inbox.

Get the latest market research news straight to your inbox! 💌

Wait, there's more

Time Series Analysis Definition Types Techniques Examples

16.05.2024 | 30min read

Time Series Analysis: Definition, Types, Techniques, Examples

Experimental Research Definition Types Design Examples

14.05.2024 | 31min read

Experimental Research: Definition, Types, Design, Examples

Interval Scale Definition Characteristics Examples

07.05.2024 | 29min read

Interval Scale: Definition, Characteristics, Examples

Grad Coach

Research Design 101

Everything You Need To Get Started (With Examples)

By: Derek Jansen (MBA) | Reviewers: Eunice Rautenbach (DTech) & Kerryn Warren (PhD) | April 2023

Research design for qualitative and quantitative studies

Navigating the world of research can be daunting, especially if you’re a first-time researcher. One concept you’re bound to run into fairly early in your research journey is that of “ research design ”. Here, we’ll guide you through the basics using practical examples , so that you can approach your research with confidence.

Overview: Research Design 101

What is research design.

  • Research design types for quantitative studies
  • Video explainer : quantitative research design
  • Research design types for qualitative studies
  • Video explainer : qualitative research design
  • How to choose a research design
  • Key takeaways

Research design refers to the overall plan, structure or strategy that guides a research project , from its conception to the final data analysis. A good research design serves as the blueprint for how you, as the researcher, will collect and analyse data while ensuring consistency, reliability and validity throughout your study.

Understanding different types of research designs is essential as helps ensure that your approach is suitable  given your research aims, objectives and questions , as well as the resources you have available to you. Without a clear big-picture view of how you’ll design your research, you run the risk of potentially making misaligned choices in terms of your methodology – especially your sampling , data collection and data analysis decisions.

The problem with defining research design…

One of the reasons students struggle with a clear definition of research design is because the term is used very loosely across the internet, and even within academia.

Some sources claim that the three research design types are qualitative, quantitative and mixed methods , which isn’t quite accurate (these just refer to the type of data that you’ll collect and analyse). Other sources state that research design refers to the sum of all your design choices, suggesting it’s more like a research methodology . Others run off on other less common tangents. No wonder there’s confusion!

In this article, we’ll clear up the confusion. We’ll explain the most common research design types for both qualitative and quantitative research projects, whether that is for a full dissertation or thesis, or a smaller research paper or article.

Free Webinar: Research Methodology 101

Research Design: Quantitative Studies

Quantitative research involves collecting and analysing data in a numerical form. Broadly speaking, there are four types of quantitative research designs: descriptive , correlational , experimental , and quasi-experimental . 

Descriptive Research Design

As the name suggests, descriptive research design focuses on describing existing conditions, behaviours, or characteristics by systematically gathering information without manipulating any variables. In other words, there is no intervention on the researcher’s part – only data collection.

For example, if you’re studying smartphone addiction among adolescents in your community, you could deploy a survey to a sample of teens asking them to rate their agreement with certain statements that relate to smartphone addiction. The collected data would then provide insight regarding how widespread the issue may be – in other words, it would describe the situation.

The key defining attribute of this type of research design is that it purely describes the situation . In other words, descriptive research design does not explore potential relationships between different variables or the causes that may underlie those relationships. Therefore, descriptive research is useful for generating insight into a research problem by describing its characteristics . By doing so, it can provide valuable insights and is often used as a precursor to other research design types.

Correlational Research Design

Correlational design is a popular choice for researchers aiming to identify and measure the relationship between two or more variables without manipulating them . In other words, this type of research design is useful when you want to know whether a change in one thing tends to be accompanied by a change in another thing.

For example, if you wanted to explore the relationship between exercise frequency and overall health, you could use a correlational design to help you achieve this. In this case, you might gather data on participants’ exercise habits, as well as records of their health indicators like blood pressure, heart rate, or body mass index. Thereafter, you’d use a statistical test to assess whether there’s a relationship between the two variables (exercise frequency and health).

As you can see, correlational research design is useful when you want to explore potential relationships between variables that cannot be manipulated or controlled for ethical, practical, or logistical reasons. It is particularly helpful in terms of developing predictions , and given that it doesn’t involve the manipulation of variables, it can be implemented at a large scale more easily than experimental designs (which will look at next).

That said, it’s important to keep in mind that correlational research design has limitations – most notably that it cannot be used to establish causality . In other words, correlation does not equal causation . To establish causality, you’ll need to move into the realm of experimental design, coming up next…

Need a helping hand?

research design types correlation

Experimental Research Design

Experimental research design is used to determine if there is a causal relationship between two or more variables . With this type of research design, you, as the researcher, manipulate one variable (the independent variable) while controlling others (dependent variables). Doing so allows you to observe the effect of the former on the latter and draw conclusions about potential causality.

For example, if you wanted to measure if/how different types of fertiliser affect plant growth, you could set up several groups of plants, with each group receiving a different type of fertiliser, as well as one with no fertiliser at all. You could then measure how much each plant group grew (on average) over time and compare the results from the different groups to see which fertiliser was most effective.

Overall, experimental research design provides researchers with a powerful way to identify and measure causal relationships (and the direction of causality) between variables. However, developing a rigorous experimental design can be challenging as it’s not always easy to control all the variables in a study. This often results in smaller sample sizes , which can reduce the statistical power and generalisability of the results.

Moreover, experimental research design requires random assignment . This means that the researcher needs to assign participants to different groups or conditions in a way that each participant has an equal chance of being assigned to any group (note that this is not the same as random sampling ). Doing so helps reduce the potential for bias and confounding variables . This need for random assignment can lead to ethics-related issues . For example, withholding a potentially beneficial medical treatment from a control group may be considered unethical in certain situations.

Quasi-Experimental Research Design

Quasi-experimental research design is used when the research aims involve identifying causal relations , but one cannot (or doesn’t want to) randomly assign participants to different groups (for practical or ethical reasons). Instead, with a quasi-experimental research design, the researcher relies on existing groups or pre-existing conditions to form groups for comparison.

For example, if you were studying the effects of a new teaching method on student achievement in a particular school district, you may be unable to randomly assign students to either group and instead have to choose classes or schools that already use different teaching methods. This way, you still achieve separate groups, without having to assign participants to specific groups yourself.

Naturally, quasi-experimental research designs have limitations when compared to experimental designs. Given that participant assignment is not random, it’s more difficult to confidently establish causality between variables, and, as a researcher, you have less control over other variables that may impact findings.

All that said, quasi-experimental designs can still be valuable in research contexts where random assignment is not possible and can often be undertaken on a much larger scale than experimental research, thus increasing the statistical power of the results. What’s important is that you, as the researcher, understand the limitations of the design and conduct your quasi-experiment as rigorously as possible, paying careful attention to any potential confounding variables .

The four most common quantitative research design types are descriptive, correlational, experimental and quasi-experimental.

Research Design: Qualitative Studies

There are many different research design types when it comes to qualitative studies, but here we’ll narrow our focus to explore the “Big 4”. Specifically, we’ll look at phenomenological design, grounded theory design, ethnographic design, and case study design.

Phenomenological Research Design

Phenomenological design involves exploring the meaning of lived experiences and how they are perceived by individuals. This type of research design seeks to understand people’s perspectives , emotions, and behaviours in specific situations. Here, the aim for researchers is to uncover the essence of human experience without making any assumptions or imposing preconceived ideas on their subjects.

For example, you could adopt a phenomenological design to study why cancer survivors have such varied perceptions of their lives after overcoming their disease. This could be achieved by interviewing survivors and then analysing the data using a qualitative analysis method such as thematic analysis to identify commonalities and differences.

Phenomenological research design typically involves in-depth interviews or open-ended questionnaires to collect rich, detailed data about participants’ subjective experiences. This richness is one of the key strengths of phenomenological research design but, naturally, it also has limitations. These include potential biases in data collection and interpretation and the lack of generalisability of findings to broader populations.

Grounded Theory Research Design

Grounded theory (also referred to as “GT”) aims to develop theories by continuously and iteratively analysing and comparing data collected from a relatively large number of participants in a study. It takes an inductive (bottom-up) approach, with a focus on letting the data “speak for itself”, without being influenced by preexisting theories or the researcher’s preconceptions.

As an example, let’s assume your research aims involved understanding how people cope with chronic pain from a specific medical condition, with a view to developing a theory around this. In this case, grounded theory design would allow you to explore this concept thoroughly without preconceptions about what coping mechanisms might exist. You may find that some patients prefer cognitive-behavioural therapy (CBT) while others prefer to rely on herbal remedies. Based on multiple, iterative rounds of analysis, you could then develop a theory in this regard, derived directly from the data (as opposed to other preexisting theories and models).

Grounded theory typically involves collecting data through interviews or observations and then analysing it to identify patterns and themes that emerge from the data. These emerging ideas are then validated by collecting more data until a saturation point is reached (i.e., no new information can be squeezed from the data). From that base, a theory can then be developed .

As you can see, grounded theory is ideally suited to studies where the research aims involve theory generation , especially in under-researched areas. Keep in mind though that this type of research design can be quite time-intensive , given the need for multiple rounds of data collection and analysis.

research design types correlation

Ethnographic Research Design

Ethnographic design involves observing and studying a culture-sharing group of people in their natural setting to gain insight into their behaviours, beliefs, and values. The focus here is on observing participants in their natural environment (as opposed to a controlled environment). This typically involves the researcher spending an extended period of time with the participants in their environment, carefully observing and taking field notes .

All of this is not to say that ethnographic research design relies purely on observation. On the contrary, this design typically also involves in-depth interviews to explore participants’ views, beliefs, etc. However, unobtrusive observation is a core component of the ethnographic approach.

As an example, an ethnographer may study how different communities celebrate traditional festivals or how individuals from different generations interact with technology differently. This may involve a lengthy period of observation, combined with in-depth interviews to further explore specific areas of interest that emerge as a result of the observations that the researcher has made.

As you can probably imagine, ethnographic research design has the ability to provide rich, contextually embedded insights into the socio-cultural dynamics of human behaviour within a natural, uncontrived setting. Naturally, however, it does come with its own set of challenges, including researcher bias (since the researcher can become quite immersed in the group), participant confidentiality and, predictably, ethical complexities . All of these need to be carefully managed if you choose to adopt this type of research design.

Case Study Design

With case study research design, you, as the researcher, investigate a single individual (or a single group of individuals) to gain an in-depth understanding of their experiences, behaviours or outcomes. Unlike other research designs that are aimed at larger sample sizes, case studies offer a deep dive into the specific circumstances surrounding a person, group of people, event or phenomenon, generally within a bounded setting or context .

As an example, a case study design could be used to explore the factors influencing the success of a specific small business. This would involve diving deeply into the organisation to explore and understand what makes it tick – from marketing to HR to finance. In terms of data collection, this could include interviews with staff and management, review of policy documents and financial statements, surveying customers, etc.

While the above example is focused squarely on one organisation, it’s worth noting that case study research designs can have different variation s, including single-case, multiple-case and longitudinal designs. As you can see in the example, a single-case design involves intensely examining a single entity to understand its unique characteristics and complexities. Conversely, in a multiple-case design , multiple cases are compared and contrasted to identify patterns and commonalities. Lastly, in a longitudinal case design , a single case or multiple cases are studied over an extended period of time to understand how factors develop over time.

As you can see, a case study research design is particularly useful where a deep and contextualised understanding of a specific phenomenon or issue is desired. However, this strength is also its weakness. In other words, you can’t generalise the findings from a case study to the broader population. So, keep this in mind if you’re considering going the case study route.

Case study design often involves investigating an individual to gain an in-depth understanding of their experiences, behaviours or outcomes.

How To Choose A Research Design

Having worked through all of these potential research designs, you’d be forgiven for feeling a little overwhelmed and wondering, “ But how do I decide which research design to use? ”. While we could write an entire post covering that alone, here are a few factors to consider that will help you choose a suitable research design for your study.

Data type: The first determining factor is naturally the type of data you plan to be collecting – i.e., qualitative or quantitative. This may sound obvious, but we have to be clear about this – don’t try to use a quantitative research design on qualitative data (or vice versa)!

Research aim(s) and question(s): As with all methodological decisions, your research aim and research questions will heavily influence your research design. For example, if your research aims involve developing a theory from qualitative data, grounded theory would be a strong option. Similarly, if your research aims involve identifying and measuring relationships between variables, one of the experimental designs would likely be a better option.

Time: It’s essential that you consider any time constraints you have, as this will impact the type of research design you can choose. For example, if you’ve only got a month to complete your project, a lengthy design such as ethnography wouldn’t be a good fit.

Resources: Take into account the resources realistically available to you, as these need to factor into your research design choice. For example, if you require highly specialised lab equipment to execute an experimental design, you need to be sure that you’ll have access to that before you make a decision.

Keep in mind that when it comes to research, it’s important to manage your risks and play as conservatively as possible. If your entire project relies on you achieving a huge sample, having access to niche equipment or holding interviews with very difficult-to-reach participants, you’re creating risks that could kill your project. So, be sure to think through your choices carefully and make sure that you have backup plans for any existential risks. Remember that a relatively simple methodology executed well generally will typically earn better marks than a highly-complex methodology executed poorly.

research design types correlation

Recap: Key Takeaways

We’ve covered a lot of ground here. Let’s recap by looking at the key takeaways:

  • Research design refers to the overall plan, structure or strategy that guides a research project, from its conception to the final analysis of data.
  • Research designs for quantitative studies include descriptive , correlational , experimental and quasi-experimenta l designs.
  • Research designs for qualitative studies include phenomenological , grounded theory , ethnographic and case study designs.
  • When choosing a research design, you need to consider a variety of factors, including the type of data you’ll be working with, your research aims and questions, your time and the resources available to you.

If you need a helping hand with your research design (or any other aspect of your research), check out our private coaching services .

research design types correlation

Psst... there’s more!

This post was based on one of our popular Research Bootcamps . If you're working on a research project, you'll definitely want to check this out ...

You Might Also Like:

Survey Design 101: The Basics

10 Comments

Wei Leong YONG

Is there any blog article explaining more on Case study research design? Is there a Case study write-up template? Thank you.

Solly Khan

Thanks this was quite valuable to clarify such an important concept.

hetty

Thanks for this simplified explanations. it is quite very helpful.

Belz

This was really helpful. thanks

Imur

Thank you for your explanation. I think case study research design and the use of secondary data in researches needs to be talked about more in your videos and articles because there a lot of case studies research design tailored projects out there.

Please is there any template for a case study research design whose data type is a secondary data on your repository?

Sam Msongole

This post is very clear, comprehensive and has been very helpful to me. It has cleared the confusion I had in regard to research design and methodology.

Robyn Pritchard

This post is helpful, easy to understand, and deconstructs what a research design is. Thanks

kelebogile

how to cite this page

Peter

Thank you very much for the post. It is wonderful and has cleared many worries in my mind regarding research designs. I really appreciate .

ali

how can I put this blog as my reference(APA style) in bibliography part?

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly
  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Best Family Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Guided Meditations
  • Verywell Mind Insights
  • 2024 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

Correlation Studies in Psychology Research

Determining the relationship between two or more variables.

Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

research design types correlation

Emily is a board-certified science editor who has worked with top digital publishing brands like Voices for Biodiversity, Study.com, GoodTherapy, Vox, and Verywell.

research design types correlation

Verywell / Brianna Gilmartin

  • Characteristics

Potential Pitfalls

Frequently asked questions.

A correlational study is a type of research design that looks at the relationships between two or more variables. Correlational studies are non-experimental, which means that the experimenter does not manipulate or control any of the variables.

A correlation refers to a relationship between two variables. Correlations can be strong or weak and positive or negative. Sometimes, there is no correlation.

There are three possible outcomes of a correlation study: a positive correlation, a negative correlation, or no correlation. Researchers can present the results using a numerical value called the correlation coefficient, a measure of the correlation strength. It can range from –1.00 (negative) to +1.00 (positive). A correlation coefficient of 0 indicates no correlation.

  • Positive correlations : Both variables increase or decrease at the same time. A correlation coefficient close to +1.00 indicates a strong positive correlation.
  • Negative correlations : As the amount of one variable increases, the other decreases (and vice versa). A correlation coefficient close to -1.00 indicates a strong negative correlation.
  • No correlation : There is no relationship between the two variables. A correlation coefficient of 0 indicates no correlation.

Characteristics of a Correlational Study

Correlational studies are often used in psychology, as well as other fields like medicine. Correlational research is a preliminary way to gather information about a topic. The method is also useful if researchers are unable to perform an experiment.

Researchers use correlations to see if a relationship between two or more variables exists, but the variables themselves are not under the control of the researchers.

While correlational research can demonstrate a relationship between variables, it cannot prove that changing one variable will change another. In other words, correlational studies cannot prove cause-and-effect relationships.

When you encounter research that refers to a "link" or an "association" between two things, they are most likely talking about a correlational study.

Types of Correlational Research

There are three types of correlational research: naturalistic observation, the survey method, and archival research. Each type has its own purpose, as well as its pros and cons.

Naturalistic Observation

The naturalistic observation method involves observing and recording variables of interest in a natural setting without interference or manipulation.  

Can inspire ideas for further research

Option if lab experiment not available

Variables are viewed in natural setting

Can be time-consuming and expensive

Extraneous variables can't be controlled

No scientific control of variables

Subjects might behave differently if aware of being observed

This method is well-suited to studies where researchers want to see how variables behave in their natural setting or state.   Inspiration can then be drawn from the observations to inform future avenues of research.

In some cases, it might be the only method available to researchers; for example, if lab experimentation would be precluded by access, resources, or ethics. It might be preferable to not being able to conduct research at all, but the method can be costly and usually takes a lot of time.  

Naturalistic observation presents several challenges for researchers. For one, it does not allow them to control or influence the variables in any way nor can they change any possible external variables.

However, this does not mean that researchers will get reliable data from watching the variables, or that the information they gather will be free from bias.

For example, study subjects might act differently if they know that they are being watched. The researchers might not be aware that the behavior that they are observing is not necessarily the subject's natural state (i.e., how they would act if they did not know they were being watched).

Researchers also need to be aware of their biases, which can affect the observation and interpretation of a subject's behavior.  

Surveys and questionnaires are some of the most common methods used for psychological research. The survey method involves having a  random sample  of participants complete a survey, test, or questionnaire related to the variables of interest.   Random sampling is vital to the generalizability of a survey's results.

Cheap, easy, and fast

Can collect large amounts of data in a short amount of time

Results can be affected by poor survey questions

Results can be affected by unrepresentative sample

Outcomes can be affected by participants

If researchers need to gather a large amount of data in a short period of time, a survey is likely to be the fastest, easiest, and cheapest option.  

It's also a flexible method because it lets researchers create data-gathering tools that will help ensure they get the information they need (survey responses) from all the sources they want to use (a random sample of participants taking the survey).

Survey data might be cost-efficient and easy to get, but it has its downsides. For one, the data is not always reliable—particularly if the survey questions are poorly written or the overall design or delivery is weak.   Data is also affected by specific faults, such as unrepresented or underrepresented samples .

The use of surveys relies on participants to provide useful data. Researchers need to be aware of the specific factors related to the people taking the survey that will affect its outcome.

For example, some people might struggle to understand the questions. A person might answer a particular way to try to please the researchers or to try to control how the researchers perceive them (such as trying to make themselves "look better").

Sometimes, respondents might not even realize that their answers are incorrect or misleading because of mistaken memories .

Archival Research

Many areas of psychological research benefit from analyzing studies that were conducted long ago by other researchers, as well as reviewing historical records and case studies.

For example, in an experiment known as  "The Irritable Heart ," researchers used digitalized records containing information on American Civil War veterans to learn more about post-traumatic stress disorder (PTSD).

Large amount of data

Can be less expensive

Researchers cannot change participant behavior

Can be unreliable

Information might be missing

No control over data collection methods

Using records, databases, and libraries that are publicly accessible or accessible through their institution can help researchers who might not have a lot of money to support their research efforts.

Free and low-cost resources are available to researchers at all levels through academic institutions, museums, and data repositories around the world.

Another potential benefit is that these sources often provide an enormous amount of data that was collected over a very long period of time, which can give researchers a way to view trends, relationships, and outcomes related to their research.

While the inability to change variables can be a disadvantage of some methods, it can be a benefit of archival research. That said, using historical records or information that was collected a long time ago also presents challenges. For one, important information might be missing or incomplete and some aspects of older studies might not be useful to researchers in a modern context.

A primary issue with archival research is reliability. When reviewing old research, little information might be available about who conducted the research, how a study was designed, who participated in the research, as well as how data was collected and interpreted.

Researchers can also be presented with ethical quandaries—for example, should modern researchers use data from studies that were conducted unethically or with questionable ethics?

You've probably heard the phrase, "correlation does not equal causation." This means that while correlational research can suggest that there is a relationship between two variables, it cannot prove that one variable will change another.

For example, researchers might perform a correlational study that suggests there is a relationship between academic success and a person's self-esteem. However, the study cannot show that academic success changes a person's self-esteem.

To determine why the relationship exists, researchers would need to consider and experiment with other variables, such as the subject's social relationships, cognitive abilities, personality, and socioeconomic status.

The difference between a correlational study and an experimental study involves the manipulation of variables. Researchers do not manipulate variables in a correlational study, but they do control and systematically vary the independent variables in an experimental study. Correlational studies allow researchers to detect the presence and strength of a relationship between variables, while experimental studies allow researchers to look for cause and effect relationships.

If the study involves the systematic manipulation of the levels of a variable, it is an experimental study. If researchers are measuring what is already present without actually changing the variables, then is a correlational study.

The variables in a correlational study are what the researcher measures. Once measured, researchers can then use statistical analysis to determine the existence, strength, and direction of the relationship. However, while correlational studies can say that variable X and variable Y have a relationship, it does not mean that X causes Y.

The goal of correlational research is often to look for relationships, describe these relationships, and then make predictions. Such research can also often serve as a jumping off point for future experimental research. 

Heath W. Psychology Research Methods . Cambridge University Press; 2018:134-156.

Schneider FW. Applied Social Psychology . 2nd ed. SAGE; 2012:50-53.

Curtis EA, Comiskey C, Dempsey O. Importance and use of correlational research .  Nurse Researcher . 2016;23(6):20-25. doi:10.7748/nr.2016.e1382

Carpenter S. Visualizing Psychology . 3rd ed. John Wiley & Sons; 2012:14-30.

Pizarro J, Silver RC, Prause J. Physical and mental health costs of traumatic war experiences among civil war veterans .  Arch Gen Psychiatry . 2006;63(2):193. doi:10.1001/archpsyc.63.2.193

Post SG. The echo of Nuremberg: Nazi data and ethics .  J Med Ethics . 1991;17(1):42-44. doi:10.1136/jme.17.1.42

Lau F. Chapter 12 Methods for Correlational Studies . In: Lau F, Kuziemsky C, eds. Handbook of eHealth Evaluation: An Evidence-based Approach . University of Victoria.

Akoglu H. User's guide to correlation coefficients .  Turk J Emerg Med . 2018;18(3):91-93. doi:10.1016/j.tjem.2018.08.001

Price PC. Research Methods in Psychology . California State University.

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

The Four Types of Research Design — Everything You Need to Know

Jenny Romanchuk

Updated: December 11, 2023

Published: January 18, 2023

When you conduct research, you need to have a clear idea of what you want to achieve and how to accomplish it. A good research design enables you to collect accurate and reliable data to draw valid conclusions.

research design used to test different beauty products

In this blog post, we'll outline the key features of the four common types of research design with real-life examples from UnderArmor, Carmex, and more. Then, you can easily choose the right approach for your project.

Table of Contents

What is research design?

The four types of research design, research design examples.

Research design is the process of planning and executing a study to answer specific questions. This process allows you to test hypotheses in the business or scientific fields.

Research design involves choosing the right methodology, selecting the most appropriate data collection methods, and devising a plan (or framework) for analyzing the data. In short, a good research design helps us to structure our research.

Marketers use different types of research design when conducting research .

There are four common types of research design — descriptive, correlational, experimental, and diagnostic designs. Let’s take a look at each in more detail.

Researchers use different designs to accomplish different research objectives. Here, we'll discuss how to choose the right type, the benefits of each, and use cases.

Research can also be classified as quantitative or qualitative at a higher level. Some experiments exhibit both qualitative and quantitative characteristics.

research design types correlation

Free Market Research Kit

5 Research and Planning Templates + a Free Guide on How to Use Them in Your Market Research

  • SWOT Analysis Template
  • Survey Template
  • Focus Group Template

You're all set!

Click this link to access this resource at any time.

Experimental

An experimental design is used when the researcher wants to examine how variables interact with each other. The researcher manipulates one variable (the independent variable) and observes the effect on another variable (the dependent variable).

In other words, the researcher wants to test a causal relationship between two or more variables.

In marketing, an example of experimental research would be comparing the effects of a television commercial versus an online advertisement conducted in a controlled environment (e.g. a lab). The objective of the research is to test which advertisement gets more attention among people of different age groups, gender, etc.

Another example is a study of the effect of music on productivity. A researcher assigns participants to one of two groups — those who listen to music while working and those who don't — and measure their productivity.

The main benefit of an experimental design is that it allows the researcher to draw causal relationships between variables.

One limitation: This research requires a great deal of control over the environment and participants, making it difficult to replicate in the real world. In addition, it’s quite costly.

Best for: Testing a cause-and-effect relationship (i.e., the effect of an independent variable on a dependent variable).

Correlational

A correlational design examines the relationship between two or more variables without intervening in the process.

Correlational design allows the analyst to observe natural relationships between variables. This results in data being more reflective of real-world situations.

For example, marketers can use correlational design to examine the relationship between brand loyalty and customer satisfaction. In particular, the researcher would look for patterns or trends in the data to see if there is a relationship between these two entities.

Similarly, you can study the relationship between physical activity and mental health. The analyst here would ask participants to complete surveys about their physical activity levels and mental health status. Data would show how the two variables are related.

Best for: Understanding the extent to which two or more variables are associated with each other in the real world.

Descriptive

Descriptive research refers to a systematic process of observing and describing what a subject does without influencing them.

Methods include surveys, interviews, case studies, and observations. Descriptive research aims to gather an in-depth understanding of a phenomenon and answers when/what/where.

SaaS companies use descriptive design to understand how customers interact with specific features. Findings can be used to spot patterns and roadblocks.

For instance, product managers can use screen recordings by Hotjar to observe in-app user behavior. This way, the team can precisely understand what is happening at a certain stage of the user journey and act accordingly.

Brand24, a social listening tool, tripled its sign-up conversion rate from 2.56% to 7.42%, thanks to locating friction points in the sign-up form through screen recordings.

different types of research design: descriptive research example.

Carma Laboratories worked with research company MMR to measure customers’ reactions to the lip-care company’s packaging and product . The goal was to find the cause of low sales for a recently launched line extension in Europe.

The team moderated a live, online focus group. Participants were shown w product samples, while AI and NLP natural language processing identified key themes in customer feedback.

This helped uncover key reasons for poor performance and guided changes in packaging.

research design example, tweezerman

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

Correlational Research

Rajiv S. Jhangiani; I-Chant A. Chiang; Carrie Cuttler; and Dana C. Leighton

Learning Objectives

  • Define correlational research and give several examples.
  • Explain why a researcher might choose to conduct correlational research rather than experimental research or another type of non-experimental research.
  • Interpret the strength and direction of different correlation coefficients.
  • Explain why correlation does not imply causation.

What Is Correlational Research?

Correlational research is a type of non-experimental research in which the researcher measures two variables (binary or continuous) and assesses the statistical relationship (i.e., the correlation) between them with little or no effort to control extraneous variables. There are many reasons that researchers interested in statistical relationships between variables would choose to conduct a correlational study rather than an experiment. The first is that they do not believe that the statistical relationship is a causal one or are not interested in causal relationships. Recall two goals of science are to describe and to predict and the correlational research strategy allows researchers to achieve both of these goals. Specifically, this strategy can be used to describe the strength and direction of the relationship between two variables and if there is a relationship between the variables then the researchers can use scores on one variable to predict scores on the other (using a statistical technique called regression, which is discussed further in the section on Complex Correlation in this chapter).

Another reason that researchers would choose to use a correlational study rather than an experiment is that the statistical relationship of interest is thought to be causal, but the researcher  cannot manipulate the independent variable because it is impossible, impractical, or unethical. For example, while a researcher might be interested in the relationship between the frequency people use cannabis and their memory abilities they cannot ethically manipulate the frequency that people use cannabis. As such, they must rely on the correlational research strategy; they must simply measure the frequency that people use cannabis and measure their memory abilities using a standardized test of memory and then determine whether the frequency people use cannabis is statistically related to memory test performance. 

Correlation is also used to establish the reliability and validity of measurements. For example, a researcher might evaluate the validity of a brief extraversion test by administering it to a large group of participants along with a longer extraversion test that has already been shown to be valid. This researcher might then check to see whether participants’ scores on the brief test are strongly correlated with their scores on the longer one. Neither test score is thought to cause the other, so there is no independent variable to manipulate. In fact, the terms  independent variable  and dependent variabl e  do not apply to this kind of research.

Another strength of correlational research is that it is often higher in external validity than experimental research. Recall there is typically a trade-off between internal validity and external validity. As greater controls are added to experiments, internal validity is increased but often at the expense of external validity as artificial conditions are introduced that do not exist in reality. In contrast, correlational studies typically have low internal validity because nothing is manipulated or controlled but they often have high external validity. Since nothing is manipulated or controlled by the experimenter the results are more likely to reflect relationships that exist in the real world.

Finally, extending upon this trade-off between internal and external validity, correlational research can help to provide converging evidence for a theory. If a theory is supported by a true experiment that is high in internal validity as well as by a correlational study that is high in external validity then the researchers can have more confidence in the validity of their theory. As a concrete example, correlational studies establishing that there is a relationship between watching violent television and aggressive behavior have been complemented by experimental studies confirming that the relationship is a causal one (Bushman & Huesmann, 2001) [1] .

Does Correlational Research Always Involve Quantitative Variables?

A common misconception among beginning researchers is that correlational research must involve two quantitative variables, such as scores on two extraversion tests or the number of daily hassles and number of symptoms people have experienced. However, the defining feature of correlational research is that the two variables are measured—neither one is manipulated—and this is true regardless of whether the variables are quantitative or categorical. Imagine, for example, that a researcher administers the Rosenberg Self-Esteem Scale to 50 American college students and 50 Japanese college students. Although this “feels” like a between-subjects experiment, it is a correlational study because the researcher did not manipulate the students’ nationalities. The same is true of the study by Cacioppo and Petty comparing college faculty and factory workers in terms of their need for cognition. It is a correlational study because the researchers did not manipulate the participants’ occupations.

Figure 6.2 shows data from a hypothetical study on the relationship between whether people make a daily list of things to do (a “to-do list”) and stress. Notice that it is unclear whether this is an experiment or a correlational study because it is unclear whether the independent variable was manipulated. If the researcher randomly assigned some participants to make daily to-do lists and others not to, then it is an experiment. If the researcher simply asked participants whether they made daily to-do lists, then it is a correlational study. The distinction is important because if the study was an experiment, then it could be concluded that making the daily to-do lists reduced participants’ stress. But if it was a correlational study, it could only be concluded that these variables are statistically related. Perhaps being stressed has a negative effect on people’s ability to plan ahead (the directionality problem). Or perhaps people who are more conscientious are more likely to make to-do lists and less likely to be stressed (the third-variable problem). The crucial point is that what defines a study as experimental or correlational is not the variables being studied, nor whether the variables are quantitative or categorical, nor the type of graph or statistics used to analyze the data. What defines a study is how the study is conducted.

research design types correlation

Data Collection in Correlational Research

Again, the defining feature of correlational research is that neither variable is manipulated. It does not matter how or where the variables are measured. A researcher could have participants come to a laboratory to complete a computerized backward digit span task and a computerized risky decision-making task and then assess the relationship between participants’ scores on the two tasks. Or a researcher could go to a shopping mall to ask people about their attitudes toward the environment and their shopping habits and then assess the relationship between these two variables. Both of these studies would be correlational because no independent variable is manipulated. 

Correlations Between Quantitative Variables

Correlations between quantitative variables are often presented using scatterplots . Figure 6.3 shows some hypothetical data on the relationship between the amount of stress people are under and the number of physical symptoms they have. Each point in the scatterplot represents one person’s score on both variables. For example, the circled point in Figure 6.3 represents a person whose stress score was 10 and who had three physical symptoms. Taking all the points into account, one can see that people under more stress tend to have more physical symptoms. This is a good example of a positive relationship , in which higher scores on one variable tend to be associated with higher scores on the other. In other words, they move in the same direction, either both up or both down. A negative relationship is one in which higher scores on one variable tend to be associated with lower scores on the other. In other words, they move in opposite directions. There is a negative relationship between stress and immune system functioning, for example, because higher stress is associated with lower immune system functioning.

Figure 6.3 Scatterplot Showing a Hypothetical Positive Relationship Between Stress and Number of Physical Symptoms

The strength of a correlation between quantitative variables is typically measured using a statistic called  Pearson’s Correlation Coefficient (or Pearson's  r ) . As Figure 6.4 shows, Pearson’s r ranges from −1.00 (the strongest possible negative relationship) to +1.00 (the strongest possible positive relationship). A value of 0 means there is no relationship between the two variables. When Pearson’s  r  is 0, the points on a scatterplot form a shapeless “cloud.” As its value moves toward −1.00 or +1.00, the points come closer and closer to falling on a single straight line. Correlation coefficients near ±.10 are considered small, values near ± .30 are considered medium, and values near ±.50 are considered large. Notice that the sign of Pearson’s  r  is unrelated to its strength. Pearson’s  r  values of +.30 and −.30, for example, are equally strong; it is just that one represents a moderate positive relationship and the other a moderate negative relationship. With the exception of reliability coefficients, most correlations that we find in Psychology are small or moderate in size. The website http://rpsychologist.com/d3/correlation/ , created by Kristoffer Magnusson, provides an excellent interactive visualization of correlations that permits you to adjust the strength and direction of a correlation while witnessing the corresponding changes to the scatterplot.

Figure 6.4 Range of Pearson’s r, From −1.00 (Strongest Possible Negative Relationship), Through 0 (No Relationship), to +1.00 (Strongest Possible Positive Relationship)

There are two common situations in which the value of Pearson’s  r  can be misleading. Pearson’s  r  is a good measure only for linear relationships, in which the points are best approximated by a straight line. It is not a good measure for nonlinear relationships, in which the points are better approximated by a curved line. Figure 6.5, for example, shows a hypothetical relationship between the amount of sleep people get per night and their level of depression. In this example, the line that best approximates the points is a curve—a kind of upside-down “U”—because people who get about eight hours of sleep tend to be the least depressed. Those who get too little sleep and those who get too much sleep tend to be more depressed. Even though Figure 6.5 shows a fairly strong relationship between depression and sleep, Pearson’s  r  would be close to zero because the points in the scatterplot are not well fit by a single straight line. This means that it is important to make a scatterplot and confirm that a relationship is approximately linear before using Pearson’s  r . Nonlinear relationships are fairly common in psychology, but measuring their strength is beyond the scope of this book.

Figure 6.5 Hypothetical Nonlinear Relationship Between Sleep and Depression

The other common situations in which the value of Pearson’s  r  can be misleading is when one or both of the variables have a limited range in the sample relative to the population. This problem is referred to as  restriction of range . Assume, for example, that there is a strong negative correlation between people’s age and their enjoyment of hip hop music as shown by the scatterplot in Figure 6.6. Pearson’s  r  here is −.77. However, if we were to collect data only from 18- to 24-year-olds—represented by the shaded area of Figure 6.6—then the relationship would seem to be quite weak. In fact, Pearson’s  r  for this restricted range of ages is 0. It is a good idea, therefore, to design studies to avoid restriction of range. For example, if age is one of your primary variables, then you can plan to collect data from people of a wide range of ages. Because restriction of range is not always anticipated or easily avoidable, however, it is good practice to examine your data for possible restriction of range and to interpret Pearson’s  r  in light of it. (There are also statistical methods to correct Pearson’s  r  for restriction of range, but they are beyond the scope of this book).

Figure 6.6 Hypothetical Data Showing How a Strong Overall Correlation Can Appear to Be Weak When One Variable Has a Restricted Range

Correlation Does Not Imply Causation

You have probably heard repeatedly that “Correlation does not imply causation.” An amusing example of this comes from a 2012 study that showed a positive correlation (Pearson’s r = 0.79) between the per capita chocolate consumption of a nation and the number of Nobel prizes awarded to citizens of that nation [2] . It seems clear, however, that this does not mean that eating chocolate causes people to win Nobel prizes, and it would not make sense to try to increase the number of Nobel prizes won by recommending that parents feed their children more chocolate.

There are two reasons that correlation does not imply causation. The first is called the  directionality problem . Two variables,  X  and  Y , can be statistically related because X  causes  Y  or because  Y  causes  X . Consider, for example, a study showing that whether or not people exercise is statistically related to how happy they are—such that people who exercise are happier on average than people who do not. This statistical relationship is consistent with the idea that exercising causes happiness, but it is also consistent with the idea that happiness causes exercise. Perhaps being happy gives people more energy or leads them to seek opportunities to socialize with others by going to the gym. The second reason that correlation does not imply causation is called the  third-variable problem . Two variables,  X  and  Y , can be statistically related not because  X  causes  Y , or because  Y  causes  X , but because some third variable,  Z , causes both  X  and  Y . For example, the fact that nations that have won more Nobel prizes tend to have higher chocolate consumption probably reflects geography in that European countries tend to have higher rates of per capita chocolate consumption and invest more in education and technology (once again, per capita) than many other countries in the world. Similarly, the statistical relationship between exercise and happiness could mean that some third variable, such as physical health, causes both of the others. Being physically healthy could cause people to exercise and cause them to be happier. Correlations that are a result of a third-variable are often referred to as  spurious correlations .

Some excellent and amusing examples of spurious correlations can be found at http://www.tylervigen.com  (Figure 6.7  provides one such example).

research design types correlation

“Lots of Candy Could Lead to Violence”

Although researchers in psychology know that correlation does not imply causation, many journalists do not. One website about correlation and causation, http://jonathan.mueller.faculty.noctrl.edu/100/correlation_or_causation.htm , links to dozens of media reports about real biomedical and psychological research. Many of the headlines suggest that a causal relationship has been demonstrated when a careful reading of the articles shows that it has not because of the directionality and third-variable problems.

One such article is about a study showing that children who ate candy every day were more likely than other children to be arrested for a violent offense later in life. But could candy really “lead to” violence, as the headline suggests? What alternative explanations can you think of for this statistical relationship? How could the headline be rewritten so that it is not misleading?

As you have learned by reading this book, there are various ways that researchers address the directionality and third-variable problems. The most effective is to conduct an experiment. For example, instead of simply measuring how much people exercise, a researcher could bring people into a laboratory and randomly assign half of them to run on a treadmill for 15 minutes and the rest to sit on a couch for 15 minutes. Although this seems like a minor change to the research design, it is extremely important. Now if the exercisers end up in more positive moods than those who did not exercise, it cannot be because their moods affected how much they exercised (because it was the researcher who used random assignment to determine how much they exercised). Likewise, it cannot be because some third variable (e.g., physical health) affected both how much they exercised and what mood they were in. Thus experiments eliminate the directionality and third-variable problems and allow researchers to draw firm conclusions about causal relationships.

Media Attributions

  • Nicholas Cage and Pool Drownings  © Tyler Viegen is licensed under a  CC BY (Attribution)  license
  • Bushman, B. J., & Huesmann, L. R. (2001). Effects of televised violence on aggression. In D. Singer & J. Singer (Eds.), Handbook of children and the media (pp. 223–254). Thousand Oaks, CA: Sage. ↵
  • Messerli, F. H. (2012). Chocolate consumption, cognitive function, and Nobel laureates. New England Journal of Medicine, 367 , 1562-1564. ↵

A graph that presents correlations between two quantitative variables, one on the x-axis and one on the y-axis. Scores are plotted at the intersection of the values on each axis.

A relationship in which higher scores on one variable tend to be associated with higher scores on the other.

A relationship in which higher scores on one variable tend to be associated with lower scores on the other.

A statistic that measures the strength of a correlation between quantitative variables.

When one or both variables have a limited range in the sample relative to the population, making the value of the correlation coefficient misleading.

The problem where two variables, X  and  Y , are statistically related either because X  causes  Y, or because  Y  causes  X , and thus the causal direction of the effect cannot be known.

Two variables, X and Y, can be statistically related not because X causes Y, or because Y causes X, but because some third variable, Z, causes both X and Y.

Correlations that are a result not of the two variables being measured, but rather because of a third, unmeasured, variable that affects both of the measured variables.

Correlational Research Copyright © by Rajiv S. Jhangiani; I-Chant A. Chiang; Carrie Cuttler; and Dana C. Leighton is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

Correlation in Psychology: Meaning, Types, Examples & coefficient

Saul Mcleod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul Mcleod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Learn about our Editorial Process

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

On This Page:

Correlation means association – more precisely, it measures the extent to which two variables are related. There are three possible results of a correlational study: a positive correlation, a negative correlation, and no correlation.
  • A positive correlation is a relationship between two variables in which both variables move in the same direction. Therefore, one variable increases as the other variable increases, or one variable decreases while the other decreases. An example of a positive correlation would be height and weight. Taller people tend to be heavier.

positive correlation

  • A negative correlation is a relationship between two variables in which an increase in one variable is associated with a decrease in the other. An example of a negative correlation would be the height above sea level and temperature. As you climb the mountain (increase in height), it gets colder (decrease in temperature).

negative correlation

  • A zero correlation exists when there is no relationship between two variables. For example, there is no relationship between the amount of tea drunk and the level of intelligence.

zero correlation

Scatter Plots

A correlation can be expressed visually. This is done by drawing a scatter plot (also known as a scattergram, scatter graph, scatter chart, or scatter diagram).

A scatter plot is a graphical display that shows the relationships or associations between two numerical variables (or co-variables), which are represented as points (or dots) for each pair of scores.

A scatter plot indicates the strength and direction of the correlation between the co-variables.

Types of Correlations: Positive, Negative, and Zero

When you draw a scatter plot, it doesn’t matter which variable goes on the x-axis and which goes on the y-axis.

Remember, in correlations, we always deal with paired scores, so the values of the two variables taken together will be used to make the diagram.

Decide which variable goes on each axis and then simply put a cross at the point where the two values coincide.

Uses of Correlations

  • If there is a relationship between two variables, we can make predictions about one from another.
  • Concurrent validity (correlation between a new measure and an established measure).

Reliability

  • Test-retest reliability (are measures consistent?).
  • Inter-rater reliability (are observers consistent?).

Theory verification

  • Predictive validity.

Correlation Coefficients

Instead of drawing a scatter plot, a correlation can be expressed numerically as a coefficient, ranging from -1 to +1. When working with continuous variables, the correlation coefficient to use is Pearson’s r.

Correlation Coefficient Interpretation

The correlation coefficient ( r ) indicates the extent to which the pairs of numbers for these two variables lie on a straight line. Values over zero indicate a positive correlation, while values under zero indicate a negative correlation.

A correlation of –1 indicates a perfect negative correlation, meaning that as one variable goes up, the other goes down. A correlation of +1 indicates a perfect positive correlation, meaning that as one variable goes up, the other goes up.

There is no rule for determining what correlation size is considered strong, moderate, or weak. The interpretation of the coefficient depends on the topic of study.

When studying things that are difficult to measure, we should expect the correlation coefficients to be lower (e.g., above 0.4 to be relatively strong). When we are studying things that are easier to measure, such as socioeconomic status, we expect higher correlations (e.g., above 0.75 to be relatively strong).)

In these kinds of studies, we rarely see correlations above 0.6. For this kind of data, we generally consider correlations above 0.4 to be relatively strong; correlations between 0.2 and 0.4 are moderate, and those below 0.2 are considered weak.

When we are studying things that are more easily countable, we expect higher correlations. For example, with demographic data, we generally consider correlations above 0.75 to be relatively strong; correlations between 0.45 and 0.75 are moderate, and those below 0.45 are considered weak.

Correlation vs. Causation

Causation means that one variable (often called the predictor variable or independent variable) causes the other (often called the outcome variable or dependent variable).

Experiments can be conducted to establish causation. An experiment isolates and manipulates the independent variable to observe its effect on the dependent variable and controls the environment in order that extraneous variables may be eliminated.

A correlation between variables, however, does not automatically mean that the change in one variable is the cause of the change in the values of the other variable. A correlation only shows if there is a relationship between variables.

causation correlationg graph

While variables are sometimes correlated because one does cause the other, it could also be that some other factor, a confounding variable , is actually causing the systematic movement in our variables of interest.

Correlation does not always prove causation, as a third variable may be involved. For example, being a patient in a hospital is correlated with dying, but this does not mean that one event causes the other, as another third variable might be involved (such as diet and level of exercise).

“Correlation is not causation” means that just because two variables are related it does not necessarily mean that one causes the other.

A correlation identifies variables and looks for a relationship between them. An experiment tests the effect that an independent variable has upon a dependent variable but a correlation looks for a relationship between two variables.

This means that the experiment can predict cause and effect (causation) but a correlation can only predict a relationship, as another extraneous variable may be involved that it not known about.

1. Correlation allows the researcher to investigate naturally occurring variables that may be unethical or impractical to test experimentally. For example, it would be unethical to conduct an experiment on whether smoking causes lung cancer.

2 . Correlation allows the researcher to clearly and easily see if there is a relationship between variables. This can then be displayed in a graphical form.

Limitations

1 . Correlation is not and cannot be taken to imply causation. Even if there is a very strong association between two variables, we cannot assume that one causes the other.

For example, suppose we found a positive correlation between watching violence on T.V. and violent behavior in adolescence.

It could be that the cause of both these is a third (extraneous) variable – for example, growing up in a violent home – and that both the watching of T.V. and the violent behavior is the outcome of this.

2 . Correlation does not allow us to go beyond the given data. For example, suppose it was found that there was an association between time spent on homework (1/2 hour to 3 hours) and the number of G.C.S.E. passes (1 to 6).

It would not be legitimate to infer from this that spending 6 hours on homework would likely generate 12 G.C.S.E. passes.

How do you know if a study is correlational?

A study is considered correlational if it examines the relationship between two or more variables without manipulating them. In other words, the study does not involve the manipulation of an independent variable to see how it affects a dependent variable.

One way to identify a correlational study is to look for language that suggests a relationship between variables rather than cause and effect.

For example, the study may use phrases like “associated with,” “related to,” or “predicts” when describing the variables being studied.

Another way to identify a correlational study is to look for information about how the variables were measured. Correlational studies typically involve measuring variables using self-report surveys, questionnaires, or other measures of naturally occurring behavior.

Finally, a correlational study may include statistical analyses such as correlation coefficients or regression analyses to examine the strength and direction of the relationship between variables.

Why is a correlational study used?

Correlational studies are particularly useful when it is not possible or ethical to manipulate one of the variables.

For example, it would not be ethical to manipulate someone’s age or gender. However, researchers may still want to understand how these variables relate to outcomes such as health or behavior.

Additionally, correlational studies can be used to generate hypotheses and guide further research.

If a correlational study finds a significant relationship between two variables, this can suggest a possible causal relationship that can be further explored in future research.

What is the goal of correlational research?

The ultimate goal of correlational research is to increase our understanding of how different variables are related and to identify patterns in those relationships.

This information can then be used to generate hypotheses and guide further research aimed at establishing causality.

Print Friendly, PDF & Email

Related Articles

Qualitative Data Coding

Research Methodology

Qualitative Data Coding

What Is a Focus Group?

What Is a Focus Group?

Cross-Cultural Research Methodology In Psychology

Cross-Cultural Research Methodology In Psychology

What Is Internal Validity In Research?

What Is Internal Validity In Research?

What Is Face Validity In Research? Importance & How To Measure

Research Methodology , Statistics

What Is Face Validity In Research? Importance & How To Measure

Criterion Validity: Definition & Examples

Criterion Validity: Definition & Examples

Illustration

  • Basics of Research Process
  • Methodology

Correlational Study: Design, Methods and Examples

  • Speech Topics
  • Basics of Essay Writing
  • Essay Topics
  • Other Essays
  • Main Academic Essays
  • Research Paper Topics
  • Basics of Research Paper Writing
  • Miscellaneous
  • Chicago/ Turabian
  • Data & Statistics
  • Admission Writing Tips
  • Admission Advice
  • Other Guides
  • Student Life
  • Studying Tips
  • Understanding Plagiarism
  • Academic Writing Tips
  • Basics of Dissertation & Thesis Writing

Illustration

  • Essay Guides
  • Research Paper Guides
  • Formatting Guides
  • Admission Guides
  • Dissertation & Thesis Guides

Correlational Research

Table of contents

Illustration

Use our free Readability checker

Joe_Eckel_1_ab59a03630.jpg

You may also like

thumbnail@2x.png

We’ve got your back! Entrust your assignment to our skilled paper writers and they will complete a custom research paper with top quality in mind!

Frequently Asked Questions About Correlational Study

1. what is a correlation.

Correlation is a connection that shows to which extent two or more variables are associated. It doesn’t show a causal link and only helps to identify a direction (positive, negative or zero) or the strength of association.

2. How many variables are in a correlation?

There can be many different variables in a correlation which makes this type of study very useful for exploring complex relationships. However, most scientists use this research to measure the association between only 2 variables.

3. What is a correlation coefficient?

Correlation coefficient (ρ) is a statistical measure that indicates the extent to which two variables are related. Association can be strong, moderate or weak. There are different types of p coefficients: positive, negative and zero.

4. What is a correlational study?

Correlational study is a type of statistical research that involves examining two variables in order to determine association between them. It’s a non-experimental type of study, meaning that researchers can’t change independent variables or control extraneous variables.

Joe Eckel is an expert on Dissertations writing. He makes sure that each student gets precious insights on composing A-grade academic writing.

Correlational research is a type of research design used to examine the relationship between two or more variables. In correlational research, researchers measure the extent to which two or more variables are related, without manipulating or controlling any of the variables.

Whether you are a beginner or an experienced researcher, chances are you’ve heard something about correlational research. It’s time that you learn more about this type of study more in-depth, since you will be using it a lot.

Grab your pen and get ready to jot down some notes as our paper writing service is going to cover all questions you may have about this type of study. Let’s get down to business! 

A correlational research is a preliminary type of study used to explore the connection between two variables. In this type of research, you won’t interfere with the variables. Instead of manipulating or adjusting them, researchers focus more on observation.  Correlational study is a perfect option if you want to figure out if there is any link between variables. You will conduct it in 2 cases:

Correlational research is most useful for purposes of observation and prediction. Researcher's goal is to observe and measure variables to determine if any relationship exists. In case there is some association, researchers assess how strong it is. As an initial type of research, this method allows you to test and write the hypotheses. Correlational study doesn’t require much time and is rather cheap.

Correlational research designs are often used in psychology, epidemiology , medicine and nursing. They show the strength of correlation that exists between the variables within a population. For this reason, these studies are also known as ecological studies.  Correlational research design methods are characterized by such traits:

Correlational research questions usually focus on how one variable related to another one. If there is some connection, you will observe how strong it is. Let’s look at several examples.

Depending on the direction and strength of association, there are 3 types of correlational research:

There are 3 main methods applied to collect data in correlational research:

It’s essential that you select the right study method. Otherwise, it won’t be possible to achieve accurate results and answer the research question correctly. Let’s have a closer look at each of these methods to make sure that you make the right choice.

Survey is an easy way to collect data about a population in a correlational study. Depending on the nature of the question, you can choose different survey variations. Questionnaires, polls and interviews are the three most popular formats used in a survey research study. To conduct an effective study, you should first identify the population and choose whether you want to run a survey online, via email or in person.

Naturalistic observation is another data collection approach in correlational research methodology. This method allows us to observe behavioral patterns in a natural setting. Scientists often document, describe or categorize data to get a clear picture about a group of people. During naturalistic observations, you may work with both qualitative and quantitative research information. Nevertheless, to measure the strength of association, you should analyze numeric data. Members of a population shouldn’t know that they are being studied. Thus, you should blend in a target group as naturally as possible. Otherwise, participants may behave in a different way which may cause a statistical error. 

Sometimes, you may access ready-made data that suits your study. Archival data is a quick correlational research method that allows to obtain necessary details from the similar studies that have already been conducted. You won’t deal with data collection techniques , since most of numbers will be served on a silver platter. All you will be left to do is analyze them and draw a conclusion. Unfortunately, not all records are accurate, so you should rely only on credible sources.

Choosing what study to run can be difficult. But in this article, we are going to take an in-depth look at advantages and disadvantages of correlational research. This should help you decide whether this type of study is the best fit for you. Without any ado, let’s dive deep right in.

Obviously, one of the many advantages of correlational research is that it can be conducted when an experiment can’t be the case. Sometimes, it may be unethical to run an experimental study or you may have limited resources. This is exactly when ecological study can come in handy.  This type of study also has several benefits that have an irreplaceable value:

If you decide to run an archival study or conduct a survey, you will be able to save much time and expenses.

There are several limitations of correlational research you should keep in mind while deciding on the main methodology. Here are the advantages one should consider:

As you can see, these types of studies aren’t end-all, be-all. They may indicate a direction for further research. Still, correlational studies don’t show a cause-and-effect relationship which is probably the biggest disadvantage. 

Now that you’ve come this far, let’s discuss correlational vs experimental research design . Both studies involve quantitative data. But the main difference lies in the aim of research. Correlational studies are used to identify an association which is measured with a coefficient, while an experiment is aimed at determining a causal relationship.  Due to a different purpose, the studies also have different approaches to control over variables. In the first case, scientists can’t control or otherwise manipulate the variables in question. Meanwhile, experiments allow you to control variables without limit. There is a  causation vs correlation  blog on our website. Find out their differences as it will be useful for your research.

Above, we have offered several correlational research examples. Let’s have a closer look at how things work using a more detailed example.

That’s pretty much everything you should know about correlational study. The key takeaway is that this type of study is used to measure the connection between 2 or more variables. It’s a good choice if you have no chance to run an experiment. However, in this case you won’t be able to control for extraneous variables . So you should consider your options carefully before conducting your own research. 

  • What is correlation?
  • When to use it?
  • How is it different from experimental studies?
  • What data collection method will work?
  • When you want to test a theory about non-causal connection. For example, you may want to know whether drinking hot water boosts the immune system. In this case, you expect that vitamins, healthy lifestyle and regular exercise are those factors that have a real positive impact. However, this doesn’t mean that drinking hot water isn’t associated with the immune system. So measuring this relationship will be really useful.
  • When you want to investigate a causal link. You want to study whether using aerosol products leads to ozone depletion. You don’t have enough expenses for conducting complex research. Besides, you can’t control how often people use aerosols. In this case, you will opt for a correlational study.
  • Non-experimental method. No manipulation or exposure to extra conditions takes place. Researchers only examine how variables act in their natural environment without any interference.
  • Fluctuating patterns. Association is never the same and can change due to various factors.
  • Quantitative research. These studies require quantitative research methods . Researchers mostly run a statistical analysis and work with numbers to get results.
  • Association-oriented study. Correlational study is aimed at finding an association between 2 or more phenomena or events. This has nothing to do with causal relationships between dependent and independent variables .
  • Positive correlation If one variable increases, the other one will grow accordingly. If there is any reduction, both variables will decrease.
  • Negative correlation All changes happen in the reverse direction. If one variable increases, the other one should decrease and vice versa.
  • Zero correlation No association between 2 factors or events can be found.
  • Surveys and polls
  • Naturalistic observation
  • Secondary or archival data.
  • Works well as a preliminary study
  • Allows examining complex connection between multiple variables
  • Helps you study natural behavior
  • Can be generalized to other settings.
  • No causal relationships can be identified
  • No chance to manipulate extraneous variables
  • Biased results caused by unnatural behavior
  • Naturalistic studies require quite a lot of time.

What Is Correlational Research: Definition

Correlational study: purpose, correlational research design, correlational research questions, correlational research types, correlational research: data collection methods, surveys in correlational study, naturalistic observation: correlational research, correlational study: archival data, pros and cons of correlational research, advantages of correlational research, disadvantages of correlational research, difference between correlational and experimental research, example of correlational research, correlational study: final thoughts.

Positive correlation in research

Example You want to determine if there is any connection between the time employees work in one company and their performance. An experiment will be rather time-consuming. For this reason, you can offer a questionnaire to collect data and assess an association. After running a survey, you will be able to confirm or disprove your hypothesis.
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • QuestionPro

survey software icon

  • Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case NPS+ Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
  • Resources Blog eBooks Survey Templates Case Studies Training Help center

research design types correlation

Home Market Research Research Tools and Apps

Research Design: What it is, Elements & Types

Research Design

Can you imagine doing research without a plan? Probably not. When we discuss a strategy to collect, study, and evaluate data, we talk about research design. This design addresses problems and creates a consistent and logical model for data analysis. Let’s learn more about it.

What is Research Design?

Research design is the framework of research methods and techniques chosen by a researcher to conduct a study. The design allows researchers to sharpen the research methods suitable for the subject matter and set up their studies for success.

Creating a research topic explains the type of research (experimental,  survey research ,  correlational , semi-experimental, review) and its sub-type (experimental design, research problem , descriptive case-study). 

There are three main types of designs for research:

  • Data collection
  • Measurement
  • Data Analysis

The research problem an organization faces will determine the design, not vice-versa. The design phase of a study determines which tools to use and how they are used.

The Process of Research Design

The research design process is a systematic and structured approach to conducting research. The process is essential to ensure that the study is valid, reliable, and produces meaningful results.

  • Consider your aims and approaches: Determine the research questions and objectives, and identify the theoretical framework and methodology for the study.
  • Choose a type of Research Design: Select the appropriate research design, such as experimental, correlational, survey, case study, or ethnographic, based on the research questions and objectives.
  • Identify your population and sampling method: Determine the target population and sample size, and choose the sampling method, such as random , stratified random sampling , or convenience sampling.
  • Choose your data collection methods: Decide on the data collection methods , such as surveys, interviews, observations, or experiments, and select the appropriate instruments or tools for collecting data.
  • Plan your data collection procedures: Develop a plan for data collection, including the timeframe, location, and personnel involved, and ensure ethical considerations.
  • Decide on your data analysis strategies: Select the appropriate data analysis techniques, such as statistical analysis , content analysis, or discourse analysis, and plan how to interpret the results.

The process of research design is a critical step in conducting research. By following the steps of research design, researchers can ensure that their study is well-planned, ethical, and rigorous.

Research Design Elements

Impactful research usually creates a minimum bias in data and increases trust in the accuracy of collected data. A design that produces the slightest margin of error in experimental research is generally considered the desired outcome. The essential elements are:

  • Accurate purpose statement
  • Techniques to be implemented for collecting and analyzing research
  • The method applied for analyzing collected details
  • Type of research methodology
  • Probable objections to research
  • Settings for the research study
  • Measurement of analysis

Characteristics of Research Design

A proper design sets your study up for success. Successful research studies provide insights that are accurate and unbiased. You’ll need to create a survey that meets all of the main characteristics of a design. There are four key characteristics:

Characteristics of Research Design

  • Neutrality: When you set up your study, you may have to make assumptions about the data you expect to collect. The results projected in the research should be free from research bias and neutral. Understand opinions about the final evaluated scores and conclusions from multiple individuals and consider those who agree with the results.
  • Reliability: With regularly conducted research, the researcher expects similar results every time. You’ll only be able to reach the desired results if your design is reliable. Your plan should indicate how to form research questions to ensure the standard of results.
  • Validity: There are multiple measuring tools available. However, the only correct measuring tools are those which help a researcher in gauging results according to the objective of the research. The  questionnaire  developed from this design will then be valid.
  • Generalization:  The outcome of your design should apply to a population and not just a restricted sample . A generalized method implies that your survey can be conducted on any part of a population with similar accuracy.

The above factors affect how respondents answer the research questions, so they should balance all the above characteristics in a good design. If you want, you can also learn about Selection Bias through our blog.

Research Design Types

A researcher must clearly understand the various types to select which model to implement for a study. Like the research itself, the design of your analysis can be broadly classified into quantitative and qualitative.

Qualitative research

Qualitative research determines relationships between collected data and observations based on mathematical calculations. Statistical methods can prove or disprove theories related to a naturally existing phenomenon. Researchers rely on qualitative observation research methods that conclude “why” a particular theory exists and “what” respondents have to say about it.

Quantitative research

Quantitative research is for cases where statistical conclusions to collect actionable insights are essential. Numbers provide a better perspective for making critical business decisions. Quantitative research methods are necessary for the growth of any organization. Insights drawn from complex numerical data and analysis prove to be highly effective when making decisions about the business’s future.

Qualitative Research vs Quantitative Research

Here is a chart that highlights the major differences between qualitative and quantitative research:

In summary or analysis , the step of qualitative research is more exploratory and focuses on understanding the subjective experiences of individuals, while quantitative research is more focused on objective data and statistical analysis.

You can further break down the types of research design into five categories:

types of research design

1. Descriptive: In a descriptive composition, a researcher is solely interested in describing the situation or case under their research study. It is a theory-based design method created by gathering, analyzing, and presenting collected data. This allows a researcher to provide insights into the why and how of research. Descriptive design helps others better understand the need for the research. If the problem statement is not clear, you can conduct exploratory research. 

2. Experimental: Experimental research establishes a relationship between the cause and effect of a situation. It is a causal research design where one observes the impact caused by the independent variable on the dependent variable. For example, one monitors the influence of an independent variable such as a price on a dependent variable such as customer satisfaction or brand loyalty. It is an efficient research method as it contributes to solving a problem.

The independent variables are manipulated to monitor the change it has on the dependent variable. Social sciences often use it to observe human behavior by analyzing two groups. Researchers can have participants change their actions and study how the people around them react to understand social psychology better.

3. Correlational research: Correlational research  is a non-experimental research technique. It helps researchers establish a relationship between two closely connected variables. There is no assumption while evaluating a relationship between two other variables, and statistical analysis techniques calculate the relationship between them. This type of research requires two different groups.

A correlation coefficient determines the correlation between two variables whose values range between -1 and +1. If the correlation coefficient is towards +1, it indicates a positive relationship between the variables, and -1 means a negative relationship between the two variables. 

4. Diagnostic research: In diagnostic design, the researcher is looking to evaluate the underlying cause of a specific topic or phenomenon. This method helps one learn more about the factors that create troublesome situations. 

This design has three parts of the research:

  • Inception of the issue
  • Diagnosis of the issue
  • Solution for the issue

5. Explanatory research : Explanatory design uses a researcher’s ideas and thoughts on a subject to further explore their theories. The study explains unexplored aspects of a subject and details the research questions’ what, how, and why.

Benefits of Research Design

There are several benefits of having a well-designed research plan. Including:

  • Clarity of research objectives: Research design provides a clear understanding of the research objectives and the desired outcomes.
  • Increased validity and reliability: To ensure the validity and reliability of results, research design help to minimize the risk of bias and helps to control extraneous variables.
  • Improved data collection: Research design helps to ensure that the proper data is collected and data is collected systematically and consistently.
  • Better data analysis: Research design helps ensure that the collected data can be analyzed effectively, providing meaningful insights and conclusions.
  • Improved communication: A well-designed research helps ensure the results are clean and influential within the research team and external stakeholders.
  • Efficient use of resources: reducing the risk of waste and maximizing the impact of the research, research design helps to ensure that resources are used efficiently.

A well-designed research plan is essential for successful research, providing clear and meaningful insights and ensuring that resources are practical.

QuestionPro offers a comprehensive solution for researchers looking to conduct research. With its user-friendly interface, robust data collection and analysis tools, and the ability to integrate results from multiple sources, QuestionPro provides a versatile platform for designing and executing research projects.

Our robust suite of research tools provides you with all you need to derive research results. Our online survey platform includes custom point-and-click logic and advanced question types. Uncover the insights that matter the most.

FREE TRIAL         LEARN MORE

MORE LIKE THIS

When I think of “disconnected”, it is important that this is not just in relation to people analytics, Employee Experience or Customer Experience - it is also relevant to looking across them.

I Am Disconnected – Tuesday CX Thoughts

May 21, 2024

Customer success tools

20 Best Customer Success Tools of 2024

May 20, 2024

AI-Based Services in Market Research

AI-Based Services Buying Guide for Market Research (based on ESOMAR’s 20 Questions) 

data information vs insight

Data Information vs Insight: Essential differences

May 14, 2024

Other categories

  • Academic Research
  • Artificial Intelligence
  • Assessments
  • Brand Awareness
  • Case Studies
  • Communities
  • Consumer Insights
  • Customer effort score
  • Customer Engagement
  • Customer Experience
  • Customer Loyalty
  • Customer Research
  • Customer Satisfaction
  • Employee Benefits
  • Employee Engagement
  • Employee Retention
  • Friday Five
  • General Data Protection Regulation
  • Insights Hub
  • Life@QuestionPro
  • Market Research
  • Mobile diaries
  • Mobile Surveys
  • New Features
  • Online Communities
  • Question Types
  • Questionnaire
  • QuestionPro Products
  • Release Notes
  • Research Tools and Apps
  • Revenue at Risk
  • Survey Templates
  • Training Tips
  • Uncategorized
  • Video Learning Series
  • What’s Coming Up
  • Workforce Intelligence

IMAGES

  1. What Is a Correlational Study And Examples of correlational research

    research design types correlation

  2. Chapter 9 Correlational Research Designs

    research design types correlation

  3. Correlational Research: What it is with Examples

    research design types correlation

  4. Correlational Research

    research design types correlation

  5. Types of Research Designs

    research design types correlation

  6. Correlational Research Design : Types, Examples & Method

    research design types correlation

VIDEO

  1. Types of Research Designs

  2. Correlational Research Design : Types, Examples & Method

  3. Correlational Research-Detailed Concept With Examples

  4. What is Correlational Research? Finding Relationships Between Variables

  5. CORRELATIONAL RESEARCH DESIGN I How to use Correlational Research (2022) #Correlational Research

  6. 3.10 Correlational designs

COMMENTS

  1. Correlational Research

    Correlational research is a type of study that explores how variables are related to each other. It can help you identify patterns, trends, and predictions in your data. In this guide, you will learn when and how to use correlational research, and what its advantages and limitations are. You will also find examples of correlational research questions and designs. If you want to know the ...

  2. Correlational Research

    Correlational Research is a type of research that examines the statistical relationship between two or more variables without manipulating them. It is a non-experimental research design that seeks to establish the degree of association or correlation between two or more variables.

  3. Correlational Research Designs: Types, Examples & Methods

    Essentially, there are 3 types of correlational research which are positive correlational research, negative correlational research, and no correlational research. Each of these types is defined by peculiar characteristics. Positive Correlational Research. Positive correlational research is a research method involving 2 variables that are ...

  4. Correlational Research

    A correlational research design investigates relationships between variables without the researcher controlling or manipulating any of them. A correlation reflects the strength and/or direction of the relationship between two (or more) variables. The direction of a correlation can be either positive or negative. Positive correlation.

  5. Correlational Study Overview & Examples

    Correlational research is a form of observational study. A correlation indicates that as the value of one variable increases, the other tends to change in a specific direction: Positive ... Correlational research design is crucial in various disciplines, notably psychology and medicine. This type of design is generally cheaper, easier, and ...

  6. 7.2 Correlational Research

    Correlational research is a type of nonexperimental research in which the researcher measures two variables and assesses the statistical relationship (i.e., the correlation) between them with little or no effort to control extraneous variables. There are essentially two reasons that researchers interested in statistical relationships between ...

  7. PDF SURVEY AND CORRELATIONAL RESEARCH DESIGNS

    Many research designs can be used to test the same hypotheses. This chapter is separated into two major sections; each section describes a nonexperimental research design: the survey and correlational designs. To introduce how each design can be used to test the same hypoth-esis, we will begin each major section by developing a new research ...

  8. 6.2 Correlational Research

    Correlational research is a type of non-experimental research in which the researcher measures two variables and assesses the statistical relationship (i.e., the correlation) between them with little or no effort to control extraneous variables. There are many reasons that researchers interested in statistical relationships between variables ...

  9. Chapter 12 Methods for Correlational Studies

    Correlational studies aim to find out if there are differences in the characteristics of a population depending on whether or not its subjects have been exposed to an event of interest in the naturalistic setting. In eHealth, correlational studies are often used to determine whether the use of an eHealth system is associated with a particular set of user characteristics and/or quality of care ...

  10. What is Correlational Research? (+ Design, Examples)

    Conclusion for Correlational Research. Correlational research serves as a powerful tool for uncovering connections between variables in the world around us. By examining the relationships between different factors, researchers can gain valuable insights into human behavior, health outcomes, market trends, and more.

  11. What Is Research Design? 8 Types + Examples

    Research design refers to the overall plan, structure or strategy that guides a research project, from its conception to the final analysis of data. Research designs for quantitative studies include descriptive, correlational, experimental and quasi-experimenta l designs. Research designs for qualitative studies include phenomenological ...

  12. Correlation Studies in Psychology Research

    A correlational study is a type of research design that looks at the relationships between two or more variables. Correlational studies are non-experimental, which means that the experimenter does not manipulate or control any of the variables. A correlation refers to a relationship between two variables. Correlations can be strong or weak and ...

  13. The Four Types of Research Design

    In short, a good research design helps us to structure our research. Marketers use different types of research design when conducting research. There are four common types of research design — descriptive, correlational, experimental, and diagnostic designs. Let's take a look at each in more detail.

  14. Correlational Research

    Correlational research is a type of non-experimental research in which the researcher measures two variables (binary or continuous) and assesses the statistical relationship (i.e., the correlation) between them with little or no effort to control extraneous variables. There are many reasons that researchers interested in statistical ...

  15. Correlation: Meaning, Types, Examples & Coefficient

    Types. A positive correlation is a relationship between two variables in which both variables move in the same direction. Therefore, one variable increases as the other variable increases, or one variable decreases while the other decreases. An example of a positive correlation would be height and weight. Taller people tend to be heavier.

  16. Research Design

    Correlational research design is used to determine if there is a relationship between two or more variables. This type of research design involves collecting data from participants and analyzing the relationship between the variables using statistical methods. The aim of correlational research is to identify the strength and direction of the ...

  17. (PDF) Basics of Research Design: A Guide to selecting appropriate

    for validity and reliability. Design is basically concerned with the aims, uses, purposes, intentions and plans within the. pr actical constraint of location, time, money and the researcher's ...

  18. Correlational Research: Design, Methods and Examples

    Correlational Research Design. Correlational research designs are often used in psychology, epidemiology, medicine and nursing. They show the strength of correlation that exists between the variables within a population. For this reason, these studies are also known as ecological studies. Correlational research design methods are characterized ...

  19. Research Design: What it is, Elements & Types

    Research design is the framework of research methods and techniques chosen by a researcher to conduct a study. The design allows researchers to sharpen the research methods suitable for the subject matter and set up their studies for success. Creating a research topic explains the type of research (experimental,survey research,correlational ...

  20. (Pdf) Application of Correlational Research Design in Nursing and

    A correlational research design investigates relationships. between variables without the researcher controlling or manipulating any of them. A correlation reflects the. strength and/or direction ...

  21. Behavioral Sciences

    Correlational research applying self-determination theory in workplace contexts has indicated that autonomous forms of motivation in the workplace are associated with greater work engagement and ... It is important to note that although studies adopting types of panel design permit inferences of directional effects over time while controlling ...