2.4 Developing a Hypothesis

Learning objectives.

  • Distinguish between a theory and a hypothesis.
  • Discover how theories are used to generate hypotheses and how the results of studies can be used to further inform theories.
  • Understand the characteristics of a good hypothesis.

Theories and Hypotheses

Before describing how to develop a hypothesis it is imporant to distinguish betwee a theory and a hypothesis. A  theory  is a coherent explanation or interpretation of one or more phenomena. Although theories can take a variety of forms, one thing they have in common is that they go beyond the phenomena they explain by including variables, structures, processes, functions, or organizing principles that have not been observed directly. Consider, for example, Zajonc’s theory of social facilitation and social inhibition. He proposed that being watched by others while performing a task creates a general state of physiological arousal, which increases the likelihood of the dominant (most likely) response. So for highly practiced tasks, being watched increases the tendency to make correct responses, but for relatively unpracticed tasks, being watched increases the tendency to make incorrect responses. Notice that this theory—which has come to be called drive theory—provides an explanation of both social facilitation and social inhibition that goes beyond the phenomena themselves by including concepts such as “arousal” and “dominant response,” along with processes such as the effect of arousal on the dominant response.

Outside of science, referring to an idea as a theory often implies that it is untested—perhaps no more than a wild guess. In science, however, the term theory has no such implication. A theory is simply an explanation or interpretation of a set of phenomena. It can be untested, but it can also be extensively tested, well supported, and accepted as an accurate description of the world by the scientific community. The theory of evolution by natural selection, for example, is a theory because it is an explanation of the diversity of life on earth—not because it is untested or unsupported by scientific research. On the contrary, the evidence for this theory is overwhelmingly positive and nearly all scientists accept its basic assumptions as accurate. Similarly, the “germ theory” of disease is a theory because it is an explanation of the origin of various diseases, not because there is any doubt that many diseases are caused by microorganisms that infect the body.

A  hypothesis , on the other hand, is a specific prediction about a new phenomenon that should be observed if a particular theory is accurate. It is an explanation that relies on just a few key concepts. Hypotheses are often specific predictions about what will happen in a particular study. They are developed by considering existing evidence and using reasoning to infer what will happen in the specific context of interest. Hypotheses are often but not always derived from theories. So a hypothesis is often a prediction based on a theory but some hypotheses are a-theoretical and only after a set of observations have been made, is a theory developed. This is because theories are broad in nature and they explain larger bodies of data. So if our research question is really original then we may need to collect some data and make some observation before we can develop a broader theory.

Theories and hypotheses always have this  if-then  relationship. “ If   drive theory is correct,  then  cockroaches should run through a straight runway faster, and a branching runway more slowly, when other cockroaches are present.” Although hypotheses are usually expressed as statements, they can always be rephrased as questions. “Do cockroaches run through a straight runway faster when other cockroaches are present?” Thus deriving hypotheses from theories is an excellent way of generating interesting research questions.

But how do researchers derive hypotheses from theories? One way is to generate a research question using the techniques discussed in this chapter  and then ask whether any theory implies an answer to that question. For example, you might wonder whether expressive writing about positive experiences improves health as much as expressive writing about traumatic experiences. Although this  question  is an interesting one  on its own, you might then ask whether the habituation theory—the idea that expressive writing causes people to habituate to negative thoughts and feelings—implies an answer. In this case, it seems clear that if the habituation theory is correct, then expressive writing about positive experiences should not be effective because it would not cause people to habituate to negative thoughts and feelings. A second way to derive hypotheses from theories is to focus on some component of the theory that has not yet been directly observed. For example, a researcher could focus on the process of habituation—perhaps hypothesizing that people should show fewer signs of emotional distress with each new writing session.

Among the very best hypotheses are those that distinguish between competing theories. For example, Norbert Schwarz and his colleagues considered two theories of how people make judgments about themselves, such as how assertive they are (Schwarz et al., 1991) [1] . Both theories held that such judgments are based on relevant examples that people bring to mind. However, one theory was that people base their judgments on the  number  of examples they bring to mind and the other was that people base their judgments on how  easily  they bring those examples to mind. To test these theories, the researchers asked people to recall either six times when they were assertive (which is easy for most people) or 12 times (which is difficult for most people). Then they asked them to judge their own assertiveness. Note that the number-of-examples theory implies that people who recalled 12 examples should judge themselves to be more assertive because they recalled more examples, but the ease-of-examples theory implies that participants who recalled six examples should judge themselves as more assertive because recalling the examples was easier. Thus the two theories made opposite predictions so that only one of the predictions could be confirmed. The surprising result was that participants who recalled fewer examples judged themselves to be more assertive—providing particularly convincing evidence in favor of the ease-of-retrieval theory over the number-of-examples theory.

Theory Testing

The primary way that scientific researchers use theories is sometimes called the hypothetico-deductive method  (although this term is much more likely to be used by philosophers of science than by scientists themselves). A researcher begins with a set of phenomena and either constructs a theory to explain or interpret them or chooses an existing theory to work with. He or she then makes a prediction about some new phenomenon that should be observed if the theory is correct. Again, this prediction is called a hypothesis. The researcher then conducts an empirical study to test the hypothesis. Finally, he or she reevaluates the theory in light of the new results and revises it if necessary. This process is usually conceptualized as a cycle because the researcher can then derive a new hypothesis from the revised theory, conduct a new empirical study to test the hypothesis, and so on. As  Figure 2.2  shows, this approach meshes nicely with the model of scientific research in psychology presented earlier in the textbook—creating a more detailed model of “theoretically motivated” or “theory-driven” research.

Figure 4.4 Hypothetico-Deductive Method Combined With the General Model of Scientific Research in Psychology Together they form a model of theoretically motivated research.

Figure 2.2 Hypothetico-Deductive Method Combined With the General Model of Scientific Research in Psychology Together they form a model of theoretically motivated research.

As an example, let us consider Zajonc’s research on social facilitation and inhibition. He started with a somewhat contradictory pattern of results from the research literature. He then constructed his drive theory, according to which being watched by others while performing a task causes physiological arousal, which increases an organism’s tendency to make the dominant response. This theory predicts social facilitation for well-learned tasks and social inhibition for poorly learned tasks. He now had a theory that organized previous results in a meaningful way—but he still needed to test it. He hypothesized that if his theory was correct, he should observe that the presence of others improves performance in a simple laboratory task but inhibits performance in a difficult version of the very same laboratory task. To test this hypothesis, one of the studies he conducted used cockroaches as subjects (Zajonc, Heingartner, & Herman, 1969) [2] . The cockroaches ran either down a straight runway (an easy task for a cockroach) or through a cross-shaped maze (a difficult task for a cockroach) to escape into a dark chamber when a light was shined on them. They did this either while alone or in the presence of other cockroaches in clear plastic “audience boxes.” Zajonc found that cockroaches in the straight runway reached their goal more quickly in the presence of other cockroaches, but cockroaches in the cross-shaped maze reached their goal more slowly when they were in the presence of other cockroaches. Thus he confirmed his hypothesis and provided support for his drive theory. (Zajonc also showed that drive theory existed in humans (Zajonc & Sales, 1966) [3] in many other studies afterward).

Incorporating Theory into Your Research

When you write your research report or plan your presentation, be aware that there are two basic ways that researchers usually include theory. The first is to raise a research question, answer that question by conducting a new study, and then offer one or more theories (usually more) to explain or interpret the results. This format works well for applied research questions and for research questions that existing theories do not address. The second way is to describe one or more existing theories, derive a hypothesis from one of those theories, test the hypothesis in a new study, and finally reevaluate the theory. This format works well when there is an existing theory that addresses the research question—especially if the resulting hypothesis is surprising or conflicts with a hypothesis derived from a different theory.

To use theories in your research will not only give you guidance in coming up with experiment ideas and possible projects, but it lends legitimacy to your work. Psychologists have been interested in a variety of human behaviors and have developed many theories along the way. Using established theories will help you break new ground as a researcher, not limit you from developing your own ideas.

Characteristics of a Good Hypothesis

There are three general characteristics of a good hypothesis. First, a good hypothesis must be testable and falsifiable . We must be able to test the hypothesis using the methods of science and if you’ll recall Popper’s falsifiability criterion, it must be possible to gather evidence that will disconfirm the hypothesis if it is indeed false. Second, a good hypothesis must be  logical. As described above, hypotheses are more than just a random guess. Hypotheses should be informed by previous theories or observations and logical reasoning. Typically, we begin with a broad and general theory and use  deductive reasoning to generate a more specific hypothesis to test based on that theory. Occasionally, however, when there is no theory to inform our hypothesis, we use  inductive reasoning  which involves using specific observations or research findings to form a more general hypothesis. Finally, the hypothesis should be  positive.  That is, the hypothesis should make a positive statement about the existence of a relationship or effect, rather than a statement that a relationship or effect does not exist. As scientists, we don’t set out to show that relationships do not exist or that effects do not occur so our hypotheses should not be worded in a way to suggest that an effect or relationship does not exist. The nature of science is to assume that something does not exist and then seek to find evidence to prove this wrong, to show that really it does exist. That may seem backward to you but that is the nature of the scientific method. The underlying reason for this is beyond the scope of this chapter but it has to do with statistical theory.

Key Takeaways

  • A theory is broad in nature and explains larger bodies of data. A hypothesis is more specific and makes a prediction about the outcome of a particular study.
  • Working with theories is not “icing on the cake.” It is a basic ingredient of psychological research.
  • Like other scientists, psychologists use the hypothetico-deductive method. They construct theories to explain or interpret phenomena (or work with existing theories), derive hypotheses from their theories, test the hypotheses, and then reevaluate the theories in light of the new results.
  • Practice: Find a recent empirical research report in a professional journal. Read the introduction and highlight in different colors descriptions of theories and hypotheses.
  • Schwarz, N., Bless, H., Strack, F., Klumpp, G., Rittenauer-Schatka, H., & Simons, A. (1991). Ease of retrieval as information: Another look at the availability heuristic.  Journal of Personality and Social Psychology, 61 , 195–202. ↵
  • Zajonc, R. B., Heingartner, A., & Herman, E. M. (1969). Social enhancement and impairment of performance in the cockroach.  Journal of Personality and Social Psychology, 13 , 83–92. ↵
  • Zajonc, R.B. & Sales, S.M. (1966). Social facilitation of dominant and subordinate responses. Journal of Experimental Social Psychology, 2 , 160-168. ↵

Creative Commons License

Share This Book

  • Increase Font Size
  • Privacy Policy

Research Method

Home » What is a Hypothesis – Types, Examples and Writing Guide

What is a Hypothesis – Types, Examples and Writing Guide

Table of Contents

What is a Hypothesis

Definition:

Hypothesis is an educated guess or proposed explanation for a phenomenon, based on some initial observations or data. It is a tentative statement that can be tested and potentially proven or disproven through further investigation and experimentation.

Hypothesis is often used in scientific research to guide the design of experiments and the collection and analysis of data. It is an essential element of the scientific method, as it allows researchers to make predictions about the outcome of their experiments and to test those predictions to determine their accuracy.

Types of Hypothesis

Types of Hypothesis are as follows:

Research Hypothesis

A research hypothesis is a statement that predicts a relationship between variables. It is usually formulated as a specific statement that can be tested through research, and it is often used in scientific research to guide the design of experiments.

Null Hypothesis

The null hypothesis is a statement that assumes there is no significant difference or relationship between variables. It is often used as a starting point for testing the research hypothesis, and if the results of the study reject the null hypothesis, it suggests that there is a significant difference or relationship between variables.

Alternative Hypothesis

An alternative hypothesis is a statement that assumes there is a significant difference or relationship between variables. It is often used as an alternative to the null hypothesis and is tested against the null hypothesis to determine which statement is more accurate.

Directional Hypothesis

A directional hypothesis is a statement that predicts the direction of the relationship between variables. For example, a researcher might predict that increasing the amount of exercise will result in a decrease in body weight.

Non-directional Hypothesis

A non-directional hypothesis is a statement that predicts the relationship between variables but does not specify the direction. For example, a researcher might predict that there is a relationship between the amount of exercise and body weight, but they do not specify whether increasing or decreasing exercise will affect body weight.

Statistical Hypothesis

A statistical hypothesis is a statement that assumes a particular statistical model or distribution for the data. It is often used in statistical analysis to test the significance of a particular result.

Composite Hypothesis

A composite hypothesis is a statement that assumes more than one condition or outcome. It can be divided into several sub-hypotheses, each of which represents a different possible outcome.

Empirical Hypothesis

An empirical hypothesis is a statement that is based on observed phenomena or data. It is often used in scientific research to develop theories or models that explain the observed phenomena.

Simple Hypothesis

A simple hypothesis is a statement that assumes only one outcome or condition. It is often used in scientific research to test a single variable or factor.

Complex Hypothesis

A complex hypothesis is a statement that assumes multiple outcomes or conditions. It is often used in scientific research to test the effects of multiple variables or factors on a particular outcome.

Applications of Hypothesis

Hypotheses are used in various fields to guide research and make predictions about the outcomes of experiments or observations. Here are some examples of how hypotheses are applied in different fields:

  • Science : In scientific research, hypotheses are used to test the validity of theories and models that explain natural phenomena. For example, a hypothesis might be formulated to test the effects of a particular variable on a natural system, such as the effects of climate change on an ecosystem.
  • Medicine : In medical research, hypotheses are used to test the effectiveness of treatments and therapies for specific conditions. For example, a hypothesis might be formulated to test the effects of a new drug on a particular disease.
  • Psychology : In psychology, hypotheses are used to test theories and models of human behavior and cognition. For example, a hypothesis might be formulated to test the effects of a particular stimulus on the brain or behavior.
  • Sociology : In sociology, hypotheses are used to test theories and models of social phenomena, such as the effects of social structures or institutions on human behavior. For example, a hypothesis might be formulated to test the effects of income inequality on crime rates.
  • Business : In business research, hypotheses are used to test the validity of theories and models that explain business phenomena, such as consumer behavior or market trends. For example, a hypothesis might be formulated to test the effects of a new marketing campaign on consumer buying behavior.
  • Engineering : In engineering, hypotheses are used to test the effectiveness of new technologies or designs. For example, a hypothesis might be formulated to test the efficiency of a new solar panel design.

How to write a Hypothesis

Here are the steps to follow when writing a hypothesis:

Identify the Research Question

The first step is to identify the research question that you want to answer through your study. This question should be clear, specific, and focused. It should be something that can be investigated empirically and that has some relevance or significance in the field.

Conduct a Literature Review

Before writing your hypothesis, it’s essential to conduct a thorough literature review to understand what is already known about the topic. This will help you to identify the research gap and formulate a hypothesis that builds on existing knowledge.

Determine the Variables

The next step is to identify the variables involved in the research question. A variable is any characteristic or factor that can vary or change. There are two types of variables: independent and dependent. The independent variable is the one that is manipulated or changed by the researcher, while the dependent variable is the one that is measured or observed as a result of the independent variable.

Formulate the Hypothesis

Based on the research question and the variables involved, you can now formulate your hypothesis. A hypothesis should be a clear and concise statement that predicts the relationship between the variables. It should be testable through empirical research and based on existing theory or evidence.

Write the Null Hypothesis

The null hypothesis is the opposite of the alternative hypothesis, which is the hypothesis that you are testing. The null hypothesis states that there is no significant difference or relationship between the variables. It is important to write the null hypothesis because it allows you to compare your results with what would be expected by chance.

Refine the Hypothesis

After formulating the hypothesis, it’s important to refine it and make it more precise. This may involve clarifying the variables, specifying the direction of the relationship, or making the hypothesis more testable.

Examples of Hypothesis

Here are a few examples of hypotheses in different fields:

  • Psychology : “Increased exposure to violent video games leads to increased aggressive behavior in adolescents.”
  • Biology : “Higher levels of carbon dioxide in the atmosphere will lead to increased plant growth.”
  • Sociology : “Individuals who grow up in households with higher socioeconomic status will have higher levels of education and income as adults.”
  • Education : “Implementing a new teaching method will result in higher student achievement scores.”
  • Marketing : “Customers who receive a personalized email will be more likely to make a purchase than those who receive a generic email.”
  • Physics : “An increase in temperature will cause an increase in the volume of a gas, assuming all other variables remain constant.”
  • Medicine : “Consuming a diet high in saturated fats will increase the risk of developing heart disease.”

Purpose of Hypothesis

The purpose of a hypothesis is to provide a testable explanation for an observed phenomenon or a prediction of a future outcome based on existing knowledge or theories. A hypothesis is an essential part of the scientific method and helps to guide the research process by providing a clear focus for investigation. It enables scientists to design experiments or studies to gather evidence and data that can support or refute the proposed explanation or prediction.

The formulation of a hypothesis is based on existing knowledge, observations, and theories, and it should be specific, testable, and falsifiable. A specific hypothesis helps to define the research question, which is important in the research process as it guides the selection of an appropriate research design and methodology. Testability of the hypothesis means that it can be proven or disproven through empirical data collection and analysis. Falsifiability means that the hypothesis should be formulated in such a way that it can be proven wrong if it is incorrect.

In addition to guiding the research process, the testing of hypotheses can lead to new discoveries and advancements in scientific knowledge. When a hypothesis is supported by the data, it can be used to develop new theories or models to explain the observed phenomenon. When a hypothesis is not supported by the data, it can help to refine existing theories or prompt the development of new hypotheses to explain the phenomenon.

When to use Hypothesis

Here are some common situations in which hypotheses are used:

  • In scientific research , hypotheses are used to guide the design of experiments and to help researchers make predictions about the outcomes of those experiments.
  • In social science research , hypotheses are used to test theories about human behavior, social relationships, and other phenomena.
  • I n business , hypotheses can be used to guide decisions about marketing, product development, and other areas. For example, a hypothesis might be that a new product will sell well in a particular market, and this hypothesis can be tested through market research.

Characteristics of Hypothesis

Here are some common characteristics of a hypothesis:

  • Testable : A hypothesis must be able to be tested through observation or experimentation. This means that it must be possible to collect data that will either support or refute the hypothesis.
  • Falsifiable : A hypothesis must be able to be proven false if it is not supported by the data. If a hypothesis cannot be falsified, then it is not a scientific hypothesis.
  • Clear and concise : A hypothesis should be stated in a clear and concise manner so that it can be easily understood and tested.
  • Based on existing knowledge : A hypothesis should be based on existing knowledge and research in the field. It should not be based on personal beliefs or opinions.
  • Specific : A hypothesis should be specific in terms of the variables being tested and the predicted outcome. This will help to ensure that the research is focused and well-designed.
  • Tentative: A hypothesis is a tentative statement or assumption that requires further testing and evidence to be confirmed or refuted. It is not a final conclusion or assertion.
  • Relevant : A hypothesis should be relevant to the research question or problem being studied. It should address a gap in knowledge or provide a new perspective on the issue.

Advantages of Hypothesis

Hypotheses have several advantages in scientific research and experimentation:

  • Guides research: A hypothesis provides a clear and specific direction for research. It helps to focus the research question, select appropriate methods and variables, and interpret the results.
  • Predictive powe r: A hypothesis makes predictions about the outcome of research, which can be tested through experimentation. This allows researchers to evaluate the validity of the hypothesis and make new discoveries.
  • Facilitates communication: A hypothesis provides a common language and framework for scientists to communicate with one another about their research. This helps to facilitate the exchange of ideas and promotes collaboration.
  • Efficient use of resources: A hypothesis helps researchers to use their time, resources, and funding efficiently by directing them towards specific research questions and methods that are most likely to yield results.
  • Provides a basis for further research: A hypothesis that is supported by data provides a basis for further research and exploration. It can lead to new hypotheses, theories, and discoveries.
  • Increases objectivity: A hypothesis can help to increase objectivity in research by providing a clear and specific framework for testing and interpreting results. This can reduce bias and increase the reliability of research findings.

Limitations of Hypothesis

Some Limitations of the Hypothesis are as follows:

  • Limited to observable phenomena: Hypotheses are limited to observable phenomena and cannot account for unobservable or intangible factors. This means that some research questions may not be amenable to hypothesis testing.
  • May be inaccurate or incomplete: Hypotheses are based on existing knowledge and research, which may be incomplete or inaccurate. This can lead to flawed hypotheses and erroneous conclusions.
  • May be biased: Hypotheses may be biased by the researcher’s own beliefs, values, or assumptions. This can lead to selective interpretation of data and a lack of objectivity in research.
  • Cannot prove causation: A hypothesis can only show a correlation between variables, but it cannot prove causation. This requires further experimentation and analysis.
  • Limited to specific contexts: Hypotheses are limited to specific contexts and may not be generalizable to other situations or populations. This means that results may not be applicable in other contexts or may require further testing.
  • May be affected by chance : Hypotheses may be affected by chance or random variation, which can obscure or distort the true relationship between variables.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Data collection

Data Collection – Methods Types and Examples

Delimitations

Delimitations in Research – Types, Examples and...

Research Process

Research Process – Steps, Examples and Tips

Research Design

Research Design – Types, Methods and Examples

Institutional Review Board (IRB)

Institutional Review Board – Application Sample...

Evaluating Research

Evaluating Research – Process, Examples and...

hypothesis psychology def

Live revision! Join us for our free exam revision livestreams Watch now →

Reference Library

Collections

  • See what's new
  • All Resources
  • Student Resources
  • Assessment Resources
  • Teaching Resources
  • CPD Courses
  • Livestreams

Study notes, videos, interactive activities and more!

Psychology news, insights and enrichment

Currated collections of free resources

Browse resources by topic

  • All Psychology Resources

Resource Selections

Currated lists of resources

  • Study Notes

Aims and Hypotheses

Last updated 22 Mar 2021

  • Share on Facebook
  • Share on Twitter
  • Share by Email

Observations of events or behaviour in our surroundings provoke questions as to why they occur. In turn, one or multiple theories might attempt to explain a phenomenon, and investigations are consequently conducted to test them. One observation could be that athletes tend to perform better when they have a training partner, and a theory might propose that this is because athletes are more motivated with peers around them.

The aim of an investigation, driven by a theory to explain a given observation, states the intent of the study in general terms. Continuing the above example, the consequent aim might be “to investigate the effect of having a training partner on athletes’ motivation levels”.

The theory attempting to explain an observation will help to inform hypotheses - predictions of an investigation’s outcome that make specific reference to the independent variables (IVs) manipulated and dependent variables (DVs) measured by the researchers.

There are two types of hypothesis:

  • - H 1 – Research hypothesis
  • - H 0 – Null hypothesis

H 1 – The Research Hypothesis

This predicts a statistically significant effect of an IV on a DV (i.e. an experiment), or a significant relationship between variables (i.e. a correlation study), e.g.

  • In an experiment: “Athletes who have a training partner are likely to score higher on a questionnaire measuring motivation levels than athletes who train alone.”
  • In a correlation study: ‘There will be a significant positive correlation between athletes’ motivation questionnaire scores and the number of partners athletes train with.”

The research hypothesis will be directional (one-tailed) if theory or existing evidence argues a particular ‘direction’ of the predicted results, as demonstrated in the two hypothesis examples above.

Non-directional (two-tailed) research hypotheses do not predict a direction, so here would simply predict “a significant difference” between questionnaire scores in athletes who train alone and with a training partner (in an experiment), or “a significant relationship” between questionnaire scores and number of training partners (in a correlation study).

H 0 – The Null Hypothesis

This predicts that a statistically significant effect or relationship will not be found, e.g.

  • In an experiment: “There will be no significant difference in motivation questionnaire scores between athletes who train with and without a training partner.”
  • In a correlation study: “There will be no significant relationship between motivation questionnaire scores and the number of partners athletes train with.”

When the investigation concludes, analysis of results will suggest that either the research hypothesis or null hypothesis can be retained, with the other rejected. Ultimately this will either provide evidence to support of refute the theory driving a hypothesis, and may lead to further research in the field.

You might also like

A level psychology topic quiz - research methods.

Quizzes & Activities

Research Methods: MCQ Revision Test 1 for AQA A Level Psychology

Topic Videos

Example Answers for Research Methods: A Level Psychology, Paper 2, June 2018 (AQA)

Exam Support

Our subjects

  • › Criminology
  • › Economics
  • › Geography
  • › Health & Social Care
  • › Psychology
  • › Sociology
  • › Teaching & learning resources
  • › Student revision workshops
  • › Online student courses
  • › CPD for teachers
  • › Livestreams
  • › Teaching jobs

Boston House, 214 High Street, Boston Spa, West Yorkshire, LS23 6AD Tel: 01937 848885

  • › Contact us
  • › Terms of use
  • › Privacy & cookies

© 2002-2024 Tutor2u Limited. Company Reg no: 04489574. VAT reg no 816865400.

Logo for Kwantlen Polytechnic University

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

Overview of the Scientific Method

10 Developing a Hypothesis

Learning objectives.

  • Distinguish between a theory and a hypothesis.
  • Discover how theories are used to generate hypotheses and how the results of studies can be used to further inform theories.
  • Understand the characteristics of a good hypothesis.

Theories and Hypotheses

Before describing how to develop a hypothesis, it is important to distinguish between a theory and a hypothesis. A  theory  is a coherent explanation or interpretation of one or more phenomena. Although theories can take a variety of forms, one thing they have in common is that they go beyond the phenomena they explain by including variables, structures, processes, functions, or organizing principles that have not been observed directly. Consider, for example, Zajonc’s theory of social facilitation and social inhibition (1965) [1] . He proposed that being watched by others while performing a task creates a general state of physiological arousal, which increases the likelihood of the dominant (most likely) response. So for highly practiced tasks, being watched increases the tendency to make correct responses, but for relatively unpracticed tasks, being watched increases the tendency to make incorrect responses. Notice that this theory—which has come to be called drive theory—provides an explanation of both social facilitation and social inhibition that goes beyond the phenomena themselves by including concepts such as “arousal” and “dominant response,” along with processes such as the effect of arousal on the dominant response.

Outside of science, referring to an idea as a theory often implies that it is untested—perhaps no more than a wild guess. In science, however, the term theory has no such implication. A theory is simply an explanation or interpretation of a set of phenomena. It can be untested, but it can also be extensively tested, well supported, and accepted as an accurate description of the world by the scientific community. The theory of evolution by natural selection, for example, is a theory because it is an explanation of the diversity of life on earth—not because it is untested or unsupported by scientific research. On the contrary, the evidence for this theory is overwhelmingly positive and nearly all scientists accept its basic assumptions as accurate. Similarly, the “germ theory” of disease is a theory because it is an explanation of the origin of various diseases, not because there is any doubt that many diseases are caused by microorganisms that infect the body.

A  hypothesis , on the other hand, is a specific prediction about a new phenomenon that should be observed if a particular theory is accurate. It is an explanation that relies on just a few key concepts. Hypotheses are often specific predictions about what will happen in a particular study. They are developed by considering existing evidence and using reasoning to infer what will happen in the specific context of interest. Hypotheses are often but not always derived from theories. So a hypothesis is often a prediction based on a theory but some hypotheses are a-theoretical and only after a set of observations have been made, is a theory developed. This is because theories are broad in nature and they explain larger bodies of data. So if our research question is really original then we may need to collect some data and make some observations before we can develop a broader theory.

Theories and hypotheses always have this  if-then  relationship. “ If   drive theory is correct,  then  cockroaches should run through a straight runway faster, and a branching runway more slowly, when other cockroaches are present.” Although hypotheses are usually expressed as statements, they can always be rephrased as questions. “Do cockroaches run through a straight runway faster when other cockroaches are present?” Thus deriving hypotheses from theories is an excellent way of generating interesting research questions.

But how do researchers derive hypotheses from theories? One way is to generate a research question using the techniques discussed in this chapter  and then ask whether any theory implies an answer to that question. For example, you might wonder whether expressive writing about positive experiences improves health as much as expressive writing about traumatic experiences. Although this  question  is an interesting one  on its own, you might then ask whether the habituation theory—the idea that expressive writing causes people to habituate to negative thoughts and feelings—implies an answer. In this case, it seems clear that if the habituation theory is correct, then expressive writing about positive experiences should not be effective because it would not cause people to habituate to negative thoughts and feelings. A second way to derive hypotheses from theories is to focus on some component of the theory that has not yet been directly observed. For example, a researcher could focus on the process of habituation—perhaps hypothesizing that people should show fewer signs of emotional distress with each new writing session.

Among the very best hypotheses are those that distinguish between competing theories. For example, Norbert Schwarz and his colleagues considered two theories of how people make judgments about themselves, such as how assertive they are (Schwarz et al., 1991) [2] . Both theories held that such judgments are based on relevant examples that people bring to mind. However, one theory was that people base their judgments on the  number  of examples they bring to mind and the other was that people base their judgments on how  easily  they bring those examples to mind. To test these theories, the researchers asked people to recall either six times when they were assertive (which is easy for most people) or 12 times (which is difficult for most people). Then they asked them to judge their own assertiveness. Note that the number-of-examples theory implies that people who recalled 12 examples should judge themselves to be more assertive because they recalled more examples, but the ease-of-examples theory implies that participants who recalled six examples should judge themselves as more assertive because recalling the examples was easier. Thus the two theories made opposite predictions so that only one of the predictions could be confirmed. The surprising result was that participants who recalled fewer examples judged themselves to be more assertive—providing particularly convincing evidence in favor of the ease-of-retrieval theory over the number-of-examples theory.

Theory Testing

The primary way that scientific researchers use theories is sometimes called the hypothetico-deductive method  (although this term is much more likely to be used by philosophers of science than by scientists themselves). Researchers begin with a set of phenomena and either construct a theory to explain or interpret them or choose an existing theory to work with. They then make a prediction about some new phenomenon that should be observed if the theory is correct. Again, this prediction is called a hypothesis. The researchers then conduct an empirical study to test the hypothesis. Finally, they reevaluate the theory in light of the new results and revise it if necessary. This process is usually conceptualized as a cycle because the researchers can then derive a new hypothesis from the revised theory, conduct a new empirical study to test the hypothesis, and so on. As  Figure 2.3  shows, this approach meshes nicely with the model of scientific research in psychology presented earlier in the textbook—creating a more detailed model of “theoretically motivated” or “theory-driven” research.

hypothesis psychology def

As an example, let us consider Zajonc’s research on social facilitation and inhibition. He started with a somewhat contradictory pattern of results from the research literature. He then constructed his drive theory, according to which being watched by others while performing a task causes physiological arousal, which increases an organism’s tendency to make the dominant response. This theory predicts social facilitation for well-learned tasks and social inhibition for poorly learned tasks. He now had a theory that organized previous results in a meaningful way—but he still needed to test it. He hypothesized that if his theory was correct, he should observe that the presence of others improves performance in a simple laboratory task but inhibits performance in a difficult version of the very same laboratory task. To test this hypothesis, one of the studies he conducted used cockroaches as subjects (Zajonc, Heingartner, & Herman, 1969) [3] . The cockroaches ran either down a straight runway (an easy task for a cockroach) or through a cross-shaped maze (a difficult task for a cockroach) to escape into a dark chamber when a light was shined on them. They did this either while alone or in the presence of other cockroaches in clear plastic “audience boxes.” Zajonc found that cockroaches in the straight runway reached their goal more quickly in the presence of other cockroaches, but cockroaches in the cross-shaped maze reached their goal more slowly when they were in the presence of other cockroaches. Thus he confirmed his hypothesis and provided support for his drive theory. (Zajonc also showed that drive theory existed in humans [Zajonc & Sales, 1966] [4] in many other studies afterward).

Incorporating Theory into Your Research

When you write your research report or plan your presentation, be aware that there are two basic ways that researchers usually include theory. The first is to raise a research question, answer that question by conducting a new study, and then offer one or more theories (usually more) to explain or interpret the results. This format works well for applied research questions and for research questions that existing theories do not address. The second way is to describe one or more existing theories, derive a hypothesis from one of those theories, test the hypothesis in a new study, and finally reevaluate the theory. This format works well when there is an existing theory that addresses the research question—especially if the resulting hypothesis is surprising or conflicts with a hypothesis derived from a different theory.

To use theories in your research will not only give you guidance in coming up with experiment ideas and possible projects, but it lends legitimacy to your work. Psychologists have been interested in a variety of human behaviors and have developed many theories along the way. Using established theories will help you break new ground as a researcher, not limit you from developing your own ideas.

Characteristics of a Good Hypothesis

There are three general characteristics of a good hypothesis. First, a good hypothesis must be testable and falsifiable . We must be able to test the hypothesis using the methods of science and if you’ll recall Popper’s falsifiability criterion, it must be possible to gather evidence that will disconfirm the hypothesis if it is indeed false. Second, a good hypothesis must be logical. As described above, hypotheses are more than just a random guess. Hypotheses should be informed by previous theories or observations and logical reasoning. Typically, we begin with a broad and general theory and use  deductive reasoning to generate a more specific hypothesis to test based on that theory. Occasionally, however, when there is no theory to inform our hypothesis, we use  inductive reasoning  which involves using specific observations or research findings to form a more general hypothesis. Finally, the hypothesis should be positive. That is, the hypothesis should make a positive statement about the existence of a relationship or effect, rather than a statement that a relationship or effect does not exist. As scientists, we don’t set out to show that relationships do not exist or that effects do not occur so our hypotheses should not be worded in a way to suggest that an effect or relationship does not exist. The nature of science is to assume that something does not exist and then seek to find evidence to prove this wrong, to show that it really does exist. That may seem backward to you but that is the nature of the scientific method. The underlying reason for this is beyond the scope of this chapter but it has to do with statistical theory.

  • Zajonc, R. B. (1965). Social facilitation.  Science, 149 , 269–274 ↵
  • Schwarz, N., Bless, H., Strack, F., Klumpp, G., Rittenauer-Schatka, H., & Simons, A. (1991). Ease of retrieval as information: Another look at the availability heuristic.  Journal of Personality and Social Psychology, 61 , 195–202. ↵
  • Zajonc, R. B., Heingartner, A., & Herman, E. M. (1969). Social enhancement and impairment of performance in the cockroach.  Journal of Personality and Social Psychology, 13 , 83–92. ↵
  • Zajonc, R.B. & Sales, S.M. (1966). Social facilitation of dominant and subordinate responses. Journal of Experimental Social Psychology, 2 , 160-168. ↵

A coherent explanation or interpretation of one or more phenomena.

A specific prediction about a new phenomenon that should be observed if a particular theory is accurate.

A cyclical process of theory development, starting with an observed phenomenon, then developing or using a theory to make a specific prediction of what should happen if that theory is correct, testing that prediction, refining the theory in light of the findings, and using that refined theory to develop new hypotheses, and so on.

The ability to test the hypothesis using the methods of science and the possibility to gather evidence that will disconfirm the hypothesis if it is indeed false.

Research Methods in Psychology Copyright © 2019 by Rajiv S. Jhangiani, I-Chant A. Chiang, Carrie Cuttler, & Dana C. Leighton is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

pep

A hypothesis is a proposed explanation or prediction for a phenomenon that can be tested through research. It is an educated guess based on existing knowledge and observations.

Think of a hypothesis as a detective's theory about a crime. The detective gathers evidence, makes observations, and forms a hypothesis about who committed the crime. They then conduct further investigation to test their hypothesis and determine if it is correct.

Related terms

Variable : A variable is any factor or condition that can change in an experiment or study.

Null Hypothesis : The null hypothesis states that there is no significant relationship between variables or no effect of an intervention.

Alternative Hypothesis : The alternative hypothesis proposes that there is a significant relationship between variables or an effect of an intervention.

" Hypothesis " appears in:

Subjects ( 5 ).

AP Art & Design

AP Human Geography

AP Psychology

Intro to Political Science

Intro to Sociology

Study guides ( 1 )

AP Research - 1.3 Evaluating the sources of information you use

Are you a college student?

Study guides for the entire semester

200k practice questions

Glossary of 50k key terms - memorize important vocab

Fiveable

Stay Connected

© 2024 Fiveable Inc. All rights reserved.

AP® and SAT® are trademarks registered by the College Board, which is not affiliated with, and does not endorse this website.

A testable prediction about the relationship between at least two events, characteristics, or variables. Hypotheses usually come from theories; when planning an experiment, a researcher finds as much previous research on the topic of study as possible. From all of the previous work, the researcher can develop a theory about the topic of study and then make specific predictions about the study he/she is planning. It is important to note that hypotheses should be as specific as possible since you are trying to find truth, and the more vague your hypotheses, the more vague your conclusions. For example, if I am conducting a study on the effects of different drugs on pain relief, it would be bad to hypothesize that "one drug will have an effect on pain." What the heck does that mean? How can you test to find out if that is true? A better hypothesis might be, "Drug A (whatever that is in that study) will reduce the amount of pain significantly more than Drug B according to participants' ratings of pain using the Pain Intensity Scale." Related term of interest: Null Hypothesis.

Word of the Day

Get the word of the day delivered to your inbox

Logo for Portland State University Pressbooks

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

Developing a Hypothesis

Rajiv S. Jhangiani; I-Chant A. Chiang; Carrie Cuttler; and Dana C. Leighton

Learning Objectives

  • Distinguish between a theory and a hypothesis.
  • Discover how theories are used to generate hypotheses and how the results of studies can be used to further inform theories.
  • Understand the characteristics of a good hypothesis.

Theories and Hypotheses

Before describing how to develop a hypothesis, it is important to distinguish between a theory and a hypothesis. A  theory  is a coherent explanation or interpretation of one or more phenomena. Although theories can take a variety of forms, one thing they have in common is that they go beyond the phenomena they explain by including variables, structures, processes, functions, or organizing principles that have not been observed directly. Consider, for example, Zajonc’s theory of social facilitation and social inhibition (1965) [1] . He proposed that being watched by others while performing a task creates a general state of physiological arousal, which increases the likelihood of the dominant (most likely) response. So for highly practiced tasks, being watched increases the tendency to make correct responses, but for relatively unpracticed tasks, being watched increases the tendency to make incorrect responses. Notice that this theory—which has come to be called drive theory—provides an explanation of both social facilitation and social inhibition that goes beyond the phenomena themselves by including concepts such as “arousal” and “dominant response,” along with processes such as the effect of arousal on the dominant response.

Outside of science, referring to an idea as a theory often implies that it is untested—perhaps no more than a wild guess. In science, however, the term theory has no such implication. A theory is simply an explanation or interpretation of a set of phenomena. It can be untested, but it can also be extensively tested, well supported, and accepted as an accurate description of the world by the scientific community. The theory of evolution by natural selection, for example, is a theory because it is an explanation of the diversity of life on earth—not because it is untested or unsupported by scientific research. On the contrary, the evidence for this theory is overwhelmingly positive and nearly all scientists accept its basic assumptions as accurate. Similarly, the “germ theory” of disease is a theory because it is an explanation of the origin of various diseases, not because there is any doubt that many diseases are caused by microorganisms that infect the body.

A  hypothesis , on the other hand, is a specific prediction about a new phenomenon that should be observed if a particular theory is accurate. It is an explanation that relies on just a few key concepts. Hypotheses are often specific predictions about what will happen in a particular study. They are developed by considering existing evidence and using reasoning to infer what will happen in the specific context of interest. Hypotheses are often but not always derived from theories. So a hypothesis is often a prediction based on a theory but some hypotheses are a-theoretical and only after a set of observations have been made, is a theory developed. This is because theories are broad in nature and they explain larger bodies of data. So if our research question is really original then we may need to collect some data and make some observations before we can develop a broader theory.

Theories and hypotheses always have this  if-then  relationship. “ If   drive theory is correct,  then  cockroaches should run through a straight runway faster, and a branching runway more slowly, when other cockroaches are present.” Although hypotheses are usually expressed as statements, they can always be rephrased as questions. “Do cockroaches run through a straight runway faster when other cockroaches are present?” Thus deriving hypotheses from theories is an excellent way of generating interesting research questions.

But how do researchers derive hypotheses from theories? One way is to generate a research question using the techniques discussed in this chapter  and then ask whether any theory implies an answer to that question. For example, you might wonder whether expressive writing about positive experiences improves health as much as expressive writing about traumatic experiences. Although this  question  is an interesting one  on its own, you might then ask whether the habituation theory—the idea that expressive writing causes people to habituate to negative thoughts and feelings—implies an answer. In this case, it seems clear that if the habituation theory is correct, then expressive writing about positive experiences should not be effective because it would not cause people to habituate to negative thoughts and feelings. A second way to derive hypotheses from theories is to focus on some component of the theory that has not yet been directly observed. For example, a researcher could focus on the process of habituation—perhaps hypothesizing that people should show fewer signs of emotional distress with each new writing session.

Among the very best hypotheses are those that distinguish between competing theories. For example, Norbert Schwarz and his colleagues considered two theories of how people make judgments about themselves, such as how assertive they are (Schwarz et al., 1991) [2] . Both theories held that such judgments are based on relevant examples that people bring to mind. However, one theory was that people base their judgments on the  number  of examples they bring to mind and the other was that people base their judgments on how  easily  they bring those examples to mind. To test these theories, the researchers asked people to recall either six times when they were assertive (which is easy for most people) or 12 times (which is difficult for most people). Then they asked them to judge their own assertiveness. Note that the number-of-examples theory implies that people who recalled 12 examples should judge themselves to be more assertive because they recalled more examples, but the ease-of-examples theory implies that participants who recalled six examples should judge themselves as more assertive because recalling the examples was easier. Thus the two theories made opposite predictions so that only one of the predictions could be confirmed. The surprising result was that participants who recalled fewer examples judged themselves to be more assertive—providing particularly convincing evidence in favor of the ease-of-retrieval theory over the number-of-examples theory.

Theory Testing

The primary way that scientific researchers use theories is sometimes called the hypothetico-deductive method  (although this term is much more likely to be used by philosophers of science than by scientists themselves). Researchers begin with a set of phenomena and either construct a theory to explain or interpret them or choose an existing theory to work with. They then make a prediction about some new phenomenon that should be observed if the theory is correct. Again, this prediction is called a hypothesis. The researchers then conduct an empirical study to test the hypothesis. Finally, they reevaluate the theory in light of the new results and revise it if necessary. This process is usually conceptualized as a cycle because the researchers can then derive a new hypothesis from the revised theory, conduct a new empirical study to test the hypothesis, and so on. As  Figure 2.3  shows, this approach meshes nicely with the model of scientific research in psychology presented earlier in the textbook—creating a more detailed model of “theoretically motivated” or “theory-driven” research.

hypothesis psychology def

As an example, let us consider Zajonc’s research on social facilitation and inhibition. He started with a somewhat contradictory pattern of results from the research literature. He then constructed his drive theory, according to which being watched by others while performing a task causes physiological arousal, which increases an organism’s tendency to make the dominant response. This theory predicts social facilitation for well-learned tasks and social inhibition for poorly learned tasks. He now had a theory that organized previous results in a meaningful way—but he still needed to test it. He hypothesized that if his theory was correct, he should observe that the presence of others improves performance in a simple laboratory task but inhibits performance in a difficult version of the very same laboratory task. To test this hypothesis, one of the studies he conducted used cockroaches as subjects (Zajonc, Heingartner, & Herman, 1969) [3] . The cockroaches ran either down a straight runway (an easy task for a cockroach) or through a cross-shaped maze (a difficult task for a cockroach) to escape into a dark chamber when a light was shined on them. They did this either while alone or in the presence of other cockroaches in clear plastic “audience boxes.” Zajonc found that cockroaches in the straight runway reached their goal more quickly in the presence of other cockroaches, but cockroaches in the cross-shaped maze reached their goal more slowly when they were in the presence of other cockroaches. Thus he confirmed his hypothesis and provided support for his drive theory. (Zajonc also showed that drive theory existed in humans [Zajonc & Sales, 1966] [4] in many other studies afterward).

Incorporating Theory into Your Research

When you write your research report or plan your presentation, be aware that there are two basic ways that researchers usually include theory. The first is to raise a research question, answer that question by conducting a new study, and then offer one or more theories (usually more) to explain or interpret the results. This format works well for applied research questions and for research questions that existing theories do not address. The second way is to describe one or more existing theories, derive a hypothesis from one of those theories, test the hypothesis in a new study, and finally reevaluate the theory. This format works well when there is an existing theory that addresses the research question—especially if the resulting hypothesis is surprising or conflicts with a hypothesis derived from a different theory.

To use theories in your research will not only give you guidance in coming up with experiment ideas and possible projects, but it lends legitimacy to your work. Psychologists have been interested in a variety of human behaviors and have developed many theories along the way. Using established theories will help you break new ground as a researcher, not limit you from developing your own ideas.

Characteristics of a Good Hypothesis

There are three general characteristics of a good hypothesis. First, a good hypothesis must be testable and falsifiable . We must be able to test the hypothesis using the methods of science and if you’ll recall Popper’s falsifiability criterion, it must be possible to gather evidence that will disconfirm the hypothesis if it is indeed false. Second, a good hypothesis must be logical. As described above, hypotheses are more than just a random guess. Hypotheses should be informed by previous theories or observations and logical reasoning. Typically, we begin with a broad and general theory and use  deductive reasoning to generate a more specific hypothesis to test based on that theory. Occasionally, however, when there is no theory to inform our hypothesis, we use  inductive reasoning  which involves using specific observations or research findings to form a more general hypothesis. Finally, the hypothesis should be positive. That is, the hypothesis should make a positive statement about the existence of a relationship or effect, rather than a statement that a relationship or effect does not exist. As scientists, we don’t set out to show that relationships do not exist or that effects do not occur so our hypotheses should not be worded in a way to suggest that an effect or relationship does not exist. The nature of science is to assume that something does not exist and then seek to find evidence to prove this wrong, to show that it really does exist. That may seem backward to you but that is the nature of the scientific method. The underlying reason for this is beyond the scope of this chapter but it has to do with statistical theory.

  • Zajonc, R. B. (1965). Social facilitation.  Science, 149 , 269–274 ↵
  • Schwarz, N., Bless, H., Strack, F., Klumpp, G., Rittenauer-Schatka, H., & Simons, A. (1991). Ease of retrieval as information: Another look at the availability heuristic.  Journal of Personality and Social Psychology, 61 , 195–202. ↵
  • Zajonc, R. B., Heingartner, A., & Herman, E. M. (1969). Social enhancement and impairment of performance in the cockroach.  Journal of Personality and Social Psychology, 13 , 83–92. ↵
  • Zajonc, R.B. & Sales, S.M. (1966). Social facilitation of dominant and subordinate responses. Journal of Experimental Social Psychology, 2 , 160-168. ↵

A coherent explanation or interpretation of one or more phenomena.

A specific prediction about a new phenomenon that should be observed if a particular theory is accurate.

A cyclical process of theory development, starting with an observed phenomenon, then developing or using a theory to make a specific prediction of what should happen if that theory is correct, testing that prediction, refining the theory in light of the findings, and using that refined theory to develop new hypotheses, and so on.

The ability to test the hypothesis using the methods of science and the possibility to gather evidence that will disconfirm the hypothesis if it is indeed false.

Developing a Hypothesis Copyright © by Rajiv S. Jhangiani; I-Chant A. Chiang; Carrie Cuttler; and Dana C. Leighton is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Best Family Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Guided Meditations
  • Verywell Mind Insights
  • 2024 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

What Are Psychological Theories?

Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

hypothesis psychology def

Amy Morin, LCSW, is a psychotherapist and international bestselling author. Her books, including "13 Things Mentally Strong People Don't Do," have been translated into more than 40 languages. Her TEDx talk,  "The Secret of Becoming Mentally Strong," is one of the most viewed talks of all time.

hypothesis psychology def

Verywell / Colleen Tighe 

5 Major Psychological Theories

  • Types of Theories

Psychological theories are fact-based ideas that describe a phenomenon of human behavior. These theories are based on a hypothesis , which is backed by evidence. Thus, the two key components of a psychological theory are:

  • It must describe a behavior.
  • It must make predictions about future behaviors.

The term "theory" is used with surprising frequency in everyday language. It is often used to mean a guess, hunch, or supposition. You may even hear people dismiss certain information because it is "only a theory."

But in the realm of science, a theory is not merely a guess. A theory presents a concept or idea that is testable. Scientists can test a theory through empirical research and gather evidence that supports or refutes it.

As new evidence surfaces and more research is done, a theory may be refined, modified, or even rejected if it does not fit with the latest scientific findings. The overall strength of a scientific theory hinges on its ability to explain diverse phenomena.

Some of the best-known psychological theories stem from the perspectives of various branches within psychology . There are five major types of psychological theories.

Behavioral Theories

Behavioral psychology, also known as behaviorism, is a theory of learning based on the idea that all behaviors are acquired through conditioning.

Advocated by famous psychologists such as John B. Watson and B.F. Skinner , behavioral theories dominated psychology during the early half of the twentieth century. Today, behavioral techniques are still widely used by therapists to help clients learn new skills and behaviors.

Cognitive Theories

Cognitive theories of psychology are focused on internal states, such as motivation, problem-solving, decision-making , thinking, and attention. Such theories strive to explain different mental processes including how the mind processes information and how our thoughts lead to certain emotions and behaviors.

Humanistic Theories

Humanistic psychology theories began to grow in popularity during the 1950s. Some of the major humanist theorists included Carl Rogers and Abraham Maslow .

While earlier theories often focused on abnormal behavior and psychological problems, humanist theories about behavior instead emphasized the basic goodness of human beings.

Psychodynamic Theories

Psychodynamic theories examine the unconscious concepts that shape our emotions, attitudes, and personalities. Psychodynamic approaches seek to understand the root causes of unconscious behavior.

These theories are strongly linked with Sigmund Freud and his followers. The psychodynamic approach is seen in many Freudian claims—for instance, that our adult behaviors have their roots in our childhood experiences and that the personality is made up of three parts: the ID, the ego, and the superego.

Biological Theories

Biological theories in psychology attribute human emotion and behavior to biological causes. For instance, in the nature versus nurture debate on human behavior, the biological perspective would side with nature.

Biological theories are rooted in the ideas of Charles Darwin, who is famous for theorizing about the roles that evolution and genetics play in psychology.

Someone examining a psychological issue from a biological lens might investigate whether there are bodily injuries causing a specific type of behavior or whether the behavior was inherited.

Different Types of Psychological Theories

There are many psychology theories, but most can be categorized as one of four key types.

Developmental Theories

Theories of development provide a framework for thinking about human growth, development, and learning. If you have ever wondered about what motivates human thought and behavior, understanding these theories can provide useful insight into individuals and society.

Developmental theories provide a set of guiding principles and concepts that describe and explain human development. Some developmental theories focus on the formation of a particular quality, such as Kohlberg's theory of moral development. Other developmental theories focus on growth that happens throughout the lifespan, such as  Erikson's theory of psychosocial development .

Grand Theories

Grand theories are those comprehensive ideas often proposed by major thinkers such as Sigmund Freud,  Erik Erikson , and  Jean Piaget . Grand theories of development include psychoanalytic theory,  learning theory , and  cognitive theory .

These theories seek to explain much of human behavior, but are often considered outdated and incomplete in the face of modern research. Psychologists and researchers often use grand theories as a basis for exploration, but consider smaller theories and recent research as well.

Mini-Theories

Mini-theories describe a small, very particular aspect of development. A mini-theory might explain relatively narrow behaviors, such as how self-esteem is formed or early childhood socialization. These theories are often rooted in the ideas established by grand theories, but they do not seek to describe and explain the whole of human behavior and growth.

Emergent Theories

Emergent theories are those that have been created relatively recently. They are often formed by systematically combining various mini-theories. These theories draw on research and ideas from different disciplines but are not yet as broad or far-reaching as grand theories. The  sociocultural theory  proposed by Lev Vygotsky  is a good example of an emergent theory of development.

The Purpose of Psychological Theories

You may find yourself questioning how necessary it is to learn about different psychology theories, especially those that are considered inaccurate or outdated.

However, theories provide valuable information about the history of psychology and the progression of thought on a particular topic. They also allow a deeper understanding of current theories. Each one helps contribute to our knowledge of the human mind and behavior.

By understanding how thinking has progressed, you can get a better idea not only of where psychology has been, but where it might be going in the future.

Studying scientific theories can improve your understanding of how scientific explanations for behavior and other phenomena in the natural world are formed, investigated, and accepted by the scientific community.

While debates continues to rage over hot topics, it is worthwhile to study science and the psychological theories that have emerged from such research, even when what is often revealed might come as a harsh or inconvenient truth.

As Carl Sagan once wrote, "It is far better to grasp the universe as it really is than to persist in delusion, however satisfying and reassuring."

Examples of Psychological Theories

These are a few examples of psychological theories that have maintained relevance, even today.

Maslow's Hierarchy of Needs

Maslow's hierarchy of needs theory is commonly represented by a pyramid, with five different types of human needs listed. From bottom to top, these needs are:

  • Physiological : Food, water, shelter
  • Safety needs : Security, resources
  • Belongingness and love : Intimate relationships
  • Esteem needs : Feeling accomplished
  • Self-actualization : Living your full potential creatively and spiritually

According to Maslow, these needs represent what humans require to feel fulfilled and lead productive lives. However, one must satisfy these needs from the bottom up, according to Maslow.

For instance, the most basic and most immediate needs are physiological. Once those are met, you can focus on subsequent needs like relationships and self-esteem.

Piaget's Theory of Cognitive Development

Piaget's theory of cognitive development focuses on how children learn and evolve in their understanding of the world around them. According to his theory, there are four stages children go through during cognitive development:

  • Sensorimotor stage : This stage lasts from birth to age two. Infants and toddlers learn about the world around them through reflexes, their five senses, and motor responses.
  • Preoperational stage : This stage occurs from two to seven years old. Kids start to learn how to think symbolically, but they struggle to understand the perspectives of others.
  • Concrete operational stage : This stage lasts from seven to 11 years old. Kids begin to think logically and are capable of reasoning from specific information to form a general principle.
  • Formal operational stage : This stage starts at age 12 and continues from there. This is when we begin to think in abstract terms, such as contemplating moral, philosophical, and political issues.

Freud's Psychoanalytic Theory

Still widely discussed today is Freud's famous psychoanalytic theory . In his theory, Freud proposed that a human personality is made up of the id, the ego, and the superego.

The id, according to Freud, is a primal component of personality. It is unconscious and desires pleasure and immediate gratification. For instance, an infant crying because they're hungry is an example of the id at work. In order to get their needs met, they respond to hunger by crying.

The ego is responsible for managing the impulses of the id so they conform to the norms of the outside world. As you age, your ego develops.

For instance, as an adult, you know that crying doesn't get you the same type of attention and care that it did as an infant. So the ego manages the id's primal impulses, while making sure your responses are appropriate for the time and place.

The superego is made up of what we internalize to be right and wrong based on what we've been taught (our conscience is part of the superego). The superego works to make our behavior acceptable and it urges the ego to make decisions based on what's idealistic (not realistic).

A Word From Verywell

Much of what we know about human thought and behavior has emerged thanks to various psychology theories. For example, behavioral theories demonstrated how conditioning can be used to promote learning. By learning more about these theories, you can gain a deeper and richer understanding of psychology's past, present, and future.

Borghi AM, Fini C. Theories and explanations in psychology . Front Psychol. 2019;10:958. doi:10.3389/fpsyg.2019.00958

Schwarzer R, Frensch P, eds. Personality, Human Development, and Culture: International Perspectives on Psychological Science, vol. 2 . Psychology Press.

American Psychological Association. Cognitive theories .

Brady-Amoon P, Keefe-Cooperman K. Psychology, counseling psychology, and professional counseling: Shared roots, challenges, and opportunities . Eur J Couns Psychol. 2017;6(1). doi:10.5964/ejcop.v6i1.105

American Psychological Association. Psychodynamic approach .

Giacolini T, Sabatello U. Psychoanalysis and affective neuroscience. The motivational/emotional system of aggression in human relations . Front Psychol . 2019;9. doi:10.3389/fpsyg.2018.02475

D’Hooge R, Balschun D. Biological psychology . In: Runehov ALC, Oviedo L, eds. Encyclopedia of Sciences and Religions . 2013:231-239. doi:10.1007/978-1-4020-8265-8_240

Walrath R. Kohlberg’s Theory of Moral Development In: Goldstein S, Naglieri JA, eds. Encyclopedia of Child Behavior and Development . Springer.

Gilleard C, Higgs P. Connecting life span development with the sociology of the life course: A new direction . Sociology . 2016;50(2):301-315. doi:10.1177/0038038515577906

Cvencek D, Greenwald A, Meltzoff A. Implicit measures for preschool children confirm self-esteem’s role in maintaining a balanced identity . J Exp Psychol . 2016(62):50-57. doi:10.1016/j.jesp.2015.09.015

Benson J, Haith M, eds. Social and Emotional Development in Infancy and Early Childhood . Elsevier.

Sagan C. The Demon-Haunted World: Science as a Candle in the Dark . Random House.

Taormina RJ, Gao JH. Maslow and the motivation hierarchy: Measuring satisfaction of the needs . American J Psychol. 2013;126(2):155-177. doi:10.5406/amerjpsyc.126.2.0155

Rabindran, Madanagopal D. Piaget’s theory and stages of cognitive development- An overview . SJAMS. 2020;8(9):2152-2157. doi:10.36347/sjams.2020.v08i09.034

Boag S.  Ego, drives, and the dynamics of internal objects.   Front Psychol.  2014;5:666. doi:10.3389/fpsyg.2014.00666

McComas WF. The Language of Science Education . Springer Science & Business Media.

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

Frustration-Aggression Hypothesis

Charlotte Nickerson

Research Assistant at Harvard University

Undergraduate at Harvard University

Charlotte Nickerson is a student at Harvard University obsessed with the intersection of mental health, productivity, and design.

Learn about our Editorial Process

Saul Mcleod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul Mcleod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

On This Page:

  • The frustration-aggression hypothesis is based on the psychodynamic approach. When people are frustrated, they experience a drive to be aggressive toward the object of their frustration, but this is often impossible or inappropriate, so the source of their aggression is displaced by something or someone else.
  • It uses the concepts of catharsis (relieving emotional tension) and displacement (unconscious defense mechanism whereby the mind diverts emotions from their original source to a less threatening, dangerous, or unacceptable one to avoid experiencing anxiety).
  • Frustration is a feeling of tension that occurs when our efforts to reach a goal are blocked. According to this theory, proposed by Dollard (1939), frustration often leads to aggression.

frustration-aggression hypothesis

Background and assumptions

The frustration-aggression hypothesis states that aggression is a result of frustration. Frustration is any event or stimulus that prevents an individual from attaining a goal and it’s accompanying reinforcement quality (Dollard & Miller, 1939).

When our drive to reach a goal is blocked by external factors, we experience frustration, which, in turn, creates an aggressive drive, and this can lead to aggressive behavior.

When we express this aggression physically, verbally, or by fantasizing, we experience catharsis, and our emotional tension is reduced.

However, our aggression is not always expressed towards the legitimate target because it could be too dangerous and we risk punishment, or because this target is not available so we displace our aggressive response towards a less dangerous target or one who just happens to be present. This is called displacement.

The first to formulate the frustration-aggression hypothesis were the Yale University researchers John Dollard, Leonard Doob, Neal Miller, O. H. Mowrer, and Robert Sears (1939).

The group attempted to account for virtually all of human aggression with a few basic ideas in their book, Frustration and Aggression .

Dollard et al. define frustration as an event instead of an affective state (Breuer and Elson, 2017). John Dollard thought about frustration as an unexpected blockage of a goal that someone anticipated attaining.

This characterization of frustration through observable qualities of events and environmental characteristics allows the objective testing and description of its effects rather than relying on subjective self-reported experiences.

This is an important differentiation because this definition of frustration is also implied by modifications and reformulations of the frustration-aggression hypothesis.

A person who loudly insults an instruction manual after two hours of failure in constructing an IKEA wall closet or A toddler who throws a tantrum after noticing that her favorite toy has been placed out of reach on the kitchen table are everyday examples of the link between frustrating events and aggressive responses (Breuer and Elson, 2017).

Since the 1990s, several studies have either investigated frustration to explain the possible relationship between playing video games and aggression or set out to test the frustration-aggression hypothesis directly for video games.

In one such study, Breuer et al. (2015) investigated the effects of game outcomes and “trash-talking” in a competitive multiplayer sports video game on aggressive behavior.

The researchers showed that unfavorable outcomes (i.e., losing) increase postgame aggression, while trash-talking by the opponent has no such effect.

Testing the frustration-aggression hypothesis, the researchers found that the effect of losing on aggressive behavior is mediated by negative affect, suggesting that the frustration-aggression hypothesis can be applied to the use of video games (Breuer et al., 2015).

However, frustrations can also arise out of the video game in itself, without the presence of a human cosplayer or opponents. For example, a solo player playing a game where there is a mismatch between the skills of the player and the demands of the game may experience frustration.

Additionally, Berkowitz (1989) hypothesized, albeit controversially, that aggressive cues such as violent media content can be a moderator for the relationship between frustration and aggression.

Whitaker et al. (2013) suggested that frustration can be a motivator for people to engage in violent video games, as they allow the player to act aggressively in a virtual environment.

Causes of Frustration

Goal significance and expectations.

Historically, behaviorists in early psychology defined frustration as an event resulting from the termination of reinforcement that had previously maintained a behavior.

For example, if a pigeon who had previously received a pellet every time it pushed a lever suddenly ceases to receive a pellet, it would experience frustration (Breuer and Elson, 2017).

Typically, this seizure in reinforcement results in people showing a sudden and temporary increase in the frequency of the behavior that had previously been reinforced, the so-called extinction burst.

However, the taking away of reinforcement can also lead to new behaviors in an attempt to obtain the reward through trial and error.

Amsel (1962) predicts that frustration occurs when the anticipated reward is reduced, and Hanratty et al. (1972) describe frustration as the withdrawal of an anticipated reinforcer (Breuer and Elson, 2017).

Brown and Farber (1951) identified two requirements for an event to be frustrating by Dollard et al.’s (1939) standard: firstly, that achieving the goal must be important or relevant to the individual, and secondly, that achieving the goal must be perceived as a likely outcome by the individual.

Researchers such as Haner and Brown (1955) have also found that the closer a person is to achieving a goal, the more intense the effects of frustration will be on the subsequent aggressive behavior of the person (Harris, 1974; Breuer and Elson, 2017).

This is known as the goal gradient principle (Thompson and Kolstoe, 1974).

Although the extent to which the frustration interferes with the attainment of a desired outcome matters (Berkowitz, 1989), experiencing frustrations while attempting to reach a goal can actually make it more attractive, intensifying the reaction to a following frustration (Filer, 1952).

Self-determination theory (Ryan and Deci, 2000) thinks of frustration as a thwarting of peoples’ basic psychological needs for relatedness, autonomy, and competence.

According to this theory, the presence of aggression-facilitating cues is neither necessary nor sufficient for aggression to occur (Breuer and Elson, 2017).

Interpersonal causes

Competition between multiple people can also be a cause of frustration (Deutsch, 1949). Berkowitz (1989) noted that “competitive encounters are at least partly frustrating as the contestants block each other’s attempts to reach the disputed goal and threaten each other with a total loss.”

Incompetent or selfish cooperators can also cause frustrations as their detrimental behaviors can prevent individuals from attaining personal achievement or groups from reaching a common goal where successful cooperation is essential.

For example, the Robbers Cave experiment , where two groups of adolescents participated in a series of competitive activities for a group trophy and individual prizes, showed that teammates punished those who inhibited group achievement (Sherif, Harvey, White, Hood, and Sherif, 1961; Breuer and Elson, 2017).

Reformulation of the Frustration-Aggression Hypothesis

Dollard et al.’s original formulation of the frustration-aggression hypothesis has not been without great criticism. In response, Berkowitz (1989) reformulated the frustration-aggression hypothesis in a way that most recent research on the causes and effects of frustration use today.

Berkowitz argued that frustration causes a negative effect, and this negative effect elicits aggression. Others have argued that frustration also has effects on cognition and physiological arousal (Anderson and Bushman, 2002; Breuer and Elson, 2017).

Unlike Dollard et al., who implied that aggression is the exclusive result of frustration (1939), Berkowitz reformulated that insults, anxiety (Hokanson, 1961), unpleasant environmental conditions, and aversive effects and circumstances can cause aggression (Breuer and Elson, 2017).

Berkowitz also calls the response to frustration “aggressive inclinations” instead of aggression or aggressive behavior. These inclinations have both cognitive and affective components. This has the implication that the negative effect that frustration causes may not necessarily lead to observable aggression.

A variety of factors can also mediate aggression, such as an individual’s reappraisal of a situation, strong incentives not to be aggressive or aversive consequences for doing so, or no opportunity to behave aggressively toward the source of the frustration.

In short, Berkowitz (1989) reformulated the frustration-aggression theory so that it is more sophisticated but incorporates causes and consequences that are difficult to observe, making it difficult to falsify predictions derived from it.

For example, in a case where someone is frustrated but does not behave aggressively, it may not be easy to determine whether this was due to the absence of negative affect or because somebody did not act on their aggressive inclinations (Breuer and Elson, 2017).

In addition to reformulating the frustration-aggression hypothesis, Berkowitz (1990) created a cognitive neo-association theory of aggression, and other psychologists, such as Anderson and Bushman (2002), have derived their own theories from the frustration-aggression hypothesis.

Breuer and Elson (2017) imagine the link between frustration and aggression as being a multistep model. After experiencing a frustrating event, the individual takes into account several factors, such as the extent to which the frustration is justified, the desirability of the goal, and the extent to which they expected the frustration.

This may move on to negative affect, after which the individual may depending on their tendency toward aggression, irritability, and emotional stability, develop aggressive inclinations.

Whether or not these aggressive inclinations lead to aggressive behavior depends on factors such as social norms, anonymity, visibility of consequences, and the instrumental value of the aggressive act.

Critical Evaluation

  • Although some have argued that the expression of aggression serves as a catharsis, Morlan (1949) argues that the expression of aggression sets up a vicious cycle that leads to further aggression, as aggressive acts rarely occur or exist in isolation and have consequences for future interactions (Breuer and Elson, 2017).
  • According to Berkowitz, frustration creates an inclination towards aggression but environmental cues may act as a trigger for aggressive behavior. This argument is used to advocate the concealment of weapons in countries such as the US, where people can carry guns, as this could act as a cue to use them. “The finger pulls the trigger, but the trigger may also be pulling the finger.”
  • The frustration-aggression hypothesis does not explain individual differences in the way people react to frustration. Some people may withdraw, whereas others will become extremely physically or verbally abusive.
  • Brad and Bushman (2002) found that instead of being cathartic as the hypothesis predicts, venting anger makes people more angry and aggressive.
  • It explains reactive aggression, which is a response to a threat or provocation, but does not explain pro-active, instrumental (calculated) aggression, where aggression is used as a means to an end.
  • It does not take into account free will and moral values; for example, a pacifist individual is unlikely to resort to aggression when experiencing frustration.
The use of aggression is influenced by various factors which were not predicted by the hypothesis:
  • Aggression is more likely if the goal is very close than if the achievement of the goal is less likely.
  • Aggression is more likely if its use is likely to remove the obstacle to achieving the goal.
  • Aggression is more likely if the frustration is justified (Dill & Anderson, 1995)

Amsel, A. (1962). Frustrative nonreward in partial reinforcement and discrimination learning: Some recent history and a theoretical extension. Psychological Review, 69(4), 306–328.

Anderson, C. A., & Bushman, B. J. (2002). Human aggression. Annual review of psychology, 53(1), 27-51.

Berkowitz, L. (1958). The expression and reduction of hostility. Psychological Bulletin, 55(5), 257.

Berkowitz, L. (1988). Frustrations, appraisals, and aversively stimulated aggression. Aggressive behavior, 14(1), 3-11.

Berkowitz, L. (1989). Frustration-aggression hypothesis: examination and reformulation. Psychological bulletin, 106(1), 59.

Berkowitz, L. (1990). On the formation and regulation of anger and aggression: A cognitive-neoassociationistic analysis. American Psychologist, 45(4), 494.

Bettencourt, B., & Miller, N. (1996). Gender differences in aggression as a function of provocation: a meta-analysis. Psychological bulletin, 119(3), 422.

Breuer, J., Scharkow, M., & Quandt, T. (2015). Sore losers? A reexamination of the frustration–aggression hypothesis for colocated video game play. Psychology of Popular Media Culture, 4(2), 126.

Breuer, J., & Elson, M. (2017). Frustration-aggression theory (pp. 1-12). Wiley Blackwell.

Brown, J. S., & Farber, I. E. (1951). Emotions conceptualized as intervening variables—with suggestions toward a theory of frustration. Psychological bulletin, 48(6), 465.

Burnstein, E., & Worchel, P. (1962). Arbitrariness of frustration and its consequences for aggression in a social situation. Journal of Personality.

Buss, A. H. (1963). Physical aggression in relation to different frustrations. The Journal of Abnormal and Social Psychology, 67(1), 1.

Buss, A. H. (1966). Instrumentality of aggression, feedback, and frustration as determinants of physical aggression. Journal of personality and social psychology, 3(2), 153.

Caprara, G. V. (1982). A comparison of the frustration-aggression and emotional susceptibility hypotheses. Aggressive Behavior.

Cohen, A. R. (1955). Social norms, arbitrariness of frustration, and status of the agent of frustration in the frustration-aggression hypothesis. The Journal of Abnormal and Social Psychology, 51(2), 222.

Csikszentmihalyi, M. (1990). Flow: The psychology of optimal experience. New York, NY: Harper Perennial.

da Gloria, J. (1984). Frustration, aggression, and the sense of justice. In A. Mummendey (Ed.), Social psychology of aggression: From individual behavior to social interaction (pp. 127–141). Berlin, Germany: Springer.

Davitz, J. R. (1952). The effects of previous training on postfrustration behavior. The Journal of Abnormal and Social Psychology, 47(2S), 309.

Deutsch, M. (1949). An experimental study of the effects of co-operation and competition upon group process. Human Relations, 2(3), 199–231. doi:10.1177/001872674900200301

Dill, J. C., & Anderson, C. A. (1995). Effects of frustration justification on hostile aggression. Aggressive Behavior, 21(5), 359-369.

Dollard, J., Miller, N. E., Doob, L. W., Mowrer, O. H., & Sears, R. R. (1939). Frustration and aggression.

Geen, R. G. (1968). Effects of frustration, attack, and prior training in aggressiveness upon aggressive behavior. Journal of personality and social psychology, 9(4), 316.

Filer, R. J. (1952). Frustration, satisfaction, and other factors affecting the attractiveness of goal objects. The Journal of Abnormal and Social Psychology, 47(2), 203.

Grossarth-Maticek, R., Eysenck, H. J., & Vetter, H. (1989). The causes and cures of prejudice: An empirical study of the frustration-aggression hypothesis. Personality and Individual Differences, 10(5), 547-558.

Haner, C. F., & Brown, P. A. (1955). Clarification of the instigation to action concept in the frustration-aggression hypothesis. The Journal of Abnormal and Social Psychology, 51(2), 204.

Hanratty, M. A., O”neal, E., & Sulzer, J. L. (1972). Effect of frustration upon imitation of aggression. Journal of Personality and Social Psychology, 21(1), 30.

Harris, M. B. (1974). Mediators between frustration and aggression in a field experiment. Journal of Experimental Social Psychology, 10(6), 561-571.

Hokanson, J. E. (1961). The effects of frustration and anxiety on overt aggression. The Journal of Abnormal and Social Psychology, 62(2), 346.

Ichheiser, G. (1950). Frustration and aggression or frustration and defence: A counter-hypothesis.

Kregarman, J. J., & Worchel, P. (1961). Arbitrariness of frustration and aggression. The Journal of Abnormal and Social Psychology, 63(1), 183.

Kulik, J. A., & Brown, R. (1979). Frustration, attribution of blame, and aggression. Journal of experimental social psychology, 15(2), 183-194.

Miller, S., & Mowrer, D. Dollard. 1941.„The Frustration-Aggression Hypothesis.“. Psychological review, 48(4), 337.

Morlan, G. K. (1949). A note on the frustration-aggression theories of Dollard and his associates. Psychological review, 56(1), 1.

Pastore, N. (1950). A neglected factor in the frustration-aggression hypothesis: a comment. The Journal of Psychology, 29(2), 271-279.

Pastore, N. (1952). The role of arbitrariness in the frustration-aggression hypothesis. The Journal of Abnormal and Social Psychology, 47(3), 728.

Rothaus, P., & Worchel, P. (1960). The inhibition of aggression under non-arbitrary frustration. Journal of Personality.

Rule, B. G., Dyck, R., & Nesdale, A. R. (1978). Arbitrariness of frustration: Inhibition or instigation effects on aggression. European Journal of Social Psychology, 8(2), 237-244.

Ryan, R. M., & Deci, E. L. (2000). Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being. American Psychologist, 55(1), 68–78.

Seligman, M. E. P. (1975). Helplessness: On depression, development, and death. San Francisco, CA:Freeman.

Sherif, M., Harvey, O. J., White, B. J., Hood, W. R., & Sherif, C. W. (1961). Intergroup cooperation and competition: The Robbers Cave experiment. Norman, OK: University Book Exchange.

Thompson Jr, R. J., & Kolstoe, R. H. (1974). Physical aggression as a function of strength of frustration and instrumentality of aggression. Journal of Research in Personality, 7(4), 314-323.

Verona, E., & Curtin, J. J. (2006). Gender differences in the negative affective priming of aggressive behavior. Emotion, 6(1), 115.

Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes. Cambridge, MA: Harvard University Press.

Whitaker, J. L., Melzer, A., Steffgen, G., & Bushman, B. J. (2013). The allure of the forbidden: Breaking taboos, frustration, and attraction to violent video games. Psychological science, 24(4), 507-513.

Worchel, S. (1974). The effect of three types of arbitrary thwarting on the instigation to aggression 1. Journal of Personality, 42(2), 300-318.

Zillmann, D., & Cantor, J. R. (1976). Effect of timing of information about mitigating circumstances on emotional responses to provocation and retaliatory behavior. Journal of Experimental Social Psychology, 12(1), 38-55.

Print Friendly, PDF & Email

Related Articles

Hard Determinism: Philosophy & Examples (Does Free Will Exist?)

Social Science

Hard Determinism: Philosophy & Examples (Does Free Will Exist?)

Functions of Attitude Theory

Functions of Attitude Theory

Understanding Conformity: Normative vs. Informational Social Influence

Understanding Conformity: Normative vs. Informational Social Influence

Social Control Theory of Crime

Social Control Theory of Crime

Emotional Labor: Definition, Examples, Types, and Consequences

Emotions , Mood , Social Science

Emotional Labor: Definition, Examples, Types, and Consequences

Solomon Asch Conformity Line Experiment Study

Famous Experiments , Social Science

Solomon Asch Conformity Line Experiment Study

This is the Difference Between a Hypothesis and a Theory

What to Know A hypothesis is an assumption made before any research has been done. It is formed so that it can be tested to see if it might be true. A theory is a principle formed to explain the things already shown in data. Because of the rigors of experiment and control, it is much more likely that a theory will be true than a hypothesis.

As anyone who has worked in a laboratory or out in the field can tell you, science is about process: that of observing, making inferences about those observations, and then performing tests to see if the truth value of those inferences holds up. The scientific method is designed to be a rigorous procedure for acquiring knowledge about the world around us.

hypothesis

In scientific reasoning, a hypothesis is constructed before any applicable research has been done. A theory, on the other hand, is supported by evidence: it's a principle formed as an attempt to explain things that have already been substantiated by data.

Toward that end, science employs a particular vocabulary for describing how ideas are proposed, tested, and supported or disproven. And that's where we see the difference between a hypothesis and a theory .

A hypothesis is an assumption, something proposed for the sake of argument so that it can be tested to see if it might be true.

In the scientific method, the hypothesis is constructed before any applicable research has been done, apart from a basic background review. You ask a question, read up on what has been studied before, and then form a hypothesis.

What is a Hypothesis?

A hypothesis is usually tentative, an assumption or suggestion made strictly for the objective of being tested.

When a character which has been lost in a breed, reappears after a great number of generations, the most probable hypothesis is, not that the offspring suddenly takes after an ancestor some hundred generations distant, but that in each successive generation there has been a tendency to reproduce the character in question, which at last, under unknown favourable conditions, gains an ascendancy. Charles Darwin, On the Origin of Species , 1859 According to one widely reported hypothesis , cell-phone transmissions were disrupting the bees' navigational abilities. (Few experts took the cell-phone conjecture seriously; as one scientist said to me, "If that were the case, Dave Hackenberg's hives would have been dead a long time ago.") Elizabeth Kolbert, The New Yorker , 6 Aug. 2007

What is a Theory?

A theory , in contrast, is a principle that has been formed as an attempt to explain things that have already been substantiated by data. It is used in the names of a number of principles accepted in the scientific community, such as the Big Bang Theory . Because of the rigors of experimentation and control, its likelihood as truth is much higher than that of a hypothesis.

It is evident, on our theory , that coasts merely fringed by reefs cannot have subsided to any perceptible amount; and therefore they must, since the growth of their corals, either have remained stationary or have been upheaved. Now, it is remarkable how generally it can be shown, by the presence of upraised organic remains, that the fringed islands have been elevated: and so far, this is indirect evidence in favour of our theory . Charles Darwin, The Voyage of the Beagle , 1839 An example of a fundamental principle in physics, first proposed by Galileo in 1632 and extended by Einstein in 1905, is the following: All observers traveling at constant velocity relative to one another, should witness identical laws of nature. From this principle, Einstein derived his theory of special relativity. Alan Lightman, Harper's , December 2011

Non-Scientific Use

In non-scientific use, however, hypothesis and theory are often used interchangeably to mean simply an idea, speculation, or hunch (though theory is more common in this regard):

The theory of the teacher with all these immigrant kids was that if you spoke English loudly enough they would eventually understand. E. L. Doctorow, Loon Lake , 1979 Chicago is famous for asking questions for which there can be no boilerplate answers. Example: given the probability that the federal tax code, nondairy creamer, Dennis Rodman and the art of mime all came from outer space, name something else that has extraterrestrial origins and defend your hypothesis . John McCormick, Newsweek , 5 Apr. 1999 In his mind's eye, Miller saw his case suddenly taking form: Richard Bailey had Helen Brach killed because she was threatening to sue him over the horses she had purchased. It was, he realized, only a theory , but it was one he felt certain he could, in time, prove. Full of urgency, a man with a mission now that he had a hypothesis to guide him, he issued new orders to his troops: Find out everything you can about Richard Bailey and his crowd. Howard Blum, Vanity Fair , January 1995

And sometimes one term is used as a genus, or a means for defining the other:

Laplace's popular version of his astronomy, the Système du monde , was famous for introducing what came to be known as the nebular hypothesis , the theory that the solar system was formed by the condensation, through gradual cooling, of the gaseous atmosphere (the nebulae) surrounding the sun. Louis Menand, The Metaphysical Club , 2001 Researchers use this information to support the gateway drug theory — the hypothesis that using one intoxicating substance leads to future use of another. Jordy Byrd, The Pacific Northwest Inlander , 6 May 2015 Fox, the business and economics columnist for Time magazine, tells the story of the professors who enabled those abuses under the banner of the financial theory known as the efficient market hypothesis . Paul Krugman, The New York Times Book Review , 9 Aug. 2009

Incorrect Interpretations of "Theory"

Since this casual use does away with the distinctions upheld by the scientific community, hypothesis and theory are prone to being wrongly interpreted even when they are encountered in scientific contexts—or at least, contexts that allude to scientific study without making the critical distinction that scientists employ when weighing hypotheses and theories.

The most common occurrence is when theory is interpreted—and sometimes even gleefully seized upon—to mean something having less truth value than other scientific principles. (The word law applies to principles so firmly established that they are almost never questioned, such as the law of gravity.)

This mistake is one of projection: since we use theory in general use to mean something lightly speculated, then it's implied that scientists must be talking about the same level of uncertainty when they use theory to refer to their well-tested and reasoned principles.

The distinction has come to the forefront particularly on occasions when the content of science curricula in schools has been challenged—notably, when a school board in Georgia put stickers on textbooks stating that evolution was "a theory, not a fact, regarding the origin of living things." As Kenneth R. Miller, a cell biologist at Brown University, has said , a theory "doesn’t mean a hunch or a guess. A theory is a system of explanations that ties together a whole bunch of facts. It not only explains those facts, but predicts what you ought to find from other observations and experiments.”

While theories are never completely infallible, they form the basis of scientific reasoning because, as Miller said "to the best of our ability, we’ve tested them, and they’ve held up."

More Differences Explained

  • Epidemic vs. Pandemic
  • Diagnosis vs. Prognosis
  • Treatment vs. Cure

Word of the Day

See Definitions and Examples »

Get Word of the Day daily email!

Games & Quizzes

Play Quordle: Guess all four words in a limited number of tries.  Each of your guesses must be a real 5-letter word.

Commonly Confused

'canceled' or 'cancelled', 'virus' vs. 'bacteria', your vs. you're: how to use them correctly, is it 'jail' or 'prison', 'deduction' vs. 'induction' vs. 'abduction', grammar & usage, more words you always have to look up, 'fewer' and 'less', 7 pairs of commonly confused words, more commonly misspelled words, every letter is silent, sometimes: a-z list of examples, great big list of beautiful and useless words, vol. 4, 9 other words for beautiful, why jaywalking is called jaywalking, birds say the darndest things, the words of the week - may 10.

Frank T. McAndrew Ph.D.

How to Get Started on Your First Psychology Experiment

Acquiring even a little expertise in advance makes science research easier..

Updated May 15, 2024 | Reviewed by Ray Parker

  • Why Education Is Important
  • Find a Child Therapist
  • Students often struggle at the beginning of research projects—knowing how to begin.
  • Research projects can sometimes be inspired by everyday life or personal concerns.
  • Becoming something of an "expert" on a topic in advance makes designing a study go more smoothly.

ARENA Creative/Shutterstock

One of the most rewarding and frustrating parts of my long career as a psychology professor at a small liberal arts college has been guiding students through the senior capstone research experience required near the end of their college years. Each psychology major must conduct an independent experiment in which they collect data to test a hypothesis, analyze the data, write a research paper, and present their results at a college poster session or at a professional conference.

The rewarding part of the process is clear: The students' pride at seeing their poster on display and maybe even getting their name on an article in a professional journal allows us professors to get a glimpse of students being happy and excited—for a change. I also derive great satisfaction from watching a student discover that he or she has an aptitude for research and perhaps start shifting their career plans accordingly.

The frustrating part comes at the beginning of the research process when students are attempting to find a topic to work on. There is a lot of floundering around as students get stuck by doing something that seems to make sense: They begin by trying to “think up a study.”

The problem is that even if the student's research interest is driven by some very personal topic that is deeply relevant to their own life, they simply do not yet know enough to know where to begin. They do not know what has already been done by others, nor do they know how researchers typically attack that topic.

Students also tend to think in terms of mission statements (I want to cure eating disorders) rather than in terms of research questions (Why are people of some ages or genders more susceptible to eating disorders than others?).

Needless to say, attempting to solve a serious, long-standing societal problem in a few weeks while conducting one’s first psychology experiment can be a showstopper.

Even a Little Bit of Expertise Can Go a Long Way

My usual approach to helping students get past this floundering stage is to tell them to try to avoid thinking up a study altogether. Instead, I tell them to conceive of their mission as becoming an “expert” on some topic that they find interesting. They begin by reading journal articles, writing summaries of these articles, and talking to me about them. As the student learns more about the topic, our conversations become more sophisticated and interesting. Researchable questions begin to emerge, and soon, the student is ready to start writing a literature review that will sharpen the focus of their research question.

In short, even a little bit of expertise on a subject makes it infinitely easier to craft an experiment on that topic because the research done by others provides a framework into which the student can fit his or her own work.

This was a lesson I learned early in my career when I was working on my own undergraduate capstone experience. Faced with the necessity of coming up with a research topic and lacking any urgent personal issues that I was trying to resolve, I fell back on what little psychological expertise I had already accumulated.

In a previous psychology course, I had written a literature review on why some information fails to move from short-term memory into long-term memory. The journal articles that I had read for this paper relied primarily on laboratory studies with mice, and the debate that was going on between researchers who had produced different results in their labs revolved around subtle differences in the way that mice were released into the experimental apparatus in the studies.

Because I already had done some homework on this, I had a ready-made research question available: What if the experimental task was set up so that the researcher had no influence on how the mouse entered the apparatus at all? I was able to design a simple animal memory experiment that fit very nicely into the psychological literature that was already out there, and this saved me from a lot of angst.

Please note that my undergraduate research project was guided by the “expertise” that I had already acquired rather than by a burning desire to solve some sort of personal or social problem. I guarantee that I had not been walking around as an undergraduate student worrying about why mice forget things, but I was nonetheless able to complete a fun and interesting study.

hypothesis psychology def

My first experiment may not have changed the world, but it successfully launched my research career, and I fondly remember it as I work with my students 50 years later.

Frank T. McAndrew Ph.D.

Frank McAndrew, Ph.D., is the Cornelia H. Dudley Professor of Psychology at Knox College.

  • Find Counselling
  • Find a Support Group
  • Find Online Therapy
  • Richmond - Tweed
  • Newcastle - Maitland
  • Canberra - ACT
  • Sunshine Coast
  • Asperger's
  • Bipolar Disorder
  • Chronic Pain
  • Eating Disorders
  • Passive Aggression
  • Personality
  • Goal Setting
  • Positive Psychology
  • Stopping Smoking
  • Low Sexual Desire
  • Relationships
  • Child Development
  • Therapy Center NEW
  • Diagnosis Dictionary
  • Types of Therapy

May 2024 magazine cover

At any moment, someone’s aggravating behavior or our own bad luck can set us off on an emotional spiral that threatens to derail our entire day. Here’s how we can face our triggers with less reactivity so that we can get on with our lives.

  • Emotional Intelligence
  • Gaslighting
  • Affective Forecasting
  • Neuroscience

IMAGES

  1. What is a Hypothesis

    hypothesis psychology def

  2. 13 Different Types of Hypothesis (2024)

    hypothesis psychology def

  3. Hypothesis

    hypothesis psychology def

  4. Research Hypothesis: Definition, Types, Examples and Quick Tips

    hypothesis psychology def

  5. Hypothesis: Definition, Sources, Uses, Characteristics and Examples

    hypothesis psychology def

  6. What is an Hypothesis

    hypothesis psychology def

VIDEO

  1. Concept of Hypothesis

  2. What Is A Hypothesis?

  3. Errors in Hypothesis Testing (Type I &Type II error) #hypotheses #hypothesestesting #statistics

  4. Research Methods Q2: Hypothesis Writing

  5. Hypothesis/ Research/ Psychology #shorts #hypothesis #hypothesistesting #research #statistics

  6. Just world hypothesis #psychology #netjrf2024 #1minutevideo #facts #shorts #youtubeshorts #viral

COMMENTS

  1. Research Hypothesis In Psychology: Types, & Examples

    Examples. A research hypothesis, in its plural form "hypotheses," is a specific, testable prediction about the anticipated results of a study, established at its outset. It is a key component of the scientific method. Hypotheses connect theory to data and guide the research process towards expanding scientific understanding.

  2. Hypothesis: Definition, Examples, and Types

    A hypothesis is a tentative statement about the relationship between two or more variables. It is a specific, testable prediction about what you expect to happen in a study. It is a preliminary answer to your question that helps guide the research process. Consider a study designed to examine the relationship between sleep deprivation and test ...

  3. APA Dictionary of Psychology

    A trusted reference in the field of psychology, offering more than 25,000 clear and authoritative entries. ... hypothesis. Share button. Updated on 04/19/2018. n. (pl. hypotheses) an empirically testable proposition about some fact, behavior, relationship, or the like, ... Browse Dictionary.

  4. 2.4 Developing a Hypothesis

    A hypothesis, on the other hand, is a specific prediction about a new phenomenon that should be observed if a particular theory is accurate. It is an explanation that relies on just a few key concepts. ... As Figure 2.2 shows, this approach meshes nicely with the model of scientific research in psychology presented earlier in the textbook ...

  5. Hypothesis

    Definition. A hypothesis is an educated guess or proposition made as a basis for reasoning or research without any assumption of its truth. It's testable and falsifiable statement about two or more variables related in some way. ... AP Psychology - 1.3 Defining Psychological Science: The Experimental Method.

  6. What is a Hypothesis

    Definition: Hypothesis is an educated guess or proposed explanation for a phenomenon, based on some initial observations or data. It is a tentative statement that can be tested and potentially proven or disproven through further investigation and experimentation. ... Psychology: In psychology, hypotheses are used to test theories and models of ...

  7. Aims and Hypotheses

    The theory attempting to explain an observation will help to inform hypotheses - predictions of an investigation's outcome that make specific reference to the independent variables (IVs) manipulated and dependent variables (DVs) measured by the researchers. There are two types of hypothesis: H1 - The Research Hypothesis.

  8. APA Dictionary of Psychology

    a statement describing the investigator's expectation about the pattern of data that may result from a given study. By stating specific expectations before the data are collected, the investigator makes a commitment about the direction (e.g., Method A will yield higher final exam scores than Method B) and magnitude (e.g., participants ...

  9. Aims and Hypotheses

    Hypotheses. A hypothesis (plural hypotheses) is a precise, testable statement of what the researchers predict will be the outcome of the study. This usually involves proposing a possible relationship between two variables: the independent variable (what the researcher changes) and the dependant variable (what the research measures).

  10. Developing a Hypothesis

    Theories and Hypotheses. Before describing how to develop a hypothesis, it is important to distinguish between a theory and a hypothesis. A theory is a coherent explanation or interpretation of one or more phenomena. Although theories can take a variety of forms, one thing they have in common is that they go beyond the phenomena they explain by including variables, structures, processes ...

  11. Hypothesis

    Definition. A hypothesis is a proposed explanation or prediction for a phenomenon that can be tested through research. It is an educated guess based on existing knowledge and observations. ... AP Psychology. Study guides (1) AP Research - 1.3 Evaluating the sources of information you use.

  12. Hypothesis definition

    Hypothesis. A testable prediction about the relationship between at least two events, characteristics, or variables. Hypotheses usually come from theories; when planning an experiment, a researcher finds as much previous research on the topic of study as possible. From all of the previous work, the researcher can develop a theory about the ...

  13. How to Write a Strong Hypothesis

    5. Phrase your hypothesis in three ways. To identify the variables, you can write a simple prediction in if…then form. The first part of the sentence states the independent variable and the second part states the dependent variable. If a first-year student starts attending more lectures, then their exam scores will improve.

  14. Hypothesis

    hypothesis, something supposed or taken for granted, with the object of following out its consequences (Greek hypothesis, "a putting under," the Latin equivalent being suppositio ). Discussion with Kara Rogers of how the scientific model is used to test a hypothesis or represent a theory. Kara Rogers, senior biomedical sciences editor of ...

  15. Research Methods In Psychology

    Olivia Guy-Evans, MSc. Research methods in psychology are systematic procedures used to observe, describe, predict, and explain behavior and mental processes. They include experiments, surveys, case studies, and naturalistic observations, ensuring data collection is objective and reliable to understand and explain psychological phenomena.

  16. Hypothesis

    What does hypothesis mean? Learn the hypothesis definition in this easy-to-follow lesson. Take an in-depth look at hypothesis examples and the various types. ... Psychology: "If adequate sleep is ...

  17. Hypothesis Definition & Meaning

    hypothesis: [noun] an assumption or concession made for the sake of argument. an interpretation of a practical situation or condition taken as the ground for action.

  18. Developing a Hypothesis

    Theories and Hypotheses. Before describing how to develop a hypothesis, it is important to distinguish between a theory and a hypothesis. A theory is a coherent explanation or interpretation of one or more phenomena. Although theories can take a variety of forms, one thing they have in common is that they go beyond the phenomena they explain by including variables, structures, processes ...

  19. Psychological Theories: Definition, Types, and Examples

    Behavioral psychology, also known as behaviorism, is a theory of learning based on the idea that all behaviors are acquired through conditioning. Advocated by famous psychologists such as John B. Watson and B.F. Skinner, behavioral theories dominated psychology during the early half of the twentieth century.

  20. APA Dictionary of Psychology

    Updated on 04/19/2018. the supposition that any significant individual difference, such as a central personality trait, will be encoded into the natural-language lexicon; that is, there will be a term to describe it in any or all of the languages of the world. Also called fundamental lexical hypothesis. [first proposed in 1884 by Francis Galton]

  21. Frustration-Aggression Hypothesis

    The frustration-aggression hypothesis states that aggression is a result of frustration. Frustration is any event or stimulus that prevents an individual from attaining a goal and it's accompanying reinforcement quality (Dollard & Miller, 1939). When our drive to reach a goal is blocked by external factors, we experience frustration, which ...

  22. Hypothesis vs. Theory: The Difference Explained

    A hypothesis is an assumption made before any research has been done. It is formed so that it can be tested to see if it might be true. A theory is a principle formed to explain the things already shown in data. Because of the rigors of experiment and control, it is much more likely that a theory will be true than a hypothesis.

  23. APA Dictionary of Psychology

    Updated on 04/19/2018. ( NH; symbol: H0) a statement that a study will find no meaningful differences between the groups or conditions under investigation, such that there is no relationship among the variables of interest and that any variation in observed data is the result of chance or random processes. For example, if a researcher is ...

  24. How to Get Started on Your First Psychology Experiment

    My usual approach to helping students get past this floundering stage is to tell them to avoid thinking up a study altogether. Instead, I tell them to conceive of their mission as becoming an ...

  25. Frontiers

    1 Sony Computer Science Laboratories, Shinagawa, Japan; 2 Collective Intelligence Research Laboratory, The University of Tokyo, Meguro, Japan; The computational significance of consciousness is an important and potentially more tractable research theme than the hard problem of consciousness, as one could look at the correlation of consciousness and computational capacities through, e.g ...