Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • How to Write a Strong Hypothesis | Steps & Examples

How to Write a Strong Hypothesis | Steps & Examples

Published on May 6, 2022 by Shona McCombes . Revised on November 20, 2023.

A hypothesis is a statement that can be tested by scientific research. If you want to test a relationship between two or more variables, you need to write hypotheses before you start your experiment or data collection .

Example: Hypothesis

Daily apple consumption leads to fewer doctor’s visits.

Table of contents

What is a hypothesis, developing a hypothesis (with example), hypothesis examples, other interesting articles, frequently asked questions about writing hypotheses.

A hypothesis states your predictions about what your research will find. It is a tentative answer to your research question that has not yet been tested. For some research projects, you might have to write several hypotheses that address different aspects of your research question.

A hypothesis is not just a guess – it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations and statistical analysis of data).

Variables in hypotheses

Hypotheses propose a relationship between two or more types of variables .

  • An independent variable is something the researcher changes or controls.
  • A dependent variable is something the researcher observes and measures.

If there are any control variables , extraneous variables , or confounding variables , be sure to jot those down as you go to minimize the chances that research bias  will affect your results.

In this example, the independent variable is exposure to the sun – the assumed cause . The dependent variable is the level of happiness – the assumed effect .

Prevent plagiarism. Run a free check.

Step 1. ask a question.

Writing a hypothesis begins with a research question that you want to answer. The question should be focused, specific, and researchable within the constraints of your project.

Step 2. Do some preliminary research

Your initial answer to the question should be based on what is already known about the topic. Look for theories and previous studies to help you form educated assumptions about what your research will find.

At this stage, you might construct a conceptual framework to ensure that you’re embarking on a relevant topic . This can also help you identify which variables you will study and what you think the relationships are between them. Sometimes, you’ll have to operationalize more complex constructs.

Step 3. Formulate your hypothesis

Now you should have some idea of what you expect to find. Write your initial answer to the question in a clear, concise sentence.

4. Refine your hypothesis

You need to make sure your hypothesis is specific and testable. There are various ways of phrasing a hypothesis, but all the terms you use should have clear definitions, and the hypothesis should contain:

  • The relevant variables
  • The specific group being studied
  • The predicted outcome of the experiment or analysis

5. Phrase your hypothesis in three ways

To identify the variables, you can write a simple prediction in  if…then form. The first part of the sentence states the independent variable and the second part states the dependent variable.

In academic research, hypotheses are more commonly phrased in terms of correlations or effects, where you directly state the predicted relationship between variables.

If you are comparing two groups, the hypothesis can state what difference you expect to find between them.

6. Write a null hypothesis

If your research involves statistical hypothesis testing , you will also have to write a null hypothesis . The null hypothesis is the default position that there is no association between the variables. The null hypothesis is written as H 0 , while the alternative hypothesis is H 1 or H a .

  • H 0 : The number of lectures attended by first-year students has no effect on their final exam scores.
  • H 1 : The number of lectures attended by first-year students has a positive effect on their final exam scores.
Research question Hypothesis Null hypothesis
What are the health benefits of eating an apple a day? Increasing apple consumption in over-60s will result in decreasing frequency of doctor’s visits. Increasing apple consumption in over-60s will have no effect on frequency of doctor’s visits.
Which airlines have the most delays? Low-cost airlines are more likely to have delays than premium airlines. Low-cost and premium airlines are equally likely to have delays.
Can flexible work arrangements improve job satisfaction? Employees who have flexible working hours will report greater job satisfaction than employees who work fixed hours. There is no relationship between working hour flexibility and job satisfaction.
How effective is high school sex education at reducing teen pregnancies? Teenagers who received sex education lessons throughout high school will have lower rates of unplanned pregnancy teenagers who did not receive any sex education. High school sex education has no effect on teen pregnancy rates.
What effect does daily use of social media have on the attention span of under-16s? There is a negative between time spent on social media and attention span in under-16s. There is no relationship between social media use and attention span in under-16s.

If you want to know more about the research process , methodology , research bias , or statistics , make sure to check out some of our other articles with explanations and examples.

  • Sampling methods
  • Simple random sampling
  • Stratified sampling
  • Cluster sampling
  • Likert scales
  • Reproducibility

 Statistics

  • Null hypothesis
  • Statistical power
  • Probability distribution
  • Effect size
  • Poisson distribution

Research bias

  • Optimism bias
  • Cognitive bias
  • Implicit bias
  • Hawthorne effect
  • Anchoring bias
  • Explicit bias

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

formulating research hypotheses

A hypothesis is not just a guess — it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations and statistical analysis of data).

Null and alternative hypotheses are used in statistical hypothesis testing . The null hypothesis of a test always predicts no effect or no relationship between variables, while the alternative hypothesis states your research prediction of an effect or relationship.

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

McCombes, S. (2023, November 20). How to Write a Strong Hypothesis | Steps & Examples. Scribbr. Retrieved August 12, 2024, from https://www.scribbr.com/methodology/hypothesis/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, construct validity | definition, types, & examples, what is a conceptual framework | tips & examples, operationalization | a guide with examples, pros & cons, "i thought ai proofreading was useless but..".

I've been using Scribbr for years now and I know it's a service that won't disappoint. It does a good job spotting mistakes”

  • Resources Home 🏠
  • Try SciSpace Copilot
  • Search research papers
  • Add Copilot Extension
  • Try AI Detector
  • Try Paraphraser
  • Try Citation Generator
  • April Papers
  • June Papers
  • July Papers

SciSpace Resources

The Craft of Writing a Strong Hypothesis

Deeptanshu D

Table of Contents

Writing a hypothesis is one of the essential elements of a scientific research paper. It needs to be to the point, clearly communicating what your research is trying to accomplish. A blurry, drawn-out, or complexly-structured hypothesis can confuse your readers. Or worse, the editor and peer reviewers.

A captivating hypothesis is not too intricate. This blog will take you through the process so that, by the end of it, you have a better idea of how to convey your research paper's intent in just one sentence.

What is a Hypothesis?

The first step in your scientific endeavor, a hypothesis, is a strong, concise statement that forms the basis of your research. It is not the same as a thesis statement , which is a brief summary of your research paper .

The sole purpose of a hypothesis is to predict your paper's findings, data, and conclusion. It comes from a place of curiosity and intuition . When you write a hypothesis, you're essentially making an educated guess based on scientific prejudices and evidence, which is further proven or disproven through the scientific method.

The reason for undertaking research is to observe a specific phenomenon. A hypothesis, therefore, lays out what the said phenomenon is. And it does so through two variables, an independent and dependent variable.

The independent variable is the cause behind the observation, while the dependent variable is the effect of the cause. A good example of this is “mixing red and blue forms purple.” In this hypothesis, mixing red and blue is the independent variable as you're combining the two colors at your own will. The formation of purple is the dependent variable as, in this case, it is conditional to the independent variable.

Different Types of Hypotheses‌

Types-of-hypotheses

Types of hypotheses

Some would stand by the notion that there are only two types of hypotheses: a Null hypothesis and an Alternative hypothesis. While that may have some truth to it, it would be better to fully distinguish the most common forms as these terms come up so often, which might leave you out of context.

Apart from Null and Alternative, there are Complex, Simple, Directional, Non-Directional, Statistical, and Associative and casual hypotheses. They don't necessarily have to be exclusive, as one hypothesis can tick many boxes, but knowing the distinctions between them will make it easier for you to construct your own.

1. Null hypothesis

A null hypothesis proposes no relationship between two variables. Denoted by H 0 , it is a negative statement like “Attending physiotherapy sessions does not affect athletes' on-field performance.” Here, the author claims physiotherapy sessions have no effect on on-field performances. Even if there is, it's only a coincidence.

2. Alternative hypothesis

Considered to be the opposite of a null hypothesis, an alternative hypothesis is donated as H1 or Ha. It explicitly states that the dependent variable affects the independent variable. A good  alternative hypothesis example is “Attending physiotherapy sessions improves athletes' on-field performance.” or “Water evaporates at 100 °C. ” The alternative hypothesis further branches into directional and non-directional.

  • Directional hypothesis: A hypothesis that states the result would be either positive or negative is called directional hypothesis. It accompanies H1 with either the ‘<' or ‘>' sign.
  • Non-directional hypothesis: A non-directional hypothesis only claims an effect on the dependent variable. It does not clarify whether the result would be positive or negative. The sign for a non-directional hypothesis is ‘≠.'

3. Simple hypothesis

A simple hypothesis is a statement made to reflect the relation between exactly two variables. One independent and one dependent. Consider the example, “Smoking is a prominent cause of lung cancer." The dependent variable, lung cancer, is dependent on the independent variable, smoking.

4. Complex hypothesis

In contrast to a simple hypothesis, a complex hypothesis implies the relationship between multiple independent and dependent variables. For instance, “Individuals who eat more fruits tend to have higher immunity, lesser cholesterol, and high metabolism.” The independent variable is eating more fruits, while the dependent variables are higher immunity, lesser cholesterol, and high metabolism.

5. Associative and casual hypothesis

Associative and casual hypotheses don't exhibit how many variables there will be. They define the relationship between the variables. In an associative hypothesis, changing any one variable, dependent or independent, affects others. In a casual hypothesis, the independent variable directly affects the dependent.

6. Empirical hypothesis

Also referred to as the working hypothesis, an empirical hypothesis claims a theory's validation via experiments and observation. This way, the statement appears justifiable and different from a wild guess.

Say, the hypothesis is “Women who take iron tablets face a lesser risk of anemia than those who take vitamin B12.” This is an example of an empirical hypothesis where the researcher  the statement after assessing a group of women who take iron tablets and charting the findings.

7. Statistical hypothesis

The point of a statistical hypothesis is to test an already existing hypothesis by studying a population sample. Hypothesis like “44% of the Indian population belong in the age group of 22-27.” leverage evidence to prove or disprove a particular statement.

Characteristics of a Good Hypothesis

Writing a hypothesis is essential as it can make or break your research for you. That includes your chances of getting published in a journal. So when you're designing one, keep an eye out for these pointers:

  • A research hypothesis has to be simple yet clear to look justifiable enough.
  • It has to be testable — your research would be rendered pointless if too far-fetched into reality or limited by technology.
  • It has to be precise about the results —what you are trying to do and achieve through it should come out in your hypothesis.
  • A research hypothesis should be self-explanatory, leaving no doubt in the reader's mind.
  • If you are developing a relational hypothesis, you need to include the variables and establish an appropriate relationship among them.
  • A hypothesis must keep and reflect the scope for further investigations and experiments.

Separating a Hypothesis from a Prediction

Outside of academia, hypothesis and prediction are often used interchangeably. In research writing, this is not only confusing but also incorrect. And although a hypothesis and prediction are guesses at their core, there are many differences between them.

A hypothesis is an educated guess or even a testable prediction validated through research. It aims to analyze the gathered evidence and facts to define a relationship between variables and put forth a logical explanation behind the nature of events.

Predictions are assumptions or expected outcomes made without any backing evidence. They are more fictionally inclined regardless of where they originate from.

For this reason, a hypothesis holds much more weight than a prediction. It sticks to the scientific method rather than pure guesswork. "Planets revolve around the Sun." is an example of a hypothesis as it is previous knowledge and observed trends. Additionally, we can test it through the scientific method.

Whereas "COVID-19 will be eradicated by 2030." is a prediction. Even though it results from past trends, we can't prove or disprove it. So, the only way this gets validated is to wait and watch if COVID-19 cases end by 2030.

Finally, How to Write a Hypothesis

Quick-tips-on-how-to-write-a-hypothesis

Quick tips on writing a hypothesis

1.  Be clear about your research question

A hypothesis should instantly address the research question or the problem statement. To do so, you need to ask a question. Understand the constraints of your undertaken research topic and then formulate a simple and topic-centric problem. Only after that can you develop a hypothesis and further test for evidence.

2. Carry out a recce

Once you have your research's foundation laid out, it would be best to conduct preliminary research. Go through previous theories, academic papers, data, and experiments before you start curating your research hypothesis. It will give you an idea of your hypothesis's viability or originality.

Making use of references from relevant research papers helps draft a good research hypothesis. SciSpace Discover offers a repository of over 270 million research papers to browse through and gain a deeper understanding of related studies on a particular topic. Additionally, you can use SciSpace Copilot , your AI research assistant, for reading any lengthy research paper and getting a more summarized context of it. A hypothesis can be formed after evaluating many such summarized research papers. Copilot also offers explanations for theories and equations, explains paper in simplified version, allows you to highlight any text in the paper or clip math equations and tables and provides a deeper, clear understanding of what is being said. This can improve the hypothesis by helping you identify potential research gaps.

3. Create a 3-dimensional hypothesis

Variables are an essential part of any reasonable hypothesis. So, identify your independent and dependent variable(s) and form a correlation between them. The ideal way to do this is to write the hypothetical assumption in the ‘if-then' form. If you use this form, make sure that you state the predefined relationship between the variables.

In another way, you can choose to present your hypothesis as a comparison between two variables. Here, you must specify the difference you expect to observe in the results.

4. Write the first draft

Now that everything is in place, it's time to write your hypothesis. For starters, create the first draft. In this version, write what you expect to find from your research.

Clearly separate your independent and dependent variables and the link between them. Don't fixate on syntax at this stage. The goal is to ensure your hypothesis addresses the issue.

5. Proof your hypothesis

After preparing the first draft of your hypothesis, you need to inspect it thoroughly. It should tick all the boxes, like being concise, straightforward, relevant, and accurate. Your final hypothesis has to be well-structured as well.

Research projects are an exciting and crucial part of being a scholar. And once you have your research question, you need a great hypothesis to begin conducting research. Thus, knowing how to write a hypothesis is very important.

Now that you have a firmer grasp on what a good hypothesis constitutes, the different kinds there are, and what process to follow, you will find it much easier to write your hypothesis, which ultimately helps your research.

Now it's easier than ever to streamline your research workflow with SciSpace Discover . Its integrated, comprehensive end-to-end platform for research allows scholars to easily discover, write and publish their research and fosters collaboration.

It includes everything you need, including a repository of over 270 million research papers across disciplines, SEO-optimized summaries and public profiles to show your expertise and experience.

If you found these tips on writing a research hypothesis useful, head over to our blog on Statistical Hypothesis Testing to learn about the top researchers, papers, and institutions in this domain.

Frequently Asked Questions (FAQs)

1. what is the definition of hypothesis.

According to the Oxford dictionary, a hypothesis is defined as “An idea or explanation of something that is based on a few known facts, but that has not yet been proved to be true or correct”.

2. What is an example of hypothesis?

The hypothesis is a statement that proposes a relationship between two or more variables. An example: "If we increase the number of new users who join our platform by 25%, then we will see an increase in revenue."

3. What is an example of null hypothesis?

A null hypothesis is a statement that there is no relationship between two variables. The null hypothesis is written as H0. The null hypothesis states that there is no effect. For example, if you're studying whether or not a particular type of exercise increases strength, your null hypothesis will be "there is no difference in strength between people who exercise and people who don't."

4. What are the types of research?

• Fundamental research

• Applied research

• Qualitative research

• Quantitative research

• Mixed research

• Exploratory research

• Longitudinal research

• Cross-sectional research

• Field research

• Laboratory research

• Fixed research

• Flexible research

• Action research

• Policy research

• Classification research

• Comparative research

• Causal research

• Inductive research

• Deductive research

5. How to write a hypothesis?

• Your hypothesis should be able to predict the relationship and outcome.

• Avoid wordiness by keeping it simple and brief.

• Your hypothesis should contain observable and testable outcomes.

• Your hypothesis should be relevant to the research question.

6. What are the 2 types of hypothesis?

• Null hypotheses are used to test the claim that "there is no difference between two groups of data".

• Alternative hypotheses test the claim that "there is a difference between two data groups".

7. Difference between research question and research hypothesis?

A research question is a broad, open-ended question you will try to answer through your research. A hypothesis is a statement based on prior research or theory that you expect to be true due to your study. Example - Research question: What are the factors that influence the adoption of the new technology? Research hypothesis: There is a positive relationship between age, education and income level with the adoption of the new technology.

8. What is plural for hypothesis?

The plural of hypothesis is hypotheses. Here's an example of how it would be used in a statement, "Numerous well-considered hypotheses are presented in this part, and they are supported by tables and figures that are well-illustrated."

9. What is the red queen hypothesis?

The red queen hypothesis in evolutionary biology states that species must constantly evolve to avoid extinction because if they don't, they will be outcompeted by other species that are evolving. Leigh Van Valen first proposed it in 1973; since then, it has been tested and substantiated many times.

10. Who is known as the father of null hypothesis?

The father of the null hypothesis is Sir Ronald Fisher. He published a paper in 1925 that introduced the concept of null hypothesis testing, and he was also the first to use the term itself.

11. When to reject null hypothesis?

You need to find a significant difference between your two populations to reject the null hypothesis. You can determine that by running statistical tests such as an independent sample t-test or a dependent sample t-test. You should reject the null hypothesis if the p-value is less than 0.05.

formulating research hypotheses

You might also like

Consensus GPT vs. SciSpace GPT: Choose the Best GPT for Research

Consensus GPT vs. SciSpace GPT: Choose the Best GPT for Research

Sumalatha G

Literature Review and Theoretical Framework: Understanding the Differences

Nikhil Seethi

Types of Essays in Academic Writing - Quick Guide (2024)

Educational resources and simple solutions for your research journey

Research hypothesis: What it is, how to write it, types, and examples

What is a Research Hypothesis: How to Write it, Types, and Examples

formulating research hypotheses

Any research begins with a research question and a research hypothesis . A research question alone may not suffice to design the experiment(s) needed to answer it. A hypothesis is central to the scientific method. But what is a hypothesis ? A hypothesis is a testable statement that proposes a possible explanation to a phenomenon, and it may include a prediction. Next, you may ask what is a research hypothesis ? Simply put, a research hypothesis is a prediction or educated guess about the relationship between the variables that you want to investigate.  

It is important to be thorough when developing your research hypothesis. Shortcomings in the framing of a hypothesis can affect the study design and the results. A better understanding of the research hypothesis definition and characteristics of a good hypothesis will make it easier for you to develop your own hypothesis for your research. Let’s dive in to know more about the types of research hypothesis , how to write a research hypothesis , and some research hypothesis examples .  

Table of Contents

What is a hypothesis ?  

A hypothesis is based on the existing body of knowledge in a study area. Framed before the data are collected, a hypothesis states the tentative relationship between independent and dependent variables, along with a prediction of the outcome.  

What is a research hypothesis ?  

Young researchers starting out their journey are usually brimming with questions like “ What is a hypothesis ?” “ What is a research hypothesis ?” “How can I write a good research hypothesis ?”   

A research hypothesis is a statement that proposes a possible explanation for an observable phenomenon or pattern. It guides the direction of a study and predicts the outcome of the investigation. A research hypothesis is testable, i.e., it can be supported or disproven through experimentation or observation.     

formulating research hypotheses

Characteristics of a good hypothesis  

Here are the characteristics of a good hypothesis :  

  • Clearly formulated and free of language errors and ambiguity  
  • Concise and not unnecessarily verbose  
  • Has clearly defined variables  
  • Testable and stated in a way that allows for it to be disproven  
  • Can be tested using a research design that is feasible, ethical, and practical   
  • Specific and relevant to the research problem  
  • Rooted in a thorough literature search  
  • Can generate new knowledge or understanding.  

How to create an effective research hypothesis  

A study begins with the formulation of a research question. A researcher then performs background research. This background information forms the basis for building a good research hypothesis . The researcher then performs experiments, collects, and analyzes the data, interprets the findings, and ultimately, determines if the findings support or negate the original hypothesis.  

Let’s look at each step for creating an effective, testable, and good research hypothesis :  

  • Identify a research problem or question: Start by identifying a specific research problem.   
  • Review the literature: Conduct an in-depth review of the existing literature related to the research problem to grasp the current knowledge and gaps in the field.   
  • Formulate a clear and testable hypothesis : Based on the research question, use existing knowledge to form a clear and testable hypothesis . The hypothesis should state a predicted relationship between two or more variables that can be measured and manipulated. Improve the original draft till it is clear and meaningful.  
  • State the null hypothesis: The null hypothesis is a statement that there is no relationship between the variables you are studying.   
  • Define the population and sample: Clearly define the population you are studying and the sample you will be using for your research.  
  • Select appropriate methods for testing the hypothesis: Select appropriate research methods, such as experiments, surveys, or observational studies, which will allow you to test your research hypothesis .  

Remember that creating a research hypothesis is an iterative process, i.e., you might have to revise it based on the data you collect. You may need to test and reject several hypotheses before answering the research problem.  

How to write a research hypothesis  

When you start writing a research hypothesis , you use an “if–then” statement format, which states the predicted relationship between two or more variables. Clearly identify the independent variables (the variables being changed) and the dependent variables (the variables being measured), as well as the population you are studying. Review and revise your hypothesis as needed.  

An example of a research hypothesis in this format is as follows:  

“ If [athletes] follow [cold water showers daily], then their [endurance] increases.”  

Population: athletes  

Independent variable: daily cold water showers  

Dependent variable: endurance  

You may have understood the characteristics of a good hypothesis . But note that a research hypothesis is not always confirmed; a researcher should be prepared to accept or reject the hypothesis based on the study findings.  

formulating research hypotheses

Research hypothesis checklist  

Following from above, here is a 10-point checklist for a good research hypothesis :  

  • Testable: A research hypothesis should be able to be tested via experimentation or observation.  
  • Specific: A research hypothesis should clearly state the relationship between the variables being studied.  
  • Based on prior research: A research hypothesis should be based on existing knowledge and previous research in the field.  
  • Falsifiable: A research hypothesis should be able to be disproven through testing.  
  • Clear and concise: A research hypothesis should be stated in a clear and concise manner.  
  • Logical: A research hypothesis should be logical and consistent with current understanding of the subject.  
  • Relevant: A research hypothesis should be relevant to the research question and objectives.  
  • Feasible: A research hypothesis should be feasible to test within the scope of the study.  
  • Reflects the population: A research hypothesis should consider the population or sample being studied.  
  • Uncomplicated: A good research hypothesis is written in a way that is easy for the target audience to understand.  

By following this research hypothesis checklist , you will be able to create a research hypothesis that is strong, well-constructed, and more likely to yield meaningful results.  

Research hypothesis: What it is, how to write it, types, and examples

Types of research hypothesis  

Different types of research hypothesis are used in scientific research:  

1. Null hypothesis:

A null hypothesis states that there is no change in the dependent variable due to changes to the independent variable. This means that the results are due to chance and are not significant. A null hypothesis is denoted as H0 and is stated as the opposite of what the alternative hypothesis states.   

Example: “ The newly identified virus is not zoonotic .”  

2. Alternative hypothesis:

This states that there is a significant difference or relationship between the variables being studied. It is denoted as H1 or Ha and is usually accepted or rejected in favor of the null hypothesis.  

Example: “ The newly identified virus is zoonotic .”  

3. Directional hypothesis :

This specifies the direction of the relationship or difference between variables; therefore, it tends to use terms like increase, decrease, positive, negative, more, or less.   

Example: “ The inclusion of intervention X decreases infant mortality compared to the original treatment .”   

4. Non-directional hypothesis:

While it does not predict the exact direction or nature of the relationship between the two variables, a non-directional hypothesis states the existence of a relationship or difference between variables but not the direction, nature, or magnitude of the relationship. A non-directional hypothesis may be used when there is no underlying theory or when findings contradict previous research.  

Example, “ Cats and dogs differ in the amount of affection they express .”  

5. Simple hypothesis :

A simple hypothesis only predicts the relationship between one independent and another independent variable.  

Example: “ Applying sunscreen every day slows skin aging .”  

6 . Complex hypothesis :

A complex hypothesis states the relationship or difference between two or more independent and dependent variables.   

Example: “ Applying sunscreen every day slows skin aging, reduces sun burn, and reduces the chances of skin cancer .” (Here, the three dependent variables are slowing skin aging, reducing sun burn, and reducing the chances of skin cancer.)  

7. Associative hypothesis:  

An associative hypothesis states that a change in one variable results in the change of the other variable. The associative hypothesis defines interdependency between variables.  

Example: “ There is a positive association between physical activity levels and overall health .”  

8 . Causal hypothesis:

A causal hypothesis proposes a cause-and-effect interaction between variables.  

Example: “ Long-term alcohol use causes liver damage .”  

Note that some of the types of research hypothesis mentioned above might overlap. The types of hypothesis chosen will depend on the research question and the objective of the study.  

formulating research hypotheses

Research hypothesis examples  

Here are some good research hypothesis examples :  

“The use of a specific type of therapy will lead to a reduction in symptoms of depression in individuals with a history of major depressive disorder.”  

“Providing educational interventions on healthy eating habits will result in weight loss in overweight individuals.”  

“Plants that are exposed to certain types of music will grow taller than those that are not exposed to music.”  

“The use of the plant growth regulator X will lead to an increase in the number of flowers produced by plants.”  

Characteristics that make a research hypothesis weak are unclear variables, unoriginality, being too general or too vague, and being untestable. A weak hypothesis leads to weak research and improper methods.   

Some bad research hypothesis examples (and the reasons why they are “bad”) are as follows:  

“This study will show that treatment X is better than any other treatment . ” (This statement is not testable, too broad, and does not consider other treatments that may be effective.)  

“This study will prove that this type of therapy is effective for all mental disorders . ” (This statement is too broad and not testable as mental disorders are complex and different disorders may respond differently to different types of therapy.)  

“Plants can communicate with each other through telepathy . ” (This statement is not testable and lacks a scientific basis.)  

Importance of testable hypothesis  

If a research hypothesis is not testable, the results will not prove or disprove anything meaningful. The conclusions will be vague at best. A testable hypothesis helps a researcher focus on the study outcome and understand the implication of the question and the different variables involved. A testable hypothesis helps a researcher make precise predictions based on prior research.  

To be considered testable, there must be a way to prove that the hypothesis is true or false; further, the results of the hypothesis must be reproducible.  

Research hypothesis: What it is, how to write it, types, and examples

Frequently Asked Questions (FAQs) on research hypothesis  

1. What is the difference between research question and research hypothesis ?  

A research question defines the problem and helps outline the study objective(s). It is an open-ended statement that is exploratory or probing in nature. Therefore, it does not make predictions or assumptions. It helps a researcher identify what information to collect. A research hypothesis , however, is a specific, testable prediction about the relationship between variables. Accordingly, it guides the study design and data analysis approach.

2. When to reject null hypothesis ?

A null hypothesis should be rejected when the evidence from a statistical test shows that it is unlikely to be true. This happens when the test statistic (e.g., p -value) is less than the defined significance level (e.g., 0.05). Rejecting the null hypothesis does not necessarily mean that the alternative hypothesis is true; it simply means that the evidence found is not compatible with the null hypothesis.  

3. How can I be sure my hypothesis is testable?  

A testable hypothesis should be specific and measurable, and it should state a clear relationship between variables that can be tested with data. To ensure that your hypothesis is testable, consider the following:  

  • Clearly define the key variables in your hypothesis. You should be able to measure and manipulate these variables in a way that allows you to test the hypothesis.  
  • The hypothesis should predict a specific outcome or relationship between variables that can be measured or quantified.   
  • You should be able to collect the necessary data within the constraints of your study.  
  • It should be possible for other researchers to replicate your study, using the same methods and variables.   
  • Your hypothesis should be testable by using appropriate statistical analysis techniques, so you can draw conclusions, and make inferences about the population from the sample data.  
  • The hypothesis should be able to be disproven or rejected through the collection of data.  

4. How do I revise my research hypothesis if my data does not support it?  

If your data does not support your research hypothesis , you will need to revise it or develop a new one. You should examine your data carefully and identify any patterns or anomalies, re-examine your research question, and/or revisit your theory to look for any alternative explanations for your results. Based on your review of the data, literature, and theories, modify your research hypothesis to better align it with the results you obtained. Use your revised hypothesis to guide your research design and data collection. It is important to remain objective throughout the process.  

5. I am performing exploratory research. Do I need to formulate a research hypothesis?  

As opposed to “confirmatory” research, where a researcher has some idea about the relationship between the variables under investigation, exploratory research (or hypothesis-generating research) looks into a completely new topic about which limited information is available. Therefore, the researcher will not have any prior hypotheses. In such cases, a researcher will need to develop a post-hoc hypothesis. A post-hoc research hypothesis is generated after these results are known.  

6. How is a research hypothesis different from a research question?

A research question is an inquiry about a specific topic or phenomenon, typically expressed as a question. It seeks to explore and understand a particular aspect of the research subject. In contrast, a research hypothesis is a specific statement or prediction that suggests an expected relationship between variables. It is formulated based on existing knowledge or theories and guides the research design and data analysis.

7. Can a research hypothesis change during the research process?

Yes, research hypotheses can change during the research process. As researchers collect and analyze data, new insights and information may emerge that require modification or refinement of the initial hypotheses. This can be due to unexpected findings, limitations in the original hypotheses, or the need to explore additional dimensions of the research topic. Flexibility is crucial in research, allowing for adaptation and adjustment of hypotheses to align with the evolving understanding of the subject matter.

8. How many hypotheses should be included in a research study?

The number of research hypotheses in a research study varies depending on the nature and scope of the research. It is not necessary to have multiple hypotheses in every study. Some studies may have only one primary hypothesis, while others may have several related hypotheses. The number of hypotheses should be determined based on the research objectives, research questions, and the complexity of the research topic. It is important to ensure that the hypotheses are focused, testable, and directly related to the research aims.

9. Can research hypotheses be used in qualitative research?

Yes, research hypotheses can be used in qualitative research, although they are more commonly associated with quantitative research. In qualitative research, hypotheses may be formulated as tentative or exploratory statements that guide the investigation. Instead of testing hypotheses through statistical analysis, qualitative researchers may use the hypotheses to guide data collection and analysis, seeking to uncover patterns, themes, or relationships within the qualitative data. The emphasis in qualitative research is often on generating insights and understanding rather than confirming or rejecting specific research hypotheses through statistical testing.

Editage All Access is a subscription-based platform that unifies the best AI tools and services designed to speed up, simplify, and streamline every step of a researcher’s journey. The Editage All Access Pack is a one-of-a-kind subscription that unlocks full access to an AI writing assistant, literature recommender, journal finder, scientific illustration tool, and exclusive discounts on professional publication services from Editage.  

Based on 22+ years of experience in academia, Editage All Access empowers researchers to put their best research forward and move closer to success. Explore our top AI Tools pack, AI Tools + Publication Services pack, or Build Your Own Plan. Find everything a researcher needs to succeed, all in one place –  Get All Access now starting at just $14 a month !    

Related Posts

research funding sources

What are the Best Research Funding Sources

inductive research

Inductive vs. Deductive Research Approach

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology
  • How to Write a Strong Hypothesis | Guide & Examples

How to Write a Strong Hypothesis | Guide & Examples

Published on 6 May 2022 by Shona McCombes .

A hypothesis is a statement that can be tested by scientific research. If you want to test a relationship between two or more variables, you need to write hypotheses before you start your experiment or data collection.

Table of contents

What is a hypothesis, developing a hypothesis (with example), hypothesis examples, frequently asked questions about writing hypotheses.

A hypothesis states your predictions about what your research will find. It is a tentative answer to your research question that has not yet been tested. For some research projects, you might have to write several hypotheses that address different aspects of your research question.

A hypothesis is not just a guess – it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations, and statistical analysis of data).

Variables in hypotheses

Hypotheses propose a relationship between two or more variables . An independent variable is something the researcher changes or controls. A dependent variable is something the researcher observes and measures.

In this example, the independent variable is exposure to the sun – the assumed cause . The dependent variable is the level of happiness – the assumed effect .

Prevent plagiarism, run a free check.

Step 1: ask a question.

Writing a hypothesis begins with a research question that you want to answer. The question should be focused, specific, and researchable within the constraints of your project.

Step 2: Do some preliminary research

Your initial answer to the question should be based on what is already known about the topic. Look for theories and previous studies to help you form educated assumptions about what your research will find.

At this stage, you might construct a conceptual framework to identify which variables you will study and what you think the relationships are between them. Sometimes, you’ll have to operationalise more complex constructs.

Step 3: Formulate your hypothesis

Now you should have some idea of what you expect to find. Write your initial answer to the question in a clear, concise sentence.

Step 4: Refine your hypothesis

You need to make sure your hypothesis is specific and testable. There are various ways of phrasing a hypothesis, but all the terms you use should have clear definitions, and the hypothesis should contain:

  • The relevant variables
  • The specific group being studied
  • The predicted outcome of the experiment or analysis

Step 5: Phrase your hypothesis in three ways

To identify the variables, you can write a simple prediction in if … then form. The first part of the sentence states the independent variable and the second part states the dependent variable.

In academic research, hypotheses are more commonly phrased in terms of correlations or effects, where you directly state the predicted relationship between variables.

If you are comparing two groups, the hypothesis can state what difference you expect to find between them.

Step 6. Write a null hypothesis

If your research involves statistical hypothesis testing , you will also have to write a null hypothesis. The null hypothesis is the default position that there is no association between the variables. The null hypothesis is written as H 0 , while the alternative hypothesis is H 1 or H a .

Research question Hypothesis Null hypothesis
What are the health benefits of eating an apple a day? Increasing apple consumption in over-60s will result in decreasing frequency of doctor’s visits. Increasing apple consumption in over-60s will have no effect on frequency of doctor’s visits.
Which airlines have the most delays? Low-cost airlines are more likely to have delays than premium airlines. Low-cost and premium airlines are equally likely to have delays.
Can flexible work arrangements improve job satisfaction? Employees who have flexible working hours will report greater job satisfaction than employees who work fixed hours. There is no relationship between working hour flexibility and job satisfaction.
How effective is secondary school sex education at reducing teen pregnancies? Teenagers who received sex education lessons throughout secondary school will have lower rates of unplanned pregnancy than teenagers who did not receive any sex education. Secondary school sex education has no effect on teen pregnancy rates.
What effect does daily use of social media have on the attention span of under-16s? There is a negative correlation between time spent on social media and attention span in under-16s. There is no relationship between social media use and attention span in under-16s.

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

A hypothesis is not just a guess. It should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations, and statistical analysis of data).

A research hypothesis is your proposed answer to your research question. The research hypothesis usually includes an explanation (‘ x affects y because …’).

A statistical hypothesis, on the other hand, is a mathematical statement about a population parameter. Statistical hypotheses always come in pairs: the null and alternative hypotheses. In a well-designed study , the statistical hypotheses correspond logically to the research hypothesis.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

McCombes, S. (2022, May 06). How to Write a Strong Hypothesis | Guide & Examples. Scribbr. Retrieved 12 August 2024, from https://www.scribbr.co.uk/research-methods/hypothesis-writing/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, operationalisation | a guide with examples, pros & cons, what is a conceptual framework | tips & examples, a quick guide to experimental design | 5 steps & examples.

Enago Academy

How to Develop a Good Research Hypothesis

' src=

The story of a research study begins by asking a question. Researchers all around the globe are asking curious questions and formulating research hypothesis. However, whether the research study provides an effective conclusion depends on how well one develops a good research hypothesis. Research hypothesis examples could help researchers get an idea as to how to write a good research hypothesis.

This blog will help you understand what is a research hypothesis, its characteristics and, how to formulate a research hypothesis

Table of Contents

What is Hypothesis?

Hypothesis is an assumption or an idea proposed for the sake of argument so that it can be tested. It is a precise, testable statement of what the researchers predict will be outcome of the study.  Hypothesis usually involves proposing a relationship between two variables: the independent variable (what the researchers change) and the dependent variable (what the research measures).

What is a Research Hypothesis?

Research hypothesis is a statement that introduces a research question and proposes an expected result. It is an integral part of the scientific method that forms the basis of scientific experiments. Therefore, you need to be careful and thorough when building your research hypothesis. A minor flaw in the construction of your hypothesis could have an adverse effect on your experiment. In research, there is a convention that the hypothesis is written in two forms, the null hypothesis, and the alternative hypothesis (called the experimental hypothesis when the method of investigation is an experiment).

Characteristics of a Good Research Hypothesis

As the hypothesis is specific, there is a testable prediction about what you expect to happen in a study. You may consider drawing hypothesis from previously published research based on the theory.

A good research hypothesis involves more effort than just a guess. In particular, your hypothesis may begin with a question that could be further explored through background research.

To help you formulate a promising research hypothesis, you should ask yourself the following questions:

  • Is the language clear and focused?
  • What is the relationship between your hypothesis and your research topic?
  • Is your hypothesis testable? If yes, then how?
  • What are the possible explanations that you might want to explore?
  • Does your hypothesis include both an independent and dependent variable?
  • Can you manipulate your variables without hampering the ethical standards?
  • Does your research predict the relationship and outcome?
  • Is your research simple and concise (avoids wordiness)?
  • Is it clear with no ambiguity or assumptions about the readers’ knowledge
  • Is your research observable and testable results?
  • Is it relevant and specific to the research question or problem?

research hypothesis example

The questions listed above can be used as a checklist to make sure your hypothesis is based on a solid foundation. Furthermore, it can help you identify weaknesses in your hypothesis and revise it if necessary.

Source: Educational Hub

How to formulate a research hypothesis.

A testable hypothesis is not a simple statement. It is rather an intricate statement that needs to offer a clear introduction to a scientific experiment, its intentions, and the possible outcomes. However, there are some important things to consider when building a compelling hypothesis.

1. State the problem that you are trying to solve.

Make sure that the hypothesis clearly defines the topic and the focus of the experiment.

2. Try to write the hypothesis as an if-then statement.

Follow this template: If a specific action is taken, then a certain outcome is expected.

3. Define the variables

Independent variables are the ones that are manipulated, controlled, or changed. Independent variables are isolated from other factors of the study.

Dependent variables , as the name suggests are dependent on other factors of the study. They are influenced by the change in independent variable.

4. Scrutinize the hypothesis

Evaluate assumptions, predictions, and evidence rigorously to refine your understanding.

Types of Research Hypothesis

The types of research hypothesis are stated below:

1. Simple Hypothesis

It predicts the relationship between a single dependent variable and a single independent variable.

2. Complex Hypothesis

It predicts the relationship between two or more independent and dependent variables.

3. Directional Hypothesis

It specifies the expected direction to be followed to determine the relationship between variables and is derived from theory. Furthermore, it implies the researcher’s intellectual commitment to a particular outcome.

4. Non-directional Hypothesis

It does not predict the exact direction or nature of the relationship between the two variables. The non-directional hypothesis is used when there is no theory involved or when findings contradict previous research.

5. Associative and Causal Hypothesis

The associative hypothesis defines interdependency between variables. A change in one variable results in the change of the other variable. On the other hand, the causal hypothesis proposes an effect on the dependent due to manipulation of the independent variable.

6. Null Hypothesis

Null hypothesis states a negative statement to support the researcher’s findings that there is no relationship between two variables. There will be no changes in the dependent variable due the manipulation of the independent variable. Furthermore, it states results are due to chance and are not significant in terms of supporting the idea being investigated.

7. Alternative Hypothesis

It states that there is a relationship between the two variables of the study and that the results are significant to the research topic. An experimental hypothesis predicts what changes will take place in the dependent variable when the independent variable is manipulated. Also, it states that the results are not due to chance and that they are significant in terms of supporting the theory being investigated.

Research Hypothesis Examples of Independent and Dependent Variables

Research Hypothesis Example 1 The greater number of coal plants in a region (independent variable) increases water pollution (dependent variable). If you change the independent variable (building more coal factories), it will change the dependent variable (amount of water pollution).
Research Hypothesis Example 2 What is the effect of diet or regular soda (independent variable) on blood sugar levels (dependent variable)? If you change the independent variable (the type of soda you consume), it will change the dependent variable (blood sugar levels)

You should not ignore the importance of the above steps. The validity of your experiment and its results rely on a robust testable hypothesis. Developing a strong testable hypothesis has few advantages, it compels us to think intensely and specifically about the outcomes of a study. Consequently, it enables us to understand the implication of the question and the different variables involved in the study. Furthermore, it helps us to make precise predictions based on prior research. Hence, forming a hypothesis would be of great value to the research. Here are some good examples of testable hypotheses.

More importantly, you need to build a robust testable research hypothesis for your scientific experiments. A testable hypothesis is a hypothesis that can be proved or disproved as a result of experimentation.

Importance of a Testable Hypothesis

To devise and perform an experiment using scientific method, you need to make sure that your hypothesis is testable. To be considered testable, some essential criteria must be met:

  • There must be a possibility to prove that the hypothesis is true.
  • There must be a possibility to prove that the hypothesis is false.
  • The results of the hypothesis must be reproducible.

Without these criteria, the hypothesis and the results will be vague. As a result, the experiment will not prove or disprove anything significant.

What are your experiences with building hypotheses for scientific experiments? What challenges did you face? How did you overcome these challenges? Please share your thoughts with us in the comments section.

Frequently Asked Questions

The steps to write a research hypothesis are: 1. Stating the problem: Ensure that the hypothesis defines the research problem 2. Writing a hypothesis as an 'if-then' statement: Include the action and the expected outcome of your study by following a ‘if-then’ structure. 3. Defining the variables: Define the variables as Dependent or Independent based on their dependency to other factors. 4. Scrutinizing the hypothesis: Identify the type of your hypothesis

Hypothesis testing is a statistical tool which is used to make inferences about a population data to draw conclusions for a particular hypothesis.

Hypothesis in statistics is a formal statement about the nature of a population within a structured framework of a statistical model. It is used to test an existing hypothesis by studying a population.

Research hypothesis is a statement that introduces a research question and proposes an expected result. It forms the basis of scientific experiments.

The different types of hypothesis in research are: • Null hypothesis: Null hypothesis is a negative statement to support the researcher’s findings that there is no relationship between two variables. • Alternate hypothesis: Alternate hypothesis predicts the relationship between the two variables of the study. • Directional hypothesis: Directional hypothesis specifies the expected direction to be followed to determine the relationship between variables. • Non-directional hypothesis: Non-directional hypothesis does not predict the exact direction or nature of the relationship between the two variables. • Simple hypothesis: Simple hypothesis predicts the relationship between a single dependent variable and a single independent variable. • Complex hypothesis: Complex hypothesis predicts the relationship between two or more independent and dependent variables. • Associative and casual hypothesis: Associative and casual hypothesis predicts the relationship between two or more independent and dependent variables. • Empirical hypothesis: Empirical hypothesis can be tested via experiments and observation. • Statistical hypothesis: A statistical hypothesis utilizes statistical models to draw conclusions about broader populations.

' src=

Wow! You really simplified your explanation that even dummies would find it easy to comprehend. Thank you so much.

Thanks a lot for your valuable guidance.

I enjoy reading the post. Hypotheses are actually an intrinsic part in a study. It bridges the research question and the methodology of the study.

Useful piece!

This is awesome.Wow.

It very interesting to read the topic, can you guide me any specific example of hypothesis process establish throw the Demand and supply of the specific product in market

Nicely explained

It is really a useful for me Kindly give some examples of hypothesis

It was a well explained content ,can you please give me an example with the null and alternative hypothesis illustrated

clear and concise. thanks.

So Good so Amazing

Good to learn

Thanks a lot for explaining to my level of understanding

Explained well and in simple terms. Quick read! Thank you

It awesome. It has really positioned me in my research project

Rate this article Cancel Reply

Your email address will not be published.

formulating research hypotheses

Enago Academy's Most Popular Articles

Content Analysis vs Thematic Analysis: What's the difference?

  • Reporting Research

Choosing the Right Analytical Approach: Thematic analysis vs. content analysis for data interpretation

In research, choosing the right approach to understand data is crucial for deriving meaningful insights.…

Cross-sectional and Longitudinal Study Design

Comparing Cross Sectional and Longitudinal Studies: 5 steps for choosing the right approach

The process of choosing the right research design can put ourselves at the crossroads of…

formulating research hypotheses

  • Industry News

COPE Forum Discussion Highlights Challenges and Urges Clarity in Institutional Authorship Standards

The COPE forum discussion held in December 2023 initiated with a fundamental question — is…

Networking in Academic Conferences

  • Career Corner

Unlocking the Power of Networking in Academic Conferences

Embarking on your first academic conference experience? Fear not, we got you covered! Academic conferences…

Research recommendation

Research Recommendations – Guiding policy-makers for evidence-based decision making

Research recommendations play a crucial role in guiding scholars and researchers toward fruitful avenues of…

Choosing the Right Analytical Approach: Thematic analysis vs. content analysis for…

Comparing Cross Sectional and Longitudinal Studies: 5 steps for choosing the right…

How to Design Effective Research Questionnaires for Robust Findings

formulating research hypotheses

Sign-up to read more

Subscribe for free to get unrestricted access to all our resources on research writing and academic publishing including:

  • 2000+ blog articles
  • 50+ Webinars
  • 10+ Expert podcasts
  • 50+ Infographics
  • 10+ Checklists
  • Research Guides

We hate spam too. We promise to protect your privacy and never spam you.

  • Publishing Research
  • AI in Academia
  • Promoting Research
  • Diversity and Inclusion
  • Infographics
  • Expert Video Library
  • Other Resources
  • Enago Learn
  • Upcoming & On-Demand Webinars
  • Peer-Review Week 2023
  • Open Access Week 2023
  • Conference Videos
  • Enago Report
  • Journal Finder
  • Enago Plagiarism & AI Grammar Check
  • Editing Services
  • Publication Support Services
  • Research Impact
  • Translation Services
  • Publication solutions
  • AI-Based Solutions
  • Thought Leadership
  • Call for Articles
  • Call for Speakers
  • Author Training
  • Edit Profile

I am looking for Editing/ Proofreading services for my manuscript Tentative date of next journal submission:

formulating research hypotheses

In your opinion, what is the most effective way to improve integrity in the peer review process?

  • Privacy Policy

Research Method

Home » What is a Hypothesis – Types, Examples and Writing Guide

What is a Hypothesis – Types, Examples and Writing Guide

Table of Contents

What is a Hypothesis

Definition:

Hypothesis is an educated guess or proposed explanation for a phenomenon, based on some initial observations or data. It is a tentative statement that can be tested and potentially proven or disproven through further investigation and experimentation.

Hypothesis is often used in scientific research to guide the design of experiments and the collection and analysis of data. It is an essential element of the scientific method, as it allows researchers to make predictions about the outcome of their experiments and to test those predictions to determine their accuracy.

Types of Hypothesis

Types of Hypothesis are as follows:

Research Hypothesis

A research hypothesis is a statement that predicts a relationship between variables. It is usually formulated as a specific statement that can be tested through research, and it is often used in scientific research to guide the design of experiments.

Null Hypothesis

The null hypothesis is a statement that assumes there is no significant difference or relationship between variables. It is often used as a starting point for testing the research hypothesis, and if the results of the study reject the null hypothesis, it suggests that there is a significant difference or relationship between variables.

Alternative Hypothesis

An alternative hypothesis is a statement that assumes there is a significant difference or relationship between variables. It is often used as an alternative to the null hypothesis and is tested against the null hypothesis to determine which statement is more accurate.

Directional Hypothesis

A directional hypothesis is a statement that predicts the direction of the relationship between variables. For example, a researcher might predict that increasing the amount of exercise will result in a decrease in body weight.

Non-directional Hypothesis

A non-directional hypothesis is a statement that predicts the relationship between variables but does not specify the direction. For example, a researcher might predict that there is a relationship between the amount of exercise and body weight, but they do not specify whether increasing or decreasing exercise will affect body weight.

Statistical Hypothesis

A statistical hypothesis is a statement that assumes a particular statistical model or distribution for the data. It is often used in statistical analysis to test the significance of a particular result.

Composite Hypothesis

A composite hypothesis is a statement that assumes more than one condition or outcome. It can be divided into several sub-hypotheses, each of which represents a different possible outcome.

Empirical Hypothesis

An empirical hypothesis is a statement that is based on observed phenomena or data. It is often used in scientific research to develop theories or models that explain the observed phenomena.

Simple Hypothesis

A simple hypothesis is a statement that assumes only one outcome or condition. It is often used in scientific research to test a single variable or factor.

Complex Hypothesis

A complex hypothesis is a statement that assumes multiple outcomes or conditions. It is often used in scientific research to test the effects of multiple variables or factors on a particular outcome.

Applications of Hypothesis

Hypotheses are used in various fields to guide research and make predictions about the outcomes of experiments or observations. Here are some examples of how hypotheses are applied in different fields:

  • Science : In scientific research, hypotheses are used to test the validity of theories and models that explain natural phenomena. For example, a hypothesis might be formulated to test the effects of a particular variable on a natural system, such as the effects of climate change on an ecosystem.
  • Medicine : In medical research, hypotheses are used to test the effectiveness of treatments and therapies for specific conditions. For example, a hypothesis might be formulated to test the effects of a new drug on a particular disease.
  • Psychology : In psychology, hypotheses are used to test theories and models of human behavior and cognition. For example, a hypothesis might be formulated to test the effects of a particular stimulus on the brain or behavior.
  • Sociology : In sociology, hypotheses are used to test theories and models of social phenomena, such as the effects of social structures or institutions on human behavior. For example, a hypothesis might be formulated to test the effects of income inequality on crime rates.
  • Business : In business research, hypotheses are used to test the validity of theories and models that explain business phenomena, such as consumer behavior or market trends. For example, a hypothesis might be formulated to test the effects of a new marketing campaign on consumer buying behavior.
  • Engineering : In engineering, hypotheses are used to test the effectiveness of new technologies or designs. For example, a hypothesis might be formulated to test the efficiency of a new solar panel design.

How to write a Hypothesis

Here are the steps to follow when writing a hypothesis:

Identify the Research Question

The first step is to identify the research question that you want to answer through your study. This question should be clear, specific, and focused. It should be something that can be investigated empirically and that has some relevance or significance in the field.

Conduct a Literature Review

Before writing your hypothesis, it’s essential to conduct a thorough literature review to understand what is already known about the topic. This will help you to identify the research gap and formulate a hypothesis that builds on existing knowledge.

Determine the Variables

The next step is to identify the variables involved in the research question. A variable is any characteristic or factor that can vary or change. There are two types of variables: independent and dependent. The independent variable is the one that is manipulated or changed by the researcher, while the dependent variable is the one that is measured or observed as a result of the independent variable.

Formulate the Hypothesis

Based on the research question and the variables involved, you can now formulate your hypothesis. A hypothesis should be a clear and concise statement that predicts the relationship between the variables. It should be testable through empirical research and based on existing theory or evidence.

Write the Null Hypothesis

The null hypothesis is the opposite of the alternative hypothesis, which is the hypothesis that you are testing. The null hypothesis states that there is no significant difference or relationship between the variables. It is important to write the null hypothesis because it allows you to compare your results with what would be expected by chance.

Refine the Hypothesis

After formulating the hypothesis, it’s important to refine it and make it more precise. This may involve clarifying the variables, specifying the direction of the relationship, or making the hypothesis more testable.

Examples of Hypothesis

Here are a few examples of hypotheses in different fields:

  • Psychology : “Increased exposure to violent video games leads to increased aggressive behavior in adolescents.”
  • Biology : “Higher levels of carbon dioxide in the atmosphere will lead to increased plant growth.”
  • Sociology : “Individuals who grow up in households with higher socioeconomic status will have higher levels of education and income as adults.”
  • Education : “Implementing a new teaching method will result in higher student achievement scores.”
  • Marketing : “Customers who receive a personalized email will be more likely to make a purchase than those who receive a generic email.”
  • Physics : “An increase in temperature will cause an increase in the volume of a gas, assuming all other variables remain constant.”
  • Medicine : “Consuming a diet high in saturated fats will increase the risk of developing heart disease.”

Purpose of Hypothesis

The purpose of a hypothesis is to provide a testable explanation for an observed phenomenon or a prediction of a future outcome based on existing knowledge or theories. A hypothesis is an essential part of the scientific method and helps to guide the research process by providing a clear focus for investigation. It enables scientists to design experiments or studies to gather evidence and data that can support or refute the proposed explanation or prediction.

The formulation of a hypothesis is based on existing knowledge, observations, and theories, and it should be specific, testable, and falsifiable. A specific hypothesis helps to define the research question, which is important in the research process as it guides the selection of an appropriate research design and methodology. Testability of the hypothesis means that it can be proven or disproven through empirical data collection and analysis. Falsifiability means that the hypothesis should be formulated in such a way that it can be proven wrong if it is incorrect.

In addition to guiding the research process, the testing of hypotheses can lead to new discoveries and advancements in scientific knowledge. When a hypothesis is supported by the data, it can be used to develop new theories or models to explain the observed phenomenon. When a hypothesis is not supported by the data, it can help to refine existing theories or prompt the development of new hypotheses to explain the phenomenon.

When to use Hypothesis

Here are some common situations in which hypotheses are used:

  • In scientific research , hypotheses are used to guide the design of experiments and to help researchers make predictions about the outcomes of those experiments.
  • In social science research , hypotheses are used to test theories about human behavior, social relationships, and other phenomena.
  • I n business , hypotheses can be used to guide decisions about marketing, product development, and other areas. For example, a hypothesis might be that a new product will sell well in a particular market, and this hypothesis can be tested through market research.

Characteristics of Hypothesis

Here are some common characteristics of a hypothesis:

  • Testable : A hypothesis must be able to be tested through observation or experimentation. This means that it must be possible to collect data that will either support or refute the hypothesis.
  • Falsifiable : A hypothesis must be able to be proven false if it is not supported by the data. If a hypothesis cannot be falsified, then it is not a scientific hypothesis.
  • Clear and concise : A hypothesis should be stated in a clear and concise manner so that it can be easily understood and tested.
  • Based on existing knowledge : A hypothesis should be based on existing knowledge and research in the field. It should not be based on personal beliefs or opinions.
  • Specific : A hypothesis should be specific in terms of the variables being tested and the predicted outcome. This will help to ensure that the research is focused and well-designed.
  • Tentative: A hypothesis is a tentative statement or assumption that requires further testing and evidence to be confirmed or refuted. It is not a final conclusion or assertion.
  • Relevant : A hypothesis should be relevant to the research question or problem being studied. It should address a gap in knowledge or provide a new perspective on the issue.

Advantages of Hypothesis

Hypotheses have several advantages in scientific research and experimentation:

  • Guides research: A hypothesis provides a clear and specific direction for research. It helps to focus the research question, select appropriate methods and variables, and interpret the results.
  • Predictive powe r: A hypothesis makes predictions about the outcome of research, which can be tested through experimentation. This allows researchers to evaluate the validity of the hypothesis and make new discoveries.
  • Facilitates communication: A hypothesis provides a common language and framework for scientists to communicate with one another about their research. This helps to facilitate the exchange of ideas and promotes collaboration.
  • Efficient use of resources: A hypothesis helps researchers to use their time, resources, and funding efficiently by directing them towards specific research questions and methods that are most likely to yield results.
  • Provides a basis for further research: A hypothesis that is supported by data provides a basis for further research and exploration. It can lead to new hypotheses, theories, and discoveries.
  • Increases objectivity: A hypothesis can help to increase objectivity in research by providing a clear and specific framework for testing and interpreting results. This can reduce bias and increase the reliability of research findings.

Limitations of Hypothesis

Some Limitations of the Hypothesis are as follows:

  • Limited to observable phenomena: Hypotheses are limited to observable phenomena and cannot account for unobservable or intangible factors. This means that some research questions may not be amenable to hypothesis testing.
  • May be inaccurate or incomplete: Hypotheses are based on existing knowledge and research, which may be incomplete or inaccurate. This can lead to flawed hypotheses and erroneous conclusions.
  • May be biased: Hypotheses may be biased by the researcher’s own beliefs, values, or assumptions. This can lead to selective interpretation of data and a lack of objectivity in research.
  • Cannot prove causation: A hypothesis can only show a correlation between variables, but it cannot prove causation. This requires further experimentation and analysis.
  • Limited to specific contexts: Hypotheses are limited to specific contexts and may not be generalizable to other situations or populations. This means that results may not be applicable in other contexts or may require further testing.
  • May be affected by chance : Hypotheses may be affected by chance or random variation, which can obscure or distort the true relationship between variables.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Context of the Study

Context of the Study – Writing Guide and Examples

Research Report

Research Report – Example, Writing Guide and...

Research Methods

Research Methods – Types, Examples and Guide

Survey Instruments

Survey Instruments – List and Their Uses

Delimitations

Delimitations in Research – Types, Examples and...

Research Approach

Research Approach – Types Methods and Examples

  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Sweepstakes
  • Guided Meditations
  • Verywell Mind Insights
  • 2024 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

How to Write a Great Hypothesis

Hypothesis Definition, Format, Examples, and Tips

Verywell / Alex Dos Diaz

  • The Scientific Method

Hypothesis Format

Falsifiability of a hypothesis.

  • Operationalization

Hypothesis Types

Hypotheses examples.

  • Collecting Data

A hypothesis is a tentative statement about the relationship between two or more variables. It is a specific, testable prediction about what you expect to happen in a study. It is a preliminary answer to your question that helps guide the research process.

Consider a study designed to examine the relationship between sleep deprivation and test performance. The hypothesis might be: "This study is designed to assess the hypothesis that sleep-deprived people will perform worse on a test than individuals who are not sleep-deprived."

At a Glance

A hypothesis is crucial to scientific research because it offers a clear direction for what the researchers are looking to find. This allows them to design experiments to test their predictions and add to our scientific knowledge about the world. This article explores how a hypothesis is used in psychology research, how to write a good hypothesis, and the different types of hypotheses you might use.

The Hypothesis in the Scientific Method

In the scientific method , whether it involves research in psychology, biology, or some other area, a hypothesis represents what the researchers think will happen in an experiment. The scientific method involves the following steps:

  • Forming a question
  • Performing background research
  • Creating a hypothesis
  • Designing an experiment
  • Collecting data
  • Analyzing the results
  • Drawing conclusions
  • Communicating the results

The hypothesis is a prediction, but it involves more than a guess. Most of the time, the hypothesis begins with a question which is then explored through background research. At this point, researchers then begin to develop a testable hypothesis.

Unless you are creating an exploratory study, your hypothesis should always explain what you  expect  to happen.

In a study exploring the effects of a particular drug, the hypothesis might be that researchers expect the drug to have some type of effect on the symptoms of a specific illness. In psychology, the hypothesis might focus on how a certain aspect of the environment might influence a particular behavior.

Remember, a hypothesis does not have to be correct. While the hypothesis predicts what the researchers expect to see, the goal of the research is to determine whether this guess is right or wrong. When conducting an experiment, researchers might explore numerous factors to determine which ones might contribute to the ultimate outcome.

In many cases, researchers may find that the results of an experiment  do not  support the original hypothesis. When writing up these results, the researchers might suggest other options that should be explored in future studies.

In many cases, researchers might draw a hypothesis from a specific theory or build on previous research. For example, prior research has shown that stress can impact the immune system. So a researcher might hypothesize: "People with high-stress levels will be more likely to contract a common cold after being exposed to the virus than people who have low-stress levels."

In other instances, researchers might look at commonly held beliefs or folk wisdom. "Birds of a feather flock together" is one example of folk adage that a psychologist might try to investigate. The researcher might pose a specific hypothesis that "People tend to select romantic partners who are similar to them in interests and educational level."

Elements of a Good Hypothesis

So how do you write a good hypothesis? When trying to come up with a hypothesis for your research or experiments, ask yourself the following questions:

  • Is your hypothesis based on your research on a topic?
  • Can your hypothesis be tested?
  • Does your hypothesis include independent and dependent variables?

Before you come up with a specific hypothesis, spend some time doing background research. Once you have completed a literature review, start thinking about potential questions you still have. Pay attention to the discussion section in the  journal articles you read . Many authors will suggest questions that still need to be explored.

How to Formulate a Good Hypothesis

To form a hypothesis, you should take these steps:

  • Collect as many observations about a topic or problem as you can.
  • Evaluate these observations and look for possible causes of the problem.
  • Create a list of possible explanations that you might want to explore.
  • After you have developed some possible hypotheses, think of ways that you could confirm or disprove each hypothesis through experimentation. This is known as falsifiability.

In the scientific method ,  falsifiability is an important part of any valid hypothesis. In order to test a claim scientifically, it must be possible that the claim could be proven false.

Students sometimes confuse the idea of falsifiability with the idea that it means that something is false, which is not the case. What falsifiability means is that  if  something was false, then it is possible to demonstrate that it is false.

One of the hallmarks of pseudoscience is that it makes claims that cannot be refuted or proven false.

The Importance of Operational Definitions

A variable is a factor or element that can be changed and manipulated in ways that are observable and measurable. However, the researcher must also define how the variable will be manipulated and measured in the study.

Operational definitions are specific definitions for all relevant factors in a study. This process helps make vague or ambiguous concepts detailed and measurable.

For example, a researcher might operationally define the variable " test anxiety " as the results of a self-report measure of anxiety experienced during an exam. A "study habits" variable might be defined by the amount of studying that actually occurs as measured by time.

These precise descriptions are important because many things can be measured in various ways. Clearly defining these variables and how they are measured helps ensure that other researchers can replicate your results.

Replicability

One of the basic principles of any type of scientific research is that the results must be replicable.

Replication means repeating an experiment in the same way to produce the same results. By clearly detailing the specifics of how the variables were measured and manipulated, other researchers can better understand the results and repeat the study if needed.

Some variables are more difficult than others to define. For example, how would you operationally define a variable such as aggression ? For obvious ethical reasons, researchers cannot create a situation in which a person behaves aggressively toward others.

To measure this variable, the researcher must devise a measurement that assesses aggressive behavior without harming others. The researcher might utilize a simulated task to measure aggressiveness in this situation.

Hypothesis Checklist

  • Does your hypothesis focus on something that you can actually test?
  • Does your hypothesis include both an independent and dependent variable?
  • Can you manipulate the variables?
  • Can your hypothesis be tested without violating ethical standards?

The hypothesis you use will depend on what you are investigating and hoping to find. Some of the main types of hypotheses that you might use include:

  • Simple hypothesis : This type of hypothesis suggests there is a relationship between one independent variable and one dependent variable.
  • Complex hypothesis : This type suggests a relationship between three or more variables, such as two independent and dependent variables.
  • Null hypothesis : This hypothesis suggests no relationship exists between two or more variables.
  • Alternative hypothesis : This hypothesis states the opposite of the null hypothesis.
  • Statistical hypothesis : This hypothesis uses statistical analysis to evaluate a representative population sample and then generalizes the findings to the larger group.
  • Logical hypothesis : This hypothesis assumes a relationship between variables without collecting data or evidence.

A hypothesis often follows a basic format of "If {this happens} then {this will happen}." One way to structure your hypothesis is to describe what will happen to the  dependent variable  if you change the  independent variable .

The basic format might be: "If {these changes are made to a certain independent variable}, then we will observe {a change in a specific dependent variable}."

A few examples of simple hypotheses:

  • "Students who eat breakfast will perform better on a math exam than students who do not eat breakfast."
  • "Students who experience test anxiety before an English exam will get lower scores than students who do not experience test anxiety."​
  • "Motorists who talk on the phone while driving will be more likely to make errors on a driving course than those who do not talk on the phone."
  • "Children who receive a new reading intervention will have higher reading scores than students who do not receive the intervention."

Examples of a complex hypothesis include:

  • "People with high-sugar diets and sedentary activity levels are more likely to develop depression."
  • "Younger people who are regularly exposed to green, outdoor areas have better subjective well-being than older adults who have limited exposure to green spaces."

Examples of a null hypothesis include:

  • "There is no difference in anxiety levels between people who take St. John's wort supplements and those who do not."
  • "There is no difference in scores on a memory recall task between children and adults."
  • "There is no difference in aggression levels between children who play first-person shooter games and those who do not."

Examples of an alternative hypothesis:

  • "People who take St. John's wort supplements will have less anxiety than those who do not."
  • "Adults will perform better on a memory task than children."
  • "Children who play first-person shooter games will show higher levels of aggression than children who do not." 

Collecting Data on Your Hypothesis

Once a researcher has formed a testable hypothesis, the next step is to select a research design and start collecting data. The research method depends largely on exactly what they are studying. There are two basic types of research methods: descriptive research and experimental research.

Descriptive Research Methods

Descriptive research such as  case studies ,  naturalistic observations , and surveys are often used when  conducting an experiment is difficult or impossible. These methods are best used to describe different aspects of a behavior or psychological phenomenon.

Once a researcher has collected data using descriptive methods, a  correlational study  can examine how the variables are related. This research method might be used to investigate a hypothesis that is difficult to test experimentally.

Experimental Research Methods

Experimental methods  are used to demonstrate causal relationships between variables. In an experiment, the researcher systematically manipulates a variable of interest (known as the independent variable) and measures the effect on another variable (known as the dependent variable).

Unlike correlational studies, which can only be used to determine if there is a relationship between two variables, experimental methods can be used to determine the actual nature of the relationship—whether changes in one variable actually  cause  another to change.

The hypothesis is a critical part of any scientific exploration. It represents what researchers expect to find in a study or experiment. In situations where the hypothesis is unsupported by the research, the research still has value. Such research helps us better understand how different aspects of the natural world relate to one another. It also helps us develop new hypotheses that can then be tested in the future.

Thompson WH, Skau S. On the scope of scientific hypotheses .  R Soc Open Sci . 2023;10(8):230607. doi:10.1098/rsos.230607

Taran S, Adhikari NKJ, Fan E. Falsifiability in medicine: what clinicians can learn from Karl Popper [published correction appears in Intensive Care Med. 2021 Jun 17;:].  Intensive Care Med . 2021;47(9):1054-1056. doi:10.1007/s00134-021-06432-z

Eyler AA. Research Methods for Public Health . 1st ed. Springer Publishing Company; 2020. doi:10.1891/9780826182067.0004

Nosek BA, Errington TM. What is replication ?  PLoS Biol . 2020;18(3):e3000691. doi:10.1371/journal.pbio.3000691

Aggarwal R, Ranganathan P. Study designs: Part 2 - Descriptive studies .  Perspect Clin Res . 2019;10(1):34-36. doi:10.4103/picr.PICR_154_18

Nevid J. Psychology: Concepts and Applications. Wadworth, 2013.

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

formulating research hypotheses

What Is A Research (Scientific) Hypothesis? A plain-language explainer + examples

By:  Derek Jansen (MBA)  | Reviewed By: Dr Eunice Rautenbach | June 2020

If you’re new to the world of research, or it’s your first time writing a dissertation or thesis, you’re probably noticing that the words “research hypothesis” and “scientific hypothesis” are used quite a bit, and you’re wondering what they mean in a research context .

“Hypothesis” is one of those words that people use loosely, thinking they understand what it means. However, it has a very specific meaning within academic research. So, it’s important to understand the exact meaning before you start hypothesizing. 

Research Hypothesis 101

  • What is a hypothesis ?
  • What is a research hypothesis (scientific hypothesis)?
  • Requirements for a research hypothesis
  • Definition of a research hypothesis
  • The null hypothesis

What is a hypothesis?

Let’s start with the general definition of a hypothesis (not a research hypothesis or scientific hypothesis), according to the Cambridge Dictionary:

Hypothesis: an idea or explanation for something that is based on known facts but has not yet been proved.

In other words, it’s a statement that provides an explanation for why or how something works, based on facts (or some reasonable assumptions), but that has not yet been specifically tested . For example, a hypothesis might look something like this:

Hypothesis: sleep impacts academic performance.

This statement predicts that academic performance will be influenced by the amount and/or quality of sleep a student engages in – sounds reasonable, right? It’s based on reasonable assumptions , underpinned by what we currently know about sleep and health (from the existing literature). So, loosely speaking, we could call it a hypothesis, at least by the dictionary definition.

But that’s not good enough…

Unfortunately, that’s not quite sophisticated enough to describe a research hypothesis (also sometimes called a scientific hypothesis), and it wouldn’t be acceptable in a dissertation, thesis or research paper . In the world of academic research, a statement needs a few more criteria to constitute a true research hypothesis .

What is a research hypothesis?

A research hypothesis (also called a scientific hypothesis) is a statement about the expected outcome of a study (for example, a dissertation or thesis). To constitute a quality hypothesis, the statement needs to have three attributes – specificity , clarity and testability .

Let’s take a look at these more closely.

Need a helping hand?

formulating research hypotheses

Hypothesis Essential #1: Specificity & Clarity

A good research hypothesis needs to be extremely clear and articulate about both what’ s being assessed (who or what variables are involved ) and the expected outcome (for example, a difference between groups, a relationship between variables, etc.).

Let’s stick with our sleepy students example and look at how this statement could be more specific and clear.

Hypothesis: Students who sleep at least 8 hours per night will, on average, achieve higher grades in standardised tests than students who sleep less than 8 hours a night.

As you can see, the statement is very specific as it identifies the variables involved (sleep hours and test grades), the parties involved (two groups of students), as well as the predicted relationship type (a positive relationship). There’s no ambiguity or uncertainty about who or what is involved in the statement, and the expected outcome is clear.

Contrast that to the original hypothesis we looked at – “Sleep impacts academic performance” – and you can see the difference. “Sleep” and “academic performance” are both comparatively vague , and there’s no indication of what the expected relationship direction is (more sleep or less sleep). As you can see, specificity and clarity are key.

A good research hypothesis needs to be very clear about what’s being assessed and very specific about the expected outcome.

Hypothesis Essential #2: Testability (Provability)

A statement must be testable to qualify as a research hypothesis. In other words, there needs to be a way to prove (or disprove) the statement. If it’s not testable, it’s not a hypothesis – simple as that.

For example, consider the hypothesis we mentioned earlier:

Hypothesis: Students who sleep at least 8 hours per night will, on average, achieve higher grades in standardised tests than students who sleep less than 8 hours a night.  

We could test this statement by undertaking a quantitative study involving two groups of students, one that gets 8 or more hours of sleep per night for a fixed period, and one that gets less. We could then compare the standardised test results for both groups to see if there’s a statistically significant difference. 

Again, if you compare this to the original hypothesis we looked at – “Sleep impacts academic performance” – you can see that it would be quite difficult to test that statement, primarily because it isn’t specific enough. How much sleep? By who? What type of academic performance?

So, remember the mantra – if you can’t test it, it’s not a hypothesis 🙂

A good research hypothesis must be testable. In other words, you must able to collect observable data in a scientifically rigorous fashion to test it.

Defining A Research Hypothesis

You’re still with us? Great! Let’s recap and pin down a clear definition of a hypothesis.

A research hypothesis (or scientific hypothesis) is a statement about an expected relationship between variables, or explanation of an occurrence, that is clear, specific and testable.

So, when you write up hypotheses for your dissertation or thesis, make sure that they meet all these criteria. If you do, you’ll not only have rock-solid hypotheses but you’ll also ensure a clear focus for your entire research project.

What about the null hypothesis?

You may have also heard the terms null hypothesis , alternative hypothesis, or H-zero thrown around. At a simple level, the null hypothesis is the counter-proposal to the original hypothesis.

For example, if the hypothesis predicts that there is a relationship between two variables (for example, sleep and academic performance), the null hypothesis would predict that there is no relationship between those variables.

At a more technical level, the null hypothesis proposes that no statistical significance exists in a set of given observations and that any differences are due to chance alone.

And there you have it – hypotheses in a nutshell. 

If you have any questions, be sure to leave a comment below and we’ll do our best to help you. If you need hands-on help developing and testing your hypotheses, consider our private coaching service , where we hold your hand through the research journey.

formulating research hypotheses

Psst... there’s more!

This post was based on one of our popular Research Bootcamps . If you're working on a research project, you'll definitely want to check this out ...

17 Comments

Lynnet Chikwaikwai

Very useful information. I benefit more from getting more information in this regard.

Dr. WuodArek

Very great insight,educative and informative. Please give meet deep critics on many research data of public international Law like human rights, environment, natural resources, law of the sea etc

Afshin

In a book I read a distinction is made between null, research, and alternative hypothesis. As far as I understand, alternative and research hypotheses are the same. Can you please elaborate? Best Afshin

GANDI Benjamin

This is a self explanatory, easy going site. I will recommend this to my friends and colleagues.

Lucile Dossou-Yovo

Very good definition. How can I cite your definition in my thesis? Thank you. Is nul hypothesis compulsory in a research?

Pereria

It’s a counter-proposal to be proven as a rejection

Egya Salihu

Please what is the difference between alternate hypothesis and research hypothesis?

Mulugeta Tefera

It is a very good explanation. However, it limits hypotheses to statistically tasteable ideas. What about for qualitative researches or other researches that involve quantitative data that don’t need statistical tests?

Derek Jansen

In qualitative research, one typically uses propositions, not hypotheses.

Samia

could you please elaborate it more

Patricia Nyawir

I’ve benefited greatly from these notes, thank you.

Hopeson Khondiwa

This is very helpful

Dr. Andarge

well articulated ideas are presented here, thank you for being reliable sources of information

TAUNO

Excellent. Thanks for being clear and sound about the research methodology and hypothesis (quantitative research)

I have only a simple question regarding the null hypothesis. – Is the null hypothesis (Ho) known as the reversible hypothesis of the alternative hypothesis (H1? – How to test it in academic research?

Tesfaye Negesa Urge

this is very important note help me much more

Elton Cleckley

Hi” best wishes to you and your very nice blog” 

Trackbacks/Pingbacks

  • What Is Research Methodology? Simple Definition (With Examples) - Grad Coach - […] Contrasted to this, a quantitative methodology is typically used when the research aims and objectives are confirmatory in nature. For example,…

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly
  • Affiliate Program

Wordvice

  • UNITED STATES
  • 台灣 (TAIWAN)
  • TÜRKIYE (TURKEY)
  • Academic Editing Services
  • - Research Paper
  • - Journal Manuscript
  • - Dissertation
  • - College & University Assignments
  • Admissions Editing Services
  • - Application Essay
  • - Personal Statement
  • - Recommendation Letter
  • - Cover Letter
  • - CV/Resume
  • Business Editing Services
  • - Business Documents
  • - Report & Brochure
  • - Website & Blog
  • Writer Editing Services
  • - Script & Screenplay
  • Our Editors
  • Client Reviews
  • Editing & Proofreading Prices
  • Wordvice Points
  • Partner Discount
  • Plagiarism Checker
  • APA Citation Generator
  • MLA Citation Generator
  • Chicago Citation Generator
  • Vancouver Citation Generator
  • - APA Style
  • - MLA Style
  • - Chicago Style
  • - Vancouver Style
  • Writing & Editing Guide
  • Academic Resources
  • Admissions Resources

How to Write a Research Hypothesis: Good & Bad Examples

formulating research hypotheses

What is a research hypothesis?

A research hypothesis is an attempt at explaining a phenomenon or the relationships between phenomena/variables in the real world. Hypotheses are sometimes called “educated guesses”, but they are in fact (or let’s say they should be) based on previous observations, existing theories, scientific evidence, and logic. A research hypothesis is also not a prediction—rather, predictions are ( should be) based on clearly formulated hypotheses. For example, “We tested the hypothesis that KLF2 knockout mice would show deficiencies in heart development” is an assumption or prediction, not a hypothesis. 

The research hypothesis at the basis of this prediction is “the product of the KLF2 gene is involved in the development of the cardiovascular system in mice”—and this hypothesis is probably (hopefully) based on a clear observation, such as that mice with low levels of Kruppel-like factor 2 (which KLF2 codes for) seem to have heart problems. From this hypothesis, you can derive the idea that a mouse in which this particular gene does not function cannot develop a normal cardiovascular system, and then make the prediction that we started with. 

What is the difference between a hypothesis and a prediction?

You might think that these are very subtle differences, and you will certainly come across many publications that do not contain an actual hypothesis or do not make these distinctions correctly. But considering that the formulation and testing of hypotheses is an integral part of the scientific method, it is good to be aware of the concepts underlying this approach. The two hallmarks of a scientific hypothesis are falsifiability (an evaluation standard that was introduced by the philosopher of science Karl Popper in 1934) and testability —if you cannot use experiments or data to decide whether an idea is true or false, then it is not a hypothesis (or at least a very bad one).

So, in a nutshell, you (1) look at existing evidence/theories, (2) come up with a hypothesis, (3) make a prediction that allows you to (4) design an experiment or data analysis to test it, and (5) come to a conclusion. Of course, not all studies have hypotheses (there is also exploratory or hypothesis-generating research), and you do not necessarily have to state your hypothesis as such in your paper. 

But for the sake of understanding the principles of the scientific method, let’s first take a closer look at the different types of hypotheses that research articles refer to and then give you a step-by-step guide for how to formulate a strong hypothesis for your own paper.

Types of Research Hypotheses

Hypotheses can be simple , which means they describe the relationship between one single independent variable (the one you observe variations in or plan to manipulate) and one single dependent variable (the one you expect to be affected by the variations/manipulation). If there are more variables on either side, you are dealing with a complex hypothesis. You can also distinguish hypotheses according to the kind of relationship between the variables you are interested in (e.g., causal or associative ). But apart from these variations, we are usually interested in what is called the “alternative hypothesis” and, in contrast to that, the “null hypothesis”. If you think these two should be listed the other way round, then you are right, logically speaking—the alternative should surely come second. However, since this is the hypothesis we (as researchers) are usually interested in, let’s start from there.

Alternative Hypothesis

If you predict a relationship between two variables in your study, then the research hypothesis that you formulate to describe that relationship is your alternative hypothesis (usually H1 in statistical terms). The goal of your hypothesis testing is thus to demonstrate that there is sufficient evidence that supports the alternative hypothesis, rather than evidence for the possibility that there is no such relationship. The alternative hypothesis is usually the research hypothesis of a study and is based on the literature, previous observations, and widely known theories. 

Null Hypothesis

The hypothesis that describes the other possible outcome, that is, that your variables are not related, is the null hypothesis ( H0 ). Based on your findings, you choose between the two hypotheses—usually that means that if your prediction was correct, you reject the null hypothesis and accept the alternative. Make sure, however, that you are not getting lost at this step of the thinking process: If your prediction is that there will be no difference or change, then you are trying to find support for the null hypothesis and reject H1. 

Directional Hypothesis

While the null hypothesis is obviously “static”, the alternative hypothesis can specify a direction for the observed relationship between variables—for example, that mice with higher expression levels of a certain protein are more active than those with lower levels. This is then called a one-tailed hypothesis. 

Another example for a directional one-tailed alternative hypothesis would be that 

H1: Attending private classes before important exams has a positive effect on performance. 

Your null hypothesis would then be that

H0: Attending private classes before important exams has no/a negative effect on performance.

Nondirectional Hypothesis

A nondirectional hypothesis does not specify the direction of the potentially observed effect, only that there is a relationship between the studied variables—this is called a two-tailed hypothesis. For instance, if you are studying a new drug that has shown some effects on pathways involved in a certain condition (e.g., anxiety) in vitro in the lab, but you can’t say for sure whether it will have the same effects in an animal model or maybe induce other/side effects that you can’t predict and potentially increase anxiety levels instead, you could state the two hypotheses like this:

H1: The only lab-tested drug (somehow) affects anxiety levels in an anxiety mouse model.

You then test this nondirectional alternative hypothesis against the null hypothesis:

H0: The only lab-tested drug has no effect on anxiety levels in an anxiety mouse model.

hypothesis in a research paper

How to Write a Hypothesis for a Research Paper

Now that we understand the important distinctions between different kinds of research hypotheses, let’s look at a simple process of how to write a hypothesis.

Writing a Hypothesis Step:1

Ask a question, based on earlier research. Research always starts with a question, but one that takes into account what is already known about a topic or phenomenon. For example, if you are interested in whether people who have pets are happier than those who don’t, do a literature search and find out what has already been demonstrated. You will probably realize that yes, there is quite a bit of research that shows a relationship between happiness and owning a pet—and even studies that show that owning a dog is more beneficial than owning a cat ! Let’s say you are so intrigued by this finding that you wonder: 

What is it that makes dog owners even happier than cat owners? 

Let’s move on to Step 2 and find an answer to that question.

Writing a Hypothesis Step 2:

Formulate a strong hypothesis by answering your own question. Again, you don’t want to make things up, take unicorns into account, or repeat/ignore what has already been done. Looking at the dog-vs-cat papers your literature search returned, you see that most studies are based on self-report questionnaires on personality traits, mental health, and life satisfaction. What you don’t find is any data on actual (mental or physical) health measures, and no experiments. You therefore decide to make a bold claim come up with the carefully thought-through hypothesis that it’s maybe the lifestyle of the dog owners, which includes walking their dog several times per day, engaging in fun and healthy activities such as agility competitions, and taking them on trips, that gives them that extra boost in happiness. You could therefore answer your question in the following way:

Dog owners are happier than cat owners because of the dog-related activities they engage in.

Now you have to verify that your hypothesis fulfills the two requirements we introduced at the beginning of this resource article: falsifiability and testability . If it can’t be wrong and can’t be tested, it’s not a hypothesis. We are lucky, however, because yes, we can test whether owning a dog but not engaging in any of those activities leads to lower levels of happiness or well-being than owning a dog and playing and running around with them or taking them on trips.  

Writing a Hypothesis Step 3:

Make your predictions and define your variables. We have verified that we can test our hypothesis, but now we have to define all the relevant variables, design our experiment or data analysis, and make precise predictions. You could, for example, decide to study dog owners (not surprising at this point), let them fill in questionnaires about their lifestyle as well as their life satisfaction (as other studies did), and then compare two groups of active and inactive dog owners. Alternatively, if you want to go beyond the data that earlier studies produced and analyzed and directly manipulate the activity level of your dog owners to study the effect of that manipulation, you could invite them to your lab, select groups of participants with similar lifestyles, make them change their lifestyle (e.g., couch potato dog owners start agility classes, very active ones have to refrain from any fun activities for a certain period of time) and assess their happiness levels before and after the intervention. In both cases, your independent variable would be “ level of engagement in fun activities with dog” and your dependent variable would be happiness or well-being . 

Examples of a Good and Bad Hypothesis

Let’s look at a few examples of good and bad hypotheses to get you started.

Good Hypothesis Examples

Working from home improves job satisfaction.Employees who are allowed to work from home are less likely to quit within 2 years than those who need to come to the office.
Sleep deprivation affects cognition.Students who sleep <5 hours/night don’t perform as well on exams as those who sleep >7 hours/night. 
Animals adapt to their environment.Birds of the same species living on different islands have differently shaped beaks depending on the available food source.
Social media use causes anxiety.Do teenagers who refrain from using social media for 4 weeks show improvements in anxiety symptoms?

Bad Hypothesis Examples

Garlic repels vampires.Participants who eat garlic daily will not be harmed by vampires.Nobody gets harmed by vampires— .
Chocolate is better than vanilla.           No clearly defined variables— .

Tips for Writing a Research Hypothesis

If you understood the distinction between a hypothesis and a prediction we made at the beginning of this article, then you will have no problem formulating your hypotheses and predictions correctly. To refresh your memory: We have to (1) look at existing evidence, (2) come up with a hypothesis, (3) make a prediction, and (4) design an experiment. For example, you could summarize your dog/happiness study like this:

(1) While research suggests that dog owners are happier than cat owners, there are no reports on what factors drive this difference. (2) We hypothesized that it is the fun activities that many dog owners (but very few cat owners) engage in with their pets that increases their happiness levels. (3) We thus predicted that preventing very active dog owners from engaging in such activities for some time and making very inactive dog owners take up such activities would lead to an increase and decrease in their overall self-ratings of happiness, respectively. (4) To test this, we invited dog owners into our lab, assessed their mental and emotional well-being through questionnaires, and then assigned them to an “active” and an “inactive” group, depending on… 

Note that you use “we hypothesize” only for your hypothesis, not for your experimental prediction, and “would” or “if – then” only for your prediction, not your hypothesis. A hypothesis that states that something “would” affect something else sounds as if you don’t have enough confidence to make a clear statement—in which case you can’t expect your readers to believe in your research either. Write in the present tense, don’t use modal verbs that express varying degrees of certainty (such as may, might, or could ), and remember that you are not drawing a conclusion while trying not to exaggerate but making a clear statement that you then, in a way, try to disprove . And if that happens, that is not something to fear but an important part of the scientific process.

Similarly, don’t use “we hypothesize” when you explain the implications of your research or make predictions in the conclusion section of your manuscript, since these are clearly not hypotheses in the true sense of the word. As we said earlier, you will find that many authors of academic articles do not seem to care too much about these rather subtle distinctions, but thinking very clearly about your own research will not only help you write better but also ensure that even that infamous Reviewer 2 will find fewer reasons to nitpick about your manuscript. 

Perfect Your Manuscript With Professional Editing

Now that you know how to write a strong research hypothesis for your research paper, you might be interested in our free AI Proofreader , Wordvice AI, which finds and fixes errors in grammar, punctuation, and word choice in academic texts. Or if you are interested in human proofreading , check out our English editing services , including research paper editing and manuscript editing .

On the Wordvice academic resources website , you can also find many more articles and other resources that can help you with writing the other parts of your research paper , with making a research paper outline before you put everything together, or with writing an effective cover letter once you are ready to submit.

How to Write a Research Hypothesis

  • Research Process
  • Peer Review

Since grade school, we've all been familiar with hypotheses. The hypothesis is an essential step of the scientific method. But what makes an effective research hypothesis, how do you create one, and what types of hypotheses are there? We answer these questions and more.

Updated on April 27, 2022

the word hypothesis being typed on white paper

What is a research hypothesis?

General hypothesis.

Since grade school, we've all been familiar with the term “hypothesis.” A hypothesis is a fact-based guess or prediction that has not been proven. It is an essential step of the scientific method. The hypothesis of a study is a drive for experimentation to either prove the hypothesis or dispute it.

Research Hypothesis

A research hypothesis is more specific than a general hypothesis. It is an educated, expected prediction of the outcome of a study that is testable.

What makes an effective research hypothesis?

A good research hypothesis is a clear statement of the relationship between a dependent variable(s) and independent variable(s) relevant to the study that can be disproven.

Research hypothesis checklist

Once you've written a possible hypothesis, make sure it checks the following boxes:

  • It must be testable: You need a means to prove your hypothesis. If you can't test it, it's not a hypothesis.
  • It must include a dependent and independent variable: At least one independent variable ( cause ) and one dependent variable ( effect ) must be included.
  • The language must be easy to understand: Be as clear and concise as possible. Nothing should be left to interpretation.
  • It must be relevant to your research topic: You probably shouldn't be talking about cats and dogs if your research topic is outer space. Stay relevant to your topic.

How to create an effective research hypothesis

Pose it as a question first.

Start your research hypothesis from a journalistic approach. Ask one of the five W's: Who, what, when, where, or why.

A possible initial question could be: Why is the sky blue?

Do the preliminary research

Once you have a question in mind, read research around your topic. Collect research from academic journals.

If you're looking for information about the sky and why it is blue, research information about the atmosphere, weather, space, the sun, etc.

Write a draft hypothesis

Once you're comfortable with your subject and have preliminary knowledge, create a working hypothesis. Don't stress much over this. Your first hypothesis is not permanent. Look at it as a draft.

Your first draft of a hypothesis could be: Certain molecules in the Earth's atmosphere are responsive to the sky being the color blue.

Make your working draft perfect

Take your working hypothesis and make it perfect. Narrow it down to include only the information listed in the “Research hypothesis checklist” above.

Now that you've written your working hypothesis, narrow it down. Your new hypothesis could be: Light from the sun hitting oxygen molecules in the sky makes the color of the sky appear blue.

Write a null hypothesis

Your null hypothesis should be the opposite of your research hypothesis. It should be able to be disproven by your research.

In this example, your null hypothesis would be: Light from the sun hitting oxygen molecules in the sky does not make the color of the sky appear blue.

Why is it important to have a clear, testable hypothesis?

One of the main reasons a manuscript can be rejected from a journal is because of a weak hypothesis. “Poor hypothesis, study design, methodology, and improper use of statistics are other reasons for rejection of a manuscript,” says Dr. Ish Kumar Dhammi and Dr. Rehan-Ul-Haq in Indian Journal of Orthopaedics.

According to Dr. James M. Provenzale in American Journal of Roentgenology , “The clear declaration of a research question (or hypothesis) in the Introduction is critical for reviewers to understand the intent of the research study. It is best to clearly state the study goal in plain language (for example, “We set out to determine whether condition x produces condition y.”) An insufficient problem statement is one of the more common reasons for manuscript rejection.”

Characteristics that make a hypothesis weak include:

  • Unclear variables
  • Unoriginality
  • Too general
  • Too specific

A weak hypothesis leads to weak research and methods . The goal of a paper is to prove or disprove a hypothesis - or to prove or disprove a null hypothesis. If the hypothesis is not a dependent variable of what is being studied, the paper's methods should come into question.

A strong hypothesis is essential to the scientific method. A hypothesis states an assumed relationship between at least two variables and the experiment then proves or disproves that relationship with statistical significance. Without a proven and reproducible relationship, the paper feeds into the reproducibility crisis. Learn more about writing for reproducibility .

In a study published in The Journal of Obstetrics and Gynecology of India by Dr. Suvarna Satish Khadilkar, she reviewed 400 rejected manuscripts to see why they were rejected. Her studies revealed that poor methodology was a top reason for the submission having a final disposition of rejection.

Aside from publication chances, Dr. Gareth Dyke believes a clear hypothesis helps efficiency.

“Developing a clear and testable hypothesis for your research project means that you will not waste time, energy, and money with your work,” said Dyke. “Refining a hypothesis that is both meaningful, interesting, attainable, and testable is the goal of all effective research.”

Types of research hypotheses

There can be overlap in these types of hypotheses.

Simple hypothesis

A simple hypothesis is a hypothesis at its most basic form. It shows the relationship of one independent and one independent variable.

Example: Drinking soda (independent variable) every day leads to obesity (dependent variable).

Complex hypothesis

A complex hypothesis shows the relationship of two or more independent and dependent variables.

Example: Drinking soda (independent variable) every day leads to obesity (dependent variable) and heart disease (dependent variable).

Directional hypothesis

A directional hypothesis guesses which way the results of an experiment will go. It uses words like increase, decrease, higher, lower, positive, negative, more, or less. It is also frequently used in statistics.

Example: Humans exposed to radiation have a higher risk of cancer than humans not exposed to radiation.

Non-directional hypothesis

A non-directional hypothesis says there will be an effect on the dependent variable, but it does not say which direction.

Associative hypothesis

An associative hypothesis says that when one variable changes, so does the other variable.

Alternative hypothesis

An alternative hypothesis states that the variables have a relationship.

  • The opposite of a null hypothesis

Example: An apple a day keeps the doctor away.

Null hypothesis

A null hypothesis states that there is no relationship between the two variables. It is posed as the opposite of what the alternative hypothesis states.

Researchers use a null hypothesis to work to be able to reject it. A null hypothesis:

  • Can never be proven
  • Can only be rejected
  • Is the opposite of an alternative hypothesis

Example: An apple a day does not keep the doctor away.

Logical hypothesis

A logical hypothesis is a suggested explanation while using limited evidence.

Example: Bats can navigate in the dark better than tigers.

In this hypothesis, the researcher knows that tigers cannot see in the dark, and bats mostly live in darkness.

Empirical hypothesis

An empirical hypothesis is also called a “working hypothesis.” It uses the trial and error method and changes around the independent variables.

  • An apple a day keeps the doctor away.
  • Two apples a day keep the doctor away.
  • Three apples a day keep the doctor away.

In this case, the research changes the hypothesis as the researcher learns more about his/her research.

Statistical hypothesis

A statistical hypothesis is a look of a part of a population or statistical model. This type of hypothesis is especially useful if you are making a statement about a large population. Instead of having to test the entire population of Illinois, you could just use a smaller sample of people who live there.

Example: 70% of people who live in Illinois are iron deficient.

Causal hypothesis

A causal hypothesis states that the independent variable will have an effect on the dependent variable.

Example: Using tobacco products causes cancer.

Final thoughts

Make sure your research is error-free before you send it to your preferred journal . Check our our English Editing services to avoid your chances of desk rejection.

Jonny Rhein, BA

Jonny Rhein, BA

See our "Privacy Policy"

formulating research hypotheses

How to Write a Hypothesis: A Step-by-Step Guide

formulating research hypotheses

Introduction

An overview of the research hypothesis, different types of hypotheses, variables in a hypothesis, how to formulate an effective research hypothesis, designing a study around your hypothesis.

The scientific method can derive and test predictions as hypotheses. Empirical research can then provide support (or lack thereof) for the hypotheses. Even failure to find support for a hypothesis still represents a valuable contribution to scientific knowledge. Let's look more closely at the idea of the hypothesis and the role it plays in research.

formulating research hypotheses

As much as the term exists in everyday language, there is a detailed development that informs the word "hypothesis" when applied to research. A good research hypothesis is informed by prior research and guides research design and data analysis , so it is important to understand how a hypothesis is defined and understood by researchers.

What is the simple definition of a hypothesis?

A hypothesis is a testable prediction about an outcome between two or more variables . It functions as a navigational tool in the research process, directing what you aim to predict and how.

What is the hypothesis for in research?

In research, a hypothesis serves as the cornerstone for your empirical study. It not only lays out what you aim to investigate but also provides a structured approach for your data collection and analysis.

Essentially, it bridges the gap between the theoretical and the empirical, guiding your investigation throughout its course.

formulating research hypotheses

What is an example of a hypothesis?

If you are studying the relationship between physical exercise and mental health, a suitable hypothesis could be: "Regular physical exercise leads to improved mental well-being among adults."

This statement constitutes a specific and testable hypothesis that directly relates to the variables you are investigating.

What makes a good hypothesis?

A good hypothesis possesses several key characteristics. Firstly, it must be testable, allowing you to analyze data through empirical means, such as observation or experimentation, to assess if there is significant support for the hypothesis. Secondly, a hypothesis should be specific and unambiguous, giving a clear understanding of the expected relationship between variables. Lastly, it should be grounded in existing research or theoretical frameworks , ensuring its relevance and applicability.

Understanding the types of hypotheses can greatly enhance how you construct and work with hypotheses. While all hypotheses serve the essential function of guiding your study, there are varying purposes among the types of hypotheses. In addition, all hypotheses stand in contrast to the null hypothesis, or the assumption that there is no significant relationship between the variables .

Here, we explore various kinds of hypotheses to provide you with the tools needed to craft effective hypotheses for your specific research needs. Bear in mind that many of these hypothesis types may overlap with one another, and the specific type that is typically used will likely depend on the area of research and methodology you are following.

Null hypothesis

The null hypothesis is a statement that there is no effect or relationship between the variables being studied. In statistical terms, it serves as the default assumption that any observed differences are due to random chance.

For example, if you're studying the effect of a drug on blood pressure, the null hypothesis might state that the drug has no effect.

Alternative hypothesis

Contrary to the null hypothesis, the alternative hypothesis suggests that there is a significant relationship or effect between variables.

Using the drug example, the alternative hypothesis would posit that the drug does indeed affect blood pressure. This is what researchers aim to prove.

formulating research hypotheses

Simple hypothesis

A simple hypothesis makes a prediction about the relationship between two variables, and only two variables.

For example, "Increased study time results in better exam scores." Here, "study time" and "exam scores" are the only variables involved.

Complex hypothesis

A complex hypothesis, as the name suggests, involves more than two variables. For instance, "Increased study time and access to resources result in better exam scores." Here, "study time," "access to resources," and "exam scores" are all variables.

This hypothesis refers to multiple potential mediating variables. Other hypotheses could also include predictions about variables that moderate the relationship between the independent variable and dependent variable .

Directional hypothesis

A directional hypothesis specifies the direction of the expected relationship between variables. For example, "Eating more fruits and vegetables leads to a decrease in heart disease."

Here, the direction of heart disease is explicitly predicted to decrease, due to effects from eating more fruits and vegetables. All hypotheses typically specify the expected direction of the relationship between the independent and dependent variable, such that researchers can test if this prediction holds in their data analysis .

formulating research hypotheses

Statistical hypothesis

A statistical hypothesis is one that is testable through statistical methods, providing a numerical value that can be analyzed. This is commonly seen in quantitative research .

For example, "There is a statistically significant difference in test scores between students who study for one hour and those who study for two."

Empirical hypothesis

An empirical hypothesis is derived from observations and is tested through empirical methods, often through experimentation or survey data . Empirical hypotheses may also be assessed with statistical analyses.

For example, "Regular exercise is correlated with a lower incidence of depression," could be tested through surveys that measure exercise frequency and depression levels.

Causal hypothesis

A causal hypothesis proposes that one variable causes a change in another. This type of hypothesis is often tested through controlled experiments.

For example, "Smoking causes lung cancer," assumes a direct causal relationship.

Associative hypothesis

Unlike causal hypotheses, associative hypotheses suggest a relationship between variables but do not imply causation.

For instance, "People who smoke are more likely to get lung cancer," notes an association but doesn't claim that smoking causes lung cancer directly.

Relational hypothesis

A relational hypothesis explores the relationship between two or more variables but doesn't specify the nature of the relationship.

For example, "There is a relationship between diet and heart health," leaves the nature of the relationship (causal, associative, etc.) open to interpretation.

Logical hypothesis

A logical hypothesis is based on sound reasoning and logical principles. It's often used in theoretical research to explore abstract concepts, rather than being based on empirical data.

For example, "If all men are mortal and Socrates is a man, then Socrates is mortal," employs logical reasoning to make its point.

formulating research hypotheses

Let ATLAS.ti take you from research question to key insights

Get started with a free trial and see how ATLAS.ti can make the most of your data.

In any research hypothesis, variables play a critical role. These are the elements or factors that the researcher manipulates, controls, or measures. Understanding variables is essential for crafting a clear, testable hypothesis and for the stages of research that follow, such as data collection and analysis.

In the realm of hypotheses, there are generally two types of variables to consider: independent and dependent. Independent variables are what you, as the researcher, manipulate or change in your study. It's considered the cause in the relationship you're investigating. For instance, in a study examining the impact of sleep duration on academic performance, the independent variable would be the amount of sleep participants get.

Conversely, the dependent variable is the outcome you measure to gauge the effect of your manipulation. It's the effect in the cause-and-effect relationship. The dependent variable thus refers to the main outcome of interest in your study. In the same sleep study example, the academic performance, perhaps measured by exam scores or GPA, would be the dependent variable.

Beyond these two primary types, you might also encounter control variables. These are variables that could potentially influence the outcome and are therefore kept constant to isolate the relationship between the independent and dependent variables . For example, in the sleep and academic performance study, control variables could include age, diet, or even the subject of study.

By clearly identifying and understanding the roles of these variables in your hypothesis, you set the stage for a methodologically sound research project. It helps you develop focused research questions, design appropriate experiments or observations, and carry out meaningful data analysis . It's a step that lays the groundwork for the success of your entire study.

formulating research hypotheses

Crafting a strong, testable hypothesis is crucial for the success of any research project. It sets the stage for everything from your study design to data collection and analysis . Below are some key considerations to keep in mind when formulating your hypothesis:

  • Be specific : A vague hypothesis can lead to ambiguous results and interpretations . Clearly define your variables and the expected relationship between them.
  • Ensure testability : A good hypothesis should be testable through empirical means, whether by observation , experimentation, or other forms of data analysis.
  • Ground in literature : Before creating your hypothesis, consult existing research and theories. This not only helps you identify gaps in current knowledge but also gives you valuable context and credibility for crafting your hypothesis.
  • Use simple language : While your hypothesis should be conceptually sound, it doesn't have to be complicated. Aim for clarity and simplicity in your wording.
  • State direction, if applicable : If your hypothesis involves a directional outcome (e.g., "increase" or "decrease"), make sure to specify this. You also need to think about how you will measure whether or not the outcome moved in the direction you predicted.
  • Keep it focused : One of the common pitfalls in hypothesis formulation is trying to answer too many questions at once. Keep your hypothesis focused on a specific issue or relationship.
  • Account for control variables : Identify any variables that could potentially impact the outcome and consider how you will control for them in your study.
  • Be ethical : Make sure your hypothesis and the methods for testing it comply with ethical standards , particularly if your research involves human or animal subjects.

formulating research hypotheses

Designing your study involves multiple key phases that help ensure the rigor and validity of your research. Here we discuss these crucial components in more detail.

Literature review

Starting with a comprehensive literature review is essential. This step allows you to understand the existing body of knowledge related to your hypothesis and helps you identify gaps that your research could fill. Your research should aim to contribute some novel understanding to existing literature, and your hypotheses can reflect this. A literature review also provides valuable insights into how similar research projects were executed, thereby helping you fine-tune your own approach.

formulating research hypotheses

Research methods

Choosing the right research methods is critical. Whether it's a survey, an experiment, or observational study, the methodology should be the most appropriate for testing your hypothesis. Your choice of methods will also depend on whether your research is quantitative, qualitative, or mixed-methods. Make sure the chosen methods align well with the variables you are studying and the type of data you need.

Preliminary research

Before diving into a full-scale study, it’s often beneficial to conduct preliminary research or a pilot study . This allows you to test your research methods on a smaller scale, refine your tools, and identify any potential issues. For instance, a pilot survey can help you determine if your questions are clear and if the survey effectively captures the data you need. This step can save you both time and resources in the long run.

Data analysis

Finally, planning your data analysis in advance is crucial for a successful study. Decide which statistical or analytical tools are most suited for your data type and research questions . For quantitative research, you might opt for t-tests, ANOVA, or regression analyses. For qualitative research , thematic analysis or grounded theory may be more appropriate. This phase is integral for interpreting your results and drawing meaningful conclusions in relation to your research question.

formulating research hypotheses

Turn data into evidence for insights with ATLAS.ti

Powerful analysis for your research paper or presentation is at your fingertips starting with a free trial.

formulating research hypotheses

  • Thesis Action Plan New
  • Academic Project Planner

Literature Navigator

Thesis dialogue blueprint, writing wizard's template, research proposal compass.

  • Why students love us
  • Rebels Blog
  • Why we are different
  • All Products
  • Coming Soon

What is the Correct Way to Write a Hypothesis?

Writing a hypothesis is a crucial step in the scientific method. It helps guide your research and provides a clear focus for your study. A well-crafted hypothesis predicts an outcome based on certain variables and sets the stage for testing and analysis. This article will walk you through the correct way to write a hypothesis, from understanding its importance to avoiding common mistakes.

Key Takeaways

  • A hypothesis is a prediction that can be tested through scientific research.
  • There are different types of hypotheses, including simple, complex, and null hypotheses.
  • A good hypothesis should be clear, precise, and testable.
  • Common pitfalls in hypothesis writing include subjectivity, complexity, and lack of testability.
  • Testing and refining your hypothesis is an ongoing process that may require adjustments based on new data.

Understanding the Concept of a Hypothesis

Definition and importance.

A hypothesis is a proposed explanation for a phenomenon, serving as a starting point for further investigation. It is a testable statement predicting the outcome of a study. Hypotheses are crucial because they provide direction and focus for research, ensuring that studies are clear and grounded in existing knowledge.

Types of Hypotheses

There are several types of hypotheses, including:

  • Null Hypothesis (H0): Suggests no relationship between variables.
  • Alternative Hypothesis (H1): Indicates a relationship between variables.
  • Directional Hypothesis: Predicts the direction of the relationship.
  • Non-Directional Hypothesis: Does not predict the direction, only that a relationship exists.

Role in Scientific Research

In scientific research, hypotheses play a vital role. They help in formulating research questions and guide the design of experiments. By providing a clear focus, hypotheses ensure that research is systematic and that the findings are reliable and valid. This structured approach enhances the credibility and reliability of the research outcomes.

Steps to Formulate a Hypothesis

Identifying research questions.

The first step in formulating a hypothesis is to identify the research questions you aim to answer. These questions should be specific and focused, guiding your investigation. A well-defined research question sets the stage for a clear and testable hypothesis. Consider what you want to discover and why it matters. This will help you narrow down your focus and make your hypothesis more precise.

Conducting Preliminary Research

Before you can write a hypothesis, you need to conduct preliminary research. This involves gathering information from various sources to understand the current state of knowledge on your topic. Look for gaps in the existing research that your study could fill. Preliminary research helps you refine your research questions and provides a foundation for your hypothesis. Targeted research is crucial for formulating a hypothesis that can advance scientific understanding.

Formulating the Hypothesis Statement

Once you have a clear research question and have conducted preliminary research, you can formulate your hypothesis statement. This statement should be concise and specific, outlining the expected relationship between variables. A good hypothesis is testable and falsifiable, meaning it can be supported or refuted through experimentation. Think of your hypothesis as a tentative answer to your research question, one that you will test through your study.

Characteristics of a Well-Written Hypothesis

Clarity and precision.

A well-written hypothesis must be clear and precise. This means avoiding vague language and ensuring that the hypothesis is easy to understand. Clarity is crucial because it helps others understand exactly what you are testing. For instance, instead of saying "plants grow better," specify "plants grow taller when given fertilizer." This precision helps in demystifying the concept of a thesis statement .

Testability

Your hypothesis should be testable, meaning it can be supported or refuted through experimentation or observation. A testable hypothesis allows you to design experiments that can confirm or deny your predictions. For example, you might hypothesize that "students who sleep 8 hours perform better on tests than those who sleep less." This makes it easier to conduct a study and gather data.

Variables and Relationships

A good hypothesis clearly defines the variables and the relationship between them. Typically, this involves an independent variable (what you change) and a dependent variable (what you measure). For example, "If the amount of sunlight is increased, then the growth rate of the plant will increase." This if-then structure helps in crafting a bachelor thesis by clearly outlining what is being tested and what the expected outcome is.

Common Pitfalls in Hypothesis Writing

When writing a hypothesis, it's easy to make mistakes that can undermine your research. Here are some common pitfalls to avoid:

Subjectivity and Bias

A hypothesis should be objective and free from personal bias. If you let your own opinions influence your hypothesis, it can skew your research results. Always aim for neutrality to ensure your findings are valid.

Overly Complex Statements

Keep your hypothesis simple and clear. Overly complex statements can confuse readers and make your research harder to follow. If your hypothesis is too complicated, break it down into smaller, more manageable parts.

Lack of Testability

A hypothesis must be testable. If you can't test your hypothesis through experiments or observations, it's not useful for scientific research. Make sure your hypothesis can be supported or refuted by data.

Facing the unexpected: dealing with data that contradicts your hypothesis. Consider limitations, revise hypothesis, adjust methodology, and interpret findings when faced with contradictory data.

Examples of Effective Hypotheses

When crafting a hypothesis, it's helpful to look at examples to understand what makes them effective. Here are some examples to guide you.

Simple Hypothesis Examples

A simple hypothesis predicts a relationship between two variables. For instance, "Plants grow better with bottled water than tap water." This hypothesis is straightforward and easy to test.

Complex Hypothesis Examples

A complex hypothesis involves multiple variables. An example could be, "Children who play first-person shooter games will show higher levels of aggression than children who do not." This hypothesis considers both the type of game and the level of aggression.

Null Hypothesis Examples

A null hypothesis states that there is no relationship between the variables. For example, "There is no difference in memory performance between adults and children." This type of hypothesis is essential for statistical testing.

Understanding these examples can help you formulate your own hypotheses more effectively. Remember, a good hypothesis should be clear, testable, and directly related to your research question .

Testing and Validating Your Hypothesis

Designing experiments.

To test your hypothesis, you need to design a solid experiment. Start by identifying your independent and dependent variables. Make sure your experiment is controlled, meaning you only change one variable at a time. This helps you see the direct effects of that variable. A well-designed experiment is crucial for reliable results.

Data Collection Methods

Collecting data accurately is key to validating your hypothesis. Use methods like surveys, observations, or experiments to gather data. Ensure your data collection process is consistent and unbiased. This will help you draw meaningful conclusions from your data.

Analyzing Results

Once you have your data, it's time to analyze it. Use statistical tools to interpret your data and see if it supports your hypothesis. Look for patterns and relationships between variables. Understanding and applying key stats in experimental research is essential for drawing valid conclusions. This step is vital in the process of statistical storytelling .

Revising and Refining Your Hypothesis

Incorporating feedback.

When revising your hypothesis, it's crucial to consider feedback from peers, mentors, or advisors. This stage involves analyzing what ideas can be combined , what should be kept separate, and drawing inferences. Feedback can highlight areas of your hypothesis that need more clarity or precision.

Adjusting for New Data

As you gather more data, you might find that your original hypothesis needs tweaking. This is a normal part of the research process. Be open to modifying your hypothesis to better align with the new information you have collected. This ensures that your hypothesis remains relevant and testable.

Ensuring Alignment with Research Goals

Your hypothesis should always align with your overall research goals. Regularly revisiting your research questions and objectives can help you ensure that your hypothesis is still on track. If your research goals evolve, your hypothesis should be adjusted accordingly to maintain coherence in your study.

When you revisit and refine your hypothesis, you pave the way for a stronger thesis. It's a crucial step that can make a big difference in your research. If you're feeling stuck or unsure about how to proceed, don't worry. Our Thesis Action Plan is here to guide you through every step. Visit our website to learn more and take the first step towards a stress-free thesis journey.

In summary, writing a hypothesis is a crucial step in the scientific method that requires careful planning and clear thinking. By understanding the basics, such as ensuring your hypothesis is testable and based on research, you can set a strong foundation for your study. Remember, a well-crafted hypothesis not only guides your research but also helps in drawing meaningful conclusions. As you continue to practice and refine your skills, you'll find that writing hypotheses becomes more intuitive and integral to your scientific inquiries.

Frequently Asked Questions

What is a hypothesis.

A hypothesis is a statement that predicts the outcome of your research. It's like an educated guess about what you think will happen.

Why is a hypothesis important in scientific research?

A hypothesis helps guide your research. It gives you a clear focus and direction for your experiments or studies.

What are the different types of hypotheses?

There are several types, including simple, complex, and null hypotheses. Each type serves a different purpose in research.

How do I write a clear and precise hypothesis?

Make sure your hypothesis is specific and easy to understand. Avoid using vague terms and be as detailed as possible.

What makes a hypothesis testable?

A testable hypothesis can be supported or refuted through experiments or observations. It should be measurable and clear.

What are common mistakes to avoid when writing a hypothesis?

Avoid being subjective or biased, making overly complex statements, and writing hypotheses that can't be tested.

The Feedback Loop: Navigating Peer Reviews and Supervisor Input

How to conduct a systematic review and write-up in 7 steps (using prisma, pico and ai).

Persona redactando la tesis de un trabajo de investigación

Mastering the Art: How to Write the Thesis Statement of a Research Paper

Estudiante redactando propuesta de investigación doctoral

Cómo escribir una propuesta de investigación para un doctorado

Estudiante en biblioteca con libros y laptop

Cómo redactar una revisión de literatura para tu tesis

Researcher measuring document length with a ruler.

How to Determine the Perfect Research Proposal Length

How Do I Start Writing My Thesis: A Step-by-Step Guide

How Do I Start Writing My Thesis: A Step-by-Step Guide

Icons and timeline illustrating research planning steps

From Idea to Proposal: 6 Steps to Efficiently Plan Your Research Project in 2024

Student planning thesis with calendar and books

Three Months to a Perfect Bachelor Thesis: A Detailed Plan for Students

Conquering Bibliography Fears: Mastering Citations in Thesis Writing

Conquering Bibliography Fears: Mastering Citations in Thesis Writing

Comprehensive Thesis Guide

Thesis Action Plan

Research Proposal Compass

  • Blog Articles
  • Affiliate Program
  • Terms and Conditions
  • Payment and Shipping Terms
  • Privacy Policy
  • Return Policy

© 2024 Research Rebels, All rights reserved.

Your cart is currently empty.

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • J Korean Med Sci
  • v.36(50); 2021 Dec 27

Logo of jkms

Formulating Hypotheses for Different Study Designs

Durga prasanna misra.

1 Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India.

Armen Yuri Gasparyan

2 Departments of Rheumatology and Research and Development, Dudley Group NHS Foundation Trust (Teaching Trust of the University of Birmingham, UK), Russells Hall Hospital, Dudley, UK.

Olena Zimba

3 Department of Internal Medicine #2, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine.

Marlen Yessirkepov

4 Department of Biology and Biochemistry, South Kazakhstan Medical Academy, Shymkent, Kazakhstan.

Vikas Agarwal

George d. kitas.

5 Centre for Epidemiology versus Arthritis, University of Manchester, Manchester, UK.

Generating a testable working hypothesis is the first step towards conducting original research. Such research may prove or disprove the proposed hypothesis. Case reports, case series, online surveys and other observational studies, clinical trials, and narrative reviews help to generate hypotheses. Observational and interventional studies help to test hypotheses. A good hypothesis is usually based on previous evidence-based reports. Hypotheses without evidence-based justification and a priori ideas are not received favourably by the scientific community. Original research to test a hypothesis should be carefully planned to ensure appropriate methodology and adequate statistical power. While hypotheses can challenge conventional thinking and may be controversial, they should not be destructive. A hypothesis should be tested by ethically sound experiments with meaningful ethical and clinical implications. The coronavirus disease 2019 pandemic has brought into sharp focus numerous hypotheses, some of which were proven (e.g. effectiveness of corticosteroids in those with hypoxia) while others were disproven (e.g. ineffectiveness of hydroxychloroquine and ivermectin).

Graphical Abstract

An external file that holds a picture, illustration, etc.
Object name is jkms-36-e338-abf001.jpg

DEFINING WORKING AND STANDALONE SCIENTIFIC HYPOTHESES

Science is the systematized description of natural truths and facts. Routine observations of existing life phenomena lead to the creative thinking and generation of ideas about mechanisms of such phenomena and related human interventions. Such ideas presented in a structured format can be viewed as hypotheses. After generating a hypothesis, it is necessary to test it to prove its validity. Thus, hypothesis can be defined as a proposed mechanism of a naturally occurring event or a proposed outcome of an intervention. 1 , 2

Hypothesis testing requires choosing the most appropriate methodology and adequately powering statistically the study to be able to “prove” or “disprove” it within predetermined and widely accepted levels of certainty. This entails sample size calculation that often takes into account previously published observations and pilot studies. 2 , 3 In the era of digitization, hypothesis generation and testing may benefit from the availability of numerous platforms for data dissemination, social networking, and expert validation. Related expert evaluations may reveal strengths and limitations of proposed ideas at early stages of post-publication promotion, preventing the implementation of unsupported controversial points. 4

Thus, hypothesis generation is an important initial step in the research workflow, reflecting accumulating evidence and experts' stance. In this article, we overview the genesis and importance of scientific hypotheses and their relevance in the era of the coronavirus disease 2019 (COVID-19) pandemic.

DO WE NEED HYPOTHESES FOR ALL STUDY DESIGNS?

Broadly, research can be categorized as primary or secondary. In the context of medicine, primary research may include real-life observations of disease presentations and outcomes. Single case descriptions, which often lead to new ideas and hypotheses, serve as important starting points or justifications for case series and cohort studies. The importance of case descriptions is particularly evident in the context of the COVID-19 pandemic when unique, educational case reports have heralded a new era in clinical medicine. 5

Case series serve similar purpose to single case reports, but are based on a slightly larger quantum of information. Observational studies, including online surveys, describe the existing phenomena at a larger scale, often involving various control groups. Observational studies include variable-scale epidemiological investigations at different time points. Interventional studies detail the results of therapeutic interventions.

Secondary research is based on already published literature and does not directly involve human or animal subjects. Review articles are generated by secondary research. These could be systematic reviews which follow methods akin to primary research but with the unit of study being published papers rather than humans or animals. Systematic reviews have a rigid structure with a mandatory search strategy encompassing multiple databases, systematic screening of search results against pre-defined inclusion and exclusion criteria, critical appraisal of study quality and an optional component of collating results across studies quantitatively to derive summary estimates (meta-analysis). 6 Narrative reviews, on the other hand, have a more flexible structure. Systematic literature searches to minimise bias in selection of articles are highly recommended but not mandatory. 7 Narrative reviews are influenced by the authors' viewpoint who may preferentially analyse selected sets of articles. 8

In relation to primary research, case studies and case series are generally not driven by a working hypothesis. Rather, they serve as a basis to generate a hypothesis. Observational or interventional studies should have a hypothesis for choosing research design and sample size. The results of observational and interventional studies further lead to the generation of new hypotheses, testing of which forms the basis of future studies. Review articles, on the other hand, may not be hypothesis-driven, but form fertile ground to generate future hypotheses for evaluation. Fig. 1 summarizes which type of studies are hypothesis-driven and which lead on to hypothesis generation.

An external file that holds a picture, illustration, etc.
Object name is jkms-36-e338-g001.jpg

STANDARDS OF WORKING AND SCIENTIFIC HYPOTHESES

A review of the published literature did not enable the identification of clearly defined standards for working and scientific hypotheses. It is essential to distinguish influential versus not influential hypotheses, evidence-based hypotheses versus a priori statements and ideas, ethical versus unethical, or potentially harmful ideas. The following points are proposed for consideration while generating working and scientific hypotheses. 1 , 2 Table 1 summarizes these points.

Points to be considered while evaluating the validity of hypotheses
Backed by evidence-based data
Testable by relevant study designs
Supported by preliminary (pilot) studies
Testable by ethical studies
Maintaining a balance between scientific temper and controversy

Evidence-based data

A scientific hypothesis should have a sound basis on previously published literature as well as the scientist's observations. Randomly generated (a priori) hypotheses are unlikely to be proven. A thorough literature search should form the basis of a hypothesis based on published evidence. 7

Unless a scientific hypothesis can be tested, it can neither be proven nor be disproven. Therefore, a scientific hypothesis should be amenable to testing with the available technologies and the present understanding of science.

Supported by pilot studies

If a hypothesis is based purely on a novel observation by the scientist in question, it should be grounded on some preliminary studies to support it. For example, if a drug that targets a specific cell population is hypothesized to be useful in a particular disease setting, then there must be some preliminary evidence that the specific cell population plays a role in driving that disease process.

Testable by ethical studies

The hypothesis should be testable by experiments that are ethically acceptable. 9 For example, a hypothesis that parachutes reduce mortality from falls from an airplane cannot be tested using a randomized controlled trial. 10 This is because it is obvious that all those jumping from a flying plane without a parachute would likely die. Similarly, the hypothesis that smoking tobacco causes lung cancer cannot be tested by a clinical trial that makes people take up smoking (since there is considerable evidence for the health hazards associated with smoking). Instead, long-term observational studies comparing outcomes in those who smoke and those who do not, as was performed in the landmark epidemiological case control study by Doll and Hill, 11 are more ethical and practical.

Balance between scientific temper and controversy

Novel findings, including novel hypotheses, particularly those that challenge established norms, are bound to face resistance for their wider acceptance. Such resistance is inevitable until the time such findings are proven with appropriate scientific rigor. However, hypotheses that generate controversy are generally unwelcome. For example, at the time the pandemic of human immunodeficiency virus (HIV) and AIDS was taking foot, there were numerous deniers that refused to believe that HIV caused AIDS. 12 , 13 Similarly, at a time when climate change is causing catastrophic changes to weather patterns worldwide, denial that climate change is occurring and consequent attempts to block climate change are certainly unwelcome. 14 The denialism and misinformation during the COVID-19 pandemic, including unfortunate examples of vaccine hesitancy, are more recent examples of controversial hypotheses not backed by science. 15 , 16 An example of a controversial hypothesis that was a revolutionary scientific breakthrough was the hypothesis put forth by Warren and Marshall that Helicobacter pylori causes peptic ulcers. Initially, the hypothesis that a microorganism could cause gastritis and gastric ulcers faced immense resistance. When the scientists that proposed the hypothesis themselves ingested H. pylori to induce gastritis in themselves, only then could they convince the wider world about their hypothesis. Such was the impact of the hypothesis was that Barry Marshall and Robin Warren were awarded the Nobel Prize in Physiology or Medicine in 2005 for this discovery. 17 , 18

DISTINGUISHING THE MOST INFLUENTIAL HYPOTHESES

Influential hypotheses are those that have stood the test of time. An archetype of an influential hypothesis is that proposed by Edward Jenner in the eighteenth century that cowpox infection protects against smallpox. While this observation had been reported for nearly a century before this time, it had not been suitably tested and publicised until Jenner conducted his experiments on a young boy by demonstrating protection against smallpox after inoculation with cowpox. 19 These experiments were the basis for widespread smallpox immunization strategies worldwide in the 20th century which resulted in the elimination of smallpox as a human disease today. 20

Other influential hypotheses are those which have been read and cited widely. An example of this is the hygiene hypothesis proposing an inverse relationship between infections in early life and allergies or autoimmunity in adulthood. An analysis reported that this hypothesis had been cited more than 3,000 times on Scopus. 1

LESSONS LEARNED FROM HYPOTHESES AMIDST THE COVID-19 PANDEMIC

The COVID-19 pandemic devastated the world like no other in recent memory. During this period, various hypotheses emerged, understandably so considering the public health emergency situation with innumerable deaths and suffering for humanity. Within weeks of the first reports of COVID-19, aberrant immune system activation was identified as a key driver of organ dysfunction and mortality in this disease. 21 Consequently, numerous drugs that suppress the immune system or abrogate the activation of the immune system were hypothesized to have a role in COVID-19. 22 One of the earliest drugs hypothesized to have a benefit was hydroxychloroquine. Hydroxychloroquine was proposed to interfere with Toll-like receptor activation and consequently ameliorate the aberrant immune system activation leading to pathology in COVID-19. 22 The drug was also hypothesized to have a prophylactic role in preventing infection or disease severity in COVID-19. It was also touted as a wonder drug for the disease by many prominent international figures. However, later studies which were well-designed randomized controlled trials failed to demonstrate any benefit of hydroxychloroquine in COVID-19. 23 , 24 , 25 , 26 Subsequently, azithromycin 27 , 28 and ivermectin 29 were hypothesized as potential therapies for COVID-19, but were not supported by evidence from randomized controlled trials. The role of vitamin D in preventing disease severity was also proposed, but has not been proven definitively until now. 30 , 31 On the other hand, randomized controlled trials identified the evidence supporting dexamethasone 32 and interleukin-6 pathway blockade with tocilizumab as effective therapies for COVID-19 in specific situations such as at the onset of hypoxia. 33 , 34 Clues towards the apparent effectiveness of various drugs against severe acute respiratory syndrome coronavirus 2 in vitro but their ineffectiveness in vivo have recently been identified. Many of these drugs are weak, lipophilic bases and some others induce phospholipidosis which results in apparent in vitro effectiveness due to non-specific off-target effects that are not replicated inside living systems. 35 , 36

Another hypothesis proposed was the association of the routine policy of vaccination with Bacillus Calmette-Guerin (BCG) with lower deaths due to COVID-19. This hypothesis emerged in the middle of 2020 when COVID-19 was still taking foot in many parts of the world. 37 , 38 Subsequently, many countries which had lower deaths at that time point went on to have higher numbers of mortality, comparable to other areas of the world. Furthermore, the hypothesis that BCG vaccination reduced COVID-19 mortality was a classic example of ecological fallacy. Associations between population level events (ecological studies; in this case, BCG vaccination and COVID-19 mortality) cannot be directly extrapolated to the individual level. Furthermore, such associations cannot per se be attributed as causal in nature, and can only serve to generate hypotheses that need to be tested at the individual level. 39

IS TRADITIONAL PEER REVIEW EFFICIENT FOR EVALUATION OF WORKING AND SCIENTIFIC HYPOTHESES?

Traditionally, publication after peer review has been considered the gold standard before any new idea finds acceptability amongst the scientific community. Getting a work (including a working or scientific hypothesis) reviewed by experts in the field before experiments are conducted to prove or disprove it helps to refine the idea further as well as improve the experiments planned to test the hypothesis. 40 A route towards this has been the emergence of journals dedicated to publishing hypotheses such as the Central Asian Journal of Medical Hypotheses and Ethics. 41 Another means of publishing hypotheses is through registered research protocols detailing the background, hypothesis, and methodology of a particular study. If such protocols are published after peer review, then the journal commits to publishing the completed study irrespective of whether the study hypothesis is proven or disproven. 42 In the post-pandemic world, online research methods such as online surveys powered via social media channels such as Twitter and Instagram might serve as critical tools to generate as well as to preliminarily test the appropriateness of hypotheses for further evaluation. 43 , 44

Some radical hypotheses might be difficult to publish after traditional peer review. These hypotheses might only be acceptable by the scientific community after they are tested in research studies. Preprints might be a way to disseminate such controversial and ground-breaking hypotheses. 45 However, scientists might prefer to keep their hypotheses confidential for the fear of plagiarism of ideas, avoiding online posting and publishing until they have tested the hypotheses.

SUGGESTIONS ON GENERATING AND PUBLISHING HYPOTHESES

Publication of hypotheses is important, however, a balance is required between scientific temper and controversy. Journal editors and reviewers might keep in mind these specific points, summarized in Table 2 and detailed hereafter, while judging the merit of hypotheses for publication. Keeping in mind the ethical principle of primum non nocere, a hypothesis should be published only if it is testable in a manner that is ethically appropriate. 46 Such hypotheses should be grounded in reality and lend themselves to further testing to either prove or disprove them. It must be considered that subsequent experiments to prove or disprove a hypothesis have an equal chance of failing or succeeding, akin to tossing a coin. A pre-conceived belief that a hypothesis is unlikely to be proven correct should not form the basis of rejection of such a hypothesis for publication. In this context, hypotheses generated after a thorough literature search to identify knowledge gaps or based on concrete clinical observations on a considerable number of patients (as opposed to random observations on a few patients) are more likely to be acceptable for publication by peer-reviewed journals. Also, hypotheses should be considered for publication or rejection based on their implications for science at large rather than whether the subsequent experiments to test them end up with results in favour of or against the original hypothesis.

Points to be considered before a hypothesis is acceptable for publication
Experiments required to test hypotheses should be ethically acceptable as per the World Medical Association declaration on ethics and related statements
Pilot studies support hypotheses
Single clinical observations and expert opinion surveys may support hypotheses
Testing hypotheses requires robust methodology and statistical power
Hypotheses that challenge established views and concepts require proper evidence-based justification

Hypotheses form an important part of the scientific literature. The COVID-19 pandemic has reiterated the importance and relevance of hypotheses for dealing with public health emergencies and highlighted the need for evidence-based and ethical hypotheses. A good hypothesis is testable in a relevant study design, backed by preliminary evidence, and has positive ethical and clinical implications. General medical journals might consider publishing hypotheses as a specific article type to enable more rapid advancement of science.

Disclosure: The authors have no potential conflicts of interest to disclose.

Author Contributions:

  • Data curation: Gasparyan AY, Misra DP, Zimba O, Yessirkepov M, Agarwal V, Kitas GD.

Ohio State nav bar

The Ohio State University

  • BuckeyeLink
  • Find People
  • Search Ohio State

Research Questions & Hypotheses

Generally, in quantitative studies, reviewers expect hypotheses rather than research questions. However, both research questions and hypotheses serve different purposes and can be beneficial when used together.

Research Questions

Clarify the research’s aim (farrugia et al., 2010).

  • Research often begins with an interest in a topic, but a deep understanding of the subject is crucial to formulate an appropriate research question.
  • Descriptive: “What factors most influence the academic achievement of senior high school students?”
  • Comparative: “What is the performance difference between teaching methods A and B?”
  • Relationship-based: “What is the relationship between self-efficacy and academic achievement?”
  • Increasing knowledge about a subject can be achieved through systematic literature reviews, in-depth interviews with patients (and proxies), focus groups, and consultations with field experts.
  • Some funding bodies, like the Canadian Institute for Health Research, recommend conducting a systematic review or a pilot study before seeking grants for full trials.
  • The presence of multiple research questions in a study can complicate the design, statistical analysis, and feasibility.
  • It’s advisable to focus on a single primary research question for the study.
  • The primary question, clearly stated at the end of a grant proposal’s introduction, usually specifies the study population, intervention, and other relevant factors.
  • The FINER criteria underscore aspects that can enhance the chances of a successful research project, including specifying the population of interest, aligning with scientific and public interest, clinical relevance, and contribution to the field, while complying with ethical and national research standards.
Feasible
Interesting
Novel
Ethical
Relevant
  • The P ICOT approach is crucial in developing the study’s framework and protocol, influencing inclusion and exclusion criteria and identifying patient groups for inclusion.
Population (patients)
Intervention (for intervention studies only)
Comparison group
Outcome of interest
Time
  • Defining the specific population, intervention, comparator, and outcome helps in selecting the right outcome measurement tool.
  • The more precise the population definition and stricter the inclusion and exclusion criteria, the more significant the impact on the interpretation, applicability, and generalizability of the research findings.
  • A restricted study population enhances internal validity but may limit the study’s external validity and generalizability to clinical practice.
  • A broadly defined study population may better reflect clinical practice but could increase bias and reduce internal validity.
  • An inadequately formulated research question can negatively impact study design, potentially leading to ineffective outcomes and affecting publication prospects.

Checklist: Good research questions for social science projects (Panke, 2018)

formulating research hypotheses

Research Hypotheses

Present the researcher’s predictions based on specific statements.

  • These statements define the research problem or issue and indicate the direction of the researcher’s predictions.
  • Formulating the research question and hypothesis from existing data (e.g., a database) can lead to multiple statistical comparisons and potentially spurious findings due to chance.
  • The research or clinical hypothesis, derived from the research question, shapes the study’s key elements: sampling strategy, intervention, comparison, and outcome variables.
  • Hypotheses can express a single outcome or multiple outcomes.
  • After statistical testing, the null hypothesis is either rejected or not rejected based on whether the study’s findings are statistically significant.
  • Hypothesis testing helps determine if observed findings are due to true differences and not chance.
  • Hypotheses can be 1-sided (specific direction of difference) or 2-sided (presence of a difference without specifying direction).
  • 2-sided hypotheses are generally preferred unless there’s a strong justification for a 1-sided hypothesis.
  • A solid research hypothesis, informed by a good research question, influences the research design and paves the way for defining clear research objectives.

Types of Research Hypothesis

  • In a Y-centered research design, the focus is on the dependent variable (DV) which is specified in the research question. Theories are then used to identify independent variables (IV) and explain their causal relationship with the DV.
  • Example: “An increase in teacher-led instructional time (IV) is likely to improve student reading comprehension scores (DV), because extensive guided practice under expert supervision enhances learning retention and skill mastery.”
  • Hypothesis Explanation: The dependent variable (student reading comprehension scores) is the focus, and the hypothesis explores how changes in the independent variable (teacher-led instructional time) affect it.
  • In X-centered research designs, the independent variable is specified in the research question. Theories are used to determine potential dependent variables and the causal mechanisms at play.
  • Example: “Implementing technology-based learning tools (IV) is likely to enhance student engagement in the classroom (DV), because interactive and multimedia content increases student interest and participation.”
  • Hypothesis Explanation: The independent variable (technology-based learning tools) is the focus, with the hypothesis exploring its impact on a potential dependent variable (student engagement).
  • Probabilistic hypotheses suggest that changes in the independent variable are likely to lead to changes in the dependent variable in a predictable manner, but not with absolute certainty.
  • Example: “The more teachers engage in professional development programs (IV), the more their teaching effectiveness (DV) is likely to improve, because continuous training updates pedagogical skills and knowledge.”
  • Hypothesis Explanation: This hypothesis implies a probable relationship between the extent of professional development (IV) and teaching effectiveness (DV).
  • Deterministic hypotheses state that a specific change in the independent variable will lead to a specific change in the dependent variable, implying a more direct and certain relationship.
  • Example: “If the school curriculum changes from traditional lecture-based methods to project-based learning (IV), then student collaboration skills (DV) are expected to improve because project-based learning inherently requires teamwork and peer interaction.”
  • Hypothesis Explanation: This hypothesis presumes a direct and definite outcome (improvement in collaboration skills) resulting from a specific change in the teaching method.
  • Example : “Students who identify as visual learners will score higher on tests that are presented in a visually rich format compared to tests presented in a text-only format.”
  • Explanation : This hypothesis aims to describe the potential difference in test scores between visual learners taking visually rich tests and text-only tests, without implying a direct cause-and-effect relationship.
  • Example : “Teaching method A will improve student performance more than method B.”
  • Explanation : This hypothesis compares the effectiveness of two different teaching methods, suggesting that one will lead to better student performance than the other. It implies a direct comparison but does not necessarily establish a causal mechanism.
  • Example : “Students with higher self-efficacy will show higher levels of academic achievement.”
  • Explanation : This hypothesis predicts a relationship between the variable of self-efficacy and academic achievement. Unlike a causal hypothesis, it does not necessarily suggest that one variable causes changes in the other, but rather that they are related in some way.

Tips for developing research questions and hypotheses for research studies

  • Perform a systematic literature review (if one has not been done) to increase knowledge and familiarity with the topic and to assist with research development.
  • Learn about current trends and technological advances on the topic.
  • Seek careful input from experts, mentors, colleagues, and collaborators to refine your research question as this will aid in developing the research question and guide the research study.
  • Use the FINER criteria in the development of the research question.
  • Ensure that the research question follows PICOT format.
  • Develop a research hypothesis from the research question.
  • Ensure that the research question and objectives are answerable, feasible, and clinically relevant.

If your research hypotheses are derived from your research questions, particularly when multiple hypotheses address a single question, it’s recommended to use both research questions and hypotheses. However, if this isn’t the case, using hypotheses over research questions is advised. It’s important to note these are general guidelines, not strict rules. If you opt not to use hypotheses, consult with your supervisor for the best approach.

Farrugia, P., Petrisor, B. A., Farrokhyar, F., & Bhandari, M. (2010). Practical tips for surgical research: Research questions, hypotheses and objectives.  Canadian journal of surgery. Journal canadien de chirurgie ,  53 (4), 278–281.

Hulley, S. B., Cummings, S. R., Browner, W. S., Grady, D., & Newman, T. B. (2007). Designing clinical research. Philadelphia.

Panke, D. (2018). Research design & method selection: Making good choices in the social sciences.  Research Design & Method Selection , 1-368.

Researchmate.net logo

7 Types of Research Hypothesis: Examples, Significance and Step-By-Step Guide

Introduction.

In any research study, a research hypothesis plays a crucial role in guiding the investigation and providing a clear direction for the research. It is an essential component of a thesis as it helps to frame the research question and determine the methodology to be used.

Research hypotheses are important in guiding the direction of a study, providing a basis for data collection and analysis, and helping to validate the research findings.

This article will provide a detailed analysis of research hypotheses in a thesis, highlighting their significance and qualities. It will also explore different types of research hypotheses and provide illustrative examples. Additionally, a step-by-step guide to developing research hypotheses and methods for testing and validating them will be discussed. By the end of this article, readers will have a comprehensive understanding of research hypotheses and their role in a thesis.

Understanding Research Hypotheses in a Thesis

A research hypothesis is a statement of expectation or prediction that will be tested by research. In a thesis, a research hypothesis is formulated to address the research question or problem statement . It serves as a tentative answer or explanation to the research question. The research hypothesis guides the direction of the study and helps in determining the research design and methodology.

The research hypothesis is typically based on existing theories, previous research findings, or observations. It is formulated after a thorough review of the literature and understanding of the research area. A well-defined research hypothesis provides a clear focus for the study and helps in generating testable predictions. By testing the research hypothesis, researchers aim to gather evidence to support or reject the hypothesis. This process contributes to the advancement of knowledge in the field and helps in drawing meaningful conclusions.

Significance of Research Hypotheses in a Thesis

One of the key significance of research hypotheses is that they help in organizing and structuring the research study. By formulating a hypothesis, the researcher defines the specific research question and identifies the variables that will be investigated. This helps in narrowing down the scope of the study and ensures that the research is focused and targeted.

Moreover, research hypotheses provide a framework for data collection and analysis. They guide the researcher in selecting appropriate research methods , tools, and techniques to gather relevant data. The hypotheses also help in determining the statistical tests and analysis techniques that will be used to analyze the collected data.

Another significance of research hypotheses is that they contribute to the advancement of knowledge in a particular field. By formulating hypotheses and conducting research to test them, researchers are able to generate new insights, theories, and explanations. This contributes to the existing body of knowledge and helps in expanding the understanding of a specific phenomenon or topic.

Furthermore, research hypotheses are important for establishing the validity and reliability of the research findings. By formulating clear and testable hypotheses, researchers can ensure that their study is based on sound scientific principles. The hypotheses provide a basis for evaluating the accuracy and generalizability of the research results.

In addition, research hypotheses are essential for making informed decisions and recommendations based on the research findings. They help in drawing conclusions and making predictions about the relationship between variables. This information can be used to inform policy decisions, develop interventions, or guide future research in the field.

Qualities of an Effective Research Hypothesis in a Thesis

An effective research hypothesis in a thesis possesses several key qualities that contribute to its strength and validity. These qualities are essential for ensuring that the hypothesis can be tested and validated through empirical research. The following are some of the qualities that make a research hypothesis effective:

1. Specificity: A good research hypothesis is specific and clearly defines the variables and the relationship between them. It provides a clear direction for the research and allows for precise testing of the hypothesis.

2. Testability: An effective hypothesis in research is testable, meaning that it can be empirically examined and either supported or refuted through data analysis. It should be possible to design experiments or collect data that can provide evidence for or against the hypothesis.

3. Clarity: A research hypothesis should be written in clear and concise language. It should avoid ambiguity and ensure that the intended meaning is easily understood by the readers. Clear language helps in communicating the hypothesis effectively and facilitates its evaluation.

4. Falsifiability: A strong research hypothesis is falsifiable, which means that it is possible to prove it wrong. It should be formulated in a way that allows for the possibility of obtaining evidence that contradicts the hypothesis. This is important for the scientific process as it encourages critical thinking and the exploration of alternative explanations.

5. Relevance: An effective research hypothesis is relevant to the research question and the overall objectives of the study. It should address a significant gap in knowledge or contribute to the existing body of literature. A relevant hypothesis adds value to the research and increases its significance.

6. Novelty: A good research hypothesis is original and innovative. It should propose a new idea or approach that has not been extensively explored before. Novelty in the hypothesis increases the potential for new discoveries and contributes to the advancement of knowledge in the field.

7. Coherence: An effective research hypothesis should be coherent and consistent with existing theories, concepts, and empirical evidence. It should align with the current understanding of the topic and build upon previous research. Coherence ensures that the hypothesis is grounded in a solid foundation and enhances its credibility.

8. Measurability: A research hypothesis should be measurable, meaning that it can be quantitatively or qualitatively assessed. It should be possible to collect data or evidence that can be used to evaluate the hypothesis. Measurability allows for objective testing and increases the reliability of the research findings.

By incorporating these qualities into the formulation of a research hypothesis, researchers can enhance the validity and reliability of their study.

Different Types of Research Hypotheses in a Thesis

In a thesis, there are several different types of research hypotheses that can be used to test the relationship between variables. These hypotheses provide a framework for the research and guide the direction of the study. Understanding the different types of research hypotheses is essential for conducting a comprehensive and effective thesis.

Null Hypothesis

The null hypothesis is a statement that suggests there is no significant relationship between the variables being studied. It assumes that any observed differences or relationships are due to chance or random variation. The null hypothesis is denoted as H0 and is often used as a starting point for hypothesis testing.

Alternative Hypothesis

The alternative hypothesis, also known as the research hypothesis, is a statement that suggests there is a significant relationship between the variables being studied. It contradicts the null hypothesis and proposes that the observed differences or relationships are not due to chance.

Directional Hypothesis

A directional hypothesis is a specific type of alternative hypothesis that predicts the direction of the relationship between variables. It states that there is a positive or negative relationship between the variables, indicating the direction of the effect.

Non-Directional Hypothesis

In contrast to a directional hypothesis, a non-directional hypothesis does not predict the direction of the relationship between variables. It simply states that there is a relationship between the variables without specifying the direction of the effect.

Statistical Hypothesis

A statistical hypothesis is a hypothesis that is formulated based on statistical analysis. It involves using statistical tests to determine the likelihood of the observed data occurring under the null hypothesis.

Associative Hypothesis

An associative hypothesis suggests that there is a relationship between variables, but it does not imply causation. It indicates that changes in one variable are associated with changes in another variable.

Causal Hypothesis

A causal hypothesis proposes a cause-and-effect relationship between variables. It suggests that changes in one variable directly cause changes in another variable.

These different types of research hypotheses provide researchers with various options to explore and test the relationships between variables in a thesis. The choice of hypothesis depends on the research question, the nature of the variables, and the available data.

Illustrative Examples of Research Hypotheses in a Thesis

To better understand research hypotheses in a thesis, let’s explore some illustrative examples. These examples will demonstrate how hypotheses are formulated and tested in different research studies.

Example 1: Hypothesis for a study on the effects of exercise on weight loss:

Null Hypothesis (H0): There is no significant difference in weight loss between individuals who engage in regular exercise and those who do not.

Alternative Hypothesis (H1): Individuals who engage in regular exercise will experience greater weight loss compared to those who do not exercise.

Example 2: Hypothesis for a study on the impact of social media on self-esteem:

Null Hypothesis (H0): There is no significant relationship between social media usage and self-esteem levels.

Alternative Hypothesis (H1): Increased social media usage is associated with lower self-esteem levels.

Example 3: Hypothesis for a study on the effectiveness of a new teaching method in improving student performance:

Null Hypothesis (H0): There is no significant difference in student performance between the traditional teaching method and the new teaching method.

Alternative Hypothesis (H1): The new teaching method leads to improved student performance compared to the traditional teaching method.

These examples highlight the structure of research hypotheses, where the null hypothesis represents no effect or relationship, while the alternative hypothesis suggests the presence of an effect or relationship. It is important to note that these hypotheses are testable and can be analyzed using appropriate statistical methods.

Step-by-Step Guide to Developing Research Hypotheses in a Thesis

Developing a research hypothesis is a crucial step in the process of conducting a thesis. In this section, we will provide a step-by-step guide to developing research hypotheses in a thesis.

Step 1: Identify the Research Topic

The first step in developing a research hypothesis is to clearly identify the research topic. This involves understanding the research problem and determining the specific area of study.

Step 2: Conduct Preliminary Research

Once the research topic is identified, it is important to conduct preliminary research to gather relevant information. This helps in understanding the existing knowledge and identifying any gaps or areas that need further investigation.

Step 3: Formulate the Research Question

Based on the preliminary research, formulate a clear and concise research question. The research question should be specific and focused, addressing the research problem identified in step 1.

Step 4: Define the Variables

Identify the variables that will be studied in the research. Variables are the factors or concepts that are being measured or manipulated in the study. It is important to clearly define the variables to ensure the research hypothesis is specific and testable.

Step 5: Predict the Relationship and Outcome

The research hypothesis should propose a link between the variables and predict the expected outcome. It should clearly state the expected relationship between the variables and the anticipated result.

Step 6: Ensure Clarity and Conciseness

A good research hypothesis should be simple and concise, avoiding wordiness. It should be clear and free from ambiguity or assumptions about the readers’ knowledge. The hypothesis should also be observable and measurable.

Step 7: Validate the Hypothesis

Before finalizing the research hypothesis, it is important to validate it. This can be done through further research, literature review , or consultation with experts in the field. Validating the hypothesis ensures its relevance and novelty.

By following these step-by-step guidelines, researchers can develop effective research hypotheses for their theses. A well-developed hypothesis provides a solid foundation for the research and helps in generating meaningful results.

Methods for Testing and Validating Research Hypotheses in a Thesis

Hypothesis testing is a formal procedure for investigating our ideas about the world. It allows you to statistically test your predictions. The usual process is to make a hypothesis, create an experiment to test it, run the experiment, draw a conclusion, and then allow other researchers to replicate the study to validate the findings. There are several methods for testing and validating research hypotheses in a thesis.

Experimental Research

One common method is experimental research, where researchers manipulate variables and measure their effects on the dependent variable.

Observational Research

Another method is observational research, where researchers observe and record data without manipulating variables. This method is often used when it is not feasible or ethical to conduct experiments.

Survey Research

Survey research is another method that involves collecting data from a sample of individuals using questionnaires or interviews . This method is useful for studying attitudes, opinions, and behaviors.

Conducting Meta-analysis

In addition to these methods, researchers can also use existing data or conduct meta-analyses to test and validate research hypotheses. Existing data can be obtained from sources such as government databases, previous studies, or publicly available datasets. Meta-analysis involves combining the results of multiple studies to determine the overall effect size and to test the generalizability of findings across different populations and contexts. Once the data is collected, researchers can use statistical analysis techniques to analyze the data and test the research hypotheses. Common statistical tests include t-tests, analysis of variance (ANOVA), regression analysis, and chi-square tests.

The choice of statistical test depends on the research design, the type of data collected, and the specific research hypotheses being tested. It is important to note that testing and validating research hypotheses is an iterative process. Researchers may need to refine their hypotheses, modify their research design, or collect additional data based on the initial findings. By using rigorous methods for testing and validating research hypotheses, researchers can ensure the reliability and validity of their findings, contributing to the advancement of knowledge in their field.

In conclusion, research hypotheses are essential components of a thesis that guide the research process and contribute to the advancement of knowledge in a particular field. By formulating clear and testable hypotheses, researchers can make meaningful contributions to their field and address important research questions. It is important for researchers to carefully develop and validate their hypotheses to ensure the credibility and reliability of their findings.

Leave a Comment Cancel reply

Save my name, email, and website in this browser for the next time I comment.

Related articles

Writing engaging introduction in research papers : tips and tricks.

Comparative-Frameworks-

Understanding Comparative Frameworks: Their Importance, Components, Examples and 8 Best Practices

artificial-intelligence-in-thesis-writing-for-phd-students

Revolutionizing Effective Thesis Writing for PhD Students Using Artificial Intelligence!

Interviews-as-One-of-Qualitative-Research-Instruments

3 Types of Interviews in Qualitative Research: An Essential Research Instrument and Handy Tips to Conduct Them

highlight abstracts

Highlight Abstracts: An Ultimate Guide For Researchers!

Critical abstracts

Crafting Critical Abstracts: 11 Expert Strategies for Summarizing Research

Informative Abstract

Crafting the Perfect Informative Abstract: Definition, Importance and 8 Expert Writing Tips

Descriptive Abstracts: A Complete Guide to Crafting Effective Summaries in Research Writing

Descriptive Abstracts: A Complete Guide to Crafting Effective Summaries in Research Writing

FORMULATING AND TESTING HYPOTHESIS

  • In book: Basic Guidelines for Research: An Introductory Approach for All Disciplines (pp.51-71)
  • Edition: First
  • Publisher: Book Zone Publication, Chittagong-4203, Bangladesh

Syed Muhammad Sajjad Kabir at Curtin University

  • Curtin University

Abstract and Figures

Standard Deviation is a Constant Interval from the Mean.

Discover the world's research

  • 25+ million members
  • 160+ million publication pages
  • 2.3+ billion citations

Sutarman Sutarman

  • Kartika Maharani

Bikram Karki

  • Shamim F Karim

Asm Amanullah

  • Nazmunnessa Mahtab
  • Ismat Jahan
  • Shabrina Shajeen Alam
  • Recruit researchers
  • Join for free
  • Login Email Tip: Most researchers use their institutional email address as their ResearchGate login Password Forgot password? Keep me logged in Log in or Continue with Google Welcome back! Please log in. Email · Hint Tip: Most researchers use their institutional email address as their ResearchGate login Password Forgot password? Keep me logged in Log in or Continue with Google No account? Sign up

AeroAstro Communication Lab

Formulating a Research Topic

by Evan Kramer

Motivation and scope

As master’s and PhD students, we all aspire to conduct quality research. The question many of us are faced with is: how do we formulate a research topic that is well poised for performing quality research? Research topics are meant to encompass the majority or entirety of our work during our graduate career and, when well-defined, can result in opportunities to publish several high-impact academic papers. The effort required to formulate a well-defined research topic is significant, but necessary to avoid running into unforeseen challenges during your PhD. This blog post discusses the concepts that should be considered for anyone looking to define their research topic. While students have varying degrees of autonomy in shaping their research due to funding constraints and advisor expectations, the concepts discussed in this blog post account for these facets and can serve as a framework for any situation.

Flowchart showing the steps in formulating a research topic described in this article.

Overview diagram of a framework for formulating a well-defined research topic.

What is quality research?

Quality research is independent , important , and unique .

This definition identifies a set of requirements that a research topic must meet. These requirements will be discussed in more detail to orient the research topic formulation process.

Independent – Independent research can be conducted entirely by you without assistance from outside sources. While you should actively seek collaborations with others to boost the reach of your work, will you be able to complete your research objectives without relying on resources provided by others? Framing your research topic and objectives in this manner gives you protection to flakey collaborators and will keep you on track to graduate on time. For example, something you may want to avoid is crafting a research topic around the usage of one particular data set maintained by a private company. While initial collaboration talks may go smoothly, you don’t want your ability to pursue your research project in the hands of someone else!

Important – Important research makes a contribution towards answering a specific question, or a gap in knowledge, among a research community that has been posed by several scholars. You may ask yourself: if you carry out your research to completion, will your contributions answer outstanding questions posed by multiple scholars in your research community? Note that the question your work addresses may not be explicitly posed in the literature, but identifying common limitations can help formulate a gap in knowledge that you can work towards filling. Aligning your research objectives with specific and commonly posed questions can increase the chance of your work being cited by other scholars and integrated into practices in industry. 

Unique – Unique research makes a first-of-its-kind contribution. There are several ways in which your research can be unique. For example, uniqueness may be assumed if you contribute the first work to a completely unanswered question in your field. Alternatively, you may make a unique contribution to a question that has already been addressed by approaching it in a new way. Knowledge of your chosen field’s state of the art and previous foundations is useful when checking the uniqueness of your work, which can only be verified by thorough literature review. Regardless of the way your research is unique, it is important to identify the uniqueness of your work within the context of existing work in related areas.

With these three research topic characteristics in mind, the following presents a high level path to formulating your well-defined research topic.

A framework for formulating a well-defined research topic

1. look inwards.

Based on previous experiences in coursework, internships, and extracurricular activities, create a two-column list. The first column lists research fields you found interesting. The second column lists ideas that align with your personal motivations for pursuing a career in STEM research. An example of this list may look like the following:

Space propulsion Reducing aerospace industry contributions to climate change
Aerospace controls Increasing equitable access to space capabilities for low-resource nations
Remote sensing Improving accessibility of space data for non-experts
High-speed aerodynamics Bolstering safety of space travel
LEO constellation astrodynamics Enabling efficient natural disaster response for remote communities

2. Read Widely

Given the two-column lists you created, start familiarizing yourself with the current state of the art. Starting with articles in popular science media outlets can be effective for initial cursory surveys. Any articles that pique your interest should be followed by deeper dives into related literature in Google Scholar. It is likely that several of the topics in the left column of your list get crossed off quickly when you realize they no longer interest you. Continue this process until a subset of around three areas remains. Your two-column list may then look like this:

Reducing aerospace industry contributions to climate change
Aerospace controls Increasing equitable access to space capabilities for low-resource nations
Remote sensing Improving accessibility of space data for non-experts
Bolstering safety of space travel
LEO constellation astrodynamics Enabling efficient natural disaster response for remote communities

Note that the right hand column remains unchanged. You very likely will not be able to address all of your personal motivations for pursuing STEM research in your eventual research topic, but now is when you can start connecting topics you find interesting to research applications that personally motivate you. 

3. Consider funding and lab focus areas

While the research topic definition process should be approached predominantly with your own interests in mind, at this stage, it is important to consider where your funding is coming from. Typically, there will be specific fields your research must overlap with based on your funding source. Schedule a discussion with your advisor to share your topic definition process so far and ask if there are topics you should add to your list based on research group and funding requirements. Based on this discussion, add a third column to the list you’ve created that describes the necessary areas of overlap for your research.

Reducing aerospace industry contributions to climate change AI applied to satellite operations
Aerospace controls Increasing equitable access to space capabilities for low-resource nations Testbed development for satellite dynamics and control algorithm testing
Remote sensing Improving accessibility of space data for non-experts Effects of the space environment on satellite operations
Bolstering safety of space travel
LEO constellation astrodynamics Enabling efficient natural disaster response for remote communities

4. Continue reading and form a research statement

At this point you are trying to iterate on combinations identified in your three-column list. You can begin to formulate an overarching research statement from these combinations. Research statements generally have the form “To…by…while…”. This sentence structure explicitly identifies what you are trying to accomplish, how you will accomplish it, and which constraints you will account for. A possible research statement could be defined with one entry from each column, or you may be able to create a topic with multiple entries from each column. In this blog’s example list, a research statement could be the following:

To enable efficient natural disaster response for remote communities by developing an AI-powered rapid response scheduling algorithm for a remote sensing satellite while accounting for limitations to satellite operations imposed by the space environment .

5. Iterate and keep track of your work

You may create a few iterations of overarching research statements like this. As you continue to read focused areas in the literature, formulate a focus area Venn Diagram. By allocating articles in your literature search to portions of the diagram, you can stay organized and keep track of the work you’re doing. For the example statement above, your Venn Diagram could look like this:

Venn diagram with three overlapping circles with the categories "Remote Sensing", "Effects of space environment", and "AI scheduling algorithms". At the intersection of all three regions is says "you".

Venn diagram of research topic focus areas. The most relevant literature review items can be added to each region of the diagram to track and organize your efforts.

At this point, you are well on your way to formalizing your research topic. The formalization step involves writing research questions, drafting objective statements, and identifying your research contributions. AeroAstro Communications Lab fellows can help you with these next steps through one-on-one appointments !

Definition of a Hypothesis

What it is and how it's used in sociology

  • Key Concepts
  • Major Sociologists
  • News & Issues
  • Research, Samples, and Statistics
  • Recommended Reading
  • Archaeology

A hypothesis is a prediction of what will be found at the outcome of a research project and is typically focused on the relationship between two different variables studied in the research. It is usually based on both theoretical expectations about how things work and already existing scientific evidence.

Within social science, a hypothesis can take two forms. It can predict that there is no relationship between two variables, in which case it is a null hypothesis . Or, it can predict the existence of a relationship between variables, which is known as an alternative hypothesis.

In either case, the variable that is thought to either affect or not affect the outcome is known as the independent variable, and the variable that is thought to either be affected or not is the dependent variable.

Researchers seek to determine whether or not their hypothesis, or hypotheses if they have more than one, will prove true. Sometimes they do, and sometimes they do not. Either way, the research is considered successful if one can conclude whether or not a hypothesis is true. 

Null Hypothesis

A researcher has a null hypothesis when she or he believes, based on theory and existing scientific evidence, that there will not be a relationship between two variables. For example, when examining what factors influence a person's highest level of education within the U.S., a researcher might expect that place of birth, number of siblings, and religion would not have an impact on the level of education. This would mean the researcher has stated three null hypotheses.

Alternative Hypothesis

Taking the same example, a researcher might expect that the economic class and educational attainment of one's parents, and the race of the person in question are likely to have an effect on one's educational attainment. Existing evidence and social theories that recognize the connections between wealth and cultural resources , and how race affects access to rights and resources in the U.S. , would suggest that both economic class and educational attainment of the one's parents would have a positive effect on educational attainment. In this case, economic class and educational attainment of one's parents are independent variables, and one's educational attainment is the dependent variable—it is hypothesized to be dependent on the other two.

Conversely, an informed researcher would expect that being a race other than white in the U.S. is likely to have a negative impact on a person's educational attainment. This would be characterized as a negative relationship, wherein being a person of color has a negative effect on one's educational attainment. In reality, this hypothesis proves true, with the exception of Asian Americans , who go to college at a higher rate than whites do. However, Blacks and Hispanics and Latinos are far less likely than whites and Asian Americans to go to college.

Formulating a Hypothesis

Formulating a hypothesis can take place at the very beginning of a research project , or after a bit of research has already been done. Sometimes a researcher knows right from the start which variables she is interested in studying, and she may already have a hunch about their relationships. Other times, a researcher may have an interest in ​a particular topic, trend, or phenomenon, but he may not know enough about it to identify variables or formulate a hypothesis.

Whenever a hypothesis is formulated, the most important thing is to be precise about what one's variables are, what the nature of the relationship between them might be, and how one can go about conducting a study of them.

Updated by Nicki Lisa Cole, Ph.D

  • What It Means When a Variable Is Spurious
  • Understanding Path Analysis
  • Pilot Study in Research
  • Simple Random Sampling
  • Exploitation
  • What Is Multiculturalism? Definition, Theories, and Examples
  • Convenience Samples for Research
  • What Is Cultural Capital? Do I Have It?
  • What Does Consumerism Mean?
  • Visualizing Social Stratification in the U.S.
  • What Is Symbolic Interactionism?
  • What Is Cultural Hegemony?
  • Understanding Stratified Samples and How to Make Them
  • What Is Groupthink? Definition and Examples
  • What Is Ethnography?
  • What Is a Reference Group?

formulating research hypotheses

How to Write a Research Proposal: (with Examples & Templates)

how to write a research proposal

Table of Contents

Before conducting a study, a research proposal should be created that outlines researchers’ plans and methodology and is submitted to the concerned evaluating organization or person. Creating a research proposal is an important step to ensure that researchers are on track and are moving forward as intended. A research proposal can be defined as a detailed plan or blueprint for the proposed research that you intend to undertake. It provides readers with a snapshot of your project by describing what you will investigate, why it is needed, and how you will conduct the research.  

Your research proposal should aim to explain to the readers why your research is relevant and original, that you understand the context and current scenario in the field, have the appropriate resources to conduct the research, and that the research is feasible given the usual constraints.  

This article will describe in detail the purpose and typical structure of a research proposal , along with examples and templates to help you ace this step in your research journey.  

What is a Research Proposal ?  

A research proposal¹ ,²  can be defined as a formal report that describes your proposed research, its objectives, methodology, implications, and other important details. Research proposals are the framework of your research and are used to obtain approvals or grants to conduct the study from various committees or organizations. Consequently, research proposals should convince readers of your study’s credibility, accuracy, achievability, practicality, and reproducibility.   

With research proposals , researchers usually aim to persuade the readers, funding agencies, educational institutions, and supervisors to approve the proposal. To achieve this, the report should be well structured with the objectives written in clear, understandable language devoid of jargon. A well-organized research proposal conveys to the readers or evaluators that the writer has thought out the research plan meticulously and has the resources to ensure timely completion.  

Purpose of Research Proposals  

A research proposal is a sales pitch and therefore should be detailed enough to convince your readers, who could be supervisors, ethics committees, universities, etc., that what you’re proposing has merit and is feasible . Research proposals can help students discuss their dissertation with their faculty or fulfill course requirements and also help researchers obtain funding. A well-structured proposal instills confidence among readers about your ability to conduct and complete the study as proposed.  

Research proposals can be written for several reasons:³  

  • To describe the importance of research in the specific topic  
  • Address any potential challenges you may encounter  
  • Showcase knowledge in the field and your ability to conduct a study  
  • Apply for a role at a research institute  
  • Convince a research supervisor or university that your research can satisfy the requirements of a degree program  
  • Highlight the importance of your research to organizations that may sponsor your project  
  • Identify implications of your project and how it can benefit the audience  

What Goes in a Research Proposal?    

Research proposals should aim to answer the three basic questions—what, why, and how.  

The What question should be answered by describing the specific subject being researched. It should typically include the objectives, the cohort details, and the location or setting.  

The Why question should be answered by describing the existing scenario of the subject, listing unanswered questions, identifying gaps in the existing research, and describing how your study can address these gaps, along with the implications and significance.  

The How question should be answered by describing the proposed research methodology, data analysis tools expected to be used, and other details to describe your proposed methodology.   

Research Proposal Example  

Here is a research proposal sample template (with examples) from the University of Rochester Medical Center. 4 The sections in all research proposals are essentially the same although different terminology and other specific sections may be used depending on the subject.  

Research Proposal Template

Structure of a Research Proposal  

If you want to know how to make a research proposal impactful, include the following components:¹  

1. Introduction  

This section provides a background of the study, including the research topic, what is already known about it and the gaps, and the significance of the proposed research.  

2. Literature review  

This section contains descriptions of all the previous relevant studies pertaining to the research topic. Every study cited should be described in a few sentences, starting with the general studies to the more specific ones. This section builds on the understanding gained by readers in the Introduction section and supports it by citing relevant prior literature, indicating to readers that you have thoroughly researched your subject.  

3. Objectives  

Once the background and gaps in the research topic have been established, authors must now state the aims of the research clearly. Hypotheses should be mentioned here. This section further helps readers understand what your study’s specific goals are.  

4. Research design and methodology  

Here, authors should clearly describe the methods they intend to use to achieve their proposed objectives. Important components of this section include the population and sample size, data collection and analysis methods and duration, statistical analysis software, measures to avoid bias (randomization, blinding), etc.  

5. Ethical considerations  

This refers to the protection of participants’ rights, such as the right to privacy, right to confidentiality, etc. Researchers need to obtain informed consent and institutional review approval by the required authorities and mention this clearly for transparency.  

6. Budget/funding  

Researchers should prepare their budget and include all expected expenditures. An additional allowance for contingencies such as delays should also be factored in.  

7. Appendices  

This section typically includes information that supports the research proposal and may include informed consent forms, questionnaires, participant information, measurement tools, etc.  

8. Citations  

formulating research hypotheses

Important Tips for Writing a Research Proposal  

Writing a research proposal begins much before the actual task of writing. Planning the research proposal structure and content is an important stage, which if done efficiently, can help you seamlessly transition into the writing stage. 3,5  

The Planning Stage  

  • Manage your time efficiently. Plan to have the draft version ready at least two weeks before your deadline and the final version at least two to three days before the deadline.
  • What is the primary objective of your research?  
  • Will your research address any existing gap?  
  • What is the impact of your proposed research?  
  • Do people outside your field find your research applicable in other areas?  
  • If your research is unsuccessful, would there still be other useful research outcomes?  

  The Writing Stage  

  • Create an outline with main section headings that are typically used.  
  • Focus only on writing and getting your points across without worrying about the format of the research proposal , grammar, punctuation, etc. These can be fixed during the subsequent passes. Add details to each section heading you created in the beginning.   
  • Ensure your sentences are concise and use plain language. A research proposal usually contains about 2,000 to 4,000 words or four to seven pages.  
  • Don’t use too many technical terms and abbreviations assuming that the readers would know them. Define the abbreviations and technical terms.  
  • Ensure that the entire content is readable. Avoid using long paragraphs because they affect the continuity in reading. Break them into shorter paragraphs and introduce some white space for readability.  
  • Focus on only the major research issues and cite sources accordingly. Don’t include generic information or their sources in the literature review.  
  • Proofread your final document to ensure there are no grammatical errors so readers can enjoy a seamless, uninterrupted read.  
  • Use academic, scholarly language because it brings formality into a document.  
  • Ensure that your title is created using the keywords in the document and is neither too long and specific nor too short and general.  
  • Cite all sources appropriately to avoid plagiarism.  
  • Make sure that you follow guidelines, if provided. This includes rules as simple as using a specific font or a hyphen or en dash between numerical ranges.  
  • Ensure that you’ve answered all questions requested by the evaluating authority.  

Key Takeaways   

Here’s a summary of the main points about research proposals discussed in the previous sections:  

  • A research proposal is a document that outlines the details of a proposed study and is created by researchers to submit to evaluators who could be research institutions, universities, faculty, etc.  
  • Research proposals are usually about 2,000-4,000 words long, but this depends on the evaluating authority’s guidelines.  
  • A good research proposal ensures that you’ve done your background research and assessed the feasibility of the research.  
  • Research proposals have the following main sections—introduction, literature review, objectives, methodology, ethical considerations, and budget.  

formulating research hypotheses

Frequently Asked Questions  

Q1. How is a research proposal evaluated?  

A1. In general, most evaluators, including universities, broadly use the following criteria to evaluate research proposals . 6  

  • Significance —Does the research address any important subject or issue, which may or may not be specific to the evaluator or university?  
  • Content and design —Is the proposed methodology appropriate to answer the research question? Are the objectives clear and well aligned with the proposed methodology?  
  • Sample size and selection —Is the target population or cohort size clearly mentioned? Is the sampling process used to select participants randomized, appropriate, and free of bias?  
  • Timing —Are the proposed data collection dates mentioned clearly? Is the project feasible given the specified resources and timeline?  
  • Data management and dissemination —Who will have access to the data? What is the plan for data analysis?  

Q2. What is the difference between the Introduction and Literature Review sections in a research proposal ?  

A2. The Introduction or Background section in a research proposal sets the context of the study by describing the current scenario of the subject and identifying the gaps and need for the research. A Literature Review, on the other hand, provides references to all prior relevant literature to help corroborate the gaps identified and the research need.  

Q3. How long should a research proposal be?  

A3. Research proposal lengths vary with the evaluating authority like universities or committees and also the subject. Here’s a table that lists the typical research proposal lengths for a few universities.  

     
  Arts programs  1,000-1,500 
University of Birmingham  Law School programs  2,500 
  PhD  2,500 
    2,000 
  Research degrees  2,000-3,500 

Q4. What are the common mistakes to avoid in a research proposal ?  

A4. Here are a few common mistakes that you must avoid while writing a research proposal . 7  

  • No clear objectives: Objectives should be clear, specific, and measurable for the easy understanding among readers.  
  • Incomplete or unconvincing background research: Background research usually includes a review of the current scenario of the particular industry and also a review of the previous literature on the subject. This helps readers understand your reasons for undertaking this research because you identified gaps in the existing research.  
  • Overlooking project feasibility: The project scope and estimates should be realistic considering the resources and time available.   
  • Neglecting the impact and significance of the study: In a research proposal , readers and evaluators look for the implications or significance of your research and how it contributes to the existing research. This information should always be included.  
  • Unstructured format of a research proposal : A well-structured document gives confidence to evaluators that you have read the guidelines carefully and are well organized in your approach, consequently affirming that you will be able to undertake the research as mentioned in your proposal.  
  • Ineffective writing style: The language used should be formal and grammatically correct. If required, editors could be consulted, including AI-based tools such as Paperpal , to refine the research proposal structure and language.  

Thus, a research proposal is an essential document that can help you promote your research and secure funds and grants for conducting your research. Consequently, it should be well written in clear language and include all essential details to convince the evaluators of your ability to conduct the research as proposed.  

This article has described all the important components of a research proposal and has also provided tips to improve your writing style. We hope all these tips will help you write a well-structured research proposal to ensure receipt of grants or any other purpose.  

References  

  • Sudheesh K, Duggappa DR, Nethra SS. How to write a research proposal? Indian J Anaesth. 2016;60(9):631-634. Accessed July 15, 2024. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5037942/  
  • Writing research proposals. Harvard College Office of Undergraduate Research and Fellowships. Harvard University. Accessed July 14, 2024. https://uraf.harvard.edu/apply-opportunities/app-components/essays/research-proposals  
  • What is a research proposal? Plus how to write one. Indeed website. Accessed July 17, 2024. https://www.indeed.com/career-advice/career-development/research-proposal  
  • Research proposal template. University of Rochester Medical Center. Accessed July 16, 2024. https://www.urmc.rochester.edu/MediaLibraries/URMCMedia/pediatrics/research/documents/Research-proposal-Template.pdf  
  • Tips for successful proposal writing. Johns Hopkins University. Accessed July 17, 2024. https://research.jhu.edu/wp-content/uploads/2018/09/Tips-for-Successful-Proposal-Writing.pdf  
  • Formal review of research proposals. Cornell University. Accessed July 18, 2024. https://irp.dpb.cornell.edu/surveys/survey-assessment-review-group/research-proposals  
  • 7 Mistakes you must avoid in your research proposal. Aveksana (via LinkedIn). Accessed July 17, 2024. https://www.linkedin.com/pulse/7-mistakes-you-must-avoid-your-research-proposal-aveksana-cmtwf/  

Paperpal is a comprehensive AI writing toolkit that helps students and researchers achieve 2x the writing in half the time. It leverages 21+ years of STM experience and insights from millions of research articles to provide in-depth academic writing, language editing, and submission readiness support to help you write better, faster.  

Get accurate academic translations, rewriting support, grammar checks, vocabulary suggestions, and generative AI assistance that delivers human precision at machine speed. Try for free or upgrade to Paperpal Prime starting at US$19 a month to access premium features, including consistency, plagiarism, and 30+ submission readiness checks to help you succeed.  

Experience the future of academic writing – Sign up to Paperpal and start writing for free!  

Related Reads:

How to write a phd research proposal.

  • What are the Benefits of Generative AI for Academic Writing?
  • How to Avoid Plagiarism When Using Generative AI Tools
  • What is Hedging in Academic Writing?  

How to Write Your Research Paper in APA Format

The future of academia: how ai tools are changing the way we do research, you may also like, dissertation printing and binding | types & comparison , what is a dissertation preface definition and examples , how to write your research paper in apa..., how to choose a dissertation topic, how to write an academic paragraph (step-by-step guide), maintaining academic integrity with paperpal’s generative ai writing..., research funding basics: what should a grant proposal..., how to write an abstract in research papers..., how to write dissertation acknowledgements.

formulating research hypotheses

Extract insights from customer & stakeholder interviews. At Scale.

Research hypothesis examples for 2024 studies.

Insight7

Home » Research Hypothesis Examples for 2024 Studies

As we approach 2024, emerging trends in research studies are shaping the way hypotheses are formulated and tested. Future hypothesis trends will increasingly emphasize the integration of interdisciplinary approaches, where data analytics and qualitative insights converge. This evolution will enable researchers to create more nuanced and impactful studies, resonating with the complexities of our rapidly changing world.

Furthermore, the rise of artificial intelligence in research methodologies is expected to revolutionize data analysis techniques. By automating processes and reducing bias in user research, scholars are likely to derive more truthful insights. These advancements will not only enhance the reliability of research findings but also support the formulation of hypotheses that address current societal needs and challenges.

Emerging Future Hypothesis Trends in Scientific Research

Emerging Future Hypothesis Trends in Scientific Research points towards an evolution in how researchers formulate and test hypotheses. As new technologies emerge, so do innovative approaches to scientific inquiry. Future hypothesis trends will increasingly reflect interdisciplinary collaboration, integrating insights from diverse fields to tackle complex problems more effectively.

Several key elements are shaping these trends. First, the infusion of artificial intelligence is transforming data analysis, offering more precise predictions and insights. Second, an emphasis on open science promotes transparency and collaboration in research processes. Third, the rising importance of sustainability drives hypotheses focused on environmental impact. These trends signify a shift towards a more holistic understanding of scientific challenges, making research not only more efficient but also more relevant to societal needs. As 2024 unfolds, researchers will undoubtedly adapt to these trends, fostering a landscape rich with opportunity and innovation.

Technological Innovations and Their Influence

Technological innovations are reshaping research methodologies and providing new insights into data analysis. With advancements in artificial intelligence and machine learning, researchers can now synthesize vast amounts of information across multiple sources. This enhanced capability not only increases efficiency but also reveals insights that may have remained hidden in traditional analysis methods. Such technological advancements contribute significantly to identifying trends and patterns necessary for formulating future research hypotheses.

In the realm of 2024 studies, it is essential to consider how these innovations influence research design and implementation. For instance, automation tools can streamline data collection processes, making them more accurate and less time-consuming. Additionally, advanced reporting features allow researchers to present findings more effectively, fostering clearer communication of insights. These technological advancements promise to drive future hypothesis trends that can address complex challenges across various fields, paving the way for more targeted and impactful research outcomes.

Environmental Sustainability and Hypotheses

The future of environmental sustainability research is poised to evolve significantly in 2024, driven by emerging technologies and public awareness. Researchers are focusing on formulating hypotheses that address urgent ecological challenges. These hypotheses revolve around innovative methods to decrease carbon emissions, promote circular economies, and enhance biodiversity. Understanding these areas will be essential for assessing environmental impacts and crafting effective interventions.

Key themes in future hypothesis trends will likely include the relationship between urban development and green space preservation, the role of renewable energy adoption in reducing ecological footprints, and the effectiveness of policy measures in curbing pollution levels. Additionally, interdisciplinary studies that incorporate social, economic, and environmental factors may become more prominent. Overall, these trends will aid in developing actionable insights, fostering collaboration among scientists, policymakers, and communities to promote a more sustainable future.

Future Hypothesis Trends in Social Science Studies

Future hypothesis trends in social science studies are evolving, influenced by advancements in technology and changing societal dynamics. Researchers increasingly explore intersections of technology and human behavior, especially with the rise of artificial intelligence and its implications for social interactions. Additionally, climate change, health crises, and economic disparities prompt researchers to question how these factors affect individual and collective behaviors.

Among the prominent trends, the emphasis on interdisciplinary approaches is noteworthy. Scholars are merging insights from psychology, sociology, and data science to address complex social phenomena. Furthermore, there's a growing interest in understanding how digital behaviors influence mental health and community engagement. Researchers aim to formulate hypotheses that reflect the nuances of modern life, examining not only the effects of technology but also the broader societal contexts in which these changes occur. These future hypothesis trends will shape the direction of social science research, ensuring relevance and depth in addressing contemporary issues.

Shifts in Work and Education Dynamics

The increasingly rapid shifts in work and education dynamics offer fertile ground for research into future hypothesis trends. The integration of remote learning and flexible work schedules is reshaping how individuals acquire skills and knowledge. With technological advancements, traditional education models are evolving to accommodate diverse learning environments. This creates a need for studies examining the effectiveness of hybrid educational frameworks alongside shifting work expectations.

Moreover, the impact of these changes on career trajectories and job satisfaction warrants exploration. For instance, understanding how online platforms influence job candidates’ skills and employers’ hiring processes can provide insights into the future workforce. Researchers might focus on the adaptability of various industries to emergent educational methodologies, emphasizing how these adjustments affect employee performance and retention. Studying these dynamics will help in formulating robust hypotheses aimed at anticipating future work and education interactions.

Evolving Human Behavior and Psychological Patterns

As we examine evolving human behavior and psychological patterns, it becomes essential to recognize how social dynamics are shifting in response to technological advancements. The increasing reliance on digital communication tools influences interpersonal relationships, altering how people perceive and interact with one another. Next, the impact of remote work has reshaped traditional workplace dynamics, introducing new challenges and opportunities for collaboration and productivity.

Future hypothesis trends in this domain may explore the psychological effects of decreased face-to-face interaction on mental health and social skills. Additionally, researchers might focus on how the rise of virtual environments affects identity formation and self-perception. Understanding these changes allows for a deeper investigation into the nuances of emotional intelligence and empathy in a rapidly changing world. With the right hypothesis, we can anticipate significant shifts in behavior stemming from these evolving patterns.

Conclusion: The Path Forward for 2024 Research Hypotheses

As we look toward the future, understanding future hypothesis trends will be vital in shaping 2024 research initiatives. Researchers should prioritize refining their approaches, ensuring they address existing knowledge gaps while remaining adaptable to emerging trends. Collaborative efforts across disciplines can foster innovative ideas, driving meaningful investigations that resonate with current societal needs.

Engaging with stakeholders will also enhance the relevance of proposed hypotheses. By incorporating diverse perspectives, researchers can uncover deeper insights that propel their studies forward. Ultimately, a commitment to rigorous analysis and dynamic hypothesis formulation will pave the way for impactful research that contributes significantly to the academic and practical spheres in 2024 and beyond.

Turn interviews into actionable insights

On this Page

Risk Sensitivity Analysis: AI Tools for Market Research 2024

You may also like, grounded theory approach definition and its applications.

Insight7

Grounded Study: Methods for Market Research in 2024

Inductive content analysis methods for market research.

Unlock Insights from Interviews 10x faster

formulating research hypotheses

  • Request demo
  • Get started for free

ORIGINAL RESEARCH article

Does capital marketization promote better rural industrial integration: evidence from china.

Zhao Ding

  • College of Economics, Sichuan Agricultural University, Chengdu, China

Introduction: Although rural industrial integration is a crucial pathway for advancing the revitalization of rural economies, it continues to grapple with financial challenges. This paper delves into the theoretical underpinnings of how capital marketization influences rural industrial integration.

Methods: Using panel data from China’s provinces spanning the years 2010 to 2020, a comprehensive index of rural industrial integration is constructed from the vantage point of a new development paradigm. The paper employs the system GMM method to empirically investigate the impact of capital marketization on rural industrial integration and to dissect its transmission mechanisms. Additionally, a threshold regression model is applied to explore the specific patterns of the nonlinear relationship between the two variables.

Results and discussion: The study’s findings reveal that the degree of rural industrial integration is significantly and positively influenced by its previous level, demonstrating an accumulative effect wherein the prior level of integration lays the groundwork for future advancements. The influence of capital marketization on the degree of rural industrial integration is characterized by a non-linear relationship, adhering to a “U-shaped” curve. Below the inflection point, the development of capital marketization is detrimental to rural industrial integration, whereas above this point, it exerts a positive influence. Currently, China’s overall level of capital marketization is positioned beyond the inflection point, indicating substantial potential for enhancing industry integration in rural China. In addition, the study indicates that at very low levels of economic development, capital marketization does not affect the development of rural industries. As the economic development level rises, so does the impact of capital marketization on rural industrial integration.

1 Introduction

The promotion of the integration of the primary, secondary, and tertiary industries in rural areas (hereinafter referred to as “rural industry integration”) is a pivotal measure for the revitalization of rural regions. Capital marketization has risen as an effective approach to mitigate the financial challenges encountered in this integration process. Historically viewed, industry integration represents an inevitable trend in the development trajectory of rural industries. Since the initiation of China’s rural reform in 1978, marked by the introduction of the household contract responsibility system, the essence of rural reform has centered on the realignment of production relations. This has significantly bolstered the dynamism of rural agricultural development and disrupted the previously isolated status of various agricultural processes. In 1992, China outlined the goal of establishing a socialist market economy system, placing increased emphasis on the regulating role of the market in rural economic development. As the market economy evolved, the traditional fragmented farming practices became insufficient to satisfy evolving development demands. To reconcile the disparity between “small-scale farmers” and the “large-scale market,” an integrated agricultural industrial operation model emerged in China’s rural areas. This model, grounded in family contract farming, encompasses the entire spectrum from production to processing to sales. The exchange of factors between urban and rural areas intensified, propelling swift rural industrial development and fostering tighter integration among the primary, secondary, and tertiary sectors. In 2015, China proposed the concept of advancing rural industry integration, underscoring its importance as a cornerstone in the construction of a modern agricultural industry system. In 2018, China reaffirmed its dedication to fostering the integration of the primary, secondary, and tertiary industries in rural areas, vigorously advancing the development of agricultural modernization and the realization of the rural revitalization strategy.

At this stage, China’s agricultural industry chain is continuously expanding, and the entities involved in rural industry integration are growing more diverse and robust. The emergence of new agricultural industries and innovative formats is accelerating, with novel models for rural industry integration continually being developed and explored. The development of rural industry integration has become an essential pathway for the progress of social production in the contemporary era. It is also an imperative for the transformation and modernization of rural economies, a vital strategy for fostering integrated urban–rural development, a key driver for structural reform on the agricultural supply side, and a critical means to ensure sustained income growth for farmers ( Chen et al., 2020 ; Zhang et al., 2023 ). China’s rural industry integration is now at a pivotal juncture, transitioning from an initial exploratory phase to a period of rapid acceleration. However, this complex endeavor confronts a multitude of challenges. The most prominent of these is the presence of bottleneck constraints on various factors, particularly the significant shortfall in capital support. This financial shortfall has plunged rural industry integration into a profound predicament.

Challenges in the agricultural and rural sectors, including difficulties in securing financing, high costs of borrowing, and sluggish lending processes, underscore the importance of financial support as a vital catalyst for the advancement of rural industry integration. Strengthening this support is fundamentally linked to the enhancement of rural capital market development ( Lopez and Winkler, 2018 ). However, within an environment characterized by imperfect competition, the marketization of capital elements could potentially skew the allocation of production factors towards industry integration models that are more responsive to market demands. Paradoxically, this dynamic may, in fact, impede the progress of rural industry integration. Existing research suggests that government support ( Steiner and Teasdale, 2019 ), social capital ( Lang and Fink, 2019 ), financial services ( Khanal and Omobitan, 2020 ), digital technology ( Cowie et al., 2020 ), among others, can significantly enhance agricultural performance and promote the development of rural industry integration. Nonetheless, there remains a dearth of research elucidating the precise mechanisms through which the marketization of capital influences the development of rural industry integration.

The primary objective of this paper is to examining the influence of capital marketization on the development of rural industry integration. It aims to assess whether capital marketization can effectively alleviate the financial constraints faced by rural industries during the integration process and to clarify the mechanisms by which it influences this process. The article makes three contributions. Firstly, it measures rural industry integration using the new development concept, which includes five dimensions: innovation, coordination, green development, openness, and sharing. Secondly, it uncovers the mechanisms through which the marketization of capital influences rural industry integration, investigating the theoretical basis for the dynamic process of current capital market reforms in alleviating the financial challenges of rural industry integration development. Thirdly, it employs the System GMM method to verify the effects of the marketization of capital elements in unleashing the potential of rural industry integration development, clarifying the role and impact pathways of the marketization of capital elements on rural industry integration.

The rest of the paper is structured as follows. Section 2 presents a comprehensive literature review and Section 3 establishes research hypotheses. Section 4 presents the conceptual framework and the data used in the study. The empirical results are then reported in section 5. The final section presents concluding remarks and implications.

2 Literature review

Industrial integration typically originates from technological interconnections between various sectors, which in turn leads to the blurring or dissolution of traditional industry boundaries. In the late 1990s, Japanese agricultural expert Naraomi Imamura introduced the concept of the “Sixth Industry,” formally incorporating agriculture into the realm of industrial integration research. In China, rural industry integration is led by innovative business entities, interconnected through a mechanism that fosters shared interests. It is driven by the momentum of technological innovation, institutional innovation, and format innovation, guided by the new development concept of “innovation, coordination, green development, openness, and sharing.” The reform agenda is centered on facilitating the free flow of factors, optimizing the allocation of resources, and achieving an organic integration of industries. The overarching objectives are to enhance agricultural productivity, augment farmers’ incomes, and stimulate rural prosperity.

In recent years, research on rural industrial integration has mainly focused on three areas. Firstly, some studies concentrate on exploring the pathways of rural industry integration. These pathways are crucial for promoting the revitalization of rural industries and achieving a more sustainable village economy ( Qin et al., 2020 ). Key pathways for integration include the integration of crop and livestock farming, the expansion of industrial chains in both upstream and downstream directions, the diversification of agricultural industry functions, the steering role of industrial and commercial capital and leading enterprises, and the establishment of horizontal industrial integration platforms along with the evolution of Internet + agricultural industry ( Zhang et al., 2022 ; Zhou et al., 2023 ). Secondly, scholars have investigated the construction of evaluation index and relevant measurements for assessing the level of rural industrial integration. Existing literature primarily measures rural industry integration from three perspectives. Initially, it evaluates the interaction and socio-economic impacts of the integration between agriculture and related industries, such as the extension of agricultural industry chains, the multifunctionality of agriculture, the development of agricultural service industries, the enhancement of farmers’ income, job creation, and the integration of urban–rural development ( Zhang and Wu, 2022 ). Subsequently, it examines rural industry integration through the lens of its types, such as industrial restructuring, extension, cross-linking, and penetration ( Hao et al., 2023 ). Finally, in light of the new development concept, scholars have developed evaluative frameworks for rural industry development across five dimensions: innovation, coordination, green development, openness, and sharing ( Liu et al., 2018 ; Xue et al., 2018 ). Thirdly, some studies concentrate on the challenges encountered by rural industry integration. Despite the positive momentum of recent developments, rural industry integration still face various difficulties. Many regions in China involve in this integration are grappling with issues such as low levels of integration and superficial integration depths. In the course of rapid urbanization, which is characterized by profound shifts in population, land, and industry dynamics, specific rural areas are universally dealing with a dearth of motivation for industrial development, an intensifying phenomenon of rural land hollowing, weakened grassroots governance structures, a fragile mainstream of rural development, and a scarcity of public infrastructure ( Tu et al., 2018 ). Villages constitute interconnected organic entities with the circulation of resources such as labor, capital, material, and information ( Lopez and Winkler, 2018 ; Li et al., 2019 ; Zhou et al., 2020 ). Among these, capital has emerged as a pivotal factor restricting regional development in rural China ( Guo et al., 2022 ), where factor mobility plays a significant role in determining the economic benefits of development ( Banerjee et al., 2020 ).

Accordingly, some studies has focused on the financial challenges faced by rural industry integration, seeking to identify strategies to mitigate these financial difficulties and promote further industrial integration. A significant body of the research indicates that the financial challenges in the development of rural industry integration mainly arise from an insufficient capital support. Investing industrial and commercial capital into agriculture has been recognized as a potential solution to address the shortage of financial resources ( Long et al., 2016 ). Such capital inflow can provide agriculture with essential inputs such as funding, technological advancements, and skilled personnel ( Cofré-Bravo et al., 2019 ). However, it is noteworthy that increased agricultural productivity may paradoxically lead to capital outflows from rural regions. This occurs as productivity gains can lower interest rates, prompting capital to migrate optimally towards the urban manufacturing sector in search of higher returns ( Bustos et al., 2020 ). Conversely, an alternative perspective from other research suggests that the financial challenges confronting rural industry integration are multifaceted and cannot be solely attributed to capital scarcity. The agricultural sector demands substantial investments that are fraught with high risks and characterized by long gestation periods for returns. Typically, individual operating entities struggle to shoulder these financial burdens on their own, highlighting the need for ongoing innovation in the financial markets to develop tailored rural financial products ( Adegbite and Machethe, 2020 ). Additionally, it is imperative to harness the market’s role in resource allocation effectively. Evidence suggests that market forces have a pronounced impact on industrial integration, particularly in provinces with a more advanced degree of marketization ( Tian et al., 2020 ). The degree of economic marketization is identified as a pivotal factor in enhancing the efficiency of capital allocation across different regions within China ( Zhang et al., 2021 ).

Although there have been some empirical analyses on marketization, and a significant body of research has explored the construction of evaluation indicators for factor marketization, there is a scarcity of literature directly measuring capital marketization. Existing studies primarily focus on the measurement of factor marketization, land factor marketization, and production factor marketization. Fan et al. (2003) previously developed a marketization index for various provinces in China, including five dimensions: government and market, the ownership structure, goods market development, factors market development and the legal framework. Yan (2007) measured the degree of marketization in China by constructing an index that encompasses the agricultural, industrial, and service sectors. When considering a comprehensive assessment of factor marketization, Zhou and Hall (2019) calculated a relative index of marketization processes across different regions of China, considering five aspects: the relationship between government and market, the development of the non-state-owned economy, the maturity of product market development, the advancement of factor market development, and the establishment of market intermediary organizations and the legal system environment. The urban land marketization level is typically gauged by the proportion of land allocated through tender, auction, and listing relative to the total land supply ( Cheng et al., 2022 ). Regarding rural land marketization, Yao and Wang (2022) used the year 2008 as an indicator of agricultural land marketization in China when the country decided to strengthen the development of the agricultural land transfer market and improve the transfer rate.

In summary, the findings from existing research offer substantial insights for the theoretical analysis within this paper, underscoring the innovative aspects and contributions of this study. On the one hand, market-oriented reforms have emerged a focal point of current economic development. Yet, the role of capital marketization in facilitating rural industry integration has received scant scholarly attention. Capital marketization, which is distinct from capital itself, encompasses a dynamic process that includes a range of economic, social, legal, and systemic reforms. The marketization of capital is essential for the free flow and rational distribution of capital, particularly in the structuring of rural financial institution networks. These elements are vital to the development process of rural industry integration.

This study employs a dynamic approach to investigate the financial challenges faced by rural industry integration and mechanisms for their mitigation, offering valuable perspectives on tackling financial issues in the development of rural industry integration in China. This research carries significant implications for formulating of future policies related to the advancement of rural industry integration in the country. On the other hand, the implementation of the new development philosophy is a vital pathway for China’s progress in the new era. As a leading agricultural nation, China’s agricultural development must align with and implement the new development philosophy. Currently, there is scarce research that measures the effectiveness of rural industry integration from the perspective of this philosophy. This study takes a starting point from the new development philosophy, formulates indicators to measure rural industry integration, and integrates rural industry integration deeply with the new development philosophy. This approach provides novel empirical evidence to inform the development of targeted financial policies aimed at propelling rural industry development.

3 Theoretical analysis and hypotheses

Summarizing the viewpoints from existing literature, this paper proposes that the impact of capital marketization on rural industry integration is nonlinear, exhibiting both positive and negative aspects. The positive impact comprises direct and mediating effects. The direct effect indicates that capital marketization fosters the development of rural industry integration by improving the efficiency of capital allocation, promoting the mobility of capital, and mitigating risks associated with agricultural production. The mediating effect refers to the indirect roles played by the development of rural finance and the optimization of industrial structure, which shape rural industry integration in the context of capital marketization. Conversely, the negative impact suggests that at low levels of capital marketization, the market’s capacity for integration planning is less than optimal. The marketization process might drive production factors towards configurations more aligned with market needs, thereby inhibiting the development of rural industry integration. Additionally, the facilitative role of capital marketization in rural industry integration is subject to constraints imposed by the threshold of regional economic development (see Figure 1 ).

www.frontiersin.org

Figure 1 . Mechanisms of the impact of capital marketization on rural industry integration.

3.1 Direct effects of capital marketization on rural industry integration

The concept of marketization finds its origins in the “Financial Deepening Theory,” initially proposed by Shaw (1973) and McKinnon (1973) . This theoretical framework emerged as a counterpoint to the financial repression policies that were prevalent in some developing countries during that era. The theory championed the liberalization of financial markets, advocating for the easing or even the dissolution of governmental financial controls, and the adoption of market-determined interest rates. These rates were intended to genuinely mirror the market’s supply and demand dynamics for capital. Consequently, the allocation of capital would be steered by market mechanisms, thereby empowering financial markets to effectively contribute to the allocation of resources. This study posits that the Financial Deepening Theory implies a fundamental logic: the more advanced the development of the financial sector, the more effectively it can serve the production sector. Enhanced service leads to improved capital allocation efficiency, which in turn stimulates industrial development and fosters economic growth.

The development of rural industry integration requires a large amount of capital collaboration, indicative of a capital accumulation process. Capital marketization enables the fluid and expeditious movement of capital within the market, directing surplus funds towards sectors that demand capital for growth ( Petry, 2020 ). This process is instrumental in enabling industries or enterprises in need of development to secure financing for innovative integration initiatives. Consequently, this transformation in the developmental approach of rural industries fosters the enhancement of industrial chains and facilitates the realization of rural industry integration. Furthermore, capital marketization significantly improves the efficiency of resource allocation. It does so by attracting additional capital, stimulating the expansion of savings, augmenting the availability of funds, offering investment and financing avenues, easing the financial strain on rural industry integration, and tackling the prevalent issues of “difficulty in securing financing” and “high cost of financing.” Moreover, capital can mitigate the risks associated with the adoption of new technologies, diminish the risk perceptions of investors in agriculture-related sectors, and disperse the concentration of risks inherent in the rural industry integration process, thereby fostering its progression ( Clapp, 2019 ).

However, in scenarios where the level of marketization is insufficient, the interest linkage mechanism within rural industries remains underdeveloped. The process of marketization tends to channel more robust production factors towards integration models that align more closely with market demands. This dynamic may impede small-scale farmers from participating in the modern agricultural system, thereby obstructing the overall advancement of rural industry integration. Additionally, considering the diverse sectors involved in rural industry integration and their complex interconnections, an inadequate level of marketization impairs the market’s capacity to effectively integrate and strategically plan capital allocation ( Liu et al., 2023 ). Based on the analysis above, this paper proposes Hypothesis 1:

H1: The influence of capital marketization on rural industry integration is nonlinear. At low levels of capital marketization, the marketization process inhibits rural industry integration. In contrast, at high levels of capital marketization, the marketization process is expected to foster rural industry integration.

3.2 Mediating effects of rural financial development on industrial structure optimization

In China’s rural financial sector, market failure and inefficient government intervention are prevalent issues. The market environment in rural finance is not yet fully mature, and a commitment to market-oriented reforms can enhance the rural financial market environment ( Han, 2020 ). Such reforms have the potential to augment the provision of financial support for rural revitalization, tackle institutional and technological impediments in rural financial development, and bolster the efficiency of rural financial services ( Yaseen et al., 2018 ). The marketization process represents an efficient mechanism for resource allocation, preventing significant distortions in the distribution of rural financial resource. It addresses the capital requirements for rural economic development at a fundamental level and promotes the advancement of rural finance. Advancements in marketization can stimulate innovation in rural financial products and services, broaden the reach of financial services, amplify the scope of agricultural insurance, and bolster the development of rural industry integration. Moreover, the enhancement of marketization can standardize transaction systems within factor and product markets, ensuring the rational allocation of resources. This drives the optimization and upgrading of the industrial structure. A more rational industrial structure can encourage the reallocation of surplus rural labor from agriculture to secondary and tertiary sectors ( Long et al., 2016 ). Consequently, this reallocation can raise both urban and rural income levels, thereby nurturing the development of rural industry integration. Based on the above analysis, we propose Hypothesis 2:

H2: Capital marketization is posited to influence rural industry integration by fostering the development of rural finance and by driving the optimization and upgrading of the industrial structure.

3.3 Threshold effect of regional economic development

The progression of rural industry integration is influenced not only by the development of rural finance and the composition of industry but also significantly by the level of local economic development. In regions where the economic development is comparatively advanced, capital marketization can enhance the mobility of capital and effectuate rational resource allocation, thereby actively fostering the development of rural industry integration ( Xu and Tan, 2020 ). On the contrary, in regions with lower levels of economic development, there may be a pervasive financial conundrum stemming from capital scarcity, and external capital might be disinclined to invest in areas with less robust economic development. In these contexts, the scope of resources that capital marketization can effectively allocate is constrained, which can substantially impede its capacity to promote rural industry integration. Therefore, this paper proposes Hypothesis 3:

H3: There exists a threshold effect of the regional economic development on the promotion of rural industry integration by capital marketization.

4 Methodology

4.1 econometric model specification.

The econometric model in this study is composed of three components. Firstly, a dynamic panel model is used to analyze whether the current level of rural industry integration is influenced by capital marketization and the previous level of rural industry integration. Secondly, a mediation effects model is employed to further verify the mechanism through which capital marketization affects rural industry integration. Thirdly, a threshold effects model is introduced, integrating the level of economic development as a threshold variable. This model is designed to explore the conditional nature of the relationship between capital marketization and rural industry integration, taking into account the potential threshold effects that economic development may impose on this dynamic.

4.1.1 Dynamic panel data model

This study undertakes an examination of the impact of capital marketization on the level of rural industry integration by employing the level of rural industry integration ( i n d ) as the dependent variable and the level of capital marketization ( c a p ) as the core explanatory variable. The benchmark panel model is constructed as follows:

where, i = 1 , 2 , 3 , … , 30 represents each province (or municipality), t = 2010 , 2010 , 2011 , … , 2020 represents the year, i n d i t and c a p i t represent the level of rural industry integration and the level of capital marketization, respectively. β 0 is the intercept, β 1 is the regression coefficient of the capital marketization, μ i represents fixed effects, and ε i t is the random disturbance term.

To encompass the influence of additional factors, such as rural education level ( e d u ), economic openness ( i m e x ), rural ecological environment ( e n v i ), urbanization level ( t o w n ), and government financial support ( g o v ), the model is adjusted to include these variables. The extended panel model is given by Equation 2 :

where β 2 , β 3 , β 4 , β 5 , β 6 are the regression coefficients for these control variables. All other terms have the same meanings as described in the benchmark model ( Equation 1 ).

To account for a potential non-linear relationship between rural industry integration and capital marketization, this study introduces the quadratic term of capital marketization in the model. The static panel model is constructed as Equation 3 :

where c a p i t 2 represents the squared term of capital marketization, β 1 … β 6 are the regression coefficients for the core explanatory variables and control variables. In the model (3), if β 1 and β 2 are significantly non-zero, the relationship between capital marketization and rural industry integration can be determined based on the signs of β 1 and β 2 . In particular, when β 1 > 0 , β 2 < 0 ,  it indicates an inverted U-shaped relationship between capital marketization and rural industry integration. That is, when the level of capital marketization is below or equal to the inflection point, it has a positive promoting effect on industry integration. When the level is above the inflection point, it has a negative inhibitory effect. When β 1 〈 0 , β 2 〉 0 , it suggests a U-shaped relationship between capital marketization and rural industry integration. In this case, when the level of capital marketization is below or equal to the inflection point, it has a negative inhibitory effect. When the level is above the inflection point, it has a positive promoting effect on rural industry integration.

Considering that the potential influence of past levels of rural industry integration on the current state within a region, this study further incorporates the first-order lag of rural industry integration variable into the econometric model. The dynamic panel model is constructed as Equation 4 :

where i n d i , t − 1 is the first-order lag of the rural industry integration variable, β 1 is its regression coefficient, β 2 … β 8 are the regression coefficients for the core explanatory variables and control variables.

4.1.2 Threshold regression model

In order to examine the threshold effect of economic development level on the impact of capital marketization on rural industry integration, this study employs to the panel threshold effect model proposed by Hansen (1999) . The economic development level is considered as the threshold variable, and the threshold regression model is constructed as Equation 5 :

where e c o i t is the threshold variable representing the economic development level. I ( ⋅ ) is an indicator function, taking the value of 1 if the expression inside the parentheses is true and 0 otherwise. γ 1 , γ 2 , ⋯ , γ n are the threshold values to be estimated for different levels of economic development.

4.1.3 Mediation effects model

Building upon the prior analysis that capital marketization can enhance rural industry integration through the facilitation of rural financial development and the optimization of industrial structure, this study employs a mediation effects analysis framework. The panel mediation effects model is structured as follows:

where m e d i represents the set of mediation variables, which includes rural financial development level and industrial structure, c o n t r o l represents the set of control variables. In particular, Equation 6 represents the total effect model, indicating the overall effect of capital marketization on rural industry integration. Equation 7 is designed to estimate the impact of capital marketization on the levels of rural financial development and industrial structure. Equation 8 is employed to estimate the direct effect of capital marketization on rural industry integration and the indirect effects through the levels of rural financial development and industrial structure.

4.1.4 Estimation methodology

The current level of rural industry integration may be influenced by historical levels due to inertia-like factors. To account for this, this study introduces the lagged term of industry integration as an explanatory variable into the regression model, endowing it with dynamic explanatory power. However, the inclusion of lagged dependent variables can introduce endogeneity issues. The System GMM method, proposed by Blundell and Bond (1998) , addresses this by estimating both the level and the first-differenced models simultaneously, which helps to mitigate concerns related to unobserved heteroscedasticity, omitted variable bias, measurement errors, and potential endogeneity.

A critical assumption for the GMM model is the absence of autocorrelation in the error term. To test this assumption, the study conducts residual autocorrelation tests (AR tests) with the null hypothesis (H0) stating that there is no autocorrelation at lag 2 in the error term. Acceptance of the null hypothesis in the AR(2) test suggests that the model specification is appropriate. Additionally, to validate the exogeneity of the instrumental variables, the Hansen J test (Over-identification test) is employed. The null hypothesis (H0) posits that the instrumental variables are valid, and acceptance of this null hypothesis confirms the suitability of the chosen instruments. In terms of estimation techniques, the System GMM model offers one-step and two-step estimation procedures. Given that the two-step estimator is more robust to heteroscedasticity and cross-sectional correlation and generally outperforms the one-step estimation, this study opts for the two-step System GMM approach to estimate ( Equation 4 ).

4.2 Variables

4.2.1 dependent variable.

The dependent variable in this study is the development of rural industry integration ( i n d ). The study constructs an index to measure the level of rural industry integration across five key dimensions: innovation, coordination, green development, openness, and shared development. In particular, innovation includes both innovation in cultivation methods and the innovation of integration entities. To quantify innovation in cultivation methods, the study uses the level of agricultural mechanization. The number of cooperatives per ten thousand people serves as a metric for assessing the development of integration entities. Coordination is examined through industry coordination and urban–rural coordination. The deviation degree of the primary industry structure is used to measure industry coordination, and the per capita income ratio of urban to rural residents measures the extent of urban–rural coordination. Green development is primarily concerned with the ecological performance of rural industry integration, which includes factors such as the use of fertilizers and pesticides, the capacity for harmless waste disposal, and carbon emissions. Openness is measured by looking at the development of the agricultural service industry and the extension of the industrial chain. The integration of the primary and tertiary industries is measured by the ratio of the output value of the agricultural, forestry, animal husbandry, and fishery service industry to that of the primary industry. Additionally, the extension of the agricultural industry chain is measured by the ratio of the main business income of the agricultural and sideline food processing industry to the output value of the primary industry. Shared development is evaluated through the lens of benefit sharing and information sharing. The degree of benefit sharing is measured by the degree of benefit connection and income growth rate. Information sharing is quantified by the number of phones and computers per hundred households in rural households Subsequently, the study applies the entropy method to determine the weights of each secondary indicator. Using a linear weighting method, the study calculates the rural industry integration development level for each province in China from 2010 to 2020 (see Table 1 ).

www.frontiersin.org

Table 1 . Evaluation system for rural industry integration development.

4.2.2 Core explanatory variable

Capital marketization ( c a p ) is the central explanatory variable in this study, referring to the establishment of market-oriented reforms within the capital market. This process involves enhancing the legal regulatory system and achieving autonomous and orderly flow of factors, as well as an efficient and fair allocation through reforms in economic and social systems. In this research, capital is specifically understood to mean financial capital. The assessment of capital marketization is constructed around four dimensions: the government-market relationship, the liberalization of economic entities, price marketization, and the fairness of the financial environment.

In particular, the government-market relationship includes government resources and government size. The proportion of government expenditure in GDP measures the extent of government resource control, with higher control potentially leading to greater market distortion and lower marketization. The proportion of public employees in the total employment reflects the size of the government, with a smaller size indicating a higher degree of marketization. Economic entity liberalization includes enterprise and bank liberalization. Enterprise liberalization is measured by the share of non-state-owned economic fixed asset investment in total societal fixed asset investment and the share of non-state-owned enterprises’ liabilities in total liabilities. These two indicators reflect the market position of non-state-owned entities, which generally align more closely with market economy principles than state-owned counterparts. Bank liberalization is measured by the proportion of non-state-owned banks in total bank assets, with a higher proportion indicating lower market concentration and greater market competition, signifying higher marketization. Price marketization covers the marketization of both agricultural products and capital prices. The marketization of agricultural product prices is measured by the producer price index of agricultural and sideline products, reflecting price stability. The marketization of capital prices is measured by the degree of interest rate marketization, with a higher degree indicating a more advanced capital marketization. The fairness of the financial environment involves the protection of market competition and the emphasis on regulation. Market competition protection is measured by the ratio of concluded to accepted cases for unfair competition violations, indicating the robustness of the market economy legal system. Greater protection equates to a more effective market economic system. The emphasis on regulation is measured by the proportion of financial regulatory expenditure in GDP. The entropy method is also used to calculate the weights of each secondary indicator (see Table 2 ).

www.frontiersin.org

Table 2 . Evaluation system for the development degree of capital marketization.

4.2.3 Other variables

In this study, the threshold variable is the level of economic development ( e c o i t ), which is measured by per capita GDP. It is a comprehensive indicator that reflects the economic activities and living standards of a region.

In addition, this paper identifies rural financial development ( r u r a l   f i n a n c e i t ) and industrial structure ( s t r u c t u r e i t ) as mediating variables. The level of rural financial development is measured by the ratio of outstanding loans for agriculture from financial institutions in each province to the output value of the primary industry. The industrial structure, which refers to the composition of industries and the connections and proportions between them. Is measured by the ratio of non-agricultural output value to agricultural output value. An increase in this ration indicates an optimization of the industrial structure. The study also incorporates control variables that may affect the integrated development of rural industries. These include the level of rural education ( e d u i t ), the degree of economic openness ( i m e x i t ), the rural ecological environment ( e n v i i t ), the level of urbanization ( t o w n i t ), and government financial support ( g o v i t ). These variables are crucial for a thorough understanding of the factors that influence the integration and development of rural industries (see Table 3 ).

www.frontiersin.org

Table 3 . Control variables.

This paper utilizes a balanced panel dataset from 30 provinces, municipalities, and autonomous regions in China, covering the period from 2010 to 2020, resulting in a total of 330 observations. The data are sourced from a variety of authoritative publications, including the “China Statistical Yearbook,” “China Rural Statistical Yearbook,” “China Science and Technology Statistical Yearbook,” “China Financial Statistical Yearbook,” “China Population and Employment Statistical Yearbook,” “China Basic Unit Statistical Yearbook,” “China Fiscal Yearbook,” “China Land and Resources Statistical Yearbook,” as well as provincial (municipal) statistical yearbooks and the Wind database. The data processing and regression analysis are primarily conducted using Stata 15 software. Descriptive statistics for each variable are presented in Table 4 , offering an initial overview of the dataset’s characteristics.

www.frontiersin.org

Table 4 . Descriptive statistics of variables.

As shown in Table 4 , the mean value of the comprehensive index of rural industrial integration is 0.418, with a standard deviation of 0.062. The index ranges from a minimum value of 0.225 to a maximum of 0.571. These statistics indicate that the differences in the level of rural industrial integration across various regions are relatively minor, suggesting a comparatively balanced development of rural industrial integration in China.

The mean value of the capital marketization index is 0.638, with a standard deviation of 0.111, which points to substantial variability in the degree of marketization among various regions. Based on the comprehensive index of capital marketization calculated within this study, regions such as Beijing, Shanghai, Guangdong, and Jiangsu exhibit a higher degree of marketization, whereas regions like Guizhou, Qinghai, and Guangxi are found to have a relatively lower degree of marketization.

Among the other control variables, government financial support shows a wide range, with a minimum value of 0.110 and a maximum value of 5.110, and a standard deviation of 0.694. This variation underscores the differing levels of emphasis that local governments place on supporting “agriculture, rural areas, and farmers,” highlighting the significant heterogeneity in financial commitment across regions.

5 Empirical results

5.1 baseline regression results.

To ensure a robust comparison and to bolster the reliability of the estimation outcomes, this paper employs a variety of estimation techniques for Equation 4 . Specifically, the analysis utilizes a mixed Ordinary Least Squares (OLS) model, a Panel Instrumental Variable (IV) model, and a System Generalized Method of Moments (GMM) model. The comparative results of these estimations are systematically displayed in Table 5 .

www.frontiersin.org

Table 5 . The impact of capital marketization on the integrated development of rural industries.

In Table 5 , models (1) and (3) present the results of estimating Equation 4 using mixed OLS, IV, and system GMM methods, respectively. A comparative analysis is conducted, and the Hausman test in models (1) and (2) rejects the null hypothesis, indicating the presence of endogenous explanatory variables. This finding implies that an IV model is more appropriate than the OLS model for addressing endogeneity. Moreover, there is a slight increase in the significance level of the impact of capital marketization on industrial integration from model (1) to model (2). This suggests that the endogeneity issue has been partially resolved. Model (3) shows the estimation results from the system GMM. The paper also performs AR(1) and AR(2) tests on the disturbance term, setting up the null hypothesis H0: there is no autocorrelation in the model’s disturbance term. The test outcomes show that the first-order test rejects H0, while the second-order test fails to reject H0. This suggest that the model’s disturbance term exhibits first-order autocorrelation but does not indicate second-order or higher-order autocorrelation. This results supports the selection of the system GMM model as a suitable method for this study. Additionally, the Sargan test is conducted to assess the validity of the chosen instrumental variables. The test results, which accepts the null hypothesis, indicates that the instrumental variables used are essentially valid and appropriate for the analysis.

The estimation results from model (3) show that the lagged level of rural industrial integration has a significantly positive effect on its current level. This indicates that rural industrial integration exhibits characteristics of accumulation and is dependent on previous level of integration. The coefficient of capital marketization is significantly negative, but the coefficient for its square term is significantly positive, revealing a significant non-linear “U-shaped” relationship between capital marketization and rural industrial integration. This finding aligns with related research of Sun and Zhu (2022) and Liu et al. (2024) , who also discovered a U-shaped relationship between financial development and rural economic growth in China. To be more specific, before the turning point of the curve, there is a significant negative relationship between the level of capital marketization and the level of rural industrial integration. Beyond the turning point, the relationship becomes significantly positive. Thus Hypothesis 1 is supported.

The turning point of the “U-shaped” curve is calculated using the formula L critical = β 1 − 2 β 2 , resulting in a value of 0.6509. This implies that when the level of capital marketization is below 0.6509, its development is likely to inhibit rural industrial integration. Conversely, when the level exceeds 0.6509, the development of capital marketization is expected to foster rural industrial integration. Notably, the average index of capital marketization in China for the year 2020 was 0.667, which is slightly above the calculated turning point of the “U” curve. This suggests that China has entered a phase where the capital marketization process is conducive to the integrated development of rural industries.

To explore the mechanisms through which capital marketization influences the integrated development of rural industries, this study incorporates the level of rural financial development and industrial structure into Equation 4 . Upon introducing the level of rural financial development into the model, a notable reduction in the coefficients and significance levels of both capital marketization and its square term is observed when compared to model (3). The estimated result for the level of rural financial development is instrumental in fostering the integrated development of rural industries. This result suggests that capital marketization may exert its influence on rural industrial integration through the development of the rural financial sector. The rationale is that capital marketization facilitates the rational allocation of capital and enhances its liquidity, which in turn promotes rural financial development. A robust rural financial sector can attract additional factors and resources, effectively mitigating the constraints on rural industrial integration and alleviating financial bottlenecks. Consequently, this contributes to advancement of the integrated development of rural industries.

In model (5), the inclusion of the industrial structure variable has led to an increase in both the coefficient of capital marketization and its squared term, in comparison to model (3). The coefficient for the industrial structure is significantly positive, indicating that a more rational industrial structure benefits the integrated development of rural industries. This positive outcome may stem from the role of capital marketization in promoting the rational allocation of various resources, which in turn fosters the optimization and upgrading of the industrial structure. Additionally, it aids in the reasonable distribution of rural surplus labor, thereby facilitating the integrated development of rural industries. Consequently, Hypothesis 2 is supported by these findings.

Models (6) and (7) extend the analysis by incorporating interaction terms: capital marketization multiplied by the level of rural financial development (Cap×Rural finance), and capital marketization multiplied by the industrial structure (Cap×Structure), respectively. The results indicate that the coefficients for the interaction terms in both models are significant. This signifies that capital marketization enhances the integrated development of rural industries through its impact on promoting rural financial development and optimizing the industrial structure. The significance of these interaction terms reaffirms Hypothesis 2.

5.2 Mechanism analysis

To ensure the reliability of the aforementioned conclusions and further examine the impact mechanism of capital marketization on the integrated development of rural industries, this paper employs a mediation effect analysis. This methodical approach is utilized to scrutinize the mediating roles of two distinct pathways through which capital marketization is hypothesized to influence rural industrial integration. The test results are shown in Table 6 . In Table 6 , model (8) presents the regression outcomes reflecting the direct effect of capital marketization on the level of rural financial development. Model (9) illustrates the adjusted effect of capital marketization on the degree of rural industrial integration, with the inclusion of the rural financial development level as a variable. Models (10) and (11), on the other hand, display the regression results for the impact of capital marketization on the industrial structure and the combined effect of both capital marketization and the industrial structure on the degree of rural industrial integration.

www.frontiersin.org

Table 6 . Mediation effect analysis of rural financial development and industrial structure.

The results in Table 6 indicate that capital marketization has a significantly positive impact on rural financial development. This positive impact aligns with the conclusions reached by Tian et al. (2020) , who emphasized the substantial role of rural finance in fostering industrial integration. When both capital marketization and the level of rural financial development are incorporated into the model, they are found to significantly and positively influence the integration of rural industries. This finding indicates that rural financial development acts as a mediating factor in the relationship between capital marketization on the integrated development of rural industries. As capital marketization advances, it enhances rural financial development, mitigating the challenges of “difficulty and high cost of financing” those rural industries face, and thus effectively promoting their integrated development. Furthermore, the regression results in Table 6 indicate that capital marketization significantly and positively affects the industrial structure, which in turn significantly and positively impacts the integrated development of rural industries. This suggests that the industrial structure serves as another mediating channel through which capital marketization influences rural industrial integration. The results are consistent with the earlier regression findings, reinforcing the mediating role of the industrial structure in this context.

As shown in Table 7 , the indirect effect of capital marketization on the integrated development of rural industries, as mediated by rural financial development, is 0.042, with a confidence interval CI = [0.027 0.059]. The exclusion of zero from this confidence interval substantiates the mediating role of rural financial development in the impact of capital marketization on rural industrial integration. Similarly, the indirect effect through the industrial structure is identified as 0.017, with a corresponding confidence interval CI = [0.005 0.031]. Once again, the absence of zero from this interval confirms the mediating influence of the industrial structure on the relationship between capital marketization and the integrated development of rural industries. Consequently, these findings corroborate Hypothesis 2, which posits that both rural financial development and the industrial structure serve as pivotal mediators in the influence of capital marketization on the advancement of rural industrial integration.

www.frontiersin.org

Table 7 . The results of direct and indirect effects.

5.3 Threshold effect test

To ascertain whether the promotional effect of capital marketization on the integrated development of rural industries is moderated by the level of regional economic development, acting as a threshold, this section introduces a threshold regression model with economic development level as the threshold variable. The model examines the differences in the impact of capital marketization on rural industrial integration across different economic development intervals. The test results are shown in Table 8 . Table 8 lists the p -values obtained from the threshold effect test, which are based on three scenarios: the presence of a single threshold, a dual threshold, and a triple threshold in the way economic development level impacts the integrated development of rural industries through the mediation of capital marketization.

www.frontiersin.org

Table 8 . Threshold effect test results.

The results in Table 8 indicate that when the null hypothesis assumes the absence of three threshold values, the P-statistic is 0.6967. This results does not lead to the rejection of the null hypothesis. Conversely, when the null hypothesis assumes the absence of a double threshold value, the corresponding statistical measure is 0.0000, which leads to the rejection of the null hypothesis. Based on the structure of the test and the observed outcomes, it can be preliminarily concluded that there are two thresholds in the impact of economic development level on the integrated development of rural industries, as mediated by capital marketization.

Table 9 presents the threshold estimation results. The results show that the first threshold value for economic development, within the context of capital marketization’s influence on rural industrial integration, is 2.54, with the second threshold value being 5.47. When the level of economic development is below the first threshold, the impact of capital marketization on rural industrial integration proves to be non-significant. This indicates that at low levels of economic development, regions encounter a financial conundrum characterized by a scarcity of capital. External capital demonstrates a reluctance to invest in areas with lower economic development, resulting in an insufficient pool of resources available for capital marketization to allocate rationally, which in turn significantly undermines its capacity to foster rural industrial integration. Upon surpassing the first threshold value, the influence of capital marketization on rural industry development transitions to a notably positive impact. Furthermore, once the economic development level surpasses the second threshold, the magnitude of the coefficient for capital marketization’s impact on rural industrial integration intensifies compared to when it is below this value. This heightened impact suggests that in regions with higher levels of economic development, there is a greater abundance of factors and resources. Consequently, capital marketization has a more substantial pool of resources to allocate rationally, thereby exerting a more pronounced role in advancing the integrated development of rural industries. In light of these findings, Hypothesis 3 is substantiated.

www.frontiersin.org

Table 9 . The results of threshold effect.

6 Conclusion and policy implications

6.1 conclusion.

This paper has elucidated the mechanisms by which capital marketization influences the integration of rural industries. It has developed an evaluation index for the development levels of both capital marketization and rural industrial integration, ensuring alignment with real-world scenarios and policy directions. Using dynamic panel data from China, the paper has conducted and analysis of the trends, transmission mechanisms, and threshold constraints influencing the impact of capital marketization on rural industrial integration. The study’s findings reveal that the degree of rural industrial integration is significantly and positively influenced by its previous level, demonstrating an accumulative effect wherein the prior level of integration lays the groundwork for future advancements. The influence of capital marketization on the degree of rural industrial integration is characterized by a non-linear relationship, adhering to a “U-shaped” curve. Below the inflection point, the development of capital marketization is detrimental to rural industrial integration, whereas above this point, it exerts a positive influence. Currently, China’s overall level of capital marketization is positioned beyond the inflection point, indicating substantial potential for enhancing industry integration in rural China. Capital marketization can stimulate rural financial development and refine the industrial structure, thereby mitigating the challenges of “difficulty and high cost of financing” and acting as a mediating pathway to foster rural industrial integration. In addition, the study indicates that at very low levels of economic development, capital marketization does not affect the development of rural industries. As the economic development level rises, so does the impact of capital marketization on rural industrial integration. Collectively, the evidence suggests that capital marketization is instrumental in advancing the integrated development of rural industries. With appropriate conditions in place, capital marketization can facilitate profound integration within rural industries and pave the way for high-quality development.

6.2 Policy implications

The research findings yield several key policy recommendations. Firstly, the accumulation of experience and factors in rural industrial integration merits attention. It is essential to continuously improve the level of rural industrial integration. In regions where rural industrial integration is advanced, ongoing efforts should focus on maintaining the utilization of existing facilities, fostering innovation among business entities, and sharing development outcomes to further enhance the dynamism of industrial integration. Conversely, in areas with lower levels of integration, strategies should aim to leverage underutilized resources, capitalize on advantageous industries, learn from the experiences of more integrated regions, and adapt development approaches to local conditions.

Secondly, with China’s overall level of capital marketization positioned to promote the integrated development of rural industries, there is an opportunity to bolster this integration. Establishing branches of rural financial institutions, ensuring adequate staffing, and advancing interest rate marketization could enhance the lending and deposit capabilities of these institutions. Such measures would elevate the level of capital marketization in China, encouraging the discovery of new agricultural roles and the emergence of innovative business models, thereby advancing the integration of rural industries.

Thirdly, given the current low overall educational level among rural residents in China, there is a pressing need to augment investment in rural education. This would elevate the educational standards of the rural populace, facilitate the transition of surplus rural labor to secondary and tertiary sectors, refine the industrial structure, and, by extension, foster deeper integration and development of rural industries.

While this study provides valuable insights, it acknowledges certain limitations and avenues for future research. The data’s temporal scope may not encompass the most recent trends and policy shifts that could influence the dynamics between capital marketization and rural industrial integration. Future studies should consider extending the timeframe of their data and broadening the research to encompass micro-level analyses for a nuanced understanding of local particularities. Additionally, a detailed examination of the specific components within the capital marketization process that lead to the observed non-linear effects could yield more precise policy directives. Despite these limitations, the research establishes a robust foundation for further exploration of the capital markets’ role in the integrated development of rural industries.

Data availability statement

The original contributions presented in the study are included in the article/supplementary material, further inquiries can be directed to the corresponding author.

Author contributions

ZD: Conceptualization, Methodology, Supervision, Writing – review & editing, Project administration. XF: Data curation, Software, Writing – original draft, Formal analysis, Methodology.

The author(s) declare financial support was received for the research, authorship, and/or publication of this article. This work was supported by the National Social Science Fund of China (21CGL026).

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Adegbite, O. O., and Machethe, C. L. (2020). Bridging the financial inclusion gender gap in smallholder agriculture in Nigeria: an untapped potential for sustainable development. World Dev. 127:104755. doi: 10.1016/j.worlddev.2019.104755

Crossref Full Text | Google Scholar

Banerjee, A., Duflo, E., and Qian, N. (2020). On the road: access to transportation infrastructure and economic growth in China. J. Dev. Econ. 145:102442. doi: 10.1016/j.jdeveco.2020.102442

Blundell, R., and Bond, S. (1998). Initial conditions and moment restrictions in dynamic panel data models. J. Econom. 87, 115–143. doi: 10.1016/S0304-4076(98)00009-8

Bustos, P., Garber, G., and Ponticelli, J. (2020). Capital accumulation and structural transformation. Q. J. Econ. 135, 1037–1094. doi: 10.1093/qje/qjz044

Chen, K., Long, H., Liao, L., Tu, S., and Li, T. (2020). Land use transitions and urban-rural integrated development: theoretical framework and China’s evidence. Land Use Policy 92:104465. doi: 10.1016/j.landusepol.2020.104465

Cheng, J., Zhao, J., Zhu, D., Jiang, X., Zhang, H., and Zhang, Y. (2022). Land marketization and urban innovation capability: evidence from China. Habitat Int. 122:102540. doi: 10.1016/j.habitatint.2022.102540

Clapp, J. (2019). The rise of financial investment and common ownership in global agrifood firms. Rev. Int. Polit. Econ. 26, 604–629. doi: 10.1080/09692290.2019.1597755

Cofré-Bravo, G., Klerkx, L., and Engler, A. (2019). Combinations of bonding, bridging, and linking social capital for farm innovation: how farmers configure different support networks. J. Rural. Stud. 69, 53–64. doi: 10.1016/j.jrurstud.2019.04.004

Cowie, P., Townsend, L., and Salemink, K. (2020). Smart rural futures: will rural areas be left behind in the 4th industrial revolution? J. Rural. Stud. 79, 169–176. doi: 10.1016/j.jrurstud.2020.08.042

PubMed Abstract | Crossref Full Text | Google Scholar

Fan, G., Wang, X., Zhang, L., and Zhu, H. (2003). Marketization Index for China’s Provinces. J. Econ. Res. 3, 9–18+89. doi: 10.3969/j.issn.1005-6432.2001.06.024

Guo, Y., Zhou, Y., and Liu, Y. (2022). Targeted poverty alleviation and its practices in rural China: a case study of Fuping county, Hebei Province. J. Rural. Stud. 93, 430–440. doi: 10.1016/j.jrurstud.2019.01.007

Han, J. (2020). How to promote rural revitalization via introducing skilled labor, deepening land reform and facilitating investment? China Agric. Econ. Rev. 12, 577–582. doi: 10.1108/CAER-02-2020-0020

Hansen, B. E. (1999). Threshold effects in non-dynamic panels: estimation, testing, and inference. J. Econ. 93, 345–368. doi: 10.1016/S0304-4076(99)00025-1

Hao, H., Liu, C., and Xin, L. (2023). Measurement and dynamic trend research on the development level of rural industry integration in China. Agriculture 13:2245. doi: 10.3390/agriculture13122245

Khanal, A. R., and Omobitan, O. (2020). Rural finance, capital constrained small farms, and financial performance: findings from a primary survey. J. Agric. Appl. Econ. 52, 288–307. doi: 10.1017/aae.2019.45

Lang, R., and Fink, M. (2019). Rural social entrepreneurship: the role of social capital within and across institutional levels. J. Rural. Stud. 70, 155–168. doi: 10.1016/j.jrurstud.2018.03.012

Li, Y., Westlund, H., and Liu, Y. (2019). Why some rural areas decline while some others not: an overview of rural evolution in the world. J. Rural. Stud. 68, 135–143. doi: 10.1016/j.jrurstud.2019.03.003

Liu, Y., Cui, J., Feng, L., and Yan, H. (2024). Does county financial marketization promote high-quality development of agricultural economy? Analysis of the mechanism of county urbanization. PLoS One 19:e0298594. doi: 10.1371/journal.pone.0298594

Liu, Y., Cui, J., Jiang, H., and Yan, H. (2023). Do county financial marketization reforms promote food total factor productivity growth?: a mechanistic analysis of the factors quality of land, labor, and capital. Front. Sustain. Food Systems. 7:1263328. doi: 10.3389/fsufs.2023.1263328

Liu, Y., Li, J., and Yang, Y. (2018). Strategic adjustment of land use policy under the economic transformation. Land Use Policy 74, 5–14. doi: 10.1016/j.landusepol.2017.07.005

Long, H., Tu, S., Ge, D., Li, T., and Liu, Y. (2016). The allocation and management of critical resources in rural China under restructuring: problems and prospects. J. Rural. Stud. 47, 392–412. doi: 10.1016/j.jrurstud.2016.03.011

Lopez, T., and Winkler, A. (2018). The challenge of rural financial inclusion–evidence from microfinance. Appl. Econ. 50, 1555–1577. doi: 10.1080/00036846.2017.1368990

McKinnon, R. I. (1973). Money & Capital in Economic Develop nt, Washington,D.C., The Brookings Institution.

Google Scholar

Petry, J. (2020). Financialization with Chinese characteristics? Exchanges, control and capital markets in authoritarian capitalism. Econ. Soc. 49, 213–238. doi: 10.1080/03085147.2020.1718913

Qin, X., Li, Y., Lu, Z., and Pan, W. (2020). What makes better village economic development in traditional agricultural areas of China? Evidence from 338 villages. Habitat Int. 106:102286. doi: 10.1016/j.habitatint.2020.102286

Shaw, E. S. (1973). Financial Deepening in Economic Development . New York: Oxford University Press.

Steiner, A., and Teasdale, S. (2019). Unlocking the potential of rural social enterprise. J. Rural. Stud. 70, 144–154. doi: 10.1016/j.jrurstud.2017.12.021

Sun, L., and Zhu, C. (2022). Impact of digital inclusive finance on rural high-quality development: evidence from China. Discret. Dyn. Nat. Soc. 2022:7939103. doi: 10.1155/2022/7939103

Tian, X., Wu, M., Ma, L., and Wang, N. (2020). Rural finance, scale management and rural industrial integration. China Agric. Econ. Rev. 12, 349–365. doi: 10.1108/CAER-07-2019-0110

Tu, S., Long, H., Zhang, Y., Ge, D., and Qu, Y. (2018). Rural restructuring at village level under rapid urbanization in metropolitan suburbs of China and its implications for innovations in land use policy. Habitat Int. 77, 143–152. doi: 10.1016/j.habitatint.2017.12.001

Xu, L., and Tan, J. (2020). Financial development, industrial structure and natural resource utilization efficiency in China. Res. Policy 66:101642. doi: 10.1016/j.resourpol.2020.101642

Xue, L., Weng, L., and Yu, H. (2018). Addressing policy challenges in implementing sustainable development goals through an adaptive governance approach: a view from transitional China. Sustain. Dev. 26, 150–158. doi: 10.1002/sd.1726

Yan, J. (2007). The measurement of China’s marketization process. Statistics & Decision . 23, 69–71. doi: 10.3969/j.issn.1002-6487.2007.23.027

Yao, W., and Wang, C. (2022). Agricultural land marketization and productivity: evidence from China. J. Appl. Econ. 25, 22–36. doi: 10.1080/15140326.2021.1997045

Yaseen, A., Bryceson, K., and Mungai, A. N. (2018). Commercialization behaviour in production agriculture: the overlooked role of market orientation. J. Agribus. Dev. Emerg. Econ. 8, 579–602. doi: 10.1108/JADEE-07-2017-0072

Zhang, S., Chen, C., Xu, S., and Xu, B. (2021). Measurement of capital allocation efficiency in emerging economies: evidence from China. Technol. Forecast. Soc. Chang. 171:120954. doi: 10.1016/j.techfore.2021.120954

Zhang, Z., Sun, C., and Wang, J. (2023). How can the digital economy promote the integration of rural industries—taking China as an example. Agriculture 13:2023. doi: 10.3390/agriculture13102023

Zhang, H., and Wu, D. (2022). The impact of transport infrastructure on rural industrial integration: spatial spillover effects and spatio-temporal heterogeneity. Land 11:1116. doi: 10.3390/land11071116

Zhang, R., Yuan, Y., Li, H., and Hu, X. (2022). Improving the framework for analyzing community resilience to understand rural revitalization pathways in China. J. Rural. Stud. 94, 287–294. doi: 10.1016/j.jrurstud.2022.06.012

Zhou, J., Chen, H., Bai, Q., Liu, L., Li, G., and Shen, Q. (2023). Can the integration of rural industries help strengthen China’s agricultural economic resilience? Agriculture 13:1813. doi: 10.3390/agriculture13091813

Zhou, Y., and Hall, J. (2019). The impact of marketization on entrepreneurship in China: recent evidence. Am. J. Entrep. 12, 31–55.

Zhou, Y., Li, X., and Liu, Y. (2020). Rural land system reforms in China: history, issues, measures and prospects. Land Use Policy 91:104330. doi: 10.1016/j.landusepol.2019.104330

Keywords: rural industrial integration, capital marketization, system GMM model, threshold regression, China

Citation: Ding Z and Fan X (2024) Does capital marketization promote better rural industrial integration: evidence from China. Front. Sustain. Food Syst . 8:1412487. doi: 10.3389/fsufs.2024.1412487

Received: 05 April 2024; Accepted: 02 August 2024; Published: 15 August 2024.

Reviewed by:

Copyright © 2024 Ding and Fan. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) . The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

*Correspondence: Zhao Ding, [email protected]

Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

IMAGES

  1. How to Write a Hypothesis

    formulating research hypotheses

  2. Formulating hypotheses

    formulating research hypotheses

  3. how to make formulation of hypothesis

    formulating research hypotheses

  4. 🏷️ Formulation of hypothesis in research. How to Write a Strong

    formulating research hypotheses

  5. PPT

    formulating research hypotheses

  6. ⚡ How to formulate a research hypothesis. How to write a Research

    formulating research hypotheses

COMMENTS

  1. How to Write a Strong Hypothesis

    Developing a hypothesis (with example) Step 1. Ask a question. Writing a hypothesis begins with a research question that you want to answer. The question should be focused, specific, and researchable within the constraints of your project. Example: Research question.

  2. Research Hypothesis: Definition, Types, Examples and Quick Tips

    Types of hypotheses. Some would stand by the notion that there are only two types of hypotheses: a Null hypothesis and an Alternative hypothesis. ... Understand the constraints of your undertaken research topic and then formulate a simple and topic-centric problem. Only after that can you develop a hypothesis and further test for evidence. 2 ...

  3. What is a Research Hypothesis: How to Write it, Types, and Examples

    Formulate a clear and testable hypothesis: ... The number of research hypotheses in a research study varies depending on the nature and scope of the research. It is not necessary to have multiple hypotheses in every study. Some studies may have only one primary hypothesis, while others may have several related hypotheses. ...

  4. A Practical Guide to Writing Quantitative and Qualitative Research

    INTRODUCTION. Scientific research is usually initiated by posing evidenced-based research questions which are then explicitly restated as hypotheses.1,2 The hypotheses provide directions to guide the study, solutions, explanations, and expected results.3,4 Both research questions and hypotheses are essentially formulated based on conventional theories and real-world processes, which allow the ...

  5. Scientific Hypotheses: Writing, Promoting, and Predicting Implications

    Some experience with formulating focused research questions and strong working hypotheses of original research studies is definitely helpful for advancing critical appraisal skills. However, aspiring authors of scientific hypotheses may need something different, which is more related to discerning scientific facts, pooling homogenous data from ...

  6. How to Write a Strong Hypothesis

    A research hypothesis is your proposed answer to your research question. The research hypothesis usually includes an explanation ('x affects y because …'). A statistical hypothesis, on the other hand, is a mathematical statement about a population parameter. Statistical hypotheses always come in pairs: the null and alternative hypotheses.

  7. How to Write a Hypothesis in 6 Steps, With Examples

    Hypotheses determine the direction and organization of your subsequent research methods, and that makes them a big part of writing a research paper. Ultimately the reader wants to know whether your hypothesis was proven true or false, so it must be written clearly in the introduction and/or abstract of your paper. 7 examples of hypotheses

  8. What is a Research Hypothesis and How to Write a Hypothesis

    The steps to write a research hypothesis are: 1. Stating the problem: Ensure that the hypothesis defines the research problem. 2. Writing a hypothesis as an 'if-then' statement: Include the action and the expected outcome of your study by following a 'if-then' structure.

  9. What is a Hypothesis

    After formulating the hypothesis, it's important to refine it and make it more precise. This may involve clarifying the variables, specifying the direction of the relationship, or making the hypothesis more testable. ... In scientific research, hypotheses are used to guide the design of experiments and to help researchers make predictions ...

  10. Hypothesis: Definition, Examples, and Types

    What is a hypothesis and how can you write a great one for your research? A hypothesis is a tentative statement about the relationship between two or more variables that can be tested empirically. Find out how to formulate a clear, specific, and testable hypothesis with examples and tips from Verywell Mind, a trusted source of psychology and mental health information.

  11. What Is A Research Hypothesis? A Simple Definition

    A research hypothesis (or scientific hypothesis) is a statement about an expected relationship between variables, or explanation of an occurrence, that is clear, specific and testable. So, when you write up hypotheses for your dissertation or thesis, make sure that they meet all these criteria. If you do, you'll not only have rock-solid ...

  12. How to Write a Research Hypothesis: Good & Bad Examples

    Types of Research Hypotheses. ... then you will have no problem formulating your hypotheses and predictions correctly. To refresh your memory: We have to (1) look at existing evidence, (2) come up with a hypothesis, (3) make a prediction, and (4) design an experiment. For example, you could summarize your dog/happiness study like this:

  13. How to Write a Research Hypothesis

    Research hypothesis checklist. Once you've written a possible hypothesis, make sure it checks the following boxes: It must be testable: You need a means to prove your hypothesis. If you can't test it, it's not a hypothesis. It must include a dependent and independent variable: At least one independent variable ( cause) and one dependent ...

  14. How to Write a Hypothesis

    How to formulate an effective research hypothesis Designing a study around your hypothesis Introduction. The scientific method can derive and test predictions as hypotheses. Empirical research can then provide support (or lack thereof) for the hypotheses. Even failure to find support for a hypothesis still represents a valuable contribution to ...

  15. What is the Correct Way to Write a Hypothesis?

    They help in formulating research questions and guide the design of experiments. By providing a clear focus, hypotheses ensure that research is systematic and that the findings are reliable and valid. This structured approach enhances the credibility and reliability of the research outcomes. Steps to Formulate a Hypothesis Identifying Research ...

  16. Formulating Hypotheses for Different Study Designs

    Formulating Hypotheses for Different Study Designs. Generating a testable working hypothesis is the first step towards conducting original research. Such research may prove or disprove the proposed hypothesis. Case reports, case series, online surveys and other observational studies, clinical trials, and narrative reviews help to generate ...

  17. Formulating Strong Hypotheses

    Formulating Strong Hypotheses. Before you write your research hypothesis, make sure to do some reading in your area of interest; good resources will include scholarly papers, articles, books, and other academic research. Because your research hypothesis will be a specific, testable prediction about what you expect to happen in a study, you will ...

  18. Research Questions & Hypotheses

    However, both research questions and hypotheses serve different purposes and can be beneficial when used together. Research Questions Clarify the research's aim (Farrugia et al., 2010) Research often begins with an interest in a topic, but a deep understanding of the subject is crucial to formulate an appropriate research question.

  19. Writing Your Dissertation Hypothesis: A Comprehensive Guide for

    "Formulating Research Hypotheses" by Elaine L. Wilmore: Offers practical advice on developing strong, testable hypotheses. "The Importance of Effect Sizes in Reporting Statistical Results: Essential Details for the Researcher" by Lisa F. Smith and Thomas F. E. Smith: Highlights the significance of effect sizes in hypothesis testing and result ...

  20. 7 Types of Research Hypothesis: Examples, Significance and Step-By-Step

    By formulating hypotheses and conducting research to test them, researchers are able to generate new insights, theories, and explanations. This contributes to the existing body of knowledge and helps in expanding the understanding of a specific phenomenon or topic. Furthermore, research hypotheses are important for establishing the validity and ...

  21. (PDF) FORMULATING AND TESTING HYPOTHESIS

    The researcher states a hypothesis to be tested, formulates an analysis plan, analyzes sample data. according to the plan, and accepts or rejects the null hypothesis, based on r esults of the ...

  22. Formulation of Hypothesis & Examples

    To formulate a hypothesis, a researcher must consider the requirements of a strong hypothesis: Make a prediction based on previous observations or research. Define objective independent and ...

  23. Formulating a Research Topic : AeroAstro Communication Lab

    With these three research topic characteristics in mind, the following presents a high level path to formulating your well-defined research topic. A framework for formulating a well-defined research topic . 1. Look inwards. Based on previous experiences in coursework, internships, and extracurricular activities, create a two-column list.

  24. What a Hypothesis Is and How to Formulate One

    A hypothesis is a prediction of what will be found at the outcome of a research project and is typically focused on the relationship between two different variables studied in the research. It is usually based on both theoretical expectations about how things work and already existing scientific evidence. Within social science, a hypothesis can ...

  25. How to Write a Research Proposal: (with Examples & Templates)

    Once the background and gaps in the research topic have been established, authors must now state the aims of the research clearly. Hypotheses should be mentioned here. This section further helps readers understand what your study's specific goals are. 4. Research design and methodology

  26. Research Hypothesis Examples for 2024 Studies

    Such technological advancements contribute significantly to identifying trends and patterns necessary for formulating future research hypotheses. In the realm of 2024 studies, it is essential to consider how these innovations influence research design and implementation. For instance, automation tools can streamline data collection processes ...

  27. PDF Core Competencies for Entering Medical Students

    solve problems and formulate research questions and hypotheses; is facile in the language of the sciences and uses it to participate in the discourse of science and explain how scientific knowledge is discovered and validated • Written Communication: Effectively conveying information to others using written words and sentences Science ...

  28. Frontiers

    The rest of the paper is structured as follows. Section 2 presents a comprehensive literature review and Section 3 establishes research hypotheses. Section 4 presents the conceptual framework and the data used in the study. The empirical results are then reported in section 5. The final section presents concluding remarks and implications.