Cambridge Dictionary

  • Cambridge Dictionary +Plus

Meaning of research in English

Your browser doesn't support HTML5 audio

  • He has dedicated his life to scientific research.
  • He emphasized that all the people taking part in the research were volunteers .
  • The state of Michigan has endowed three institutes to do research for industry .
  • I'd like to see the research that these recommendations are founded on.
  • It took months of painstaking research to write the book .
  • absorptive capacity
  • dream something up phrasal verb
  • ergonomically
  • jury-rigged
  • modularization
  • testing ground
  • the mother of something idiom
  • think outside the box idiom
  • study What do you plan on studying at university?
  • major US She majored in philosophy at Harvard.
  • cram She's cramming for her history exam.
  • revise UK I'm revising for tomorrow's test.
  • review US We're going to review for the test tomorrow night.
  • research Scientists are researching possible new treatments for cancer.
  • The amount of time and money being spent on researching this disease is pitiful .
  • We are researching the reproduction of elephants .
  • She researched a wide variety of jobs before deciding on law .
  • He researches heart disease .
  • The internet has reduced the amount of time it takes to research these subjects .
  • adjudication
  • have the measure of someone/something idiom
  • interpretable
  • interpretive
  • reinterpret
  • reinterpretation
  • reinvestigate
  • reinvestigation
  • risk assessment

You can also find related words, phrases, and synonyms in the topics:

Related word

Research | american dictionary, research | business english, examples of research, collocations with research.

These are words often used in combination with research .

Click on a collocation to see more examples of it.

Translations of research

Get a quick, free translation!

{{randomImageQuizHook.quizId}}

Word of the Day

moving images created from drawings, models, etc. that are photographed or created by a computer

Cooking or hitting the books? (Idioms with ‘book’)

Cooking or hitting the books? (Idioms with ‘book’)

research of

Learn more with +Plus

  • Recent and Recommended {{#preferredDictionaries}} {{name}} {{/preferredDictionaries}}
  • Definitions Clear explanations of natural written and spoken English English Learner’s Dictionary Essential British English Essential American English
  • Grammar and thesaurus Usage explanations of natural written and spoken English Grammar Thesaurus
  • Pronunciation British and American pronunciations with audio English Pronunciation
  • English–Chinese (Simplified) Chinese (Simplified)–English
  • English–Chinese (Traditional) Chinese (Traditional)–English
  • English–Dutch Dutch–English
  • English–French French–English
  • English–German German–English
  • English–Indonesian Indonesian–English
  • English–Italian Italian–English
  • English–Japanese Japanese–English
  • English–Norwegian Norwegian–English
  • English–Polish Polish–English
  • English–Portuguese Portuguese–English
  • English–Spanish Spanish–English
  • English–Swedish Swedish–English
  • Dictionary +Plus Word Lists
  • English    Noun Verb
  • Business    Noun Verb
  • Collocations
  • Translations
  • All translations

To add research to a word list please sign up or log in.

Add research to one of your lists below, or create a new one.

{{message}}

Something went wrong.

There was a problem sending your report.

IdeaScale Logo

What is Research? Definition, Types, Methods and Process

By Nick Jain

Published on: July 25, 2023

What is Research

Table of Contents

What is Research?

Types of research methods, research process: how to conduct research, top 10 best practices for conducting research in 2023.

Research is defined as a meticulous and systematic inquiry process designed to explore and unravel specific subjects or issues with precision. This methodical approach encompasses the thorough collection, rigorous analysis, and insightful interpretation of information, aiming to delve deep into the nuances of a chosen field of study. By adhering to established research methodologies, investigators can draw meaningful conclusions, fostering a profound understanding that contributes significantly to the existing knowledge base.

This dedication to systematic inquiry serves as the bedrock of progress, steering advancements across sciences, technology, social sciences, and diverse disciplines. Through the dissemination of meticulously gathered insights, scholars not only inspire collaboration and innovation but also catalyze positive societal change.

In the pursuit of knowledge, researchers embark on a journey of discovery, seeking to unravel the complexities of the world around us. By formulating clear research questions, researchers set the course for their investigations, carefully crafting methodologies to gather relevant data. Whether employing quantitative surveys or qualitative interviews, data collection lies at the heart of every research endeavor. Once the data is collected, researchers meticulously analyze it, employing statistical tools or thematic analysis to identify patterns and draw meaningful insights. These insights, often supported by empirical evidence, contribute to the collective pool of knowledge, enriching our understanding of various phenomena and guiding decision-making processes across diverse fields. Through research, we continually refine our understanding of the universe, laying the foundation for innovation and progress that shape the future.

Research embodies the spirit of curiosity and the pursuit of truth. Here are the key characteristics of research:

  • Systematic Approach: Research follows a well-structured and organized approach, with clearly defined steps and methodologies. It is conducted in a systematic manner to ensure that data is collected, analyzed, and interpreted in a logical and coherent way.
  • Objective and Unbiased: Research is objective and strives to be free from bias or personal opinions. Researchers aim to gather data and draw conclusions based on evidence rather than preconceived notions or beliefs.
  • Empirical Evidence: Research relies on empirical evidence obtained through observations, experiments, surveys, or other data collection methods. This evidence serves as the foundation for drawing conclusions and making informed decisions.
  • Clear Research Question or Problem: Every research study begins with a specific research question or problem that the researcher aims to address. This question provides focus and direction to the entire research process.
  • Replicability: Good research should be replicable, meaning that other researchers should be able to conduct a similar study and obtain similar results when following the same methods.
  • Transparency and Ethics: Research should be conducted with transparency, and researchers should adhere to ethical guidelines and principles. This includes obtaining informed consent from participants, ensuring confidentiality, and avoiding any harm to participants or the environment.
  • Generalizability: Researchers often aim for their findings to be generalizable to a broader population or context. This means that the results of the study can be applied beyond the specific sample or situation studied.
  • Logical and Critical Thinking: Research involves critical thinking to analyze and interpret data, identify patterns, and draw meaningful conclusions. Logical reasoning is essential in formulating hypotheses and designing the study.
  • Contribution to Knowledge: The primary purpose of research is to contribute to the existing body of knowledge in a particular field. Researchers aim to expand understanding, challenge existing theories, or propose new ideas.
  • Peer Review and Publication: Research findings are typically subject to peer review by experts in the field before being published in academic journals or presented at conferences. This process ensures the quality and validity of the research.
  • Iterative Process: Research is often an iterative process, with findings from one study leading to new questions and further research. It is a continuous cycle of discovery and refinement.
  • Practical Application: While some research is theoretical in nature, much of it aims to have practical applications and real-world implications. It can inform policy decisions, improve practices, or address societal challenges.

These key characteristics collectively define research as a rigorous and valuable endeavor that drives progress, knowledge, and innovation in various disciplines.

Types of Research Methods

Research serves as a cornerstone for knowledge discovery, innovation, and decision-making. Understanding the various types of research methods is crucial for selecting the most appropriate approach to answer your research questions effectively. This guide delves into the major research methods, their applications, and tips on choosing the best one for your study.

1. Quantitative Research: Unlocking the Power of Numbers

Quantitative research is centered around collecting numerical data and employing statistical techniques to draw conclusions. This type of research is often used to measure variables, identify patterns, and establish causal relationships.

  • Purpose: Surveys are utilized to collect data from a large audience to identify trends and generalize findings.
  • Method: Employ structured questionnaires with closed-ended questions.
  • Example: Businesses conduct customer satisfaction surveys to understand consumer preferences and make informed decisions.
  • Experiments:
  • Purpose: Experiments are designed to test hypotheses by manipulating variables in a controlled setting.
  • Method: Use experimental and control groups to establish cause-and-effect relationships.
  • Example: In scientific research, experiments are conducted to evaluate the effectiveness of a new drug treatment.
  • Observational Studies:
  • Purpose: Observational studies involve watching and recording subjects without interference, providing insights into natural behaviors.
  • Method: Systematically observe and document phenomena.
  • Example: Wildlife researchers use observational studies to study animal behaviors in their natural habitats.
  • Secondary Data Analysis:
  • Purpose: Re-analyze existing datasets to extract new insights, saving time and resources.
  • Method: Utilize pre-existing data from sources such as government databases or academic publications.
  • Example: Economists analyze census data to examine employment trends and economic growth.

2. Qualitative Research: Exploring the Depths of Human Experience

Qualitative research focuses on understanding the intricacies of human experiences, beliefs, and social phenomena. It provides rich, in-depth insights and interpretations that numbers alone cannot capture.

  • Interviews:
  • Purpose: Conduct in-depth interviews to explore individual perspectives and gain insights into complex topics.
  • Method: Use semi-structured or unstructured interviews to allow participants to share their thoughts freely.
  • Example: Healthcare researchers interview patients to understand their experiences and emotional responses to treatments.
  • Focus Groups:
  • Purpose: Gather diverse opinions and insights from group discussions on specific topics.
  • Method: Facilitate guided conversations with selected participants.
  • Example: Marketing teams conduct focus groups to test new product concepts and gather feedback.
  • Ethnography:
  • Purpose: Immerse in a culture or community to understand their practices, values, and social dynamics.
  • Method: Engage in long-term observation and interaction within the community.
  • Example: Anthropologists conduct ethnographic research to study cultural rituals and traditions.
  • Case Studies:
  • Purpose: Provide an in-depth examination of a single subject, event, or organization to uncover insights and identify patterns.
  • Method: Use multiple data sources to gain comprehensive knowledge.
  • Example: Business analysts study successful startups to identify strategies for growth and innovation.

3. Mixed-Methods Research: Bridging the Gap

Mixed-methods research combines qualitative and quantitative approaches to gain a deeper insight into complex problems. This integration allows researchers to benefit from both numerical data and narrative insights.

  • Purpose: Leverage the strengths of both quantitative and qualitative data.
  • Method: Employ a combination of surveys, interviews, and other techniques.
  • Example: Educational researchers use mixed methods to evaluate student performance through test scores and personal interviews.

4. Cross-Sectional Studies: Snapshot of a Moment

Cross-sectional studies analyze data from a population at a specific point in time to identify patterns, correlations, or differences between variables.

  • Purpose: Provide a snapshot of a population’s characteristics and relationships.
  • Method: Collect data simultaneously from multiple subjects.
  • Example: Public health researchers conduct cross-sectional studies to assess disease prevalence in a community.

5. Longitudinal Studies: Observing Change Over Time

Longitudinal studies track the same subjects over an extended period, providing valuable insights into changes, trends, and long-term effects.

  • Purpose: Examine changes and developments over time.
  • Method: Collect data from the same participants at multiple intervals.
  • Example: Psychologists conduct longitudinal studies to understand cognitive development from childhood to adulthood.

6. Action Research: Solving Real-World Problems

Action research involves collaboration with stakeholders to identify and address practical issues, aiming for immediate impact and improvement.

  • Purpose: Implement solutions and drive change in real-world settings.
  • Method: Engage participants actively in the research process.
  • Example: Educators conduct action research to enhance teaching methods and student engagement.

7. Case-Control Studies: Uncovering Causes and Risks

Case-control studies compare individuals with a particular outcome (cases) to those without it (controls) to identify potential causes or risk factors.

  • Purpose: Identify factors linked to specific outcomes or diseases.
  • Method: Analyze historical data between cases and controls.
  • Example: Epidemiologists conduct case-control studies to investigate potential causes of rare diseases.

8. Descriptive Research: Painting a Picture

Descriptive research aims to provide detailed descriptions and summaries of phenomena without manipulating variables, offering a clear picture of a subject.

  • Purpose: Describe characteristics, behaviors, or patterns.
  • Method: Use surveys, observations, or case studies.
  • Example: Sociologists use descriptive research to document urban population demographics.

9. Correlational Research: Understanding Relationships

Correlational research examines the relationship between two or more variables to identify patterns, associations, or correlations without inferring causation.

  • Purpose: Identify patterns and associations between variables.
  • Method: Use statistical analysis to determine correlation coefficients.
  • Example: Researchers study the correlation between physical activity levels and mental well-being.

10. Grounded Theory: Building Theories from Data

Grounded theory is an approach where theories are developed based on systematically gathered and analyzed data, allowing concepts and frameworks to emerge organically.

  • Purpose: Develop theories grounded in empirical evidence.
  • Method: Use iterative data collection and analysis.
  • Example: Social scientists build theories on workplace motivation through employee interviews and observations.

11. Surveys and Questionnaires: Collecting Direct Feedback

Surveys and questionnaires are structured tools used to collect specific information directly from a target population, providing valuable data for various purposes.

  • Purpose: Gather targeted data and opinions from respondents.
  • Method: Administer standardized questions to a sample population.
  • Example: Market researchers use surveys to gather feedback on consumer preferences and trends.

12. Meta-Analysis: Synthesizing Evidence

Meta-analysis is a powerful statistical technique that combines the results of multiple studies on a similar topic to draw robust conclusions and insights.

  • Purpose: Synthesize existing research findings for stronger conclusions.
  • Method: Aggregate and analyze data from numerous studies.
  • Example: Medical researchers perform meta-analysis to assess the overall effectiveness of treatment across multiple clinical trials.

Choosing the Right Research Method

Selecting the appropriate research method is crucial for achieving valid and reliable results. Consider the following factors when deciding on a research approach:

  • Research Objectives: Clearly define your goals and questions to guide method selection.
  • Data Type: Determine whether you need quantitative, qualitative, or mixed-methods data.
  • Resources: Evaluate available time, budget, and technology.
  • Ethical Considerations: Ensure compliance with ethical standards in data collection and analysis.

By understanding these diverse research methodologies and strategically employing best practices, researchers can effectively communicate their findings and contribute to the broader field of knowledge.

Learn more: What is Research Design?

Conducting research involves a systematic and organized process that follows specific steps to ensure the collection of reliable and meaningful data. The research process typically consists of the following steps:

Step 1. Identify the Research Topic

Choose a research topic that interests you and aligns with your expertise and resources. Develop clear and focused research questions that you want to answer through your study.

Step 2. Review Existing Research

Conduct a thorough literature review to identify what research has already been done on your chosen topic. This will help you understand the current state of knowledge, identify gaps in the literature, and refine your research questions.

Step 3. Design the Research Methodology

Determine the appropriate research methodology that suits your research questions. Decide whether your study will be qualitative , quantitative , or a mix of both (mixed methods). Also, choose the data collection methods, such as surveys, interviews, experiments, observations, etc.

Step 4. Select the Sample and Participants

If your study involves human participants, decide on the sample size and selection criteria. Obtain ethical approval, if required, and ensure that participants’ rights and privacy are protected throughout the research process.

Step 5. Information Collection

Collect information and data based on your chosen research methodology. Qualitative research has more intellectual information, while quantitative research results are more data-oriented. Ensure that your data collection process is standardized and consistent to maintain the validity of the results.

Step 6. Data Analysis

Analyze the data you have collected using appropriate statistical or qualitative research methods . The type of analysis will depend on the nature of your data and research questions.

Step 7. Interpretation of Results

Interpret the findings of your data analysis. Relate the results to your research questions and consider how they contribute to the existing knowledge in the field.

Step 8. Draw Conclusions

Based on your interpretation of the results, draw meaningful conclusions that answer your research questions. Discuss the implications of your findings and how they align with the existing literature.

Step 9. Discuss Limitations

Acknowledge and discuss any limitations of your study. Addressing limitations demonstrates the validity and reliability of your research.

Step 10. Make Recommendations

If applicable, provide recommendations based on your research findings. These recommendations can be for future research, policy changes, or practical applications.

Step 11. Write the Research Report

Prepare a comprehensive research report detailing all aspects of your study, including the introduction, methodology, results, discussion, conclusion, and references.

Step 12. Peer Review and Revision

If you intend to publish your research, submit your report to peer-reviewed journals. Revise your research report based on the feedback received from reviewers.

Make sure to share your research findings with the broader community through conferences, seminars, or other appropriate channels, this will help contribute to the collective knowledge in your field of study.

Remember that conducting research is a dynamic process, and you may need to revisit and refine various steps as you progress. Good research requires attention to detail, critical thinking, and adherence to ethical principles to ensure the quality and validity of the study.

Learn more: What is Primary Market Research?

Best Practices for Conducting Research

Best practices for conducting research remain rooted in the principles of rigor, transparency, and ethical considerations. Here are the essential best practices to follow when conducting research in 2023:

1. Research Design and Methodology

  • Carefully select and justify the research design and methodology that aligns with your research questions and objectives.
  • Ensure that the chosen methods are appropriate for the data you intend to collect and the type of analysis you plan to perform.
  • Clearly document the research design and methodology to enhance the reproducibility and transparency of your study.

2. Ethical Considerations

  • Obtain approval from relevant research ethics committees or institutional review boards, especially when involving human participants or sensitive data.
  • Prioritize the protection of participants’ rights, privacy, and confidentiality throughout the research process.
  • Provide informed consent to participants, ensuring they understand the study’s purpose, risks, and benefits.

3. Data Collection

  • Ensure the reliability and validity of data collection instruments, such as surveys or interview protocols.
  • Conduct pilot studies or pretests to identify and address any potential issues with data collection procedures.

4. Data Management and Analysis

  • Implement robust data management practices to maintain the integrity and security of research data.
  • Transparently document data analysis procedures, including software and statistical methods used.
  • Use appropriate statistical techniques to analyze the data and avoid data manipulation or cherry-picking results.

5. Transparency and Open Science

  • Embrace open science practices, such as pre-registration of research protocols and sharing data and code openly whenever possible.
  • Clearly report all aspects of your research, including methods, results, and limitations, to enhance the reproducibility of your study.

6. Bias and Confounders

  • Be aware of potential biases in the research process and take steps to minimize them.
  • Consider and address potential confounding variables that could affect the validity of your results.

7. Peer Review

  • Seek peer review from experts in your field before publishing or presenting your research findings.
  • Be receptive to feedback and address any concerns raised by reviewers to improve the quality of your study.

8. Replicability and Generalizability

  • Strive to make your research findings replicable, allowing other researchers to validate your results independently.
  • Clearly state the limitations of your study and the extent to which the findings can be generalized to other populations or contexts.

9. Acknowledging Funding and Conflicts of Interest

  • Disclose any funding sources and potential conflicts of interest that may influence your research or its outcomes.

10. Dissemination and Communication

  • Effectively communicate your research findings to both academic and non-academic audiences using clear and accessible language.
  • Share your research through reputable and open-access platforms to maximize its impact and reach.

By adhering to these best practices, researchers can ensure the integrity and value of their work, contributing to the advancement of knowledge and promoting trust in the research community.

Learn more: What is Consumer Research?

Enhance Your Research

Collect feedback and conduct research with IdeaScale’s award-winning software

Most Recent Blogs

Explore the latest innovation insights and trends with our recent blog posts.

Future of Education

The Future of Education is Now: Preparing Schools for Tomorrow with Innovation Management Software

Student Engagement Innovation Management

Enhancing Student Engagement Through Innovation Management: Preparing Schools for Tomorrow

Innovation management teamwork - Team Engagement

What is Team Engagement? Definition, Model, Strategies, and How to Improve It

Incoming Moderation

Elevate Your Idea Management with Ideascale’s Incoming Moderation Feature

Maximizing ROI in Education

How Innovation Management Software Streamlines Resource Allocation: Maximizing ROI in Education

Autonomous shuttles

Innovating Public Transit with Autonomous Electric Shuttles

Studying Astronomy

Advancing Astronomical Sciences: New AI Institutes Launched

Creativity in workplace - Innovation to Drive Better Results

What is Creativity in the Workplace? Definition, Importance, Examples, Benefits, and How to Foster Creativity in the Workplace

Customer Co-Creation Models

Customer Co-Creation Models: How Businesses Innovate with Their Customers

Elevate research and feedback with your ideascale community.

IdeaScale is an innovation management solution that inspires people to take action on their ideas. Your community’s ideas can change lives, your business and the world. Connect to the ideas that matter and start co-creating the future.

Copyright © 2024 IdeaScale

Privacy Overview

  • More from M-W
  • To save this word, you'll need to log in. Log In

Definition of research

 (Entry 1 of 2)

Definition of research  (Entry 2 of 2)

transitive verb

intransitive verb

  • disquisition
  • examination
  • exploration
  • inquisition
  • investigation
  • delve (into)
  • inquire (into)
  • investigate
  • look (into)

Examples of research in a Sentence

These examples are programmatically compiled from various online sources to illustrate current usage of the word 'research.' Any opinions expressed in the examples do not represent those of Merriam-Webster or its editors. Send us feedback about these examples.

Word History

Middle French recerche , from recercher to go about seeking, from Old French recerchier , from re- + cerchier, sercher to search — more at search

1577, in the meaning defined at sense 3

1588, in the meaning defined at transitive sense 1

Phrases Containing research

  • marketing research
  • market research
  • operations research
  • oppo research

research and development

  • research park
  • translational research

Dictionary Entries Near research

Cite this entry.

“Research.” Merriam-Webster.com Dictionary , Merriam-Webster, https://www.merriam-webster.com/dictionary/research. Accessed 29 Oct. 2024.

Kids Definition

Kids definition of research.

Kids Definition of research  (Entry 2 of 2)

More from Merriam-Webster on research

Nglish: Translation of research for Spanish Speakers

Britannica English: Translation of research for Arabic Speakers

Britannica.com: Encyclopedia article about research

Subscribe to America's largest dictionary and get thousands more definitions and advanced search—ad free!

Play Quordle: Guess all four words in a limited number of tries.  Each of your guesses must be a real 5-letter word.

Can you solve 4 words at once?

Word of the day.

See Definitions and Examples »

Get Word of the Day daily email!

Popular in Grammar & Usage

How to use em dashes (—), en dashes (–) , and hyphens (-), plural and possessive names: a guide, the difference between 'i.e.' and 'e.g.', why is '-ed' sometimes pronounced at the end of a word, what's the difference between 'fascism' and 'socialism', popular in wordplay, weird words for autumn time, 8 words for lesser-known musical instruments, 10 words from taylor swift songs (merriam's version), 9 superb owl words, 15 words that used to mean something different, games & quizzes.

Play Blossom: Solve today's spelling word game by finding as many words as you can using just 7 letters. Longer words score more points.

  • Privacy Policy

Research Method

Home » Research – Types, Methods and Examples

Research – Types, Methods and Examples

Table of Contents

What is Research

Definition:

Research refers to the process of investigating a particular topic or question in order to discover new information , develop new insights, or confirm or refute existing knowledge. It involves a systematic and rigorous approach to collecting, analyzing, and interpreting data, and requires careful planning and attention to detail.

History of Research

The history of research can be traced back to ancient times when early humans observed and experimented with the natural world around them. Over time, research evolved and became more systematic as people sought to better understand the world and solve problems.

In ancient civilizations such as those in Greece, Egypt, and China, scholars pursued knowledge through observation, experimentation, and the development of theories. They explored various fields, including medicine, astronomy, and mathematics.

During the Middle Ages, research was often conducted by religious scholars who sought to reconcile scientific discoveries with their faith. The Renaissance brought about a renewed interest in science and the scientific method, and the Enlightenment period marked a major shift towards empirical observation and experimentation as the primary means of acquiring knowledge.

The 19th and 20th centuries saw significant advancements in research, with the development of new scientific disciplines and fields such as psychology, sociology, and computer science. Advances in technology and communication also greatly facilitated research efforts.

Today, research is conducted in a wide range of fields and is a critical component of many industries, including healthcare, technology, and academia. The process of research continues to evolve as new methods and technologies emerge, but the fundamental principles of observation, experimentation, and hypothesis testing remain at its core.

Types of Research

Types of Research are as follows:

  • Applied Research : This type of research aims to solve practical problems or answer specific questions, often in a real-world context.
  • Basic Research : This type of research aims to increase our understanding of a phenomenon or process, often without immediate practical applications.
  • Experimental Research : This type of research involves manipulating one or more variables to determine their effects on another variable, while controlling all other variables.
  • Descriptive Research : This type of research aims to describe and measure phenomena or characteristics, without attempting to manipulate or control any variables.
  • Correlational Research: This type of research examines the relationships between two or more variables, without manipulating any variables.
  • Qualitative Research : This type of research focuses on exploring and understanding the meaning and experience of individuals or groups, often through methods such as interviews, focus groups, and observation.
  • Quantitative Research : This type of research uses numerical data and statistical analysis to draw conclusions about phenomena or populations.
  • Action Research: This type of research is often used in education, healthcare, and other fields, and involves collaborating with practitioners or participants to identify and solve problems in real-world settings.
  • Mixed Methods Research : This type of research combines both quantitative and qualitative research methods to gain a more comprehensive understanding of a phenomenon or problem.
  • Case Study Research: This type of research involves in-depth examination of a specific individual, group, or situation, often using multiple data sources.
  • Longitudinal Research: This type of research follows a group of individuals over an extended period of time, often to study changes in behavior, attitudes, or health outcomes.
  • Cross-Sectional Research : This type of research examines a population at a single point in time, often to study differences or similarities among individuals or groups.
  • Survey Research: This type of research uses questionnaires or interviews to gather information from a sample of individuals about their attitudes, beliefs, behaviors, or experiences.
  • Ethnographic Research : This type of research involves immersion in a cultural group or community to understand their way of life, beliefs, values, and practices.
  • Historical Research : This type of research investigates events or phenomena from the past using primary sources, such as archival records, newspapers, and diaries.
  • Content Analysis Research : This type of research involves analyzing written, spoken, or visual material to identify patterns, themes, or messages.
  • Participatory Research : This type of research involves collaboration between researchers and participants throughout the research process, often to promote empowerment, social justice, or community development.
  • Comparative Research: This type of research compares two or more groups or phenomena to identify similarities and differences, often across different countries or cultures.
  • Exploratory Research : This type of research is used to gain a preliminary understanding of a topic or phenomenon, often in the absence of prior research or theories.
  • Explanatory Research: This type of research aims to identify the causes or reasons behind a particular phenomenon, often through the testing of theories or hypotheses.
  • Evaluative Research: This type of research assesses the effectiveness or impact of an intervention, program, or policy, often through the use of outcome measures.
  • Simulation Research : This type of research involves creating a model or simulation of a phenomenon or process, often to predict outcomes or test theories.

Data Collection Methods

  • Surveys : Surveys are used to collect data from a sample of individuals using questionnaires or interviews. Surveys can be conducted face-to-face, by phone, mail, email, or online.
  • Experiments : Experiments involve manipulating one or more variables to measure their effects on another variable, while controlling for other factors. Experiments can be conducted in a laboratory or in a natural setting.
  • Case studies : Case studies involve in-depth analysis of a single case, such as an individual, group, organization, or event. Case studies can use a variety of data collection methods, including interviews, observation, and document analysis.
  • Observational research : Observational research involves observing and recording the behavior of individuals or groups in a natural setting. Observational research can be conducted covertly or overtly.
  • Content analysis : Content analysis involves analyzing written, spoken, or visual material to identify patterns, themes, or messages. Content analysis can be used to study media, social media, or other forms of communication.
  • Ethnography : Ethnography involves immersion in a cultural group or community to understand their way of life, beliefs, values, and practices. Ethnographic research can use a range of data collection methods, including observation, interviews, and document analysis.
  • Secondary data analysis : Secondary data analysis involves using existing data from sources such as government agencies, research institutions, or commercial organizations. Secondary data can be used to answer research questions, without collecting new data.
  • Focus groups: Focus groups involve gathering a small group of people together to discuss a topic or issue. The discussions are usually guided by a moderator who asks questions and encourages discussion.
  • Interviews : Interviews involve one-on-one conversations between a researcher and a participant. Interviews can be structured, semi-structured, or unstructured, and can be conducted in person, by phone, or online.
  • Document analysis : Document analysis involves collecting and analyzing written documents, such as reports, memos, and emails. Document analysis can be used to study organizational communication, policy documents, and other forms of written material.

Data Analysis Methods

Data Analysis Methods in Research are as follows:

  • Descriptive statistics : Descriptive statistics involve summarizing and describing the characteristics of a dataset, such as mean, median, mode, standard deviation, and frequency distributions.
  • Inferential statistics: Inferential statistics involve making inferences or predictions about a population based on a sample of data, using methods such as hypothesis testing, confidence intervals, and regression analysis.
  • Qualitative analysis: Qualitative analysis involves analyzing non-numerical data, such as text, images, or audio, to identify patterns, themes, or meanings. Qualitative analysis can be used to study subjective experiences, social norms, and cultural practices.
  • Content analysis: Content analysis involves analyzing written, spoken, or visual material to identify patterns, themes, or messages. Content analysis can be used to study media, social media, or other forms of communication.
  • Grounded theory: Grounded theory involves developing a theory or model based on empirical data, using methods such as constant comparison, memo writing, and theoretical sampling.
  • Discourse analysis : Discourse analysis involves analyzing language use, including the structure, function, and meaning of words and phrases, to understand how language reflects and shapes social relationships and power dynamics.
  • Network analysis: Network analysis involves analyzing the structure and dynamics of social networks, including the relationships between individuals and groups, to understand social processes and outcomes.

Research Methodology

Research methodology refers to the overall approach and strategy used to conduct a research study. It involves the systematic planning, design, and execution of research to answer specific research questions or test hypotheses. The main components of research methodology include:

  • Research design : Research design refers to the overall plan and structure of the study, including the type of study (e.g., observational, experimental), the sampling strategy, and the data collection and analysis methods.
  • Sampling strategy: Sampling strategy refers to the method used to select a representative sample of participants or units from the population of interest. The choice of sampling strategy will depend on the research question and the nature of the population being studied.
  • Data collection methods : Data collection methods refer to the techniques used to collect data from study participants or sources, such as surveys, interviews, observations, or secondary data sources.
  • Data analysis methods: Data analysis methods refer to the techniques used to analyze and interpret the data collected in the study, such as descriptive statistics, inferential statistics, qualitative analysis, or content analysis.
  • Ethical considerations: Ethical considerations refer to the principles and guidelines that govern the treatment of human participants or the use of sensitive data in the research study.
  • Validity and reliability : Validity and reliability refer to the extent to which the study measures what it is intended to measure and the degree to which the study produces consistent and accurate results.

Applications of Research

Research has a wide range of applications across various fields and industries. Some of the key applications of research include:

  • Advancing scientific knowledge : Research plays a critical role in advancing our understanding of the world around us. Through research, scientists are able to discover new knowledge, uncover patterns and relationships, and develop new theories and models.
  • Improving healthcare: Research is instrumental in advancing medical knowledge and developing new treatments and therapies. Clinical trials and studies help to identify the effectiveness and safety of new drugs and medical devices, while basic research helps to uncover the underlying causes of diseases and conditions.
  • Enhancing education: Research helps to improve the quality of education by identifying effective teaching methods, developing new educational tools and technologies, and assessing the impact of various educational interventions.
  • Driving innovation: Research is a key driver of innovation, helping to develop new products, services, and technologies. By conducting research, businesses and organizations can identify new market opportunities, gain a competitive advantage, and improve their operations.
  • Informing public policy : Research plays an important role in informing public policy decisions. Policy makers rely on research to develop evidence-based policies that address societal challenges, such as healthcare, education, and environmental issues.
  • Understanding human behavior : Research helps us to better understand human behavior, including social, cognitive, and emotional processes. This understanding can be applied in a variety of settings, such as marketing, organizational management, and public policy.

Importance of Research

Research plays a crucial role in advancing human knowledge and understanding in various fields of study. It is the foundation upon which new discoveries, innovations, and technologies are built. Here are some of the key reasons why research is essential:

  • Advancing knowledge: Research helps to expand our understanding of the world around us, including the natural world, social structures, and human behavior.
  • Problem-solving: Research can help to identify problems, develop solutions, and assess the effectiveness of interventions in various fields, including medicine, engineering, and social sciences.
  • Innovation : Research is the driving force behind the development of new technologies, products, and processes. It helps to identify new possibilities and opportunities for improvement.
  • Evidence-based decision making: Research provides the evidence needed to make informed decisions in various fields, including policy making, business, and healthcare.
  • Education and training : Research provides the foundation for education and training in various fields, helping to prepare individuals for careers and advancing their knowledge.
  • Economic growth: Research can drive economic growth by facilitating the development of new technologies and innovations, creating new markets and job opportunities.

When to use Research

Research is typically used when seeking to answer questions or solve problems that require a systematic approach to gathering and analyzing information. Here are some examples of when research may be appropriate:

  • To explore a new area of knowledge : Research can be used to investigate a new area of knowledge and gain a better understanding of a topic.
  • To identify problems and find solutions: Research can be used to identify problems and develop solutions to address them.
  • To evaluate the effectiveness of programs or interventions : Research can be used to evaluate the effectiveness of programs or interventions in various fields, such as healthcare, education, and social services.
  • To inform policy decisions: Research can be used to provide evidence to inform policy decisions in areas such as economics, politics, and environmental issues.
  • To develop new products or technologies : Research can be used to develop new products or technologies and improve existing ones.
  • To understand human behavior : Research can be used to better understand human behavior and social structures, such as in psychology, sociology, and anthropology.

Characteristics of Research

The following are some of the characteristics of research:

  • Purpose : Research is conducted to address a specific problem or question and to generate new knowledge or insights.
  • Systematic : Research is conducted in a systematic and organized manner, following a set of procedures and guidelines.
  • Empirical : Research is based on evidence and data, rather than personal opinion or intuition.
  • Objective: Research is conducted with an objective and impartial perspective, avoiding biases and personal beliefs.
  • Rigorous : Research involves a rigorous and critical examination of the evidence and data, using reliable and valid methods of data collection and analysis.
  • Logical : Research is based on logical and rational thinking, following a well-defined and logical structure.
  • Generalizable : Research findings are often generalized to broader populations or contexts, based on a representative sample of the population.
  • Replicable : Research is conducted in a way that allows others to replicate the study and obtain similar results.
  • Ethical : Research is conducted in an ethical manner, following established ethical guidelines and principles, to ensure the protection of participants’ rights and well-being.
  • Cumulative : Research builds on previous studies and contributes to the overall body of knowledge in a particular field.

Advantages of Research

Research has several advantages, including:

  • Generates new knowledge: Research is conducted to generate new knowledge and understanding of a particular topic or phenomenon, which can be used to inform policy, practice, and decision-making.
  • Provides evidence-based solutions : Research provides evidence-based solutions to problems and issues, which can be used to develop effective interventions and strategies.
  • Improves quality : Research can improve the quality of products, services, and programs by identifying areas for improvement and developing solutions to address them.
  • Enhances credibility : Research enhances the credibility of an organization or individual by providing evidence to support claims and assertions.
  • Enables innovation: Research can lead to innovation by identifying new ideas, approaches, and technologies.
  • Informs decision-making : Research provides information that can inform decision-making, helping individuals and organizations make more informed and effective choices.
  • Facilitates progress: Research can facilitate progress by identifying challenges and opportunities and developing solutions to address them.
  • Enhances understanding: Research can enhance understanding of complex issues and phenomena, helping individuals and organizations navigate challenges and opportunities more effectively.
  • Promotes accountability : Research promotes accountability by providing a basis for evaluating the effectiveness of policies, programs, and interventions.
  • Fosters collaboration: Research can foster collaboration by bringing together individuals and organizations with diverse perspectives and expertise to address complex issues and problems.

Limitations of Research

Some Limitations of Research are as follows:

  • Cost : Research can be expensive, particularly when large-scale studies are required. This can limit the number of studies that can be conducted and the amount of data that can be collected.
  • Time : Research can be time-consuming, particularly when longitudinal studies are required. This can limit the speed at which research findings can be generated and disseminated.
  • Sample size: The size of the sample used in research can limit the generalizability of the findings to larger populations.
  • Bias : Research can be affected by bias, both in the design and implementation of the study, as well as in the analysis and interpretation of the data.
  • Ethics : Research can present ethical challenges, particularly when human or animal subjects are involved. This can limit the types of research that can be conducted and the methods that can be used.
  • Data quality: The quality of the data collected in research can be affected by a range of factors, including the reliability and validity of the measures used, as well as the accuracy of the data entry and analysis.
  • Subjectivity : Research can be subjective, particularly when qualitative methods are used. This can limit the objectivity and reliability of the findings.
  • Accessibility : Research findings may not be accessible to all stakeholders, particularly those who are not part of the academic or research community.
  • Interpretation : Research findings can be open to interpretation, particularly when the data is complex or contradictory. This can limit the ability of researchers to draw firm conclusions.
  • Unforeseen events : Unexpected events, such as changes in the environment or the emergence of new technologies, can limit the relevance and applicability of research findings.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

What is Anthropology

What is Anthropology – Definition and Overview

Sociologist

Sociologist – Definition, Types and Work Area

Implications

Implications – Definition, Types, and...

What is Archaeology

What is Archaeology – Definition and Overview

What is Political Science

What is Political Science -Definition and Types

What is Literature

What is Literature – Definition, Types, Examples

What Is Research, and Why Do People Do It?

  • Open Access
  • First Online: 03 December 2022

Cite this chapter

You have full access to this open access chapter

research of

  • James Hiebert 6 ,
  • Jinfa Cai 7 ,
  • Stephen Hwang 7 ,
  • Anne K Morris 6 &
  • Charles Hohensee 6  

Part of the book series: Research in Mathematics Education ((RME))

26k Accesses

1 Altmetric

Abstractspiepr Abs1

Every day people do research as they gather information to learn about something of interest. In the scientific world, however, research means something different than simply gathering information. Scientific research is characterized by its careful planning and observing, by its relentless efforts to understand and explain, and by its commitment to learn from everyone else seriously engaged in research. We call this kind of research scientific inquiry and define it as “formulating, testing, and revising hypotheses.” By “hypotheses” we do not mean the hypotheses you encounter in statistics courses. We mean predictions about what you expect to find and rationales for why you made these predictions. Throughout this and the remaining chapters we make clear that the process of scientific inquiry applies to all kinds of research studies and data, both qualitative and quantitative.

You have full access to this open access chapter,  Download chapter PDF

Part I. What Is Research?

Have you ever studied something carefully because you wanted to know more about it? Maybe you wanted to know more about your grandmother’s life when she was younger so you asked her to tell you stories from her childhood, or maybe you wanted to know more about a fertilizer you were about to use in your garden so you read the ingredients on the package and looked them up online. According to the dictionary definition, you were doing research.

Recall your high school assignments asking you to “research” a topic. The assignment likely included consulting a variety of sources that discussed the topic, perhaps including some “original” sources. Often, the teacher referred to your product as a “research paper.”

Were you conducting research when you interviewed your grandmother or wrote high school papers reviewing a particular topic? Our view is that you were engaged in part of the research process, but only a small part. In this book, we reserve the word “research” for what it means in the scientific world, that is, for scientific research or, more pointedly, for scientific inquiry .

Exercise 1.1

Before you read any further, write a definition of what you think scientific inquiry is. Keep it short—Two to three sentences. You will periodically update this definition as you read this chapter and the remainder of the book.

This book is about scientific inquiry—what it is and how to do it. For starters, scientific inquiry is a process, a particular way of finding out about something that involves a number of phases. Each phase of the process constitutes one aspect of scientific inquiry. You are doing scientific inquiry as you engage in each phase, but you have not done scientific inquiry until you complete the full process. Each phase is necessary but not sufficient.

In this chapter, we set the stage by defining scientific inquiry—describing what it is and what it is not—and by discussing what it is good for and why people do it. The remaining chapters build directly on the ideas presented in this chapter.

A first thing to know is that scientific inquiry is not all or nothing. “Scientificness” is a continuum. Inquiries can be more scientific or less scientific. What makes an inquiry more scientific? You might be surprised there is no universally agreed upon answer to this question. None of the descriptors we know of are sufficient by themselves to define scientific inquiry. But all of them give you a way of thinking about some aspects of the process of scientific inquiry. Each one gives you different insights.

An image of the book's description with the words like research, science, and inquiry and what the word research meant in the scientific world.

Exercise 1.2

As you read about each descriptor below, think about what would make an inquiry more or less scientific. If you think a descriptor is important, use it to revise your definition of scientific inquiry.

Creating an Image of Scientific Inquiry

We will present three descriptors of scientific inquiry. Each provides a different perspective and emphasizes a different aspect of scientific inquiry. We will draw on all three descriptors to compose our definition of scientific inquiry.

Descriptor 1. Experience Carefully Planned in Advance

Sir Ronald Fisher, often called the father of modern statistical design, once referred to research as “experience carefully planned in advance” (1935, p. 8). He said that humans are always learning from experience, from interacting with the world around them. Usually, this learning is haphazard rather than the result of a deliberate process carried out over an extended period of time. Research, Fisher said, was learning from experience, but experience carefully planned in advance.

This phrase can be fully appreciated by looking at each word. The fact that scientific inquiry is based on experience means that it is based on interacting with the world. These interactions could be thought of as the stuff of scientific inquiry. In addition, it is not just any experience that counts. The experience must be carefully planned . The interactions with the world must be conducted with an explicit, describable purpose, and steps must be taken to make the intended learning as likely as possible. This planning is an integral part of scientific inquiry; it is not just a preparation phase. It is one of the things that distinguishes scientific inquiry from many everyday learning experiences. Finally, these steps must be taken beforehand and the purpose of the inquiry must be articulated in advance of the experience. Clearly, scientific inquiry does not happen by accident, by just stumbling into something. Stumbling into something unexpected and interesting can happen while engaged in scientific inquiry, but learning does not depend on it and serendipity does not make the inquiry scientific.

Descriptor 2. Observing Something and Trying to Explain Why It Is the Way It Is

When we were writing this chapter and googled “scientific inquiry,” the first entry was: “Scientific inquiry refers to the diverse ways in which scientists study the natural world and propose explanations based on the evidence derived from their work.” The emphasis is on studying, or observing, and then explaining . This descriptor takes the image of scientific inquiry beyond carefully planned experience and includes explaining what was experienced.

According to the Merriam-Webster dictionary, “explain” means “(a) to make known, (b) to make plain or understandable, (c) to give the reason or cause of, and (d) to show the logical development or relations of” (Merriam-Webster, n.d. ). We will use all these definitions. Taken together, they suggest that to explain an observation means to understand it by finding reasons (or causes) for why it is as it is. In this sense of scientific inquiry, the following are synonyms: explaining why, understanding why, and reasoning about causes and effects. Our image of scientific inquiry now includes planning, observing, and explaining why.

An image represents the observation required in the scientific inquiry including planning and explaining.

We need to add a final note about this descriptor. We have phrased it in a way that suggests “observing something” means you are observing something in real time—observing the way things are or the way things are changing. This is often true. But, observing could mean observing data that already have been collected, maybe by someone else making the original observations (e.g., secondary analysis of NAEP data or analysis of existing video recordings of classroom instruction). We will address secondary analyses more fully in Chap. 4 . For now, what is important is that the process requires explaining why the data look like they do.

We must note that for us, the term “data” is not limited to numerical or quantitative data such as test scores. Data can also take many nonquantitative forms, including written survey responses, interview transcripts, journal entries, video recordings of students, teachers, and classrooms, text messages, and so forth.

An image represents the data explanation as it is not limited and takes numerous non-quantitative forms including an interview, journal entries, etc.

Exercise 1.3

What are the implications of the statement that just “observing” is not enough to count as scientific inquiry? Does this mean that a detailed description of a phenomenon is not scientific inquiry?

Find sources that define research in education that differ with our position, that say description alone, without explanation, counts as scientific research. Identify the precise points where the opinions differ. What are the best arguments for each of the positions? Which do you prefer? Why?

Descriptor 3. Updating Everyone’s Thinking in Response to More and Better Information

This descriptor focuses on a third aspect of scientific inquiry: updating and advancing the field’s understanding of phenomena that are investigated. This descriptor foregrounds a powerful characteristic of scientific inquiry: the reliability (or trustworthiness) of what is learned and the ultimate inevitability of this learning to advance human understanding of phenomena. Humans might choose not to learn from scientific inquiry, but history suggests that scientific inquiry always has the potential to advance understanding and that, eventually, humans take advantage of these new understandings.

Before exploring these bold claims a bit further, note that this descriptor uses “information” in the same way the previous two descriptors used “experience” and “observations.” These are the stuff of scientific inquiry and we will use them often, sometimes interchangeably. Frequently, we will use the term “data” to stand for all these terms.

An overriding goal of scientific inquiry is for everyone to learn from what one scientist does. Much of this book is about the methods you need to use so others have faith in what you report and can learn the same things you learned. This aspect of scientific inquiry has many implications.

One implication is that scientific inquiry is not a private practice. It is a public practice available for others to see and learn from. Notice how different this is from everyday learning. When you happen to learn something from your everyday experience, often only you gain from the experience. The fact that research is a public practice means it is also a social one. It is best conducted by interacting with others along the way: soliciting feedback at each phase, taking opportunities to present work-in-progress, and benefitting from the advice of others.

A second implication is that you, as the researcher, must be committed to sharing what you are doing and what you are learning in an open and transparent way. This allows all phases of your work to be scrutinized and critiqued. This is what gives your work credibility. The reliability or trustworthiness of your findings depends on your colleagues recognizing that you have used all appropriate methods to maximize the chances that your claims are justified by the data.

A third implication of viewing scientific inquiry as a collective enterprise is the reverse of the second—you must be committed to receiving comments from others. You must treat your colleagues as fair and honest critics even though it might sometimes feel otherwise. You must appreciate their job, which is to remain skeptical while scrutinizing what you have done in considerable detail. To provide the best help to you, they must remain skeptical about your conclusions (when, for example, the data are difficult for them to interpret) until you offer a convincing logical argument based on the information you share. A rather harsh but good-to-remember statement of the role of your friendly critics was voiced by Karl Popper, a well-known twentieth century philosopher of science: “. . . if you are interested in the problem which I tried to solve by my tentative assertion, you may help me by criticizing it as severely as you can” (Popper, 1968, p. 27).

A final implication of this third descriptor is that, as someone engaged in scientific inquiry, you have no choice but to update your thinking when the data support a different conclusion. This applies to your own data as well as to those of others. When data clearly point to a specific claim, even one that is quite different than you expected, you must reconsider your position. If the outcome is replicated multiple times, you need to adjust your thinking accordingly. Scientific inquiry does not let you pick and choose which data to believe; it mandates that everyone update their thinking when the data warrant an update.

Doing Scientific Inquiry

We define scientific inquiry in an operational sense—what does it mean to do scientific inquiry? What kind of process would satisfy all three descriptors: carefully planning an experience in advance; observing and trying to explain what you see; and, contributing to updating everyone’s thinking about an important phenomenon?

We define scientific inquiry as formulating , testing , and revising hypotheses about phenomena of interest.

Of course, we are not the only ones who define it in this way. The definition for the scientific method posted by the editors of Britannica is: “a researcher develops a hypothesis, tests it through various means, and then modifies the hypothesis on the basis of the outcome of the tests and experiments” (Britannica, n.d. ).

An image represents the scientific inquiry definition given by the editors of Britannica and also defines the hypothesis on the basis of the experiments.

Notice how defining scientific inquiry this way satisfies each of the descriptors. “Carefully planning an experience in advance” is exactly what happens when formulating a hypothesis about a phenomenon of interest and thinking about how to test it. “ Observing a phenomenon” occurs when testing a hypothesis, and “ explaining ” what is found is required when revising a hypothesis based on the data. Finally, “updating everyone’s thinking” comes from comparing publicly the original with the revised hypothesis.

Doing scientific inquiry, as we have defined it, underscores the value of accumulating knowledge rather than generating random bits of knowledge. Formulating, testing, and revising hypotheses is an ongoing process, with each revised hypothesis begging for another test, whether by the same researcher or by new researchers. The editors of Britannica signaled this cyclic process by adding the following phrase to their definition of the scientific method: “The modified hypothesis is then retested, further modified, and tested again.” Scientific inquiry creates a process that encourages each study to build on the studies that have gone before. Through collective engagement in this process of building study on top of study, the scientific community works together to update its thinking.

Before exploring more fully the meaning of “formulating, testing, and revising hypotheses,” we need to acknowledge that this is not the only way researchers define research. Some researchers prefer a less formal definition, one that includes more serendipity, less planning, less explanation. You might have come across more open definitions such as “research is finding out about something.” We prefer the tighter hypothesis formulation, testing, and revision definition because we believe it provides a single, coherent map for conducting research that addresses many of the thorny problems educational researchers encounter. We believe it is the most useful orientation toward research and the most helpful to learn as a beginning researcher.

A final clarification of our definition is that it applies equally to qualitative and quantitative research. This is a familiar distinction in education that has generated much discussion. You might think our definition favors quantitative methods over qualitative methods because the language of hypothesis formulation and testing is often associated with quantitative methods. In fact, we do not favor one method over another. In Chap. 4 , we will illustrate how our definition fits research using a range of quantitative and qualitative methods.

Exercise 1.4

Look for ways to extend what the field knows in an area that has already received attention by other researchers. Specifically, you can search for a program of research carried out by more experienced researchers that has some revised hypotheses that remain untested. Identify a revised hypothesis that you might like to test.

Unpacking the Terms Formulating, Testing, and Revising Hypotheses

To get a full sense of the definition of scientific inquiry we will use throughout this book, it is helpful to spend a little time with each of the key terms.

We first want to make clear that we use the term “hypothesis” as it is defined in most dictionaries and as it used in many scientific fields rather than as it is usually defined in educational statistics courses. By “hypothesis,” we do not mean a null hypothesis that is accepted or rejected by statistical analysis. Rather, we use “hypothesis” in the sense conveyed by the following definitions: “An idea or explanation for something that is based on known facts but has not yet been proved” (Cambridge University Press, n.d. ), and “An unproved theory, proposition, or supposition, tentatively accepted to explain certain facts and to provide a basis for further investigation or argument” (Agnes & Guralnik, 2008 ).

We distinguish two parts to “hypotheses.” Hypotheses consist of predictions and rationales . Predictions are statements about what you expect to find when you inquire about something. Rationales are explanations for why you made the predictions you did, why you believe your predictions are correct. So, for us “formulating hypotheses” means making explicit predictions and developing rationales for the predictions.

“Testing hypotheses” means making observations that allow you to assess in what ways your predictions were correct and in what ways they were incorrect. In education research, it is rarely useful to think of your predictions as either right or wrong. Because of the complexity of most issues you will investigate, most predictions will be right in some ways and wrong in others.

By studying the observations you make (data you collect) to test your hypotheses, you can revise your hypotheses to better align with the observations. This means revising your predictions plus revising your rationales to justify your adjusted predictions. Even though you might not run another test, formulating revised hypotheses is an essential part of conducting a research study. Comparing your original and revised hypotheses informs everyone of what you learned by conducting your study. In addition, a revised hypothesis sets the stage for you or someone else to extend your study and accumulate more knowledge of the phenomenon.

We should note that not everyone makes a clear distinction between predictions and rationales as two aspects of hypotheses. In fact, common, non-scientific uses of the word “hypothesis” may limit it to only a prediction or only an explanation (or rationale). We choose to explicitly include both prediction and rationale in our definition of hypothesis, not because we assert this should be the universal definition, but because we want to foreground the importance of both parts acting in concert. Using “hypothesis” to represent both prediction and rationale could hide the two aspects, but we make them explicit because they provide different kinds of information. It is usually easier to make predictions than develop rationales because predictions can be guesses, hunches, or gut feelings about which you have little confidence. Developing a compelling rationale requires careful thought plus reading what other researchers have found plus talking with your colleagues. Often, while you are developing your rationale you will find good reasons to change your predictions. Developing good rationales is the engine that drives scientific inquiry. Rationales are essentially descriptions of how much you know about the phenomenon you are studying. Throughout this guide, we will elaborate on how developing good rationales drives scientific inquiry. For now, we simply note that it can sharpen your predictions and help you to interpret your data as you test your hypotheses.

An image represents the rationale and the prediction for the scientific inquiry and different types of information provided by the terms.

Hypotheses in education research take a variety of forms or types. This is because there are a variety of phenomena that can be investigated. Investigating educational phenomena is sometimes best done using qualitative methods, sometimes using quantitative methods, and most often using mixed methods (e.g., Hay, 2016 ; Weis et al. 2019a ; Weisner, 2005 ). This means that, given our definition, hypotheses are equally applicable to qualitative and quantitative investigations.

Hypotheses take different forms when they are used to investigate different kinds of phenomena. Two very different activities in education could be labeled conducting experiments and descriptions. In an experiment, a hypothesis makes a prediction about anticipated changes, say the changes that occur when a treatment or intervention is applied. You might investigate how students’ thinking changes during a particular kind of instruction.

A second type of hypothesis, relevant for descriptive research, makes a prediction about what you will find when you investigate and describe the nature of a situation. The goal is to understand a situation as it exists rather than to understand a change from one situation to another. In this case, your prediction is what you expect to observe. Your rationale is the set of reasons for making this prediction; it is your current explanation for why the situation will look like it does.

You will probably read, if you have not already, that some researchers say you do not need a prediction to conduct a descriptive study. We will discuss this point of view in Chap. 2 . For now, we simply claim that scientific inquiry, as we have defined it, applies to all kinds of research studies. Descriptive studies, like others, not only benefit from formulating, testing, and revising hypotheses, but also need hypothesis formulating, testing, and revising.

One reason we define research as formulating, testing, and revising hypotheses is that if you think of research in this way you are less likely to go wrong. It is a useful guide for the entire process, as we will describe in detail in the chapters ahead. For example, as you build the rationale for your predictions, you are constructing the theoretical framework for your study (Chap. 3 ). As you work out the methods you will use to test your hypothesis, every decision you make will be based on asking, “Will this help me formulate or test or revise my hypothesis?” (Chap. 4 ). As you interpret the results of testing your predictions, you will compare them to what you predicted and examine the differences, focusing on how you must revise your hypotheses (Chap. 5 ). By anchoring the process to formulating, testing, and revising hypotheses, you will make smart decisions that yield a coherent and well-designed study.

Exercise 1.5

Compare the concept of formulating, testing, and revising hypotheses with the descriptions of scientific inquiry contained in Scientific Research in Education (NRC, 2002 ). How are they similar or different?

Exercise 1.6

Provide an example to illustrate and emphasize the differences between everyday learning/thinking and scientific inquiry.

Learning from Doing Scientific Inquiry

We noted earlier that a measure of what you have learned by conducting a research study is found in the differences between your original hypothesis and your revised hypothesis based on the data you collected to test your hypothesis. We will elaborate this statement in later chapters, but we preview our argument here.

Even before collecting data, scientific inquiry requires cycles of making a prediction, developing a rationale, refining your predictions, reading and studying more to strengthen your rationale, refining your predictions again, and so forth. And, even if you have run through several such cycles, you still will likely find that when you test your prediction you will be partly right and partly wrong. The results will support some parts of your predictions but not others, or the results will “kind of” support your predictions. A critical part of scientific inquiry is making sense of your results by interpreting them against your predictions. Carefully describing what aspects of your data supported your predictions, what aspects did not, and what data fell outside of any predictions is not an easy task, but you cannot learn from your study without doing this analysis.

An image represents the cycle of events that take place before making predictions, developing the rationale, and studying the prediction and rationale multiple times.

Analyzing the matches and mismatches between your predictions and your data allows you to formulate different rationales that would have accounted for more of the data. The best revised rationale is the one that accounts for the most data. Once you have revised your rationales, you can think about the predictions they best justify or explain. It is by comparing your original rationales to your new rationales that you can sort out what you learned from your study.

Suppose your study was an experiment. Maybe you were investigating the effects of a new instructional intervention on students’ learning. Your original rationale was your explanation for why the intervention would change the learning outcomes in a particular way. Your revised rationale explained why the changes that you observed occurred like they did and why your revised predictions are better. Maybe your original rationale focused on the potential of the activities if they were implemented in ideal ways and your revised rationale included the factors that are likely to affect how teachers implement them. By comparing the before and after rationales, you are describing what you learned—what you can explain now that you could not before. Another way of saying this is that you are describing how much more you understand now than before you conducted your study.

Revised predictions based on carefully planned and collected data usually exhibit some of the following features compared with the originals: more precision, more completeness, and broader scope. Revised rationales have more explanatory power and become more complete, more aligned with the new predictions, sharper, and overall more convincing.

Part II. Why Do Educators Do Research?

Doing scientific inquiry is a lot of work. Each phase of the process takes time, and you will often cycle back to improve earlier phases as you engage in later phases. Because of the significant effort required, you should make sure your study is worth it. So, from the beginning, you should think about the purpose of your study. Why do you want to do it? And, because research is a social practice, you should also think about whether the results of your study are likely to be important and significant to the education community.

If you are doing research in the way we have described—as scientific inquiry—then one purpose of your study is to understand , not just to describe or evaluate or report. As we noted earlier, when you formulate hypotheses, you are developing rationales that explain why things might be like they are. In our view, trying to understand and explain is what separates research from other kinds of activities, like evaluating or describing.

One reason understanding is so important is that it allows researchers to see how or why something works like it does. When you see how something works, you are better able to predict how it might work in other contexts, under other conditions. And, because conditions, or contextual factors, matter a lot in education, gaining insights into applying your findings to other contexts increases the contributions of your work and its importance to the broader education community.

Consequently, the purposes of research studies in education often include the more specific aim of identifying and understanding the conditions under which the phenomena being studied work like the observations suggest. A classic example of this kind of study in mathematics education was reported by William Brownell and Harold Moser in 1949 . They were trying to establish which method of subtracting whole numbers could be taught most effectively—the regrouping method or the equal additions method. However, they realized that effectiveness might depend on the conditions under which the methods were taught—“meaningfully” versus “mechanically.” So, they designed a study that crossed the two instructional approaches with the two different methods (regrouping and equal additions). Among other results, they found that these conditions did matter. The regrouping method was more effective under the meaningful condition than the mechanical condition, but the same was not true for the equal additions algorithm.

What do education researchers want to understand? In our view, the ultimate goal of education is to offer all students the best possible learning opportunities. So, we believe the ultimate purpose of scientific inquiry in education is to develop understanding that supports the improvement of learning opportunities for all students. We say “ultimate” because there are lots of issues that must be understood to improve learning opportunities for all students. Hypotheses about many aspects of education are connected, ultimately, to students’ learning. For example, formulating and testing a hypothesis that preservice teachers need to engage in particular kinds of activities in their coursework in order to teach particular topics well is, ultimately, connected to improving students’ learning opportunities. So is hypothesizing that school districts often devote relatively few resources to instructional leadership training or hypothesizing that positioning mathematics as a tool students can use to combat social injustice can help students see the relevance of mathematics to their lives.

We do not exclude the importance of research on educational issues more removed from improving students’ learning opportunities, but we do think the argument for their importance will be more difficult to make. If there is no way to imagine a connection between your hypothesis and improving learning opportunities for students, even a distant connection, we recommend you reconsider whether it is an important hypothesis within the education community.

Notice that we said the ultimate goal of education is to offer all students the best possible learning opportunities. For too long, educators have been satisfied with a goal of offering rich learning opportunities for lots of students, sometimes even for just the majority of students, but not necessarily for all students. Evaluations of success often are based on outcomes that show high averages. In other words, if many students have learned something, or even a smaller number have learned a lot, educators may have been satisfied. The problem is that there is usually a pattern in the groups of students who receive lower quality opportunities—students of color and students who live in poor areas, urban and rural. This is not acceptable. Consequently, we emphasize the premise that the purpose of education research is to offer rich learning opportunities to all students.

One way to make sure you will be able to convince others of the importance of your study is to consider investigating some aspect of teachers’ shared instructional problems. Historically, researchers in education have set their own research agendas, regardless of the problems teachers are facing in schools. It is increasingly recognized that teachers have had trouble applying to their own classrooms what researchers find. To address this problem, a researcher could partner with a teacher—better yet, a small group of teachers—and talk with them about instructional problems they all share. These discussions can create a rich pool of problems researchers can consider. If researchers pursued one of these problems (preferably alongside teachers), the connection to improving learning opportunities for all students could be direct and immediate. “Grounding a research question in instructional problems that are experienced across multiple teachers’ classrooms helps to ensure that the answer to the question will be of sufficient scope to be relevant and significant beyond the local context” (Cai et al., 2019b , p. 115).

As a beginning researcher, determining the relevance and importance of a research problem is especially challenging. We recommend talking with advisors, other experienced researchers, and peers to test the educational importance of possible research problems and topics of study. You will also learn much more about the issue of research importance when you read Chap. 5 .

Exercise 1.7

Identify a problem in education that is closely connected to improving learning opportunities and a problem that has a less close connection. For each problem, write a brief argument (like a logical sequence of if-then statements) that connects the problem to all students’ learning opportunities.

Part III. Conducting Research as a Practice of Failing Productively

Scientific inquiry involves formulating hypotheses about phenomena that are not fully understood—by you or anyone else. Even if you are able to inform your hypotheses with lots of knowledge that has already been accumulated, you are likely to find that your prediction is not entirely accurate. This is normal. Remember, scientific inquiry is a process of constantly updating your thinking. More and better information means revising your thinking, again, and again, and again. Because you never fully understand a complicated phenomenon and your hypotheses never produce completely accurate predictions, it is easy to believe you are somehow failing.

The trick is to fail upward, to fail to predict accurately in ways that inform your next hypothesis so you can make a better prediction. Some of the best-known researchers in education have been open and honest about the many times their predictions were wrong and, based on the results of their studies and those of others, they continuously updated their thinking and changed their hypotheses.

A striking example of publicly revising (actually reversing) hypotheses due to incorrect predictions is found in the work of Lee J. Cronbach, one of the most distinguished educational psychologists of the twentieth century. In 1955, Cronbach delivered his presidential address to the American Psychological Association. Titling it “Two Disciplines of Scientific Psychology,” Cronbach proposed a rapprochement between two research approaches—correlational studies that focused on individual differences and experimental studies that focused on instructional treatments controlling for individual differences. (We will examine different research approaches in Chap. 4 ). If these approaches could be brought together, reasoned Cronbach ( 1957 ), researchers could find interactions between individual characteristics and treatments (aptitude-treatment interactions or ATIs), fitting the best treatments to different individuals.

In 1975, after years of research by many researchers looking for ATIs, Cronbach acknowledged the evidence for simple, useful ATIs had not been found. Even when trying to find interactions between a few variables that could provide instructional guidance, the analysis, said Cronbach, creates “a hall of mirrors that extends to infinity, tormenting even the boldest investigators and defeating even ambitious designs” (Cronbach, 1975 , p. 119).

As he was reflecting back on his work, Cronbach ( 1986 ) recommended moving away from documenting instructional effects through statistical inference (an approach he had championed for much of his career) and toward approaches that probe the reasons for these effects, approaches that provide a “full account of events in a time, place, and context” (Cronbach, 1986 , p. 104). This is a remarkable change in hypotheses, a change based on data and made fully transparent. Cronbach understood the value of failing productively.

Closer to home, in a less dramatic example, one of us began a line of scientific inquiry into how to prepare elementary preservice teachers to teach early algebra. Teaching early algebra meant engaging elementary students in early forms of algebraic reasoning. Such reasoning should help them transition from arithmetic to algebra. To begin this line of inquiry, a set of activities for preservice teachers were developed. Even though the activities were based on well-supported hypotheses, they largely failed to engage preservice teachers as predicted because of unanticipated challenges the preservice teachers faced. To capitalize on this failure, follow-up studies were conducted, first to better understand elementary preservice teachers’ challenges with preparing to teach early algebra, and then to better support preservice teachers in navigating these challenges. In this example, the initial failure was a necessary step in the researchers’ scientific inquiry and furthered the researchers’ understanding of this issue.

We present another example of failing productively in Chap. 2 . That example emerges from recounting the history of a well-known research program in mathematics education.

Making mistakes is an inherent part of doing scientific research. Conducting a study is rarely a smooth path from beginning to end. We recommend that you keep the following things in mind as you begin a career of conducting research in education.

First, do not get discouraged when you make mistakes; do not fall into the trap of feeling like you are not capable of doing research because you make too many errors.

Second, learn from your mistakes. Do not ignore your mistakes or treat them as errors that you simply need to forget and move past. Mistakes are rich sites for learning—in research just as in other fields of study.

Third, by reflecting on your mistakes, you can learn to make better mistakes, mistakes that inform you about a productive next step. You will not be able to eliminate your mistakes, but you can set a goal of making better and better mistakes.

Exercise 1.8

How does scientific inquiry differ from everyday learning in giving you the tools to fail upward? You may find helpful perspectives on this question in other resources on science and scientific inquiry (e.g., Failure: Why Science is So Successful by Firestein, 2015).

Exercise 1.9

Use what you have learned in this chapter to write a new definition of scientific inquiry. Compare this definition with the one you wrote before reading this chapter. If you are reading this book as part of a course, compare your definition with your colleagues’ definitions. Develop a consensus definition with everyone in the course.

Part IV. Preview of Chap. 2

Now that you have a good idea of what research is, at least of what we believe research is, the next step is to think about how to actually begin doing research. This means how to begin formulating, testing, and revising hypotheses. As for all phases of scientific inquiry, there are lots of things to think about. Because it is critical to start well, we devote Chap. 2 to getting started with formulating hypotheses.

Agnes, M., & Guralnik, D. B. (Eds.). (2008). Hypothesis. In Webster’s new world college dictionary (4th ed.). Wiley.

Google Scholar  

Britannica. (n.d.). Scientific method. In Encyclopaedia Britannica . Retrieved July 15, 2022 from https://www.britannica.com/science/scientific-method

Brownell, W. A., & Moser, H. E. (1949). Meaningful vs. mechanical learning: A study in grade III subtraction . Duke University Press..

Cai, J., Morris, A., Hohensee, C., Hwang, S., Robison, V., Cirillo, M., Kramer, S. L., & Hiebert, J. (2019b). Posing significant research questions. Journal for Research in Mathematics Education, 50 (2), 114–120. https://doi.org/10.5951/jresematheduc.50.2.0114

Article   Google Scholar  

Cambridge University Press. (n.d.). Hypothesis. In Cambridge dictionary . Retrieved July 15, 2022 from https://dictionary.cambridge.org/us/dictionary/english/hypothesis

Cronbach, J. L. (1957). The two disciplines of scientific psychology. American Psychologist, 12 , 671–684.

Cronbach, L. J. (1975). Beyond the two disciplines of scientific psychology. American Psychologist, 30 , 116–127.

Cronbach, L. J. (1986). Social inquiry by and for earthlings. In D. W. Fiske & R. A. Shweder (Eds.), Metatheory in social science: Pluralisms and subjectivities (pp. 83–107). University of Chicago Press.

Hay, C. M. (Ed.). (2016). Methods that matter: Integrating mixed methods for more effective social science research . University of Chicago Press.

Merriam-Webster. (n.d.). Explain. In Merriam-Webster.com dictionary . Retrieved July 15, 2022, from https://www.merriam-webster.com/dictionary/explain

National Research Council. (2002). Scientific research in education . National Academy Press.

Weis, L., Eisenhart, M., Duncan, G. J., Albro, E., Bueschel, A. C., Cobb, P., Eccles, J., Mendenhall, R., Moss, P., Penuel, W., Ream, R. K., Rumbaut, R. G., Sloane, F., Weisner, T. S., & Wilson, J. (2019a). Mixed methods for studies that address broad and enduring issues in education research. Teachers College Record, 121 , 100307.

Weisner, T. S. (Ed.). (2005). Discovering successful pathways in children’s development: Mixed methods in the study of childhood and family life . University of Chicago Press.

Download references

Author information

Authors and affiliations.

School of Education, University of Delaware, Newark, DE, USA

James Hiebert, Anne K Morris & Charles Hohensee

Department of Mathematical Sciences, University of Delaware, Newark, DE, USA

Jinfa Cai & Stephen Hwang

You can also search for this author in PubMed   Google Scholar

Rights and permissions

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/ ), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Reprints and permissions

Copyright information

© 2023 The Author(s)

About this chapter

Hiebert, J., Cai, J., Hwang, S., Morris, A.K., Hohensee, C. (2023). What Is Research, and Why Do People Do It?. In: Doing Research: A New Researcher’s Guide. Research in Mathematics Education. Springer, Cham. https://doi.org/10.1007/978-3-031-19078-0_1

Download citation

DOI : https://doi.org/10.1007/978-3-031-19078-0_1

Published : 03 December 2022

Publisher Name : Springer, Cham

Print ISBN : 978-3-031-19077-3

Online ISBN : 978-3-031-19078-0

eBook Packages : Education Education (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

IMAGES

  1. How to do research

    research of

  2. Types Of Research Presentation

    research of

  3. What is Research

    research of

  4. Types of Research

    research of

  5. 15 Types of Research Methods (2024)

    research of

  6. What is Research

    research of

VIDEO

  1. What is Research || Scientific Meaning

  2. IMPORTANCE OF RESEARCH IN DAILY LIFE

  3. Overview of research

  4. Research 101: Searching is strategic

  5. A brief introduction to Roche pRED

  6. A day in the life of a researcher in economics