• India Today
  • Business Today
  • Harper's Bazaar
  • Brides Today
  • Cosmopolitan
  • India Today Hindi
  • Reader’s Digest
  • Aaj Tak Campus

Download App

Download app

How does coding enhance problem-solving skills in education?

Learning to code enhances students' problem-solving, logical thinking, and creativity across subjects, preparing them for future academic and career success. integrating coding into education fosters essential skills like collaboration, communication, and critical thinking..

Listen to Story

How does coding enhance problem-solving skills in education?

In this digital age, Coding has become as essential as reading and writing. Interestingly, beyond its core application in computer science, Coding can significantly boost students' understanding of, and performance in, other subjects as well. Students would benefit greatly if schools incorporated coding into their curricula, equipping them with the skills needed for academic success and future careers.

LOGICAL THINKING AND PROBLEM-SOLVING SKILLS

problem solving example in education

Mathematical manipulatives are touted as essential tools for learning, but let's be honest—we've all experienced that moment of dread when we hand them out. Suddenly, your carefully planned lesson turns into chaos: One pupil starts building a fortress with the base ten blocks while another is hiding all the shiny counters.

Yet, despite these challenges, manipulatives play an important role in maths education. They bridge the gap between abstract concepts and tangible understanding, helping pupils grasp basic number sense. In fact, the National Curriculum emphasises their importance across all key stages, recognising that hands-on learning is vital for developing maths fluency, reasoning, and problem-solving skills.

So, how can we take advantage of these tools without losing control of the classroom? Let's explore the world of maths manipulatives—what they are, why they matter, and how to use them effectively in your primary school lessons.

What are manipulatives?

It can sound complicated, but manipulatives are simply hands-on tools that make abstract mathematical concepts concrete and visual . They're the building blocks, quite literally in some cases, that help pupils wrap their heads around tricky number ideas through good old-fashioned play, exploration, and modelling.

These learning aids come in all shapes and sizes, from the humble counter to the more elaborate Cuisenaire rods . Their key purpose? To give pupils something tangible to manipulate as they grapple with mathematical concepts. Whether it's using multilink cubes to understand place value or fraction circles to visualise parts of a whole, manipulatives help bridge the gap between 'maths on paper' and 'maths in real life'.

Common manipulatives you'll find in primary classrooms include:

Multilink cubes

Cuisenaire rods, base ten blocks, bead strings.

  • Balance scales

Clock faces

Digit cards, hundred squares.

a table strewn with many different sorts of maths manipulatives.

These tools align perfectly with the National Curriculum's aims of developing mathematical fluency, reasoning, and problem-solving skills. By allowing pupils to physically interact with mathematical ideas, manipulatives help build a strong foundation for more complex concepts down the line. They're not just toys or distractions—they're powerful learning tools that can transform how your pupils understand and engage with maths.

Why are they important?

Over the past two decades, research has consistently shown the positive impact of using manipulatives in the classroom. A 2013 report published in the Journal of Educational Psychology identified "statistically significant results" when teachers used manipulatives compared with when they only used abstract maths symbols. This highlights the role that manipulatives play in supporting conceptual understanding and facilitating the progression from concrete to abstract thinking.

Alignment with CPA approach

The NCETM agrees that physical manipulatives should play a central role in maths teaching. "Manipulatives are not just for young pupils, and also not just for those who can't understand something. They can always be of help to build or deepen understanding of a mathematical concept."

This approach aligns perfectly with the concrete-pictorial-abstract (CPA) progression. Once children are confident using manipulatives or 'concrete' resources, they can then move onto pictorial representations or the 'seeing' stage. Here, visual representations of concrete objects are used to model problems. This stage encourages children to make a mental connection between the physical object they just handled and the abstract pictures , diagrams or models that represent the objects from the maths problem.

Enhance problem solving

But manipulatives do more than just support understanding—they're powerful tools for enhancing problem-solving skills. By allowing pupils to physically manipulate and visualise mathematical concepts, they can more easily devise strategies to tackle complex problems. This hands-on approach often leads to those 'aha!' moments we all love to see in our classrooms.

Support engagement

Moreover, manipulatives play an important role in fostering engagement and motivation. Let's face it—maths can sometimes seem dry and abstract to young learners. But introduce some colourful counters or interlocking cubes, and suddenly you've got a room full of eager mathematicians. This increased engagement is key to developing a positive attitude towards maths, which in turn supports long-term learning.

This deep understanding allows pupils to move beyond mere memorisation of facts and procedures, towards true mathematical fluency—where they can apply their knowledge flexibly and efficiently across a range of contexts.

In essence, manipulatives are not just helpful additions to our maths teaching toolkit—they're essential components in building a comprehensive, engaging, and effective mathematics education.

Types of manipulatives in primary mathematics

In this section, we'll break it common types of manipulatives into bite-sized pieces, just like we do for our pupils.

Physical manipulatives: the classics

These are the tangible, grab-them-with-your-hands resources that have been the backbone of maths classrooms for years. They're the ones that inevitably end up stuck between classroom seats and occasionally in someone's shoe.

Below is a list of common physical manipulatives in the classroom:

Ideal for teaching place value, addition, and subtraction with regrouping.

Fraction tiles

Excellent for comparing fractions and understanding equivalence.

Great for exploring 2D shapes, symmetry, and area.

An example of two geoboards, one using plastic and another using wood with rubber bands making shapes on both

Images: Wikipedia.org

Versatile tools for counting, measuring, and understanding volume.

Fantastic for developing number sense and exploring number relationships.

Essential for basic counting, sorting, and introducing simple addition and subtraction.

Useful for teaching multiplication, division, and fractions.

A set of Cuisenaire rods from one to seven. Each number has the identical rod count inside

Image: Pinterest

Helpful for developing number sense and practicing skip counting.

Useful for probability exercises and generating random numbers for various activities.

Great for pattern recognition, matching, and basic addition facts.

Essential for teaching time-telling and understanding intervals.

Two examples of clock face ideas for the classroom. One using a hula hoop and hands, another using plates and printable clock faces

Images: Pinterest & Pinterest

Useful for place value activities and forming large numbers.

Excellent for identifying number patterns and supporting multiplication and division.

Virtual manipulatives: a new kind of tool

Manipulatives have gone digital! These are interactive, online versions of our physical favourites. Think of them as the maths equivalent of e-books.

Some popular virtual manipulatives include:

Online number lines

These number lines are zoomable, clickable, and free of the uneven lines that are often result of our hand-drawn versions.

Digital base ten blocks

All the functionality without the risk of losing pieces under desks.

Interactive fraction tools

Slice and dice up pieces in any way imaginable.

Whether physical or virtual, the best manipulative is the one that helps your pupils understand the concept at hand. Whether that's a handful of multilink cubes or a fancy online simulator, if it's making those mathematical lightbulbs flicker on, you're on the right track!

Implementing manipulatives in the classroom - let them play!

Whether you have a bumper pack of manipulatives, a shared bank of resources or your very own DIY versions, it's important to teach children how to use them independently. Here are some best practices for integrating manipulatives effectively into your lessons:

  • Introduce gradually : Bring in manipulatives one at a time. If you don't have enough for each child, set up a 'maths table' where pupils can take turns exploring. This works particularly well with younger years where 'choosing tables' are common.
  • Allow for exploration : Give children a chance to play with and explore the manipulatives before using them for instruction. Through this exploration, they can start to imagine how the resource might be useful.
  • How could you use this?
  • How might this help you when adding or subtracting?
  • Why do you think they're different sizes - what could that represent?
  • Model usage : Once children are familiar with a resource, introduce a simple maths problem and ask them to use the manipulatives to solve it. Model the problem-solving process step-by-step, then guide children through it.
  • Scaffold learning : Start with highly structured activities, then gradually reduce support as pupils gain confidence. For instance, begin with direct instruction on how to use base ten blocks for place value, then move to guided practice, and finally independent problem-solving.
  • Year 1: Using counters or number lines to support addition and subtraction within 20.
  • Year 2: Use fraction tiles to help pupils recognise, find, name and write fractions of a length, shape, set of objects or quantity.
  • Year 3: Utilising place value charts (physical or digital) so pupils can recognise 3-digit numbers (100s, 10s and 1s).
  • Integrate into lesson plans : Don't treat manipulatives as an add-on. Instead, weave them into your lessons as essential tools for understanding. Plan specific points in your lessons where manipulatives will be most beneficial.
  • Support diverse learners : Manipulatives can be particularly helpful for English Language Learners (ELLs) and pupils with learning disabilities. They provide a universal language of mathematics that transcends verbal communication barriers.

An image of a maths manipulatives toolbox

Images: The Average Teacher

Manipulatives across Key Stages 1 and 2

Next, let's breakdown more examples of manipulatives in the classroom by Key Stage.

Key Stage 1 (Years 1-2): Laying the foundations

In these early years, it's all about getting hands-on with numbers and shapes.

  • Number and Place Value : Introduce counters, number lines, and base ten blocks. Pupils can observe how 10 ones form a 'ten stick', helping them grasp place value concepts.
  • Addition and Subtraction : Utilise multilink cubes for hands-on learning. Pupils can physically join or separate cubes to represent addition and subtraction operations.
  • Fractions : Fraction tiles can be effective tools for teaching fractions. They provide a visual and tactile representation of concepts like 'half' and 'quarter'.
  • Geometry : Employ geoboards for creating 2-D shapes. Pupils can then be asked to match these shapes on a 3-D surface to enhance spatial understanding.

Key Stage 2 (Years 3-6): Progressing with Purpose

As our mathematicians-in-training grow, so does the sophistication of our manipulatives. We're not ditching the basics, just building on them.

  • Multiplication and Division : Array cards and Cuisenaire rods are useful for these operations. For multiplying by 6, pupils can line up 6 rods of 4 to visualise the concept.
  • Fractions, Decimals, and Percentages : Fraction circles can be used alongside decimal place value charts. The 100 square is effective for teaching percentages.
  • Geometry : The geoboard is a helpful tool for teaching perimeter, area, and symmetry concepts in a hands-on manner.
  • Statistics : Data can be represented using multilink cube bar charts or human pictograms, making statistics more engaging for pupils.

CPA Journey: From Concrete to Pictorial to Abstract

Remember, our end goal is for pupils to solve problems without relying on physical props. Here's how we might progress:

  • Concrete : Pupils physically manipulate objects to solve a problem. For example, using counters to work out 5 + 3.
  • Pictorial : They draw a picture or diagram to represent the problem. Our 5 + 3 might become five circles and three circles.
  • Abstract : Finally, they use mathematical symbols and numbers alone. "5 + 3 = 8."

The beauty of this approach? Pupils can always 'go back' a stage if they're struggling with a new concept. Stuck on an abstract problem? Draw a picture! Need more practise? Grab those counters!

Remember, every child's journey through these stages is unique. Some might race through, others might linger longer at certain points. The key is to ensure they have a solid understanding at each stage before moving on.

Moving from the concrete, to pictorial, to abstract stages

An example of moving from the concrete, to pictorial, to abstract stages.

Manipulative manners

Once you have introduced your resources, speak as a class and explain that they should come up with a set of rules for how they are treated and used. Giving children ownership over the manipulatives as well as the respect to make their own rules will make them feel accountable and lessen the likelihood of negative behaviours when using manipulatives. Write the rules up as a class and display them so they can be referred to.

Storing manipulatives

NRICH recommends children having access to manipulatives “Give open access to all the resources and allow the children free reign in choosing what to use to model any problem they may be tackling. I would make sure that children of all ages had this access from 3 to 11 years old and beyond.” While this is exactly what teachers would like to replicate in their classrooms, not all classes learn in the same way and this isn’t always achievable due to space, budgets and children’s prior experiences of manipulatives.

Once you have introduced a manipulative, decide as a class where you should store it . You know what works best for your class, so consider different options such as communal drawers, a maths table, individual packs or a collection of manipulatives for each table. Set clear rules around using and treating manipulatives to ensure they are not broken or lost. Additionally, you could create a monitor for each resource so the children can take ownership and make sure they stay tidy and accounted for.

Images of examples of maths mastery areas and tables to use in your classroom

Creating a classroom culture that uses manipulatives will aid children’s fluency and help develop their ability to solve problems, reason mathematically and share! If manipulatives are introduced in a considered and gradual way, with clear boundaries from an early age, children should see them as part of everyday learning and they will not be a novelty. They will be seen as tools instead of toys — and hopefully no more multilink towers!

For the community, by the community

Maths — No Problem! Community Event Conference, 28 November at The Royal Society, London.

Community Event 2024

Lily Lanigan

Browse by Topic

Your teaching practice.

Boost your teaching confidence with the latest musings on pedagogy, classroom management, and teacher mental health.

Maths Mastery Stories

You’re part of a growing community. Get smart implementation advice and hear inspiring maths mastery stories from teachers just like you.

Teaching Tips

Learn practical maths teaching tips and strategies you can use in your classroom right away — from teachers who’ve been there.

Classroom Assessment

Identify where your learners are at and where to take them next with expert assessment advice from seasoned educators.

Your Learners

Help every learner succeed with strategies for managing behaviour, supporting mental health, and differentiating instruction for all attainment levels.

Teaching Maths for Mastery

Interested in Singapore maths, the CPA approach, bar modelling, or number bonds? Learn essential maths mastery theory and techniques here.

Deepen your mastery knowledge with our biweekly newsletter

Image of Cookies

By clicking “Accept All” , you agree to the storing of cookies on your device to enhance site navigation, analyze site usage and assist in our marketing efforts.

  • International
  • Education Jobs
  • Schools directory
  • Resources Education Jobs Schools directory News Search

HCF and LCM - Problem Solving Full lesson including Stretch and Challenge and GCSE Questions

HCF and LCM - Problem Solving Full lesson including Stretch and Challenge and GCSE Questions

Subject: Mathematics

Age range: 11-14

Resource type: Lesson (complete)

O Hay's Shop

Last updated

28 August 2024

  • Share through email
  • Share through twitter
  • Share through linkedin
  • Share through facebook
  • Share through pinterest

problem solving example in education

Lesson is designed to guide students through the concepts of Highest Common Factor (HCF) and Least Common Multiple (LCM) with a focus on problem-solving techniques. The lesson includes a step-by-step explanation of finding HCF and LCM, practical examples, and a variety of problem-solving questions, including GCSE-style questions for exam preparation… A worksheet accompanying the lesson provides additional practice with Stretch and Challenge questions, allowing students to apply what they’ve learned in a structured and rigorous way.

Tes paid licence How can I reuse this?

Your rating is required to reflect your happiness.

It's good to leave some feedback.

Something went wrong, please try again later.

This resource hasn't been reviewed yet

To ensure quality for our reviews, only customers who have purchased this resource can review it

Report this resource to let us know if it violates our terms and conditions. Our customer service team will review your report and will be in touch.

Not quite what you were looking for? Search by keyword to find the right resource:

Problem of the Week

The Problem of the Week is designed to provide students with an ongoing opportunity to solve mathematical problems. Each week, problems from various areas of mathematics will be posted here and e-mailed to educators for use with their students from Grades 3  to 12. The problems vary in difficulty and cover a wide range of mathematical concepts, making it an excellent tool for both learning and enrichment. 

Young woman solving math problems in the classroom

Problem of the Week has wrapped up for the 2023-2024 school year. Below you can find all problems and solutions that were sent. Problem of the Week will resume in September 2024.

Below you will find the weekly problem across five grade levels.

  • Grades 11/12

Gathering Treasure

Subscribe now.

Sign up to receive Problem of the Week straight in your inbox. New problems are sent every Thursday, and their solutions are sent one week later. 

Problems and Solutions from 2024/2025 

Below you will find problems from previous week(s).  

View problemarrow_forward Downloaddownload View solutionarrow_forward Downloaddownload
View problemarrow_forward Downloaddownload View solutionarrow_forward Downloaddownload
View problemarrow_forward Downloaddownload View solutionarrow_forward Downloaddownload
View problemarrow_forward Downloaddownload View solutionarrow_forward Downloaddownload
View problemarrow_forward Downloaddownload View solutionarrow_forward Downloaddownload

Students solving math problems on a whiteboard with their educator

Problem and Solution Archive from 2023/2024, 2022/2023

Visit the archive page to access links to booklets containing all the problems and solutions from the last two years. The problems are organized into themes, grouping problems into various areas of the curriculum.  

Information for educators

Problems are organized into five themes: Algebra (A), Computational Thinking (C), Data Management (D), Geometry and Measurement (G), Number Sense (N). A problem may have more than one theme.

Algebra (A) Patterning, Relations, Sequences, Functions
Computational Thinking (C) Logic, Coding
Data Management (D) Probability, Statistics
Geometry and Measurement (G) Spatial Sense, Shape and Space, Trigonometry
Number Sense (N) Numeration, Numbers, Number Theory, Financial Literacy

These problems may be used in a variety of different ways including:

  • posting the problems in a classroom,
  • discussing the problems with students, and
  • integrating the problems into their lessons.

We know that educators will use these problems in many creative ways!

Solutions will be sent out to educators one week after the problems are e-mailed. 

The effects of social regulation scripts on collaborative knowledge construction in collaborative problem solving

New citation alert added.

This alert has been successfully added and will be sent to:

You will be notified whenever a record that you have chosen has been cited.

To manage your alert preferences, click on the button below.

New Citation Alert!

Please log in to your account

Information & Contributors

Bibliometrics & citations, index terms.

Applied computing

Collaborative learning

Recommendations

Effects of an individual's prior knowledge on collaborative knowledge construction and individual learning outcomes in videoconferencing.

This paper deals with collaborative knowledge construction in videoconferencing. The main topic for investigation is how to predict individual learning outcomes, and in particular the degree to which an individual's prior knowledge and collaborative ...

Towards Social Regulation in Computer-Supported Collaborative Work

Abstract: Computer-based tools supporting collaborative work are becoming crucial elements to organize the activities of groups of people. Nevertheless, current tools do not enable users to incorporate social regulation aspects. In particular, it is not ...

Fostering collaborative knowledge construction in desktop video-conferencing: effects of content schemes and cooperation scripts in peer teaching settings

Video-conferencing is expected to become increasingly important for tele-learning environments. In contrast to asynchronous, text-based computer-mediated communication, video-conferencing facilitates cooperation tasks that require highly frequent and ...

Information

Published in.

cover image ACM Other conferences

Association for Computing Machinery

New York, NY, United States

Publication History

Permissions, check for updates, author tags.

  • Collaborative knowledge construction
  • Epistemic network analysis
  • Social regulation
  • Research-article
  • Refereed limited

Funding Sources

  • National Natural Science Foundation of China

Contributors

Other metrics, bibliometrics, article metrics.

  • 0 Total Citations
  • 0 Total Downloads
  • Downloads (Last 12 months) 0
  • Downloads (Last 6 weeks) 0

View Options

Login options.

Check if you have access through your login credentials or your institution to get full access on this article.

Full Access

View options.

View or Download as a PDF file.

View online with eReader .

HTML Format

View this article in HTML Format.

Share this Publication link

Copying failed.

Share on social media

Affiliations, export citations.

  • Please download or close your previous search result export first before starting a new bulk export. Preview is not available. By clicking download, a status dialog will open to start the export process. The process may take a few minutes but once it finishes a file will be downloadable from your browser. You may continue to browse the DL while the export process is in progress. Download
  • Download citation
  • Copy citation

We are preparing your search results for download ...

We will inform you here when the file is ready.

Your file of search results citations is now ready.

Your search export query has expired. Please try again.

  • Public Service

MaineLaw Logo

  • Why Maine Law?
  • Visits and Events
  • Your Future
  • Dual Degree Programs
  • Environmental Law
  • Information Privacy Law
  • Transactional Law
  • Tuition and Fees
  • Admitted Students
  • Entering Class Profile
  • Academic Calendar
  • Request a Transcript
  • Academic Program
  • Clinics and Centers
  • Graduate and Professional Center
  • Legal Research and Writing
  • Externships
  • Law Journals
  • Visiting, Fellows, and Scholars
  • Faculty Research Blog
  • Student Affairs
  • Student Bar Association
  • Student Organizations
  • Health and Wellness
  • Maine Law Apparel
  • Confidential Resource Advisor
  • Accessibility
  • Fellowships
  • Alumni Pathways & Profiles
  • Reciprocity Policy
  • Non-discrimination Policy – CSO
  • DEI Committee
  • DEI Faculty Engagement
  • PLUS Program
  • Statement of Commitment to Diversity
  • Non-Discrimination Policy

The Class of 2027: How a childhood in South Africa is driving a 1L’s education in Maine

Joseph Inabanza, incoming 1L, has lived a life shaded by experiences of exclusion and isolation. He’ll also be the first to tell you he considers himself incredibly fortunate, the recipient of opportunities that forever altered the trajectory of his life. 

Inabanza sees coming to Maine Law as a culmination of many of those life experiences, those that proved both challenging and rewarding. 

problem solving example in education

“I was born and grew up in Johannesburg, South Africa,” Inabanza said, “which means I was there for a considerable amount of the country’s democracy. We grew up together.” 

That aging process was, at times, a difficult one for Inabanza who is not ethnically South African (his mother and father are from Zambia and the Democratic Republic of the Congo, respectively), and as a result often faced bullying and isolation in school. He also recounts his daily walks to school skirting potential muggings and other forms of violence.  

Like many places, Inabanza said, the South African democratic project has its flaws and many of the promises made during its dawn have not been fulfilled. “I look back and have this sense I was living in an experiment. How do you go from a segregated society to a colorblind society without bloodshed and retaliation? I think they’re still figuring it out.” 

While Johannesburg was always a rough city, political unrest and violence swelled in 2017 around the city and his mother’s shop was repeatedly looted. It felt like the right time to leave.

With the help of a church in the U.S., the Inabanzas immigrated to Maine later that year, early on in Inabanza’s high school career. The family bounced around in migrant shelters before securing permanent housing. During this time, Inabanza received excellent results on a placement exam, which afforded him his pick of area high schools. 

He ended up at Casco Bay High School, a decision he credits with setting him on a trajectory towards law school. 

Casco Bay is a small, innovative high school with an emphasis on student experience and engagement. Inabanza said the environment felt foreign from the standardized and often authoritarian approach to education in South Africa. He recalls feeling charmed if confused  upon first meeting the school’s principal, Derek Pierce. 

problem solving example in education

“He’s actually a big part of my story as he helped me decide to attend Casco Bay,” Inabanza added. “But I remember the first time I saw him, he came out with a big smile, wearing shorts and crocs and I had no idea what was going on.” 

The high school allows students to explore their passions, directing their education by what most interests them. Inabanza quickly realized his passion lay in advocacy work, especially issues around racial equality, youth justice, and affordable housing, all topics relevant to the greater Portland community that he found also intersected with his experiences in South Africa. 

“I became really exposed to the injustices taking place towards Black and Brown folks in the U.S. Pretty quickly it started to feel similar to South Africa,” Inabanza said. “I began to discover when you are not wealthy, when you have dark skin, the justice system often does not favor you.” 

By the time he reached his junior year in high school, Inabanza knew he wanted to become an attorney. And beyond that, he felt called to the fields of juvenile justice and public defense, work he’d already thrown himself into through representing his peers to the school board, volunteering with the Maine Youth Court, advocating for People of Color at his school, and leading restorative justice circles. Even in his summer before law school, Inabanza is interning with the Maine Indigent Defense Center. 

Inabanza felt a pull towards Maine Law early on in his studies at the University of Southern Maine (USM) where he received a full scholarship to study Criminology. He decided to apply for and was accepted to the 3+3 Program, an initiative that allows students from ten different institutions to earn their B.A. and Maine Law J.D. in six years, a timeline and progression that felt natural to Inabanza. 

“I was really drawn to the clinics at Maine Law and the practical experience they offer,” he said. “Additionally, the environment felt similar to my high school where you can build strong relationships in the community as you explore your interests. That kind of education is going to allow me to be the best possible advocate for people. I can’t wait to get started.” 

Recent Posts

problem solving example in education

The Class of 2027: 1L finds a home in Maine and community through Maine Law

Having grown up with a father in the military, incoming 1L Shiloh Donnell finds it...

Photo of Violette in uniform

The Class of 2027: Veteran prepares for her second act at Maine Law

In the next stage of her career, Amanda Violette was looking for two things. “I...

problem solving example in education

Maine Law’s Privacy Program Continues to Grow

Success Borne of Necessity The University of Maine School of Law is at the forefront...

problem solving example in education

Maine Regional Care Teams supported over 165 justice-impacted youths over initiative’s three years

Regional Care Teams, a collaborative of the University of Southern Maine’s Catherine Cutler Institute, the...

problem solving example in education

Maine Law faculty and staff share favorite summer reads

Everyone has that one book that reminds them of summer, the one they pick up...

problem solving example in education

Friends and Defenders of the Casco Bay

The Maine Law graduates fighting pollution and climate change in Maine’s Casco Bay Sara Freshley...

problem solving example in education

Complex Problem-Solving Across Disciplines

“Interdisciplinary work requires venturing beyond the comfort of the known — the conventions of a...

problem solving example in education

Maine Law Magazine Winter/Spring 2024

Maine Law recently published Issue 98 of its annual magazine. The focus of this year’s...

Ensemble of physics-informed neural networks for solving plane elasticity problems with examples

  • Original Paper
  • Published: 29 August 2024

Cite this article

problem solving example in education

  • Aliki D. Mouratidou   ORCID: orcid.org/0000-0002-8382-1263 1 ,
  • Georgios A. Drosopoulos 2 , 3 &
  • Georgios E. Stavroulakis 1  

Two-dimensional (plane) elasticity equations in solid mechanics are solved numerically with the use of an ensemble of physics-informed neural networks (PINNs). The system of equations consists of the kinematic definitions, i.e. the strain–displacement relations, the equilibrium equations connecting a stress tensor with external loading forces and the isotropic constitutive relations for stress and strain tensors. Different boundary conditions for the strain tensor and displacements are considered. The proposed computational approach is based on principles of artificial intelligence and uses a developed open-source machine learning platform, scientific software Tensorflow, written in Python and Keras library, an application programming interface, intended for a deep learning. A deep learning is performed through training the physics-informed neural network model in order to fit the plain elasticity equations and given boundary conditions at collocation points. The numerical technique is tested on an example, where the exact solution is given. Two examples with plane stress problems are calculated with the proposed multi-PINN model. The numerical solution is compared with results obtained after using commercial finite element software. The numerical results have shown that an application of a multi-network approach is more beneficial in comparison with using a single PINN with many outputs. The derived results confirmed the efficiency of the introduced methodology. The proposed technique can be extended and applied to the structures with nonlinear material properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save.

  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime

Price includes VAT (Russian Federation)

Instant access to the full article PDF.

Rent this article via DeepDyve

Institutional subscriptions

problem solving example in education

Explore related subjects

  • Artificial Intelligence

The entire software package is available upon request.

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D.G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke, M., Yu, Y., Zheng, X.: Tensorflow: a system for large-scale machine learning. In: 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), USENIX Association, Savannah, GA, pp. 265-283. URL https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi. (2016)

Baydin, A., Pearlmutter, B.A., Radul, A.A., Siskind, J.M.: Automatic differentiation in machine learning: a survey. J. Mach. Learn. Res. 18 , 1 (2018)

MathSciNet   Google Scholar  

Bazmara, M., Mianroodi, M., Silani, M.: Application of physics-informed neural networks for nonlinear buckling analysis of beams. Acta. Mech. Sin. 39 , 422438 (2023)

Article   MathSciNet   Google Scholar  

Cai, S., Mao, Z., Wang, Z., Yin, M., Karniadakis, G.E.: Physics-informed neural networks (PINNs) for fluid mechanics: a review. Acta Mech. Sin. 37 , 1–12 (2022)

Chadha, C., He, J., Abueidda, D., Koric, S., Guleryuz, E., Jasiuk, I.: Improving the accuracy of the deep energy method. Acta Mech. 234 , 5975–5998 (2023)

Chen, Y., Lu, L., Karniadakis, G.E., Dal Negro, L.: Physics-informed neural networks for inverse problems in nano-optics and metamaterials. Opt. Express 28 (8), 11618–11633 (2020)

Article   Google Scholar  

Chollet, F.: Deep learning with python, Manning Publications Company, URL https://books.google.ca/books?id= Yo3CAQAACAAJ (2017)

Drosopoulos, G.A., Stavroulakis, G.E.: Non-linear mechanics for composite. In: Heterogeneous Structures, CRC Press, Taylor and Francis (2022)

Drosopoulos, G.A., Stavroulakis, G.E.: Data-driven computational homogenization using neural networks: FE2-NN application on damaged masonry. ACM J. Comput. Cult. Herit. 14 , 1–19 (2020)

Google Scholar  

Faroughi, S., Darvishi, A., Rezaei, S.: On the order of derivation in the training of physics-informed neural networks: case studies for non-uniform beam structures. Acta Mech. 234 , 5673–5695 (2023)

Faroughi, S.A., Pawar, N., Fernandes, C., Raissi, M., Das, S., Kalantari, N.K., Mahjour, S.K.: Physics-guided, physics-informed, and physics-encoded neural networks. Sci. Comput. (2023). https://doi.org/10.48550/arXiv.2211.07377

Fletcher, R.: Practical methods of optimization, 2nd edn. John Wiley & Sons, New York (1987)

Güne, A., Baydin, G., Pearlmutter, B.A., Siskind, J.M.: Automatic differentiation in machine learning: a survey, J. Mach. Learn. Res. 18 , 1-43, (2018) URL http://www.jmlr.org/papers/volume18/17-468/17-468.pdf

Guo, M., Haghighat, E.: An energy-based error bound of physics-informed neural network solutions in elasticity. J. Eng. Mech. (2020). https://doi.org/10.48550/arXiv.2010.09088

Haghighat, E., Juanes, R.: Sciann: a keras/tensorflow wrapper for scientific computations and physics-informed deep learning using artificial neural networks. Comp. Meth. Appl. Mech. Eng. 373 , 113552 (2021)

Haghighat, E., Raissi, M., Moure, A., Gomez, H., and Juanes, R.: A deep learning framework for solution and discovery in solid mechanics. https://arxiv.org/abs/2003.02751 (2020)

Harandi, A., Moeineddin, A., Kaliske, M., Reese, S., Rezaei, S.: Mixed formulation of physics-informed neural networks for thermo-mechanically coupled systems and heterogeneous domains. Int J Numer. Methods Eng. 125 , e7388 (2024)

Kadeethum, T., Jorgensen, T., Nick, H.: Physics-informed neural networks for solving nonlinear diffusivity and Biot’s equations. PLoS ONE 15 , e0232683 (2020)

Karniadakis, G.E., Kevrekidis, I.G., Lu, L., et al.: Physics-informed machine learning. Nat. Rev. Phys. 3 , 422–440 (2021)

Katsikis, D., Muradova, A.D., Stavroulakis, G.S.: A gentle introduction to physics-informed neural networks, with applications in static rod and beam problems. Jr. Adv. Appl. & Comput. Math. 9 , 103–128 (2022)

Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization, computer science, mathematics. In: The International Conference on Learning Representations (ICLR) (2015)

Kortesis, S., Panagiotopoulos, P.D.: Neural networks for computing in structural analysis: methods and prospects of applications. Int. Jr. Numeric. Meth. Eng. 36 , 2305–2318 (1993)

Kovachki, N., Lanthaler, S., Mishra, S.: On universal approximation and error bounds for Fourier neural operator. J. Mach. Learn. Res. 22 , 1–76 (2021)

Lagaris, E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE Trans. Neural Netw. 9 , 987–1000 (1998)

Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhattacharya, K., Stuart, A., Anandkumar, A.: Fourier neural operator for parametric partial differential equations, arXiv preprint arXiv:2010.08895 (2020)

Liu, D.C., Nocedal, J.: On the limited memory BFGS method for large scale optimization. Math. Program. 45 , 503–528 (1989)

Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators. Nat. Mach. Intell. 3 , 218–229 (2021). https://doi.org/10.1038/s42256-021-00302-5

Meade, A.J., Fernandez, A.A.: The numerical solution of linear ordinary differential equations by feed-forward neural networks. Math. Comput. Model. 19 , 1–25 (1994). https://doi.org/10.1016/0895-7177(94)90095-7

Muradova, A.D., Stavroulakis, G.E.: Physics-informed neural networks for elastic plate problems with bending and Winkler-type contact effects. J. Serb. Soc. Comput. Mech. 15 , 45–54 (2021)

Muradova, A.D, Stavroulakis, G.E.: Physics-informed Neural Networks for the solution of unilateral contact problems. In: Book of Proceedings, 13th International Congress on Mechanics HSTAM, pp. 451-459. (2022). https://hstam2022.eap.gr/book-of-proceedings/

Muradova, A.D., Stavroulakis, G.E.: The projective-iterative method and neural network estimation for buckling of elastic plates in nonlinear theory. Commun. Nonlin. Sci. Num. Sim. 12 , 1068–1088 (2007)

Niu, S., Zhang, E., Bazilevs, Y., Srivastava, V.: Modeling finite-strain plasticity using physics-informed neural network and assessment of the network performance. J. Mech. Phys. Solids 172 , 105177 (2023)

Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378 , 686–707 (2019)

Rezaei, S., Harandi, A., Moeineddin, A., Xu, B.-X., Reese, S.: A mixed formulation for physics-informed neural networks as a potential solver for engineering problems in heterogeneous domains: comparison with finite element method. Comput. Meth. Appl. Mech. Eng. 401 (Part B), 115616 (2022)

Ruder, S.: An overview of gradient descent optimization algorithms (2017) https://arxiv.org/abs/1609.04747

Shin, Y., Darbon, J., Karniadakis, G.E.: On the convergence of physics informed neural networks for linear second-order elliptic and parabolic type PDEs. Commun. Comput. Phys. 28 , 2042–2074 (2020)

Stavroulakis, G.E.: Inverse and crack identification problems in engineering mechanics. Springer, New York (2000)

Stavroulakis, G.E., Avdelas, A., Abdalla, K.M., Panagiotopoulos, P.D.: A neural network approach to the modelling, calculation and identification of semi-rigid connections in steel structures. J. Construct. Steel Res. 44 , 91–105 (1997)

Stavroulakis, G., Bolzon, G., Waszczyszyn, Z., Ziemianski, L.: Inverse analysis. In: Karihaloo, B., Ritchie, R.O., Milne, I. (eds) Comprehensive structural integrity, numerical and computational methods, vol. 3, Chap 13, pp. 685–718. Elsevier, Amsterdam (2003)

Tartakovsky, A. M., Marrero, C. O., Perdikaris, P., Tartakovsky, G. D., and Barajas- Solano D.: Learning parameters and constitutive relationships with physics informed deep neural networks. arXiv preprint arXiv:1808.03398 (2018)

Theocaris, P.S., Panagiotopoulos, P.D.: Plasticity including the Bauschinger effect, studied by a neural network approach. Acta Mech. 113 , 63–75 (1995). https://doi.org/10.1007/BF01212634

Waszczyszyn, Z., Ziemiański, L.: Neural networks in the identification analysis of structural mechanics problems. In: Mróz, Z., Stavroulakis, G.E. (eds.) Parameter identification of materials and structures, CISM International Centre for Mechanical Sciences (Courses and Lectures), p. 469. Springer, Vienna (2005)

Xiao, Y., Wei, Z., Wang, Z.: A limited memory BFGS-type method for large-scale unconstrained optimization. Comput. Math. Appl. 56 , 1001–1009 (2008)

Yagawa, G., Oishi, A.: Computational mechanics with neural networks. Springer, New York (2021)

Book   Google Scholar  

Download references

The work of A.D.M. and G.E.S. has been supported by the Project Safe-Aorta, which was implemented in the framework of the Action “Flagship actions in interdisciplinary scientific fields with a special focus on the productive fabric”, through the National Recovery and Resilience Fund Greece 2.0 and funded by the European Union-NextGenerationEU (Project ID:TAEDR-0535983)

Author information

Authors and affiliations.

School of Production Engineering and Management, Institute of Computational Mechanics and Optimization, Technical University of Crete, Kounoupidiana, 73100, Chania, Crete, Greece

Aliki D. Mouratidou & Georgios E. Stavroulakis

Discipline of Civil Engineering, School of Engineering and Computing, University of Central Lancashire, Preston campus, Preston, PR1 2HE, UK

Georgios A. Drosopoulos

Discipline of Civil Engineering, School of Engineering, University of KwaZulu-Natal, Durban campus, Durban, 4041, South Africa

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Aliki D. Mouratidou .

Ethics declarations

Conflict of interest.

The authors declare that they have no conflict of interest.

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Mouratidou, A.D., Drosopoulos, G.A. & Stavroulakis, G.E. Ensemble of physics-informed neural networks for solving plane elasticity problems with examples. Acta Mech (2024). https://doi.org/10.1007/s00707-024-04053-3

Download citation

Received : 26 February 2024

Revised : 27 May 2024

Accepted : 31 July 2024

Published : 29 August 2024

DOI : https://doi.org/10.1007/s00707-024-04053-3

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Find a journal
  • Publish with us
  • Track your research

Center for Teaching

Teaching problem solving.

Print Version

Tips and Techniques

Expert vs. novice problem solvers, communicate.

  • Have students  identify specific problems, difficulties, or confusions . Don’t waste time working through problems that students already understand.
  • If students are unable to articulate their concerns, determine where they are having trouble by  asking them to identify the specific concepts or principles associated with the problem.
  • In a one-on-one tutoring session, ask the student to  work his/her problem out loud . This slows down the thinking process, making it more accurate and allowing you to access understanding.
  • When working with larger groups you can ask students to provide a written “two-column solution.” Have students write up their solution to a problem by putting all their calculations in one column and all of their reasoning (in complete sentences) in the other column. This helps them to think critically about their own problem solving and helps you to more easily identify where they may be having problems. Two-Column Solution (Math) Two-Column Solution (Physics)

Encourage Independence

  • Model the problem solving process rather than just giving students the answer. As you work through the problem, consider how a novice might struggle with the concepts and make your thinking clear
  • Have students work through problems on their own. Ask directing questions or give helpful suggestions, but  provide only minimal assistance and only when needed to overcome obstacles.
  • Don’t fear  group work ! Students can frequently help each other, and talking about a problem helps them think more critically about the steps needed to solve the problem. Additionally, group work helps students realize that problems often have multiple solution strategies, some that might be more effective than others

Be sensitive

  • Frequently, when working problems, students are unsure of themselves. This lack of confidence may hamper their learning. It is important to recognize this when students come to us for help, and to give each student some feeling of mastery. Do this by providing  positive reinforcement to let students know when they have mastered a new concept or skill.

Encourage Thoroughness and Patience

  • Try to communicate that  the process is more important than the answer so that the student learns that it is OK to not have an instant solution. This is learned through your acceptance of his/her pace of doing things, through your refusal to let anxiety pressure you into giving the right answer, and through your example of problem solving through a step-by step process.

Experts (teachers) in a particular field are often so fluent in solving problems from that field that they can find it difficult to articulate the problem solving principles and strategies they use to novices (students) in their field because these principles and strategies are second nature to the expert. To teach students problem solving skills,  a teacher should be aware of principles and strategies of good problem solving in his or her discipline .

The mathematician George Polya captured the problem solving principles and strategies he used in his discipline in the book  How to Solve It: A New Aspect of Mathematical Method (Princeton University Press, 1957). The book includes  a summary of Polya’s problem solving heuristic as well as advice on the teaching of problem solving.

problem solving example in education

Teaching Guides

Quick Links

  • Services for Departments and Schools
  • Examples of Online Instructional Modules

Problem-Solving Method in Teaching

The problem-solving method is a highly effective teaching strategy that is designed to help students develop critical thinking skills and problem-solving abilities . It involves providing students with real-world problems and challenges that require them to apply their knowledge, skills, and creativity to find solutions. This method encourages active learning, promotes collaboration, and allows students to take ownership of their learning.

Table of Contents

Definition of problem-solving method.

Problem-solving is a process of identifying, analyzing, and resolving problems. The problem-solving method in teaching involves providing students with real-world problems that they must solve through collaboration and critical thinking. This method encourages students to apply their knowledge and creativity to develop solutions that are effective and practical.

Meaning of Problem-Solving Method

The meaning and Definition of problem-solving are given by different Scholars. These are-

Woodworth and Marquis(1948) : Problem-solving behavior occurs in novel or difficult situations in which a solution is not obtainable by the habitual methods of applying concepts and principles derived from past experience in very similar situations.

Skinner (1968): Problem-solving is a process of overcoming difficulties that appear to interfere with the attainment of a goal. It is the procedure of making adjustments in spite of interference

Benefits of Problem-Solving Method

The problem-solving method has several benefits for both students and teachers. These benefits include:

  • Encourages active learning: The problem-solving method encourages students to actively participate in their own learning by engaging them in real-world problems that require critical thinking and collaboration
  • Promotes collaboration: Problem-solving requires students to work together to find solutions. This promotes teamwork, communication, and cooperation.
  • Builds critical thinking skills: The problem-solving method helps students develop critical thinking skills by providing them with opportunities to analyze and evaluate problems
  • Increases motivation: When students are engaged in solving real-world problems, they are more motivated to learn and apply their knowledge.
  • Enhances creativity: The problem-solving method encourages students to be creative in finding solutions to problems.

Steps in Problem-Solving Method

The problem-solving method involves several steps that teachers can use to guide their students. These steps include

  • Identifying the problem: The first step in problem-solving is identifying the problem that needs to be solved. Teachers can present students with a real-world problem or challenge that requires critical thinking and collaboration.
  • Analyzing the problem: Once the problem is identified, students should analyze it to determine its scope and underlying causes.
  • Generating solutions: After analyzing the problem, students should generate possible solutions. This step requires creativity and critical thinking.
  • Evaluating solutions: The next step is to evaluate each solution based on its effectiveness and practicality
  • Selecting the best solution: The final step is to select the best solution and implement it.

Verification of the concluded solution or Hypothesis

The solution arrived at or the conclusion drawn must be further verified by utilizing it in solving various other likewise problems. In case, the derived solution helps in solving these problems, then and only then if one is free to agree with his finding regarding the solution. The verified solution may then become a useful product of his problem-solving behavior that can be utilized in solving further problems. The above steps can be utilized in solving various problems thereby fostering creative thinking ability in an individual.

The problem-solving method is an effective teaching strategy that promotes critical thinking, creativity, and collaboration. It provides students with real-world problems that require them to apply their knowledge and skills to find solutions. By using the problem-solving method, teachers can help their students develop the skills they need to succeed in school and in life.

  • Jonassen, D. (2011). Learning to solve problems: A handbook for designing problem-solving learning environments. Routledge.
  • Hmelo-Silver, C. E. (2004). Problem-based learning: What and how do students learn? Educational Psychology Review, 16(3), 235-266.
  • Mergendoller, J. R., Maxwell, N. L., & Bellisimo, Y. (2006). The effectiveness of problem-based instruction: A comparative study of instructional methods and student characteristics. Interdisciplinary Journal of Problem-based Learning, 1(2), 49-69.
  • Richey, R. C., Klein, J. D., & Tracey, M. W. (2011). The instructional design knowledge base: Theory, research, and practice. Routledge.
  • Savery, J. R., & Duffy, T. M. (2001). Problem-based learning: An instructional model and its constructivist framework. CRLT Technical Report No. 16-01, University of Michigan. Wojcikowski, J. (2013). Solving real-world problems through problem-based learning. College Teaching, 61(4), 153-156

Micro Teaching Skills

Resilient Educator logo

ChatGPT for Teachers

Trauma-informed practices in schools, teacher well-being, cultivating diversity, equity, & inclusion, integrating technology in the classroom, social-emotional development, covid-19 resources, invest in resilience: summer toolkit, civics & resilience, all toolkits, degree programs, trauma-informed professional development, teacher licensure & certification, how to become - career information, classroom management, instructional design, lifestyle & self-care, online higher ed teaching, current events, 5 problem-solving activities for the classroom.

5 Problem-Solving Activities for the Classroom

Problem-solving skills are necessary in all areas of life, and classroom problem solving activities can be a great way to get students prepped and ready to solve real problems in real life scenarios. Whether in school, work or in their social relationships, the ability to critically analyze a problem, map out all its elements and then prepare a workable solution is one of the most valuable skills one can acquire in life.

Educating your students about problem solving skills from an early age in school can be facilitated through classroom problem solving activities. Such endeavors encourage cognitive as well as social development, and can equip students with the tools they’ll need to address and solve problems throughout the rest of their lives. Here are five classroom problem solving activities your students are sure to benefit from as well as enjoy doing:

1. Brainstorm bonanza

Having your students create lists related to whatever you are currently studying can be a great way to help them to enrich their understanding of a topic while learning to problem-solve. For example, if you are studying a historical, current or fictional event that did not turn out favorably, have your students brainstorm ways that the protagonist or participants could have created a different, more positive outcome. They can brainstorm on paper individually or on a chalkboard or white board in front of the class.

2. Problem-solving as a group

Have your students create and decorate a medium-sized box with a slot in the top. Label the box “The Problem-Solving Box.” Invite students to anonymously write down and submit any problem or issue they might be having at school or at home, ones that they can’t seem to figure out on their own. Once or twice a week, have a student draw one of the items from the box and read it aloud. Then have the class as a group figure out the ideal way the student can address the issue and hopefully solve it.

3. Clue me in

This fun detective game encourages problem-solving, critical thinking and cognitive development. Collect a number of items that are associated with a specific profession, social trend, place, public figure, historical event, animal, etc. Assemble actual items (or pictures of items) that are commonly associated with the target answer. Place them all in a bag (five-10 clues should be sufficient.) Then have a student reach into the bag and one by one pull out clues. Choose a minimum number of clues they must draw out before making their first guess (two- three). After this, the student must venture a guess after each clue pulled until they guess correctly. See how quickly the student is able to solve the riddle.

4. Survivor scenarios

Create a pretend scenario for students that requires them to think creatively to make it through. An example might be getting stranded on an island, knowing that help will not arrive for three days. The group has a limited amount of food and water and must create shelter from items around the island. Encourage working together as a group and hearing out every child that has an idea about how to make it through the three days as safely and comfortably as possible.

5. Moral dilemma

Create a number of possible moral dilemmas your students might encounter in life, write them down, and place each item folded up in a bowl or bag. Some of the items might include things like, “I saw a good friend of mine shoplifting. What should I do?” or “The cashier gave me an extra $1.50 in change after I bought candy at the store. What should I do?” Have each student draw an item from the bag one by one, read it aloud, then tell the class their answer on the spot as to how they would handle the situation.

Classroom problem solving activities need not be dull and routine. Ideally, the problem solving activities you give your students will engage their senses and be genuinely fun to do. The activities and lessons learned will leave an impression on each child, increasing the likelihood that they will take the lesson forward into their everyday lives.

You may also like to read

  • Classroom Activities for Introverted Students
  • Activities for Teaching Tolerance in the Classroom
  • 5 Problem-Solving Activities for Elementary Classrooms
  • 10 Ways to Motivate Students Outside the Classroom
  • Motivating Introverted Students to Excel in the Classroom
  • How to Engage Gifted and Talented Students in the Classroom

Explore careers and degrees on Noodle.com - Find your next career

Categorized as: Tips for Teachers and Classroom Resources

Tagged as: Assessment Tools ,  Engaging Activities

  • Online & Campus Doctorate (EdD) in Higher Edu...
  • Degrees and Certificates for Teachers & Educa...
  • Programming Teacher: Job Description and Sala...

Chapter 9: Facilitating Complex Thinking

Problem-solving.

Somewhat less open-ended than creative thinking is problem solving , the analysis and solution of tasks or situations that are complex or ambiguous and that pose difficulties or obstacles of some kind (Mayer & Wittrock, 2006). Problem solving is needed, for example, when a physician analyzes a chest X-ray: a photograph of the chest is far from clear and requires skill, experience, and resourcefulness to decide which foggy-looking blobs to ignore, and which to interpret as real physical structures (and therefore real medical concerns). Problem solving is also needed when a grocery store manager has to decide how to improve the sales of a product: should she put it on sale at a lower price, or increase publicity for it, or both? Will these actions actually increase sales enough to pay for their costs?

Example 1: Problem Solving in the Classroom

Problem solving happens in classrooms when teachers present tasks or challenges that are deliberately complex and for which finding a solution is not straightforward or obvious. The responses of students to such problems, as well as the strategies for assisting them, show the key features of problem solving. Consider this example, and students’ responses to it. We have numbered and named the paragraphs to make it easier to comment about them individually:

Scene #1: A problem to be solved

A teacher gave these instructions: “Can you connect all of the dots below using only four straight lines?” She drew the following display on the chalkboard:

nine dots in a three by three grid

The problem itself and the procedure for solving it seemed very clear: simply experiment with different arrangements of four lines. But two volunteers tried doing it at the board, but were unsuccessful. Several others worked at it at their seats, but also without success.

Scene #2: Coaxing students to re-frame the problem

When no one seemed to be getting it, the teacher asked, “Think about how you’ve set up the problem in your mind—about what you believe the problem is about. For instance, have you made any assumptions about how long the lines ought to be? Don’t stay stuck on one approach if it’s not working!”

Scene #3: Alicia abandons a fixed response

After the teacher said this, Alicia indeed continued to think about how she saw the problem. “The lines need to be no longer than the distance across the square,” she said to herself. So she tried several more solutions, but none of them worked either.

The teacher walked by Alicia’s desk and saw what Alicia was doing. She repeated her earlier comment: “Have you assumed anything about how long the lines ought to be?”

Alicia stared at the teacher blankly, but then smiled and said, “Hmm! You didn’t actually say that the lines could be no longer than the matrix! Why not make them longer?” So she experimented again using oversized lines and soon discovered a solution:

Nine dots in a three-by-three grid, all dots are connected using just four lines. The first line travels through the top-right dot, the center dot, and the bottom-left dot. The second line travels from the the bottom-left dot, through the middle-left dot, and through the top-right dot, then extends past the top-right dot. The third line starts where the second line extended, forming an angle as it passes through the top-middle dot and the middle-right dot. The third line then extends past the right-middle dot until it is even with the bottom of the grid. The fourth line starts where the third line extended, then passes through the bottom-right, bottom-middle, and bottom-left dots. The end result are four lines, three of which form a right triangle with corners extending beyond the three-by-three grid, with the remaining line bisecting the right angle of the triangle so that it passes through the middle and top-right dots.

Scene #4: Willem’s and Rachel’s alternative strategies

Meanwhile, Willem worked on the problem. As it happened, Willem loved puzzles of all kinds, and had ample experience with them. He had not, however, seen this particular problem. “It must be a trick,” he said to himself, because he knew from experience that problems posed in this way often were not what they first appeared to be. He mused to himself: “Think outside the box, they always tell you. . .” And that was just the hint he needed: he drew lines outside the box by making them longer than the matrix and soon came up with this solution:

a mirror image of Alicia's solution

When Rachel went to work, she took one look at the problem and knew the answer immediately: she had seen this problem before, though she could not remember where. She had also seen other drawing-related puzzles, and knew that their solution always depended on making the lines longer, shorter, or differently angled than first expected. After staring at the dots briefly, she drew a solution faster than Alicia or even Willem. Her solution looked exactly like Willem’s.

This story illustrates two common features of problem solving: the effect of degree of structure or constraint on problem solving, and the effect of mental obstacles to solving problems. The next sections discuss each of these features, and then looks at common techniques for solving problems.

The effect of constraints: well-structured versus ill-structured problems

Problems vary in how much information they provide for solving a problem, as well as in how many rules or procedures are needed for a solution. A well-structured problem provides much of the information needed and can in principle be solved using relatively few clearly understood rules. Classic examples are the word problems often taught in math lessons or classes: everything you need to know is contained within the stated problem and the solution procedures are relatively clear and precise. An ill-structured problem has the converse qualities: the information is not necessarily within the problem, solution procedures are potentially quite numerous, and a multiple solutions are likely (Voss, 2006). Extreme examples are problems like “How can the world achieve lasting peace?” or “How can teachers insure that students learn?”

By these definitions, the nine-dot problem is relatively well-structured—though not completely. Most of the information needed for a solution is provided in Scene #1: there are nine dots shown and instructions given to draw four lines. But not all necessary information was given: students needed to consider lines that were longer than implied in the original statement of the problem. Students had to “think outside the box,” as Willem said—in this case, literally.

When a problem is well-structured, so are its solution procedures likely to be as well. A well-defined procedure for solving a particular kind of problem is often called an algorithm ; examples are the procedures for multiplying or dividing two numbers or the instructions for using a computer (Leiserson, et al., 2001). Algorithms are only effective when a problem is very well-structured and there is no question about whether the algorithm is an appropriate choice for the problem. In that situation it pretty much guarantees a correct solution. They do not work well, however, with ill-structured problems, where they are ambiguities and questions about how to proceed or even about precisely what the problem is about. In those cases it is more effective to use heuristics , which are general strategies—“rules of thumb,” so to speak—that do not always work, but often do, or that provide at least partial solutions. When beginning research for a term paper, for example, a useful heuristic is to scan the library catalogue for titles that look relevant. There is no guarantee that this strategy will yield the books most needed for the paper, but the strategy works enough of the time to make it worth trying.

In the nine-dot problem, most students began in Scene #1 with a simple algorithm that can be stated like this: “Draw one line, then draw another, and another, and another.” Unfortunately this simple procedure did not produce a solution, so they had to find other strategies for a solution. Three alternatives are described in Scenes #3 (for Alicia) and 4 (for Willem and Rachel). Of these, Willem’s response resembled a heuristic the most: he knew from experience that a good general strategy that often worked for such problems was to suspect a deception or trick in how the problem was originally stated. So he set out to question what the teacher had meant by the word line , and came up with an acceptable solution as a result.

Common obstacles to solving problems

The example also illustrates two common problems that sometimes happen during problem solving. One of these is functional fixedness : a tendency to regard the functions of objects and ideas as fixed (German & Barrett, 2005). Over time, we get so used to one particular purpose for an object that we overlook other uses. We may think of a dictionary, for example, as necessarily something to verify spellings and definitions, but it also can function as a gift, a doorstop, or a footstool. For students working on the nine-dot matrix described in the last section, the notion of “drawing” a line was also initially fixed; they assumed it to be connecting dots but not extending lines beyond the dots. Functional fixedness sometimes is also called response set , the tendency for a person to frame or think about each problem in a series in the same way as the previous problem, even when doing so is not appropriate to later problems. In the example of the nine-dot matrix described above, students often tried one solution after another, but each solution was constrained by a set response not to extend any line beyond the matrix.

Functional fixedness and the response set are obstacles in problem representation , the way that a person understands and organizes information provided in a problem. If information is misunderstood or used inappropriately, then mistakes are likely—if indeed the problem can be solved at all. With the nine-dot matrix problem, for example, construing the instruction to draw four lines as meaning “draw four lines entirely within the matrix” means that the problem simply could not be solved. For another, consider this problem: “The number of water lilies on a lake doubles each day. Each water lily covers exactly one square foot. If it takes 100 days for the lilies to cover the lake exactly, how many days does it take for the lilies to cover exactly half of the lake?” If you think that the size of the lilies affects the solution to this problem, you have not represented the problem correctly. Information about lily size is not relevant to the solution, and only serves to distract from the truly crucial information, the fact that the lilies double their coverage each day. (The answer, incidentally, is that the lake is half covered in 99 days; can you think why?)

Strategies to assist problem solving

Just as there are cognitive obstacles to problem solving, there are also general strategies that help the process be successful, regardless of the specific content of a problem (Thagard, 2005). One helpful strategy is problem analysis —identifying the parts of the problem and working on each part separately. Analysis is especially useful when a problem is ill-structured. Consider this problem, for example: “Devise a plan to improve bicycle transportation in the city.” Solving this problem is easier if you identify its parts or component subproblems, such as (1) installing bicycle lanes on busy streets, (2) educating cyclists and motorists to ride safely, (3) fixing potholes on streets used by cyclists, and (4) revising traffic laws that interfere with cycling. Each separate subproblem is more manageable than the original, general problem. The solution of each subproblem contributes the solution of the whole, though of course is not equivalent to a whole solution.

Another helpful strategy is working backward from a final solution to the originally stated problem. This approach is especially helpful when a problem is well-structured but also has elements that are distracting or misleading when approached in a forward, normal direction. The water lily problem described above is a good example: starting with the day when all the lake is covered (Day 100), ask what day would it therefore be half covered (by the terms of the problem, it would have to be the day before, or Day 99). Working backward in this case encourages reframing the extra information in the problem (i. e. the size of each water lily) as merely distracting, not as crucial to a solution.

A third helpful strategy is analogical thinking —using knowledge or experiences with similar features or structures to help solve the problem at hand (Bassok, 2003). In devising a plan to improve bicycling in the city, for example, an analogy of cars with bicycles is helpful in thinking of solutions: improving conditions for both vehicles requires many of the same measures (improving the roadways, educating drivers). Even solving simpler, more basic problems is helped by considering analogies. A first grade student can partially decode unfamiliar printed words by analogy to words he or she has learned already. If the child cannot yet read the word screen , for example, he can note that part of this word looks similar to words he may already know, such as seen or green , and from this observation derive a clue about how to read the word screen . Teachers can assist this process, as you might expect, by suggesting reasonable, helpful analogies for students to consider.

Bassok, J. (2003). Analogical transfer in problem solving. In Davidson, J. & Sternberg, R. (Eds.). The psychology of problem solving. New York: Cambridge University Press.

German, T. & Barrett, H. (2005). Functional fixedness in a technologically sparse culture. Psychological Science, 16 (1), 1–5.

Leiserson, C., Rivest, R., Cormen, T., & Stein, C. (2001). Introduction to algorithms. Cambridge, MA: MIT Press.

Luchins, A. & Luchins, E. (1994). The water-jar experiment and Einstellung effects. Gestalt Theory: An International Interdisciplinary Journal, 16 (2), 101–121.

Mayer, R. & Wittrock, M. (2006). Problem-solving transfer. In D. Berliner & R. Calfee (Eds.), Handbook of Educational Psychology, pp. 47–62. Mahwah, NJ: Erlbaum.

Thagard, R. (2005). Mind: Introduction to Cognitive Science, 2nd edition. Cambridge, MA: MIT Press.

Voss, J. (2006). Toulmin’s model and the solving of ill-structured problems. Argumentation, 19 (3), 321–329.

  • Educational Psychology. Authored by : Kelvin Seifert and Rosemary Sutton. Located at : https://open.umn.edu/opentextbooks/BookDetail.aspx?bookId=153 . License : CC BY: Attribution

helpful professor logo

39 Best Problem-Solving Examples

39 Best Problem-Solving Examples

Chris Drew (PhD)

Dr. Chris Drew is the founder of the Helpful Professor. He holds a PhD in education and has published over 20 articles in scholarly journals. He is the former editor of the Journal of Learning Development in Higher Education. [Image Descriptor: Photo of Chris]

Learn about our Editorial Process

problem-solving examples and definition, explained below

Problem-solving is a process where you’re tasked with identifying an issue and coming up with the most practical and effective solution.

This indispensable skill is necessary in several aspects of life, from personal relationships to education to business decisions.

Problem-solving aptitude boosts rational thinking, creativity, and the ability to cooperate with others. It’s also considered essential in 21st Century workplaces.

If explaining your problem-solving skills in an interview, remember that the employer is trying to determine your ability to handle difficulties. Focus on explaining exactly how you solve problems, including by introducing your thoughts on some of the following frameworks and how you’ve applied them in the past.

Problem-Solving Examples

1. divergent thinking.

Divergent thinking refers to the process of coming up with multiple different answers to a single problem. It’s the opposite of convergent thinking, which would involve coming up with a singular answer .

The benefit of a divergent thinking approach is that it can help us achieve blue skies thinking – it lets us generate several possible solutions that we can then critique and analyze .

In the realm of problem-solving, divergent thinking acts as the initial spark. You’re working to create an array of potential solutions, even those that seem outwardly unrelated or unconventional, to get your brain turning and unlock out-of-the-box ideas.

This process paves the way for the decision-making stage, where the most promising ideas are selected and refined.

Go Deeper: Divervent Thinking Examples

2. Convergent Thinking

Next comes convergent thinking, the process of narrowing down multiple possibilities to arrive at a single solution.

This involves using your analytical skills to identify the best, most practical, or most economical solution from the pool of ideas that you generated in the divergent thinking stage.

In a way, convergent thinking shapes the “roadmap” to solve a problem after divergent thinking has supplied the “destinations.”

Have a think about which of these problem-solving skills you’re more adept at: divergent or convergent thinking?

Go Deeper: Convergent Thinking Examples

3. Brainstorming

Brainstorming is a group activity designed to generate a multitude of ideas regarding a specific problem. It’s divergent thinking as a group , which helps unlock even more possibilities.

A typical brainstorming session involves uninhibited and spontaneous ideation, encouraging participants to voice any possible solutions, no matter how unconventional they might appear.

It’s important in a brainstorming session to suspend judgment and be as inclusive as possible, allowing all participants to get involved.

By widening the scope of potential solutions, brainstorming allows better problem definition, more creative solutions, and helps to avoid thinking “traps” that might limit your perspective.

Go Deeper: Brainstorming Examples

4. Thinking Outside the Box

The concept of “thinking outside the box” encourages a shift in perspective, urging you to approach problems from an entirely new angle.

Rather than sticking to traditional methods and processes, it involves breaking away from conventional norms to cultivate unique solutions.

In problem-solving, this mindset can bypass established hurdles and bring you to fresh ideas that might otherwise remain undiscovered.

Think of it as going off the beaten track when regular routes present roadblocks to effective resolution.

5. Case Study Analysis

Analyzing case studies involves a detailed examination of real-life situations that bear relevance to the current problem at hand.

For example, if you’re facing a problem, you could go to another environment that has faced a similar problem and examine how they solved it. You’d then bring the insights from that case study back to your own problem.

This approach provides a practical backdrop against which theories and assumptions can be tested, offering valuable insights into how similar problems have been approached and resolved in the past.

See a Broader Range of Analysis Examples Here

6. Action Research

Action research involves a repetitive process of identifying a problem, formulating a plan to address it, implementing the plan, and then analyzing the results. It’s common in educational research contexts.

The objective is to promote continuous learning and improvement through reflection and action. You conduct research into your problem, attempt to apply a solution, then assess how well the solution worked. This becomes an iterative process of continual improvement over time.

For problem-solving, this method offers a way to test solutions in real-time and allows for changes and refinements along the way, based on feedback or observed outcomes. It’s a form of active problem-solving that integrates lessons learned into the next cycle of action.

Go Deeper: Action Research Examples

7. Information Gathering

Fundamental to solving any problem is the process of information gathering.

This involves collecting relevant data , facts, and details about the issue at hand, significantly aiding in the understanding and conceptualization of the problem.

In problem-solving, information gathering underpins every decision you make.

This process ensures your actions are based on concrete information and evidence, allowing for an informed approach to tackle the problem effectively.

8. Seeking Advice

Seeking advice implies turning to knowledgeable and experienced individuals or entities to gain insights on problem-solving.

It could include mentors, industry experts, peers, or even specialized literature.

The value in this process lies in leveraging different perspectives and proven strategies when dealing with a problem. Moreover, it aids you in avoiding pitfalls, saving time, and learning from others’ experiences.

9. Creative Thinking

Creative thinking refers to the ability to perceive a problem in a new way, identify unconventional patterns, or produce original solutions.

It encourages innovation and uniqueness, often leading to the most effective results.

When applied to problem-solving, creative thinking can help you break free from traditional constraints, ideal for potentially complex or unusual problems.

Go Deeper: Creative Thinking Examples

10. Conflict Resolution

Conflict resolution is a strategy developed to resolve disagreements and arguments, often involving communication, negotiation, and compromise.

When employed as a problem-solving technique, it can diffuse tension, clear bottlenecks, and create a collaborative environment.

Effective conflict resolution ensures that differing views or disagreements do not become roadblocks in the process of problem-solving.

Go Deeper: Conflict Resolution Examples

11. Addressing Bottlenecks

Bottlenecks refer to obstacles or hindrances that slow down or even halt a process.

In problem-solving, addressing bottlenecks involves identifying these impediments and finding ways to eliminate them.

This effort not only smooths the path to resolution but also enhances the overall efficiency of the problem-solving process.

For example, if your workflow is not working well, you’d go to the bottleneck – that one point that is most time consuming – and focus on that. Once you ‘break’ this bottleneck, the entire process will run more smoothly.

12. Market Research

Market research involves gathering and analyzing information about target markets, consumers, and competitors.

In sales and marketing, this is one of the most effective problem-solving methods. The research collected from your market (e.g. from consumer surveys) generates data that can help identify market trends, customer preferences, and competitor strategies.

In this sense, it allows a company to make informed decisions, solve existing problems, and even predict and prevent future ones.

13. Root Cause Analysis

Root cause analysis is a method used to identify the origin or the fundamental reason for a problem.

Once the root cause is determined, you can implement corrective actions to prevent the problem from recurring.

As a problem-solving procedure, root cause analysis helps you to tackle the problem at its source, rather than dealing with its surface symptoms.

Go Deeper: Root Cause Analysis Examples

14. Mind Mapping

Mind mapping is a visual tool used to structure information, helping you better analyze, comprehend and generate new ideas.

By laying out your thoughts visually, it can lead you to solutions that might not have been apparent with linear thinking.

In problem-solving, mind mapping helps in organizing ideas and identifying connections between them, providing a holistic view of the situation and potential solutions.

15. Trial and Error

The trial and error method involves attempting various solutions until you find one that resolves the problem.

It’s an empirical technique that relies on practical actions instead of theories or rules.

In the context of problem-solving, trial and error allows you the flexibility to test different strategies in real situations, gaining insights about what works and what doesn’t.

16. SWOT Analysis

SWOT is an acronym standing for Strengths, Weaknesses, Opportunities, and Threats.

It’s an analytic framework used to evaluate these aspects in relation to a particular objective or problem.

In problem-solving, SWOT Analysis helps you to identify favorable and unfavorable internal and external factors. It helps to craft strategies that make best use of your strengths and opportunities, whilst addressing weaknesses and threats.

Go Deeper: SWOT Analysis Examples

17. Scenario Planning

Scenario planning is a strategic planning method used to make flexible long-term plans.

It involves imagining, and then planning for, multiple likely future scenarios.

By forecasting various directions a problem could take, scenario planning helps manage uncertainty and is an effective tool for problem-solving in volatile conditions.

18. Six Thinking Hats

The Six Thinking Hats is a concept devised by Edward de Bono that proposes six different directions or modes of thinking, symbolized by six different hat colors.

Each hat signifies a different perspective, encouraging you to switch ‘thinking modes’ as you switch hats. This method can help remove bias and broaden perspectives when dealing with a problem.

19. Decision Matrix Analysis

Decision Matrix Analysis is a technique that allows you to weigh different factors when faced with several possible solutions.

After listing down the options and determining the factors of importance, each option is scored based on each factor.

Revealing a clear winner that both serves your objectives and reflects your values, Decision Matrix Analysis grounds your problem-solving process in objectivity and comprehensiveness.

20. Pareto Analysis

Also known as the 80/20 rule, Pareto Analysis is a decision-making technique.

It’s based on the principle that 80% of problems are typically caused by 20% of the causes, making it a handy tool for identifying the most significant issues in a situation.

Using this analysis, you’re likely to direct your problem-solving efforts more effectively, tackling the root causes producing most of the problem’s impact.

21. Critical Thinking

Critical thinking refers to the ability to analyze facts to form a judgment objectively.

It involves logical, disciplined thinking that is clear, rational, open-minded, and informed by evidence.

For problem-solving, critical thinking helps evaluate options and decide the most effective solution. It ensures your decisions are grounded in reason and facts, and not biased or irrational assumptions.

Go Deeper: Critical Thinking Examples

22. Hypothesis Testing

Hypothesis testing usually involves formulating a claim, testing it against actual data, and deciding whether to accept or reject the claim based on the results.

In problem-solving, hypotheses often represent potential solutions. Hypothesis testing provides verification, giving a statistical basis for decision-making and problem resolution.

Usually, this will require research methods and a scientific approach to see whether the hypothesis stands up or not.

Go Deeper: Types of Hypothesis Testing

23. Cost-Benefit Analysis

A cost-benefit analysis (CBA) is a systematic process of weighing the pros and cons of different solutions in terms of their potential costs and benefits.

It allows you to measure the positive effects against the negatives and informs your problem-solving strategy.

By using CBA, you can identify which solution offers the greatest benefit for the least cost, significantly improving efficacy and efficiency in your problem-solving process.

Go Deeper: Cost-Benefit Analysis Examples

24. Simulation and Modeling

Simulations and models allow you to create a simplified replica of real-world systems to test outcomes under controlled conditions.

In problem-solving, you can broadly understand potential repercussions of different solutions before implementation.

It offers a cost-effective way to predict the impacts of your decisions, minimizing potential risks associated with various solutions.

25. Delphi Method

The Delphi Method is a structured communication technique used to gather expert opinions.

The method involves a group of experts who respond to questionnaires about a problem. The responses are aggregated and shared with the group, and the process repeats until a consensus is reached.

This method of problem solving can provide a diverse range of insights and solutions, shaped by the wisdom of a collective expert group.

26. Cross-functional Team Collaboration

Cross-functional team collaboration involves individuals from different departments or areas of expertise coming together to solve a common problem or achieve a shared goal.

When you bring diverse skills, knowledge, and perspectives to a problem, it can lead to a more comprehensive and innovative solution.

In problem-solving, this promotes communal thinking and ensures that solutions are inclusive and holistic, with various aspects of the problem being addressed.

27. Benchmarking

Benchmarking involves comparing one’s business processes and performance metrics to the best practices from other companies or industries.

In problem-solving, it allows you to identify gaps in your own processes, determine how others have solved similar problems, and apply those solutions that have proven to be successful.

It also allows you to compare yourself to the best (the benchmark) and assess where you’re not as good.

28. Pros-Cons Lists

A pro-con analysis aids in problem-solving by weighing the advantages (pros) and disadvantages (cons) of various possible solutions.

This simple but powerful tool helps in making a balanced, informed decision.

When confronted with a problem, a pro-con analysis can guide you through the decision-making process, ensuring all possible outcomes and implications are scrutinized before arriving at the optimal solution. Thus, it helps to make the problem-solving process both methodical and comprehensive.

29. 5 Whys Analysis

The 5 Whys Analysis involves repeatedly asking the question ‘why’ (around five times) to peel away the layers of an issue and discover the root cause of a problem.

As a problem-solving technique, it enables you to delve into details that you might otherwise overlook and offers a simple, yet powerful, approach to uncover the origin of a problem.

For example, if your task is to find out why a product isn’t selling your first answer might be: “because customers don’t want it”, then you ask why again – “they don’t want it because it doesn’t solve their problem”, then why again – “because the product is missing a certain feature” … and so on, until you get to the root “why”.

30. Gap Analysis

Gap analysis entails comparing current performance with potential or desired performance.

You’re identifying the ‘gaps’, or the differences, between where you are and where you want to be.

In terms of problem-solving, a Gap Analysis can help identify key areas for improvement and design a roadmap of how to get from the current state to the desired one.

31. Design Thinking

Design thinking is a problem-solving approach that involves empathy, experimentation, and iteration.

The process focuses on understanding user needs, challenging assumptions , and redefining problems from a user-centric perspective.

In problem-solving, design thinking uncovers innovative solutions that may not have been initially apparent and ensures the solution is tailored to the needs of those affected by the issue.

32. Analogical Thinking

Analogical thinking involves the transfer of information from a particular subject (the analogue or source) to another particular subject (the target).

In problem-solving, you’re drawing parallels between similar situations and applying the problem-solving techniques used in one situation to the other.

Thus, it allows you to apply proven strategies to new, but related problems.

33. Lateral Thinking

Lateral thinking requires looking at a situation or problem from a unique, sometimes abstract, often non-sequential viewpoint.

Unlike traditional logical thinking methods, lateral thinking encourages you to employ creative and out-of-the-box techniques.

In solving problems, this type of thinking boosts ingenuity and drives innovation, often leading to novel and effective solutions.

Go Deeper: Lateral Thinking Examples

34. Flowcharting

Flowcharting is the process of visually mapping a process or procedure.

This form of diagram can show every step of a system, process, or workflow, enabling an easy tracking of the progress.

As a problem-solving tool, flowcharts help identify bottlenecks or inefficiencies in a process, guiding improved strategies and providing clarity on task ownership and process outcomes.

35. Multivoting

Multivoting, or N/3 voting, is a method where participants reduce a large list of ideas to a prioritized shortlist by casting multiple votes.

This voting system elevates the most preferred options for further consideration and decision-making.

As a problem-solving technique, multivoting allows a group to narrow options and focus on the most promising solutions, ensuring more effective and democratic decision-making.

36. Force Field Analysis

Force Field Analysis is a decision-making technique that identifies the forces for and against change when contemplating a decision.

The ‘forces’ represent the differing factors that can drive or hinder change.

In problem-solving, Force Field Analysis allows you to understand the entirety of the context, favoring a balanced view over a one-sided perspective. A comprehensive view of all the forces at play can lead to better-informed problem-solving decisions.

TRIZ, which stands for “The Theory of Inventive Problem Solving,” is a problem-solving, analysis, and forecasting methodology.

It focuses on finding contradictions inherent in a scenario. Then, you work toward eliminating the contraditions through finding innovative solutions.

So, when you’re tackling a problem, TRIZ provides a disciplined, systematic approach that aims for ideal solutions and not just acceptable ones. Using TRIZ, you can leverage patterns of problem-solving that have proven effective in different cases, pivoting them to solve the problem at hand.

38. A3 Problem Solving

A3 Problem Solving, derived from Lean Management, is a structured method that uses a single sheet of A3-sized paper to document knowledge from a problem-solving process.

Named after the international paper size standard of A3 (or 11-inch by 17-inch paper), it succinctly records all key details of the problem-solving process from problem description to the root cause and corrective actions.

Used in problem-solving, this provides a straightforward and logical structure for addressing the problem, facilitating communication between team members, ensuring all critical details are included, and providing a record of decisions made.

39. Scenario Analysis

Scenario Analysis is all about predicting different possible future events depending upon your decision.

To do this, you look at each course of action and try to identify the most likely outcomes or scenarios down the track if you take that course of action.

This technique helps forecast the impacts of various strategies, playing each out to their (logical or potential) end. It’s a good strategy for project managers who need to keep a firm eye on the horizon at all times.

When solving problems, Scenario Analysis assists in preparing for uncertainties, making sure your solution remains viable, regardless of changes in circumstances.

How to Answer “Demonstrate Problem-Solving Skills” in an Interview

When asked to demonstrate your problem-solving skills in an interview, the STAR method often proves useful. STAR stands for Situation, Task, Action, and Result.

Situation: Begin by describing a specific circumstance or challenge you encountered. Make sure to provide enough detail to allow the interviewer a clear understanding. You should select an event that adequately showcases your problem-solving abilities.

For instance, “In my previous role as a project manager, we faced a significant issue when our key supplier abruptly went out of business.”

Task: Explain what your responsibilities were in that situation. This serves to provide context, allowing the interviewer to understand your role and the expectations placed upon you.

For instance, “It was my task to ensure the project remained on track despite this setback. Alternative suppliers needed to be found without sacrificing quality or significantly increasing costs.”

Action: Describe the steps you took to manage the problem. Highlight your problem-solving process. Mention any creative approaches or techniques that you used.

For instance, “I conducted thorough research to identify potential new suppliers. After creating a shortlist, I initiated contact, negotiated terms, assessed samples for quality and made a selection. I also worked closely with the team to re-adjust the project timeline.”

Result: Share the outcomes of your actions. How did the situation end? Did your actions lead to success? It’s particularly effective if you can quantify these results.

For instance, “As a result of my active problem solving, we were able to secure a new supplier whose costs were actually 10% cheaper and whose quality was comparable. We adjusted the project plan and managed to complete the project just two weeks later than originally planned, despite the major vendor setback.”

Remember, when you’re explaining your problem-solving skills to an interviewer, what they’re really interested in is your approach to handling difficulties, your creativity and persistence in seeking a resolution, and your ability to carry your solution through to fruition. Tailoring your story to highlight these aspects will help exemplify your problem-solving prowess.

Go Deeper: STAR Interview Method Examples

Benefits of Problem-Solving

Problem-solving is beneficial for the following reasons (among others):

  • It can help you to overcome challenges, roadblocks, and bottlenecks in your life.
  • It can save a company money.
  • It can help you to achieve clarity in your thinking.
  • It can make procedures more efficient and save time.
  • It can strengthen your decision-making capacities.
  • It can lead to better risk management.

Whether for a job interview or school, problem-solving helps you to become a better thinking, solve your problems more effectively, and achieve your goals. Build up your problem-solving frameworks (I presented over 40 in this piece for you!) and work on applying them in real-life situations.

Chris

  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd-2/ 101 Hidden Talents Examples
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd-2/ 15 Green Flags in a Relationship
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd-2/ 15 Signs you're Burnt Out, Not Lazy
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd-2/ 15 Toxic Things Parents Say to their Children

Leave a Comment Cancel Reply

Your email address will not be published. Required fields are marked *

  • Our Mission

How Students Can Rethink Problem Solving

Finding, shaping, and solving problems puts high school students in charge of their learning and bolsters critical-thinking skills.

Students talking in school hallway

As an educator for over 20 years, I’ve heard a lot about critical thinking , problem-solving , and inquiry and how they foster student engagement. However, I’ve also seen students draw a blank when they’re given a problem to solve. This happens when the problem is too vast for them to develop a solution or they don’t think the situation is problematic. 

As I’ve tried, failed, and tried again to engage my students in critical thinking, problem-solving, and inquiry, I’ve experienced greater engagement when I allow them to problem-find, problem-shape, and problem-solve. This shift in perspective has helped my students take direct ownership over their learning.

Encourage Students to Find the Problem 

When students ask a question that prompts their curiosity, it motivates them to seek out an answer. This answer often highlights a problem. 

For example, I gave my grade 11 students a list of topics to explore, and they signed up for a topic that they were interested in. From that, they had to develop a research question. This allowed them to narrow the topic down to what they were specifically curious about. 

Developing a research question initiated the research process. Students launched into reading information from reliable sources including Britannica , Newsela , and EBSCOhost . Through the reading process, they were able to access information so that they could attempt to find an answer to their question.

The nature of a good question is that there isn’t an “answer.” Instead, there are a variety of answers. This allowed students to feel safe in sharing their answers because they couldn’t be “wrong.” If they had reliable, peer-reviewed academic research to support their answer, they were “right.”

Shaping a Problem Makes Overcoming It More Feasible 

When students identify a problem, they’re compelled to do something about it; however, if the problem is too large, it can be overwhelming for them. When they’re overwhelmed, they might shut down and stop learning. For that reason, it’s important for them to shape the problem by taking on a piece they can handle.

To help guide students, provide a list of topics and allow them to choose one. In my experience, choosing their own topic prompts students’ curiosity—which drives them to persevere through a challenging task. Additionally, I have students maintain their scope at a school, regional, or national level. Keeping the focus away from an international scope allows them to filter down the number of results when they begin researching. Shaping the problem this way allowed students to address it in a manageable way.

Students Can Problem-Solve with Purpose

Once students identified a slice of a larger problem that they could manage, they started to read and think about it, collaborate together, and figure out how to solve it. To further support them in taking on a manageable piece of the problem, the parameters of the solution were that it had to be something they could implement immediately. For example, raising $3 million to build a shelter for those experiencing homelessness in the community isn’t something that students can do tomorrow. Focusing on a solution that could be implemented immediately made it easier for them to come up with viable options. 

With the problem shaped down to a manageable piece, students were better able to come up with a solution that would have a big impact. This problem-solving process also invites ingenuity and innovation because it allows teens to critically look at their day-to-day lives and experiences to consider what actions they could take to make a difference in the world. It prompts them to look at their world through a different lens.

When the conditions for inquiry are created by allowing students to problem-find, problem-shape and problem-solve, it allows students to do the following:

  • Critically examine their world to identify problems that exist
  • Feel empowered because they realize that they can be part of a solution
  • Innovate by developing new solutions to old problems

Put it All Together to Promote Change

Here are two examples of what my grade 11 students came up with when tasked with examining the national news to problem-find, problem-shape, and problem-solve.

Topic: Indigenous Issues in Canada

Question: How are Indigenous peoples impacted by racism?

Problem-find: The continued racism against Indigenous peoples has led to the families of murdered women not attaining justice, Indigenous peoples not being able to gain employment, and Indigenous communities not being able to access basic necessities like healthcare and clean water.

Problem-shape: A lot of the issues that Indigenous peoples face require government intervention. What can high school teens do to combat these issues?

Problem-solve: Teens need to stop supporting professional sports teams that tokenize Indigenous peoples, and if they see a peer wearing something from such a sports team, we need to educate them about how the team’s logo perpetuates racism.

Topic: People With Disabilities in Canada

Question: What leads students with a hearing impairment to feel excluded?

Problem-find: Students with a hearing impairment struggle to engage with course texts like films and videos.

Problem-shape: A lot of the issues that students with a hearing impairment face in schools require teachers to take action. What can high school teens do to help their hearing-impaired peers feel included?

Problem-solve: When teens share a video on social media, they should turn the closed-captioning on, so that all students can consume the media being shared.

Once my students came up with solutions, they wanted to do something about it and use their voices to engage in global citizenship. This led them to create TikTok and Snapchat videos and Instagram posts that they shared and re-shared among their peer group. 

The learning that students engaged in led to their wanting to teach others—which allowed a greater number of students to learn. This whole process engendered conversations about our world and helped them realize that they aren’t powerless; they can do things to initiate change in areas that they’re interested in and passionate about. It allowed them to use their voices to educate others and promote change.

5 Steps to Teaching Students a Problem-Solving Routine

  • Share article

By Jeff Heyck-Williams, the director of curriculum and instruction for Two Rivers Public Charter School

When I visited a 5th grade class recently, the students were tackling the following problem:

If there are nine people in a room and every person shakes hands exactly once with each of the other people, how many handshakes will there be? How can you prove your answer is correct using a model or numerical explanation?

There were students on the rug modeling people with Unifix cubes. There were kids at one table vigorously shaking each other’s hand. There were kids at another table writing out a diagram with numbers. At yet another table, students were working on creating a numeric expression. What was common across this class was that all of the students were productively grappling around the problem.

On a different day, I was out at recess with a group of kindergartners who got into an argument over a vigorous game of tag. Several kids were arguing about who should be “it.” Many of them insisted that they hadn’t been tagged. They all agreed that they had a problem. With the assistance of the teacher, they walked through a process of identifying what they knew about the problem and how best to solve it. They grappled with this very real problem to come to a solution that all could agree upon.

Then just last week, I had the pleasure of watching a culminating showcase of learning for our 8th graders. They presented to their families about their project exploring the role that genetics plays in our society. Tackling the problem of how we should or should not regulate gene research and editing in the human population, students explored both the history and scientific concerns about genetics and the ethics of gene editing. Each student developed arguments about how we as a country should proceed in the burgeoning field of human genetics, which they took to Capitol Hill to share with legislators. Through the process, students read complex text to build their knowledge, identified the underlying issues and questions, and developed unique solutions to this very real problem.

Problem-solving is at the heart of each of these scenarios and is an essential set of skills our students need to develop. They need the abilities to think critically and solve challenging problems without a roadmap to solutions. At Two Rivers Public Charter School in the District of Columbia, we have found that one of the most powerful ways to build these skills in students is through the use of a common set of steps for problem-solving. These steps, when used regularly, become a flexible cognitive routine for students to apply to problems across the curriculum and their lives.

The Problem-Solving Routine

At Two Rivers, we use a fairly simple routine for problem-solving that has five basic steps. The power of this structure is that it becomes a routine that students are able to use regularly across multiple contexts. The first three steps are implemented before problem-solving. Students use one step during problem-solving. Finally, they finish with a reflective step after problem-solving.

Problem Solving from Two Rivers Public Charter School on Vimeo .

Before Problem-Solving: The KWI

The three steps before problem-solving: We call them the K-W-I.

The “K” stands for “know” and requires students to identify what they already know about a problem. The goal in this step of the routine is two-fold. First, the student needs to analyze the problem and identify what is happening within the context of the problem. For example, in the math problem above, students identify that they know there are nine people and each person must shake hands with each other person. Second, the student needs to activate their background knowledge about that context or other similar problems. In the case of the handshake problem, students may recognize that this seems like a situation in which they will need to add or multiply.

The “W” stands for “what” a student needs to find out to solve the problem. At this point in the routine, the student always must identify the core question that is being asked in a problem or task. However, it may also include other questions that help a student access and understand a problem more deeply. For example, in addition to identifying that they need to determine how many handshakes in the math problem, students may also identify that they need to determine how many handshakes each individual person has or how to organize their work to make sure that they count the handshakes correctly.

The “I” stands for “ideas” and refers to ideas that a student brings to the table to solve a problem effectively. In this portion of the routine, students list the strategies that they will use to solve a problem. In the example from the math class, this step involved all of the different ways that students tackled the problem from Unifix cubes to creating mathematical expressions.

This KWI routine before problem-solving sets students up to actively engage in solving problems by ensuring they understand the problem and have some ideas about where to start in solving the problem. Two remaining steps are equally important during and after problem-solving.

During Problem-Solving: The Metacognitive Moment

The step that occurs during problem-solving is a metacognitive moment. We ask students to deliberately pause in their problem-solving and answer the following questions: “Is the path I’m on to solve the problem working?” and “What might I do to either stay on a productive path or readjust my approach to get on a productive path?” At this point in the process, students may hear from other students that have had a breakthrough or they may go back to their KWI to determine if they need to reconsider what they know about the problem. By naming explicitly to students that part of problem-solving is monitoring our thinking and process, we help them become more thoughtful problem-solvers.

After Problem-Solving: Evaluating Solutions

As a final step, after students solve the problem, they evaluate both their solutions and the process that they used to arrive at those solutions. They look back to determine if their solution accurately solved the problem, and when time permits, they also consider if their path to a solution was efficient and how it compares with other students’ solutions.

The power of teaching students to use this routine is that they develop a habit of mind to analyze and tackle problems wherever they find them. This empowers students to be the problem-solvers that we know they can become.

The opinions expressed in Next Gen Learning in Action are strictly those of the author(s) and do not reflect the opinions or endorsement of Editorial Projects in Education, or any of its publications.

Sign Up for The Savvy Principal

Teaching problem solving: Let students get ‘stuck’ and ‘unstuck’

Subscribe to the center for universal education bulletin, kate mills and km kate mills literacy interventionist - red bank primary school helyn kim helyn kim former brookings expert.

October 31, 2017

This is the second in a six-part  blog series  on  teaching 21st century skills , including  problem solving ,  metacognition , critical thinking , and collaboration , in classrooms.

In the real world, students encounter problems that are complex, not well defined, and lack a clear solution and approach. They need to be able to identify and apply different strategies to solve these problems. However, problem solving skills do not necessarily develop naturally; they need to be explicitly taught in a way that can be transferred across multiple settings and contexts.

Here’s what Kate Mills, who taught 4 th grade for 10 years at Knollwood School in New Jersey and is now a Literacy Interventionist at Red Bank Primary School, has to say about creating a classroom culture of problem solvers:

Helping my students grow to be people who will be successful outside of the classroom is equally as important as teaching the curriculum. From the first day of school, I intentionally choose language and activities that help to create a classroom culture of problem solvers. I want to produce students who are able to think about achieving a particular goal and manage their mental processes . This is known as metacognition , and research shows that metacognitive skills help students become better problem solvers.

I begin by “normalizing trouble” in the classroom. Peter H. Johnston teaches the importance of normalizing struggle , of naming it, acknowledging it, and calling it what it is: a sign that we’re growing. The goal is for the students to accept challenge and failure as a chance to grow and do better.

I look for every chance to share problems and highlight how the students— not the teachers— worked through those problems. There is, of course, coaching along the way. For example, a science class that is arguing over whose turn it is to build a vehicle will most likely need a teacher to help them find a way to the balance the work in an equitable way. Afterwards, I make it a point to turn it back to the class and say, “Do you see how you …” By naming what it is they did to solve the problem , students can be more independent and productive as they apply and adapt their thinking when engaging in future complex tasks.

After a few weeks, most of the class understands that the teachers aren’t there to solve problems for the students, but to support them in solving the problems themselves. With that important part of our classroom culture established, we can move to focusing on the strategies that students might need.

Here’s one way I do this in the classroom:

I show the broken escalator video to the class. Since my students are fourth graders, they think it’s hilarious and immediately start exclaiming, “Just get off! Walk!”

When the video is over, I say, “Many of us, probably all of us, are like the man in the video yelling for help when we get stuck. When we get stuck, we stop and immediately say ‘Help!’ instead of embracing the challenge and trying new ways to work through it.” I often introduce this lesson during math class, but it can apply to any area of our lives, and I can refer to the experience and conversation we had during any part of our day.

Research shows that just because students know the strategies does not mean they will engage in the appropriate strategies. Therefore, I try to provide opportunities where students can explicitly practice learning how, when, and why to use which strategies effectively  so that they can become self-directed learners.

For example, I give students a math problem that will make many of them feel “stuck”. I will say, “Your job is to get yourselves stuck—or to allow yourselves to get stuck on this problem—and then work through it, being mindful of how you’re getting yourselves unstuck.” As students work, I check-in to help them name their process: “How did you get yourself unstuck?” or “What was your first step? What are you doing now? What might you try next?” As students talk about their process, I’ll add to a list of strategies that students are using and, if they are struggling, help students name a specific process. For instance, if a student says he wrote the information from the math problem down and points to a chart, I will say: “Oh that’s interesting. You pulled the important information from the problem out and organized it into a chart.” In this way, I am giving him the language to match what he did, so that he now has a strategy he could use in other times of struggle.

The charts grow with us over time and are something that we refer to when students are stuck or struggling. They become a resource for students and a way for them to talk about their process when they are reflecting on and monitoring what did or did not work.

For me, as a teacher, it is important that I create a classroom environment in which students are problem solvers. This helps tie struggles to strategies so that the students will not only see value in working harder but in working smarter by trying new and different strategies and revising their process. In doing so, they will more successful the next time around.

Related Content

Esther Care, Helyn Kim, Alvin Vista

October 17, 2017

David Owen, Alvin Vista

November 15, 2017

Loren Clarke, Esther Care

December 5, 2017

Global Education K-12 Education

Global Economy and Development

Center for Universal Education

Zachary Billot, Annie Vong, Nicole Dias Del Valle, Emily Markovich Morris

August 26, 2024

Brian A. Jacob, Cristina Stanojevich

Christine Apiot Okudi, Atenea Rosado-Viurques, Jennifer L. O’Donoghue

August 23, 2024

Why Every Educator Needs to Teach Problem-Solving Skills

Strong problem-solving skills will help students be more resilient and will increase their academic and career success .

Want to learn more about how to measure and teach students’ higher-order skills, including problem solving, critical thinking, and written communication?

Problem-solving skills are essential in school, careers, and life.

Problem-solving skills are important for every student to master. They help individuals navigate everyday life and find solutions to complex issues and challenges. These skills are especially valuable in the workplace, where employees are often required to solve problems and make decisions quickly and effectively.

Problem-solving skills are also needed for students’ personal growth and development because they help individuals overcome obstacles and achieve their goals. By developing strong problem-solving skills, students can improve their overall quality of life and become more successful in their personal and professional endeavors.

problem solving example in education

Problem-Solving Skills Help Students…

   develop resilience.

Problem-solving skills are an integral part of resilience and the ability to persevere through challenges and adversity. To effectively work through and solve a problem, students must be able to think critically and creatively. Critical and creative thinking help students approach a problem objectively, analyze its components, and determine different ways to go about finding a solution.  

This process in turn helps students build self-efficacy . When students are able to analyze and solve a problem, this increases their confidence, and they begin to realize the power they have to advocate for themselves and make meaningful change.

When students gain confidence in their ability to work through problems and attain their goals, they also begin to build a growth mindset . According to leading resilience researcher, Carol Dweck, “in a growth mindset, people believe that their most basic abilities can be developed through dedication and hard work—brains and talent are just the starting point. This view creates a love of learning and a resilience that is essential for great accomplishment.”

icon-resilience

    Set and Achieve Goals

Students who possess strong problem-solving skills are better equipped to set and achieve their goals. By learning how to identify problems, think critically, and develop solutions, students can become more self-sufficient and confident in their ability to achieve their goals. Additionally, problem-solving skills are used in virtually all fields, disciplines, and career paths, which makes them important for everyone. Building strong problem-solving skills will help students enhance their academic and career performance and become more competitive as they begin to seek full-time employment after graduation or pursue additional education and training.

CAE Portal Icon 280

  Resolve Conflicts

In addition to increased social and emotional skills like self-efficacy and goal-setting, problem-solving skills teach students how to cooperate with others and work through disagreements and conflicts. Problem-solving promotes “thinking outside the box” and approaching a conflict by searching for different solutions. This is a very different (and more effective!) method than a more stagnant approach that focuses on placing blame or getting stuck on elements of a situation that can’t be changed.

While it’s natural to get frustrated or feel stuck when working through a conflict, students with strong problem-solving skills will be able to work through these obstacles, think more rationally, and address the situation with a more solution-oriented approach. These skills will be valuable for students in school, their careers, and throughout their lives.

Perspectives

    Achieve Success

We are all faced with problems every day. Problems arise in our personal lives, in school and in our jobs, and in our interactions with others. Employers especially are looking for candidates with strong problem-solving skills. In today’s job market, most jobs require the ability to analyze and effectively resolve complex issues. Students with strong problem-solving skills will stand out from other applicants and will have a more desirable skill set.

In a recent opinion piece published by The Hechinger Report , Virgel Hammonds, Chief Learning Officer at KnowledgeWorks, stated “Our world presents increasingly complex challenges. Education must adapt so that it nurtures problem solvers and critical thinkers.” Yet, the “traditional K–12 education system leaves little room for students to engage in real-world problem-solving scenarios.” This is the reason that a growing number of K–12 school districts and higher education institutions are transforming their instructional approach to personalized and competency-based learning, which encourage students to make decisions, problem solve and think critically as they take ownership of and direct their educational journey.

graduate-icon

Problem-Solving Skills Can Be Measured and Taught

Research shows that problem-solving skills can be measured and taught. One effective method is through performance-based assessments which require students to demonstrate or apply their knowledge and higher-order skills to create a response or product or do a task.

What Are Performance-Based Assessments?

problem solving example in education

With the No Child Left Behind Act (2002), the use of standardized testing became the primary way to measure student learning in the U.S. The legislative requirements of this act shifted the emphasis to standardized testing, and this led to a  decline in nontraditional testing methods .

But   many educators, policy makers, and parents have concerns with standardized tests. Some of the top issues include that they don’t provide feedback on how students can perform better, they don’t value creativity, they are not representative of diverse populations, and they can be disadvantageous to lower-income students.

While standardized tests are still the norm, U.S. Secretary of Education Miguel Cardona is encouraging states and districts to move away from traditional multiple choice and short response tests and instead use performance-based assessment, competency-based assessments, and other more authentic methods of measuring students abilities and skills rather than rote learning. 

Performance-based assessments  measure whether students can apply the skills and knowledge learned from a unit of study. Typically, a performance task challenges students to use their higher-order skills to complete a project or process. Tasks can range from an essay to a complex proposal or design.

Preview a Performance-Based Assessment

Want a closer look at how performance-based assessments work?  Preview CAE’s K–12 and Higher Education assessments and see how CAE’s tools help students develop critical thinking, problem-solving, and written communication skills.

Performance-Based Assessments Help Students Build and Practice Problem-Solving Skills

In addition to effectively measuring students’ higher-order skills, including their problem-solving skills, performance-based assessments can help students practice and build these skills. Through the assessment process, students are given opportunities to practically apply their knowledge in real-world situations. By demonstrating their understanding of a topic, students are required to put what they’ve learned into practice through activities such as presentations, experiments, and simulations. 

This type of problem-solving assessment tool requires students to analyze information and choose how to approach the presented problems. This process enhances their critical thinking skills and creativity, as well as their problem-solving skills. Unlike traditional assessments based on memorization or reciting facts, performance-based assessments focus on the students’ decisions and solutions, and through these tasks students learn to bridge the gap between theory and practice.

Performance-based assessments like CAE’s College and Career Readiness Assessment (CRA+) and Collegiate Learning Assessment (CLA+) provide students with in-depth reports that show them which higher-order skills they are strongest in and which they should continue to develop. This feedback helps students and their teachers plan instruction and supports to deepen their learning and improve their mastery of critical skills.

problem solving example in education

Explore CAE’s Problem-Solving Assessments

CAE offers performance-based assessments that measure student proficiency in higher-order skills including problem solving, critical thinking, and written communication.

  • College and Career Readiness Assessment (CCRA+) for secondary education and
  • Collegiate Learning Assessment (CLA+) for higher education.

Our solution also includes instructional materials, practice models, and professional development.

We can help you create a program to build students’ problem-solving skills that includes:

  • Measuring students’ problem-solving skills through a performance-based assessment    
  • Using the problem-solving assessment data to inform instruction and tailor interventions
  • Teaching students problem-solving skills and providing practice opportunities in real-life scenarios
  • Supporting educators with quality professional development

Get started with our problem-solving assessment tools to measure and build students’ problem-solving skills today! These skills will be invaluable to students now and in the future.

problem solving example in education

Ready to Get Started?

Learn more about cae’s suite of products and let’s get started measuring and teaching students important higher-order skills like problem solving..

  • Faculty & Staff

Teaching problem solving

Strategies for teaching problem solving apply across disciplines and instructional contexts. First, introduce the problem and explain how people in your discipline generally make sense of the given information. Then, explain how to apply these approaches to solve the problem.

Introducing the problem

Explaining how people in your discipline understand and interpret these types of problems can help students develop the skills they need to understand the problem (and find a solution). After introducing how you would go about solving a problem, you could then ask students to:

  • frame the problem in their own words
  • define key terms and concepts
  • determine statements that accurately represent the givens of a problem
  • identify analogous problems
  • determine what information is needed to solve the problem

Working on solutions

In the solution phase, one develops and then implements a coherent plan for solving the problem. As you help students with this phase, you might ask them to:

  • identify the general model or procedure they have in mind for solving the problem
  • set sub-goals for solving the problem
  • identify necessary operations and steps
  • draw conclusions
  • carry out necessary operations

You can help students tackle a problem effectively by asking them to:

  • systematically explain each step and its rationale
  • explain how they would approach solving the problem
  • help you solve the problem by posing questions at key points in the process
  • work together in small groups (3 to 5 students) to solve the problem and then have the solution presented to the rest of the class (either by you or by a student in the group)

In all cases, the more you get the students to articulate their own understandings of the problem and potential solutions, the more you can help them develop their expertise in approaching problems in your discipline.

No products in the cart.

Innovative Teaching Ideas

Creative problem solving tools and skills for students and teachers

problem solving example in education

Creative Problem Solving: What Is It?

Creative Problem Solving, or CPS ,  refers to the use of imagination and innovation to find solutions to problems when formulaic or conventional processes have failed.

Despite its rather dry definition – creative problem-solving in its application can be a lot of fun for learners and teachers alike.

Why Are Creative Problem-Solving Skills Important?

problem solving example in education

By definition, creative problem-solving challenges students to think beyond the conventional and to avoid well-trodden, sterile paths of thinking.

Not only does this motivate student learning, encourage engagement, and inspire deeper learning, but the practical applications of this higher-level thinking skill are virtually inexhaustible.

For example, given the rapidly changing world of work, it is hard to conceive of a skill that will be more valuable than the ability to generate innovative solutions to the unique problems that will arise and that are impossible to predict ahead of time.

Outside the world of work, in our busy daily lives, the endless problems arising from day-to-day living can also be overcome by a creative problem-solving approach.

When students have developed their creative problem-solving abilities effectively, they will have added a powerful tool to attack problems that they will encounter, whether in school, work, or in their personal lives.

Due to its at times nebulous nature, teaching creative problem-solving in the classroom poses its own challenges. However, developing a culture of approaching problem-solving in a creative manner is possible.

In this article, we will take a look at a variety of strategies, tools, and activities that can help students improve their creative problem-solving skills.

problem solving example in education

The Underlying Principles of CPS

Before we take a look at a process for implementing creative problem solving, it is helpful to examine a few of the underlying principles of CPS. These core principles should be encouraged in the classroom. They are:

●       Assume Nothing

Assumptions are the enemy of creativity and original thinking. If students assume they already have the answer, they will not be creative in their approach to solving a problem.

●       Problems Are Opportunities

Rather than seeing problems as difficulties to endure, a shift in perspective can instead view problems as challenges that offer new opportunities. Encourage your students to shift their perspectives to see opportunities where they once saw problems.

●       Suspend Judgment

Making immediate judgments closes down the creative response and the formation of new ideas. There is a time to make judgments, but making a judgment too early in the process can be very detrimental to finding a creative solution.

Cognitive Approaches: Convergent vs Divergent Thinking

“It is easier to tame a wild idea than it is to push a closer-in idea further out.”

— Alex Osborn

The terms divergent and convergent thinking, coined by psychologist J.P. Guilford in 1956, refer to two contrasting cognitive approaches to problem-solving.

Convergent Thinking can be thought of as linear and systematic in its approach. It attempts to find a solution to a problem by narrowing down multiple ideas into a single solution. If convergent thinking can be thought of as asking a single question, that question would be ‘ Why ?’

Divergent Thinking focuses more on the generation of multiple ideas and on the connections between those ideas. It sees problems as design opportunities and encourages the use of resources and materials in original ways. Divergent thinking encourages the taking of creative risks and is flexible rather than analytical in its approach. If it was a single question, it’d be ‘ Why not ?’

While it may appear that these two modes of thinking about a problem have an essentially competitive relationship, in CPS they can work together in a complementary manner.

When students have a problem to solve and they’re looking for innovative solutions, they can employ divergent thinking initially to generate multiple ideas, then convergent thinking to analyze and narrow down those ideas.

Students can repeat this process to continue to filter and refine their ideas and perspectives until they arrive at an innovative and satisfactory solution to the initial problem.

Let’s now take a closer look at the creative problem-solving process.

The Creative Problem-Solving Process

problem solving example in education

CPS helps students arrive at innovative and novel solutions to the problems that arise in life. Having a process to follow helps to keep students focused and to reach a point where action can be taken to implement creative ideas.

Originally developed by Alex Osborn and Sid Parnes, the CPS process has gone through a number of revisions over the last 50 or so years and, as a result, there are a number of variations of this model in existence.

The version described below is one of the more recent models and is well-suited to the classroom environment.

However, things can sometimes get a little complex for some of the younger students. So, in this case, it may be beneficial to teach the individual parts of the process in isolation first.

1. Clarify:

Before beginning to seek creative solutions to a problem, it is important to clarify the exact nature of that problem. To do this, students should do the following three things:

i. Identify the Problem

The first step in bringing creativity to problem-solving is to identify the problem, challenge, opportunity, or goal and clearly define it.

ii. Gather Data

Gather data and research information and background to ensure a clear understanding.

iii. Formulate Questions

Enhance awareness of the nature of the problem by creating questions that invite solutions.

Explore new ideas to answer the questions raised. It’s time to get creative here. The more ideas generated, the greater the chance of producing a novel and useful idea. At this stage in particular, students should be engaged in divergent thinking as described above.

The focus here shifts from ideas to solutions. Once multiple ideas have been generated, convergent thinking can be used to narrow these down to the most suitable solution. The best idea should be closely analyzed in all its aspects and further ideas generated to make subsequent improvements. This is the stage to refine the initial idea and make it into a really workable solution.

4. Implement

Create a plan to implement the chosen solution. Students need to identify the required resources for the successful implementation of the solution. They need to plan for the actions that need to be taken, when they need to be taken, and who needs to take them.

Summary of Creative Problem Solving Process

In each stage of the CPS Process, students should be encouraged to employ divergent and convergent thinking in turn. Divergent thinking should be used to generate multiple ideas with convergent thinking then used to narrow these ideas down to the most feasible options. We will discuss how students go about this, but let’s first take a quick look at the role of a group facilitator.

problem solving example in education

The Importance of Group Facilitator

CPS is best undertaken in groups and, for larger and more complex projects, it’s even more effective when a facilitator can be appointed for the group.

The facilitator performs a number of useful purposes and helps the group to:

  • Stay focused on the task at hand
  • Move through the various stages efficiently
  • Select appropriate tools and strategies

 A good facilitator does not generate ideas themselves but instead keeps the group focused on each step of the process.

Facilitators should be objective and possess a good understanding of the process outlined above, as well as the other tools and strategies that we will look at below.

The Creative Problem-Solving Process: Tools and Strategies

There are several activities available to help students move through each stage. These will help students to stay on track, remove barriers and blocks, be creative, and reach a consensus as they progress through the CPS process.

  The following tools and strategies can help provide groups with some structure and can be applied at various stages of the problem-solving process. For convenience, they have been categorized according to whether they make demands on divergent or convergent thinking as discussed earlier.

Divergent Thinking Tools:

  ●       Brainstorming

Defined by Alex Osborn as “a group’s attempt to find a solution for a specific problem by amassing ideas ”, this is perhaps the best-known tool in the arsenal of the creative problem solver.

To promote a creative collaboration in a group setting, simply share the challenge with everyone and challenge them to come up with as many ideas as possible. Ideas should be concise and specific. For this reason, it may be worth setting a word limit for recording each idea e.g. express in headline form in no more than 5 words. Post-it notes are perfect for this.

You may also set a quota on the number of ideas to generate or introduce a time limit to further encourage focus. When completed, members of the group can share and compare all the ideas in search of the most suitable.

●       5 W’s and an H

The 5 W’s and an H are Who , What , Where , Why , and How . This strategy is useful to effectively gather data. Students brainstorm questions to ask that begin with each of the question words above in turn. They then seek to gather the necessary information to answer these questions through research and discussion.

problem solving example in education

●       Reverse Assumptions

This activity is a great way to explore new ideas. Have the students begin by generating a list of up to 10 basic assumptions about the idea or concept. For each of these, students then explore the reverse of the assumption listing new insights and perspectives in the process.

The students can then use these insights and perspectives to generate fresh ideas. For example, an assumption about the concept of a restaurant might be that the food is cooked for you. The reverse of that assumption could be a restaurant where you cook the food yourself. So, how about a restaurant where patrons select their own recipes and cook their own food aided by a trained chef?

Convergent Thinking Tools

●       How-How Diagram

This is the perfect activity to use when figuring out the steps required to implement a solution.

Students write the solution on the left-hand side of a page turned landscape. Working together, they identify the individual steps required to achieve this solution and write these to the right of the solution.

When they have written these steps, they go through each step one-by-one identifying in detail each stage of achieving that step. These are written branching to the right of each step.

Students repeat this process until they have exhausted the process and ended up with a comprehensive branch diagram detailing each step necessary for the implementation of the solution.

●       The Evaluation Matrix

Making an evaluation matrix creates a systematic way of analyzing and comparing multiple solutions. It allows for a group to evaluate options against various criteria to help build consensus.

An evaluation matrix begins with the listing of criteria to evaluate potential solutions against. These can then be turned into the form of a positive question that allows for a Yes or No answer. For example, if the budget is the criteria, the evaluation question could be ‘ Is it within budget? ’

Make a matrix grid with a separate column for each of the key criteria. Write the positive question form of these criteria as headings for these columns. The different options can then be detailed and listed down the left-most column.

Students then work through each of the criteria for each option and record whether it fulfills, or doesn’t fulfill, each criteria. For more complex solutions, students could record their responses to each of the criteria on a scale from 0 to 5.

For example:

problem solving example in education

Using the example matrix above, it becomes very clear that Option 1 is the superior solution given that it completely fulfills all the criteria, whereas Option 2 and Option 3 fulfill only 2 out of the 3 criteria each.

 ●       Pair & Share

This activity is suitable to help develop promising ideas. After making a list of possible solutions or questions to pursue, each individual student writes down their top 3 ideas.

Once each student has their list of their 3 best ideas, organize students into pairs. In their pairs, students discuss their combined 6 ideas to decide on the top 3 out of the 6. Once they have agreed on these, they write the new top 3 ideas on a piece of paper.

Now, direct the pairs of students to join up with another pair to make groups of 4. In these groups of 4, students discuss their collective 6 ideas to come up with a new list of the top 3 ideas.

Repeat this process until the whole class comes together as one big group to agree on the top 3 ideas overall.

Establish a Culture of Creative Problem Solving in the Classroom

Approaching problems creatively is about establishing a classroom culture that welcomes innovation and the trial and error that innovation demands. Too often our students are so focused on finding the ‘right‘ answer that they miss opportunities to explore new ideas.

It is up to us as teachers to help create a classroom culture that encourages experimentation and creative playfulness.

To do this we need to ensure our students understand the benefits of a creative approach to problem-solving.

We must ensure too that they are aware of the personal, social, and organizational benefits of CPS.

CPS should become an integral part of their approach to solving problems whether at school, work, or in their personal lives.

As teachers, it is up to us to help create a classroom culture that encourages experimentation and creative playfulness.

To do this, we must ensure our students understand the benefits of a creative approach to problem-solving.

CPS should become an integral part of their approach to solving problems, whether at school, work or in their personal lives.

Empowering Tomorrow’s Leaders: The Crucial Role of Computational and Systems Thinking in Education

the importance of systems thinking and computational thinking strategies for students cannot be overstated, as these skills are integral to navigating the complexities of our rapidly evolving digital landscape. Computational thinking, characterized by algorithmic problem-solving and logical reasoning, equips students with the ability to approach challenges systematically. In an era dominated by technology, these skills are not limited to coding but extend to critical thinking, enabling students to dissect problems, identify patterns, and devise efficient solutions. As our world becomes increasingly interconnected and data-driven, computational thinking provides a foundational framework for students to make sense of information, fostering a generation adept at leveraging technology for innovation.

Simultaneously, systems thinking is indispensable in comprehending the intricate web of relationships within various contexts. It encourages students to view issues holistically, understanding the interdependence of components and the ripple effects of decisions. In an era marked by global challenges, such as climate change and socio-economic disparities, systems thinking instills a proactive mindset. Students equipped with these skills are better prepared to analyze multifaceted problems, appreciate diverse perspectives, and collaborate on sustainable solutions.

Together, computational and systems thinking empower students to navigate an ever-changing world with confidence, adaptability, and a profound understanding of the interconnected systems that shape our future. These skills are not just academic; they are the building blocks of a resilient, innovative, and forward-thinking society.

be sure to check out our great video guides to teaching systems thinking and computational thinking below.

Similar Posts

An excellent collection of Fermi problems for your class

An excellent collection of Fermi problems for your class

Enrico Fermi is the father of “solving maths problems we will never know the exact answer to.” Such as how many…

Cornell Note Taker Generator

Cornell Note Taker Generator

The Cornell Note-taking method is probably the most organised method for students of all ages to take notes during lectures and…

5-amazing-classroom-decoration-ideas-for-creative-learning-and-teaching

5-amazing-classroom-decoration-ideas-for-creative-learning-and-teaching

Amazing learning happens in inviting classrooms As teachers we have no control over whether students go home to a happy, stimulating…

60 Riddles to challenge your students

60 Riddles to challenge your students

Kids love riddles. They often see them as a very intellectual challenge that can be solved by thinking outside of the…

Five reasons why computational thinking is an essential tool for teachers and students.

Five reasons why computational thinking is an essential tool for teachers and students.

Numerous countries and regions undertaking curriculum redesign within recent years have embraced computational thinking as an essential mindset for students and…

classic Battleship Printable game for students

classic Battleship Printable game for students

Battleship Printable Game for Students Battleship is a classic game of strategy and logic that kids of all ages love to…

IMAGES

  1. Collaborative Problem-Solving Steps

    problem solving example in education

  2. Problem Solving Strategies for Education

    problem solving example in education

  3. Problem Solving Activities: 7 Strategies

    problem solving example in education

  4. PPT

    problem solving example in education

  5. Problem-Solving Steps

    problem solving example in education

  6. 😀 How to teach problem solving skills. Teaching problem solving: Let

    problem solving example in education

VIDEO

  1. problem_solving_example_1

  2. Problem Solving

  3. 7.3 Work Energy Problem Solving & Example 7.9 Loop the Loop

  4. problem solving

  5. Example solution for fluid mechanics Q1

  6. Real-Life Problem-Solving Scenarios #shorts

COMMENTS

  1. How does coding enhance problem-solving skills in education?

    Learning to code enhances students' problem-solving, logical thinking, and creativity across subjects, preparing them for future academic and career success. Integrating coding into education fosters essential skills like collaboration, communication, and critical thinking.

  2. Problem-Solving with Critical Thinking

    Problem-Solving Process Step 1: Define the problem. Albert Einstein once said, "If I had an hour to solve a problem, I'd spend 55 minutes thinking about the problem and five minutes thinking about solutions." Often, when we first hear of or learn about a problem, we do not have all the information. If we immediately try to find a solution ...

  3. PDF A PROBLEM-SOLUTION PROJECT

    Childhood Education at Georgia State University. In the school where she teachers, ninety-seven percent (97%) of the ... • solve mathematics problems based on Problem-Solution topic: • Example: Letter Writing Campaign. Determine how ... Problem Solving: Identifies and states a problem related to topic under study.

  4. 7 Problem-Solving Skills That Can Help You Be a More ...

    Problem-solving is both an ability and a process. As an ability, problem-solving can help resolve issues in different environments, such as home, school, abroad, and social situations. As a process, problem-solving involves a series of steps for finding solutions to questions or concerns that arise throughout life. The importance of problem ...

  5. Solving Persistent Classroom Problems With an Inquiry Process

    As Marilyn Cochran-Smith and Susan L. Lytle discuss in their book Inquiry as Stance: Practitioner Research for the Next Generation, teacher inquiry is a process of questioning, exploring, and implementing strategies to address persistent classroom challenges.It mirrors the active learning process we encourage in students and can transform recurring problems into opportunities for growth.

  6. Manipulatives in Maths

    Model usage: Once children are familiar with a resource, introduce a simple maths problem and ask them to use the manipulatives to solve it. Model the problem-solving process step-by-step, then guide children through it. Scaffold learning: Start with highly structured activities, then gradually reduce support as pupils gain confidence. For ...

  7. HCF and LCM

    The lesson includes a step-by-step explanation of finding HCF and LCM, practical examples, and a variety of problem-solving questions, including GCSE-style questions for exam preparation… A worksheet accompanying the lesson provides additional practice with Stretch and Challenge questions, allowing students to apply what they've learned in ...

  8. Problem of the Week

    These problems may be used in a variety of different ways including: posting the problems in a classroom, discussing the problems with students, and; integrating the problems into their lessons. We know that educators will use these problems in many creative ways! Solutions will be sent out to educators one week after the problems are e-mailed.

  9. PDF EDUC 4301: Mathematical Problem Solving in EC6, Fall 2024 Face to Face

    Creative problem solving in school mathematics (2nd Ed). New York: MOEMS (ISBN# 1-882144-10-4). ... Texas Education Standards: The School of Education are committed to teaching and implementing the Texas Educator Standards at the highest level. The School of Education faculty use the Texas Education Standards, along with the

  10. The effects of social regulation scripts on collaborative knowledge

    The effects of social regulation scripts on collaborative knowledge construction in collaborative problem solving. Authors: Rui-Yan Huang, Yan-Yan Li Authors ... various layers of small group collaborative problem solving in an experiential geometry course in initial teacher education. Instructional Science, 50, 1 (Feb 2022), 1-34. https://doi ...

  11. The Class of 2027: How a childhood in South Africa is driving a 1L's

    The high school allows students to explore their passions, directing their education by what most interests them. Inabanza quickly realized his passion lay in advocacy work, especially issues around racial equality, youth justice, and affordable housing, all topics relevant to the greater Portland community that he found also intersected with ...

  12. Ensemble of physics-informed neural networks for solving plane

    Two-dimensional (plane) elasticity equations in solid mechanics are solved numerically with the use of an ensemble of physics-informed neural networks (PINNs). The system of equations consists of the kinematic definitions, i.e. the strain-displacement relations, the equilibrium equations connecting a stress tensor with external loading forces and the isotropic constitutive relations for ...

  13. Teaching Problem Solving

    Make students articulate their problem solving process . In a one-on-one tutoring session, ask the student to work his/her problem out loud. This slows down the thinking process, making it more accurate and allowing you to access understanding. When working with larger groups you can ask students to provide a written "two-column solution.".

  14. Problem-Solving Method In Teaching

    The problem-solving method is an effective teaching strategy that promotes critical thinking, creativity, and collaboration. It provides students with real-world problems that require them to apply their knowledge and skills to find solutions. By using the problem-solving method, teachers can help their students develop the skills they need to ...

  15. Teaching Problem-Solving Skills

    Teach problem-solving skills in the context in which they will be used by students (e.g., mole fraction calculations in a chemistry course). Use real-life problems in explanations, examples, and exams. Do not teach problem solving as an independent, abstract skill. Help students understand the problem. In order to solve problems, students need ...

  16. Problem-Solving in Elementary School

    Reading and Social Problem-Solving. Moss Elementary classrooms use a specific process to develop problem-solving skills focused on tending to social and interpersonal relationships. The process also concentrates on building reading skills—specifically, decoding and comprehension. Stop, Look, and Think. Students define the problem.

  17. 5 Problem-Solving Activities for the Classroom

    2. Problem-solving as a group. Have your students create and decorate a medium-sized box with a slot in the top. Label the box "The Problem-Solving Box.". Invite students to anonymously write down and submit any problem or issue they might be having at school or at home, ones that they can't seem to figure out on their own.

  18. 3 Examples of Problems of Practice in Education and How ...

    Problems of practice can hold your students back from achieving educational success. Codesign is a collaborative design process that allows educators to come together to analyze problems of practice and propose solutions to address them. Demystifying Jargon: How Codesign can help everyone to speak the same language.

  19. The Problem with Problem-Solving in Education (and what we can do about

    Problem- solving can't just be something we "do," it has to be a way of thinking. It has to lead to a culture of critical thinking, creativity, collaboration, and communication. Problems are all around us in the world, and they all need solutions. Sure, there are big problems that may seem daunting or overwhelming to try and solve ...

  20. 9 problem-solving examples for students (plus benefits)

    The following are problem-solving examples for students: 1. Brainstorming. Brainstorming is a creative process that can generate many potential solutions to an issue. When brainstorming, involve your students in creating lists. For example, if you want to focus on some historical figures and their significance, you can ask students to come up ...

  21. Problem-solving

    Problem-solving. Somewhat less open-ended than creative thinking is problem solving, the analysis and solution of tasks or situations that are complex or ambiguous and that pose difficulties or obstacles of some kind (Mayer & Wittrock, 2006). Problem solving is needed, for example, when a physician analyzes a chest X-ray: a photograph of the ...

  22. 39 Best Problem-Solving Examples (2024)

    Problem-Solving Examples 1. Divergent Thinking. Divergent thinking refers to the process of coming up with multiple different answers to a single problem.It's the opposite of convergent thinking, which would involve coming up with a singular answer.. The benefit of a divergent thinking approach is that it can help us achieve blue skies thinking - it lets us generate several possible ...

  23. PDF A Problem With Problem Solving: Teaching Thinking Without Teaching ...

    Three examples of a problem solving heuristic are presented in Table 1. The first belongs to John Dewey, who explicated a method of problem solving in How We Think (1933). The second is George Polya's, whose method is mostly associated with problem solving in mathematics. The last is a more contemporary version

  24. How to utilize problem-solving models in education

    The MTSS problem-solving model is a data-driven decision-making process that helps educators utilize and analyze interventions based on students' needs on a continual basis. Traditionally, the MTSS problem-solving model only involves four steps: Identifying the student's strengths and needs, based on data.

  25. Strengthening High School Students' Problem-Solving Skills

    Finding, shaping, and solving problems puts high school students in charge of their learning and bolsters critical-thinking skills. As an educator for over 20 years, I've heard a lot about critical thinking, problem-solving, and inquiry and how they foster student engagement. However, I've also seen students draw a blank when they're ...

  26. 5 Steps to Teaching Students a Problem-Solving Routine

    The three steps before problem-solving: We call them the K-W-I. The "K" stands for "know" and requires students to identify what they already know about a problem. The goal in this step of ...

  27. Teaching problem solving: Let students get 'stuck' and 'unstuck'

    Teaching problem solving: Let students get 'stuck' and 'unstuck'. This is the second in a six-part blog series on teaching 21st century skills, including problem solving , metacognition ...

  28. Why Every Educator Needs to Teach Problem-Solving Skills

    Resolve Conflicts. In addition to increased social and emotional skills like self-efficacy and goal-setting, problem-solving skills teach students how to cooperate with others and work through disagreements and conflicts. Problem-solving promotes "thinking outside the box" and approaching a conflict by searching for different solutions.

  29. Teaching problem solving

    Working on solutions. In the solution phase, one develops and then implements a coherent plan for solving the problem. As you help students with this phase, you might ask them to: identify the general model or procedure they have in mind for solving the problem. set sub-goals for solving the problem. identify necessary operations and steps.

  30. Creative problem solving tools and skills for students and teachers

    So, in this case, it may be beneficial to teach the individual parts of the process in isolation first. 1. Clarify: Before beginning to seek creative solutions to a problem, it is important to clarify the exact nature of that problem. To do this, students should do the following three things: i. Identify the Problem.