• Trending Categories

Data Structure

  • Selected Reading
  • UPSC IAS Exams Notes
  • Developer's Best Practices
  • Questions and Answers
  • Effective Resume Writing
  • HR Interview Questions
  • Computer Glossary

Copy constructor vs assignment operator in C++

The Copy constructor and the assignment operators are used to initializing one object to another object. The main difference between them is that the copy constructor creates a separate memory block for the new object. But the assignment operator does not make new memory space. It uses the reference variable to point to the previous memory block.

Copy Constructor (Syntax)

Assignment operator (syntax).

Let us see the detailed differences between Copy constructor and Assignment Operator.

Ankith Reddy

Related Articles

  • Difference Between Copy Constructor and Assignment Operator in C++
  • What's the difference between assignment operator and copy constructor in C++?
  • Copy Constructor in C++
  • Virtual Copy Constructor in C++
  • What is an assignment operator in C#?
  • How to use an assignment operator in C#?
  • What is a copy constructor in C#?
  • When is copy constructor called in C++?
  • Java copy constructor
  • What is Assignment Operator (=) in JavaScript?
  • When should we write our own assignment operator in C++?
  • What is Multiplication Assignment Operator (*=) in JavaScript?
  • What is Addition Assignment Operator (+=) in JavaScript?
  • When should we write our own assignment operator in C++ programming?
  • Explain the concept of logical and assignment operator in C language

Kickstart Your Career

Get certified by completing the course

  • Graphics and multimedia
  • Language Features
  • Unix/Linux programming
  • Source Code
  • Standard Library
  • Tips and Tricks
  • Tools and Libraries
  • Windows API
  • Copy constructors, assignment operators,

Copy constructors, assignment operators, and exception safe assignment

*

Tech Differences

Know the Technical Differences

Difference Between Copy Constructor and Assignment Operator in C++

Copy-constructor-assignment-operator

Let us study the difference between the copy constructor and assignment operator.

Content: Copy Constructor Vs Assignment Operator

Comparison chart.

  • Key Differences

Definition of Copy Constructor

A “copy constructor” is a form of an overloaded constructor . A copy constructor is only called or invoked for initialization purpose. A copy constructor initializes the newly created object by another existing object.

When a copy constructor is used to initialize the newly created target object, then both the target object and the source object shares a different memory location. Changes done to the source object do not reflect in the target object. The general form of the copy constructor is

If the programmer does not create a copy constructor in a C++ program, then the compiler implicitly provides a copy constructor. An implicit copy constructor provided by the compiler does the member-wise copy of the source object. But, sometimes the member-wise copy is not sufficient, as the object may contain a pointer variable.

Copying a pointer variable means, we copy the address stored in the pointer variable, but we do not want to copy address stored in the pointer variable, instead, we want to copy what pointer points to. Hence, there is a need of explicit ‘copy constructor’ in the program to solve this kind of problems.

A copy constructor is invoked in three conditions as follow:

  • Copy constructor invokes when a new object is initialized with an existing one.
  • The object passed to a function as a non-reference parameter.
  • The object is returned from the function.

Let us understand copy constructor with an example.

In the code above, I had explicitly declared a constructor “copy( copy &c )”. This copy constructor is being called when object B is initialized using object A. Second time it is called when object C is being initialized using object A.

When object D is initialized using object A the copy constructor is not called because when D is being initialized it is already in the existence, not the newly created one. Hence, here the assignment operator is invoked.

Definition of Assignment Operator

The assignment operator is an assigning operator of C++.  The “=” operator is used to invoke the assignment operator. It copies the data in one object identically to another object. The assignment operator copies one object to another member-wise. If you do not overload the assignment operator, it performs the bitwise copy. Therefore, you need to overload the assignment operator.

In above code when object A is assigned to object B the assignment operator is being invoked as both the objects are already in existence. Similarly, same is the case when object C is initialized with object A.

When the bitwise assignment is performed both the object shares the same memory location and changes in one object reflect in another object.

Key Differences Between Copy Constructor and Assignment Operator

  • A copy constructor is an overloaded constructor whereas an assignment operator is a bitwise operator.
  • Using copy constructor you can initialize a new object with an already existing object. On the other hand, an assignment operator copies one object to the other object, both of which are already in existence.
  • A copy constructor is initialized whenever a new object is initialized with an already existing object, when an object is passed to a function as a non-reference parameter, or when an object is returned from a function. On the other hand, an assignment operator is invoked only when an object is being assigned to another object.
  • When an object is being initialized using copy constructor, the initializing object and the initialized object shares the different memory location. On the other hand, when an object is being initialized using an assignment operator then the initialized and initializing objects share the same memory location.
  • If you do not explicitly define a copy constructor then the compiler provides one. On the other hand, if you do not overload an assignment operator then a bitwise copy operation is performed.

The Copy constructor is best for copying one object to another when the object contains raw pointers.

Related Differences:

  • Difference Between & and &&
  • Difference Between Recursion and Iteration
  • Difference Between new and malloc( )
  • Difference Between Inheritance and Polymorphism
  • Difference Between Constructor and Destructor

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Learn C++

21.12 — Overloading the assignment operator

The copy assignment operator (operator=) is used to copy values from one object to another already existing object .

Related content

As of C++11, C++ also supports “Move assignment”. We discuss move assignment in lesson 22.3 -- Move constructors and move assignment .

Copy assignment vs Copy constructor

The purpose of the copy constructor and the copy assignment operator are almost equivalent -- both copy one object to another. However, the copy constructor initializes new objects, whereas the assignment operator replaces the contents of existing objects.

The difference between the copy constructor and the copy assignment operator causes a lot of confusion for new programmers, but it’s really not all that difficult. Summarizing:

  • If a new object has to be created before the copying can occur, the copy constructor is used (note: this includes passing or returning objects by value).
  • If a new object does not have to be created before the copying can occur, the assignment operator is used.

Overloading the assignment operator

Overloading the copy assignment operator (operator=) is fairly straightforward, with one specific caveat that we’ll get to. The copy assignment operator must be overloaded as a member function.

This prints:

This should all be pretty straightforward by now. Our overloaded operator= returns *this, so that we can chain multiple assignments together:

Issues due to self-assignment

Here’s where things start to get a little more interesting. C++ allows self-assignment:

This will call f1.operator=(f1), and under the simplistic implementation above, all of the members will be assigned to themselves. In this particular example, the self-assignment causes each member to be assigned to itself, which has no overall impact, other than wasting time. In most cases, a self-assignment doesn’t need to do anything at all!

However, in cases where an assignment operator needs to dynamically assign memory, self-assignment can actually be dangerous:

First, run the program as it is. You’ll see that the program prints “Alex” as it should.

Now run the following program:

You’ll probably get garbage output. What happened?

Consider what happens in the overloaded operator= when the implicit object AND the passed in parameter (str) are both variable alex. In this case, m_data is the same as str.m_data. The first thing that happens is that the function checks to see if the implicit object already has a string. If so, it needs to delete it, so we don’t end up with a memory leak. In this case, m_data is allocated, so the function deletes m_data. But because str is the same as *this, the string that we wanted to copy has been deleted and m_data (and str.m_data) are dangling.

Later on, we allocate new memory to m_data (and str.m_data). So when we subsequently copy the data from str.m_data into m_data, we’re copying garbage, because str.m_data was never initialized.

Detecting and handling self-assignment

Fortunately, we can detect when self-assignment occurs. Here’s an updated implementation of our overloaded operator= for the MyString class:

By checking if the address of our implicit object is the same as the address of the object being passed in as a parameter, we can have our assignment operator just return immediately without doing any other work.

Because this is just a pointer comparison, it should be fast, and does not require operator== to be overloaded.

When not to handle self-assignment

Typically the self-assignment check is skipped for copy constructors. Because the object being copy constructed is newly created, the only case where the newly created object can be equal to the object being copied is when you try to initialize a newly defined object with itself:

In such cases, your compiler should warn you that c is an uninitialized variable.

Second, the self-assignment check may be omitted in classes that can naturally handle self-assignment. Consider this Fraction class assignment operator that has a self-assignment guard:

If the self-assignment guard did not exist, this function would still operate correctly during a self-assignment (because all of the operations done by the function can handle self-assignment properly).

Because self-assignment is a rare event, some prominent C++ gurus recommend omitting the self-assignment guard even in classes that would benefit from it. We do not recommend this, as we believe it’s a better practice to code defensively and then selectively optimize later.

The copy and swap idiom

A better way to handle self-assignment issues is via what’s called the copy and swap idiom. There’s a great writeup of how this idiom works on Stack Overflow .

The implicit copy assignment operator

Unlike other operators, the compiler will provide an implicit public copy assignment operator for your class if you do not provide a user-defined one. This assignment operator does memberwise assignment (which is essentially the same as the memberwise initialization that default copy constructors do).

Just like other constructors and operators, you can prevent assignments from being made by making your copy assignment operator private or using the delete keyword:

Note that if your class has const members, the compiler will instead define the implicit operator= as deleted. This is because const members can’t be assigned, so the compiler will assume your class should not be assignable.

If you want a class with const members to be assignable (for all members that aren’t const), you will need to explicitly overload operator= and manually assign each non-const member.

guest

This browser is no longer supported.

Upgrade to Microsoft Edge to take advantage of the latest features, security updates, and technical support.

C++ At Work

Copy Constructors, Assignment Operators, and More

Paul DiLascia

Code download available at: CAtWork0509.exe (276 KB) Browse the Code Online

Q I have a simple C++ problem. I want my copy constructor and assignment operator to do the same thing. Can you tell me the best way to accomplish this?

A At first glance this seems like a simple question with a simple answer: just write a copy constructor that calls operator=.

Or, alternatively, write a common copy method and call it from both your copy constructor and operator=, like so:

This code works fine for many classes, but there's more here than meets the eye. In particular, what happens if your class contains instances of other classes as members? To find out, I wrote the test program in Figure 1 . It has a main class, CMainClass, which contains an instance of another class, CMember. Both classes have a copy constructor and assignment operator, with the copy constructor for CMainClass calling operator= as in the first snippet. The code is sprinkled with printf statements to show which methods are called when. To exercise the constructors, cctest first creates an instance of CMainClass using the default ctor, then creates another instance using the copy constructor:

Figure 1 Copy Constructors and Assignment Operators

If you compile and run cctest, you'll see the following printf messages when cctest constructs obj2:

The member object m_obj got initialized twice! First by the default constructor, and again via assignment. Hey, what's going on?

In C++, assignment and copy construction are different because the copy constructor initializes uninitialized memory, whereas assignment starts with an existing initialized object. If your class contains instances of other classes as data members, the copy constructor must first construct these data members before it calls operator=. The result is that these members get initialized twice, as cctest shows. Got it? It's the same thing that happens with the default constructor when you initialize members using assignment instead of initializers. For example:

As opposed to:

Using assignment, m_obj is initialized twice; with the initializer syntax, only once. So, what's the solution to avoid extra initializations during copy construction? While it goes against your instinct to reuse code, this is one situation where it's best to implement your copy constructor and assignment operator separately, even if they do the same thing. Calling operator= from your copy constructor will certainly work, but it's not the most efficient implementation. My observation about initializers suggests a better way:

Now the main copy ctor calls the member object's copy ctor using an initializer, and m_obj is initialized just once by its copy ctor. In general, copy ctors should invoke the copy ctors of their members. Likewise for assignment. And, I may as well add, the same goes for base classes: your derived copy ctor and assignment operators should invoke the corresponding base class methods. Of course, there are always times when you may want to do something different because you know how your code works—but what I've described are the general rules, which are to be broken only when you have a compelling reason. If you have common tasks to perform after the basic objects have been initialized, you can put them in a common initialization method and call it from your constructors and operator=.

Q Can you tell me how to call a Visual C++® class from C#, and what syntax I need to use for this?

Sunil Peddi

Q I have an application that is written in both C# (the GUI) and in classic C++ (some business logic). Now I need to call from a DLL written in C++ a function (or a method) in a DLL written in Visual C++ .NET. This one calls another DLL written in C#. The Visual C++ .NET DLL acts like a proxy. Is this possible? I was able to use LoadLibrary to call a function present in the Visual C++ .NET DLL, and I can receive a return value, but when I try to pass some parameters to the function in the Visual C++ .NET DLL, I get the following error:

How can I resolve this problem?

Giuseppe Dattilo

A I get a lot of questions about interoperability between the Microsoft® .NET Framework and native C++, so I don't mind revisiting this well-covered topic yet again. There are two directions you can go: calling the Framework from C++ or calling C++ from the Framework. I won't go into COM interop here as that's a separate issue best saved for another day.

Let's start with the easiest one first: calling the Framework from C++. The simplest and easiest way to call the Framework from your C++ program is to use the Managed Extensions. These Microsoft-specific C++ language extensions are designed to make calling the Framework as easy as including a couple of files and then using the classes as if they were written in C++. Here's a very simple C++ program that calls the Framework's Console class:

To use the Managed Extensions, all you need to do is import <mscorlib.dll> and whatever .NET assemblies contain the classes you plan to use. Don't forget to compile with /clr:

Your C++ code can use managed classes more or less as if they were ordinary C++ classes. For example, you can create Framework objects with operator new, and access them using C++ pointer syntax, as shown in the following:

Here, the String s is declared as pointer-to-String because String::Format returns a new String object.

The "Hello, world" and date/time programs seem childishly simple—and they are—but just remember that however complex your program is, however many .NET assemblies and classes you use, the basic idea is the same: use <mscorlib.dll> and whatever other assemblies you need, then create managed objects with new, and use pointer syntax to access them.

So much for calling the Framework from C++. What about going the other way, calling C++ from the Framework? Here the road forks into two options, depending on whether you want to call extern C functions or C++ class member functions. Again, I'll take the simpler case first: calling C functions from .NET. The easiest thing to do here is use P/Invoke. With P/Invoke, you declare the external functions as static methods of a class, using the DllImport attribute to specify that the function lives in an external DLL. In C# it looks like this:

This tells the compiler that MessageBox is a function in user32.dll that takes an IntPtr (HWND), two Strings, and an int. You can then call it from your C# program like so:

Of course, you don't need P/Invoke for MessageBox since the .NET Framework already has a MessageBox class, but there are plenty of API functions that aren't supported directly by the Framework, and then you need P/Invoke. And, of course, you can use P/Invoke to call C functions in your own DLLs. I've used C# in the example, but P/Invoke works with any .NET-based language like Visual Basic® .NET or JScript®.NET. The names are the same, only the syntax is different.

Note that I used IntPtr to declare the HWND. I could have got away with int, but you should always use IntPtr for any kind of handle such as HWND, HANDLE, or HDC. IntPtr will default to 32 or 64 bits depending on the platform, so you never have to worry about the size of the handle.

DllImport has various modifiers you can use to specify details about the imported function. In this example, CharSet=CharSet.Auto tells the Framework to pass Strings as Unicode or Ansi, depending on the target operating system. Another little-known modifier you can use is CallingConvention. Recall that in C, there are different calling conventions, which are the rules that specify how the compiler should pass arguments and return values from one function to another across the stack. The default CallingConvention for DllImport is CallingConvention.Winapi. This is actually a pseudo-convention that uses the default convention for the target platform; for example, StdCall (in which the callee cleans the stack) on Windows® platforms and CDecl (in which the caller cleans the stack) on Windows CE .NET. CDecl is also used with varargs functions like printf.

The calling convention is where Giuseppe ran into trouble. C++ uses yet a third calling convention: thiscall. With this convention, the compiler uses the hardware register ECX to pass the "this" pointer to class member functions that don't have variable arguments. Without knowing the exact details of Giuseppe's program, it sounds from the error message that he's trying to call a C++ member function that expects thiscall from a C# program that's using StdCall—oops!

Aside from calling conventions, another interoperability issue when calling C++ methods from the Framework is linkage: C and C++ use different forms of linkage because C++ requires name-mangling to support function overloading. That's why you have to use extern "C" when you declare C functions in C++ programs: so the compiler won't mangle the name. In Windows, the entire windows.h file (now winuser.h) is enclosed in extern "C" brackets.

While there may be a way to call C++ member functions in a DLL directly using P/Invoke and DllImport with the exact mangled names and CallingConvention=ThisCall, it's not something to attempt if you're in your right mind. The proper way to call C++ classes from managed code—option number two—is to wrap your C++ classes in managed wrappers. Wrapping can be tedious if you have lots of classes, but it's really the only way to go. Say you have a C++ class CWidget and you want to wrap it so .NET clients can use it. The basic formula looks something like this:

The pattern is the same for any class. You write a managed (__gc) class that holds a pointer to the native class, you write a constructor and destructor that allocate and destroy the instance, and you write wrapper methods that call the corresponding native C++ member functions. You don't have to wrap all the member functions, only the ones you want to expose to the managed world.

Figure 2 shows a simple but concrete example in full detail. CPerson is a class that holds the name of a person, with member functions GetName and SetName to change the name. Figure 3 shows the managed wrapper for CPerson. In the example, I converted Get/SetName to a property, so .NET-based programmers can use the property syntax. In C#, using it looks like this:

Figure 3 Managed Person Class

Figure 2 Native CPerson Class

Using properties is purely a matter of style; I could equally well have exposed two methods, GetName and SetName, as in the native class. But properties feel more like .NET. The wrapper class is an assembly like any other, but one that links with the native DLL. This is one of the cool benefits of the Managed Extensions: You can link directly with native C/C++ code. If you download and compile the source for my CPerson example, you'll see that the makefile generates two separate DLLs: person.dll implements a normal native DLL and mperson.dll is the managed assembly that wraps it. There are also two test programs: testcpp.exe, a native C++ program that calls the native person.dll and testcs.exe, which is written in C# and calls the managed wrapper mperson.dll (which in turn calls the native person.dll).

Figure 4** Interop Highway **

I've used a very simple example to highlight the fact that there are fundamentally only a few main highways across the border between the managed and native worlds (see Figure 4 ). If your C++ classes are at all complex, the biggest interop problem you'll encounter is converting parameters between native and managed types, a process called marshaling. The Managed Extensions do an admirable job of making this as painless as possible (for example, automatically converting primitive types and Strings), but there are times where you have to know something about what you're doing.

For example, you can't pass the address of a managed object or subobject to a native function without pinning it first. That's because managed objects live in the managed heap, which the garbage collector is free to rearrange. If the garbage collector moves an object, it can update all the managed references to that object—but it knows nothing of raw native pointers that live outside the managed world. That's what __pin is for; it tells the garbage collector: don't move this object. For strings, the Framework has a special function PtrToStringChars that returns a pinned pointer to the native characters. (Incidentally, for those curious-minded souls, PtrToStringChars is the only function as of this date defined in <vcclr.h>. Figure 5 shows the code.) I used PtrToStringChars in MPerson to set the Name (see Figure 3 ).

Figure 5 PtrToStringChars

Pinning isn't the only interop problem you'll encounter. Other problems arise if you have to deal with arrays, references, structs, and callbacks, or access a subobject within an object. This is where some of the more advanced techniques come in, such as StructLayout, boxing, __value types, and so on. You also need special code to handle exceptions (native or managed) and callbacks/delegates. But don't let these interop details obscure the big picture. First decide which way you're calling (from managed to native or the other way around), and if you're calling from managed to native, whether to use P/Invoke or a wrapper.

In Visual Studio® 2005 (which some of you may already have as beta bits), the Managed Extensions have been renamed and upgraded to something called C++/CLI. Think of the C++/CLI as Managed Extensions Version 2, or What the Managed Extensions Should Have Been. The changes are mostly a matter of syntax, though there are some important semantic changes, too. In general C++/CLI is designed to highlight rather than blur the distinction between managed and native objects. Using pointer syntax for managed objects was a clever and elegant idea, but in the end perhaps a little too clever because it obscures important differences between managed and native objects. C++/CLI introduces the key notion of handles for managed objects, so instead of using C pointer syntax for managed objects, the CLI uses ^ (hat):

As you no doubt noticed, there's also a gcnew operator to clarify when you're allocating objects on the managed heap as opposed to the native one. This has the added benefit that gcnew doesn't collide with C++ new, which can be overloaded or even redefined as a macro. C++/CLI has many other cool features designed to make interoperability as straightforward and intuitive as possible.

Send your questions and comments for Paul to   [email protected] .

Paul DiLascia is a freelance software consultant and Web/UI designer-at-large. He is the author of Windows ++: Writing Reusable Windows Code in C ++ (Addison-Wesley, 1992). In his spare time, Paul develops PixieLib, an MFC class library available from his Web site, www.dilascia.com .

Additional resources

Why not just call the assignment operator from copy constructor?

cppreference.com

The rule of three/five/zero, [ edit ] rule of three.

If a class requires a user-defined destructor , a user-defined copy constructor , or a user-defined copy assignment operator , it almost certainly requires all three.

Because C++ copies and copy-assigns objects of user-defined types in various situations (passing/returning by value, manipulating a container, etc), these special member functions will be called, if accessible, and if they are not user-defined, they are implicitly-defined by the compiler.

The implicitly-defined special member functions are typically incorrect if the class manages a resource whose handle is an object of non-class type (raw pointer, POSIX file descriptor, etc), whose destructor does nothing and copy constructor/assignment operator performs a "shallow copy" (copy the value of the handle, without duplicating the underlying resource).

Classes that manage non-copyable resources through copyable handles may have to declare copy assignment and copy constructor private and not provide their definitions or define them as deleted. This is another application of the rule of three: deleting one and leaving the other to be implicitly-defined will most likely result in errors.

[ edit ] Rule of five

Because the presence of a user-defined (or = default or = delete declared) destructor, copy-constructor, or copy-assignment operator prevents implicit definition of the move constructor and the move assignment operator , any class for which move semantics are desirable, has to declare all five special member functions:

Unlike Rule of Three, failing to provide move constructor and move assignment is usually not an error, but a missed optimization opportunity.

[ edit ] Rule of zero

Classes that have custom destructors, copy/move constructors or copy/move assignment operators should deal exclusively with ownership (which follows from the Single Responsibility Principle ). Other classes should not have custom destructors, copy/move constructors or copy/move assignment operators [1] .

This rule also appears in the C++ Core Guidelines as C.20: If you can avoid defining default operations, do .

When a base class is intended for polymorphic use, its destructor may have to be declared public and virtual. This blocks implicit moves (and deprecates implicit copies), and so the special member functions have to be declared as defaulted [2] .

However, this makes the class prone to slicing, which is why polymorphic classes often define copy as deleted (see C.67: A polymorphic class should suppress public copy/move in C++ Core Guidelines), which leads to the following generic wording for the Rule of Five:

[ edit ] External links

  • Recent changes
  • Offline version
  • What links here
  • Related changes
  • Upload file
  • Special pages
  • Printable version
  • Permanent link
  • Page information
  • In other languages
  • This page was last modified on 5 December 2023, at 22:29.
  • This page has been accessed 762,917 times.
  • Privacy policy
  • About cppreference.com
  • Disclaimers

Powered by MediaWiki

  • C++ Classes and Objects
  • C++ Polymorphism
  • C++ Inheritance
  • C++ Abstraction
  • C++ Encapsulation
  • C++ OOPs Interview Questions
  • C++ OOPs MCQ
  • C++ Interview Questions
  • C++ Function Overloading
  • C++ Programs
  • C++ Preprocessor
  • C++ Templates
  • Solve Coding Problems
  • How to make a C++ class whose objects can only be dynamically allocated?
  • Is it possible to call constructor and destructor explicitly in C++?
  • Pure Virtual Destructor in C++
  • What happens when more restrictive access is given to a derived class method in C++?
  • When Does Compiler Create Default and Copy Constructors in C++?
  • C++ default constructor | Built-in types for int(), float, double()
  • Use of explicit keyword in C++
  • Program to print last 10 lines
  • Line Splicing in C/C++
  • Coroutines in C/C++
  • Conversion Operators in C++
  • Template Metaprogramming in C++
  • Dynamic Constructor in C++ with Examples
  • Amazing stuff with system() in C / C++
  • How does 'void*' differ in C and C++?
  • Socket Programming in C/C++: Handling multiple clients on server without multi threading
  • Program to compute Log n
  • Assertions in C/C++
  • Parameter Passing Techniques in C

Why copy constructor argument should be const in C++?

When we create our own copy constructor, we pass an object by reference and we generally pass it as a const reference.  One reason for passing const reference is, we should use const in C++ wherever possible so that objects are not accidentally modified. This is one good reason for passing reference as const, but there is more to it. For example, predict the output of following C++ program. Assume that copy elision is not done by compiler.

Output: 

The program looks fine at first look, but it has compiler error. If we add const in copy constructor, the program works fine, i.e., we change copy constructor to following.   

Or if we change the line “Test t2 = fun();” to following two lines, then also the program works fine.  

In the above codes, what’s actually happening?

It gets executed but the copy constructor is not called, instead, it calls the default constructor where the assignment operator is overloaded. Even if we have an explicitly overloaded assignment operator, it is not going to call it. 

The function fun() returns by value. So the compiler creates a temporary object which is copied to t2 using the copy constructor in the original program (The temporary object is passed as an argument to the copy constructor). The reason for compiler error is that compiler-created temporary objects cannot be bound to non-const references and the original program tries to do that. It doesn’t make sense to modify compiler-created temporary objects as they can die at any moment. (generally at the end of the full expression where it is created)

In simpler terms,

In C++, temporary objects are objects that are created during the evaluation of an expression, typically for immediate use and  to be copied to any named variable.

The error “compiler created temporary objects cannot be bound to non-const references” is related to binding temporary objects to non-const references. This means that a temporary object cannot be directly assigned to a non-const reference variable. To resolve this, you have two options:

1. Use a const reference in the function parameter to increase the lifetime of the temporary object. 2. Use a named variable to store the value and then pass it to the function.

Using a const reference allows you to read the value but not modify it within the function, which is a common approach when working with temporary objects. Alternatively, using a named variable ensures that the object’s lifetime extends to the function call and beyond, avoiding the issue with temporaries.

This article is compiled by Abhay Rathi .  

Please Login to comment...

  • cpp-constructor
  • WhatsApp To Launch New App Lock Feature
  • Top Design Resources for Icons
  • Node.js 21 is here: What’s new
  • Zoom: World’s Most Innovative Companies of 2024
  • 30 OOPs Interview Questions and Answers (2024)

Improve your Coding Skills with Practice

 alt=

What kind of Experience do you want to share?

IMAGES

  1. Copy Constructor vs Assignment Operator,Difference between Copy

    why copy constructor assignment operator

  2. Difference between Copy Constructor and Assignment Operator,Copy

    why copy constructor assignment operator

  3. What is the Difference Between Copy Constructor and Assignment Operator

    why copy constructor assignment operator

  4. [Eng] copy constructor,assignment operator, the rule of three in C++

    why copy constructor assignment operator

  5. Difference Between Copy Constructor And Assignment Operator In C++ #183

    why copy constructor assignment operator

  6. PPT

    why copy constructor assignment operator

VIDEO

  1. COMSC210 Module7 6

  2. COMSC210 Module4 3

  3. Copy constructor program in c++.|Using copy constructor to copy data of an object to another object

  4. [Arabic] copy constructor,assignment operator, the rule of three in C++ شرح

  5. C++ class copy constructor [3]

  6. copy constructor

COMMENTS

  1. The copy constructor and assignment operator

    The copy constructor is for creating a new object. It copies an existing object to a newly constructed object.The copy constructor is used to initialize a new instance from an old instance. It is not necessarily called when passing variables by value into functions or as return values out of functions. The assignment operator is to deal with an ...

  2. What's the difference between assignment operator and copy constructor?

    Copy constructor is called when a new object is created from an existing object, as a copy of the existing object. And assignment operator is called when an already initialized object is assigned a new value from another existing object. Example-. t2 = t1; // calls assignment operator, same as "t2.operator=(t1);"

  3. Copy Constructor vs Assignment Operator in C++

    But, there are some basic differences between them: Copy constructor. Assignment operator. It is called when a new object is created from an existing object, as a copy of the existing object. This operator is called when an already initialized object is assigned a new value from another existing object. It creates a separate memory block for ...

  4. Copy constructors and copy assignment operators (C++)

    Use an assignment operator operator= that returns a reference to the class type and takes one parameter that's passed by const reference—for example ClassName& operator= (const ClassName& x);. Use the copy constructor. If you don't declare a copy constructor, the compiler generates a member-wise copy constructor for you.

  5. Copy Constructor in C++

    1. The copy constructor is used to initialize the members of a newly created object by copying the members of an already existing object. 2. Copy constructor takes a reference to an object of the same class as an argument. If you pass the object by value in the copy constructor, it would result in a recursive call to the copy constructor itself.

  6. Copy constructor vs assignment operator in C++

    The Copy constructor is basically an overloaded constructor. Assignment operator is basically an operator. This initializes the new object with an already existing object. This assigns the value of one object to another object both of which are already exists. Copy constructor is used when a new object is created with some existing object.

  7. Copy constructors, assignment operators,

    The first line runs the copy constructor of T, which can throw; the remaining lines are assignment operators which can also throw. HOWEVER, if you have a type T for which the default std::swap() may result in either T's copy constructor or assignment operator throwing, you are

  8. PDF Copy Constructors and Assignment Operators

    the assignment operator is called only when assigning an existing object a new value. Otherwise, you're using the copy constructor. What C++ Does For You Unless you specify otherwise, C++ will automatically provide objects a basic copy constructor and assignment operator that simply invoke the copy constructors and assignment operators of all ...

  9. Copy constructors

    A copy constructor is a constructor which can be called with an argument of the same class type and copies the content of the argument without mutating the argument. ... generation of the implicitly-defined copy constructor is deprecated if T has a user-defined destructor or user-defined copy assignment operator. (since C++11)

  10. Difference Between Copy Constructor and Assignment Operator in C++

    Copy constructor and assignment operator, are the two ways to initialize one object using another object. The fundamental difference between the copy constructor and assignment operator is that the copy constructor allocates separate memory to both the objects, i.e. the newly created target object and the source object. The assignment operator allocates the same memory location to the newly ...

  11. Copy assignment operator

    Triviality of eligible copy assignment operators determines whether the class is a trivially copyable type. [] NoteIf both copy and move assignment operators are provided, overload resolution selects the move assignment if the argument is an rvalue (either a prvalue such as a nameless temporary or an xvalue such as the result of std::move), and selects the copy assignment if the argument is an ...

  12. 21.12

    The difference between the copy constructor and the copy assignment operator causes a lot of confusion for new programmers, but it's really not all that difficult. Summarizing: If a new object has to be created before the copying can occur, the copy constructor is used (note: this includes passing or returning objects by value).

  13. PDF Constructors and Assignment

    move on to the copy assignment operator Remember, assignment takes an already initialized object and gives it new values. Copy Assignment The syntax for copy assignment is as follows. ... A default constructor, copy constructor, and copy assignment operator will all be defined for

  14. C++ at Work: Copy Constructors, Assignment Operators, and More

    Both classes have a copy constructor and assignment operator, with the copy constructor for CMainClass calling operator= as in the first snippet. The code is sprinkled with printf statements to show which methods are called when. To exercise the constructors, cctest first creates an instance of CMainClass using the default ctor, then creates ...

  15. Why not just call the assignment operator from copy constructor?

    A common mistake is to call the assignment operator from the copy constructor. Take the Array class for example. Inside the copy you might think it's simple to write: Here's the problem with this. The first thing the operator= does is to check for self assignment and delete the old memory: const Array& Array::operator= (const Array& right) { if ...

  16. The rule of three/five/zero

    Rule of three. If a class requires a user-defined destructor, a user-defined copy constructor, or a user-defined copy assignment operator, it almost certainly requires all three. Because C++ copies and copy-assigns objects of user-defined types in various situations (passing/returning by value, manipulating a container, etc), these special ...

  17. Does the assignment operator call copy constructor?

    Here also bit by bit copy is done (a.p and b.p pointing to same location), it does not invoke copy constructor because constructor is called when b in defined (default constructor).so you have to overload = operator. test &operator =(const test &src) {. *this->p=*src.p; //copy value not address. return *this;

  18. Why copy constructor argument should be const in C++?

    Even if we have an explicitly overloaded assignment operator, it is not going to call it. The function fun() returns by value. So the compiler creates a temporary object which is copied to t2 using the copy constructor in the original program (The temporary object is passed as an argument to the copy constructor).

  19. c++

    I read that template copy-con is never the default copy constructor, and template assignment-op is never a copy assignment operator. I couldn't understand why this restriction is needed, and straight away went online to Ideone and return a test program.But here, the copy constructor never gets called, on further googling I came across templatized constructor and tried that, but still, it never ...

  20. call copy constructor from assignment operator function

    It actually declares a variable other of type FeatureValue. This is because constructors to not have names and cannot be called directly. You can safely invoke the copy assignment operator from the constructor as long as the operator is not declared virtual. FeatureValue::FeatureValue(const FeatureValue& other) : m_value(nullptr), m_size(0) {.

  21. Why must the copy assignment operator return a reference/const

    Copy assignment should not return rvalue reference cos it may have the assigned object moved. Again take the assignment chain for example. a = b = c; // if a has a copy assignment overload that takes rvalue reference as argument like the following. X& operator=(X &&);