Critical Thinking Models: A Comprehensive Guide for Effective Decision Making

Critical Thinking Models

Critical thinking models are valuable frameworks that help individuals develop and enhance their critical thinking skills . These models provide a structured approach to problem-solving and decision-making by encouraging the evaluation of information and arguments in a logical, systematic manner. By understanding and applying these models, one can learn to make well-reasoned judgments and decisions.

two models of critical thinking

Key Takeaways

Fundamentals of critical thinking.

two models of critical thinking

Definition and Importance

Critical thinking is the intellectual process of logically, objectively, and systematically evaluating information to form reasoned judgments, utilizing reasoning , logic , and evidence . It involves:

Core Cognitive Skills

Influence of cognitive biases.

A key aspect of critical thinking is recognizing and mitigating the impact of cognitive biases on our thought processes. Cognitive biases are cognitive shortcuts or heuristics that can lead to flawed reasoning and distort our understanding of a situation. Examples of cognitive biases include confirmation bias, anchoring bias, and availability heuristic.

To counter the influence of cognitive biases, critical thinkers must be aware of their own assumptions and strive to apply consistent and objective evaluation criteria in their thinking process. The practice of actively recognizing and addressing cognitive biases promotes an unbiased and rational approach to problem-solving and decision-making.

The Critical Thinking Process

two models of critical thinking

Stages of Critical Thinking

The critical thinking process starts with gathering and evaluating data . This stage involves identifying relevant information and ensuring it is credible and reliable. Next, an individual engages in analysis by examining the data closely to understand its context and interpret its meaning. This step can involve breaking down complex ideas into simpler components for better understanding.

Values play a significant role in the critical thinking process. Critical thinkers assess the significance of moral, ethical, or cultural values shaping the issue, argument, or decision at hand. They determine whether these values align with the evidence and logic they have analyzed.

Application in Decision Making

Critical thinking models, the red model.

The RED Model stands for Recognize Assumptions, Evaluate Arguments, and Draw Conclusions. It emphasizes the importance of questioning assumptions, weighing evidence, and reaching logical conclusions.

Bloom’s Taxonomy

Bloom’s Taxonomy is a hierarchical model that classifies cognitive skills into six levels of complexity. These levels are remembering, understanding, applying, analyzing, evaluating, and creating. By progressing through these levels, individuals can develop higher-order thinking skills.

Paul-Elder Model

The Paul-Elder Model introduces the concept of “elements of thought,” focusing on a structured approach to critical thinking. This model promotes intellectual standards, such as clarity, accuracy, and relevance. It consists of three stages:

The Halpern Critical Thinking Assessment

These four critical thinking models can be used as frameworks to improve and enhance cognitive abilities. By learning and practicing these models, individuals can become better equipped to analyze complex information, evaluate options, and make well-informed decisions.

Evaluating Information and Arguments

Evidence assessment, logic and fallacies.

Being aware of these fallacies enables a thinker to effectively evaluate the strength of an argument and make sound judgments accordingly.

Argument Analysis

Enhancing critical thinking, strategies for improvement, critical thinking in education.

In the field of education, critical thinking is an essential component of effective learning and pedagogy. Integrating critical thinking into the curriculum encourages student autonomy, fosters innovation, and improves student outcomes. Teachers can use various approaches to promote critical thinking, such as:

Developing a Critical Thinking Mindset

Critical thinking in various contexts, the workplace and beyond.

In the workplace context, critical thinkers are able to recognize assumptions, evaluate arguments, and draw conclusions, following models such as the RED model . They can also adapt their thinking to suit various scenarios, allowing them to tackle complex and diverse problems.

Creative and Lateral Thinking

In conclusion, critical thinking is a multifaceted skill that comprises various thought processes, including creative and lateral thinking. By embracing these skills, individuals can excel in the workplace and in their personal lives, making better decisions and solving problems effectively.

Overcoming Challenges

Recognizing and addressing bias.

By adopting these practices, individuals can minimize the impact of biases and enhance the overall quality of their critical thinking skills.

Dealing with Information Overload

By implementing these techniques, individuals can effectively manage information overload, enabling them to process and analyze data more effectively, leading to better decision-making.

Measuring Critical Thinking

Assessment tools and criteria.

Furthermore, criteria for assessing critical thinking often include precision, relevance, and the ability to gather and analyze relevant information. Some assessors utilize the Halpern Critical Thinking Assessment , which measures the application of cognitive skills such as deduction, observation, and induction in real-world scenarios.

The Role of IQ and Tests

Frequently asked questions, what are the main steps involved in the paul-elder critical thinking model.

The Paul-Elder Critical Thinking Model is a comprehensive framework for developing critical thinking skills. The main steps include: identifying the purpose, formulating questions, gathering information, identifying assumptions, interpreting information, and evaluating arguments. The model emphasizes clarity, accuracy, precision, relevance, depth, breadth, logic, and fairness throughout the critical thinking process. By following these steps, individuals can efficiently analyze and evaluate complex ideas and issues.

Can you list five techniques to enhance critical thinking skills?

What is the red model of critical thinking and how is it applied, how do the ‘3 c’s’ of critical thinking contribute to effective problem-solving.

The ‘3 C’s’ of critical thinking – Curiosity, Creativity, and Criticism – collectively contribute to effective problem-solving. Curiosity allows individuals to explore various perspectives and ask thought-provoking questions, while Creativity helps develop innovative solutions and unique approaches to challenges. Criticism, or the ability to evaluate and analyze ideas objectively, ensures that the problem-solving process remains grounded in logic and relevance.

What characteristics distinguish critical thinking from creative thinking?

What are some recommended books to help improve problem-solving and critical thinking skills, you may also like.

Riddles for creative thinking

Riddles for creative thinking

Identify assumptions: steps to question underlying beliefs in decision-making, critical thinking in personal development: enhancing decision-making skills, critical thinking and anxiety, download this free ebook.

ABLE blog: thoughts, learnings and experiences

  • Productivity
  • Thoughtful learning

Critical thinking models: definition, benefits, and skills

Critical thinking models: definition, benefits, and skills

In the age of memes and misinformation, critical thinking is a must. It's a crucial skill to differentiate between what may be true or false and develop (and explain) reasons for your beliefs.

The hardest part of critical thinking is knowing when to do it. Most of the time, it's easier to accept things as fact rather than to dig deeper to reach a conscious conclusion. This happens for various reasons. The most common being the ease of following the crowd and the fact it would be rather cumbersome to think critically about every single thing in the world!

How then do we know what to think critically about? How do we get the right answers, and how do we know they're correct? This is where a critical thinking model comes in. In this article, we’ll share three critical thinking models, essential critical reasoning skills, and why improving your critical thinking process is a good idea.

What Is Critical Thinking?

"Critical thinking is reasonable and reflective thinking focused on deciding what to believe or do.” This is how renowned professor and author Robert Hugh Ennis defines it. Put another way, the definition of critical thinking is careful consideration and analysis of information to reach a rational conclusion or decision. We practice critical thinking to inform—and own—our beliefs and actions and ensure they truly align with our values and intentions.

That said, critical thinking is not our natural way of thinking . Most of us are never aware of our brain's metacognitive actions, conceptualizations, or synthesis. Instead, we rely on habits, patterns, and competencies from past experiences to understand and interact with the world. While this may save us time and effort, it doesn’t always provide the best results—and often results in fallacies.

What Are Critical Thinking Models?

A critical thinking model provides the structure for practicing this type of thinking. It helps us notice our own thinking biases and allows us to try viewing the world objectively all while providing guidelines for asking the right questions, reaching logical conclusions, and explaining how we did it.

3 Critical Thinking Models That Are Useful in Everyday Life

Critical thinking model: Putting the pieces of a puzzle together

There are thousands of critical thinking models for almost any subject or discipline. Let’s take a look at three models of critical thinking we find useful in everyday life.

Proximate vs. Root Cause

The proximate vs. root cause critical thinking model encourages people to discover the primary cause of an event. A proximate cause is closest to the observed result or immediately responsible for it. In contrast, the root cause is the actual cause of the result. Both are causes of the event, but the root cause is the main cause, while the proximate cause is the immediate next cause.

This mental model forces you to look beyond obvious reasons to determine the core reason for impact. It helps with innovative problem-solving, so instead of relying on “Band-Aid solutions” or improving currently-existing solutions, you uncover the root of the matter and create something altogether new.

Example: You've gained a lot of weight since March 2021. Upon investigation, you may draw the following inferences:

  • Proximate cause: You burn fewer calories than you consume (moving less and eating more due to boredom or food accessibility), thus the weight gain.
  • Root cause: Your habits changed because of the lifestyle change from working at the office to working from home.

When you know the root cause of an issue, you can begin to deal with it to reduce the odds of recurrence. In this case, change your habits to fit the work-from-home lifestyle better. The proximate vs. root cause model improves your critical thinking ability and helps formulate a proper understanding of issues before working on them.

Cognitive Bias

Cognitive bias is a tendency to think in ways that can lead to deviations from rationality and objectivity. We all have cognitive biases. This error in thinking happens because of our tendency to process and interpret information swiftly, which can affect our decision-making and the eventual outcome of a situation.

Example: A soccer player scores a goal. In his mind, that means he's a great player. But if he had missed, he would reason that it was because the grass was wet. In self-serving bias, the tendency is to claim more responsibility for successes than failures. In other words: if there's a success, it's because I did something right. If there's a failure, it's something else's fault, not mine.

When you only pay attention or engage with news sources, stories, and conversations that confirm your worldview, you limit yourself from other perspectives and opinions that may be good for you without realizing it. Being aware of your own cognitive bias allows you to create some distance between how you expect the world to be and become more open to how it actually is on any given day.

The human brain is a powerful machine, but it has its limitations. One of them is neglecting facts and evidence to make sense of the world quickly and easily. This habit of mind may allow us to make faster decisions, but it doesn't serve us optimally. When unchecked, cognitive biases hinder fair-mindedness, inclusion, and impartiality.

Hanlon's Razor

"Never attribute to malice that which is adequately explained by incompetence."

Hanlon's Razor promotes good thinking and teaches us not to assume the worst intentions about people's actions without investigation. It helps regulate our emotions and improve relationships and decision-making. It also helps us develop empathy by giving others the benefit of the doubt and not assuming negative intent with evidence.

Example: You get to work earlier than usual on a Monday morning and notice your things scattered around. This must mean someone used your office! You immediately think a certain coworker did this to annoy you. But when you pause and consider, you realize that a coworker may have used your office during the weekend because it was vacant and they forgot their keys at home.

The stories we tell ourselves about why things happen the way they do are rarely true. It's worth spending some time to objectively view situations and choose a positive narrative that leads to better outcomes in our mental and emotional health and relationships.

two models of critical thinking

Be the first to try it out!

We're developing ABLE, a powerful tool for building your personal knowledge, capturing information from the web, conducting research, taking notes, and writing content.

Critical Thinking Skills and Their Benefits

two models of critical thinking

Critical thinking skills are useful for everyone. They help us think coherently and make advancements with our personal and professional goals. Some of the benefits you can gain from critical thinking are:

  • Greater reflective thinking and self-awareness
  • Ability to audit new information
  • Better interpersonal relationships
  • More creative thinking and problem-solving skills
  • Expanded open-mindedness
  • Improved communication and presentation skills
  • Freedom from past experiences and attachments

To gain these types of benefits, it’s important to practice the critical thinking skills listed below.

1. Observation

Observation is the foundation for critical thinking. It’s the ability to notice and predict opportunities, problems, and solutions. Taking the time to observe helps you process information better. Positive habits like meditating, journaling, and active listening will help you improve your observation skills.

2. Analysis

After observing, it's time to analyze the information. Analyzing helps you gain a clearer grasp of the situation at hand. Ask questions that help you get a clearer picture of the subject and get to the root cause or reason. For example, if you’re analyzing a controversial tweet you read, you may ask questions such as:

  • Who wrote this?
  • What is it about?
  • When was it written?
  • Why did they write it? Do they have a hidden agenda?
  • How sound is the premise?
  • What if this tweet was altered to send a misleading message?

These questions help you break your subject into rational bits and consider the relationship between each one and the whole.

3. Inference

Inference is the ability to draw conclusions from the information you've analyzed and other relevant data. It's a higher-level critical thinking skill that helps you reach careful decisions rather than hastily drawn (and likely biased) conclusions.

4. Communication

Once you have a solid foundation for your beliefs, communicating your theory is the next essential part of critical thinking. Share your point of view and get feedback from others to know if it holds up. You can improve your communication skills by participating in thematic forum discussions and sharing your research and insights with others in your community, both online and offline.

5. Problem-solving

Problem-solving is one of the main reasons for critical thinking. The end goal of critical thinking is using your new conclusion to close gaps and solve problems. You start by identifying your viewpoint, analyzing relevant information, and deciding on the right solution for a particular scenario. You can improve your problem-solving skills by self-learning the subject at hand and considering hidden, alternative outcomes.

Tap Into the Power of Critical Thinking

Becoming a critical thinker is challenging but oh-so worth it. It leads to continuous growth in all areas of your life: better relationships, confidence, and problem-solving skills. Critical thinking helps us overcome familiar patterns and ways of thinking, opening us to new perspectives.

To improve your critical thinking, spend time honing the five crucial critical thinking skills: observation, analysis, inference, communication, and problem-solving. Have fun with the process as you pay more attention to your beliefs and experiences and other people's perspectives and experiences as well.

You can use critical thinking models to guide your critical thinking journey, prompting you to realize when to pause and ask questions and when to accept the answers you have and move on. For example, in today’s age of misinformation, you may learn that it’s almost always counterproductive to engage with news and information from unknown sources.

Critical thinking is needed to remove scales from our eyes and improve our knowledge and experience of the world, but it’s also important to know when to turn our attention to focus on a new subject and move on.

Improve your critical thinking with ABLE

Ask better questions and get better answers with ABLEs integrated web search, annotation and note-taking features. Check how ABLE helps you to improve your critical thinking.

We hope you have enjoyed reading this article. Feel free to share, recommend and connect on Twitter: https://twitter.com/meet_able 🙏

Boris

Straight from the ABLE team: how we work and what we build. Thoughts, learnings, notes, experiences and what really matters.

Read more posts by this author

follow me :

Simplifying complexity: How to conquer clarity and brevity

How to organize information: the best methods for lifelong learning.

What is abstract thinking? 10 activities to improve your abstract thinking skills

What is abstract thinking? 10 activities to improve your abstract thinking skills

5 examples of cognitive learning theory (and how you can use them)

5 examples of cognitive learning theory (and how you can use them)

0 results found.

  • Aegis Alpha SA
  • We build in public

Building with passion in

  • Blogs @Oregon State University

Teaching With Writing: The WIC Newsletter

Critical thinking: multiple models for teaching and learning (abridged), excerpts from critical thinking: multiple models for teaching and learning.

By  Aubrae Vanderpool and Tracy Ann Robinson

“A great truth wants to be criticized, not idolized.”

The development of critical thinking skills increasingly is being identified not only as an essential component of writing courses but even more broadly, as a desired outcome of an undergraduate education. In this article, adapted from a paper by Aubrae Vanderpool that focuses on critical thinking in first-year writing classes, we take a look at what critical thinking means, offer some strategies and suggestions for incorporating critical thinking pedagogy into subject-matter courses, and comment on assessment issues and strategies.

Critical Thinking Defined…Or Not…

For some critical thinking has a lot to do with understanding one’s own perspective and those of others. Another model [of critical thinking] is dialectic, an idea or work is critiqued in a way that produces a counter-perspective and ultimately leads to a synthesis. For some critical thinking evokes a synthetic or inductive model based on testing evidence and making arguments. The exercise of reflective judgment is also a form of critical thinking.  (“Critical Thinking and Broad Knowledge”)

While widely accepted as an educational imperative, critical thinking, as the above statement (excerpted from meeting notes for a Critical Thinking dialogue group at Western Washington University) indicates, is quite variously conceived and described. . . . Clearly, however, how an institution or department defines this intellectual practice will influence where in the curriculum critical thinking is taught, how it is taught, and, equally importantly, how it is assessed. For those in the process of formulating a working definition, familiarity with the following widely utilized models may serve as a helpful starting point.

Bloom’s Taxonomy

According to Benjamin Bloom’s Taxonomy of Educational Objectives (1956)—a cross-disciplinary model for developing higher-order thinking in students—learning how to think critically involves the mastery of six increasingly complex cognitive skills: knowledge (i.e., possession of specific facts or pieces of information) , comprehension, application, analysis, synthesis, and evaluation . See sidebar for details.

Bloom’s Taxonomy conceives critical thinking mastery as a sequential process, that is, one cannot move to the next cognitive tier without successfully negotiating the previous level.  (“Teaching Critical Thinking”). Thus, some view the taxonomy as “a set of microlevel skills which may be used in critical thinking but do not represent critical thinking” (French and Rhoder 195). Philosopher Richard Paul objects to the taxonomy’s product-oriented conceptualization of thinking as a “one-way hierarchy” as opposed to thinking being a process that involves the recursive use of interrelated skills (French and Rhoder 195).  Nonetheless, Bloom’s Taxonomy has been and continues to be an influential model for those developing critical thinking programs, as its inclusion in the Dartmouth College Composition Center’s critical thinking web page attests (Gocsik).

Knowledge: the remembering (recalling) of appropriate, previously learned terminology/specific facts/ways and means of dealing with specifics (conventions, trends and sequences, classifications and categories, criteria, methodology)/universals and abstractions in a field (principles and generalizations, theories and structures). defines; describes; enumerates; identifies; labels; lists; matches; names; reads; records; reproduces; selects; states; views.

Comprehension: Grasping (understanding) the meaning of informational materials. classifies; cites; converts; describes; discusses; estimates; explains; generalizes; gives examples; makes sense out of; paraphrases; restates (in own words); summarizes; traces; understands.

Application: The use of previously learned information in new and concrete situations to solve problems that have single or best answers. acts; administers; articulates; assesses; charts; collects; computes; constructs; contributes; controls; determines; develops; discovers; establishes; extends; implements; includes; informs; instructs; operationalizes; participates; predicts; prepares; preserves; produces; projects; provides; relates; reports; shows; solves; teaches; transfers; uses; utilizes.

Analysis: The breaking down of informational materials into their component parts, examining (and trying to understand the organizational structure of) such information to develop divergent conclusions by identifying motives or causes, making inferences, and/or finding evidence to support generalizations. breaks down; correlates; diagrams; differentiates; discriminates; distinguishes; focuses; illustrates; infers; limits; outlines; points out; prioritizes; recognizes; separates; subdivides.

Synthesis: Creatively or divergently applying prior knowledge and skills to produce a new or original whole. adapts; anticipates; categorizes; collaborates; combines; communicates; compares; compiles; composes; contrasts; creates; designs; devises; expresses; facilitates; formulates; generates; incorporates; individualizes; initiates; integrates; intervenes; models; modifies; negotiates; plans; progresses; rearranges; reconstructs; reinforces; reorganizes; revises; structures; substitutes; validates.

Evaluation: Judging the value of material based on personal values/opinions, resulting in an end product, with a given purpose, without real right or wrong answers. appraises; compares & contrasts; concludes; criticizes; critiques; decides; defends; interprets; judges; justifies; reframes; supports.

SOURCE: http://faculty.washington.edu/krumme/guides/bloom.html (no longer available)

Beyer’s evaluative thinking model

Barry Beyer, a prominent contemporary thinking skills theorist and teacher, interprets critical thinking as a more specifically evaluative activity than Bloom’s Taxonomy would imply:

Critical thinking is not making decisions or solving problems. It is not the same as reflective thinking, creative thinking, or conceptualizing. Each of these other types of thinking serves a specific purpose. We make decisions in order to choose among alternatives. We solve problems when we encounter an obstacle to a preferred condition. We engage in creative or conceptual thinking to invent or improve things. Critical thinking serves a purpose quite different from these other types of thinking. (Beyer 1995, 8)

For Beyer, the crux of critical thinking is criteria : “ The word critical in critical thinking comes from the Greek word for criterion, kriterion , which means a benchmark for judging” (Beyer 1995, 8-9). Thus, critical (or, to use Beyer’s preferred term, evaluative) thinking provides the means to assess the “accuracy, authenticity, plausibility, or sufficiency of claims” (Beyer 1995, 10).

Beyer asserts that critical thinking involves 10 cognitive operations, which can be employed in any sequence or combination as needed for the thinking task at hand:

  • Distinguishing between verifiable facts and value claims
  • Distinguishing relevant from irrelevant information, claims, or reasons
  • Determining the factual accuracy of a statement
  • Determining the credibility of a source
  • Identifying ambiguous claims or arguments
  • Identifying unstated assumptions
  • Detecting bias
  • Recognizing logical fallacies
  • Recognizing logical inconsistencies in a line of reasoning
  • Determining the strength of an argument or claim (Beyer 1988, 57)

Further, Beyer argues that successful critical thinking requires “complex and often simultaneous interaction” of the following six elements:

o Dispositions. Critical thinkers develop habits of mind that “guide and sustain critical thinking”, including skepticism, fairmindedness, openmindedness, respect for evidence and reasoning, respect for clarity and precision, ability to consider different points of view, and a willingness to alter one’s position when reason and evidence call for such a shift.

o Criteria . Critical thinkers know about and have the ability to construct appropriate benchmarks for judging the issue at hand.

o Argument —defined as “a proposition with its supporting evidence and reasoning.” Critical thinkers are skillful at constructing, identifying, and evaluating the strength of arguments.

o Reasoning —the “cement that holds an argument together.” Critical thinkers determine the strength and validity of a conclusion by examining the soundness of the inductive or deductive process through which the conclusion was reached.

o Point of View. Critical thinkers are aware of their own point of view and capable of examining other points of view in order to better evaluate an issue.

o Procedures for applying criteria and judging. Critical thinkers have a repertoire of strategies appropriate to the subject matter and type of judgment to be made (Beyer 1995, 10-20)

In other words, critical thinkers habitually question the authenticity of anything that confronts them to ascertain exactly the extent to which it is an authentic instance of what it purports to be. In addition, they make judgments based on certain standards or other measures that serve as criteria for plausibility and truthfulness. And they pay special attention to the reasons and reasoning that undergird conclusions and claims.” (Beyer 1995, 22)

Critical thinking as a divergent process

While Beyer depicts critical thinking as a “ con vergent,” narrowing process, others prefer to view it as a di vergent, expanding, exploratory practice (French and Rhoder, 184-85) —a way to open  up new solutions as well as evaluate those that have already been identified.  For example, consider this statement from Peter Taylor of the UMass/Boston Graduate College of Education’s Critical and Creative Thinking Program. (In February, 2001, Taylor led a critical thinking workshop at OSU, sponsored jointly by the College of Liberal Arts’ Center for Excellence in Teaching, Learning, and Research, the Center for Water and Environmental Sustain-ability, and the Office of Academic Affairs; and organized by Anita Helle [English] and Denise Lach [CWest].)

My sense of critical thinking […] depends on inquiry being informed by a strong sense of how things could be otherwise. I want students to see that they understand things better when they have placed established facts, theories, and practices in tension with alternatives . Critical thinking at this level should not depend on students rejecting conventional accounts, but they do have to move through uncertainty. Their knowledge is, at least for a time, destabilized; what has been established cannot be taken for granted.

This view suggests a much closer connection between critical and creative thinking than Beyer, for instance, would subscribe to. However, many of the concerns that underlie the current interest in furthering college students’ critical thinking skills recognize and affirm this connection.

Teaching Considerations and Strategies

. . .  B. Lehman and D. Hayes propose the following strategies for promoting critical thinking in the classroom:

o Help students recognize what they already know about a topic. [For suggestions, see next section.]

o Help students learn to recognize their biases and keep an open mind about the topic. Have students list and share opinions on the subject, but postpone evaluation until more information is gathered.

o Formulate open-ended questions to help students analyze, synthesize, and evaluate the topic.

o Guide students in finding and using diverse sources to explain and support their ideas.

o Have students check the validity of sources and qualifications of authors.

o Help students see there is no single, final authority. By reading several sources on the same topic, students will discover that information is often conflicting and contradictory.

o Help students develop criteria for evaluation. As students learn to support their opinions with logical thinking and comparison of sources, they [develop] critical thinking skills. (Smith 350) . . . .

 The Writing–Critical Thinking Connection

For centuries, the rhetorical assumption about language was that “one first finds knowledge and then puts it into words” (Bizzell, Herzberg, and Reynolds 1)—in other words, thinking always precedes writing or speaking. Today, however, we recognize that “knowledge is actually created by words” (Bizzell, Herzberg, and Reynolds 1) and that writing and thinking are recursive, interdependent processes that promote and enhance one another.

James Sheridan  points out that “the act of generating written discourse is not merely a result of critical thinking but also a stimulus to new thinking and new discoveries” (52). This claim echoes Linda Flower’s assertion that “writing is a generative act—a process of not just ‘expressing’ but ‘making’ meaning” (193-94). The fact is that “when students write, they cannot remain passive players in the learning game” (Gocsik-source no longer available). As Peter Elbow suggests, “writing helps us achieve the perennially difficult task of standing outside our own thinking” (27). Hence, the concept of “writing to learn,” which has become so integral to Writing Across the Curriculum courses and programs.

Using writing to uncover knowledge

As well as using writing to reinforce and integrate new information, writing can be a way of discovering existing knowledge. Many critical thinking experts advocate beginning any new learning unit by identifying what students already know (but often don’t know they know) about the topic.  This strategy promotes critical thinking and active learning by allowing students to “establish a context for new information and share ideas with others” (Smith 350). Two writing strategies that can assist in this discovery process are freewriting and the “write-and-pass” exercise:

Freewriting. Describing freewriting as an activity that “helps students break the writing-is-grammar chain [, which] stultifies the freedom and risk-taking necessary for innovative critical thinking” (53), James Sheridan suggests the process has only two r equirements:

( 1) “You cannot stop writing during the 10-minute exercise.” (2) “You are forbidden to think. [. . .] Write whatever comes into your right (or left) hand. You must keep on writing. Even if you say ‘I don’t know what to write,’ write that. You cannot scratch your head. You cannot gaze pensively at the ceiling. Just write. You are not responsible for what you say; your hand is doing it all. Say anything. Say ‘This is the worst exercise I ever heard of and I can’t believe they’re paying this guy good bucks to have us do it.’ Yell, scream, shout, kick (in written words). Say anything, but keep writing” (52)

With unfocused freewriting, students write about whatever they want. With focused , or directed , freewriting, students are given a topic or question to write on.

Write-and-pass.  Another informal writing assignment that helps students discover what they already know is to ask them to spend a few minutes writing everything they can think of about a given topic or question (for example, “What is critical thinking?”). After several minutes, students pass what they’ve written to the person next to them, and that person reads and expands on the original response. The process is repeated a few more times; generally, with each pass, adding new information becomes more challenging..  The exercise provides a way both for students to focus their thoughts on a particular topic and to benefit from one another’s stores of knowledge.

Assessing Critical Thinking: Current Models

[A]n informed choice of an approach to assessing critical thinking can be made only after faculty have [asked and answered] these questions: What do we think critical thinking is? How do the critical thinking skills, processes, and strategies work together, and what aspects or combinations of them do we wish to assess? What are our students like? What are their motivations [and] environments? What are our assumptions relative to the knowledge and abilities that students need prior to engaging in college-level critical thinking? (Carpenter and Doig 34-35)

Carpenter and Doig’s observation comes from a 1988 review of assessment instruments developed for specific critical thinking courses and programs. Alternatively, the  rubric developed in 2002 by Washington State University’s Critical Thinking Project can be used in subject-matter courses across the curriculum that focus on critical thinking. This rubric includes the following criteria for student writing:

  • Identifies and summarizes the problem/question at issue.
  • Identifies and presents the student’s own perspective and position as it is important to the analysis of the issue.
  • Identifies and considers other salient perspectives and positions that are important to the analysis of the issue.
  • Identifies and assesses the key assumptions.
  • Identifies and assesses the quality of supporting data/evidence and provides additional data/evidence related to the issue.
  • Identifies and considers the influence of the context (e.g. cultural/social, scientific, educational, economic, technological, ethical, political, personal, and so on) on the issue.
  • Identifies and assesses conclusions, implications, and consequences. “Critical Thinking Rubric” no longer available online.

Each item in the rubric includes a description of what would be considered “scant” vs “substantially developed” coverage of that item. The Washington State Critical Thinking Project website is no longer available online.

A Final Note

In this article, we have focused on what Kerry S. Walters describes as the “logicistic” model of critical thinking—that is (according to Walters) “the unwarranted assumption that good thinking is reducible to logical thinking” (1). In Re-Thinking Reason: New Perspectives in Critical Thinking , Walters explores an alternative model being forwarded by an emerging “second-wave” of critical thinking research and pedagogy. Second-wave advocates argue that while “logical skills are essential functions of good thinking, […] so are non-analytic ones such as imagination and intuition, and the good thinker knows how to utilize both types” (2).  This reconception of critical thinking is grounded in current scholarship in the fields of philosophy, psychology, education, feminist theory, and critical pedagogy; Walters’s book serves as an introduction to and dialogue among some of the proponents and practitioners of this alternative. While beyond the scope of this article, the second-wave perspective on critical thinking deserves our serious attention and consideration as well.

This article was previously published in entirety in Teaching with Writing , Winter 2004.

Works Cited (some sources no longer available)

Beyer, Barry K. Critical Thinking. Bloomington, IN: Phi Delta Kappa Educational Foundation, 1995.

________. Developing a Thinking Skills Program. Boston: Allyn and Bacon, 1988.

Bizzell, Patricia, Bruce Hertzberg, and Nedra Reynolds. The Bedford Bibliography for Teachers of Writing. 5th Ed. Boston: Bedford/St. Martin’s, 2000.

Carpenter, C. Blaine, and James C. Doig. “Assessing Critical Thinking Across the Curriculum.” Assessing Student’s Learning 34 (Summer 1988): 33-46.

“Critical Thinking and Broad Knowledge Meeting Notes.” 2 Nov. 2001. Center for Instructional Innovation, Western Washington University. 4 March 2003.  http://pandora.cii.wwu.edu/gened/dialogue/critical_notes_nov.htm Source no longer available.

Elbow, Peter. “Teaching Two Kinds of Thinking by Teaching Writing.” Re-Thinking Reason: New Perspectives in Critical Thinking . Ed. Kerry S. Walters. Albany: SUNY Press, 1994. 25-31.

Flower, Linda. “Taking Thought: The Role of Conscious Processing in the Making of Meaning.” Thinking, Reasoning, and Writing. Ed. Elaine P. Maimon, Barbara F. Nodine, and Finbarr W. O’Connor. NY: Longman, 1989. 185-212.

French, Joyce N. and Carol Rhoder. Teaching Thinking Skills: Theory and Practice. NY: Garland, 1992.

Gocsik, Karen. “Teaching Critical Thinking.: 1997 Dartmouth College Composition Center. Source no longer available.

Scriven, Michael and Richard Paul. “Defining Critical Thinking.” Draft Statement for the National Council for Excellence in Critical Thinking. Foundation for Critical Thinking. 27 Feb. 2003. <http://www.criticalthinking.org/pages/definint-critical-thinking/766>

Sheridan, James J. “Skipping on the Brink of the Abyss: Teaching Thinking Through Writing.” Cr itical Thinking: Educational Imperative. Ed. Cynthia A. Barnes. New Directions for Community Colleges, No. 77. San Francisco: Jossey-Bass, 1992. 51-61.

Smith, Carl B. “Two Approaches to Critical Thinking.” The Reading Teacher 4.4  (Dec. 1990): 350-51.

Stewart, Ruth. “Teaching Critical Thinking in First-Year Composition: Sometimes More Is More.” Teaching English at the Two-Year College 29 (Dec. 2001): 162-171.

Taylor, Peter. “We Know More Than We Are, At First, Prepared To Acknowledge: Journeying to Develop Critical Thinking.” 12 March 2003 <http://www.faculty.umb.edu/pjt/journey.html>

Walters, Kerry S. Re-Thinking Reason: New Perspectives in Critical Thinking. Albany: SUNY Press, 1994.

Print Friendly, PDF & Email

Comments are closed.

Contact Info

University of Louisville

  • Programs & Services
  • Delphi Center

Ideas to Action (i2a)

  • Paul-Elder Critical Thinking Framework

Critical thinking is that mode of thinking – about any subject, content, or problem — in which the thinker improves the quality of his or her thinking by skillfully taking charge of the structures inherent in thinking and imposing intellectual standards upon them. (Paul and Elder, 2001). The Paul-Elder framework has three components:

  • The elements of thought (reasoning)
  • The  intellectual standards that should be applied to the elements of reasoning
  • The intellectual traits associated with a cultivated critical thinker that result from the consistent and disciplined application of the intellectual standards to the elements of thought

Graphic Representation of Paul-Elder Critical Thinking Framework

According to Paul and Elder (1997), there are two essential dimensions of thinking that students need to master in order to learn how to upgrade their thinking. They need to be able to identify the "parts" of their thinking, and they need to be able to assess their use of these parts of thinking.

Elements of Thought (reasoning)

The "parts" or elements of thinking are as follows:

  • All reasoning has a purpose
  • All reasoning is an attempt to figure something out, to settle some question, to solve some problem
  • All reasoning is based on assumptions
  • All reasoning is done from some point of view
  • All reasoning is based on data, information and evidence
  • All reasoning is expressed through, and shaped by, concepts and ideas
  • All reasoning contains inferences or interpretations by which we draw conclusions and give meaning to data
  • All reasoning leads somewhere or has implications and consequences

Universal Intellectual Standards

The intellectual standards that are to these elements are used to determine the quality of reasoning. Good critical thinking requires having a command of these standards. According to Paul and Elder (1997 ,2006), the ultimate goal is for the standards of reasoning to become infused in all thinking so as to become the guide to better and better reasoning. The intellectual standards include:

Intellectual Traits

Consistent application of the standards of thinking to the elements of thinking result in the development of intellectual traits of:

  • Intellectual Humility
  • Intellectual Courage
  • Intellectual Empathy
  • Intellectual Autonomy
  • Intellectual Integrity
  • Intellectual Perseverance
  • Confidence in Reason
  • Fair-mindedness

Characteristics of a Well-Cultivated Critical Thinker

Habitual utilization of the intellectual traits produce a well-cultivated critical thinker who is able to:

  • Raise vital questions and problems, formulating them clearly and precisely
  • Gather and assess relevant information, using abstract ideas to interpret it effectively
  • Come to well-reasoned conclusions and solutions, testing them against relevant criteria and standards;
  • Think open-mindedly within alternative systems of thought, recognizing and assessing, as need be, their assumptions, implications, and practical consequences; and
  • Communicate effectively with others in figuring out solutions to complex problems

Paul, R. and Elder, L. (2010). The Miniature Guide to Critical Thinking Concepts and Tools. Dillon Beach: Foundation for Critical Thinking Press.

  • SACS & QEP
  • Planning and Implementation
  • What is Critical Thinking?
  • Why Focus on Critical Thinking?
  • Culminating Undergraduate Experience
  • Community Engagement
  • Frequently Asked Questions
  • What is i2a?

Copyright © 2012 - University of Louisville , Delphi Center

SEP home page

  • Table of Contents
  • Random Entry
  • Chronological
  • Editorial Information
  • About the SEP
  • Editorial Board
  • How to Cite the SEP
  • Special Characters
  • Advanced Tools
  • Support the SEP
  • PDFs for SEP Friends
  • Make a Donation
  • SEPIA for Libraries
  • Entry Contents

Bibliography

Academic tools.

  • Friends PDF Preview
  • Author and Citation Info
  • Back to Top

Critical Thinking

Critical thinking is a widely accepted educational goal. Its definition is contested, but the competing definitions can be understood as differing conceptions of the same basic concept: careful thinking directed to a goal. Conceptions differ with respect to the scope of such thinking, the type of goal, the criteria and norms for thinking carefully, and the thinking components on which they focus. Its adoption as an educational goal has been recommended on the basis of respect for students’ autonomy and preparing students for success in life and for democratic citizenship. “Critical thinkers” have the dispositions and abilities that lead them to think critically when appropriate. The abilities can be identified directly; the dispositions indirectly, by considering what factors contribute to or impede exercise of the abilities. Standardized tests have been developed to assess the degree to which a person possesses such dispositions and abilities. Educational intervention has been shown experimentally to improve them, particularly when it includes dialogue, anchored instruction, and mentoring. Controversies have arisen over the generalizability of critical thinking across domains, over alleged bias in critical thinking theories and instruction, and over the relationship of critical thinking to other types of thinking.

2.1 Dewey’s Three Main Examples

2.2 dewey’s other examples, 2.3 further examples, 2.4 non-examples, 3. the definition of critical thinking, 4. its value, 5. the process of thinking critically, 6. components of the process, 7. contributory dispositions and abilities, 8.1 initiating dispositions, 8.2 internal dispositions, 9. critical thinking abilities, 10. required knowledge, 11. educational methods, 12.1 the generalizability of critical thinking, 12.2 bias in critical thinking theory and pedagogy, 12.3 relationship of critical thinking to other types of thinking, other internet resources, related entries.

Use of the term ‘critical thinking’ to describe an educational goal goes back to the American philosopher John Dewey (1910), who more commonly called it ‘reflective thinking’. He defined it as

active, persistent and careful consideration of any belief or supposed form of knowledge in the light of the grounds that support it, and the further conclusions to which it tends. (Dewey 1910: 6; 1933: 9)

and identified a habit of such consideration with a scientific attitude of mind. His lengthy quotations of Francis Bacon, John Locke, and John Stuart Mill indicate that he was not the first person to propose development of a scientific attitude of mind as an educational goal.

In the 1930s, many of the schools that participated in the Eight-Year Study of the Progressive Education Association (Aikin 1942) adopted critical thinking as an educational goal, for whose achievement the study’s Evaluation Staff developed tests (Smith, Tyler, & Evaluation Staff 1942). Glaser (1941) showed experimentally that it was possible to improve the critical thinking of high school students. Bloom’s influential taxonomy of cognitive educational objectives (Bloom et al. 1956) incorporated critical thinking abilities. Ennis (1962) proposed 12 aspects of critical thinking as a basis for research on the teaching and evaluation of critical thinking ability.

Since 1980, an annual international conference in California on critical thinking and educational reform has attracted tens of thousands of educators from all levels of education and from many parts of the world. Also since 1980, the state university system in California has required all undergraduate students to take a critical thinking course. Since 1983, the Association for Informal Logic and Critical Thinking has sponsored sessions in conjunction with the divisional meetings of the American Philosophical Association (APA). In 1987, the APA’s Committee on Pre-College Philosophy commissioned a consensus statement on critical thinking for purposes of educational assessment and instruction (Facione 1990a). Researchers have developed standardized tests of critical thinking abilities and dispositions; for details, see the Supplement on Assessment . Educational jurisdictions around the world now include critical thinking in guidelines for curriculum and assessment.

For details on this history, see the Supplement on History .

2. Examples and Non-Examples

Before considering the definition of critical thinking, it will be helpful to have in mind some examples of critical thinking, as well as some examples of kinds of thinking that would apparently not count as critical thinking.

Dewey (1910: 68–71; 1933: 91–94) takes as paradigms of reflective thinking three class papers of students in which they describe their thinking. The examples range from the everyday to the scientific.

Transit : “The other day, when I was down town on 16th Street, a clock caught my eye. I saw that the hands pointed to 12:20. This suggested that I had an engagement at 124th Street, at one o’clock. I reasoned that as it had taken me an hour to come down on a surface car, I should probably be twenty minutes late if I returned the same way. I might save twenty minutes by a subway express. But was there a station near? If not, I might lose more than twenty minutes in looking for one. Then I thought of the elevated, and I saw there was such a line within two blocks. But where was the station? If it were several blocks above or below the street I was on, I should lose time instead of gaining it. My mind went back to the subway express as quicker than the elevated; furthermore, I remembered that it went nearer than the elevated to the part of 124th Street I wished to reach, so that time would be saved at the end of the journey. I concluded in favor of the subway, and reached my destination by one o’clock.” (Dewey 1910: 68–69; 1933: 91–92)

Ferryboat : “Projecting nearly horizontally from the upper deck of the ferryboat on which I daily cross the river is a long white pole, having a gilded ball at its tip. It suggested a flagpole when I first saw it; its color, shape, and gilded ball agreed with this idea, and these reasons seemed to justify me in this belief. But soon difficulties presented themselves. The pole was nearly horizontal, an unusual position for a flagpole; in the next place, there was no pulley, ring, or cord by which to attach a flag; finally, there were elsewhere on the boat two vertical staffs from which flags were occasionally flown. It seemed probable that the pole was not there for flag-flying.

“I then tried to imagine all possible purposes of the pole, and to consider for which of these it was best suited: (a) Possibly it was an ornament. But as all the ferryboats and even the tugboats carried poles, this hypothesis was rejected. (b) Possibly it was the terminal of a wireless telegraph. But the same considerations made this improbable. Besides, the more natural place for such a terminal would be the highest part of the boat, on top of the pilot house. (c) Its purpose might be to point out the direction in which the boat is moving.

“In support of this conclusion, I discovered that the pole was lower than the pilot house, so that the steersman could easily see it. Moreover, the tip was enough higher than the base, so that, from the pilot’s position, it must appear to project far out in front of the boat. Moreover, the pilot being near the front of the boat, he would need some such guide as to its direction. Tugboats would also need poles for such a purpose. This hypothesis was so much more probable than the others that I accepted it. I formed the conclusion that the pole was set up for the purpose of showing the pilot the direction in which the boat pointed, to enable him to steer correctly.” (Dewey 1910: 69–70; 1933: 92–93)

Bubbles : “In washing tumblers in hot soapsuds and placing them mouth downward on a plate, bubbles appeared on the outside of the mouth of the tumblers and then went inside. Why? The presence of bubbles suggests air, which I note must come from inside the tumbler. I see that the soapy water on the plate prevents escape of the air save as it may be caught in bubbles. But why should air leave the tumbler? There was no substance entering to force it out. It must have expanded. It expands by increase of heat, or by decrease of pressure, or both. Could the air have become heated after the tumbler was taken from the hot suds? Clearly not the air that was already entangled in the water. If heated air was the cause, cold air must have entered in transferring the tumblers from the suds to the plate. I test to see if this supposition is true by taking several more tumblers out. Some I shake so as to make sure of entrapping cold air in them. Some I take out holding mouth downward in order to prevent cold air from entering. Bubbles appear on the outside of every one of the former and on none of the latter. I must be right in my inference. Air from the outside must have been expanded by the heat of the tumbler, which explains the appearance of the bubbles on the outside. But why do they then go inside? Cold contracts. The tumbler cooled and also the air inside it. Tension was removed, and hence bubbles appeared inside. To be sure of this, I test by placing a cup of ice on the tumbler while the bubbles are still forming outside. They soon reverse” (Dewey 1910: 70–71; 1933: 93–94).

Dewey (1910, 1933) sprinkles his book with other examples of critical thinking. We will refer to the following.

Weather : A man on a walk notices that it has suddenly become cool, thinks that it is probably going to rain, looks up and sees a dark cloud obscuring the sun, and quickens his steps (1910: 6–10; 1933: 9–13).

Disorder : A man finds his rooms on his return to them in disorder with his belongings thrown about, thinks at first of burglary as an explanation, then thinks of mischievous children as being an alternative explanation, then looks to see whether valuables are missing, and discovers that they are (1910: 82–83; 1933: 166–168).

Typhoid : A physician diagnosing a patient whose conspicuous symptoms suggest typhoid avoids drawing a conclusion until more data are gathered by questioning the patient and by making tests (1910: 85–86; 1933: 170).

Blur : A moving blur catches our eye in the distance, we ask ourselves whether it is a cloud of whirling dust or a tree moving its branches or a man signaling to us, we think of other traits that should be found on each of those possibilities, and we look and see if those traits are found (1910: 102, 108; 1933: 121, 133).

Suction pump : In thinking about the suction pump, the scientist first notes that it will draw water only to a maximum height of 33 feet at sea level and to a lesser maximum height at higher elevations, selects for attention the differing atmospheric pressure at these elevations, sets up experiments in which the air is removed from a vessel containing water (when suction no longer works) and in which the weight of air at various levels is calculated, compares the results of reasoning about the height to which a given weight of air will allow a suction pump to raise water with the observed maximum height at different elevations, and finally assimilates the suction pump to such apparently different phenomena as the siphon and the rising of a balloon (1910: 150–153; 1933: 195–198).

Diamond : A passenger in a car driving in a diamond lane reserved for vehicles with at least one passenger notices that the diamond marks on the pavement are far apart in some places and close together in others. Why? The driver suggests that the reason may be that the diamond marks are not needed where there is a solid double line separating the diamond lane from the adjoining lane, but are needed when there is a dotted single line permitting crossing into the diamond lane. Further observation confirms that the diamonds are close together when a dotted line separates the diamond lane from its neighbour, but otherwise far apart.

Rash : A woman suddenly develops a very itchy red rash on her throat and upper chest. She recently noticed a mark on the back of her right hand, but was not sure whether the mark was a rash or a scrape. She lies down in bed and thinks about what might be causing the rash and what to do about it. About two weeks before, she began taking blood pressure medication that contained a sulfa drug, and the pharmacist had warned her, in view of a previous allergic reaction to a medication containing a sulfa drug, to be on the alert for an allergic reaction; however, she had been taking the medication for two weeks with no such effect. The day before, she began using a new cream on her neck and upper chest; against the new cream as the cause was mark on the back of her hand, which had not been exposed to the cream. She began taking probiotics about a month before. She also recently started new eye drops, but she supposed that manufacturers of eye drops would be careful not to include allergy-causing components in the medication. The rash might be a heat rash, since she recently was sweating profusely from her upper body. Since she is about to go away on a short vacation, where she would not have access to her usual physician, she decides to keep taking the probiotics and using the new eye drops but to discontinue the blood pressure medication and to switch back to the old cream for her neck and upper chest. She forms a plan to consult her regular physician on her return about the blood pressure medication.

Candidate : Although Dewey included no examples of thinking directed at appraising the arguments of others, such thinking has come to be considered a kind of critical thinking. We find an example of such thinking in the performance task on the Collegiate Learning Assessment (CLA+), which its sponsoring organization describes as

a performance-based assessment that provides a measure of an institution’s contribution to the development of critical-thinking and written communication skills of its students. (Council for Aid to Education 2017)

A sample task posted on its website requires the test-taker to write a report for public distribution evaluating a fictional candidate’s policy proposals and their supporting arguments, using supplied background documents, with a recommendation on whether to endorse the candidate.

Immediate acceptance of an idea that suggests itself as a solution to a problem (e.g., a possible explanation of an event or phenomenon, an action that seems likely to produce a desired result) is “uncritical thinking, the minimum of reflection” (Dewey 1910: 13). On-going suspension of judgment in the light of doubt about a possible solution is not critical thinking (Dewey 1910: 108). Critique driven by a dogmatically held political or religious ideology is not critical thinking; thus Paulo Freire (1968 [1970]) is using the term (e.g., at 1970: 71, 81, 100, 146) in a more politically freighted sense that includes not only reflection but also revolutionary action against oppression. Derivation of a conclusion from given data using an algorithm is not critical thinking.

What is critical thinking? There are many definitions. Ennis (2016) lists 14 philosophically oriented scholarly definitions and three dictionary definitions. Following Rawls (1971), who distinguished his conception of justice from a utilitarian conception but regarded them as rival conceptions of the same concept, Ennis maintains that the 17 definitions are different conceptions of the same concept. Rawls articulated the shared concept of justice as

a characteristic set of principles for assigning basic rights and duties and for determining… the proper distribution of the benefits and burdens of social cooperation. (Rawls 1971: 5)

Bailin et al. (1999b) claim that, if one considers what sorts of thinking an educator would take not to be critical thinking and what sorts to be critical thinking, one can conclude that educators typically understand critical thinking to have at least three features.

  • It is done for the purpose of making up one’s mind about what to believe or do.
  • The person engaging in the thinking is trying to fulfill standards of adequacy and accuracy appropriate to the thinking.
  • The thinking fulfills the relevant standards to some threshold level.

One could sum up the core concept that involves these three features by saying that critical thinking is careful goal-directed thinking. This core concept seems to apply to all the examples of critical thinking described in the previous section. As for the non-examples, their exclusion depends on construing careful thinking as excluding jumping immediately to conclusions, suspending judgment no matter how strong the evidence, reasoning from an unquestioned ideological or religious perspective, and routinely using an algorithm to answer a question.

If the core of critical thinking is careful goal-directed thinking, conceptions of it can vary according to its presumed scope, its presumed goal, one’s criteria and threshold for being careful, and the thinking component on which one focuses. As to its scope, some conceptions (e.g., Dewey 1910, 1933) restrict it to constructive thinking on the basis of one’s own observations and experiments, others (e.g., Ennis 1962; Fisher & Scriven 1997; Johnson 1992) to appraisal of the products of such thinking. Ennis (1991) and Bailin et al. (1999b) take it to cover both construction and appraisal. As to its goal, some conceptions restrict it to forming a judgment (Dewey 1910, 1933; Lipman 1987; Facione 1990a). Others allow for actions as well as beliefs as the end point of a process of critical thinking (Ennis 1991; Bailin et al. 1999b). As to the criteria and threshold for being careful, definitions vary in the term used to indicate that critical thinking satisfies certain norms: “intellectually disciplined” (Scriven & Paul 1987), “reasonable” (Ennis 1991), “skillful” (Lipman 1987), “skilled” (Fisher & Scriven 1997), “careful” (Bailin & Battersby 2009). Some definitions specify these norms, referring variously to “consideration of any belief or supposed form of knowledge in the light of the grounds that support it and the further conclusions to which it tends” (Dewey 1910, 1933); “the methods of logical inquiry and reasoning” (Glaser 1941); “conceptualizing, applying, analyzing, synthesizing, and/or evaluating information gathered from, or generated by, observation, experience, reflection, reasoning, or communication” (Scriven & Paul 1987); the requirement that “it is sensitive to context, relies on criteria, and is self-correcting” (Lipman 1987); “evidential, conceptual, methodological, criteriological, or contextual considerations” (Facione 1990a); and “plus-minus considerations of the product in terms of appropriate standards (or criteria)” (Johnson 1992). Stanovich and Stanovich (2010) propose to ground the concept of critical thinking in the concept of rationality, which they understand as combining epistemic rationality (fitting one’s beliefs to the world) and instrumental rationality (optimizing goal fulfillment); a critical thinker, in their view, is someone with “a propensity to override suboptimal responses from the autonomous mind” (2010: 227). These variant specifications of norms for critical thinking are not necessarily incompatible with one another, and in any case presuppose the core notion of thinking carefully. As to the thinking component singled out, some definitions focus on suspension of judgment during the thinking (Dewey 1910; McPeck 1981), others on inquiry while judgment is suspended (Bailin & Battersby 2009, 2021), others on the resulting judgment (Facione 1990a), and still others on responsiveness to reasons (Siegel 1988). Kuhn (2019) takes critical thinking to be more a dialogic practice of advancing and responding to arguments than an individual ability.

In educational contexts, a definition of critical thinking is a “programmatic definition” (Scheffler 1960: 19). It expresses a practical program for achieving an educational goal. For this purpose, a one-sentence formulaic definition is much less useful than articulation of a critical thinking process, with criteria and standards for the kinds of thinking that the process may involve. The real educational goal is recognition, adoption and implementation by students of those criteria and standards. That adoption and implementation in turn consists in acquiring the knowledge, abilities and dispositions of a critical thinker.

Conceptions of critical thinking generally do not include moral integrity as part of the concept. Dewey, for example, took critical thinking to be the ultimate intellectual goal of education, but distinguished it from the development of social cooperation among school children, which he took to be the central moral goal. Ennis (1996, 2011) added to his previous list of critical thinking dispositions a group of dispositions to care about the dignity and worth of every person, which he described as a “correlative” (1996) disposition without which critical thinking would be less valuable and perhaps harmful. An educational program that aimed at developing critical thinking but not the correlative disposition to care about the dignity and worth of every person, he asserted, “would be deficient and perhaps dangerous” (Ennis 1996: 172).

Dewey thought that education for reflective thinking would be of value to both the individual and society; recognition in educational practice of the kinship to the scientific attitude of children’s native curiosity, fertile imagination and love of experimental inquiry “would make for individual happiness and the reduction of social waste” (Dewey 1910: iii). Schools participating in the Eight-Year Study took development of the habit of reflective thinking and skill in solving problems as a means to leading young people to understand, appreciate and live the democratic way of life characteristic of the United States (Aikin 1942: 17–18, 81). Harvey Siegel (1988: 55–61) has offered four considerations in support of adopting critical thinking as an educational ideal. (1) Respect for persons requires that schools and teachers honour students’ demands for reasons and explanations, deal with students honestly, and recognize the need to confront students’ independent judgment; these requirements concern the manner in which teachers treat students. (2) Education has the task of preparing children to be successful adults, a task that requires development of their self-sufficiency. (3) Education should initiate children into the rational traditions in such fields as history, science and mathematics. (4) Education should prepare children to become democratic citizens, which requires reasoned procedures and critical talents and attitudes. To supplement these considerations, Siegel (1988: 62–90) responds to two objections: the ideology objection that adoption of any educational ideal requires a prior ideological commitment and the indoctrination objection that cultivation of critical thinking cannot escape being a form of indoctrination.

Despite the diversity of our 11 examples, one can recognize a common pattern. Dewey analyzed it as consisting of five phases:

  • suggestions , in which the mind leaps forward to a possible solution;
  • an intellectualization of the difficulty or perplexity into a problem to be solved, a question for which the answer must be sought;
  • the use of one suggestion after another as a leading idea, or hypothesis , to initiate and guide observation and other operations in collection of factual material;
  • the mental elaboration of the idea or supposition as an idea or supposition ( reasoning , in the sense on which reasoning is a part, not the whole, of inference); and
  • testing the hypothesis by overt or imaginative action. (Dewey 1933: 106–107; italics in original)

The process of reflective thinking consisting of these phases would be preceded by a perplexed, troubled or confused situation and followed by a cleared-up, unified, resolved situation (Dewey 1933: 106). The term ‘phases’ replaced the term ‘steps’ (Dewey 1910: 72), thus removing the earlier suggestion of an invariant sequence. Variants of the above analysis appeared in (Dewey 1916: 177) and (Dewey 1938: 101–119).

The variant formulations indicate the difficulty of giving a single logical analysis of such a varied process. The process of critical thinking may have a spiral pattern, with the problem being redefined in the light of obstacles to solving it as originally formulated. For example, the person in Transit might have concluded that getting to the appointment at the scheduled time was impossible and have reformulated the problem as that of rescheduling the appointment for a mutually convenient time. Further, defining a problem does not always follow after or lead immediately to an idea of a suggested solution. Nor should it do so, as Dewey himself recognized in describing the physician in Typhoid as avoiding any strong preference for this or that conclusion before getting further information (Dewey 1910: 85; 1933: 170). People with a hypothesis in mind, even one to which they have a very weak commitment, have a so-called “confirmation bias” (Nickerson 1998): they are likely to pay attention to evidence that confirms the hypothesis and to ignore evidence that counts against it or for some competing hypothesis. Detectives, intelligence agencies, and investigators of airplane accidents are well advised to gather relevant evidence systematically and to postpone even tentative adoption of an explanatory hypothesis until the collected evidence rules out with the appropriate degree of certainty all but one explanation. Dewey’s analysis of the critical thinking process can be faulted as well for requiring acceptance or rejection of a possible solution to a defined problem, with no allowance for deciding in the light of the available evidence to suspend judgment. Further, given the great variety of kinds of problems for which reflection is appropriate, there is likely to be variation in its component events. Perhaps the best way to conceptualize the critical thinking process is as a checklist whose component events can occur in a variety of orders, selectively, and more than once. These component events might include (1) noticing a difficulty, (2) defining the problem, (3) dividing the problem into manageable sub-problems, (4) formulating a variety of possible solutions to the problem or sub-problem, (5) determining what evidence is relevant to deciding among possible solutions to the problem or sub-problem, (6) devising a plan of systematic observation or experiment that will uncover the relevant evidence, (7) carrying out the plan of systematic observation or experimentation, (8) noting the results of the systematic observation or experiment, (9) gathering relevant testimony and information from others, (10) judging the credibility of testimony and information gathered from others, (11) drawing conclusions from gathered evidence and accepted testimony, and (12) accepting a solution that the evidence adequately supports (cf. Hitchcock 2017: 485).

Checklist conceptions of the process of critical thinking are open to the objection that they are too mechanical and procedural to fit the multi-dimensional and emotionally charged issues for which critical thinking is urgently needed (Paul 1984). For such issues, a more dialectical process is advocated, in which competing relevant world views are identified, their implications explored, and some sort of creative synthesis attempted.

If one considers the critical thinking process illustrated by the 11 examples, one can identify distinct kinds of mental acts and mental states that form part of it. To distinguish, label and briefly characterize these components is a useful preliminary to identifying abilities, skills, dispositions, attitudes, habits and the like that contribute causally to thinking critically. Identifying such abilities and habits is in turn a useful preliminary to setting educational goals. Setting the goals is in its turn a useful preliminary to designing strategies for helping learners to achieve the goals and to designing ways of measuring the extent to which learners have done so. Such measures provide both feedback to learners on their achievement and a basis for experimental research on the effectiveness of various strategies for educating people to think critically. Let us begin, then, by distinguishing the kinds of mental acts and mental events that can occur in a critical thinking process.

  • Observing : One notices something in one’s immediate environment (sudden cooling of temperature in Weather , bubbles forming outside a glass and then going inside in Bubbles , a moving blur in the distance in Blur , a rash in Rash ). Or one notes the results of an experiment or systematic observation (valuables missing in Disorder , no suction without air pressure in Suction pump )
  • Feeling : One feels puzzled or uncertain about something (how to get to an appointment on time in Transit , why the diamonds vary in spacing in Diamond ). One wants to resolve this perplexity. One feels satisfaction once one has worked out an answer (to take the subway express in Transit , diamonds closer when needed as a warning in Diamond ).
  • Wondering : One formulates a question to be addressed (why bubbles form outside a tumbler taken from hot water in Bubbles , how suction pumps work in Suction pump , what caused the rash in Rash ).
  • Imagining : One thinks of possible answers (bus or subway or elevated in Transit , flagpole or ornament or wireless communication aid or direction indicator in Ferryboat , allergic reaction or heat rash in Rash ).
  • Inferring : One works out what would be the case if a possible answer were assumed (valuables missing if there has been a burglary in Disorder , earlier start to the rash if it is an allergic reaction to a sulfa drug in Rash ). Or one draws a conclusion once sufficient relevant evidence is gathered (take the subway in Transit , burglary in Disorder , discontinue blood pressure medication and new cream in Rash ).
  • Knowledge : One uses stored knowledge of the subject-matter to generate possible answers or to infer what would be expected on the assumption of a particular answer (knowledge of a city’s public transit system in Transit , of the requirements for a flagpole in Ferryboat , of Boyle’s law in Bubbles , of allergic reactions in Rash ).
  • Experimenting : One designs and carries out an experiment or a systematic observation to find out whether the results deduced from a possible answer will occur (looking at the location of the flagpole in relation to the pilot’s position in Ferryboat , putting an ice cube on top of a tumbler taken from hot water in Bubbles , measuring the height to which a suction pump will draw water at different elevations in Suction pump , noticing the spacing of diamonds when movement to or from a diamond lane is allowed in Diamond ).
  • Consulting : One finds a source of information, gets the information from the source, and makes a judgment on whether to accept it. None of our 11 examples include searching for sources of information. In this respect they are unrepresentative, since most people nowadays have almost instant access to information relevant to answering any question, including many of those illustrated by the examples. However, Candidate includes the activities of extracting information from sources and evaluating its credibility.
  • Identifying and analyzing arguments : One notices an argument and works out its structure and content as a preliminary to evaluating its strength. This activity is central to Candidate . It is an important part of a critical thinking process in which one surveys arguments for various positions on an issue.
  • Judging : One makes a judgment on the basis of accumulated evidence and reasoning, such as the judgment in Ferryboat that the purpose of the pole is to provide direction to the pilot.
  • Deciding : One makes a decision on what to do or on what policy to adopt, as in the decision in Transit to take the subway.

By definition, a person who does something voluntarily is both willing and able to do that thing at that time. Both the willingness and the ability contribute causally to the person’s action, in the sense that the voluntary action would not occur if either (or both) of these were lacking. For example, suppose that one is standing with one’s arms at one’s sides and one voluntarily lifts one’s right arm to an extended horizontal position. One would not do so if one were unable to lift one’s arm, if for example one’s right side was paralyzed as the result of a stroke. Nor would one do so if one were unwilling to lift one’s arm, if for example one were participating in a street demonstration at which a white supremacist was urging the crowd to lift their right arm in a Nazi salute and one were unwilling to express support in this way for the racist Nazi ideology. The same analysis applies to a voluntary mental process of thinking critically. It requires both willingness and ability to think critically, including willingness and ability to perform each of the mental acts that compose the process and to coordinate those acts in a sequence that is directed at resolving the initiating perplexity.

Consider willingness first. We can identify causal contributors to willingness to think critically by considering factors that would cause a person who was able to think critically about an issue nevertheless not to do so (Hamby 2014). For each factor, the opposite condition thus contributes causally to willingness to think critically on a particular occasion. For example, people who habitually jump to conclusions without considering alternatives will not think critically about issues that arise, even if they have the required abilities. The contrary condition of willingness to suspend judgment is thus a causal contributor to thinking critically.

Now consider ability. In contrast to the ability to move one’s arm, which can be completely absent because a stroke has left the arm paralyzed, the ability to think critically is a developed ability, whose absence is not a complete absence of ability to think but absence of ability to think well. We can identify the ability to think well directly, in terms of the norms and standards for good thinking. In general, to be able do well the thinking activities that can be components of a critical thinking process, one needs to know the concepts and principles that characterize their good performance, to recognize in particular cases that the concepts and principles apply, and to apply them. The knowledge, recognition and application may be procedural rather than declarative. It may be domain-specific rather than widely applicable, and in either case may need subject-matter knowledge, sometimes of a deep kind.

Reflections of the sort illustrated by the previous two paragraphs have led scholars to identify the knowledge, abilities and dispositions of a “critical thinker”, i.e., someone who thinks critically whenever it is appropriate to do so. We turn now to these three types of causal contributors to thinking critically. We start with dispositions, since arguably these are the most powerful contributors to being a critical thinker, can be fostered at an early stage of a child’s development, and are susceptible to general improvement (Glaser 1941: 175)

8. Critical Thinking Dispositions

Educational researchers use the term ‘dispositions’ broadly for the habits of mind and attitudes that contribute causally to being a critical thinker. Some writers (e.g., Paul & Elder 2006; Hamby 2014; Bailin & Battersby 2016a) propose to use the term ‘virtues’ for this dimension of a critical thinker. The virtues in question, although they are virtues of character, concern the person’s ways of thinking rather than the person’s ways of behaving towards others. They are not moral virtues but intellectual virtues, of the sort articulated by Zagzebski (1996) and discussed by Turri, Alfano, and Greco (2017).

On a realistic conception, thinking dispositions or intellectual virtues are real properties of thinkers. They are general tendencies, propensities, or inclinations to think in particular ways in particular circumstances, and can be genuinely explanatory (Siegel 1999). Sceptics argue that there is no evidence for a specific mental basis for the habits of mind that contribute to thinking critically, and that it is pedagogically misleading to posit such a basis (Bailin et al. 1999a). Whatever their status, critical thinking dispositions need motivation for their initial formation in a child—motivation that may be external or internal. As children develop, the force of habit will gradually become important in sustaining the disposition (Nieto & Valenzuela 2012). Mere force of habit, however, is unlikely to sustain critical thinking dispositions. Critical thinkers must value and enjoy using their knowledge and abilities to think things through for themselves. They must be committed to, and lovers of, inquiry.

A person may have a critical thinking disposition with respect to only some kinds of issues. For example, one could be open-minded about scientific issues but not about religious issues. Similarly, one could be confident in one’s ability to reason about the theological implications of the existence of evil in the world but not in one’s ability to reason about the best design for a guided ballistic missile.

Facione (1990a: 25) divides “affective dispositions” of critical thinking into approaches to life and living in general and approaches to specific issues, questions or problems. Adapting this distinction, one can usefully divide critical thinking dispositions into initiating dispositions (those that contribute causally to starting to think critically about an issue) and internal dispositions (those that contribute causally to doing a good job of thinking critically once one has started). The two categories are not mutually exclusive. For example, open-mindedness, in the sense of willingness to consider alternative points of view to one’s own, is both an initiating and an internal disposition.

Using the strategy of considering factors that would block people with the ability to think critically from doing so, we can identify as initiating dispositions for thinking critically attentiveness, a habit of inquiry, self-confidence, courage, open-mindedness, willingness to suspend judgment, trust in reason, wanting evidence for one’s beliefs, and seeking the truth. We consider briefly what each of these dispositions amounts to, in each case citing sources that acknowledge them.

  • Attentiveness : One will not think critically if one fails to recognize an issue that needs to be thought through. For example, the pedestrian in Weather would not have looked up if he had not noticed that the air was suddenly cooler. To be a critical thinker, then, one needs to be habitually attentive to one’s surroundings, noticing not only what one senses but also sources of perplexity in messages received and in one’s own beliefs and attitudes (Facione 1990a: 25; Facione, Facione, & Giancarlo 2001).
  • Habit of inquiry : Inquiry is effortful, and one needs an internal push to engage in it. For example, the student in Bubbles could easily have stopped at idle wondering about the cause of the bubbles rather than reasoning to a hypothesis, then designing and executing an experiment to test it. Thus willingness to think critically needs mental energy and initiative. What can supply that energy? Love of inquiry, or perhaps just a habit of inquiry. Hamby (2015) has argued that willingness to inquire is the central critical thinking virtue, one that encompasses all the others. It is recognized as a critical thinking disposition by Dewey (1910: 29; 1933: 35), Glaser (1941: 5), Ennis (1987: 12; 1991: 8), Facione (1990a: 25), Bailin et al. (1999b: 294), Halpern (1998: 452), and Facione, Facione, & Giancarlo (2001).
  • Self-confidence : Lack of confidence in one’s abilities can block critical thinking. For example, if the woman in Rash lacked confidence in her ability to figure things out for herself, she might just have assumed that the rash on her chest was the allergic reaction to her medication against which the pharmacist had warned her. Thus willingness to think critically requires confidence in one’s ability to inquire (Facione 1990a: 25; Facione, Facione, & Giancarlo 2001).
  • Courage : Fear of thinking for oneself can stop one from doing it. Thus willingness to think critically requires intellectual courage (Paul & Elder 2006: 16).
  • Open-mindedness : A dogmatic attitude will impede thinking critically. For example, a person who adheres rigidly to a “pro-choice” position on the issue of the legal status of induced abortion is likely to be unwilling to consider seriously the issue of when in its development an unborn child acquires a moral right to life. Thus willingness to think critically requires open-mindedness, in the sense of a willingness to examine questions to which one already accepts an answer but which further evidence or reasoning might cause one to answer differently (Dewey 1933; Facione 1990a; Ennis 1991; Bailin et al. 1999b; Halpern 1998, Facione, Facione, & Giancarlo 2001). Paul (1981) emphasizes open-mindedness about alternative world-views, and recommends a dialectical approach to integrating such views as central to what he calls “strong sense” critical thinking. In three studies, Haran, Ritov, & Mellers (2013) found that actively open-minded thinking, including “the tendency to weigh new evidence against a favored belief, to spend sufficient time on a problem before giving up, and to consider carefully the opinions of others in forming one’s own”, led study participants to acquire information and thus to make accurate estimations.
  • Willingness to suspend judgment : Premature closure on an initial solution will block critical thinking. Thus willingness to think critically requires a willingness to suspend judgment while alternatives are explored (Facione 1990a; Ennis 1991; Halpern 1998).
  • Trust in reason : Since distrust in the processes of reasoned inquiry will dissuade one from engaging in it, trust in them is an initiating critical thinking disposition (Facione 1990a, 25; Bailin et al. 1999b: 294; Facione, Facione, & Giancarlo 2001; Paul & Elder 2006). In reaction to an allegedly exclusive emphasis on reason in critical thinking theory and pedagogy, Thayer-Bacon (2000) argues that intuition, imagination, and emotion have important roles to play in an adequate conception of critical thinking that she calls “constructive thinking”. From her point of view, critical thinking requires trust not only in reason but also in intuition, imagination, and emotion.
  • Seeking the truth : If one does not care about the truth but is content to stick with one’s initial bias on an issue, then one will not think critically about it. Seeking the truth is thus an initiating critical thinking disposition (Bailin et al. 1999b: 294; Facione, Facione, & Giancarlo 2001). A disposition to seek the truth is implicit in more specific critical thinking dispositions, such as trying to be well-informed, considering seriously points of view other than one’s own, looking for alternatives, suspending judgment when the evidence is insufficient, and adopting a position when the evidence supporting it is sufficient.

Some of the initiating dispositions, such as open-mindedness and willingness to suspend judgment, are also internal critical thinking dispositions, in the sense of mental habits or attitudes that contribute causally to doing a good job of critical thinking once one starts the process. But there are many other internal critical thinking dispositions. Some of them are parasitic on one’s conception of good thinking. For example, it is constitutive of good thinking about an issue to formulate the issue clearly and to maintain focus on it. For this purpose, one needs not only the corresponding ability but also the corresponding disposition. Ennis (1991: 8) describes it as the disposition “to determine and maintain focus on the conclusion or question”, Facione (1990a: 25) as “clarity in stating the question or concern”. Other internal dispositions are motivators to continue or adjust the critical thinking process, such as willingness to persist in a complex task and willingness to abandon nonproductive strategies in an attempt to self-correct (Halpern 1998: 452). For a list of identified internal critical thinking dispositions, see the Supplement on Internal Critical Thinking Dispositions .

Some theorists postulate skills, i.e., acquired abilities, as operative in critical thinking. It is not obvious, however, that a good mental act is the exercise of a generic acquired skill. Inferring an expected time of arrival, as in Transit , has some generic components but also uses non-generic subject-matter knowledge. Bailin et al. (1999a) argue against viewing critical thinking skills as generic and discrete, on the ground that skilled performance at a critical thinking task cannot be separated from knowledge of concepts and from domain-specific principles of good thinking. Talk of skills, they concede, is unproblematic if it means merely that a person with critical thinking skills is capable of intelligent performance.

Despite such scepticism, theorists of critical thinking have listed as general contributors to critical thinking what they variously call abilities (Glaser 1941; Ennis 1962, 1991), skills (Facione 1990a; Halpern 1998) or competencies (Fisher & Scriven 1997). Amalgamating these lists would produce a confusing and chaotic cornucopia of more than 50 possible educational objectives, with only partial overlap among them. It makes sense instead to try to understand the reasons for the multiplicity and diversity, and to make a selection according to one’s own reasons for singling out abilities to be developed in a critical thinking curriculum. Two reasons for diversity among lists of critical thinking abilities are the underlying conception of critical thinking and the envisaged educational level. Appraisal-only conceptions, for example, involve a different suite of abilities than constructive-only conceptions. Some lists, such as those in (Glaser 1941), are put forward as educational objectives for secondary school students, whereas others are proposed as objectives for college students (e.g., Facione 1990a).

The abilities described in the remaining paragraphs of this section emerge from reflection on the general abilities needed to do well the thinking activities identified in section 6 as components of the critical thinking process described in section 5 . The derivation of each collection of abilities is accompanied by citation of sources that list such abilities and of standardized tests that claim to test them.

Observational abilities : Careful and accurate observation sometimes requires specialist expertise and practice, as in the case of observing birds and observing accident scenes. However, there are general abilities of noticing what one’s senses are picking up from one’s environment and of being able to articulate clearly and accurately to oneself and others what one has observed. It helps in exercising them to be able to recognize and take into account factors that make one’s observation less trustworthy, such as prior framing of the situation, inadequate time, deficient senses, poor observation conditions, and the like. It helps as well to be skilled at taking steps to make one’s observation more trustworthy, such as moving closer to get a better look, measuring something three times and taking the average, and checking what one thinks one is observing with someone else who is in a good position to observe it. It also helps to be skilled at recognizing respects in which one’s report of one’s observation involves inference rather than direct observation, so that one can then consider whether the inference is justified. These abilities come into play as well when one thinks about whether and with what degree of confidence to accept an observation report, for example in the study of history or in a criminal investigation or in assessing news reports. Observational abilities show up in some lists of critical thinking abilities (Ennis 1962: 90; Facione 1990a: 16; Ennis 1991: 9). There are items testing a person’s ability to judge the credibility of observation reports in the Cornell Critical Thinking Tests, Levels X and Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005). Norris and King (1983, 1985, 1990a, 1990b) is a test of ability to appraise observation reports.

Emotional abilities : The emotions that drive a critical thinking process are perplexity or puzzlement, a wish to resolve it, and satisfaction at achieving the desired resolution. Children experience these emotions at an early age, without being trained to do so. Education that takes critical thinking as a goal needs only to channel these emotions and to make sure not to stifle them. Collaborative critical thinking benefits from ability to recognize one’s own and others’ emotional commitments and reactions.

Questioning abilities : A critical thinking process needs transformation of an inchoate sense of perplexity into a clear question. Formulating a question well requires not building in questionable assumptions, not prejudging the issue, and using language that in context is unambiguous and precise enough (Ennis 1962: 97; 1991: 9).

Imaginative abilities : Thinking directed at finding the correct causal explanation of a general phenomenon or particular event requires an ability to imagine possible explanations. Thinking about what policy or plan of action to adopt requires generation of options and consideration of possible consequences of each option. Domain knowledge is required for such creative activity, but a general ability to imagine alternatives is helpful and can be nurtured so as to become easier, quicker, more extensive, and deeper (Dewey 1910: 34–39; 1933: 40–47). Facione (1990a) and Halpern (1998) include the ability to imagine alternatives as a critical thinking ability.

Inferential abilities : The ability to draw conclusions from given information, and to recognize with what degree of certainty one’s own or others’ conclusions follow, is universally recognized as a general critical thinking ability. All 11 examples in section 2 of this article include inferences, some from hypotheses or options (as in Transit , Ferryboat and Disorder ), others from something observed (as in Weather and Rash ). None of these inferences is formally valid. Rather, they are licensed by general, sometimes qualified substantive rules of inference (Toulmin 1958) that rest on domain knowledge—that a bus trip takes about the same time in each direction, that the terminal of a wireless telegraph would be located on the highest possible place, that sudden cooling is often followed by rain, that an allergic reaction to a sulfa drug generally shows up soon after one starts taking it. It is a matter of controversy to what extent the specialized ability to deduce conclusions from premisses using formal rules of inference is needed for critical thinking. Dewey (1933) locates logical forms in setting out the products of reflection rather than in the process of reflection. Ennis (1981a), on the other hand, maintains that a liberally-educated person should have the following abilities: to translate natural-language statements into statements using the standard logical operators, to use appropriately the language of necessary and sufficient conditions, to deal with argument forms and arguments containing symbols, to determine whether in virtue of an argument’s form its conclusion follows necessarily from its premisses, to reason with logically complex propositions, and to apply the rules and procedures of deductive logic. Inferential abilities are recognized as critical thinking abilities by Glaser (1941: 6), Facione (1990a: 9), Ennis (1991: 9), Fisher & Scriven (1997: 99, 111), and Halpern (1998: 452). Items testing inferential abilities constitute two of the five subtests of the Watson Glaser Critical Thinking Appraisal (Watson & Glaser 1980a, 1980b, 1994), two of the four sections in the Cornell Critical Thinking Test Level X (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005), three of the seven sections in the Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005), 11 of the 34 items on Forms A and B of the California Critical Thinking Skills Test (Facione 1990b, 1992), and a high but variable proportion of the 25 selected-response questions in the Collegiate Learning Assessment (Council for Aid to Education 2017).

Experimenting abilities : Knowing how to design and execute an experiment is important not just in scientific research but also in everyday life, as in Rash . Dewey devoted a whole chapter of his How We Think (1910: 145–156; 1933: 190–202) to the superiority of experimentation over observation in advancing knowledge. Experimenting abilities come into play at one remove in appraising reports of scientific studies. Skill in designing and executing experiments includes the acknowledged abilities to appraise evidence (Glaser 1941: 6), to carry out experiments and to apply appropriate statistical inference techniques (Facione 1990a: 9), to judge inductions to an explanatory hypothesis (Ennis 1991: 9), and to recognize the need for an adequately large sample size (Halpern 1998). The Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005) includes four items (out of 52) on experimental design. The Collegiate Learning Assessment (Council for Aid to Education 2017) makes room for appraisal of study design in both its performance task and its selected-response questions.

Consulting abilities : Skill at consulting sources of information comes into play when one seeks information to help resolve a problem, as in Candidate . Ability to find and appraise information includes ability to gather and marshal pertinent information (Glaser 1941: 6), to judge whether a statement made by an alleged authority is acceptable (Ennis 1962: 84), to plan a search for desired information (Facione 1990a: 9), and to judge the credibility of a source (Ennis 1991: 9). Ability to judge the credibility of statements is tested by 24 items (out of 76) in the Cornell Critical Thinking Test Level X (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005) and by four items (out of 52) in the Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005). The College Learning Assessment’s performance task requires evaluation of whether information in documents is credible or unreliable (Council for Aid to Education 2017).

Argument analysis abilities : The ability to identify and analyze arguments contributes to the process of surveying arguments on an issue in order to form one’s own reasoned judgment, as in Candidate . The ability to detect and analyze arguments is recognized as a critical thinking skill by Facione (1990a: 7–8), Ennis (1991: 9) and Halpern (1998). Five items (out of 34) on the California Critical Thinking Skills Test (Facione 1990b, 1992) test skill at argument analysis. The College Learning Assessment (Council for Aid to Education 2017) incorporates argument analysis in its selected-response tests of critical reading and evaluation and of critiquing an argument.

Judging skills and deciding skills : Skill at judging and deciding is skill at recognizing what judgment or decision the available evidence and argument supports, and with what degree of confidence. It is thus a component of the inferential skills already discussed.

Lists and tests of critical thinking abilities often include two more abilities: identifying assumptions and constructing and evaluating definitions.

In addition to dispositions and abilities, critical thinking needs knowledge: of critical thinking concepts, of critical thinking principles, and of the subject-matter of the thinking.

We can derive a short list of concepts whose understanding contributes to critical thinking from the critical thinking abilities described in the preceding section. Observational abilities require an understanding of the difference between observation and inference. Questioning abilities require an understanding of the concepts of ambiguity and vagueness. Inferential abilities require an understanding of the difference between conclusive and defeasible inference (traditionally, between deduction and induction), as well as of the difference between necessary and sufficient conditions. Experimenting abilities require an understanding of the concepts of hypothesis, null hypothesis, assumption and prediction, as well as of the concept of statistical significance and of its difference from importance. They also require an understanding of the difference between an experiment and an observational study, and in particular of the difference between a randomized controlled trial, a prospective correlational study and a retrospective (case-control) study. Argument analysis abilities require an understanding of the concepts of argument, premiss, assumption, conclusion and counter-consideration. Additional critical thinking concepts are proposed by Bailin et al. (1999b: 293), Fisher & Scriven (1997: 105–106), Black (2012), and Blair (2021).

According to Glaser (1941: 25), ability to think critically requires knowledge of the methods of logical inquiry and reasoning. If we review the list of abilities in the preceding section, however, we can see that some of them can be acquired and exercised merely through practice, possibly guided in an educational setting, followed by feedback. Searching intelligently for a causal explanation of some phenomenon or event requires that one consider a full range of possible causal contributors, but it seems more important that one implements this principle in one’s practice than that one is able to articulate it. What is important is “operational knowledge” of the standards and principles of good thinking (Bailin et al. 1999b: 291–293). But the development of such critical thinking abilities as designing an experiment or constructing an operational definition can benefit from learning their underlying theory. Further, explicit knowledge of quirks of human thinking seems useful as a cautionary guide. Human memory is not just fallible about details, as people learn from their own experiences of misremembering, but is so malleable that a detailed, clear and vivid recollection of an event can be a total fabrication (Loftus 2017). People seek or interpret evidence in ways that are partial to their existing beliefs and expectations, often unconscious of their “confirmation bias” (Nickerson 1998). Not only are people subject to this and other cognitive biases (Kahneman 2011), of which they are typically unaware, but it may be counter-productive for one to make oneself aware of them and try consciously to counteract them or to counteract social biases such as racial or sexual stereotypes (Kenyon & Beaulac 2014). It is helpful to be aware of these facts and of the superior effectiveness of blocking the operation of biases—for example, by making an immediate record of one’s observations, refraining from forming a preliminary explanatory hypothesis, blind refereeing, double-blind randomized trials, and blind grading of students’ work. It is also helpful to be aware of the prevalence of “noise” (unwanted unsystematic variability of judgments), of how to detect noise (through a noise audit), and of how to reduce noise: make accuracy the goal, think statistically, break a process of arriving at a judgment into independent tasks, resist premature intuitions, in a group get independent judgments first, favour comparative judgments and scales (Kahneman, Sibony, & Sunstein 2021). It is helpful as well to be aware of the concept of “bounded rationality” in decision-making and of the related distinction between “satisficing” and optimizing (Simon 1956; Gigerenzer 2001).

Critical thinking about an issue requires substantive knowledge of the domain to which the issue belongs. Critical thinking abilities are not a magic elixir that can be applied to any issue whatever by somebody who has no knowledge of the facts relevant to exploring that issue. For example, the student in Bubbles needed to know that gases do not penetrate solid objects like a glass, that air expands when heated, that the volume of an enclosed gas varies directly with its temperature and inversely with its pressure, and that hot objects will spontaneously cool down to the ambient temperature of their surroundings unless kept hot by insulation or a source of heat. Critical thinkers thus need a rich fund of subject-matter knowledge relevant to the variety of situations they encounter. This fact is recognized in the inclusion among critical thinking dispositions of a concern to become and remain generally well informed.

Experimental educational interventions, with control groups, have shown that education can improve critical thinking skills and dispositions, as measured by standardized tests. For information about these tests, see the Supplement on Assessment .

What educational methods are most effective at developing the dispositions, abilities and knowledge of a critical thinker? In a comprehensive meta-analysis of experimental and quasi-experimental studies of strategies for teaching students to think critically, Abrami et al. (2015) found that dialogue, anchored instruction, and mentoring each increased the effectiveness of the educational intervention, and that they were most effective when combined. They also found that in these studies a combination of separate instruction in critical thinking with subject-matter instruction in which students are encouraged to think critically was more effective than either by itself. However, the difference was not statistically significant; that is, it might have arisen by chance.

Most of these studies lack the longitudinal follow-up required to determine whether the observed differential improvements in critical thinking abilities or dispositions continue over time, for example until high school or college graduation. For details on studies of methods of developing critical thinking skills and dispositions, see the Supplement on Educational Methods .

12. Controversies

Scholars have denied the generalizability of critical thinking abilities across subject domains, have alleged bias in critical thinking theory and pedagogy, and have investigated the relationship of critical thinking to other kinds of thinking.

McPeck (1981) attacked the thinking skills movement of the 1970s, including the critical thinking movement. He argued that there are no general thinking skills, since thinking is always thinking about some subject-matter. It is futile, he claimed, for schools and colleges to teach thinking as if it were a separate subject. Rather, teachers should lead their pupils to become autonomous thinkers by teaching school subjects in a way that brings out their cognitive structure and that encourages and rewards discussion and argument. As some of his critics (e.g., Paul 1985; Siegel 1985) pointed out, McPeck’s central argument needs elaboration, since it has obvious counter-examples in writing and speaking, for which (up to a certain level of complexity) there are teachable general abilities even though they are always about some subject-matter. To make his argument convincing, McPeck needs to explain how thinking differs from writing and speaking in a way that does not permit useful abstraction of its components from the subject-matters with which it deals. He has not done so. Nevertheless, his position that the dispositions and abilities of a critical thinker are best developed in the context of subject-matter instruction is shared by many theorists of critical thinking, including Dewey (1910, 1933), Glaser (1941), Passmore (1980), Weinstein (1990), Bailin et al. (1999b), and Willingham (2019).

McPeck’s challenge prompted reflection on the extent to which critical thinking is subject-specific. McPeck argued for a strong subject-specificity thesis, according to which it is a conceptual truth that all critical thinking abilities are specific to a subject. (He did not however extend his subject-specificity thesis to critical thinking dispositions. In particular, he took the disposition to suspend judgment in situations of cognitive dissonance to be a general disposition.) Conceptual subject-specificity is subject to obvious counter-examples, such as the general ability to recognize confusion of necessary and sufficient conditions. A more modest thesis, also endorsed by McPeck, is epistemological subject-specificity, according to which the norms of good thinking vary from one field to another. Epistemological subject-specificity clearly holds to a certain extent; for example, the principles in accordance with which one solves a differential equation are quite different from the principles in accordance with which one determines whether a painting is a genuine Picasso. But the thesis suffers, as Ennis (1989) points out, from vagueness of the concept of a field or subject and from the obvious existence of inter-field principles, however broadly the concept of a field is construed. For example, the principles of hypothetico-deductive reasoning hold for all the varied fields in which such reasoning occurs. A third kind of subject-specificity is empirical subject-specificity, according to which as a matter of empirically observable fact a person with the abilities and dispositions of a critical thinker in one area of investigation will not necessarily have them in another area of investigation.

The thesis of empirical subject-specificity raises the general problem of transfer. If critical thinking abilities and dispositions have to be developed independently in each school subject, how are they of any use in dealing with the problems of everyday life and the political and social issues of contemporary society, most of which do not fit into the framework of a traditional school subject? Proponents of empirical subject-specificity tend to argue that transfer is more likely to occur if there is critical thinking instruction in a variety of domains, with explicit attention to dispositions and abilities that cut across domains. But evidence for this claim is scanty. There is a need for well-designed empirical studies that investigate the conditions that make transfer more likely.

It is common ground in debates about the generality or subject-specificity of critical thinking dispositions and abilities that critical thinking about any topic requires background knowledge about the topic. For example, the most sophisticated understanding of the principles of hypothetico-deductive reasoning is of no help unless accompanied by some knowledge of what might be plausible explanations of some phenomenon under investigation.

Critics have objected to bias in the theory, pedagogy and practice of critical thinking. Commentators (e.g., Alston 1995; Ennis 1998) have noted that anyone who takes a position has a bias in the neutral sense of being inclined in one direction rather than others. The critics, however, are objecting to bias in the pejorative sense of an unjustified favoring of certain ways of knowing over others, frequently alleging that the unjustly favoured ways are those of a dominant sex or culture (Bailin 1995). These ways favour:

  • reinforcement of egocentric and sociocentric biases over dialectical engagement with opposing world-views (Paul 1981, 1984; Warren 1998)
  • distancing from the object of inquiry over closeness to it (Martin 1992; Thayer-Bacon 1992)
  • indifference to the situation of others over care for them (Martin 1992)
  • orientation to thought over orientation to action (Martin 1992)
  • being reasonable over caring to understand people’s ideas (Thayer-Bacon 1993)
  • being neutral and objective over being embodied and situated (Thayer-Bacon 1995a)
  • doubting over believing (Thayer-Bacon 1995b)
  • reason over emotion, imagination and intuition (Thayer-Bacon 2000)
  • solitary thinking over collaborative thinking (Thayer-Bacon 2000)
  • written and spoken assignments over other forms of expression (Alston 2001)
  • attention to written and spoken communications over attention to human problems (Alston 2001)
  • winning debates in the public sphere over making and understanding meaning (Alston 2001)

A common thread in this smorgasbord of accusations is dissatisfaction with focusing on the logical analysis and evaluation of reasoning and arguments. While these authors acknowledge that such analysis and evaluation is part of critical thinking and should be part of its conceptualization and pedagogy, they insist that it is only a part. Paul (1981), for example, bemoans the tendency of atomistic teaching of methods of analyzing and evaluating arguments to turn students into more able sophists, adept at finding fault with positions and arguments with which they disagree but even more entrenched in the egocentric and sociocentric biases with which they began. Martin (1992) and Thayer-Bacon (1992) cite with approval the self-reported intimacy with their subject-matter of leading researchers in biology and medicine, an intimacy that conflicts with the distancing allegedly recommended in standard conceptions and pedagogy of critical thinking. Thayer-Bacon (2000) contrasts the embodied and socially embedded learning of her elementary school students in a Montessori school, who used their imagination, intuition and emotions as well as their reason, with conceptions of critical thinking as

thinking that is used to critique arguments, offer justifications, and make judgments about what are the good reasons, or the right answers. (Thayer-Bacon 2000: 127–128)

Alston (2001) reports that her students in a women’s studies class were able to see the flaws in the Cinderella myth that pervades much romantic fiction but in their own romantic relationships still acted as if all failures were the woman’s fault and still accepted the notions of love at first sight and living happily ever after. Students, she writes, should

be able to connect their intellectual critique to a more affective, somatic, and ethical account of making risky choices that have sexist, racist, classist, familial, sexual, or other consequences for themselves and those both near and far… critical thinking that reads arguments, texts, or practices merely on the surface without connections to feeling/desiring/doing or action lacks an ethical depth that should infuse the difference between mere cognitive activity and something we want to call critical thinking. (Alston 2001: 34)

Some critics portray such biases as unfair to women. Thayer-Bacon (1992), for example, has charged modern critical thinking theory with being sexist, on the ground that it separates the self from the object and causes one to lose touch with one’s inner voice, and thus stigmatizes women, who (she asserts) link self to object and listen to their inner voice. Her charge does not imply that women as a group are on average less able than men to analyze and evaluate arguments. Facione (1990c) found no difference by sex in performance on his California Critical Thinking Skills Test. Kuhn (1991: 280–281) found no difference by sex in either the disposition or the competence to engage in argumentative thinking.

The critics propose a variety of remedies for the biases that they allege. In general, they do not propose to eliminate or downplay critical thinking as an educational goal. Rather, they propose to conceptualize critical thinking differently and to change its pedagogy accordingly. Their pedagogical proposals arise logically from their objections. They can be summarized as follows:

  • Focus on argument networks with dialectical exchanges reflecting contesting points of view rather than on atomic arguments, so as to develop “strong sense” critical thinking that transcends egocentric and sociocentric biases (Paul 1981, 1984).
  • Foster closeness to the subject-matter and feeling connected to others in order to inform a humane democracy (Martin 1992).
  • Develop “constructive thinking” as a social activity in a community of physically embodied and socially embedded inquirers with personal voices who value not only reason but also imagination, intuition and emotion (Thayer-Bacon 2000).
  • In developing critical thinking in school subjects, treat as important neither skills nor dispositions but opening worlds of meaning (Alston 2001).
  • Attend to the development of critical thinking dispositions as well as skills, and adopt the “critical pedagogy” practised and advocated by Freire (1968 [1970]) and hooks (1994) (Dalgleish, Girard, & Davies 2017).

A common thread in these proposals is treatment of critical thinking as a social, interactive, personally engaged activity like that of a quilting bee or a barn-raising (Thayer-Bacon 2000) rather than as an individual, solitary, distanced activity symbolized by Rodin’s The Thinker . One can get a vivid description of education with the former type of goal from the writings of bell hooks (1994, 2010). Critical thinking for her is open-minded dialectical exchange across opposing standpoints and from multiple perspectives, a conception similar to Paul’s “strong sense” critical thinking (Paul 1981). She abandons the structure of domination in the traditional classroom. In an introductory course on black women writers, for example, she assigns students to write an autobiographical paragraph about an early racial memory, then to read it aloud as the others listen, thus affirming the uniqueness and value of each voice and creating a communal awareness of the diversity of the group’s experiences (hooks 1994: 84). Her “engaged pedagogy” is thus similar to the “freedom under guidance” implemented in John Dewey’s Laboratory School of Chicago in the late 1890s and early 1900s. It incorporates the dialogue, anchored instruction, and mentoring that Abrami (2015) found to be most effective in improving critical thinking skills and dispositions.

What is the relationship of critical thinking to problem solving, decision-making, higher-order thinking, creative thinking, and other recognized types of thinking? One’s answer to this question obviously depends on how one defines the terms used in the question. If critical thinking is conceived broadly to cover any careful thinking about any topic for any purpose, then problem solving and decision making will be kinds of critical thinking, if they are done carefully. Historically, ‘critical thinking’ and ‘problem solving’ were two names for the same thing. If critical thinking is conceived more narrowly as consisting solely of appraisal of intellectual products, then it will be disjoint with problem solving and decision making, which are constructive.

Bloom’s taxonomy of educational objectives used the phrase “intellectual abilities and skills” for what had been labeled “critical thinking” by some, “reflective thinking” by Dewey and others, and “problem solving” by still others (Bloom et al. 1956: 38). Thus, the so-called “higher-order thinking skills” at the taxonomy’s top levels of analysis, synthesis and evaluation are just critical thinking skills, although they do not come with general criteria for their assessment (Ennis 1981b). The revised version of Bloom’s taxonomy (Anderson et al. 2001) likewise treats critical thinking as cutting across those types of cognitive process that involve more than remembering (Anderson et al. 2001: 269–270). For details, see the Supplement on History .

As to creative thinking, it overlaps with critical thinking (Bailin 1987, 1988). Thinking about the explanation of some phenomenon or event, as in Ferryboat , requires creative imagination in constructing plausible explanatory hypotheses. Likewise, thinking about a policy question, as in Candidate , requires creativity in coming up with options. Conversely, creativity in any field needs to be balanced by critical appraisal of the draft painting or novel or mathematical theory.

  • Abrami, Philip C., Robert M. Bernard, Eugene Borokhovski, David I. Waddington, C. Anne Wade, and Tonje Person, 2015, “Strategies for Teaching Students to Think Critically: A Meta-analysis”, Review of Educational Research , 85(2): 275–314. doi:10.3102/0034654314551063
  • Aikin, Wilford M., 1942, The Story of the Eight-year Study, with Conclusions and Recommendations , Volume I of Adventure in American Education , New York and London: Harper & Brothers. [ Aikin 1942 available online ]
  • Alston, Kal, 1995, “Begging the Question: Is Critical Thinking Biased?”, Educational Theory , 45(2): 225–233. doi:10.1111/j.1741-5446.1995.00225.x
  • –––, 2001, “Re/Thinking Critical Thinking: The Seductions of Everyday Life”, Studies in Philosophy and Education , 20(1): 27–40. doi:10.1023/A:1005247128053
  • American Educational Research Association, 2014, Standards for Educational and Psychological Testing / American Educational Research Association, American Psychological Association, National Council on Measurement in Education , Washington, DC: American Educational Research Association.
  • Anderson, Lorin W., David R. Krathwohl, Peter W. Airiasian, Kathleen A. Cruikshank, Richard E. Mayer, Paul R. Pintrich, James Raths, and Merlin C. Wittrock, 2001, A Taxonomy for Learning, Teaching and Assessing: A Revision of Bloom’s Taxonomy of Educational Objectives , New York: Longman, complete edition.
  • Bailin, Sharon, 1987, “Critical and Creative Thinking”, Informal Logic , 9(1): 23–30. [ Bailin 1987 available online ]
  • –––, 1988, Achieving Extraordinary Ends: An Essay on Creativity , Dordrecht: Kluwer. doi:10.1007/978-94-009-2780-3
  • –––, 1995, “Is Critical Thinking Biased? Clarifications and Implications”, Educational Theory , 45(2): 191–197. doi:10.1111/j.1741-5446.1995.00191.x
  • Bailin, Sharon and Mark Battersby, 2009, “Inquiry: A Dialectical Approach to Teaching Critical Thinking”, in Juho Ritola (ed.), Argument Cultures: Proceedings of OSSA 09 , CD-ROM (pp. 1–10), Windsor, ON: OSSA. [ Bailin & Battersby 2009 available online ]
  • –––, 2016a, “Fostering the Virtues of Inquiry”, Topoi , 35(2): 367–374. doi:10.1007/s11245-015-9307-6
  • –––, 2016b, Reason in the Balance: An Inquiry Approach to Critical Thinking , Indianapolis: Hackett, 2nd edition.
  • –––, 2021, “Inquiry: Teaching for Reasoned Judgment”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 31–46. doi: 10.1163/9789004444591_003
  • Bailin, Sharon, Roland Case, Jerrold R. Coombs, and Leroi B. Daniels, 1999a, “Common Misconceptions of Critical Thinking”, Journal of Curriculum Studies , 31(3): 269–283. doi:10.1080/002202799183124
  • –––, 1999b, “Conceptualizing Critical Thinking”, Journal of Curriculum Studies , 31(3): 285–302. doi:10.1080/002202799183133
  • Blair, J. Anthony, 2021, Studies in Critical Thinking , Windsor, ON: Windsor Studies in Argumentation, 2nd edition. [Available online at https://windsor.scholarsportal.info/omp/index.php/wsia/catalog/book/106]
  • Berman, Alan M., Seth J. Schwartz, William M. Kurtines, and Steven L. Berman, 2001, “The Process of Exploration in Identity Formation: The Role of Style and Competence”, Journal of Adolescence , 24(4): 513–528. doi:10.1006/jado.2001.0386
  • Black, Beth (ed.), 2012, An A to Z of Critical Thinking , London: Continuum International Publishing Group.
  • Bloom, Benjamin Samuel, Max D. Engelhart, Edward J. Furst, Walter H. Hill, and David R. Krathwohl, 1956, Taxonomy of Educational Objectives. Handbook I: Cognitive Domain , New York: David McKay.
  • Boardman, Frank, Nancy M. Cavender, and Howard Kahane, 2018, Logic and Contemporary Rhetoric: The Use of Reason in Everyday Life , Boston: Cengage, 13th edition.
  • Browne, M. Neil and Stuart M. Keeley, 2018, Asking the Right Questions: A Guide to Critical Thinking , Hoboken, NJ: Pearson, 12th edition.
  • Center for Assessment & Improvement of Learning, 2017, Critical Thinking Assessment Test , Cookeville, TN: Tennessee Technological University.
  • Cleghorn, Paul. 2021. “Critical Thinking in the Elementary School: Practical Guidance for Building a Culture of Thinking”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessmen t, Leiden: Brill, pp. 150–167. doi: 10.1163/9789004444591_010
  • Cohen, Jacob, 1988, Statistical Power Analysis for the Behavioral Sciences , Hillsdale, NJ: Lawrence Erlbaum Associates, 2nd edition.
  • College Board, 1983, Academic Preparation for College. What Students Need to Know and Be Able to Do , New York: College Entrance Examination Board, ERIC document ED232517.
  • Commission on the Relation of School and College of the Progressive Education Association, 1943, Thirty Schools Tell Their Story , Volume V of Adventure in American Education , New York and London: Harper & Brothers.
  • Council for Aid to Education, 2017, CLA+ Student Guide . Available at http://cae.org/images/uploads/pdf/CLA_Student_Guide_Institution.pdf ; last accessed 2022 07 16.
  • Dalgleish, Adam, Patrick Girard, and Maree Davies, 2017, “Critical Thinking, Bias and Feminist Philosophy: Building a Better Framework through Collaboration”, Informal Logic , 37(4): 351–369. [ Dalgleish et al. available online ]
  • Dewey, John, 1910, How We Think , Boston: D.C. Heath. [ Dewey 1910 available online ]
  • –––, 1916, Democracy and Education: An Introduction to the Philosophy of Education , New York: Macmillan.
  • –––, 1933, How We Think: A Restatement of the Relation of Reflective Thinking to the Educative Process , Lexington, MA: D.C. Heath.
  • –––, 1936, “The Theory of the Chicago Experiment”, Appendix II of Mayhew & Edwards 1936: 463–477.
  • –––, 1938, Logic: The Theory of Inquiry , New York: Henry Holt and Company.
  • Dominguez, Caroline (coord.), 2018a, A European Collection of the Critical Thinking Skills and Dispositions Needed in Different Professional Fields for the 21st Century , Vila Real, Portugal: UTAD. Available at http://bit.ly/CRITHINKEDUO1 ; last accessed 2022 07 16.
  • ––– (coord.), 2018b, A European Review on Critical Thinking Educational Practices in Higher Education Institutions , Vila Real: UTAD. Available at http://bit.ly/CRITHINKEDUO2 ; last accessed 2022 07 16.
  • ––– (coord.), 2018c, The CRITHINKEDU European Course on Critical Thinking Education for University Teachers: From Conception to Delivery , Vila Real: UTAD. Available at http:/bit.ly/CRITHINKEDU03; last accessed 2022 07 16.
  • Dominguez Caroline and Rita Payan-Carreira (eds.), 2019, Promoting Critical Thinking in European Higher Education Institutions: Towards an Educational Protocol , Vila Real: UTAD. Available at http:/bit.ly/CRITHINKEDU04; last accessed 2022 07 16.
  • Ennis, Robert H., 1958, “An Appraisal of the Watson-Glaser Critical Thinking Appraisal”, The Journal of Educational Research , 52(4): 155–158. doi:10.1080/00220671.1958.10882558
  • –––, 1962, “A Concept of Critical Thinking: A Proposed Basis for Research on the Teaching and Evaluation of Critical Thinking Ability”, Harvard Educational Review , 32(1): 81–111.
  • –––, 1981a, “A Conception of Deductive Logical Competence”, Teaching Philosophy , 4(3/4): 337–385. doi:10.5840/teachphil198143/429
  • –––, 1981b, “Eight Fallacies in Bloom’s Taxonomy”, in C. J. B. Macmillan (ed.), Philosophy of Education 1980: Proceedings of the Thirty-seventh Annual Meeting of the Philosophy of Education Society , Bloomington, IL: Philosophy of Education Society, pp. 269–273.
  • –––, 1984, “Problems in Testing Informal Logic, Critical Thinking, Reasoning Ability”, Informal Logic , 6(1): 3–9. [ Ennis 1984 available online ]
  • –––, 1987, “A Taxonomy of Critical Thinking Dispositions and Abilities”, in Joan Boykoff Baron and Robert J. Sternberg (eds.), Teaching Thinking Skills: Theory and Practice , New York: W. H. Freeman, pp. 9–26.
  • –––, 1989, “Critical Thinking and Subject Specificity: Clarification and Needed Research”, Educational Researcher , 18(3): 4–10. doi:10.3102/0013189X018003004
  • –––, 1991, “Critical Thinking: A Streamlined Conception”, Teaching Philosophy , 14(1): 5–24. doi:10.5840/teachphil19911412
  • –––, 1996, “Critical Thinking Dispositions: Their Nature and Assessability”, Informal Logic , 18(2–3): 165–182. [ Ennis 1996 available online ]
  • –––, 1998, “Is Critical Thinking Culturally Biased?”, Teaching Philosophy , 21(1): 15–33. doi:10.5840/teachphil19982113
  • –––, 2011, “Critical Thinking: Reflection and Perspective Part I”, Inquiry: Critical Thinking across the Disciplines , 26(1): 4–18. doi:10.5840/inquiryctnews20112613
  • –––, 2013, “Critical Thinking across the Curriculum: The Wisdom CTAC Program”, Inquiry: Critical Thinking across the Disciplines , 28(2): 25–45. doi:10.5840/inquiryct20132828
  • –––, 2016, “Definition: A Three-Dimensional Analysis with Bearing on Key Concepts”, in Patrick Bondy and Laura Benacquista (eds.), Argumentation, Objectivity, and Bias: Proceedings of the 11th International Conference of the Ontario Society for the Study of Argumentation (OSSA), 18–21 May 2016 , Windsor, ON: OSSA, pp. 1–19. Available at http://scholar.uwindsor.ca/ossaarchive/OSSA11/papersandcommentaries/105 ; last accessed 2022 07 16.
  • –––, 2018, “Critical Thinking Across the Curriculum: A Vision”, Topoi , 37(1): 165–184. doi:10.1007/s11245-016-9401-4
  • Ennis, Robert H., and Jason Millman, 1971, Manual for Cornell Critical Thinking Test, Level X, and Cornell Critical Thinking Test, Level Z , Urbana, IL: Critical Thinking Project, University of Illinois.
  • Ennis, Robert H., Jason Millman, and Thomas Norbert Tomko, 1985, Cornell Critical Thinking Tests Level X & Level Z: Manual , Pacific Grove, CA: Midwest Publication, 3rd edition.
  • –––, 2005, Cornell Critical Thinking Tests Level X & Level Z: Manual , Seaside, CA: Critical Thinking Company, 5th edition.
  • Ennis, Robert H. and Eric Weir, 1985, The Ennis-Weir Critical Thinking Essay Test: Test, Manual, Criteria, Scoring Sheet: An Instrument for Teaching and Testing , Pacific Grove, CA: Midwest Publications.
  • Facione, Peter A., 1990a, Critical Thinking: A Statement of Expert Consensus for Purposes of Educational Assessment and Instruction , Research Findings and Recommendations Prepared for the Committee on Pre-College Philosophy of the American Philosophical Association, ERIC Document ED315423.
  • –––, 1990b, California Critical Thinking Skills Test, CCTST – Form A , Millbrae, CA: The California Academic Press.
  • –––, 1990c, The California Critical Thinking Skills Test--College Level. Technical Report #3. Gender, Ethnicity, Major, CT Self-Esteem, and the CCTST , ERIC Document ED326584.
  • –––, 1992, California Critical Thinking Skills Test: CCTST – Form B, Millbrae, CA: The California Academic Press.
  • –––, 2000, “The Disposition Toward Critical Thinking: Its Character, Measurement, and Relationship to Critical Thinking Skill”, Informal Logic , 20(1): 61–84. [ Facione 2000 available online ]
  • Facione, Peter A. and Noreen C. Facione, 1992, CCTDI: A Disposition Inventory , Millbrae, CA: The California Academic Press.
  • Facione, Peter A., Noreen C. Facione, and Carol Ann F. Giancarlo, 2001, California Critical Thinking Disposition Inventory: CCTDI: Inventory Manual , Millbrae, CA: The California Academic Press.
  • Facione, Peter A., Carol A. Sánchez, and Noreen C. Facione, 1994, Are College Students Disposed to Think? , Millbrae, CA: The California Academic Press. ERIC Document ED368311.
  • Fisher, Alec, and Michael Scriven, 1997, Critical Thinking: Its Definition and Assessment , Norwich: Centre for Research in Critical Thinking, University of East Anglia.
  • Freire, Paulo, 1968 [1970], Pedagogia do Oprimido . Translated as Pedagogy of the Oppressed , Myra Bergman Ramos (trans.), New York: Continuum, 1970.
  • Gigerenzer, Gerd, 2001, “The Adaptive Toolbox”, in Gerd Gigerenzer and Reinhard Selten (eds.), Bounded Rationality: The Adaptive Toolbox , Cambridge, MA: MIT Press, pp. 37–50.
  • Glaser, Edward Maynard, 1941, An Experiment in the Development of Critical Thinking , New York: Bureau of Publications, Teachers College, Columbia University.
  • Groarke, Leo A. and Christopher W. Tindale, 2012, Good Reasoning Matters! A Constructive Approach to Critical Thinking , Don Mills, ON: Oxford University Press, 5th edition.
  • Halpern, Diane F., 1998, “Teaching Critical Thinking for Transfer Across Domains: Disposition, Skills, Structure Training, and Metacognitive Monitoring”, American Psychologist , 53(4): 449–455. doi:10.1037/0003-066X.53.4.449
  • –––, 2016, Manual: Halpern Critical Thinking Assessment , Mödling, Austria: Schuhfried. Available at https://pdfcoffee.com/hcta-test-manual-pdf-free.html; last accessed 2022 07 16.
  • Hamby, Benjamin, 2014, The Virtues of Critical Thinkers , Doctoral dissertation, Philosophy, McMaster University. [ Hamby 2014 available online ]
  • –––, 2015, “Willingness to Inquire: The Cardinal Critical Thinking Virtue”, in Martin Davies and Ronald Barnett (eds.), The Palgrave Handbook of Critical Thinking in Higher Education , New York: Palgrave Macmillan, pp. 77–87.
  • Haran, Uriel, Ilana Ritov, and Barbara A. Mellers, 2013, “The Role of Actively Open-minded Thinking in Information Acquisition, Accuracy, and Calibration”, Judgment and Decision Making , 8(3): 188–201.
  • Hatcher, Donald and Kevin Possin, 2021, “Commentary: Thinking Critically about Critical Thinking Assessment”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 298–322. doi: 10.1163/9789004444591_017
  • Haynes, Ada, Elizabeth Lisic, Kevin Harris, Katie Leming, Kyle Shanks, and Barry Stein, 2015, “Using the Critical Thinking Assessment Test (CAT) as a Model for Designing Within-Course Assessments: Changing How Faculty Assess Student Learning”, Inquiry: Critical Thinking Across the Disciplines , 30(3): 38–48. doi:10.5840/inquiryct201530316
  • Haynes, Ada and Barry Stein, 2021, “Observations from a Long-Term Effort to Assess and Improve Critical Thinking”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 231–254. doi: 10.1163/9789004444591_014
  • Hiner, Amanda L. 2021. “Equipping Students for Success in College and Beyond: Placing Critical Thinking Instruction at the Heart of a General Education Program”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 188–208. doi: 10.1163/9789004444591_012
  • Hitchcock, David, 2017, “Critical Thinking as an Educational Ideal”, in his On Reasoning and Argument: Essays in Informal Logic and on Critical Thinking , Dordrecht: Springer, pp. 477–497. doi:10.1007/978-3-319-53562-3_30
  • –––, 2021, “Seven Philosophical Implications of Critical Thinking: Themes, Variations, Implications”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 9–30. doi: 10.1163/9789004444591_002
  • hooks, bell, 1994, Teaching to Transgress: Education as the Practice of Freedom , New York and London: Routledge.
  • –––, 2010, Teaching Critical Thinking: Practical Wisdom , New York and London: Routledge.
  • Johnson, Ralph H., 1992, “The Problem of Defining Critical Thinking”, in Stephen P, Norris (ed.), The Generalizability of Critical Thinking , New York: Teachers College Press, pp. 38–53.
  • Kahane, Howard, 1971, Logic and Contemporary Rhetoric: The Use of Reason in Everyday Life , Belmont, CA: Wadsworth.
  • Kahneman, Daniel, 2011, Thinking, Fast and Slow , New York: Farrar, Straus and Giroux.
  • Kahneman, Daniel, Olivier Sibony, & Cass R. Sunstein, 2021, Noise: A Flaw in Human Judgment , New York: Little, Brown Spark.
  • Kenyon, Tim, and Guillaume Beaulac, 2014, “Critical Thinking Education and Debasing”, Informal Logic , 34(4): 341–363. [ Kenyon & Beaulac 2014 available online ]
  • Krathwohl, David R., Benjamin S. Bloom, and Bertram B. Masia, 1964, Taxonomy of Educational Objectives, Handbook II: Affective Domain , New York: David McKay.
  • Kuhn, Deanna, 1991, The Skills of Argument , New York: Cambridge University Press. doi:10.1017/CBO9780511571350
  • –––, 2019, “Critical Thinking as Discourse”, Human Development, 62 (3): 146–164. doi:10.1159/000500171
  • Lipman, Matthew, 1987, “Critical Thinking–What Can It Be?”, Analytic Teaching , 8(1): 5–12. [ Lipman 1987 available online ]
  • –––, 2003, Thinking in Education , Cambridge: Cambridge University Press, 2nd edition.
  • Loftus, Elizabeth F., 2017, “Eavesdropping on Memory”, Annual Review of Psychology , 68: 1–18. doi:10.1146/annurev-psych-010416-044138
  • Makaiau, Amber Strong, 2021, “The Good Thinker’s Tool Kit: How to Engage Critical Thinking and Reasoning in Secondary Education”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 168–187. doi: 10.1163/9789004444591_011
  • Martin, Jane Roland, 1992, “Critical Thinking for a Humane World”, in Stephen P. Norris (ed.), The Generalizability of Critical Thinking , New York: Teachers College Press, pp. 163–180.
  • Mayhew, Katherine Camp, and Anna Camp Edwards, 1936, The Dewey School: The Laboratory School of the University of Chicago, 1896–1903 , New York: Appleton-Century. [ Mayhew & Edwards 1936 available online ]
  • McPeck, John E., 1981, Critical Thinking and Education , New York: St. Martin’s Press.
  • Moore, Brooke Noel and Richard Parker, 2020, Critical Thinking , New York: McGraw-Hill, 13th edition.
  • Nickerson, Raymond S., 1998, “Confirmation Bias: A Ubiquitous Phenomenon in Many Guises”, Review of General Psychology , 2(2): 175–220. doi:10.1037/1089-2680.2.2.175
  • Nieto, Ana Maria, and Jorge Valenzuela, 2012, “A Study of the Internal Structure of Critical Thinking Dispositions”, Inquiry: Critical Thinking across the Disciplines , 27(1): 31–38. doi:10.5840/inquiryct20122713
  • Norris, Stephen P., 1985, “Controlling for Background Beliefs When Developing Multiple-choice Critical Thinking Tests”, Educational Measurement: Issues and Practice , 7(3): 5–11. doi:10.1111/j.1745-3992.1988.tb00437.x
  • Norris, Stephen P. and Robert H. Ennis, 1989, Evaluating Critical Thinking (The Practitioners’ Guide to Teaching Thinking Series), Pacific Grove, CA: Midwest Publications.
  • Norris, Stephen P. and Ruth Elizabeth King, 1983, Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland.
  • –––, 1984, The Design of a Critical Thinking Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland. ERIC Document ED260083.
  • –––, 1985, Test on Appraising Observations: Manual , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland.
  • –––, 1990a, Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland, 2nd edition.
  • –––, 1990b, Test on Appraising Observations: Manual , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland, 2nd edition.
  • OCR [Oxford, Cambridge and RSA Examinations], 2011, AS/A Level GCE: Critical Thinking – H052, H452 , Cambridge: OCR. Past papers available at https://pastpapers.co/ocr/?dir=A-Level/Critical-Thinking-H052-H452; last accessed 2022 07 16.
  • Ontario Ministry of Education, 2013, The Ontario Curriculum Grades 9 to 12: Social Sciences and Humanities . Available at http://www.edu.gov.on.ca/eng/curriculum/secondary/ssciences9to122013.pdf ; last accessed 2022 07 16.
  • Passmore, John Arthur, 1980, The Philosophy of Teaching , London: Duckworth.
  • Paul, Richard W., 1981, “Teaching Critical Thinking in the ‘Strong’ Sense: A Focus on Self-Deception, World Views, and a Dialectical Mode of Analysis”, Informal Logic , 4(2): 2–7. [ Paul 1981 available online ]
  • –––, 1984, “Critical Thinking: Fundamental to Education for a Free Society”, Educational Leadership , 42(1): 4–14.
  • –––, 1985, “McPeck’s Mistakes”, Informal Logic , 7(1): 35–43. [ Paul 1985 available online ]
  • Paul, Richard W. and Linda Elder, 2006, The Miniature Guide to Critical Thinking: Concepts and Tools , Dillon Beach, CA: Foundation for Critical Thinking, 4th edition.
  • Payette, Patricia, and Edna Ross, 2016, “Making a Campus-Wide Commitment to Critical Thinking: Insights and Promising Practices Utilizing the Paul-Elder Approach at the University of Louisville”, Inquiry: Critical Thinking Across the Disciplines , 31(1): 98–110. doi:10.5840/inquiryct20163118
  • Possin, Kevin, 2008, “A Field Guide to Critical-Thinking Assessment”, Teaching Philosophy , 31(3): 201–228. doi:10.5840/teachphil200831324
  • –––, 2013a, “Some Problems with the Halpern Critical Thinking Assessment (HCTA) Test”, Inquiry: Critical Thinking across the Disciplines , 28(3): 4–12. doi:10.5840/inquiryct201328313
  • –––, 2013b, “A Serious Flaw in the Collegiate Learning Assessment (CLA) Test”, Informal Logic , 33(3): 390–405. [ Possin 2013b available online ]
  • –––, 2013c, “A Fatal Flaw in the Collegiate Learning Assessment Test”, Assessment Update , 25 (1): 8–12.
  • –––, 2014, “Critique of the Watson-Glaser Critical Thinking Appraisal Test: The More You Know, the Lower Your Score”, Informal Logic , 34(4): 393–416. [ Possin 2014 available online ]
  • –––, 2020, “CAT Scan: A Critical Review of the Critical-Thinking Assessment Test”, Informal Logic , 40 (3): 489–508. [Available online at https://informallogic.ca/index.php/informal_logic/article/view/6243]
  • Rawls, John, 1971, A Theory of Justice , Cambridge, MA: Harvard University Press.
  • Rear, David, 2019, “One Size Fits All? The Limitations of Standardised Assessment in Critical Thinking”, Assessment & Evaluation in Higher Education , 44(5): 664–675. doi: 10.1080/02602938.2018.1526255
  • Rousseau, Jean-Jacques, 1762, Émile , Amsterdam: Jean Néaulme.
  • Scheffler, Israel, 1960, The Language of Education , Springfield, IL: Charles C. Thomas.
  • Scriven, Michael, and Richard W. Paul, 1987, Defining Critical Thinking , Draft statement written for the National Council for Excellence in Critical Thinking Instruction. Available at http://www.criticalthinking.org/pages/defining-critical-thinking/766 ; last accessed 2022 07 16.
  • Sheffield, Clarence Burton Jr., 2018, “Promoting Critical Thinking in Higher Education: My Experiences as the Inaugural Eugene H. Fram Chair in Applied Critical Thinking at Rochester Institute of Technology”, Topoi , 37(1): 155–163. doi:10.1007/s11245-016-9392-1
  • Siegel, Harvey, 1985, “McPeck, Informal Logic and the Nature of Critical Thinking”, in David Nyberg (ed.), Philosophy of Education 1985: Proceedings of the Forty-First Annual Meeting of the Philosophy of Education Society , Normal, IL: Philosophy of Education Society, pp. 61–72.
  • –––, 1988, Educating Reason: Rationality, Critical Thinking, and Education , New York: Routledge.
  • –––, 1999, “What (Good) Are Thinking Dispositions?”, Educational Theory , 49(2): 207–221. doi:10.1111/j.1741-5446.1999.00207.x
  • Simon, Herbert A., 1956, “Rational Choice and the Structure of the Environment”, Psychological Review , 63(2): 129–138. doi: 10.1037/h0042769
  • Simpson, Elizabeth, 1966–67, “The Classification of Educational Objectives: Psychomotor Domain”, Illinois Teacher of Home Economics , 10(4): 110–144, ERIC document ED0103613. [ Simpson 1966–67 available online ]
  • Skolverket, 2018, Curriculum for the Compulsory School, Preschool Class and School-age Educare , Stockholm: Skolverket, revised 2018. Available at https://www.skolverket.se/download/18.31c292d516e7445866a218f/1576654682907/pdf3984.pdf; last accessed 2022 07 15.
  • Smith, B. Othanel, 1953, “The Improvement of Critical Thinking”, Progressive Education , 30(5): 129–134.
  • Smith, Eugene Randolph, Ralph Winfred Tyler, and the Evaluation Staff, 1942, Appraising and Recording Student Progress , Volume III of Adventure in American Education , New York and London: Harper & Brothers.
  • Splitter, Laurance J., 1987, “Educational Reform through Philosophy for Children”, Thinking: The Journal of Philosophy for Children , 7(2): 32–39. doi:10.5840/thinking1987729
  • Stanovich Keith E., and Paula J. Stanovich, 2010, “A Framework for Critical Thinking, Rational Thinking, and Intelligence”, in David D. Preiss and Robert J. Sternberg (eds), Innovations in Educational Psychology: Perspectives on Learning, Teaching and Human Development , New York: Springer Publishing, pp 195–237.
  • Stanovich Keith E., Richard F. West, and Maggie E. Toplak, 2011, “Intelligence and Rationality”, in Robert J. Sternberg and Scott Barry Kaufman (eds.), Cambridge Handbook of Intelligence , Cambridge: Cambridge University Press, 3rd edition, pp. 784–826. doi:10.1017/CBO9780511977244.040
  • Tankersley, Karen, 2005, Literacy Strategies for Grades 4–12: Reinforcing the Threads of Reading , Alexandria, VA: Association for Supervision and Curriculum Development.
  • Thayer-Bacon, Barbara J., 1992, “Is Modern Critical Thinking Theory Sexist?”, Inquiry: Critical Thinking Across the Disciplines , 10(1): 3–7. doi:10.5840/inquiryctnews199210123
  • –––, 1993, “Caring and Its Relationship to Critical Thinking”, Educational Theory , 43(3): 323–340. doi:10.1111/j.1741-5446.1993.00323.x
  • –––, 1995a, “Constructive Thinking: Personal Voice”, Journal of Thought , 30(1): 55–70.
  • –––, 1995b, “Doubting and Believing: Both are Important for Critical Thinking”, Inquiry: Critical Thinking across the Disciplines , 15(2): 59–66. doi:10.5840/inquiryctnews199515226
  • –––, 2000, Transforming Critical Thinking: Thinking Constructively , New York: Teachers College Press.
  • Toulmin, Stephen Edelston, 1958, The Uses of Argument , Cambridge: Cambridge University Press.
  • Turri, John, Mark Alfano, and John Greco, 2017, “Virtue Epistemology”, in Edward N. Zalta (ed.), The Stanford Encyclopedia of Philosophy (Winter 2017 Edition). URL = < https://plato.stanford.edu/archives/win2017/entries/epistemology-virtue/ >
  • Vincent-Lancrin, Stéphan, Carlos González-Sancho, Mathias Bouckaert, Federico de Luca, Meritxell Fernández-Barrerra, Gwénaël Jacotin, Joaquin Urgel, and Quentin Vidal, 2019, Fostering Students’ Creativity and Critical Thinking: What It Means in School. Educational Research and Innovation , Paris: OECD Publishing.
  • Warren, Karen J. 1988. “Critical Thinking and Feminism”, Informal Logic , 10(1): 31–44. [ Warren 1988 available online ]
  • Watson, Goodwin, and Edward M. Glaser, 1980a, Watson-Glaser Critical Thinking Appraisal, Form A , San Antonio, TX: Psychological Corporation.
  • –––, 1980b, Watson-Glaser Critical Thinking Appraisal: Forms A and B; Manual , San Antonio, TX: Psychological Corporation,
  • –––, 1994, Watson-Glaser Critical Thinking Appraisal, Form B , San Antonio, TX: Psychological Corporation.
  • Weinstein, Mark, 1990, “Towards a Research Agenda for Informal Logic and Critical Thinking”, Informal Logic , 12(3): 121–143. [ Weinstein 1990 available online ]
  • –––, 2013, Logic, Truth and Inquiry , London: College Publications.
  • Willingham, Daniel T., 2019, “How to Teach Critical Thinking”, Education: Future Frontiers , 1: 1–17. [Available online at https://prod65.education.nsw.gov.au/content/dam/main-education/teaching-and-learning/education-for-a-changing-world/media/documents/How-to-teach-critical-thinking-Willingham.pdf.]
  • Zagzebski, Linda Trinkaus, 1996, Virtues of the Mind: An Inquiry into the Nature of Virtue and the Ethical Foundations of Knowledge , Cambridge: Cambridge University Press. doi:10.1017/CBO9781139174763
How to cite this entry . Preview the PDF version of this entry at the Friends of the SEP Society . Look up topics and thinkers related to this entry at the Internet Philosophy Ontology Project (InPhO). Enhanced bibliography for this entry at PhilPapers , with links to its database.
  • Association for Informal Logic and Critical Thinking (AILACT)
  • Critical Thinking Across the European Higher Education Curricula (CRITHINKEDU)
  • Critical Thinking Definition, Instruction, and Assessment: A Rigorous Approach
  • Critical Thinking Research (RAIL)
  • Foundation for Critical Thinking
  • Insight Assessment
  • Partnership for 21st Century Learning (P21)
  • The Critical Thinking Consortium
  • The Nature of Critical Thinking: An Outline of Critical Thinking Dispositions and Abilities , by Robert H. Ennis

abilities | bias, implicit | children, philosophy for | civic education | decision-making capacity | Dewey, John | dispositions | education, philosophy of | epistemology: virtue | logic: informal

Copyright © 2022 by David Hitchcock < hitchckd @ mcmaster . ca >

  • Accessibility

Support SEP

Mirror sites.

View this site from another server:

  • Info about mirror sites

The Stanford Encyclopedia of Philosophy is copyright © 2024 by The Metaphysics Research Lab , Department of Philosophy, Stanford University

Library of Congress Catalog Data: ISSN 1095-5054

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List

Logo of jintell

Critical Thinking: A Model of Intelligence for Solving Real-World Problems

Diane f. halpern.

1 Department of Psychology, Claremont McKenna College, Emerita, Altadena, CA 91001, USA

Dana S. Dunn

2 Department of Psychology, Moravian College, Bethlehem, PA 18018, USA; ude.naivarom@nnud

Most theories of intelligence do not directly address the question of whether people with high intelligence can successfully solve real world problems. A high IQ is correlated with many important outcomes (e.g., academic prominence, reduced crime), but it does not protect against cognitive biases, partisan thinking, reactance, or confirmation bias, among others. There are several newer theories that directly address the question about solving real-world problems. Prominent among them is Sternberg’s adaptive intelligence with “adaptation to the environment” as the central premise, a construct that does not exist on standardized IQ tests. Similarly, some scholars argue that standardized tests of intelligence are not measures of rational thought—the sort of skill/ability that would be needed to address complex real-world problems. Other investigators advocate for critical thinking as a model of intelligence specifically designed for addressing real-world problems. Yes, intelligence (i.e., critical thinking) can be enhanced and used for solving a real-world problem such as COVID-19, which we use as an example of contemporary problems that need a new approach.

1. Introduction

The editors of this Special Issue asked authors to respond to a deceptively simple statement: “How Intelligence Can Be a Solution to Consequential World Problems.” This statement holds many complexities, including how intelligence is defined and which theories are designed to address real-world problems.

2. The Problem with Using Standardized IQ Measures for Real-World Problems

For the most part, we identify high intelligence as having a high score on a standardized test of intelligence. Like any test score, IQ can only reflect what is on the given test. Most contemporary standardized measures of intelligence include vocabulary, working memory, spatial skills, analogies, processing speed, and puzzle-like elements (e.g., Wechsler Adult Intelligence Scale Fourth Edition; see ( Drozdick et al. 2012 )). Measures of IQ correlate with many important outcomes, including academic performance ( Kretzschmar et al. 2016 ), job-related skills ( Hunter and Schmidt 1996 ), reduced likelihood of criminal behavior ( Burhan et al. 2014 ), and for those with exceptionally high IQs, obtaining a doctorate and publishing scholarly articles ( McCabe et al. 2020 ). Gottfredson ( 1997, p. 81 ) summarized these effects when she said the “predictive validity of g is ubiquitous.” More recent research using longitudinal data, found that general mental abilities and specific abilities are good predictors of several work variables including job prestige, and income ( Lang and Kell 2020 ). Although assessments of IQ are useful in many contexts, having a high IQ does not protect against falling for common cognitive fallacies (e.g., blind spot bias, reactance, anecdotal reasoning), relying on biased and blatantly one-sided information sources, failing to consider information that does not conform to one’s preferred view of reality (confirmation bias), resisting pressure to think and act in a certain way, among others. This point was clearly articulated by Stanovich ( 2009, p. 3 ) when he stated that,” IQ tests measure only a small set of the thinking abilities that people need.”

3. Which Theories of Intelligence Are Relevant to the Question?

Most theories of intelligence do not directly address the question of whether people with high intelligence can successfully solve real world problems. For example, Grossmann et al. ( 2013 ) cite many studies in which IQ scores have not predicted well-being, including life satisfaction and longevity. Using a stratified random sample of Americans, these investigators found that wise reasoning is associated with life satisfaction, and that “there was no association between intelligence and well-being” (p. 944). (critical thinking [CT] is often referred to as “wise reasoning” or “rational thinking,”). Similar results were reported by Wirthwein and Rost ( 2011 ) who compared life satisfaction in several domains for gifted adults and adults of average intelligence. There were no differences in any of the measures of subjective well-being, except for leisure, which was significantly lower for the gifted adults. Additional research in a series of experiments by Stanovich and West ( 2008 ) found that participants with high cognitive ability were as likely as others to endorse positions that are consistent with their biases, and they were equally likely to prefer one-sided arguments over those that provided a balanced argument. There are several newer theories that directly address the question about solving real-world problems. Prominent among them is Sternberg’s adaptive intelligence with “adaptation to the environment” as the central premise, a construct that does not exist on standardized IQ tests (e.g., Sternberg 2019 ). Similarly, Stanovich and West ( 2014 ) argue that standardized tests of intelligence are not measures of rational thought—the sort of skill/ability that would be needed to address complex real-world problems. Halpern and Butler ( 2020 ) advocate for CT as a useful model of intelligence for addressing real-world problems because it was designed for this purpose. Although there is much overlap among these more recent theories, often using different terms for similar concepts, we use Halpern and Butler’s conceptualization to make our point: Yes, intelligence (i.e., CT) can be enhanced and used for solving a real-world problem like COVID-19.

4. Critical Thinking as an Applied Model for Intelligence

One definition of intelligence that directly addresses the question about intelligence and real-world problem solving comes from Nickerson ( 2020, p. 205 ): “the ability to learn, to reason well, to solve novel problems, and to deal effectively with novel problems—often unpredictable—that confront one in daily life.” Using this definition, the question of whether intelligent thinking can solve a world problem like the novel coronavirus is a resounding “yes” because solutions to real-world novel problems are part of his definition. This is a popular idea in the general public. For example, over 1000 business managers and hiring executives said that they want employees who can think critically based on the belief that CT skills will help them solve work-related problems ( Hart Research Associates 2018 ).

We define CT as the use of those cognitive skills or strategies that increase the probability of a desirable outcome. It is used to describe thinking that is purposeful, reasoned, and goal directed--the kind of thinking involved in solving problems, formulating inferences, calculating likelihoods, and making decisions, when the thinker is using skills that are thoughtful and effective for the particular context and type of thinking task. International surveys conducted by the OECD ( 2019, p. 16 ) established “key information-processing competencies” that are “highly transferable, in that they are relevant to many social contexts and work situations; and ‘learnable’ and therefore subject to the influence of policy.” One of these skills is problem solving, which is one subset of CT skills.

The CT model of intelligence is comprised of two components: (1) understanding information at a deep, meaningful level and (2) appropriate use of CT skills. The underlying idea is that CT skills can be identified, taught, and learned, and when they are recognized and applied in novel settings, the individual is demonstrating intelligent thought. CT skills include judging the credibility of an information source, making cost–benefit calculations, recognizing regression to the mean, understanding the limits of extrapolation, muting reactance responses, using analogical reasoning, rating the strength of reasons that support and fail to support a conclusion, and recognizing hindsight bias or confirmation bias, among others. Critical thinkers use these skills appropriately, without prompting, and usually with conscious intent in a variety of settings.

One of the key concepts in this model is that CT skills transfer in appropriate situations. Thus, assessments using situational judgments are needed to assess whether particular skills have transferred to a novel situation where it is appropriate. In an assessment created by the first author ( Halpern 2018 ), short paragraphs provide information about 20 different everyday scenarios (e.g., A speaker at the meeting of your local school board reported that when drug use rises, grades decline; so schools need to enforce a “war on drugs” to improve student grades); participants provide two response formats for every scenario: (a) constructed responses where they respond with short written responses, followed by (b) forced choice responses (e.g., multiple choice, rating or ranking of alternatives) for the same situations.

There is a large and growing empirical literature to support the assertion that CT skills can be learned and will transfer (when taught for transfer). See for example, Holmes et al. ( 2015 ), who wrote in the prestigious Proceedings of the National Academy of Sciences , that there was “significant and sustained improvement in students’ critical thinking behavior” (p. 11,199) for students who received CT instruction. Abrami et al. ( 2015, para. 1 ) concluded from a meta-analysis that “there are effective strategies for teaching CT skills, both generic and content specific, and CT dispositions, at all educational levels and across all disciplinary areas.” Abrami et al. ( 2008, para. 1 ), included 341 effect sizes in a meta-analysis. They wrote: “findings make it clear that improvement in students’ CT skills and dispositions cannot be a matter of implicit expectation.” A strong test of whether CT skills can be used for real-word problems comes from research by Butler et al. ( 2017 ). Community adults and college students (N = 244) completed several scales including an assessment of CT, an intelligence test, and an inventory of real-life events. Both CT scores and intelligence scores predicted individual outcomes on the inventory of real-life events, but CT was a stronger predictor.

Heijltjes et al. ( 2015, p. 487 ) randomly assigned participants to either a CT instruction group or one of six other control conditions. They found that “only participants assigned to CT instruction improved their reasoning skills.” Similarly, when Halpern et al. ( 2012 ) used random assignment of participants to either a learning group where they were taught scientific reasoning skills using a game format or a control condition (which also used computerized learning and was similar in length), participants in the scientific skills learning group showed higher proportional learning gains than students who did not play the game. As the body of additional supportive research is too large to report here, interested readers can find additional lists of CT skills and support for the assertion that these skills can be learned and will transfer in Halpern and Dunn ( Forthcoming ). There is a clear need for more high-quality research on the application and transfer of CT and its relationship to IQ.

5. Pandemics: COVID-19 as a Consequential Real-World Problem

A pandemic occurs when a disease runs rampant over an entire country or even the world. Pandemics have occurred throughout history: At the time of writing this article, COVID-19 is a world-wide pandemic whose actual death rate is unknown but estimated with projections of several million over the course of 2021 and beyond ( Mega 2020 ). Although vaccines are available, it will take some time to inoculate most or much of the world’s population. Since March 2020, national and international health agencies have created a list of actions that can slow and hopefully stop the spread of COVID (e.g., wearing face masks, practicing social distancing, avoiding group gatherings), yet many people in the United States and other countries have resisted their advice.

Could instruction in CT encourage more people to accept and comply with simple life-saving measures? There are many possible reasons to believe that by increasing citizens’ CT abilities, this problematic trend can be reversed for, at least, some unknown percentage of the population. We recognize the long history of social and cognitive research showing that changing attitudes and behaviors is difficult, and it would be unrealistic to expect that individuals with extreme beliefs supported by their social group and consistent with their political ideologies are likely to change. For example, an Iranian cleric and an orthodox rabbi both claimed (separately) that the COVID-19 vaccine can make people gay ( Marr 2021 ). These unfounded opinions are based on deeply held prejudicial beliefs that we expect to be resistant to CT. We are targeting those individuals who beliefs are less extreme and may be based on reasonable reservations, such as concern about the hasty development of the vaccine and the lack of long-term data on its effects. There should be some unknown proportion of individuals who can change their COVID-19-related beliefs and actions with appropriate instruction in CT. CT can be a (partial) antidote for the chaos of the modern world with armies of bots creating content on social media, political and other forces deliberately attempting to confuse issues, and almost all media labeled “fake news” by social influencers (i.e., people with followers that sometimes run to millions on various social media). Here, are some CT skills that could be helpful in getting more people to think more critically about pandemic-related issues.

Reasoning by Analogy and Judging the Credibility of the Source of Information

Early communications about the ability of masks to prevent the spread of COVID from national health agencies were not consistent. In many regions of the world, the benefits of wearing masks incited prolonged and acrimonious debates ( Tang 2020 ). However, after the initial confusion, virtually all of the global and national health organizations (e.g., WHO, National Health Service in the U. K., U. S. Centers for Disease Control and Prevention) endorse masks as a way to slow the spread of COVID ( Cheng et al. 2020 ; Chu et al. 2020 ). However, as we know, some people do not trust governmental agencies and often cite the conflicting information that was originally given as a reason for not wearing a mask. There are varied reasons for refusing to wear a mask, but the one most often cited is that it is against civil liberties ( Smith 2020 ). Reasoning by analogy is an appropriate CT skill for evaluating this belief (and a key skill in legal thinking). It might be useful to cite some of the many laws that already regulate our behavior such as, requiring health inspections for restaurants, setting speed limits, mandating seat belts when riding in a car, and establishing the age at which someone can consume alcohol. Individuals would be asked to consider how the mandate to wear a mask compares to these and other regulatory laws.

Another reason why some people resist the measures suggested by virtually every health agency concerns questions about whom to believe. Could training in CT change the beliefs and actions of even a small percentage of those opposed to wearing masks? Such training would include considering the following questions with practice across a wide domain of knowledge: (a) Does the source have sufficient expertise? (b) Is the expertise recent and relevant? (c) Is there a potential for gain by the information source, such as financial gain? (d) What would the ideal information source be and how close is the current source to the ideal? (e) Does the information source offer evidence that what they are recommending is likely to be correct? (f) Have you traced URLs to determine if the information in front of you really came from the alleged source?, etc. Of course, not everyone will respond in the same way to each question, so there is little likelihood that we would all think alike, but these questions provide a framework for evaluating credibility. Donovan et al. ( 2015 ) were successful using a similar approach to improve dynamic decision-making by asking participants to reflect on questions that relate to the decision. Imagine the effect of rigorous large-scale education in CT from elementary through secondary schools, as well as at the university-level. As stated above, empirical evidence has shown that people can become better thinkers with appropriate instruction in CT. With training, could we encourage some portion of the population to become more astute at judging the credibility of a source of information? It is an experiment worth trying.

6. Making Cost—Benefit Assessments for Actions That Would Slow the Spread of COVID-19

Historical records show that refusal to wear a mask during a pandemic is not a new reaction. The epidemic of 1918 also included mandates to wear masks, which drew public backlash. Then, as now, many people refused, even when they were told that it was a symbol of “wartime patriotism” because the 1918 pandemic occurred during World War I ( Lovelace 2020 ). CT instruction would include instruction in why and how to compute cost–benefit analyses. Estimates of “lives saved” by wearing a mask can be made meaningful with graphical displays that allow more people to understand large numbers. Gigerenzer ( 2020 ) found that people can understand risk ratios in medicine when the numbers are presented as frequencies instead of probabilities. If this information were used when presenting the likelihood of illness and death from COVID-19, could we increase the numbers of people who understand the severity of this disease? Small scale studies by Gigerenzer have shown that it is possible.

Analyzing Arguments to Determine Degree of Support for a Conclusion

The process of analyzing arguments requires that individuals rate the strength of support for and against a conclusion. By engaging in this practice, they must consider evidence and reasoning that may run counter to a preferred outcome. Kozyreva et al. ( 2020 ) call the deliberate failure to consider both supporting and conflicting data “deliberate ignorance”—avoiding or failing to consider information that could be useful in decision-making because it may collide with an existing belief. When applied to COVID-19, people would have to decide if the evidence for and against wearing a face mask is a reasonable way to stop the spread of this disease, and if they conclude that it is not, what are the costs and benefits of not wearing masks at a time when governmental health organizations are making them mandatory in public spaces? Again, we wonder if rigorous and systematic instruction in argument analysis would result in more positive attitudes and behaviors that relate to wearing a mask or other real-world problems. We believe that it is an experiment worth doing.

7. Conclusions

We believe that teaching CT is a worthwhile approach for educating the general public in order to improve reasoning and motivate actions to address, avert, or ameliorate real-world problems like the COVID-19 pandemic. Evidence suggests that CT can guide intelligent responses to societal and global problems. We are NOT claiming that CT skills will be a universal solution for the many real-world problems that we confront in contemporary society, or that everyone will substitute CT for other decision-making practices, but we do believe that systematic education in CT can help many people become better thinkers, and we believe that this is an important step toward creating a society that values and practices routine CT. The challenges are great, but the tools to tackle them are available, if we are willing to use them.

Author Contributions

Conceptualization, D.F.H. and D.S.D.; resources, D.F.H.; data curation, writing—original draft preparation, D.F.H.; writing—review and editing, D.F.H. and D.S.D. All authors have read and agreed to the published version of the manuscript.

This research received no external funding.

Institutional Review Board Statement

No IRB Review.

Informed Consent Statement

No Informed Consent.

Conflicts of Interest

The authors declare no conflict of interest.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

  • Abrami Philip C., Bernard Robert M., Borokhovski Evgueni, Wade C. Anne, Surkes Michael A., Tamim Rana, Zhang Dai. Instructional interventions affecting critical thinking skills and dispositions: A Stage 1 meta-analysis. Review of Educational Research. 2008; 78 :1102–34. doi: 10.3102/0034654308326084. [ CrossRef ] [ Google Scholar ]
  • Abrami Philip C., Bernard Robert M., Borokhovski Evgueni, Waddington David I., Wade C. Anne. Strategies for teaching students to think critically: A meta-analysis. Review of Educational Research. 2015; 85 :275–341. doi: 10.3102/0034654314551063. [ CrossRef ] [ Google Scholar ]
  • Burhan Nik Ahmad Sufian, Kurniawan Yohan, Sidek Abdul Halim, Mohamad Mohd Rosli. Crimes and the Bell curve: Th e role of people with high, average, and low intelligence. Intelligence. 2014; 47 :12–22. doi: 10.1016/j.intell.2014.08.005. [ CrossRef ] [ Google Scholar ]
  • Butler Heather A., Pentoney Christopher, Bong Maebelle P. Predicting real-world outcomes: Critical thinking ability is a better predictor of life decisions than intelligence. Thinking Skills and Creativity. 2017; 25 :38–46. doi: 10.1016/j.tsc.2017.06.005. [ CrossRef ] [ Google Scholar ]
  • Cheng Vincent Chi-Chung, Wong Shuk-Ching, Chuang Vivien Wai-Man, So Simon Yung-Chun, Chen Jonathan Hon-Kwan, Sridhar Sidharth, To Kelvin Kai-Wwang, Chan Jasper Fuk-Wu, Hung Ivan Fan-Ngai, Ho Pak-Leung, et al. The role of community-wide wearing of face mask for control of coronavirus disease 2019 (COVID-19) epidemic due to SARS-CoV-2. Journal of Infectious Disease. 2020; 81 :107–14. doi: 10.1016/j.jinf.2020.04.024. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Chu Derek K., Aki Elie A., Duda Stephanie, Solo Karla, Yaacoub Sally, Schunemann Holger J. Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: A system atic review and meta-analysis. Lancet. 2020; 395 :1973–87. doi: 10.1016/S0140-6736(20)31142-9. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Donovan Sarah J., Guss C. Dominick, Naslund Dag. Improving dynamic decision-making through training and self-re flection. Judgment and Decision Making. 2015; 10 :284–95. [ Google Scholar ]
  • Drozdick Lisa Whipple, Wahlstrom Dustin, Zhu Jianjun, Weiss Lawrence G. The Wechsler Adult Intelligence Scale—Fourth Edition and the Wechsler Memory Scale—Fourth Edition. In: Flanagan Dawn P., Harrison Patti L., editors. Contemporary Intellectual as Sessment: Theories, Tests, and Issues. The Guilford Press; New York: 2012. pp. 197–223. [ Google Scholar ]
  • Gigerenzer Gerd. When all is just a click away: Is critical thinking obsolete in the digital age? In: Sternberg Robert J., Halpern Diane F., editors. Critical Thinking IN Psychology. 2nd ed. Cambridge University Press; Cambridge: 2020. pp. 197–223. [ Google Scholar ]
  • Gottfredson Linda S. Why g matters: The complexity of everyday life. Intelligence. 1997; 24 :79–132. doi: 10.1016/S0160-2896(97)90014-3. [ CrossRef ] [ Google Scholar ]
  • Grossmann Igor, Varnum Michael E. W., Na Jinkyung, Kitayama Shinobu, Nisbett Richard E. A route to well-being: Intelligence ver sus wise reasoning. Journal of Experimental Psychology: General. 2013; 142 :944–53. doi: 10.1037/a0029560. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Halpern Diane F. Halpern Critical Thinking Assessment. Schuhfried Test Publishers; Modling: 2018. [(accessed on 30 March 2021)]. Available online: www.schuhfried.com [ Google Scholar ]
  • Halpern Diane F., Butler Heather A. Is critical thinking a better model of intelligence? In: Sternberg Robert J., editor. The nature of Intelligence. 2nd ed. Cambridge University Press; Cambridge: 2020. pp. 183–96. [ Google Scholar ]
  • Halpern Diane F., Dunn Dana S. Thought and Knowledge: An Introduction to Critical Thinking. 6th ed. Taylor & Francis; New York: Forthcoming. in press. [ Google Scholar ]
  • Halpern Diane F., Millis Keith, Graesser Arthur, Butler Heather, Forsyth Carol, Cai Zhiqiang. Operation ARA: A computerized learn ing game that teaches critical thinking and scientific reasoning. Thinking Skills and Creativity. 2012; 7 :93–100. doi: 10.1016/j.tsc.2012.03.006. [ CrossRef ] [ Google Scholar ]
  • Hart Research Associates [(accessed on 30 March 2021)]; Employers Express Confidence in Colleges and Universities: See College as Worth the Investment, New Research Finds. 2018 Aug 29; Available online: https://hartresearch.com/employers-express-confidence-in-colleges-and-universities-see-college-as-worth-the-investment-new-research-finds/
  • Heijltjes Anita, Gog Tamara van, Lippink Jimmie, Paas Fred. Unraveling the effects of critical thinking instructions, practice, and self-explanation on students’ reasoning performance. Instructional Science. 2015; 43 :487–506. doi: 10.1007/s11251-015-9347-8. [ CrossRef ] [ Google Scholar ]
  • Holmes Natasha G., Wieman Carl E., Bonn DougA. Teaching critical thinking. Proceedings of the National Academy of Sciences. 2015; 112 :11199–204. doi: 10.1073/pnas.1505329112. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Hunter John E., Schmidt Frank L. Intelligence and job performance: Economic and social implications. Psychology, Public Policy, and Law. 1996; 2 :447–72. doi: 10.1037/1076-8971.2.3-4.447. [ CrossRef ] [ Google Scholar ]
  • Kozyreva Anastasia, Lewandowsky Stephan, Hertwig Ralph. Citizens versus the internet: Confronting digital challenges with cognitive tools. [(accessed on 30 March 2021)]; Psychological Science in the Public Interest. 2020 21 doi: 10.1177/1529100620946707. Available online: https://www.psychologi calscience.org/publications/confronting-digital-challenges-with-cognitive-tools.html [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Kretzschmar Andre, Neubert Jonas C., Wusternberg Sascha, Greiff Samuel. Construct validity of complex problem- solv ing: A comprehensive view on different facts of intelligence and school grades. Intelligence. 2016; 54 :55–69. doi: 10.1016/j.intell.2015.11.004. [ CrossRef ] [ Google Scholar ]
  • Lang Jonas W.B., Kell Harrison J. General mental ability and specific abilities: Their relative importance for extrinsic career success. Journal of Applied Psychology. 2020; 105 :1047–61. doi: 10.1037/apl0000472. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Lovelace Berkeley., Jr. Medical Historians Compare the Coronavirus to the 1918 Flu Pandemic: Both Were Highly Political. [(accessed on 30 March 2021)]; CNBC. 2020 Available online: https://www.cnbc.com/2020/09/28/comparing-1918-flu-vs-corona virus.html?fbclid=IwAR1RAVRUOIdN9qqvNnMPimf5Q4XfV-pn_qdC3DwcfnPu9kavwumDI2zq9Xs
  • Marr Rhuaridh. Iranian Cleric Claims COVID-19 Vaccine Can Make People Gay. [(accessed on 30 March 2021)]; Metro Weekly. 2021 Available online: https://www.metroweekly.com/2021/02/iranian-cleric-claims-covid-19-vaccine-can-make-people-gay/
  • McCabe Kira O., Lubinski David, Benbow Camilla P. Who shines most among the brightest?: A 25-year longitudinal study of elite STEM graduate students. Journal of Personality and Social Psychology. 2020; 119 :390–416. doi: 10.1037/pspp0000239. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Mega Emiliano R. COVID Has Killed more than One Million People. How Many more will Die? [(accessed on 30 March 2021)]; Nature. 2020 Available online: https://www.nature.com/articles/d41586-020-02762-y [ PubMed ]
  • Nickerson Raymond S. Developing intelligence through instruction. In: Sternberg Robert J., editor. The Cambridge Handbook of Intelligence. 2nd ed. Cambridge University Press; Cambridge: 2020. pp. 205–37. [ Google Scholar ]
  • OECD . The Survey of Adult Skills: Reader’s Companion. 3rd ed. OECD Publishing; Paris: 2019. OECD Skills Studies. [ CrossRef ] [ Google Scholar ]
  • Smith Matthew. Why won’t Britons Wear Face Masks? [(accessed on 30 March 2021)]; YouGov. 2020 Available online: https://yougov.co.uk/topics/health/articles-reports/2020/07/15/why-wont-britons-wear-face-masks
  • Stanovich Keith E. What Intelligence Tests Miss: The Psychology of Rational Thought. Yale University Press; New Haven: 2009. [ Google Scholar ]
  • Stanovich Keith E., West Richard F. On the failure of cognitive ability to predict my-side bias and one-sided thinking biases. Thinking & Reasoning. 2008; 14 :129–67. doi: 10.1080/13546780701679764. [ CrossRef ] [ Google Scholar ]
  • Stanovich Keith E., West Richard F. What intelligence tests miss. The Psychologist. 2014; 27 :80–83. doi: 10.5840/inquiryctnews201126216. [ CrossRef ] [ Google Scholar ]
  • Sternberg Robert J. A theory of adaptive intelligence and its relation to general intelligence. Journal of Intelligence. 2019; 7 :23. doi: 10.3390/jintelligence7040023. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Tang Julian W. COVID-19: Interpreting scientific evidence—Uncertainty, confusion, and delays. BMC Infectious Diseases. 2020; 20 :653. doi: 10.1186/s12879-020-05387-8. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Wirthwein Linda, Rost Detlef H. Giftedness and subjective well-being: A study with adults. Learning and Individuals Differences. 2011; 21 :182–86. doi: 10.1016/j.lindif.2011.01.001. [ CrossRef ] [ Google Scholar ]

loading

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base
  • Working with sources
  • What Is Critical Thinking? | Definition & Examples

What Is Critical Thinking? | Definition & Examples

Published on May 30, 2022 by Eoghan Ryan . Revised on May 31, 2023.

Critical thinking is the ability to effectively analyze information and form a judgment .

To think critically, you must be aware of your own biases and assumptions when encountering information, and apply consistent standards when evaluating sources .

Critical thinking skills help you to:

  • Identify credible sources
  • Evaluate and respond to arguments
  • Assess alternative viewpoints
  • Test hypotheses against relevant criteria

Table of contents

Why is critical thinking important, critical thinking examples, how to think critically, other interesting articles, frequently asked questions about critical thinking.

Critical thinking is important for making judgments about sources of information and forming your own arguments. It emphasizes a rational, objective, and self-aware approach that can help you to identify credible sources and strengthen your conclusions.

Critical thinking is important in all disciplines and throughout all stages of the research process . The types of evidence used in the sciences and in the humanities may differ, but critical thinking skills are relevant to both.

In academic writing , critical thinking can help you to determine whether a source:

  • Is free from research bias
  • Provides evidence to support its research findings
  • Considers alternative viewpoints

Outside of academia, critical thinking goes hand in hand with information literacy to help you form opinions rationally and engage independently and critically with popular media.

Prevent plagiarism. Run a free check.

Critical thinking can help you to identify reliable sources of information that you can cite in your research paper . It can also guide your own research methods and inform your own arguments.

Outside of academia, critical thinking can help you to be aware of both your own and others’ biases and assumptions.

Academic examples

However, when you compare the findings of the study with other current research, you determine that the results seem improbable. You analyze the paper again, consulting the sources it cites.

You notice that the research was funded by the pharmaceutical company that created the treatment. Because of this, you view its results skeptically and determine that more independent research is necessary to confirm or refute them. Example: Poor critical thinking in an academic context You’re researching a paper on the impact wireless technology has had on developing countries that previously did not have large-scale communications infrastructure. You read an article that seems to confirm your hypothesis: the impact is mainly positive. Rather than evaluating the research methodology, you accept the findings uncritically.

Nonacademic examples

However, you decide to compare this review article with consumer reviews on a different site. You find that these reviews are not as positive. Some customers have had problems installing the alarm, and some have noted that it activates for no apparent reason.

You revisit the original review article. You notice that the words “sponsored content” appear in small print under the article title. Based on this, you conclude that the review is advertising and is therefore not an unbiased source. Example: Poor critical thinking in a nonacademic context You support a candidate in an upcoming election. You visit an online news site affiliated with their political party and read an article that criticizes their opponent. The article claims that the opponent is inexperienced in politics. You accept this without evidence, because it fits your preconceptions about the opponent.

There is no single way to think critically. How you engage with information will depend on the type of source you’re using and the information you need.

However, you can engage with sources in a systematic and critical way by asking certain questions when you encounter information. Like the CRAAP test , these questions focus on the currency , relevance , authority , accuracy , and purpose of a source of information.

When encountering information, ask:

  • Who is the author? Are they an expert in their field?
  • What do they say? Is their argument clear? Can you summarize it?
  • When did they say this? Is the source current?
  • Where is the information published? Is it an academic article? Is it peer-reviewed ?
  • Why did the author publish it? What is their motivation?
  • How do they make their argument? Is it backed up by evidence? Does it rely on opinion, speculation, or appeals to emotion ? Do they address alternative arguments?

Critical thinking also involves being aware of your own biases, not only those of others. When you make an argument or draw your own conclusions, you can ask similar questions about your own writing:

  • Am I only considering evidence that supports my preconceptions?
  • Is my argument expressed clearly and backed up with credible sources?
  • Would I be convinced by this argument coming from someone else?

If you want to know more about ChatGPT, AI tools , citation , and plagiarism , make sure to check out some of our other articles with explanations and examples.

  • ChatGPT vs human editor
  • ChatGPT citations
  • Is ChatGPT trustworthy?
  • Using ChatGPT for your studies
  • What is ChatGPT?
  • Chicago style
  • Paraphrasing

 Plagiarism

  • Types of plagiarism
  • Self-plagiarism
  • Avoiding plagiarism
  • Academic integrity
  • Consequences of plagiarism
  • Common knowledge

Critical thinking refers to the ability to evaluate information and to be aware of biases or assumptions, including your own.

Like information literacy , it involves evaluating arguments, identifying and solving problems in an objective and systematic way, and clearly communicating your ideas.

Critical thinking skills include the ability to:

You can assess information and arguments critically by asking certain questions about the source. You can use the CRAAP test , focusing on the currency , relevance , authority , accuracy , and purpose of a source of information.

Ask questions such as:

  • Who is the author? Are they an expert?
  • How do they make their argument? Is it backed up by evidence?

A credible source should pass the CRAAP test  and follow these guidelines:

  • The information should be up to date and current.
  • The author and publication should be a trusted authority on the subject you are researching.
  • The sources the author cited should be easy to find, clear, and unbiased.
  • For a web source, the URL and layout should signify that it is trustworthy.

Information literacy refers to a broad range of skills, including the ability to find, evaluate, and use sources of information effectively.

Being information literate means that you:

  • Know how to find credible sources
  • Use relevant sources to inform your research
  • Understand what constitutes plagiarism
  • Know how to cite your sources correctly

Confirmation bias is the tendency to search, interpret, and recall information in a way that aligns with our pre-existing values, opinions, or beliefs. It refers to the ability to recollect information best when it amplifies what we already believe. Relatedly, we tend to forget information that contradicts our opinions.

Although selective recall is a component of confirmation bias, it should not be confused with recall bias.

On the other hand, recall bias refers to the differences in the ability between study participants to recall past events when self-reporting is used. This difference in accuracy or completeness of recollection is not related to beliefs or opinions. Rather, recall bias relates to other factors, such as the length of the recall period, age, and the characteristics of the disease under investigation.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Ryan, E. (2023, May 31). What Is Critical Thinking? | Definition & Examples. Scribbr. Retrieved September 9, 2024, from https://www.scribbr.com/working-with-sources/critical-thinking/

Is this article helpful?

Eoghan Ryan

Eoghan Ryan

Other students also liked, student guide: information literacy | meaning & examples, what are credible sources & how to spot them | examples, applying the craap test & evaluating sources, "i thought ai proofreading was useless but..".

I've been using Scribbr for years now and I know it's a service that won't disappoint. It does a good job spotting mistakes”

Bookmark this page

Translate this page from English...

*Machine translated pages not guaranteed for accuracy. Click Here for our professional translations.

Defining Critical Thinking


Everyone thinks; it is our nature to do so. But much of our thinking, left to itself, is biased, distorted, partial, uninformed or down-right prejudiced. Yet the quality of our life and that of what we produce, make, or build depends precisely on the quality of our thought. Shoddy thinking is costly, both in money and in quality of life. Excellence in thought, however, must be systematically cultivated.


Critical thinking is that mode of thinking - about any subject, content, or problem - in which the thinker improves the quality of his or her thinking by skillfully taking charge of the structures inherent in thinking and imposing intellectual standards upon them.



Foundation for Critical Thinking Press, 2008)

Teacher’s College, Columbia University, 1941)



To read this content please select one of the options below:

Please note you do not have access to teaching notes, history of critical thinking and some models of critical thinking.

A Primer on Critical Thinking and Business Ethics

ISBN : 978-1-83753-309-1 , eISBN : 978-1-83753-308-4

Publication date: 27 July 2023

Executive Summary

In this chapter, we introduce the history of critical thinking briefly, starting from Socrates to contemporary contributions. Based on this history, we derive several modules for training in critical thinking via practical exercises in critical thinking. Three classic critical thinking models are introduced: Socratic questioning method, Cartesian doubting method, and Baconian empirical method. We discuss their potential for critical thinking as foundational methods. The material in this chapter is distributed in three parts. In Part I, we provide a brief history of critical thinking. In Part II, we design models of critical thinking based on its classic history. In Part III, we list some models of critical thinking based on its history, from the Renaissance period to the current times. In the last section, we also discuss critical thinking in the context of business ethics, by delineating its normative domain, assessing its characteristics, and reviewing its processes.

Mascarenhas, O.A.J. , Thakur, M. and Kumar, P. (2023), "History of Critical Thinking and Some Models of Critical Thinking", A Primer on Critical Thinking and Business Ethics , Emerald Publishing Limited, Leeds, pp. 41-80. https://doi.org/10.1108/978-1-83753-308-420231003

Emerald Publishing Limited

Copyright © 2023 Oswald A. J. Mascarenhas, Munish Thakur and Payal Kumar. Published under exclusive licence by Emerald Publishing Limited

All feedback is valuable

Please share your general feedback

Report an issue or find answers to frequently asked questions

Contact Customer Support

A Model of Critical Thinking in Higher Education

  • First Online: 12 December 2014

Cite this chapter

two models of critical thinking

  • Martin Davies Ph.D. 3  

Part of the book series: Higher Education: Handbook of Theory and Research ((HATR,volume 30))

5519 Accesses

46 Citations

3 Altmetric

There has been no shortage of definitions of the concept of “critical thinking” over the years and the concept has been subject to much detailed scholarly work. In social and educational terms critical thinking is an important topic. Of late, critical thinking has also been widely discussed in the popular media, and the concept has been regarded as one of the most important graduate outcomes expected of a university education. However, despite this, scholars have yet to arrive at a holistic conception of critical thinking—a model of critical thinking as it were—that might usefully underpin the range of considerations about critical thinking that occur in the higher education literature. This paper: (1) reviews the various definitions and approaches to critical thinking, and (2) incorporates them into a single, coherent model. A number of disagreements in critical thinking scholarship are outlined as ‘axis disputes’ arising from the proposed model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save.

  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
  • Durable hardcover edition

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

two models of critical thinking

Introduction

Critical pedagogy: critical thinking as a social practice, applying cognitive science to critical thinking among higher education students.

Airasian, P. W., Cruikshank, K. A., Mayer, R., Pintrich, P. R., Raths, J., & Wittrock, M. C. (2001). A taxonomy for learning, teaching, and assessing: A revision of Bloom’s taxonomy of educational objectives . New York: Longman.

Google Scholar  

Arum, R., & Roska, J. (2011). Academically adrift: Limited learning on college campuses . Chicago/London: The University of Chicago Press.

Bailin, S., Case, R., Coombs, J. R., & Daniels, L. B. (1999). Conceptualizing critical thinking. Journal of Curriculum Studies, 31 (3), 285–302.

Article   Google Scholar  

Barnett, R. (1997). Higher education: A critical business . Buckingham, UK: Open University Press.

Barnett, R. (2004). Learning for an unknown future. Higher Education Research and Development, 23 (3), 247–260.

Benner, P., & Tanner, C. (1987, January). How expert nurses use intuition. The American Journal of Nursing, 87 (1), 23–34.

Bloom, B. S. (1956). Taxonomy of educational objectives: The classification of educational goals. Handbook I: Cognitive domain . New York: McKay.

Boostrum, R. (1994). Developing creative and critical thinking: An integrated approach . Lincolnwood, IL: National Textbook Company.

Brookfield, S. (1987). Developing critical thinkers: Challenging adults to explore alternative ways of thinking and acting (1st ed.). San Francisco: Jossey-Bass Inc.

Burbules, N. C., & Berk, R. (1999). Critical thinking and critical pedagogy: Relations, differences, and limits. In T. Popkewitz (Ed.), Critical theories in education: Changing terrains of knowledge and politics (pp. xv, 254 p.). New York: Routledge.

Chance, P. (1986). Thinking in the classroom: A survey of programs . New York: Teachers’ College, Columbia University.

Cooper, A. (2009). In the zone: The zen of sports. Patheos , October 16, from http://www.patheos.com/Resources/Additional-Resources/In-the-Zone.html

Cowden, S., & Singh, G. (2013). Acts of knowing: Critical pedagogy in, against and beyond the university . London: Bloomsbury Academic.

Csikszentmihalyi, M. (1990). Flow: The psychology of optimal experience . New York: Harper and Row.

Cuban, L. (1984). Policy and research dilemmas in the teaching of reasoning. Review of Educational Research, 54 (4), 655–681.

Dane, E., & Pratt, M. G. (2007). Exploring intuition and its role in managerial decision making. Academy of Management Review, 32 (1), 33–54.

Davies, W. M. (2006). An ‘infusion’ approach to critical thinking: Moore on the critical thinking debate. Higher Education Research and Development, 25 (2), 179–193.

Davies, M. (2013). Critical thinking and disciplines reconsidered. Higher Education Research and Development, 32 (4), 529–544.

Dreyfus, H., & Dreyfus, S. (1985). Mind over machine: The power of human intuition and expertise in a era of the computer . New York: Free Press.

Effken, J. A. (2000). Informational basis for expert intuition. Nursing Theory and Concept Development or Analysis, 32 (2), 246–255.

Ennis, R. (1991). Critical thinking: A streamlined conception. Teaching Philosophy, 14 (1), 5–24.

Ennis, R. H. (2011, July 1994, revised and updated). The nature of critical thinking: An outline of critical thinking dispositions and abilities. Paper presented at the sixth international conference on thinking. Cambridge, MA: MIT. http://faculty.education.illinois.edu/rhennis/documents/TheNatureofCriticalThinking_51711_000.pdf

Ennis, R. H. (1962). A concept of critical thinking. Harvard Educational Review, 32 (1), 81–111.

Ennis, R. H. (1985a). Critical thinking and the curriculum. National Forum, 65 , 28–31.

Ennis, R. H. (1985b). A logical basis for measuring critical thinking skills. Educational Leadership, 43 (2), 44–48.

Ennis, R. H. (1987). A taxonomy of critical thinking abilities and dispositions. In J. S. Baron & R. H. Sternberg (Eds.), Teaching thinking skills (pp. 9–26). New York: W.H. Freeman.

Ennis, R. H. (1990). The rationality of rationality: Why think critically? In R. Page (Ed.), Philosophy of education 1989 (pp. 402–405). Bloomington, IL: Philosophy of Education Society.

Ennis, R. H. (1994, April 7). Assessing critical thinking dispositions: Theoretical considerations . Paper presented at annual meeting of the American Education Research Association, New Orleans, LA.

Ennis, R. H. (1996). Critical thinking . Upper Saddle River, NJ: Prentice Hall.

Ericsson, K. A. (2008). Deliberate practice and acquisition of expert performance: A general overview. Academic Emergency Medicine, 15 , 988–994.

Ericsson, K. A., & Lehmann, A. C. (1996). Expert and exceptional performance: Evidence of maximal adaptation to task constraints. Annual Review of Psychology, 47 , 273–305.

Facione, P. (1998). Critical thinking: What it is and why it counts? Millbrae, CA: California Academic Press. www.insightassessment.com/pdf_files/what&why2006.pdf

Facione, P. (2000). The disposition toward critical thinking: Its character, measurement, and relation to critical thinking skills. Informal Logic, 20 (1), 61–84.

Facione, P., & Facione, N. (1992). The California Critical Thinking Dispositions Inventory (CCTDI) and the CCTDI manual . Millbrae, CA: Academic.

Facione, P. A. (1990). The Delphi Report: Critical thinking: A statement of expert consensus for purposes of educational assessment and instruction . Millbrae, CA: California Academic Press.

Facione, P. A., Sanchez, C. A., Facione, N. C., & Gainen, J. (1995). The disposition toward critical thinking. The Journal of General Education, 44 (1), 1–25.

Fisher, A., & Scriven, D. (1997). Critical thinking: Its definition and assessment . Point Reyes, CA: Edgepress.

Franz, R. (2003). Herbert Simon. Artificial intelligence as a framework for understanding intuition. Journal of Economic Psychology, 24 , 265–277.

Freire, P. (1972). Pedagogy of the oppressed . Harmondsworth, UK: Penguin.

Freire, P. (1973). Education for critical consciousness . New York: Seabury Press.

Giroux, H. A. (1988). Teachers as intellectuals . Granby, MA: Bergin and Garvey.

Giroux, H. A. (1994). Toward a pedagogy of critical thinking. In K. S. Walters (Ed.), Re-thinking reason: New perspectives in critical thinking (pp. 200–201). Albany, NY: SUNY Press.

Giroux, H. A. (2005). Border crossings: Cultural workers and the politics of education . New York: Routledge.

Giroux, H. A. (2010, October 17). Lessons from Paulo Freire. The Chronicle of Higher Education . Retrieved from http://chronicle.com/article/Lessons-From-Paulo-Freire/124910/October 18, 2012

Gladwell, M. (2005). Blink: The power of thinking without thinking . New York: Back Bay Books/Little, Brown and Company.

Halonen, J. (1986). Teaching critical thinking in psychology . Milwaukee, WI: Alverno Publications.

Halonen, J. (1995). Demystifying critical thinking. Teaching of Psychology, 22 (1), 75–81.

Halpern, D. (1997). Critical thinking across the curriculum: A brief edition of thought and knowledge . Mahwah, NJ: Lawrence Erlbaum and Associates.

Halpern, D. (1998). Teaching critical thinking for transfer across domains: Dispositions, skills, structure training, and metacognitive monitoring. American Psychologist, 53 (4), 449–455.

Hennessey, M. G. (1999). Probing the dimensions of metacognition: Implications for conceptual change teaching-learning . Paper presented at the annual meeting of the National Association for Research in Science Teaching, Boston, MA.

Ip, W., Lee, D. T., Lee, I. F., Chau, J. P., Wootton, Y. S., & Chang, A. M. (2000). Disposition towards critical thinking: a study of Chinese undergraduate nursing students. Journal of Advanced Nursing, 32 (1), 84–90.

Johnston, B., Ford, P., Mitchell, R., & Myles, F. (2011). Developing student criticality in higher education . London: Continuum.

Kaplan, L. D. (1991). Teaching intellectual autonomy: The failure of the critical thinking movement. Educational Theory, 41 (4), 361–370.

Kennedy, M., Fisher, M. B., & Ennis, R. H. (1991). Critical thinking: Literature review and needed research. In L. Idol & B. F. Jones (Eds.), Educational values and cognitive instruction: Implications for reform (pp. 11–40). Hillsdale, NJ: Lawrence Erlbaum and Associates.

King, F. J., Goodson, L., & Rohani, F. (n.d.). Higher order thinking skills: Definition, teaching strategies, assessment . Tallahasee, FL: Center for the Advancement of Learning and Assessment Florida State University. http://www.cala.fsu.edu/files/higher_order_thinking_skills.pdf

Knight, P. (2007). Fostering and assessing ‘Wicked’ competencies . Milton Keynes, UK: Institute of Education, Open University. Retrieved from http://www.open.ac.uk/cetl-workspace/cetlcontent/documents/460d1d1481d0f.pdf

Kuhn, D. (1999). A developmental model of critical thinking. Educational Researcher, 28 (2), 12-25+46.

Kuhn, D., & Dean, D. (2004). A bridge between cognitive psychology and educational practice. Theory Into Practice, 43 (4), 268–273.

Kurfiss, J. (1988). Critical thinking: Theory, research, practice and possibilities (ASHE-Eric higher education report no. 2). Washington, DC: Associate for the Study of Higher Education.

Lai, E. R. (2011, June). Critical thinking: A literature review . Retrieved from http://www.pearsonassessments.com/hai/images/tmrs/CriticalThinkingReviewFINAL.pdf

Langer, E. J. (1989). Mindfulness . Reading, MA: Addison-Wesley Publishing Co.

Larkin, J. H., McDermott, J., Simon, D. P., & Simon, H. A. (1980). Expert and novice performance in solving physics problems. Science, 208 (4450), 1335–1342.

Lieberman, M. D. (2000). Intuition: A social cognitive neuroscience approach. Psychological Bulletin, 126 (1), 109–137.

Lipman, M. (1988). Critical thinking: What can it be? Educational Leadership, 46 (1), 38–43.

Martinez, M. E. (2006). What is metacognition? Phi Delta Kappan, 87 (9), 696–699.

Mayer, R., & Goodchild, F. (1990). The critical thinker . New York: Wm. C. Brown.

McLaren, P., & Hammer, R. (1989). Critical pedagogy and the postmodern challenge. Educational Foundations, 3 (3), 29–62.

McPeck, J. E. (1981). Critical thinking and education . New York: St Martin’s Press.

Moore, B., & Parker, R. (1991). Critical thinking (3rd ed.). Mountain View, CA: Mayfield Publishing Company.

Moore, T. (2004). The critical thinking debate: How general are general thinking skills? Higher Education Research and Development, 23 (1), 3–18.

Moore, T. (2011). Critical thinking and disciplinary thinking: A continuing debate. Higher Education Research and Development, 38 (4), 506–522.

Morse, B. (2012). Why critical thinking is overlooked by schools and shunned by students. The Guardian . Retrieved from http://www.guardian.co.uk/teacher-network/2012/sep/12/critical-thinking-overlooked-in-secondary-education

Mulnix, J. W. (2012). Thinking critically about critical thinking. Educational Philosophy and Theory . doi: 10.1111/j.1469-5812.2010.00673.x .

Nelson, J. (2005). Cultivating judgment: A sourcebook for teaching critical thinking . Stillwater, OK: New Forums Press.

Noddings, N. (1992). The challenge to care in schools . New York: Teachers College Press.

Passmore, J. (1967). On teaching to be critical . Boston: Routledge and Kegan Paul.

Paul, R. (2011). Critical thinking movement: 3 waves . Retrieved from http://www.criticalthinking.org/pages/critical-thinking-movement-3-waves/856 . 20 May 2013.

Paul, R., & Elder, L. (2001). Miniature guide to critical thinking: Concepts & tools . Dillon Beach, CA: Foundation for Critical Thinking.

Paul, R., & Elder, L. (2008). The thinkers’ guide to nature and functions of critical and creative thinking . Dillon Beach, CA: Foundation for Critical Thinking.

Paul, R. W. (1981). Teaching critical thinking in the ‘strong’ sense: A focus on self-deception worldviews, and a dialectical mode of analysis. Informal Logic, 4 (2), 2–7.

Paul, R. W. (1990). Critical thinking: What, why, and how? In A. J. A. Binker (Ed.), Critical thinking: What every person needs to survive in a rapidly changing world . Rohnert Park, CA: Center for Critical Thinking and Moral Critique, Sonoma State University.

Paul, R. W. (1992a). Critical thinking: What every person needs to survive in a rapidly changing world . Santa Rosa, CA: Foundation for Critical Thinking.

Paul, R. W. (1992b). Critical thinking: What, why and how? New Directions for Community Colleges, 77 , 3–24.

Paul, R. W. (1993). Critical thinking: What every person needs to survive in a rapidly changing world . Santa Rosa, CA: Foundation for Critical Thinking.

Perkins, D., Jay, E., & Tishman, S. (1992). Assessing thinking: A framework for measuring critical thinking and problem solving skills at the college level . Washington, DC: The National Center for Educational Statistics Workshop on the Assessment of Higher Order Thinking and Communication Skills of College Graduates: Preliminary Listing of Skills and Levels of Proficiency.

Ryle, G. (1963). The concept of mind . Harmondsworth, UK: Penguin.

Sadler, G. (2010). White paper: Reconciling four models of critical thinking: FSU QEP, Paul-Elder, CLA and APA Delphi Fayetteville State University’s Quality Enhancement Plan Writing Committee, from http://www.academia.edu/480151/Reconciling_Four_Models_of_Critical_Thinking_FSU_QEP_Paul-Elder_CLA_and_APA_Delphi

Salomon, G., & Perkins, D. N. (1998). Individual and social aspects of learning. In P. D. Pearson & A. Iran-Nejad (Eds.), Review of research in education . Washington, DC: American Educational Research Association.

Scriven, M., & Paul, R. (1987). Defining critical thinking . From http://www.criticalthinking.org/pages/defining-critical-thinking/766

Sfard, A. (1998). On two metaphors for learning and the dangers of choosing just one. Educational Researcher, 27 , 4–13.

Siegel, H. (1988). Educating reason: Rationality, critical thinking, and education . New York: Routledge.

Siegel, H. (1991). The generalizability of critical thinking. Educational Philosophy and Theory, 23 , 18–30.

Skinner, S. (1976). Cognitive development: A prerequisite for critical thinking. The Clearing House, 49 , 242–299.

Strauss, V. (2012). Texas GOP rejects ‘critical thinking’ skills. Really. The Washington Post . Retrieved from http://www.washingtonpost.com/blogs/answer-sheet/post/texas-gop-rejects-critical-thinking-skills-really/2012/07/08/gJQAHNpFXW_blog.html

Tama, C. (1989). Critical thinking has a place in every classroom. Journal of Reading, 33 , 64–65.

Tarricone, P. (2011). The taxonomy of metacognition . East Sussex, UK: Psychology Press.

Ten Dam, G., & Volman, M. (2004). Critical thinking as citizenship competence. Learning and Instruction, 14 , 259–379.

The Critical Pedagogy Collective. (2013). From http://critped.wordpress.com/

The Criticality Project. (2013). Retrieved May 17, from http://www.critical.soton.ac.uk/

Tindal, G., & Nolet, V. (1995). Curriculum-based measurement in middle and high schools: Critical thinking skills in content areas. Focus on Exceptional Children, 27 (7), 1–22.

Tishman, S., & Andrade, A. (n.d.). Thinking dispositions: A review of current theories, practices and issues. Available at: learnweb.harvard.edu/alps/thinking/docs/Dispositions.pdf

van Gelder, T. (2005). Teaching critical thinking: Some lessons from cognitive science. College Teaching, 53 (1), 41–48.

Wales, C. E., & Nardi, A. H. (1984). The paradox of critical thinking . Morgantown, WV: Center for Guided Design.

Watson, G., & Glaser, E. M. (2008). Watson-Glaser critical thinking appraisal . Cleveland, OH: Pearson.

Williams, R. (1976). Keywords: A vocabulary of culture and society . New York: Oxford University Press.

Willingham, D. (2007). Critical thinking: Why is it so hard to teach? American Educator, 31 (2), 8–19.

Download references

Author information

Authors and affiliations.

Melbourne Graduate School of Education, University of Melbourne, 234 Queensbury Street, Carlton, VIC, Australia

Martin Davies Ph.D.

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Martin Davies Ph.D. .

Editor information

Editors and affiliations.

Dept. of Educ. Policy and Leadership Stud., The University of Iowa, N491 Lindquist Center, Iowa City, Iowa, USA

Michael B. Paulsen

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Davies, M. (2015). A Model of Critical Thinking in Higher Education. In: Paulsen, M. (eds) Higher Education: Handbook of Theory and Research. Higher Education: Handbook of Theory and Research, vol 30. Springer, Cham. https://doi.org/10.1007/978-3-319-12835-1_2

Download citation

DOI : https://doi.org/10.1007/978-3-319-12835-1_2

Published : 12 December 2014

Publisher Name : Springer, Cham

Print ISBN : 978-3-319-12834-4

Online ISBN : 978-3-319-12835-1

eBook Packages : Humanities, Social Sciences and Law Education (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

Critical Thinking and Creative Thinking Skills

Following Calvin Taylor's Model

JGI/Jamie Grill / Getty Images

  • Famous Inventions
  • Famous Inventors
  • Patents & Trademarks
  • Invention Timelines
  • Computers & The Internet
  • American History
  • African American History
  • African History
  • Ancient History and Culture
  • Asian History
  • European History
  • Latin American History
  • Medieval & Renaissance History
  • Military History
  • The 20th Century
  • Women's History

The Calvin Taylor creative thinking model describes the talent areas as productive thinking, communication, planning, decision making, and forecasting. This model is best known as Talents Unlimited, a program of the National Diffusion Network of the U.S. Department of Education. The Taylor model incorporates both the critical and creative elements of thinking.

Rather than a taxonomy, this is a thinking skills model that describes the essential elements of thinking, beginning with the academic talent and then incorporating the other talent areas, as described in more detail below.

Productive Thinking

Productivity promotes creative thinking in the Calvin Taylor model. It suggests critical and creative thinking of many ideas, varied ideas, unusual ideas, and adding to those ideas.

Communication

Communication has six elements which include:

  • Give many, varied, single words to describe something.
  • Give many, varied, single words to describe feelings.
  • Think of many, varied things that are like another thing in a special way.
  • Let others know that you understand how they feel.
  • Make a network of ideas using many, varied and complete thoughts.
  • Tell your feelings and needs without using words.

Planning requires that students learn to tell what they are going to plan:

  • The materials that they will need.
  • The steps that they will need to accomplish the task.
  • The problems that might occur.

Decision Making

Decision making teaches the student to:

  • Think of the many, varied things that could be done.
  • Think more carefully about each alternative.
  • Choose one alternative that they think is best.
  • Give many, varied reasons for the choice.

Forecasting

Forecasting is the last of the five talents and requires students to make many, varied predictions about a situation, examining cause and effect relationships. Every element of the Calvin Taylor model is used when a child invents.

  • The History of Plumbing
  • How Does a Jumbotron Work?
  • History and Definition of a Solar Cell
  • The Interesting History of the Classic 'Speak and Spell' Toy
  • A Short History of Duct Tape
  • The History of Mr. Potato Head
  • Thomas Edison's Greatest Inventions
  • Who Invented Fathers Day?
  • The History of Zamboni
  • The History of Jell-O
  • The Invention and History of the Vacuum Cleaner
  • The History of Laptop Computers
  • The Colorful History of Comic Books and Newspaper Cartoon Strips
  • The Most Impactful Inventions of the Last 300 Years
  • History of the Helicopter
  • History of the Automobile: The Assembly Line

Logo for Open Oregon Educational Resources

11 Modeling Critical Thinking

Tutors spend lots of time working with students to develop critical thinking skills. Using Socratic questioning, we guide students from memory, to comprehension, to analysis and evaluation. We coach them through the problem solving process so that they make progress with their studies. Facilitating critical thinking is an important part of what we do.

It’s equally important that tutors do not forget to practice critical thinking themselves. In this section, we review the important components of critical thinking, why they’re important, and how we can actively practice critical thinking in our tutoring sessions.

Defining Critical Thinking

We use the words “critical thinking,” quite a lot, but what does it actually mean? The National Counsel for Excellence in Critical Thinking describes critical thinking as an “intellectually disciplined process of actively and skillfully using one’s observations, communication, and moments of reflection, to understand, apply, analyze, evaluate, and synthesize information.” 1 Let’s break that down:

  • “ Intellectually disciplined ”- Using the critical thinking process is a skill. It takes practice. It takes discipline.
  • “ Actively and skillfully ”- Critical thinking is an active process. It requires intention and effort. It’s often not something we automatically do, even once we’ve developed our skills.
  • “ Observations, communication, and moments of reflection ”- The critical thinking process begins with how we take in information. We first reflect on the things we observe, the material we read, and the exchanges we have with people.
  • After we’ve made observations, we can proceed with the Critical Thinking Process. The definition lists the steps that are included in the process: “understand, apply, analyze, evaluate, and synthesize .”

An important characteristic of critical thinking, as defined here, is that it is universally applicable across disciplines and situations. The same process can be applied in a science class, when reading the news, when modifying a recipe in the kitchen, or when tutoring a student. It’s a skill that we can use in all areas of our lives, and it encourages a type of introspection called metacognition . Metacognition occurs when we think about our own thinking. No matter what task we may encounter, applying critical thinking forces us to question our perceptions and reactions. It creates opportunities for us to reflect on the questions we haven’t yet asked, and perspectives we haven’t yet considered. 2

The Critical Thinking Process

There are many models that exist to describe the critical thinking process. One Model of Learning Theory, called Bloom’s Taxonomy, 3 describes the different ways we can “know” something. Bloom’s Taxonomy arranges these ways of knowing into a hierarchy according to the effort required to achieve that level of understanding (See Figure) The more critical our thinking, the higher we move up the hierarchy.

Figure illustrates the hierarchy of learning activities delineated by Bloom's Taxonomy in a pyramid. Activities requiring the least amount of cognitive effort (Remembering, Understanding, Applying) are toward the bottom of the pyramid, and activities requiring the most effort (Analyzing, Evaluating, Creating) are located at the top.

The stages of Remembering and Understanding information, require the least critical thought. These stages include the observations and reflection mentioned earlier and are preliminary to the critical thinking process. True critical thinking begins when, once we have observed new information and understood it, we begin to Apply and Analyze it. 4 We test it out, place it in various scenarios, and begin to ask more probing questions. These are the stages where we “take the idea apart,” breaking it into its components to better understand what they are and how they fit together.

After a certain level of questioning, scrutiny, and reviewing information from a variety of perspectives, we can begin to make assessments, judgements, and evaluations. Evaluation calls us to bring new information into the situation. Here we’re making judgements based on our prior experience and knowledge in other areas. We also make judgements based on our personal values, our goals, and objectives.

Finally, the most critical stage of thought is the Creation or Synthesis stage. Here is where we take in everything we’ve already learned and create a new idea. Creating solutions, proposing alternatives, and generating new thoughts based on what we’ve learned requires the most effort and is the result of much critical thought. 4 , 5

(Ideas which prove to be exceptionally bad, are likely the result of a lack of critical thought. When we skip over the lower stages of the hierarchy, and attempt to start from the very top, we miss all the critical thinking that informs good ideas.)

How Tutors Can Apply Critical Thinking

It’s easy to see how critical thinking can help students, but we may wonder how we should be applying critical thinking when we’re acting as tutors. Remember that the critical thinking process can be applied to any subject or discipline. It can also be applied to situations outside of the classroom. It’s likely that we’re using some degree of critical thinking in our tutoring sessions already. Recognizing how we already use it, and how we can more actively apply the process, lead to more effective assistance during sessions. 6, 7

Let’s walk through what critical thinking might look like for a tutor (see Figure 2.):

We first begin with observations and information gathering. In a session, this means learning what assignment a student is working on, but also observing the student.

  • Is this student new to tutoring, or familiar?
  • Do they seem to be embarrassed to ask for help, or are they comfortable sharing their struggles?
  • Does the student know exactly what’s giving them trouble, or are they unclear on what piece is challenging them?
  • Is the student organized, or do they have trouble finding assignments?
  • Can they read and understand their notes from class?

All these observations can inform how we proceed with the tutoring session, if we apply critical thinking.

Next, we move onto our Socratic questioning. In addition to giving us the opportunity to make more observations, these interactions with the student help us to better analyze the student’s situation .

  • Which parts does the student understand, and which are elusive?
  • Are the student’s notes organized and legible?
  • Does the student struggle with the language used in their textbook?

This kind of analysis can give us a more holistic view of the student and their particular case.

After learning as much as we can about the situation, we can begin to evaluate and make assessments . This informs how we move forward with the session, and where we ask the student to focus.

  • Perhaps we can confidently assess which parts of a process the student has misinterpreted, and so can guide the student to better understand them.
  • Perhaps we have identified patterns in the students’ work and choose to focus our attention on addressing something more systemic, rather than working through the specific assignment.
  • It might be the case that you evaluate the student’ understanding of a concept and conclude that the underlying issue is that they can’t read their notes from class, or don’t have access to the textbook, or can’t find the assignment instructions due to poor organization.

With this information, a tutor might choose to spend some time addressing these issues with the student, concluding that they are the greater hindrance to the student’s success.

Finally, the tutor moves on to the creation/synthesis stage of critical thinking. The priority for the tutor is to help the student develop their own solutions to the problems they encounter, but this doesn’t mean that the tutor isn’t creating solutions of their own.

Tutors may synthesize a new strategy or approach, in response to the evaluation the tutor has made of the student’s need.

  • The tutor’s solution may be to create some practice problems to demonstrate to the student how the concept is applied.
  • The tutor may devise a solution that grounds the concept in real-life scenarios or uses creative metaphors to assist the student’s comprehension.

The tutor’s creative solutions and strategies are informed by the assessments made in the previous stages of the critical thinking process.  Solutions and strategies are not always appropriate or effective unless we first take time to observe, analyze, evaluate, and gain a better understanding of the student and their needs.

Illustration of an arrow, depicting the linear steps a tutor can take to apply critical thinking to a tutoring session

Quickwrite Reflection

How do you currently use critical thinking in your interactions with students during a tutoring session? Are you actively making observations and responding? Have you adapted your approach with a student based on your observations?

Take a moment to reflect on how you may already be integrating critical thinking into your interactions with students.

How can you improve your critical thinking in your interactions with students?

Pitfalls to Avoid

We can always find ways to improve, no matter how skilled we are in applying the critical thinking process. In addition, it’s important to recognize that we can also fall into bad habits in our critical thinking, if we’re not careful. Many of the habits that influence our reasoning involve unconscious biases, predispositions, and other beliefs that we may not even realize we carry.

This is where our metacognition and self-reflection become important. It’s always a good idea to remember to check in with ourselves, and ask if there are underlying factors that could be influencing our decision making. Even when we have applied critical thinking appropriately, self-awareness is important in understanding what may be influencing our observations, our conclusions, and the solutions we propose. 8

Some of these factors that can unconsciously influence our critical thinking process include:

  • Unintentional Prejudices
  • Unconscious Biases
  • Social Taboos
  • Situational Distortions
  • Acceptance of Established Social Norms
  • Vested Interest in a Particular Outcome
  • Our Own Self-Interest

Even the world’s most logical thinkers know that emotions, prior experiences, and unintentional biases can influence how we view situations. This can impact our ability to truly think critically about them. When other factors begin influencing our critical thinking, it can often be difficult to notice. How do we combat this? We can’t eliminate the influence of these factors entirely. That’s why it’s essential that we remain self-aware and maintain an attitude focused on improvement. 9

What might these pitfalls look like for a tutor? Here are a few examples:

1. The tutor has a party to attend later tonight, and if they finish working with a student early, they have more time to get ready. Instead of taking time to carefully evaluate the student’s need, they apply a strategy that is quick.

Is it a bad strategy? Not necessarily. Is it the best strategy? Maybe not.

In this case the tutor’s critical thinking was influenced by their personal motivations.

2. The tutor is working with a student who has an accent. The tutor automatically begins applying strategies they’ve used for students who struggle reading texts in English.

Are these strategies appropriate here? Maybe not.

By automatically focusing on the student’s language proficiency this way, the student has skipped over the preliminary stages of critical thinking, and went directly to creating a solution. What’s more, is that the student could be offended that the tutor made assumptions about their language proficiency.

3. The tutor is assisting a student with an essay on current events. They start the session by asking helpful questions to assist the student in identifying their stance on the issue and to structure their ideas for the paper. The tutor subtly convinces the student to adopt arguments and stances that more closely align with the tutor’s own beliefs and position on the current event issue.

In this example, evaluation of the student’s situation led the tutor to use guided questioning as a strategy to help the student discover their ideas about the assignment topic. However, the tutor allowed their own beliefs about the issue to interfere with the student’s critical thinking process, sabotaging the original goal to help the student to make their own conclusions.

Something to Try

Take the social attitudes implicit bias self-assessment offered by Project Implicit ® https://implicit.harvard.edu/implicit/

Reflect on your results. Are you surprised? Did you learn something new about yourself? How do you think the results of your assessment impact how you approach your role as a tutor?

Alternatively, take a moment to reflect on the following questions:

  • Think back to your childhood. Remember who your teachers were. Can you remember your school principal, your sports coaches, police officers, community leaders? When you were young, did people in positions of authority in your life look like you?
  • What did your household look like? Were you raised by parents? Two parents? One parent? Grandparents? Someone else?
  • Think about the movies you see. The books you read. Magazines, music, video games, and other popular media. Do the characters and people in these media look like you? Do these media explore topics that you can relate to?
  • When you want to go to a new restaurant, theater, or event, how often do you have to research whether or not they can accommodate you?

Our answers to questions like these reveal the lens by which we see the world, and can help us to understand others whose beliefs and perceptions are different from our own, based on their own set of life experiences.

Effective tutoring requires tutors to be well-versed in the critical thinking process. We use the process to guide students through practicing critical thought in their coursework, and we use it ourselves in our sessions assisting those students. We simultaneously focus on the student’s thinking, and on our own approach.

A thorough understanding of the process, and the importance of each of its parts, can provide tutors a solid foundational knowledge when navigating sessions. Metacognition is an important skill in applying the critical thinking process, and self-reflection is an important component in assessing the effectiveness of our own critical thinking.  With lots of practice and an attitude of continuous improvement, we can advance our tutoring skills and better assist the students with whom we work.

  • The Foundation For Critical Thinking. (2019). Defining Critical Thinking. The Foundation for Critical Thinking. http://www.criticalthinking.org/pages/defining-critical-thinking/766. Accessed 26 Apr. 2021.
  • Sanavi and Tarighat . (2014). Critical Thinking and Speaking Proficiency: A Mixed-method Study. Theory and Practice in Language Studies . 4(1), 79-87. http://www.academypublication.com/issues/past/tpls/vol04/01/12.pdf.
  • Bloom, Engelhart, Furst, Hill, Krathwohl. (1956). Taxonomy of educational objectives: The classification of educational goals. Handbook I: Cognitive domain. New York: David McKay Company. https://www.uky.edu/~rsand1/china2018/texts/Bloom%20et%20al%20-Taxonomy%20of%20Educational%20Objectives.pdf.
  • Fahim and Masouleh. (2012). Critical Thinking in Higher Education: A Pedagogical Look. Theory and Practice in Language Studies. 2(7), 1370-1375. https://www.researchgate.net/publication/267426179_Critical_Thinking_in_Higher_Education_A_Pedagogical_Look.
  • McLoughlin, and Luca. (2000). Cognitive engagement and higher order thinking through computer conferencing: We know why but do we know how? In A. Herrmann, & M. M. Kulski (Ed.), 9th Annual Teaching Learning Forum (pp. 4-15). Perth: Curtin University of Technology. http://cleo.murdoch.edu.au/confs/tlf/tlf2000/mcloughlin.html..
  • Cosgrove. (2011). Critical thinking in the Oxford tutorial: a call for an explicit and systematic approach. Journal of Higher Education Research and Development. 30(3), 343-356. https://doi.org/10.1080/07294360.2010.487259.
  • Crook. (2006). Substantive Critical Thinking as Developed by the Foundation for Critical Thinking Proves Effective in Raising SAT and ACT Test Scores. Foundation for Critical Thinking. http://www.criticalthinking.org/pages/substantive-critical-thinking-as-developed-by-the-foundation-for-critical-thinking-proves-effective-in-raising-sat-and-act-test-scores/632.
  • Ashwin. (2006). Variation in academics’ accounts of tutorials. Studies in Higher Education. 31(6), 651–665. https://doi.org/10.1080/03075070601004234.
  • Anderson and Soden. (2001). Peer Interaction and the Learning of Critical Thinking Skills. Psychology Learning & Teaching. 1(1), 37-40. https://journals.sagepub.com/doi/pdf/10.2304/plat.2001.1.1.37 .

Additional Resources:

Paul and Elder. (2020). The Miniature Guide to Critical Thinking: Concepts and Tools, 8th Ed. Lanham: Rowman & Littlefield Inc. https://rowman.com/isbn/9781538134955.

Tutor Handbook Copyright © 2021 by Penny Feltner and gapinski is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

43.2 Developing Critical Thinking

Learning objectives.

By the end of this section, you will be able to:

  • Analyze the types of thinking used in nursing
  • Recognize when to use the different types of thinking in nursing
  • Explore the application of knowledge to thinking in nursing
  • Appy Critical Thinking Indicators (CTIs) to decision making

Thinking is something we usually do subconsciously, because we are not usually “thinking about thinking.” However, with the ever-increasing autonomy being afforded to nurses, there is also an increased need for nurses to be able to critically think effectively and intentionally. Being able to critically think helps nurses’ problem solve, generate solutions, and make sound clinical judgments that affect the lives of their patients. Keep reading to learn more about how nurses use critical thinking in practice and how you can develop your own critical thinking skills.

Types of Thinking Used in Nursing

Nurses make decisions while providing patient care by using critical thinking and clinical reasoning. In nursing, critical thinking is a broad term that includes reasoning about clinical issues such as teamwork, collaboration, and streamlining workflow.” On the other hand, clinical reasoning is defined as a complex cognitive process that uses formal and informal thinking strategies to gather and analyze patient information, evaluate the significance of this information, and weigh alternative actions. Each of these types of thinking is described in more detail in the following sections.

Cognitive Thinking

The term cognitive thinking refers to the mental processes and abilities a nurse uses to interpret, analyze, and evaluate information in their practice. Basically, it encompasses how nurses think about the practice decisions they are making. Cognitive thinking and critical thinking go hand in hand because nurses must be able to use their knowledge and mental processes to devise solutions and actions when caring for patients. Using critical thinking means that nurses take extra steps to maintain patient safety and do not just follow orders. It also means the accuracy of patient information is validated and plans for caring for patients are based on their needs, current clinical practice, and research. Critical thinkers possess certain attitudes that foster rational thinking:

  • confidence: believing in yourself to complete a task or activity
  • curiosity: asking “why” and wanting to know more
  • fair-mindedness: treating every viewpoint in an unbiased, unprejudiced way
  • independence of thought: thinking on your own
  • insight into egocentricity and sociocentricity: thinking of the greater good and not just thinking of yourself. Knowing when you are thinking of yourself (egocentricity) and when you are thinking or acting for the greater good (sociocentricity)
  • integrity: being honest and demonstrating strong moral principles
  • intellectual humility: recognizing your intellectual limitations and abilities
  • interest in exploring thoughts and feelings: wanting to explore different ways of knowing
  • nonjudgmental: using professional ethical standards and not basing your judgments on your own personal or moral standards
  • perseverance: persisting in doing something despite it being difficult

Cognitive thinking is significant to nursing because it provides a foundation on which nurses can make rapid and accurate decisions in clinical practice. Nurses must be able to think quickly and make informed decisions to promote optimal patient outcomes.

Effective Thinking

To make sound judgments about patient care, nurses must generate alternatives, weigh them against the evidence, and choose the best course of action. The ability to clinically reason develops over time and is based on knowledge and experience. Inductive and deductive reasoning are important critical thinking skills. They help the nurse use clinical judgment when implementing the nursing process. Effective thinking in nursing involves the integration of clinical knowledge and critical thinking to make the best decisions for patients. For example, if a nurse was caring for a patient who presents with hypertension and new-onset left-sided weakness, it is important that the nurse be able to quickly consider potential causes for the weakness and implement immediate stroke protocols. Without the ability to critically think, the nurse may overlook the weakness as being unrelated to the hypertension and not consider the possibility of stroke, leading to a poor patient outcome. Thus, it is imperative that nurses develop effective thinking skills.

Inductive Reasoning

The term inductive reasoning involves noticing cues, making generalizations, and creating hypotheses. Cues are data that fall outside of expected findings and give the nurse a hint or indication of a patient’s potential problem or condition. The nurse organizes these cues into patterns and creates a generalization. A generalization is a judgment formed on the basis of a set of facts, cues, and observations and is similar to gathering pieces of a jigsaw puzzle into patterns until the whole picture becomes clearer. On the basis of generalizations created from patterns of data, the nurse creates a hypothesis regarding a patient problem. Remember, a hypothesis is a proposed explanation for a situation. It attempts to explain the “why” behind the problem that is occurring. If a “why” is identified, then a solution can begin to be explored. No one can draw conclusions without first noticing cues. Paying close attention to a patient, the environment, and interactions with family members is critical for inductive reasoning. As you work to improve your inductive reasoning, begin by first noticing details about the things around you. Be mindful of your five primary senses: the things that you hear, feel, smell, taste, and see. Nurses need strong inductive reasoning patterns and be able to act quickly, especially in emergency situations. They can see how certain objects or events form a pattern (or a generalization) that indicates a common problem.

Consider this example: A nurse assesses a patient who has undergone surgery and finds the surgical incision site is red, warm, and tender to the touch. The nurse recognizes these cues form a pattern of signs of infection and creates a hypothesis that the incision has become infected. The provider is notified of the patient’s change in condition, and a new prescription is received for an antibiotic. This is an example of the use of inductive reasoning in nursing practice.

Deductive Reasoning

Another type of critical thinking is deductive reasoning ; it is referred to as “top-down thinking.” Deductive reasoning relies on using a general standard or rule to create a strategy. Nurses use standards set by their state’s Nurse Practice Act, federal regulations, the American Nursing Association, professional organizations, and their employer to make decisions about patient care and solve problems.

Think about this example: On the basis of research findings, hospital leaders determine patients recover more quickly if they receive adequate rest. The hospital creates a policy for quiet zones at night by initiating no overhead paging, promoting low-speaking voices by staff, and reducing lighting in the hallways. The nurse further implements this policy by organizing care for patients that promotes periods of uninterrupted rest at night. This is an example of deductive thinking, because the intervention is applied to all patients regardless of whether they have difficulty sleeping or not.

Identify the Purpose of Thinking

Rationalizing the purpose of thinking is probably not something you do often, but it is the foundational first step in critical thinking. To effectively use critical thinking in practice, the nurse must first identify the purpose of thinking. For example, the nurse is caring for a patient who presents with fever, tachycardia, and shortness of breath. The patient also has an open, infected wound on the left foot that is not healing. The nurse must recognize that the patient is exhibiting signs and symptoms that may be indicative of an underlying problem. At this point, the nurse must be able to identify that the purpose of thinking with regard to the patient is to consider what might be happening with the patient and formulate a plan of care. This begins the process of critical thinking, which involves several steps: thinking ahead, thinking in action, and reflection on thinking.

Thinking Ahead

Thinking ahead in nursing involves considering what may be going on with the patient to anticipate potential outcomes and complications that may arise. Remember competent nurses are proactive versus reactive. Reactive nursing is letting situations arise and then responding to the change, but proactive nursing is recognizing cues behaviors and patterns that are leading up to a complicated event. Additionally, the nurse will formulate goals of care and must try to anticipate specific needs the patient will have. Considering the patient discussed in the preceding paragraph, the nurse should begin the process of thinking ahead about potential outcomes and complications. The nurse may hypothesize that the patient is starting to develop sepsis from the open wound on the foot so severe sepsis and/or septic shock could be a complication to begin preparing for. The nurse thinks ahead about goals of care for the patient and determines that wound care to prevent infection spread and sepsis is the priority goal at this time.

Thinking in Action

Thinking in action encompasses the thought processes occurring while the nurse is performing interventions. So, if the nurse in our example begins performing wound care, they are thinking about the best dressing to use, how to clean the wound, and if antibiotics should be considered. All of these thoughts are likely occurring as the nurse is providing the care; thus, they are examples of how the nurse is using thinking in action.

Reflection on Thinking

After performing interventions or making decisions, the nurse should reflect on the thinking that occurred. The nurse will use this thinking process to determine if the decision was reactive or responsive. Reactive decision-making involves responding to situations after they have occurred, often in a hurried or unplanned manner. These decisions tend to be impulsive and are driven by immediate needs or crises. Responsive decisions, on the other hand, involve careful deliberation about how to address a situation based on careful consideration of information. In our example, the nurse’s decision appears to have been responsive. The patient was exhibiting some altered vital signs, but nothing indicated that the situation had become emergent yet. The nurse was able to think carefully about the patient’s situation and determine that wound care was the highest priority and begin to implement care in a calm, deliberate manner. In an ideal world, all nursing decisions would be responsive, but in a lot of cases, they must be reactive because of situation severity and medical emergencies.

Application of Knowledge

During the outset of the critical thinking process, nurses must judge whether their knowledge is accurate, complete, factual, timely, and relevant. This can be done by applying knowledge to nursing practice in a multitude of ways, including drawing from past education and experience in nursing and using professional resources and standards. Each of these is discussed in more detail in the following sections.

Knowledge Base

Becoming a nurse requires years of schooling, which contributes to the development of a robust knowledge base. Nurses receive formal education and training that provides them foundational knowledge in anatomy, physiology, pharmacology, and patient care techniques, among many others. Additionally, nurses are required to complete continuing education courses specific to their chosen practice setting, further developing their knowledge base. When applying knowledge in practice, nurses can draw from their knowledge base and make informed decisions about patient care.

Experience in Nursing

Nursing is considered a practice. Nursing practice means we learn from our mistakes and our past experiences and apply this knowledge to our next patient or to the next population we serve. As nurses gain more experience, they can use what they have learned in practice and apply it to new patient situations. Each new encounter with a patient presents unique challenge and learning opportunities that contribute to the development of clinical expertise. Reflecting on these experiences allows nurses to recognize patterns, anticipate patient outcomes, and refine their decision-making processes. Whether they are identifying effective nursing interventions for common conditions, adapting care plans to individual patient needs, or navigating complex situations with compassion, nurses draw upon their accumulated knowledge base from clinical experience to provide high-quality, patient-centered care. Through reflection and continuous learning from past experiences, nurses enhance their clinical skills, ultimately improving patient outcomes.

Professional Resources and Standards

In addition to foundational knowledge bases and experience, nurses can also use professional resources and standards to gain and apply knowledge in practice. Nurses can refer to clinical practice guidelines that have been established by professional organizations and healthcare institutions to help provide a framework for implementing nursing interventions based on the best evidence. By following the guidelines, nurses are ensuring that their care aligns with established standards and promotes optimal patient outcomes. Additionally, nurses should remain up to date about new and emerging research in their practice area, which can be obtained by reading professional journals and publications and attending conferences, workshops, and other trainings. Nurses can use the information learned from these resources to influence practice and ensure the highest standards of care are being performed in their practice setting. By staying informed about the latest developments in nursing and health care, nurses enhance their knowledge base and can adapt their practice to incorporate new evidence and innovations. Along with professional development and staying current with professional practices, nursing students should actively seek and join professional organizations such as critical care nursing or oncology nursing societies because this will lead the student to become expert in that subject and stay relevant with current evidence and practice guidelines.

Clinical Safety and Procedures (QSEN)

Qsen competency: evidence-based practice.

Definition: Providing quality patient care based on up-to-date, theory-derived research and knowledge, rather than personal beliefs, advice, or traditional methods.

Knowledge: The nurse will describe how the strength and relevance of available evidence influences the choice of intervention in provision of patient-centered care.

Skill: The nurse will:

  • subscribe to professional journals that produce original research and evidence-based reports related to their specific area of practice
  • become familiar with current evidence-based clinical practice topics and guidelines
  • assist in creating a work environment that welcomes new evidence into standards of practice
  • question the rational for traditional methods of care that result in sub-par outcomes or adverse events

Attitude: The nurse will appreciate the importance of regularly reading relevant professional journals.

Critique of Decision

After determining the best course of action based on the application of knowledge, the nurse can critique the decisions that were made. Specifically, the nurse will use self-reflection to review their actions and thoughts that led them to the decision. The nurse will consider the outcomes of their chosen interventions, reflect on the effectiveness of their approach, and identify areas of improvement. Additionally, the nurse may seek feedback from colleagues to obtain different perspectives about decisions made. Soliciting input from others helps the nurse gain insight and learn from their peers to further inform their future practice. Reflection questions that the nurse may ask themselves to critique their decision include the following:

  • Was the patient goal or outcome met?
  • Could the intervention have been done differently? Could it have been done better?
  • What are alternative decisions that could have been made? What are the merits of each?

Critical Thinking Indicators

Certain behaviors that demonstrate the knowledge, skills, and attitudes that promote critical thinking are called critical thinking indicators (CTIs) . Critical thinking indicators are tangible actions that are performed to assess and improve your thinking skills.

4-Circle CT Model

There are many models and frameworks within nursing and other disciplines that attempt to explain the process of critical thinking. One of the most popular is Alfaro-LeFevre’s 4-Circle CT Model (Alfaro-LeFevre, 2016). This model breaks critical thinking into four components: personal characteristics, intellectual and cognitive abilities, interpersonal abilities and self-management, and technical skills. These four components overlap, forming interconnections in critical thinking.

Link to Learning

Learn more here about the 4-Circle CT Model and see an illustration of it.

Personal Critical Thinking Indicators

Personal CTIs are behaviors that are indicative of critical thinkers. Some of these behaviors that are most relevant to nursing include:

  • confidence and resilience: showing ability to reason and learn and overcoming problems
  • curiosity and inquisitiveness: asking questions and looking for the “why” behind things
  • effective communication: listening well, showing understanding for others thoughts and feelings, and speaking and writing with clarity
  • flexibility: changing approaches as needed to obtain the best results
  • honesty: looking for the truth and demonstrating integrity while adhering to moral and ethical standards
  • self-awareness: being able to identify one’s own knowledge gaps and acknowledge when thinking may be negatively influenced by emotions or self-interests.

Personal Knowledge and Intellectual Skills

Personal knowledge and intellectual skills encompass the knowledge gained from nursing school and clinical experiences. Examples of each of these kinds of skills are listed in Table 43.3 .

Personal Knowledge Intellectual Skills

Interpersonal and Self-Management Skills

Interpersonal and self-management skills encompass the knowledge and skills needed for effective collaboration. These include:

  • addressing conflicts fairly
  • advocating for patients, self, and others
  • dealing with complaints constructively
  • establishing empowered partnerships
  • facilitating and navigating change
  • fostering positive interpersonal relationships and promoting teamwork
  • giving and taking constructive criticism
  • leading, motivating, and managing others
  • managing stress, time, and energy
  • promoting a learning and safety culture
  • upholding healthy workplace standards
  • using skilled communication in high-stake situations

Technical Skills

Technical skills in nursing refer to the practical abilities and competencies that nurses use in the delivery of patient care. These skills are typically learned through education, training, and hands-on experience. Some common technical skills in nursing include:

  • administering medications
  • assisting with personal hygiene and activities of daily living
  • documentation and charting
  • inserting intravenous catheters
  • inserting urinary catheters and nasogastric tubes
  • performing tracheostomy care
  • performing wound care
  • taking vital signs

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Access for free at https://openstax.org/books/fundamentals-nursing/pages/1-introduction
  • Authors: Christy Bowen, Lindsay Draper, Heather Moore
  • Publisher/website: OpenStax
  • Book title: Fundamentals of Nursing
  • Publication date: Sep 4, 2024
  • Location: Houston, Texas
  • Book URL: https://openstax.org/books/fundamentals-nursing/pages/1-introduction
  • Section URL: https://openstax.org/books/fundamentals-nursing/pages/43-2-developing-critical-thinking

© Aug 20, 2024 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.

  • Open access
  • Published: 02 September 2024

Clinician perspectives and recommendations regarding design of clinical prediction models for deteriorating patients in acute care

  • Robin Blythe   ORCID: orcid.org/0000-0002-3643-4332 1 ,
  • Sundresan Naicker   ORCID: orcid.org/0000-0002-2392-4981 1 ,
  • Nicole White   ORCID: orcid.org/0000-0002-9292-0773 1 ,
  • Raelene Donovan   ORCID: orcid.org/0000-0003-0737-7719 2 ,
  • Ian A. Scott   ORCID: orcid.org/0000-0002-7596-0837 3 , 4 ,
  • Andrew McKelliget 2 &
  • Steven M McPhail   ORCID: orcid.org/0000-0002-1463-662X 1 , 4  

BMC Medical Informatics and Decision Making volume  24 , Article number:  241 ( 2024 ) Cite this article

Metrics details

Successful deployment of clinical prediction models for clinical deterioration relates not only to predictive performance but to integration into the decision making process. Models may demonstrate good discrimination and calibration, but fail to match the needs of practising acute care clinicians who receive, interpret, and act upon model outputs or alerts. We sought to understand how prediction models for clinical deterioration, also known as early warning scores (EWS), influence the decision-making of clinicians who regularly use them and elicit their perspectives on model design to guide future deterioration model development and implementation.

Nurses and doctors who regularly receive or respond to EWS alerts in two digital metropolitan hospitals were interviewed for up to one hour between February 2022 and March 2023 using semi-structured formats. We grouped interview data into sub-themes and then into general themes using reflexive thematic analysis. Themes were then mapped to a model of clinical decision making using deductive framework mapping to develop a set of practical recommendations for future deterioration model development and deployment.

Fifteen nurses ( n  = 8) and doctors ( n  = 7) were interviewed for a mean duration of 42 min. Participants emphasised the importance of using predictive tools for supporting rather than supplanting critical thinking, avoiding over-protocolising care, incorporating important contextual information and focusing on how clinicians generate, test, and select diagnostic hypotheses when managing deteriorating patients. These themes were incorporated into a conceptual model which informed recommendations that clinical deterioration prediction models demonstrate transparency and interactivity, generate outputs tailored to the tasks and responsibilities of end-users, avoid priming clinicians with potential diagnoses before patients were physically assessed, and support the process of deciding upon subsequent management.

Conclusions

Prediction models for deteriorating inpatients may be more impactful if they are designed in accordance with the decision-making processes of acute care clinicians. Models should produce actionable outputs that assist with, rather than supplant, critical thinking.

• This article explored decision-making processes of clinicians using a clinical prediction model for deteriorating patients, also known as an early warning score.

• Our study identified that the clinical utility of deterioration models may lie in their assistance in generating, evaluating, and selecting diagnostic hypotheses, an important part of clinical decision making that is underrepresented in the prediction modelling literature.

• Nurses in particular stressed the need for models that encourage critical thinking and further investigation rather than prescribe strict care protocols.

Peer Review reports

The number of ‘clinical prediction model’ articles published on PubMed has grown rapidly over the past two decades, from 1,918 articles identified with these search terms published in 2002 to 26,326 published in 2022. A clinical prediction model is defined as any multivariable model that provides patient-level estimates of the probability or risk of a disease, condition or future event [ 1 , 2 , 3 ].

Recent systematic and scoping reviews report a lack of evidence that clinical decision support systems based on prediction models are associated with improved patient outcomes once implemented in acute care [ 4 , 5 , 6 , 7 ]. One potential reason may be that some models are not superior to clinical judgment in reducing missed diagnoses or correctly classifying non-diseased patients [ 8 ]. While improving predictive accuracy is important, this appears insufficient for improving patient outcomes, suggesting that more attention should be paid to the process and justification of how prediction models are designed and deployed [ 9 , 10 ].

If model predictions are to influence clinical decision-making, they must not only demonstrate acceptable accuracy, but also be implemented and adopted at scale in clinical settings. This requires consideration of how they are integrated into clinical workflows, how they generate value for users, and how clinicians perceive and respond to their outputs of predicted risks [ 11 , 12 ]. These concepts are tenets of user-centred design, which focuses on building systems based on the needs and responsibilities of those who will use them. User-centred decision support tools can be designed in a variety of ways, but may benefit from understanding the characteristics of the users and the local environment in which tools are implemented, [ 13 ] the nature of the tasks end-users are expected to perform, [ 14 ] and the interface between the user and the tools [ 15 ].

Prediction models for clinical deterioration

A common task for prediction models integrated into clinical decision support systems is in predicting or recognising clinical deterioration, also known as early warning scores. Clinical deterioration is defined as the transition of a patient from their current health state to a worse one that puts them at greater risk of adverse events and death [ 16 ]. Early warning scores were initially designed to get the attention of skilled clinicians when patients began to deteriorate, but have since morphed into complex multivariable prediction models [ 17 ]. As with many other clinical prediction models, early warning scores often fail to demonstrate better patient outcomes once deployed [ 4 , 18 ]. The clinical utility of early warning scores likely rests on two key contextual elements: the presence of uncertainty, both in terms of diagnosis and prognosis, and the potential for undesirable patient outcomes if an appropriate care pathway is delayed or an inappropriate one is chosen [ 19 ].

The overarching goal of this qualitative study was to determine how prediction models for clinical deterioration, or early warning scores, could be better tailored to the needs of end-users to improve inpatient care. This study had three aims. First, to understand the experiences and perspectives of nurses and doctors who use early warning scores. Second, to identify the tasks these clinicians performed when managing deteriorating patients, the decision-making processes that guided these tasks, and how these could be conceptualised schematically. Finally, to address these tasks and needs with actionable, practical recommendations for enhancing future deterioration prediction model development and deployment.

To achieve our study aims, we conducted semi-structured interviews of nurses and doctors at two large, digitally mature hospitals. We first asked clinicians to describe their backgrounds, perspectives, and experience with early warning scores to give context to our analysis. We then examined the tasks and responsibilities of participants and the decision-making processes that guided these tasks using reflexive thematic analysis, an inductive method that facilitated the identification of general themes. We then identified a conceptual decision-making framework from the literature to which we mapped these themes to understand how they may lead to better decision support tools. Finally, we used this framework to formulate recommendations for deterioration prediction model design and deployment. These steps are presented graphically in a flow diagram (Fig.  1 ).

figure 1

Schema of study goal, aims and methods

The study was conducted at one large tertiary and one medium-sized metropolitan hospital in Brisbane, Australia. The large hospital contained over 1,000 beds, handling over 116,000 admissions and approximately 150,000 deterioration alerts per year in 2019. Over the same period, the medium hospital contained 175 beds, handling over 31,000 admissions and approximately 42,000 deterioration alerts per year. These facilities had a high level of digital maturity, including fully integrated electronic medical records.

Clinical prediction model for deteriorating patients

The deterioration monitoring system used at both hospitals was the Queensland Adult Deterioration Detection System (Q-ADDS) [ 20 , 21 ]. Q-ADDS uses an underlying prediction model to convert patient-level vital signs from a single time of observation into an ordinal risk score describing an adult patient’s risk of acute deterioration. Vital signs collected are respiratory rate (breaths/minute), oxygen flow rate (L/minute), arterial oxygen saturation (percent), blood pressure (mmHg), heart rate (beats/minute), temperature (degrees Celsius), level of consciousness (Alert-Voice-Pain-Unresponsive) and increased or new onset agitation. Increased pain and urine output are collected but not used for score calculation [ 21 ]. The Q-ADDS tool is included in the supplementary material.

Vital signs are entered into the patient’s electronic medical record, either imported from the vital signs monitoring device at the patient’s bedside or from manual entry by nurses. Calculations are made automatically within Q-ADDS to generate an ordinal risk score per patient observation. Scores can be elevated to levels requiring a tiered escalation response if a single vital sign is greatly deranged, or if several observations are deranged by varying degrees. Scores range from 0 to 8+, with automated alerts and escalation protocols ranging from more frequent observations for lower scores to immediate activation of the medical emergency team (MET) at higher scores.

The escalation process for Q-ADDS is highly structured, mandated and well documented [ 21 ]. Briefly, when a patient’s vital signs meet a required alert threshold, the patient’s nurse is required to physically assess the patient and, depending on the level of severity predicted by Q-ADDS, notify the patient’s doctor (escalation). The doctor is then required to be notified of the patient’s Q-ADDS score, potentially review the patient, and discuss any potential changes to care with the nurse. Both nurses and doctors can escalate straight to MET calls or an emergency ‘code blue’ call (requiring cardiopulmonary resuscitation or assisted ventilation) at any time if necessary.

Participant recruitment

Participant recruitment began in February 2022 and concluded in March 2023, disrupted by the COVID-19 pandemic. Eligibility criteria were nurses or doctors at each hospital with direct patient contact who either receive or respond, respectively, to Q-ADDS alerts. An anticipated target sample size of 15 participants was established prior to recruitment, based on expected constraints in recruitment due to clinician workloads and the expected length of interviews relative to their scope, as guided by prior research [ 22 ]. As the analysis plan involved coding interviews iteratively as they were conducted, the main justification for ceasing recruitment was when no new themes relating to the study objectives were generated during successive interviews as the target sample size was approached [ 23 ].

Study information was broadly distributed via email to nurses and doctors in patient-facing roles across hospitals. Nurse unit managers were followed up during regular nursing committee meetings to participate or assist with recruitment within their assigned wards. Doctors were followed up by face-to-face rounding. Snowball sampling, in which participants were encouraged to refer their colleagues for study participation, was employed whenever possible. In all cases, study authors explained study goals and distributed participant consent forms prior to interview scheduling with the explicit proviso that participation was completely voluntary and anonymous to all but two study authors (RB and SN).

Interview process

We used a reflexive framework method to develop an open-ended interview template [ 24 ] that aligned with our study aims. Interview questions were informed by the non-adoption, abandonment, scale-up, spread and sustainability (NASSS) framework [ 25 ]. The NASSS framework relates the end-user perceptions of the technology being evaluated to its value proposition for the clinical situation to which it is being applied. We selected a reflexive method based on the NASSS for our study as we wanted to allow end-users to speak freely about the barriers they faced when using prediction models for clinical deterioration, but did not limit participants to discussing only topics that could fit within the NASSS framework.

Participants were first asked about their background and clinical expertise. They were then invited to share their experiences and perspectives with using early warning scores to manage deteriorating patients. This was used as a segue for participants to describe the primary tasks required of them when evaluating and treating a deteriorating patient. Participants were encouraged to talk through their decision-making process when fulfilling these tasks, and to identify any barriers or obstacles to achieving those tasks that were related to prediction models for deteriorating patients. Participants were specifically encouraged to identify any sources of information that were useful for managing deteriorating patients, including prediction models for other, related disease groups like sepsis, and to think of any barriers or facilitators for making that information more accessible. Finally, participants were invited to suggest ways to improve early warning scores, and how those changes may lead to benefits for patients and clinicians.

As we employed a reflexive methodology to allow clinicians to speak freely about their perspectives and opinions, answers to interview questions were optional and open-ended, allowing participants to discuss relevant tangents. Separate interview guides were developed for nurses and doctors as the responsibilities and information needs of these two disciplines in managing deteriorating patients often differ. Nurses are generally charged with receiving and passing on deterioration alerts, while doctors are generally charged with responding to alerts and making any required changes to patient care plans [ 4 ]. Interview guides are contained in the supplement.

Due to clinician workloads, member checking, a form of post-interview validation in which participants retrospectively confirm their interview answers, was not used. To ensure participants perceived the interviewers as being impartial, two study authors not employed by the hospital network and not involved in direct patient care (RB and SN) were solely responsible for conducting interviews and interrogating interview transcripts. Interviews were recorded and transcribed verbatim, then re-checked for accuracy.

Inductive thematic analysis

Transcripts were analysed using a reflexive thematic methodology informed by Braun and Clarke [ 26 ]. This method was selected because it facilitated exploring the research objectives rather than being restricted to the domains of a specific technology adoption framework, which may limit generalisability [ 27 ]. Interviews were analysed over five steps to identify emergent themes.

Each interview was broken down into segments by RB and SN, where segments corresponded to a distinct opinion.

Whenever appropriate, representative quotes for each distinct concept were extracted.

Segments were grouped into sub-themes.

Sub-themes were grouped into higher-order themes, or general concepts.

Steps 1 through 4 were iteratively repeated by RB and supervised by SN.

As reflexive methods incorporate the experiences and expertise of the analysts, our goal was to extract any sub-themes relevant to the study aims and able to be analysed in the context of early warning scores, prediction models, or decision support tools for clinical deterioration. The concepts explored during this process were not exhaustive, but repeated analysis and re-analysis of participant transcripts helped to ensure all themes could be interpreted in the context of our three study aims: background and perspectives, tasks and decision-making, and recommendations for future practice.

Deductive mapping to a clinical decision-making framework

Once the emergent themes from the inductive analysis were defined, we conducted a brief scan of PubMed for English-language studies that investigated how the design of clinical decision support systems relate to clinical decision-making frameworks. The purpose of this exercise was to identify a framework against which we could map the previously elicited contexts, tasks, and decision-making of end-users in developing a decision-making model that could then be used to support the third aim of formulating recommendations to enhance prediction model development and deployment.

RB and SN then mapped higher-order themes from the inductive analysis to the decision-making model based on whether there was a clear relationship between each theme and a node in the model (see Results).

Recommendations for improving prediction model design were derived by reformatting the inductive themes based on the stated preferences of the participants. These recommendations were then assessed by the remaining authors and the process repeated iteratively until authors were confident that all recommendations were concordant with the decision-making model.

Participant characteristics

Our sample included 8 nurses and 7 doctors of varying levels of expertise and clinical specialties; further information is contained in the supplement. Compared to doctors, nurse participants were generally more experienced, often participating in training or mentoring less experienced staff. Clinical specialities of nurses were diverse, including orthopaedics, cancer services, medical assessment and planning unit, general medicine, and pain management services. Doctor participants ranged from interns with less than a year of clinical experience up to consultant level, including three doctors doing training rotations and two surgical registrars. Clinical specialties of doctors included geriatric medicine, colorectal surgery, and medical education.

Interviews and thematic analysis

Eleven interviews were conducted jointly by RB and SN, one conducted by RB, and three by SN. Interviews were scheduled for up to one hour, with a mean duration of 42 min. Six higher-order themes were identified. These were: added value of more information; communication of model outputs; validation of clinical intuition; capability for objective measurement; over-protocolisation of care; and model transparency and interactivity (Table  1 ). Some aspects of care, including the need for critical thinking and the informational value of discerning trends in patient observations, were discussed in several contexts, making them relevant to more than one higher-order theme.

Added value of other information

Clinicians identified that additional data or variables important for decision making were often omitted from the Q-ADDS digital interface. Such variables included current medical conditions, prescribed medications and prior observations, which were important for interpreting current patient data in the context of their baseline observations under normal circumstances (e.g., habitually low arterial oxygen saturation due to chronic obstructive pulmonary disease) or in response to an acute stimulus (e.g., expected hypotension for next 4 to 8 h while treatment for septic shock is underway).

“The trend is the biggest thing [when] looking at the data , because sometimes people’s observations are deranged forever and it’s not abnormal for them to be tachycardic , whereas for someone else , if it’s new and acute , then that’s a worry.” – Registrar.

Participants frequently emphasised the critical importance of looking at patients holistically, or that patients were more than the sum of the variables used to predict risk. Senior nurses stressed that prediction models were only one part of patient evaluation, and clinicians should be encouraged to incorporate both model outputs and their own knowledge and experiences in decision making rather than trust models implicitly. Doctors also emphasised this holistic approach, adding that they placed more importance on hearing a nurse was concerned for the patient than seeing the model output. Critical thinking about future management was frequently raised in this context, with both nurses and doctors insisting that model predictions and the information required for contextualising risk scores should be communicated together when escalating the patient’s care to more senior clinicians.

Model outputs

Model outputs were discussed in two contexts. First, doctors perceived that ordinal risk scores generated by Q-ADDS felt arbitrary compared to receiving probabilities of a future event, for example cardiorespiratory decompensation, that required a response such as resuscitation or high-level treatment. However, nurses did not wholly embrace probabilities as outputs, instead suggesting that recommendations for how they should respond to different Q-ADDS scores were more important. This difference may reflect the different roles of alert receivers (nurses) and alert responders (doctors).

“[It’s helpful] if you use probabilities… If your patient has a sedation score of 2 and a respiratory rate of 10 , [giving them] a probability of respiratory depression would be helpful. However , I don’t find many clinicians , and certainly beginning practitioners , think in terms of probabilities.” – Clinical nurse consultant.

Second, there was frequent mention of alert fatigue in the context of model outputs. One doctor and two nurses felt there was insufficient leeway for nurses to exercise discretion in responding to risk scores, leading to many unnecessary alert-initiated actions. More nuance in the way Q-ADDS outputs were delivered to clinicians with different roles was deemed important to avoid model alerts being perceived as repetitive and unwarranted. However, three other doctors warned against altering MET call criteria in response to repetitive and seemingly unchanging risk scores and that at-risk patients should, as a standard of care, remain under frequent observation. Frustrations centred more often around rigidly tying repetitive Q-ADDS outputs to certain mandated actions, leading to multiple clinical reviews in a row for a patient whose trajectory was predictable, for example a patient with stable heart failure having a constantly low blood pressure. This led to duplication of nursing effort (e.g., repeatedly checking the blood pressure) and the perception that prediction models were overly sensitive.

“It takes away a lot of nurses’ critical judgement. If someone’s baseline systolic [blood pressure] is 95 [mmHg] , they’re asymptomatic and I would never hear about it previously. We’re all aware that this is where they sit and that’s fine. Now they are required to notify me in the middle of the night , “Just so you know , they’ve dropped to 89 [below an alert threshold of 90mmHg].“” – Junior doctor.

Validation of clinical intuition

Clinicians identified the ability of prediction models to validate their clinical intuition as both a benefit and a hindrance, depending on how outputs were interpreted and acted upon. Junior clinicians appreciated early warning scores giving them more support to escalate care to senior clinicians, as a conversation starter or framing a request for discussion. Clinicians described how assessing the patient holistically first, then obtaining model outputs to add context and validate their diagnostic hypotheses, was very useful in deciding what care should be initiated and when.

“You kind of rule [hypotheses] out… you go to the worst extreme: is it something you need to really be concerned about , especially if their [score] is quite high? You’re thinking of common complications like blood clots , so that presents as tachycardic… I’m thinking of a PE [pulmonary embolism] , then you do the nursing interventions.” – Clinical nurse manager.

While deterioration alerts were often seen as triggers to think about potential causes for deterioration, participants noted that decision making could be compromised if clinicians were primed by model outputs to think of different diagnoses before they had fully assessed the patient at the bedside. Clinicians described the dangers of tunnel vision or, before considering all available clinical information, investigating favoured diagnoses to the exclusion of more likely causes.

“[Diagnosis-specific warnings are] great , [but] that’s one of those things that can lead to a bit of confirmation bias… It’s a good trigger to articulate , “I need to look for sources of infection when I go to escalate"… but then , people can get a little bit sidetracked with that and ignore something more blatant in front of them. I’ve seen people go down this rabbit warren of being obsessed with the “fact” that it was sepsis , but it was something very , very unrelated.” – Nurse educator.

Objective measurement

Clinicians perceived that prediction models were useful as more objective measures of patients’ clinical status that could ameliorate clinical uncertainty or mitigate cognitive biases. In contrast to the risk of confirmation bias arising from front-loading model outputs suggesting specific diagnoses, prediction models could offer a second opinion that could help clinicians recognise opposing signals in noisy data that, in particular, assisted in considering serious diagnoses that shouldn’t be missed (e.g., sepsis), or more frequent and easily treated diagnoses (e.g., dehydration). Prediction models were also useful when they disclosed several small, early changes in patient status that provided an opportunity for early intervention.

“Maybe [the patient has] a low grade fever , they’re a bit tachycardic. Maybe [sepsis] isn’t completely out of the blue for this person. If there was some sort of tool , that said there’s a reasonable chance that they could have sepsis here , I would use that to justify the option of going for blood cultures and maybe a full septic screen. If [I’m indecisive] , that sort of information could certainly push me in that direction.” – Junior doctor.

Clinicians frequently mentioned that prediction models would have been more useful when first starting clinical practice, but become less useful with experience. However, clinicians noted that at any experience level, risk scoring was considered most useful as a triage/prioritisation tool, helping decide which patients to see first, or which clinical concerns to address first.

“[Doctors] can easily triage a patient who’s scoring 4 to 5 versus 1 to 3. If they’re swamped , they can change the escalation process , or triage appropriately with better communication.” – Clinical nurse manager.

Clinicians also stressed that predictions were not necessarily accurate because measurement error or random variation, especially one-off outlier values for certain variables, was a significant contributor to false alerts and inappropriate responses. For example, a single unusually high respiratory rate generated an unusually high risk score, prompting an unnecessary alert.

Over-protocolisation of care

The sentiment most commonly expressed by all experienced nursing participants and some doctors was that nurses were increasingly being trained to solely react to model outputs with fixed response protocols, rather than think critically about what is happening to patients and why. It was perceived that prediction models may actually reduce the capacity for clinicians to process and internalise important information. For example, several nurses observed their staff failing to act on their own clinical suspicions that patients were deteriorating because the risk score had not exceeded a response threshold.

“We’ve had patients on the ward that have had quite a high tachycardia , but it’s not triggering because it’s below the threshold to trigger… [I often need to make my staff] make the clinical decision that they can call the MET anyway , because they have clinical concern with the patient.” – Clinical nurse consultant.

A source of great frustration for many nurses was the lack of critical thinking by their colleagues of possible causes when assessing deteriorating patients. They wanted their staff to investigate whether early warning score outputs or other changes in patient status were caused by simple, easily fixable issues such as fitting the oxygen mask properly and helping the patient sit up to breathe more easily, or whether they indicated more serious underlying pathophysiology. Nurses repeatedly referenced the need for clinicians to always be asking why something was happening, not simply reacting to what was happening.

“[Models should also be] trying to get back to critical thinking. What I’m seeing doesn’t add up with the monitor , so I should investigate further than just simply calling the code.” – Clinical nurse educator.

Model transparency and interactivity

Clinicians frequently requested more transparent and interactive prediction models. These included a desire to receive more training in how prediction models worked and how risk estimates were generated mathematically, and being able to visualise important predictors of deterioration and the absolute magnitude of their effects (effect sizes) in intuitive ways. For example, despite receiving training in Q-ADDS, nurses expressed frustrations that nobody at the hospital seemed to understand how it worked in generating risk scores. Doctors were interested in being able to visualise the relative size and direction of effect of different model variables, potentially using colour-coding, combined with other contextual patient data like current vital sign trends and medications, and presented on one single screen.

The ability to modify threshold values for model variables and see how this impacted risk scores, and what this may then mean for altering MET calling criteria, was also discussed. For example, in an older patient with an acute ischaemic stroke, a persistently high, asymptomatic blood pressure value is an expected bodily response to this acute insult over the first 24–48 h. In the absence of any change to alert criteria, recurrent alerts would be triggered which may encourage overtreatment and precipitous lowering of the blood pressure with potential to cause harm. Altering the criteria to an acceptable or “normal” value for this clinical scenario (i.e. a higher than normal blood pressure) may generate a lower, more patient-centred risk estimate and less propensity to overtreat. This ability to tinker with the model may also enhance understanding of how it works.

“I wish I could alter criteria and see what the score is after that , with another set of observations. A lot of the time… I wonder what they’re sitting at , now that I’ve [altered] the bit that I’m not concerned about… It would be quite helpful to refresh it and have their score refreshed as the new score.” – Junior doctor.

Derivation of the decision-making model

Guided by the responses of our participants regarding their decision-making processes, our literature search identified a narrative review by Banning (2008) that reported previous work by O’Neill et al. (2005) [ 28 , 29 ]. While these studies referred to models of nurse decision-making, we selected a model (Fig.  2 ) that also appropriately described the responses of doctors in our participant group and matched the context of using clinical decision support systems to support clinical judgement. As an example, when clinicians referenced needing to look for certain data points to give context to a patient assessment, this was mapped to nodes relating to “Current patient data,” “Changes to patient status/data,” and “Hypothesis-driven assessment.”

figure 2

Decision-making model(Adapted from Neill’s clinical decision making framework [2005] and modified by Banning [2006]) with sequential decision nodes

Mapping of themes to decision-making model

The themes from Table  1 were mapped to the nodes in the decision-making model based on close alignment with participant responses (see Fig.  3 ). This mapping is further explained below, where the nodes in the model are described in parentheses.

Value of additional information for decision-making : participants stressed the importance of understanding not only the data going into the prediction model, but also how that data changed over time as trends, and the data that were not included in the model. (Current patient data, changes to patient status/data)

Format, frequency, and relevance of outputs : participants suggested a change in patient data should not always lead to an alert. Doctors, but not necessarily nurses, proposed outputs displayed as probabilities rather than scores, tying model predictions to potential diagnoses or prognoses. (Changes to patient status/data, hypothesis generation)

Using models to validate but not supersede clinical intuition : Depending on the exact timing of model outputs within the pathway of patient assessment, participants found predictions could either augment or hinder the hypothesis generation process. (Hypothesis generation)

Measuring risks objectively : Risk scores can assist with triaging or prioritising patients by urgency or prognostic risk, thereby potentially leading to early intervention to identify and/or prevent adverse events. (Clinician concerns, hypothesis generation)

Supporting critical thinking and reducing over-protocolised care : by acting as triggers for further assessment, participants suggested prediction models can support or discount diagnostic hypotheses, lead to root-cause identification, and facilitate interim cares, for example by ensuring good fit of nasal prongs. (Provision of interim care, hypothesis generation, hypothesis-driven assessment)

Model transparency and interactivity : understanding how prediction models worked, being able to modify or add necessary context to model predictions, and understanding the relative contribution of different predictors could better assist the generation and selection of different hypotheses that may explain a given risk score. (Hypothesis generation, recognition of clinical pattern and hypothesis selection)

figure 3

Mapping of the perceived relationships between higher-order themes and nodes in the decision-making model shown in Fig.  2

Recommendations for improving the design of prediction models

Based on the mapping of themes to the decision-making model, we formulated four recommendations for enhancing the development and deployment of prediction models for clinical deterioration.

Improve accessibility and transparency of data included in the model. Provide an interface that allows end-users to see what predictor variables are included in the model, their relative contributions to model outputs, and facilitate easy access to data not included in the model but still relevant for model-informed decisions, e.g., trends of predictor variables over time.

Present model outputs that are relevant to the end-user receiving those outputs, their responsibilities, and the tasks they may be obliged to perform, while preserving the ability of clinicians to apply their own discretionary judgement.

In situations associated with diagnostic uncertainty, avoid tunnel vision from priming clinicians with possible diagnostic explanations based on model outputs, prior to more detailed clinical assessment of the patient.

Support critical thinking whereby clinicians can apply a more holistic view of the patient’s condition, take all relevant contextual factors into account, and be more thoughtful in generating and selecting causal hypotheses.

This qualitative study involving front-line acute care clinicians who respond to early warning score alerts has generated several insights into how clinicians perceive the use of prediction models for clinical deterioration. Clinicians preferred models that facilitated critical thinking, allowed an understanding of the impact of variables included and excluded from the model, provided model outputs specific to the tasks and responsibilities of different disciplines of clinicians, and supported decision-making processes in terms of hypotheses and choice of management, rather than simply responding to alerts in a pre-specified, mandated manner. In particular, preventing prediction models from supplanting critical thinking was repeatedly emphasised.

Reduced staffing ratios, less time spent with patients, greater reliance on more junior workforce, and increasing dependence on automated activation of protocolised management are all pressures that could lead to a decline in clinical reasoning skills. This problem could be exacerbated by adding yet more predictive algorithms and accompanying protocols for other clinical scenarios, which may intensify alert fatigue and disrupt essential clinical care. However, extrapolating our results to areas other than clinical deterioration should be done with caution. An opposing view may be that using prediction models to reduce the burden of routine surveillance may allow redirection of critical thinking skills towards more useful tasks, a question that has not been explored in depth in the clinical informatics literature.

Clinicians expressed interest in models capable of providing causal insights into clinical deterioration. This is neither a function nor capability of most risk prediction models, requiring different assumptions and theoretical frameworks [ 30 ]. Despite this limitation, risk nomograms, visualisations of changes in risk with changes in predictor variables, and other interactive tools for estimating risk may be useful adjuncts for clinical decision-making due to the ease with which input values can be manipulated.

Contributions to the literature

Our research supports and extends the literature on the acceptability of risk prediction models within clinical decision support systems. Common themes in the literature supporting good practices in clinical informatics and which are also reflected in our study include: alert fatigue; the delivery of more relevant contextual information; [ 31 ] the value of patient histories; [ 32 , 33 ] ranking relevant information by clinical importance, including colour-coding; [ 34 , 35 ] not using computerised tools to replace clinical judgement; [ 32 , 36 , 37 ] and understanding the analytic methods underpinning the tool [ 38 ]. One other study has investigated the perspectives of clinicians of relatively simple, rules-based prediction models similar to Q-ADDS. Kappen et al [ 12 ] conducted an impact study of a prediction model for postoperative nausea and vomiting and also found that clinicians frequently made decisions in an intuitive manner that incorporated information both included and absent from prediction models. However, the authors recommended a more directive than assistive approach to model-based recommendations, possibly due to a greater focus on timely prescribing of effective prophylaxis or treatment.

The unique contribution of our study is a better understanding of how clinicians may use prediction models to generate and validate diagnostic hypotheses. The central role of critical thinking and back-and-forth interactions between clinician and model in our results provide a basis for future research using more direct investigative approaches like cognitive task analysis [ 39 ]. Our study has yielded a set of cognitive insights into decision making that can be applied in tandem with statistical best practice in designing, validating and implementing prediction models. [ 19 , 40 , 41 ].

Relevance to machine learning and artificial intelligence prediction models for deterioration

Our results may generalise to prediction models based on machine learning (ML) and artificial intelligence (AI), according to results of several recent studies. Tonekaboni et al [ 42 ] investigated clinician preferences for ML models in the intensive care unit and emergency department using hypothetical scenarios. Several themes appear both in our results and theirs: a need to understand the impact of both included and excluded predictors on model performance; the role of uncertain or noisy data in prediction accuracy; and the influence of trends or patient trajectories in decision making. Their recommendations for more transparent models and the delivery of model outputs designed for the task at hand align closely with ours. The authors’ focus on clinicians’ trust in the model was not echoed by our participants.

Eini-Porat et al [ 43 ] conducted a comprehensive case study of ML models in both adult and paediatric critical care. Their results present several findings supported by our participants despite differences in clinical environments: the value of trends and smaller changes in several vital signs that could cumulatively signal future deterioration; the utility of triage and prioritisation in time-poor settings; and the use of models as triggers for investigating the cause of deterioration.

As ML/AI models proliferate in the clinical deterioration prediction space, [ 44 ] it is important to deeply understand the factors that may influence clinician acceptance of more complex approaches. As a general principle, these methods often strive to input as many variables or transformations of those variables as possible into the model development process to improve predictive accuracy, incorporating dynamic updating to refine model performance. While this functionality may be powerful, highly complex models are not easily explainable, require careful consideration of generalisability, and can prevent clinicians from knowing when a model is producing inaccurate predictions, with potential for patient harm when critical healthcare decisions are being made [ 45 , 46 , 47 ]. Given that our clinicians emphasised the need to understand the model, know which variables are included and excluded, and correctly interpret the format of the output, ML/AI models in the future will need to be transparent in their development and their outputs easily interpretable.

Limitations

The primary limitations of our study were that our sample was drawn from two hospitals with high levels of digital maturity in a metropolitan region of a developed country, with a context specific to clinical deterioration. Our sample of 15 participants may be considered small but is similar to that of other studies with a narrow focus on clinical perspectives [ 42 , 43 ]. All these factors can limit generalisability to other settings or to other prediction models. As described in the methods, we used open-ended interview templates and generated our inductive themes reflexively, which is vulnerable to different types of biases compared to more structured preference elicitation methods with rigidly defined analysis plans. Member checking may have mitigated this bias, but was not possible due to the time required from busy clinical staff.

Our study does not directly deal with methodological issues in prediction model development, [ 41 , 48 ] nor does it provide explicit guidance on how model predictions should be used in clinical practice. Our findings should also not be considered an exhaustive list of concerns clinicians have with prediction models for clinical deterioration, nor may they necessarily apply to highly specialised clinical areas, such as critical care. Our choice of decision making framework was selected because it demonstrated a clear, intuitive causal pathway for model developers to support the clinical decision-making process. However, other, equally valid frameworks may have led to different conclusions, and we encourage more research in this area.

This study elicited clinician perspectives of models designed to predict and manage impending clinical deterioration. Applying these perspectives to a decision-making model, we formulated four recommendations for the design of future prediction models for deteriorating patients: improved transparency and interactivity, tailoring models to the tasks and responsibilities of different end-users, avoiding priming clinicians with diagnostic predictions prior to in-depth clinical review, and finally, facilitating the diagnostic hypothesis generation and assessment process.

Availability of data and materials

Due to privacy concerns and the potential identifiability of participants, interview transcripts are not available. However, interview guides are available in the supplement.

Jenkins DA, Martin GP, Sperrin M, Riley RD, Debray TPA, Collins GS, Peek N. Continual updating and monitoring of clinical prediction models: time for dynamic prediction systems? Diagn Prognostic Res. 2021;5(1):1.

Article   Google Scholar  

Collins GS, Reitsma JB, Altman DG, Moons KG. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. BMJ. 2015;350:g7594.

Article   PubMed   Google Scholar  

Moons KG, Altman DG, Reitsma JB, Ioannidis JP, Macaskill P, Steyerberg EW, et al. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): explanation and elaboration. Ann Intern Med. 2015;162(1):W1–73.

Blythe R, Parsons R, White NM, Cook D, McPhail SM. A scoping review of real-time automated clinical deterioration alerts and evidence of impacts on hospitalised patient outcomes. BMJ Qual Saf. 2022;31(10):725–34.

Fahey M, Crayton E, Wolfe C, Douiri A. Clinical prediction models for mortality and functional outcome following ischemic stroke: a systematic review and meta-analysis. PLoS ONE. 2018;13(1):e0185402.

Article   PubMed   PubMed Central   Google Scholar  

Fleuren LM, Klausch TLT, Zwager CL, Schoonmade LJ, Guo T, Roggeveen LF, et al. Machine learning for the prediction of sepsis: a systematic review and meta-analysis of diagnostic test accuracy. Intensive Care Med. 2020;46(3):383–400.

White NM, Carter HE, Kularatna S, Borg DN, Brain DC, Tariq A, et al. Evaluating the costs and consequences of computerized clinical decision support systems in hospitals: a scoping review and recommendations for future practice. J Am Med Inform Assoc. 2023;30(6):1205–18.

Sanders S, Doust J, Glasziou P. A systematic review of studies comparing diagnostic clinical prediction rules with clinical judgment. PLoS ONE. 2015;10(6):e0128233.

Abell B, Naicker S, Rodwell D, Donovan T, Tariq A, Baysari M, et al. Identifying barriers and facilitators to successful implementation of computerized clinical decision support systems in hospitals: a NASSS framework-informed scoping review. Implement Sci. 2023;18(1):32.

van der Vegt AH, Campbell V, Mitchell I, Malycha J, Simpson J, Flenady T, et al. Systematic review and longitudinal analysis of implementing Artificial Intelligence to predict clinical deterioration in adult hospitals: what is known and what remains uncertain. J Am Med Inf Assoc. 2024;31(2):509–24.

Davenport T, Kalakota R. The potential for artificial intelligence in healthcare. Future Healthc J. 2019;6(2):94–8.

Kappen TH, van Loon K, Kappen MA, van Wolfswinkel L, Vergouwe Y, van Klei WA, et al. Barriers and facilitators perceived by physicians when using prediction models in practice. J Clin Epidemiol. 2016;70:136–45.

Witteman HO, Dansokho SC, Colquhoun H, Coulter A, Dugas M, Fagerlin A, Giguere AM, Glouberman S, Haslett L, Hoffman A, Ivers N. User-centered design and the development of patient decision aids: protocol for a systematic review. Systematic reviews. 2015;4:1−8.

Zhang J, Norman DA. Representations in distributed cognitive tasks. Cogn Sci. 1994;18(1):87–122.

Johnson CM, Johnson TR, Zhang J. A user-centered framework for redesigning health care interfaces. J Biomed Inf. 2005;38(1):75–87.

Jones D, Mitchell I, Hillman K, Story D. Defining clinical deterioration. Resuscitation. 2013;84(8):1029–34.

Morgan RJ, Wright MM. In defence of early warning scores. Br J Anaesth. 2007;99(5):747–8.

Article   CAS   PubMed   Google Scholar  

Smith ME, Chiovaro JC, O’Neil M, Kansagara D, Quinones AR, Freeman M, et al. Early warning system scores for clinical deterioration in hospitalized patients: a systematic review. Annals Am Thorac Soc. 2014;11(9):1454–65.

Baker T, Gerdin M. The clinical usefulness of prognostic prediction models in critical illness. Eur J Intern Med. 2017;45:37–40.

Campbell V, Conway R, Carey K, Tran K, Visser A, Gifford S, et al. Predicting clinical deterioration with Q-ADDS compared to NEWS, between the flags, and eCART track and trigger tools. Resuscitation. 2020;153:28–34.

The Australian Commission on Safety and Quality in Health is the publisher, and the publisher location is Sydney, Australia. https://www.safetyandquality.gov.au/sites/default/files/migrated/35981-ChartDevelopment.pdf .

Vasileiou K, Barnett J, Thorpe S, Young T. Characterising and justifying sample size sufficiency in interview-based studies: systematic analysis of qualitative health research over a 15-year period. BMC Med Res Methodol. 2018;18(1):148.

Hennink MM, Kaiser BN, Marconi VC. Code saturation versus meaning saturation: how many interviews are Enough? Qual Health Res. 2017;27(4):591–608.

Gale NK, Heath G, Cameron E, Rashid S, Redwood S. Using the framework method for the analysis of qualitative data in multi-disciplinary health research. BMC Med Res Methodol. 2013;13(1):1–8.

Greenhalgh T, Wherton J, Papoutsi C, Lynch J, Hughes G, A’Court C, et al. Beyond adoption: a New Framework for Theorizing and evaluating nonadoption, abandonment, and challenges to the Scale-Up, Spread, and sustainability of Health and Care technologies. J Med Internet Res. 2017;19(11):e367.

Braun V, Clarke V. One size fits all? What counts as quality practice in (reflexive) thematic analysis? Qualitative Res Psychol. 2021;18(3):328–52.

Campbell KA, Orr E, Durepos P, Nguyen L, Li L, Whitmore C, et al. Reflexive thematic analysis for applied qualitative health research. Qualitative Rep. 2021;26(6):2011–28.

Google Scholar  

Banning M. A review of clinical decision making: models and current research. J Clin Nurs. 2008;17(2):187–95.

O’Neill ES, Dluhy NM, Chin E. Modelling novice clinical reasoning for a computerized decision support system. J Adv Nurs. 2005;49(1):68–77.

Arnold KF, Davies V, de Kamps M, Tennant PWG, Mbotwa J, Gilthorpe MS. Reflection on modern methods: generalized linear models for prognosis and intervention—theory, practice and implications for machine learning. Int J Epidemiol. 2020;49(6):2074–82.

Article   PubMed Central   Google Scholar  

Westerbeek L, Ploegmakers KJ, de Bruijn GJ, Linn AJ, van Weert JCM, Daams JG, et al. Barriers and facilitators influencing medication-related CDSS acceptance according to clinicians: a systematic review. Int J Med Informatics. 2021;152:104506.

Henshall C, Marzano L, Smith K, Attenburrow MJ, Puntis S, Zlodre J, et al. A web-based clinical decision tool to support treatment decision-making in psychiatry: a pilot focus group study with clinicians, patients and carers. BMC Psychiatry. 2017;17(1):265.

Weingart SN, Simchowitz B, Shiman L, Brouillard D, Cyrulik A, Davis RB, et al. Clinicians’ assessments of electronic medication safety alerts in ambulatory care. Arch Intern Med. 2009;169(17):1627–32.

Baysari MT, Zheng WY, Van Dort B, Reid-Anderson H, Gronski M, Kenny E. A late attempt to involve end users in the design of medication-related alerts: Survey Study. J Med Internet Res. 2020;22(3):e14855.

Trafton J, Martins S, Michel M, Lewis E, Wang D, Combs A, et al. Evaluation of the acceptability and usability of a decision support system to encourage safe and effective use of opioid therapy for chronic, noncancer pain by primary care providers. Pain Med. 2010;11(4):575–85.

Wipfli R, Betrancourt M, Guardia A, Lovis C. A qualitative analysis of prescription activity and alert usage in a computerized physician order entry system. Stud Health Technol Inform. 2011;169:940–4.

PubMed   Google Scholar  

Cornu P, Steurbaut S, De Beukeleer M, Putman K, van de Velde R, Dupont AG. Physician’s expectations regarding prescribing clinical decision support systems in a Belgian hospital. Acta Clin Belg. 2014;69(3):157–64.

Ahearn MD, Kerr SJ. General practitioners’ perceptions of the pharmaceutical decision-support tools in their prescribing software. Med J Australia. 2003;179(1):34–7.

Swaby L, Shu P, Hind D, Sutherland K. The use of cognitive task analysis in clinical and health services research - a systematic review. Pilot Feasibility Stud. 2022;8(1):57.

Steyerberg EW. Applications of prediction models. In: Steyerberg EW, editor. Clinical prediction models. New York: Springer-; 2009. pp. 11–31.

Chapter   Google Scholar  

Steyerberg EW, Vergouwe Y. Towards better clinical prediction models: seven steps for development and an ABCD for validation. Eur Heart J. 2014;35(29):1925–31.

Tonekaboni S, Joshi S, McCradden MD, Goldenberg A. What Clinicians Want: Contextualizing Explainable Machine Learning for Clinical End Use. In: Doshi-Velez F, Fackler J, Jung K, Kale D, Ranganath R, Wallace B, Wiens J, editors. Proceedings of the 4th Machine Learning for Healthcare Conference; Proceedings of Machine Learning Research: PMLR; 2019;106:359–80.

Eini-Porat B, Amir O, Eytan D, Shalit U. Tell me something interesting: clinical utility of machine learning prediction models in the ICU. J Biomed Inform. 2022;132:104107.

Muralitharan S, Nelson W, Di S, McGillion M, Devereaux PJ, Barr NG, Petch J. Machine learning-based early warning systems for clinical deterioration: systematic scoping review. J Med Internet Res. 2021;23(2):e25187.

Rudin C. Stop Explaining Black Box Machine Learning Models for high stakes decisions and use interpretable models instead. Nat Mach Intell. 2019;1(5):206–15.

Blythe R, Parsons R, Barnett AG, McPhail SM, White NM. Vital signs-based deterioration prediction model assumptions can lead to losses in prediction performance. J Clin Epidemiol. 2023;159:106–15.

Futoma J, Simons M, Panch T, Doshi-Velez F, Celi LA. The myth of generalisability in clinical research and machine learning in health care. Lancet Digit Health. 2020;2(9):e489–92.

Steyerberg EW, Uno H, Ioannidis JPA, van Calster B, Collaborators. Poor performance of clinical prediction models: the harm of commonly applied methods. J Clin Epidemiol. 2018;98:133–43.

Download references

Acknowledgements

We would like to thank the participants who made time in their busy clinical schedules to speak to us and offer their support in recruitment.

This work was supported by the Digital Health Cooperative Research Centre (“DHCRC”). DHCRC is funded under the Commonwealth’s Cooperative Research Centres (CRC) Program. SMM was supported by an NHMRC-administered fellowships (#1181138).

Author information

Authors and affiliations.

Australian Centre for Health Services Innovation and Centre for Healthcare Transformation, School of Public Health and Social Work, Faculty of Health, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, Brisbane, QLD, 4059, Australia

Robin Blythe, Sundresan Naicker, Nicole White & Steven M McPhail

Princess Alexandra Hospital, Metro South Health, Woolloongabba, QLD, Australia

Raelene Donovan & Andrew McKelliget

Queensland Digital Health Centre, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia

Ian A. Scott

Digital Health and Informatics Directorate, Metro South Health, Woolloongabba, QLD, Australia

Ian A. Scott & Steven M McPhail

You can also search for this author in PubMed   Google Scholar

Contributions

RB: conceptualisation, data acquisition, analysis, interpretation, writing. SN: data acquisition, analysis, interpretation, writing. NW: interpretation, writing. RD: data acquisition, interpretation, writing. IS: data acquisition, analysis, interpretation, writing. AM: data acquisition, interpretation, writing. SM: conceptualisation, data acquisition, analysis, interpretation, writing. All authors have approved the submitted version and agree to be accountable for the integrity and accuracy of the work.

Corresponding author

Correspondence to Robin Blythe .

Ethics declarations

Ethics approval and consent to participate.

This study was approved by the Metro South Human Research Ethics Committee (HREC/2022/QMS/84205). Informed consent was obtained prior to interview scheduling, with all participants filling out a participant information and consent form. Consent forms were approved by the ethics committee. Participation was entirely voluntary, and could be withdrawn at any time. All responses were explicitly deemed confidential, with only the first two study authors and the participant privy to the research data. Interviews were then conducted in accordance with Metro South Health and Queensland University of Technology qualitative research regulations. For further information, please contact the corresponding author.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary material 1., rights and permissions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

Blythe, R., Naicker, S., White, N. et al. Clinician perspectives and recommendations regarding design of clinical prediction models for deteriorating patients in acute care. BMC Med Inform Decis Mak 24 , 241 (2024). https://doi.org/10.1186/s12911-024-02647-4

Download citation

Received : 06 September 2023

Accepted : 23 August 2024

Published : 02 September 2024

DOI : https://doi.org/10.1186/s12911-024-02647-4

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Clinical prediction models
  • Clinical decision support systems
  • Early warning score
  • Clinical deterioration
  • Clinical decision-making

BMC Medical Informatics and Decision Making

ISSN: 1472-6947

two models of critical thinking

IMAGES

  1. The 6 Stages of Critical Thinking Charles Leon

    two models of critical thinking

  2. Critical Thinking Definition, Skills, and Examples

    two models of critical thinking

  3. The 5 Most Useful Critical Thinking Flowcharts For Your Learners

    two models of critical thinking

  4. How to Improve Critical Thinking

    two models of critical thinking

  5. Critical Thinking Skills

    two models of critical thinking

  6. -Critical Thinking Model from Cybernetics view

    two models of critical thinking

VIDEO

  1. Critical Thinking

  2. What is Critical Thinking ?

  3. Top Critical Thinking Skills

  4. 5 Realistic Mental Models for Immediate Life Change!

  5. Critical thinking Vs Creative think explained

  6. 😱 7 Shocking Reasons Not to Buy the Samsung 55-Inch Class OLED TV! 📺

COMMENTS

  1. Critical Thinking Models: A Comprehensive Guide for Effective Decision

    Critical thinking models are frameworks that help individuals develop better problem-solving and decision-making abilities. They provide strategies for analyzing, evaluating, and synthesizing information to reach well-founded conclusions. ... Critical thinking and creative thinking are two complementary cognitive skills. Critical thinking ...

  2. Critical Thinking Models: Definition, Benefits, and Skills

    Learn three critical thinking models that help you analyze information and reach rational conclusions: proximate vs. root cause, cognitive bias, and Hanlon's Razor. Discover the benefits of critical thinking skills and how to improve them.

  3. Critical Thinking: Multiple Models for Teaching and Learning (abridged

    Another model [of critical thinking] is dialectic, an idea or work is critiqued in a way that produces a counter-perspective and ultimately leads to a synthesis. ... "Two Approaches to Critical Thinking." The Reading Teacher 4.4 (Dec. 1990): 350-51. Stewart, Ruth. "Teaching Critical Thinking in First-Year Composition: Sometimes More Is ...

  4. Critical Thinking

    Critical Thinking

  5. PDF Critical thinking models

    critical-thinking-models.pdf

  6. Paul-Elder Critical Thinking Framework

    Paul-Elder Critical Thinking Framework

  7. PDF The Miniature Guide to Critical Thinking: Concepts & Tools

    The Miniature Guide to Critical Thinking: Concepts & Tools

  8. PDF Critical Thinking: Frameworks and Models for Teaching

    critical thinking strategies to similar contexts of education are brought forward. This paper is a humble effort to clarify what CT and CTers' characteristics are, to introduce the models proposed for the application of CT in educational settings, and to indicate how CT could be taught in educational settings. 2. Review of the Related ...

  9. Critical Thinking

    Critical Thinking - Stanford Encyclopedia of Philosophy

  10. Critical Thinking Models

    The policy reinforces the idea that critical thinking 'is an essential transferable skill' designed to help students develop their independence, be informed and act as responsible citizens and is, therefore, a 'focus of learning across all subjects and disciplines' (Id. 2).

  11. A Three-Level Model for Critical Thinking: Critical Alertness, Critical

    A Three-Level Model for Critical Thinking: Critical Alertness, Critical Reflection, and Critical Analysis ... General thinking technics can be used in two forms. The first form is, for instance, deduction in general. To understand Kant's categorical imperative it helps to understand step by step its basic preconditions. The second form is ...

  12. Critical Thinking: A Model of Intelligence for Solving Real-World

    Critical Thinking: A Model of Intelligence for Solving Real- ...

  13. Critical Thinking

    Critical Thinking - Developing the Right Mindset and Skills

  14. What Is Critical Thinking?

    What Is Critical Thinking? | Definition & Examples

  15. Defining Critical Thinking

    Defining Critical Thinking

  16. PDF The Miniature Guide to Critical Thinking Concepts and Tools Why

    e art of analyzing and evaluating thought processes with a view to improving them. Critical thinking. is self-directed, self-disciplined, self-monitored, and self- corrective think. ng. It requires rigorous standards of excellence and mindful command of their use. It entails efective communication and problem solving abili-tie.

  17. History of Critical Thinking and Some Models of Critical Thinking

    Three classic critical thinking models are introduced: Socratic questioning method, Cartesian doubting method, and Baconian empirical method. We discuss their potential for critical thinking as foundational methods. The material in this chapter is distributed in three parts. In Part I, we provide a brief history of critical thinking. In Part II ...

  18. A Model of Critical Thinking in Higher Education

    Each of these, I submit, has an important place in an overarching model of critical thinking. The model I propose will demonstrate that critical thinking has both an individual, as well as a socio-cultural dimension—both comprising axes in the model—and admits of at least six distinct, dimensions of critical thinking: i.e., as skills ...

  19. Calvin Taylor's Model of Critical and Creative Thinking

    The Calvin Taylor creative thinking model describes the talent areas as productive thinking, communication, planning, decision making, and forecasting. This model is best known as Talents Unlimited, a program of the National Diffusion Network of the U.S. Department of Education. The Taylor model incorporates both the critical and creative ...

  20. Modeling Critical Thinking

    11 Modeling Critical Thinking. 11. Modeling Critical Thinking. Tutors spend lots of time working with students to develop critical thinking skills. Using Socratic questioning, we guide students from memory, to comprehension, to analysis and evaluation. We coach them through the problem solving process so that they make progress with their studies.

  21. 43.2 Developing Critical Thinking

    This model breaks critical thinking into four components: personal characteristics, intellectual and cognitive abilities, interpersonal abilities and self-management, and technical skills. These four components overlap, forming interconnections in critical thinking. Link to Learning.

  22. The Most Useful Critical Thinking Mental Models to Know About

    The Most Useful Critical Thinking Mental Models to Know ...

  23. Action learning and critical thinking: a synthesis of two models

    Action learning and critical thinking: a synthesis of two models. Stephen M. Soffe S.M. Soffe & Associates, LLC, 20870 Yellowbloom Court, Ashburn, ... Recent scholarship and the news media have identified a lack of critical thinking and ethical behavior in the business world. These deficiencies have led to faulty decision-making, ineffective ...

  24. Developing Critical and Creative Thinkers: Toward a Conceptual Model of

    Figure 1. Conceptual model of critical and creative thinking processes. meet the challenges of 21st century thinking, learning, and doing? To reach these goals, we began with an extensive review of over 200 research articles and books written on critical thinking and creativity. As we reviewed the literature, we found that critical thinking and ...

  25. Clinician perspectives and recommendations regarding design of clinical

    Clinicians preferred models that facilitated critical thinking, allowed an understanding of the impact of variables included and excluded from the model, provided model outputs specific to the tasks and responsibilities of different disciplines of clinicians, and supported decision-making processes in terms of hypotheses and choice of ...