• Open access
  • Published: 26 November 2018

The 150 most important questions in cancer research and clinical oncology series: questions 94–101

Edited by Cancer Communications

Cancer Communications

Cancer Communications volume  38 , Article number:  69 ( 2018 ) Cite this article

23k Accesses

8 Citations

1 Altmetric

Metrics details

Since the beginning of 2017, Cancer Communications (former title: Chinese Journal of Cancer ) has published a series of important questions regarding cancer research and clinical oncology, to provide an enhanced stimulus for cancer research, and to accelerate collaborations between institutions and investigators. In this edition, the following 8 valuable questions are presented. Question 94. The origin of tumors: time for a new paradigm? Question 95. How can we accelerate the identification of biomarkers for the early detection of pancreatic ductal adenocarcinoma? Question 96. Can we improve the treatment outcomes of metastatic pancreatic ductal adenocarcinoma through precision medicine guided by a combination of the genetic and proteomic information of the tumor? Question 97. What are the parameters that determine a competent immune system that gives a complete response to cancers after immune induction? Question 98. Is high local concentration of metformin essential for its anti-cancer activity? Question 99. How can we monitor the emergence of cancer cells anywhere in the body through plasma testing? Question 100. Can phytochemicals be more specific and efficient at targeting P-glycoproteins to overcome multi-drug resistance in cancer cells? Question 101. Is cell migration a selectable trait in the natural evolution of carcinoma?

Until now, the battle against cancer is still ongoing, but there are also ongoing discoveries being made. Milestones in cancer research and treatments are being achieved every year; at a quicker pace, as compared to decades ago. Likewise, some cancers that were considered incurable are now partly curable, lives that could not be saved are now being saved, and for those with yet little options, they are now having best-supporting care. With an objective to promote worldwide cancer research and even accelerate inter-countries collaborations, since the beginning of 2017, Cancer Communications (former title: Chinese Journal of Cancer ) has launched a program of publishing 150 most important questions in cancer research and clinical oncology [ 1 ]. We are providing a platform for researchers to freely voice-out their novel ideas, and propositions to enhance the communications on how and where our focus should be placed [ 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 ]. In this edition, 8 valuable and inspiring questions, Question 94–101, from highly distinguished professionals from different parts of the world are presented. If you have any novel proposition(s) and Question(s), please feel free to contact Ms. Ji Ruan via email: [email protected].

Question 94: The origin of tumors: time for a new paradigm?

Background and implications.

“There is no worse blind man than the one who doesn’t want to see. There is no worse deaf man than the one who doesn’t want to hear. And there is no worse madman than the one who doesn’t want to understand.” —Ancient Proverb

In the past half-century, cancer biologists have focused on a dogma in which cancer was viewed as a proliferative disease due to mechanisms that activate genes (oncogenes) to promote cell proliferation or inactivate genes (tumor suppressor genes) to suppress tumor growth. In retrospect, these concepts were established based on functional selections, by using tissue culture (largely mouse NIH 3T3 cells) for the selection of transformed foci at the time when we knew virtually nothing about the human genome [ 14 ]. However, it is very difficult to use these genes individually or in combinations to transform primary human cells. Further, the simplified view of uncontrolled proliferation cannot explain the tumor as being a malignant organ or a teratoma, as observed by pathologists over centuries. Recently, the cancer genomic atlas project has revealed a wide variety of genetic alterations ranging from no mutation to multiple chromosomal deletions or fragmentations, which make the identification of cancer driver mutations very challenging in a background of such a massive genomic rearrangement. Paradoxically, this increase the evidences demonstrating that the oncogenic mutations are commonly found in many normal tissues, further challenging the dogma that genetic alteration is the primary driver of this disease.

Logically, the birth of a tumor should undergo an embryonic-like development at the beginning, similar to that of a human. However, the nature of such somatic-derived early embryo has been elusive. Recently, we provided evidence to show that polyploid giant cancer cells (PGCCs), which have been previously considered non-dividing, are actually capable of self-renewal, generating viable daughter cells via amitotic budding, splitting and burst, and capable of acquisition of embryonic-like stemness [ 15 , 16 , 17 ]. The mode of PGCC division is remarkably similar to that of blastomere, a first step in human embryogenesis following fertilization. The blastomere nucleus continuously divides 4–5 times without cytoplasmic division to generate 16–32 cells and then to form compaction/morulae before developing into a blastocyst [ 18 ]. Based on these data and similarity to the earliest stage of human embryogenesis, I propose a new theory that tumor initiation can be achieved via a dualistic origin, similar to the first step of human embryogenesis via the formation of blastomere-like cells, i.e. the activation of blastomere or blastomere-like cells which leads to the dedifferentiation of germ cells or somatic cells, respectively, which is then followed by the differentiation to generate their respective stem cells, and the differentiation arrest at a specific developmental hierarchy leading to tumor initiation [ 19 ]. The somatic-derived blastomere-like cancer stem cell follows its own mode of cell growth and division and is named as the giant cell cycle. This cycle includes four distinct but overlapping phases: the initiation, self-renewal, termination, and stability phases. The giant cell cycle can be tracked in vitro and in vivo due to their salient giant cell morphology (Fig.  1 ).

figure 1

One mononucleated polyploid giant cancer cell (PGCC) in the background of regular size diploid cancer cells. The PGCC can be seen to be at least 100 times larger than that of regular cancer cells

This new theory challenges the traditional paradigm that cancer is a proliferative disease, and proposes that the initiation of cancer requires blastomere-like division that is similar to that of humans before achieving stable proliferation at specific developmental hierarchy in at least half of all human cancers. This question calls for all investigators in the cancer research community to investigate the role of PGCCs in the initiation, progression, resistance, and metastasis of cancer and to look for novel agents to block the different stages of the giant cell cycle.

The histopathology (phenotype) of cancers has been there all the time. It is just the theory of cancer origin proposed by scientists that changes from time to time. After all, trillions of dollars have been invested in fighting this disease by basing on its genetic origin in the past half-century, yet, little insight has been gained [ 14 ]. Here are two quotes from Einstein: “Insanity: doing the same thing over and over again expecting different results”, and “We cannot solve our problems with the same thinking we used when created them”.

In short, it is time to change our mindset and to start pursuing PGCCs, which we can observe under the microscope. But with very little understanding about these cells, it is time for a shift in paradigm.

Jinsong Liu.

Affiliation

Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4095, USA.

Email address

[email protected]

Question 95: How can we accelerate the identification of biomarkers for the early detection of pancreatic ductal adenocarcinoma?

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers in the world with a dismal 5-year overall survival rate of less than 5%; which has not been significantly improved since the past decades. Although surgical resection is the only option for curative treatment of PDAC, only 15%–20% of patients with PDAC have the chance to undergo curative resection, leaving the rest with only palliative options in hope for increasing their quality of life; since they were already at unresectable and non-curative stages at their first diagnosis.

The lack of specific symptoms in the early-stage of PDAC is responsible for rendering an early diagnosis difficult. Therefore, more sensitive and specific screening methodologies for its early detection is urgently needed to improve its diagnosis, starting early treatments, and ameliorating prognoses. The diagnosis so far relies on imaging modalities such as abdominal ultrasound, computed tomography (CT), magnetic resonance imaging (MRI), endoscopic ultrasound (EUS), endoscopic retrograde cholangiopancreatography (ERCP), and positron emission tomography (PET). One may propose to screen for pancreatic cancer in high-risk populations, which is highly recommended, however screening intervention for all the people is not a wise choice; when considering the relatively low prevalence of PDAC, and the difficulty for diagnosing it in its early stage [ 20 ].

Therefore, alternative diagnostic tools for early detection of PDAC are highly expected. Among the biomarkers currently used in clinical practice, carbohydrate antigen 19–9 (CA19–9) is among the most useful one for supporting the diagnosis of PDAC, but it is neither sufficiently sensitive nor specific for its early detection. Yachida et al. reported in 2010 that the initiating mutation in the pancreas occurs approximately two decades before the PDAC to start growing in distant organs [ 21 ], which indicates a broad time of the window of opportunity for the early detection of PDAC. With the advancement in next-generation sequencing technology, the number of reported studies regarding novel potential molecular biomarkers in bodily fluids including the blood, feces, urine, saliva, and pancreatic juice for early detection of PDAC has been increasing. Such biomarkers may be susceptible to detect mutations at the genetic or epigenetic level, identifying important non-coding RNA (especially microRNA and long non-coding RNA), providing insights regarding the metabolic profiles, estimating the tumor level in liquid biopsies (circulating free DNA, circulating tumor cells and exosomes), and so on.

Another approach to identifying biomarkers for the early detection of pancreatic cancer is using animal models. In spontaneous animal models of pancreatic cancer, such as Kras-mutated mouse models, it is expected that by high throughput analyses of the genetic/epigenetic/proteomic alterations, some novel biomarkers might be able to be identified. For instance, Sharma et al. reported in 2017 that the detection of phosphatidylserine-positive exosomes enabled the diagnosis of early-stage malignancies in LSL-Kras G12D , Cdkn2a lox/lox : p48 Cre and LSL-Kras G12d/+ , LSL-Trp R172H/+ , and P48 Cre mice [ 22 ].

These analyses in clinical samples or animal models hold the clues for the early detection of PDAC, however, further studies are required to validate their diagnostic performance. What’s most important, will be the lining-up of these identified prospective biomarkers, to validate their sensitivities and specificities. This will determine their potential for widespread clinical applicability, and hopefully, accelerate the early diagnosis of PDAC.

Mikiya Takao 1,2 , Hirotaka Matsuo 2 , Junji Yamamoto 1 , and Nariyoshi Shinomiya 2 .

1 Department of Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan; 2 Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan.

E-mail address

[email protected]; [email protected]; [email protected]; [email protected]

Question 96: Can we improve the treatment outcomes of metastatic pancreatic ductal adenocarcinoma through precision medicine guided by a combination of the genetic and proteomic information of the tumor?

Pancreatic ductal adenocarcinoma (PDAC) is one of the most malignant cancers, and nearly half of the patients had metastatic PDAC when they are initially diagnosed. When they are accompanied by metastatic tumors, unlike most solid cancer, PDAC cannot be cured with primary surgical resection alone [ 23 , 24 ]. Also, since PDAC has poor responses to conventional therapies, improvements in adjunctive treatment approach including chemo- and immuno-therapy are earnestly required. From this standpoint, recent results regarding the differences in the molecular evolution of pancreatic cancer subtypes provide a new insight into its therapeutic development [ 25 ], which may lead to the improvement of the prognosis of not only metastatic PDAC but also of locally advanced or recurrent PDAC.

In fact, new chemotherapeutic regimens such as the combination of gemcitabine with nab-paclitaxel and FOLFIRINOX have been reported to show improved prognosis despite a lack of examples of past successes in the treatment of patients with metastatic PDAC who had undergone R0 resection [ 26 ]. While many mutations including KRAS , CDKN2A , TP53, and SMAD4 are associated with pancreatic carcinogenesis, no effective molecular targeted drug has been introduced in the clinical setting so far. A recent report of a phase I/II study on refametinib, a MEK inhibitor, indicated that KRAS mutation status might affect the overall response rate, disease control rate, progression-free survival, and overall survival of PDAC in combination with gemcitabine [ 27 ].

While immunotherapy is expected to bring a great improvement in cancer treatment, until now, immune checkpoint inhibitors have achieved limited clinical benefit for patients with PDAC. This might be because PDAC creates a uniquely immunosuppressive tumor microenvironment, where tumor-associated immunosuppressive cells and accompanying desmoplastic stroma prevent the tumor cells from T cell infiltration. Recently reported studies have indicated that immunotherapy might be effective when combined with focal adhesion kinase (FAK) inhibitor [ 28 ] or IL-6 inhibitor [ 29 ], but more studies are required to validate their use in clinical practice.

As such, we believe that if the dynamic monitoring of drug sensitivity/resistance in the individual patients is coupled with precision treatment based on individualized genetics/epigenetics/proteomics alterations in the patients’ tumor, this could improve the treatment outcomes of PDAC.

Mikiya Takao 1,2 , Hirotaka Matsuo 2 , Junji Yamamoto 1 , and Nariyoshi Shinomiya 2.

Question 97: What are the parameters that determine a competent immune system that gives a complete response to cancers after immune induction?

Recently, cancer immunotherapy has shown great clinical benefit in multiple types of cancers [ 30 , 31 , 32 ]. It has provided new approaches for cancer treatment. However, it has been observed that only a fraction of patients respond to immunotherapy.

Much effort has been made to identify markers for immunotherapeutic response. Tumor mutation burden (TMB), mismatch repair (MMR) deficiency, PD-L1 expression, and tumor infiltration lymphocyte (TIL) have been found to be associated with an increased response rate in checkpoint blockade therapies. Unfortunately, a precise prediction is still challenging in this field. Moreover, when to stop the treatment of immunotherapy is an urgent question that remains to be elucidated.

In other words, there is no available approach to determine if a patient has generated a good immune response against the cancer after immunotherapy treatments. All of these indicate the complexity and challenges that reside for implementing novel man-induced cancer-effective immune response therapeutics. A variety of immune cells play collaborative roles at different stages to recognize antigens and eventually to generate an effective anti-cancer immune response. Given the high complexity of the immune system, a rational evaluation approach is needed to cover the whole process. Moreover, we need to perfect vaccine immunization and/or in vitro activation of T cells to augment the function of the immune system; particularly the formation of immune memory.

Edison Liu 1 , Penghui Zhou 2 , Jiang Li 2 .

1 The Jackson Laboratory, Bar Harbor, ME 04609, USA; 2 Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P. R. China.

[email protected]; [email protected]; [email protected]

Question 98: Is high local concentration of metformin essential for its anti-cancer activity?

Metformin was approved as a first line of anti-diabetic drug since decades. Interestingly, the fact that clinical epidemiological studies have shown that metformin can reduce the risk of a variety of cancers stimulates considerable recognition to explore its anticancer activity.

Although the in vitro and in vivo experimental results have demonstrated that metformin can have some potential anti-tumor effects, more than 100 clinical trials did not achieve such desirable results [ 33 ]. We and others believe that the main problem resides in the prescribing doses used. For cancer treatment, a much higher dose may be needed for observing any anti-tumor activities, as compared to the doses prescribed for diabetics [ 34 , 35 , 36 ].

Further, if the traditional local/oral administration approach is favored, the prescribed metformin may not be at the required dose-concentration once it reaches the blood to have the effective anti-cancer activities. We, therefore, propose that intravesical instillation of metformin into the bladder lumen could be a promising way to treat for bladder cancer, at least. We have already obtained encouraging results both in vitro and in vivo experiments, including in an orthotopical bladder cancer model [ 36 , 37 ]. Now, we are waiting to observe its prospective clinical outcome.

Mei Peng 1 , Xiaoping Yang 2 .

1 Department of Pharmacy, Xiangya Hospital, Central South University. Changsha, Hunan 410083, P. R. China; 2 Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan 410013, P. R. China.

[email protected]; [email protected]

Question 99: How can we monitor the emergence of cancer cells anywhere in the body through plasma testing?

The early detection of cancer is still a relentless worldwide challenge. The sensitivity and specificity of traditional blood tumor markers and imaging technologies are still to be greatly improved. Hence, novel approaches for the early detection of cancer are urgently needed.

The emergence of liquid biopsy technologies opens a new driveway for solving such issues. According to the definition of the National Cancer Institute of the United States, a liquid biopsy is a test done on a sample of blood to look for tumorigenic cancer cells or pieces of tumor cells’ DNA that are circulating in the blood [ 38 ]. This definition implies two main types of the current liquid biopsy: one that detects circulating tumor cells and the other that detects non-cellular material in the blood, including tumor DNA, RNA, and exosomes.

Circulating tumor cells (CTCs) are referred to as tumor cells that have been shed from the primary tumor location and have found their way to the peripheral blood. CTCs were first described in 1869 by an Australian pathologist, Thomas Ashworth, in a patient with metastatic cancer [ 39 ]. The importance of CTCs in modern cancer research began in the mid-1990s with the demonstration that CTCs exist early in the course of the disease.

It is estimated that there are about 1–10 CTCs per mL in whole blood of patients with metastatic cancer, even fewer in patients with early-stage cancer [ 40 ]. For comparison, 1 mL of blood contains a few million white blood cells and a billion erythrocytes. The identification of CTCs, being in such low frequency, requires some special tumoral markers (e.g., EpCAM and cytokeratins) to capture and isolate them. Unfortunately, the common markers for recognizing the majority of CTCs are not effective enough for clinical application [ 41 ]. Although accumulated evidences have shown that the presence of CTCs is a strong negative prognostic factor in the patients with metastatic breast, lung and colorectal cancers, detecting CTCs might not be an ideal branch to hold on for the hope of early cancer detection [ 42 , 43 , 44 , 45 ].

Circulating tumor DNA (ctDNA) is tumor-derived fragmented DNA in the circulatory system, which is mainly derived from the tumor cell death through necrosis and/or apoptosis [ 46 ]. Given its origin, ctDNA inherently carries cancer-specific genetic and epigenetic aberrations, which can be used as a surrogate source of tumor DNA for cancer diagnosis and prognostic prediction. Ideally, as a noninvasive tumor early screening tool, a liquid biopsy test should be able to detect many types of cancers and provide the information of tumor origin for further specific clinical management. In fact, the somatic mutations of ctDNA in different types of tumor are highly variable, even in the different individuals with the same type of tumor [ 47 ]. Additionally, most tumors do not possess driver mutations, with some notable exceptions, which make the somatic mutations of ctDNA not suitable for early detection of the tumor.

Increased methylation of the promoter regions of tumor suppressor genes is an early event in many types of tumor, suggesting that altered ctDNA methylation patterns could be one of the first detectable neoplastic changes associated with tumorigenesis [ 48 ]. ctDNA methylation profiling provides several advantages over somatic mutation analysis for cancer detection including higher clinical sensitivity and dynamic range, multiple detectable methylation target regions, and multiple altered CpG sites within each targeted genomic region. Further, each methylation marker is present in both cancer tissue and ctDNA, whereas only a fraction of mutations present in cancer tissue could be detected in ctDNA.

In 2017, there were two inspiring studies that revealed the values of using ctDNA methylation analysis for cancer early diagnosis [ 49 , 50 ]. After partitioning the human genome into blocks of tightly coupled CpG methylation sites, namely methylation haplotype blocks (MHBs), Guo and colleagues performed tissue-specific methylation analyses at the MHBs level to accurately determine the tissue origin of the cancer using ctDNA from their enrolled patients [ 49 ]. In another study, Xu and colleagues identified a hepatocellular carcinoma (HCC) enriched methylation marker panel by comparing the HCC tissue and blood leukocytes from normal individuals and showed that methylation profiles of HCC tumor DNA and matched plasma ctDNA were highly correlated. In this study, after quantitative measurement of the methylation level of candidate markers in ctDNA from a large cohort of 1098 HCC patients and 835 normal controls, ten methylation markers were selected to construct a diagnostic prediction model. The proposed model demonstrated a high diagnostic specificity and sensitivity, and was highly correlated with tumor burden, treatment response, and tumor stage [ 50 ].

With the rapid development of highly sensitive detection methods, especially the technologies of massively parallel sequencing or next-generation sequencing (NGS)-based assays and digital PCR (dPCR), we strongly believe that the identification of a broader “pan-cancer” methylation panel applied for ctDNA analyses, probably in combination with detections of somatic mutation and tumor-derived exosomes, would allow more effective screening for common cancers in the near future.

Edison Liu 1 , Hui-Yan Luo 2 .

[email protected]; [email protected]

Question 100: Can phytochemicals be more specific and efficient at targeting P-glycoproteins to overcome multi-drug resistance in cancer cells?

Though several anticancer agents are approved to treat different types of cancers, their full potentials have been limited due to the occurrence of drug resistance. Resistance to anticancer drugs develops by a variety of mechanisms, one of which is increased drug efflux by transporters. The ATP-binding cassette (ABC) family drug efflux transporter P-glycoprotein (P-gp or multi-drug resistance protein 1 [MDRP1]) has been extensively studied and is known to play a major role in the development of multi-drug resistance (MDR) to chemotherapy [ 51 ]. In brief, overexpressed P-gp efflux out a wide variety of anticancer agents (e.g.: vinca alkaloids, doxorubicin, paclitaxel, etc.), leading to a lower concentration of these drugs inside cancer cells, thereby resulting in MDR. Over the past three decades, researchers have developed several synthetic P-gp inhibitors to block the efflux of anticancer drugs and have tested them in clinical trials, in combination with chemotherapeutic drugs. But none were found to be suitable enough in overcoming MDR and to be released for marketing, mainly due to the side effects associated with cross-reactivity towards other ABC transporters (BCRP and MRP-1) and the inhibition of CYP450 drug metabolizing enzymes [ 52 , 53 ].

On the other hand, a number of phytochemicals have been reported to have P-gp inhibitory activity. Moreover, detailed structure–activity studies on these phytochemicals have delineated the functional groups essential for P-gp inhibition [ 53 , 54 ]. Currently, one of the phytochemicals, tetrandrine (CBT-1 ® ; NSC-77037), is being used in a Phase I clinical trial ( http://www.ClinicalTrials.gov ; NCT03002805) in combination with doxorubicin for the treatment of metastatic sarcoma. Before developing phytochemicals or their derivatives as P-gp inhibitors, they need to be investigated thoroughly for their cross-reactivity towards other ABC transporters and CYP450 inhibition, in order to avoid toxicities similar to the older generation P-gp inhibitors that have failed in clinical trials.

Therefore, the selectivity for P-gp over other drug transporters and drug metabolizing enzymes should be considered as important criterias for the development of phytochemicals and their derivatives for overcoming MDR.

Mohane Selvaraj Coumar and Safiulla Basha Syed.

Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Kalapet, Puducherry 605014, India.

[email protected]; [email protected]

Question 101: Is cell migration a selectable trait in the natural evolution of carcinoma?

The propensity of solid tumor malignancy to metastasize remains the main cause of cancer-related death, an extraordinary unmet clinical need, and an unanswered question in basic cancer research. While dissemination has been traditionally viewed as a late process in the progression of malignant tumors, amount of evidence indicates that it can occur early in the natural history of cancer, frequently when the primary lesion is still barely detectable.

A prerequisite for cancer dissemination is the acquisition of migratory/invasive properties. However, whether, and if so, how the migratory phenotype is selected for during the natural evolution of cancer and what advantage, if any, it may provide to the growing malignant cells remains an open issue. The answers to these questions are relevant not only for our understating of cancer biology but also for the strategies we adopt in an attempt of curbing this disease. Frequently, indeed, particularly in pharmaceutical settings, targeting migration has been considered much like trying “to shut the stable door after the horse has bolted” and no serious efforts in pursuing this aim has been done.

We argue, instead, that migration might be an intrinsic cancer trait that much like proliferation or increased survival confers to the growing tumor masses with striking selective advantages. The most compelling evidence in support for this contention stems from studies using mathematical modeling of cancer evolution. Surprisingly, these works highlighted the notion that cell migration is an intrinsic, selectable property of malignant cells, so intimately intertwined with more obvious evolutionarily-driven cancer traits to directly impact not only on the potential of malignant cells to disseminate but also on their growth dynamics, and ultimately provide a selective evolutionary advantage. Whether in real life this holds true remains to be assessed, nevertheless, work of this kind defines a framework where the acquisition of migration can be understood in a term of not just as a way to spread, but also to trigger the emergence of malignant clones with favorable genetic or epigenetic traits.

Alternatively, migratory phenotypes might emerge as a response to unfavorable conditions, including the mechanically challenging environment which tumors, and particularly epithelial-derived carcinoma, invariably experience. Becoming motile, however, may not per se being fixed as phenotypic advantageous traits unless it is accompanied or is causing the emergence of specific traits, including drug resistance, self-renewal, and survival. This might be the case, for example, during the process of epithelial-to-mesenchymal transition (EMT), which is emerging as an overarching mechanism for dissemination. EMT, indeed, may transiently equip individual cancer cells not only with migratory/invasive capacity but also with increased resistance to drug treatment, stemness potential at the expanse of fast proliferation.

Thus, within this framework targeting pro-migratory genes, proteins and processes may become a therapeutically valid alternative or a complementary strategy not only to control carcinoma dissemination but also its progression and development.

Giorgio Scita.

IFOM, The FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy; Department of Oncology and Hemato-Oncology (DIPO), School of Medicine, University of Milan, Via Festa del Perdono 7, 20122, Italy.

[email protected]

Qian CN, Zhang W, Xu RH. Defeating cancer: the 150 most important questions in cancer research and clinical oncology. Chin J Cancer. 2016;35(1):104. https://doi.org/10.1186/s40880-016-0165-4 .

Article   PubMed   PubMed Central   Google Scholar  

Wee JT, Poh SS. The most important questions in cancer research and clinical oncology: question 1. Could the vertical transmission of human papilloma virus (HPV) infection account for the cause, characteristics, and epidemiology of HPV-positive oropharyngeal carcinoma, non-smoking East Asian female lung adenocarcinoma, and/or East Asian triple-negative breast carcinoma? Chin J Cancer. 2017;36(1):13. https://doi.org/10.1186/s40880-016-0168-1 .

Venniyoor A. The most important questions in cancer research and clinical oncology—Question 2–5. Obesity-related cancers: more questions than answers. Chin J Cancer. 2017;36(1):18. https://doi.org/10.1186/s40880-017-0185-8 .

Chinese Journal of C. The 150 most important questions in cancer research and clinical oncology series: questions 6–14: Edited by Chinese Journal of Cancer. Chin J Cancer. 2017;36(1):33. https://doi.org/10.1186/s40880-017-0200-0 .

Article   Google Scholar  

Chinese Journal of C. The 150 most important questions in cancer research and clinical oncology series: questions 15–24: Edited by Chinese Journal of Cancer. Chin J Cancer. 2017;36(1):39. https://doi.org/10.1186/s40880-017-0205-8 .

Chinese Journal of C. The 150 most important questions in cancer research and clinical oncology series: questions 25–30: Edited by Chinese Journal of Cancer. Chin J Cancer. 2017;36(1):42. https://doi.org/10.1186/s40880-017-0210-y .

Chinese Journal of C. The 150 most important questions in cancer research and clinical oncology series: questions 31–39: Edited by Chinese Journal of Cancer. Chin J Cancer. 2017;36(1):48. https://doi.org/10.1186/s40880-017-0215-6 .

Chinese Journal of C. The 150 most important questions in cancer research and clinical oncology series: questions 40–49. Chin J Cancer. 2017;36(1):55. https://doi.org/10.1186/s40880-017-0222-7 .

Chinese Journal of C. The 150 most important questions in cancer research and clinical oncology series: questions 50–56. Chin J Cancer. 2017;36(1):69. https://doi.org/10.1186/s40880-017-0236-1 .

Chinese Journal of C. The 150 most important questions in cancer research and clinical oncology series: questions 57–66: Edited by Chinese Journal of Cancer. Chin J Cancer. 2017;36(1):79. https://doi.org/10.1186/s40880-017-0249-9 .

Chinese Journal of C. The 150 most important questions in cancer research and clinical oncology series: questions 67–75: Edited by Chinese Journal of Cancer. Chin J Cancer. 2017;36(1):86. https://doi.org/10.1186/s40880-017-0254-z .

Editorial Office of Chinese Journal of C. The 150 most important questions in cancer research and clinical oncology series: questions 76–85: Edited by Chinese Journal of Cancer. Chin J Cancer. 2017;36(1):91. https://doi.org/10.1186/s40880-017-0259-7 .

Chinese Journal of C. The 150 most important questions in cancer research and clinical oncology series: questions 86–93: Edited by Chinese Journal of Cancer. Chin J Cancer. 2018;37(1):1. https://doi.org/10.1186/s40880-018-0266-3 .

Weinberg RA. Coming full circle-from endless complexity to simplicity and back again. Cell. 2014;157(1):267–71. https://doi.org/10.1016/j.cell.2014.03.004 .

Article   CAS   PubMed   Google Scholar  

Niu N, Mercado-Uribe I, Liu J. Dedifferentiation into blastomere-like cancer stem cells via formation of polyploid giant cancer cells. Oncogene. 2017;36(34):4887–900. https://doi.org/10.1038/onc.2017.72 .

Article   CAS   PubMed   PubMed Central   Google Scholar  

Niu N, Zhang J, Zhang N, Mercado-Uribe I, Tao F, Han Z, et al. Linking genomic reorganization to tumor initiation via the giant cell cycle. Oncogenesis. 2016;5(12):e281. https://doi.org/10.1038/oncsis.2016.75 .

Zhang S, Mercado-Uribe I, Xing Z, Sun B, Kuang J, Liu J. Generation of cancer stem-like cells through the formation of polyploid giant cancer cells. Oncogene. 2014;33(1):116–28. https://doi.org/10.1038/onc.2013.96 .

Hemberger M, Dean W, Reik W. Epigenetic dynamics of stem cells and cell lineage commitment: digging Waddington’s canal. Nat Rev Mol Cell Biol. 2009;10(8):526–37. https://doi.org/10.1038/nrm2727 .

Liu J. The dualistic origin of human tumors. Semin Cancer Biol. 2018. https://doi.org/10.1016/j.semcancer.2018.07.004 .

Zhou B, Xu JW, Cheng YG, Gao JY, Hu SY, Wang L, et al. Early detection of pancreatic cancer: where are we now and where are we going? Int J Cancer. 2017;141(2):231–41. https://doi.org/10.1002/ijc.30670 .

Yachida S, Jones S, Bozic I, Antal T, Leary R, Fu B, et al. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature. 2010;467(7319):1114–7. https://doi.org/10.1038/nature09515 .

Sharma R, Huang X, Brekken RA, Schroit AJ. Detection of phosphatidylserine-positive exosomes for the diagnosis of early-stage malignancies. Br J Cancer. 2017;117(4):545–52. https://doi.org/10.1038/bjc.2017.183 .

Ryan DP, Hong TS, Bardeesy N. Pancreatic adenocarcinoma. N Engl J Med. 2014;371(11):1039–49. https://doi.org/10.1056/NEJMra1404198 .

Takada T, Yasuda H, Amano H, Yoshida M, Uchida T. Simultaneous hepatic resection with pancreato-duodenectomy for metastatic pancreatic head carcinoma: does it improve survival? Hepatogastroenterology. 1997;44(14):567–73.

CAS   PubMed   Google Scholar  

Bailey P, Chang DK, Nones K, Johns AL, Patch AM, Gingras MC, et al. Genomic analyses identify molecular subtypes of pancreatic cancer. Nature. 2016;531(7592):47–52. https://doi.org/10.1038/nature16965 .

Frigerio I, Regi P, Giardino A, Scopelliti F, Girelli R, Bassi C, et al. Downstaging in stage IV pancreatic cancer: a new population eligible for surgery? Ann Surg Oncol. 2017;24(8):2397–403. https://doi.org/10.1245/s10434-017-5885-4 .

Article   PubMed   Google Scholar  

Van Laethem JL, Riess H, Jassem J, Haas M, Martens UM, Weekes C, et al. Phase I/II study of refametinib (BAY 86-9766) in combination with gemcitabine in advanced pancreatic cancer. Target Oncol. 2017;12(1):97–109. https://doi.org/10.1007/s11523-016-0469-y .

Jiang H, Hegde S, Knolhoff BL, Zhu Y, Herndon JM, Meyer MA, et al. Targeting focal adhesion kinase renders pancreatic cancers responsive to checkpoint immunotherapy. Nat Med. 2016;22(8):851–60. https://doi.org/10.1038/nm.4123 .

Mace TA, Shakya R, Pitarresi JR, Swanson B, McQuinn CW, Loftus S, et al. IL-6 and PD-L1 antibody blockade combination therapy reduces tumour progression in murine models of pancreatic cancer. Gut. 2018;67(2):320–32. https://doi.org/10.1136/gutjnl-2016-311585 .

Immunotherapy Beats Chemo for Bladder Cancer. Cancer Discov. 2017;7(5):OF8. https://doi.org/10.1158/2159-8290.cd-nb2017-035 .

Dummer R, Ascierto PA, Gogas HJ, Arance A, Mandala M, Liszkay G, et al. Encorafenib plus binimetinib versus vemurafenib or encorafenib in patients with BRAF-mutant melanoma (COLUMBUS): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol. 2018;19(5):603–15. https://doi.org/10.1016/S1470-2045(18)30142-6 .

Garassino MC, Cho BC, Kim JH, Mazieres J, Vansteenkiste J, Lena H, et al. Durvalumab as third-line or later treatment for advanced non-small-cell lung cancer (ATLANTIC): an open-label, single-arm, phase 2 study. Lancet Oncol. 2018;19(4):521–36. https://doi.org/10.1016/S1470-2045(18)30144-X .

U.S. National Library of Medicine. ClinicalTrials.gov.

Liu Z, Yokoyama NN, Blair CA, Li X, Avizonis D, Wu XR, et al. High sensitivity of an Ha-RAS transgenic model of superficial bladder cancer to metformin is associated with approximately 240-fold higher drug concentration in urine than serum. Mol Cancer Ther. 2016;15(3):430–8. https://doi.org/10.1158/1535-7163.MCT-15-0714-T .

Menendez JA, Quirantes-Pine R, Rodriguez-Gallego E, Cufi S, Corominas-Faja B, Cuyas E, et al. Oncobiguanides: paracelsus’ law and nonconventional routes for administering diabetobiguanides for cancer treatment. Oncotarget. 2014;5(9):2344–8. https://doi.org/10.18632/oncotarget.1965 .

Peng M, Su Q, Zeng Q, Li L, Liu Z, Xue L, et al. High efficacy of intravesical treatment of metformin on bladder cancer in preclinical model. Oncotarget. 2016;7(8):9102–17. https://doi.org/10.18632/oncotarget.6933 .

Peng M, Huang Y, Tao T, Peng CY, Su Q, Xu W, et al. Metformin and gefitinib cooperate to inhibit bladder cancer growth via both AMPK and EGFR pathways joining at Akt and Erk. Sci Rep. 2016;6:28611. https://doi.org/10.1038/srep28611 .

Definition of liquid biopsy. In: NCI Dictionary of Cancer Terms. National Cancer Institute. https://www.cancer.gov/publications/dictionaries/cancer-terms/def/liquid-biopsy .

Ta A. A case of cancer in which cells similar to those in the tumors were seen in the blood after death. Aust Med J. 1869;14:146–9.

Google Scholar  

Miller MC, Doyle GV, Terstappen LW. Significance of circulating tumor cells detected by the cell search system in patients with metastatic breast colorectal and prostate cancer. J Oncol. 2010;2010:617421. https://doi.org/10.1155/2010/617421 .

Nagrath S, Sequist LV, Maheswaran S, Bell DW, Irimia D, Ulkus L, et al. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature. 2007;450(7173):1235–9. https://doi.org/10.1038/nature06385 .

Bidard FC, Proudhon C, Pierga JY. Circulating tumor cells in breast cancer. Mol Oncol. 2016;10(3):418–30. https://doi.org/10.1016/j.molonc.2016.01.001 .

Cohen SJ, Punt CJ, Iannotti N, Saidman BH, Sabbath KD, Gabrail NY, et al. Relationship of circulating tumor cells to tumor response, progression-free survival, and overall survival in patients with metastatic colorectal cancer. J Clin Oncol. 2008;26(19):3213–21. https://doi.org/10.1200/JCO.2007.15.8923 .

Ignatiadis M, Dawson SJ. Circulating tumor cells and circulating tumor DNA for precision medicine: dream or reality? Ann Oncol. 2014;25(12):2304–13. https://doi.org/10.1093/annonc/mdu480 .

Krebs MG, Sloane R, Priest L, Lancashire L, Hou JM, Greystoke A, et al. Evaluation and prognostic significance of circulating tumor cells in patients with non-small-cell lung cancer. J Clin Oncol. 2011;29(12):1556–63. https://doi.org/10.1200/JCO.2010.28.7045 .

Diaz LA Jr, Bardelli A. Liquid biopsies: genotyping circulating tumor DNA. J Clin Oncol. 2014;32(6):579–86. https://doi.org/10.1200/JCO.2012.45.2011 .

Kandoth C, McLellan MD, Vandin F, Ye K, Niu B, Lu C, et al. Mutational landscape and significance across 12 major cancer types. Nature. 2013;502(7471):333–9. https://doi.org/10.1038/nature12634 .

Esteller M. Epigenetics in cancer. N Engl J Med. 2008;358(11):1148–59. https://doi.org/10.1056/NEJMra072067 .

Guo S, Diep D, Plongthongkum N, Fung HL, Zhang K, Zhang K. Identification of methylation haplotype blocks aids in deconvolution of heterogeneous tissue samples and tumor tissue-of-origin mapping from plasma DNA. Nat Genet. 2017;49(4):635–42. https://doi.org/10.1038/ng.3805 .

Xu RH, Wei W, Krawczyk M, Wang W, Luo H, Flagg K, et al. Circulating tumour DNA methylation markers for diagnosis and prognosis of hepatocellular carcinoma. Nat Mater. 2017;16(11):1155–61. https://doi.org/10.1038/nmat4997 .

Robey RW, Pluchino KM, Hall MD, Fojo AT, Bates SE, Gottesman MM. Revisiting the role of ABC transporters in multidrug-resistant cancer. Nat Rev Cancer. 2018. https://doi.org/10.1038/s41568-018-0005-8 .

Chung FS, Santiago JS, Jesus MF, Trinidad CV, See MF. Disrupting P-glycoprotein function in clinical settings: what can we learn from the fundamental aspects of this transporter? Am J Cancer Res. 2016;6(8):1583–98.

CAS   PubMed   PubMed Central   Google Scholar  

Syed SB, Coumar MS. P-Glycoprotein mediated multidrug resistance reversal by phytochemicals: a review of SAR & future perspective for drug design. Curr Top Med Chem. 2016;16(22):2484–508.

Abdallah HM, Al-Abd AM, El-Dine RS, El-Halawany AM. P-Glycoprotein inhibitors of natural origin as potential tumor chemo-sensitizers: a review. J Adv Res. 2015;6(1):45–62. https://doi.org/10.1016/j.jare.2014.11.008 .

Download references

Author information

Authors and affiliations, rights and permissions.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/ ), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/ ) applies to the data made available in this article, unless otherwise stated.

Reprints and permissions

About this article

Cite this article.

Cancer Communications. The 150 most important questions in cancer research and clinical oncology series: questions 94–101. Cancer Commun 38 , 69 (2018). https://doi.org/10.1186/s40880-018-0341-9

Download citation

Received : 13 November 2018

Accepted : 19 November 2018

Published : 26 November 2018

DOI : https://doi.org/10.1186/s40880-018-0341-9

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Tumor origin
  • Polyploid giant cancer cell
  • Pancreatic ductal adenocarcinoma
  • Liquid biopsy
  • Spontaneous animal model
  • Chemotherapy
  • Immunotherapy
  • Precision treatment
  • Vaccine immunization
  • Circulating tumor cell
  • Circulating tumor DNA
  • CpG methylation
  • Methylation haplotype block
  • Phytochemicals
  • P-Glycoprotein
  • Multi-drug resistance
  • P-Glycoprotein inhibitor
  • Epithelial-to-mesenchymal transition
  • Pro-migratory gene

ISSN: 2523-3548

research paper topics on cancer

Most Popular Articles : The Cancer Journal

research paper topics on cancer

  • Subscribe to journal Subscribe
  • Get new issue alerts Get alerts

Secondary Logo

Journal logo.

Skip Navigation Links

Most Popular Articles

Lymphoma classification.

The Cancer Journal. 26(3):176-185, May/June 2020.

  • Abstract Abstract
  • Permissions

What Is the Evidence That Palliative Care Teams Improve Outcomes for Cancer Patients and Their Families?

The Cancer Journal. 16(5):423-435, September-October 2010.

Go to Full Text of this Article

Hormone Replacement Therapy After Breast Cancer: It Is Time

The Cancer Journal. 28(3):183-190, May/June 2022.

Epidemiology of Triple-Negative Breast Cancer: A Review

The Cancer Journal. 27(1):8-16, January/February 2021.

Menopausal Hormone Replacement Therapy and Reduction of All-Cause Mortality and Cardiovascular Disease: It Is About Time and Timing

The Cancer Journal. 28(3):208-223, May/June 2022.

How We Incorporate Venetoclax in Treatment Regimens for Acute Myeloid Leukemia

The Cancer Journal. 28(1):2-13, January/February 2022.

Long-term and Short-term Effects of Insomnia in Cancer and Effective Interventions

The Cancer Journal. 20(5):330-344, September/October 2014.

The Contribution of Angiogenesis to the Process of Metastasis

The Cancer Journal. 21(4):267-273, July/August 2015.

Examining the Impact of Tislelizumab Added to Chemotherapy on Health-Related Quality-of-Life Outcomes in Previously Untreated Patients With Nonsquamous Non–Small Cell Lung Cancer

The Cancer Journal. 28(2):96-104, March/April 2022.

PSMA-Targeted Radiopharmaceuticals for Prostate Cancer Diagnosis and Therapy

The Cancer Journal. 30(3):176-184, May/June 2024.

Bruton Tyrosine Kinase Inhibitors: Present and Future

The Cancer Journal. 25(6):386-393, November/December 2019.

Epidemiology and Pathogenesis of Myelodysplastic Syndrome

The Cancer Journal. 29(3):111-121, May/June 2023.

Integrative Medicine Therapies for Pain Management in Cancer Patients

The Cancer Journal. 25(5):343-348, September/October 2019.

Biology of Colorectal Cancer

The Cancer Journal. 16(3):196-201, May-June 2010.

Prevalence of Human Papillomavirus in Oropharyngeal Cancer: A Systematic Review

The Cancer Journal. 21(3):138-146, May/June 2015.

Overexpression of glyoxalase system enzymes in human kidney tumor: Erratum

The Cancer Journal. 30(4):297, July/August 2024.

Radiopharmaceuticals for Cancer Diagnosis and Therapy: New Targets, New Therapies—Alpha-Emitters, Novel Targets

The Cancer Journal. 30(3):218-223, May/June 2024.

Diagnosis and Detection of Pancreatic Cancer

The Cancer Journal. 23(6):333-342, November/December 2017.

Cytokine Release Syndrome Biology and Management

The Cancer Journal. 27(2):119-125, March/April 2021.

Bevacizumab and Glioblastoma: Past, Present, and Future Directions

The Cancer Journal. 24(4):180-186, July/August 2018.

Colleague's E-mail is Invalid

Your message has been successfully sent to your colleague.

Save my selection

Ready to start planning your care?  Call us at 800-525-2225 to make an appointment.

Research Topics

At Memorial Sloan Kettering, scientific inquiry unites researchers with diverse expertise from across our academic programs and medical departments. Learn about some of our most intensively pursued topics of investigation.

using the genetics and genomics of cancer to create new treatment options

Molecular Pathology & Diagnostics

Pictured: Close-up view of the structure of a carbon nanotube, a cylindrical particle formed by carbon atoms linked in a hexagonal shape. Our scientists are exploring the use of carbon nanotubes for imaging, drug delivery, and other applications.

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Chin J Cancer

The 150 most important questions in cancer research and clinical oncology series: questions 86–93

Chinese journal of cancer.

Sun Yat-sen University Cancer Center, Guangzhou, 510060 Guangdong P. R. China

Since the beginning of 2017, Chinese Journal of Cancer has published a series of important questions in cancer research and clinical oncology, which spark diverse thoughts, interesting communications, and potential collaborations among researchers all over the world. In this article, 8 more questions are presented as follows. Question 86. In which circumstances is good supportive care associated with a survival advantage in patients with cancer? Question 87. Can we develop animal models to mimic immunotherapy response of cancer patients? Question 88. What are the mechanisms underlying hepatitis B virus-associated non-hepatocellular cancers? Question 89. Can we more precisely target tumor metabolism by identifying individual patients who would benefit from the treatment? Question 90. What type of cranial irradiation-based prophylactic therapy combination can dramatically improve the survival of patients with extensive small-cell lung cancer? Question 91. How can postoperative radiotherapy prolong overall survival of the patients with resected pIIIA-N2 non-small cell lung cancer? Question 92. What are the key molecular events that drive oral leukoplakia or erythroplakia into oral cancer? Question 93. How could we track the chemotherapeutics-driven evolution of tumor genome in non-small cell lung cancer for more effective treatment?

To accelerate our endeavors to overcome cancer, Chinese Journal of Cancer has launched a program of publishing 150 most important questions in cancer research and clinical oncology [ 1 ]. Since the beginning of 2017, Chinese Journal of Cancer has published a series of important questions in cancer research and clinical oncology [ 2 – 12 ], which spark diverse thoughts, interesting communications, and potential collaborations among researchers all over the world. In this article, Questions 86–93 are selected and presented. This program of collecting and publishing the key questions is still ongoing. Please send your thoughtful questions to Ms. Ji Ruan via email: [email protected].

Question 86: In which circumstances is good supportive care associated with a survival advantage in patients with cancer?

Background and implications.

It is well documented that good supportive care throughout the treatment and survival phases of cancer as well as palliative care towards the end of life improve the quality of life of the patients [ 13 ]. In some circumstances, good supportive care may also prolong survival. Quintin et al. [ 14 ] performed a global analysis of data from multiple trials and showed that quality of life and presenting symptoms were prognostic factors for survival of patients with cancer in addition to other clinical characteristics. For example, febrile neutropenia following chemotherapy is a life-threatening adverse effect and can be mitigated by giving the chemotherapy with granulocyte colony stimulating factor (G-CSF). It is well documented that mortality from infection is reduced by G-CSF [ 15 ]; however, it is not clear that this may be translated into an overall survival advantage. Prophylactic use of antiemetics increases the tolerance of chemotherapy, allowing full dose to be given and courses of chemotherapy to be completed, which has been shown to prolong survival [ 16 ]. Good symptom control with chemotherapy may also prolong survival. In a randomized study, second-line chemotherapy was given with or without early palliative care to patients with non-small cell lung cancer, and the results showed that those receiving the palliative care in addition to their chemotherapy had significantly longer survival than those receiving chemotherapy only (11.6 vs. 8.9 months, P  = 0.02) [ 17 ]. Further, it is intriguing that psychosocial support may prolong survival. A weekly psychosocial support group and self-hypnosis for pain was added to anticancer therapy for breast cancer patients in a randomized trial and resulted in prolonged survival as compared with those who only received anticancer therapy [ 18 ]. The relationship between social networks and social support has been equivocal although a large breast cancer study showed an increase in both all-cause mortality and breast cancer mortality in women who are socially isolated [ 19 , 20 ]. Certainly, the narratives of exceptional survivors of incurable cancer ascribed some of their outcomes to family support [ 21 ].

Clearly, in some circumstances, the addition of good supportive care which addresses cancer-associated symptoms and adverse effects of treatment can be added to anticancer treatment to prolong survival. More researches are needed to better define when this occurs.

Affiliation and email

Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia 5001, Australia.

[email protected].

Question 87: Can we develop animal models to mimic immunotherapy response of cancer patients?

Efforts on immuno-oncology (I/O) research to fight cancer are in exponential phase of growth due to recent breakthrough in the development of immune checkpoint inhibitors and unprecedented rate of regulatory approval to shorten the otherwise lengthy bench to bedside process. The prevalent models include syngeneic, genetically engineered, and partially humanized mouse models each with its advantages and limitations. The lack of precise animal models that would be capable of mimicking human immune microenvironment is one of the major challenges for proper preclinical evaluation of I/O therapies and identifying patients most likely to be benefited from specific I/O strategies.

The ideal animal models should also possess effective biomarkers for monitoring the immune functions of the host as well as therapeutic effects of I/O. In current clinical practice, the remarkable progress in the development of immune checkpoint inhibitors went solo without parallel advancement of definitive patient selection tool. The cost, toxicities, and the time delay for the 40%–60% of patients not benefiting from immunotherapy makes it imperative to identify valid prognostic biomarkers [e.g., programmed death-ligand 1 (PD-L1) expression, mismatch repair (MMR) deficiency, cluster of differentiation 8 (CD8) T cell infiltrates, tumor mutation burden] that could predict patient response and facilitate differentiation of durable response versus transient response. Given the dynamic nature of the immune response and the complexity of immune/tumor interaction, development of biomarkers for immunotherapies is highly challenging. Presence of tumor-specific antigens, expression of immunosuppressive molecules [PD-L1, indoleamine 2,3-dioxygenase (IDO), and so on] by tumor cells, and mutation load and landscape all contribute to the response of tumor cells to I/O therapies. While most of the biomarker-searching efforts had focused on tumor characteristics, the role of host immune system is equally important. The effectiveness of a given immunotherapeutic approach depends on a pre-existing immune state of a patient.

In summary, development of clinically relevant animal models possessing discerning prognostic markers is critical to fulfill the promise of immunotherapy as a paradigm-shifting strategy to fight the most aggressive and intractable cancers.

Qian Shi and Meng Qiao.

Affiliation and emails

Crown Biosciences Inc., Taicang, Jiangsu Province, 215400, P. R. China.

[email protected]; [email protected].

Question 88: What are the mechanisms underlying hepatitis B virus-associated non-hepatocellular cancers?

Hepatitis B virus (HBV) infection is a strong risk factor for the development of hepatocellular carcinoma. Epidemiological studies have also shown that HBV infection may increase the incidence of several types of non-hepatocellular cancers, including gastric adenocarcinoma, pancreatic ductal carcinoma, and non-Hodgkin lymphoma (NHL). Clinical studies further suggested that some of these HBV-associated non-hepatocellular cancers, for instance a subtype of NHL, diffuse large B cell lymphoma, exhibit a more aggressive disease course with poor prognosis, independent of its pathological subtype. However, what are the mechanisms underlying these associations and whether the viral infection is indeed disease-causing or rather a contributing co-factor remain unclear. Two major hypotheses, direct viral infection of the corresponding cell types and chronic viral antigen stimulations, have been proposed. In both scenarios, infection may result in dysregulation of host cellular processes and increased genome instability, and in the case of direct infection, like in hepatocellular carcinoma, integration of viral DNA into the host genome may lead to activation of selective oncogenes. More detailed morphological and molecular studies, including characterization of the genome of these HBV-associated non-hepatocellular cancers and the repertories of infiltrating immune cells, may provide further clues to this question. It will also be of interest to determine if there is an association between genotype (strain of HBV) and phenotype (type of cancer). Finally, in areas/countries with a high prevalence of infection and initiated the mandatory HBV vaccine program decades ago, theoretically, the incidence of these non-hepatocellular cancers should decrease with time. Of note, this may be complicated by the increased contribution of other risk factors, especially life style-related factors. Chronic HBV infection is endemic in some parts of Asia, Africa, and South America and remains to be a public health burden in these areas. Further understanding the molecular mechanisms underlying the HBV-associated cancers will help us to develop novel or more precise therapies for the affected patients.

Yao Liu and Qiang Pan-Hammarström.

Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska University Hospital, Huddinge, Stockholm SE 141 86, Sweden.

[email protected]; [email protected].

Question 89: Can we more precisely target tumor metabolism by identifying individual patients who would benefit from the treatment?

Background and implication.

During the process of tumorigenesis, tumor cells must face two challenges: first, obtaining the nutrients needed for the rapid growth; and second, evading the surveillance and attack from the host immune system. Tumor cell’s unique metabolic program can be used to meet these challenges. Glycolysis is the major metabolic process used by malignant tumors, even when oxygen supply is adequate, which is termed as “the Warburg effect”. Glycolysis decreases the pH value of the tumor microenvironment (TME); therefore, tumor cells can inhibit the activities of antigen-presenting cells (APCs) and cytotoxic T lymphocytes (CTLs) by controlling the acidity of TME, eventually leading to tumor cell immune escape. A second group of metabolism-related modification directly targets the major histocompatibility complex-I (MHC-I) and related molecules and hence sensitizes cancer cells to the cytolytic actions of the anti-tumor adaptive immune response.

Recent findings from in vitro and in vivo studies have shown that targeting tumor and immune cell metabolism hold the promising possibilities toward clinical therapeutics for treating cancer [ 22 , 23 ]. However, clinical benefit has only been observed in a small number of patients [ 24 – 28 ]. Most patients still do not respond to these new therapies, and nearly all patients with certain types of cancer (i.e., pancreatic and colorectal cancers) do not respond. The reason is probably because tumor metabolism may vary over the course of tumor development, or some hidden tumor metabolic products modulate signaling pathways important for immune cell activation. A new hypothesis has been proposed that tumor cells can change their metabolism by waves of gene regulation to adjust to their different needs [ 29 ]. Some of these waves are originated by deregulated expression of oncogenes, which have already been linked to metabolic remodeling. On the other hand, different parts of solid tumor sometimes possess different epigenetic characteristics and may be derived from distinct cancer stem cell populations. Therefore, the most serious challenge in reshaping the tumor-specific metabolism and immune profiles in TME is to understand the metabolic heterogeneity which is extremely complicated depending not only on tumor and immune cell types but also on tumor stages and subset of patient population.

Nevertheless, the success associated with these new approaches has opened new investigations addressing several questions: How much metabolism pathways represent true vulnerabilities for tumor development and immunosuppression in different types and stages of cancer? Are there other factors that may be blocking, even temporarily, which is critical for tumor control? How different subsets of tumor cell populations respond to metabolic intervention? Can we identify ahead of time the patients who would benefit from metabolic targeted therapy?

Notably, tumor and immune cells share similar metabolic needs and reprogramming during proliferation to support their increased biosynthetic and energy demands [ 30 , 31 ] and often compete for the same nutrients. Therefore, deprivation of nutrients in TME must be cautiously explored to eliminate potential negative impacts on the anti-tumor immunity. Understanding the underlying mechanisms of metabolic interplay between tumor and immune cells will provide new precise directions to manipulate the tumor metabolism for better treatment outcome.

Jianyang Wang and Zhouguang Hui.

Department of Radiation Oncology (JW and ZH), Department of VIP Medical Services (ZH), National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China.

[email protected]; [email protected].

Question 90: What type of cranial irradiation-based prophylactic therapy combination can dramatically improve the survival of patients with extensive small-cell lung cancer?

Brain metastasis is a common reason of treatment failure in small-cell lung cancer (SCLC), particularly in extensive disease which represents approximately two-thirds of newly diagnosed SCLCs. Recent studies have found that thoracic radiotherapy (TRT) can increase the 2-year overall survival (OS) rate of patients with extensive SCLC after chemotherapy [ 32 – 34 ]. However, it remains controversial that whether prophylactic cranial irradiation (PCI) can prolong OS [ 35 – 38 ]. The combination of TRT and PCI may boost the chances of survival, but there will be not much predictable OS benefit even if more prospective studies with large sample sizes are conducted. After first-line chemotherapy, the comprehensive treatment based on TRT and PCI, such as combining with new anti-metastatic drugs, will make great strides toward OS improvement. The application of more accurately targeted therapy is now available and promising. Maintenance treatment with sunitinib can prolong progression-free survival (PFS) in extensive SCLC [ 39 ]. Recent studies on new drugs targeting the signaling pathways (e.g., Notch signaling) related to neuroendocrine differentiation, DNA reparation, and immune checkpoint are ongoing. The Notch signaling pathway influences multiple processes in normal cell morphogenesis, including the differentiation of multipotent progenitor cells (neuron differentiation), cell apoptosis, and cell proliferation. Rovalpituzumab tesirine (Rova-T) targeting the Notch signaling pathway showed promising results in a phase I trial [ 40 ]. Poly ADP-ribose polymerase (PARP) is DNA repairase and is critical in DNA damage repair. By inhibiting PARP, proliferation of malignant cells can be suppressed. Veliparib, a PARP inhibitor, has yielded antitumor activity in SCLC [ 41 ]. Researches on immunotherapy primarily focus on cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) and programmed cell death protein 1 (PD-1)/programmed death ligand 1 (PD-L1) inhibitors. Nivolumab alone and in combination with ipilimumab resulted in encouraging response rates (RR) in a phase I/II trial in the relapsed tumor setting [ 42 ]. The development of anti-metastasis agents is clearly critical for further improving the survival benefits of the patients with extensive SCLC. In addition, advanced irradiation technique is expected to be adopted in future clinical trails to decrease irradiation-induced injury in hippocampus for protecting cognitive function [ 43 ].

Lei Deng and Zhouguang Hui.

Department of Radiation Oncology (LD and ZH), Department of VIP Medical Services (ZH), National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China.

[email protected]; [email protected].

Question 91: How can postoperative radiotherapy prolong overall survival of the patients with resected pIIIA-N2 non-small cell lung cancer?

For patients with resected pIIIA-N2 non-small cell lung cancer (NSCLC), the main reason of treatment failure is locoregional and/or distant relapse. Adjuvant chemotherapy can prolong overall survival to some extent. However, the role of postoperative radiotherapy is not well defined.

A meta-analysis study on postoperative radiotherapy published in 1998 concluded that postoperative radiotherapy did not prolong the survival, even in patients with stage III and pN2 NSCLC, which may due to the toxicities with suboptimal, outdated irradiation equipment and techniques [ 44 ]. Improvements in conformal radiotherapy techniques have led to a resurgence of interest in studying the effect of postoperative radiotherapy on pIIIA-N2 NSCLC. Several retrospective, large-size, case–control studies have shown that postoperative radiotherapy using three dimensional conformal radiotherapy (3D-CRT) or intensity modulated radiation therapy (IMRT) techniques can prolong overall survival [ 45 ]. However, the benefit still needs to be confirmed by randomized clinical trials (RCTs). Up to now, there are three such phase III RCTs. CALGB 9734, the earliest one, failed because of slow accrual [ 46 ]. LUNGART, the ongoing one, began in 2007 and aims to enroll 700 patients by its conclusion in 2022. The other ongoing phase III multi-center RCT (NCT00880971), conducted by our institute, has accrued 400 patients over planned 500 patients. However, due to the heterogeneity of pIIIA-N2 NSCLC, only certain subgroups of patients may benefit from postoperative radiotherapy. Selecting suitable candidates or the populations at high risk who may benefit from postoperative radiotherapy is the next and profound task.

It is expected that by combining with targeted therapy and/or immunotherapy, the therapeutic effects of postoperative radiotherapy can be enhanced. For patients with completely resected NSCLC with epidermal growth factor receptor (EGFR) activating mutation, two recently reported RCTs have showed that adjuvant EGFR tyrosine kinase inhibitors (TKIs) significantly prolonged disease-free survival as compared with adjuvant chemotherapy [ 47 , 48 ]. Therefore, for pIIIA-N2 NSCLC patients with EGFR-activating mutation receiving EGFR TKIs, the value of postoperative radiotherapy should be further evaluated. Theoretically, any new agent that can inhibit metastasis could enhance the efficacy of postoperative radiotherapy, and more efforts are warranted in this direction.

Yu Men and Zhouguang Hui.

Department of VIP Medical Services, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China.

[email protected]; [email protected].

Question 92: What are the key molecular events that drive oral leukoplakia or erythroplakia into oral cancer?

The natural history of cancer is poorly understood. The main reason is that in the vast majority of the cases, malignant tumors are diagnosed after becoming clinically perceptible. The paradox is that, for patients dying from cancer, the time from diagnosis to death is often much shorter than the long period preceding diagnosis. Most of our knowledge is based on the analysis of established malignant tumors in comparison with histologically normal tissue, and the use of naturally occurring or genetically engineered animal models that may not recapitulate the natural history of human cancer. Initiation is thought to be the first step of the multistep model of cancer development, followed by promotion and progression. However, the stepwise and sequential progression model is being challenged by some clinical observations. One of the best examples is the natural history of oral leukoplakia or erythroplakia, the most frequent, potentially malignant lesions of the oral cavity. They can remain for many years without changing, can regress spontaneously or after cessation of tobacco smoking, alcohol drinking, or smokeless tobacco, and can transform to invasive squamous cell carcinoma (SCC) at the same site or at distance from the potentially malignant lesion. The reported rate of malignant transformation has been low in community-based studies in developing countries (0.06% per year) and higher in observational studies in western countries involving patients followed in hospital-based academic centers (1%–5% per year) [ 49 ].

We believe that the longitudinal and spatial dynamics of early-stage tumorigenesis in the oral cavity through comprehensive evaluation of cellular and molecular changes in the epithelial and stromal cells represent a unique setting to get more insight into the natural history of carcinomas. The disease is prevalent in different parts of the world and associated with various environmental agents: in western countries, it frequently affects patients with smoking and alcohol drinking history in the form of oral leukoplakia, whereas in Southeast Asia it frequently affects patients consuming areca nut, betel leaf, and quid who preferentially develop erythroplakia. Of note, oral potentially malignant lesions and SCC negative for human papillomavirus affecting patients with no smoking or alcohol drinking history, although representing a minority of all patients, have an increasing incidence over the past decades for unknown reasons. The oral cavity is easily accessible, and it is considered to be a molecular mirror of molecular alterations induced by smoking in the upper and lower aerodigestive tract. Prospectively validated in situ biomarkers of risk (e.g., loss of heterozygocity at prespecified chromosomal sites) can be used to define cohorts of patients with potentially malignant lesions at high risk of developing oral cancer. These elements represent a strong rationale for intensive exploration in this unique setting. It has the potential to foster international collaborations toward the better understanding of the biology of early-stage tumorigenesis, and provide an opportunity to develop personalized prevention strategies that will benefit patients far beyond the decreased incidence of oral cancer.

Pierre Saintigny.

Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon; Department of Translational Research and Innovation, and Department of Medical Oncology, Centre Léon Bérard, Lyon, 69008, France.

[email protected].

Question 93: How could we track the chemotherapeutics-driven evolution of tumor genome in non-small cell lung cancer for more effective treatment?

Currently, effective drug treatments for the patients with non-small cell lung cancer (NSCLC) comprise mainly of standard platinum-based cytotoxic treatment, targeted therapies including inhibitors for epidermal growth factor receptor (EGFR) and anaplastic lymphoma kinase (ALK), and immunotherapy. However, treatment resistance will inevitably occur in most patients after a certain period of time. This is believed to be partially caused by the heterogeneity in tumor genome. Cancer is a genomic disease, and cancer genome constantly undergoes changes under selective pressure from anticancer drug treatment. This alteration is also named tumor evolution, which partially explains acquired drug resistance. For example, some acquired secondary mutations, e.g., EGFR C797S, have been detected in the patient who initially harbors EGFR T790M mutation when resistance against first-line EGFR inhibitor occurs. Therefore, there is a need to dynamically monitor tumor clonal evolution in NSCLC patients. Methods for monitoring tumor evolution include multiregional sequencing and liquid biopsies. In multiregional sequencing, tumor masses from several regions are sequenced in parallel through next-generation sequencing. In liquid biopsies, a serial of circulating molecules or cells in the blood including circulating tumor DNAs (ctDNAs) and circulating tumor cells (CTCs) could reflect the information of tumor genome. These methods could represent the whole tumor genomic landscape and reflect tumor heterogeneity. In addition to this, longitudinal or serial monitoring tumor genome through liquid biopsies or multiregional sequencing could keep track of the tumor genome in both time and space. Of course, it remains a technical challenge in collecting biopsy samples from multiple time points in the same patient. Advances in imaging-guided transthoracic biopsy of lung lesions are the hope for delivering personalized treatments in response to the evolving tumor genome for dramatically improving treatment outcomes in NSCLC patients.

Yi Xiong and Zhi-Xing Lu.

Xiangya school of medicine, Central South University, Changsha, Hunan 410008, P. R. China.

[email protected]; [email protected].

  • Search by keyword
  • Search by citation

Page 1 of 109

Single-cell transcriptional atlas of tumor-associated macrophages in breast cancer

The internal heterogeneity of breast cancer, notably the tumor microenvironment (TME) consisting of malignant and non-malignant cells, has been extensively explored in recent years. The cells in this complex c...

  • View Full Text

Challenges and improvements in HER2 scoring and histologic evaluation: insights from a national proficiency testing scheme for breast cancer diagnosis in China

In 2022, our team launched the pioneering national proficiency testing (PT) scheme for the pathological diagnosis of breast cancer, rapidly establishing its credibility throughout China. Aiming to continuously...

Analysis of ductal carcinoma in situ by self-reported race reveals molecular differences related to outcome

Ductal carcinoma in situ (DCIS) is a non-obligate precursor to invasive breast cancer (IBC). Studies have indicated differences in DCIS outcome based on race or ethnicity, but molecular differences have not be...

Elevated expression of Aurora-A/ AURKA in breast cancer associates with younger age and aggressive features

Aurora kinase A ( AURKA ) is reported to be overexpressed in breast cancer. In addition to its role in regulating cell cycle and mitosis, studies have reported AURKA involvements in oncogenic signaling in suppressi...

Systematic assessment of HER2 status in ductal carcinoma in situ of the breast: a perspective on the potential clinical relevance

In many countries, hormone receptor status assessment of ductal carcinoma in situ (DCIS) is routinely performed, as hormone receptor-positive DCIS patients are eligible for adjuvant anti-hormonal treatment, ai...

Weakly-supervised deep learning models enable HER2-low prediction from H &E stained slides

Human epidermal growth factor receptor 2 (HER2)-low breast cancer has emerged as a new subtype of tumor, for which novel antibody–drug conjugates have shown beneficial effects. Assessment of HER2 requires seve...

Validation of an AI-based solution for breast cancer risk stratification using routine digital histopathology images

Stratipath Breast is a CE-IVD marked artificial intelligence-based solution for prognostic risk stratification of breast cancer patients into high- and low-risk groups, using haematoxylin and eosin (H&E)-stain...

The SEMA3F-NRP1/NRP2 axis is a key factor in the acquisition of invasive traits in in situ breast ductal carcinoma

A better understanding of ductal carcinoma in situ (DCIS) is urgently needed to identify these preinvasive lesions as distinct clinical entities. Semaphorin 3F (SEMA3F) is a soluble axonal guidance molecule, a...

Association of Life’s Essential 8 cardiovascular health with breast cancer incidence and mortality according to genetic susceptibility of breast cancer: a prospective cohort study

Accumulating evidence suggests that cardiovascular diseases and breast cancer share a number of common risk factors, however, evidence on the association between cardiovascular health (CVH) and breast cancer i...

Micrometastases in axillary lymph nodes in breast cancer, post-neoadjuvant systemic therapy

The significance of minimal residual axillary disease, specifically micrometastases, following neoadjuvant systemic therapy (NST) remains largely unexplored. Our study aimed to elucidate the prognostic implica...

Development of a humanized anti-FABP4 monoclonal antibody for potential treatment of breast cancer

Breast cancer is the most common cancer in women diagnosed in the U.S. and worldwide. Obesity increases breast cancer risk without clear underlying molecular mechanisms. Our studies demonstrate that circulatin...

Genomic profiling and comparative analysis of male versus female metastatic breast cancer across subtypes

Male breast cancer (MaBC) has limited data on genomic alterations. We aimed to comprehensively describe and compare MaBC’s genomics with female breast cancer’s (FBC) across subtypes.

Downregulation of tRF-Cys-GCA-029 by hyperglycemia promotes tumorigenesis and glycolysis of diabetic breast cancer through upregulating PRKCG translation

Diabetes mellitus (DM) affects up to one-third of breast cancer (BC) patients. Patients with co-existing BC and DM (BC-DM) have worsened BC prognosis. Nevertheless, the molecular mechanisms orchestrating BC-DM...

research paper topics on cancer

Associations between quantitative measures of mammographic density and terminal ductal lobular unit involution in Chinese breast cancer patients

Higher mammographic density (MD), a radiological measure of the proportion of fibroglandular tissue in the breast, and lower terminal duct lobular unit (TDLU) involution, a histological measure of the amount o...

Stromal lymphocytes are associated with upgrade of B3 breast lesions

Various histopathological, clinical and imaging parameters have been evaluated to identify a subset of women diagnosed with lesions with uncertain malignant potential (B3 or BIRADS 3/4A lesions) who could safe...

Epigallocatechin gallate and curcumin inhibit Bcl-2: a pharmacophore and docking based approach against cancer

The protein Bcl-2, well-known for its anti-apoptotic properties, has been implicated in cancer pathogenesis. Identifying the primary gene responsible for promoting improved cell survival and development has pr...

GNA13 suppresses proliferation of ER+ breast cancer cells via ERα dependent upregulation of the MYC oncogene

GNA13 (Gα13) is one of two alpha subunit members of the G12/13 family of heterotrimeric G-proteins which mediate signaling downstream of GPCRs. It is known to be essential for embryonic development and vasculogen...

Promoter profiles in plasma CfDNA exhibits a potential utility of predicting the efficacy of neoadjuvant chemotherapy in breast cancer patients

Gene expression profiles in breast tissue biopsies contain information related to chemotherapy efficacy. The promoter profiles in cell-free DNA (cfDNA) carrying gene expression information of the original tiss...

Androgen receptor-mediated pharmacogenomic expression quantitative trait loci: implications for breast cancer response to AR-targeting therapy

Endocrine therapy is the most important treatment modality of breast cancer patients whose tumors express the estrogen receptor α (ERα). The androgen receptor (AR) is also expressed in the vast majority (80–90...

Functions of methyltransferase-like 3 in breast cancer: pathogenesis, drug resistance, and therapeutic target

Breast cancer (BC) is a highly prevalent malignancy worldwide, with complex pathogenesis and treatment challenges. Research reveals that methyltransferase-like 3 (METTL3) is widely involved in the pathogenesis...

Effect of testosterone therapy on breast tissue composition and mammographic breast density in trans masculine individuals

The effect of gender-affirming testosterone therapy (TT) on breast cancer risk is unclear. This study investigated the association between TT and breast tissue composition and breast tissue density in trans ma...

Utilizing human cerebral organoids to model breast cancer brain metastasis in culture

Metastasis, the spread, and growth of malignant cells at secondary sites within a patient’s body, accounts for over 90% of cancer-related mortality. Breast cancer is the most common tumor type diagnosed and th...

A prospective study of HER3 expression pre and post neoadjuvant therapy of different breast cancer subtypes: implications for HER3 imaging therapy guidance

HER3, a member of the EGFR receptor family, plays a central role in driving oncogenic cell proliferation in breast cancer. Novel HER3 therapeutics are showing promising results while recently developed HER3 PE...

Atypical cell cycle regulation promotes mammary stem cell expansion during mammary development and tumourigenesis

The cell cycle of mammary stem cells must be tightly regulated to ensure normal homeostasis of the mammary gland to prevent abnormal proliferation and susceptibility to tumorigenesis. The atypical cell cycle r...

Circular RNA HSDL2 promotes breast cancer progression via miR-7978 ZNF704 axis and regulating hippo signaling pathway

Circular RNAs (circRNAs) are a new group of endogenous RNAs recently found to be involved in the development of various diseases, including their confirmed involvement in the progression of several types of ca...

Evaluating the immunologically “cold” tumor microenvironment after treatment with immune checkpoint inhibitors utilizing PET imaging of CD4 + and CD8 + T cells in breast cancer mouse models

Immune-positron emission tomography (PET) imaging with tracers that target CD8 and granzyme B has shown promise in predicting the therapeutic response following immune checkpoint blockade (ICB) in immunologica...

TFAP2A downregulation mediates tumor-suppressive effect of miR-8072 in triple-negative breast cancer via inhibiting SNAI1 transcription

Triple-negative breast cancer (TNBC) represents a highly aggressive subset of breast malignancies characterized by its challenging clinical management and unfavorable prognosis. While TFAP2A, a member of the A...

Association of early menarche with breast tumor molecular features and recurrence

Early menarche is an established risk factor for breast cancer but its molecular contribution to tumor biology and prognosis remains unclear.

Trends in chemotherapy use for early-stage breast cancer from 2006 to 2019

Little is known about how use of chemotherapy has evolved in breast cancer patients. We therefore describe chemotherapy patterns for women with stage I-IIIA breast cancer in the Optimal Breast Cancer Chemother...

In situ HER2 RNA expression as a predictor of pathologic complete response of HER2-positive breast cancer patients receiving neoadjuvant chemotherapy and anti-HER2 targeted treatment

Immunohistochemistry (IHC) and in situ hybridization (ISH) remain standard biomarkers for therapeutic decisions in human epidermal growth factor 2 (HER2)-positive breast cancers (BCs); however, they are insuff...

Trastuzumab-functionalized bionic pyrotinib liposomes for targeted therapy of HER2-positive breast cancer

In this study, we prepared a bionic nanosystem of trastuzumab-functionalized SK-BR-3 cell membrane hybrid liposome-coated pyrotinib (Ptb-M-Lip-Her) for the treatment of HER2-positive breast cancer. Transmissio...

An essential gene signature of breast cancer metastasis reveals targetable pathways

The differential gene expression profile of metastatic versus primary breast tumors represents an avenue for discovering new or underappreciated pathways underscoring processes of metastasis. However, as tumor...

Pre-treatment peripheral blood immunophenotyping and response to neoadjuvant chemotherapy in operable breast cancer

Tumor immune infiltration and peripheral blood immune signatures have prognostic and predictive value in breast cancer. Whether distinct peripheral blood immune phenotypes are associated with response to neoad...

Hypoxia-mediated repression of pyruvate carboxylase drives immunosuppression

Metabolic plasticity mediates breast cancer survival, growth, and immune evasion during metastasis. However, how tumor cell metabolism is influenced by and feeds back to regulate breast cancer progression are ...

research paper topics on cancer

Lasofoxifene as a potential treatment for aromatase inhibitor-resistant ER-positive breast cancer

Breast cancers treated with aromatase inhibitors (AIs) can develop AI resistance, which is often driven by estrogen receptor-alpha (ERα/ ESR1 ) activating mutations, as well as by ER-independent signaling pathways....

NSUN2/YBX1 promotes the progression of breast cancer by enhancing HGH1 mRNA stability through m 5 C methylation

RNA m 5 C methylation has been extensively implicated in the occurrence and development of tumors. As the main methyltransferase, NSUN2 plays a crucial regulatory role across diverse tumor types. However, the preci...

Inflammation at diagnosis and cognitive impairment two years later in breast cancer patients from the Canto-Cog study

Inflammation could be related to cancer-related cognitive impairment (CRCI) and might be used as a predictive marker of long-term CRCI. We evaluated associations between inflammatory markers assessed at diagno...

Increased expression of REG3A promotes tumorigenic behavior in triple negative breast cancer cells

Identifying new targets in triple negative breast cancer (TNBC) remains critical. REG3A (regenerating islet-derived protein 3 A), a calcium-dependent lectin protein, was thoroughly investigated for its express...

Alpha-6 integrin deletion delays the formation of Brca1/p53-deficient basal-like breast tumors by restricting luminal progenitor cell expansion

The aberrant amplification of mammary luminal progenitors is at the origin of basal-like breast cancers associated with BRCA1 mutations. Integrins mediate cell–matrix adhesion and transmit mechanical and chemi...

Deep learning-based risk stratification of preoperative breast biopsies using digital whole slide images

Nottingham histological grade (NHG) is a well established prognostic factor in breast cancer histopathology but has a high inter-assessor variability with many tumours being classified as intermediate grade, N...

Unraveling malignant phenotype of peritumoral tissue: transcriptomic insights into early-stage breast cancer

Early-stage invasive ductal carcinoma displays high survival rates due to early detection and treatments. However, there is still a chance of relapse of 3–15% after treatment. The aim of this study was to unco...

Reproductive characteristics, menopausal status, race and ethnicity, and risk of breast cancer subtypes defined by ER, PR and HER2 status: the Breast Cancer Etiology in Minorities study

Associations between reproductive factors and risk of breast cancer differ by subtype defined by joint estrogen receptor (ER), progesterone receptor (PR), and HER2 expression status. Racial and ethnic differen...

EDI3 knockdown in ER-HER2+ breast cancer cells reduces tumor burden and improves survival in two mouse models of experimental metastasis

Despite progress understanding the mechanisms underlying tumor spread, metastasis remains a clinical challenge. We identified the choline-producing glycerophosphodiesterase, EDI3 and reported its association w...

Elevated expression of wildtype RhoC promotes ErbB2- and Pik3ca- induced mammary tumor formation

Copy number gains in genes coding for Rho activating exchange factors as well as losses affecting genes coding for RhoGAP proteins are common in breast cancer (BC), suggesting that elevated Rho signaling may p...

Optimising the diagnostic accuracy of First post-contrAst SubtracTed breast MRI (FAST MRI) through interpretation-training: a multicentre e-learning study, mapping the learning curve of NHS Breast Screening Programme (NHSBSP) mammogram readers using an enriched dataset

Abbreviated breast MRI (FAST MRI) is being introduced into clinical practice to screen women with mammographically dense breasts or with a personal history of breast cancer. This study aimed to optimise diagno...

Breast cancer patients enrolled in the Swiss mammography screening program “donna” demonstrate prolonged survival

We compared the survival rates of women with breast cancer (BC) detected within versus outside the mammography screening program (MSP) “donna”.

Correction: NSABP FB-10: a phase Ib/II trial evaluating ado-trastuzumab emtansine (T-DM1) with neratinib in women with metastatic HER2-positive breast cancer

The original article was published in Breast Cancer Research 2024 26 :69

Deep learning of mammogram images to reduce unnecessary breast biopsies: a preliminary study

Patients with a Breast Imaging Reporting and Data System (BI-RADS) 4 mammogram are currently recommended for biopsy. However, 70–80% of the biopsies are negative/benign. In this study, we developed a deep lear...

Reporting on patient’s body mass index (BMI) in recent clinical trials for patients with breast cancer: a systematic review

The proportion of patients with breast cancer and obesity is increasing. While the therapeutic landscape of breast cancer has been expanding, we lack knowledge about the potential differential efficacy of most...

Infrared laser moxibustion for cancer-related fatigue in breast cancer survivors: a randomized controlled trial

Cancer-related fatigue (CRF) is a pervasive, persistent, and distressing symptom experienced by cancer patients, for which few treatments are available. We investigated the efficacy and safety of infrared lase...

  • Editorial Board
  • Manuscript editing services
  • Instructions for Editors
  • Sign up for article alerts and news from this journal
  • Collections
  • Follow us on Twitter

Annual Journal Metrics

Citation Impact 2023 Journal Impact Factor: 6.1 5-year Journal Impact Factor: 7.1 Source Normalized Impact per Paper (SNIP): 1.865 SCImago Journal Rank (SJR): 2.578 Speed 2023 Submission to first editorial decision (median days): 14 Submission to acceptance (median days): 129 Usage 2023 Downloads: 2,432,781 Altmetric mentions: 1,561

  • More about our metrics

Breast Cancer Research

ISSN: 1465-542X

Cancer Biology Research

Three-dimensional culture of human breast cancer cells, with DNA stained blue and a protein in the cell surface membrane stained green.

Breast cancer cells

The Importance of Cancer Biology Research

Research on the biology of cancer starts with the simplest of questions: What is—and isn’t—normal? To understand how cancer develops and progresses, researchers first need to investigate the biological differences between normal cells and cancer cells. This work focuses on the mechanisms that underlie fundamental processes such as cell growth, the transformation of normal cells to cancer cells, and the spread ( metastasis ) of cancer cells.

Virtually all major advances against cancer originated with discoveries in basic science . Basic research can reveal new ideas about the causes of cancer and how it develops, progresses, and responds to therapy.

Knowledge gained from such studies deepens our understanding of cancer and produces insights that could lead to new clinical interventions. For example, studies of cell signaling pathways  in normal cells and cancer cells have contributed greatly to our knowledge about the disease, revealing molecular alterations that are shared among different types of cancer and pointing to possible treatment strategies.

Decades of basic research in cancer biology have created a broad base of knowledge that has been critical to progress against the disease.

Selected NCI Activities in Cancer Biology Research

National Cancer Plan

NCI Research and the National Cancer Plan

NCI supports a broad variety of research that aligns with the goals of the National Cancer Plan. Read about the plan and explore each goal.

Federal funding for cancer biology is essential because this area of research receives relatively little funding from entities that are driven by profit. NCI supports and directs cancer biology research through a variety of programs and approaches. For example:

  • The Metastasis Research Network (MetNet) supports research to improve our understanding of how cancer spreads. Cancer metastasis is a complex, dynamic, nonlinear process. The network supports several specialized centers working collaboratively on multidisciplinary projects focused on several themes of the metastatic process, including mechanisms of early dissemination, cellular and physical microenvironment crosstalk, dormancy, and mechanisms of responses to therapy by metastatic cells.
  • The Translational and Basic Science Research in Early Lesions (TBEL) Program is advancing the understanding of the mechanisms driving, or restraining, the development of precancers and early cancers, as well as informing the development of precision prevention approaches. The program supports multidisciplinary research centers that are integrating basic and translational research to investigate the interactions of an early lesion, its microenvironment, and host factors as “co-organizers” of tumor initiation and the development of cancer.
  • The Human Tumor Atlas Network is constructing 3-dimensional atlases of the cellular, morphological, and molecular features of human cancers as they evolve from precancerous lesions to advanced disease. The atlases, which represent a diverse patient population, will also be used to study how tumors respond to treatment and develop resistance to drugs.
  • The Cancer Tissue Engineering Collaborative (TEC) supports the development and characterization of state-of-the-art biomimetic tissue-engineered technologies for cancer research. This program advances innovative, well-characterized in vitro and ex vivo systems available for cancer research, expands the breadth of these systems to several cancer types, and promotes investigations of cancer with tissue-engineered systems.

Illustration depicting a silhouette of ten people with different ages, backgrounds, and abilities in front of a centrally illuminated blue and red background. A connected series of people icons throughout the image represents data collected from individuals and groups.

NCI FY26 Annual Plan & Professional Judgment Budget Proposal

Each year, NCI prepares a plan for advancing cancer research and proposes the budget required to fund a broad research portfolio.

  • The consortium of tumor glycomics laboratories and their research partners that make up the Alliance of Glycobiologists for Cancer Research are investigating the cancer-related dynamics of complex carbohydrates. The alliance, which NCI sponsors with the National Institute of General Medical Sciences and the National Heart, Lung, and Blood Institute, aims to study the structure and function of glycans in relation to cancer.
  • The NCI RNA Biology Initiative facilitates the exchange of information and expertise among investigator studying the structure, function, and biological roles of RNA for the purpose of developing new cancer diagnostics and therapies.
  • NCI’s Centers of Excellence bring together the institute’s intramural researchers to collaborate on new projects and initiatives in various areas of cancer biology, including Chromosome Biology and Genitourinary Malignancies .

Recent Research Findings in Cancer Biology

  • Technique targeting cell marker boosts treatment options for B-cell lymphomas
  • Scientists Link a Single Type of Bacteria to Colorectal Cancer
  • Stress-Induced Immune Changes May Help Cancer Spread
  • Manipulating an Immune Cell May Make Radiation Therapy More Effective, Study Suggests
  • Antibody Drug Ejects Problematic Proteins from Cancer Cells
  • Molecular Burglary: Cancer Cells Hijack Energy from Immune Cells
  • A Better Biomarker for Cancer Immunotherapy?
  • New Class of Compounds Rewires Cancer Cells to Self-Destruct

Cochrane Breast Cancer

Top 10 breast cancer topics needing a cochrane systematic review.

research paper topics on cancer

Deciding which research topics to focus on in medicine and health depends on many factors. These factors can include the currency of a topic, feedback from people providing or receiving care, and the priorities of funders.

In late 2019, the Cochrane Breast Cancer Group (part of Cochrane’s Cancer Network) conducted a formal priority-setting exercise to help decide which review topics were most needed in the Cochrane Library. The Group did this by circulating a survey listing 25 new or existing review topics to a diverse group of individuals who are part of the international breast cancer community. The survey asked individuals to rank their top 10 topics from the list. Read details about the aims and methods used for this priority-setting exercise, which adhered to the standards outlined in Cochrane’s priority setting guidance note .

What were the top 10 review topics?

1

Omission of whole breast irradiation for postmenopausal women with early breast cancer 

Can radiotherapy be safely omitted in postmenopausal women with early breast cancer? 

2

Platinum-containing regimens for neoadjuvant and adjuvant therapy in triple-negative breast cancer 

What are the benefits and harms of adding platinum chemotherapy to standard therapy for people with triple-negative early breast cancer? 

3

Overdiagnosis due to screening mammography for women aged 40 years and over

In women aged 40 years or older and at average risk, should they have a mammogram? 

4

Post-mastectomy radiotherapy for women with early breast cancer and 1 to 3 positive lymph nodes

For women who have 1 to 3 positive axillary lymph nodes after mastectomy, does radiotherapy to the lymph nodes provide an additional benefit when compared to women who do not have radiotherapy to the lymph nodes?

5

Breast surgery for metastatic breast cancer

What are the benefits and harms of having breast surgery in addition to anti-cancer treatment when breast cancer has spread to another part of the body?

6

Partial breast irradiation for early breast cancer

Can radiotherapy delivered to part of the breast be as effective and safe as radiotherapy delivered to the whole breast for women who have had breast-conserving surgery?

7

Parenteral bone-active agents in adjuvant therapy

What are the benefits and harms of adding bisphosphonate or denosumab to standard anti-cancer treatment in women with early breast cancer?

8

Systemic therapies for preventing or treating aromatase inhibitor-induced musculoskeletal symptoms in early breast cancer

Can medications and supplements (such as complementary and alternative medicines) help to reduce the symptoms of aromatase inhibitor-induced muscle pain and stiffness compared to no therapy? 

9

Non-hormonal interventions for hot flushes in women with a history of breast cancer

Can pharmacological agents (such as vitamin E, clonidine, gabapentin) and non-pharmacological therapies (such as meditation, aromatherapy, magnetic therapy) help to reduce the number of hot flushes compared to no therapy in women receiving endocrine therapy for breast cancer treatment, women experiencing menopause with a history of breast cancer or women experiencing menopause due to breast cancer treatment?

10

Hypofractionation radiation therapy for early breast cancer

Can fewer radiotherapy visits (by using a higher radiation dose at each visit) be as effective and safe as conventional radiotherapy treatments for women who have had breast-conserving surgery?

Read about the ranking of the 25 new or existing review topics .

What is next?

Support to author teams For the top 10 topics, the Cochrane Breast Cancer Group will prioritise these topics during the editorial and peer-review process.

For all breast cancer review topics registered with Cochrane, the Cochrane Breast Cancer Group continues to work on these topics with author teams as these remain important topics. There will be no noticeable change in the support provided to author teams.

Future topics The Cochrane Breast Cancer Group is open to receiving new topic ideas. If you have suggestions for new topics that are not currently covered in the Cochrane Library, please send your idea to [email protected] .

Repeating this priority-setting exercise The priority-setting exercise may be repeated every 3 years, depending on resources.

Who responded to the survey?

The survey was circulated to over 800 individuals. Of the 199 people who responded, 90 people (45%) provided complete responses. The respondents were doctors (59%), researchers (18%) and people who had received treatment or currently receiving treatment for breast cancer (14%). Most respondents were from the UK, followed by the USA, Argentina, and India.

How did we calculate the ranking for each review topic?

The average ranking was calculated for each topic. This method is commonly used to determine ranking scores from surveys. This approach considers the number of counts for each ranking on a topic, the weighting of each rank (where a ranking of 1 gets the most weight) and the total number of counts. 

[Cover image: foliage of the Yew tree. Taxanes, a class of chemotherapy drugs, were originally derived from the Yew tree]

U.S. flag

A .gov website belongs to an official government organization in the United States.

A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Risk Factors
  • Health Equity
  • Cancer Data and Statistics
  • Cancer Research
  • Resource Library
  • Types of Cancer
  • HPV and Cancer
  • Health Care Provider Resources
  • Evidence-Based Interventions
  • View All Home

What to know

CDC’s Division of Cancer Prevention and Control conducts and supports studies to reduce the burden of cancer and eliminate health disparities.

a person looking at data on a tablet

CDC contributes data and scientific expertise on:

  • Cancer prevention and risk behaviors.
  • The quality and appropriate use of cancer screening.
  • The cost and cost-effectiveness of cancer control programs.
  • Health and wellness after a cancer diagnosis.
  • Efforts to advance health equity.

Use our Citation Search Tool to find scientific articles by title, journal, author, year of publication, and topic.

CDC's latest cancer research

  • Lung cancer incidence, 2019–2020, United States: the potential impact of the COVID-19 pandemic
  • Colonoscopy quality measures and adherence to follow-up guidelines among endoscopists participating in a United States endoscopy registry
  • Optimizing tracking and completion of follow-up colonoscopy after abnormal stool tests at health systems participating in CDC's Colorectal Cancer Control Program
  • Information needs persist after genetic counseling and testing for BRCA1/2 and Lynch syndrome
  • State and regional trends in incidence and early detection of lung cancer among US adults, 2010–2020

Photo of a person preparing a heroin injection

Learn how to lower your cancer risk and what CDC is doing to prevent and control cancer.

For Everyone

Health care providers, public health.

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Published: 19 April 2022

Focus Issue: The Future Of Cancer Research

Nature Medicine volume  28 ,  page 601 ( 2022 ) Cite this article

14k Accesses

6 Citations

8 Altmetric

Metrics details

New treatments and technologies offer exciting prospects for cancer research and care, but their global impact rests on widespread implementation and accessibility.

Cancer care has advanced at an impressive pace in recent years. New insights into tumor immunology and biology, combined with advances in artificial intelligence, nano tools, genetic engineering and sequencing — to name but a few — promise ever-more-powerful capabilities in the prevention, diagnosis and personalized treatment of cancer. How do we harness and build on these advances? How do we make them work in different global settings? In this issue, we present a Focus dedicated to the future of cancer research, in which we take stock of progress and explore ways to deliver research and care that is innovative, sustainable and patient focused.

This year brought news that two of the first patients with leukemia to receive chimeric antigen receptor (CAR) T cell treatment remain in remission more than a decade later . Writing in this issue, Carl June — who helped to treat these first patients — and colleagues reflect on how early transplant medicine laid a solid foundation for CAR T cell development in blood cancers, and how this is now paving the way for the use of engineered cell therapies in solid cancers. In a noteworthy step toward this goal, Haas and colleagues present results of a phase 1 trial of CAR T cells in metastatic, castration-resistant prostate cancer — a disease that has seen relatively few new treatment options in recent years.

Up to now, CAR T cells have been used only in the context of relapsed or refractory hematological malignancies, but in this issue, Neelapu et al . present phase 2 study data that suggest CAR T cell therapy could be beneficial when used earlier in certain high-risk patients. In addition, prospective data from van den Brink et al . support a role for the gut microbiome composition in CAR T cell therapy outcomes, highlighting new avenues of research to help maximize therapeutic benefit.

Although the idea that the gut microbiome influences CAR T cell therapy outcomes may be relatively new, it has been known for some time that it has a role in the response to checkpoint-inhibitor immunotherapy. A plethora of microbe-targeting therapies are now under investigation for cancer treatment; in this issue, Pal and colleagues describe one such strategy — whereby the combination of a defined microbial supplement with checkpoint blockade led to improved responses in patients with advanced kidney cancer. In their Review, Jennifer Wargo and colleagues take stock of the latest research in this field, and predict that microbial targeting could become a pillar of personalized cancer care over the next decade.

The theme for this year’s World Cancer Day was ‘Close the care gap’ — a message that is woven through several pieces in this issue. Early detection strategies have enormous potential to make a difference in this area; reviewing the latest advances, Rebecca Fitzgerald and colleagues ask who should be tested, and how — and outline their vision for personalized, risk-based screening, keeping in mind practicality and clinical implementation. Journalist Carrie Arnold reports on an emerging strategy known as ‘theranostics’ that aims to both diagnose and treat cancers in a unified approach, highlighting the growing commercial interest in this field. Of course, commercial interest does not equate to widespread availability or equal access to new therapies, and increasingly sophisticated technologies — although beneficial for some — can serve to widen existing inequalities.

Pediatric cancers lag far behind adult cancers in terms of drug development and approval. Nancy Goodman, a patient advocate whose son died from a childhood cancer, argues that market failures are largely to blame for the gap — but that legislative changes can correct this. Although in some cases there is a strong mechanistic rationale for testing promising adult cancer therapies or combinations in children, translational research is also needed to identify new therapeutic targets — such as the approach taken by Behjati and colleagues , which sheds new light on the molecular characteristics of an aggressive form of infant leukemia.

Meanwhile, for adult cancers, countless new therapeutic modalities are on the horizon , and drug approvals based on genomic biomarkers have accelerated in recent years. Unfortunately, their implementation into routine clinical care is progressing at a much slower pace. In their Perspective, Emile Voest and colleagues point out that bridging this gap will require investment in health infrastructure, as well as in education and decision-support tools, among other things.

Perhaps the most striking gap is that between high-income countries and low- and middle-income countries, not only in terms of cancer survival outcomes but also in terms of resources and infrastructure for impactful research. In their Perspective, CS Pramesh and colleagues outline their top priorities for cancer research in low- and middle-income countries, arguing that cancer research must be regionally relevant and geared toward reducing the number of patients diagnosed with advanced disease. Practicality is key — a sentiment echoed by Bishal Gyawali and Christopher Booth, who call for a “ common sense revolution ” in oncology, and regulatory policies and trial designs that serve patients better.

To realize this goal, clinical trial endpoints and outcome measures should be designed to minimize the burden on patients and maximize the potential for improving on the standard of care. This should go beyond survival outcomes; systemic effects, including cachexia and pain, have a major impact on quality of life and mental health during and after treatment. Two articles in this issue highlight the enormous psychological burden associated with a cancer diagnosis; increased risks of depression, self-harm and suicide emphasize the need for psychosocial interventions and a holistic approach to treatment.

As noted by members of the Bloomberg New Economy International Cancer Coalition in their Comment , the widespread adoption of telemedicine and remote monitoring in response to the COVID-19 pandemic could, if retained, help to make cancer trials more patient centered. Therefore, as health systems and research infrastructures adapt to the ongoing pandemic, there exists an unprecedented opportunity to reshape the landscape of cancer research.

We at Nature Medicine are committed to helping shape this transformation. We are issuing a call for research papers that utilize innovative approaches to address current challenges in cancer prevention, detection, diagnosis and treatment — both clinical trials and population-based studies with global implications. Readers can find more information about publishing clinical research in Nature Medicine at https://www.nature.com/nm/clinicalresearch .

Rights and permissions

Reprints and permissions

About this article

Cite this article.

Focus Issue: The Future Of Cancer Research. Nat Med 28 , 601 (2022). https://doi.org/10.1038/s41591-022-01809-z

Download citation

Published : 19 April 2022

Issue Date : April 2022

DOI : https://doi.org/10.1038/s41591-022-01809-z

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

research paper topics on cancer

COMMENTS

  1. Cancer Biology, Epidemiology, and Treatment in the 21st Century: Current Status and Future Challenges From a Biomedical Perspective

    Cancer Biology, Epidemiology, and Treatment in the 21st ...

  2. Research articles

    Research articles | Nature Cancer

  3. Top 100 in Cancer

    The 100 most downloaded cancer research articles published in Scientific Reports in 2022. ... This collection highlights our most downloaded* cancer papers published in 2022. Featuring authors ...

  4. Cancer Top 100 of 2023

    Cancer Top 100 of 2023

  5. Recent developments in cancer research: Expectations for a new remedy

    Organoid biology will further develop with a goal of translating the research into personalized therapy. These research areas may result in the creation of new cancer treatments in the future. Keywords: exosomes, immunotherapy, microbiome, organoid. Cancer research has made remarkable progress and new discoveries are beginning to be made.

  6. Cancer

    Cancer - Wiley Online Library

  7. Innovative approaches for cancer treatment: current perspectives and

    Innovative approaches for cancer treatment: current ...

  8. The 150 most important questions in cancer research and clinical

    The 150 most important questions in cancer research and ...

  9. Lung cancer

    Lung cancer - The Lancet ... Lung cancer

  10. Most Popular Articles : The Cancer Journal

    The Cancer Journal: The Journal of Principles & Practice of Oncology provides an integrated view of modern oncology across all disciplines. The Journal publishes original research and reviews, and keeps readers current on content published in the book Cancer: Principles & Practice of Oncology.

  11. Top 100 in Cancer

    This collection highlights our most downloaded* cancer papers published in 2021. Featuring authors from aroud the world, these papers showcase valuable research from an international community.

  12. Frontiers in Oncology

    Cancer Therapy Related Organ Toxicities. Yinghong Wang. Kathryn Bollin. 197 views. Highlights research in carcinogenesis and tumor progression, bridging the gap between basic research and clinical applications to advance diagnosis, personalized therapeutics and management strateg...

  13. Research Topics

    Research Topics - Memorial Sloan Kettering Cancer Center ... Research Topics

  14. Focus Areas

    Focus Areas. The mission of the Department of Cancer Biology is to identify and understand the causes of cancer, to develop innovative approaches to reduce cancer incidence, to create and test novel and more effective therapies, and to translate these findings into clinical care for the benefit of patients. Research in our department is highly ...

  15. Breast Cancer Research Articles

    Posted: January 20, 2023. Many young women who are diagnosed with early-stage breast cancer want to become pregnant in the future. New research suggests that these women may be able to pause their hormone therapy for up to 2 years as they try to get pregnant without raising the risk of a recurrence in the short term.

  16. Top 100 in Cancer

    Top 100 in Cancer

  17. The 150 most important questions in cancer research and clinical

    Text. To accelerate our endeavors to overcome cancer, Chinese Journal of Cancer has launched a program of publishing 150 most important questions in cancer research and clinical oncology [].Since the beginning of 2017, Chinese Journal of Cancer has published a series of important questions in cancer research and clinical oncology [2 - 12], which spark diverse thoughts, interesting ...

  18. Articles

    Articles | Breast Cancer Research - BioMed Central

  19. Research Areas: Cancer Biology

    Cancer Biology - Research Areas

  20. Top 10 breast cancer topics needing a Cochrane systematic review

    What were the top 10 review topics? Rank. Topic in Cochrane format. Topic question in lay terms. 1. Omission of whole breast irradiation for postmenopausal women with early breast cancer. Can radiotherapy be safely omitted in postmenopausal women with early breast cancer? 2. Platinum-containing regimens for neoadjuvant and adjuvant therapy in ...

  21. Advancing Cancer Therapy

    Advancing Cancer Therapy

  22. Cancer Research

    Cancer prevention and risk behaviors. The quality and appropriate use of cancer screening. The cost and cost-effectiveness of cancer control programs. Health and wellness after a cancer diagnosis. Efforts to advance health equity. Use our Citation Search Tool to find scientific articles by title, journal, author, year of publication, and topic.

  23. Focus Issue: The Future Of Cancer Research

    We are issuing a call for research papers that utilize innovative approaches to address current challenges in cancer prevention, detection, diagnosis and treatment — both clinical trials and ...