U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • J Microbiol Biol Educ
  • v.16(1); 2015 May

Logo of jmbe

Case Study Teaching Method Improves Student Performance and Perceptions of Learning Gains †

Associated data.

  • Appendix 1: Example assessment questions used to assess the effectiveness of case studies at promoting learning
  • Appendix 2: Student learning gains were assessed using a modified version of the SALG course evaluation tool

Following years of widespread use in business and medical education, the case study teaching method is becoming an increasingly common teaching strategy in science education. However, the current body of research provides limited evidence that the use of published case studies effectively promotes the fulfillment of specific learning objectives integral to many biology courses. This study tested the hypothesis that case studies are more effective than classroom discussions and textbook reading at promoting learning of key biological concepts, development of written and oral communication skills, and comprehension of the relevance of biological concepts to everyday life. This study also tested the hypothesis that case studies produced by the instructor of a course are more effective at promoting learning than those produced by unaffiliated instructors. Additionally, performance on quantitative learning assessments and student perceptions of learning gains were analyzed to determine whether reported perceptions of learning gains accurately reflect academic performance. The results reported here suggest that case studies, regardless of the source, are significantly more effective than other methods of content delivery at increasing performance on examination questions related to chemical bonds, osmosis and diffusion, mitosis and meiosis, and DNA structure and replication. This finding was positively correlated to increased student perceptions of learning gains associated with oral and written communication skills and the ability to recognize connections between biological concepts and other aspects of life. Based on these findings, case studies should be considered as a preferred method for teaching about a variety of concepts in science courses.

INTRODUCTION

The case study teaching method is a highly adaptable style of teaching that involves problem-based learning and promotes the development of analytical skills ( 8 ). By presenting content in the format of a narrative accompanied by questions and activities that promote group discussion and solving of complex problems, case studies facilitate development of the higher levels of Bloom’s taxonomy of cognitive learning; moving beyond recall of knowledge to analysis, evaluation, and application ( 1 , 9 ). Similarly, case studies facilitate interdisciplinary learning and can be used to highlight connections between specific academic topics and real-world societal issues and applications ( 3 , 9 ). This has been reported to increase student motivation to participate in class activities, which promotes learning and increases performance on assessments ( 7 , 16 , 19 , 23 ). For these reasons, case-based teaching has been widely used in business and medical education for many years ( 4 , 11 , 12 , 14 ). Although case studies were considered a novel method of science education just 20 years ago, the case study teaching method has gained popularity in recent years among an array of scientific disciplines such as biology, chemistry, nursing, and psychology ( 5 – 7 , 9 , 11 , 13 , 15 – 17 , 21 , 22 , 24 ).

Although there is now a substantive and growing body of literature describing how to develop and use case studies in science teaching, current research on the effectiveness of case study teaching at meeting specific learning objectives is of limited scope and depth. Studies have shown that working in groups during completion of case studies significantly improves student perceptions of learning and may increase performance on assessment questions, and that the use of clickers can increase student engagement in case study activities, particularly among non-science majors, women, and freshmen ( 7 , 21 , 22 ). Case study teaching has been shown to improve exam performance in an anatomy and physiology course, increasing the mean score across all exams given in a two-semester sequence from 66% to 73% ( 5 ). Use of case studies was also shown to improve students’ ability to synthesize complex analytical questions about the real-world issues associated with a scientific topic ( 6 ). In a high school chemistry course, it was demonstrated that the case study teaching method produces significant increases in self-reported control of learning, task value, and self-efficacy for learning and performance ( 24 ). This effect on student motivation is important because enhanced motivation for learning activities has been shown to promote student engagement and academic performance ( 19 , 24 ). Additionally, faculty from a number of institutions have reported that using case studies promotes critical thinking, learning, and participation among students, especially in terms of the ability to view an issue from multiple perspectives and to grasp the practical application of core course concepts ( 23 ).

Despite what is known about the effectiveness of case studies in science education, questions remain about the functionality of the case study teaching method at promoting specific learning objectives that are important to many undergraduate biology courses. A recent survey of teachers who use case studies found that the topics most often covered in general biology courses included genetics and heredity, cell structure, cells and energy, chemistry of life, and cell cycle and cancer, suggesting that these topics should be of particular interest in studies that examine the effectiveness of the case study teaching method ( 8 ). However, the existing body of literature lacks direct evidence that the case study method is an effective tool for teaching about this collection of important topics in biology courses. Further, the extent to which case study teaching promotes development of science communication skills and the ability to understand the connections between biological concepts and everyday life has not been examined, yet these are core learning objectives shared by a variety of science courses. Although many instructors have produced case studies for use in their own classrooms, the production of novel case studies is time-consuming and requires skills that not all instructors have perfected. It is therefore important to determine whether case studies published by instructors who are unaffiliated with a particular course can be used effectively and obviate the need for each instructor to develop new case studies for their own courses. The results reported herein indicate that teaching with case studies results in significantly higher performance on examination questions about chemical bonds, osmosis and diffusion, mitosis and meiosis, and DNA structure and replication than that achieved by class discussions and textbook reading for topics of similar complexity. Case studies also increased overall student perceptions of learning gains and perceptions of learning gains specifically related to written and oral communication skills and the ability to grasp connections between scientific topics and their real-world applications. The effectiveness of the case study teaching method at increasing academic performance was not correlated to whether the case study used was authored by the instructor of the course or by an unaffiliated instructor. These findings support increased use of published case studies in the teaching of a variety of biological concepts and learning objectives.

Student population

This study was conducted at Kingsborough Community College, which is part of the City University of New York system, located in Brooklyn, New York. Kingsborough Community College has a diverse population of approximately 19,000 undergraduate students. The student population included in this study was enrolled in the first semester of a two-semester sequence of general (introductory) biology for biology majors during the spring, winter, or summer semester of 2014. A total of 63 students completed the course during this time period; 56 students consented to the inclusion of their data in the study. Of the students included in the study, 23 (41%) were male and 33 (59%) were female; 40 (71%) were registered as college freshmen and 16 (29%) were registered as college sophomores. To normalize participant groups, the same student population pooled from three classes taught by the same instructor was used to assess both experimental and control teaching methods.

Course material

The four biological concepts assessed during this study (chemical bonds, osmosis and diffusion, mitosis and meiosis, and DNA structure and replication) were selected as topics for studying the effectiveness of case study teaching because they were the key concepts addressed by this particular course that were most likely to be taught in a number of other courses, including biology courses for both majors and nonmajors at outside institutions. At the start of this study, relevant existing case studies were freely available from the National Center for Case Study Teaching in Science (NCCSTS) to address mitosis and meiosis and DNA structure and replication, but published case studies that appropriately addressed chemical bonds and osmosis and diffusion were not available. Therefore, original case studies that addressed the latter two topics were produced as part of this study, and case studies produced by unaffiliated instructors and published by the NCCSTS were used to address the former two topics. By the conclusion of this study, all four case studies had been peer-reviewed and accepted for publication by the NCCSTS ( http://sciencecases.lib.buffalo.edu/cs/ ). Four of the remaining core topics covered in this course (macromolecules, photosynthesis, genetic inheritance, and translation) were selected as control lessons to provide control assessment data.

To minimize extraneous variation, control topics and assessments were carefully matched in complexity, format, and number with case studies, and an equal amount of class time was allocated for each case study and the corresponding control lesson. Instruction related to control lessons was delivered using minimal slide-based lectures, with emphasis on textbook reading assignments accompanied by worksheets completed by students in and out of the classroom, and small and large group discussion of key points. Completion of activities and discussion related to all case studies and control topics that were analyzed was conducted in the classroom, with the exception of the take-home portion of the osmosis and diffusion case study.

Data collection and analysis

This study was performed in accordance with a protocol approved by the Kingsborough Community College Human Research Protection Program and the Institutional Review Board (IRB) of the City University of New York (CUNY IRB reference 539938-1; KCC IRB application #: KCC 13-12-126-0138). Assessment scores were collected from regularly scheduled course examinations. For each case study, control questions were included on the same examination that were similar in number, format, point value, and difficulty level, but related to a different topic covered in the course that was of similar complexity. Complexity and difficulty of both case study and control questions were evaluated using experiential data from previous iterations of the course; the Bloom’s taxonomy designation and amount of material covered by each question, as well as the average score on similar questions achieved by students in previous iterations of the course was considered in determining appropriate controls. All assessment questions were scored using a standardized, pre-determined rubric. Student perceptions of learning gains were assessed using a modified version of the Student Assessment of Learning Gains (SALG) course evaluation tool ( http://www.salgsite.org ), distributed in hardcopy and completed anonymously during the last week of the course. Students were presented with a consent form to opt-in to having their data included in the data analysis. After the course had concluded and final course grades had been posted, data from consenting students were pooled in a database and identifying information was removed prior to analysis. Statistical analysis of data was conducted using the Kruskal-Wallis one-way analysis of variance and calculation of the R 2 coefficient of determination.

Teaching with case studies improves performance on learning assessments, independent of case study origin

To evaluate the effectiveness of the case study teaching method at promoting learning, student performance on examination questions related to material covered by case studies was compared with performance on questions that covered material addressed through classroom discussions and textbook reading. The latter questions served as control items; assessment items for each case study were compared with control items that were of similar format, difficulty, and point value ( Appendix 1 ). Each of the four case studies resulted in an increase in examination performance compared with control questions that was statistically significant, with an average difference of 18% ( Fig. 1 ). The mean score on case study-related questions was 73% for the chemical bonds case study, 79% for osmosis and diffusion, 76% for mitosis and meiosis, and 70% for DNA structure and replication ( Fig. 1 ). The mean score for non-case study-related control questions was 60%, 54%, 60%, and 52%, respectively ( Fig. 1 ). In terms of examination performance, no significant difference between case studies produced by the instructor of the course (chemical bonds and osmosis and diffusion) and those produced by unaffiliated instructors (mitosis and meiosis and DNA structure and replication) was indicated by the Kruskal-Wallis one-way analysis of variance. However, the 25% difference between the mean score on questions related to the osmosis and diffusion case study and the mean score on the paired control questions was notably higher than the 13–18% differences observed for the other case studies ( Fig. 1 ).

An external file that holds a picture, illustration, etc.
Object name is jmbe-16-21f1.jpg

Case study teaching method increases student performance on examination questions. Mean score on a set of examination questions related to lessons covered by case studies (black bars) and paired control questions of similar format and difficulty about an unrelated topic (white bars). Chemical bonds, n = 54; Osmosis and diffusion, n = 54; Mitosis and meiosis, n = 51; DNA structure and replication, n = 50. Error bars represent the standard error of the mean (SEM). Asterisk indicates p < 0.05.

Case study teaching increases student perception of learning gains related to core course objectives

Student learning gains were assessed using a modified version of the SALG course evaluation tool ( Appendix 2 ). To determine whether completing case studies was more effective at increasing student perceptions of learning gains than completing textbook readings or participating in class discussions, perceptions of student learning gains for each were compared. In response to the question “Overall, how much did each of the following aspects of the class help your learning?” 82% of students responded that case studies helped a “good” or “great” amount, compared with 70% for participating in class discussions and 58% for completing textbook reading; only 4% of students responded that case studies helped a “small amount” or “provided no help,” compared with 2% for class discussions and 22% for textbook reading ( Fig. 2A ). The differences in reported learning gains derived from the use of case studies compared with class discussion and textbook readings were statistically significant, while the difference in learning gains associated with class discussion compared with textbook reading was not statistically significant by a narrow margin ( p = 0.051).

An external file that holds a picture, illustration, etc.
Object name is jmbe-16-21f2.jpg

The case study teaching method increases student perceptions of learning gains. Student perceptions of learning gains are indicated by plotting responses to the question “How much did each of the following activities: (A) Help your learning overall? (B) Improve your ability to communicate your knowledge of scientific concepts in writing? (C) Improve your ability to communicate your knowledge of scientific concepts orally? (D) Help you understand the connections between scientific concepts and other aspects of your everyday life?” Reponses are represented as follows: Helped a great amount (black bars); Helped a good amount (dark gray bars); Helped a moderate amount (medium gray bars); Helped a small amount (light gray bars); Provided no help (white bars). Asterisk indicates p < 0.05.

To elucidate the effectiveness of case studies at promoting learning gains related to specific course learning objectives compared with class discussions and textbook reading, students were asked how much each of these methods of content delivery specifically helped improve skills that were integral to fulfilling three main course objectives. When students were asked how much each of the methods helped “improve your ability to communicate knowledge of scientific concepts in writing,” 81% of students responded that case studies help a “good” or “great” amount, compared with 63% for class discussions and 59% for textbook reading; only 6% of students responded that case studies helped a “small amount” or “provided no help,” compared with 8% for class discussions and 21% for textbook reading ( Fig. 2B ). When the same question was posed about the ability to communicate orally, 81% of students responded that case studies help a “good” or “great” amount, compared with 68% for class discussions and 50% for textbook reading, while the respective response rates for helped a “small amount” or “provided no help,” were 4%, 6%, and 25% ( Fig. 2C ). The differences in learning gains associated with both written and oral communication were statistically significant when completion of case studies was compared with either participation in class discussion or completion of textbook readings. Compared with textbook reading, class discussions led to a statistically significant increase in oral but not written communication skills.

Students were then asked how much each of the methods helped them “understand the connections between scientific concepts and other aspects of your everyday life.” A total of 79% of respondents declared that case studies help a “good” or “great” amount, compared with 70% for class discussions and 57% for textbook reading ( Fig. 2D ). Only 4% stated that case studies and class discussions helped a “small amount” or “provided no help,” compared with 21% for textbook reading ( Fig. 2D ). Similar to overall learning gains, the use of case studies significantly increased the ability to understand the relevance of science to everyday life compared with class discussion and textbook readings, while the difference in learning gains associated with participation in class discussion compared with textbook reading was not statistically significant ( p = 0.054).

Student perceptions of learning gains resulting from case study teaching are positively correlated to increased performance on examinations, but independent of case study author

To test the hypothesis that case studies produced specifically for this course by the instructor were more effective at promoting learning gains than topically relevant case studies published by authors not associated with this course, perceptions of learning gains were compared for each of the case studies. For both of the case studies produced by the instructor of the course, 87% of students indicated that the case study provided a “good” or “great” amount of help to their learning, and 2% indicated that the case studies provided “little” or “no” help ( Table 1 ). In comparison, an average of 85% of students indicated that the case studies produced by an unaffiliated instructor provided a “good” or “great” amount of help to their learning, and 4% indicated that the case studies provided “little” or “no” help ( Table 1 ). The instructor-produced case studies yielded both the highest and lowest percentage of students reporting the highest level of learning gains (a “great” amount), while case studies produced by unaffiliated instructors yielded intermediate values. Therefore, it can be concluded that the effectiveness of case studies at promoting learning gains is not significantly affected by whether or not the course instructor authored the case study.

Case studies positively affect student perceptions of learning gains about various biological topics.

Chemical bondsYee and Bonney ( )37%50%11%2%0%
Osmosis and diffusionBonney ( )62%25%11%2%0%
Mitosis and meiosisHerreid ( )52%39%5%4%0%
DNA structure and replicationPals-Rylaarsdam ( )55%23%18%2%2%

Finally, to determine whether performance on examination questions accurately predicts student perceptions of learning gains, mean scores on examination questions related to case studies were compared with reported perceptions of learning gains for those case studies ( Fig. 3 ). The coefficient of determination (R 2 value) was 0.81, indicating a strong, but not definitive, positive correlation between perceptions of learning gains and performance on examinations, suggesting that student perception of learning gains is a valid tool for assessing the effectiveness of case studies ( Fig. 3 ). This correlation was independent of case study author.

An external file that holds a picture, illustration, etc.
Object name is jmbe-16-21f3.jpg

Perception of learning gains but not author of case study is positively correlated to score on related examination questions. Percentage of students reporting that each specific case study provided “a great amount of help” to their learning was plotted against the point difference between mean score on examination questions related to that case study and mean score on paired control questions. Positive point differences indicate how much higher the mean scores on case study-related questions were than the mean scores on paired control questions. Black squares represent case studies produced by the instructor of the course; white squares represent case studies produced by unaffiliated instructors. R 2 value indicates the coefficient of determination.

The purpose of this study was to test the hypothesis that teaching with case studies produced by the instructor of a course is more effective at promoting learning gains than using case studies produced by unaffiliated instructors. This study also tested the hypothesis that the case study teaching method is more effective than class discussions and textbook reading at promoting learning gains associated with four of the most commonly taught topics in undergraduate general biology courses: chemical bonds, osmosis and diffusion, mitosis and meiosis, and DNA structure and replication. In addition to assessing content-based learning gains, development of written and oral communication skills and the ability to connect scientific topics with real-world applications was also assessed, because these skills were overarching learning objectives of this course, and classroom activities related to both case studies and control lessons were designed to provide opportunities for students to develop these skills. Finally, data were analyzed to determine whether performance on examination questions is positively correlated to student perceptions of learning gains resulting from case study teaching.

Compared with equivalent control questions about topics of similar complexity taught using class discussions and textbook readings, all four case studies produced statistically significant increases in the mean score on examination questions ( Fig. 1 ). This indicates that case studies are more effective than more commonly used, traditional methods of content delivery at promoting learning of a variety of core concepts covered in general biology courses. The average increase in score on each test item was equivalent to nearly two letter grades, which is substantial enough to elevate the average student performance on test items from the unsatisfactory/failing range to the satisfactory/passing range. The finding that there was no statistical difference between case studies in terms of performance on examination questions suggests that case studies are equally effective at promoting learning of disparate topics in biology. The observations that students did not perform significantly less well on the first case study presented (chemical bonds) compared with the other case studies and that performance on examination questions did not progressively increase with each successive case study suggests that the effectiveness of case studies is not directly related to the amount of experience students have using case studies. Furthermore, anecdotal evidence from previous semesters of this course suggests that, of the four topics addressed by cases in this study, DNA structure and function and osmosis and diffusion are the first and second most difficult for students to grasp. The lack of a statistical difference between case studies therefore suggests that the effectiveness of a case study at promoting learning gains is not directly proportional to the difficulty of the concept covered. However, the finding that use of the osmosis and diffusion case study resulted in the greatest increase in examination performance compared with control questions and also produced the highest student perceptions of learning gains is noteworthy and could be attributed to the fact that it was the only case study evaluated that included a hands-on experiment. Because the inclusion of a hands-on kinetic activity may synergistically enhance student engagement and learning and result in an even greater increase in learning gains than case studies that lack this type of activity, it is recommended that case studies that incorporate this type of activity be preferentially utilized.

Student perceptions of learning gains are strongly motivating factors for engagement in the classroom and academic performance, so it is important to assess the effect of any teaching method in this context ( 19 , 24 ). A modified version of the SALG course evaluation tool was used to assess student perceptions of learning gains because it has been previously validated as an efficacious tool ( Appendix 2 ) ( 20 ). Using the SALG tool, case study teaching was demonstrated to significantly increase student perceptions of overall learning gains compared with class discussions and textbook reading ( Fig. 2A ). Case studies were shown to be particularly useful for promoting perceived development of written and oral communication skills and for demonstrating connections between scientific topics and real-world issues and applications ( Figs. 2B–2D ). Further, student perceptions of “great” learning gains positively correlated with increased performance on examination questions, indicating that assessment of learning gains using the SALG tool is both valid and useful in this course setting ( Fig. 3 ). These findings also suggest that case study teaching could be used to increase student motivation and engagement in classroom activities and thus promote learning and performance on assessments. The finding that textbook reading yielded the lowest student perceptions of learning gains was not unexpected, since reading facilitates passive learning while the class discussions and case studies were both designed to promote active learning.

Importantly, there was no statistical difference in student performance on examinations attributed to the two case studies produced by the instructor of the course compared with the two case studies produced by unaffiliated instructors. The average difference between the two instructor-produced case studies and the two case studies published by unaffiliated instructors was only 3% in terms of both the average score on examination questions (76% compared with 73%) and the average increase in score compared with paired control items (14% compared with 17%) ( Fig. 1 ). Even when considering the inherent qualitative differences of course grades, these differences are negligible. Similarly, the effectiveness of case studies at promoting learning gains was not significantly affected by the origin of the case study, as evidenced by similar percentages of students reporting “good” and “great” learning gains regardless of whether the case study was produced by the course instructor or an unaffiliated instructor ( Table 1 ).

The observation that case studies published by unaffiliated instructors are just as effective as those produced by the instructor of a course suggests that instructors can reasonably rely on the use of pre-published case studies relevant to their class rather than investing the considerable time and effort required to produce a novel case study. Case studies covering a wide range of topics in the sciences are available from a number of sources, and many of them are free access. The National Center for Case Study Teaching in Science (NCCSTS) database ( http://sciencecases.lib.buffalo.edu/cs/ ) contains over 500 case studies that are freely available to instructors, and are accompanied by teaching notes that provide logistical advice and additional resources for implementing the case study, as well as a set of assessment questions with a password-protected answer key. Case study repositories are also maintained by BioQUEST Curriculum Consortium ( http://www.bioquest.org/icbl/cases.php ) and the Science Case Network ( http://sciencecasenet.org ); both are available for use by instructors from outside institutions.

It should be noted that all case studies used in this study were rigorously peer-reviewed and accepted for publication by the NCCSTS prior to the completion of this study ( 2 , 10 , 18 , 25 ); the conclusions of this study may not apply to case studies that were not developed in accordance with similar standards. Because case study teaching involves skills such as creative writing and management of dynamic group discussion in a way that is not commonly integrated into many other teaching methods, it is recommended that novice case study teachers seek training or guidance before writing their first case study or implementing the method. The lack of a difference observed in the use of case studies from different sources should be interpreted with some degree of caution since only two sources were represented in this study, and each by only two cases. Furthermore, in an educational setting, quantitative differences in test scores might produce meaningful qualitative differences in course grades even in the absence of a p value that is statistically significant. For example, there is a meaningful qualitative difference between test scores that result in an average grade of C− and test scores that result in an average grade of C+, even if there is no statistically significant difference between the two sets of scores.

In the future, it could be informative to confirm these findings using a larger cohort, by repeating the study at different institutions with different instructors, by evaluating different case studies, and by directly comparing the effectiveness of the case studying teaching method with additional forms of instruction, such as traditional chalkboard and slide-based lecturing, and laboratory-based activities. It may also be informative to examine whether demographic factors such as student age and gender modulate the effectiveness of the case study teaching method, and whether case studies work equally well for non-science majors taking a science course compared with those majoring in the subject. Since the topical material used in this study is often included in other classes in both high school and undergraduate education, such as cell biology, genetics, and chemistry, the conclusions of this study are directly applicable to a broad range of courses. Presently, it is recommended that the use of case studies in teaching undergraduate general biology and other science courses be expanded, especially for the teaching of capacious issues with real-world applications and in classes where development of written and oral communication skills are key objectives. The use of case studies that involve hands-on activities should be emphasized to maximize the benefit of this teaching method. Importantly, instructors can be confident in the use of pre-published case studies to promote learning, as there is no indication that the effectiveness of the case study teaching method is reliant on the production of novel, customized case studies for each course.

SUPPLEMENTAL MATERIALS

Acknowledgments.

This article benefitted from a President’s Faculty Innovation Grant, Kingsborough Community College. The author declares that there are no conflicts of interest.

† Supplemental materials available at http://jmbe.asm.org

Case Study Teaching and Learning

  • First Online: 09 July 2020

Cite this chapter

case study as a teaching method pdf

  • Riann Singh 2 &
  • Shalini Ramdeo 2  

2408 Accesses

This chapter is the first of three chapters that explore case studies in OD. This chapter presents the fundamentals of case method teaching and learning. It is important to understand such fundamentals before presenting OD cases to readers. In OD and other related fields, the case approach is widely used as a pedagogy for learning by making decisions on information about an issue or problem. Case method teaching and learning strategies attempt to bridge the gap between theoretical and practical applications in any field of study. The chapter also presents the reader with the basics of case method approaches, provides an explanation of its importance in OD, describes how students should approach case method learning, and outlines how they can approach case analysis and discussion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save.

  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

case study as a teaching method pdf

Historical and Theoretical Foundations of Case-Based Learning: Situated Cognition and Collaborative Learning Theory

Research-based principles for case-based learning for teachers’ professional development.

case study as a teaching method pdf

The Role of Case Studies in Global Ethics Education

Burgoyne, J., and A. Mumford. 2001. Learning from the case method: A report to the European case. In Clearing house . Cranfield: ECCH.

Google Scholar  

McDade, S.A. 1995. Case study pedagogy to advance critical thinking. Teaching of Psychology 22 (1): 9–10.

Article   Google Scholar  

Geering, J. 2004. What is a case study and what is it good for? American Political Science Review 98 (2): 341–354.

———. 2001. Learning from the case method: A report to the European case. In Clearing house . Cranfield: ECCH.

Golich, V.L., M. Boyer, P. Franko, and S. Lamy. 2000. The ABCs of case teaching. Pew Case Studies in International Affairs .

Bloom, B.S. 1956. Taxonomy of educational objectives: The classification of educational goals . New York, NY: Longmans, Green.

Pun, Hubert. Ivey publishing case teaching and writing workshop 2018. The University of the West Indies-Arthur Lok Jack Global School of Business.

Further Readings

Download references

Author information

Authors and affiliations.

The University of the West Indies, St. Augustine Campus, Trinidad, Saint Kitts and Nevis

Riann Singh & Shalini Ramdeo

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Riann Singh .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s)

About this chapter

Singh, R., Ramdeo, S. (2020). Case Study Teaching and Learning. In: Leading Organizational Development and Change. Palgrave Macmillan, Cham. https://doi.org/10.1007/978-3-030-39123-2_21

Download citation

DOI : https://doi.org/10.1007/978-3-030-39123-2_21

Published : 09 July 2020

Publisher Name : Palgrave Macmillan, Cham

Print ISBN : 978-3-030-39122-5

Online ISBN : 978-3-030-39123-2

eBook Packages : Business and Management Business and Management (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research
  • Columbia University in the City of New York
  • Office of Teaching, Learning, and Innovation
  • University Policies
  • Columbia Online
  • Academic Calendar
  • Resources and Technology
  • Resources and Guides

Case Method Teaching and Learning

What is the case method? How can the case method be used to engage learners? What are some strategies for getting started? This guide helps instructors answer these questions by providing an overview of the case method while highlighting learner-centered and digitally-enhanced approaches to teaching with the case method. The guide also offers tips to instructors as they get started with the case method and additional references and resources.

On this page:

What is case method teaching.

  • Case Method at Columbia

Why use the Case Method?

Case method teaching approaches, how do i get started.

  • Additional Resources

The CTL is here to help!

For support with implementing a case method approach in your course, email [email protected] to schedule your 1-1 consultation .

Cite this resource: Columbia Center for Teaching and Learning (2019). Case Method Teaching and Learning. Columbia University. Retrieved from [today’s date] from https://ctl.columbia.edu/resources-and-technology/resources/case-method/  

Case method 1 teaching is an active form of instruction that focuses on a case and involves students learning by doing 2 3 . Cases are real or invented stories 4  that include “an educational message” or recount events, problems, dilemmas, theoretical or conceptual issue that requires analysis and/or decision-making.

Case-based teaching simulates real world situations and asks students to actively grapple with complex problems 5 6 This method of instruction is used across disciplines to promote learning, and is common in law, business, medicine, among other fields. See Table 1 below for a few types of cases and the learning they promote.

Table 1: Types of cases and the learning they promote.

Type of Case Description Promoted Learning

Directed case

Presents a scenario that is followed by discussion using a  set of “directed” / close-ended questions that can be answered from course material.

Understanding of fundamental concepts, principles, and facts

Dilemma or decision case

Presents an individual, institution, or community faced with a problem that must be solved. Students may be presented with actual historical outcomes after they work through the case.

Problem solving and decision-making skills

Interrupted case

Presents a problem for students to solve in a progressive disclosure format. Students are given the case in parts that they work on and make decisions about before moving on to the next part.

Problem solving skills
Analysis or issue case Focuses on answering questions and analyzing the situation presented. This can include “retrospective” cases that tell a story and its outcomes and have students analyze what happened and why alternative solutions were not taken. Analysis skills

For a more complete list, see Case Types & Teaching Methods: A Classification Scheme from the National Center for Case Study Teaching in Science.

Back to Top

Case Method Teaching and Learning at Columbia

The case method is actively used in classrooms across Columbia, at the Morningside campus in the School of International and Public Affairs (SIPA), the School of Business, Arts and Sciences, among others, and at Columbia University Irving Medical campus.

Faculty Spotlight:

Professor Mary Ann Price on Using Case Study Method to Place Pre-Med Students in Real-Life Scenarios

Read more  

Professor De Pinho on Using the Case Method in the Mailman Core

Case method teaching has been found to improve student learning, to increase students’ perception of learning gains, and to meet learning objectives 8 9 . Faculty have noted the instructional benefits of cases including greater student engagement in their learning 10 , deeper student understanding of concepts, stronger critical thinking skills, and an ability to make connections across content areas and view an issue from multiple perspectives 11 . 

Through case-based learning, students are the ones asking questions about the case, doing the problem-solving, interacting with and learning from their peers, “unpacking” the case, analyzing the case, and summarizing the case. They learn how to work with limited information and ambiguity, think in professional or disciplinary ways, and ask themselves “what would I do if I were in this specific situation?”

The case method bridges theory to practice, and promotes the development of skills including: communication, active listening, critical thinking, decision-making, and metacognitive skills 12 , as students apply course content knowledge, reflect on what they know and their approach to analyzing, and make sense of a case. 

Though the case method has historical roots as an instructor-centered approach that uses the Socratic dialogue and cold-calling, it is possible to take a more learner-centered approach in which students take on roles and tasks traditionally left to the instructor. 

Cases are often used as “vehicles for classroom discussion” 13 . Students should be encouraged to take ownership of their learning from a case. Discussion-based approaches engage students in thinking and communicating about a case. Instructors can set up a case activity in which students are the ones doing the work of “asking questions, summarizing content, generating hypotheses, proposing theories, or offering critical analyses” 14 . 

The role of the instructor is to share a case or ask students to share or create a case to use in class, set expectations, provide instructions, and assign students roles in the discussion. Student roles in a case discussion can include: 

  • discussion “starters” get the conversation started with a question or posing the questions that their peers came up with; 
  • facilitators listen actively, validate the contributions of peers, ask follow-up questions, draw connections, refocus the conversation as needed; 
  • recorders take-notes of the main points of the discussion, record on the board, upload to CourseWorks, or type and project on the screen; and 
  • discussion “wrappers” lead a summary of the main points of the discussion. 

Prior to the case discussion, instructors can model case analysis and the types of questions students should ask, co-create discussion guidelines with students, and ask for students to submit discussion questions. During the discussion, the instructor can keep time, intervene as necessary (however the students should be doing the talking), and pause the discussion for a debrief and to ask students to reflect on what and how they learned from the case activity. 

Note: case discussions can be enhanced using technology. Live discussions can occur via video-conferencing (e.g., using Zoom ) or asynchronous discussions can occur using the Discussions tool in CourseWorks (Canvas) .

Table 2 includes a few interactive case method approaches. Regardless of the approach selected, it is important to create a learning environment in which students feel comfortable participating in a case activity and learning from one another. See below for tips on supporting student in how to learn from a case in the “getting started” section and how to create a supportive learning environment in the Guide for Inclusive Teaching at Columbia . 

Table 2. Strategies for Engaging Students in Case-Based Learning

Strategy Role of the Instructor

Debate or Trial

Develop critical thinking skills and encourage students to challenge their existing assumptions.

Structure (with guidelines) and facilitate a debate between two diametrically opposed views. Keep time and ask students to reflect on their experience.

Prepare to argue either side. Work in teams to develop and present arguments, and debrief the debate.

Work in teams and prepare an argument for conflicting sides of an issue.

Role play or Public Hearing

Understand diverse points of view, promote creative thinking, and develop empathy. Structure the role-play and facilitate the debrief. At the close of the activity, ask students to reflect on what they learned. Play a role found in a case, understand the points of view of stakeholders involved. Describe the points of view of every stakeholder involved.
Jigsaw Promote peer-to-peer learning, and get students to own their learning. Form student groups, assign each group a piece of the case to study.  Form new groups with an “expert” for each previous group. Facilitate a debrief. Be responsible for learning and then teaching case material to peers. Develop expertise for part of the problem. Facilitate case method materials for their peers.
“Clicker case”   / (ARS) Gauge your students’ learning; get all students to respond to questions, and launch or enhance a case discussion. Instructor presents a case in stages, punctuated with questions in Poll Everywhere that students respond to using a mobile device.  Respond to questions using a mobile device. Reflect on why they responded the way they did and discuss with peers seated next to them. Articulate their understanding of a case components.

Approaches to case teaching should be informed by course learning objectives, and can be adapted for small, large, hybrid, and online classes. Instructional technology can be used in various ways to deliver, facilitate, and assess the case method. For instance, an online module can be created in CourseWorks (Canvas) to structure the delivery of the case, allow students to work at their own pace, engage all learners, even those reluctant to speak up in class, and assess understanding of a case and student learning. Modules can include text, embedded media (e.g., using Panopto or Mediathread ) curated by the instructor, online discussion, and assessments. Students can be asked to read a case and/or watch a short video, respond to quiz questions and receive immediate feedback, post questions to a discussion, and share resources. 

For more information about options for incorporating educational technology to your course, please contact your Learning Designer .

To ensure that students are learning from the case approach, ask them to pause and reflect on what and how they learned from the case. Time to reflect  builds your students’ metacognition, and when these reflections are collected they provides you with insights about the effectiveness of your approach in promoting student learning.

Well designed case-based learning experiences: 1) motivate student involvement, 2) have students doing the work, 3) help students develop knowledge and skills, and 4) have students learning from each other.  

Designing a case-based learning experience should center around the learning objectives for a course. The following points focus on intentional design. 

Identify learning objectives, determine scope, and anticipate challenges. 

  • Why use the case method in your course? How will it promote student learning differently than other approaches? 
  • What are the learning objectives that need to be met by the case method? What knowledge should students apply and skills should they practice? 
  • What is the scope of the case? (a brief activity in a single class session to a semester-long case-based course; if new to case method, start small with a single case). 
  • What challenges do you anticipate (e.g., student preparation and prior experiences with case learning, discomfort with discussion, peer-to-peer learning, managing discussion) and how will you plan for these in your design? 
  • If you are asking students to use transferable skills for the case method (e.g., teamwork, digital literacy) make them explicit. 

Determine how you will know if the learning objectives were met and develop a plan for evaluating the effectiveness of the case method to inform future case teaching. 

  • What assessments and criteria will you use to evaluate student work or participation in case discussion? 
  • How will you evaluate the effectiveness of the case method? What feedback will you collect from students? 
  • How might you leverage technology for assessment purposes? For example, could you quiz students about the case online before class, accept assignment submissions online, use audience response systems (e.g., PollEverywhere) for formative assessment during class? 

Select an existing case, create your own, or encourage students to bring course-relevant cases, and prepare for its delivery

  • Where will the case method fit into the course learning sequence? 
  • Is the case at the appropriate level of complexity? Is it inclusive, culturally relevant, and relatable to students? 
  • What materials and preparation will be needed to present the case to students? (e.g., readings, audiovisual materials, set up a module in CourseWorks). 

Plan for the case discussion and an active role for students

  • What will your role be in facilitating case-based learning? How will you model case analysis for your students? (e.g., present a short case and demo your approach and the process of case learning) (Davis, 2009). 
  • What discussion guidelines will you use that include your students’ input? 
  • How will you encourage students to ask and answer questions, summarize their work, take notes, and debrief the case? 
  • If students will be working in groups, how will groups form? What size will the groups be? What instructions will they be given? How will you ensure that everyone participates? What will they need to submit? Can technology be leveraged for any of these areas? 
  • Have you considered students of varied cognitive and physical abilities and how they might participate in the activities/discussions, including those that involve technology? 

Student preparation and expectations

  • How will you communicate about the case method approach to your students? When will you articulate the purpose of case-based learning and expectations of student engagement? What information about case-based learning and expectations will be included in the syllabus?
  • What preparation and/or assignment(s) will students complete in order to learn from the case? (e.g., read the case prior to class, watch a case video prior to class, post to a CourseWorks discussion, submit a brief memo, complete a short writing assignment to check students’ understanding of a case, take on a specific role, prepare to present a critique during in-class discussion).

Andersen, E. and Schiano, B. (2014). Teaching with Cases: A Practical Guide . Harvard Business Press. 

Bonney, K. M. (2015). Case Study Teaching Method Improves Student Performance and Perceptions of Learning Gains†. Journal of Microbiology & Biology Education , 16 (1), 21–28. https://doi.org/10.1128/jmbe.v16i1.846

Davis, B.G. (2009). Chapter 24: Case Studies. In Tools for Teaching. Second Edition. Jossey-Bass. 

Garvin, D.A. (2003). Making the Case: Professional Education for the world of practice. Harvard Magazine. September-October 2003, Volume 106, Number 1, 56-107.

Golich, V.L. (2000). The ABCs of Case Teaching. International Studies Perspectives. 1, 11-29. 

Golich, V.L.; Boyer, M; Franko, P.; and Lamy, S. (2000). The ABCs of Case Teaching. Pew Case Studies in International Affairs. Institute for the Study of Diplomacy. 

Heath, J. (2015). Teaching & Writing Cases: A Practical Guide. The Case Center, UK. 

Herreid, C.F. (2011). Case Study Teaching. New Directions for Teaching and Learning. No. 128, Winder 2011, 31 – 40. 

Herreid, C.F. (2007). Start with a Story: The Case Study Method of Teaching College Science . National Science Teachers Association. Available as an ebook through Columbia Libraries. 

Herreid, C.F. (2006). “Clicker” Cases: Introducing Case Study Teaching Into Large Classrooms. Journal of College Science Teaching. Oct 2006, 36(2). https://search.proquest.com/docview/200323718?pq-origsite=gscholar  

Krain, M. (2016). Putting the Learning in Case Learning? The Effects of Case-Based Approaches on Student Knowledge, Attitudes, and Engagement. Journal on Excellence in College Teaching. 27(2), 131-153. 

Lundberg, K.O. (Ed.). (2011). Our Digital Future: Boardrooms and Newsrooms. Knight Case Studies Initiative. 

Popil, I. (2011). Promotion of critical thinking by using case studies as teaching method. Nurse Education Today, 31(2), 204–207. https://doi.org/10.1016/j.nedt.2010.06.002

Schiano, B. and Andersen, E. (2017). Teaching with Cases Online . Harvard Business Publishing. 

Thistlethwaite, JE; Davies, D.; Ekeocha, S.; Kidd, J.M.; MacDougall, C.; Matthews, P.; Purkis, J.; Clay D. (2012). The effectiveness of case-based learning in health professional education: A BEME systematic review . Medical Teacher. 2012; 34(6): e421-44. 

Yadav, A.; Lundeberg, M.; DeSchryver, M.; Dirkin, K.; Schiller, N.A.; Maier, K. and Herreid, C.F. (2007). Teaching Science with Case Studies: A National Survey of Faculty Perceptions of the Benefits and Challenges of Using Cases. Journal of College Science Teaching; Sept/Oct 2007; 37(1). 

Weimer, M. (2013). Learner-Centered Teaching: Five Key Changes to Practice. Second Edition. Jossey-Bass.

Additional resources 

Teaching with Cases , Harvard Kennedy School of Government. 

Features “what is a teaching case?” video that defines a teaching case, and provides documents to help students prepare for case learning, Common case teaching challenges and solutions, tips for teaching with cases. 

Promoting excellence and innovation in case method teaching: Teaching by the Case Method , Christensen Center for Teaching & Learning. Harvard Business School. 

National Center for Case Study Teaching in Science . University of Buffalo. 

A collection of peer-reviewed STEM cases to teach scientific concepts and content, promote process skills and critical thinking. The Center welcomes case submissions. Case classification scheme of case types and teaching methods:

  • Different types of cases: analysis case, dilemma/decision case, directed case, interrupted case, clicker case, a flipped case, a laboratory case. 
  • Different types of teaching methods: problem-based learning, discussion, debate, intimate debate, public hearing, trial, jigsaw, role-play. 

Columbia Resources

Resources available to support your use of case method: The University hosts a number of case collections including: the Case Consortium (a collection of free cases in the fields of journalism, public policy, public health, and other disciplines that include teaching and learning resources; SIPA’s Picker Case Collection (audiovisual case studies on public sector innovation, filmed around the world and involving SIPA student teams in producing the cases); and Columbia Business School CaseWorks , which develops teaching cases and materials for use in Columbia Business School classrooms.

Center for Teaching and Learning

The Center for Teaching and Learning (CTL) offers a variety of programs and services for instructors at Columbia. The CTL can provide customized support as you plan to use the case method approach through implementation. Schedule a one-on-one consultation. 

Office of the Provost

The Hybrid Learning Course Redesign grant program from the Office of the Provost provides support for faculty who are developing innovative and technology-enhanced pedagogy and learning strategies in the classroom. In addition to funding, faculty awardees receive support from CTL staff as they redesign, deliver, and evaluate their hybrid courses.

The Start Small! Mini-Grant provides support to faculty who are interested in experimenting with one new pedagogical strategy or tool. Faculty awardees receive funds and CTL support for a one-semester period.

Explore our teaching resources.

  • Blended Learning
  • Contemplative Pedagogy
  • Inclusive Teaching Guide
  • FAQ for Teaching Assistants
  • Metacognition

CTL resources and technology for you.

  • Overview of all CTL Resources and Technology
  • The origins of this method can be traced to Harvard University where in 1870 the Law School began using cases to teach students how to think like lawyers using real court decisions. This was followed by the Business School in 1920 (Garvin, 2003). These professional schools recognized that lecture mode of instruction was insufficient to teach critical professional skills, and that active learning would better prepare learners for their professional lives. ↩
  • Golich, V.L. (2000). The ABCs of Case Teaching. International Studies Perspectives. 1, 11-29. ↩
  • Herreid, C.F. (2007). Start with a Story: The Case Study Method of Teaching College Science . National Science Teachers Association. Available as an ebook through Columbia Libraries. ↩
  • Davis, B.G. (2009). Chapter 24: Case Studies. In Tools for Teaching. Second Edition. Jossey-Bass. ↩
  • Andersen, E. and Schiano, B. (2014). Teaching with Cases: A Practical Guide . Harvard Business Press. ↩
  • Lundberg, K.O. (Ed.). (2011). Our Digital Future: Boardrooms and Newsrooms. Knight Case Studies Initiative. ↩
  • Heath, J. (2015). Teaching & Writing Cases: A Practical Guide. The Case Center, UK. ↩
  • Bonney, K. M. (2015). Case Study Teaching Method Improves Student Performance and Perceptions of Learning Gains†. Journal of Microbiology & Biology Education , 16 (1), 21–28. https://doi.org/10.1128/jmbe.v16i1.846 ↩
  • Krain, M. (2016). Putting the Learning in Case Learning? The Effects of Case-Based Approaches on Student Knowledge, Attitudes, and Engagement. Journal on Excellence in College Teaching. 27(2), 131-153. ↩
  • Thistlethwaite, JE; Davies, D.; Ekeocha, S.; Kidd, J.M.; MacDougall, C.; Matthews, P.; Purkis, J.; Clay D. (2012). The effectiveness of case-based learning in health professional education: A BEME systematic review . Medical Teacher. 2012; 34(6): e421-44. ↩
  • Yadav, A.; Lundeberg, M.; DeSchryver, M.; Dirkin, K.; Schiller, N.A.; Maier, K. and Herreid, C.F. (2007). Teaching Science with Case Studies: A National Survey of Faculty Perceptions of the Benefits and Challenges of Using Cases. Journal of College Science Teaching; Sept/Oct 2007; 37(1). ↩
  • Popil, I. (2011). Promotion of critical thinking by using case studies as teaching method. Nurse Education Today, 31(2), 204–207. https://doi.org/10.1016/j.nedt.2010.06.002 ↩
  • Weimer, M. (2013). Learner-Centered Teaching: Five Key Changes to Practice. Second Edition. Jossey-Bass. ↩
  • Herreid, C.F. (2006). “Clicker” Cases: Introducing Case Study Teaching Into Large Classrooms. Journal of College Science Teaching. Oct 2006, 36(2). https://search.proquest.com/docview/200323718?pq-origsite=gscholar ↩

This website uses cookies to identify users, improve the user experience and requires cookies to work. By continuing to use this website, you consent to Columbia University's use of cookies and similar technologies, in accordance with the Columbia University Website Cookie Notice .

  • Harvard Business School →
  • Christensen Center →

Teaching by the Case Method

  • Preparing to Teach
  • Leading in the Classroom
  • Providing Assessment & Feedback
  • Sample Class

Case Method in Practice

Chris Christensen described case method teaching as "the art of managing uncertainty"—a process in which the instructor serves as "planner, host, moderator, devil's advocate, fellow-student, and judge," all in search of solutions to real-world problems and challenges.

Unlike lectures, case method classes unfold without a detailed script. Successful instructors simultaneously manage content and process, and they must prepare rigorously for both. Case method teachers learn to balance planning and spontaneity. In practice, they pursue opportunities and "teachable moments" that emerge throughout the discussion, and deftly guide students toward discovery and learning on multiple levels. The principles and techniques are developed, Christensen says, "through collaboration and cooperation with friends and colleagues, and through self-observation and reflection."

This section of the Christensen Center website explores the Case Method in Practice along the following dimensions:

  • Providing Assessment and Feedback

Each subsection provides perspectives and guidance through a written overview, supplemented by video commentary from experienced case method instructors. Where relevant, links are included to downloadable documents produced by the Christensen Center or Harvard Business School Publishing. References for further reading are provided as well.

An additional subsection, entitled Resources, appears at the end. It combines references from throughout the Case Method in Practice section with additional information on published materials and websites that may be of interest to prospective, new, and experienced case method instructors.

Note: We would like to thank Harvard Business School Publishing for permission to incorporate the video clips that appear in the Case Method in Practice section of our website. The clips are drawn from video excerpts included in Participant-Centered Learning and the Case Method: A DVD Case Teaching Tool (HBSP, 2003).

Christensen Center Tip Sheets

  • Characteristics of Effective Case Method Teaching
  • Elements of Effective Class Preparation
  • Guidelines for Effective Observation of Case Instructors
  • In-Class Assessment of Discussion-Based Teaching
  • Questions for Class Discussions
  • Teaching Quantitative Material
  • Strategies and Tactics for Sensitive Topics

Curriculum Innovation

The case method has evolved so students may act as decision-makers in new engaging formats:

Game Simulations

Multimedia cases, ideo: human-centered service design.

Using Case Studies to Teach

case study as a teaching method pdf

Why Use Cases?

Many students are more inductive than deductive reasoners, which means that they learn better from examples than from logical development starting with basic principles. The use of case studies can therefore be a very effective classroom technique.

Case studies are have long been used in business schools, law schools, medical schools and the social sciences, but they can be used in any discipline when instructors want students to explore how what they have learned applies to real world situations. Cases come in many formats, from a simple “What would you do in this situation?” question to a detailed description of a situation with accompanying data to analyze. Whether to use a simple scenario-type case or a complex detailed one depends on your course objectives.

Most case assignments require students to answer an open-ended question or develop a solution to an open-ended problem with multiple potential solutions. Requirements can range from a one-paragraph answer to a fully developed group action plan, proposal or decision.

Common Case Elements

Most “full-blown” cases have these common elements:

  • A decision-maker who is grappling with some question or problem that needs to be solved.
  • A description of the problem’s context (a law, an industry, a family).
  • Supporting data, which can range from data tables to links to URLs, quoted statements or testimony, supporting documents, images, video, or audio.

Case assignments can be done individually or in teams so that the students can brainstorm solutions and share the work load.

The following discussion of this topic incorporates material presented by Robb Dixon of the School of Management and Rob Schadt of the School of Public Health at CEIT workshops. Professor Dixon also provided some written comments that the discussion incorporates.

Advantages to the use of case studies in class

A major advantage of teaching with case studies is that the students are actively engaged in figuring out the principles by abstracting from the examples. This develops their skills in:

  • Problem solving
  • Analytical tools, quantitative and/or qualitative, depending on the case
  • Decision making in complex situations
  • Coping with ambiguities

Guidelines for using case studies in class

In the most straightforward application, the presentation of the case study establishes a framework for analysis. It is helpful if the statement of the case provides enough information for the students to figure out solutions and then to identify how to apply those solutions in other similar situations. Instructors may choose to use several cases so that students can identify both the similarities and differences among the cases.

Depending on the course objectives, the instructor may encourage students to follow a systematic approach to their analysis.  For example:

  • What is the issue?
  • What is the goal of the analysis?
  • What is the context of the problem?
  • What key facts should be considered?
  • What alternatives are available to the decision-maker?
  • What would you recommend — and why?

An innovative approach to case analysis might be to have students  role-play the part of the people involved in the case. This not only actively engages students, but forces them to really understand the perspectives of the case characters. Videos or even field trips showing the venue in which the case is situated can help students to visualize the situation that they need to analyze.

Accompanying Readings

Case studies can be especially effective if they are paired with a reading assignment that introduces or explains a concept or analytical method that applies to the case. The amount of emphasis placed on the use of the reading during the case discussion depends on the complexity of the concept or method. If it is straightforward, the focus of the discussion can be placed on the use of the analytical results. If the method is more complex, the instructor may need to walk students through its application and the interpretation of the results.

Leading the Case Discussion and Evaluating Performance

Decision cases are more interesting than descriptive ones. In order to start the discussion in class, the instructor can start with an easy, noncontroversial question that all the students should be able to answer readily. However, some of the best case discussions start by forcing the students to take a stand. Some instructors will ask a student to do a formal “open” of the case, outlining his or her entire analysis.  Others may choose to guide discussion with questions that move students from problem identification to solutions.  A skilled instructor steers questions and discussion to keep the class on track and moving at a reasonable pace.

In order to motivate the students to complete the assignment before class as well as to stimulate attentiveness during the class, the instructor should grade the participation—quantity and especially quality—during the discussion of the case. This might be a simple check, check-plus, check-minus or zero. The instructor should involve as many students as possible. In order to engage all the students, the instructor can divide them into groups, give each group several minutes to discuss how to answer a question related to the case, and then ask a randomly selected person in each group to present the group’s answer and reasoning. Random selection can be accomplished through rolling of dice, shuffled index cards, each with one student’s name, a spinning wheel, etc.

Tips on the Penn State U. website: https://sites.psu.edu/pedagogicalpractices/case-studies/

If you are interested in using this technique in a science course, there is a good website on use of case studies in the sciences at the National Science Teaching Association.

HKS Case Program

  • Case Teaching Resources

Teaching With Cases

Included here are resources to learn more about case method and teaching with cases.

What Is A Teaching Case?

This video explores the definition of a teaching case and introduces the rationale for using case method.

Narrated by Carolyn Wood, former director of the HKS Case Program

Learning by the Case Method

Questions for class discussion, common case teaching challenges and possible solutions, teaching with cases tip sheet, teaching ethics by the case method.

The case method is an effective way to increase student engagement and challenge students to integrate and apply skills to real-world problems. In these videos,  Using the Case Method to Teach Public Policy , you'll find invaluable insights into the art of case teaching from one of HKS’s most respected professors, Jose A. Gomez-Ibanez.

Chapter 1: Preparing for Class (2:29)

Chapter 2: How to begin the class and structure the discussion blocks (1:37)

Chapter 3: How to launch the discussion (1:36)

Chapter 4: Tools to manage the class discussion (2:23)

Chapter 5: Encouraging participation and acknowledging students' comments (1:52)

Chapter 6: Transitioning from one block to the next / Importance of body (2:05)

Chapter 7: Using the board plan to feed the discussion (3:33)

Chapter 8: Exploring the richness of the case (1:42)

Chapter 9: The wrap-up. Why teach cases? (2:49)

  • Open access
  • Published: 02 September 2024

Empathy ability and influencing factors among pediatric residents in China: a mixed-methods study

  • Pingping Li 1   na1 ,
  • Ling Weng 2   na1 &
  • Lu Dong 1  

BMC Medical Education volume  24 , Article number:  955 ( 2024 ) Cite this article

Metrics details

Empathy is one of the fundamental factors enhancing the therapeutic effects of physician–patient relationships, but there has been no relevant research in China on the pediatric resident physicians’ capacity for empathy or the influencing factors.

A mixed-methods study was undertaken. The student version of the Jefferson Scale of Empathy was used to assess 181 postgraduate residents at Shanghai Children’s Medical Center and Shanghai Children’s Hospital. Differences in empathy ability among pediatric resident physicians of different genders and specialties were analyzed using independent sample t-tests and Mann–Whitney U tests. A one-way analysis of variance was used to analyze the differences in empathy ability at different educational levels and years of medical residency training. Seven third-year postgraduate pediatric residents from Shanghai Children’s Medical Center participated in semi-structured interviews exploring the influencing factors. We analyzed the interview transcripts using thematic analysis.

The scale was completed by 154 pediatric residents. No statistically significant differences in empathy were found between educational level, postgraduate year, gender, or specialty. The factors influencing empathy in doctor–patient communication included the person who accompanied the child to see the doctor, how the children cooperated with doctors for medical treatment, the volume of pediatric outpatient and emergency visits, and the physician’s ability to withstand pressure. All interviewed resident physicians regarded learning empathy as important but rarely spent extra time learning it.

Conclusions

The evaluation results of resident physicians on changes in empathy after improving clinical abilities vary according to their understanding of empathy, and the work environment has an important impact on pediatricians’ empathy ability. Their empathy score is relatively low, and this requires exploration and intervention.

Peer Review reports

There has been a long-standing tension in the physician–patient relationship in pediatric clinics in China [ 1 ]. There are complex reasons for this, but research has found that 80% of doctor–patient disputes result from poor communication, often due to a lack of empathy during interactions [ 2 , 3 ]. The current medical literature defines empathy as the ability to understand the patient’s perspective and feelings, as well as sharing and acting on this understanding during interpersonal interactions [ 4 ]. Studies show that empathy is linked with enhanced patient satisfaction and treatment compliance [ 5 ]. High levels of empathy in healthcare professionals are connected to positive clinical prognoses for patients by reducing mental stress, improving self-awareness, and reducing anxiety and depression [ 6 , 7 ].

Residency training is mandatory for doctors to qualify to practice independently [ 8 ]. In China, standardized residency training began nationwide in 2013; seven government ministries jointly issued the policy document, “Guidance on the Establishment of a Standardized Residency Training System” [ 9 ]. All clinicians, including pediatricians, are required to undergo three-year residency training after graduating from medical school. During these three years, residents study in different departments.

The Chinese Medical Doctor Association recommends six core competencies for medical residents based on the content and standards for standardized residency training (2022 version): professionalism, clinical professionalism, managing patients, communication, teaching, and learning. While professionalism necessarily involves knowledge and skill, the unique characteristic of medical professionalism is empathy [ 10 ], a capacity that is also strongly related to communication. Thus, cultivating empathy is important for medical residents.

The student version of the Jefferson Scale of Empathy (JSE-S) was specifically developed as a self-report scale for the assessment of empathy in medical students [ 11 , 12 ]. Some studies have reported a decline in empathy among medical students [ 13 , 14 , 15 ], while some have noted that students in their final year scored higher for empathy than did first-year medical students [ 16 , 17 ] and others have reported little change in empathy scores across the years [ 18 ]. However, there is little comparable research for China.

Some studies have shown that the work environment can affect the development of empathy [ 19 ], and pediatric departments recorded a high incidence of doctor–patient disputes [ 20 ]. According to the 2019 National Medical Injury Liability Dispute Case Big Data Report, pediatrics is a high-risk area for doctor–patient disputes.

Therefore, this study aimed to analyze whether there are differences in the ability to empathize among pediatric resident physicians of different grades and whether the pediatric medical environment affects that ability. A mixed-methods approach was used: We assessed empathy scores using the JSE-S and then conducted a semi-structured survey to discuss the influencing factors.

Study design

Quantitative and qualitative methodologies were used to analyze empathy and influencing factors among pediatric residents, incorporating a survey for the quantitative analysis and interviews for the qualitative assessment.

Quantitative methodology

Data collection: survey.

In July 2023, all residents of the Shanghai Children’s Medical Center, affiliated with Shanghai Jiao Tong University School of Medicine, and the Children’s Hospital affiliated with Shanghai Jiao Tong University School of Medicine, were surveyed using an anonymous online questionnaire. Informed consent was obtained from all participants. The survey was available online for one week, and after three days, the residents were sent reminders via WeChat by staff members from the two hospitals.

The JSE-S was used in this study [ 21 ] The scale consists of 20 items, measured using a seven-point Likert scale ranging from 1 = completely disagree to 7 = completely agree but with items 1, 3, 6, 7, 8, 11, 12, 14, 18, and 19 reverse scored. The total score of the scale comprises the total score for all items, with higher scores indicating higher levels of empathy. The scale is subdivided into three dimensions: perspective-taking, compassionate care, and standing in the patient’s shoes [ 12 , 21 ]. The maximum score on the JSE is 140, and the minimum score is 20. Other data collected as part of the JSE survey included sex and years of medical resident training, specialty, and education.

Data analysis

Independent samples t-tests were performed to assess differences in mean JSE scores between sexes. The Mann–Whitney U test was used to compare the differences in mean JSE scores between specialties. A one-way analysis of variance (ANOVA) was performed to compare the differences between the different years of medical residency training and different levels of education. All analyses were performed using the IBM SPSS Statistics Version 25.0. The data are presented as mean ± standard deviation (SD) unless otherwise stated.

Qualitative methods

Data collection: interviews.

As the third-year postgraduate (PGY3) pediatric residents who entered standardized training for pediatric resident physicians in 2020 had completed their training, in August 2023, PGY3 pediatric residents at the Shanghai Children’s Medical Center were asked to participate in the interviews. Seven consented to participate (Table  1 ).

Two researchers (LPP and WL) conducted individual face-to-face semi-structured interviews. The interviews lasted 50–70 min (60-minute average) and were audio recorded and transcribed verbatim by a professional service. The interview guide (Table  2 ) included three aspects: work environment, residents’ standardized training, and open questions. The open-ended questions explored the most memorable cases of smooth and unsmooth communication with patients.

During the interviews, the research followed the guidelines of the interview outline and interviewees’ actual situations. The order and method of questioning were adjusted according to the context and the value of the questions. The language used by the interviewees was accepted without judgment, and no inducements or interventions were made. To protect the privacy of the respondents, their names have been replaced by numbers.

In accordance with a constructivist approach, the analyses tapped into the sense that the participants made of their experiences of communicating with patients. Inductive thematic analysis [ 22 ] was used to identify themes. The interviews were audio recorded and transcribed verbatim by a professional service (iFLYTEK). WL and LPP read and reread transcripts for immersion and familiarization. Two authors (WL and LPP) iteratively coded the data deemed relevant to the current study using Nvivo14 [ 23 ]. Disagreements were discussed with another author (DL). The next step was to group related codes into potential themes. Subsequently, three authors (LPP, WL, and DL) jointly reviewed the themes to ensure that the codes in each theme were coherent and that the codes in different themes could be clearly distinguished.

Quantitative research results

Study population characteristics.

In total, 154 residents responded to the survey, a response rate of 85.1% (154/181). The participating pediatric residents included 60 (39.0%) residents from postgraduate year 1 (PGY1), 48 (31.1%) from postgraduate year 2 (PGY2), and 46 (29.9%) from PGY3. A total of 111 participants (72.1%) were women, and 43 (27.9%) were men. A total of 112 (72.7%) participants were pediatric residents, and 42 (27.3%) were pediatric surgery residents. There were 63 (40.9%) undergraduate residents, 69 (44.8%) master’s residents, and 22 (14.3%) doctoral degree residents in this study. The mean JSE-S score for the overall study population was 81.41 ± 5.43.

Based on the independent samples t-test and Mann–Whitney test, we found no differences in pediatrics’ sex (t = 0.878, p  = 0.381) or specialty (z=-0.981, p  = 0.327).

The education levels of different residents were not significantly different (f = 1.455, p  = 0.237) (Table  3 ).

Empathy competencies of pediatric residents with different pediatric standardized training years

The empathetic recognition mean JSE-S score was 81.41 ± 5.43. Compared to PGY1 (81.33 ± 4.45) and PGY2 (80.75 ± 4.08), PGY3 had a high JSE-S score (82.2 ± 7.48), but there were no significant differences between different years of medical residency training (f = 0.839, p  = 0.434) (Table  4 ).

In the perspective-taking scale, the mean JSE-S score was 54.66 ± 6.70, and the one-way ANOVA revealed significant differences between PGYs (f = 3.51, p  = 0.032). There were significant differences between PGYs for three items: “Physicians’ understanding of the emotional status of their patients, and that of their families is an important component of the physician–patient relationship” (f = 4.391, p  = 0.014); “Physicians should try to stand in their patients’ shoes when providing care to them” (f = 4.697, p  = 0.010); and “I believe that empathy is an important therapeutic factor in medical treatment” (f = 250.996, p  = 0.000).

The mean JSE-S score on the compassionate care scale was 20.76 ± 5.97. PYG1, PYG2, and PYG3 scored 22.42 ± 4.48, 19.42 ± 6.17, and 20.00 ± 7.00, respectively, indicating significant differences between them (f = 4.053, p  = 0.019). Significant differences were found for years of pediatric residency training for “Physicians should not allow themselves to be influenced by strong personal bonds between their patients (f = 40.158, p = 0.000) and their family members” and “I do not enjoy reading non-medical literature or the arts.” (f = 37.236, p  = 0.000).

The standing in the patient’s shoes dimension of the JSE-S showed no significant differences between the PGYs.

Qualitative research results

The influence of pediatric visiting environment on physicians’ empathy ability.

Because children are unable to express their discomfort or illness well, they should be accompanied by parents or grandparents when attending hospital. Doctors, therefore, have to communicate with the parents or grandparents, and their circumstances, including their education level, familiarity with the child, physical health status, communication and understanding skills, and attitude toward doctors, can affect empathy between doctors and patients.

Compared to adult hospitals , the empathy ability of doctors in children’s hospitals may be slightly reduced because we are dealing with parents , not patients themselves , and many of them are brought for treatment by elderly people. Elderly people do not understand the child’s disease or may have difficulty hearing clearly , which can greatly affect communication , let alone empathy. (P1, M) Some elderly people may regard their children’s condition unnecessarily seriously , resulting in us not being able to understand the symptoms of the child properly. (P2, F) Parents tend to have a good understanding of the child’s condition. If grandparents with a low education or if other relatives bring them over , the process of consultation may not be very smooth. (P3, F) The child might be brought over on the first day of treatment by their parents but subsequently by older relatives. Because the child is still running a fever for two or three days , they will be very anxious. When they communicate this to us , their attitude is often poor. (P4, M) If an elderly person brings a child to see a doctor , I often ask the elderly person to call the parents on the spot so I can listen to them. It is better this way. (P7, M)

Some resident physicians said that the language of the patients’ parents significantly impacted their ability to empathize:

Because I am not from Shanghai and grandparents who accompany their children may speak the local dialect , we are unable to communicate. This is challenging for me and many colleagues because most of us cannot understand the Shanghai dialect. (P2, F)

The child’s upbringing and willingness to cooperate with treatment were also identified as important:

Some parents may spoil their children , some children start acting spoiled as soon as they arrive at the clinic , and some even make a scene , which can interfere with the medical treatment. (P2, F)

The volume of pediatric outpatient and emergency visits and the self-regulation ability of physicians facing strong workloads can also affect communication and empathy between doctors and patients:

Outpatient hours may limit our communication with patients. Generally , you need to finish one within 5–10 min. Otherwise , the patient’s visit may be too long , and you may not be able to see all registered patients before leaving work. For example , last summer , our two doctors saw an average of around 130–150 patients a day , while I saw an average of 80–90 patients per day. That was during the pandemic last year , and there will definitely be more this year. (P7, M) The doctor is very tired and has a large number of patients. If the patients are in a hurry , you need to see them within a short period. If our resident physician’s self-regulation ability is not good , it will affect communication. (P5, M)

Standardized training for resident physicians to cultivate empathy skills

The three resident physicians interviewed believed that in their first year of participating in standardized resident training, they felt more empathy for patients due to their lack of clinical knowledge. By contrast, after three years of clinical practice and improvements in their clinical knowledge, they viewed the patient’s condition more rationally and from a medical perspective.

Because you have learned systematic knowledge about diseases , you know what the likely outcome will be objectively. Consequently , your empathy regarding the intermediate treatment process and patients may decrease , and you have to think about the treatment from a doctor’s professional perspective. (P2, F) When I first entered standardized training for resident physicians , I lacked clinical experience and was not familiar with the treatment process for many diseases. When I encountered critically ill patients , I felt that they were so pitiful. After three years of training , however , these diseases have become more familiar. I know the treatment processes for each disease and feel that empathy has decreased. (P3, F)

The two residents felt that empathy followed a curved path. Residents who have just entered clinical practice have relatively high empathy. However, as their clinical abilities and understanding of diseases increase, coupled with the busy workload of clinical work, their empathy decreases. However, empathy may improve after becoming a physician.

When I went to the outpatient clinic with my supervisor , I felt that my supervisor , who was already a chief physician , had reached a very high level of empathy. I think his empathy ability was much stronger than mine; that is , regardless of the patient’s attitude , he could think from the patient’s perspective. As a resident physician , I still cannot reach the level of empathy that my supervisor possesses. Perhaps I need to acquire some experience in my career to reach the level of empathy that my supervisor possesses , but the process may be a bit complex. (P2, F) As a physician , I think that empathy is a curved process , initially high , but as your clinical abilities improve and work experience increases , empathy may decrease. The attending physician is very busy , and at some point , the value of empathy may be underestimated , but it increases again with age. Perhaps at a certain point or stage , you suddenly feel it is important , and you become very focused on the ability to empathize. (P3, F)

Two interviewees believed that after three years of standardized training for resident physicians, their empathy skills had improved. Three years ago, they only thought about the disease. Today, they are able to think from the perspective of the patient and stand in their shoes.

For example , parents who come to the surgical emergency department are very anxious. As a physician , I can understand their feelings. Some common diseases that you have seen before have a likely trajectory. Although you are also anxious about their diseases , you know how to treat different disease symptoms and have the ability to handle them. I know why parents are anxious , and I can think from their perspective. (P4, F) As you gain an understanding of diseases and as your own abilities and clinical experience improve , your feelings toward the patient change. Because I know how a disease like Mycoplasma pneumonia , for example , develops , when I was in PGY1 , I felt that the child’s cough was very severe , which made the parents very anxious. At the time , I was also quite anxious. Now , however , I know that the course of this disease is long. If parents are very anxious , I will explain this disease to them and comfort them. I have had more contact with patients , and I will consider the problem more from their perspective. (P6, F)

Cultivating residents’ empathy ability during standardized resident training

Self-study: The residents believed it important to learn theories relevant to doctor–patient communication and empathy. The interviews revealed that most of them improved their communication skills in clinical practice, and a few residents spent time studying how to communicate with patients. Only one student bought a book about communication, and one student paid attention to the ability to communicate with patients because they had to take an exam on doctor–patient communication.

When I was admitted for training , there was a medical teacher talking about doctor–patient disputes , which was quite scary at the time. I bought relevant books but did not read them. (P1, M) I have not bought any books related to doctor–patient communication , but I think in clinical practice , it is necessary to participate more in the conversation process with superiors , listen more to their conversations , listen more to how they communicate with patients , and then try to learn how to better communicate with patients on my own. (P2, F) This year’s standardized training and graduation assessment for resident physicians added an assessment of doctor–patient communication. I have paid attention to this knowledge , but I have not delved into it. (P3, F)

Training course: It is necessary to set courses to cultivate residents’ empathy ability, such as theoretical training courses, case-sharing groups, and scenario simulations.

I think it’s necessary to set courses for residents to teach us how to communicate , how to express the appropriate level of empathy to patients , etc. (P1, M) I think theoretical teaching in this area is possible , but it cannot be a single output of this teaching mode. Instead , we could hold some doctor–patient communication and sharing meetings , where residents or specialists could share their cases in clinical work and learn from each other . (P3, F) Maybe establish some scenario simulation courses for training. (P5, M)

Sharing the most memorable cases during resident training

Due to the fact that resident physicians undergo rotational training in different clinical departments over 3 years, clinical departments, patient situations, work environments, and severity of diseases may vary. By conducting interviews with resident physicians during the training period, the factors that affect the empathy ability of resident physicians can be further explored by allowing them to profoundly impact the departments where communication with patients is not smooth or smooth. The results are shown in Table  5 .

Clinical empathy and number of years of standardized training

Some studies have shown that empathy scores are associated with ratings of clinical competence [ 24 ]. From the results of the questionnaire survey, the JSE-S scores of PGY1, PGY2, and PGY3 showed no significant differences. From the interview results, seven respondents compared the changes in their empathy skills between the beginning and completion of the standardized resident physician training. Five pediatric resident physicians believed that their empathy skills had decreased with the improvement in their medical skills, while two resident physicians believed that their empathy skills improved after receiving standardized resident physician training. The results of the interviews seem to confirm the results of the questionnaire survey that different physicians have different understandings of the relationship between the improvement of clinical abilities and empathy. These two perspectives may be due to different perspectives on empathy. A resident physician who believes that empathy decreases may believe that the physician’s empathy toward patients is more about the patient’s illness. As their medical abilities improve, they can treat the patient’s illness and believe that it will eventually be cured, so the need for empathy decreases. Some studies have reported that doctors who sympathize with their patients share their suffering, which could lead to emotional fatigue and a lack of objectivity [ 25 ]. However, one resident physician believed empathy had improved by progressing from learning about diseases from books during their medical student stage to the realities of clinical practice, seeing the impact of diseases on patients, families, and even society.

Clinical empathy and the pediatric work environment

Doctor–patient communication in pediatrics is more complex and difficult than when treating adults, meaning that pediatricians bear higher risks. The probability of medical disputes in pediatrics is much higher than in other departments; pediatricians are often insulted and even physically threatened [ 26 ]. Physician empathy is at the heart of doctor–patient communication and significantly influences patient outcomes [ 27 ]. This study explored the factors that influence empathy between pediatricians and patients. In patient terms, the level of cooperation from the child and the characteristics of the person accompanying the child are factors. As for the doctors, they can be confronted with pressure and the need to communicate effectively in the face of high outpatient volumes, which can affect their expressions of empathy, a finding similar to that of previous studies [ 28 , 29 ].

Further analysis of direct doctor–patient communication and empathy among pediatric resident physicians in different rotating departments showed that communication between doctors and patients was seen to be smoother in the Rheumatology and Immunology, General Surgery, and Special Diagnosis Departments, while difficulties were encountered in Outpatients and Emergency, Hematology and Oncology, Surgical Oncology, and Cardiology. The reasons may be complex, but four principal issues can be identified. First, the duration of communication between doctors and patients and the environment of medical treatment; in the Special Diagnosis Department, for example, patients are able to communicate and interact with doctors for a long time, and the medical environment is very good, whereas Outpatients and Emergency see a rapid turnover and high workload. Second, the level of familiarity between patients and physicians can play a role. In Rheumatology and Immunology Departments, for example, there are often patients with chronic diseases who have been hospitalized for a long time; doctors and patients are very familiar with each other, and some studies have shown empathy is easier to generate when closer interpersonal relationships develop [ 30 ]. Third, different teaching methods may have an impact. Better training on the wards can make residents feel more confident in communicating with patients, whereas Outpatients and Emergency can require residents to face patients alone, generating anxiety or even burnout [ 31 ]. Fourth, disease severity can play a role. In some departments, such as Hematology and Oncology, patients may not have a high hope of recovery but may have high expectations of the treatment. This may not only put a lot of pressure on doctors but also make it difficult to communicate effectively with patients; research has indicated that there is still a gap between the actual and expected disclosure of “bad news” about cancer among healthcare workers, patients, and family members, leading to various disclosure dilemmas [ 32 ].

Clinical empathy across different settings

The mean empathy levels found in this study (81.41 ± 5.43) are lower than those reported [ 33 ] in most similar studies around the world. Similar lower JSE scores have been seen in undergraduate medical students in China; the average JSE score among medical students from Sun Yat-sen University was 84 [ 34 ]. This finding is concerning. The shortage of pediatricians, [ 35 ] low wages, [ 36 ] severe occupational burnout, [ 37 ] and the influence of Asian parental culture [ 38 ] may partly explain our findings. Further investigations are required to determine the factors associated with such low scores so that steps can be taken to address the situation.

Cultivating empathy among pediatric residents

Our research shows that resident physicians believe that empathy is important, even though their self-rated empathy scores are less than ideal. Interventions to further investigate the teaching and learning of empathy were discussed [ 39 ]. Many training courses have proven to be beneficial in enhancing the empathy skills of resident physicians. The teaching innovation “How to act-in-role” has been shown to be effective not only in increasing medical students’ self-reported empathy but also in their competence in consultation skills [ 40 ]. The addition of narrative medicine-based education in standardized training improved empathy and may have improved the professional knowledge of residents [ 41 , 42 ] The use of Balint group activities [ 43 ] with residents has shown significant improvements in empathy across all dimensions. Medical schools should design appropriate training courses and implement interventions at all stages (from the admission process to curricula to residency) and levels (explicit and implicit curricula) depending on the empathy levels of their resident physicians.

Our findings suggest that, based on the different understandings of empathy among resident physicians, the clinical empathy level of pediatric resident physicians is not closely related to an improvement in clinical abilities. Rather, the working environment of pediatricians significantly impacts their empathy ability. Empathy is lower among pediatric residents in China when compared to their European counterparts, and further research into the underlying factors associated with such low scores is necessary to plan interventions to cultivate empathy among pediatric residents.

Limitations

One important weakness of this study is that it was based in one medical school with two specialized children’s hospitals; the limited sample size of the investigation and interviews may mean that the study is not representative of pediatric residents in China. Moreover, the cross-sectional survey precluded us from identifying a causal relationship; thus, a prospective longitudinal study with a larger sample size of pediatric residents is warranted.

Data availability

The questionnaire data that support the findings of this study are available in the Baidu Netdisk repository, https://pan.baidu.com/s/1hRjCKuIVVry79HwTzxB_bA with the primary accession code e9hp.The interview datasets analysed during the current study are not publicly available due to privacy concerns but are available from the corresponding author upon reasonable request.

Wenhui G, Xinqing Z, Shanshan L, et al. Cognitive analysis of medical staff in clinical departments of 45 hospitals in nine provinces on the tense doctor-patient relationship. J Southeast Univ. 2018;20(4):124–129145. https://doi.org/10.3969/j.issn.1671-511X.2018.04.014 . Philosophy and Social Sciences Edition.

Article   Google Scholar  

Zhang X, Sleeboom-Faulkner M. Tensions between medical professionals and patients in mainland China. Camb Q Healthc Ethics. 2011;20(3):458–65. https://doi.org/10.1017/S0963180111000144 .

Jiang S. Pathways linking patient-centered communication to health improvement: a longitudinal study in China. J Health Commun. 2019;24(2):156–64. https://doi.org/10.1080/10810730.2019.1587110 .

Mercer SW, Maxwell M, Heaney D, Watt GC. The consultation and relational empathy (CARE) measure: development and preliminary validation and reliability of an empathy-based consultation process measure. Fam Pract. 2004;21(6):699–705. https://doi.org/10.1093/fampra/cmh621 .

Kane GC, Gotto JL, Mangione S, West S, Hojat M. Jefferson scale of patient’s perceptions of physician empathy: preliminary psychometric data. Croat Med J. 2007;48(1):81–6.

Google Scholar  

Lorié áine, Reinero DA, Phillips M, et al. Culture and nonverbal expressions of empathy in clinical settings: a systematic review. Patient Educ Couns. 2017;100:411–24.

Hemmerdinger JM, Stoddart SDR, Lilford RJ. A systematic review of tests of empathy in medicine. BMC Med Educ. 2007;7:24.

Joyce BL, Scher E, Steenbergh T, Voutt-Goos MJ. Development of an institutional resident curriculum in communication skills. J Grad Med Educ. 2011;3(4):524–8.

Li FY, Wen Y, Lei PG, et al. The present situation and consideration of Residency standardized training in China. China Contin Med Educ. 2019;11:92–4.

Montgomery L, Loue S, Stange KC. Linking the heart and the head: humanism and professionalism in medical education and practice. Fam Med. 2017;49(5):378–83.

Alcorta-Garza AJ, Gonzalez-Guerrero JF, Tavitas-Herrera SE, Rodrigues-Lara FJ, Hojat M. Validity of the Jefferson scale of physician empathy among Mexican medical students. Salud Ment (Mex). 2005;28:57–63.

Hojat M. Empathy in Patient Care: antecedents, Development, Measurement, and outcomes. New York: Springer; 2007.

Hojat M, Shannon SC, DeSantis J, Speicher MR, Bragan L, Calabrese LH. Does empathy decline in the clinical phase of medical education? A nationwide, multi-institutional, cross-sectional study of students at DO-granting medical schools. Acad Med 2020;95(6):911–918. https://doi.org/10.1097/ACM.0000000000003175 , PMID: 31977341.

Hojat M, Vergare MJ, Maxwell K et al. The devil is in the third year: a longitudinal study of erosion of empathy in medical school. Acad Med 2009;84(9):1182–1191. https://doi.org/10.1097/ACM.0b013e3181b17e55 . Erratum in: Acad Med 2009;84(9):1182–1191. PMID: 19707055.

Hojat M. Change in empathy in medical school. Med Educ 2018;52(4):456–457. https://doi.org/10.1111/medu.13497 , PMID: 29574956.

Magalhães E, Salgueira AP, Costa P, Costa MJ. Empathy in senior year and first year medical students: a cross-sectional study. B MC Med Educ 2011;11:52. https://doi.org/10.1186/1472-6920-11-52 , PMID: 21801365.

Ye X, Guo H, Xu Z, et al. Empathy variation of undergraduate medical students after early clinical contact: a cross-sectional study in China. BMJ Open. 2020;10:e035690. https://doi.org/10.1136/bmjopen-2019-035690 .

Assing Hvidt E, Søndergaard J, Wehberg S, Hvidt NC, Andersen CM. A cross-sectional study of student empathy across four medical schools in Denmark-associations between empathy level and age, sex, specialty preferences and motivation. BMC Med Educ 2022;22(1):489. https://doi.org/10.1186/s12909-022-03532-2 , PMID: 35739548.

Yu CC, Tan L, Le MK, et al. The development of empathy in the healthcare setting: a qualitative approach. BMC Med Educ. 2022;22(1):245. https://doi.org/10.1186/s12909-022-03312-y . PMID: 35379249, PMCID: PMC8981670.

Wanqi F. Chen panorama analysis and countermeasures of common nurse patient disputes in pediatrics. Qilu J Nurs. 2011;17(21):117–8. https://doi.org/10.3969/j.issn.1006-7256.2011.21.087 .

Hojat M, Gonnella JS, Nasca TJ, Mangione S, Vergare M, Magee M. Physician empathy: definition, components, measurement, and relationship to gender and specialty. Am J Psychiatry. 2002;159(9):1563–9.

Braun V, Clarke V. Using thematic analysis in psychology. Qual Res Psychol. 2006;3(2):77–101.

Houghton C, Murphy K, Meehan B, Thomas J, Brooker D, Casey D. From screening to synthesis: using NVivo to enhance transparency in qualitative evidence synthesis. J Clin Nurs. 2017;26(5–6):873–81. https://doi.org/10.1111/jocn.13443 .

Hojat M, Gonnella JS, Mangione S et al. Empathy in medical students as related to academic performance, clinical competence and gender. Med Educ 2002;36(6):522–527. https://doi.org/10.1046/j.1365-2923.2002.01234.x , PMID: 12047665.

Zhao JB, Liang SW, Hou YF. Etc the relationship between empathy fatigue and post-traumatic stress disorder among clinical doctors. Guangdong Med. 2017;38(24):3841–4. https://doi.org/10.3969/j.issn.1001-9448.2017.24.036 .

Xu W, Zhang SC. Chinese pediatricians face a crisis: should they stay or leave? Pediatrics. 2014;134(6):1045–7. https://doi.org/10.1542/peds.2014-1377 . Epub 2014 Nov 10. PMID: 25384495.

Zhang X, Li L, Zhang Q, Le LH, Wu Y. Physician empathy in doctor-patient communication: A systematic review. Health Commun . 2023:1–11. doi: 10.1080/10410236.2023.2201735. Epub ahead of print. PMID: 37062918.

Libo J. Analysis and resolution of doctor-patient disputes in grassroots pediatric outpatient clinics. Chin Community Phys. 2020;36(10):184–.

Lingyan G. Research on Building a Good Pediatric Doctor-Patient Relationship from the perspective of Public Management [D]. Suzhou University; 2022. https://doi.org/10.27351/dcnki.gszhu.2022.000265 .

Wuying C, Lianqi L. The influence of context on empathy. Prog Psychol Sci. 2016;24(1):91–100. https://doi.org/10.3724/SP.J.1042.2016.00091 .

Song C, Du XT, Hong YX, Mao JH, Zhang W. Association between social supports and negative emotions among pediatric residents in China: the chain-mediating role of psychological resilience and burnout. Front Public Health 2022;10:962259. https://doi.org/10.3389/fpubh.2022.962259 , PMID: 36755738.

Jiaman S, Lihua L, Linling Y, et al. An analysis of the current situation and difficulties in informing cancer bad news. Chin Med Ethics. 2023;36(05):540–7.

Lases LSS, Arah OA, Busch ORC, Heineman MJ, Lombarts KMJMH. Learning climate positively influences residents’ work-related well-being. Adv Health Sci Educ Theory Pract 2019;24(2):317–330. https://doi.org/10.1007/s10459-018-9868-4 . Epub 2018 Dec 5. PMID: 30519786.

Min C, Zhen H, Mengxian L. Etc a survey and analysis of the effectiveness of cultivating empathy skills among medical students. Med Educ Res Pract. 2023;31(5):583–6. https://doi.org/10.13555/j.cnki.c.m.e.2023.05.014 .

Wei W, Ruiling Z, Jiongfeng Z. etc A literature review on the reasons and countermeasures for the shortage of pediatricians in China. Chizi , 2019 (15): 273.

Xinxin Y. A study on the factors influencing the vocational inclination and turnover behavior of Pediatric doctors in Public Medical institutions [D]. Guangdong: Southern Medical University; 2020.

Lei F, Chao S, Yunxia H. Etc analysis of the current situation and countermeasures of occupational burnout among standardized training students for pediatric resident physicians. Chin J Med Educ Explor. 2023;22(5):796–800. https://doi.org/10.3760/cma.j.cn116021-20220518-01297 .

Claramita M, Dalen JV, Van Der Vleuten CP. Doctors in a southeast Asian country communicate sub-optimally regardless of patients’ educational background. Patient Educ Couns. 2011;85(3):e169–74. https://doi.org/10.1016/j.pec.2011.02.002 . Epub 2011 Mar 21. PMID: 21420821.

Lim BT, Moriarty H, Huthwaite M, Gray L, Pullon S, Gallagher P. How well do medical students rate and communicate clinical empathy? Med Teach 2013;35(2):e946-e951. https://doi.org/10.3109/0142159X.2012.715783 . Epub 2012 Sep 3. PMID: 22938688.

Lim BT, Moriarty H, Huthwaite M. Being-in-role: A teaching innovation to enhance empathic communication skills in medical students. Med Teach 2011;33(12):e663-e669. https://doi.org/10.3109/0142159X.2011.611193 , PMID: 22225448.

Zhao J, Xiantao O, Li Q et al. Role of narrative medicine-based education in cultivating empathy in residents. BMC Med Educ 2023;23(1):124. https://doi.org/10.1186/s12909-023-04096-5 , PMID: 36810009.

Ziółkowska-Rudowicz E, Kładna A. Empathy-building of physicians. Part IV–development of skills enhancing capacity for empathy. Pol Merkur Lekarski. 2010;29(174):400–4. Polish. PMID: 21298994.

Haiyan G, Qinmei Z. Yongfei Z, etc the Impact of Bahrain Group activities on Empathy and Communication skills in standardized training of traditional Chinese medicine residents. J Traditional Chin Med Manage. 2019;27(12):103–5.

Download references

Acknowledgements

This work was financed by Postgraduate Medical Education Project in 2022 (BYH20220412); The 2022 Science and Technology Innovation Project (Humanities and Social Sciences) Project of Shanghai Jiao Tong University School of Medicine (WK2217); Fujian Medical University Education Reform Project: Application Research on the Intelligent Teaching Platform for Clinical Teachers under the Background of “New Medical Science” (J22021).

Author information

Pingping Li and Ling Weng contributed equally to this work and should be considered co-first authors.

Authors and Affiliations

Department of Pediatric Clinical Medicine School, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China

Pingping Li & Lu Dong

Department of Science and Education, Fujian Maternity and Child Health Hospital, Fujian, 350000, China

You can also search for this author in PubMed   Google Scholar

Contributions

L.P.P. conceptualized the idea of this study. L.P.P. and W.L. contributed to design of the project and survey preparation and dissemination. L.P.P. contributed to investigate. D.L. contributed to writing-review and agreed to be accountable for all aspects of the work. All authors reviewed the manuscript.

Corresponding author

Correspondence to Lu Dong .

Ethics declarations

Competing interests.

The authors declare no competing interests.

Ethics approval and consent to participate

Ethical approval for this study was obtained from the institutional research ethics committee of Shanghai Children’s Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine(NO: SCMCTRB-K2023147-1). All participants received written explanations about the study in advance and signed a written consent form to participate.

Consent for publication

Not applicable.

None declared.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/ .

Reprints and permissions

About this article

Cite this article.

Li, P., Weng, L. & Dong, L. Empathy ability and influencing factors among pediatric residents in China: a mixed-methods study. BMC Med Educ 24 , 955 (2024). https://doi.org/10.1186/s12909-024-05858-5

Download citation

Received : 29 April 2024

Accepted : 02 August 2024

Published : 02 September 2024

DOI : https://doi.org/10.1186/s12909-024-05858-5

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Empathy ability
  • Pediatric residents

BMC Medical Education

ISSN: 1472-6920

case study as a teaching method pdf

IMAGES

  1. case study teaching method advantages and disadvantages

    case study as a teaching method pdf

  2. (PDF) ASSESSMENT OF CASE STUDY METHOD IMPLEMENTATION IN THE BUSINESS

    case study as a teaching method pdf

  3. PPT

    case study as a teaching method pdf

  4. (PDF) Teaching Case: How to Write

    case study as a teaching method pdf

  5. (PDF) The Role of Case Study in Teacher Education: An Attempt to Bridge

    case study as a teaching method pdf

  6. The Ivey Case Study Method

    case study as a teaching method pdf

VIDEO

  1. What can we change about how we teach research methods? with Jo Ferrie

  2. CASE STUDY— TEACHING AND ASSESSMENT OF THE MACRO SKILLS

  3. Unit 1

  4. Case Study Part 3: Developing or Selecting the Case

  5. Unit 8

  6. Understanding the Case Study Approach in Qualitative Research

COMMENTS

  1. (PDF) Case Study Teaching Method Improves Student Performance and

    PDF | Following years of widespread use in business and medical education, the case study teaching method is becoming an increasingly common teaching... | Find, read and cite all the research you ...

  2. PDF Case-Based Pedagogy for Teacher Education: An Instructional Model

    proposed instructional model. Lastly, we will present findings from a study wherein the proposed model was applied to support prospective teachers' socioscientific issue-based teaching and learning, and discuss implications for research and practice. Keywords: case-based pedagogy, teacher education, instructional model INTRODUCTION

  3. PDF Using a Case Study in the EFL Classroom A

    a new paragraph. The case-study method usually involves the following steps: Step 1: The teacher introduces the situation and, if necessary, relevant vocabulary. Step 2: Everyone reads the case study and analyzes additional materials. The following procedure can help students analyze a case systematically:

  4. Case Study Analysis as an Effective Teaching Strategy: Perceptions of

    These study findings add to the existing body of knowledge that places case study based teaching as a tested method that promotes perception learning where students' senses are engaged as a result of the real-life and authentic clinical scenarios (Malesela, 2009), resulting in deeper learning and achievement of long-lasting knowledge (Fiscus ...

  5. PDF 21: Case Study Teaching and Learning

    The Case Method in Teaching and Learning. The case method has been considered a successful pedagogy via the problem-solving approach [4]. Through case studies, a type of context-dependent knowledge is produced that enables the student to develop their situational analytic skills. Case study pedagogy applies and incorporates theory to practical

  6. Case Study Teaching Method Improves Student Performance and Perceptions

    INTRODUCTION. The case study teaching method is a highly adaptable style of teaching that involves problem-based learning and promotes the development of analytical skills ().By presenting content in the format of a narrative accompanied by questions and activities that promote group discussion and solving of complex problems, case studies facilitate development of the higher levels of Bloom ...

  7. PDF The Role of Using Case Studies Method in Improving Students ...

    Keywords: case-based learning, group case study discussion, critical thinking. 1. Introduction. In recent times, one of the topics among a number of academic articles is the development of critical thinking (Schmaltz, Jansen, & Wenckowski, 2017; Walker, 2003). According to different studies, different skills are possessed by the students to ...

  8. PDF Teaching Methods for Case Studies

    Students may be unfamiliar with the case method or may be predisposed to distrust group work. They need to know exactly what is expected of them in order to be successful in class. To avoid causing frustration, consider the following tips: 1. Start with a simple case first 2. Discuss the purpose and suggested methods for doing a case assignment 3.

  9. Case study teaching

    This chapter describes the history of case study teaching, types of cases, and experimental data supporting their effectiveness. It also describes a model for comparing the efficacy of the various case study methods.

  10. Case Study Teaching and Learning

    The case study pedagogy is a student-centered teaching strategy that provides students with an informative narrative to make a decision on an issue or solve a problem. Outside of traditional lectures, the case teaching method is the most used approach in management education and development as it initiates insightful learning.

  11. Case Method Teaching and Learning

    Case method 1 teaching is an active form of instruction that focuses on a case and involves students learning by doing 2 3. Cases are real or invented stories 4 that include "an educational message" or recount events, problems, dilemmas, theoretical or conceptual issue that requires analysis and/or decision-making.

  12. (PDF) The case study method: exploring the link between teaching and

    pedagogical case studies in the sense used in this paper. Because the purpose of the research was to explore the links between teaching and. research, we further reduced the sample in the second ...

  13. (PDF) Using the case method of teaching

    method for teaching students about management in. the food system. The reason for educators' interest. in this method stems from their desire to produce. professional managers rather than ...

  14. Teaching by the Case Method

    Case Method in Practice. Chris Christensen described case method teaching as "the art of managing uncertainty"—a process in which the instructor serves as "planner, host, moderator, devil's advocate, fellow-student, and judge," all in search of solutions to real-world problems and challenges. Unlike lectures, case method classes unfold ...

  15. PDF College Quarterly

    case-based teaching. As Skliarenko and Bhardwaj (2004) pointed out, the history of case based teaching can be traced to the business school at Harvard University in 1910 with a book of cases appearing in 1922. According to the Harvard Business School (HBS) website, in 1924 the case method was established as the primary method of instruction at HBS.

  16. Case Study Analysis as an Effective Teaching

    In this study, the researchers sought to study the effective-ness of case study analysis as an active, problem-based, student-centered, teacher-facilitated strategy in a baccalaureate-nursing program. This choice of teaching method is supported by the fact that nowadays, active teaching-learning is preferred in undergraduate programs

  17. Using Case Studies to Teach

    A major advantage of teaching with case studies is that the students are actively engaged in figuring out the principles by abstracting from the examples. This develops their skills in: Problem solving. Analytical tools, quantitative and/or qualitative, depending on the case. Decision making in complex situations.

  18. Teaching with Cases

    Videos. The case method is an effective way to increase student engagement and challenge students to integrate and apply skills to real-world problems. In these videos, Using the Case Method to Teach Public Policy, you'll find invaluable insights into the art of case teaching from one of HKS's most respected professors, Jose A. Gomez-Ibanez.

  19. Case Study Teaching Method Improves Student Performance

    Studies have shown that working in groups during completion of case studies significantly improves student perceptions of learning and may increase performance on assessment questions, and that the use of clickers can increase student engagement in case study activities, particularly among non-science majors, women, and freshmen (7, 21, 22).

  20. PDF ED401272 1994-11-00 Cases, Case Methods, and the Professional

    Cases and case methods of teaching represent a relatively new and promising approach in the education of teachers. Though long used in other professional fields (i.e., business and law), the current interest of teacher educators in this pedagogy is ... Using cases to study teaching. Phi Delta Kappan, 75(8), 602-611. EJ 481 329----- This ...

  21. PDF Learning by the Case Method

    In short, the case method is really a focused form of learning by doing. How to Prepare a Case The use of the case method calls first for you, working individually, to carefully read and to think about each case (typically about two hours of preparation time for each case are provided in the schedule). No single way to prepare a case works for ...

  22. (PDF) Case-method teaching: advantages and disadvantages in

    Abstract and Figures. Purpose The purpose of this paper is to introduce case-method teaching (CMT), its advantages and disadvantages for the process of organizational training within organizations ...

  23. Empathy ability and influencing factors among pediatric residents in

    Empathy is one of the fundamental factors enhancing the therapeutic effects of physician-patient relationships, but there has been no relevant research in China on the pediatric resident physicians' capacity for empathy or the influencing factors. A mixed-methods study was undertaken. The student version of the Jefferson Scale of Empathy was used to assess 181 postgraduate residents at ...

  24. PDF Challenges of Case-Based Teaching

    Challenges of Case-Based Teaching