Center for Teaching

Teaching problem solving.

Print Version

Tips and Techniques

Expert vs. novice problem solvers, communicate.

  • Have students  identify specific problems, difficulties, or confusions . Don’t waste time working through problems that students already understand.
  • If students are unable to articulate their concerns, determine where they are having trouble by  asking them to identify the specific concepts or principles associated with the problem.
  • In a one-on-one tutoring session, ask the student to  work his/her problem out loud . This slows down the thinking process, making it more accurate and allowing you to access understanding.
  • When working with larger groups you can ask students to provide a written “two-column solution.” Have students write up their solution to a problem by putting all their calculations in one column and all of their reasoning (in complete sentences) in the other column. This helps them to think critically about their own problem solving and helps you to more easily identify where they may be having problems. Two-Column Solution (Math) Two-Column Solution (Physics)

Encourage Independence

  • Model the problem solving process rather than just giving students the answer. As you work through the problem, consider how a novice might struggle with the concepts and make your thinking clear
  • Have students work through problems on their own. Ask directing questions or give helpful suggestions, but  provide only minimal assistance and only when needed to overcome obstacles.
  • Don’t fear  group work ! Students can frequently help each other, and talking about a problem helps them think more critically about the steps needed to solve the problem. Additionally, group work helps students realize that problems often have multiple solution strategies, some that might be more effective than others

Be sensitive

  • Frequently, when working problems, students are unsure of themselves. This lack of confidence may hamper their learning. It is important to recognize this when students come to us for help, and to give each student some feeling of mastery. Do this by providing  positive reinforcement to let students know when they have mastered a new concept or skill.

Encourage Thoroughness and Patience

  • Try to communicate that  the process is more important than the answer so that the student learns that it is OK to not have an instant solution. This is learned through your acceptance of his/her pace of doing things, through your refusal to let anxiety pressure you into giving the right answer, and through your example of problem solving through a step-by step process.

Experts (teachers) in a particular field are often so fluent in solving problems from that field that they can find it difficult to articulate the problem solving principles and strategies they use to novices (students) in their field because these principles and strategies are second nature to the expert. To teach students problem solving skills,  a teacher should be aware of principles and strategies of good problem solving in his or her discipline .

The mathematician George Polya captured the problem solving principles and strategies he used in his discipline in the book  How to Solve It: A New Aspect of Mathematical Method (Princeton University Press, 1957). The book includes  a summary of Polya’s problem solving heuristic as well as advice on the teaching of problem solving.

teaching problem solving

Teaching Guides

Quick Links

  • Services for Departments and Schools
  • Examples of Online Instructional Modules

Teaching problem solving: Let students get ‘stuck’ and ‘unstuck’

Subscribe to the center for universal education bulletin, kate mills and km kate mills literacy interventionist - red bank primary school helyn kim helyn kim former brookings expert.

October 31, 2017

This is the second in a six-part  blog series  on  teaching 21st century skills , including  problem solving ,  metacognition , critical thinking , and collaboration , in classrooms.

In the real world, students encounter problems that are complex, not well defined, and lack a clear solution and approach. They need to be able to identify and apply different strategies to solve these problems. However, problem solving skills do not necessarily develop naturally; they need to be explicitly taught in a way that can be transferred across multiple settings and contexts.

Here’s what Kate Mills, who taught 4 th grade for 10 years at Knollwood School in New Jersey and is now a Literacy Interventionist at Red Bank Primary School, has to say about creating a classroom culture of problem solvers:

Helping my students grow to be people who will be successful outside of the classroom is equally as important as teaching the curriculum. From the first day of school, I intentionally choose language and activities that help to create a classroom culture of problem solvers. I want to produce students who are able to think about achieving a particular goal and manage their mental processes . This is known as metacognition , and research shows that metacognitive skills help students become better problem solvers.

I begin by “normalizing trouble” in the classroom. Peter H. Johnston teaches the importance of normalizing struggle , of naming it, acknowledging it, and calling it what it is: a sign that we’re growing. The goal is for the students to accept challenge and failure as a chance to grow and do better.

I look for every chance to share problems and highlight how the students— not the teachers— worked through those problems. There is, of course, coaching along the way. For example, a science class that is arguing over whose turn it is to build a vehicle will most likely need a teacher to help them find a way to the balance the work in an equitable way. Afterwards, I make it a point to turn it back to the class and say, “Do you see how you …” By naming what it is they did to solve the problem , students can be more independent and productive as they apply and adapt their thinking when engaging in future complex tasks.

After a few weeks, most of the class understands that the teachers aren’t there to solve problems for the students, but to support them in solving the problems themselves. With that important part of our classroom culture established, we can move to focusing on the strategies that students might need.

Here’s one way I do this in the classroom:

I show the broken escalator video to the class. Since my students are fourth graders, they think it’s hilarious and immediately start exclaiming, “Just get off! Walk!”

When the video is over, I say, “Many of us, probably all of us, are like the man in the video yelling for help when we get stuck. When we get stuck, we stop and immediately say ‘Help!’ instead of embracing the challenge and trying new ways to work through it.” I often introduce this lesson during math class, but it can apply to any area of our lives, and I can refer to the experience and conversation we had during any part of our day.

Research shows that just because students know the strategies does not mean they will engage in the appropriate strategies. Therefore, I try to provide opportunities where students can explicitly practice learning how, when, and why to use which strategies effectively  so that they can become self-directed learners.

For example, I give students a math problem that will make many of them feel “stuck”. I will say, “Your job is to get yourselves stuck—or to allow yourselves to get stuck on this problem—and then work through it, being mindful of how you’re getting yourselves unstuck.” As students work, I check-in to help them name their process: “How did you get yourself unstuck?” or “What was your first step? What are you doing now? What might you try next?” As students talk about their process, I’ll add to a list of strategies that students are using and, if they are struggling, help students name a specific process. For instance, if a student says he wrote the information from the math problem down and points to a chart, I will say: “Oh that’s interesting. You pulled the important information from the problem out and organized it into a chart.” In this way, I am giving him the language to match what he did, so that he now has a strategy he could use in other times of struggle.

The charts grow with us over time and are something that we refer to when students are stuck or struggling. They become a resource for students and a way for them to talk about their process when they are reflecting on and monitoring what did or did not work.

For me, as a teacher, it is important that I create a classroom environment in which students are problem solvers. This helps tie struggles to strategies so that the students will not only see value in working harder but in working smarter by trying new and different strategies and revising their process. In doing so, they will more successful the next time around.

Related Content

Esther Care, Helyn Kim, Alvin Vista

October 17, 2017

David Owen, Alvin Vista

November 15, 2017

Loren Clarke, Esther Care

December 5, 2017

Global Education K-12 Education

Global Economy and Development

Center for Universal Education

Lydia Wilbard

August 29, 2024

Zachary Billot, Annie Vong, Nicole Dias Del Valle, Emily Markovich Morris

August 26, 2024

Brian A. Jacob, Cristina Stanojevich

Teaching Problem-Solving Skills

Many instructors design opportunities for students to solve “problems”. But are their students solving true problems or merely participating in practice exercises? The former stresses critical thinking and decision­ making skills whereas the latter requires only the application of previously learned procedures.

Problem solving is often broadly defined as "the ability to understand the environment, identify complex problems, review related information to develop, evaluate strategies and implement solutions to build the desired outcome" (Fissore, C. et al, 2021). True problem solving is the process of applying a method – not known in advance – to a problem that is subject to a specific set of conditions and that the problem solver has not seen before, in order to obtain a satisfactory solution.

Below you will find some basic principles for teaching problem solving and one model to implement in your classroom teaching.

Principles for teaching problem solving

  • Model a useful problem-solving method . Problem solving can be difficult and sometimes tedious. Show students how to be patient and persistent, and how to follow a structured method, such as Woods’ model described below. Articulate your method as you use it so students see the connections.
  • Teach within a specific context . Teach problem-solving skills in the context in which they will be used by students (e.g., mole fraction calculations in a chemistry course). Use real-life problems in explanations, examples, and exams. Do not teach problem solving as an independent, abstract skill.
  • Help students understand the problem . In order to solve problems, students need to define the end goal. This step is crucial to successful learning of problem-solving skills. If you succeed at helping students answer the questions “what?” and “why?”, finding the answer to “how?” will be easier.
  • Take enough time . When planning a lecture/tutorial, budget enough time for: understanding the problem and defining the goal (both individually and as a class); dealing with questions from you and your students; making, finding, and fixing mistakes; and solving entire problems in a single session.
  • Ask questions and make suggestions . Ask students to predict “what would happen if …” or explain why something happened. This will help them to develop analytical and deductive thinking skills. Also, ask questions and make suggestions about strategies to encourage students to reflect on the problem-solving strategies that they use.
  • Link errors to misconceptions . Use errors as evidence of misconceptions, not carelessness or random guessing. Make an effort to isolate the misconception and correct it, then teach students to do this by themselves. We can all learn from mistakes.

Woods’ problem-solving model

Define the problem.

  • The system . Have students identify the system under study (e.g., a metal bridge subject to certain forces) by interpreting the information provided in the problem statement. Drawing a diagram is a great way to do this.
  • Known(s) and concepts . List what is known about the problem, and identify the knowledge needed to understand (and eventually) solve it.
  • Unknown(s) . Once you have a list of knowns, identifying the unknown(s) becomes simpler. One unknown is generally the answer to the problem, but there may be other unknowns. Be sure that students understand what they are expected to find.
  • Units and symbols . One key aspect in problem solving is teaching students how to select, interpret, and use units and symbols. Emphasize the use of units whenever applicable. Develop a habit of using appropriate units and symbols yourself at all times.
  • Constraints . All problems have some stated or implied constraints. Teach students to look for the words "only", "must", "neglect", or "assume" to help identify the constraints.
  • Criteria for success . Help students consider, from the beginning, what a logical type of answer would be. What characteristics will it possess? For example, a quantitative problem will require an answer in some form of numerical units (e.g., $/kg product, square cm, etc.) while an optimization problem requires an answer in the form of either a numerical maximum or minimum.

Think about it

  • “Let it simmer”.  Use this stage to ponder the problem. Ideally, students will develop a mental image of the problem at hand during this stage.
  • Identify specific pieces of knowledge . Students need to determine by themselves the required background knowledge from illustrations, examples and problems covered in the course.
  • Collect information . Encourage students to collect pertinent information such as conversion factors, constants, and tables needed to solve the problem.

Plan a solution

  • Consider possible strategies . Often, the type of solution will be determined by the type of problem. Some common problem-solving strategies are: compute; simplify; use an equation; make a model, diagram, table, or chart; or work backwards.
  • Choose the best strategy . Help students to choose the best strategy by reminding them again what they are required to find or calculate.

Carry out the plan

  • Be patient . Most problems are not solved quickly or on the first attempt. In other cases, executing the solution may be the easiest step.
  • Be persistent . If a plan does not work immediately, do not let students get discouraged. Encourage them to try a different strategy and keep trying.

Encourage students to reflect. Once a solution has been reached, students should ask themselves the following questions:

  • Does the answer make sense?
  • Does it fit with the criteria established in step 1?
  • Did I answer the question(s)?
  • What did I learn by doing this?
  • Could I have done the problem another way?

If you would like support applying these tips to your own teaching, CTE staff members are here to help.  View the  CTE Support  page to find the most relevant staff member to contact. 

  • Fissore, C., Marchisio, M., Roman, F., & Sacchet, M. (2021). Development of problem solving skills with Maple in higher education. In: Corless, R.M., Gerhard, J., Kotsireas, I.S. (eds) Maple in Mathematics Education and Research. MC 2020. Communications in Computer and Information Science, vol 1414. Springer, Cham. https://doi.org/10.1007/978-3-030-81698-8_15
  • Foshay, R., & Kirkley, J. (1998). Principles for Teaching Problem Solving. TRO Learning Inc., Edina MN.  (PDF) Principles for Teaching Problem Solving (researchgate.net)
  • Hayes, J.R. (1989). The Complete Problem Solver. 2nd Edition. Hillsdale, NJ: Lawrence Erlbaum Associates.
  • Woods, D.R., Wright, J.D., Hoffman, T.W., Swartman, R.K., Doig, I.D. (1975). Teaching Problem solving Skills.
  • Engineering Education. Vol 1, No. 1. p. 238. Washington, DC: The American Society for Engineering Education.

teaching tips

Catalog search

Teaching tip categories.

  • Assessment and feedback
  • Blended Learning and Educational Technologies
  • Career Development
  • Course Design
  • Course Implementation
  • Inclusive Teaching and Learning
  • Learning activities
  • Support for Student Learning
  • Support for TAs
  • Learning activities ,

Don’t Just Tell Students to Solve Problems. Teach Them How.

The positive impact of an innovative UC San Diego problem-solving educational curriculum continues to grow

Published Date

Share this:, article content.

Problem solving is a critical skill for technical education and technical careers of all types. But what are best practices for teaching problem solving to high school and college students? 

The University of California San Diego Jacobs School of Engineering is on the forefront of efforts to improve how problem solving is taught. This UC San Diego approach puts hands-on problem-identification and problem-solving techniques front and center. Over 1,500 students across the San Diego region have already benefited over the last three years from this program. In the 2023-2024 academic year, approximately 1,000 upper-level high school students will be taking the problem solving course in four different school districts in the San Diego region. Based on the positive results with college students, as well as high school juniors and seniors in the San Diego region, the project is getting attention from educators across the state of California, and around the nation and the world.

{/exp:typographee}

In Summer 2023, th e 27 community college students who took the unique problem-solving course developed at the UC San Diego Jacobs School of Engineering thrived, according to Alex Phan PhD, the Executive Director of Student Success at the UC San Diego Jacobs School of Engineering. Phan oversees the project. 

Over the course of three weeks, these students from Southwestern College and San Diego City College poured their enthusiasm into problem solving through hands-on team engineering challenges. The students brimmed with positive energy as they worked together. 

What was noticeably absent from this laboratory classroom: frustration.

“In school, we often tell students to brainstorm, but they don’t often know where to start. This curriculum gives students direct strategies for brainstorming, for identifying problems, for solving problems,” sai d Jennifer Ogo, a teacher from Kearny High School who taught the problem-solving course in summer 2023 at UC San Diego. Ogo was part of group of educators who took the course themselves last summer.

The curriculum has been created, refined and administered over the last three years through a collaboration between the UC San Diego Jacobs School of Engineering and the UC San Diego Division of Extended Studies. The project kicked off in 2020 with a generous gift from a local philanthropist.

Not getting stuck

One of the overarching goals of this project is to teach both problem-identification and problem-solving skills that help students avoid getting stuck during the learning process. Stuck feelings lead to frustration – and when it’s a Science, Technology, Engineering and Math (STEM) project, that frustration can lead students to feel they don’t belong in a STEM major or a STEM career. Instead, the UC San Diego curriculum is designed to give students the tools that lead to reactions like “this class is hard, but I know I can do this!” –  as Ogo, a celebrated high school biomedical sciences and technology teacher, put it. 

Three years into the curriculum development effort, the light-hearted energy of the students combined with their intense focus points to success. On the last day of the class, Mourad Mjahed PhD, Director of the MESA Program at Southwestern College’s School of Mathematics, Science and Engineering came to UC San Diego to see the final project presentations made by his 22 MESA students.

“Industry is looking for students who have learned from their failures and who have worked outside of their comfort zones,” said Mjahed. The UC San Diego problem-solving curriculum, Mjahed noted, is an opportunity for students to build the skills and the confidence to learn from their failures and to work outside their comfort zone. “And from there, they see pathways to real careers,” he said. 

What does it mean to explicitly teach problem solving? 

This approach to teaching problem solving includes a significant focus on learning to identify the problem that actually needs to be solved, in order to avoid solving the wrong problem. The curriculum is organized so that each day is a complete experience. It begins with the teacher introducing the problem-identification or problem-solving strategy of the day. The teacher then presents case studies of that particular strategy in action. Next, the students get introduced to the day’s challenge project. Working in teams, the students compete to win the challenge while integrating the day’s technique. Finally, the class reconvenes to reflect. They discuss what worked and didn't work with their designs as well as how they could have used the day’s problem-identification or problem-solving technique more effectively. 

The challenges are designed to be engaging – and over three years, they have been refined to be even more engaging. But the student engagement is about much more than being entertained. Many of the students recognize early on that the problem-identification and problem-solving skills they are learning can be applied not just in the classroom, but in other classes and in life in general. 

Gabriel from Southwestern College is one of the students who saw benefits outside the classroom almost immediately. In addition to taking the UC San Diego problem-solving course, Gabriel was concurrently enrolled in an online computer science programming class. He said he immediately started applying the UC San Diego problem-identification and troubleshooting strategies to his coding assignments. 

Gabriel noted that he was given a coding-specific troubleshooting strategy in the computer science course, but the more general problem-identification strategies from the UC San Diego class had been extremely helpful. It’s critical to “find the right problem so you can get the right solution. The strategies here,” he said, “they work everywhere.”

Phan echoed this sentiment. “We believe this curriculum can prepare students for the technical workforce. It can prepare students to be impactful for any career path.”

The goal is to be able to offer the course in community colleges for course credit that transfers to the UC, and to possibly offer a version of the course to incoming students at UC San Diego. 

As the team continues to work towards integrating the curriculum in both standardized high school courses such as physics, and incorporating the content as a part of the general education curriculum at UC San Diego, the project is expected to impact thousands more students across San Diego annually. 

Portrait of the Problem-Solving Curriculum

On a sunny Wednesday in July 2023, an experiential-learning classroom was full of San Diego community college students. They were about half-way through the three-week problem-solving course at UC San Diego, held in the campus’ EnVision Arts and Engineering Maker Studio. On this day, the students were challenged to build a contraption that would propel at least six ping pong balls along a kite string spanning the laboratory. The only propulsive force they could rely on was the air shooting out of a party balloon.

A team of three students from Southwestern College – Valeria, Melissa and Alondra – took an early lead in the classroom competition. They were the first to use a plastic bag instead of disposable cups to hold the ping pong balls. Using a bag, their design got more than half-way to the finish line – better than any other team at the time – but there was more work to do. 

As the trio considered what design changes to make next, they returned to the problem-solving theme of the day: unintended consequences. Earlier in the day, all the students had been challenged to consider unintended consequences and ask questions like: When you design to reduce friction, what happens? Do new problems emerge? Did other things improve that you hadn’t anticipated? 

Other groups soon followed Valeria, Melissa and Alondra’s lead and began iterating on their own plastic-bag solutions to the day’s challenge. New unintended consequences popped up everywhere. Switching from cups to a bag, for example, reduced friction but sometimes increased wind drag. 

Over the course of several iterations, Valeria, Melissa and Alondra made their bag smaller, blew their balloon up bigger, and switched to a different kind of tape to get a better connection with the plastic straw that slid along the kite string, carrying the ping pong balls. 

One of the groups on the other side of the room watched the emergence of the plastic-bag solution with great interest. 

“We tried everything, then we saw a team using a bag,” said Alexander, a student from City College. His team adopted the plastic-bag strategy as well, and iterated on it like everyone else. They also chose to blow up their balloon with a hand pump after the balloon was already attached to the bag filled with ping pong balls – which was unique. 

“I don’t want to be trying to put the balloon in place when it's about to explode,” Alexander explained. 

Asked about whether the structured problem solving approaches were useful, Alexander’s teammate Brianna, who is a Southwestern College student, talked about how the problem-solving tools have helped her get over mental blocks. “Sometimes we make the most ridiculous things work,” she said. “It’s a pretty fun class for sure.” 

Yoshadara, a City College student who is the third member of this team, described some of the problem solving techniques this way: “It’s about letting yourself be a little absurd.”

Alexander jumped back into the conversation. “The value is in the abstraction. As students, we learn to look at the problem solving that worked and then abstract out the problem solving strategy that can then be applied to other challenges. That’s what mathematicians do all the time,” he said, adding that he is already thinking about how he can apply the process of looking at unintended consequences to improve both how he plays chess and how he goes about solving math problems.

Looking ahead, the goal is to empower as many students as possible in the San Diego area and  beyond to learn to problem solve more enjoyably. It’s a concrete way to give students tools that could encourage them to thrive in the growing number of technical careers that require sharp problem-solving skills, whether or not they require a four-year degree. 

You May Also Like

Opentopography receives $4 million to support ai-ready access to topographic data for research and education, borderzone breakthrough: a new source of cardiac inflammation, uc san diego’s mandeville art gallery receives grant from new york-based teiger foundation, climate crisis survey reveals scientists’ willingness to act – and barriers to action, stay in the know.

Keep up with all the latest from UC San Diego. Subscribe to the newsletter today.

You have been successfully subscribed to the UC San Diego Today Newsletter.

Campus & Community

Arts & culture, visual storytelling.

  • Media Resources & Contacts

Signup to get the latest UC San Diego newsletters delivered to your inbox.

Award-winning publication highlighting the distinction, prestige and global impact of UC San Diego.

Popular Searches: Covid-19   Ukraine   Campus & Community   Arts & Culture   Voices

  • Faculty & Staff

Teaching problem solving

Strategies for teaching problem solving apply across disciplines and instructional contexts. First, introduce the problem and explain how people in your discipline generally make sense of the given information. Then, explain how to apply these approaches to solve the problem.

Introducing the problem

Explaining how people in your discipline understand and interpret these types of problems can help students develop the skills they need to understand the problem (and find a solution). After introducing how you would go about solving a problem, you could then ask students to:

  • frame the problem in their own words
  • define key terms and concepts
  • determine statements that accurately represent the givens of a problem
  • identify analogous problems
  • determine what information is needed to solve the problem

Working on solutions

In the solution phase, one develops and then implements a coherent plan for solving the problem. As you help students with this phase, you might ask them to:

  • identify the general model or procedure they have in mind for solving the problem
  • set sub-goals for solving the problem
  • identify necessary operations and steps
  • draw conclusions
  • carry out necessary operations

You can help students tackle a problem effectively by asking them to:

  • systematically explain each step and its rationale
  • explain how they would approach solving the problem
  • help you solve the problem by posing questions at key points in the process
  • work together in small groups (3 to 5 students) to solve the problem and then have the solution presented to the rest of the class (either by you or by a student in the group)

In all cases, the more you get the students to articulate their own understandings of the problem and potential solutions, the more you can help them develop their expertise in approaching problems in your discipline.

Why Every Educator Needs to Teach Problem-Solving Skills

Strong problem-solving skills will help students be more resilient and will increase their academic and career success .

Want to learn more about how to measure and teach students’ higher-order skills, including problem solving, critical thinking, and written communication?

Problem-solving skills are essential in school, careers, and life.

Problem-solving skills are important for every student to master. They help individuals navigate everyday life and find solutions to complex issues and challenges. These skills are especially valuable in the workplace, where employees are often required to solve problems and make decisions quickly and effectively.

Problem-solving skills are also needed for students’ personal growth and development because they help individuals overcome obstacles and achieve their goals. By developing strong problem-solving skills, students can improve their overall quality of life and become more successful in their personal and professional endeavors.

teaching problem solving

Problem-Solving Skills Help Students…

   develop resilience.

Problem-solving skills are an integral part of resilience and the ability to persevere through challenges and adversity. To effectively work through and solve a problem, students must be able to think critically and creatively. Critical and creative thinking help students approach a problem objectively, analyze its components, and determine different ways to go about finding a solution.  

This process in turn helps students build self-efficacy . When students are able to analyze and solve a problem, this increases their confidence, and they begin to realize the power they have to advocate for themselves and make meaningful change.

When students gain confidence in their ability to work through problems and attain their goals, they also begin to build a growth mindset . According to leading resilience researcher, Carol Dweck, “in a growth mindset, people believe that their most basic abilities can be developed through dedication and hard work—brains and talent are just the starting point. This view creates a love of learning and a resilience that is essential for great accomplishment.”

icon-resilience

    Set and Achieve Goals

Students who possess strong problem-solving skills are better equipped to set and achieve their goals. By learning how to identify problems, think critically, and develop solutions, students can become more self-sufficient and confident in their ability to achieve their goals. Additionally, problem-solving skills are used in virtually all fields, disciplines, and career paths, which makes them important for everyone. Building strong problem-solving skills will help students enhance their academic and career performance and become more competitive as they begin to seek full-time employment after graduation or pursue additional education and training.

CAE Portal Icon 280

  Resolve Conflicts

In addition to increased social and emotional skills like self-efficacy and goal-setting, problem-solving skills teach students how to cooperate with others and work through disagreements and conflicts. Problem-solving promotes “thinking outside the box” and approaching a conflict by searching for different solutions. This is a very different (and more effective!) method than a more stagnant approach that focuses on placing blame or getting stuck on elements of a situation that can’t be changed.

While it’s natural to get frustrated or feel stuck when working through a conflict, students with strong problem-solving skills will be able to work through these obstacles, think more rationally, and address the situation with a more solution-oriented approach. These skills will be valuable for students in school, their careers, and throughout their lives.

Perspectives

    Achieve Success

We are all faced with problems every day. Problems arise in our personal lives, in school and in our jobs, and in our interactions with others. Employers especially are looking for candidates with strong problem-solving skills. In today’s job market, most jobs require the ability to analyze and effectively resolve complex issues. Students with strong problem-solving skills will stand out from other applicants and will have a more desirable skill set.

In a recent opinion piece published by The Hechinger Report , Virgel Hammonds, Chief Learning Officer at KnowledgeWorks, stated “Our world presents increasingly complex challenges. Education must adapt so that it nurtures problem solvers and critical thinkers.” Yet, the “traditional K–12 education system leaves little room for students to engage in real-world problem-solving scenarios.” This is the reason that a growing number of K–12 school districts and higher education institutions are transforming their instructional approach to personalized and competency-based learning, which encourage students to make decisions, problem solve and think critically as they take ownership of and direct their educational journey.

graduate-icon

Problem-Solving Skills Can Be Measured and Taught

Research shows that problem-solving skills can be measured and taught. One effective method is through performance-based assessments which require students to demonstrate or apply their knowledge and higher-order skills to create a response or product or do a task.

What Are Performance-Based Assessments?

teaching problem solving

With the No Child Left Behind Act (2002), the use of standardized testing became the primary way to measure student learning in the U.S. The legislative requirements of this act shifted the emphasis to standardized testing, and this led to a  decline in nontraditional testing methods .

But   many educators, policy makers, and parents have concerns with standardized tests. Some of the top issues include that they don’t provide feedback on how students can perform better, they don’t value creativity, they are not representative of diverse populations, and they can be disadvantageous to lower-income students.

While standardized tests are still the norm, U.S. Secretary of Education Miguel Cardona is encouraging states and districts to move away from traditional multiple choice and short response tests and instead use performance-based assessment, competency-based assessments, and other more authentic methods of measuring students abilities and skills rather than rote learning. 

Performance-based assessments  measure whether students can apply the skills and knowledge learned from a unit of study. Typically, a performance task challenges students to use their higher-order skills to complete a project or process. Tasks can range from an essay to a complex proposal or design.

Preview a Performance-Based Assessment

Want a closer look at how performance-based assessments work?  Preview CAE’s K–12 and Higher Education assessments and see how CAE’s tools help students develop critical thinking, problem-solving, and written communication skills.

Performance-Based Assessments Help Students Build and Practice Problem-Solving Skills

In addition to effectively measuring students’ higher-order skills, including their problem-solving skills, performance-based assessments can help students practice and build these skills. Through the assessment process, students are given opportunities to practically apply their knowledge in real-world situations. By demonstrating their understanding of a topic, students are required to put what they’ve learned into practice through activities such as presentations, experiments, and simulations. 

This type of problem-solving assessment tool requires students to analyze information and choose how to approach the presented problems. This process enhances their critical thinking skills and creativity, as well as their problem-solving skills. Unlike traditional assessments based on memorization or reciting facts, performance-based assessments focus on the students’ decisions and solutions, and through these tasks students learn to bridge the gap between theory and practice.

Performance-based assessments like CAE’s College and Career Readiness Assessment (CRA+) and Collegiate Learning Assessment (CLA+) provide students with in-depth reports that show them which higher-order skills they are strongest in and which they should continue to develop. This feedback helps students and their teachers plan instruction and supports to deepen their learning and improve their mastery of critical skills.

teaching problem solving

Explore CAE’s Problem-Solving Assessments

CAE offers performance-based assessments that measure student proficiency in higher-order skills including problem solving, critical thinking, and written communication.

  • College and Career Readiness Assessment (CCRA+) for secondary education and
  • Collegiate Learning Assessment (CLA+) for higher education.

Our solution also includes instructional materials, practice models, and professional development.

We can help you create a program to build students’ problem-solving skills that includes:

  • Measuring students’ problem-solving skills through a performance-based assessment    
  • Using the problem-solving assessment data to inform instruction and tailor interventions
  • Teaching students problem-solving skills and providing practice opportunities in real-life scenarios
  • Supporting educators with quality professional development

Get started with our problem-solving assessment tools to measure and build students’ problem-solving skills today! These skills will be invaluable to students now and in the future.

teaching problem solving

Ready to Get Started?

Learn more about cae’s suite of products and let’s get started measuring and teaching students important higher-order skills like problem solving..

numberblocks_logo

Problem-Solving

TeacherVision Staff

Add to Folder
creative writing
children's book
activities
classroom tools
language arts and writing
vocabulary

Jabberwocky

Problem-solving is the ability to identify and solve problems by applying appropriate skills systematically.

Problem-solving is a process—an ongoing activity in which we take what we know to discover what we don't know. It involves overcoming obstacles by generating hypo-theses, testing those predictions, and arriving at satisfactory solutions.

Problem-solving involves three basic functions:

Seeking information

Generating new knowledge

Making decisions

Problem-solving is, and should be, a very real part of the curriculum. It presupposes that students can take on some of the responsibility for their own learning and can take personal action to solve problems, resolve conflicts, discuss alternatives, and focus on thinking as a vital element of the curriculum. It provides students with opportunities to use their newly acquired knowledge in meaningful, real-life activities and assists them in working at higher levels of thinking (see Levels of Questions ).

Here is a five-stage model that most students can easily memorize and put into action and which has direct applications to many areas of the curriculum as well as everyday life:

Expert Opinion

Here are some techniques that will help students understand the nature of a problem and the conditions that surround it:

  • List all related relevant facts.
  • Make a list of all the given information.
  • Restate the problem in their own words.
  • List the conditions that surround a problem.
  • Describe related known problems.

It's Elementary

For younger students, illustrations are helpful in organizing data, manipulating information, and outlining the limits of a problem and its possible solution(s). Students can use drawings to help them look at a problem from many different perspectives.

Understand the problem. It's important that students understand the nature of a problem and its related goals. Encourage students to frame a problem in their own words.

Describe any barriers. Students need to be aware of any barriers or constraints that may be preventing them from achieving their goal. In short, what is creating the problem? Encouraging students to verbalize these impediments is always an important step.

Identify various solutions. After the nature and parameters of a problem are understood, students will need to select one or more appropriate strategies to help resolve the problem. Students need to understand that they have many strategies available to them and that no single strategy will work for all problems. Here are some problem-solving possibilities:

Create visual images. Many problem-solvers find it useful to create “mind pictures” of a problem and its potential solutions prior to working on the problem. Mental imaging allows the problem-solvers to map out many dimensions of a problem and “see” it clearly.

Guesstimate. Give students opportunities to engage in some trial-and-error approaches to problem-solving. It should be understood, however, that this is not a singular approach to problem-solving but rather an attempt to gather some preliminary data.

Create a table. A table is an orderly arrangement of data. When students have opportunities to design and create tables of information, they begin to understand that they can group and organize most data relative to a problem.

Use manipulatives. By moving objects around on a table or desk, students can develop patterns and organize elements of a problem into recognizable and visually satisfying components.

Work backward. It's frequently helpful for students to take the data presented at the end of a problem and use a series of computations to arrive at the data presented at the beginning of the problem.

Look for a pattern. Looking for patterns is an important problem-solving strategy because many problems are similar and fall into predictable patterns. A pattern, by definition, is a regular, systematic repetition and may be numerical, visual, or behavioral.

Create a systematic list. Recording information in list form is a process used quite frequently to map out a plan of attack for defining and solving problems. Encourage students to record their ideas in lists to determine regularities, patterns, or similarities between problem elements.

Try out a solution. When working through a strategy or combination of strategies, it will be important for students to …

Keep accurate and up-to-date records of their thoughts, proceedings, and procedures. Recording the data collected, the predictions made, and the strategies used is an important part of the problem solving process.

Try to work through a selected strategy or combination of strategies until it becomes evident that it's not working, it needs to be modified, or it is yielding inappropriate data. As students become more proficient problem-solvers, they should feel comfortable rejecting potential strategies at any time during their quest for solutions.

Monitor with great care the steps undertaken as part of a solution. Although it might be a natural tendency for students to “rush” through a strategy to arrive at a quick answer, encourage them to carefully assess and monitor their progress.

Feel comfortable putting a problem aside for a period of time and tackling it at a later time. For example, scientists rarely come up with a solution the first time they approach a problem. Students should also feel comfortable letting a problem rest for a while and returning to it later.

Evaluate the results. It's vitally important that students have multiple opportunities to assess their own problem-solving skills and the solutions they generate from using those skills. Frequently, students are overly dependent upon teachers to evaluate their performance in the classroom. The process of self-assessment is not easy, however. It involves risk-taking, self-assurance, and a certain level of independence. But it can be effectively promoted by asking students questions such as “How do you feel about your progress so far?” “Are you satisfied with the results you obtained?” and “Why do you believe this is an appropriate response to the problem?”

Featured High School Resources

Romeo and Juliet Teaching Unit Kit

Related Resources

Students taking a test

About the author

TeacherVision Staff

TeacherVision Editorial Staff

The TeacherVision editorial team is comprised of teachers, experts, and content professionals dedicated to bringing you the most accurate and relevant information in the teaching space.

sandbox logo

Eberly Center

Teaching excellence & educational innovation.

This site provides practical strategies to address teaching problems across the disciplines. These strategies are firmly grounded in educational research and learning principles.

How does it work?

This site supplements our 1-on-1 teaching consultations. CONTACT US to talk with an Eberly colleague in person!

learning principles

  • Students' prior knowledge can help or hinder learning. MORE
  • How students organize knowledge influences how they learn and apply what they know. MORE
  • Students' motivation determines, directs, and sustains what they do to learn. MORE
  • To develop mastery, students must acquire component skills, practice integrating them, and know when to apply what they have learned. MORE
  • Faculty Support
  • Graduate Student Support
  • Canvas @ Carnegie Mellon
  • Quick Links

creative commons image

teaching problem solving

Teaching Problem Solving in Math

  • Freebies , Math , Planning

Problem solving tends to REALLY throw students for a loop when they're first introduced to it. Up until this point, math has been numbers, but now, math is numbers and words. I discuss four important steps I take in teaching problem solving, and I provide you with examples as I go. You can also check out my math workshop problem solving unit for third grade!

Every year my students can be fantastic at math…until they start to see math with words. For some reason, once math gets translated into reading, even my best readers start to panic. There is just something about word problems, or problem-solving, that causes children to think they don’t know how to complete them.

Every year in math, I start off by teaching my students problem-solving skills and strategies. Every year they moan and groan that they know them. Every year – paragraph one above. It was a vicious cycle. I needed something new.

Problem solving tends to REALLY throw students for a loop when they're first introduced to it. Up until this point, math has been numbers, but now, math is numbers and words. I discuss four important steps I take in teaching problem solving, and I provide you with examples as I go. You can also check out my math workshop problem solving unit for third grade!

I put together a problem-solving unit that would focus a bit more on strategies and steps in hopes that that would create problem-solving stars.

The Problem Solving Strategies

First, I wanted to make sure my students all learned the different strategies to solve problems, such as guess-and-check, using visuals (draw a picture, act it out, and modeling it), working backward, and organizational methods (tables, charts, and lists). In the past, I had used worksheet pages that would introduce one and provide the students with plenty of problems practicing that one strategy. I did like that because students could focus more on practicing the strategy itself, but I also wanted students to know when to use it, too, so I made sure they had both to practice.

I provided students with plenty of practice of the strategies, such as in this guess-and-check game.

Problem solving tends to REALLY throw students for a loop when they're first introduced to it. Up until this point, math has been numbers, but now, math is numbers and words. I discuss four important steps I take in teaching problem solving, and I provide you with examples as I go. You can also check out my math workshop problem solving unit for third grade!

There’s also this visuals strategy wheel practice.

Problem solving tends to REALLY throw students for a loop when they're first introduced to it. Up until this point, math has been numbers, but now, math is numbers and words. I discuss four important steps I take in teaching problem solving, and I provide you with examples as I go. You can also check out my math workshop problem solving unit for third grade!

I also provided them with paper dolls and a variety of clothing to create an organized list to determine just how many outfits their “friend” would have.

Problem solving tends to REALLY throw students for a loop when they're first introduced to it. Up until this point, math has been numbers, but now, math is numbers and words. I discuss four important steps I take in teaching problem solving, and I provide you with examples as I go. You can also check out my math workshop problem solving unit for third grade!

Then, as I said above, we practiced in a variety of ways to make sure we knew exactly when to use them. I really wanted to make sure they had this down!

Problem solving tends to REALLY throw students for a loop when they're first introduced to it. Up until this point, math has been numbers, but now, math is numbers and words. I discuss four important steps I take in teaching problem solving, and I provide you with examples as I go. You can also check out my math workshop problem solving unit for third grade!

Anyway, after I knew they had down the various strategies and when to use them, then we went into the actual problem-solving steps.

The Problem Solving Steps

I wanted students to understand that when they see a story problem, it isn’t scary. Really, it’s just the equation written out in words in a real-life situation. Then, I provided them with the “keys to success.”

S tep 1 – Understand the Problem.   To help students understand the problem, I provided them with sample problems, and together we did five important things:

  • read the problem carefully
  • restated the problem in our own words
  • crossed out unimportant information
  • circled any important information
  • stated the goal or question to be solved

We did this over and over with example problems.

Problem solving tends to REALLY throw students for a loop when they're first introduced to it. Up until this point, math has been numbers, but now, math is numbers and words. I discuss four important steps I take in teaching problem solving, and I provide you with examples as I go. You can also check out my math workshop problem solving unit for third grade!

Once I felt the students had it down, we practiced it in a game of problem-solving relay. Students raced one another to see how quickly they could get down to the nitty-gritty of the word problems. We weren’t solving the problems – yet.

Problem solving tends to REALLY throw students for a loop when they're first introduced to it. Up until this point, math has been numbers, but now, math is numbers and words. I discuss four important steps I take in teaching problem solving, and I provide you with examples as I go. You can also check out my math workshop problem solving unit for third grade!

Then, we were on to Step 2 – Make a Plan . We talked about how this was where we were going to choose which strategy we were going to use. We also discussed how this was where we were going to figure out what operation to use. I taught the students Sheila Melton’s operation concept map.

Problem solving tends to REALLY throw students for a loop when they're first introduced to it. Up until this point, math has been numbers, but now, math is numbers and words. I discuss four important steps I take in teaching problem solving, and I provide you with examples as I go. You can also check out my math workshop problem solving unit for third grade!

We talked about how if you know the total and know if it is equal or not, that will determine what operation you are doing. So, we took an example problem, such as:

Sheldon wants to make a cupcake for each of his 28 classmates. He can make 7 cupcakes with one box of cupcake mix. How many boxes will he need to buy?

We started off by asking ourselves, “Do we know the total?” We know there are a total of 28 classmates. So, yes, we are separating. Then, we ask, “Is it equal?” Yes, he wants to make a cupcake for EACH of his classmates. So, we are dividing: 28 divided by 7 = 4. He will need to buy 4 boxes. (I actually went ahead and solved it here – which is the next step, too.)

Step 3 – Solving the problem . We talked about how solving the problem involves the following:

  • taking our time
  • working the problem out
  • showing all our work
  • estimating the answer
  • using thinking strategies

We talked specifically about thinking strategies. Just like in reading, there are thinking strategies in math. I wanted students to be aware that sometimes when we are working on a problem, a particular strategy may not be working, and we may need to switch strategies. We also discussed that sometimes we may need to rethink the problem, to think of related content, or to even start over. We discussed these thinking strategies:

  • switch strategies or try a different one
  • rethink the problem
  • think of related content
  • decide if you need to make changes
  • check your work
  • but most important…don’t give up!

To make sure they were getting in practice utilizing these thinking strategies, I gave each group chart paper with a letter from a fellow “student” (not a real student), and they had to give advice on how to help them solve their problem using the thinking strategies above.

Problem solving tends to REALLY throw students for a loop when they're first introduced to it. Up until this point, math has been numbers, but now, math is numbers and words. I discuss four important steps I take in teaching problem solving, and I provide you with examples as I go. You can also check out my math workshop problem solving unit for third grade!

Finally, Step 4 – Check It.   This is the step that students often miss. I wanted to emphasize just how important it is! I went over it with them, discussing that when they check their problems, they should always look for these things:

  • compare your answer to your estimate
  • check for reasonableness
  • check your calculations
  • add the units
  • restate the question in the answer
  • explain how you solved the problem

Then, I gave students practice cards. I provided them with example cards of “students” who had completed their assignments already, and I wanted them to be the teacher. They needed to check the work and make sure it was completed correctly. If it wasn’t, then they needed to tell what they missed and correct it.

Problem solving tends to REALLY throw students for a loop when they're first introduced to it. Up until this point, math has been numbers, but now, math is numbers and words. I discuss four important steps I take in teaching problem solving, and I provide you with examples as I go. You can also check out my math workshop problem solving unit for third grade!

To demonstrate their understanding of the entire unit, we completed an adorable lap book (my first time ever putting together one or even creating one – I was surprised how well it turned out, actually). It was a great way to put everything we discussed in there.

Problem solving tends to REALLY throw students for a loop when they're first introduced to it. Up until this point, math has been numbers, but now, math is numbers and words. I discuss four important steps I take in teaching problem solving, and I provide you with examples as I go. You can also check out my math workshop problem solving unit for third grade!

Once we were all done, students were officially Problem Solving S.T.A.R.S. I just reminded students frequently of this acronym.

Stop – Don’t rush with any solution; just take your time and look everything over.

Think – Take your time to think about the problem and solution.

Act  – Act on a strategy and try it out.

Review – Look it over and see if you got all the parts.

Problem solving tends to REALLY throw students for a loop when they're first introduced to it. Up until this point, math has been numbers, but now, math is numbers and words. I discuss four important steps I take in teaching problem solving, and I provide you with examples as I go. You can also check out my math workshop problem solving unit for third grade!

Wow, you are a true trooper sticking it out in this lengthy post! To sum up the majority of what I have written here, I have some problem-solving bookmarks FREE to help you remember and to help your students!

Problem solving tends to REALLY throw students for a loop when they're first introduced to it. Up until this point, math has been numbers, but now, math is numbers and words. I discuss four important steps I take in teaching problem solving, and I provide you with examples as I go. You can also check out my math workshop problem solving unit for third grade!

You can grab these problem-solving bookmarks for FREE by clicking here .

You can do any of these ideas without having to purchase anything. However, if you are looking to save some time and energy, then they are all found in my Math Workshop Problem Solving Unit . The unit is for grade three, but it  may work for other grade levels. The practice problems are all for the early third-grade level.

teaching problem solving

  • freebie , Math Workshop , Problem Solving

teaching problem solving

FIND IT NOW!

Check me out on tpt.

teaching problem solving

CHECK THESE OUT

5TH-GRADE-GROWING-BUNDLE-MATH-WORKSHOP cover

5th Grade Math Workshop Growing Bundle- 9 Units

teaching problem solving

Three Types of Rocks and Minerals with Rock Cycle Circle Book

Want to save time?

COPYRIGHT © 2016-2024. The Owl Teacher | Privacy page | Disclosure Page | Shipping | Returns/Refunds

BOGO on EVERYTHING!

The Lesson Study Group

at Mills College

Teaching Through Problem-solving

An elementary-age male student points while his female teacher stands beside him and observes

  • TTP in Action

What is Teaching Through Problem-Solving?

In Teaching Through Problem-solving (TTP), students learn new mathematics by solving problems. Students grapple with a novel problem, present and discuss solution strategies, and together build the next concept or procedure in the mathematics curriculum.

Teaching Through Problem-solving is widespread in Japan, where students solve problems before a solution method or procedure is taught. In contrast, U.S. students spend most of their time doing exercises– completing problems for which a solution method has already been taught.

Why Teaching Through Problem-Solving?

As students build their mathematical knowledge, they also:

  • Learn to reason mathematically, using prior knowledge to build new ideas
  • See the power of their explanations and carefully written work to spark insights for themselves and their classmates
  • Expect mathematics to make sense
  • Enjoy solving unfamiliar problems
  • Experience mathematical discoveries that naturally deepen their perseverance

Phases of a TTP Lesson

Teaching Through Problem-solving flows through four phases as students 1. Grasp the problem, 2. Try to solve the problem independently, 3. Present and discuss their work (selected strategies), and 4. Summarize and reflect.

Click on the arrows below to find out what students and teachers do during each phase and to see video examples.

  • 1. Grasp the Problem
  • 2. Try to Solve
  • 3. Present & Discuss
  • 4. Summarize & Reflect
  • New Learning

WHAT STUDENTS DO

  • Understand the problem and develop interest in solving it.
  • Consider what they know that might help them solve the problem.

WHAT TEACHERS DO

  • Show several student journal reflections from the prior lesson.
  • Pose a problem that students do not yet know how to solve.
  • Interest students in the problem and in thinking about their own related knowledge.
  • Independently try to solve the problem.
  • Do not simply following the teacher’s solution example.
  • Allow classmates to provide input after some independent thinking time.
  • Circulate, using seating chart to note each student’s solution approach.
  • Identify work to be presented and discussed at board.
  • Ask individual questions to spark more thinking if some students finish quickly or don’t get started.
  • Present and explain solution ideas at the board, are questioned by classmates and teacher. (2-3 students per lesson)
  • Actively make sense of the presented work and draw out key mathematical points. (All students)
  • Strategically select and sequence student presentations of work at the board, to build the new mathematics. (Incorrect approaches may be included.)
  • Monitor student discussion: Are all students noticing the important mathematical ideas?
  • Add teacher moves (questions, turn-and-talk, votes) as needed to build important mathematics.
  • Consider what they learned and share their thoughts with class, to help formulate class summary of learning. Copy summary into journal.
  • Write journal reflection on their own learning from the lesson.
  • Write on the board a brief summary of what the class learned during the lesson, using student ideas and words where possible.
  • Ask students to write in their journals about what they learned during the lesson.

How Do Teachers Support Problem-solving?

Although students do much of the talking and questioning in a TTP lesson, teachers play a crucial role. The widely-known 5 Practices for Orchestrating Mathematical Discussions were based in part on TTP . Teachers study the curriculum, anticipate student thinking, and select and sequence the student presentations that allow the class to build the new mathematics. Classroom routines for presentation and discussion of student work, board organization, and reflective mathematics journals work together to allow students to do the mathematical heavy lifting. To learn more about journals, board work, and discussion in TTP, as well as see other TTP resources and examples of TTP in action, click on the respective tabs near the top of this page.

Additional Readings

teaching problem solving

Can’t find a resource you need? Get in touch.

The Lesson Study Group

  • What is Lesson Study?
  • Why Lesson Study?
  • Teacher Learning
  • Content Resources
  • Teaching Through Problem-solving (TTP)
  • School-wide Lesson Study
  • U.S. Networks
  • International Networks

Problem-Solving Method in Teaching

The problem-solving method is a highly effective teaching strategy that is designed to help students develop critical thinking skills and problem-solving abilities . It involves providing students with real-world problems and challenges that require them to apply their knowledge, skills, and creativity to find solutions. This method encourages active learning, promotes collaboration, and allows students to take ownership of their learning.

Table of Contents

Definition of problem-solving method.

Problem-solving is a process of identifying, analyzing, and resolving problems. The problem-solving method in teaching involves providing students with real-world problems that they must solve through collaboration and critical thinking. This method encourages students to apply their knowledge and creativity to develop solutions that are effective and practical.

Meaning of Problem-Solving Method

The meaning and Definition of problem-solving are given by different Scholars. These are-

Woodworth and Marquis(1948) : Problem-solving behavior occurs in novel or difficult situations in which a solution is not obtainable by the habitual methods of applying concepts and principles derived from past experience in very similar situations.

Skinner (1968): Problem-solving is a process of overcoming difficulties that appear to interfere with the attainment of a goal. It is the procedure of making adjustments in spite of interference

Benefits of Problem-Solving Method

The problem-solving method has several benefits for both students and teachers. These benefits include:

  • Encourages active learning: The problem-solving method encourages students to actively participate in their own learning by engaging them in real-world problems that require critical thinking and collaboration
  • Promotes collaboration: Problem-solving requires students to work together to find solutions. This promotes teamwork, communication, and cooperation.
  • Builds critical thinking skills: The problem-solving method helps students develop critical thinking skills by providing them with opportunities to analyze and evaluate problems
  • Increases motivation: When students are engaged in solving real-world problems, they are more motivated to learn and apply their knowledge.
  • Enhances creativity: The problem-solving method encourages students to be creative in finding solutions to problems.

Steps in Problem-Solving Method

The problem-solving method involves several steps that teachers can use to guide their students. These steps include

  • Identifying the problem: The first step in problem-solving is identifying the problem that needs to be solved. Teachers can present students with a real-world problem or challenge that requires critical thinking and collaboration.
  • Analyzing the problem: Once the problem is identified, students should analyze it to determine its scope and underlying causes.
  • Generating solutions: After analyzing the problem, students should generate possible solutions. This step requires creativity and critical thinking.
  • Evaluating solutions: The next step is to evaluate each solution based on its effectiveness and practicality
  • Selecting the best solution: The final step is to select the best solution and implement it.

Verification of the concluded solution or Hypothesis

The solution arrived at or the conclusion drawn must be further verified by utilizing it in solving various other likewise problems. In case, the derived solution helps in solving these problems, then and only then if one is free to agree with his finding regarding the solution. The verified solution may then become a useful product of his problem-solving behavior that can be utilized in solving further problems. The above steps can be utilized in solving various problems thereby fostering creative thinking ability in an individual.

The problem-solving method is an effective teaching strategy that promotes critical thinking, creativity, and collaboration. It provides students with real-world problems that require them to apply their knowledge and skills to find solutions. By using the problem-solving method, teachers can help their students develop the skills they need to succeed in school and in life.

  • Jonassen, D. (2011). Learning to solve problems: A handbook for designing problem-solving learning environments. Routledge.
  • Hmelo-Silver, C. E. (2004). Problem-based learning: What and how do students learn? Educational Psychology Review, 16(3), 235-266.
  • Mergendoller, J. R., Maxwell, N. L., & Bellisimo, Y. (2006). The effectiveness of problem-based instruction: A comparative study of instructional methods and student characteristics. Interdisciplinary Journal of Problem-based Learning, 1(2), 49-69.
  • Richey, R. C., Klein, J. D., & Tracey, M. W. (2011). The instructional design knowledge base: Theory, research, and practice. Routledge.
  • Savery, J. R., & Duffy, T. M. (2001). Problem-based learning: An instructional model and its constructivist framework. CRLT Technical Report No. 16-01, University of Michigan. Wojcikowski, J. (2013). Solving real-world problems through problem-based learning. College Teaching, 61(4), 153-156

Micro Teaching Skills

Resilient Educator logo

ChatGPT for Teachers

Trauma-informed practices in schools, teacher well-being, cultivating diversity, equity, & inclusion, integrating technology in the classroom, social-emotional development, covid-19 resources, invest in resilience: summer toolkit, civics & resilience, all toolkits, degree programs, trauma-informed professional development, teacher licensure & certification, how to become - career information, classroom management, instructional design, lifestyle & self-care, online higher ed teaching, current events, 5 problem-solving activities for the classroom.

5 Problem-Solving Activities for the Classroom

Problem-solving skills are necessary in all areas of life, and classroom problem solving activities can be a great way to get students prepped and ready to solve real problems in real life scenarios. Whether in school, work or in their social relationships, the ability to critically analyze a problem, map out all its elements and then prepare a workable solution is one of the most valuable skills one can acquire in life.

Educating your students about problem solving skills from an early age in school can be facilitated through classroom problem solving activities. Such endeavors encourage cognitive as well as social development, and can equip students with the tools they’ll need to address and solve problems throughout the rest of their lives. Here are five classroom problem solving activities your students are sure to benefit from as well as enjoy doing:

1. Brainstorm bonanza

Having your students create lists related to whatever you are currently studying can be a great way to help them to enrich their understanding of a topic while learning to problem-solve. For example, if you are studying a historical, current or fictional event that did not turn out favorably, have your students brainstorm ways that the protagonist or participants could have created a different, more positive outcome. They can brainstorm on paper individually or on a chalkboard or white board in front of the class.

2. Problem-solving as a group

Have your students create and decorate a medium-sized box with a slot in the top. Label the box “The Problem-Solving Box.” Invite students to anonymously write down and submit any problem or issue they might be having at school or at home, ones that they can’t seem to figure out on their own. Once or twice a week, have a student draw one of the items from the box and read it aloud. Then have the class as a group figure out the ideal way the student can address the issue and hopefully solve it.

3. Clue me in

This fun detective game encourages problem-solving, critical thinking and cognitive development. Collect a number of items that are associated with a specific profession, social trend, place, public figure, historical event, animal, etc. Assemble actual items (or pictures of items) that are commonly associated with the target answer. Place them all in a bag (five-10 clues should be sufficient.) Then have a student reach into the bag and one by one pull out clues. Choose a minimum number of clues they must draw out before making their first guess (two- three). After this, the student must venture a guess after each clue pulled until they guess correctly. See how quickly the student is able to solve the riddle.

4. Survivor scenarios

Create a pretend scenario for students that requires them to think creatively to make it through. An example might be getting stranded on an island, knowing that help will not arrive for three days. The group has a limited amount of food and water and must create shelter from items around the island. Encourage working together as a group and hearing out every child that has an idea about how to make it through the three days as safely and comfortably as possible.

5. Moral dilemma

Create a number of possible moral dilemmas your students might encounter in life, write them down, and place each item folded up in a bowl or bag. Some of the items might include things like, “I saw a good friend of mine shoplifting. What should I do?” or “The cashier gave me an extra $1.50 in change after I bought candy at the store. What should I do?” Have each student draw an item from the bag one by one, read it aloud, then tell the class their answer on the spot as to how they would handle the situation.

Classroom problem solving activities need not be dull and routine. Ideally, the problem solving activities you give your students will engage their senses and be genuinely fun to do. The activities and lessons learned will leave an impression on each child, increasing the likelihood that they will take the lesson forward into their everyday lives.

You may also like to read

  • Classroom Activities for Introverted Students
  • Activities for Teaching Tolerance in the Classroom
  • 5 Problem-Solving Activities for Elementary Classrooms
  • 10 Ways to Motivate Students Outside the Classroom
  • Motivating Introverted Students to Excel in the Classroom
  • How to Engage Gifted and Talented Students in the Classroom

Explore careers and degrees on Noodle.com - Find your next career

Categorized as: Tips for Teachers and Classroom Resources

Tagged as: Assessment Tools ,  Engaging Activities

  • Online & Campus Doctorate (EdD) in Higher Edu...
  • Degrees and Certificates for Teachers & Educa...
  • Programming Teacher: Job Description and Sala...

Las Vegas Day School

10 Ways to Teach Your Children to Be Problem Solvers

Problem-solving is vital in navigating the complexities of life and is best nurtured from a young age. Let’s explore a variety of approaches, each contributing to the development of a child’s ability to think critically and resolve challenges effectively.

Strategy 1: Modeling Problem-Solving Behavior

Parents are the first role models children observe and learn from. Demonstrating problem-solving skills in everyday life plays a crucial role in teaching children how to handle challenges.

Impact of Demonstrating Problem-Solving

  • Observational Learning: Children learn by observing their parents. When a parent faces a challenge and vocalizes their thought process, it provides a practical, real-world example of problem-solving.
  • Developing Cognitive Skills: As parents articulate their problem-solving steps, children learn to think critically and analytically. This process helps in developing their cognitive skills.

How to Model Problem-Solving

  • Think Out Loud: Parents should verbalize their thoughts when encountering a problem. For instance, if deciding between buying different products, explain the pros and cons of each option out loud.
  • Show Emotion Management: It’s beneficial to express how certain problems make you feel and how you manage these emotions. This teaches emotional regulation alongside problem-solving.
  • Involve Children in Solutions: For age-appropriate problems, involve children in the decision-making process. Ask for their opinions and discuss the potential outcomes.
  • Boosts Confidence: When children see their parents tackling problems effectively, it boosts their confidence in handling their issues.
  • Enhances Critical Thinking: This method promotes critical thinking and decision-making skills in children.
  • Prepares for Real-life Situations: Children get better prepared for real-life situations, understanding that problems are a normal part of life and can be approached logically and calmly.

Strategy 2: Encouraging Creative Play

Creative play and DIY projects are not just forms of entertainment for children; they are essential tools for developing problem-solving skills.

How Creative Play Fosters Problem-Solving

  • Stimulates Imagination: Engaging in activities like building forts, crafting, or imaginative play scenarios encourages children to think outside the box, an essential aspect of problem-solving.
  • Encourages Experimentation: Creative play often involves trial and error, teaching children that it’s okay to fail and try again, a key component of solving problems.
  • Develops Cognitive Flexibility: When children create and explore in an unstructured environment, they learn to adapt and change their approaches, which is vital in problem-solving.

DIY Projects as Learning Tools

  • Hands-On Experience: DIY projects provide hands-on opportunities for children to encounter and solve real-world problems. They learn to follow steps, use tools, and understand the process of creating something from start to finish.
  • Collaborative Problem-Solving: Working on projects with others, including parents or siblings, enhances their ability to work as a team and solve problems together.
  • Boosts Self-Efficacy: Completing a project successfully instills a sense of accomplishment and confidence in their problem-solving abilities.
  • Enhances Critical Thinking: Children learn to think critically about how to use materials and what steps to take to achieve their desired outcome.
  • Promotes Persistence: Creative play teaches persistence as children learn that not every attempt leads to immediate success.
  • Encourages Independent Thinking: These activities allow children to make decisions, fostering independent thought and decision-making skills.

Strategy 3: Systematic Problem-Solving Approach

A systematic method for problem-solving helps children approach challenges in a more organized and effective manner.

Step-by-Step Problem-Solving Method

Identify emotions:.

Begin by helping children recognize and name their emotions related to the problem (e.g., frustration, confusion). This step is crucial for emotional regulation and clear thinking.

Define the Problem:

Guide children to articulate the problem clearly. Encourage them to state the issue in their own words, which helps in understanding the challenge more deeply.

Brainstorm Solutions:

Encourage children to think of as many solutions as possible, without initially judging the ideas. This brainstorming phase fosters creativity and open-mindedness.

Evaluate Solutions:

Guide children to consider the pros and cons of each solution. Ask questions like, “What could happen if you try this?” to help them think through the outcomes.

Choose a Solution:

Encourage children to select a solution based on their evaluation. This step empowers them to make decisions and take ownership of the problem-solving process.

Implement the Solution:

Guide them in putting their chosen solution into action. This step translates their theoretical understanding into practical application.

Reflect on the Outcome:

After the solution has been implemented, discuss with children what worked well and what could be improved. This reflection helps in learning from the experience.

  • Develops Critical Thinking: This approach enhances critical thinking skills by requiring children to analyze problems and consider various solutions.
  • Encourages Independence: By following these steps, children learn to rely on their own abilities to solve problems.
  • Builds Resilience: Children learn that not every problem is solved on the first try, which builds resilience and persistence.

Strategy 4: Reading and Discussing Problem-Solving Stories

Stories and books are powerful tools for teaching problem-solving. They offer relatable scenarios where characters face and overcome challenges, providing real-life lessons in a fictional setting.

Using Stories to Teach Problem-Solving

Selecting appropriate books:.

Choose stories that focus on characters solving problems. Books like “Ladybug Girl and Bumblebee Boy” by Jacky Davis and “The Curious George Series” by Margaret and H.E. Rey are great examples where characters face and resolve dilemmas.

Discussion During Reading:

Engage children in discussions about the story. Ask questions like, “What problem is the character facing?” and “How did they solve it?” This helps children understand the problem-solving process.

Relating to Personal Experiences:

Encourage children to connect the story’s events to their own lives. Discuss how they might handle similar situations, fostering empathy and personal connection.

Encouraging Active Participation:

Have children predict outcomes or suggest alternative solutions for the characters. This engages their critical thinking and imagination.

Role-Playing:

Involve children in role-playing exercises based on the stories. Acting out different scenarios helps solidify the problem-solving methods demonstrated by the characters.

  • Enhances Comprehension: Discussing the story’s problems and solutions improves children’s comprehension and analytical skills.
  • Builds Empathy: Identifying with characters and their challenges helps develop empathy and emotional intelligence.
  • Encourages Creative Thinking: By exploring different solutions within a safe, fictional context, children can expand their creative problem-solving abilities.

Strategy 5: Promoting Autonomy and Learning from Failure

Fostering autonomy in children is a critical aspect of their development. It involves allowing them to make decisions, take risks, and, most importantly, learn from their mistakes.

Allowing Mistakes and Failures

  • Avoiding Helicopter Parenting: Overprotective or “helicopter” parenting can hinder a child’s ability to develop problem-solving skills. Allowing children to face challenges and sometimes fail teaches them resilience and self-reliance.
  • Learning Opportunities : Mistakes and failures are valuable learning opportunities. They teach children that not every attempt will be successful and that persistence is key.
  • Encouraging Risk-Taking: Encourage children to take calculated risks. This helps them learn to weigh options and make decisions based on their judgments.

Guiding Through Failures

  • Supportive Environment: Create a supportive environment where children feel safe to fail. Encourage them to try again and guide them through the process of analyzing what went wrong.
  • Constructive Feedback: Provide constructive feedback that focuses on the effort and strategy rather than the outcome. This approach helps children understand that failure is a part of the learning process.
  • Builds Problem-Solving Skills: Experiencing failure and learning to overcome it is an integral part of developing problem-solving skills.
  • Promotes Growth Mindset: It encourages a growth mindset where children understand that abilities can be developed through dedication and hard work.
  • Enhances Emotional Intelligence: Learning from failures helps children manage their emotions and cope with setbacks in a healthy manner.

Strategy 6: Utilizing Open-Ended Questions

Open-ended questions are a powerful tool in encouraging critical thinking and problem-solving in children. These questions do not have a predetermined answer, allowing children to explore their thoughts and ideas freely.

Implementing Open-Ended Questions:

  • Types of Questions: Ask questions that cannot be answered with a simple ‘yes’ or ‘no’. Examples include, “How could we solve this problem together?” or “What do you think would happen if…?”
  • Encouraging Explanation: Prompt children to explain their reasoning with questions like, “How did you come to that conclusion?” or “Can you tell me more about your thought process?”
  • Fostering Imagination: Use questions that encourage children to use their imagination, such as “What would you do if you were in this situation?” or “How would you handle this differently?”

Benefits of Open-Ended Questions:

  • Develops Problem-Solving Skills: These questions make children contemplate different aspects of a problem and potential solutions, enhancing their problem-solving abilities.
  • Enhances Communication Skills: Open-ended questions require children to articulate their thoughts clearly, improving their communication skills.
  • Builds Confidence: As children express their ideas and are heard, it boosts their self-esteem and confidence in their abilities.

Creating a Supportive Environment:

  • Active Listening: Actively listen to the child’s responses without interrupting. This shows that their thoughts and opinions are valued.
  • Non-Judgmental Responses: Respond to their answers in a non-judgmental way, encouraging them to share more freely.
  • Encourage Exploration: Encourage children to explore different answers and viewpoints, reinforcing that there are often multiple ways to approach a problem.

Strategy 7: Fostering Open-Mindedness

Teaching children to be open-minded is crucial for developing effective problem-solving skills. It involves considering various perspectives and integrating different views into solutions.

Encouraging Multiple Perspectives:

  • Understanding Different Viewpoints: Encourage children to think about how others might view a situation. Ask questions like, “What do you think someone else would do in this case?” or “Can you think of a different way to look at this problem?”
  • Empathy in Problem-Solving: Teach children to consider the feelings and perspectives of others involved in a problem. This not only helps in finding more compassionate solutions but also in building strong interpersonal skills.

Integrating Diverse Solutions:

  • Combining Ideas: Encourage children to combine different ideas to find a novel solution. This could involve brainstorming sessions where multiple solutions are discussed and combined.
  • Learning from Different Cultures: Expose children to problem-solving methods from different cultures and backgrounds. This broadens their understanding and appreciation of diverse approaches.
  • Enhances Creativity: Open-mindedness in problem-solving fosters creativity, as children learn to think outside their usual boundaries.
  • Builds Critical Thinking: Considering multiple perspectives requires children to critically evaluate each viewpoint, enhancing their critical thinking skills.
  • Promotes Tolerance and Understanding: Fostering open-mindedness helps children develop tolerance and understanding towards different ideas and cultures.

Strategy 8: Incorporating Problem-Solving into Family Culture

Integrating problem-solving into family culture involves turning everyday challenges into learning opportunities and making this practice an enjoyable part of family life.

Practical Ways to Integrate Problem-Solving:

  • Family Meetings: Regular family meetings can be an effective way to discuss and solve family issues together. It encourages collaboration and collective decision-making.
  • Shared Challenges: Involve the entire family in solving practical problems, such as planning a family vacation or budgeting for a big purchase. This teaches children the value of planning and compromise.
  • Fun Problem-Solving Activities: Incorporate games and activities that involve problem-solving skills, like puzzles, strategy games, or scavenger hunts. This makes the process fun and engaging.

Encouraging a Positive Attitude Towards Challenges:

  • Modeling Positivity: Show a positive attitude when facing challenges, demonstrating that problems are opportunities for growth and learning.
  • Celebrating Solutions: Whenever a problem is solved, whether it’s big or small, celebrate the achievement. This reinforces problem-solving as a positive and rewarding experience.
  • Fosters Teamwork: Engaging in family problem-solving activities helps in building teamwork and cooperation skills.
  • Develops Practical Life Skills: Children learn practical life skills that are essential for their future, like financial planning, time management, and organization.
  • Strengthens Family Bonds: Working together on problems strengthens family relationships and fosters a sense of unity and support.

Strategy 9: Engaging in Role-Playing Activities

Role-playing is an effective educational tool that allows children to simulate real-life situations. It provides a safe environment to practice problem-solving skills by acting out various scenarios.

Implementing Role-Playing in Problem-Solving:

  • Creating Scenarios: Develop scenarios that children are likely to encounter, such as resolving a disagreement with a friend or handling a difficult situation at school. These should be age-appropriate and relevant to their experiences.
  • Encouraging Different Perspectives: In role-playing, children can take on different roles, allowing them to see a problem from various viewpoints. This helps them understand the importance of empathy and considering multiple perspectives in problem-solving.
  • Guided Discussion: After the role-play, have a discussion about the experience. Ask questions like, “How did you feel in that role?” or “What could have been done differently to solve the problem?”
  • Enhances Communication Skills: Role-playing requires children to articulate their thoughts and feelings, improving their communication skills.
  • Builds Emotional Intelligence: By putting themselves in someone else’s shoes, children develop empathy and emotional understanding.
  • Practical Application of Skills: It allows children to apply problem-solving strategies in a controlled, low-stakes environment, helping them internalize these skills.

Variations of Role-Playing:

  • Use of Props and Costumes: Incorporating props and costumes can make the activity more engaging and realistic.
  • Incorporating Real-life Situations: Use real-life events as a basis for role-playing scenarios. This makes the exercise more relevant and practical.

Strategy 10: Encouraging Reflective Thinking

Reflective thinking is a critical component of the learning process. It involves looking back at the steps taken during problem-solving, analyzing the effectiveness of different strategies, and considering what could be improved.

Process of Reflective Thinking:

  • After-Action Review: After a problem has been addressed, encourage children to reflect on the process. Ask questions like, “What part of our solution worked well?” or “What challenges did we face, and how did we overcome them?”
  • Encouraging Honesty and Openness: Create an environment where children feel comfortable discussing both successes and failures openly. This honesty is crucial for genuine reflection and growth.
  • Focus on Learning, Not Just Outcome: Emphasize the importance of the learning process over the outcome. This approach helps children understand that the value lies not only in solving the problem but also in the lessons learned along the way.
  • Improves Problem-Solving Skills: Reflective thinking helps children understand what strategies are effective and which are not, refining their problem-solving skills over time.
  • Fosters a Growth Mindset: It promotes the idea that skills and intelligence can be developed through dedication and hard work.
  • Builds Self-Awareness: Reflecting on one’s own thought processes and decisions enhances self-awareness and personal development.

Guiding Children in Reflective Thinking:

  • Modeling Reflection: Demonstrate reflective thinking yourself. After solving a problem, talk about what you learned from the experience and what you might do differently next time.
  • Writing Journals: Encourage children to keep a journal where they can write down their thoughts about different problems they encounter and how they solved them. This can be a powerful tool for reflection.

Empowering the Next Generation: Fostering Critical Thinking and Problem-Solving at Las Vegas Day School

As we navigate a world that is increasingly complex and interconnected, equipping our children with the ability to think critically and solve problems is more important than ever. By implementing these strategies, parents and educators can provide children with the tools they need to face challenges confidently and effectively.

For families looking to further support their children’s educational journey, Las Vegas Day School (LVDS) offers an encouraging environment where these skills can be honed and developed. LVDS emphasizes a well-rounded approach to learning, where problem-solving is integrated into the curriculum, preparing students not just for academic success but for life-long resilience and adaptability. Visit LVDS to learn more about their programs and how they can support your child’s growth into a confident problem-solver and independent thinker.

Las Vegas Day School

Summer programs registration.

For LVDS Students Only

Is your child/children currently enrolled or have an upcoming enrollment at LVDS?

  • Financial Information
  • Schedule a Tour
  • School Information
  • Director’s Message
  • Campus Tour
  • Kinderschool Program
  • Elementary School Program
  • Middle School Program
  • Guidance Counseling
  • Student Activities
  • Summer Programs
  • Uniform Store
  • Family Portal

kispeechtherapy.com

Teaching Problem Solving

teaching problem solving

Problem solving skills are vital to all aspects of a child’s school day. When teaching problem solving skills, it’s important to determine where the child is having the most difficulty, take a step back, and build from there. Here are some of my tips for teaching problem solving skills to students in speech therapy.

Tip #1 for Teaching Problem Solving

Understand the process . Successful problem solving is a process that begins with identifying that there is a problem, thinking through possible solutions, and then selecting and implementing the best solution to that problem. This process must begin with a child being able to understand the idea of problem and solution. This is a great starting point for students who need instruction in the most basic aspect of problem solving. I do this by providing opportunities for them to identify pictures of problems and pictures of solutions and match them together.

teaching problem solving

Use familiar problems/situations first . It’s going to be much more difficult for a child to identify a particular problem if it’s related to an experience they know nothing about. When teaching problem solving, I prefer to start out with situations that may be familiar to my students, such as having a broken pencil, feeling sick, spilling a drink, etc. These are great types of problems to begin with while building the foundation of problem solving skills. You can move on to different types of situations/problems as their skill develops.

teaching problem solving

Practice coming up with multiple solutions to a problem . When teaching problem solving skills, it’s important to practice thinking through multiple possible solutions…even if they are not all good solutions. We want children to be able to think through problems and eventually be able to choose the BEST solutions to a particular problem. For example, if the problem is a spilled drink, possible solutions could be to leave the mess and walk away, or to clean it up. Talking through each of these possible actions is great practice for children. You can discuss situations when walking away and leaving the mess might be a necessary solution, versus when cleaning up the mess would be the best solution.

Be willing to accept different solutions . Often times when teaching problem solving skills, a child may present a solution I didn’t think of. Rather than saying it’s wrong, I allow them to explain why it could be a good solution. If a student can provide an acceptable explanation, it may be a good solution. We want our students to think through situations and sometimes they may see something differently than us. This is okay!

Gradually move away from pictures . It’s so great to start out using pictures when teaching problem solving. Pictures are a great way for students to really visualize and think through a solution. It’s important to move beyond pictures, though, and work on identifying problems in paragraphs/stories. Help students listen/look for problems in books, fairy tales, fables, etc. Identify problems and talk through possible solutions. Use books/stories they are using in their classroom when at all possible.

Teaching problem solving skills is so important. We want to make sure our students understand what problems and solutions are, be able to think through multiple possible solutions, and explain why a solution might be a good one.

Here are some files you can use for teaching problem solving:

  • Problem Solving Visuals (PDF)

Color Coded Matching (PDF)

  • Matching (PDF)

Problem-Solving Real Photos ( Members Only PDF )

Multiple Choice Selections for Photos ( Members Only PDF )

Problem Solving Scenarios (Paragraphs) ( Members Only PDF )

Hypothetical Real-Life Problem Situations ( Members Only PDF )

  • Recording Sheets ( Members Only PDF )
  • 4×6 Storage Box Covers ( Members Only PDF )

Problem Solving Resource Cover

To gain access to ALL of our content Join the KI Speech Community!

Here you will find hundreds of speech and language resources, a community of SLPs for support, and new materials always being added.

Want Access to Everything in the KI Speech Community?

Simply click the image below to get all of our resources.

teaching problem solving

  • Our Mission

4 Tips on Teaching Problem Solving (From a Student)

A student shares her insights into the most important skill you can teach. (Hint: It’s not perseverance.)

Two teenage boys in a full classroom are sitting at a table discussing something.

Education is one of the most important things in the world, but at most schools, students are told to memorize facts, formulas, and functions without any applicability to the real challenges we will face later. Instead, give us challenges; give us problems that focus on real-world scenarios; give us a chance to understand the world we’re entering and to be prepared for it before we’re thrown in headfirst.

At Two Rivers Public Charter School, they taught us how to problem solve, and they made it relevant. Here are four tips that engaged me in my learning that you can adapt in your classroom:

1. Give Your Students Hard Problems

In the real world, we’re not going to have nice problems that will be easy to understand. We are going to have complex problems that require a lot more preparation than most math, science, or English classes will give us. The challenges in the real world won’t be simple, and the problems that are supposed to prepare us for that world shouldn't be either.

2. Make Problem Solving Relevant to Your Students’ Lives

In the seventh grade, we looked at statistics concerning racial murders and the jury system. That’s something that is going to affect students later in life, and we got a chance to look at it from a mathematical perspective. Problems like that are actually relevant to us, and they’re not things we’re supposed to just memorize or learn. They are things from which we can take very important life lessons, and then actually apply them later on in life.

Related Article: Solving Real World Issues Through Problem-Based Learning

In the eighth grade, we wrote policy briefs in relation to gene editing and presented them to the National Academies of Sciences, Engineering, and Medicine. We talked to researchers who worked with CRISPR-Cas9 (a gene editing tool used to modify specific genes in organisms), and we studied how gene editing is evolving and how we can use this modern technology for science applications. At the same time, in English, we read The Giver by Lois Lowry and analyzed whether the society in the book was ethical to gain an understanding of what ethical means and how it’s applicable in real situations, like gene editing.

This wasn’t something where we were being told, “Somebody’s going to buy 60 watermelons at a store.” This was actually happening in real life, and the only people really discussing this were people whom it wasn't even going to affect. This science won’t come into widespread use until much later, and we’re going to be the first ones who are actually in danger from the possible consequences of it. By presenting our policy briefs, we had a chance to make an impact and get our voice out there at only 14.

3. Teach Your Students How to Grapple (It’s More Powerful Than Perseverance)

Grappling is like perseverance, but it goes beyond that. Perseverance means trying again and again, even after you’ve failed. Grappling implies trying even before you fail the first time. It’s thinking, “First, I’ll work with it independently. Okay, I’m really not understanding it. Let me go back to my notes. Okay, I have solved for the first part of it. Now I have the second part of it. Okay, I got the question wrong; let me try again. Maybe I can ask my peer now.” Grappling is working hard to make sure you understand the problem fully, and then using every resource at your fingertips to solve it.

4. Put More Importance on Student Understanding Than on Getting the Right Answer

I am graduating from Two Rivers with a practical view of the world. I don’t think that many students come out of middle school saying, “It was great.” And I don’t think many students have had this introduction to our society and its benefits and drawbacks. I’m also coming out of here with incredible problem-solving skills and the ability to look at any problem and have 10,000 ways to solve it in my mind already—because we don’t just memorize functions or the periodic table. We understand why, and we work to understand how to solve a problem instead of just getting the answer.

As students preparing for the real world, it is so much more impactful for us if our learning is relevant and challenging than if it is just about memorizing the right answers.

Two Rivers Public Charter School

Per pupil expenditures, free / reduced lunch, demographics:.

This blog post is part of our Schools That Work series, which features key practices from Two Rivers Public Charter School .

Teaching Is Problem Solving

Welcome to TiPS

You can find videos about children’s understanding of counting and cardinality, place value, and the equals sign in the Key Mathematics Concepts section of this website. You can find stories about teachers learning and discussing student thinking as well as engaging in formative assessment and lesson study in the What’s Next? Stories section. Examples of student thinking abound in both sections.

The site is always growing and changing. If you want to know when new material arrives, be sure to sign up to receive notifications of new content and resources.

Come learn with us!

Explore Our Ideas

What’s Next? Stories — read stories based on what we’ve learned in classrooms across Florida.

Facilitation guided for Formative Assessment Collaborative Team (FACT) meetings.

Join us for monthly conversations about how to use CGI to improve mathematics equity and access for all of our students.

Join Us on Twitter

Mailing list & newsletter.

Join our mailing list for updates when we update our site with new content!

Catch up — here's our archive of newsletters we've sent.

10 Best Problem-Solving Therapy Worksheets & Activities

Problem solving therapy

Cognitive science tells us that we regularly face not only well-defined problems but, importantly, many that are ill defined (Eysenck & Keane, 2015).

Sometimes, we find ourselves unable to overcome our daily problems or the inevitable (though hopefully infrequent) life traumas we face.

Problem-Solving Therapy aims to reduce the incidence and impact of mental health disorders and improve wellbeing by helping clients face life’s difficulties (Dobson, 2011).

This article introduces Problem-Solving Therapy and offers techniques, activities, and worksheets that mental health professionals can use with clients.

Before you continue, we thought you might like to download our three Positive Psychology Exercises for free . These science-based exercises explore fundamental aspects of positive psychology, including strengths, values, and self-compassion, and will give you the tools to enhance the wellbeing of your clients, students, or employees.

This Article Contains:

What is problem-solving therapy, 14 steps for problem-solving therapy, 3 best interventions and techniques, 7 activities and worksheets for your session, fascinating books on the topic, resources from positivepsychology.com, a take-home message.

Problem-Solving Therapy assumes that mental disorders arise in response to ineffective or maladaptive coping. By adopting a more realistic and optimistic view of coping, individuals can understand the role of emotions and develop actions to reduce distress and maintain mental wellbeing (Nezu & Nezu, 2009).

“Problem-solving therapy (PST) is a psychosocial intervention, generally considered to be under a cognitive-behavioral umbrella” (Nezu, Nezu, & D’Zurilla, 2013, p. ix). It aims to encourage the client to cope better with day-to-day problems and traumatic events and reduce their impact on mental and physical wellbeing.

Clinical research, counseling, and health psychology have shown PST to be highly effective in clients of all ages, ranging from children to the elderly, across multiple clinical settings, including schizophrenia, stress, and anxiety disorders (Dobson, 2011).

Can it help with depression?

PST appears particularly helpful in treating clients with depression. A recent analysis of 30 studies found that PST was an effective treatment with a similar degree of success as other successful therapies targeting depression (Cuijpers, Wit, Kleiboer, Karyotaki, & Ebert, 2020).

Other studies confirm the value of PST and its effectiveness at treating depression in multiple age groups and its capacity to combine with other therapies, including drug treatments (Dobson, 2011).

The major concepts

Effective coping varies depending on the situation, and treatment typically focuses on improving the environment and reducing emotional distress (Dobson, 2011).

PST is based on two overlapping models:

Social problem-solving model

This model focuses on solving the problem “as it occurs in the natural social environment,” combined with a general coping strategy and a method of self-control (Dobson, 2011, p. 198).

The model includes three central concepts:

  • Social problem-solving
  • The problem
  • The solution

The model is a “self-directed cognitive-behavioral process by which an individual, couple, or group attempts to identify or discover effective solutions for specific problems encountered in everyday living” (Dobson, 2011, p. 199).

Relational problem-solving model

The theory of PST is underpinned by a relational problem-solving model, whereby stress is viewed in terms of the relationships between three factors:

  • Stressful life events
  • Emotional distress and wellbeing
  • Problem-solving coping

Therefore, when a significant adverse life event occurs, it may require “sweeping readjustments in a person’s life” (Dobson, 2011, p. 202).

teaching problem solving

  • Enhance positive problem orientation
  • Decrease negative orientation
  • Foster ability to apply rational problem-solving skills
  • Reduce the tendency to avoid problem-solving
  • Minimize the tendency to be careless and impulsive

D’Zurilla’s and Nezu’s model includes (modified from Dobson, 2011):

  • Initial structuring Establish a positive therapeutic relationship that encourages optimism and explains the PST approach.
  • Assessment Formally and informally assess areas of stress in the client’s life and their problem-solving strengths and weaknesses.
  • Obstacles to effective problem-solving Explore typically human challenges to problem-solving, such as multitasking and the negative impact of stress. Introduce tools that can help, such as making lists, visualization, and breaking complex problems down.
  • Problem orientation – fostering self-efficacy Introduce the importance of a positive problem orientation, adopting tools, such as visualization, to promote self-efficacy.
  • Problem orientation – recognizing problems Help clients recognize issues as they occur and use problem checklists to ‘normalize’ the experience.
  • Problem orientation – seeing problems as challenges Encourage clients to break free of harmful and restricted ways of thinking while learning how to argue from another point of view.
  • Problem orientation – use and control emotions Help clients understand the role of emotions in problem-solving, including using feelings to inform the process and managing disruptive emotions (such as cognitive reframing and relaxation exercises).
  • Problem orientation – stop and think Teach clients how to reduce impulsive and avoidance tendencies (visualizing a stop sign or traffic light).
  • Problem definition and formulation Encourage an understanding of the nature of problems and set realistic goals and objectives.
  • Generation of alternatives Work with clients to help them recognize the wide range of potential solutions to each problem (for example, brainstorming).
  • Decision-making Encourage better decision-making through an improved understanding of the consequences of decisions and the value and likelihood of different outcomes.
  • Solution implementation and verification Foster the client’s ability to carry out a solution plan, monitor its outcome, evaluate its effectiveness, and use self-reinforcement to increase the chance of success.
  • Guided practice Encourage the application of problem-solving skills across multiple domains and future stressful problems.
  • Rapid problem-solving Teach clients how to apply problem-solving questions and guidelines quickly in any given situation.

Success in PST depends on the effectiveness of its implementation; using the right approach is crucial (Dobson, 2011).

Problem-solving therapy – Baycrest

The following interventions and techniques are helpful when implementing more effective problem-solving approaches in client’s lives.

First, it is essential to consider if PST is the best approach for the client, based on the problems they present.

Is PPT appropriate?

It is vital to consider whether PST is appropriate for the client’s situation. Therapists new to the approach may require additional guidance (Nezu et al., 2013).

Therapists should consider the following questions before beginning PST with a client (modified from Nezu et al., 2013):

  • Has PST proven effective in the past for the problem? For example, research has shown success with depression, generalized anxiety, back pain, Alzheimer’s disease, cancer, and supporting caregivers (Nezu et al., 2013).
  • Is PST acceptable to the client?
  • Is the individual experiencing a significant mental or physical health problem?

All affirmative answers suggest that PST would be a helpful technique to apply in this instance.

Five problem-solving steps

The following five steps are valuable when working with clients to help them cope with and manage their environment (modified from Dobson, 2011).

Ask the client to consider the following points (forming the acronym ADAPT) when confronted by a problem:

  • Attitude Aim to adopt a positive, optimistic attitude to the problem and problem-solving process.
  • Define Obtain all required facts and details of potential obstacles to define the problem.
  • Alternatives Identify various alternative solutions and actions to overcome the obstacle and achieve the problem-solving goal.
  • Predict Predict each alternative’s positive and negative outcomes and choose the one most likely to achieve the goal and maximize the benefits.
  • Try out Once selected, try out the solution and monitor its effectiveness while engaging in self-reinforcement.

If the client is not satisfied with their solution, they can return to step ‘A’ and find a more appropriate solution.

3 positive psychology exercises

Download 3 Free Positive Psychology Exercises (PDF)

Enhance wellbeing with these free, science-based exercises that draw on the latest insights from positive psychology.

Download 3 Free Positive Psychology Tools Pack (PDF)

By filling out your name and email address below.

Positive self-statements

When dealing with clients facing negative self-beliefs, it can be helpful for them to use positive self-statements.

Use the following (or add new) self-statements to replace harmful, negative thinking (modified from Dobson, 2011):

  • I can solve this problem; I’ve tackled similar ones before.
  • I can cope with this.
  • I just need to take a breath and relax.
  • Once I start, it will be easier.
  • It’s okay to look out for myself.
  • I can get help if needed.
  • Other people feel the same way I do.
  • I’ll take one piece of the problem at a time.
  • I can keep my fears in check.
  • I don’t need to please everyone.

teaching problem solving

World’s Largest Positive Psychology Resource

The Positive Psychology Toolkit© is a groundbreaking practitioner resource containing over 500 science-based exercises , activities, interventions, questionnaires, and assessments created by experts using the latest positive psychology research.

Updated monthly. 100% Science-based.

“The best positive psychology resource out there!” — Emiliya Zhivotovskaya , Flourishing Center CEO

PST practitioners have many different techniques available to support clients as they learn to tackle day-to-day or one-off trauma.

5 Worksheets and workbooks

Problem-solving self-monitoring form.

Worksheets for problem solving therapy

Ask the client to complete the following:

  • Describe the problem you are facing.
  • What is your goal?
  • What have you tried so far to solve the problem?
  • What was the outcome?

Reactions to Stress

It can be helpful for the client to recognize their own experiences of stress. Do they react angrily, withdraw, or give up (Dobson, 2011)?

The Reactions to Stress worksheet can be given to the client as homework to capture stressful events and their reactions. By recording how they felt, behaved, and thought, they can recognize repeating patterns.

What Are Your Unique Triggers?

Helping clients capture triggers for their stressful reactions can encourage emotional regulation.

When clients can identify triggers that may lead to a negative response, they can stop the experience or slow down their emotional reaction (Dobson, 2011).

The What Are Your Unique Triggers ? worksheet helps the client identify their triggers (e.g., conflict, relationships, physical environment, etc.).

Problem-Solving worksheet

Imagining an existing or potential problem and working through how to resolve it can be a powerful exercise for the client.

Use the Problem-Solving worksheet to state a problem and goal and consider the obstacles in the way. Then explore options for achieving the goal, along with their pros and cons, to assess the best action plan.

Getting the Facts

Clients can become better equipped to tackle problems and choose the right course of action by recognizing facts versus assumptions and gathering all the necessary information (Dobson, 2011).

Use the Getting the Facts worksheet to answer the following questions clearly and unambiguously:

  • Who is involved?
  • What did or did not happen, and how did it bother you?
  • Where did it happen?
  • When did it happen?
  • Why did it happen?
  • How did you respond?

2 Helpful Group Activities

While therapists can use the worksheets above in group situations, the following two interventions work particularly well with more than one person.

Generating Alternative Solutions and Better Decision-Making

A group setting can provide an ideal opportunity to share a problem and identify potential solutions arising from multiple perspectives.

Use the Generating Alternative Solutions and Better Decision-Making worksheet and ask the client to explain the situation or problem to the group and the obstacles in the way.

Once the approaches are captured and reviewed, the individual can share their decision-making process with the group if they want further feedback.

Visualization

Visualization can be performed with individuals or in a group setting to help clients solve problems in multiple ways, including (Dobson, 2011):

  • Clarifying the problem by looking at it from multiple perspectives
  • Rehearsing a solution in the mind to improve and get more practice
  • Visualizing a ‘safe place’ for relaxation, slowing down, and stress management

Guided imagery is particularly valuable for encouraging the group to take a ‘mental vacation’ and let go of stress.

Ask the group to begin with slow, deep breathing that fills the entire diaphragm. Then ask them to visualize a favorite scene (real or imagined) that makes them feel relaxed, perhaps beside a gently flowing river, a summer meadow, or at the beach.

The more the senses are engaged, the more real the experience. Ask the group to think about what they can hear, see, touch, smell, and even taste.

Encourage them to experience the situation as fully as possible, immersing themselves and enjoying their place of safety.

Such feelings of relaxation may be able to help clients fall asleep, relieve stress, and become more ready to solve problems.

We have included three of our favorite books on the subject of Problem-Solving Therapy below.

1. Problem-Solving Therapy: A Treatment Manual – Arthur Nezu, Christine Maguth Nezu, and Thomas D’Zurilla

Problem-Solving Therapy

This is an incredibly valuable book for anyone wishing to understand the principles and practice behind PST.

Written by the co-developers of PST, the manual provides powerful toolkits to overcome cognitive overload, emotional dysregulation, and the barriers to practical problem-solving.

Find the book on Amazon .

2. Emotion-Centered Problem-Solving Therapy: Treatment Guidelines – Arthur Nezu and Christine Maguth Nezu

Emotion-Centered Problem-Solving Therapy

Another, more recent, book from the creators of PST, this text includes important advances in neuroscience underpinning the role of emotion in behavioral treatment.

Along with clinical examples, the book also includes crucial toolkits that form part of a stepped model for the application of PST.

3. Handbook of Cognitive-Behavioral Therapies – Keith Dobson and David Dozois

Handbook of Cognitive-Behavioral Therapies

This is the fourth edition of a hugely popular guide to Cognitive-Behavioral Therapies and includes a valuable and insightful section on Problem-Solving Therapy.

This is an important book for students and more experienced therapists wishing to form a high-level and in-depth understanding of the tools and techniques available to Cognitive-Behavioral Therapists.

For even more tools to help strengthen your clients’ problem-solving skills, check out the following free worksheets from our blog.

  • Case Formulation Worksheet This worksheet presents a four-step framework to help therapists and their clients come to a shared understanding of the client’s presenting problem.
  • Understanding Your Default Problem-Solving Approach This worksheet poses a series of questions helping clients reflect on their typical cognitive, emotional, and behavioral responses to problems.
  • Social Problem Solving: Step by Step This worksheet presents a streamlined template to help clients define a problem, generate possible courses of action, and evaluate the effectiveness of an implemented solution.

If you’re looking for more science-based ways to help others enhance their wellbeing, check out this signature collection of 17 validated positive psychology tools for practitioners. Use them to help others flourish and thrive.

teaching problem solving

17 Top-Rated Positive Psychology Exercises for Practitioners

Expand your arsenal and impact with these 17 Positive Psychology Exercises [PDF] , scientifically designed to promote human flourishing, meaning, and wellbeing.

Created by Experts. 100% Science-based.

While we are born problem-solvers, facing an incredibly diverse set of challenges daily, we sometimes need support.

Problem-Solving Therapy aims to reduce stress and associated mental health disorders and improve wellbeing by improving our ability to cope. PST is valuable in diverse clinical settings, ranging from depression to schizophrenia, with research suggesting it as a highly effective treatment for teaching coping strategies and reducing emotional distress.

Many PST techniques are available to help improve clients’ positive outlook on obstacles while reducing avoidance of problem situations and the tendency to be careless and impulsive.

The PST model typically assesses the client’s strengths, weaknesses, and coping strategies when facing problems before encouraging a healthy experience of and relationship with problem-solving.

Why not use this article to explore the theory behind PST and try out some of our powerful tools and interventions with your clients to help them with their decision-making, coping, and problem-solving?

We hope you enjoyed reading this article. Don’t forget to download our three Positive Psychology Exercises for free .

  • Cuijpers, P., Wit, L., Kleiboer, A., Karyotaki, E., & Ebert, D. (2020). Problem-solving therapy for adult depression: An updated meta-analysis. European P sychiatry ,  48 (1), 27–37.
  • Dobson, K. S. (2011). Handbook of cognitive-behavioral therapies (3rd ed.). Guilford Press.
  • Dobson, K. S., & Dozois, D. J. A. (2021). Handbook of cognitive-behavioral therapies  (4th ed.). Guilford Press.
  • Eysenck, M. W., & Keane, M. T. (2015). Cognitive psychology: A student’s handbook . Psychology Press.
  • Nezu, A. M., & Nezu, C. M. (2009). Problem-solving therapy DVD . Retrieved September 13, 2021, from https://www.apa.org/pubs/videos/4310852
  • Nezu, A. M., & Nezu, C. M. (2018). Emotion-centered problem-solving therapy: Treatment guidelines. Springer.
  • Nezu, A. M., Nezu, C. M., & D’Zurilla, T. J. (2013). Problem-solving therapy: A treatment manual . Springer.

' src=

Share this article:

Article feedback

What our readers think.

Saranya

Thanks for your information given, it was helpful for me something new I learned

Let us know your thoughts Cancel reply

Your email address will not be published.

Save my name, email, and website in this browser for the next time I comment.

Related articles

Variations of the empty chair

The Empty Chair Technique: How It Can Help Your Clients

Resolving ‘unfinished business’ is often an essential part of counseling. If left unresolved, it can contribute to depression, anxiety, and mental ill-health while damaging existing [...]

teaching problem solving

29 Best Group Therapy Activities for Supporting Adults

As humans, we are social creatures with personal histories based on the various groups that make up our lives. Childhood begins with a family of [...]

Free Therapy Resources

47 Free Therapy Resources to Help Kick-Start Your New Practice

Setting up a private practice in psychotherapy brings several challenges, including a considerable investment of time and money. You can reduce risks early on by [...]

Read other articles by their category

  • Body & Brain (52)
  • Coaching & Application (39)
  • Compassion (23)
  • Counseling (40)
  • Emotional Intelligence (21)
  • Gratitude (18)
  • Grief & Bereavement (18)
  • Happiness & SWB (40)
  • Meaning & Values (26)
  • Meditation (16)
  • Mindfulness (40)
  • Motivation & Goals (41)
  • Optimism & Mindset (29)
  • Positive CBT (28)
  • Positive Communication (23)
  • Positive Education (36)
  • Positive Emotions (32)
  • Positive Leadership (16)
  • Positive Parenting (14)
  • Positive Psychology (21)
  • Positive Workplace (35)
  • Productivity (16)
  • Relationships (46)
  • Resilience & Coping (38)
  • Self Awareness (20)
  • Self Esteem (37)
  • Strengths & Virtues (29)
  • Stress & Burnout Prevention (33)
  • Theory & Books (42)
  • Therapy Exercises (37)
  • Types of Therapy (54)

Cart

  • SUGGESTED TOPICS
  • The Magazine
  • Newsletters
  • Managing Yourself
  • Managing Teams
  • Work-life Balance
  • The Big Idea
  • Data & Visuals
  • Reading Lists
  • Case Selections
  • HBR Learning
  • Topic Feeds
  • Account Settings
  • Email Preferences

Team-Building Activities for In-Person Teams

Last week, we outlined team-building activities for remote and hybrid teams. But what about when you work in person? Here are some proven ways to bring people closer—even when they’re already working together every day. Recurring lunches. Sharing a meal fosters relaxed interactions, signaling the organization’s investment in unscripted, enjoyable team time. Exchanging expertise. Implement […]

Last week, we outlined team-building activities for remote and hybrid teams. But what about when you work in person? Here are some proven ways to bring people closer—even when they’re already working together every day.

Source: This tip is adapted from “17 Team-Building Activities for In-Person, Remote, and Hybrid Teams,” by Rebecca Knight

Partner Center

IMAGES

  1. Ms. Sepp's Counselor Corner: S.T.E.P. Problem Solving Method

    teaching problem solving

  2. problem solving as a teaching method

    teaching problem solving

  3. Teaching Problem Solving Strategies Using Newmans Prompts

    teaching problem solving

  4. Teaching Problem Solving Strategies Using Newmans Prompts

    teaching problem solving

  5. Teaching Problem Solving Skills to Kids

    teaching problem solving

  6. Problem Solving Method Of Teaching || Methods of Teaching || tsin-eng

    teaching problem solving

VIDEO

  1. TEACHING PROBLEM SOLVING IN THE POOL!

  2. Problem Solving-Disk charge

  3. "Problem-Solving Skills Made Fun: A Parent's Guide to Teach Kids"

  4. Problem solving idea

  5. Teaching Activity #12 Problems and solutions

  6. Inspire Problem Solving with the Engineering Design Process

COMMENTS

  1. Teaching Problem Solving

    Make students articulate their problem solving process . In a one-on-one tutoring session, ask the student to work his/her problem out loud. This slows down the thinking process, making it more accurate and allowing you to access understanding. When working with larger groups you can ask students to provide a written "two-column solution.".

  2. Teaching problem solving: Let students get 'stuck' and 'unstuck'

    Teaching problem solving: Let students get 'stuck' and 'unstuck'. This is the second in a six-part blog series on teaching 21st century skills, including problem solving , metacognition ...

  3. Teaching Problem-Solving Skills

    Teaching Problem-Solving Skills Many instructors design opportunities for students to solve "problems". But are their students solving true problems or merely participating in practice exercises? The former stresses critical thinking and decision­ making skills whereas the latter requires only the application of previously learned procedures.

  4. Don't Just Tell Students to Solve Problems. Teach Them How

    Share This: Problem solving is a critical skill for technical education and technical careers of all types. But what are best practices for teaching problem solving to high school and college students?

  5. Teaching problem solving

    Teaching problem solving Strategies for teaching problem solving apply across disciplines and instructional contexts. First, introduce the problem and explain how people in your discipline generally make sense of the given information. Then, explain how to apply these approaches to solve the problem.

  6. Why Every Educator Needs to Teach Problem-Solving Skills

    Students need strong problem-solving skills for academic and career success. Educators can begin teaching these skills with a quality problem solving assessment.

  7. 6 Tips for Teaching Math Problem-Solving Skills

    Solving word problems is tougher than computing with numbers, but elementary teachers can guide students to do the deep thinking involved.

  8. Problem Solving Resources

    Problem-solving is the ability to identify and solve problems by applying appropriate skills systematically. Problem-solving is a process—an ongoing activity in which we take what we know to discover what we don't know. It involves overcoming obstacles by generating hypo-theses, testing those predictions, and arriving at satisfactory solutions.

  9. 10 ways to teach problem solving (with FREE curriculum!)

    Engage your students in real-life problem solving with videos, STEM lessons, and long-term projects. Here are 10 ways to use them.This post is sponsored

  10. Principles for Teaching Problem Solving

    structured problem solving. 7) Use inductive teaching strategies to encourage synthesis of mental models and for. moderately and ill-structured problem solving. 8) Within a problem exercise, help ...

  11. Solve a Teaching Problem

    How does it work? Step 1: Identify a PROBLEM you encounter in your teaching. Step 2: Identify possible REASONS for the problem Step 3: Explore STRATEGIES to address the problem.

  12. Teaching Problem Solving in Math

    Problem solving tends to REALLY throw students for a loop when they're first introduced to it. Up until this point, math has been numbers, but now, math is numbers and words. I discuss four important steps I take in teaching problem solving, and I provide you with examples as I go. You can also check out my math workshop problem solving unit for third grade!

  13. Teaching Through Problem-solving

    What is Teaching Through Problem-Solving? In Teaching Through Problem-solving (TTP), students learn new mathematics by solving problems. Students grapple with a novel problem, present and discuss solution strategies, and together build the next concept or procedure in the mathematics curriculum.

  14. How to Teach Problem-Solving Skills to Elementary Students

    Empower elementary students with essential problem-solving skills for academic, social, and emotional success. Learn practical strategies to teach and integrate problem-solving into your classroom!

  15. Problem-Solving Method in Teaching

    The problem-solving method is a highly effective teaching strategy that is designed to help students develop critical thinking skills and problem-solving abilities. It involves providing students with real-world problems and challenges that require them to apply their knowledge, skills, and creativity to find solutions. This method encourages active learning, promotes collaboration, and allows ...

  16. 5 Problem-Solving Activities for the Classroom

    Problem-solving skills are necessary in all areas of life, and classroom problem solving activities can be a great way to get students prepped and ready to solve real problems in real life scenarios.

  17. Teaching the IDEAL Problem-Solving Method to Diverse Learners

    Problem-solving is the capacity to identify and describe a problem and generate solutions to fix it. Problem-solving involves other executive functioning behaviors as well, including attentional control, planning, and task initiation. Individuals might use time management, emotional control, or organization skills to solve problems as well.

  18. Solving Persistent Classroom Problems With an Inquiry Process

    As Marilyn Cochran-Smith and Susan L. Lytle discuss in their book Inquiry as Stance: Practitioner Research for the Next Generation, teacher inquiry is a process of questioning, exploring, and implementing strategies to address persistent classroom challenges.It mirrors the active learning process we encourage in students and can transform recurring problems into opportunities for growth.

  19. 10 Ways to Teach Your Children to Be Problem Solvers

    Teaching children to be open-minded is crucial for developing effective problem-solving skills. It involves considering various perspectives and integrating different views into solutions.

  20. Teaching Problem Solving

    Tip #1 for Teaching Problem Solving. Understand the process. Successful problem solving is a process that begins with identifying that there is a problem, thinking through possible solutions, and then selecting and implementing the best solution to that problem. This process must begin with a child being able to understand the idea of problem ...

  21. 4 Tips on Teaching Problem Solving (From a Student)

    4 Tips on Teaching Problem Solving (From a Student) A student shares her insights into the most important skill you can teach. (Hint: It's not perseverance.)

  22. Teaching is Problem Solving

    Welcome to Teaching Is Problem Solving â€" a new site dedicated to sharing ideas about teaching with a focus on mathematics.

  23. How to Develop Problem Solving Skills: 4 Tips

    Learning problem-solving techniques is a must for working professionals in any field. No matter your title or job description, the ability to find the root cause of a difficult problem and formulate viable solutions is a skill that employers value. Learning the soft skills and critical thinking techniques that good problem solvers use can help anyone overcome complex problems.

  24. 10 Best Problem-Solving Therapy Worksheets & Activities

    This article introduces problem-solving therapy and offers techniques, activities, & worksheets mental health professionals can use with clients.

  25. PDF A PROBLEM-SOLUTION PROJECT

    The teaching/learning experience that you are about to review is the first-person narrative of a first-year, fourth grade ... Problem Solving: Identifies and states a problem related to topic under study. Suggests alternative solutions to a problem. Chooses a solution to a problem after supplying the

  26. Team-Building Activities for In-Person Teams

    Last week, we outlined team-building activities for remote and hybrid teams. But what about when you work in person? Here are some proven ways to bring people closer—even when they're already ...