The MBA Institute

How to Solve the Assignment Problem: A Complete Guide

Table of Contents

Assignment problem is a special type of linear programming problem that deals with assigning a number of resources to an equal number of tasks in the most efficient way. The goal is to minimize the total cost of assignments while ensuring that each task is assigned to only one resource and each resource is assigned to only one task. In this blog, we will discuss the solution of the assignment problem using the Hungarian method, which is a popular algorithm for solving the problem.

Understanding the Assignment Problem

Before we dive into the solution, it is important to understand the problem itself. In the assignment problem, we have a matrix of costs, where each row represents a resource and each column represents a task. The objective is to assign each resource to a task in such a way that the total cost of assignments is minimized. However, there are certain constraints that need to be satisfied – each resource can be assigned to only one task and each task can be assigned to only one resource.

Solving the Assignment Problem

There are various methods for solving the assignment problem, including the Hungarian method, the brute force method, and the auction algorithm. Here, we will focus on the steps involved in solving the assignment problem using the Hungarian method, which is the most commonly used and efficient method.

Step 1: Set up the cost matrix

The first step in solving the assignment problem is to set up the cost matrix, which represents the cost of assigning a task to an agent. The matrix should be square and have the same number of rows and columns as the number of tasks and agents, respectively.

Step 2: Subtract the smallest element from each row and column

To simplify the calculations, we need to reduce the size of the cost matrix by subtracting the smallest element from each row and column. This step is called matrix reduction.

Step 3: Cover all zeros with the minimum number of lines

The next step is to cover all zeros in the matrix with the minimum number of horizontal and vertical lines. This step is called matrix covering.

Step 4: Test for optimality and adjust the matrix

To test for optimality, we need to calculate the minimum number of lines required to cover all zeros in the matrix. If the number of lines equals the number of rows or columns, the solution is optimal. If not, we need to adjust the matrix and repeat steps 3 and 4 until we get an optimal solution.

Step 5: Assign the tasks to the agents

The final step is to assign the tasks to the agents based on the optimal solution obtained in step 4. This will give us the most cost-effective or profit-maximizing assignment.

Solution of the Assignment Problem using the Hungarian Method

The Hungarian method is an algorithm that uses a step-by-step approach to find the optimal assignment. The algorithm consists of the following steps:

  • Subtract the smallest entry in each row from all the entries of the row.
  • Subtract the smallest entry in each column from all the entries of the column.
  • Draw the minimum number of lines to cover all zeros in the matrix. If the number of lines drawn is equal to the number of rows, we have an optimal solution. If not, go to step 4.
  • Determine the smallest entry not covered by any line. Subtract it from all uncovered entries and add it to all entries covered by two lines. Go to step 3.

The above steps are repeated until an optimal solution is obtained. The optimal solution will have all zeros covered by the minimum number of lines. The assignments can be made by selecting the rows and columns with a single zero in the final matrix.

Applications of the Assignment Problem

The assignment problem has various applications in different fields, including computer science, economics, logistics, and management. In this section, we will provide some examples of how the assignment problem is used in real-life situations.

Applications in Computer Science

The assignment problem can be used in computer science to allocate resources to different tasks, such as allocating memory to processes or assigning threads to processors.

Applications in Economics

The assignment problem can be used in economics to allocate resources to different agents, such as allocating workers to jobs or assigning projects to contractors.

Applications in Logistics

The assignment problem can be used in logistics to allocate resources to different activities, such as allocating vehicles to routes or assigning warehouses to customers.

Applications in Management

The assignment problem can be used in management to allocate resources to different projects, such as allocating employees to tasks or assigning budgets to departments.

Let’s consider the following scenario: a manager needs to assign three employees to three different tasks. Each employee has different skills, and each task requires specific skills. The manager wants to minimize the total time it takes to complete all the tasks. The skills and the time required for each task are given in the table below:

Task 1 Task 2 Task 3
Emp 1 5 7 6
Emp 2 6 4 5
Emp 3 8 5 3

The assignment problem is to determine which employee should be assigned to which task to minimize the total time required. To solve this problem, we can use the Hungarian method, which we discussed in the previous blog.

Using the Hungarian method, we first subtract the smallest entry in each row from all the entries of the row:

Task 1 Task 2 Task 3
Emp 1 0 2 1
Emp 2 2 0 1
Emp 3 5 2 0

Next, we subtract the smallest entry in each column from all the entries of the column:

Task 1 Task 2 Task 3
Emp 1 0 2 1
Emp 2 2 0 1
Emp 3 5 2 0
0 0 0

We draw the minimum number of lines to cover all the zeros in the matrix, which in this case is three:

Since the number of lines is equal to the number of rows, we have an optimal solution. The assignments can be made by selecting the rows and columns with a single zero in the final matrix. In this case, the optimal assignments are:

  • Emp 1 to Task 3
  • Emp 2 to Task 2
  • Emp 3 to Task 1

This assignment results in a total time of 9 units.

I hope this example helps you better understand the assignment problem and how to solve it using the Hungarian method.

Solving the assignment problem may seem daunting, but with the right approach, it can be a straightforward process. By following the steps outlined in this guide, you can confidently tackle any assignment problem that comes your way.

How useful was this post?

Click on a star to rate it!

Average rating 0 / 5. Vote count: 0

No votes so far! Be the first to rate this post.

We are sorry that this post was not useful for you! 😔

Let us improve this post!

Tell us how we can improve this post?

Operations Research

1 Operations Research-An Overview

  • History of O.R.
  • Approach, Techniques and Tools
  • Phases and Processes of O.R. Study
  • Typical Applications of O.R
  • Limitations of Operations Research
  • Models in Operations Research
  • O.R. in real world

2 Linear Programming: Formulation and Graphical Method

  • General formulation of Linear Programming Problem
  • Optimisation Models
  • Basics of Graphic Method
  • Important steps to draw graph
  • Multiple, Unbounded Solution and Infeasible Problems
  • Solving Linear Programming Graphically Using Computer
  • Application of Linear Programming in Business and Industry

3 Linear Programming-Simplex Method

  • Principle of Simplex Method
  • Computational aspect of Simplex Method
  • Simplex Method with several Decision Variables
  • Two Phase and M-method
  • Multiple Solution, Unbounded Solution and Infeasible Problem
  • Sensitivity Analysis
  • Dual Linear Programming Problem

4 Transportation Problem

  • Basic Feasible Solution of a Transportation Problem
  • Modified Distribution Method
  • Stepping Stone Method
  • Unbalanced Transportation Problem
  • Degenerate Transportation Problem
  • Transhipment Problem
  • Maximisation in a Transportation Problem

5 Assignment Problem

  • Solution of the Assignment Problem
  • Unbalanced Assignment Problem
  • Problem with some Infeasible Assignments
  • Maximisation in an Assignment Problem
  • Crew Assignment Problem

6 Application of Excel Solver to Solve LPP

  • Building Excel model for solving LP: An Illustrative Example

7 Goal Programming

  • Concepts of goal programming
  • Goal programming model formulation
  • Graphical method of goal programming
  • The simplex method of goal programming
  • Using Excel Solver to Solve Goal Programming Models
  • Application areas of goal programming

8 Integer Programming

  • Some Integer Programming Formulation Techniques
  • Binary Representation of General Integer Variables
  • Unimodularity
  • Cutting Plane Method
  • Branch and Bound Method
  • Solver Solution

9 Dynamic Programming

  • Dynamic Programming Methodology: An Example
  • Definitions and Notations
  • Dynamic Programming Applications

10 Non-Linear Programming

  • Solution of a Non-linear Programming Problem
  • Convex and Concave Functions
  • Kuhn-Tucker Conditions for Constrained Optimisation
  • Quadratic Programming
  • Separable Programming
  • NLP Models with Solver

11 Introduction to game theory and its Applications

  • Important terms in Game Theory
  • Saddle points
  • Mixed strategies: Games without saddle points
  • 2 x n games
  • Exploiting an opponent’s mistakes

12 Monte Carlo Simulation

  • Reasons for using simulation
  • Monte Carlo simulation
  • Limitations of simulation
  • Steps in the simulation process
  • Some practical applications of simulation
  • Two typical examples of hand-computed simulation
  • Computer simulation

13 Queueing Models

  • Characteristics of a queueing model
  • Notations and Symbols
  • Statistical methods in queueing
  • The M/M/I System
  • The M/M/C System
  • The M/Ek/I System
  • Decision problems in queueing

Hungarian Method

Class Registration Banner

The Hungarian method is a computational optimization technique that addresses the assignment problem in polynomial time and foreshadows following primal-dual alternatives. In 1955, Harold Kuhn used the term “Hungarian method” to honour two Hungarian mathematicians, Dénes Kőnig and Jenő Egerváry. Let’s go through the steps of the Hungarian method with the help of a solved example.

Hungarian Method to Solve Assignment Problems

The Hungarian method is a simple way to solve assignment problems. Let us first discuss the assignment problems before moving on to learning the Hungarian method.

What is an Assignment Problem?

A transportation problem is a type of assignment problem. The goal is to allocate an equal amount of resources to the same number of activities. As a result, the overall cost of allocation is minimised or the total profit is maximised.

Because available resources such as workers, machines, and other resources have varying degrees of efficiency for executing different activities, and hence the cost, profit, or loss of conducting such activities varies.

Assume we have ‘n’ jobs to do on ‘m’ machines (i.e., one job to one machine). Our goal is to assign jobs to machines for the least amount of money possible (or maximum profit). Based on the notion that each machine can accomplish each task, but at variable levels of efficiency.

Hungarian Method Steps

Check to see if the number of rows and columns are equal; if they are, the assignment problem is considered to be balanced. Then go to step 1. If it is not balanced, it should be balanced before the algorithm is applied.

Step 1 – In the given cost matrix, subtract the least cost element of each row from all the entries in that row. Make sure that each row has at least one zero.

Step 2 – In the resultant cost matrix produced in step 1, subtract the least cost element in each column from all the components in that column, ensuring that each column contains at least one zero.

Step 3 – Assign zeros

  • Analyse the rows one by one until you find a row with precisely one unmarked zero. Encircle this lonely unmarked zero and assign it a task. All other zeros in the column of this circular zero should be crossed out because they will not be used in any future assignments. Continue in this manner until you’ve gone through all of the rows.
  • Examine the columns one by one until you find one with precisely one unmarked zero. Encircle this single unmarked zero and cross any other zero in its row to make an assignment to it. Continue until you’ve gone through all of the columns.

Step 4 – Perform the Optimal Test

  • The present assignment is optimal if each row and column has exactly one encircled zero.
  • The present assignment is not optimal if at least one row or column is missing an assignment (i.e., if at least one row or column is missing one encircled zero). Continue to step 5. Subtract the least cost element from all the entries in each column of the final cost matrix created in step 1 and ensure that each column has at least one zero.

Step 5 – Draw the least number of straight lines to cover all of the zeros as follows:

(a) Highlight the rows that aren’t assigned.

(b) Label the columns with zeros in marked rows (if they haven’t already been marked).

(c) Highlight the rows that have assignments in indicated columns (if they haven’t previously been marked).

(d) Continue with (b) and (c) until no further marking is needed.

(f) Simply draw the lines through all rows and columns that are not marked. If the number of these lines equals the order of the matrix, then the solution is optimal; otherwise, it is not.

Step 6 – Find the lowest cost factor that is not covered by the straight lines. Subtract this least-cost component from all the uncovered elements and add it to all the elements that are at the intersection of these straight lines, but leave the rest of the elements alone.

Step 7 – Continue with steps 1 – 6 until you’ve found the highest suitable assignment.

Hungarian Method Example

Use the Hungarian method to solve the given assignment problem stated in the table. The entries in the matrix represent each man’s processing time in hours.

\(\begin{array}{l}\begin{bmatrix} & I & II & III & IV & V \\1 & 20 & 15 & 18 & 20 & 25 \\2 & 18 & 20 & 12 & 14 & 15 \\3 & 21 & 23 & 25 & 27 & 25 \\4 & 17 & 18 & 21 & 23 & 20 \\5 & 18 & 18 & 16 & 19 & 20 \\\end{bmatrix}\end{array} \)

With 5 jobs and 5 men, the stated problem is balanced.

\(\begin{array}{l}A = \begin{bmatrix}20 & 15 & 18 & 20 & 25 \\18 & 20 & 12 & 14 & 15 \\21 & 23 & 25 & 27 & 25 \\17 & 18 & 21 & 23 & 20 \\18 & 18 & 16 & 19 & 20 \\\end{bmatrix}\end{array} \)

Subtract the lowest cost element in each row from all of the elements in the given cost matrix’s row. Make sure that each row has at least one zero.

\(\begin{array}{l}A = \begin{bmatrix}5 & 0 & 3 & 5 & 10 \\6 & 8 & 0 & 2 & 3 \\0 & 2 & 4 & 6 & 4 \\0 & 1 & 4 & 6 & 3 \\2 & 2 & 0 & 3 & 4 \\\end{bmatrix}\end{array} \)

Subtract the least cost element in each Column from all of the components in the given cost matrix’s Column. Check to see if each column has at least one zero.

\(\begin{array}{l}A = \begin{bmatrix}5 & 0 & 3 & 3 & 7 \\6 & 8 & 0 & 0 & 0 \\0 & 2 & 4 & 4 & 1 \\0 & 1 & 4 & 4 & 0 \\2 & 2 & 0 & 1 & 1 \\\end{bmatrix}\end{array} \)

When the zeros are assigned, we get the following:

Hungarian Method

The present assignment is optimal because each row and column contain precisely one encircled zero.

Where 1 to II, 2 to IV, 3 to I, 4 to V, and 5 to III are the best assignments.

Hence, z = 15 + 14 + 21 + 20 + 16 = 86 hours is the optimal time.

Practice Question on Hungarian Method

Use the Hungarian method to solve the following assignment problem shown in table. The matrix entries represent the time it takes for each job to be processed by each machine in hours.

\(\begin{array}{l}\begin{bmatrix}J/M & I & II & III & IV & V \\1 & 9 & 22 & 58 & 11 & 19 \\2 & 43 & 78 & 72 & 50 & 63 \\3 & 41 & 28 & 91 & 37 & 45 \\4 & 74 & 42 & 27 & 49 & 39 \\5 & 36 & 11 & 57 & 22 & 25 \\\end{bmatrix}\end{array} \)

Stay tuned to BYJU’S – The Learning App and download the app to explore all Maths-related topics.

Frequently Asked Questions on Hungarian Method

What is hungarian method.

The Hungarian method is defined as a combinatorial optimization technique that solves the assignment problems in polynomial time and foreshadowed subsequent primal–dual approaches.

What are the steps involved in Hungarian method?

The following is a quick overview of the Hungarian method: Step 1: Subtract the row minima. Step 2: Subtract the column minimums. Step 3: Use a limited number of lines to cover all zeros. Step 4: Add some more zeros to the equation.

What is the purpose of the Hungarian method?

When workers are assigned to certain activities based on cost, the Hungarian method is beneficial for identifying minimum costs.

MATHS Related Links

Leave a Comment Cancel reply

Your Mobile number and Email id will not be published. Required fields are marked *

Request OTP on Voice Call

Post My Comment

solve the assignment problem

Register with BYJU'S & Download Free PDFs

Register with byju's & watch live videos.

Assignment Problem: Meaning, Methods and Variations | Operations Research

solve the assignment problem

After reading this article you will learn about:- 1. Meaning of Assignment Problem 2. Definition of Assignment Problem 3. Mathematical Formulation 4. Hungarian Method 5. Variations.

Meaning of Assignment Problem:

An assignment problem is a particular case of transportation problem where the objective is to assign a number of resources to an equal number of activities so as to minimise total cost or maximize total profit of allocation.

The problem of assignment arises because available resources such as men, machines etc. have varying degrees of efficiency for performing different activities, therefore, cost, profit or loss of performing the different activities is different.

Thus, the problem is “How should the assignments be made so as to optimize the given objective”. Some of the problem where the assignment technique may be useful are assignment of workers to machines, salesman to different sales areas.

Definition of Assignment Problem:

ADVERTISEMENTS:

Suppose there are n jobs to be performed and n persons are available for doing these jobs. Assume that each person can do each job at a term, though with varying degree of efficiency, let c ij be the cost if the i-th person is assigned to the j-th job. The problem is to find an assignment (which job should be assigned to which person one on-one basis) So that the total cost of performing all jobs is minimum, problem of this kind are known as assignment problem.

The assignment problem can be stated in the form of n x n cost matrix C real members as given in the following table:

solve the assignment problem

Index     Assignment problem     Hungarian algorithm     Solve online    

The assignment problem

The assignment problem deals with assigning machines to tasks, workers to jobs, soccer players to positions, and so on. The goal is to determine the optimum assignment that, for example, minimizes the total cost or maximizes the team effectiveness.

Read more on the assignment problem

The Hungarian algorithm

The Hungarian algorithm is an easy to understand and easy to use algorithm that solves the assignment problem.

A step by step explanation of the algorithm

Solve your own problem online

Assignment Problem

HungarianAlgorithm.com © 2013-2024

Assignment Problem: Maximization

There are problems where certain facilities have to be assigned to a number of jobs, so as to maximize the overall performance of the assignment.

The Hungarian Method can also solve such assignment problems , as it is easy to obtain an equivalent minimization problem by converting every number in the matrix to an opportunity loss.

The conversion is accomplished by subtracting all the elements of the given matrix from the highest element. It turns out that minimizing opportunity loss produces the same assignment solution as the original maximization problem.

  • Unbalanced Assignment Problem
  • Multiple Optimal Solutions

Example: Maximization In An Assignment Problem

At the head office of www.universalteacherpublications.com there are five registration counters. Five persons are available for service.

Person
Counter A B C D E
1 30 37 40 28 40
2 40 24 27 21 36
3 40 32 33 30 35
4 25 38 40 36 36
5 29 62 41 34 39

How should the counters be assigned to persons so as to maximize the profit ?

Here, the highest value is 62. So we subtract each value from 62. The conversion is shown in the following table.

On small screens, scroll horizontally to view full calculation

Person
Counter A B C D E
1 32 25 22 34 22
2 22 38 35 41 26
3 22 30 29 32 27
4 37 24 22 26 26
5 33 0 21 28 23

Now the above problem can be easily solved by Hungarian method . After applying steps 1 to 3 of the Hungarian method, we get the following matrix.

Person
Counter A B C D E
1 10 3 8
2 16 13 15 4
3 8 7 6 5
4 15 2 4
5 33 21 24 23

Draw the minimum number of vertical and horizontal lines necessary to cover all the zeros in the reduced matrix.

Select the smallest element from all the uncovered elements, i.e., 4. Subtract this element from all the uncovered elements and add it to the elements, which lie at the intersection of two lines. Thus, we obtain another reduced matrix for fresh assignment. Repeating step 3, we obtain a solution which is shown in the following table.

Final Table: Maximization Problem

Use Horizontal Scrollbar to View Full Table Calculation

Person
Counter A B C D E
1 14 3 8
2 12 9 11
3 4 3 2 1
4 19 2 4
5 37 21 24 23

The total cost of assignment = 1C + 2E + 3A + 4D + 5B

Substituting values from original table: 40 + 36 + 40 + 36 + 62 = 214.

Share This Article

Operations Research Simplified Back Next

Goal programming Linear programming Simplex Method Transportation Problem

Procedure, Example Solved Problem | Operations Research - Solution of assignment problems (Hungarian Method) | 12th Business Maths and Statistics : Chapter 10 : Operations Research

Chapter: 12th business maths and statistics : chapter 10 : operations research.

Solution of assignment problems (Hungarian Method)

First check whether the number of rows is equal to the numbers of columns, if it is so, the assignment problem is said to be balanced.

Step :1 Choose the least element in each row and subtract it from all the elements of that row.

Step :2 Choose the least element in each column and subtract it from all the elements of that column. Step 2 has to be performed from the table obtained in step 1.

Step:3 Check whether there is atleast one zero in each row and each column and make an assignment as follows.

solve the assignment problem

Step :4 If each row and each column contains exactly one assignment, then the solution is optimal.

Example 10.7

Solve the following assignment problem. Cell values represent cost of assigning job A, B, C and D to the machines I, II, III and IV.

solve the assignment problem

Here the number of rows and columns are equal.

∴ The given assignment problem is balanced. Now let us find the solution.

Step 1: Select a smallest element in each row and subtract this from all the elements in its row.

solve the assignment problem

Look for atleast one zero in each row and each column.Otherwise go to step 2.

Step 2: Select the smallest element in each column and subtract this from all the elements in its column.

solve the assignment problem

Since each row and column contains atleast one zero, assignments can be made.

Step 3 (Assignment):

solve the assignment problem

Thus all the four assignments have been made. The optimal assignment schedule and total cost is

solve the assignment problem

The optimal assignment (minimum) cost

Example 10.8

Consider the problem of assigning five jobs to five persons. The assignment costs are given as follows. Determine the optimum assignment schedule.

solve the assignment problem

∴ The given assignment problem is balanced.

Now let us find the solution.

The cost matrix of the given assignment problem is

solve the assignment problem

Column 3 contains no zero. Go to Step 2.

solve the assignment problem

Thus all the five assignments have been made. The Optimal assignment schedule and total cost is

solve the assignment problem

The optimal assignment (minimum) cost = ` 9

Example 10.9

Solve the following assignment problem.

solve the assignment problem

Since the number of columns is less than the number of rows, given assignment problem is unbalanced one. To balance it , introduce a dummy column with all the entries zero. The revised assignment problem is

solve the assignment problem

Here only 3 tasks can be assigned to 3 men.

Step 1: is not necessary, since each row contains zero entry. Go to Step 2.

solve the assignment problem

Step 3 (Assignment) :

solve the assignment problem

Since each row and each columncontains exactly one assignment,all the three men have been assigned a task. But task S is not assigned to any Man. The optimal assignment schedule and total cost is

solve the assignment problem

The optimal assignment (minimum) cost = ₹ 35

Related Topics

Privacy Policy , Terms and Conditions , DMCA Policy and Compliant

Copyright © 2018-2023 BrainKart.com; All Rights Reserved. Developed by Therithal info, Chennai.

Google OR-Tools

  • Google OR-Tools
  • Español – América Latina
  • Português – Brasil
  • Tiếng Việt

Solving an Assignment Problem

This section presents an example that shows how to solve an assignment problem using both the MIP solver and the CP-SAT solver.

In the example there are five workers (numbered 0-4) and four tasks (numbered 0-3). Note that there is one more worker than in the example in the Overview .

The costs of assigning workers to tasks are shown in the following table.

Worker Task 0 Task 1 Task 2 Task 3
90 80 75 70
35 85 55 65
125 95 90 95
45 110 95 115
50 100 90 100

The problem is to assign each worker to at most one task, with no two workers performing the same task, while minimizing the total cost. Since there are more workers than tasks, one worker will not be assigned a task.

MIP solution

The following sections describe how to solve the problem using the MPSolver wrapper .

Import the libraries

The following code imports the required libraries.

Create the data

The following code creates the data for the problem.

The costs array corresponds to the table of costs for assigning workers to tasks, shown above.

Declare the MIP solver

The following code declares the MIP solver.

Create the variables

The following code creates binary integer variables for the problem.

Create the constraints

Create the objective function.

The following code creates the objective function for the problem.

The value of the objective function is the total cost over all variables that are assigned the value 1 by the solver.

Invoke the solver

The following code invokes the solver.

Print the solution

The following code prints the solution to the problem.

Here is the output of the program.

Complete programs

Here are the complete programs for the MIP solution.

CP SAT solution

The following sections describe how to solve the problem using the CP-SAT solver.

Declare the model

The following code declares the CP-SAT model.

The following code sets up the data for the problem.

The following code creates the constraints for the problem.

Here are the complete programs for the CP-SAT solution.

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License , and code samples are licensed under the Apache 2.0 License . For details, see the Google Developers Site Policies . Java is a registered trademark of Oracle and/or its affiliates.

Last updated 2024-08-06 UTC.

Algorithms: The Assignment Problem

One of the interesting things about studying optimization is that the techniques show up in a lot of different areas. The “assignment problem” is one that can be solved using simple techniques, at least for small problem sizes, and is easy to see how it could be applied to the real world.

Assignment Problem

Pretend for a moment that you are writing software for a famous ride sharing application. In a crowded environment, you might have multiple prospective customers that are requesting service at the same time, and nearby you have multiple drivers that can take them where they need to go. You want to assign the drivers to the customers in a way that minimizes customer wait time (so you keep the customers happy) and driver empty time (so you keep the drivers happy).

The assignment problem is designed for exactly this purpose. We start with m agents and n tasks. We make the rule that every agent has to be assigned to a task. For each agent-task pair, we figure out a cost associated to have that agent perform that task. We then figure out which assignment of agents to tasks minimizes the total cost.

Of course, it may be true that m != n , but that’s OK. If there are too many tasks, we can make up a “dummy” agent that is more expensive than any of the others. This will ensure that the least desirable task will be left to the dummy agent, and we can remove that from the solution. Or, if there are too many agents, we can make up a “dummy” task that is free for any agent. This will ensure that the agent with the highest true cost will get the dummy task, and will be idle.

If that last paragraph was a little dense, don’t worry; there’s an example coming that will help show how it works.

There are special algorithms for solving assignment problems, but one thing that’s nice about them is that a general-purpose solver can handle them too. Below is an example, but first it will help to cover a few concepts that we’ll be using.

Optimization Problems

Up above, we talked about making “rules” and minimizing costs. The usual name for this is optimization. An optimization problem is one where we have an “objective function” (which tells us what our goals are) and one or more “constraint functions” (which tell us what the rules are). The classic example is a factory that can make both “widgets” and “gadgets”. Each “widget” and “gadget” earns a certain amount of profit, but it also uses up raw material and time on the factory’s machines. The optimization problem is to determine exactly how many “widgets” and how many “gadgets” to make to maximize profit (the objective) while fitting within the material and time available (the constraints).

If we were to write this simple optimization problem out, it might look like this:

In this case, we have two variables: g for the number of gadgets we make and w for the number of widgets we make. We also have three constraints that we have to meet. Note that they are inequalities; we might not use all the available material or time in our optimal solution.

Just to unpack this a little: in English, the above is saying that we make 45 dollars / euros / quatloos per gadget we make. However, to make a gadget needs 120 lbs of raw material 1, 80 lbs of raw material 2, and 3.8 hours of machine time. So there is a limit on how many gadgets we can make, and it might be a better use of resources to balance gadgets with widgets.

Of course, real optimization problems have many more than two variables and many constraint functions, making them much harder to solve. The easiest kind of optimization problem to solve is linear, and fortunately, the assignment problem is linear.

Linear Programming

A linear program is a kind of optimization problem where both the objective function and the constraint functions are linear. (OK, that definition was a little self-referential.) We can have as many variables as we want, and as many constraint functions as we want, but none of the variables can have exponents in any of the functions. This limitation allows us to apply very efficient mathematical approaches to solve the problem, even for very large problems.

We can state the assignment problem as a linear programming problem. First, we choose to make “i” represent each of our agents (drivers) and “j” to represent each of our tasks (customers). Now, to write a problem like this, we need variables. The best approach is to use “indicator” variables, where xij = 1 means “driver i picks up customer j” and xij = 0 means “driver i does not pick up customer j”.

We wind up with:

This is a compact mathematical way to describe the problem, so again let me put it in English.

First, we need to figure out the cost of having each driver pick up each customer. Then, we can calculate the total cost for any scenario by just adding up the costs for the assignments we pick. For any assignment we don’t pick, xij will equal zero, so that term will just drop out of the sum.

Of course, the way we set up the objective function, the cheapest solution is for no drivers to pick up any customers. That’s not a very good business model. So we need a constraint to show that we want to have a driver assigned to every customer. At the same time, we can’t have a driver assigned to mutiple customers. So we need a constraint for that too. That leads us to the two constraints in the problem. The first just says, if you add up all the assignments for a given driver, you want the total number of assignments for that driver to be exactly one. The second constraint says, if you add up all the assignments to a given customer, you want the total number of drivers assigned to the customer to be one. If you have both of these, then each driver is assigned to exactly one customer, and the customers and drivers are happy. If you do it in a way that minimizes costs, then the business is happy too.

Solving with Octave and GLPK

The GNU Linear Programming Kit is a library that solves exactly these kinds of problems. It’s easy to set up the objective and constraints using GNU Octave and pass these over to GLPK for a solution.

Given some made-up sample data, the program looks like this:

Start with the definition of “c”, the cost information. For this example, I chose to have four drivers and three customers. There are sixteen numbers there; the first four are the cost of each driver to get the first customer, the next four are for the second customer, and the next four are for the third customer. Because we have an extra driver, we add a “dummy” customer at the end that is zero cost. This represents one of the drivers being idle.

The next definition is “b”, the right-hand side of our constraints. There are eight constraints, one for each of the drivers, and one for each of the customers (including the dummy). For each constraint, the right-hand side is 1.

The big block in the middle defines our constraint matrix “a”. This is the most challenging part of taking the mathematical definition and putting it into a form that is usable by GLPK; we have to expand out each constraint. Fortunately, in these kinds of cases, we tend to get pretty patterns that help us know we’re on the right track.

The first line in “a” says that the first customer needs a driver. To see why, remember that in our cost information, the first four numbers are the cost for each driver to get the first customer. With this constraint, we are requiring that one of those four costs be included and therefore that a driver is “selected” for the first customer. The other lines in “a” work similarly; the last four ensure that each driver has an assignment.

Note that the number of rows in “a” matches the number of items in “b”, and the number of columns in “a” matches the number of items in “c”. This is important; GLPK won’t run if this is not true (and our problem isn’t stated right in any case).

Compared to the above, the last few lines are easy.

  • “lb” gives the lower bound for each variable.
  • “ub” gives the upper bound.
  • “ctype” tells GLPK that each constraint is an equality (“strict” as opposed to providing a lower or upper bound).
  • “vartype” tells GLPK that these variables are all integers (can’t have half a driver showing up).
  • “s” tells GLPK that we want to minimize our costs, not maximize them.

We push all that through a function call to GLPK, and what comes back are two values (along with some other stuff I’ll exclude for clarity):

The first item tells us that our best solution takes 27 minutes, or dollars, or whatever unit we used for cost. The second item tells us the assignments we got. (Note for pedants: I transposed this output to save space.)

This output tells us that customer 1 gets driver 2, customer 2 gets driver 3, customer 3 gets driver 4, and driver 1 is idle. If you look back at the cost data, you can see this makes sense, because driver 1 had some of the most expensive times to the three customers. You can also see that it managed to pick the least expensive pairing for each customer. (Of course, if I had done a better job making up cost data, it might not have picked the least expensive pairing in all cases, because a suboptimal individual pairing might still lead to an overall optimal solution. But this is a toy example.)

Of course, for a real application, we would have to take into consideration many other factors, such as the passage of time. Rather than knowing all of our customers and drivers up front, we would have customers and drivers continually showing up and being assigned. But I hope this simple example has revealed some of the concepts behind optimization and linear programming and the kinds of real-world problems that can be solved.

Homework Q&A

Drag image here or click to upload

  • Anatomy & Physiology
  • Astrophysics
  • Earth Science
  • Environmental Science
  • Organic Chemistry
  • Precalculus
  • Trigonometry
  • English Grammar
  • U.S. History
  • World History

Math AI Solver

Math AI Solver

Use our AI math solver to solve any math homework problem online for free

Tackle Your Math Homework with Our AI Math Solver

Tackle Your Math Homework with Our AI Math Solver

Struggling to do your math homework? HIX Tutor’s AI Math Solver simplifies math problems. Get fast, accurate math solutions in one click with our state-of-the-art math AI solver.

Why Use HIX Tutor’s Math AI Homework Solver

Comprehensive support.

Math AI Solver can assist with math at all grade levels, ranging from elementary math to university and beyond.

Step-by-Step Solutions

Get detailed explanations for each step of the problem to gain a better understanding of your math homework.

24/7 Availability

Access our AI math solver anytime to meet your homework needs around the clock to ensure that you never miss a deadline.

Save Time and Money

Get answers to math problems in record time and save on the cost of math tutors with our free math AI solver tool.

Technologically Advanced

We offer the latest in AI math technology to ensure accurate answers to any math problems including algebra, geometry, calculus, etc.

Streamlined Learning

Our AI math problem solvers make learning all kinds of math easier by providing step-by-step guidance and answers.

Experience the Best Math AI Solver on the Market

Stuck on a difficult math question? Math AI Solver is here to assist you:

Submit Your Math Query

Type in your math question or upload the document or an image of the homework problem.

Let Math AI Solver Do Its Magic

Wait just a few moments while our advanced math homework AI tool analyzes the question and prepares an accurate solution.

Receive the Correct Answer

Receive a detailed, step-by-step solution to your math query that includes an accurate answer.

Other AI Homework Helpers

Demystify topics ranging from basic mechanics to advanced electromagnetism with detailed solutions

Chemistry AI

HIX Tutor's AI chemistry homework helper is your go-to companion to master chemistry problem-solving.

Clarify doubts, and get insights on complex processes and terminologies. Get accurate answers to hard.

HIX Tutor’s AI Math Problem Solver Features at a Glance

✅ Accurate AI solutionsEliminate the risk of errors and mistakes
📝 Rapid homework responseGet correct answers in just moments
📚 Comprehensive math supportCovers maths at all grade levels
📈 Ultimate math tutorBoost your maths grade and school success

1. What is Math AI?

A Math AI is an artificial intelligence-powered tool designed to solve complex mathematical problems efficiently and accurately. By utilizing advanced algorithms and computational power, Math AI can provide step-by-step solutions, offer insights into problem-solving strategies, and enhance our overall understanding of various mathematical concepts.

2. What math subjects does the AI math problem solver cover?

Our AI math solver tool is trained to solve a wide range of math subjects, including but not limited to, algebra, geometry, calculus, trigonometry, calculus, and more.

3. How long does this math AI take to get an answer to my math question?

HIX Tutor's math AI Solver is available 24/7 and delivers correct, step-by-step solutions to maths questions almost immediately after you submit the query.

4. What's the best Math AI solver?

HIX Tutor is the best Math AI that offers comprehensive solutions for solving complex mathematical problems. With its advanced features, such as step-by-step explanations, personalized learning paths, and interactive problem-solving tools, HIX Tutor aims to help students and professionals better understand mathematical concepts and improve their problem-solving skills.

5. How does HIX Tutor's AI for maths work?

HIX Tutor's math AI helper utilizes advanced algorithms and deep learning techniques to analyze and understand math problems. It breaks down the problem into steps, applies relevant mathematical concepts, and provides detailed explanations for each step of the solution.

6. Is HIX Tutor's mathematics AI solver accurate?

Yes, our math AI solving tool is designed to deliver accurate solutions. It has been trained on a vast dataset of mathematical problems to ensure its proficiency in providing reliable answers. However, it's important to note that while our tool strives for accuracy, occasional errors or misunderstandings may occur.

7. Is HIX Tutor's math AI solver replace the need for a maths tutor?

While our maths AI tool is designed to provide comprehensive support and step-by-step solutions, it is not intended to replace the guidance and expertise of a human maths tutor. It can be a valuable tool to supplement your learning and provide quick answers, but for in-depth understanding and tailored guidance, a maths tutor may still be beneficial in certain situations.

8. Is this math AI free to use?

Yes, you can try Math AI Solver at no cost. Once you’ve reached your free question limit, you’ll need to purchase an affordable subscription.

Discover Frequently Asked Math Questions and Their Answers

  • How do you write the quadratic function #y=x^2+14x+11# in vertex form?
  • How many points does #y=-2x^2+x-3# have in common with the vertex and where is the vertex in relation to the x axis?
  • How do you solve #4x^4 - 16x^2 + 15 = 0#?
  • How do you solve #2x^2+3x-2=0#?
  • How do you solve #7(x-4)^2-2=54# using any method?
  • How do you solve #x^2 + 5x + 6 = 0# algebraically?
  • How do you use factoring to solve this equation #3x^2/4=27#?
  • What is the vertex of # y = (1/8)(x – 5)^2 - 3#?
  • How do you solve #| x^2+3x-2 | =2#?
  • How do you solve #2x²+3x=5 # using the quadratic formula?
  • How do you find the derivative of #y=tan(3x)# ?
  • How do you differentiate #f(x)= 1/ (lnx)# using the quotient rule?
  • How do you differentiate #(3+sin(x))/(3x+cos(x))#?
  • What is the derivative of this function #sin^-1(x/4)#?
  • What is the derivative of this function #y=sin^-1(2x)#?
  • What is the derivative of this function #arcsec(x^3)#?
  • What is the derivative of #y=sin(tan2x)#?
  • How do you differentiate #cos(pi*x^2)#?
  • What is the derivative of #f(x)=(x^2-4)ln(x^3/3-4x)#?
  • What is the derivative of #y=3sin(x) - sin(3x)#?
  • A triangle has corners at #(5 ,1 )#, #(2 ,9 )#, and #(4 ,3 )#. What is the area of the triangle's circumscribed circle?
  • How can we find the area of irregular shapes?
  • A triangle has vertices A, B, and C. Vertex A has an angle of #pi/2 #, vertex B has an angle of #( pi)/3 #, and the triangle's area is #24 #. What is the area of the triangle's incircle?
  • An isosceles triangle has sides A, B, and C with sides B and C being equal in length. If side A goes from #(7 ,1 )# to #(8 ,5 )# and the triangle's area is #27 #, what are the possible coordinates of the triangle's third corner?
  • A triangle has corners at #(7 , 9 )#, #(3 ,7 )#, and #(4 ,8 )#. What is the radius of the triangle's inscribed circle?
  • Circle A has a center at #(2 ,3 )# and a radius of #1 #. Circle B has a center at #(0 ,-2 )# and a radius of #4 #. Do the circles overlap? If not, what is the smallest distance between them?
  • A parallelogram has sides A, B, C, and D. Sides A and B have a length of #2 # and sides C and D have a length of # 7 #. If the angle between sides A and C is #pi/4 #, what is the area of the parallelogram?
  • What is a quadrilateral that is not a parallelogram and not a trapezoid?
  • Your teacher made 8 triangles he need help to identify what type triangles they are. Help him?: 1) #12, 16, 20# 2) #15, 17, 22# 3) #6, 16, 26# 4) #12, 12, 15# 5) #5,12,13# 6) #7,24,25# 7) #8,15,17# 8) #9,40,41#
  • A triangle has corners A, B, and C located at #(3 ,5 )#, #(2 ,9 )#, and #(4 , 8 )#, respectively. What are the endpoints and length of the altitude going through corner C?
  • What is the GCF of the set #64, 16n^2, 32n#?
  • How do you write the reciprocal number of 5?
  • Jeanie has a 3/4 yard piece of ribbon. She needs one 3/8 yard piece and one 1/2 yard piece. Can she cut the piece of ribbon into the two smaller pieces? Why?
  • How do you find the GCF of #25k, 35j#?
  • How do you write 132/100 in a mixed number?
  • How do you evaluate the power #2^3#?
  • How do you simplify #(4^6)^2 #?
  • How do you convert 3.2 tons to pounds?
  • How do you solve #\frac { 5} { 8} + \frac { 3} { 2} ( 4- \frac { 1} { 4} ) - \frac { 1} { 8}#?
  • What are some acronyms for PEMDAS?
  • How do you find all the asymptotes for function #y=(3x^2+2x-1)/(x^2-4 )#?
  • How do you determine whether the graph of #y^2+3x=0# is symmetric with respect to the x axis, y axis or neither?
  • How do you determine whether the graph of #y^2=(4x^2)/9-4# is symmetric with respect to the x axis, y axis, the line y=x or y=-x, or none of these?
  • How do you find the end behavior of #-x^3+3x^2+x-3#?
  • How do you find the asymptotes for #(2x^2 - x - 38) / (x^2 - 4)#?
  • How do you find the asymptotes for #f(x) = (x^2) / (x^2 + 1)#?
  • How do you find the vertical, horizontal and slant asymptotes of: #(3x-2) / (x+1)#?
  • How do you find the Vertical, Horizontal, and Oblique Asymptote given #s(t)=(8t)/sin(t)#?
  • How do you find vertical, horizontal and oblique asymptotes for #(x^3+1)/(x^2+3x)#?
  • How do you find vertical, horizontal and oblique asymptotes for #y = (4x^3 + x^2 + x + 5 )/( x^2 + 3x)#?
  • What is a pooled variance?
  • What is the mean, mode median and range of 11, 12, 13, 12, 14, 11, 12?
  • What is the z-score of sample X, if #n = 81, mu= 43, St. Dev. =90, and E[X] =57#?
  • The camera club has five members, and the mathematics club has eight. There is only one member common to both clubs. In how many ways could a committee of four people be formed with at least one member from each club?
  • How many permutations are there of the letter in the word baseball?
  • How do you evaluate 6p4?
  • What is the probability of #X= 6# successes, using the binomial formula?
  • A lottery has a $100 000 first prize, a $25 000 second prize, and five $500 third prizes. A total of 50000 tickets are sold. What is the probability of winning a prize in this lottery?
  • When a event is reported, the probability that is a negative event is 30%. What is the probability that 3 out of 5 reported events are negative?
  • What is the median of 5, 19, 2, 28, 25?
  • How do you solve this trigonometric equation?
  • What is the frequency of #f(theta)= sin 3 t - cos2 t #?
  • How do you evaluate #Sin(pi/2) + 6 cos(pi/3) #?
  • How do you find the values of all six trigonometric functions of a right triangle ABC where C is the right angle, given a=9, b=40, c=41?
  • How do you express (5*pi)/4 into degree?
  • Solve for θ on the interval [90°,180°]:2tanθ +19 = 0?
  • Prove that #((cos(33^@))^2-(cos(57^@))^2)/((sin(10.5^@))^2-(sin(34.5^@))^2)= -sqrt2# ?
  • A triangle has sides A, B, and C. The angle between sides A and B is #(pi)/3# and the angle between sides B and C is #pi/6#. If side B has a length of 26, what is the area of the triangle?
  • How do you write the following in trigonometric form and perform the operation given #(sqrt3+i)(1+i)#?
  • A triangle has sides A, B, and C. The angle between sides A and B is #(2pi)/3#. If side C has a length of #32 # and the angle between sides B and C is #pi/12#, what is the length of side A?

Get Started with Our Smart Homework AI Now!

Trust HIX Tutor’s Math AI for Reliable Math Solutions

Don’t waste hours slaving over complex equations or confusing mathematical word problems. Math AI Solver is the ultimate solution for completing math assessments quickly and efficiently. Get started now.

  • Branch and Bound Tutorial
  • Backtracking Vs Branch-N-Bound
  • 0/1 Knapsack
  • 8 Puzzle Problem
  • Job Assignment Problem
  • N-Queen Problem
  • Travelling Salesman Problem

Job Assignment Problem using Branch And Bound

Let there be N workers and N jobs. Any worker can be assigned to perform any job, incurring some cost that may vary depending on the work-job assignment. It is required to perform all jobs by assigning exactly one worker to each job and exactly one job to each agent in such a way that the total cost of the assignment is minimized.

jobassignment

Let us explore all approaches for this problem.

Solution 1: Brute Force  

We generate n! possible job assignments and for each such assignment, we compute its total cost and return the less expensive assignment. Since the solution is a permutation of the n jobs, its complexity is O(n!).

Solution 2: Hungarian Algorithm  

The optimal assignment can be found using the Hungarian algorithm. The Hungarian algorithm has worst case run-time complexity of O(n^3).

Solution 3: DFS/BFS on state space tree  

A state space tree is a N-ary tree with property that any path from root to leaf node holds one of many solutions to given problem. We can perform depth-first search on state space tree and but successive moves can take us away from the goal rather than bringing closer. The search of state space tree follows leftmost path from the root regardless of initial state. An answer node may never be found in this approach. We can also perform a Breadth-first search on state space tree. But no matter what the initial state is, the algorithm attempts the same sequence of moves like DFS.

Solution 4: Finding Optimal Solution using Branch and Bound  

The selection rule for the next node in BFS and DFS is “blind”. i.e. the selection rule does not give any preference to a node that has a very good chance of getting the search to an answer node quickly. The search for an optimal solution can often be speeded by using an “intelligent” ranking function, also called an approximate cost function to avoid searching in sub-trees that do not contain an optimal solution. It is similar to BFS-like search but with one major optimization. Instead of following FIFO order, we choose a live node with least cost. We may not get optimal solution by following node with least promising cost, but it will provide very good chance of getting the search to an answer node quickly.

There are two approaches to calculate the cost function:  

  • For each worker, we choose job with minimum cost from list of unassigned jobs (take minimum entry from each row).
  • For each job, we choose a worker with lowest cost for that job from list of unassigned workers (take minimum entry from each column).

In this article, the first approach is followed.

Let’s take below example and try to calculate promising cost when Job 2 is assigned to worker A. 

jobassignment2

Since Job 2 is assigned to worker A (marked in green), cost becomes 2 and Job 2 and worker A becomes unavailable (marked in red). 

jobassignment3

Now we assign job 3 to worker B as it has minimum cost from list of unassigned jobs. Cost becomes 2 + 3 = 5 and Job 3 and worker B also becomes unavailable. 

jobassignment4

Finally, job 1 gets assigned to worker C as it has minimum cost among unassigned jobs and job 4 gets assigned to worker D as it is only Job left. Total cost becomes 2 + 3 + 5 + 4 = 14. 

jobassignment5

Below diagram shows complete search space diagram showing optimal solution path in green. 

jobassignment6

Complete Algorithm:  

Below is the implementation of the above approach:

Time Complexity: O(M*N). This is because the algorithm uses a double for loop to iterate through the M x N matrix.  Auxiliary Space: O(M+N). This is because it uses two arrays of size M and N to track the applicants and jobs.

Please Login to comment...

Similar reads.

  • Branch and Bound

Improve your Coding Skills with Practice

 alt=

What kind of Experience do you want to share?

' src=

  • All Courses
  • Privacy Policy

' src=

Swayam Solver

Learn Programming & Prepare for NPTEL Exams... Swayam Solver is your one-stop destination for NPTEL exam preparation.

NPTEL Problem Solving Through Programming In C - Programming Assignment | July-2024 Week 4 to 8

Week-04: program-01.

Public Test CasesInputExpected OutputActual OutputStatus

Week-04: Program-02

Public Test CasesInputExpected OutputActual OutputStatus

Week-04 Program-03

Week-04: program-04, no comments:, post a comment.

Keep your comments reader friendly. Be civil and respectful. No self-promotion or spam. Stick to the topic. Questions welcome.

IMAGES

  1. solve assignment problems

    solve the assignment problem

  2. Unit 1 Lesson 20 :Solving Assignment problem

    solve the assignment problem

  3. Solving Assignment Problem using Linear Programming in Python

    solve the assignment problem

  4. How to Solve Balanced Assignment Problem Using Excel Solver #Excel #Solver #AssignementProblem

    solve the assignment problem

  5. 7 Most Effective Ways For How To Solve Assignment Problems

    solve the assignment problem

  6. PPT

    solve the assignment problem

COMMENTS

  1. Solve the assignment problem online

    Solve an assignment problem online. Fill in the cost matrix of an assignment problem and click on 'Solve'. The optimal assignment will be determined and a step by step explanation of the hungarian algorithm will be given. Fill in the cost matrix (random cost matrix):

  2. Assignment problem

    This is an unbalanced assignment problem. One way to solve it is to invent a fourth dummy task, perhaps called "sitting still doing nothing", with a cost of 0 for the taxi assigned to it. This reduces the problem to a balanced assignment problem, which can then be solved in the usual way and still give the best solution to the problem.

  3. Hungarian algorithm

    The Hungarian method is a combinatorial optimization algorithm that solves the assignment problem in polynomial time and which anticipated later primal-dual methods.It was developed and published in 1955 by Harold Kuhn, who gave it the name "Hungarian method" because the algorithm was largely based on the earlier works of two Hungarian mathematicians, Dénes Kőnig and Jenő Egerváry.

  4. How to Solve the Assignment Problem: A Complete Guide

    Step 1: Set up the cost matrix. The first step in solving the assignment problem is to set up the cost matrix, which represents the cost of assigning a task to an agent. The matrix should be square and have the same number of rows and columns as the number of tasks and agents, respectively.

  5. Hungarian Algorithm for Assignment Problem

    The problem is to find the assignment that minimizes the total cost or distance, taking into account both the distances and the flows. ... we will discuss what is the exact cover problem and an algorithm "Algorithm X" proposed by Donald Knuth to solve this problem. Given a collection S of subsets of set X, an exact cover is the subset S* of ...

  6. Hungarian Method

    The Hungarian method is a computational optimization technique that addresses the assignment problem in polynomial time and foreshadows following primal-dual alternatives. In 1955, Harold Kuhn used the term "Hungarian method" to honour two Hungarian mathematicians, Dénes Kőnig and Jenő Egerváry. Let's go through the steps of the Hungarian method with the help of a solved example.

  7. How to Solve an Assignment Problem Using the Hungarian Method

    In this lesson we learn what is an assignment problem and how we can solve it using the Hungarian method.

  8. Assignment Problem: Meaning, Methods and Variations

    After reading this article you will learn about:- 1. Meaning of Assignment Problem 2. Definition of Assignment Problem 3. Mathematical Formulation 4. Hungarian Method 5. Variations. Meaning of Assignment Problem: An assignment problem is a particular case of transportation problem where the objective is to assign a number of resources to an equal number of activities so as to minimise total ...

  9. The Assignment Problem (Using Hungarian Algorithm)

    Few Approaches to solve the Assignment Problem. Complexity Analysis for Brute force approach. Approach 1: Brute Force Here we try all the combinations one by one to find the optimal solution. This ...

  10. The Assignment Problem

    We can solve the assignment problem by: Find all maximum matchings. Sum the cost of the edges of each maximum matching. Select the maximum matching with the lowest possible cost. Obviously, we want something better :-) 0,1 Integer Program of an assignment problem

  11. Assignment Problem and Hungarian Algorithm

    The assignment problem is a special case of the transportation problem, which in turn is a special case of the min-cost flow problem, so it can be solved using algorithms that solve the more general cases. Also, our problem is a special case of binary integer linear programming problem (which is NP-hard).

  12. The Assignment Problem

    The assignment problem deals with assigning machines to tasks, workers to jobs, soccer players to positions, and so on. The goal is to determine the optimum assignment that, for example, minimizes the total cost or maximizes the team effectiveness. The assignment problem is a fundamental problem in the area of combinatorial optimization.

  13. HungarianAlgorithm.com

    The assignment problem. The assignment problem deals with assigning machines to tasks, workers to jobs, soccer players to positions, and so on. The goal is to determine the optimum assignment that, for example, minimizes the total cost or maximizes the team effectiveness. Read more on the assignment problem.

  14. PDF Section 7.5: The Assignment Problem

    From this, we could solve it as a transportation problem or as a linear program. However, we can also take advantage of the form of the problem and put together an algorithm that takes advantage of it- this is the Hungarian Algorithm. The Hungarian Algorithm The Hungarian Algorithm is an algorithm designed to solve the assignment problem. We ...

  15. Hungarian Algorithm for Assignment Problem

    Different approaches to solve this problem are discussed in this article. Approach: The idea is to use the Hungarian Algorithm to solve this problem. The algorithm is as follows: ... The Quadratic Assignment Problem (QAP) is an optimization problem that deals with assigning a set of facilities to a set of locations, considering the pairwise ...

  16. Assignment Problem, Maximization Example, Hungarian Method

    The Hungarian Method can also solve such assignment problems, as it is easy to obtain an equivalent minimization problem by converting every number in the matrix to an opportunity loss. The conversion is accomplished by subtracting all the elements of the given matrix from the highest element. It turns out that minimizing opportunity loss ...

  17. Solution of assignment problems (Hungarian Method)

    Solve the following assignment problem. Solution: Since the number of columns is less than the number of rows, given assignment problem is unbalanced one. To balance it , introduce a dummy column with all the entries zero. The revised assignment problem is. Here only 3 tasks can be assigned to 3 men.

  18. Solving an Assignment Problem

    Solving an Assignment Problem Stay organized with collections Save and categorize content based on your preferences. This section presents an example that shows how to solve an assignment problem using both the MIP solver and the CP-SAT solver. Example. In the example there are five workers (numbered 0-4) and four tasks (numbered 0-3). ...

  19. PDF The Assignment Problem and the Hungarian Method

    Step 3. Draw lines through appropriate rows and columns so that all the zero entries of the cost matrix are covered and the minimum number of such lines is used. Step 4. Test for Optimality: (i) If the minimum number of covering lines is n, an optimal assignment of zeros is possible and we are finished.

  20. PDF 7.13 Assignment Problem

    Enhance accuracy of solving linear systems of equations. 4 Bipartite matching. Can solve via reduction to max flow. Flow. During Ford-Fulkerson, all capacities and flows are 0/1. Flow corresponds to edges in a matching M. Residual graph G M simplifies to:! If (x, y) " M, then (x, y) is in GM.! If (x, y) # M, the (y, x) is in GM. Augmenting path ...

  21. PDF The Assignment Problem: An Example

    The Assignment Problem: An Example A company has 4 machines available for assignment to 4 tasks. Any machine can be assigned to any task, and each task requires processing by one machine. The time required to set up each machine for the processing of each task is given in the table below. TIME (Hours) Task 1 Task 2 Task 3 Task 4 Machine 1 13 4 7 6

  22. PDF 17 The Assignment Problem

    Exercise 17 shows that the number of iterations is O(n2). To compare the Hungarian method to the exhaustive search method mentioned above, suppose that each iteration can be performed in one second. Then an assignment prob-lem with n = 30 can be solved in at most 302 = 900 seconds, or 15 minutes of computer time.

  23. Algorithms: The Assignment Problem

    One of the interesting things about studying optimization is that the techniques show up in a lot of different areas. The "assignment problem" is one that can be solved using simple techniques, at least for small problem sizes, and is easy to see how it could be applied to the real world. Assignment Problem Pretend for a moment that you are writing software for a famous ride sharing ...

  24. Math AI Problem Solver

    A Math AI is an artificial intelligence-powered tool designed to solve complex mathematical problems efficiently and accurately. By utilizing advanced algorithms and computational power, Math AI can provide step-by-step solutions, offer insights into problem-solving strategies, and enhance our overall understanding of various mathematical concepts.

  25. Job Assignment Problem using Branch And Bound

    Solution 1: Brute Force. We generate n! possible job assignments and for each such assignment, we compute its total cost and return the less expensive assignment. Since the solution is a permutation of the n jobs, its complexity is O (n!). Solution 2: Hungarian Algorithm. The optimal assignment can be found using the Hungarian algorithm.

  26. NPTEL Problem Solving Through Programming In C

    This assignment has Public Test cases. Please click on "Compile & Run" button to see the status of Public test cases. Assignment will be evaluated only after submitting using Submit button below. If you only save as or compile and run the Program , your assignment will not be graded and you will not see your score after the deadline.