Home › Study Tips › Research Skills: What They Are and How They Benefit You

Research Skills: What They Are and How They Benefit You

  • Published May 23, 2024

Man on laptop using Google Analytics

Research skills give you the ability to gather relevant information from different sources and analyse it critically in order to develop a comprehensive understanding of a subject. Thus, research skills are fundamental to academic success.

Developing these skills will improve your studies, helping you understand subjects better and positioning you for academic success.

That said, how can you develop important research skills? This will explore what research skills are, identify the core ones, and explain how you can develop them.

What Are Research Skills?

Research skills are a set of abilities that allow individuals to find and gather reliable information and then evaluate the information to find answers to questions.

Good research skills are important in academic settings, as finding and critically evaluating relevant information can help you gain a deeper understanding of a subject.

These skills are also important in professional and personal settings. When you graduate and are working in a professional capacity, you’ll often need to analyse sets of data to identify issues and determine how to solve them.

In personal contexts, you’ll always need to assess relevant information to make an informed decision. Whether you’re deciding on a major purchase, choosing a healthcare provider, or planning to make an investment, you’ll need to evaluate options to ensure better decision outcomes.

Different Types of Research Skills

Research skills are categorised into different sub-skills. The most common types are:

Quantitative Skills

Quantitative skills refer to the ability to work with numerical data and perform mathematical and statistical analyses to extract meaningful insights and draw conclusions. 

When you have quantitative skills, you’ll be able to apply mathematical concepts and operations in research design and data analysis. 

You’ll also be proficient in using statistical methods to analyse data and interpreting numerical data to draw meaningful conclusions. 

Analytical Skills

Analytical skills refer to the ability to gather data, evaluate it, and draw sound conclusions. When you have analytical skills, you’ll be able to systematically analyse information to reach a reasonable conclusion. 

Analytical skills are important in problem-solving. They help you to break down complex problems into more manageable components, think critically about the information at hand, analyse root causes, and develop effective solutions.

Qualitative Skills

Qualitative skills refer to the ability to collect, analyse, and interpret non-numerical data. When you have qualitative skills, you’ll be proficient in observation, interviewing, and other methods for collecting qualitative research data. 

You’ll also be able to analyse non-numerical data, such as documents and images, to identify themes, patterns, and meanings.

Research Skills Examples

The core research skills you need for success in academic, professional, and personal contexts include:

Data Collection

Data is at the centre of every research, as data is what you assess to find the answers you seek. Thus, research starts with collecting relevant data.

Depending on the research, there are two broad categories of data you can collect: primary and secondary.

Primary data is generated by the researcher, like data from interviews, observations, or experiments. Secondary data is pre-existing data obtained from different existing databases, like published literature, government reports, etc. 

Thus, data collection is more than gathering information from the Internet. Depending on the research, it can require more advanced skills for conducting experiments to generate your own data.

Source Evaluation

When doing research on any subject (especially when using the Internet), you’ll be amazed at the volume of information you’ll find. And a lot is pure garbage that can compromise your research work.

Thus, an important research skill is being able to dig through the garbage to get to the real facts. This is where source evaluation comes in!

Good research skills call for being able to identify biases, assess the authority of the author, and determine the accuracy of information before using it.

Time Management Skills

Calendar

Have you ever felt that there is not enough time in a day for all that you need to do? When you already have so much to do, adding research can be overwhelming.

Good time management skills can help you find the time to do all you need to do, including relevant research work, making it an essential research skill.

Time management allows you to plan and manage your research project effectively. It includes breaking down research tasks into more manageable parts, setting priorities, and allocating time to the different stages of the research.

Communication Skills

Group of students communicating with each other

Communication is an important aspect of every research, as it aids in data collection and sharing research findings. 

Important communication skills needed in research include active listening, active speaking, interviewing, report writing, data visualisation, and presentation, etc.

For example, when research involves collecting primary data via interviews, you must have sound speaking and listening skills. 

When you conclude the research and need to share findings, you’ll need to write a research report and present key findings in easy-to-understand formats like charts. 

Attention to Detail

Attention to detail is the ability to achieve thoroughness and accuracy when doing something. It requires focusing on every aspect of the tasks, even small ones. 

Anything you miss during your research will affect the quality of your research findings. Thus, the ability to pay close attention to details is an important research skill.

You need attention to detail at every stage of the research process. During data collection, it helps you ensure reliable data. 

During analysis, it reduces the risk of error to ensure your results are trustworthy. It also helps you express findings precisely to minimise ambiguity and facilitate understanding.

Note-Taking

Notes in a notebook

Note-taking is exactly what it sounds like—writing down key information during the research process.

Remember that research involves sifting through and taking in a lot of information. It’s impossible to take in all the information and recall it from memory. This is where note-taking comes in!

Note-taking helps you capture key information, making it easier to remember and utilise for the research later. It also involves writing down where to look for important information.

Critical Thinking

Critical thinking is the ability to think rationally and synthesise information in a thoughtful way. It is an important skill needed in virtually all stages of the research process.

For example, when collecting data, you need critical thinking to assess the quality and relevance of data. It can help you identify gaps in data to formulate your research question and hypothesis. 

It can also help you to identify patterns and make reasonable connections when interpreting research findings.

Data Analysis

Data may not mean anything until you analyse it qualitatively or quantitatively (using techniques like Excel or SPSS). For this reason, data analysis analysis is an important research skill.

Researchers need to be able to build hypotheses and test these using appropriate research techniques. This helps to draw meaningful conclusions and gain a comprehensive understanding of research data.

Problem-Solving Skills

Research often involves addressing specific questions and solving problems. For this reason, problem-solving skills are important skills when conducting research. 

Problem-solving skills refer to the ability to identify, analyse, and solve problems effectively. 

With problem-solving skills, you’ll be able to assess a situation, consider various solutions, and choose the most appropriate course of action toward finding a solution.

Benefits of Research Skills

Research skills have many benefits, including:

Enhances Critical Thinking

Research skills and critical thinking are intertwined such that developing one enhances the other.

Research requires people to question assumptions, evaluate evidence, analyse information, and draw conclusions. These activities require you to think critically about the information at hand. Hence, engaging in research enhances critical thinking.

Develops Problem-Solving Skills

Research helps you acquire a set of critical skills that are directly transferable to problem-solving. 

For example, research fosters creative thinking, as it often requires synthesising data from different sources and connecting different concepts. After developing creative thinking via research, you can apply the skill to generate innovative solutions in problem-solving situations. 

Helps in Knowledge Acquisition

Engaging in research is a powerful way to acquire knowledge. Research involves exploring new ideas, and this helps you expand your breadth of knowledge.

It also involves applying research methods and methodologies. So, you’ll acquire knowledge about research methods, enhancing your ability to design and conduct studies in your higher education or professional life.

Why Are Research Skills Important?

Strong research skills offer numerous benefits, especially for students’ academic learning and development. 

When you develop good research skills, you’ll reap great academic rewards that include:

In-Depth Understanding

Conducting research allows you to delve deep into specific topics, helping you gain a thorough understanding of the subject matter beyond what is covered in standard coursework.

Critical Thinking Development

Research involves critical evaluation of information and making informed decisions. This builds your ability to think critically.

This skill will not only help you solve academic problems better, but it’s also crucial to your personal and professional growth.

Encouragement of Independent Learning

Research encourages independent learning. When you engage in research, you seek answers independently. You take the initiative to find, retrieve, and evaluate information relevant to your research.

That helps you develop self-directed study habits. You’ll be able to take ownership of your education and actively seek out information for a better understanding of the subject matter.

Intellectual Curiosity Development

Research skills encourage intellectual curiosity and a love of learning, as they’ll make you explore topics you find intriguing or important. Thus, you’ll be more motivated to explore topics beyond the scope of your coursework.

Enhanced Communication Skills

Research helps you build better interpersonal skills as well as report-writing skills.

Research helps you sharpen your communication skills when you interact with research subjects during data collection. Communicating research findings to an audience also helps sharpen your presentation skills or report writing skills.

Assistance in Career Preparation 

Many professions find people with good research skills. Whether you’ll pursue a career in academia, business, healthcare, or IT, being able to conduct research will make you a valuable asset.

So, researching skills for students prepares you for a successful career when you graduate.

Contribution to Personal Growth

Research also contributes to your personal growth. Know that research projects often come with setbacks, unexpected challenges, and moments of uncertainty. Navigating these difficulties helps you build resilience and confidence.

Acquisition of Time Management Skills

Research projects often come with deadlines. Such research projects force you to set goals, prioritise tasks, and manage your time effectively.

That helps you acquire important time management skills that you can use in other areas of academic life and your professional life when you graduate.

Ways to Improve Research Skills

The ways to improve your research skills involve a combination of learning and practice. 

You should consider enrolling in research-related programmes, learning to use data analysis tools, practising summarising and synthesising information from multiple sources, collaborating with more experienced researchers, and more. 

Looking to improve your research skills? Read our 11 ways to improve research skills article.

How Can I Learn Research Skills?

You can learn research skills using these simple three-point framework:

Clarifying the Objective

Start by articulating the purpose of your research. Identify the specific question you are trying to answer or the problem you are aiming to solve.

Then, determine the scope of your research to help you stay focused and avoid going after irrelevant information.

Cross-Referencing Sources

The next step is to search for existing research on the topic. Use academic databases, journals, books, and reputable online sources.

It’s important to compare information from multiple sources, taking note of consensus among studies and any conflicting findings. 

Also, check the credibility of each source by looking at the author’s expertise, information recency, and reputation of the publication’s outlet.

Organise the Research

Develop a note-taking system to document key findings as you search for existing research. Create a research outline, then arrange your ideas logically, ensuring that each section aligns with your research objective.

As you progress, be adaptable. Be open to refining your research plan as new understanding evolves.

Enrolling in online research programmes can also help you build strong research skills. These programmes combine subject study with academic research project development to help you hone the skills you need to succeed in higher education.

Immerse Education is a foremost provider of online research programmes.

Acquire Research Skills with Immerse Education 

Research skills are essential to academic success. They help you gain an in-depth understanding of subjects, enhance your critical thinking and problem-solving skills, improve your time management skills, and more. 

In addition to boosting you academically, they contribute to your personal growth and prepare you for a successful professional career.

Thankfully, you can learn research skills and reap these benefits. There are different ways to improve research skills, including enrolling in research-based programmes. This is why you need Immerse Education!

Immerse Education provides participants aged 13-18 with unparalleled educational experience. All our programmes are designed by tutors from top global universities and help prepare participants for future success.

Our online research programme expertly combines subject study with academic research projects to help you gain subject matter knowledge and the important research skills you need to succeed in higher education.  With one-on-one tutoring or group sessions from an expert academic from Oxford or Cambridge University and a flexible delivery mode, the programme is designed for you to succeed. Subsequently, enrolling in our accredited Online Research Programme will award students with 8 UCAS points upon completion.

research skills advantages

  • I'm a Parent
  • I'm a Student
  • First Name *
  • Last Name *
  • Which subjects interest you? (Optional) Architecture Artificial Intelligence Banking and Finance Biology Biotechnology Business Management Chemistry Coding Computer Science Computer Science and Artificial Intelligence Creative Writing Creative Writing and Film Criminology Data Science and Analytics Earth Science Economics Encryption and Cybersecurity Engineering English Literature Entrepreneurship Fashion and Design Female Future Leaders Film Studies Fine Arts Global Society and Sustainability Health and Biotechnology History International Relations Law Marketing and Entertainment Mathematics Medicine Medicine and Health Sciences Nanotechnology Natural Sciences Philosophy Philosophy Politics and Economics Physics Psychology Software Development and AI Software Development and Gaming Veterinary Studies Online Research Programme

Secure priority enrolment for our new summer school location with a small refundable deposit.

" * " indicates required fields

Receive priority enrolment for new summer school locations by registering your interest below.

Our programme consultant will contact you to talk about your options.

  • Family Name *
  • Phone Number
  • Yes. See Privacy Policy.

Subject is unavailable at location

You have selected a subject that is not available at the location that you have previously chosen.

The location filter has been reset, and you are now able to search for all the courses where we offer the subject.

Instant insights, infinite possibilities

What are research skills?

Last updated

26 April 2023

Reviewed by

Short on time? Get an AI generated summary of this article instead

Broadly, it includes a range of talents required to:

Find useful information

Perform critical analysis

Form hypotheses

Solve problems

It also includes processes such as time management, communication, and reporting skills to achieve those ends.

Research requires a blend of conceptual and detail-oriented modes of thinking. It tests one's ability to transition between subjective motivations and objective assessments to ensure only correct data fits into a meaningfully useful framework.

As countless fields increasingly rely on data management and analysis, polishing your research skills is an important, near-universal way to improve your potential of getting hired and advancing in your career.

Make research less tedious

Dovetail streamlines research to help you uncover and share actionable insights

What are basic research skills?

Almost any research involves some proportion of the following fundamental skills:

Organization

Decision-making

Investigation and analysis

Creative thinking

What are primary research skills?

The following are some of the most universally important research skills that will help you in a wide range of positions:

Time management — From planning and organization to task prioritization and deadline management, time-management skills are highly in-demand workplace skills.

Problem-solving — Identifying issues, their causes, and key solutions are another essential suite of research skills.

Critical thinking — The ability to make connections between data points with clear reasoning is essential to navigate data and extract what's useful towards the original objective.

Communication — In any collaborative environment, team-building and active listening will help researchers convey findings more effectively through data summarizations and report writing.

What are the most important skills in research?

Detail-oriented procedures are essential to research, which allow researchers and their audience to probe deeper into a subject and make connections they otherwise may have missed with generic overviews.

Maintaining priorities is also essential so that details fit within an overarching strategy. Lastly, decision-making is crucial because that's the only way research is translated into meaningful action.

  • Why are research skills important?

Good research skills are crucial to learning more about a subject, then using that knowledge to improve an organization's capabilities. Synthesizing that research and conveying it clearly is also important, as employees seek to share useful insights and inspire effective actions.

Effective research skills are essential for those seeking to:

Analyze their target market

Investigate industry trends

Identify customer needs

Detect obstacles

Find solutions to those obstacles

Develop new products or services

Develop new, adaptive ways to meet demands

Discover more efficient ways of acquiring or using resources

Why do we need research skills?

Businesses and individuals alike need research skills to clarify their role in the marketplace, which of course, requires clarity on the market in which they function in. High-quality research helps people stay better prepared for challenges by identifying key factors involved in their day-to-day operations, along with those that might play a significant role in future goals.

  • Benefits of having research skills

Research skills increase the effectiveness of any role that's dependent on information. Both individually and organization-wide, good research simplifies what can otherwise be unwieldy amounts of data. It can help maintain order by organizing information and improving efficiency, both of which set the stage for improved revenue growth.

Those with highly effective research skills can help reveal both:

Opportunities for improvement

Brand-new or previously unseen opportunities

Research skills can then help identify how to best take advantage of available opportunities. With today's increasingly data-driven economy, it will also increase your potential of getting hired and help position organizations as thought leaders in their marketplace.

  • Research skills examples

Being necessarily broad, research skills encompass many sub-categories of skillsets required to extrapolate meaning and direction from dense informational resources. Identifying, interpreting, and applying research are several such subcategories—but to be specific, workplaces of almost any type have some need of:

Searching for information

Attention to detail

Taking notes

Problem-solving

Communicating results

Time management

  • How to improve your research skills

Whether your research goals are to learn more about a subject or enhance workflows, you can improve research skills with this failsafe, four-step strategy:

Make an outline, and set your intention(s)

Know your sources

Learn to use advanced search techniques

Practice, practice, practice (and don't be afraid to adjust your approach)

These steps could manifest themselves in many ways, but what's most important is that it results in measurable progress toward the original goals that compelled you to research a subject.

  • Using research skills at work

Different research skills will be emphasized over others, depending on the nature of your trade. To use research most effectively, concentrate on improving research skills most relevant to your position—or, if working solo, the skills most likely have the strongest impact on your goals.

You might divide the necessary research skills into categories for short, medium, and long-term goals or according to each activity your position requires. That way, when a challenge arises in your workflow, it's clearer which specific research skill requires dedicated attention.

How can I learn research skills?

Learning research skills can be done with a simple three-point framework:

Clarify the objective — Before delving into potentially overwhelming amounts of data, take a moment to define the purpose of your research. If at any point you lose sight of the original objective, take another moment to ask how you could adjust your approach to better fit the original objective.

Scrutinize sources — Cross-reference data with other sources, paying close attention to each author's credentials and motivations.

Organize research — Establish and continually refine a data-organization system that works for you. This could be an index of resources or compiling data under different categories designed for easy access.

Which careers require research skills?

Especially in today's world, most careers require some, if not extensive, research. Developers, marketers, and others dealing in primarily digital properties especially require extensive research skills—but it's just as important in building and manufacturing industries, where research is crucial to construct products correctly and safely.

Engineering, legal, medical, and literally any other specialized field will require excellent research skills. Truly, almost any career path will involve some level of research skills; and even those requiring only minimal research skills will at least require research to find and compare open positions in the first place.

Should you be using a customer insights hub?

Do you want to discover previous research faster?

Do you share your research findings with others?

Do you analyze research data?

Start for free today, add your research, and get to key insights faster

Editor’s picks

Last updated: 18 April 2023

Last updated: 27 February 2023

Last updated: 22 August 2024

Last updated: 5 February 2023

Last updated: 16 August 2024

Last updated: 9 March 2023

Last updated: 30 April 2024

Last updated: 12 December 2023

Last updated: 11 March 2024

Last updated: 4 July 2024

Last updated: 6 March 2024

Last updated: 5 March 2024

Last updated: 13 May 2024

Latest articles

Related topics, .css-je19u9{-webkit-align-items:flex-end;-webkit-box-align:flex-end;-ms-flex-align:flex-end;align-items:flex-end;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-flex-direction:row;-ms-flex-direction:row;flex-direction:row;-webkit-box-flex-wrap:wrap;-webkit-flex-wrap:wrap;-ms-flex-wrap:wrap;flex-wrap:wrap;-webkit-box-pack:center;-ms-flex-pack:center;-webkit-justify-content:center;justify-content:center;row-gap:0;text-align:center;max-width:671px;}@media (max-width: 1079px){.css-je19u9{max-width:400px;}.css-je19u9>span{white-space:pre;}}@media (max-width: 799px){.css-je19u9{max-width:400px;}.css-je19u9>span{white-space:pre;}} decide what to .css-1kiodld{max-height:56px;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;}@media (max-width: 1079px){.css-1kiodld{display:none;}} build next, decide what to build next, log in or sign up.

Get started for free

  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • QuestionPro

survey software icon

  • Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case AskWhy Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
  • Resources Blog eBooks Survey Templates Case Studies Training Help center

research skills advantages

Home Market Research Research Tools and Apps

Research Skills: What they are and Benefits

research skills

Research skills play a vital role in the success of any research project, enabling individuals to navigate the vast sea of information, analyze data critically, and draw meaningful conclusions. Whether conducting academic research, professional investigations, or personal inquiries, strong research skills are essential for obtaining accurate and reliable results.

LEARN ABOUT:   Research Process Steps

By understanding and developing these skills, individuals can embark on their research endeavors with confidence, integrity, and the capability to make meaningful contributions in their chosen fields. This article will explore the importance of research skills and discuss critical competencies necessary for conducting a research project effectively.

Content Index

What are Research Skills?

Important research skills for research project, benefits of research skills.

  • Improving your Research Skills

Talk to Experts to Improve Skills

Research skills are the capability a person carries to create new concepts and understand the use of data collection. These skills include techniques, documentation, and interpretation of the collected data. Research is conducted to evaluate hypotheses and share the findings most appropriately. Research skills improve as we gain experience.

To conduct efficient research, specific research skills are essential. These skills are necessary for companies to develop new products and services or enhance existing products. To develop good research skills is important for both the individual as well as the company.

When undertaking a research project, one must possess specific important skills to ensure the project’s success and accuracy. Here are some essential research skills that are crucial for conducting a project effectively:

Time Management Skills:

Time management is an essential research skill; it helps you break down your project into parts and enables you to manage it easier. One can create a dead-line oriented plan for the research project and assign time for each task. Time management skills include setting goals for the project, planning and organizing functions as per their priority, and efficiently delegating these tasks.

Communication Skills:

These skills help you understand and receive important information and also allow you to share your findings with others in an effective manner. Active listening and speaking are critical skills for solid communication. A researcher must have good communication skills.

Problem-Solving:  

The ability to handle complex situations and business challenges and come up with solutions for them is termed problem-solving. To problem-solve, you should be able to fully understand the extent of the problem and then break it down into smaller parts. Once segregated into smaller chunks, you can start thinking about each element and analyze it to find a solution.

Information gathering and attention to detail:

Relevant information is the key to good research design . Searching for credible resources and collecting information from there will help you strengthen your research proposal and drive you to solutions faster. Once you have access to information, paying close attention to all the details and drawing conclusions based on the findings is essential.

Research Design and Methodology :

Understanding research design and methodology is essential for planning and conducting a project. Depending on the research question and objectives, researchers must select appropriate research methods, such as surveys, experiments, interviews, or case studies. Proficiency in designing research protocols, data collection instruments, and sampling strategies is crucial for obtaining reliable and valid results.

Data Collection and Analysis :

Researchers should be skilled in collecting and analyzing data accurately. It involves designing data collection instruments, collecting data through various methods, such as surveys or observations, and organizing and analyzing the collected data using appropriate statistical or qualitative analysis techniques. Proficiency in using software tools like SPSS, Excel, or qualitative analysis software can be beneficial.

By developing and strengthening these research skills, researchers can enhance the quality and impact of their research process, contributing to good research skills in their respective fields.

Research skills are invaluable assets that can benefit individuals in various aspects of their lives. Here are some key benefits of developing and honing research skills:

Boosts Curiosity :

Curiosity is a strong desire to know things and a powerful learning driver. Curious researchers will naturally ask questions that demand answers and will stop in the search for answers. Interested people are better listeners and are open to listening to other people’s ideas and perspectives, not just their own.

Cultivates Self-awareness :

As well as being aware of other people’s subjective opinions, one must develop the importance of research skills and be mindful of the benefits of awareness research; we are exposed to many things while researching. Once we start doing research, the benefit from it reflects on the beliefs and attitudes and encourages them to open their minds to other perspectives and ways of looking at things.

Effective Communication:

Research skills contribute to practical communication skills by enhancing one’s ability to articulate ideas, opinions, and findings clearly and coherently. Through research, individuals learn to organize their thoughts, present evidence-based arguments, and effectively convey complex information to different audiences. These skills are crucial in academic research settings, professional environments, and personal interactions.

Personal and Professional Growth :

Developing research skills fosters personal and professional growth by instilling a sense of curiosity, intellectual independence, and a lifelong learning mindset. Research encourages individuals to seek knowledge, challenge assumptions, and embrace intellectual growth. These skills also enhance adaptability as individuals become adept at navigating and assimilating new information, staying updated with the latest developments, and adjusting their perspectives and strategies accordingly.

Academic Success:

Research skills are essential for academic research success. They enable students to conduct thorough literature reviews, gather evidence to support their arguments, and critically evaluate existing research. By honing their research skills, students can produce well-structured, evidence-based essays, projects, and dissertations demonstrating high academic research rigor and analytical thinking.

Professional Advancement:

Research skills are highly valued in the professional world. They are crucial for conducting market research, analyzing trends, identifying opportunities, and making data-driven decisions. Employers appreciate individuals who can effectively gather and analyze information, solve complex problems, and provide evidence-based recommendations. Research skills also enable professionals to stay updated with advancements in their field, positioning themselves as knowledgeable and competent experts.

Developing and nurturing research skills can significantly benefit individuals in numerous aspects of their lives, enabling them to thrive in an increasingly information-driven world.

Improving Your Research Skills

There are many things you can do to improve your research skills and utilize them in your research or day job. Here are some examples:

  • Develop Information Literacy: Strengthening your information literacy skills is crucial for conducting thorough research. It involves identifying reliable sources, evaluating the credibility of information, and navigating different research databases.
  • Enhance Critical Thinking: Critical thinking is an essential skill for effective research. It involves analyzing information, questioning assumptions, and evaluating arguments. Practice critical analysis by analyzing thoughtfully, identifying biases, and considering alternative perspectives.
  • Master Research Methodologies: Familiarize yourself with different research methodologies relevant to your field. Whether it’s qualitative, quantitative, or mixed methods research, realizing the strengths and limitations of each approach is crucial.
  • Practice Effective Time Management: Research requires dedicated time and effort. Develop good time management skills to ensure that you allocate sufficient time for each stage of the research process, including planning, data collection, analysis, and writing.
  • Embrace Collaboration: Collaborating with peers and colleagues can provide a fresh perspective and enrich your research experience. Engage in discussions, share ideas, and seek feedback from others. Collaborative projects allow for exchanging knowledge and skills.
  • Continuously Update Your Knowledge: Stay informed about your field’s latest developments and advancements. Regularly read scholarly articles, attend conferences, and follow reputable sources of information to stay up to date with current research trends.

There is plenty of information available on the internet about every topic; hence, learning skills to know which information is relevant and credible is very important. Today most search engines have the feature of advanced search, and you can customize the search as per your preference. Once you learn this skill, it will help you find information. 

Experts possess a wealth of knowledge, experience, and insights that can significantly enhance your understanding and abilities in conducting research. Experts have often encountered numerous challenges and hurdles throughout their research journey and have developed effective problem-solving techniques. Engaging with experts is a highly effective approach to improving research skills.

Moreover, experts can provide valuable feedback and constructive criticism on your research work. They can offer fresh perspectives, identify areas for improvement, and help you refine your research questions, methodology, and analysis.

At QuestionPro, we can help you with the necessary tools to carry out your projects, and we have created the following free resources to help you in your professional growth:

  • Survey Templates

Research skills are invaluable assets that empower individuals to navigate the ever-expanding realm of information, make informed decisions, and contribute to advancing knowledge. With advanced research tools and technologies like QuestionPro Survey Software, researchers have potent resources to conduct comprehensive surveys, gather data, and analyze results efficiently.

Where data-driven decision-making is crucial, research skills supported by advanced tools like QuestionPro are essential for researchers to stay ahead and make impactful contributions to their fields. By embracing these research skills and leveraging the capabilities of powerful survey software, researchers can unlock new possibilities, gain deeper insights, and pave the way for meaningful discoveries.

Authors : Gargi Ghamandi & Sandeep Kokane

LEARN MORE         FREE TRIAL

MORE LIKE THIS

Data Analyst

What Does a Data Analyst Do? Skills, Tools & Tips

Sep 9, 2024

Gallup Access alternatives

Best Gallup Access Alternatives & Competitors in 2024

Sep 6, 2024

Experimental vs Observational Studies: Differences & Examples

Experimental vs Observational Studies: Differences & Examples

Sep 5, 2024

Interactive forms

Interactive Forms: Key Features, Benefits, Uses + Design Tips

Sep 4, 2024

Other categories

  • Academic Research
  • Artificial Intelligence
  • Assessments
  • Brand Awareness
  • Case Studies
  • Communities
  • Consumer Insights
  • Customer effort score
  • Customer Engagement
  • Customer Experience
  • Customer Loyalty
  • Customer Research
  • Customer Satisfaction
  • Employee Benefits
  • Employee Engagement
  • Employee Retention
  • Friday Five
  • General Data Protection Regulation
  • Insights Hub
  • Life@QuestionPro
  • Market Research
  • Mobile diaries
  • Mobile Surveys
  • New Features
  • Online Communities
  • Question Types
  • Questionnaire
  • QuestionPro Products
  • Release Notes
  • Research Tools and Apps
  • Revenue at Risk
  • Training Tips
  • Tuesday CX Thoughts (TCXT)
  • Uncategorized
  • What’s Coming Up
  • Workforce Intelligence

Explore Jobs

  • Jobs Near Me
  • Remote Jobs
  • Full Time Jobs
  • Part Time Jobs
  • Entry Level Jobs
  • Work From Home Jobs

Find Specific Jobs

  • $15 Per Hour Jobs
  • $20 Per Hour Jobs
  • Hiring Immediately Jobs
  • High School Jobs
  • H1b Visa Jobs

Explore Careers

  • Business And Financial
  • Architecture And Engineering
  • Computer And Mathematical

Explore Professions

  • What They Do
  • Certifications
  • Demographics

Best Companies

  • Health Care
  • Fortune 500

Explore Companies

  • CEO And Executies
  • Resume Builder
  • Career Advice
  • Explore Majors
  • Questions And Answers
  • Interview Questions

The Most Important Research Skills (With Examples)

  • What Are Hard Skills?
  • What Are Technical Skills?
  • What Are What Are Life Skills?
  • What Are Social Media Skills Resume?
  • What Are Administrative Skills?
  • What Are Analytical Skills?
  • What Are Research Skills?
  • What Are Transferable Skills?
  • What Are Microsoft Office Skills?
  • What Are Clerical Skills?
  • What Are Computer Skills?
  • What Are Core Competencies?
  • What Are Collaboration Skills?
  • What Are Conflict Resolution Skills?
  • What Are Mathematical Skills?
  • How To Delegate

Find a Job You Really Want In

Research skills are the ability to find out accurate information on a topic. They include being able to determine the data you need, find and interpret those findings, and then explain that to others. Being able to do effective research is a beneficial skill in any profession, as data and research inform how businesses operate. Whether you’re unsure of your research skills or are looking for ways to further improve them, then this article will cover important research skills and how to become even better at research. Key Takeaways Having strong research skills can help you understand your competitors, develop new processes, and build your professional skills in addition to aiding you in finding new customers and saving your company money. Some of the most valuable research skills you can have include goal setting, data collection, and analyzing information from multiple sources. You can and should put your research skills on your resume and highlight them in your job interviews. In This Article    Skip to section What are research skills? Why are research skills important? 12 of the most important research skills How to improve your research skills Highlighting your research skills in a job interview How to include research skills on your resume Resume examples showcasing research skills Research skills FAQs References Sign Up For More Advice and Jobs Show More What are research skills?

Research skills are the necessary tools to be able to find, compile, and interpret information in order to answer a question. Of course, there are several aspects to this. Researchers typically have to decide how to go about researching a problem — which for most people is internet research.

In addition, you need to be able to interpret the reliability of a source, put the information you find together in an organized and logical way, and be able to present your findings to others. That means that they’re comprised of both hard skills — knowing your subject and what’s true and what isn’t — and soft skills. You need to be able to interpret sources and communicate clearly.

Why are research skills important?

Research skills are useful in any industry, and have applications in innovation, product development, competitor research, and many other areas. In addition, the skills used in researching aren’t only useful for research. Being able to interpret information is a necessary skill, as is being able to clearly explain your reasoning.

Research skills are used to:

Do competitor research. Knowing what your biggest competitors are up to is an essential part of any business. Researching what works for your competitors, what they’re doing better than you, and where you can improve your standing with the lowest resource expenditure are all essential if a company wants to remain functional.

Develop new processes and products. You don’t have to be involved in research and development to make improvements in how your team gets things done. Researching new processes that make your job (and those of your team) more efficient will be valued by any sensible employer.

Foster self-improvement. Folks who have a knack and passion for research are never content with doing things the same way they’ve always been done. Organizations need independent thinkers who will seek out their own answers and improve their skills as a matter of course. These employees will also pick up new technologies more easily.

Manage customer relationships. Being able to conduct research on your customer base is positively vital in virtually every industry. It’s hard to move products or sell services if you don’t know what people are interested in. Researching your customer base’s interests, needs, and pain points is a valuable responsibility.

Save money. Whether your company is launching a new product or just looking for ways to scale back its current spending, research is crucial for finding wasted resources and redirecting them to more deserving ends. Anyone who proactively researches ways that the company can save money will be highly appreciated by their employer.

Solve problems. Problem solving is a major part of a lot of careers, and research skills are instrumental in making sure your solution is effective. Finding out the cause of the problem and determining an effective solution both require accurate information, and research is the best way to obtain that — be it via the internet or by observation.

Determine reliable information. Being able to tell whether or not the information you receive seems accurate is a very valuable skill. While research skills won’t always guarantee that you’ll be able to tell the reliability of the information at first glance, it’ll prevent you from being too trusting. And it’ll give the tools to double-check .

12 of the most important research skills

Experienced researchers know that worthwhile investigation involves a variety of skills. Consider which research skills come naturally to you, and which you could work on more.

Data collection . When thinking about the research process, data collection is often the first thing that comes to mind. It is the nuts and bolts of research. How data is collected can be flexible.

For some purposes, simply gathering facts and information on the internet can fulfill your need. Others may require more direct and crowd-sourced research. Having experience in various methods of data collection can make your resume more impressive to recruiters.

Data collection methods include: Observation Interviews Questionnaires Experimentation Conducting focus groups

Analysis of information from different sources. Putting all your eggs in one source basket usually results in error and disappointment. One of the skills that good researchers always incorporate into their process is an abundance of sources. It’s also best practice to consider the reliability of these sources.

Are you reading about U.S. history on a conspiracy theorist’s blog post? Taking facts for a presentation from an anonymous Twitter account?

If you can’t determine the validity of the sources you’re using, it can compromise all of your research. That doesn’t mean just disregard anything on the internet but double-check your findings. In fact, quadruple-check. You can make your research even stronger by turning to references outside of the internet.

Examples of reliable information sources include: Published books Encyclopedias Magazines Databases Scholarly journals Newspapers Library catalogs

Finding information on the internet. While it can be beneficial to consulate alternative sources, strong internet research skills drive modern-day research.

One of the great things about the internet is how much information it contains, however, this comes with digging through a lot of garbage to get to the facts you need. The ability to efficiently use the vast database of knowledge that is on the internet without getting lost in the junk is very valuable to employers.

Internet research skills include: Source checking Searching relevant questions Exploring deeper than the first options Avoiding distraction Giving credit Organizing findings

Interviewing. Some research endeavors may require a more hands-on approach than just consulting internet sources. Being prepared with strong interviewing skills can be very helpful in the research process.

Interviews can be a useful research tactic to gain first-hand information and being able to manage a successful interview can greatly improve your research skills.

Interviewing skills involves: A plan of action Specific, pointed questions Respectfulness Considering the interview setting Actively Listening Taking notes Gratitude for participation

Report writing. Possessing skills in report writing can assist you in job and scholarly research. The overall purpose of a report in any context is to convey particular information to its audience.

Effective report writing is largely dependent on communication. Your boss, professor , or general reader should walk away completely understanding your findings and conclusions.

Report writing skills involve: Proper format Including a summary Focusing on your initial goal Creating an outline Proofreading Directness

Critical thinking. Critical thinking skills can aid you greatly throughout the research process, and as an employee in general. Critical thinking refers to your data analysis skills. When you’re in the throes of research, you need to be able to analyze your results and make logical decisions about your findings.

Critical thinking skills involve: Observation Analysis Assessing issues Problem-solving Creativity Communication

Planning and scheduling. Research is a work project like any other, and that means it requires a little forethought before starting. Creating a detailed outline map for the points you want to touch on in your research produces more organized results.

It also makes it much easier to manage your time. Planning and scheduling skills are important to employers because they indicate a prepared employee.

Planning and scheduling skills include: Setting objectives Identifying tasks Prioritizing Delegating if needed Vision Communication Clarity Time-management

Note-taking. Research involves sifting through and taking in lots of information. Taking exhaustive notes ensures that you will not neglect any findings later and allows you to communicate these results to your co-workers. Being able to take good notes helps summarize research.

Examples of note-taking skills include: Focus Organization Using short-hand Keeping your objective in mind Neatness Highlighting important points Reviewing notes afterward

Communication skills. Effective research requires being able to understand and process the information you receive, either written or spoken. That means that you need strong reading comprehension and writing skills — two major aspects of communication — as well as excellent listening skills.

Most research also involves showcasing your findings. This can be via a presentation. , report, chart, or Q&A. Whatever the case, you need to be able to communicate your findings in a way that educates your audience.

Communication skills include: Reading comprehension Writing Listening skills Presenting to an audience Creating graphs or charts Explaining in layman’s terms

Time management. We’re, unfortunately, only given 24 measly hours in a day. The ability to effectively manage this time is extremely powerful in a professional context. Hiring managers seek candidates who can accomplish goals in a given timeframe.

Strong time management skills mean that you can organize a plan for how to break down larger tasks in a project and complete them by a deadline. Developing your time management skills can greatly improve the productivity of your research.

Time management skills include: Scheduling Creating task outlines Strategic thinking Stress-management Delegation Communication Utilizing resources Setting realistic expectations Meeting deadlines

Using your network. While this doesn’t seem immediately relevant to research skills, remember that there are a lot of experts out there. Knowing what people’s areas of expertise and asking for help can be tremendously beneficial — especially if it’s a subject you’re unfamiliar with.

Your coworkers are going to have different areas of expertise than you do, and your network of people will as well. You may even know someone who knows someone who’s knowledgeable in the area you’re researching. Most people are happy to share their expertise, as it’s usually also an area of interest to them.

Networking involves: Remembering people’s areas of expertise Being willing to ask for help Communication Returning favors Making use of advice Asking for specific assistance

Attention to detail. Research is inherently precise. That means that you need to be attentive to the details, both in terms of the information you’re gathering, but also in where you got it from. Making errors in statistics can have a major impact on the interpretation of the data, not to mention that it’ll reflect poorly on you.

There are proper procedures for citing sources that you should follow. That means that your sources will be properly credited, preventing accusations of plagiarism. In addition, it means that others can make use of your research by returning to the original sources.

Attention to detail includes: Double checking statistics Taking notes Keeping track of your sources Staying organized Making sure graphs are accurate and representative Properly citing sources

How to improve your research skills

As with many professional skills, research skills serve us in our day to day life. Any time you search for information on the internet, you’re doing research. That means that you’re practicing it outside of work as well. If you want to continue improving your research skills, both for professional and personal use, here are some tips to try.

Differentiate between source quality. A researcher is only as good as their worst source. Start paying attention to the quality of the sources you use, and be suspicious of everything your read until you check out the attributions and works cited.

Be critical and ask yourself about the author’s bias, where the author’s research aligns with the larger body of verified research in the field, and what publication sponsored or published the research.

Use multiple resources. When you can verify information from a multitude of sources, it becomes more and more credible. To bolster your faith in one source, see if you can find another source that agrees with it.

Don’t fall victim to confirmation bias. Confirmation bias is when a researcher expects a certain outcome and then goes to find data that supports this hypothesis. It can even go so far as disregarding anything that challenges the researcher’s initial hunch. Be prepared for surprising answers and keep an open mind.

Be open to the idea that you might not find a definitive answer. It’s best to be honest and say that you found no definitive answer instead of just confirming what you think your boss or coworkers expect or want to hear. Experts and good researchers are willing to say that they don’t know.

Stay organized. Being able to cite sources accurately and present all your findings is just as important as conducting the research itself. Start practicing good organizational skills , both on your devices and for any physical products you’re using.

Get specific as you go. There’s nothing wrong with starting your research in a general way. After all, it’s important to become familiar with the terminology and basic gist of the researcher’s findings before you dig down into all the minutia.

Highlighting your research skills in a job interview

A job interview is itself a test of your research skills. You can expect questions on what you know about the company, the role, and your field or industry more generally. In order to give expert answers on all these topics, research is crucial.

Start by researching the company . Look into how they communicate with the public through social media, what their mission statement is, and how they describe their culture.

Pay close attention to the tone of their website. Is it hyper professional or more casual and fun-loving? All of these elements will help decide how best to sell yourself at the interview.

Next, research the role. Go beyond the job description and reach out to current employees working at your desired company and in your potential department. If you can find out what specific problems your future team is or will be facing, you’re sure to impress hiring managers and recruiters with your ability to research all the facts.

Finally, take time to research the job responsibilities you’re not as comfortable with. If you’re applying for a job that represents increased difficulty or entirely new tasks, it helps to come into the interview with at least a basic knowledge of what you’ll need to learn.

How to include research skills on your resume

Research projects require dedication. Being committed is a valuable skill for hiring managers. Whether you’ve had research experience throughout education or a former job, including it properly can boost the success of your resume .

Consider how extensive your research background is. If you’ve worked on multiple, in-depth research projects, it might be best to include it as its own section. If you have less research experience, include it in the skills section .

Focus on your specific role in the research, as opposed to just the research itself. Try to quantify accomplishments to the best of your abilities. If you were put in charge of competitor research, for example, list that as one of the tasks you had in your career.

If it was a particular project, such as tracking the sale of women’s clothing at a tee-shirt company, you can say that you “directed analysis into women’s clothing sales statistics for a market research project.”

Ascertain how directly research skills relate to the job you’re applying for. How strongly you highlight your research skills should depend on the nature of the job the resume is for. If research looks to be a strong component of it, then showcase all of your experience.

If research looks to be tangential, then be sure to mention it — it’s a valuable skill — but don’t put it front and center.

Resume examples showcasing research skills

Example #1: Academic Research

Simon Marks 767 Brighton Blvd. | Brooklyn, NY, 27368 | (683)-262-8883 | [email protected] Diligent and hardworking recent graduate seeking a position to develop professional experience and utilize research skills. B.A. in Biological Sciences from New York University. PROFESSIONAL EXPERIENCE Lixus Publishing , Brooklyn, NY Office Assistant- September 2018-present Scheduling and updating meetings Managing emails and phone calls Reading entries Worked on a science fiction campaign by researching target demographic Organizing calendars Promoted to office assistant after one year internship Mitch’s Burgers and Fries , Brooklyn, NY Restaurant Manager , June 2014-June 2018 Managed a team of five employees Responsible for coordinating the weekly schedule Hired and trained two employees Kept track of inventory Dealt with vendors Provided customer service Promoted to restaurant manager after two years as a waiter Awarded a $2.00/hr wage increase SKILLS Writing Scientific Research Data analysis Critical thinking Planning Communication RESEARCH Worked on an ecosystem biology project with responsibilities for algae collection and research (2019) Lead a group of freshmen in a research project looking into cell biology (2018) EDUCATION New York University Bachelors in Biological Sciences, September 2016-May 2020

Example #2: Professional Research

Angela Nichols 1111 Keller Dr. | San Francisco, CA | (663)-124-8827 |[email protected] Experienced and enthusiastic marketer with 7 years of professional experience. Seeking a position to apply my marketing and research knowledge. Skills in working on a team and flexibility. EXPERIENCE Apples amp; Oranges Marketing, San Francisco, CA Associate Marketer – April 2017-May 2020 Discuss marketing goals with clients Provide customer service Lead campaigns associated with women’s health Coordinating with a marketing team Quickly solving issues in service and managing conflict Awarded with two raises totaling $10,000 over three years Prestigious Marketing Company, San Francisco, CA Marketer – May 2014-April 2017 Working directly with clients Conducting market research into television streaming preferences Developing marketing campaigns related to television streaming services Report writing Analyzing campaign success statistics Promoted to Marketer from Junior Marketer after the first year Timberlake Public Relations, San Francisco, CA Public Relations Intern – September 2013–May 2014 Working cohesively with a large group of co-workers and supervisors Note-taking during meetings Running errands Managing email accounts Assisting in brainstorming Meeting work deadlines EDUCATION Golden Gate University, San Francisco, CA Bachelor of Arts in Marketing with a minor in Communications – September 2009 – May 2013 SKILLS Marketing Market research Record-keeping Teamwork Presentation. Flexibility

Research skills FAQs

What research skills are important?

Goal-setting and data collection are important research skills. Additional important research skills include:

Using different sources to analyze information.

Finding information on the internet.

Interviewing sources.

Writing reports.

Critical thinking.

Planning and scheduling.

Note-taking.

Managing time.

How do you develop good research skills?

You develop good research skills by learning how to find information from multiple high-quality sources, by being wary of confirmation bias, and by starting broad and getting more specific as you go.

When you learn how to tell a reliable source from an unreliable one and get in the habit of finding multiple sources that back up a claim, you’ll have better quality research.

In addition, when you learn how to keep an open mind about what you’ll find, you’ll avoid falling into the trap of confirmation bias, and by staying organized and narrowing your focus as you go (rather than before you start), you’ll be able to gather quality information more efficiently.

What is the importance of research?

The importance of research is that it informs most decisions and strategies in a business. Whether it’s deciding which products to offer or creating a marketing strategy, research should be used in every part of a company.

Because of this, employers want employees who have strong research skills. They know that you’ll be able to put them to work bettering yourself and the organization as a whole.

Should you put research skills on your resume?

Yes, you should include research skills on your resume as they are an important professional skill. Where you include your research skills on your resume will depend on whether you have a lot of experience in research from a previous job or as part of getting your degree, or if you’ve just cultivated them on your own.

If your research skills are based on experience, you could put them down under the tasks you were expected to perform at the job in question. If not, then you should likely list it in your skills section.

University of the People – The Best Research Skills for Success

Association of Internet Research Specialists — What are Research Skills and Why Are They Important?

MasterClass — How to Improve Your Research Skills: 6 Research Tips

How useful was this post?

Click on a star to rate it!

Average rating / 5. Vote count:

No votes so far! Be the first to rate this post.

' src=

Sky Ariella is a professional freelance writer, originally from New York. She has been featured on websites and online magazines covering topics in career, travel, and lifestyle. She received her BA in psychology from Hunter College.

Responsive Image

Related posts

research skills advantages

71 Technical Skills For Your Resume (And What Are Technical Skills?)

teamwork interview questions

12 Qualities Of An Effective Team Player (With Examples)

research skills advantages

Administrative Job Duties (With Examples)

research skills advantages

50 Jobs That Use Payroll The Most

  • Career Advice >
  • Hard Skills >
  • Research Skills

10 Research Skills and How To Develop Them

research skills

  • Updated December 25, 2023
  • Published August 8, 2023

Are you looking to learn more about Research skills? In this article, we discuss Research skills in more detail and give you tips about how you can develop and improve them.

What are Research skills?

Research skills refer to the ability to effectively and efficiently gather, analyze, and synthesize information to answer questions, solve problems, or contribute to a body of knowledge. These skills are essential for various fields and disciplines, ranging from academic and scientific research to business, journalism, and beyond. Effective research skills involve several key components:

Information Retrieval

Source evaluation.

  • Critical Thinking

Data Analysis

Problem formulation, organization and note-taking, synthesis and writing, ethical considerations, time management.

  • Adaptability

Top 10 Research Skills

Below we discuss the top 10 Research skills. Each skill is discussed in more detail, and we will also give you tips on improving them.

Information Retrieval is all about mastering the art of finding relevant and credible sources of information to support your research goals. This skill involves using various online and offline tools to locate the data, articles, studies, and materials that are most pertinent to your research topic. It’s like being a detective for knowledge – you’re trying to uncover valuable insights that will contribute to your research project.

To excel in Information Retrieval, you must become adept at effectively using search engines, databases, libraries, and other resources. It’s not just about typing keywords into a search bar; it’s about understanding how to refine your searches, use advanced search operators, and explore different databases and sources.

You’ll need to evaluate the quality and reliability of sources to ensure that the information you gather is trustworthy and accurate. This skill also requires critical thinking, as you’ll need to assess the relevance of sources to your research objectives.

How to Improve Information Retrieval

Improving your Information Retrieval skills involves a combination of practice, strategy, and awareness. Start by familiarizing yourself with different research databases and libraries relevant to your field. Experiment with various search terms and use advanced search operators to narrow down results. Take the time to evaluate the credibility of sources – look for peer-reviewed articles, authoritative authors, and reliable institutions. Keep track of your searches and results to refine your strategies over time.

Stay updated with the latest developments in search technology and research databases to optimize your information retrieval process. Remember, the more you practice and fine-tune your approach, the better you’ll become at uncovering valuable gems of information for your research endeavors.

Source Evaluation is about becoming a discerning judge of the information you encounter during your research journey. It involves assessing the credibility, reliability, and relevance of the sources you come across, ensuring that you’re building your work on a foundation of trustworthy and accurate information. Think of yourself as a gatekeeper, using only the most reliable and relevant sources to support your research.

You need to develop a critical eye to enhance your Source Evaluation skills. Begin by examining the authorship – who wrote the source, and what are their credentials? Peer-reviewed articles from established researchers are more reliable than anonymous blog posts. Consider the publication source – is it a reputable journal or website in your field?

Next, look for citations and references within the source – a well-researched work will often cite other credible sources. Additionally, evaluate the publication date – while older sources can provide historical context, ensure you’re using recent information for up-to-date insights.

How to Improve Source Evaluation

Improving your Source Evaluation skills requires a combination of awareness and practice. As you encounter new sources, ask questions about their credibility and relevance. Do evidence and references support the information? Does the author have any potential biases? Take advantage of critical thinking to analyze the source’s overall quality.

To further refine your skills, seek guidance from mentors, professors, or librarians who can provide valuable insights into evaluating sources. The more you engage with this skill, the better you’ll become at building a solid foundation for your research with credible and reliable materials.

Critical Thinking is the intellectual toolset that empowers you to analyze information objectively, discern patterns, and draw well-informed conclusions based on evidence. It’s like being a detective for ideas – you sift through data, identify biases, and unravel complexities to make informed judgments that drive your research forward with clarity and precision.

To hone your Critical Thinking skills, you need to cultivate a curious and analytical mindset. Start by questioning assumptions and biases in both your own thinking and the information you encounter.

When evaluating sources, consider multiple viewpoints and sources of evidence before forming conclusions. Develop the ability to identify logical fallacies or weak arguments that may distort the validity of your findings. Embrace open-mindedness and be willing to adapt your ideas when faced with compelling evidence that challenges your initial perspective.

How to Improve Critical Thinking

Improving your Critical Thinking skills requires practice and deliberate effort. Engage in discussions and debates within your field and beyond to expose yourself to diverse perspectives and sharpen your ability to analyze complex issues. Regularly challenge yourself to critically evaluate information, whether it’s a news article, a research paper, or a colleague’s argument.

Seek feedback from mentors or peers to refine your critical thinking process and identify areas for improvement. Remember, Critical Thinking is an ongoing journey that can be developed over time – the more you engage with it, the more adept you’ll become at navigating the intricate landscape of ideas in your research endeavors.

Related :  Critical Thinking Interview Questions & Answers

Data Analysis is the art of processing, interpreting, and extracting meaningful insights from the raw information you’ve collected during your research journey. Think of it as deciphering a puzzle – you’re transforming numbers, observations, or qualitative data into a coherent narrative that answers your research questions and adds value to your work.

To excel in Data Analysis, you need to develop both quantitative and qualitative skills. For quantitative data, embrace statistical tools and techniques that help you identify trends, correlations, and patterns in your data sets. Practice using software like Excel, SPSS, or specialized tools for your field to perform statistical tests and visualize results effectively. For qualitative data, immerse yourself in the details, coding and categorizing themes to distill rich insights from textual or visual sources.

How to Improve Data Analysis

Improving your Data Analysis skills involves a combination of practice, learning, and refining your techniques. Start by immersing yourself in the basics of statistics and data analysis methodologies relevant to your research field. Engage in tutorials and online courses to familiarize yourself with various tools and software. As you analyze data, maintain clear documentation of your process and decisions, which will be crucial when presenting your findings.

Collaborate with peers or mentors who are experienced in data analysis to gain insights and feedback on your techniques. Remember, Data Analysis is about transforming data into knowledge – the more you engage with this skill, the better you’ll become at uncovering valuable insights that contribute to the depth and impact of your research.

Related :  Research Interview Questions & Answers

Problem Formulation is like setting the compass for your research journey – it involves defining clear and focused research questions or hypotheses that guide your entire investigation. Consider it the foundation of your work, as it shapes your approach, methods, and the ultimate impact of your research.

To master Problem Formulation, you need to become skilled in asking the right questions. Begin by thoroughly understanding the topic you’re exploring. What gaps or uncertainties do you notice in the existing knowledge? What specific aspect of the topic piques your interest? Craft research questions that are specific, measurable, achievable, relevant, and time-bound (SMART).

If you’re developing hypotheses, ensure they are testable and grounded in existing theories or observations. Your skills in Problem Formulation also extend to identifying the scope and boundaries of your research – understanding what you’re including and excluding from your study.

How to Improve Problem Formulation

Improving your Problem Formulation skills requires practice and iterative refinement. Start by conducting a comprehensive literature review to understand the existing research landscape in your area. This will help you identify potential gaps and formulate questions that build upon existing knowledge.

Discuss with peers, mentors, or experts in your field to gain different perspectives and insights into potential research problems. As you develop your skills, be open to revising and refining your research questions based on new information or insights. Remember, Problem Formulation is the compass that guides your research journey – the more you invest in crafting clear and well-defined questions, the more impactful and focused your research will be.

Related :  10 Fact Finding Skills and How to Develop Them

Imagine these skills as your research toolkit for maintaining order amidst the vast sea of information you encounter. Organization involves structuring and managing your research materials, while Note-Taking ensures you capture valuable insights and details for future reference. Together, they help you stay on track and prevent valuable information from slipping through the cracks.

To excel in Organization and Note-Taking, you need to develop strategies that work best for you. Start by creating a systematic folder structure on your computer to store digital documents, articles, and data sets. For physical materials, consider using labeled folders or binders. As you gather information, employ tools like reference management software to keep track of your sources and generate citations efficiently.

Simultaneously, practice effective Note-Taking during your readings and research. Jot down key points, ideas, and relevant quotes in a structured format, whether you’re using a physical notebook or a digital note-taking app.

How to Improve Organization and Note-Taking

Improving your Organization and Note-Taking skills requires a mix of discipline and adaptability. Establish consistent routines for organizing research materials, updating folders, and managing citations. Regularly review and reorganize your notes to keep them relevant and accessible. Experiment with different note-taking techniques, such as outlining, summarizing, or mind mapping, to find the approach that aligns with your learning style.

Remember, Organization and Note-Taking are your allies in navigating the sea of information – the more you refine these skills, the smoother your research journey will become and the more confident you’ll be in tackling complex topics.

Synthesis and Writing are your means of weaving together the threads of information and insights you’ve collected into a coherent and impactful narrative. Think of it as crafting a masterpiece from the puzzle pieces of your research – you’re presenting your findings, analysis, and conclusions in a way that informs and engages your audience.

To excel in Synthesis and Writing, you must become a data and idea storyteller. Begin by outlining your research paper or report. Organize your findings logically, building a structured framework that guides your reader through your research journey. Ensure each section flows smoothly, connecting the dots between concepts and evidence. While writing, focus on clarity and conciseness – avoid jargon and convoluted language that may confuse your readers. Use effective transitions to guide them from one point to the next.

How to Improve Synthesis and Writing

Improving your Synthesis and Writing skills requires both practice and revision. Start by breaking down the writing process into manageable steps – drafting, revising, and editing. Give yourself time between drafting and revising to approach your work with fresh eyes. Critically evaluate your writing for clarity, coherence, and accuracy during revision.

Consider seeking feedback from peers, mentors, or writing centers to gain insights into improving your writing style. Study well-written papers in your field to observe how experienced researchers present their ideas effectively. Remember, Synthesis and Writing are your tools for communicating your research’s impact – the more you refine these skills, the more effectively you’ll share your discoveries and contribute to the body of knowledge in your field.

Ethical Considerations encompass the principles and guidelines that ensure your research is conducted with integrity, respect for participants’ rights, and a commitment to transparency. Think of it as the moral compass that guides your research journey, ensuring that your work upholds ethical standards and contributes positively to society.

To excel in Ethical Considerations, you need to become a guardian of ethical integrity in your research. Begin by understanding the ethical guidelines and regulations specific to your field and your research type. This involves respecting participants’ autonomy by obtaining informed consent, protecting their privacy and confidentiality, and ensuring they’re treated with dignity. Additionally, uphold intellectual honesty by properly attributing sources, avoiding plagiarism, and disclosing any potential conflicts of interest.

How to Improve Ethical Considerations

Improving your Ethical Considerations skills involves a combination of awareness and vigilance. Regularly educate yourself on the ethical codes and regulations relevant to your field and research methods. When designing your research, carefully plan how you will address ethical concerns and potential risks.

As you conduct your research, stay attuned to any ethical dilemmas that may arise and be prepared to address them appropriately. Remember, Ethical Considerations are at the heart of responsible research – the more you cultivate these skills, the more your work will contribute positively to both your field and society as a whole.

Related :  Climate Change Analyst Interview Questions & Answers

Time Management involves the art of effectively allocating your time to different research tasks, ensuring that you meet deadlines, stay on track, and maintain a balanced workflow. Think of it as your compass for navigating the often-intricate landscape of research – it helps you stay organized, productive, and in control of your research journey.

To excel in Time Management, you need to become a master of planning and prioritization. Start by breaking down your research project into manageable tasks and setting realistic goals for each stage. Create a schedule that allocates research, data collection, analysis, writing, and revision time. Be mindful of your energy levels – tackle complex tasks during your most productive hours. Embrace tools like to-do lists, calendars, and time-tracking apps to keep yourself accountable and stay aware of your progress.

How to Improve Time Management

Improving your Time Management skills requires consistent practice and self-awareness. Continuously assess your progress against your planned schedule, adjusting as needed to accommodate unexpected challenges or new insights. Develop the skill of saying no to distractions and non-essential tasks that can derail your focus.

Break larger tasks into smaller, more manageable chunks to prevent feeling overwhelmed. Regularly reflect on your time allocation and efficiency – what strategies are working well, and where can you improve? Remember, Time Management is a skill that can significantly impact your research journey – the more you refine it, the more you’ll find yourself navigating your work with greater ease and achieving your research goals with greater success.

Related :  10 Coordinating Skills and How to Develop Them

Adaptability is the ability to flex and evolve in response to changing circumstances, unexpected findings, and new information that arise during your research journey. Think of it as your compass for navigating the dynamic and ever-changing landscape of research – it empowers you to embrace uncertainty and adjust your course to ensure the best outcomes for your work.

To excel in Adaptability, you need to cultivate a mindset that embraces change and seeks opportunities within challenges. Start by acknowledging that research is often full of surprises and plans might need to shift. Develop a sense of resilience by staying open to revising your research questions, altering methodologies, or exploring unanticipated angles.

Being adaptable also means being resourceful – finding alternative approaches when things don’t go as planned. Embrace feedback from peers, mentors, or unexpected results, and be ready to integrate this feedback to improve the quality of your research.

How to Improve Adaptability

Improving your Adaptability skills involves practicing flexibility and embracing a growth mindset. Regularly reassess your research plan and objectives in light of new information or developments. Embrace failures and setbacks as opportunities for learning and growth rather than roadblocks. Seek out interdisciplinary perspectives and engage with new ideas that challenge your assumptions.

As you navigate through unexpected turns, continuously reflect on what you’ve learned and how you’ve adapted, so you can refine your approach in the future. Remember, Adaptability is the key to thriving in the dynamic landscape of research – the more you foster this skill, the better equipped you’ll be to tackle unforeseen challenges and emerge stronger from your research journey.

Related :  Research Intern Cover Letter Examples & Writing Guide

Research Skills Conclusion

In the pursuit of knowledge and discovery, honing research skills is the linchpin that sets the stage for success. Throughout this exploration of various research skills and how to nurture them, one thing becomes evident: deliberate practice and continuous improvement are the bedrock of growth. Developing research skills is not merely a checkbox to mark; it’s a journey that empowers you to excel in your field, make meaningful contributions, and amplify the impact of your work.

Improving these skills isn’t just an option – it’s a necessity in today’s job market. The ability to gather information effectively, critically evaluate sources, analyze data, formulate problems, synthesize findings, and more, transforms the research process from a mere task into a dynamic and transformative experience. These skills serve as the pillars that uphold the credibility and validity of your work, ensuring that your contributions stand the test of scrutiny and time.

Related posts:

  • 10 Life Skills Coach Skills and How to Develop Them
  • Research Assistant vs. Research Coordinator – What’s The Difference?
  • 10 Deductive Reasoning Skills and How to Develop Them
  • 10 Fact Finding Skills and How to Develop Them
  • 10 Technical Engineer Skills and How to Develop Them

Rate this article

Your page rank:

research skills advantages

MegaInterview Company Career Coach

Step into the world of Megainterview.com, where our dedicated team of career experts, job interview trainers, and seasoned career coaches collaborates to empower individuals on their professional journeys. With decades of combined experience across diverse HR fields, our team is committed to fostering positive and impactful career development.

You may also be interested in:

70 condolence messages for coworker, 10 nail technician skills and how to develop them, 10 creative writing skills and how to develop them, 10 financial management skills and how to develop them, interview categories.

  • Interview Questions
  • Cover Letter
  • Interview Tips

Megainterview/Contact

  • Career Interview Questions
  • Write For Megainterview!
  • Editorial Policy
  • Privacy Policy / GDPR
  • Terms & Conditions
  • Contact: [email protected]

Sign-up for our newsletter

🤝 We’ll never spam you or sell your data

Popular Topics

  • Accomplishments
  • Career Change
  • Career Goals
  • Communication
  • Conflict Resolution
  • Creative Thinking
  • Cultural Fit
  • Customer Service
  • Entry-Level & No Experience
  • Growth Potential
  • Honesty & Integrity
  • Job Satisfaction
  • Negotiation Skills
  • Performance Based
  • Phone Interview
  • Problem-Solving
  • Questions to Ask the Interviewer
  • Salary & Benefits
  • Situational & Scenario-Based
  • Stress Management
  • Time Management & Prioritization
  • Uncomfortable
  • Work Experience

Popular Articles

  • What Is The Most Challenging Project You Have Worked On?
  • Tell Me About a Time You Had to Deal With a Difficult Customer
  • What Have You Done To Improve Yourself In The Past Year?
  • Interview Question: How Do You Deal With Tight Deadlines?
  • Describe a Time You Demonstrated Leadership
  • Tell Me About a Time When You Took Action to Resolve a Problem
  • Job Interview Questions About Working in Fast-Paced Environments
  • Job Interview: What Areas Need Improvement? (+ Answers)
  • Tell Me About a Time You Were On a Team Project That Failed
  • Tell Me About a Time You Managed an Important Project

Our mission is to

Help you get hired.

Hofplein 20

3032 AC, Rotterdam, the Netherlands

Turn interviews into offers

Every other Tuesday, get our Chief Coach’s best job-seeking and interviewing tips to land your dream job. 5-minute read.

You are using an outdated browser. Please upgrade your browser to improve your experience.

research skills advantages

Health & Nursing

Courses and certificates.

  • Bachelor's Degrees
  • View all Business Bachelor's Degrees
  • Business Management – B.S. Business Administration
  • Healthcare Administration – B.S.
  • Human Resource Management – B.S. Business Administration
  • Information Technology Management – B.S. Business Administration
  • Marketing – B.S. Business Administration
  • Accounting – B.S. Business Administration
  • Finance – B.S.
  • Supply Chain and Operations Management – B.S.
  • Communications – B.S.
  • User Experience Design – B.S.
  • Accelerated Information Technology Bachelor's and Master's Degree (from the School of Technology)
  • Health Information Management – B.S. (from the Leavitt School of Health)
  • View all Business Degrees

Master's Degrees

  • View all Business Master's Degrees
  • Master of Business Administration (MBA)
  • MBA Information Technology Management
  • MBA Healthcare Management
  • Management and Leadership – M.S.
  • Accounting – M.S.
  • Marketing – M.S.
  • Human Resource Management – M.S.
  • Master of Healthcare Administration (from the Leavitt School of Health)
  • Data Analytics – M.S. (from the School of Technology)
  • Information Technology Management – M.S. (from the School of Technology)
  • Education Technology and Instructional Design – M.Ed. (from the School of Education)

Certificates

  • Supply Chain
  • Accounting Fundamentals
  • Digital Marketing and E-Commerce

Bachelor's Preparing For Licensure

  • View all Education Bachelor's Degrees
  • Elementary Education – B.A.
  • Special Education and Elementary Education (Dual Licensure) – B.A.
  • Special Education (Mild-to-Moderate) – B.A.
  • Mathematics Education (Middle Grades) – B.S.
  • Mathematics Education (Secondary)– B.S.
  • Science Education (Middle Grades) – B.S.
  • Science Education (Secondary Chemistry) – B.S.
  • Science Education (Secondary Physics) – B.S.
  • Science Education (Secondary Biological Sciences) – B.S.
  • Science Education (Secondary Earth Science)– B.S.
  • View all Education Degrees

Bachelor of Arts in Education Degrees

  • Educational Studies – B.A.

Master of Science in Education Degrees

  • View all Education Master's Degrees
  • Curriculum and Instruction – M.S.
  • Educational Leadership – M.S.
  • Education Technology and Instructional Design – M.Ed.

Master's Preparing for Licensure

  • Teaching, Elementary Education – M.A.
  • Teaching, English Education (Secondary) – M.A.
  • Teaching, Mathematics Education (Middle Grades) – M.A.
  • Teaching, Mathematics Education (Secondary) – M.A.
  • Teaching, Science Education (Secondary) – M.A.
  • Teaching, Special Education (K-12) – M.A.

Licensure Information

  • State Teaching Licensure Information

Master's Degrees for Teachers

  • Mathematics Education (K-6) – M.A.
  • Mathematics Education (Middle Grade) – M.A.
  • Mathematics Education (Secondary) – M.A.
  • English Language Learning (PreK-12) – M.A.
  • Endorsement Preparation Program, English Language Learning (PreK-12)
  • Science Education (Middle Grades) – M.A.
  • Science Education (Secondary Chemistry) – M.A.
  • Science Education (Secondary Physics) – M.A.
  • Science Education (Secondary Biological Sciences) – M.A.
  • Science Education (Secondary Earth Science)– M.A.
  • View all Technology Bachelor's Degrees
  • Cloud Computing – B.S.
  • Computer Science – B.S.
  • Cybersecurity and Information Assurance – B.S.
  • Data Analytics – B.S.
  • Information Technology – B.S.
  • Network Engineering and Security – B.S.
  • Software Engineering – B.S.
  • Accelerated Information Technology Bachelor's and Master's Degree
  • Information Technology Management – B.S. Business Administration (from the School of Business)
  • User Experience Design – B.S. (from the School of Business)
  • View all Technology Master's Degrees
  • Cybersecurity and Information Assurance – M.S.
  • Data Analytics – M.S.
  • Information Technology Management – M.S.
  • MBA Information Technology Management (from the School of Business)
  • Full Stack Engineering
  • Web Application Deployment and Support
  • Front End Web Development
  • Back End Web Development

3rd Party Certifications

  • IT Certifications Included in WGU Degrees
  • View all Technology Degrees
  • View all Health & Nursing Bachelor's Degrees
  • Nursing (RN-to-BSN online) – B.S.
  • Nursing (Prelicensure) – B.S. (Available in select states)
  • Health Information Management – B.S.
  • Health and Human Services – B.S.
  • Psychology – B.S.
  • Health Science – B.S.
  • Public Health – B.S.
  • Healthcare Administration – B.S. (from the School of Business)
  • View all Nursing Post-Master's Certificates
  • Nursing Education—Post-Master's Certificate
  • Nursing Leadership and Management—Post-Master's Certificate
  • Family Nurse Practitioner—Post-Master's Certificate
  • Psychiatric Mental Health Nurse Practitioner —Post-Master's Certificate
  • View all Health & Nursing Degrees
  • View all Nursing & Health Master's Degrees
  • Nursing – Education (BSN-to-MSN Program) – M.S.
  • Nursing – Leadership and Management (BSN-to-MSN Program) – M.S.
  • Nursing – Nursing Informatics (BSN-to-MSN Program) – M.S.
  • Nursing – Family Nurse Practitioner (BSN-to-MSN Program) – M.S. (Available in select states)
  • Nursing – Psychiatric Mental Health Nurse Practitioner (BSN-to-MSN Program) – M.S. (Available in select states)
  • Nursing – Education (RN-to-MSN Program) – M.S.
  • Nursing – Leadership and Management (RN-to-MSN Program) – M.S.
  • Nursing – Nursing Informatics (RN-to-MSN Program) – M.S.
  • Master of Healthcare Administration
  • Master of Public Health
  • MBA Healthcare Management (from the School of Business)
  • Business Leadership (with the School of Business)
  • Supply Chain (with the School of Business)
  • Accounting Fundamentals (with the School of Business)
  • Digital Marketing and E-Commerce (with the School of Business)
  • Back End Web Development (with the School of Technology)
  • Front End Web Development (with the School of Technology)
  • Web Application Deployment and Support (with the School of Technology)
  • Full Stack Engineering (with the School of Technology)
  • Single Courses
  • Course Bundles

Apply for Admission

Admission requirements.

  • New Students
  • WGU Returning Graduates
  • WGU Readmission
  • Enrollment Checklist
  • Accessibility
  • Accommodation Request
  • School of Education Admission Requirements
  • School of Business Admission Requirements
  • School of Technology Admission Requirements
  • Leavitt School of Health Admission Requirements

Additional Requirements

  • Computer Requirements
  • No Standardized Testing
  • Clinical and Student Teaching Information

Transferring

  • FAQs about Transferring
  • Transfer to WGU
  • Transferrable Certifications
  • Request WGU Transcripts
  • International Transfer Credit
  • Tuition and Fees
  • Financial Aid
  • Scholarships

Other Ways to Pay for School

  • Tuition—School of Business
  • Tuition—School of Education
  • Tuition—School of Technology
  • Tuition—Leavitt School of Health
  • Your Financial Obligations
  • Tuition Comparison
  • Applying for Financial Aid
  • State Grants
  • Consumer Information Guide
  • Responsible Borrowing Initiative
  • Higher Education Relief Fund

FAFSA Support

  • Net Price Calculator
  • FAFSA Simplification
  • See All Scholarships
  • Military Scholarships
  • State Scholarships
  • Scholarship FAQs

Payment Options

  • Payment Plans
  • Corporate Reimbursement
  • Current Student Hardship Assistance
  • Military Tuition Assistance

WGU Experience

  • How You'll Learn
  • Scheduling/Assessments
  • Accreditation
  • Student Support/Faculty
  • Military Students
  • Part-Time Options
  • Virtual Military Education Resource Center
  • Student Outcomes
  • Return on Investment
  • Students and Gradutes
  • Career Growth
  • Student Resources
  • Communities
  • Testimonials
  • Career Guides
  • Skills Guides
  • Online Degrees
  • All Degrees
  • Explore Your Options

Admissions & Transfers

  • Admissions Overview

Tuition & Financial Aid

Student Success

  • Prospective Students
  • Current Students
  • Military and Veterans
  • Commencement
  • Careers at WGU
  • Advancement & Giving
  • Partnering with WGU

WESTERN GOVERNORS UNIVERSITY

Developing your research skills, research skills.

Research skills contribute to informed decision-making, improve problem-solving, and increase efficiency. They enable organizations to assess performance, identify areas for growth, and stay competitive in the market.

Individuals with strong research skills are seen as ready to gather new information and share it with others, which makes them valuable assets to colleagues and stakeholders. Developing your research skills can help you open opportunities for career advancement and even tackle complex personal problems.

In this guide, we’ll explore research skills, their benefits, and how you can apply them across different industries.

research skills advantages

What Are Research Skills?

Research skills are abilities you use to gather, review, and analyze information from various sources to answer a question or find a solution. They involve the capacity to locate, retrieve, and evaluate information from diverse sources, such as books, journals, publications, and databases, and more. 

Research skills are important across various industries because they allow you to conduct investigations, contribute to existing knowledge, and make informed decisions based on evidence.

Why Are Research Skills Important?

Research skills enable you and your organization to make decisions based on evidence rather than opinions or assumptions. Here are essential reasons why research skills matter in the workplace:

  • Informed decision-making: Research skills involve analyzing relevant information to identify trends, evaluate different options, and weigh the pros and cons before choosing a course of action. By correctly analyzing information, you will be able to minimize risks, leverage opportunities, and make effective decisions.
  • Quality assurance and improvement: When developing, maintaining, and improving the quality of products and services, research skills enable you to identify areas for improvement, gather customer feedback, and compare against industry best practices. You can help to enhance product quality and increase customer satisfaction.
  • Customer insights and market understanding: Through extensive market research, you can understand your target audience, identify market trends, and assess the competitive landscape. This knowledge can help your organization develop effective marketing strategies and stay ahead of the competition.
  • Thought leadership and expertise: Through continuous research, you can stay up to date with the latest advancements and emerging industry trends. This depth of knowledge positions you as a subject matter expert and thought leaders who can contribute to industry discussions and forums.

What Are the Benefits of Having Research Skills?

You can grow and excel in your professional journey by developing your research skills. Here are some of the long-term benefits of research skills:

  • Enhanced academic performance: You can conduct effective research, critically evaluate information, and excel in academic assignments, projects, and research papers. Enhanced academic performance can lead to scholarships, academic recognition, and more opportunities for further education and career advancement.
  • Increased credibility: By presenting well-supported arguments demonstrating expertise in your industry, you’ll cultivate trust and confidence in colleagues, clients, and stakeholders. These Colleagues will position you as a knowledgeable and reliable resource, which can open doors to leadership roles, consulting opportunities, and increased professional visibility.
  • Changing perspectives: You’ll explore diverse viewpoints, challenge assumptions, and analyze different sources of information. This exposure allows you to consider alternative solutions and approach problems from multiple angles. Flexibility in thinking expands your creativity and innovation, making you well-equipped to thrive in dynamic work environments and seize new career opportunities.
  • Problem-solving: Through gathering and analyzing data, identifying patterns, and drawing evidence-based conclusions, you’ll be able to develop well-informed solutions to various problems. Strong problem-solving skills can position you as a valuable asset in the workplace and increase your potential for career growth.

Examples of Research Skills in the Workplace

Research skills are essential for making informed decisions, driving innovation, and achieving successful outcomes across various industries.

Here are some of the practical ways you can use research skills in the workplace.

Information Gathering

You can utilize online databases, search engines, library resources, and specialized tools to find relevant and reliable information to support decision-making and problem-solving.

Data Analysis

Your ability to identify patterns, trends, and insights from datasets is crucial for developing critical thinking skills in research, identifying opportunities for improvement, and assessing the effectiveness of strategies.

Literature Review

By identifying relevant academic papers, books, and publications, and critically evaluating their content, you’ll be able to provide a comprehensive overview of a given subject.

Market Research

Market research helps you understand consumer preferences, market trends, and competitors. This type of research involves designing and administering surveys, analyzing market data, and interpreting findings to inform product development, marketing strategies, and business decision-making.

Research Proposal Writing

With solid research skills, you’ll have the ability to develop research proposals that outline the objectives, methodology, and expected outcomes of a research project. Research proposal writing includes conducting background research, selecting appropriate research methods, and justifying the significance of the study.

Project Management

In project management, strong research skills equip you to facilitate effective planning, organization, and execution of projects. Effectively managing a project includes setting project timelines, allocating resources, coordinating team members, and ensuring regulatory compliance.

How Can I Use Research Skills?

You can apply research skills across various careers. In education careers, you can keep up with the latest developments in edtech and keep tabs on learner needs. Here are various ways you can use these skills:

  • Designing curriculum: In many education-related careers such as designing curriculum or coordinating instruction, you can utilize research to help create the best strategies for all students in the future. 
  • Identify funding opportunities: You can pursue a career such as a grant writer , where you can utilize research skills to identify funding opportunities and develop compelling grant proposals. You can gather data and evidence to support the need for funding and to present persuasive cases for various initiatives.
  • Conducting literature reviews: You can use your research skills to review existing literature and synthesize information on educational theories, teaching methods, and best practices, which will assist in developing a strong theoretical foundation for educational interventions.
  • Designing and implementing studies: Research skills enable you to design and conduct studies to investigate educational phenomena. You can explore areas such as student learning outcomes, instructional strategies, curriculum development, and the impact of educational policies.
  • Data collection and analysis: Research skills are crucial for gathering data through surveys, interviews, observations, or experiments. You can then analyze the data using statistical techniques to draw meaningful conclusions and inform evidence-based decision-making

With healthcare careers, you’re equipped to use research skills in the workplace. For example:

Medical careers: You’ll use your research skills in the workplace as a registered nurse to stay updated with the latest medical advancements, treatment protocols, and nursing interventions. You can contribute to nursing research projects and participate in initiatives to enhance patient care and safety. As a medical laboratory technician , you can conduct research to analyze medical samples, perform tests, and interpret results. 

Research skills are also important for other medical careers such as PACU Nurse , patient advocate , legal nurse consultant , military nurse , nurse case manager , or even a community health worker .

  • Clinical research: Research skills are valuable for conducting clinical studies, such as randomized controlled trials or observational studies. These studies can investigate the effectiveness of medical interventions, diagnostic methods, or preventive strategies
  • Data analysis: Research skills allow you to analyze medical data, such as patient records, clinical trial data, or medical imaging results. This analysis can help identify patterns, trends, and correlations that contribute to medical decision-making.
  • Evidence-based medicine: Research skills enable you to critically appraise scientific literature, evaluate the quality of studies, and assess the validity of research findings. These are crucial elements for integrating research evidence into medical practice and providing the best possible care to patients.

research skills advantages

How Can I Learn Research Skills?

WGU offers various degree programs with coursework focusing on developing and enhancing your research skills.

WGU’s School of Education offers many degrees that can take your research skills to the next level. These include the B.A. in Educational Studies, M.S. in Curriculum and Instruction, M.S. in Educational Leadership, and M.A. in Mathematics Education.  

In these programs, you’ll learn to:

  • Synthesize research information obtained from multiple sources.
  • Research complex educational issues.
  • Gather information on a research topic from multiple sources.
  • Evaluate research evidence for weaknesses, inconsistencies, biases, and other problems.
  • Evaluate primary and secondary sources of research.
  • Develop materials and methods for data collection, analysis, and retention.

WGU’s Leavitt School of Health offers a wide array of nursing degrees. For instance, you can learn health -related skills with our M.S. in Nursing or our Post-Master's Certificate in Nursing programs where you’ll learn to: 

  • Use scientific knowledge to evaluate the validity of a claim.
  • Present synthesized research data based on the health literacy level of the intended audience.
  • Investigate a topic or phenomenon to provide optimal care.
  • Develop evidence-based processes to decrease the cost of care.
  • Consider research in response to innovative healthcare challenges.

Frequently Asked Questions

What specific skills are included in research skills.

Research skills include the following abilities:

  • Information gathering
  • Critical thinking 
  • Data analysis 
  • Problem-solving
  • Literature review
  • Effective communication

How can research skills benefit my career?

Research skills equip you to understand industry trends, evaluate market dynamics, and make informed decisions, which helps build your career. 

By enhancing your strategic thinking, problem-solving, and innovative capabilities, research skills not only differentiate you as a professional but also prime you for leadership roles. Simply put, research skills transform you into a strategic asset for your organization, instrumental in guiding your team and business toward sustained success.

How can I improve my research skills?

Follow these tips to improve your research skills:

  • Familiarize yourself with research methodologies and tools.
  • Develop effective information-gathering techniques and utilize reliable sources.
  • Enhance your knowledge of data collection methods for research.
  • Stay updated with current literature in your field of interest.
  • Seek opportunities to engage in research projects, collaborate with others, and present your findings.
  • Attend workshops, courses, or seminars on research methodology.

Can research skills be applied outside of academia and the workplace?

Research skills can be applied in personal decision-making, pursuing hobbies or personal projects, and making choices in everyday life. 

For example, if your hobby is home decor, you can research different styles and trends on Instagram and Pinterest to improve your living space. Additionally, WGU offers a vast online library that is a valuable resource for students. This online library provides access to a wide range of academic journals, books, articles, and other scholarly materials that are essential for conducting research.

You can also employ online research skills to set up a new appliance or fix something in your house like a broken gadget.

Find Your Degree

Discovering the right degree program that aligns with your goals is a crucial step. You can begin the journey toward achieving personal growth and advancement. Take our degree quiz to help you identify the degree program that best suits your interests and embark on a path of knowledge and future success.

The University

For students.

  • Student Portal
  • Alumni Services

Most Visited Links

  • Business Programs
  • Student Experience
  • Diversity, Equity, and Inclusion
  • Student Communities

AOFIRS

  • Board Members
  • Management Team
  • Become a Contributor
  • Volunteer Opportunities
  • Code of Ethical Practices

KNOWLEDGE NETWORK

  • Search Engines List
  • Suggested Reading Library
  • Web Directories
  • Research Papers
  • Industry News

AOFIRS Knowledge Share Network

  • Become a Member
  • Associate Membership
  • Certified Membership
  • Membership Application
  • Corporate Application

Join Professional Group of Online Researchers

  • CIRS Certification Program
  • CIRS Certification Objectives
  • CIRS Certification Benefits
  • CIRS Certification Exam
  • Maintain Your Certification

Top Research Courses

  • Upcoming Events
  • Live Classes
  • Classes Schedule
  • Webinars Schedules

Online Research Training Program

  • Latest Articles
  • Internet Research
  • Search Techniques
  • Research Methods
  • Business Research
  • Search Engines
  • Research & Tools
  • Investigative Research
  • Internet Search
  • Work from Home
  • Internet Ethics
  • Internet Privacy

What are Research Skills and why are they important?

Internet research skills

Most jobs actually require some level of problem-solving. You may come across an impediment and come up with a question that you must answer in order to proceed. To answer this question, you will almost certainly need to conduct some research. People with research skills can identify a problem, gather informational resources that can help address the problem, assess the quality and relevance of these resources, and come up with an effective solution to the problem.

By the way, to diversify your research paper process you can find unique research paper topics .

What is Research?

Internet Research is the practice of conducting research using Internet information, particularly free information on Internet-based educational resources (such as Internet discussion forums).

Simply put, research is the process of discovering new knowledge. This knowledge can be either the development of new concepts or the advancement of existing knowledge and theories, leading to a new understanding that was not previously known.

In fact, almost every profession or job necessitates some level of research and research skills. As long as you encounter a question, which is a natural occurrence in almost everything, you should encounter an opportunity to conduct research. When there is a need for research, strong research skills come in handy.

What are Research Skills?

Research skills enable you to focus on a specific goal, gather relevant information, and communicate your findings to others. We are taught from a young age to develop research skills, and for good reason.

Teachers in academia required answers to a series of topic-related questions in an essay. Similarly, your boss may eventually request that you investigate a work-related topic or figure out how to solve a problem.

Why are Research Skills Important?

Research skills are important in the workplace for a variety of reasons, including the ability for individuals and businesses to:

  • Develop new processes and outcomes. You don't have to be involved in research and development to improve the way your team works. Any sensible employer will value your efforts in researching new processes that will make your job (and those of your team) more efficient.
  • Personal Growth. People who have a knack and a passion for research are never satisfied with doing things the same way they've always done them. Organizations require independent thinkers who will seek their own answers and continually improve their skills. These employees will also learn new technologies more quickly.
  • Customer relationship management. In almost every industry, being able to conduct research on your customer base is critical. It's difficult to move products or sell services if you don't know what people want. It is a valuable responsibility to research your customer base's interests, needs, and pain points.
  • Cost Effective. Whether your organization is launching a new product or simply trying to cut costs, research is critical for identifying wasted resources and redirecting them to more worthy causes. Anyone who goes out of their way to find ways for the company to save money will be praised by their boss.
  • Competitor Analysis. Knowing what your top competitors are up to is crucial for any company. If a company wants to stay functioning, it must research what works for its competitors, what they do better than you, and where it may improve its standing with the least amount of resources.

Types of Research Skills

Experienced researchers understand that conducting a worthwhile investigation necessitates a wide range of abilities. Consider which research abilities you have naturally and which you could improve.

Goal Setting

You must first know what you're looking for before you can conduct any form of productive research. Setting goals is a skill just like any other. It will be lot easier to construct a path there if you can imagine the conclusion you're aiming to attain by investing effort into research. Goal-setting skills include:

  • Specificity
  • Time-Management
  • Planning ahead
  • Organization
  • Accountable

Data Collection

The collection of data is often the first thing to remember when thinking about the research process. It is a systematic process to collect and measure information on variables of interest that allows one to respond to research questions, to test hypothesis and to assess results.

Simply collecting facts and information on the internet can meet your needs for some purposes. More direct and popular research may be needed by others. You will be more impressive with your experience in different methods of data collection. Methods of data collection are:

  • Questionnaires and surveys
  • Observations
  • Documents and records
  • Focus groups
  • Oral histories

Evaluate and Analyze Information and Sources

In research, it is important to find reliable information suitable for your task. Some tasks may require the use of certain types of sources, such as primary or secondary sources or certain types of journals, like scientific journals. You may need to restrict the numbers sources you use for other assignments.

In all cases, the information contained in your assignments should always be assessed. Knowing how to assess information helps you with research tasks and with your life's bigger decisions. Knowing where to go for information that is relevant, credible, and accurate can assist you in making informed decisions about graduate school, a new car purchase, financial aid opportunities, daycare options, and other topics.

  • Published books
  • Encyclopedias
  • Scholarly journals
  • Library catalogs

Using the internet to gather information

Search engines are used to find the majority of information on the Internet. A search engine is an online service that employs web robots to query millions of web pages and compile an index of the results. Internet users can then utilize these services to search the web for information. While it is beneficial to consult different sources, today's research is driven by good online research skills.

One of the greatest things about the internet is how much information it holds; unfortunately, getting to the data you need requires sifting through a lot of rubbish. Employers value the ability to efficiently utilise the large reservoir of knowledge available on the internet without getting lost in the clutter. The following are some examples of internet research skills:

  • Source checking
  • Searching relevant questions
  • Exploring deeper than the first options
  • Avoiding distraction
  • Giving credit
  • Organizing findings

Due to the sheer size of the World Wide Web, and with the rapid growth of indexed web pages, finding relevant and reliable information demands specialized training and Internet research skills . We provide a centralized virtual platform for knowledge professionals that use the Internet as a primary source of information. This AofIRS is more than just a virtual collaboration and networking platform for researchers and knowledge professionals. The website is filled with free, up-to-date content and reference material that is ideal for research.

Interviewing

Some research projects may demand a more hands-on approach than relying just on online resources. In the research process, being prepared with great interviewing skills can be really beneficial. Interviews can be a good way to get first-hand knowledge for your research, and knowing how to conduct an effective interview can help you improve your research skills. Interviewing abilities include:

  • A plan of action
  • Specific, pointed questions
  • Respectfulness
  • Considering the interview setting
  • Actively Listening
  • Taking notes

Report Writing

Report writing skills can help you in both your employment and your academic studies. In any case, the overall goal of a report is to transmit specific facts to its audience.

Communication is crucial for effective report writing. Your supervisor, professor, or general reader should comprehend your findings and conclusions clearly. Skills in report writing include:

  • Formatting is important.
  • Including a synopsis
  • Keeping your focus on your main goal
  • Developing a plan
  • Proofreading\sDirectness

Critical Thinking

Critical thinking skills can help you a lot in the research process and in general as an employee. Your data analysis skills are referred to as critical thinking. When you're conducting research, you'll need to be able to interpret your findings and make rational judgments based on them. The following are examples of critical thinking skills:

  • Observation
  • Assessing issues
  • Problem-solving
  • Communication

Planning and Scheduling 

The development of baseline productivity and success standards is one of the most significant components of planning and scheduling. You won't know if you're meeting goals until you have a particular strategy in place with a specific desired outcome defined by a completion date.

It also makes time management considerably easy. Employers value planning and scheduling abilities because they suggest a well-prepared employee. Skills in planning and scheduling include:

  • Setting objectives
  • Identifying tasks
  • Prioritizing
  • Delegating if needed
  • Time-management

Note-taking

Research involves sifting through and taking in lots of information. Taking thorough notes ensures that you do not overlook any findings and allows you to communicate these findings to your coworkers. Being able to take good notes aids in the summarization of research. Here are some examples of note-taking abilities:

  • Using short-hand
  • Keeping your goal in mind
  • Emphasizing important points
  • Reviewing notes afterward

Time Management

Unfortunately, we only have 24 measly hours in a day. In a professional setting, the ability to effectively manage this time is extremely valuable. Hiring managers look for candidates who can complete tasks within a specific time frame.

Strong time management skills imply that you can organize a strategy for breaking down larger tasks in a project and completing them by a deadline. Improving your time management skills can significantly boost the productivity of your research. Time management abilities include the following:

  • Creating task outlines
  • Thinking strategically
  • Stress-management
  • Utilizing resources
  • Setting reasonable expectations
  • Meeting deadlines

Other Helpful Research Skills

The definition of research skills is broad, and there are many traits that could help you in the research process. Consider some of the additional research skills below.

  • Attention to detail
  • Reading and writing skills
  • Considering keywords
  • Competitor comparison
  • Multitasking
  • Summarization
  • Presentation

How to Improve Your Research Skills

The great thing about research skills is that many of us use them on a daily basis. When you use a search engine to find information on a topic, you are conducting research. However, there are more proactive ways to begin improving your research skills today:

  • Make a distinction between source quality. A researcher's worst source determines how good they are. Start paying attention to the quality of the sources you're using, and be wary of anything you read until you've double-checked the attributions and works cited. Examine the author's bias, the author's research's alignment with the greater body of confirmed research in the subject, and the journal that sponsored or published the research.
  • Verify information from several sources. It gets increasingly trustworthy when you can verify information from a variety of sources. If you want to strengthen your belief in one source, check if you can locate another that agrees with it. When you run into contradictions and conflicts in your study, you know you need to keep going until you reach a more definitive conclusion.
  • Don't be influenced by confirmation bias. Confirmation bias occurs when a researcher expects a specific result and then searches for data to support that hypothesis, ignoring any sources that contradict or invalidate the researcher's initial idea. Be ready for unexpected responses and keep an open mind. Also, keep in mind that you might not be able to discover a definitive answer. It's preferable to provide the important points of your research to someone (such as your employer) and explain that it didn't lead to a concrete plan of action than to alter your data and give the answer you or your boss want to hear.
  • Stay organized. You'll encounter a lot of material during the data gathering process, from webpages to PDFs to videos. To avoid losing something or not being able to properly mention something, it's critical that you maintain all of this information organized in some way. There are numerous methods for keeping your research project structured, but here are a few of the most common: Bookmarks in your browser, index cards, and an annotated bibliography that you update as you go are all useful tools.
  • Develop your research skills. Professional certification will help you improve your research skills. CIRS™ (Certified Internet Research Specialist), is by far the only professional credential that meets this challenge. Professional researchers owe it to themselves to seek structured certification programs and stay in touch with new materials and tools that are available to transform research problems from very difficult or impossible to quick and simple tasks. We have developed a CIRS Certification (Certified Internet Research Specialist) to educate and train Online Researchers that now form a significantly large group of people involved in digital information research work.
  • Get specific as you go. There's nothing wrong with commencing your investigation in a broad sense. After all, it's critical to become acquainted with the vocabulary and substance of the researcher's results before delving into the details. Orienting yourself to a new topic is an important step that will prevent you from being discouraged and working backwards.
  • Learn how to spot a reliable source. Because not all sources are trustworthy, it's critical to be able to distinguish between the good and the bad. To find a trustworthy source, utilize your critical thinking and analytical skills to ask yourself the following questions: Is this source consistent with other sources I've discovered? Is the author a subject matter expert? Is there a conflict of interest in the author's point of view on this subject?

If you're ready to conduct research to enhance your search efforts, the following resources will be useful:

  • Educational Search Engines for Students
  • Top 100  Academic Search Engines
  • 3 ways to help students do efficient online research

Live Classes Schedule

  • SEP 20 CIRS Certification Internet Research Training Program Live Classes Online

World's leading professional association of Internet Research Specialists - We deliver Knowledge, Education, Training, and Certification in the field of Professional Online Research. The AOFIRS is considered a major contributor in improving Web Search Skills and recognizes Online Research work as a full-time occupation for those that use the Internet as their primary source of information.

Get Exclusive Research Tips in Your Inbox

  • Privacy Policy
  • Terms & Conditions
  • Advertising Opportunities
  • Knowledge Network

Empowering students to develop research skills

February 8, 2021

This post is republished from   Into Practice ,  a biweekly communication of Harvard’s  Office of the Vice Provost for Advances in Learning

Terence Capellini standing next to a human skeleton

Terence D. Capellini, Richard B Wolf Associate Professor of Human Evolutionary Biology, empowers students to grow as researchers in his Building the Human Body course through a comprehensive, course-long collaborative project that works to understand the changes in the genome that make the human skeleton unique. For instance, of the many types of projects, some focus on the genetic basis of why human beings walk on two legs. This integrative “Evo-Devo” project demands high levels of understanding of biology and genetics that students gain in the first half of class, which is then applied hands-on in the second half of class. Students work in teams of 2-3 to collect their own morphology data by measuring skeletons at the Harvard Museum of Natural History and leverage statistics to understand patterns in their data. They then collect and analyze DNA sequences from humans and other animals to identify the DNA changes that may encode morphology. Throughout this course, students go from sometimes having “limited experience in genetics and/or morphology” to conducting their own independent research. This project culminates in a team presentation and a final research paper.

The benefits: Students develop the methodological skills required to collect and analyze morphological data. Using the UCSC Genome browser  and other tools, students sharpen their analytical skills to visualize genomics data and pinpoint meaningful genetic changes. Conducting this work in teams means students develop collaborative skills that model academic biology labs outside class, and some student projects have contributed to published papers in the field. “Every year, I have one student, if not two, join my lab to work on projects developed from class to try to get them published.”

“The beauty of this class is that the students are asking a question that’s never been asked before and they’re actually collecting data to get at an answer.”

The challenges:  Capellini observes that the most common challenge faced by students in the course is when “they have a really terrific question they want to explore, but the necessary background information is simply lacking. It is simply amazing how little we do know about human development, despite its hundreds of years of study.” Sometimes, for instance, students want to learn about the evolution, development, and genetics of a certain body part, but it is still somewhat a mystery to the field. In these cases, the teaching team (including co-instructor Dr. Neil Roach) tries to find datasets that are maximally relevant to the questions the students want to explore. Capellini also notes that the work in his class is demanding and hard, just by the nature of the work, but students “always step up and perform” and the teaching team does their best to “make it fun” and ensure they nurture students’ curiosities and questions.

Takeaways and best practices

  • Incorporate previous students’ work into the course. Capellini intentionally discusses findings from previous student groups in lectures. “They’re developing real findings and we share that when we explain the project for the next groups.” Capellini also invites students to share their own progress and findings as part of class discussion, which helps them participate as independent researchers and receive feedback from their peers.
  • Assign groups intentionally.  Maintaining flexibility allows the teaching team to be more responsive to students’ various needs and interests. Capellini will often place graduate students by themselves to enhance their workload and give them training directly relevant to their future thesis work. Undergraduates are able to self-select into groups or can be assigned based on shared interests. “If two people are enthusiastic about examining the knee, for instance, we’ll match them together.”
  • Consider using multiple types of assessments.  Capellini notes that exams and quizzes are administered in the first half of the course and scaffolded so that students can practice the skills they need to successfully apply course material in the final project. “Lots of the initial examples are hypothetical,” he explains, even grounded in fiction and pop culture references, “but [students] have to eventually apply the skills they learned in addressing the hypothetical example to their own real example and the data they generate” for the Evo-Devo project. This is coupled with a paper and a presentation treated like a conference talk.

Bottom line:  Capellini’s top advice for professors looking to help their own students grow as researchers is to ensure research projects are designed with intentionality and fully integrated into the syllabus. “You can’t simply tack it on at the end,” he underscores. “If you want this research project to be a substantive learning opportunity, it has to happen from Day 1.” That includes carving out time in class for students to work on it and make the connections they need to conduct research. “Listen to your students and learn about them personally” so you can tap into what they’re excited about. Have some fun in the course, and they’ll be motivated to do the work.

Educational resources and simple solutions for your research journey

Learning in research: Importance of building research skills for students

Learning in Research: Importance of Building Research Skills for Students

Learning in research: Importance of building research skills for students

Learning in research is a fundamental aspect of academic progress, and it plays a vital role in the success of researchers. Science and technology are developing at an unprecedented rate, with new discoveries and advancements being made every day. This makes it crucial for researchers to continuously enhance their research skills and stay ahead of the curve. Lifelong learning , which refers to the ongoing pursuit of knowledge throughout one’s career, is indispensable to thrive in your field. This article explores the importance of learning in research and outlines the benefits of building research skills for students with tailormade courses for researchers .  

Table of Contents

Learning in research and academic progress  

Research is not for the faint of heart. More so when you’re starting out. PhD students need to take care of multiple things in limited time – conducting research, completing their course work, attending classes, and building your network. You also need to keep up with the new research methodologies, technologies, and paradigms as they develop. In this scenario, it’s easy to doubt yourself and wonder if you even belong on academia. Focusing on continued learning in research is one way to deal with these imposter feelings and continue on your path to success. There are many advantages in adding to and polishing research skills for students . We’ve listed the benefits of lifelong learning in research that not only help you build a solid foundation of knowledge but also enables you to explore new avenues and contribute to your specific fields of study.   

Benefits of lifelong learning in research  

Continuously honing research skills offers numerous benefits to researchers, particularly students who are embarking on their academic journeys. Here are some key advantages to restoring your focus on learning in research :  

  • Professional growth: Researchers who fail to keep up with the latest trends risk being left behind. Learning in research fosters personal and professional growth, empowering researchers to expand their knowledge base and develop their expertise. By acquiring new research skills for students and researchers, you can undertake more complex projects, produce high-quality work, and gain recognition in your field. Lifelong learning ensures you stay ahead of the race in a highly competitive environment, which allows you to secure better professional opportunities to advance your career.
  • Enhanced problem-solving: Research often involves tackling complex problems. Learning in research helps to expand your horizons, explore new areas of interest, and broaden your knowledge base so you can develop pioneering solutions for scientific problems. Lifelong learning also enhances critical thinking and problem-solving abilities, enabling researchers to approach challenges from multiple perspectives. By taking up courses for researchers and acquiring a diverse set of critical skills, researchers can develop innovative solutions to complex problems.

research skills advantages

  • Adaptability: In a continually evolving research landscape, being adaptable is crucial for success. Continual learning in research equips you to navigate challenges, embrace change, and quickly adapt to new methodologies, technologies, and trends to ensure your research remains relevant and impactful. Moreover, being open to exploring a broader range of resources and tools allows you to widen your options, adopt the best suited options for your research, and keep you moving ahead in your career.
  • Networking opportunities: Lifelong learning also creates opportunities for researchers to connect and collaborate with peers, experts, and mentors. Through workshops, conferences, and online platforms, you get to exchange ideas, gain valuable insights, and forge connections with peers around the world. Being seen as an expert, who focuses on learning in research , makes you more sought after for research collaborations than those who lag behind in their understanding of current developments
  • Confidence in knowledge : Lifelong learning keeps you aware of the latest developments, allowing you to apply new online tools, innovative technologies, and varied approaches to your own work. Those who keep learning in research are typically more confident about their work and are able to pursue topics even outside their area of expertise. Not only does this give you a sense of personal fulfilment, it increases your chances of faster career growth and advancement.

How to continue learning in research  

Researcher.Life’s R Upskill , with more than 120 courses for researchers , is a great place to start your journey of lifelong learning . You can choose from top researcher skill courses and enhance your expertise in scientific writing, data analysis, project management, peer review, and scientific communication among others. Helmed by industry and academic experts, these courses are designed to help researchers improve existing skills and develop new capabilities that will help them advance in their careers. With simple explanations of complex processes, bite-sized modules, and flexible learning options, the platform allows researchers to learn at their own pace, from anywhere in the world. So commit to lifelong learning – sign up for Researcher.Life now to get free access to 20 handpicked courses for researchers!

Editage All Access is a subscription-based platform that unifies the best AI tools and services designed to speed up, simplify, and streamline every step of a researcher’s journey. The Editage All Access Pack is a one-of-a-kind subscription that unlocks full access to an AI writing assistant, literature recommender, journal finder, scientific illustration tool, and exclusive discounts on professional publication services from Editage.  

Based on 22+ years of experience in academia, Editage All Access empowers researchers to put their best research forward and move closer to success. Explore our top AI Tools pack, AI Tools + Publication Services pack, or Build Your Own Plan. Find everything a researcher needs to succeed, all in one place –  Get All Access now starting at just $14 a month !    

Related Posts

Peer Review Basics: Who is Reviewer 2?

How to Write a Dissertation: A Beginner’s Guide 

Back to school 2024 sale

Back to School – Lock-in All Access Pack for a Year at the Best Price

The Ultimate Guide: Navigating the Research Process Using Advanced Research Skills

  • Research Process

In this ultimate guide, we go show you how to use advanced research skills to navigate the research process.

Updated on March 7, 2024

a researcher using The Ultimate Guide: Navigating the Research Process Using Advanced Research Skills in their research process

As an experienced researcher, you're undoubtedly familiar with the mechanics of the research process. It generally looks something like this .

Embedded within the research process framework is the scientific method , a specialized approach that employs techniques like controlled experiments and empirical evidence. It follows this basic outline:

Both are firmly grounded in the development of your research skills. As you progress through the research process, your skills advance, and honing those skills enhances every part of your research journey.

What are advanced research skills?

Research skills commonly entail finding answers or solutions by gathering, reviewing, analyzing, and interpreting information. In the realm of academic research, advancing these skills involves :

  • Immersing yourself in the principles of research design and analysis
  • Understanding the ethics surrounding research
  • Navigating scientific controversies
  • Mastering the art of scientific critique
  • Honing your skills in scientific communication

Here are some actionable steps to help strengthen your research skills:

Strategy 1: Develop information literacy

  • Learn to identify reliable sources
  • Assess information credibility
  • Navigate diverse research databases effectively

Strategy 2: Enhance critical thinking

  • Sharpen your ability to analyze information
  • Question assumptions and evaluate arguments critically
  • Identify biases.
  • Consider alternative perspectives

Strategy 3: Master research methodology

  • Know the different research methodologies used in your field
  • Thoroughly understand the strengths and limitations of qualitative, quantitative, and mixed methods research

Strategy 4: Improve time management

  • Dedicate time and effort to each stage of the research process
  • Use project management software
  • Delegate tasks to those with expertise

Strategy 5: Embrace collaboration

  • Engage in discussions, share ideas, and actively seek feedback
  • Attend conferences and symposiums to expand your network
  • Offer mentorship opportunities to gain new perspectives

Strategy 6: Update your knowledge

  • Stay abreast of the latest developments and advancements in your field
  • Regularly read scholarly articles
  • Follow reputable sources to stay current with research trends

How can I apply these skills to the research process?

Countless benefits, from increased efficiency to improved outcomes, arise from implementing these advanced research skills throughout the research process. Let’s explore how your expertise can both streamline and bolster every step.

1. Developing a problem statement and research questions (checklist)

By guiding the reader towards a compelling question, a well-executed problem statement enhances engagement and serves as a catalyst for further investigations. It ultimately provides the framework for the introduction of your final manuscript.

Here are some tips for How to Write a Statement of the Problem for Your Research Proposal :

Do: Ensure the research problem is challenging, original, and offers new scientific insight.

Don’t: Adopt incremental problems that lack new answers.

Do : Develop a problem statement with systematic planning and realistic objectives.

Don't : Overlook the need for clear feasibility and realistic achievability.

Do : Apply feasible research methods suitable for the research question.

Don't : Use impractical or unusable research methods.

Do : Conduct literature work, drawing ideas from discussions, conferences, or papers read.

Don't : Select problems that are not thoroughly investigated and lack clarity.

Once you have identified a solid research problem, compose specific questions that precisely address that problem. Search existing literature to determine the relevance and complexity of your questions. Don’t be afraid to refine the problem statement based on these insights.

2. Composing a hypothesis that translates your research questions into predictions

The effectiveness of a study's conclusion hinges on the quality of the research hypothesis; it predicts the outcome. By proposing a relationship between an independent variable ( the part that is changed ) and a dependent variable ( the part that is measured ), a strong hypothesis offers clarity and reproducibility for the project team and the readers.

While there are various types of hypotheses , most research utilizes two broad categories:

  • Null Hypothesis : Often denoted by H0, it presents no relationship between variables and is opposite of the alternative hypothesis. 
  • Alternative Hypothesis : Denoted as H1 or Ha, it states that the variables have a relationship and is the proposed answer to your research question.

The null and alternative hypotheses serve as contrasting perspectives, collaboratively establishing a foundation for an experiment by providing a baseline for testing. Incorporating mathematical symbols , they read like this:

  • H0: No more than 30% of the registered voters in Santa Clara County voted in the primary election. p ≤ 30
  • Ha: More than 30% of the registered voters in Santa Clara County voted in the primary election. p > 30

To ensure effectiveness, use this checklist when writing your hypothesis:

1. Testability : Is there a method for proving or disproving your claim?

2. Variables : Have you included at least one independent and one dependent variable?

3. Clarity : Is the language concise and easy to understand?

4. Relevance : Is the hypothesis clearly aligned with your research topic?

3. Constructing a project design for answering research questions and testing your predictions using empirical data

When starting a new project, you need a solid strategy for effectively navigating the complexities of the research process. By outlining how all the components work together, your project design serves as the blueprint that ensures the chosen methods match your objectives. 

While the actual layout varies with each project, all project designs incorporate these elements : 

  • A clear purpose based on well-defined research questions and hypotheses
  • A sensical research methodology that determines the overall approach of the project
  • A thorough understanding of the target population and sampling method
  • A realistic approach to data collection to gather, record, and organize information
  • A data analysis plan that is specific to the project’s objectives and requirements
  • A careful consideration of the resources needed to carry out the project

Delineating the various facets of your research project at the outset helps it run smoothly and efficiently by reducing errors and unnecessary busywork. As you go through this process of designing your research project, keep these key recommendations in mind:

Do : Maintain neutrality throughout study setup.

Don’t : Allow pre-conceptions to influence findings.

Do : Ensure consistent measurement for reliable results.

Don’t : Overlook random errors that may affect reliability.

Do : Minimize systematic errors for valid outcomes.

Don’t : Use measurement tools that compromise the accuracy of results.

Do : Ensure broader relevance for the larger population.

Don’t : Limit applicability of results to a small sample.

Do : Adapt research plans based on collected data.

Don’t : Stick rigidly to initial plans without considering new information.

4. Choosing data collection methods that match the goals, scope, and resources of the project

Given the abundance of available information and the various perspectives to consider when addressing questions, it is crucial to devise a specialized plan for data collection.

First, consider whether your project demands a qualitative or quantitative research approach as identified in your design. Remember:

  • If you are testing a hypothesis to understand the causal or correlational relationship between variables, your overall approach is quantitative.
  • If, however, your project seeks to understand a phenomenon in a real-world environment, it is using a qualitative approach.

As guidelines to help focus your efforts, these approaches are not mutually exclusive. They’re complimentary with one simply more emphasized. Overlapping your corresponding data collection methods, therefore, may lead to more comprehensive study outcomes.

Consider a combination of techniques drawn from both primary and secondary sources like these:

Primary data

Surveys and questionnaires : collecting data from individuals or groups.

Interviews : direct interaction between the researcher and the respondent.

Observations : researchers observe and record behaviors, actions, or events in their natural setting.

Experiments : manipulating variables to observe their impact on outcomes.

Focus groups : small groups of individuals discuss specific topics in a moderated setting.

Secondary data

Published sources : reading published materials that contain relevant data.

Online sources : platforms available for consuming and downloading from the internet.

Government and institutional sources : records, statistics, and other pertinent information to access and purchase.

Publicly available data : shared by individuals, organizations, or communities on public stages.

Past research : studies and results available through communal archives.

5. Employing the data analysis tactics that will extract maximum value from your collected data

When determining which data analysis strategies to use, look again at your project’s goals and objectives, revisit your proposed research questions and hypotheses, and examine the data your project has collected. Next, ask yourself and your team:

  • Do we thoroughly understand the data, its structure, sources, and quality? If yes, move forward. If not, return to the data collection phase.
  • What are we trying to achieve with this data, which answers are we seeking and as they relate to whom or what? Be mindful of the project’s overarching purpose.
  • Which methods best fit the project’s time constraints and our team’s capabilities? Only accurate analysis that is produced on time will benefit your outcomes.

To choose the most accurate data analysis tools and techniques for your current project, evaluate how your research questions coincide with these four broad categories:

Descriptive analysis : summarizes data to reveal patterns, particularly useful for examining changes over time through data aggregation and mining techniques.

Example : Counting the number of species of trees in a forest ecosystem

Diagnostic analysis : examines data to understand the root causes, using tools like drill-down, data discovery, data mining, and correlations to identify patterns, trends, and connections.

Example : Tracking past weather patterns to understand a decrease in crop yields

Predictive analysis : utilizes statistical algorithms and machine learning to analyze historical data and forecast future events or trends by analyzing variables and their relationships.

Example : Following student attendance to predict grade outcomes

Prescriptive analysis :  provides actionable recommendations based on possible scenarios to optimize outcomes by suggesting the best course of action to achieve desired results.

Example : considering patient demographics to optimize treatment for diabetes

6. Representing data in a structured, understandable, and accessible format

Next, after carefully choosing the best methods for collecting and analyzing data, present it in a way that tells your story. To make sure this message comes across clearly, consider the data’s characteristics, your project’s goals, and the intended audience.

While you may have initial ideas about how to present your project's findings, explore various methods to ensure clarity and readability. Experimenting with different presentation approaches can help you determine the most effective way to convey the information.

Here are some conventional and more contemporary options for representing research data:

Device : Tables

Function : Organize and present numerical data in a structured format

Device : Charts and graphs

Function : Visual representations illustrating trends, patterns, and relationships in data

Device : Diagrams and illustrations

Function : Graphical representations conveying complex concepts, processes, or relationships

Device : Maps

Function : Spatial representations of geographical data, distribution patterns, and spatial relationships

Device : Infographics

Function : Combination of text, images, and graphical elements presenting information in a visually appealing and easy-to-understand format

Device : Heatmaps

Function : Graphical representations using color gradients to visualize patterns, density, and correlations in large datasets

Device : Interactive visualizations

Function : Dynamic data exploration through interactive dashboards, exploration tools, and web-based visualizations

Device : Statistical Models

Function : Mathematical representations for analyzing and interpreting data

Device : Network diagrams

Function : Represent complex relationships and interactions between entities in a network

Device : Word clouds

Function : Visualize the frequency or importance of words in text by varying the size or color of each word based on its frequency or relevance

Determining the most suitable and effective method among these approaches can be challenging, especially when patterns are not readily apparent or are influenced by preconceived expectations. It is also quite daunting and time-consuming to experiment with diverse ways of representing your data.

Fortunately, there are numerous AI visualization tools built specifically to analyze datasets and present your results visually. By using advanced algorithms, they can quickly convert raw data into easy to understand formats, like graphs and diagrams.

This not only helps you identify patterns and trends that may not have been obvious but also saves time and resources that you can commit to other aspects of the project. Consider these questions when choosing an AI visualization tool:

  • Is it easy to use and can I use it right away?
  • Is it capable of handling the amount of data for this project?
  • Can I customize the results to fit the project’s format and scale?
  • Can I efficiently share with and get feedback from other team members?

These are some of the most popular options :

7. Reporting the project’s findings in a responsible and accessible way

Ultimately, all the hard work you put into this research project will culminate into a written manuscript. This comprehensive document encapsulates your experience, methodologies, and conclusions to function as your own record and a resource for others.

By communicating your project’s processes and insights with a broader audience, this manuscript paves the way for your research to positively impact the existing body of knowledge. Paying close attention to the quality of each section is vital. Here are some tips :

Title and abstract

Do : Use descriptive phrases for headings and titles, setting clear expectations for the scope of the paper.

Don't : Overextend on the content of your title, avoid excessive length or brevity. 

Do : Make sure you know the type of abstract required for your selected journal.

Don't : Assume the requirements or ignore the guidelines .

Do : Put the main points about your paper’s importance up front, summarize only the main points.

Don't : Include a long lead-in or go into needless detail.

Introduction

Do : Treat the introduction as the actual start of the paper, assuming no one reads the abstract.

Don’t : Assume that the abstract adequately covers all necessary information.

Do : Provide background information explaining the problem with recent references.

Don’t : Leave readers without context, unanswered questions, or gaps in knowledge.

Do : End the introduction with a clear hypothesis/objective statement and a brief description of how you addressed the question.

Don’t : Conclude the introduction ambiguously, leaving readers uncertain about the study's direction.

Materials and methods

Do : Thoroughly answer the question, "How did my experiments lead me to answer my questions?"

Don’t : Provide vague or incomplete descriptions of experimental methods.

Do : Check journal requirements for specific statements regarding ethics.

Don’t : Omit key ethical items like inclusion/exclusion criteria.

Do : Ensure experimental methods are explained in sufficient detail by focusing on the most relevant.

Don’t : Offer vague or incomplete descriptions of experimental methods, hindering reproducibility.

Discussion and conclusions

Do : Give a clear interpretation of the data that addresses the project’s objectives.

Don’t : Overgeneralize the discussion of results or make claims not supported by current data.

Do : Base conclusions directly on the data presented as it relates to the research questions.

Don’t : Leave readers wondering about the relevance or significance of your research.

Do : Ensure conclusions relate to the broader application and highlight the advancement achieved in the field.

Don’t : Make statements without clear proof or avoid seeking critical feedback from colleagues before submission.

This process solidifies the credibility of your work and fosters collaboration, discussion, and further advancements in your field.

8. Proofreading, editing, and revising to create a polished manuscript

The final step to telling a compelling and understandable story of your research project is one that is often overlooked and underrated. However, navigating all phases of the research process with equal vigor, including proofreading, editing, and revising, is pivotal to success.

Taking the time to polish your manuscript provides numerous benefits (I didn’t find a blog or content from AJE for this but it may exist) and improvements, such as:

  • Error correction : Proofreading helps identify and correct spelling, grammar, punctuation, and typographical errors, ensuring clarity and professionalism in the manuscript.
  • Clarity enhancement : Editing improves coherence and flow by refining language, restructuring sentences, and eliminating redundant or ambiguous phrases.
  • Content improvement : Revising clarifies arguments, expands ideas, and addresses inconsistencies or gaps in logic to refine and strengthen the content of your manuscript.
  • Audience engagement : Polishing your manuscript makes it more engaging and accessible to readers.

Through these processes, the manuscript reflects your attention to detail, commitment to quality, and dedication to accuracy throughout the entire project.

Final thoughts

The importance and impact of advanced research skills on the research process cannot be overstated. While they are the linchpin holding together the intricate tapestry of your project, mastering these skills takes time, effort, and a willingness to embrace new perspectives.

As you delve deeper into the world of research, remember that honing these skills is a journey, not a destination . Each time you work through the research process, from developing a problem statement to choosing data collection methods, your understanding and expertise grows.

By embracing advanced research skills and implementing these strategies, you're not only staying ahead of the curve, but ensuring your research remains impactful and relevant in an ever-evolving landscape. So, embrace the challenges, relish the victories, and never stop learning.

Armed with the tools and insights from this guide, it's time to embark on your next research adventure. Let curiosity be your compass, skills be your guide, and your manuscript be your legacy. 

The world is waiting for your discoveries. Dive in, explore, and let your commitment to continuous learning propel your research endeavors to new heights. What will you uncover next?

Charla Viera, MS

See our "Privacy Policy"

research skills advantages

Introduction to research skills: Home

  • Learning from lectures
  • Managing your time
  • Effective reading
  • Evaluating Information
  • Critical thinking
  • Presentation skills
  • Studying online
  • Writing home
  • Maths and Statistics Support
  • Problem solving
  • Maths skills by discipline
  • Introduction to research skills
  • Primary research
  • Research methods
  • Managing data
  • Research ethics
  • Searching and Generative AI
  • Citing and referencing
  • Searching the literature
  • What is academic responsibility?
  • Referencing software
  • Conduct Officer/Panel
  • Intellectual property and copyright
  • Digital skills home

research skills advantages

Research skills allow you to find information and use it effectively. It includes creating a strategy to gather facts and reach conclusions so that you can answer a question.

Starting your research

think about your topic – don’t be too vague or too specific (try mind mapping or keyword searching).

read broadly around your subject (don’t just use Google and Wikipedia). Think about a research question that is clearly structured and builds on literature already produced.

find information using the subject databases. View the Database Orientation Program to learn about databases and using search strategies to refine your search and limit results. View our library tutorial on planning your literature search and look at our library subject guides for resources on your specific topic.

Another good starting point for finding information is our library catalogue Library Search  which allows you to search across the library's electronic resources as well as major subject databases and indexes.

carry out a literature review . You may want to include journals, books, websites, grey literature or data and statistics for example. See the list of sources below for more information. Keep a record and organise your references and sources. If you are intending to carry out a systematic review then take a look at the systematic review page on our Research Support library guide.

evaluate your resources – use the CRAAP test (Currency, Relevancy, Authority, Accuracy, Purpose - watch the video, top right). 

reach considered conclusions and make recommendations where necessary.

Your research journey

Your research journey.

Why do I need research skills?

they enable you to locate appropriate information and evaluate it for quality and relevance

they allow you to make good use of information to resolve a problem

they give you the ability to synthesize and communicate your ideas in written and spoken formats

they foster critical thinking

they are highly transferable and can be adapted to many settings including the workplace

You can access more in depth information on areas such as primary research, literature reviews, research methods, and managing data, from the drop down headings under Research Skills on the Academic Skills home page. The related resources in the right-hand column of this page also contain useful supporting information.

  • Conference proceedings
  • Data & statistics
  • Grey literature
  • Official publications

Books are good for exploring new subject areas. They help define a topic and provide an in-depth account of a subject.

Scholarly books contain authoritative information including comprehensive accounts of research or scholarship and experts' views on themes and topics. Their bibliographies can lead readers to related books, articles and other sources. 

Details on the electronic books held by the University of Southampton can be found using the library catalogue .

Journals are quicker to publish than books and are often a good source of current information. They are useful when you require information to support an argument or original research written by subject experts.  The bibliographies at the end of journal articles should point you to other relevant research.

Academic journals go through a "peer-review" process. A peer-reviewed journal is one whose articles are checked by experts, so you can be more confident that the information they contain is reliable.

The Library's discovery service Library Search  is a good place to start when searching for journal articles and enables access to anything that is available electronically.

Newspapers enable you to follow current and historical events from multiple perspectives. They are an excellent record of political, social, cultural, and economic events and history.

Newspapers are popular rather than scholarly publications and their content needs to be treated with caution. For example, an account of a particular topic can be biased in favour of that newspaper’s political affiliation or point of view. Always double-check the data/statistics or any other piece of information that a newspaper has used to support an argument before you quote it in your own work.

The library subscribes to various resources which provide full-text access to both current and historical newspapers. Find out more about these on the Library's Newspaper Resources page.

Websites provide information about every topic imaginable, and many will be relevant to your studies.

Use websites with caution as anyone can publish on the Internet and therefore the quality of the information provided is variable. When you’re researching and come across a website you think might be useful, consider whether or not it provides information that is reliable and authoritative enough to use in your work.

Proceedings are collections of papers presented by researchers at academic conferences or symposia. They may be printed volumes or in electronic format.

You can use the information in conference proceedings with a high degree of confidence as the quality is ensured by having external experts read & review the papers before they are accepted in the proceedings.

Find the data and statistics you need, from economics to health, environment to oceanography - and everywhere between - http://library.soton.ac.uk/data .

Grey literature is the term given to non-traditional publications (material not published by mainstream publishers). For example - leaflets, reports, conference proceedings, government documents, preprints, theses, clinical trials, blogs, tweets, etc.. 

The majority of Grey literature is generally not peer-reviewed so it is very important to critically appraise any grey literature before using it.

Most aspects of life are touched by national governments, or by inter-governmental bodies such as the European Union or the United Nations.  Official publications are the documentary evidence of that interest. 

Our main printed collections and online services are for British and EU official publications, but we can give advice on accessing official publications from other places and organisations. Find out more from our web pages  http://library.soton.ac.uk/officialpublications .

Patents protect inventions - the owner can stop other people making, using or selling the item without their permission. This applies for a limited period and a separate application is needed for each country.

Patents can be useful since they contain full technical details on how an invention works. If you use an active patent outside of research - permission or a license is probably needed.

research skills advantages

Related resources:

Checking for CRAAP - UMW New Media Archive

How to Develop a STRONG Research Question - Scribbr

Guide to dissertation and project writing - by University of Southampton (Enabling Services)

Guide to writing your dissertation - by the Royal Literary Fund  

Guidance on the Conduct of Narrative Synthesis in Systematic Reviews  - by ESRC Methods Programme

Guidelines for preparing a Research Proposal - by University of Southampton

Choosing good keywords - by the Open University

How to Write a Research Question  - an online guide produced by  the University of Leeds

Evaluating information - a 7 minute tutorial from the University of Southampton which covers thinking critically, and understanding how to find quality and reliable information.

Hints on conducting a literature review  - by the University of Toronto

Planning your literature search  - a short tutorial by the University of Southampton

Using Overleaf for scientific writing and publishing  -  a popular  LaTeX/Rich Text based online collaborative tool for students and researchers alike. It is designed to make the process of writing, editing, and producing scientific papers quicker and easier for authors. 

Systematic reviews  - by the University of Southampton. 

Create your own research proposal - by the University of Southampton

  • Last Updated: Aug 14, 2024 10:45 AM
  • URL: https://library.soton.ac.uk/sash/introduction-to-research-skills
  • No idea what to do?
  • Career path test
  • Career path guides
  • Top graduate employers
  • Career profiles
  • Further study
  • A day in their life
  • Find an internship
  • Vacation schemes
  • Deadline Tracker
  • Internship Experience UK
  • Find a graduate job
  • Find an industrial placement
  • STEM advice
  • Aptitude & numerical tests
  • Assessment centres
  • Commercial awareness
  • Core career skills
  • Entering the world of work
  • Bright Network events
  • Employer events
  • Previous event highlights
  • Success stories
  • For employers

Learn to thrive at university

Visit our Uni Life hub to get insights and advice on navigating your life at uni, from building a budget to finding your people.

  • Graduate career advice
  • Key graduate career skills

Research skills: Examples + how to improve them

No matter what career path you choose to take, research skills are one of the key graduate career skills that will help you impress employers in applications and support you throughout your entire working life. 

Research skills are essential in problem-solving; learning how to improve research skills is therefore a great way to prepare for the workplace and improve your overall skill set in your early career. In this article, you’ll find out what research skills are, how to improve your research skills and much more. 

  • What are research skills?
  • Examples of research skills
  • Jobs that require research skills
  • How to improve research skills

How to use research skills at your workplace

How to include research skills in a cv, how to include research skills in a cover letter.

  • How to demonstrate your research skills at a job interview

Becoming a Bright Network member is free and easy - sign up to get exclusive access to jobs, events, networking opportunities, advice and more.

What are research skills? 

Research skills refer to an individual’s ability to source information about a certain topic, and effectively extract and evaluate the information in order to answer questions or solve problems. 

Research skills are soft skills that are highly sought after by employers as they show a candidate’s ability to understand and analyse a variety of materials and sources. Whether you’re studying or already in the workplace, research skills are important transferable skills to have in any role or sector that you choose.

These skills can be constantly improved, and this is a great way to develop in your early career and prepare for the workplace. For example, your manager might ask you to conduct research or analysis for various projects, where these skills will be essential for your success. 

Learn how to develop your entire transferable skillset with this free online learning course. You'll also get a certificate once you complete the course that you can display on your CV and LinkedIn profile.

Examples of research skills 

During your time at school and university, you will have used a variety of research skills to complete projects and assignments. If you’re not sure what research skills look like in practice, here are some examples: 

Data collection 

Data collection is the process of systematically gathering information in order to solve problems, answer questions and better understand a particular topic. The information or data that you are collecting can be quantitative or qualitative; it can be collected through using surveys, interviews, reviewing existing materials and more to solve a particular problem.

At university, you would need to read broadly on a certain topic or conduct a literature review for a certain project. This is all data collection, and you can develop and use these experiences in your future role too. 

Critical thinking

Critical thinking is the ability to interpret and analyse information in order to form a particular judgement or evaluation. Someone who is a great critical thinker will be able to apply their knowledge (informed by evidence from, for example, data collection) to think rationally and come to a conclusion. Critical thinking is key in the workplace as it means you can analyse and evaluate strategically, to come to a judgement that will inform a particular action or idea.

Detail orientation 

Another key example of a research skill is detail orientation, or the ability to focus on small details. Someone who is detail-oriented will be able to notice small mistakes and will be able to deliver high-quality and accurate work. When solving problems, this is essential, as the ability to extract and evaluate information with accuracy is important for the validity of your research and will help drive high-quality results. 

Time management 

Time management is the ability to organise your time when planning different activities and projects. Effective time management means you’re able to balance your workload and ensure all tasks are completed within an allotted time. This is important for your research skills, as it means you are able to effectively delegate your time between data collection, analysis and evaluation.

Jobs that require research skills 

  • External auditors have great attention to detail to investigate organisations. In an external auditor role, you will need to research policies and regulations, analyse data provided by the organisation and draw conclusions for a report.
  • A strategist in the financial sector looks at an organisation’s finances to come up with plans for the future. You need great analytical and evaluative skills in order to understand the best options for your clients and turn a rational judgement into action. 
  • A role in the Civil Service involves researching, developing and maintaining policy in the UK. Being able to inform your decisions with evidence, and manage your time effectively, is key. 
  • In the role of a data scientist , you will need to conduct research to understand why a client or company needs a data scientist, and be able to analyse effectively to see big patterns in large amounts of data. 
  • Clinical scientists must carefully analyse and process large amounts of data, requiring strong research skills and detail orientation.

Not quite sure about the type of career you should pursue? Take our Career Path Test and get matched with the career paths and sectors that meet your interests. 

How to improve research skills 

  • Practise your time management and organisation skills: Whether you’re at university or in your early career, it’s important to start learning how to balance your time effectively to complete a number of tasks. For your next project, try setting out clear activities that need to be completed, how long you need to spend on each, and a timeline for when each task will be started and completed. 
  • Learn how to write reports: In any research process or project, you will need to summarise and evaluate your findings in a written report in a clear and concise way. Make sure to include the objective of your research, a summary of your findings, and the judgements you have made from the evidence you found. 
  • Read more widely: One of the core aspects of research and analysis is the ability to extract information from a variety of materials. Reading more widely will improve your data collection skills and will give you experience with forming judgements from a range of sources and on a number of topics.
  • Plan . Before you start a project at work, make sure you’ve taken time to plan what tasks you need to do, and how long each will take, to understand the timelines of the project. This allows you to set aside dedicated time for the research phase, for example, before analysing data or putting ideas into action.
  • Read about the topic . Whatever sector you’re in, and whatever project you’re working on, reading about your subject area is key to understanding your field ahead of any decisions being made. This will help you solve problems and answer any questions you need to be answered at the offset.
  • Compare your results . Following any research or data collection, it’s a good idea to compare your findings with colleagues to ensure consistency across the team. This will lead to greater accuracy for the project as a whole.
  • Present . Practising your presentation and communication skills is an essential part of developing your research skills. At the end of any research you’ve conducted, get into the habit of presenting your findings in a written report, and try presenting this to your line manager and wider team.

Once you’ve developed your research skills, it’s important that you know how to convey these effectively in applications – starting with your CV.

Read: How to write a CV | Advice & templates

Your CV is usually the first thing an employer sees of you, so you need to impress them from the offset. Highlighting your research skills, and how you’ve used them in your experience so far, is a great way to do this and will show your organisation, attention to detail and critical thinking.

Research skills should be included under the ‘skills and achievements section of your CV. This is where you include your technical and personal skills that relate to the role you’re applying for.

When talking about your research skills, remember to highlight how you’ve developed these in a concise way. For example, you might have developed research skills by writing a number of literature reviews at university. This might be phrased as “developed effective research skills through data collection and analysis when writing literature reviews for university projects.”

Another way to convey your research skills on your application and impress employers is through the cover letter. If an employer asks for one, it’s important to know how to structure a cover letter so that you can convey your skillset and interest in the role clearly and succinctly.

Your cover letter needs to be no more than one page and should highlight your competency for the role you’re applying for. Approach your application from the basis of ‘what I can do for you’ rather than ‘what you can do for me’. As research skills are transferable, this is a great chance to highlight how you can benefit the organisation and team you’re applying for, as it shows your ability to collect data, think critically, organise your time, analyse and more. Remember to apply these soft and transferable skills to what the job description says will be expected of you.

How to demonstrate your research skills at a job interview 

Interviews are another opportunity to impress employers with your skill set - including how you have developed strong research skills which you can use in the role you’re applying to. 

Ahead of your interview, you should be using your research skills to look into the company you’ve applied for. Get familiar with what they do, their company values and what they’re looking for in a candidate for your chosen role. 

You can also get prepared by practising to answer potential research skills questions like “give me an example of a time when you solved a problem using your research skills.” To answer this, make sure you’re identifying the specific research skills you have used, and explain a real example of when you have solved problems using them. Think about the impact using those research skills had in order to highlight how you have developed these skills effectively in practice. 

Research skills are essential for success in many different roles and fields. By learning how to improve your research skills, you are setting yourself up to impress employers at application and become an asset to a team when you enter the workplace. 

Research skills are soft skills that employers value, are essential for developing your problem-solving skills and are one of the key graduate career skills that recruiters look for. By adding ‘research skills’ to your CV, and highlighting your research capabilities at interviews, you are increasing your employability and chances for success.

Browse thousands of available graduate jobs, schemes and more and demonstrate to employers that you're able to use your research skills to succeed at interview and in your early career. 

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Springer Nature - PMC COVID-19 Collection

Logo of phenaturepg

Fostering students’ motivation towards learning research skills: the role of autonomy, competence and relatedness support

Louise maddens.

1 Centre for Instructional Psychology and Technology, Faculty of Psychology and Educational Sciences, KU Leuven and KU Leuven Campus Kulak Kortrijk, Etienne Sabbelaan 51 – bus 7800, 8500 Kortrijk, Belgium

2 Itec, imec Research Group at KU Leuven, imec, Leuven, Belgium

3 Vives University of Applied Sciences, Kortrijk, Belgium

Fien Depaepe

Annelies raes.

In order to design learning environments that foster students’ research skills, one can draw on instructional design models for complex learning, such as the 4C/ID model (in: van Merriënboer and Kirschner, Ten steps to complex learning, Routledge, London, 2018). However, few attempts have been undertaken to foster students’ motivation towards learning complex skills in environments based on the 4C/ID model. This study explores the effects of providing autonomy, competence and relatedness support (in Deci and Ryan, Psychol Inquiry 11(4): 227–268, https://doi.org/10.1207/S15327965PLI1104_01, 2000) in a 4C/ID based online learning environment on upper secondary school behavioral sciences students’ cognitive and motivational outcomes. Students’ cognitive outcomes are measured by means of a research skills test consisting of short multiple choice and short answer items (in order to assess research skills in a broad way), and a research skills task in which students are asked to integrate their skills in writing a research proposal (in order to assess research skills in an integrative manner). Students’ motivational outcomes are measured by means of students’ autonomous and controlled motivation, and students’ amotivation. A pretest-intervention-posttest design was set up in order to compare 233 upper secondary school behavioral sciences students’ outcomes among (1) a 4C/ID based online learning environment condition, and (2) an identical condition additively providing support for students’ need satisfaction. Both learning environments proved equally effective in improving students’ scores on the research skills test. Students in the need supportive condition scored higher on the research skills task compared to their peers in the baseline condition. Students’ autonomous and controlled motivation were not affected by the intervention. Although, unexpectedly, students’ amotivation increased in both conditions, students’ amotivation was lower in the need supportive condition compared to students in the baseline condition. Theoretical relationships were established between students’ need satisfaction, students’ motivation (autonomous, controlled, and amotivation), and students’ cognitive outcomes. These findings are discussed taking into account the COVID-19 affected setting in which the study took place.

Introduction

Several scholars have argued that the process of learning research skills is often obstructed by motivational problems (Lehti & Lehtinen, 2005 ; Murtonen, 2005 ). Some even describe these issues as students having an aversion towards research (Pietersen, 2002 ). Examples of motivational problems are that students experience research courses as boring, inaccessible, or irrelevant to their daily lives (Braguglia & Jackson, 2012 ). In a research synthesis on teaching and learning research methods, Earley ( 2014 ) argues that students fail to see the relevance of research methods courses, are anxious or nervous about the course, are uninterested and unmotivated to learn the material, and have poor attitudes towards learning research skills. It should be mentioned that the studies mentioned above focused on the field of higher university education. In upper secondary education, to date, students’ motivation towards learning research skills has rarely been studied. As difficulties while learning research seem to relate to problems involving students’ previous experiences regarding learning research skills (Murtonen, 2005 ), we argue that fostering students’ motivation from secondary education onwards is a promising area of research.

The current study combines insights from instructional design theory and self-determination theory (SDT, Deci & Ryan, 2000 ), in order to investigate the cognitive and motivational effects of providing psychological need support (support for the need for autonomy, competence and relatedness) in a 4C/ID based (van Merriënboer & Kirschner, 2018 ) online learning environment fostering upper secondary schools students’ research skills. In the following section, we elaborate on the definition of research skills in the understudied domain of behavioral sciences; on 4C/ID (van Merriënboer & Kirschner, 2018 ) as an instructional design model for complex learning; and on self-determination theory and its related need theory (Deci & Ryan, 2000 ). In addition, the research questions addressed in the current study are outlined.

Conceptual framework

Research skills.

As described by Fischer et al., ( 2014 , p. 29), we define research skills 1 as a broad set of skills used “to understand how scientific knowledge is generated in different scientific disciplines, to evaluate the validity of science-related claims, to assess the relevance of new scientific concepts, methods, and findings, and to generate new knowledge using these concepts and methods”. Furthermore, eight scientific activities learners engage in while performing research are distinguished, namely: (1) problem identification, (2) questioning, (3) hypothesis generation, (4) construction and redesign of artefacts, (5) evidence generation, (6) evidence evaluation, (7) drawing conclusions, and (8) communicating and scrutinizing (Fischer et al., 2014 ). Fischer et al. ( 2014 ) argue that both the nature of, and the weights attributed to each of these activities, differ between domains. Intervention studies aiming to foster research skills are almost exclusively situated in natural sciences domains (Engelmann et al., 2016 ), leaving behavioral sciences domains largely understudied. The current study focuses on research skills in the understudied domain of behavioral sciences. We refer to the domain of behavioral sciences as the study of questions related to how people behave, and why they do so. Human behavior is understood in its broadest sense, and is the study of object in fields of psychology, educational sciences, cultural and social sciences.

The design of the learning environments used in this study is based on an existing instructional design model, namely the 4C/ID model (van Merriënboer & Kirschner, 2018 ). The 4C/ID model has been proven repeatedly effective in fostering complex skills (Costa et al., 2021 ), and thus drew our attention for the case of research skills, as research skills can be considered complex skills (it requires learners to integrate knowledge, skills and attitudes while performing complex learning tasks). Since the 4C/ID model focusses on supporting students’ cognitive outcomes, it might not be considered as relevant from a motivational point of view. However, since we argue that a deliberately designed learning environment from a cognitive point of view is an important prerequisite to provide qualitative motivational support, we briefly sketch the 4C/ID model and its characteristics. The 4C/ID model has a comprehensive character, integrating insights from different theories and models (Merrill, 2002 ), and highlights the relevance of four crucial components: learning tasks, supportive information, part task-practice, and just-in-time information. Central characteristics of these four components are that (a) high variability in authentic learning tasks is needed in order to deal with the complexity of the task; (b) supportive information is provided to the students in order to help them build mental models and strategies for solving the task under study (Cook & McDonald, 2008 ); (c) part-task practice is provided for recurrent skills that need to be automated; and (d) just-in-time (procedural) information is provided for recurrent skills.

Taking into account students’ cognitive struggles regarding research skills, and the existing research on the role of support in fostering research skills (see for example de Jong & van Joolingen, 1998 ), the 4C/ID model was found suitable to design a learning environment for research skills. This is partly because of its inclusion of (almost) all of the support found effective in the literature on research skills, such as providing direct access to domain information at the appropriate moment, providing learners with assignments, including model progression, the importance of students’ involvement in authentic activities, and so on (Chi, 2009 ; de Jong, 2006 ; de Jong & van Joolingen, 1998 ; Engelmann et al., 2016 ). While mainly implemented in vocational oriented programs, the 4C/ID model has been proposed as a good model to design learning environments aiming to foster research skills as well (Bastiaens et al., 2017 ; Maddens et al., 2020b ). Indeed, acquiring research skills requires complex learning processes (such as coordinating different constituent skills). Overall, the 4C/ID model can be considered to be highly suitable for designing learning environments aiming to foster research skills. Given its holistic design approach, it helps “to deal with complexity without losing sight of the interrelationships between the elements taught” (van Merriënboer & Kirschner, 2018 , p. 5).

Although the 4C/ID model has been used widely to construct learning environments enhancing students’ cognitive outcomes (see for example Fischer, 2018 ), research focusing on students’ motivational outcomes related to the 4C/ID model is scarce (van Merriënboer & Kirschner, 2018 ). Van Merriënboer and Kirschner ( 2018 ) suggest self-determination theory (SDT; Deci & Ryan, 2000 ) and its related need theory as a sound theoretical framework to investigate motivation in relation to 4C/ID.

Self-determination theory

Self-determination theory (SDT; Deci & Ryan, 2000 ) provides a broad framework for the study of motivation and distinguishes three types of motivation: amotivation (a lacking ability to self-regulate with respect to a behaviour), extrinsic motivation (extrinsically motivated behaviours, be they self-determined versus controlled), and intrinsic motivation (the ‘highest form’ of self-determined behaviour) (Deci & Ryan, 2000 ). According to Deci and Ryan ( 2000 , p. 237), intrinsic motivation can be considered “a standard against which the qualities of an extrinsically motivated behavior can be compared to determine its degree of self-determination”. Moreover, the authors (Deci & Ryan, 2000 , p. 237) argue that “extrinsic motivation does not typically become intrinsic motivation”. As the current study focuses on research skills in an academic context in which students did not voluntary chose to learn research skills, and thus learning research skills can be considered instrumental (directed to attaining a goal), the current study focuses on students’ amotivation, and students’ extrinsic motivation, realistically striving for the most self-determined types of extrinsic motivation.

Four types of extrinsic motivation are distinguished by SDT (external regulation, introjection, identification, and integration). These types can be categorized in two overarching types of motivation (autonomous and controlled motivation). Autonomous motivation contains the integrated and identified regulation towards a task (be it because the task is considered interesting, or because the task is considered personally relevant respectively). Controlled motivation refers to the external and introjected regulation towards the task (as a consequence of external or internal pressure respectively) (Vansteenkiste et al., 2009 ). More autonomous types of motivation have been found to be related to more positive cognitive and motivational outcomes (Deci & Ryan, 2000 ).

SDT further maintains that one should consider three innate psychological needs related to students’ motivation. These needs are the need for autonomy, the need for competence, and the need for relatedness. The need for autonomy can be described as the need to experience activities as being “concordant with one’s integrated sense of self” (Deci & Ryan, 2000 , p. 231). The need for competence refers to the need to feel effective when dealing with the environment (Deci & Ryan, 2000 ). The need for relatedness contains the need to have close relationships with others, including peers and teachers (Deci & Ryan, 2000 ). The satisfaction of these needs is hypothesized to be related to more internalization, and thus to more autonomous types of motivation (Deci & Ryan, 2000 ). This relationship has been studied frequently (for a recent overview, see Vansteenkiste et al., 2020 ). Indeed, research established the positive relationships between perceived autonomy (see for example Deci et al., 1996 ), perceived competence (see for example Vallerand & Reid, 1984 ), and perceived relatedness (see for example Ryan & Grolnick, 1986 for a self-report based study) with students’ more positive motivational outcomes. Apart from students’ need satisfaction, several scholars also aim to investigate need frustration as a different notion, as “it involves an active threat of the psychological needs (rather than a mere absence of need satisfaction)” (Vansteenkiste et al., 2020 , p. 9). In what follows, possible operationalizations are defined for the three needs.

Possible operationalizations of autonomy need support found in the literature are: teachers accepting irritation or negative feelings related to aspects of a task perceived as “uninteresting” (Reeve, 2006 ; Reeve & Jang, 2006 ; Reeve et al., 2002 ); providing a meaningful rationale in order to explain the value/usefulness of a certain task and stressing why involving in the task is important or why a rule exists (Deci & Ryan, 2000 ); using autonomy-supportive, inviting language (Deci et al., 1996 ); and allowing learners to regulate their own learning and to work at their own pace (Martin et al., 2018 ). Related to competence support, possible operationalizations are: providing a clear task rationale and providing structure (Reeve, 2006 ; Vansteenkiste et al., 2012 ); providing informational positive feedback after a learning activity (Deci et al., 1996 ; Martin et al., 2018 ; Vansteenkiste et al., 2012 ); providing an indication of progress and dividing content into manageable blocks (Martin et al., 2018 ; Schunk, 2003 ); and evaluating performance by means of previously introduced criteria (Ringeisen & Bürgermeister, 2015 ). Possible operationalizations concerning relatedness support are: teacher’s relational supports (Ringeisen & Bürgermeister, 2015 ); encouraging interaction between course participants and providing opportunities for learners to connect with each other (Butz & Stupnisky, 2017 ; van Merriënboer & Kirschner, 2018 ); using a warm and friendly approach or welcoming learners personally into a course (Martin et al., 2018 ); and offering a platform for learners to share ideas and to connect (Butz & Stupnisky, 2017 ; Martin et al., 2018 ).

In the current research, SDT is selected as a theoretical framework to investigate students’ motivation towards learning research skills, as, in contrast to other more purely goal-directed theories, it includes the concept of innate psychological needs or the Basic Psychological Need Theory (Deci & Ryan, 2000 ; Ryan, 1995 ; Vansteenkiste et al., 2020 ), and it describes the relation between these perceived needs and students’ autonomous motivation: higher levels of perceived needs relate to more autonomous forms of motivation. The inclusion of this need theory is considered an advantage in the case of research skills because research revealed problems of students with respect to both their feelings of competence in relation to research skills (Murtonen, 2005 ), as their feelings of autonomy in relation to research skills (Martin et al., 2018 ), as was indicated in the introduction. As such, fostering students’ psychological needs while learning research skills seems a promising way of fostering students’ motivation towards learning research skills.

4C/ID and SDT

One study (Bastiaens et al., 2017 ) was found to implement need support in 4C/ID based learning environments, comparing a traditional module, a 4C/ID based module and an autonomy supportive 4C/ID based module in a vocational undergraduate education context. Autonomy support was operationalized by means of providing choice to the learners. No main effect of the conditions was found on students’ motivation. Surprisingly, providing autonomy support did also not lead to an increase in students’ autonomy satisfaction. Similarly, no effects were found on students’ relatedness and competence satisfaction. Remarkably, students did qualitatively report positive experiences towards the need support, but this did not reflect in their quantitatively reported need experiences. In a previous study performed in the current research trajectory, Maddens et al. ( under review ) investigated the motivational effects of providing autonomy support in a 4C/ID based online learning environment fostering students’ research skills, compared to a learning environment not providing such support. Autonomy support was operationalized as stressing task meaningfulness to the students. Based on insights from self-determination theory, it was hypothesized that students in the autonomy condition would show more positive motivational outcomes compared to students in the baseline condition. However, results showed that students’ motivational outcomes appeared to be unaffected by the autonomy support. One possible explanation for this unexpected finding was that optimal circumstances for positive motivational outcomes are those that allow satisfaction of autonomy, competence, ánd relatedness support (Deci & Ryan, 2000 ; Niemiec & Ryan, 2009 ), and thus, that the intervention was insufficiently powerful for effects to occur. Autonomy support has often been manipulated in experimental research (Deci et al., 1994 ; Reeve et al., 2002 ; Sheldon & Filak, 2008 ). However, the three needs are rarely simultaneously manipulated (Sheldon & Filak, 2008 ).

Integrated need support

Although not making use of 4C/ID based learning environments, some scholars have focused on the impact of integrated (autonomy, competence and relatedness) need support on learners’ motivation. For example, Raes and Schellens ( 2015 ) found differential effects of a need supportive inquiry environment on upper secondary school students’ motivation: positive effects on autonomous motivation were only found in students in a general track, and not in students in a science track. This indicates that motivational effects of need-supportive environments might differ between tracks and disciplines. However, Raes and Schellens ( 2015 ) did not experimentally manipulate need support, as the learning environment was assumed to be need-supportive and was not compared to a non-need supportive learning environment. Pioneers in manipulating competence, relatedness and autonomy support in one study are Sheldon and Filak ( 2008 ), predicting need satisfaction and motivation based on a game-learning experience with introductory psychology students. Relatedness support (mainly operationalized by emphasizing interest in participants’ experiences in a caring way) had a significant effect on intrinsic motivation. Competence support (mainly operationalized by means of explicating positive expectations) had a marginal significant effect on intrinsic motivation. No main effects on intrinsic motivation were found regarding autonomy support (mainly operationalized by means of emphasizing choice, self-direction and participants’ perspective upon the task). However, as is often the case in motivational research based on SDT, the task at hand was quite straight forward (a timed task in which students try to form as many words as possible from a 4 × 4 letter grid), and thus, the applicability of the findings for providing need support in 4C/ID based learning environments for complex learning might be limited.

In the preceding section, several operationalizations of need support were discussed. Deci and Ryan ( 2000 ) argue that optimal circumstances for positive motivational outcomes are those that allow satisfaction of autonomy, competence, ánd relatedness support. However, such integrated need support has rarely been empirically studied (Sheldon & Filak, 2008 ). In addition, research investigating how need support can be implemented in learning environments based on the 4C/ID model is particularly scarce (van Merriënboer & Kirschner, 2018 ). This study aims to combine insights from instructional design theory for complex learning (van Merriënboer & Kirschner, 2018 ) and self-determination theory (Deci & Ryan, 2000 ) in order to investigate the motivational effects of providing need support in a 4C/ID based learning environment for students’ research skills. A pretest-intervention-posttest design is set up in order to compare 233 upper secondary school behavioral sciences students’ cognitive and motivational outcomes among two conditions: (1) a 4C/ID based online learning environment condition, and (2) an identical condition additively providing support for students’ need satisfaction. The following research questions are answered based on a combination of quantitative and qualitative data (see ‘method’): (1) Does a deliberately designed (4C/ID-based) learning environment improve students’ research skills, as measured by a research skills test and a research skills task? ; ( 2) What is the effect of providing autonomy, competence and relatedness support in a deliberately designed (4C/ID-based) learning environment fostering students’ research skills, on students’ motivational outcomes (i.e. students’ amotivation, autonomous motivation, controlled motivation, students’ perceived value/usefulness, and students’ perceived needs of competence, relatedness and autonomy)? ; (3) What are the relationships between students’ need satisfaction, students’ need frustration, students’ autonomous and controlled motivation and students’ cognitive outcomes (research skills test and research skills task)? ; (4) How do students experience need satisfaction and need frustration in a deliberately designed (4C/ID-based) learning environment? .

The first three questions are answered by means of quantitative data. Since the learning environment is constructed in line with existing instructional design principles for complex learning, we hypothesize that both learning environments will succeed in improving students’ research skills (RQ1). Relying on insights from self-determination theory (Deci & Ryan, 2000 ), we hypothesize that providing need support will enhance students’ autonomous motivation (RQ2). In addition, we hypothesize students’ need satisfaction to be positively related to students’ autonomous motivation (RQ3). These hypotheses on the relationship between students’ needs and students’ motivation rely on Vallerands’ ( 1997 ) finding that changes in motivation can be largely explained by students’ perceived competence, autonomy and relatedness (as psychological mediators). More specifically, Vallerand ( 1997 ) argues that environmental factors (in this case the characteristics of a learning environment) influence students’ perceptions of competence, autonomy, and relatedness, which, in turn, influence students’ motivation and other affective outcomes. In addition, based on the self-determination literature (Deci & Ryan, 2000 ), we expect students’ motivation to be positively related to students’ cognitive outcomes. In order to answer the fourth research question, qualitative data (students’ qualitative feedback on the learning environments) is analysed and categorized based on the need satisfaction and need frustration concepts (RQ4) in order to thoroughly capture the meaning of the quantitative results collected in light of RQ1–3. No hypotheses are formulated in this respect.

Methodology

Participants.

The study took place in authentic classroom settings in upper secondary behavioral sciences classes. In total, 233 students from 12 classes from eight schools in Flanders participated in the study. All participants are 11th or 12th grade students in a behavioral sciences track 2 in general upper secondary education in Flanders (Belgium). Classes were randomly assigned to one out of two experimental conditions. Of all 233 students, 105 students (with a mean age of 16.32, SD 0.90) worked in the baseline condition (of which 62% 11th grade students, 36% 12th grade students, and 2% not determined; and of which 31% male, 68% female, and 1% ‘other’), and 128 students (with a mean age of 16.02, SD 0.59) worked in the need supportive condition (of which 80% 11th grade students, and 20% 12th grade students; and of which 19% male, and 81% female). As the current study did not randomly assign students within classes to one out of the two conditions, this study should be considered quasi-experimental. Full randomization was considered but was not feasible as students worked in the learning environments in class, and would potentially notice the experimental differences when observing their peers working in the learning environment. As such, we argued that this would potentially cause bias in the study. By taking into account students’ pretest scores on the relevant variables (cognitive and motivational outcomes) as covariates, we aimed to adjust for inter-conditional differences. No such differences were found for students’ autonomous motivation t (226) =  − 0.115, p  < 0.909, d  = 0.015, and students’ amotivation t (226) =  − 0.658, p  < 0.511, d  =  − 0.088. However, differences were observed for students’ controlled motivation t (226) =  − 2.385, p  < 0.018, d  =  − 0.318, and students’ scores on the LRST pretest t (225) = − 5.200, p  < 0.001, d  =  − 0.695.

Study design and procedure

In a pretest session of maximum two lesson hours, the Leuven Research Skills Test (LRST, Maddens et al., 2020a ), the Academic Self-Regulation Scale (ASRS, Vansteenkiste et al., 2009 ), and four items related to students’ amotivation (Aydin et al., 2014 ) were administered in class via an online questionnaire, under supervision of the teacher. In the subsequent eight weeks, participants worked in the online learning environment, one hour a week. Out of the 233 participating students, 105 students studied in a baseline online learning environment. The baseline online learning environment 3 is systematically designed using existing instructional design principles for complex learning based on the 4C/ID model (van Merriënboer & Kirschner, 2018 ). All four components of the 4C/ID model were taken into account in the design process: regarding the first component, the learning tasks included real-life, authentic cases. More specifically, tasks were selected from the domains of psychology, educational sciences and sociology. As such, there was a large variety in the cases used in the learning tasks. This large variety in learning tasks is expected to facilitate transfer of learners’ research skills in a wide range of contexts. Furthermore, the tasks were ill-structured and required learners to make judgments, in order to provoke deep learning processes. Regarding the second component, supportive information was provided for complex tasks in the learning environment, such as formulating a research question, where students can consult general information on what constitutes a good research question, can consult examples or demonstrations of this general information, and can receive cognitive feedback on their answers (for example by means of example answers). Examples of the implementation of the third component (procedural information) are the provision of information on how to recognize a dependent and an independent variable by means of on-demand (just-in-time) presentation by means of pop-ups; information on how to use Boolean operators; and information on how to read a graph. To avoid split attention, this kind of information was integrated with the task environment itself (van Merriënboer & Kirschner, 2018 ). Finally, the fourth component, part-task-practice (by means of short tests) was implemented for routine aspects of research skills that should be automated, for example the formulation of a search query.

The remaining participating students ( n  = 128) completed an adapted version of the baseline online learning environment, in which autonomy, relatedness and competence support are provided. In total, need support consisted of 12 implementations (four implementations for each need), based on existing research on need support. An overview of these adaptations can be found in Tables ​ Tables1 1 and ​ and2. 2 . Although, ideally, students would work in class, under supervision of their teacher, this was not possible for all classes, due to the COVID-19 restrictions. 4 As a consequence, some students completed the learning environment partly at home. All students were supervised by their teachers (be it virtually or in class), and the researcher kept track of students’ overall activities in order to be able to contact students who did not complete the main activities. During the last two sessions of the intervention, participants submitted a two-pages long research proposal (“two-pager”). One week after the intervention, the LRST (Maddens et al., 2020a ), the ASRS (Vansteenkiste et al., 2009 ), four items related to students’ amotivation (Aydin et al., 2014 ), the value/usefulness scale (Ryan, 1982 ) and the Basic Psychological Need Satisfaction and Frustration Scale (BPNSNF, Chen et al., 2015 ) were administered in a posttest session of maximum two hours. Although most classes succeeded in organizing this posttest session in class, for some classes this posttest was administered at home. However, all classes were supervised by the teacher (be it virtually or in class). These contextual differences at the test moments will be reflected upon in the discussion section.

Adaptations online learning environment

Support typeImplementationsConcrete operationalizations in the need supportive learning environment
Autonomy supportA1. Providing meaningful rationales in order to explain the value/usefulness of a certain task and stressing why involving in the task is important or why a rule exists (Assor et al., ; Deci et al., ; Deci & Ryan, ; Steingut et al., )

–A1a. Video of a peer (student) stressing value/usefulness of learning environment before starting the learning environment

–A1b. Teacher stressing importance learning environment before starting the learning environment

–A1c. Avatars stressing importance (see Author et al., under review); for example an avatar mentioning ‘After having completed this module, I know how to formulate a research question for example when I am writing a bachelor thesis in my future academic career”

–A1d. 2-pager: adding examples of subjects of peers, in order for the task to feel more familiar

A2. Accepting irritation/acknowledging negative feelings (acknowledgment of aspects of a task perceived as uninteresting) (Reeve & Jang, ; Reeve et al., )

–A2a. Including statements during tasks: “We understand that this might cost an effort, but previous studies proved that students can learn from performing this activity…”

–A2b. At the end of each module: teacher asks about students’ difficulties

A3. Using autonomy-supportive, inviting language (Deci et al., )–A3a. Personal task rationale, for example: “I am curious about how you would tackle this problem.”, systematically implemented in the assignments
A4. Allowing learners to regulate their own learning and to work at their own pace. The use of a non-pressured environment (Martin et al., )–A4a. Adding a statement after each task class: “no need to compare your progress to that of your peers, you can work at your own pace!”
Relatedness supportR1. Teacher’s relational supports (Ringeisen & Bürgermeister, )

–R1a. Before starting the learning environment: stressing that students can contact researcher and teacher

–R1b. Researcher (scientist-mentor) sends motivational messages to the group (on a weekly basis)

R2. Encouraging interaction between course participants; providing opportunities for learners to connect with each other; introducing learning tasks that require group work or learning networks (Butz & Stupnisky, ; van Merriënboer & Kirschner, )

–R2a. Opening every task class: reminding students they can contact the researcher with questions

–R2b. Every task class: one opportunity to share answers in the forum

R3. Using a warm and friendly approach, welcoming learners personally into a course (Martin et al., )–R3a. Personal welcoming message in the beginning of the online learning environment
R4. Offering a platform for learners to share ideas and to connect (Butz & Stupnisky, ; Martin et al., )–R4a. Asking students to post an introduction post in the forum to sum up their expectations of the course (once, in the beginning of the learning environment)
Competence supportC1. Clear task rationale, providing structure (Reeve, ; Vansteenkiste et al., )–Introductory video of researcher explaining what students will learn in the online learning environment
C2. Informational positive feedback after learning activity (Deci et al., ; Martin et al., ; Vansteenkiste et al., )

–Personal short feedback after every task class, formulated in a positive manner

–Adding motivational quotes to example answers: “Thank you for submitting your answer! You will receive feedback at the end of this module, but until then, you can compare your answer to the example answer”

C3. Indication of progress; dividing content into manageable blocks (Martin et al., )–After every task class: ask students to mark their progress
C4. Evaluating performance by means of previously introduced criteria (Ringeisen & Bürgermeister, )

–SAP-chart referring to instructions 2-pager task

–Short guide 2-pager task

Overview instruments

Measured construct(s)InstrumentFormatNumber of itemsInternal consistency reliability/interrater reliabilityWhen administered?
Psychological need frustration and satisfactionBPNSNF-training scale (Chen et al., ; translated version Aelterman et al., )Likert-type items, 5 point scale24 items (4 items per scale)autonomy satisfaction,  = 0.67; ω = 0.67; autonomy frustration,  = 0.76; ω = 0.76; relatedness satisfaction,  = 0.79; ω = 0.79; relatedness frustration,  = 0.60; ω = 0.61; competence satisfaction,  = 0.72; ω = 0.73; competence frustration,  = 0.68; ω = 0.67Post
Experienced value/usefulness of the learning environmentIntrinsic Motivation Inventory (Ryan, )Likert-type items, 7-point scale7 items  = 0.92; ω = 0.92Post
Autonomous and controlled motivationASRS (Vansteenkiste et al., )Likert-type items, 5 point scale16 items (8 items for autonomous motivation, 8 items for controlled motivation

Autonomous motivation:  = 0.91; 0.92; ω = 0.90; 0.92

Controlled motivation:  = 0.83; 0.86; ω = 0.82; 0.85

Pre, post
AmotivationAcademic Motivation Scale for Learning Biology (adapted for the context) (Aydin et al., )Liker-type items, 5 point scale4 items  = 0.80; 0.75; ω = 0.81; 0.75Pre, post
Research skills testLRST (Maddens et al., )Combination of open ended and close ended conceptual and procedural knowledge items, each scored as 0 or 137 items  = 0.79; 0.82; ω = 0.78; ω = 0.80Pre, post
Research skills taskTwo pager task (Author et al., under review)Open ended question (performance assessment), assessed by means of a pairwise comparison technique1 taskInterreliability score = 0.79Post

a When administered at both pretest and posttest level (see ‘procedure’), the internal consistency values are reported respectively

Instruments

In this section, we elaborate on the tests used during the pretest and the posttest. Example items for each scale are presented in Appendix 1.

Motivational outcomes

In the current study, two groups of motivational outcomes are assessed: (1) students’ need satisfaction and frustration, and students’ experiences of value/usefulness; and (2) students’ level of autonomous motivation, controlled motivation, and amotivation. When administered at both pretest and posttest level (see ‘procedure’), the internal consistency values are reported respectively.

The BPNSNF-training scale (The Basic Psychological Need Satisfaction and Frustration Scale, Chen et al., 2015 ; translated version Aelterman et al., 2016 5 ) measured students’ need satisfaction and need frustration while working in the learning environment, and consists of 24 items (four items per scale): (autonomy satisfaction, α  = 0.67; ω = 0.67; autonomy frustration, α  = 0.76; ω = 0.76; relatedness satisfaction, α  = 0.79; ω = 0.79; relatedness frustration, α  = 0.60; ω = 0.61; competence satisfaction, α  = 0.72; ω = 0.73; competence frustration, α  = 0.68; ω = 0.67). The items are Likert-type items ranging from one (not at all true) to five (entirely true). Although the current study focusses mainly on students’ need satisfaction, the scales regarding students’ need frustration are included in order to be able to also detect students’ potential ill-being and in order to detect potential critical issues regarding students’ needs. In addition to the BPNSNF, by means of seven Likert-type items ranging from one (not at all true) to seven (entirely true), the (for the purpose of this research translated) value/usefulness scale of the Intrinsic Motivation Inventory (IMI, Ryan, 1982 ) measured to what extent students valued the activities of the online learning environment ( α  = 0.92; ω = 0.92). Since in the research skills literature problems have been observed related to students’ perceived value/usefulness of research skills (Earley, 2014 ; Murtonen, 2005 ), and this concept is not sufficiently stressed in the BPNSNF-scale, we found it useful to include this value/usefulness scale to the study. The difference in the range of the answer possibilities (one to five vs one to seven) exists because we wanted to keep the range as initially prescribed by the authors of each instrument. All motivational measures are calculated by adding the scores on every item, and dividing this sum score by the number of items on a scale, leading to continuous outcomes. Although the IMI and the BPNSNF targeted students’ experiences while completing the online learning environment, these measures were administered during the posttest. Thus, students had to think retrospectively about their experiences. In order to prevent cognitive overload while completing the online learning environment, these measures were not administered during the intervention itself.

Students’ autonomous and controlled motivation towards learning research skills was measured by means of the Dutch version of the Academic Self-Regulation Scale (ASRS; Vansteenkiste et al., 2009 ), adapted to ‘ research skills ’. The ASRS consists of Likert-type items ranging from one (do not agree at all) to five (totally agree), and contains eight items per subscale (autonomous and controlled motivation). In the autonomous motivation scale, four items are related to identified regulation, and four items are related to intrinsic motivation. 6 In the controlled motivation scale, four items are related to external regulation, and four items are related to introjected regulation. Both scales (autonomous motivation and controlled motivation) indicated good internal consistency for the study’s data (autonomous motivation: α  = 0.91; 0.92; ω = 0.90; 0.92; controlled motivation: α  = 0.83; 0.86; ω = 0.82; 0.85). The items were adapted to the domain under study (motivation to learn about research skills). Based on students’ motivational issues related to research skills, we found it useful to also include a scale to assess students’ amotivation. This was measured with (for the purpose of the current research translated) four items related to students’ amotivation regarding learning research skills, adapted from Academic Motivation Scale for Learning Biology (Aydin et al., 2014 ) ( α  = 0.80; 0.75; ω = 0.81; 0.75). Also this measure consist of Likert-type items ranging from one (do not agree at all) to five (totally agree).

Cognitive outcomes

Students’ research skills proficiency was measured by means of a research skills test (Maddens et al., 2020a ) and a research skills task.

The research skills test used in this study is the LRST (Maddens et al., 2020a ) consisting of a combination of 37 open ended and close ended items ( α  = 0.79; 0.82; ω = 0.78; ω = 0.80 for this data set), administered via an online questionnaire. Each item of the LRST is related to one of the eight epistemic activities regarding research skills as mentioned in the introduction (Fischer et al., 2014 ), and is scored as 0 or 1. The total score on the LRST is calculated by adding the mean subscale scores (related to the eight epistemic activities), and dividing them by eight (the number of scales). In a previous study (Maddens et al., 2020a ), the LRST was checked and found suitable in light of interrater reliability ( κ  = 0.89). As the same researchers assessed the same test with a similar cohort in the current study, the interrater reliability was not calculated for this study.

In the research skills task (“two pager task”), students were asked to write a research proposal of maximum two pages long. The concrete instructions for this research proposal are given in Appendix 1. In this research proposal, students were asked to formulate a research question and its relevance; to explain how they would tackle this research question (method and participants); to explain their hypotheses or expectations; and to explain how they would communicate their results. The two-pager task was analyzed using a pairwise comparison technique, in which four evaluators (i.e. the four authors of this paper) made comparative judgements by comparing two two-pagers at a time, and indicating which two-pager they think is best. All four evaluators are researchers in educational sciences and are familiar with the research project and with assessing students’ texts. This shared understanding and expertise is a prerequisite for obtaining reliable results (Lesterhuis et al., 2018 ). The comparison technique is performed by means of the Comproved tool ( https://comproved.com ). As described by Lesterhuis et al. ( 2018 , p. 18), “the comparative judgement method involves assessing a text on its overall quality. However, instead of requiring an assessor to assign an absolute score to a single text, comparative judgement simplifies the process to a decision about which of two texts is better”. In total, 1635 comparisons were made (each evaluator made 545 comparisons), and this led to a (interrater)reliability score of 0.79. In a next step, these comparative judgements were used to rank the 218 products (15 students did not submit a two-pager) on their quality; and the products were graded based on their ranking. This method was used to grade the two-pagers because it facilitates the holistic evaluation of the tasks, based on the judgement of multiple experts (interrater reliability).

Qualitative feedback

Students’ experiences with the online learning environment were investigated in the online learning environment itself. After completing the learning environment, students were asked how they experienced the tasks, the theory, the opportunity to post answers in the forum and to ask questions via the chat, what they liked or disliked in the online learning environment, and what they disliked in the online learning environment (Fig.  1 ).

An external file that holds a picture, illustration, etc.
Object name is 11251_2022_9606_Fig1_HTML.jpg

Study overview

The first research question (” Does a deliberately designed (4C/ID-based) learning environment improve students’ research skills, as measured by a research skills test and a research skills task?” ) is answered by means of a paired samples t -test in order to look for overall improvements in order to detect potential general trends, followed by a full factorial MANCOVA, as this allows us to investigate the effectiveness for both conditions taking into account students’ pretest scores. Hence, the condition is included as an experimental factor, and students’ scores on the LRST and the two-pager task are included as continuous outcome variables. Students’ pretest scores on the LRST are included as a covariate. Prior to the analysis, a MANCOVA model is defined taking into account possible interaction effects between the experimental factor and the covariate.

The second research question (“ What is the effect of providing autonomy, competence and relatedness support in a deliberately designed (4C/ID-based) learning environment fostering students’ research skills, on students’ motivational outcomes, i.e. students’ amotivation, autonomous motivation, controlled motivation, students’ perceived value/usefulness, and students’ perceived needs of competence, relatedness and autonomy)?”) ;) is answered by means of a full factorial MANCOVA. The condition (need satisfaction condition versus baseline condition) is included as an experimental factor, and students’ responses on the value/usefulness, autonomous and controlled motivation, amotivation, and need satisfaction scales are included as continuous outcome variables. ASRS pretest scores (autonomous and controlled motivation) are included as covariates in order to test the differences between group means, adjusted for students’ a priori motivation. Prior to the analysis, a MANCOVA model is defined taking into account possible interaction effects between the experimental factor and the covariates, and assumptions to be met to perform a MANCOVA are checked. 7

The third research question ( “ What are the relationships between students’ need satisfaction, students’ need frustration, students’ autonomous and controlled motivation and students’ cognitive outcomes (research skills test and research skills task)?” ), is initially answered by means of five multiple regression analyses. The first three regressions include the need satisfaction and frustration scales, and students’ value/usefulness as independent variables, and students’ (1) autonomous motivation, (2) controlled motivation, and (3) amotivation as dependent variables. The fourth and fifth regressions include students’ autonomous motivation, controlled motivation, and amotivation as independent variables, and students’ (4) LRST scores, and (5) scores on the two-pager task as dependent variables. As a follow-up analysis (see ‘ results ’) two additional regression analyses are performed to look into the direct relationships between students’ perceived needs and students’ experienced value/usefulness, with students’ cognitive outcomes (LRST (6) and two-pager (7)). As the goal of this analysis is to investigate the relationships between variables as described in SDT research, this analysis focuses on the full sample, rather than distinguishing between the two conditions. An ‘Enter’ method (Field, 2013 ) is used in order to enter the independent variables simultaneously (in line with Sheldon et al., 2008 ).

The fourth research question (“ How do students experience need satisfaction and need frustration in a deliberately designed (4C/ID-based) learning environment?” ) is analyzed by means of the knowledge management tool Citavi. Based on the theoretical framework, students’ experiences are labeled by the codes ‘autonomy satisfaction, autonomy frustration, competence satisfaction, competence frustration, relatedness satisfaction, and relatedness frustration’. For example, students’ quotes referring to the value/usefulness of the learning environment, are labeled as ‘autonomy satisfaction’ or ‘autonomy frustration’. Students’ references towards their feelings of mastery of the learning content are labeled as ‘competence satisfaction’ or ‘competence frustration’. Students’ quotes regarding their relationships with peers and teachers are labeled as ‘relatedness satisfaction’ or ‘relatedness frustration’ (Fig.  2 ).

An external file that holds a picture, illustration, etc.
Object name is 11251_2022_9606_Fig2_HTML.jpg

Overview variables

Does the deliberately designed (4C/ID based) learning environments improve students’ research skills, as measured by a research skills test and a research skills task?

Paired samples t -test. A paired samples t -test reveals that, in general, students ( n  = 210) improved on the LRST-posttest ( M  = 0.57, SD  = 0.16) compared to the pretest ( M  = 0.51, SD  = 0.15) (range 0–1). The difference between the posttest and the pretest is significant t (209) =  − 8.215, p  < 0.001, d 8  =  − 0.567. The correlation between the LRST pretest and posttest is 0.70 ( p  < 0.010).

MANCOVA. A MANCOVA model ( n  = 196) was defined checking for possible interaction effects between the experimental factor and the covariate in order to control for the assumption of ‘independence of the covariate and treatment effect’ (Field, 2013 ). The covariate LRST pretest did not show significant interaction effects for the two outcome variables LRST post ( p  = 0.259) and the two-pager task ( p  = 0.702). The correlation between the outcome variables (LRST post and two-pager), is 0.28 ( p  < 0.050).

Of all 233 students, 36 students were excluded from the main analysis because of missing data (for example, because they were absent during a pretest or posttest moment). These students were excluded by means of a listwise deletion method because we found it important to use a complete dataset, since, in a lot of cases, students who did not complete the pretest or posttest, did also not complete the entire learning environment. Including partial data for these students could bias the results. The baseline condition counted 86 students, and the need satisfaction condition counted 111 students. Using Pillai’s Trace [ V  = 0.070, F (2,193) = 7.285, p  ≤ 0.001], there was a significant effect of the condition on the cognitive outcome variables, taking into account students’ LRST pretest scores. Separate univariate ANOVAs on the outcome variables revealed no significant effect of the condition on the LRST posttest measure, F (1,194) = 2.45, p  = 0.120. However, a significant effect of condition was found on the two-pager scores, F (1,194) = 13.69, p  < 0.001 (in the baseline group, the mean score was 6,6/20; in the need condition group, the mean score was 7,6/20). It should be mentioned that both scores are rather low.

What is the effect of providing autonomy, competence and relatedness support in a deliberately designed (4C/ID based) learning environment fostering students’ research skills, on students’ motivational outcomes (students’ amotivation, autonomous motivation, controlled motivation, students’ perceived value/usefulness, and students’ perceived needs of competence, relatedness and autonomy)?

Paired samples t -tests. The correlations between students’ pretest and posttestscores for the motivational measures are 0.67 ( p  < 0.010) for autonomous motivation; 0.44 ( p  < 0.010) for controlled motivation, and 0.38 for amotivation ( p  < 0.010). Regarding the differences in students’ motivation, three unexpected findings were observed. Overall, students’ ( n  = 215) amotivation was higher on the posttest ( M  = 2.26, SD  = 0.89) compared to the pretest ( M  = 1.77, SD  = 0.79) (based on a score between 1 and 5). The difference between the posttest and the pretest is significant t (214) =  − 7.69, p  < 0.001, d  =  − 0.524. Further analyses learn that the amotivation means in the baseline group increased with 0.65, and the amotivation in the need support group increased with 0.37. In addition, students’ ( n  = 215) autonomous motivation was higher on the pretest ( M  = 2.81, SD  = 0.81) compared to the posttest ( M  = 2.64, SD  = 0.82). The difference between the posttest and the pretest is significant t (214) = 3.72, p  < 0.001, d  = 0.254. Students’ mean scores on autonomous motivation in the baseline condition decreased with 0.19, and students’ autonomous motivation in the need support condition decreased with 0.15. Students’ ( n  = 215) controlled motivation was higher on the posttest ( M  = 2.33, SD  = 0.75) compared to the pretest ( M  = 1.93, SD  = 0.67). The difference between the posttest and the pretest is significant t (214) =  − 07.72, p  < 0.001, d  =  − 0.527. Students’ controlled motivation in the baseline group increased with 0.36, and students’ controlled motivation in the need support group increased with 0.43. However, overall, all mean scores are and stay below neutral score (below 3), indicating robust low autonomous, controlled and amotivation scores (see Table ​ Table3). 3 ). An independent samples T -test on the mean differences between these measures shows that the increases/decreases on autonomous motivation [ t (213) =  − 0.506, p  = 0.613, d  =  − 0.069] and controlled motivation [ t (213) =  − 0.656, p  = 0.513, d  =  − 0.090] did not differ between the two groups. However, the increases in amotivation [ t (213) = 2.196, p  = 0.029, d  = 0.301] does differ significantly between the two conditions. More specifically, the increase was lower in the need supportive condition compared to the baseline condition.

Mean scores and standard deviations motivational variables

VariableRangeBaseline condition Need supportive condition
Value/usefulness1–75.12; .945.14; 1.14
Autonomy satisfaction1–53.14; .623.13; .62
Autonomy frustration1–52.94; .793; .85
Competence satisfaction1–53.18; .623.19; .58
Competence frustration1–52.77; .742.74; .71
Relatedness satisfaction1–52.73; .802.43; .82
Relatedness frustration1–51.91; .732.43; .65
Autonomous motivation PretestPosttestPretestPosttest
1–52.83; .822.65; .872.81; .812.65; .77
Controlled motivation PretestPosttestPretestPosttest
1–51.82; .662.19; .722.02; .662.45; .76
Amotivation PretestPosttestPretestPosttest*
1–51.74; .722.38; .911.81; .862.18; .87

a Overall, students’ ( n  = 215) autonomous motivation was significantly higher on the pretest compared to the posttest ( t (214) 3.72, p  ≤ 0.001, d  = 0.254

b Students’ (n = 215) controlled motivation was significantly higher on the posttest compared to the pretest ( t (214) =  − 7.72, p  ≤ 0.001, d  =  − 0.527

c Students’ ( n  = 215) amotivation was significantly higher on the posttest compared to the pretest ( t (214) =  − 07,69, p  ≤ 0.001, d  =  − 0.534)

MANCOVA. Of all 233 students, 18 students were excluded from the analysis because of missing data (for example, because they were absent during a pretest or posttest moment). Compared to the cognitive analyses, the amount of missing data is lower concerning motivational outcomes since, concerning the cognitive outcomes, some students did not complete the two-pager task. However, we found it important to use all relevant data and chose to report this is in a clear way. In total, the baseline condition counted 97 students, and the experimental condition counted 118 students. Similar to the analysis for the cognitive outcomes, a MANCOVA model was defined to check for possible interaction effects between the experimental factor and the covariate in order to control for the assumption of ‘independence of the covariate and treatment effect’ (Field, 2013 ). The covariates did not show significant interaction effects for the outcome variables. 9

Using Pillai’s Trace [ V  = 0.113, F (10,201) = 2.558, p  = 0.006], there was a significant effect of condition on the motivational variables, taking into account students’ autonomous and controlled pretest scores, and students’ a priori amotivation. Separate univariate ANOVAs on the outcome variables revealed a significant effect of the condition on the outcome variables amotivation, F (1,210) = 3.98, p  = 0.047; and relatedness satisfaction F (1,210) = 6.41, p  = 0.012. As was hypothesized, students in the need satisfaction group reported less amotivation ( M  = 2.38), compared to students in the baseline group ( M  = 2.18). In contrast to what was hypothesized, students in the need satisfaction group reported less relatedness satisfaction ( M  = 2.43) compared to students in the baseline group ( M  = 2.73), and no significant effects of condition were found on the outcome variables autonomous motivation post, controlled motivation post, value/usefulness, autonomy satisfaction, autonomy frustration, competence satisfaction, competence frustration, and relatedness frustration. Table ​ Table4 4 shows the correlations between the motivational outcome variables.

Correlations motivational outcome variables

AMCMAMOTVUASAFCSCFRSRF
AM1
CM − 0.031
AMOT − 0.21**0.41**1
VU0.66** − 0.07 − 0.36**1
AS0.64** − 0.16** − 0.28**0.60**1
AF − 0.40**0.40**0.35** − 0.41** − 0.58**1
CS0.48** − 0.19** − 0.16*0.46**0.58** − 0.41**1
CF − 0.110.29**0.22** − 0.11 − 0.31**0.41** − 0.52**1
RS0.27** − 0.03 − 0.030.15*0.30** − 0.33**0.29** − 0.19**1
RF − 0.030.19**0.11 − 0.13 − 0.10**0.21***0.25**0.32** − 0.28**1

AM autonomous motivation, CM controlled motivation, AMOT amotivation, VU value/usefulness, AS autonomy satisfaction, AF autonomy frustration, CS competence satisfaction, CF competence frustration, RS relatedness satisfaction, RF relatedness frustration

**Correlation is significant at the 0.010 level (2-tailed)

*Correlation is significant at the 0.050 level (2-tailed)

What are the relationships between students’ need satisfaction, students’ need frustration, students’ autonomous and controlled motivation and students’ cognitive outcomes (research skills test and research skills task)?

The third research question (investigating the relationships between students’ need satisfaction, students’ motivation and students’ cognitive outcomes), is answered by means of five multiple regression analyses. The first three regressions include the need satisfaction and frustration scales, and students value/usefulness as independent variables, and students’ (1) autonomous motivation, (2) controlled motivation, and (3) amotivation as dependent variables ( n  = 219). The fourth and fifth regressions include students’ autonomous motivation, controlled motivation, and amotivation as independent variables, and students’ (4) LRST scores ( n  = 215), and (5) scores on the two-pager task as dependent variables ( n  = 206). Table ​ Table4 4 depicts the correlations for the first three analyses. Table ​ Table5 5 depicts the correlations for the last two analyses.

Correlations motivational and cognitive outcome variables

AMCMAMOTLRSTTwopager
AM1
CM − 0.031
AMOT − 0.21**0.41**1
LRST0.10 − 0.10 − 0.32**1
2pager0.050.70 − 0.110.28**1

AM  autonomous motivation, CM  controlled motivation, AMOT  amotivation, LRST  score on LRST, Twopager  score on Twopager

In Table ​ Table3, 3 , we can see that students in both conditions experience average competence and autonomy satisfaction. However, students’ relatedness satisfaction seems low in both conditions. This finding will be further discussed in the discussion section. For autonomous motivation, a significant regression equation was found F (7,211) = 37.453, p  < 0.001. The regression analysis (see Table ​ Table5) 5 ) further reveals that all three satisfaction scores (competence satisfaction, relatedness satisfaction and autonomy satisfaction) contribute positively to students’ autonomous motivation, as does students’ experienced value/usefulness. Also for students’ controlled motivation a significant regression equation was found F (7,211) = 8.236, p  < 0.001, with students’ autonomy frustration and students’ relatedness satisfaction contributing to students’ controlled motivation. The aforementioned relationships are in line with the expectations. However, we noticed that relatedness satisfaction contributed to students’ controlled motivation in the opposite direction of what was expected (the higher students’ relatedness satisfaction, the lower students’ controlled motivation). This finding will be reflected upon in the discussion section. Also for students’ amotivation, a significant regression equation was found F (7,211) = 7.913, p  < 0.001. Students’ autonomy frustration, competence frustration and students’ value/usefulness contributed to students’ amotivation in an expected way. Also for cognitive outcomes related to the research skills test, a significant regression equation was found F (3,211) = 8.351, p  < 0.001. In line with the expectations, the regression analysis revealed that the higher students’ amotivation, the lower students’ scores on the research skills test. No significant regression equation was found for the outcome variable related to the research skills task F (3,202) = 0.954, p  < 0.416. For all regression equations, the R 2 and the exact regression weights are presented in Table ​ Table6 6 .

Linear model of predictors of autonomous motivation, controlled motivation, amotivation, LRST scores, and two-pager scores with beta values, standard errors, standardized beta values and significance values

RegressionDependent variableIndependent variable (SE)
1 (  = 0.55) AM 0.390.090.300 000*
AF − 0.020.06 − 0.020 691
0.220.090.160 014*
CF0.130.070.110.060
0.110.050.110.026*
RF0.100.060.090.088
0.310.050.400.000*
2 (  = 0.46) CMAS0.070.110.060.521
0.400.070.440.000*
CS − 0.050.11 − 0.040.667
CF0.120.080.110.154
0.130.060.140.035*
RF0.120.070.110.097
VU0.060.060.090.263
3 (  = 0.46)*AMOTAS − 0.040.14 − 0.030.794
0.250.090.230.006*
CS0.240.130.160.072
0.210.100.170.033*
RS0.100.070.090.180
RF0.030.090.030.699
 − 0.260.07 − 0.310.000*
4 (  = 0.33)*LRSTAM0.000.010.020.740
CM0.010.020.040.629
 − 0.060.01 − 0.330.000*
5(  = 0.12)2-pagerAM0.060.140.030.687
CM0.050.160.020.758
AMOT − 0.200.14 − 0.120.137

*Significant at .050 level

As a follow-up analysis and in order to better understand the outcomes, we decided to also look into the direct relationships between students’ perceived needs and students’ experienced value/usefulness, with students’ cognitive outcomes (LRST and two-pager) by means of two additional regression analyses. The motivation behind this decision relates to possible issues regarding the motivational measures used, which might complicate the investigation of indirect relationships (see discussion). The results are provided in Table ​ Table7, 7 , and show that both for the LRST and the two-pager, respectively, a significant [ F (7,207) = 4.252, p  < 0.001] and marginally significant regression weight [ F (7,199) = 2.029, p  = 0.053] was found. More specifically, students’ relatedness satisfaction and students’ perceived value/usefulness contribute to students’ scores on the two-pager and on the research skills test. As one would expect, we see that the higher students’ value/usefulness, the higher students’ scores on both cognitive outcomes. In contrast to one would expect, we found that the higher students’ relatedness satisfaction, the lower students’ scores on the cognitive outcomes. These findings are reflected upon in the discussion section.

Linear model of predictors of LRST scores, and two-pager scores with beta values, standard errors, standardized beta values and significance values

RegressionDependent variableIndependent variable (SE)
6 (  = 0.13) LRSTAS − 0.050.03 − 0.190.055
AF − 0.010.02 − 0.020 783
CS0.030.020.110.239
CF0.010.02 − 0.040.667
 − 0.030.01 − 0.160.025*
RF0.030.020.140.061
0.050.010.330.000*
7  = .07) 2-pagerAS − 0.220.27 − 0.090.413
AF0.070.170.040.667
CS0.020.250.010.936
CF − 0.300.19 − 0.140.116
 − 0.310.14 − 0.170.030*
RF − 0.020.17 − 0.120.906
0.330.130.220.015*

How do students experience need satisfaction and need frustration in a deliberately designed (4C/ID based) learning environment?

As was mentioned in the method section, the fourth research question was analysed by labelling students’ qualitative feedback by the codes ‘autonomy satisfaction, autonomy frustration, competence satisfaction, competence frustration, relatedness satisfaction, and relatedness frustration’. By means of this approach, we could analyse students’ need experiences in a fine grained manner. When students’ quotes were applicable to more than one code, they were labelled with different codes. In what follows, students’ quotes are indicated with the codes “BC” (baseline condition) or “NSC” (need satisfaction condition) in order to indicate which learning environment the student completed. Of all 233 students, 124 students provided qualitative feedback (44 in BC and 80 in NSC). In total, 266 quotes were labeled. Autonomy satisfaction was coded 40 times BC and 41 times in NSC; autonomy frustration was coded 13 times in BC and four times in NSC; competence satisfaction was coded 28 times in BC and 34 times in NSC; competence frustration was coded 31 times in BC and 27 times in NSC; relatedness satisfaction was coded 10 times in BC and 16 times in NSC; and relatedness frustration was coded five times in BC and 17 times in NSC. Several observations could be drawn from the qualitative data.

Related to autonomy satisfaction , in both conditions, several students explicitly mentioned the personal value and usefulness of what they had learned in the learning environment. While in the baseline condition, these references were often vague (“Now I know what people expect from me next year ”; “I think I might use this information in the future ”); some references appeared to be more specific in the need support condition (“I want to study psychology and I think I can use this information!”; “This is a good preparation for higher education and university ”; “I can use this information to write an essay ”; “I think the theory was interesting, because you are sure you will need it once. I don’t always have that feeling during a normal lesson in school”). In addition, students in both conditions mentioned that they found the material interesting, and that they appreciated the online format: “It’s different then just listening to a teacher, I kept interested because of the large variety in exercises and overall, I found it fun” (NSC).

Several comments were coded as ‘ autonomy frustration’ in both conditions. Some students indicated that they found the material “useless” (BC), or that “they did not remember that much” (BC). Others found the material “uninteresting” (BC), “heavy and boring” (NSC) or “not fun” (BC). In addition, some students “did not like to complete the assignments” (NSC), or “prefer a book to learn theory” (NSC).

Related to competence satisfaction , students in both conditions found the material “clear” (BC, NSC). In addition, students’ appreciated the example answers, the difficulty rate (“Some exercises were hard, but that is good. That’s a sign you’re learning something new” (NSC)), and the fact that the theory was segmented in several parts. In addition, students recognized that the material required complex skills: “I learned a lot, you had to think deeper or gain insights in order to solve the exercises” (NSC), “you really had to think to complete the exercises” (NSC). In the need satisfaction group, several quotes were labelled related to the specific need support provided. For example, students indicated that they appreciated the forum option: “If something was not clear, you could check your peer’s answers” (NSC). Students also valued the fact that they could work at their own pace: “I found it very good that we could solve everything at our own pace” (NSC); “good that you could choose your own pace, and if something was not clear to you, you could reread it at your own pace” (NSC). In addition, students appreciated the immediate feedback provided by the researcher “I found it very good that we received personal feedback from xxx (name researcher). That way, I knew whether I understood the theory correctly” (NSC); and the fact that they could indicate their progress “It was good that you could see how far you proceeded in the learning environment” (NSC).

In both the baseline and the need supportive condition, there were also several comments related to competence frustration . For example, students found exercises vague, unclear or too difficult. While students, overall, understood the theory provided, applying the theory to an integrative assignment appears to be very difficult: “I did understand the several parts of the learning environment, but I did not succeed in writing a research proposal myself” (NSC). “I just found it hard to respond to questions. When I had to write my two-pager research proposal, I really struggled. I really felt like I was doing it entirely wrong” (NSC)). In addition, a lot comments related to the fact that the theory was a lot to process in a short time frame, and therefore, students indicated that it was hard to remember all the theory provided. In addition, this led pressure in some students: “Sometimes, I experiences pressure. When you see that your peers are finished, you automatically start working faster.” (BC).

Concerning relatedness satisfaction , in the baseline condition, students appreciated the chat function “you could help each other and it was interesting to hear each other’s opinions about the topics we were working on” (BC). However, most students indicated that they did not make use of the chat or forum options. In the need satisfaction condition, students appreciated the forum and the chat function: “You knew you could always ask questions. This helped to process the learning material” (NSC), “My peers’ answers inspired me” (NSC), “Thanks to the chat function, I felt more connected to my peers” (NSC). In addition, students in the need satisfaction condition appreciated the fact that they could contact the researcher any time.

Several students made comments related to relatedness frustration . In both groups, students missed the ‘live teaching’: “I tried my best, but sometimes I did not like it, because you do not receive the information in ‘real time’, but through videos” (BC). In addition, students missed their peers: “We had to complete the environment individually” (BC). While some students appreciated the opportunity of a forum, other students found this possibility stressful: “I think the forum is very scary. I posted everything I had to, but I found it very scary that everyone can see what you post” (NSC). Others did not like the fact that they needed to work individually: “Sometimes I lost my attention because no one was watching my screen with me” (NSC); “I found it hard because this was new information and we could not discuss it with each other” (NSC); “I felt lonely” (NSC); “It is hard to complete exercises without the help of a teacher. In the future this will happen more often, so I guess I will have to get used to it” (NSC); “When I see the teacher physically, I feel less reluctant to ask questions” (NSC).

The current intervention study aimed at exploring the motivational and cognitive effects of providing need support in an online learning environment fostering upper secondary school students’ research skills. More specifically, we investigated the impact of autonomy, competence and relatedness support in an online learning environment on students’ scores on a research skills test, a research skills task, students’ autonomous motivation, controlled motivation, amotivation, need satisfaction, need frustration, and experienced value/usefulness. Adopting a pretest-intervention-posttest design approach, 233 upper secondary school behavioral sciences students’ motivational outcomes were compared among two conditions: (1) a 4C/ID inspired online learning environment condition (baseline condition), and (2) a condition with an identical online learning environment additively providing support for students’ autonomy, relatedness and competence need satisfaction (need supportive condition). This study aims to contribute to the literature by exploring the integration of need support for all three needs (the need for competence, relatedness and autonomy) in an ecologically valid setting. In what follows, the findings are discussed taking into account the COVID-19 affected circumstances in which the study took place.

As was hypothesized based on existing research (Costa et al., 2021 ), results showed significant learning gains on the LRST cognitive measure in both conditions, pointing out that the learning environments in general succeeded in improving students’ research skills. The current study did not find any significant differences in these learning gains between both conditions. Controlling for a priori differences between the conditions on the LRST pretest measure, students in the need support condition did exceed students in the baseline condition on the two-pager task. However, overall, the scores on the research skills task were quite low, pointing to the fact that students still seem to struggle in writing a research proposal. This task can be considered more complex (van Merriënboer & Kirschner, 2018 ) than the research skills test, as students are required to combine their conceptual and procedural knowledge in one assignment. Indeed, in the qualitative feedback, students indicate that they understand the theory and are able to apply the theory in basic exercises, but that they struggle in integrating their knowledge in a research proposal. Future research could set up more extensive interventions explicitly targeting students’ progress while writing a research proposal, for example using development portfolios (van Merriënboer et al., 2006 ).

The effect of the intervention on the motivational outcome measures was investigated. Since we experimentally manipulated need support, this study hypothesized that students in the need supportive condition would show higher scores for autonomous motivation, value/usefulness and need satisfaction; and lower scores for controlled motivation, amotivation and need frustration compared to students in the baseline condition (Deci & Ryan, 2000 ). However, the analyses showed that students in the conditions did not differ on the value/usefulness, autonomy satisfaction, autonomy frustration, competence satisfaction, competence frustration and relatedness frustration measures. In contrast to what was hypothesized, students’ in the baseline condition reported higher relatedness satisfaction compared to students in the need supportive condition. No differences were found in students’ autonomous motivation and controlled motivation. However, as was expected, students in the need supportive conditions did report lower levels of amotivation compared to students in the baseline condition. Still, for the current study, one could question the role of the need support in this respect, as the current intervention did not succeed in manipulating students’ need experiences. In what follows, possible explanations for these findings are outlined in light of the existing literature.

Need experiences

A first observation based on the findings as described above is that the intervention did not succeed in manipulating students’ need satisfaction, need frustration and value/usefulness in an expected way. One effect was found of condition on relatedness satisfaction, but in the opposite direction of what was expected. We did not find a conclusive explanation for this unanticipated finding, but we do argue that the COVID-19 related measures at play during the intervention could have impacted this result. This will be reflected upon later in this discussion (limitations). In both conditions, students seem to be averagely satisfied regarding autonomy and competence in the 4C/ID based learning environments. This might be explained by the fact that 4C/ID based learning environments inherently foster students’ perceived competence because of the attention for structure and guidance, and the fact that the use of authentic tasks can be considered autonomy supportive (Bastiaens & Martens, 2007). However, we see that students experience low relatedness satisfaction in both conditions. The fact that the learning environment was organized entirely online might have influenced this result. While one might also partly address this low relatedness satisfaction to the COVID-19 circumstances at play during the study, this hypothetical explanation does not hold entirely since also in a previous non COVID-affected study in this research trajectory (Maddens et al., under review ), students’ relatedness satisfaction was found to be low. This finding, combined with findings from students’ qualitative feedback clearly indicating relatedness frustration, we argue that future research could focus on the question as how to provide need for relatedness support in 4C/ID based learning environments. On a more general level, this raises the question how opportunities for discussions and collaboration can be included in 4C/ID based learning environments. For example, organizing ‘real classroom interactions’ or performing assignments in groups (see also the suggestion of van Merriënboer & Kirschner, 2018 ), might be important in fostering students’ relatedness satisfaction (Salomon, 2002 ) . As argued by Wang et al. ( 2019 ), relatedness support is clearly understudied, for a long time often even ignored, in the SDT literature. Recently, relatedness is beginning to receive more attention, and has been found a strong predictor of autonomous motivation in the classroom (Wang et al., 2019 ).

Possibly, the need support provided in the learning environment was insufficient or inadequate to foster students’ need experiences. However, as the implementations were based on the existing literature (Deci & Ryan, 2000 ), this finding can be considered surprising. In addition, we derive from the qualitative feedback that students seem to value the need support provided in the learning environment. These contradictory observations are in line with previous research (Bastiaens et al., 2017 ), and call for further investigation.

Autonomous motivation, controlled motivation, amotivation

A second observation is that, in both conditions, students seem to hold low autonomous motivation and low controlled motivation towards learning research. On average, also students’ amotivation is low. The fact that students are not amotivated to learn about research can be considered reassuring. However, the fact that students experience low autonomous motivation causes concerns, as we know this might negatively impact their learning behavior and intentions to learn (Deci & Ryan, 2000 ; Wang et al., 2019 ). However, this result is based on mean scores. Future research might look at these results at student level, in order to identify individual motivational profiles (Vansteenkiste et al., 2009 ) and their prevalence in upper secondary behavioral sciences education.

A third observation is that students’ autonomous and controlled motivation were not affected by the intervention. Since the intervention did not succeed in manipulating students’ need experiences, this finding is not surprising. In addition, this is in line with Bastiaens et al.’ ( 2017 ) study, not finding motivational effects of providing need support in 4C/ID based learning environments. However, the current study did confirm that—although still higher than at pretest level, see below—students in the need supportive condition reported lower amotivation compared to students in the baseline condition. As no amotivational differences were observed at pretest level, this might indicate that students’ self-reported motivation (autonomous and controlled motivation) and/or needs do not align with students’ experienced motivation and needs. As was mentioned, this calls for further research.

Theoretical relationships

In line with previous research (Wang et al., 2019 ), multiple regression analyses revealed that students’ need satisfaction (on all three measures) contributed positively to students’ autonomous motivation. In addition, also students’ perceived value/usefulness contributed positively to students’ autonomous motivation. Students’ competence frustration and autonomy frustration contributed positively to students’ amotivation, and students’ value/usefulness contributed negatively to students’ amotivation. Students’ autonomy frustration contributed positively to students’ controlled motivation. While all the aforementioned relationships are in line with the expectations (Deci & Ryan, 2000 ; Wang et al., 2019 ), an unexpected finding is that students’ relatedness satisfaction contributed positively to students’ controlled motivation. This contradicts previous research (Wang et al., 2019 ), reporting that relatedness contributes to controlled motivation negatively. However, previous research (Wang et al., 2019 ) did find controlled motivation to be positively related to pressure . Although we did not find a conclusive explanation for this unanticipated finding, one possible reason thus is that students who contacted their peers in the online learning environment (and thus felt more related to their peers), might have experienced pressure because they felt like their peers worked faster or in a different way. Indeed, in the qualitative feedback, we noticed that some students indicated they ‘rushed’ through the online learning environment because they noticed a peer working faster. This finding calls for further research.

Overall, the results indicate that the observed need variables contributed most to students’ autonomous motivation, compared to (reversed relationships in) students’ amotivation and students’ controlled motivation. As such, when targeting students’ motivation, fostering students’ autonomous motivation based on students’ need experiences seems most promising. This is in line with previous research (Wang et al., 2019 ) reporting high correlations between students’ needs and students’ autonomous motivation, compared to students’ controlled motivation. We also investigated the relationships between students’ motivation and students’ cognitive outcomes. In line with a previously conducted study in this research trajectory (Maddens et al., under review ), but in contrast to what was hypothesized based on the existing literature (Deci & Ryan, 2000 ; Grolnick et al., 1991 ; Reeve, 2006 ) we found that nor students’ autonomous motivation, nor students’ controlled motivation contributed to students’ scores on the research skills test. However, we did find that students’ amotivation contributed negatively to students’ LRST scores. As such, when targeting students’ cognitive outcomes in educational programs, one might pay explicit attention to preventing amotivation. This is in line with previous research conducted in other domains, reporting that amotivation plays an important role in predicting mathematics achievement (Leroy & Bressoux, 2016 ), while this relationship was not found in other motivation types. Related to research skills, the current research suggests that preventing competence frustration and autonomy frustration, and fostering students’ experiences of value/usefulness might be especially promising to reach this goal.

Initially, we did not plan any analyses investigating the direct relationships between students’ needs and students’ cognitive outcomes, partly because previous research (Vallerand & Losier, 1999 ) suggests that the relationships between need satisfaction and (cognitive) outcomes are mediated by the types of motivation. To this end, we investigated the relationships between students’ needs and students’ motivation, separately from the relationships between students’ motivation and students’ cognitive outcomes. However, because of potential issues with the motivational measures (see earlier), which possibly hampers the interpretation of the relationships between students’ needs, students’ motivation, and students’ cognitive outcomes, we decided to also directly assess the regression weights of students’ needs and students’ perceived value/usefulness, on students’ cognitive outcomes. Results revealed that, in line with the expectations, students’ perceived value/usefulness contributed positively to students’ LRST scores and two-pager scores, which potentially stresses the importance of value/usefulness, not only for motivational purposes, but also for cognitive purposes. This is in line with previous research (Assor et al., 2002 ), establishing relationships between fostering relevance and students’ behavioral and cognitive engagement (which potentially leads to better cognitive outcomes). In contrast to the expectations, students’ relatedness satisfaction was found to be negatively related to students’ scores on the LRST and the two-pager. However, again, this surprising finding is best interpreted in light of the COVID-10 pandemic (see earlier).

Limitations

This study faced some reliability issues given the time frame in which the study took place. Due to the COVID-19-restrictions at play at the time of study, the study plan needed to be revised several times in collaboration with teachers in order to be able to complete the interventions. In addition, it is very likely that students’ motivation (and relatedness satisfaction) was influenced by the COVID 19-restrictions. For example, due to the restrictions, in the last phase of the intervention, students could only be present at school halftime, and therefore, some students worked from home while others worked in the classroom. In the qualitative feedback, students reported several COVID-19 related frustrations (it was too cold in class because teachers were obligated to open the windows; students needed to frequently disinfect their computers…). Also the teachers mentioned that students suffered from low well-being during the COVID-19 time frame (see further), and as such, this affected their motivation. Although all efforts were undertaken in order for the study to take place as controlled as possible, results should be interpreted in light of this time frame. The impact of the COVID-19 pandemic on students’ self-reported motivation has been established in recent research (Daniels et al., 2021 ). Overall, one could question to what extent we can expect an intervention at microlevel (manipulating need support in learning environments) to work, when the study takes place in a time frame where students’ need experiences are seriously threatened by the circumstances.

Decreasing motivation

Students’ motivation evolved in a non-desirable way in both conditions. This unexpected finding (decreasing motivation) might be explained by four possible reasons: a first explanation is that asking students to fill out the same questionnaire at posttest and pretest level might lead to frustration and lower reported motivation (Kosovich et al., 2017 ). Indeed, students spent a lot of time working in the online learning environment, so filling out another motivational questionnaire on top of the intervention might have added to the frustration (Kosovich et al., 2017 ). A second explanation is that students’ motivation naturally declines over time (which is a common finding in the motivational literature, Kosovich et al., 2017 ). A third explanation is that students, indeed, felt less motivated towards research skills after having completed the online learning environment. For example, the qualitative data indicated that a lot of students acknowledged the fact that the learning environment was useful, but that personally, they were not interested in learning the material. In addition, students indicated that the learning material was a lot to process in a short time frame, and was new to them, which might have negatively impacted their motivation. The latter (students indicating that the learning material was extensive) might indicate that students experienced high cognitive load (Paas & van Merriënboer, 1994; Sweller et al., 1994 ) while completing the learning environment. A fourth explanation is that, due to the COVID19-restrictions, students lost motivation during the learning process. A post-intervention survey in which we asked teachers about the impact of the COVID-19 restrictions on students’ motivation indicated that some students experienced low well-being during the COVID-19 pandemic, and thus, this might have hampered their motivation to learn. In addition, a teacher mentioned that COVID-19 in general was very demotivating for the students, and that students had troubles concentrating due to the fact they felt isolated. As was mentioned, the impact of COVID-19 on students’ motivation has been well described in the literature (Daniels et al., 2021 ). Although, in the current study, we cannot prove the impact of these measures on students’ motivation specifically towards learning research skills, it is important to take this context into account when interpreting the results.

Students’ learning behavior

Based on students’ qualitative feedback, we have reasons to believe that students did not always work in the learning environment as we would want them to do. Thus, students did not interact with the need support in the intended way (‘instructional disobedient behavior’: Elen, 2020 ). For example, several students reported that they did not always read all the material, did not make use of the forum, or did not notice certain messages from the researcher. However, the current research did not specifically look into students’ learning behavior in the learning environment. In learning environments organized online, future researchers might want to investigate students’ online behavior in order to gain insights in students’ interactions with the learning environment.

This study aims to contribute to theory and practice. Firstly, this study defines the 4C/ID model (van Merriënboer & Kirschner, 2018 ) as a good theoretical framework in order to design learning environments aiming to foster students’ research skills. However, this study also points to students’ struggling in writing a research proposal, which might lead to more specific intervention studies especially focussing on monitoring students’ progress while performing such tasks. Secondly, this study clearly elaborates on the operationalizations of need support used, and as such, might inform instructional designers in order to implement need support in an integrated manner (including competence, relatedness and autonomy support). Future interventions might want to track and monitor students’ learning behavior in order for students to interact with the learning environment as expected (Elen, 2020 ). Thirdly, this study established theoretical relationships between students’ needs, motivation and cognitive outcomes, which might be useful information for researchers aiming to investigate students’ motivation towards learning research skills in the future. Based on the findings, future researchers might especially involve in research fostering students’ autonomous motivation by means of providing need support; and avoiding students’ amotivation in order to enhance students’ cognitive outcomes. Suggestions are made based on the need support and frustration measures relating to these motivational and cognitive outcomes. For example, fostering students’ value/usefulness seems promising for both cognitive and motivational outcomes. Fourthly, although we did not succeed in manipulating students’ need experiences, we did gain insights in students’ experiences with the need support by means of the qualitative data. For example, the irreplaceable role of teachers in motivating students has been exposed. This study can be considered innovative because of its aim to inspect both students’ cognitive and motivational outcomes after completing a 4C/ID based educational program (van Merriënboer & Kirschner, 2018 ). In addition, this study implements integrated need support rather than focusing on a single need (Deci & Ryan, 2000 ; Sheldon & Filak, 2008 ).

Acknowledgements

This study was carried out within imec’s Smart Education research programme, with support from the Flemish government.

Appendix: Overview test instruments

External regulationBecause that’s what others (e.g., parents, friends) expect from me
Introjected regulationBecause I want others to think I’m smart
Identified regulationBecause it’s personally important to me
Intrinsic motivationBecause I think it is interesting
AmotivationTo be honest, I don’t see any reason for learning about research skills
Value/UsefulnessI believe completing this learning environment could be of some value to me
Autonomy satisfactionWhile completing the learning environment, I felt a sense of choice and freedom in the things I thought and did

An external file that holds a picture, illustration, etc.
Object name is 11251_2022_9606_Figa_HTML.jpg

  • Instructions 2-pager (Maddens, Depaepe, Raes, & Elen, under review)

Write a research proposal for a fictional study.

In a Word-document of maximum two pages…

  • You describe a research question and the importance of this research question
  • You explain how you would answer this research question (manner of data collection and target group)
  • You explain what your expectations are, and how you will report your results.

To do so, you receive 2 hours.

Post your research proposal here.

Good luck and thank you for your activity in the RISSC-environment!

Declarations

The authors declare that they have no conflict of interest.

All ethical and GDPR-related guidelines were followed as required for conducting human research and were approved by SMEC (Social and Societal Ethics Committee).

1 Fischer et al. ( 2014 ) refer to these research skills as scientific reasoning skills.

2 In Flanders, during the time of study, four different types of education are offered from the second stage of secondary education onwards (EACEA, 2018) (general secondary education, technical secondary education, secondary education in the arts and vocational secondary education). Behavioral sciences is a track in general secondary education.

3 For a complete overview on the design and the evaluation of this learning environment, see Maddens et al ( 2020b ).

4 During the time of study, the COVID-19 restrictions became more strict: students in upper secondary education could only come to school half of the time. Therefore, some students completed the last modules of the learning environment at home.

5 The BPNSNF-training scale is initially constructed to evaluate motivation related to workshops. The phrasing was adjusted slightly in order for the suitability for the current study. For example, we changed the wording ‘during the past workshop…’ to ‘while completing the online learning environment…’.

6 In the current study, we would label the items categorized as ‘intrinsic motivation’ in ASRS (finding something interesting, fun, fascinating or a pleasant activity) as ‘integration’. In SDT (Deci & Ryan, 2000 ; Deci et al., 2017 ), integration is described as being “fully volitional”, or “wholeheartedly engaged”, and it is argued that fully internalized extrinsic motivation does not typically become intrinsic motivation, but rather remains extrinsic even though fully volitional (because it is still instrumental). In the context of the current study, in which students learn about research skills because this is instructed (thus, out of instrumental motivations), we think that the term integration is more applicable than pure intrinsic motivation in self-initiated contexts (which can be observed for example in children’s play or in sports).

7 Levene’s test for homogeneity of variances was significant for the outcome “two-pager”. However, we continued with the analyses since the treatment group sizes are roughly equal, and thus, the assumption of homogeneity of variances does not need to be considered (Field, 2013 ). Levene’s test for homogeneity of variances was non-significant for all the other outcome measures.

8 Cohen’s D is calculated in SPSS by means of the formula: D = M 1 - M 2 Sp

Condition x autonomous motivation pretest Value/usefulness: p  = 0.251; autonomous motivation: p  = 0.269; controlled motivation: p  = 0.457; amotivation: p  = 0.219; autonomy satisfaction: p  = 0.794; autonomy frustration: p  = 0.096; competence satisfaction: p  = 0.682; competence frustration: p  = 0.699; relatedness satisfaction: p  = 0.943; relatedness frustration: p  = 0.870.

Condition x controlled motivation pretest Value/usefulness: p  = 0.882; autonomous motivation: p  = 0.270; controlled motivation: p  = 0.782; amotivation: p  = 0.940; autonomy satisfaction: p  = 0.815; autonomy frustration: p  = 0.737; competence satisfaction: p  = 0.649; competence frustration: p  = 0.505; relatedness satisfaction: p  = 0.625; relatedness frustration: p  = 0.741.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

  • Aelterman N, Vansteenkiste M, Van Keer H, Haerens L. Changing teachers' beliefs regarding autonomy support and structure: The role of experienced psychological need satisfaction in teacher training. Psychology of Sport and Exercise. 2016; 23 :64–72. doi: 10.1016/j.psychsport.2015.10.007. [ CrossRef ] [ Google Scholar ]
  • Assor A, Kaplan H, Roth G. Choice is good, but relevance is excellent: Autonomy-enhancing and suppressing teacher behaviours predicting students' engagement in schoolwork. British Journal of Educational Psychology. 2002; 72 (2):261–278. doi: 10.1348/000709902158883. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Aydın S, Yerdelen S, Yalmancı SG, Göksu V. Academic motivation scale for learning biology: A scale development study. Education & Science/Egitim Ve Bilim. 2014; 39 (176):425–435. doi: 10.15390/EB.2014.3678. [ CrossRef ] [ Google Scholar ]
  • Bastiaens E, van Merriënboer J, van Tilburg J. Research-based learning: Case studies from Maastricht University. Springer; 2017. Three educational models for positioning the Maastricht research-based learning programme; pp. 35–41. [ Google Scholar ]
  • Braguglia KH, Jackson KA. Teaching research methodology using a project-based three course sequence critical reflections on practice. American Journal of Business Education (AJBE) 2012; 5 (3):347–352. doi: 10.19030/ajbe.v5i3.7007. [ CrossRef ] [ Google Scholar ]
  • Butz NT, Stupnisky RH. Improving student relatedness through an online discussion intervention: The application of self-determination theory in synchronous hybrid programs. Computers & Education. 2017; 114 :117–138. doi: 10.1016/j.compedu.2017.06.006. [ CrossRef ] [ Google Scholar ]
  • Chen B, Vansteenkiste M, Beyers W, Boone L, Deci EL, Van der Kaap-Deeder J, Verstuyf J. Basic psychological need satisfaction, need frustration, and need strength across four cultures. Motivation and Emotion. 2015; 39 (2):216–236. doi: 10.1007/s11031-014-9450-1. [ CrossRef ] [ Google Scholar ]
  • Chi MT. Active-constructive-interactive: A conceptual framework for differentiating learning activities. Topics in Cognitive Science. 2009; 1 (1):73–105. doi: 10.1111/j.17568765.2008.01005.x. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Cook DA, McDonald FS. E-learning: Is there anything special about the" e"? Perspectives in Biology and Medicine. 2008; 51 (1):5–21. doi: 10.1353/pbm.2008.0007. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Costa JM, Miranda GL, Melo M. Four-component instructional design (4C/ID) model: A meta-analysis on use and effect. Learning Environments Research. 2021 doi: 10.1007/s10984-021-09373-y. [ CrossRef ] [ Google Scholar ]
  • Daniels LM, Goegan LD, Parker PC. The impact of COVID-19 triggered changes to instruction and assessment on university students’ self-reported motivation, engagement and perceptions. Social Psychology of Education. 2021; 24 (1):299–318. doi: 10.1007/s11218-021-09612-3. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • de Jong T. Scaffolds for scientific discovery learning. In: Elen J, Clark RE, editors. Handling complexity in learning environments: Theory and research. Emerald Group Publishing Limited; 2006. pp. 107–128. [ Google Scholar ]
  • de Jong T, van Joolingen WR. Scientific discovery learning with computer simulations of conceptual domains. Review of Educational Research. 1998; 68 (2):179–201. doi: 10.3102/00346543068002179. [ CrossRef ] [ Google Scholar ]
  • Deci EL, Eghrari H, Patrick BC, Leone DR. Facilitating internalization: The self-determination theory perspective. Journal of Personality. 1994; 62 :119–142. doi: 10.1111/j.1467-6494.1994.tb00797.x. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Deci EL, Olafsen AH, Ryan RM. Self-determination theory in work organizations: The state of a science. Annual Review of Organizational Psychology and Organizational Behavior. 2017; 4 :19–43. doi: 10.1146/annurev-orgpsych-032516-113108. [ CrossRef ] [ Google Scholar ]
  • Deci EL, Ryan RM. The" what" and" why" of goal pursuits: Human needs and the self-determination of behavior. Psychological Inquiry. 2000; 11 (4):227–268. doi: 10.1207/S15327965PLI1104_01. [ CrossRef ] [ Google Scholar ]
  • Deci EL, Ryan RM, Williams GC. Need satisfaction and the self-regulation of learning. Learning and Individual Differences. 1996; 8 (3):165–183. doi: 10.1016/S1041-6080(96)90013-8. [ CrossRef ] [ Google Scholar ]
  • Earley MA. A synthesis of the literature on research methods education. Teaching in Higher Education. 2014; 19 (3):242–253. doi: 10.1080/13562517.2013.860105. [ CrossRef ] [ Google Scholar ]
  • Elen J. “Instructional disobedience”: A largely neglected phenomenon deserving more systematic research attention. Educational Technology Research and Development. 2020; 68 (5):2021–2032. doi: 10.1007/s11423-020-09776-3. [ CrossRef ] [ Google Scholar ]
  • Engelmann K, Neuhaus BJ, Fischer F. Fostering scientific reasoning in education: Meta-analytic evidence from intervention studies. Educational Research and Evaluation. 2016; 22 (5–6):333–349. doi: 10.1080/13803611.2016.1240089. [ CrossRef ] [ Google Scholar ]
  • Field A. Discovering statistics using IBM SPSS statistics. SAGE Publications; 2013. [ Google Scholar ]
  • Fischer F, Chinn CA, Engelmann K, Osborne J. Scientific reasoning and argumentation. Routledge; 2018. [ Google Scholar ]
  • Fischer F, Kollar I, Ufer S, Sodian B, Hussmann H, Pekrun R, Neuhaus B, Dorner B, Pankofer S, Fischer M, Strijbos J-W, Heene M, Eberle J. Scientific reasoning and argumentation: Advancing an interdisciplinary research agenda in education. Frontline Learning Research. 2014; 4 :28–45. doi: 10.14786/flr.v2i2.96. [ CrossRef ] [ Google Scholar ]
  • Grolnick WS, Ryan RM, Deci EL. Inner resources for school achievement: Motivational mediators of children's perceptions of their parents. Journal of Educational Psychology. 1991; 83 (4):508–517. doi: 10.1037/0022-0663.83.4.508. [ CrossRef ] [ Google Scholar ]
  • Kosovich JJ, Hulleman CS, Barron KE. Measuring motivation in educational settings: A Case for pragmatic measurement. In: Renninger KA, Hidi SE, editors. The Cambridge handbook on motivation and learning. Cambridge University Press; 2017. pp. 39–60. [ Google Scholar ]
  • Lehti S, Lehtinen E. Computer-supported problem-based learning in the research methodology domain. Scandinavian Journal of Educational Research. 2005; 49 (3):297–324. doi: 10.1080/00313830500109618. [ CrossRef ] [ Google Scholar ]
  • Leroy N, Bressoux P. Does amotivation matter more than motivation in predicting mathematics learning gains? A longitudinal study of sixth-grade students in France. Contemporary Educational Psychology. 2016; 44 :41–53. doi: 10.1016/j.cedpsych.2016.02.001. [ CrossRef ] [ Google Scholar ]
  • Lesterhuis M, van Daal T, van Gasse R, Coertjens L, Donche V, de Maeyer S (2018) When teachers compare argumentative texts: Decisions informed by multiple complex aspects of text quality. L1 Educational Studies in Language and Literature, 18: 1–22. 10.17239/L1ESLL-2018.18.01.02
  • Maddens L, Depaepe F, Janssen R, Raes A, Elen J. Evaluating the Leuven research skills test for 11th and 12th grade. Journal of Psychoeducational Assessment. 2020; 38 (4):445–459. doi: 10.1177/0734282918825040. [ CrossRef ] [ Google Scholar ]
  • Maddens L, Depaepe F, Raes A, Elen J. The instructional design of a 4C/ID-inspired learning environment for upper secondary school students' research skills. International Journal of Designs for Learning. 2020; 11 (3):126–147. doi: 10.14434/ijdl.v11i3.29012. [ CrossRef ] [ Google Scholar ]
  • Maddens, L., Depaepe, F., Raes, A., & Elen, J. (under review). Fostering students’ motivation towards learning research skills in upper secondary school behavioral sciences education: the role of autonomy support.
  • Martin N, Kelly N, Terry P. A framework for self-determination in massive open online courses: Design for autonomy, competence, and relatedness. Australasian Journal of Educational Technology. 2018 doi: 10.14742/ajet.3722. [ CrossRef ] [ Google Scholar ]
  • Merrill MD. First principles of instruction. Educational Technology Research and Development. 2002; 50 (3):43–59. doi: 10.1007/BF02505024. [ CrossRef ] [ Google Scholar ]
  • Murtonen, M. S. S. (2005). Learning of quantitative research methods: University students' views, motivation and difficulties in learning. Doctoral Dissertation.
  • Niemiec CP, Ryan RM. Autonomy, competence, and relatedness in the classroom: Applying self-determination theory to educational practice. Theory and Research in Education. 2009; 7 (2):133–144. doi: 10.1177/2F1477878509104318. [ CrossRef ] [ Google Scholar ]
  • Pietersen C. Research as a learning experience: A phenomenological explication. The Qualitative Report. 2002; 7 (2):1–14. doi: 10.46743/2160-3715/2002.1980. [ CrossRef ] [ Google Scholar ]
  • Raes A, Schellens T. Unraveling the motivational effects and challenges of web-based collaborative inquiry learning across different groups of learners. Educational Technology Research and Development. 2015; 63 (3):405–430. doi: 10.1007/s11423-015-9381-x. [ CrossRef ] [ Google Scholar ]
  • Reeve J. Extrinsic rewards and inner motivation. In: Evertson CM, Weinstein CS, editors. Handbook of classroom management: Research, practice, and contemporary issues. Lawrence Erlbaum Associates Publishers; 2006. pp. 645–664. [ Google Scholar ]
  • Reeve J, Jang H. What teachers say and do to support students' autonomy during a learning activity. Journal of Educational Psychology. 2006; 98 (1):209–218. doi: 10.1037/0022-0663.98.1.209. [ CrossRef ] [ Google Scholar ]
  • Reeve J, Jang H, Hardre P, Omura M. Providing a rationale in an autonomy-supportive way as a strategy to motivate others during an uninteresting activity. Motivation and Emotion. 2002; 26 (3):183–207. doi: 10.1023/A:1021711629417. [ CrossRef ] [ Google Scholar ]
  • Ringeisen, T., & Bürgermeister, A. (2015). Fostering students’ self-efficacy in presentation skills: The effect of autonomy, relatedness and competence support. In Stress and anxiety: Application to schools, well-being, coping and internet use , 77–87.
  • Ryan RM. Control and information in the intrapersonal sphere: An extension of cognitive evaluation theory. Journal of Personality and Social Psychology. 1982; 43 :450–461. doi: 10.1037/0022-3514.43.3.450. [ CrossRef ] [ Google Scholar ]
  • Ryan RM. Psychological needs and the facilitation of integrative processes. Journal of Personality. 1995; 63 :397–427. doi: 10.1111/j.1467-6494.1995.tb00501.x. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Ryan RM, Grolnick WS. Origins and pawns in the classroom: Self-report and projective assessments of individual differences in children’s perceptions. Journal of Personality and Social Psychology. 1986; 50 :550–558. doi: 10.1037/0022-3514.50.3.550. [ CrossRef ] [ Google Scholar ]
  • Salomon G. Technology and pedagogy: Why don't we see the promised revolution? Educational Technology. 2002; 42 (2):71–75. [ Google Scholar ]
  • Schunk DH. Self-efficacy for reading and writing: Influence of modeling, goal setting, and self-evaluation. Reading & Writing Quarterly. 2003; 19 (2):159–172. doi: 10.1080/10573560308219. [ CrossRef ] [ Google Scholar ]
  • Sheldon KM, Filak V. Manipulating autonomy, competence, and relatedness support in a game-learning context: New evidence that all three needs matter. British Journal of Social Psychology. 2008; 47 (2):267–283. doi: 10.1348/014466607X238797. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Steingut RR, Patall EA, Trimble SS. The effect of rationale provision on motivation and performance outcomes: A meta-analysis. Motivation Science. 2017; 3 (1):19–50. doi: 10.1037/mot0000039. [ CrossRef ] [ Google Scholar ]
  • Sweller J. Cognitive load theory, learning difficulty, and instructional design. Learning and Instruction. 1994; 4 (4):295–312. doi: 10.1016/0959-4752(94)90003-5. [ CrossRef ] [ Google Scholar ]
  • Vallerand RJ. Advances in experimental social psychology. Academic Press; 1997. Toward a hierarchical model of intrinsic and extrinsic motivation; pp. 271–360. [ Google Scholar ]
  • Vallerand RJ, Losier GF. An integrative analysis of intrinsic and extrinsic motivation in sport. Journal of Applied Sport Psychology. 1999; 11 (1):142–169. doi: 10.1080/10413209908402956. [ CrossRef ] [ Google Scholar ]
  • Vallerand RJ, Reid G. On the causal effects of perceived competence on intrinsic motivation: A test of cognitive evaluation theory. Journal of Sport Psychology. 1984; 6 :94–102. doi: 10.1123/jsp.6.1.94. [ CrossRef ] [ Google Scholar ]
  • Van Merriënboer JJG, Kirschner PA. Ten steps to complex learning. Routledge; 2018. [ Google Scholar ]
  • van Merriënboer J, Sluijsmans D, Corbalan G, Kalyuga S, Paas F, Tattersall C. Performance assessment and learning task selection in environments for complex learning. In: Elen J, Clark RE, editors. Handling complexity in learning environments: Theory and Research. Elsevier Science Ltd; 2006. [ Google Scholar ]
  • Vansteenkiste M, Ryan RM, Soenens B. Basic psychological need theory: Advancements, critical themes, and future directions. Motivation and Emotion. 2020; 44 :1–31. doi: 10.1007/s11031-019-09818-1. [ CrossRef ] [ Google Scholar ]
  • Vansteenkiste M, Sierens E, Goossens L, Soenens B, Dochy F, Mouratidis A, Beyers W. Identifying configurations of perceived teacher autonomy support and structure: Associations with self-regulated learning, motivation and problem behavior. Learning and Instruction. 2012; 22 (6):431–439. doi: 10.1016/j.learninstruc.2012.04.002. [ CrossRef ] [ Google Scholar ]
  • Vansteenkiste M, Sierens E, Soenens B, Luyckx K, Lens W. Motivational profiles from a self-determination perspective: The quality of motivation matters. Journal of Educational Psychology. 2009; 101 (3):671–688. doi: 10.1037/a0015083. [ CrossRef ] [ Google Scholar ]
  • Wang CJ, Liu WC, Kee YH, Chian LK. Competence, autonomy, and relatedness in the classroom: Understanding students’ motivational processes using the self-determination theory. Heliyon. 2019; 5 (7):e01983. doi: 10.1016/j.heliyon.2019.e01983. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]

University of the People Logo

Home > Blog > Tips for Online Students > The Best Research Skills For Success

Tips for Online Students , Tips for Students

The Best Research Skills For Success

research skills advantages

Updated: June 19, 2024

Published: January 5, 2020

The-Best-Research-Skills-for-Success

Every student is required to conduct research in their academic careers at one point or another. A good research paper not only requires a great deal of time, but it also requires complex skills. Research skills include the ability to organize, evaluate, locate, and extract relevant information.

Let’s learn how to develop great research skills for academic success.

What is Research?

We’ve all surely heard the term “research” endlessly. But do you really know what it means?

Research is a type of study that focuses on a specific problem and aims to solve it using scientific methods. Research is a highly systematic process that involves both describing, explaining, and predicting something.

A college student exploring research topics for his science class.

Photo by  Startup Stock Photos  from  Pexels

What are research skills.

Research skills are what helps us answer our most burning questions, and they are what assist us in our solving process from A to Z, including searching, finding, collecting, breaking down, and evaluating the relevant information to the phenomenon at hand.

Research is the basis of everything we know — and without it, we’re not sure where we would be today! For starters, without the internet and without cars, that’s for sure.

Why are Research Skills Important?

Research skills come in handy in pretty much everything we do, and especially so when it comes to the workforce. Employers will want to hire you and compensate you better if you demonstrate a knowledge of research skills that can benefit their company.

From knowing how to write reports, how to notice competition, develop new products, identify customer needs, constantly learn new technologies, and improve the company’s productivity, there’s no doubt that research skills are of utter importance. Research also can save a company a great deal of money by first assessing whether making an investment is really worthwhile for them.

How to Get Research Skills

Now that you’re fully convinced about the importance of research skills, you’re surely going to want to know how to get them. And you’ll be delighted to hear that it’s really not so complicated! There are plenty of simple methods out there to gain research skills such as the internet as the most obvious tool.

Gaining new research skills however is not limited to just the internet. There are tons of books, such as Lab Girl by Hope Jahren, journals, articles, studies, interviews and much, much more out there that can teach you how to best conduct your research.

Utilizing Research Skills

Now that you’ve got all the tools you need to get started, let’s utilize these research skills to the fullest. These skills can be used in more ways than you know. Your research skills can be shown off either in interviews that you’re conducting or even in front of the company you’re hoping to get hired at .

It’s also useful to add your list of research skills to your resume, especially if it’s a research-based job that requires skills such as collecting data or writing research-based reports. Many jobs require critical thinking as well as planning ahead.

Career Paths that Require Research Skills

If you’re wondering which jobs actually require these research skills, they are actually needed in a variety of industries. Some examples of the types of work that require a great deal of research skills include any position related to marketing, science , history, report writing, and even the food industry.

A high school student at her local library looking for reliable sources through books.

Photo by  Abby Chung  from  Pexels

How students can improve research skills.

Perhaps you know what you have to do, but sometimes, knowing how to do it can be more of a challenge. So how can you as a student improve your research skills ?

1. Define your research according to the assignment

By defining your research and understanding how it relates to the specific field of study, it can give more context to the situation.

2. Break down the assignment

The most difficult part of the research process is actually just getting started. By breaking down your research into realistic and achievable parts, it can help you achieve your goals and stay systematic.

3. Evaluate your sources

While there are endless sources out there, it’s important to always evaluate your sources and make sure that they are reliable, based on a variety of factors such as their accuracy and if they are biased, especially if used for research purposes.

4. Avoid plagiarism

Plagiarism is a major issue when it comes to research, and is often misunderstood by students. IAs a student, it’s important that you understand what plagiarism really means, and if you are unclear, be sure to ask your teachers.

5. Consult and collaborate with a librarian

A librarian is always a good person to have around, especially when it comes to research. Most students don’t seek help from their school librarian, however, this person tends to be someone with a vast amount of knowledge when it comes to research skills and where to look for reliable sources.

6. Use library databases

There are tons of online library resources that don’t require approaching anyone. These databases are generally loaded with useful information that has something for every student’s specific needs.

7. Practice effective reading

It’s highly beneficial to practice effective reading, and there are no shortage of ways to do it. One effective way to improve your research skills it to ask yourself questions using a variety of perspectives, putting yourself in the mind of someone else and trying to see things from their point of view.

There are many critical reading strategies that can be useful, such as making summaries from annotations, and highlighting important passages.

Thesis definition

A thesis is a specific theory or statement that is to be either proved or maintained. Generally, the intentions of a thesis are stated, and then throughout, the conclusions are proven to the reader through research. A thesis is crucial for research because it is the basis of what we are trying to prove, and what guides us through our writing.

What Skills Do You Need To Be A Researcher?

One of the most important skills needed for research is independence, meaning that you are capable of managing your own work and time without someone looking over you.

Critical thinking, problem solving, taking initiative, and overall knowing how to work professionally in front of your peers are all crucial for effectively conducting research .

1. Fact check your sources

Knowing how to evaluate information in your sources and determine whether or not it’s accurate, valid or appropriate for the specific purpose is a first on the list of research skills.

2. Ask the right questions

Having the ability to ask the right questions will get you better search results and more specific answers to narrow down your research and make it more concise.

3. Dig deeper: Analyzing

Don’t just go for the first source you find that seems reliable. Always dig further to broaden your knowledge and make sure your research is as thorough as possible.

4. Give credit

Respect the rights of others and avoid plagiarizing by always properly citing your research sources.

5. Utilize tools

There are endless tools out there, such as useful websites, books, online videos, and even on-campus professionals such as librarians that can help. Use all the many social media networks out there to both gain and share more information for your research.

6. Summarizing

Summarizing plays a huge role in research, and once the data is collected, relevant information needs to be arranged accordingly. Otherwise it can be incredibly overwhelming.

7. Categorizing

Not only does information need to be summarized, but also arranged into categories that can help us organize our thoughts and break down our materials and sources of information.

This person is using a magnifying glass to look at objects in order to collect data for her research.

Photo by  Noelle Otto  from  Pexels

What are different types of research, 1. qualitative.

This type of research is exploratory research and its aim is to obtain a better understanding of reasons for things. Qualitative research helps form an idea without any specific fixed pattern. Some examples include face-to-face interviews or group discussions.

2. Quantitative

Quantitative research is based on numbers and statistics. This type of research uses data to prove facts, and is generally taken from a large group of people.

3. Analytical

Analytical research has to always be done from a neutral point of view, and the researcher is intended to break down all perspectives. This type of research involves collecting information from a wide variety of sources.

4. Persuasive

Persuasive research describes an issue from two different perspectives, going through both the pros and cons of both, and then aims to prove their preference towards one side by exploring a variety of logical facts.

5. Cause & Effect

In this type of research, the cause and effects are first presented, and then a conclusion is made. Cause and effect research is for those who are new in the field of research and is mostly conducted by high school or college students.

6. Experimental Research

Experimental research involves very specific steps that must be followed, starting by conducting an experiment. It is then followed by sharing an experience and providing data about it. This research is concluded with data in a highly detailed manner.

7. Survey Research

Survey research includes conducting a survey by asking participants specific questions, and then analyzing those findings. From that, researchers can then draw a conclusion.

8. Problem-Solution Research

Both students and scholars alike carry out this type of research, and it involves solving problems by analyzing the situation and finding the perfect solution to it.

What it Takes to Become a Researcher

  • Critical thinking

Research is most valuable when something new is put on the table. Critical thinking is needed to bring something unique to our knowledge and conduct research successfully.

  • Analytical thinking

Analytical thinking is one of the most important research skills and requires a great deal of practice. Such a skill can assist researchers in taking apart and understanding a large amount of important information in a short amount of time.

  • Explanation skills

When it comes to research skills, it’s not just about finding information, but also about how you explain it. It’s more than just writing it out, but rather, knowing how to clearly and concisely explain your new ideas.

  • Patience is key

Just like with anything in life, patience will always take you far. It might be difficult to come by, but by not rushing things and investing the time needed to conduct research properly, your work is bound for success.

  • Time management

Time is the most important asset that we have, and it can never be returned back to us. By learning time management skills , we can utilize our time in the best way possible and make sure to always be productive in our research.

What You Need to Sharpen Your Research Skills

Research is one of the most important tasks that students are given in college, and in many cases, it’s almost half of the academic grade that one is given.

As we’ve seen, there are plenty of things that you’ll need to sharpen your research skills — which mainly include knowing how to choose reliable and relevant sources, and knowing how to take them and make it your own. It’s important to always ask the right questions and dig deeper to make sure that you understood the full picture.

In this article

At UoPeople, our blog writers are thinkers, researchers, and experts dedicated to curating articles relevant to our mission: making higher education accessible to everyone. Read More

Is MasterClass right for me?

Take this quiz to find out.

How to Improve Your Research Skills: 6 Research Tips

Written by MasterClass

Last updated: Aug 18, 2021 • 3 min read

Whether you’re writing a blog post or a short story, you’ll likely reach a point in your first draft where you don’t have enough information to go forward—and that’s where research comes in.

research skills advantages

IMAGES

  1. What are the Best Tips to Improve your Research Skills

    research skills advantages

  2. Top 6 Ways to Improve your Research Skills

    research skills advantages

  3. A Brief Insight to the Secret Skills of a Successful Researcher

    research skills advantages

  4. What are the Best Tips to Improve your Research Skills

    research skills advantages

  5. An Insight on the Types of Research Skills Used By a Researcher

    research skills advantages

  6. 14 Benefits of Qualitative Research Explained

    research skills advantages

VIDEO

  1. IMPORTANCE of Asking/Bargaining/Negotiating! #shorts

  2. Metho 4: Good Research Qualities / Research Process / Research Methods Vs Research Methodology

  3. First Aid Skills Importance in Hindi

  4. The importance of AI in product management 🤖 (Tamil)

  5. 4. Research Skills

  6. Expert Tips: Writing for Effective Communication

COMMENTS

  1. Research Skills: What They Are and Why They're Important

    Research Skills: What They Are and Why They're Important

  2. Research Skills: What They Are and How They Benefit You

    Research Skills: What They Are and How They Benefit You

  3. What Are Research Skills? Types, Benefits, & Examples

    What Are Research Skills? Types, Benefits, & Examples

  4. Research Skills: What they are and Benefits

    Research Skills: What they are and Benefits

  5. The Most Important Research Skills (With Examples)

    The Most Important Research Skills (With Examples)

  6. Research Skills: Importance, Examples and Tips for Improvement

    Importance of Research Skills (with Examples and Tips)

  7. What Are Research Skills? Definition, Examples and Tips

    What Are Research Skills? Definition, Examples and Tips

  8. 10 Research Skills and How To Develop Them

    These skills are essential for various fields and disciplines, ranging from academic and scientific research to business, journalism, and beyond. Effective research skills involve several key components: Information Retrieval. Source Evaluation. Critical Thinking. Data Analysis. Problem Formulation.

  9. Developing Your Research Skills

    Here are some of the long-term benefits of research skills: Enhanced academic performance: You can conduct effective research, critically evaluate information, and excel in academic assignments, projects, and research papers. Enhanced academic performance can lead to scholarships, academic recognition, and more opportunities for further ...

  10. Research Skills: Definition, Examples and Importance

    Research skills refer to the ability to find, organise, analyse and present relevant information about a specific subject. Being able to research requires having several soft and hard skills, including the ability to conduct investigations, make observations, draw inferences, perform analysis and derive solutions to a particular issue.

  11. What are Research Skills and why are they important?

    Research skills enable you to focus on a specific goal, gather relevant information, and communicate your findings to others. We are taught from a young age to develop research skills, and for good reason. Teachers in academia required answers to a series of topic-related questions in an essay. Similarly, your boss may eventually request that ...

  12. Empowering students to develop research skills

    Throughout this course, students go from sometimes having "limited experience in genetics and/or morphology" to conducting their own independent research. This project culminates in a team presentation and a final research paper. The benefits: Students develop the methodological skills required to collect and analyze morphological data.

  13. Research Skills: Definition, Benefits and How To Develop

    Here are six researching skills that can help you assist your company or advance your career: 1. Ability to search and assess information. All research involves the search for credible information that you can analyse and use to arrive at an answer or solution. In the workplace, the information you search for may help you complete projects and ...

  14. Learning in Research: Importance of Building Research Skills for

    Learning in research is a fundamental aspect of academic progress, and it plays a vital role in the success of researchers. Read this to understand the importance of learning in research and the benefits of building research skills for students with tailormade courses for researchers.

  15. The Ultimate Guide: Navigating the Research Process Using ...

    Countless benefits, from increased efficiency to improved outcomes, arise from implementing these advanced research skills throughout the research process. Let's explore how your expertise can both streamline and bolster every step. 1. Developing a problem statement and research questions (checklist)

  16. Essential Research Skills (With Benefits And How To Improve)

    Essential Research Skills (With Benefits And How To ...

  17. Introduction to research skills: Home

    Home - Introduction to research skills

  18. Research Skills: Examples + How to Improve

    Research skills: Examples how to improve them

  19. Research skills: definition and examples

    Research skills: definition and examples

  20. Fostering students' motivation towards learning research skills: the

    Research skills. As described by Fischer et al., (2014, p. 29), we define research skills 1 as a broad set of skills used "to understand how scientific knowledge is generated in different scientific disciplines, to evaluate the validity of science-related claims, to assess the relevance of new scientific concepts, methods, and findings, and to generate new knowledge using these concepts and ...

  21. Research Skills

    4:00pm to 5:30pm. Location: Zoom - TBA. PART 1: R3 and Me: A Toolkit for Rigorous and Reproducible Research (Jelena Patrnogić, PhD, HMS Curriculum Fellows Program) 4:00 PM - 4:45 PM. There is a reproducibility crisis in research. In 2016, Nature reported results from a survey demonstrating that more than 70% of researchers...

  22. The Best Research Skills For Success

    The Best Research Skills For Success

  23. How to Improve Your Research Skills: 6 Research Tips

    How to Improve Your Research Skills: 6 Research Tips