Physexams Logo

  • Exam Center
  • Ticket Center
  • Flash Cards
  • Work and Energy

Physics Work Problems for High Schools

In this tutorial, we want to practice some problems on work in physics. All these questions are easy and helpful for your high school homework. 

Work Problems: Constant Force

Problem (1): A constant force of 1200 N is required to push a car along a straight line. A person displaces the car by 45 m. How much work is done by the person?

Solution : If a constant force $F$ acts on an object over a distance of $d$, and $F$ is parallel to $d$, then the work done by force $F$ is the product of the force times distance. 

Physics work problems

In this case, a force of $1200\,{\rm N}$ displaces the car $45\,{\rm m}$. The pushing force is parallel to the displacement. So, the work done by the person is equal to \[W=Fd=1200\times 45=54000\,{\rm J}\] The SI unit of work is the joule, ${\rm J}$. 

Problem (2): You lift a book of mass $2\,{\rm kg}$ at constant speed straight upward a distance of $2\,{\rm m}$. How much work is done during this lifting by you?

Solution : The force you apply to lift the book must be balanced with the book's weight. So, the exerted force on the book is \[F=mg=2\times 10=20\quad{\rm N}\] The book is lifted 2 meters vertically. The force and displacement are both parallel to each other, so the work done by the person is the product of them. \[W=Fd=20\times 2=40\quad {\rm J}\]

Problem (3): A force of $F=20\,{\rm N}$ at an angle of $37^\circ$ is applied to a 3-kg object initially at rest. The object has displaced a distance of $25\,{\rm m}$ over a frictionless horizontal table. Determine the work done by  (a) The applied force (b) The normal force exerted by the table (c) The force of gravity

Angled force in physics work problem

Solution : In this problem, the force makes an angle with the displacement. In such cases, we should use the work formula $W=Fd\cos\theta$ where $\theta$ is the angle between force $F$ and displacement. To this object, an external force $F$, normal force $F_N$, and a gravity force $w=mg$ are applied.

(a) Using vector decompositions, the component of the force parallel to the displacement is found to be $F_{\parallel}=F\cos \theta$. Thus, the product of this component parallel to the displacement times the magnitude of displacement gives us the work done by external force $F$ as below \begin{align*} W_F&=\underbrace{F\cos\theta}_{F_{\parallel}}d\\\\ &=(20\times \cos 37^\circ)(25)\\\\&=400\quad {\rm J}\end{align*}  (b) Now, we want to find the work done by the normal force. But let's define what the normal force is.

In physics, ''normal'' means perpendicular. When an object is in contact with a surface, a contact force is exerted on the object. The component of the contact force perpendicular to the surface is called the normal force. 

Thus, by definition, the normal force is always perpendicular to the displacement. So, the angle between $F_N$ and displacement $d$ is $90^\circ$. Hence, the work done by the normal force is determined to be \[W_N=F_N d\cos\theta=(30)(25)\cos 90^\circ=0\] (c) The weight of the object is the same as the force of gravity. This force applies to the object vertically downward, and the displacement of the object is horizontal. So, again, the angle between these two vectors is $\theta=90^\circ$. Hence, the work done by the force of gravity is zero. 

Problem (4): A person pulls a crate using a force of $56\,{\rm N}$ which makes an angle of $25^\circ$ with the horizontal. The floor is frictionless. How much work does he do in pulling the crate over a horizontal distance of $200\,{\rm m}$?

Pulling force in physics work problems

Solution : The component of the external force parallel to the displacement does work on an object over a distance of $d$. In all work problems in physics, this force component parallel to the displacement is found by the formula $F_{\parallel}=F\cos \theta$. Thus, the work done by this force is computed as below \begin{align*} W&=F_{\parallel}d\\&=(F\cos\theta)d\\&=(56\cos 25^\circ)(200) \\&=10080\quad {\rm J}\end{align*} We could use the work formula from the beginning $W=Fd\cos\theta$ where $\theta$ is the angle between $F$ and $d$. 

Problem (5): A worker pushes a cart with a force of $45\,{\rm N}$ directed at an angle of $32^\circ$ below the horizontal. The cart moves at a constant speed.  (a) Find the work done by the worker as the cart moves a straight distance of $50\,{\rm m}$.  (b) What is the net work done on the cart?

Solution :(a) All information to find the work done by the worker is given, so we have \begin{align*} W&=Fd\cos\theta\\&=(45)(50) \cos 32^\circ\\&=1912.5\quad {\rm J}\end{align*}  (b) ''net'' means "total". In all work problems in physics, there are two equivalent methods to find the net work. Identify all forces that are applied to the cart, find their resultant force, and then compute the work done by this net force over a specific distance. 

Or compute all works done on the object across a distance individually, then sum them algebraically. 

Usually, the second method is easier. We take this approach here. 

The cart moves in a straight horizontal path. All forces apply on it are, the worker force $F$, the normal force $F_N$, and the force of gravity or its weight $F_g=mg$. The work done by normal and gravity forces in a horizontal displacement is always zero since the angle between these forces and the displacement is $90^\circ$. So, $W_N=W_g=0$. Hence, the net (total) work done on the object is \[W_{total}=W_N+W_g+W_F=1912.5\,{\rm J}\]

Problem (6): A $1200-{\rm kg}$ box is at rest on a rough floor. How much work is required to move it $5\,{\rm m}$ at a constant speed (a) along the floor against a $230\,{\rm N}$ friction force, (b) vertically?

Solution : In this problem, we want to displace a box $5\,{\rm m}$ horizontally and vertically. In the horizontal direction, there is also kinetic friction. 

(a) At constant speed , means there is no acceleration in the course of displacement, so according to Newton's second law $\Sigma F=ma$, the net force on the box must be zero. To meet this condition, the external force $F_p$ applied by a person must cancel out the friction force $f_k$. So, \[F_p=f_k=230\quad {\rm N}\] The force $F_p$ and displacement are both parallel, so their product get the work done by $F_p$ \[W_p=F_p d=230\times 5=1150\quad {\rm J}\] (b) In the vertical path, two forces act on the box. One is the external lifting force, and the other is the force of gravity. Since the box is moving at constant speed vertically, there is no acceleration, and thus this lifting external force $F_p$ must be balanced with the weight of the box. \[F_p=F_g=mg=(1200)(10)=12000\,{\rm J}\] Assume the box is moved vertically upward. In this case, the lifting force and displacement are parallel, so the angle between them is zero $\theta=0$, and the work done by this force is \[W_p=F_p d\cos 0=12000\times 5=60\,{\rm kJ}\] On the other side, the weight force, or force of gravity $F_g=mg$ is always downward, so the angle between the box's weight and upward displacement is $180^\circ$. So, the work done by the weight of the box is \begin{align*}W_g&=F_g d\cos 180^\circ \\\\ &=(1200)(10)(5)(-1) \\\\ &=-60\,{\rm kJ}\end{align*} In such cases where the angle between $F$ and $d$ is $180^\circ$, they are called antiparallel. 

Problem (7): A 40-kg crate is pushed using a force of 150 N at a distance of $6\,{\rm m}$ on a rough surface. The crate moves at a constant speed. Find (a) the work done by the external force on the crate. (b) The coefficient of kinetic friction between the crate and the floor? 

Solution : (a) the crate is moved horizontally through a distance of $6\,{\rm m}$ by a force parallel to its displacement. So, the work done by this external force is \[W_p=F_p d \cos\theta=(150)(6)\cos 0=900\,{\rm J}\] where subscript $p$ denotes the person or any external agent.

(b) According to the definition of the kinetic friction force formula, $f_k=\mu_k F_N$, to find the coefficient of kinetic friction $\mu_k$, we must have both the friction force and normal force $F_N$.

In the question, we are told that the crate moves at a constant speed, so there is no acceleration, and thus, the net force applied to it must be zero. 

When the friction force, which opposes the motion, is equal to the external force $F_p$, then this condition is satisfied. So, \[f_k=F_p=150\,{\rm N}\] On the other side, the crate is not lifted off the floor, so there is no motion vertically. 

Balancing all forces applied vertically, the weight force and the normal force $F_N$, we can find the normal force $F_N$ as below \begin{gather*} F_N-F_g=0\\ F_N=F_g\\ \Rightarrow F_N=mg=40\times 10=400\quad {\rm N}\end{gather*} Therefore, the coefficient of kinetic friction is found to be \[f_k=\frac{f_k}{F_N}=\frac{150}{400}=0.375\] 

Practice these questions to understand friction force Problems on the coefficient of friction

Problem (8): A 18-kg packing box is pulled at constant speed by a rope inclined at $20^\circ$. The box moves a distance of 20 m over a rough horizontal surface. Assume the coefficient of kinetic friction between the box and the surface to be $0.5$.  (a) Find the tension in the rope? (b) How much work is done by the rope on the box?

Solution : The aim of this problem is to find the work done by the tension in the rope. The magnitude of the tension in the rope is not given. So, we must first find it. 

(a) We are told the box moves at a constant speed, so, as previously mentioned, the net force on the box must be zero to produce no acceleration. But what forces are acting horizontally on the box? The horizontal component of tension in the rope, $T_{\parallel}=T\cos\theta$, and the kinetic friction force $f_k$ in the opposite direction of motion are the forces acting on the box horizontally. 

If these two forces are equal in magnitude but opposite in direction, then their resultant (net) becomes zero, and consequently, the box will move at a constant speed. \begin{align*} f_k&=T_{\parallel}\\\mu_k F_N&=T\cos\theta\quad (I) \end{align*} The forces in the vertical direction must also cancel each other since there is no motion vertically. As you can see in the figure, we have \[F_N=T\sin\theta+F_g\] Substituting this into the relation (I), rearranging and solving for $T$, yields \begin{gather*} \mu_k (T\sin\theta+mg)=T\cos\theta \\\\ \Rightarrow T=\frac{\mu_k mg}{\cos\theta-\mu_k\sin\theta}\end{gather*} Substituting the numerical values into the above expression, we find the tension in the rope. \[T=\frac{(0.5)(18)(10)}{\cos 20^\circ-(0.5) \sin20^\circ}=117\quad {\rm N}\]  (b) The only force that causes the box to move some distance is the horizontal component of the tension in the rope, $T_{\parallel}=T\cos\theta$. So, the work done by the tension in the rope is \begin{align*} W&=T_{\parallel}d\\ &=(117)( \cos 20^\circ)(20) \\&=2199\quad {\rm J}\end{align*} 

Problem (9): A table of mass 40 kg is accelerated from rest at a constant rate of $2\,{\rm m/s^2}$ for $4\,{\rm s}$ by a constant force. What is the net work done on the table?

Solution : This is a combination of a  kinematics problem and a physics work problem. Here, first, we must find the distance over which the box is displaced. The given information is: initial speed $v_0=0$, acceleration $2\,{\rm m/s^2}$, time taken $t=4\,{\rm s}$. Using this data, we can find the total displacement by applying the kinematics equation $\Delta x=\frac 12 at^2+v_0t$, \begin{align*} \Delta x&=\frac 12 at^2+v_0t\\\\&=\frac 12 (2)(4)^2+0(4)\\\\&=16\quad {\rm m}\end{align*} So, this constant force causes the table to move a distance of 16 meters across the surface. To find the work done, we need a force, as well. The force is mass times acceleration, $F=ma$, so we have \[F=ma=40\times 2=80\,{\rm N}\] Now that we have both the force and displacement, the net work done on the table is the product of force along the displacement times the magnitude of displacement \[W=80\times 16=128\quad {\rm J}\] 

Work problems in a uniform circular motion 

Problem (10): A 5-kg object is held at the end of a string and undergoes uniform circular motion around a circle of radius $5\,{\rm m}$. If the tangential speed of the object around the circle is $15\,{\rm m/s}$, how much work was done on the object by the centripetal force?

Solution : Here, an object moves around a circle, so we encounter a uniform circular motion problem .

In such motions around a curve or circle, that force in the radial direction exerting on the object is called the centripetal force. 

On the other hand, a movement around a circle is tangent to the path at any instant of time. Thus, we conclude that in any uniform circular motion, a force is applied to the whirling object that is perpendicular to its motion at any moment of time.

So, the angle between the centripetal force and displacement at any instant is always zero, $\theta=0$. Using the work formula $W=Fd\cos\theta$, we find that the work done by the centripetal force is always zero. 

This is another example of zero work in physics.  

Work problems on an incline

Problem (11): A $5-{\rm kg}$ box, initially at rest, slides $2.5\,{\rm m}$ down a ramp of angle $30^\circ$. The coefficient of friction between the box and the incline is $\mu_k=0.435$. Determine (a) the work done by the gravity force, (b) the work done by the frictional force, and (c) the work done by the normal force exerted by the surface.

Solution : This part is related to problems on inclined plane surfaces . The forces acting on a box on an inclined plane are shown in the figure. As you can see, the forces along the direction of motion are the parallel component of the weight $W_{\parallel}$, and the friction force $f_k$. 

(a) In the figure, you realize that the angle between the object's weight (the same as the force of gravity) and downward displacement $d$ is zero, $\theta=30^\circ$.

incline in physics work problems

So, the work done by the force of gravity on the box is found using work formula as below \begin{align*} W&=Fd\cos\theta\\&=(mg)(d) \cos 30^\circ\\&=(5\times 10)(2.5) \cos 30^\circ\\&=108.25\quad {\rm J}\end{align*}  (b) To find the work done by friction, we need to know its magnitude. From the kinetic friction force formula, $f_k=\mu_k F_N$, we must determine, first, the normal force acting on the box. 

There is no motion in the direction perpendicular to the incline, so the resultant of forces acting in this direction must be zero. Equating the same direction forces, we will have \[F_N=mg\sin\alpha=(5)(10) \sin 30^\circ=25\,{\rm N}\] Substituting this into the above equation for kinetic friction, we can find its magnitude as \[f_k=\mu_k F_N=(0.435)(25)=10.875\,{\rm N}\] The friction force and the displacement of the box down the ramp are parallel, i.e., $\theta=0$. The work done by friction is \begin{align*} W_f&=f_kd\cos\theta \\\\ &=(10.875)(2.5) \cos 0\\\\ &=27.1875\,{\rm J}\end{align*}  (c) By definition, the normal force is the same contact force that is applied to the object from the surface perpendicularly. On the other hand, the object moves along the incline, so its displacement is perpendicular to the normal force, $\theta=90^\circ$. Hence, the work done by the normal force is zero. \[W_N=F_N d\cos\theta=F_N d\cos 90^\circ=0\]

Problem (12): We want to push a $950-{\rm kg}$ heavy object 650 m up along a $7^\circ$ incline at a constant speed. How much work do we do over this distance? Ignore friction.

Solution : When it comes to constant speed in all work problems in physics, you must remember that all forces in the same direction must be equal to the opposing forces. This condition ensures that there is no acceleration in the motion. 

In this case, all forces acting on the object are: the pushing force along the incline upward $F_p$, and the parallel component of the force of gravity (weight) along the incline downward, $W_{\parallel}=mg\sin\alpha$. Thus, we can find the pushing force as \begin{align*}F_p&=mg\sin 7^\circ\\\\ &=(950)(10) \sin 7^\circ \\\\& =1159\quad {\rm N}\end{align*} In the question, we are told that the object is moving up the incline, so the angle between its displacement and upward pushing force is zero, $\theta=0$. Hence, the work done by the person to push the object along the incline upward is \begin{align*} W_p&=F_p d\cos\theta\\&=1159\times 650 \cos 0\\&=753350\quad{\rm J}\end{align*} 

Problem (13): Consider an electron moving at a constant speed of $1.1\times 10^6\,\rm m/s$ in a straight line. How much energy is required to stop this electron? (Take the electron's mass, $m_e=9.11\times 10^{-31}\,\rm kg$.

Solution : In this problem on work, we cannot use the work formula directly, since none of the work variables, i.e., $F$, $d$, $\theta$, are given except the velocity. In these cases, we have a problem on the work-energy theorem . 

According to this rule, the net work done over a distance by a constant force on an object of mass $m$ equals the change in its kinetic energy \[W_{net}=\underbrace{\frac 12 mv_f^2-\frac 12 mv_i^2}_{\Delta K}\] Substituting the numerical values given in this problem, we get the required work to stop this fast-moving electron. \begin{align*}W_{net}&=\frac 12 m(v_f^2-v_i^2) \\\\ &=\frac 12 (9.11\times 10^{-31}) \left(0^2-(1.1\times 10^6)^2 \right) \\\\ &=-5.5\times 10^{-19}\,\rm J\end{align*} where we set the final velocity $v_f=0$ since the electron is to stop.

Problem (14): How much power is needed to lift a $25-\rm kg$ weight $1\,\rm m$ in $1\,\rm s$? 

Solution : The power in physics is defined as the ratio of work done on an object to the time taken $P=\frac{W}{t}$. The SI unit of power is the watt ($W$). 

In this problem, first, we must find the amount of work done in lifting the object as much as $1,\rm m$ vertically. The only force involved in this situation is the downward weight force. Thus, \[W=(mg)h=(25\times 10)(1)=250\,{\rm J}\] This amount of work has been done in a time interval of $1\,\rm s$. Hence, the power is calculated as below \[P=\frac{W}{t}=\frac{250}{1}=250\,\rm W\]

Problem (15): A particle having charge $-3.6\,\rm nC$ is released from rest in a uniform electric field $E$ moves a distance of $5\,\rm cm$ through it. The electric potential difference between those two points is $\Delta V=+400\,\rm V$. What work was done by the electric force on the particle? 

Solution : The work done by the electric force on a charged particle is calculated by $W_E=qEd$, where $E$ is the magnitude of the electric field and $d$ is the amount of distance traveled through $E$. But in this case, the electric field strength is not given, and we cannot use this formula. 

We can see this as a problem on electric potential . Recall that the work done by the electric force on a charge to move it between two points with different potentials is given by $W=-q\Delta V$. Substituting the given numerical values into this, we will have \begin{align*} W&=-q\Delta V \\&=-(-3.6)(+400) \\&=\boxed{1440\,\rm J} \end{align*} 

Here, we learned how to calculate the work done by a constant force in physics by solving a couple of example problems. 

Overall, the work done by a constant force is the product of the horizontal component of the force times the displacement between the initial and final points. 

In addition, power, a related quantity to work in physics, is also defined as the rate at which work is done.  

Author : Dr. Ali Nemati Date Published : 9/20/2021

© 2015 All rights reserved. by Physexams.com

StickMan Physics

StickMan Physics

Animated Physics Lessons

Work and Power Example Solutions

Follow along with common work and power example problems and solutions. See how to solve problems when force is applied directly parallel or at an angle.

Example Work and Power Problems

1. How much work is done by the stickman that pushes a box 5 meters with a force of 12 Newtons forward?

Since the force is in the same direction as motion you plug numbers directly in and don't have to find the parallel component first.

W = (12)(5) = 60 J

2. What is the power output of the stickman that pushes the box 5 meters in 3 seconds with a constant force of 12 N?

power example 2

3. How much work would be done if 12N of force was applied on an object at an angle of 25° above the horizon to move an object 5 meters horizontally.

A) Find the horizontal component of force:

adj = (cosӨ)(hyp)

adj = (cos(25°))(12)= 10.9 N

B) Find out how much work is done by this component:

W = (10.9)(5) = 54.5 J

Work and Power At Angle

4. What is the power output if 12N of force was applied on an object at an angle of 25° above the horizon to move an object 5 meters horizontally in 3 seconds.

Use the work from the problem above

P = 54.5/3 = 18.2 W 

  • Back to the Work and Power Page
  • Back to the  Stickman Physics Home Page
  • For video tutorials and other physics resources check out  HoldensClass.com
  • Find many of your animation resources in one place at the  StickMan Physics Gallery
  • Equation Sheet

Terms and Conditions - Privacy Policy

  • Write something.
  • Write something else.
  • Write something different.
  • Write something completely different.
  • the acceleration of the bullet in the rifle
  • the force of the propellant on the bullet in the rifle
  • the work done on the bullet while it is in the barrel
  • the horizontal acceleration of the bullet as it flies through the air
  • the force of aerodynamic drag on the bullet
  • the work done by aerodynamic drag on the bullet
  • How far did the block move during this part of the experiment?
  • How much work was done on the block during this part of the experiment?
  • coefficient of static friction for wood on wood
  • coefficient of kinetic friction for wood on wood
  • Draw a free body diagram showing all the forces acting on the model rocket.
  • the weight of the rocket
  • the net force on the rocket while the engine was running
  • the acceleration of the rocket while the engine was running
  • the distance traveled by the rocket while the engine was running
  • the speed of the rocket when the engine stopped
  • the work done by the engine on the rocket
  • Draw a free body diagram showing all the forces acting on the model rocket after the engine shut down.
  • What is the acceleration of the rocket after the engine shut down?
  • What maximum height above the ground did the rocket reach?
  • How much work did gravity do on the rocket from launch until it reached its maximum height?
  • If your answers to part g. and part k. are not equal (to within 2 or 3 significant digits), you've made a mistake somewhere. If they are equal, you've probably done it correctly (probably).
  • the weight of the car
  • the force of the tires pushing the car up the ramp
  • the distance the car traveled up the ramp
  • the increase in height of the car
  • the work done by the engine pushing the car up the ramp
  • Draw a free body diagram showing all the forces acting on the lawnmower. Do not resolve any of the forces into components. Do indicate their directions, however.
  • the gravitational force of the Earth
  • the normal force of the ground
  • the force applied by the homeowner
  • the force of friction from the ground
  • What does the area under this curve represent?
  • Calculate its cumulative value at 200 m intervals. Compile your results in a table like the one below.
interval ending at 0.0 km 0.2 km 0.4 km 0.6 km 0.8 km 1.0 km
interval area
cumulative area
  • Sketch a graph of this quantity with respect to displacement.

statistical

  • Use the given data to create a force-displacement graph.
  • Determine the work done on the projectile as a function of its displacement.
  • Compute the launch speed of the projectile.

Data adapted from Kampen, Kaczmarczik, and Rath; 2006 .

HIGH SCHOOL

  • ACT Tutoring
  • SAT Tutoring
  • PSAT Tutoring
  • ASPIRE Tutoring
  • SHSAT Tutoring
  • STAAR Tutoring

GRADUATE SCHOOL

  • MCAT Tutoring
  • GRE Tutoring
  • LSAT Tutoring
  • GMAT Tutoring
  • AIMS Tutoring
  • HSPT Tutoring
  • ISAT Tutoring
  • SSAT Tutoring

Search 50+ Tests

Loading Page

math tutoring

  • Elementary Math
  • Pre-Calculus
  • Trigonometry

science tutoring

Foreign languages.

  • Mandarin Chinese

elementary tutoring

  • Computer Science

Search 350+ Subjects

  • Video Overview
  • Tutor Selection Process
  • Online Tutoring
  • Mobile Tutoring
  • Instant Tutoring
  • How We Operate
  • Our Guarantee
  • Impact of Tutoring
  • Reviews & Testimonials
  • About Varsity Tutors

High School Physics : Calculating Work

Study concepts, example questions & explanations for high school physics, all high school physics resources, example questions, example question #1 : work.

problem solving about work in physics

In this case, there is only one force acting upon the object: the force due to gravity. Plug in our given information for the distance to solve for the work done by gravity.

problem solving about work in physics

Remember, since the object will be moving downward, the distance should be negative.

problem solving about work in physics

The work done is positive because the distance and the force act in the same direction.

Example Question #2 : Calculating Work

problem solving about work in physics

Work is a force times a distance:

problem solving about work in physics

We know the distance that the book needs to travel, but we need to sovle for the lifting force required to move it.

There are two forces acting upon the book: the lifting force and gravity. Since the book is moving with a constant velocity, that means the net force will be zero. Mathemetically, that would look like this:

problem solving about work in physics

We can expand the right side of the equation using Newton's second law:

problem solving about work in physics

Use the given mass and value of gravity to solve for the lifting force.

problem solving about work in physics

Now that we have the force and the distance, we can solve for the work to lift the book.

problem solving about work in physics

This problem can also be solved using energy. Work is equal to the change in potential energy:

problem solving about work in physics

Example Question #1 : Calculating Work

problem solving about work in physics

Example Question #11 : Work

problem solving about work in physics

The relationship between work, force, and distance is:

problem solving about work in physics

We are given the force on the toy and the work done. Using these values, we can find the distance. Note that the mass is not relevant for this question.

problem solving about work in physics

The relationship between work, force and distance is:

problem solving about work in physics

We are given the value for the force and the distance that the toy travels. Using these values, we can find the work done by the cat. Note that the mass of the toy is not relevant for this calculation.

problem solving about work in physics

Example Question #7 : Calculating Work

problem solving about work in physics

We are given the value for the work done by the cat and the distance that the toy travels. Using these values, we can find the force on the toy. Note that the mass of the toy is not relevant for this calculation.

problem solving about work in physics

The formula for work is:

problem solving about work in physics

Given the values for force and distance, we can calculate the work done.

problem solving about work in physics

Note that no work is done by the force of gravity or the weight of the box, since the vertical position does not change.

problem solving about work in physics

Work is the product of force times a distance:

problem solving about work in physics

We are given the work and the distance traveled, allowing us to solve for the force. The mass of the cabinet is not necessary information.

problem solving about work in physics

Example Question #10 : Calculating Work

problem solving about work in physics

None of these

problem solving about work in physics

Use the data given to calculate the kinetic energy of the rocket at the two different velocities. Then find the amount of work done using the following equation: 

problem solving about work in physics

Kinetic energy of the rocket at the two velocities:

problem solving about work in physics

The change in the kinetic energy at the two velocities:

problem solving about work in physics

Report an issue with this question

If you've found an issue with this question, please let us know. With the help of the community we can continue to improve our educational resources.

DMCA Complaint

If you believe that content available by means of the Website (as defined in our Terms of Service) infringes one or more of your copyrights, please notify us by providing a written notice (“Infringement Notice”) containing the information described below to the designated agent listed below. If Varsity Tutors takes action in response to an Infringement Notice, it will make a good faith attempt to contact the party that made such content available by means of the most recent email address, if any, provided by such party to Varsity Tutors.

Your Infringement Notice may be forwarded to the party that made the content available or to third parties such as ChillingEffects.org.

Please be advised that you will be liable for damages (including costs and attorneys’ fees) if you materially misrepresent that a product or activity is infringing your copyrights. Thus, if you are not sure content located on or linked-to by the Website infringes your copyright, you should consider first contacting an attorney.

Please follow these steps to file a notice:

You must include the following:

A physical or electronic signature of the copyright owner or a person authorized to act on their behalf; An identification of the copyright claimed to have been infringed; A description of the nature and exact location of the content that you claim to infringe your copyright, in \ sufficient detail to permit Varsity Tutors to find and positively identify that content; for example we require a link to the specific question (not just the name of the question) that contains the content and a description of which specific portion of the question – an image, a link, the text, etc – your complaint refers to; Your name, address, telephone number and email address; and A statement by you: (a) that you believe in good faith that the use of the content that you claim to infringe your copyright is not authorized by law, or by the copyright owner or such owner’s agent; (b) that all of the information contained in your Infringement Notice is accurate, and (c) under penalty of perjury, that you are either the copyright owner or a person authorized to act on their behalf.

Send your complaint to our designated agent at:

Charles Cohn Varsity Tutors LLC 101 S. Hanley Rd, Suite 300 St. Louis, MO 63105

Or fill out the form below:

Contact Information

Complaint details.

Learning Tools by Varsity Tutors

Email address:
Your name:
Feedback:

Work done by force – problems and solutions

1. A person pulls a block 2 m along a horizontal surface by a constant force F = 20 N. Determine the work done by force F acting on the block.

Angle (θ ) = 0

W = F d = w h = m g h

Weight (w) = m g = (1 kg)(10 m/s 2 ) = 10 kg m/s 2 = 10 N

k = F / x = w / x = m g / x

W = – (250)(0.0004)

Work done by force F :

W net = 20 – 4

Wanted: Work (W)

Force (F) = 200 Newton

W = (200 Newton)(2 meters)

Force (F) = 50 Newton

W = 475 Joule

Displacement (s) = 4 meters

11. Based on figure below, if work done by net force is 375 Joule, determine object’s displacement.

12. The activities below w hich do not do work is …

The equation of work :

Displacement = 0 so work = 0.

Work done by the resistance force of the ground :

Share this:

Leave a comment cancel reply.

easycalculation.com

Work Physics Problems with Solutions

Work is done when an object moves in the same direction, while the force is applied and also remains constant. Refer the below work physics problems with solutions and learn how to calculate force, work and distance.

Work Example Problems

Let us consider the work example problem: A train covers a distance of 15 km and that the force is causing it to accelerate at a rate of 0.7 m/s 2 . Calculate the work done?

We can calculate force, work and distance using the given formula.

Substituting the values in the above given formula,

Work = 15 x 0.7 = 10.5 J

Therefore, the value of Work is 10.5 J .

Refer the below work physics problem with solution for a boy who uses a force of 30 Newtons to lift his grocery bag while doing 60 Joules of work. How far did he lift the grocery bags?

Distance = 60 / 30 = 2 m

Therefore, the value of Distance is 2 m .

Refer the below work sample problem with answer for the baseball player who does 1234 Joules of work when hitting a baseball into field. The baseball reached 100 meters away. Calculate the force used to hit the ball?

Force = 1234 / 100 = 12.34 N

Therefore, the value of Force is 12.34 N .

Related Examples:

  • Potential Energy Examples
  • Young's Modulus Calculation Examples
  • Kinetic Energy Example
  • Force Examples
  • Permutation And Combination Example Problems
  • Newton Second Law Of Motion Example Problems With Answers

Calculators and Converters

  • Classical Physics

Top Calculators

Popular calculators.

  • Derivative Calculator
  • Inverse of Matrix Calculator
  • Compound Interest Calculator
  • Pregnancy Calculator Online

Top Categories

1.7 Solving Problems in Physics

Learning objectives.

By the end of this section, you will be able to:

  • Describe the process for developing a problem-solving strategy.
  • Explain how to find the numerical solution to a problem.
  • Summarize the process for assessing the significance of the numerical solution to a problem.

Problem-solving skills are clearly essential to success in a quantitative course in physics. More important, the ability to apply broad physical principles—usually represented by equations—to specific situations is a very powerful form of knowledge. It is much more powerful than memorizing a list of facts. Analytical skills and problem-solving abilities can be applied to new situations whereas a list of facts cannot be made long enough to contain every possible circumstance. Such analytical skills are useful both for solving problems in this text and for applying physics in everyday life.

As you are probably well aware, a certain amount of creativity and insight is required to solve problems. No rigid procedure works every time. Creativity and insight grow with experience. With practice, the basics of problem solving become almost automatic. One way to get practice is to work out the text’s examples for yourself as you read. Another is to work as many end-of-section problems as possible, starting with the easiest to build confidence and then progressing to the more difficult. After you become involved in physics, you will see it all around you, and you can begin to apply it to situations you encounter outside the classroom, just as is done in many of the applications in this text.

Although there is no simple step-by-step method that works for every problem, the following three-stage process facilitates problem solving and makes it more meaningful. The three stages are strategy, solution, and significance. This process is used in examples throughout the book. Here, we look at each stage of the process in turn.

Strategy is the beginning stage of solving a problem. The idea is to figure out exactly what the problem is and then develop a strategy for solving it. Some general advice for this stage is as follows:

  • Examine the situation to determine which physical principles are involved . It often helps to draw a simple sketch at the outset. You often need to decide which direction is positive and note that on your sketch. When you have identified the physical principles, it is much easier to find and apply the equations representing those principles. Although finding the correct equation is essential, keep in mind that equations represent physical principles, laws of nature, and relationships among physical quantities. Without a conceptual understanding of a problem, a numerical solution is meaningless.
  • Make a list of what is given or can be inferred from the problem as stated (identify the “knowns”) . Many problems are stated very succinctly and require some inspection to determine what is known. Drawing a sketch can be very useful at this point as well. Formally identifying the knowns is of particular importance in applying physics to real-world situations. For example, the word stopped means the velocity is zero at that instant. Also, we can often take initial time and position as zero by the appropriate choice of coordinate system.
  • Identify exactly what needs to be determined in the problem (identify the unknowns) . In complex problems, especially, it is not always obvious what needs to be found or in what sequence. Making a list can help identify the unknowns.
  • Determine which physical principles can help you solve the problem . Since physical principles tend to be expressed in the form of mathematical equations, a list of knowns and unknowns can help here. It is easiest if you can find equations that contain only one unknown—that is, all the other variables are known—so you can solve for the unknown easily. If the equation contains more than one unknown, then additional equations are needed to solve the problem. In some problems, several unknowns must be determined to get at the one needed most. In such problems it is especially important to keep physical principles in mind to avoid going astray in a sea of equations. You may have to use two (or more) different equations to get the final answer.

The solution stage is when you do the math. Substitute the knowns (along with their units) into the appropriate equation and obtain numerical solutions complete with units . That is, do the algebra, calculus, geometry, or arithmetic necessary to find the unknown from the knowns, being sure to carry the units through the calculations. This step is clearly important because it produces the numerical answer, along with its units. Notice, however, that this stage is only one-third of the overall problem-solving process.

Significance

After having done the math in the solution stage of problem solving, it is tempting to think you are done. But, always remember that physics is not math. Rather, in doing physics, we use mathematics as a tool to help us understand nature. So, after you obtain a numerical answer, you should always assess its significance:

  • Check your units. If the units of the answer are incorrect, then an error has been made and you should go back over your previous steps to find it. One way to find the mistake is to check all the equations you derived for dimensional consistency. However, be warned that correct units do not guarantee the numerical part of the answer is also correct.
  • Check the answer to see whether it is reasonable. Does it make sense? This step is extremely important: –the goal of physics is to describe nature accurately. To determine whether the answer is reasonable, check both its magnitude and its sign, in addition to its units. The magnitude should be consistent with a rough estimate of what it should be. It should also compare reasonably with magnitudes of other quantities of the same type. The sign usually tells you about direction and should be consistent with your prior expectations. Your judgment will improve as you solve more physics problems, and it will become possible for you to make finer judgments regarding whether nature is described adequately by the answer to a problem. This step brings the problem back to its conceptual meaning. If you can judge whether the answer is reasonable, you have a deeper understanding of physics than just being able to solve a problem mechanically.
  • Check to see whether the answer tells you something interesting. What does it mean? This is the flip side of the question: Does it make sense? Ultimately, physics is about understanding nature, and we solve physics problems to learn a little something about how nature operates. Therefore, assuming the answer does make sense, you should always take a moment to see if it tells you something about the world that you find interesting. Even if the answer to this particular problem is not very interesting to you, what about the method you used to solve it? Could the method be adapted to answer a question that you do find interesting? In many ways, it is in answering questions such as these that science progresses.

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Access for free at https://openstax.org/books/university-physics-volume-1/pages/1-introduction
  • Authors: William Moebs, Samuel J. Ling, Jeff Sanny
  • Publisher/website: OpenStax
  • Book title: University Physics Volume 1
  • Publication date: Sep 19, 2016
  • Location: Houston, Texas
  • Book URL: https://openstax.org/books/university-physics-volume-1/pages/1-introduction
  • Section URL: https://openstax.org/books/university-physics-volume-1/pages/1-7-solving-problems-in-physics

© Jul 23, 2024 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.

Youtube

  • TPC and eLearning
  • What's NEW at TPC?
  • Read Watch Interact
  • Practice Review Test
  • Teacher-Tools
  • Request a Demo
  • Get A Quote
  • Subscription Selection
  • Seat Calculator
  • Ad Free Account
  • Edit Profile Settings
  • Metric Conversions Questions
  • Metric System Questions
  • Metric Estimation Questions
  • Significant Digits Questions
  • Proportional Reasoning
  • Acceleration
  • Distance-Displacement
  • Dots and Graphs
  • Graph That Motion
  • Match That Graph
  • Name That Motion
  • Motion Diagrams
  • Pos'n Time Graphs Numerical
  • Pos'n Time Graphs Conceptual
  • Up And Down - Questions
  • Balanced vs. Unbalanced Forces
  • Change of State
  • Force and Motion
  • Mass and Weight
  • Match That Free-Body Diagram
  • Net Force (and Acceleration) Ranking Tasks
  • Newton's Second Law
  • Normal Force Card Sort
  • Recognizing Forces
  • Air Resistance and Skydiving
  • Solve It! with Newton's Second Law
  • Which One Doesn't Belong?
  • Component Addition Questions
  • Head-to-Tail Vector Addition
  • Projectile Mathematics
  • Trajectory - Angle Launched Projectiles
  • Trajectory - Horizontally Launched Projectiles
  • Vector Addition
  • Vector Direction
  • Which One Doesn't Belong? Projectile Motion
  • Forces in 2-Dimensions
  • Being Impulsive About Momentum
  • Explosions - Law Breakers
  • Hit and Stick Collisions - Law Breakers
  • Case Studies: Impulse and Force
  • Impulse-Momentum Change Table
  • Keeping Track of Momentum - Hit and Stick
  • Keeping Track of Momentum - Hit and Bounce
  • What's Up (and Down) with KE and PE?
  • Energy Conservation Questions
  • Energy Dissipation Questions
  • Energy Ranking Tasks
  • LOL Charts (a.k.a., Energy Bar Charts)
  • Match That Bar Chart
  • Words and Charts Questions
  • Name That Energy
  • Stepping Up with PE and KE Questions
  • Case Studies - Circular Motion
  • Circular Logic
  • Forces and Free-Body Diagrams in Circular Motion
  • Gravitational Field Strength
  • Universal Gravitation
  • Angular Position and Displacement
  • Linear and Angular Velocity
  • Angular Acceleration
  • Rotational Inertia
  • Balanced vs. Unbalanced Torques
  • Getting a Handle on Torque
  • Torque-ing About Rotation
  • Properties of Matter
  • Fluid Pressure
  • Buoyant Force
  • Sinking, Floating, and Hanging
  • Pascal's Principle
  • Flow Velocity
  • Bernoulli's Principle
  • Balloon Interactions
  • Charge and Charging
  • Charge Interactions
  • Charging by Induction
  • Conductors and Insulators
  • Coulombs Law
  • Electric Field
  • Electric Field Intensity
  • Polarization
  • Case Studies: Electric Power
  • Know Your Potential
  • Light Bulb Anatomy
  • I = ∆V/R Equations as a Guide to Thinking
  • Parallel Circuits - ∆V = I•R Calculations
  • Resistance Ranking Tasks
  • Series Circuits - ∆V = I•R Calculations
  • Series vs. Parallel Circuits
  • Equivalent Resistance
  • Period and Frequency of a Pendulum
  • Pendulum Motion: Velocity and Force
  • Energy of a Pendulum
  • Period and Frequency of a Mass on a Spring
  • Horizontal Springs: Velocity and Force
  • Vertical Springs: Velocity and Force
  • Energy of a Mass on a Spring
  • Decibel Scale
  • Frequency and Period
  • Closed-End Air Columns
  • Name That Harmonic: Strings
  • Rocking the Boat
  • Wave Basics
  • Matching Pairs: Wave Characteristics
  • Wave Interference
  • Waves - Case Studies
  • Color Addition and Subtraction
  • Color Filters
  • If This, Then That: Color Subtraction
  • Light Intensity
  • Color Pigments
  • Converging Lenses
  • Curved Mirror Images
  • Law of Reflection
  • Refraction and Lenses
  • Total Internal Reflection
  • Who Can See Who?
  • Lab Equipment
  • Lab Procedures
  • Formulas and Atom Counting
  • Atomic Models
  • Bond Polarity
  • Entropy Questions
  • Cell Voltage Questions
  • Heat of Formation Questions
  • Reduction Potential Questions
  • Oxidation States Questions
  • Measuring the Quantity of Heat
  • Hess's Law
  • Oxidation-Reduction Questions
  • Galvanic Cells Questions
  • Thermal Stoichiometry
  • Molecular Polarity
  • Quantum Mechanics
  • Balancing Chemical Equations
  • Bronsted-Lowry Model of Acids and Bases
  • Classification of Matter
  • Collision Model of Reaction Rates
  • Density Ranking Tasks
  • Dissociation Reactions
  • Complete Electron Configurations
  • Elemental Measures
  • Enthalpy Change Questions
  • Equilibrium Concept
  • Equilibrium Constant Expression
  • Equilibrium Calculations - Questions
  • Equilibrium ICE Table
  • Intermolecular Forces Questions
  • Ionic Bonding
  • Lewis Electron Dot Structures
  • Limiting Reactants
  • Line Spectra Questions
  • Mass Stoichiometry
  • Measurement and Numbers
  • Metals, Nonmetals, and Metalloids
  • Metric Estimations
  • Metric System
  • Molarity Ranking Tasks
  • Mole Conversions
  • Name That Element
  • Names to Formulas
  • Names to Formulas 2
  • Nuclear Decay
  • Particles, Words, and Formulas
  • Periodic Trends
  • Precipitation Reactions and Net Ionic Equations
  • Pressure Concepts
  • Pressure-Temperature Gas Law
  • Pressure-Volume Gas Law
  • Chemical Reaction Types
  • Significant Digits and Measurement
  • States Of Matter Exercise
  • Stoichiometry Law Breakers
  • Stoichiometry - Math Relationships
  • Subatomic Particles
  • Spontaneity and Driving Forces
  • Gibbs Free Energy
  • Volume-Temperature Gas Law
  • Acid-Base Properties
  • Energy and Chemical Reactions
  • Chemical and Physical Properties
  • Valence Shell Electron Pair Repulsion Theory
  • Writing Balanced Chemical Equations
  • Mission CG1
  • Mission CG10
  • Mission CG2
  • Mission CG3
  • Mission CG4
  • Mission CG5
  • Mission CG6
  • Mission CG7
  • Mission CG8
  • Mission CG9
  • Mission EC1
  • Mission EC10
  • Mission EC11
  • Mission EC12
  • Mission EC2
  • Mission EC3
  • Mission EC4
  • Mission EC5
  • Mission EC6
  • Mission EC7
  • Mission EC8
  • Mission EC9
  • Mission RL1
  • Mission RL2
  • Mission RL3
  • Mission RL4
  • Mission RL5
  • Mission RL6
  • Mission KG7
  • Mission RL8
  • Mission KG9
  • Mission RL10
  • Mission RL11
  • Mission RM1
  • Mission RM2
  • Mission RM3
  • Mission RM4
  • Mission RM5
  • Mission RM6
  • Mission RM8
  • Mission RM10
  • Mission LC1
  • Mission RM11
  • Mission LC2
  • Mission LC3
  • Mission LC4
  • Mission LC5
  • Mission LC6
  • Mission LC8
  • Mission SM1
  • Mission SM2
  • Mission SM3
  • Mission SM4
  • Mission SM5
  • Mission SM6
  • Mission SM8
  • Mission SM10
  • Mission KG10
  • Mission SM11
  • Mission KG2
  • Mission KG3
  • Mission KG4
  • Mission KG5
  • Mission KG6
  • Mission KG8
  • Mission KG11
  • Mission F2D1
  • Mission F2D2
  • Mission F2D3
  • Mission F2D4
  • Mission F2D5
  • Mission F2D6
  • Mission KC1
  • Mission KC2
  • Mission KC3
  • Mission KC4
  • Mission KC5
  • Mission KC6
  • Mission KC7
  • Mission KC8
  • Mission AAA
  • Mission SM9
  • Mission LC7
  • Mission LC9
  • Mission NL1
  • Mission NL2
  • Mission NL3
  • Mission NL4
  • Mission NL5
  • Mission NL6
  • Mission NL7
  • Mission NL8
  • Mission NL9
  • Mission NL10
  • Mission NL11
  • Mission NL12
  • Mission MC1
  • Mission MC10
  • Mission MC2
  • Mission MC3
  • Mission MC4
  • Mission MC5
  • Mission MC6
  • Mission MC7
  • Mission MC8
  • Mission MC9
  • Mission RM7
  • Mission RM9
  • Mission RL7
  • Mission RL9
  • Mission SM7
  • Mission SE1
  • Mission SE10
  • Mission SE11
  • Mission SE12
  • Mission SE2
  • Mission SE3
  • Mission SE4
  • Mission SE5
  • Mission SE6
  • Mission SE7
  • Mission SE8
  • Mission SE9
  • Mission VP1
  • Mission VP10
  • Mission VP2
  • Mission VP3
  • Mission VP4
  • Mission VP5
  • Mission VP6
  • Mission VP7
  • Mission VP8
  • Mission VP9
  • Mission WM1
  • Mission WM2
  • Mission WM3
  • Mission WM4
  • Mission WM5
  • Mission WM6
  • Mission WM7
  • Mission WM8
  • Mission WE1
  • Mission WE10
  • Mission WE2
  • Mission WE3
  • Mission WE4
  • Mission WE5
  • Mission WE6
  • Mission WE7
  • Mission WE8
  • Mission WE9
  • Vector Walk Interactive
  • Name That Motion Interactive
  • Kinematic Graphing 1 Concept Checker
  • Kinematic Graphing 2 Concept Checker
  • Graph That Motion Interactive
  • Two Stage Rocket Interactive
  • Rocket Sled Concept Checker
  • Force Concept Checker
  • Free-Body Diagrams Concept Checker
  • Free-Body Diagrams The Sequel Concept Checker
  • Skydiving Concept Checker
  • Elevator Ride Concept Checker
  • Vector Addition Concept Checker
  • Vector Walk in Two Dimensions Interactive
  • Name That Vector Interactive
  • River Boat Simulator Concept Checker
  • Projectile Simulator 2 Concept Checker
  • Projectile Simulator 3 Concept Checker
  • Hit the Target Interactive
  • Turd the Target 1 Interactive
  • Turd the Target 2 Interactive
  • Balance It Interactive
  • Go For The Gold Interactive
  • Egg Drop Concept Checker
  • Fish Catch Concept Checker
  • Exploding Carts Concept Checker
  • Collision Carts - Inelastic Collisions Concept Checker
  • Its All Uphill Concept Checker
  • Stopping Distance Concept Checker
  • Chart That Motion Interactive
  • Roller Coaster Model Concept Checker
  • Uniform Circular Motion Concept Checker
  • Horizontal Circle Simulation Concept Checker
  • Vertical Circle Simulation Concept Checker
  • Race Track Concept Checker
  • Gravitational Fields Concept Checker
  • Orbital Motion Concept Checker
  • Angular Acceleration Concept Checker
  • Balance Beam Concept Checker
  • Torque Balancer Concept Checker
  • Aluminum Can Polarization Concept Checker
  • Charging Concept Checker
  • Name That Charge Simulation
  • Coulomb's Law Concept Checker
  • Electric Field Lines Concept Checker
  • Put the Charge in the Goal Concept Checker
  • Circuit Builder Concept Checker (Series Circuits)
  • Circuit Builder Concept Checker (Parallel Circuits)
  • Circuit Builder Concept Checker (∆V-I-R)
  • Circuit Builder Concept Checker (Voltage Drop)
  • Equivalent Resistance Interactive
  • Pendulum Motion Simulation Concept Checker
  • Mass on a Spring Simulation Concept Checker
  • Particle Wave Simulation Concept Checker
  • Boundary Behavior Simulation Concept Checker
  • Slinky Wave Simulator Concept Checker
  • Simple Wave Simulator Concept Checker
  • Wave Addition Simulation Concept Checker
  • Standing Wave Maker Simulation Concept Checker
  • Color Addition Concept Checker
  • Painting With CMY Concept Checker
  • Stage Lighting Concept Checker
  • Filtering Away Concept Checker
  • InterferencePatterns Concept Checker
  • Young's Experiment Interactive
  • Plane Mirror Images Interactive
  • Who Can See Who Concept Checker
  • Optics Bench (Mirrors) Concept Checker
  • Name That Image (Mirrors) Interactive
  • Refraction Concept Checker
  • Total Internal Reflection Concept Checker
  • Optics Bench (Lenses) Concept Checker
  • Kinematics Preview
  • Velocity Time Graphs Preview
  • Moving Cart on an Inclined Plane Preview
  • Stopping Distance Preview
  • Cart, Bricks, and Bands Preview
  • Fan Cart Study Preview
  • Friction Preview
  • Coffee Filter Lab Preview
  • Friction, Speed, and Stopping Distance Preview
  • Up and Down Preview
  • Projectile Range Preview
  • Ballistics Preview
  • Juggling Preview
  • Marshmallow Launcher Preview
  • Air Bag Safety Preview
  • Colliding Carts Preview
  • Collisions Preview
  • Engineering Safer Helmets Preview
  • Push the Plow Preview
  • Its All Uphill Preview
  • Energy on an Incline Preview
  • Modeling Roller Coasters Preview
  • Hot Wheels Stopping Distance Preview
  • Ball Bat Collision Preview
  • Energy in Fields Preview
  • Weightlessness Training Preview
  • Roller Coaster Loops Preview
  • Universal Gravitation Preview
  • Keplers Laws Preview
  • Kepler's Third Law Preview
  • Charge Interactions Preview
  • Sticky Tape Experiments Preview
  • Wire Gauge Preview
  • Voltage, Current, and Resistance Preview
  • Light Bulb Resistance Preview
  • Series and Parallel Circuits Preview
  • Thermal Equilibrium Preview
  • Linear Expansion Preview
  • Heating Curves Preview
  • Electricity and Magnetism - Part 1 Preview
  • Electricity and Magnetism - Part 2 Preview
  • Vibrating Mass on a Spring Preview
  • Period of a Pendulum Preview
  • Wave Speed Preview
  • Slinky-Experiments Preview
  • Standing Waves in a Rope Preview
  • Sound as a Pressure Wave Preview
  • DeciBel Scale Preview
  • DeciBels, Phons, and Sones Preview
  • Sound of Music Preview
  • Shedding Light on Light Bulbs Preview
  • Models of Light Preview
  • Electromagnetic Radiation Preview
  • Electromagnetic Spectrum Preview
  • EM Wave Communication Preview
  • Digitized Data Preview
  • Light Intensity Preview
  • Concave Mirrors Preview
  • Object Image Relations Preview
  • Snells Law Preview
  • Reflection vs. Transmission Preview
  • Magnification Lab Preview
  • Reactivity Preview
  • Ions and the Periodic Table Preview
  • Periodic Trends Preview
  • Chemical Reactions Preview
  • Intermolecular Forces Preview
  • Melting Points and Boiling Points Preview
  • Bond Energy and Reactions Preview
  • Reaction Rates Preview
  • Ammonia Factory Preview
  • Stoichiometry Preview
  • Nuclear Chemistry Preview
  • Gaining Teacher Access
  • Task Tracker Directions
  • Conceptual Physics Course
  • On-Level Physics Course
  • Honors Physics Course
  • Chemistry Concept Builders
  • All Chemistry Resources
  • Users Voice
  • Tasks and Classes
  • Webinars and Trainings
  • Subscription
  • Subscription Locator
  • 1-D Kinematics
  • Newton's Laws
  • Vectors - Motion and Forces in Two Dimensions
  • Momentum and Its Conservation
  • Work and Energy
  • Circular Motion and Satellite Motion
  • Thermal Physics
  • Static Electricity
  • Electric Circuits
  • Vibrations and Waves
  • Sound Waves and Music
  • Light and Color
  • Reflection and Mirrors
  • Measurement and Calculations
  • About the Physics Interactives
  • Task Tracker
  • Usage Policy
  • Newtons Laws
  • Vectors and Projectiles
  • Forces in 2D
  • Momentum and Collisions
  • Circular and Satellite Motion
  • Balance and Rotation
  • Electromagnetism
  • Waves and Sound
  • Atomic Physics
  • Forces in Two Dimensions
  • Work, Energy, and Power
  • Circular Motion and Gravitation
  • Sound Waves
  • 1-Dimensional Kinematics
  • Circular, Satellite, and Rotational Motion
  • Einstein's Theory of Special Relativity
  • Waves, Sound and Light
  • QuickTime Movies
  • About the Concept Builders
  • Pricing For Schools
  • Directions for Version 2
  • Measurement and Units
  • Relationships and Graphs
  • Rotation and Balance
  • Vibrational Motion
  • Reflection and Refraction
  • Teacher Accounts
  • Kinematic Concepts
  • Kinematic Graphing
  • Wave Motion
  • Sound and Music
  • About CalcPad
  • 1D Kinematics
  • Vectors and Forces in 2D
  • Simple Harmonic Motion
  • Rotational Kinematics
  • Rotation and Torque
  • Rotational Dynamics
  • Electric Fields, Potential, and Capacitance
  • Transient RC Circuits
  • Light Waves
  • Units and Measurement
  • Stoichiometry
  • Molarity and Solutions
  • Thermal Chemistry
  • Acids and Bases
  • Kinetics and Equilibrium
  • Solution Equilibria
  • Oxidation-Reduction
  • Nuclear Chemistry
  • Newton's Laws of Motion
  • Work and Energy Packet
  • Static Electricity Review
  • NGSS Alignments
  • 1D-Kinematics
  • Projectiles
  • Circular Motion
  • Magnetism and Electromagnetism
  • Graphing Practice
  • About the ACT
  • ACT Preparation
  • For Teachers
  • Other Resources
  • Solutions Guide
  • Solutions Guide Digital Download
  • Motion in One Dimension
  • Work, Energy and Power
  • Chemistry of Matter
  • Names and Formulas
  • Algebra Based On-Level Physics
  • Honors Physics
  • Conceptual Physics
  • Other Tools
  • Frequently Asked Questions
  • Purchasing the Download
  • Purchasing the Digital Download
  • About the NGSS Corner
  • NGSS Search
  • Force and Motion DCIs - High School
  • Energy DCIs - High School
  • Wave Applications DCIs - High School
  • Force and Motion PEs - High School
  • Energy PEs - High School
  • Wave Applications PEs - High School
  • Crosscutting Concepts
  • The Practices
  • Physics Topics
  • NGSS Corner: Activity List
  • NGSS Corner: Infographics
  • About the Toolkits
  • Position-Velocity-Acceleration
  • Position-Time Graphs
  • Velocity-Time Graphs
  • Newton's First Law
  • Newton's Second Law
  • Newton's Third Law
  • Terminal Velocity
  • Projectile Motion
  • Forces in 2 Dimensions
  • Impulse and Momentum Change
  • Momentum Conservation
  • Work-Energy Fundamentals
  • Work-Energy Relationship
  • Roller Coaster Physics
  • Satellite Motion
  • Electric Fields
  • Circuit Concepts
  • Series Circuits
  • Parallel Circuits
  • Describing-Waves
  • Wave Behavior Toolkit
  • Standing Wave Patterns
  • Resonating Air Columns
  • Wave Model of Light
  • Plane Mirrors
  • Curved Mirrors
  • Teacher Guide
  • Using Lab Notebooks
  • Current Electricity
  • Light Waves and Color
  • Reflection and Ray Model of Light
  • Refraction and Ray Model of Light
  • Teacher Resources
  • Subscriptions

problem solving about work in physics

  • Newton's Laws
  • Einstein's Theory of Special Relativity
  • About Concept Checkers
  • School Pricing
  • Newton's Laws of Motion
  • Newton's First Law
  • Newton's Third Law
  • Sample Problems and Solutions
  • Kinematic Equations Introduction
  • Solving Problems with Kinematic Equations
  • Kinematic Equations and Free Fall
  • Kinematic Equations and Kinematic Graphs

UsingKinEqns1ThN.png

Check Your Understanding

Answer: d = 1720 m

Answer: a = 8.10 m/s/s

Answers: d = 33.1 m and v f = 25.5 m/s

Answers: a = 11.2 m/s/s and d = 79.8 m

Answer: t = 1.29 s

Answers: a = 243 m/s/s

Answer: a = 0.712 m/s/s

Answer: d = 704 m

Answer: d = 28.6 m

Answer: v i = 7.17 m/s

Answer: v i = 5.03 m/s and hang time = 1.03 s (except for in sports commericals)

Answer: a = 1.62*10 5 m/s/s

Answer: d = 48.0 m

Answer: t = 8.69 s

Answer: a = -1.08*10^6 m/s/s

Answer: d = -57.0 m (57.0 meters deep) 

Answer: v i = 47.6 m/s

Answer: a = 2.86 m/s/s and t = 30. 8 s

Answer: a = 15.8 m/s/s

Answer: v i = 94.4 mi/hr

Solutions to Above Problems

t = 32.8 s

v = 0 m/s

d = (0 m/s)*(32.8 s)+ 0.5*(3.20 m/s 2 )*(32.8 s) 2

Return to Problem 1

t = 5.21 s

v = 0 m/s

110 m = (0 m/s)*(5.21 s)+ 0.5*(a)*(5.21 s) 2

110 m = (13.57 s 2 )*a

a = (110 m)/(13.57 s 2 )

a = 8.10 m/ s 2

Return to Problem 2

t = 2.6 s

v = 0 m/s

d = (0 m/s)*(2.60 s)+ 0.5*(-9.8 m/s 2 )*(2.60 s) 2

d = -33.1 m (- indicates direction)

v f = v i + a*t

v f = 0 + (-9.8 m/s 2 )*(2.60 s)

v f = -25.5 m/s (- indicates direction)

Return to Problem 3

v = 18.5 m/s

v = 46.1 m/s

t = 2.47 s

a = (46.1 m/s - 18.5 m/s)/(2.47 s)

a = 11.2 m/s 2

d = v i *t + 0.5*a*t 2

d = (18.5 m/s)*(2.47 s)+ 0.5*(11.2 m/s 2 )*(2.47 s) 2

d = 45.7 m + 34.1 m

(Note: the d can also be calculated using the equation v f 2 = v i 2 + 2*a*d)

Return to Problem 4

v = 0 m/s

d = -1.40 m

-1.40 m = (0 m/s)*(t)+ 0.5*(-1.67 m/s 2 )*(t) 2

-1.40 m = 0+ (-0.835 m/s 2 )*(t) 2

(-1.40 m)/(-0.835 m/s 2 ) = t 2

1.68 s 2 = t 2

Return to Problem 5

v = 0 m/s

v = 444 m/s

a = (444 m/s - 0 m/s)/(1.83 s)

a = 243 m/s 2

d = (0 m/s)*(1.83 s)+ 0.5*(243 m/s 2 )*(1.83 s) 2

d = 0 m + 406 m

Return to Problem 6

v = 0 m/s

v = 7.10 m/s

(7.10 m/s) 2 = (0 m/s) 2 + 2*(a)*(35.4 m)

50.4 m 2 /s 2 = (0 m/s) 2 + (70.8 m)*a

(50.4 m 2 /s 2 )/(70.8 m) = a

a = 0.712 m/s 2

Return to Problem 7

v = 0 m/s

v = 65 m/s

(65 m/s) 2 = (0 m/s) 2 + 2*(3 m/s 2 )*d

4225 m 2 /s 2 = (0 m/s) 2 + (6 m/s 2 )*d

(4225 m 2 /s 2 )/(6 m/s 2 ) = d

Return to Problem 8

v = 22.4 m/s

v = 0 m/s

d = (22.4 m/s + 0 m/s)/2 *2.55 s

d = (11.2 m/s)*2.55 s

Return to Problem 9

a = -9.8 m/s

v = 0 m/s

(0 m/s) 2 = v i 2 + 2*(-9.8 m/s 2 )*(2.62 m)

0 m 2 /s 2 = v i 2 - 51.35 m 2 /s 2

51.35 m 2 /s 2 = v i 2

v i = 7.17 m/s

Return to Problem 10

(0 m/s) 2 = v i 2 + 2*(-9.8 m/s 2 )*(1.29 m)

0 m 2 /s 2 = v i 2 - 25.28 m 2 /s 2

25.28 m 2 /s 2 = v i 2

v i = 5.03 m/s

To find hang time, find the time to the peak and then double it.

0 m/s = 5.03 m/s + (-9.8 m/s 2 )*t up

-5.03 m/s = (-9.8 m/s 2 )*t up

(-5.03 m/s)/(-9.8 m/s 2 ) = t up

t up = 0.513 s

hang time = 1.03 s

Return to Problem 11

v = 0 m/s

v = 521 m/s

(521 m/s) 2 = (0 m/s) 2 + 2*(a)*(0.840 m)

271441 m 2 /s 2 = (0 m/s) 2 + (1.68 m)*a

(271441 m 2 /s 2 )/(1.68 m) = a

a = 1.62*10 5 m /s 2

Return to Problem 12

  • (NOTE: the time required to move to the peak of the trajectory is one-half the total hang time - 3.125 s.)

First use:  v f  = v i  + a*t

0 m/s = v i  + (-9.8  m/s 2 )*(3.13 s)

0 m/s = v i  - 30.7 m/s

v i  = 30.7 m/s  (30.674 m/s)

Now use:  v f 2  = v i 2  + 2*a*d

(0 m/s) 2  = (30.7 m/s) 2  + 2*(-9.8  m/s 2 )*(d)

0 m 2 /s 2  = (940 m 2 /s 2 ) + (-19.6  m/s 2 )*d

-940  m 2 /s 2  = (-19.6  m/s 2 )*d

(-940  m 2 /s 2 )/(-19.6  m/s 2 ) = d

Return to Problem 13

v = 0 m/s

d = -370 m

-370 m = (0 m/s)*(t)+ 0.5*(-9.8 m/s 2 )*(t) 2

-370 m = 0+ (-4.9 m/s 2 )*(t) 2

(-370 m)/(-4.9 m/s 2 ) = t 2

75.5 s 2 = t 2

Return to Problem 14

v = 367 m/s

v = 0 m/s

(0 m/s) 2 = (367 m/s) 2 + 2*(a)*(0.0621 m)

0 m 2 /s 2 = (134689 m 2 /s 2 ) + (0.1242 m)*a

-134689 m 2 /s 2 = (0.1242 m)*a

(-134689 m 2 /s 2 )/(0.1242 m) = a

a = -1.08*10 6 m /s 2

(The - sign indicates that the bullet slowed down.)

Return to Problem 15

t = 3.41 s

v = 0 m/s

d = (0 m/s)*(3.41 s)+ 0.5*(-9.8 m/s 2 )*(3.41 s) 2

d = 0 m+ 0.5*(-9.8 m/s 2 )*(11.63 s 2 )

d = -57.0 m

(NOTE: the - sign indicates direction)

Return to Problem 16

a = -3.90 m/s

v = 0 m/s

(0 m/s) 2 = v i 2 + 2*(- 3.90 m/s 2 )*(290 m)

0 m 2 /s 2 = v i 2 - 2262 m 2 /s 2

2262 m 2 /s 2 = v i 2

v i = 47.6 m /s

Return to Problem 17

v = 0 m/s

v = 88.3 m/s

( 88.3 m/s) 2 = (0 m/s) 2 + 2*(a)*(1365 m)

7797 m 2 /s 2 = (0 m 2 /s 2 ) + (2730 m)*a

7797 m 2 /s 2 = (2730 m)*a

(7797 m 2 /s 2 )/(2730 m) = a

a = 2.86 m/s 2

88.3 m/s = 0 m/s + (2.86 m/s 2 )*t

(88.3 m/s)/(2.86 m/s 2 ) = t

t = 30. 8 s

Return to Problem 18

v = 0 m/s

v = m/s

( 112 m/s) 2 = (0 m/s) 2 + 2*(a)*(398 m)

12544 m 2 /s 2 = 0 m 2 /s 2 + (796 m)*a

12544 m 2 /s 2 = (796 m)*a

(12544 m 2 /s 2 )/(796 m) = a

a = 15.8 m/s 2

Return to Problem 19

v f 2 = v i 2 + 2*a*d

(0 m/s) 2 = v i 2 + 2*(-9.8 m/s 2 )*(91.5 m)

0 m 2 /s 2 = v i 2 - 1793 m 2 /s 2

1793 m 2 /s 2 = v i 2

v i = 42.3 m/s

Now convert from m/s to mi/hr:

v i = 42.3 m/s * (2.23 mi/hr)/(1 m/s)

v i = 94.4 mi/hr

Return to Problem 20

IMAGES

  1. How to Be a Better Physics Problem Solver: Tips for High School and

    problem solving about work in physics

  2. Physics: 5 Step Problem Solving Process with Examples

    problem solving about work in physics

  3. How to solve work energy problems in physics

    problem solving about work in physics

  4. College Physics Work, Power & Energy Problem Set #1, 2, 5

    problem solving about work in physics

  5. Solving physics problems how to solve physics problems

    problem solving about work in physics

  6. Physics Problem Solving Steps Printable [FREEBIE] by Suntree Science

    problem solving about work in physics

VIDEO

  1. Problem Solving : Work Function

  2. 5.4 (Lesson + Problem solving) Work done by a constant force (Part 1)

  3. 5.4 (Lesson + Problem solving) Work done by a constant force (Part 2)

  4. 5.3 (lesson + Problem solving) Work

  5. Work, Power & Energy

  6. Kinetic Theory of Gases

COMMENTS

  1. Physics Work Problems for High Schools

    Here, we learned how to calculate the work done by a constant force in physics by solving a couple of example problems. Overall, the work done by a constant force is the product of the horizontal component of the force times the displacement between the initial and final points. In addition, power, a related quantity to work in physics, is also ...

  2. Work, Energy, and Power Problem Sets

    Problem 2: Hans Full is pulling on a rope to drag his backpack to school across the ice. He pulls upwards and rightwards with a force of 22.9 Newtons at an angle of 35 degrees above the horizontal to drag his backpack a horizontal distance of 129 meters to the right. Determine the work (in Joules) done upon the backpack.

  3. 9.1 Work, Power, and the Work-Energy Theorem

    The measurement of work and energy with the same unit reinforces the idea that work and energy are related and can be converted into one another. 1.0 J = 1.0 N∙m, the units of force multiplied by distance. 1.0 N = 1.0 kg∙m/s 2, so 1.0 J = 1.0 kg∙m 2 /s 2. Analyzing the units of the term (1/2)mv 2 will produce the same units for joules.

  4. Work, Energy, and Power Problem Sets

    Problem Set WE1: Work 1. Use the work equation to calculate the work done, a force value, or a displacement value. Includes 8 problems. Problem Set WE2: Work 2. Use the work equation to calculate the work done, a force value, or a displacement value. Includes 6 problems. Problem Set WE3: Work and Power 1.

  5. Work and Power Example Solutions

    Example Work and Power Problems. 1. How much work is done by the stickman that pushes a box 5 meters with a force of 12 Newtons forward? W = (F) (d) Since the force is in the same direction as motion you plug numbers directly in and don't have to find the parallel component first. W = (12) (5) = 60 J. 2.

  6. Work and energy problems and solutions

    The first thing you need to identify when solving an energy problem is whether the mechanical energy (kinetic + potential) is conserved or not in the situation described by the problem. The basic equation that you will have to learn to solve this type of problems is the following: Where E C is the kinetic energy of the particle and W the work ...

  7. 7.1 Work

    In physics, work is done on an object when energy is transferred to the object. In other words, work is done when a force acts on something that undergoes a displacement from one position to another. ... We can solve this problem by substituting the given values into the definition of work done on an object by a constant force, stated in the ...

  8. Work

    zarm-work.txt The data in the accompanying tab delimited text file give the net force on a 500 kg projectile sitting atop a vertically mounted piston as a function of its displacement. Use this data set and your favorite application for analyzing data to solve the following problems. Use the given data to create a force-displacement graph.

  9. Physics Video Tutorial

    Work-Energy Practice Problems Video Tutorial. The Work-Energy Practice Problems Video Tutorial focuses on the use of work-energy concepts to solve problems. After providing a background and a short strategy, Mr. H steps through detailed solutions to six example problems involving work and energy. Learn how to use the concepts to solve for speed ...

  10. Work example problems

    David goes through some example problems on the concept of work. Created by David SantoPietro.Watch the next lesson: https://www.khanacademy.org/science/phys...

  11. Calculating Work in Physics: Example Problems

    What is work in physics? We all do lots of work: homework, working on projects or working at a job. But in physics work has a very specific meaning. This vid...

  12. How to Solve Work Problems for Physics & AP Physics Classes

    How do you solve Work problems in Physics? This lesson is part of our unit on Energy and Conservation of Energy for Physics classes and as a foundation for ...

  13. High School Physics : Calculating Work

    Correct answer: Explanation: The formula for work is , work equals force times distance. In this case, there is only one force acting upon the object: the force due to gravity. Plug in our given information for the distance to solve for the work done by gravity. Remember, since the object will be moving downward, the distance should be negative.

  14. Work done by force

    Work done by force - problems and solutions 1. A person pulls a block 2 m along a horizontal surface by a constant force F = 20 N. Determine the work done by force F acting on the block.

  15. Khan Academy

    If you're seeing this message, it means we're having trouble loading external resources on our website. If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

  16. Work Physics Problems with Solutions

    Work = 15 x 0.7 = 10.5 J Therefore, the value of Work is 10.5 J. Example 2: Refer the below work physics problem with solution for a boy who uses a force of 30 Newtons to lift his grocery bag while doing 60 Joules of work. How far did he lift the grocery bags? Solution: Substituting the values in the above given formula, Distance = 60 / 30 = 2 m

  17. 1.7 Solving Problems in Physics

    With practice, the basics of problem solving become almost automatic. One way to get practice is to work out the text's examples for yourself as you read. Another is to work as many end-of-section problems as possible, starting with the easiest to build confidence and then progressing to the more difficult. ... physics is about understanding ...

  18. Equation Overview for Work, Energy, and Power Problems

    In solving work problems, one must always be aware of this definition - theta is the angle between the force and the displacement which it causes. If the force is in the same direction as the displacement, then the angle is 0 degrees. ... An effective problem solver by habit approaches a physics problem in a manner that reflects a collection of ...

  19. Kinematic Equations: Sample Problems and Solutions

    A useful problem-solving strategy was presented for use with these equations and two examples were given that illustrated the use of the strategy. Then, the application of the kinematic equations and the problem-solving strategy to free-fall motion was discussed and illustrated. In this part of Lesson 6, several sample problems will be presented.

  20. PDF An Expert's Approach to Solving Physics Problems

    to the above Expert's Approach to problem solving.Problem: Consider the spin degrees of f. eedom of the proton and electron in a hydrogen atom. They are coupl. teraction, whose Hamiltonian ishf = ⃗ ⋅ ⃗ ħ2where has units of energy, and ⃗ and ⃗ are the spin. operators for the electron and proton, respectively. The electron and proton.