U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • BMC Med Res Methodol

Logo of bmcmrm

A tutorial on methodological studies: the what, when, how and why

Lawrence mbuagbaw.

1 Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, ON Canada

2 Biostatistics Unit/FSORC, 50 Charlton Avenue East, St Joseph’s Healthcare—Hamilton, 3rd Floor Martha Wing, Room H321, Hamilton, Ontario L8N 4A6 Canada

3 Centre for the Development of Best Practices in Health, Yaoundé, Cameroon

Daeria O. Lawson

Livia puljak.

4 Center for Evidence-Based Medicine and Health Care, Catholic University of Croatia, Ilica 242, 10000 Zagreb, Croatia

David B. Allison

5 Department of Epidemiology and Biostatistics, School of Public Health – Bloomington, Indiana University, Bloomington, IN 47405 USA

Lehana Thabane

6 Departments of Paediatrics and Anaesthesia, McMaster University, Hamilton, ON Canada

7 Centre for Evaluation of Medicine, St. Joseph’s Healthcare-Hamilton, Hamilton, ON Canada

8 Population Health Research Institute, Hamilton Health Sciences, Hamilton, ON Canada

Associated Data

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

Methodological studies – studies that evaluate the design, analysis or reporting of other research-related reports – play an important role in health research. They help to highlight issues in the conduct of research with the aim of improving health research methodology, and ultimately reducing research waste.

We provide an overview of some of the key aspects of methodological studies such as what they are, and when, how and why they are done. We adopt a “frequently asked questions” format to facilitate reading this paper and provide multiple examples to help guide researchers interested in conducting methodological studies. Some of the topics addressed include: is it necessary to publish a study protocol? How to select relevant research reports and databases for a methodological study? What approaches to data extraction and statistical analysis should be considered when conducting a methodological study? What are potential threats to validity and is there a way to appraise the quality of methodological studies?

Appropriate reflection and application of basic principles of epidemiology and biostatistics are required in the design and analysis of methodological studies. This paper provides an introduction for further discussion about the conduct of methodological studies.

The field of meta-research (or research-on-research) has proliferated in recent years in response to issues with research quality and conduct [ 1 – 3 ]. As the name suggests, this field targets issues with research design, conduct, analysis and reporting. Various types of research reports are often examined as the unit of analysis in these studies (e.g. abstracts, full manuscripts, trial registry entries). Like many other novel fields of research, meta-research has seen a proliferation of use before the development of reporting guidance. For example, this was the case with randomized trials for which risk of bias tools and reporting guidelines were only developed much later – after many trials had been published and noted to have limitations [ 4 , 5 ]; and for systematic reviews as well [ 6 – 8 ]. However, in the absence of formal guidance, studies that report on research differ substantially in how they are named, conducted and reported [ 9 , 10 ]. This creates challenges in identifying, summarizing and comparing them. In this tutorial paper, we will use the term methodological study to refer to any study that reports on the design, conduct, analysis or reporting of primary or secondary research-related reports (such as trial registry entries and conference abstracts).

In the past 10 years, there has been an increase in the use of terms related to methodological studies (based on records retrieved with a keyword search [in the title and abstract] for “methodological review” and “meta-epidemiological study” in PubMed up to December 2019), suggesting that these studies may be appearing more frequently in the literature. See Fig.  1 .

An external file that holds a picture, illustration, etc.
Object name is 12874_2020_1107_Fig1_HTML.jpg

Trends in the number studies that mention “methodological review” or “meta-

epidemiological study” in PubMed.

The methods used in many methodological studies have been borrowed from systematic and scoping reviews. This practice has influenced the direction of the field, with many methodological studies including searches of electronic databases, screening of records, duplicate data extraction and assessments of risk of bias in the included studies. However, the research questions posed in methodological studies do not always require the approaches listed above, and guidance is needed on when and how to apply these methods to a methodological study. Even though methodological studies can be conducted on qualitative or mixed methods research, this paper focuses on and draws examples exclusively from quantitative research.

The objectives of this paper are to provide some insights on how to conduct methodological studies so that there is greater consistency between the research questions posed, and the design, analysis and reporting of findings. We provide multiple examples to illustrate concepts and a proposed framework for categorizing methodological studies in quantitative research.

What is a methodological study?

Any study that describes or analyzes methods (design, conduct, analysis or reporting) in published (or unpublished) literature is a methodological study. Consequently, the scope of methodological studies is quite extensive and includes, but is not limited to, topics as diverse as: research question formulation [ 11 ]; adherence to reporting guidelines [ 12 – 14 ] and consistency in reporting [ 15 ]; approaches to study analysis [ 16 ]; investigating the credibility of analyses [ 17 ]; and studies that synthesize these methodological studies [ 18 ]. While the nomenclature of methodological studies is not uniform, the intents and purposes of these studies remain fairly consistent – to describe or analyze methods in primary or secondary studies. As such, methodological studies may also be classified as a subtype of observational studies.

Parallel to this are experimental studies that compare different methods. Even though they play an important role in informing optimal research methods, experimental methodological studies are beyond the scope of this paper. Examples of such studies include the randomized trials by Buscemi et al., comparing single data extraction to double data extraction [ 19 ], and Carrasco-Labra et al., comparing approaches to presenting findings in Grading of Recommendations, Assessment, Development and Evaluations (GRADE) summary of findings tables [ 20 ]. In these studies, the unit of analysis is the person or groups of individuals applying the methods. We also direct readers to the Studies Within a Trial (SWAT) and Studies Within a Review (SWAR) programme operated through the Hub for Trials Methodology Research, for further reading as a potential useful resource for these types of experimental studies [ 21 ]. Lastly, this paper is not meant to inform the conduct of research using computational simulation and mathematical modeling for which some guidance already exists [ 22 ], or studies on the development of methods using consensus-based approaches.

When should we conduct a methodological study?

Methodological studies occupy a unique niche in health research that allows them to inform methodological advances. Methodological studies should also be conducted as pre-cursors to reporting guideline development, as they provide an opportunity to understand current practices, and help to identify the need for guidance and gaps in methodological or reporting quality. For example, the development of the popular Preferred Reporting Items of Systematic reviews and Meta-Analyses (PRISMA) guidelines were preceded by methodological studies identifying poor reporting practices [ 23 , 24 ]. In these instances, after the reporting guidelines are published, methodological studies can also be used to monitor uptake of the guidelines.

These studies can also be conducted to inform the state of the art for design, analysis and reporting practices across different types of health research fields, with the aim of improving research practices, and preventing or reducing research waste. For example, Samaan et al. conducted a scoping review of adherence to different reporting guidelines in health care literature [ 18 ]. Methodological studies can also be used to determine the factors associated with reporting practices. For example, Abbade et al. investigated journal characteristics associated with the use of the Participants, Intervention, Comparison, Outcome, Timeframe (PICOT) format in framing research questions in trials of venous ulcer disease [ 11 ].

How often are methodological studies conducted?

There is no clear answer to this question. Based on a search of PubMed, the use of related terms (“methodological review” and “meta-epidemiological study”) – and therefore, the number of methodological studies – is on the rise. However, many other terms are used to describe methodological studies. There are also many studies that explore design, conduct, analysis or reporting of research reports, but that do not use any specific terms to describe or label their study design in terms of “methodology”. This diversity in nomenclature makes a census of methodological studies elusive. Appropriate terminology and key words for methodological studies are needed to facilitate improved accessibility for end-users.

Why do we conduct methodological studies?

Methodological studies provide information on the design, conduct, analysis or reporting of primary and secondary research and can be used to appraise quality, quantity, completeness, accuracy and consistency of health research. These issues can be explored in specific fields, journals, databases, geographical regions and time periods. For example, Areia et al. explored the quality of reporting of endoscopic diagnostic studies in gastroenterology [ 25 ]; Knol et al. investigated the reporting of p -values in baseline tables in randomized trial published in high impact journals [ 26 ]; Chen et al. describe adherence to the Consolidated Standards of Reporting Trials (CONSORT) statement in Chinese Journals [ 27 ]; and Hopewell et al. describe the effect of editors’ implementation of CONSORT guidelines on reporting of abstracts over time [ 28 ]. Methodological studies provide useful information to researchers, clinicians, editors, publishers and users of health literature. As a result, these studies have been at the cornerstone of important methodological developments in the past two decades and have informed the development of many health research guidelines including the highly cited CONSORT statement [ 5 ].

Where can we find methodological studies?

Methodological studies can be found in most common biomedical bibliographic databases (e.g. Embase, MEDLINE, PubMed, Web of Science). However, the biggest caveat is that methodological studies are hard to identify in the literature due to the wide variety of names used and the lack of comprehensive databases dedicated to them. A handful can be found in the Cochrane Library as “Cochrane Methodology Reviews”, but these studies only cover methodological issues related to systematic reviews. Previous attempts to catalogue all empirical studies of methods used in reviews were abandoned 10 years ago [ 29 ]. In other databases, a variety of search terms may be applied with different levels of sensitivity and specificity.

Some frequently asked questions about methodological studies

In this section, we have outlined responses to questions that might help inform the conduct of methodological studies.

Q: How should I select research reports for my methodological study?

A: Selection of research reports for a methodological study depends on the research question and eligibility criteria. Once a clear research question is set and the nature of literature one desires to review is known, one can then begin the selection process. Selection may begin with a broad search, especially if the eligibility criteria are not apparent. For example, a methodological study of Cochrane Reviews of HIV would not require a complex search as all eligible studies can easily be retrieved from the Cochrane Library after checking a few boxes [ 30 ]. On the other hand, a methodological study of subgroup analyses in trials of gastrointestinal oncology would require a search to find such trials, and further screening to identify trials that conducted a subgroup analysis [ 31 ].

The strategies used for identifying participants in observational studies can apply here. One may use a systematic search to identify all eligible studies. If the number of eligible studies is unmanageable, a random sample of articles can be expected to provide comparable results if it is sufficiently large [ 32 ]. For example, Wilson et al. used a random sample of trials from the Cochrane Stroke Group’s Trial Register to investigate completeness of reporting [ 33 ]. It is possible that a simple random sample would lead to underrepresentation of units (i.e. research reports) that are smaller in number. This is relevant if the investigators wish to compare multiple groups but have too few units in one group. In this case a stratified sample would help to create equal groups. For example, in a methodological study comparing Cochrane and non-Cochrane reviews, Kahale et al. drew random samples from both groups [ 34 ]. Alternatively, systematic or purposeful sampling strategies can be used and we encourage researchers to justify their selected approaches based on the study objective.

Q: How many databases should I search?

A: The number of databases one should search would depend on the approach to sampling, which can include targeting the entire “population” of interest or a sample of that population. If you are interested in including the entire target population for your research question, or drawing a random or systematic sample from it, then a comprehensive and exhaustive search for relevant articles is required. In this case, we recommend using systematic approaches for searching electronic databases (i.e. at least 2 databases with a replicable and time stamped search strategy). The results of your search will constitute a sampling frame from which eligible studies can be drawn.

Alternatively, if your approach to sampling is purposeful, then we recommend targeting the database(s) or data sources (e.g. journals, registries) that include the information you need. For example, if you are conducting a methodological study of high impact journals in plastic surgery and they are all indexed in PubMed, you likely do not need to search any other databases. You may also have a comprehensive list of all journals of interest and can approach your search using the journal names in your database search (or by accessing the journal archives directly from the journal’s website). Even though one could also search journals’ web pages directly, using a database such as PubMed has multiple advantages, such as the use of filters, so the search can be narrowed down to a certain period, or study types of interest. Furthermore, individual journals’ web sites may have different search functionalities, which do not necessarily yield a consistent output.

Q: Should I publish a protocol for my methodological study?

A: A protocol is a description of intended research methods. Currently, only protocols for clinical trials require registration [ 35 ]. Protocols for systematic reviews are encouraged but no formal recommendation exists. The scientific community welcomes the publication of protocols because they help protect against selective outcome reporting, the use of post hoc methodologies to embellish results, and to help avoid duplication of efforts [ 36 ]. While the latter two risks exist in methodological research, the negative consequences may be substantially less than for clinical outcomes. In a sample of 31 methodological studies, 7 (22.6%) referenced a published protocol [ 9 ]. In the Cochrane Library, there are 15 protocols for methodological reviews (21 July 2020). This suggests that publishing protocols for methodological studies is not uncommon.

Authors can consider publishing their study protocol in a scholarly journal as a manuscript. Advantages of such publication include obtaining peer-review feedback about the planned study, and easy retrieval by searching databases such as PubMed. The disadvantages in trying to publish protocols includes delays associated with manuscript handling and peer review, as well as costs, as few journals publish study protocols, and those journals mostly charge article-processing fees [ 37 ]. Authors who would like to make their protocol publicly available without publishing it in scholarly journals, could deposit their study protocols in publicly available repositories, such as the Open Science Framework ( https://osf.io/ ).

Q: How to appraise the quality of a methodological study?

A: To date, there is no published tool for appraising the risk of bias in a methodological study, but in principle, a methodological study could be considered as a type of observational study. Therefore, during conduct or appraisal, care should be taken to avoid the biases common in observational studies [ 38 ]. These biases include selection bias, comparability of groups, and ascertainment of exposure or outcome. In other words, to generate a representative sample, a comprehensive reproducible search may be necessary to build a sampling frame. Additionally, random sampling may be necessary to ensure that all the included research reports have the same probability of being selected, and the screening and selection processes should be transparent and reproducible. To ensure that the groups compared are similar in all characteristics, matching, random sampling or stratified sampling can be used. Statistical adjustments for between-group differences can also be applied at the analysis stage. Finally, duplicate data extraction can reduce errors in assessment of exposures or outcomes.

Q: Should I justify a sample size?

A: In all instances where one is not using the target population (i.e. the group to which inferences from the research report are directed) [ 39 ], a sample size justification is good practice. The sample size justification may take the form of a description of what is expected to be achieved with the number of articles selected, or a formal sample size estimation that outlines the number of articles required to answer the research question with a certain precision and power. Sample size justifications in methodological studies are reasonable in the following instances:

  • Comparing two groups
  • Determining a proportion, mean or another quantifier
  • Determining factors associated with an outcome using regression-based analyses

For example, El Dib et al. computed a sample size requirement for a methodological study of diagnostic strategies in randomized trials, based on a confidence interval approach [ 40 ].

Q: What should I call my study?

A: Other terms which have been used to describe/label methodological studies include “ methodological review ”, “methodological survey” , “meta-epidemiological study” , “systematic review” , “systematic survey”, “meta-research”, “research-on-research” and many others. We recommend that the study nomenclature be clear, unambiguous, informative and allow for appropriate indexing. Methodological study nomenclature that should be avoided includes “ systematic review” – as this will likely be confused with a systematic review of a clinical question. “ Systematic survey” may also lead to confusion about whether the survey was systematic (i.e. using a preplanned methodology) or a survey using “ systematic” sampling (i.e. a sampling approach using specific intervals to determine who is selected) [ 32 ]. Any of the above meanings of the words “ systematic” may be true for methodological studies and could be potentially misleading. “ Meta-epidemiological study” is ideal for indexing, but not very informative as it describes an entire field. The term “ review ” may point towards an appraisal or “review” of the design, conduct, analysis or reporting (or methodological components) of the targeted research reports, yet it has also been used to describe narrative reviews [ 41 , 42 ]. The term “ survey ” is also in line with the approaches used in many methodological studies [ 9 ], and would be indicative of the sampling procedures of this study design. However, in the absence of guidelines on nomenclature, the term “ methodological study ” is broad enough to capture most of the scenarios of such studies.

Q: Should I account for clustering in my methodological study?

A: Data from methodological studies are often clustered. For example, articles coming from a specific source may have different reporting standards (e.g. the Cochrane Library). Articles within the same journal may be similar due to editorial practices and policies, reporting requirements and endorsement of guidelines. There is emerging evidence that these are real concerns that should be accounted for in analyses [ 43 ]. Some cluster variables are described in the section: “ What variables are relevant to methodological studies?”

A variety of modelling approaches can be used to account for correlated data, including the use of marginal, fixed or mixed effects regression models with appropriate computation of standard errors [ 44 ]. For example, Kosa et al. used generalized estimation equations to account for correlation of articles within journals [ 15 ]. Not accounting for clustering could lead to incorrect p -values, unduly narrow confidence intervals, and biased estimates [ 45 ].

Q: Should I extract data in duplicate?

A: Yes. Duplicate data extraction takes more time but results in less errors [ 19 ]. Data extraction errors in turn affect the effect estimate [ 46 ], and therefore should be mitigated. Duplicate data extraction should be considered in the absence of other approaches to minimize extraction errors. However, much like systematic reviews, this area will likely see rapid new advances with machine learning and natural language processing technologies to support researchers with screening and data extraction [ 47 , 48 ]. However, experience plays an important role in the quality of extracted data and inexperienced extractors should be paired with experienced extractors [ 46 , 49 ].

Q: Should I assess the risk of bias of research reports included in my methodological study?

A : Risk of bias is most useful in determining the certainty that can be placed in the effect measure from a study. In methodological studies, risk of bias may not serve the purpose of determining the trustworthiness of results, as effect measures are often not the primary goal of methodological studies. Determining risk of bias in methodological studies is likely a practice borrowed from systematic review methodology, but whose intrinsic value is not obvious in methodological studies. When it is part of the research question, investigators often focus on one aspect of risk of bias. For example, Speich investigated how blinding was reported in surgical trials [ 50 ], and Abraha et al., investigated the application of intention-to-treat analyses in systematic reviews and trials [ 51 ].

Q: What variables are relevant to methodological studies?

A: There is empirical evidence that certain variables may inform the findings in a methodological study. We outline some of these and provide a brief overview below:

  • Country: Countries and regions differ in their research cultures, and the resources available to conduct research. Therefore, it is reasonable to believe that there may be differences in methodological features across countries. Methodological studies have reported loco-regional differences in reporting quality [ 52 , 53 ]. This may also be related to challenges non-English speakers face in publishing papers in English.
  • Authors’ expertise: The inclusion of authors with expertise in research methodology, biostatistics, and scientific writing is likely to influence the end-product. Oltean et al. found that among randomized trials in orthopaedic surgery, the use of analyses that accounted for clustering was more likely when specialists (e.g. statistician, epidemiologist or clinical trials methodologist) were included on the study team [ 54 ]. Fleming et al. found that including methodologists in the review team was associated with appropriate use of reporting guidelines [ 55 ].
  • Source of funding and conflicts of interest: Some studies have found that funded studies report better [ 56 , 57 ], while others do not [ 53 , 58 ]. The presence of funding would indicate the availability of resources deployed to ensure optimal design, conduct, analysis and reporting. However, the source of funding may introduce conflicts of interest and warrant assessment. For example, Kaiser et al. investigated the effect of industry funding on obesity or nutrition randomized trials and found that reporting quality was similar [ 59 ]. Thomas et al. looked at reporting quality of long-term weight loss trials and found that industry funded studies were better [ 60 ]. Kan et al. examined the association between industry funding and “positive trials” (trials reporting a significant intervention effect) and found that industry funding was highly predictive of a positive trial [ 61 ]. This finding is similar to that of a recent Cochrane Methodology Review by Hansen et al. [ 62 ]
  • Journal characteristics: Certain journals’ characteristics may influence the study design, analysis or reporting. Characteristics such as journal endorsement of guidelines [ 63 , 64 ], and Journal Impact Factor (JIF) have been shown to be associated with reporting [ 63 , 65 – 67 ].
  • Study size (sample size/number of sites): Some studies have shown that reporting is better in larger studies [ 53 , 56 , 58 ].
  • Year of publication: It is reasonable to assume that design, conduct, analysis and reporting of research will change over time. Many studies have demonstrated improvements in reporting over time or after the publication of reporting guidelines [ 68 , 69 ].
  • Type of intervention: In a methodological study of reporting quality of weight loss intervention studies, Thabane et al. found that trials of pharmacologic interventions were reported better than trials of non-pharmacologic interventions [ 70 ].
  • Interactions between variables: Complex interactions between the previously listed variables are possible. High income countries with more resources may be more likely to conduct larger studies and incorporate a variety of experts. Authors in certain countries may prefer certain journals, and journal endorsement of guidelines and editorial policies may change over time.

Q: Should I focus only on high impact journals?

A: Investigators may choose to investigate only high impact journals because they are more likely to influence practice and policy, or because they assume that methodological standards would be higher. However, the JIF may severely limit the scope of articles included and may skew the sample towards articles with positive findings. The generalizability and applicability of findings from a handful of journals must be examined carefully, especially since the JIF varies over time. Even among journals that are all “high impact”, variations exist in methodological standards.

Q: Can I conduct a methodological study of qualitative research?

A: Yes. Even though a lot of methodological research has been conducted in the quantitative research field, methodological studies of qualitative studies are feasible. Certain databases that catalogue qualitative research including the Cumulative Index to Nursing & Allied Health Literature (CINAHL) have defined subject headings that are specific to methodological research (e.g. “research methodology”). Alternatively, one could also conduct a qualitative methodological review; that is, use qualitative approaches to synthesize methodological issues in qualitative studies.

Q: What reporting guidelines should I use for my methodological study?

A: There is no guideline that covers the entire scope of methodological studies. One adaptation of the PRISMA guidelines has been published, which works well for studies that aim to use the entire target population of research reports [ 71 ]. However, it is not widely used (40 citations in 2 years as of 09 December 2019), and methodological studies that are designed as cross-sectional or before-after studies require a more fit-for purpose guideline. A more encompassing reporting guideline for a broad range of methodological studies is currently under development [ 72 ]. However, in the absence of formal guidance, the requirements for scientific reporting should be respected, and authors of methodological studies should focus on transparency and reproducibility.

Q: What are the potential threats to validity and how can I avoid them?

A: Methodological studies may be compromised by a lack of internal or external validity. The main threats to internal validity in methodological studies are selection and confounding bias. Investigators must ensure that the methods used to select articles does not make them differ systematically from the set of articles to which they would like to make inferences. For example, attempting to make extrapolations to all journals after analyzing high-impact journals would be misleading.

Many factors (confounders) may distort the association between the exposure and outcome if the included research reports differ with respect to these factors [ 73 ]. For example, when examining the association between source of funding and completeness of reporting, it may be necessary to account for journals that endorse the guidelines. Confounding bias can be addressed by restriction, matching and statistical adjustment [ 73 ]. Restriction appears to be the method of choice for many investigators who choose to include only high impact journals or articles in a specific field. For example, Knol et al. examined the reporting of p -values in baseline tables of high impact journals [ 26 ]. Matching is also sometimes used. In the methodological study of non-randomized interventional studies of elective ventral hernia repair, Parker et al. matched prospective studies with retrospective studies and compared reporting standards [ 74 ]. Some other methodological studies use statistical adjustments. For example, Zhang et al. used regression techniques to determine the factors associated with missing participant data in trials [ 16 ].

With regard to external validity, researchers interested in conducting methodological studies must consider how generalizable or applicable their findings are. This should tie in closely with the research question and should be explicit. For example. Findings from methodological studies on trials published in high impact cardiology journals cannot be assumed to be applicable to trials in other fields. However, investigators must ensure that their sample truly represents the target sample either by a) conducting a comprehensive and exhaustive search, or b) using an appropriate and justified, randomly selected sample of research reports.

Even applicability to high impact journals may vary based on the investigators’ definition, and over time. For example, for high impact journals in the field of general medicine, Bouwmeester et al. included the Annals of Internal Medicine (AIM), BMJ, the Journal of the American Medical Association (JAMA), Lancet, the New England Journal of Medicine (NEJM), and PLoS Medicine ( n  = 6) [ 75 ]. In contrast, the high impact journals selected in the methodological study by Schiller et al. were BMJ, JAMA, Lancet, and NEJM ( n  = 4) [ 76 ]. Another methodological study by Kosa et al. included AIM, BMJ, JAMA, Lancet and NEJM ( n  = 5). In the methodological study by Thabut et al., journals with a JIF greater than 5 were considered to be high impact. Riado Minguez et al. used first quartile journals in the Journal Citation Reports (JCR) for a specific year to determine “high impact” [ 77 ]. Ultimately, the definition of high impact will be based on the number of journals the investigators are willing to include, the year of impact and the JIF cut-off [ 78 ]. We acknowledge that the term “generalizability” may apply differently for methodological studies, especially when in many instances it is possible to include the entire target population in the sample studied.

Finally, methodological studies are not exempt from information bias which may stem from discrepancies in the included research reports [ 79 ], errors in data extraction, or inappropriate interpretation of the information extracted. Likewise, publication bias may also be a concern in methodological studies, but such concepts have not yet been explored.

A proposed framework

In order to inform discussions about methodological studies, the development of guidance for what should be reported, we have outlined some key features of methodological studies that can be used to classify them. For each of the categories outlined below, we provide an example. In our experience, the choice of approach to completing a methodological study can be informed by asking the following four questions:

  • What is the aim?

A methodological study may be focused on exploring sources of bias in primary or secondary studies (meta-bias), or how bias is analyzed. We have taken care to distinguish bias (i.e. systematic deviations from the truth irrespective of the source) from reporting quality or completeness (i.e. not adhering to a specific reporting guideline or norm). An example of where this distinction would be important is in the case of a randomized trial with no blinding. This study (depending on the nature of the intervention) would be at risk of performance bias. However, if the authors report that their study was not blinded, they would have reported adequately. In fact, some methodological studies attempt to capture both “quality of conduct” and “quality of reporting”, such as Richie et al., who reported on the risk of bias in randomized trials of pharmacy practice interventions [ 80 ]. Babic et al. investigated how risk of bias was used to inform sensitivity analyses in Cochrane reviews [ 81 ]. Further, biases related to choice of outcomes can also be explored. For example, Tan et al investigated differences in treatment effect size based on the outcome reported [ 82 ].

Methodological studies may report quality of reporting against a reporting checklist (i.e. adherence to guidelines) or against expected norms. For example, Croituro et al. report on the quality of reporting in systematic reviews published in dermatology journals based on their adherence to the PRISMA statement [ 83 ], and Khan et al. described the quality of reporting of harms in randomized controlled trials published in high impact cardiovascular journals based on the CONSORT extension for harms [ 84 ]. Other methodological studies investigate reporting of certain features of interest that may not be part of formally published checklists or guidelines. For example, Mbuagbaw et al. described how often the implications for research are elaborated using the Evidence, Participants, Intervention, Comparison, Outcome, Timeframe (EPICOT) format [ 30 ].

Sometimes investigators may be interested in how consistent reports of the same research are, as it is expected that there should be consistency between: conference abstracts and published manuscripts; manuscript abstracts and manuscript main text; and trial registration and published manuscript. For example, Rosmarakis et al. investigated consistency between conference abstracts and full text manuscripts [ 85 ].

In addition to identifying issues with reporting in primary and secondary studies, authors of methodological studies may be interested in determining the factors that are associated with certain reporting practices. Many methodological studies incorporate this, albeit as a secondary outcome. For example, Farrokhyar et al. investigated the factors associated with reporting quality in randomized trials of coronary artery bypass grafting surgery [ 53 ].

Methodological studies may also be used to describe methods or compare methods, and the factors associated with methods. Muller et al. described the methods used for systematic reviews and meta-analyses of observational studies [ 86 ].

Some methodological studies synthesize results from other methodological studies. For example, Li et al. conducted a scoping review of methodological reviews that investigated consistency between full text and abstracts in primary biomedical research [ 87 ].

Some methodological studies may investigate the use of names and terms in health research. For example, Martinic et al. investigated the definitions of systematic reviews used in overviews of systematic reviews (OSRs), meta-epidemiological studies and epidemiology textbooks [ 88 ].

In addition to the previously mentioned experimental methodological studies, there may exist other types of methodological studies not captured here.

  • 2. What is the design?

Most methodological studies are purely descriptive and report their findings as counts (percent) and means (standard deviation) or medians (interquartile range). For example, Mbuagbaw et al. described the reporting of research recommendations in Cochrane HIV systematic reviews [ 30 ]. Gohari et al. described the quality of reporting of randomized trials in diabetes in Iran [ 12 ].

Some methodological studies are analytical wherein “analytical studies identify and quantify associations, test hypotheses, identify causes and determine whether an association exists between variables, such as between an exposure and a disease.” [ 89 ] In the case of methodological studies all these investigations are possible. For example, Kosa et al. investigated the association between agreement in primary outcome from trial registry to published manuscript and study covariates. They found that larger and more recent studies were more likely to have agreement [ 15 ]. Tricco et al. compared the conclusion statements from Cochrane and non-Cochrane systematic reviews with a meta-analysis of the primary outcome and found that non-Cochrane reviews were more likely to report positive findings. These results are a test of the null hypothesis that the proportions of Cochrane and non-Cochrane reviews that report positive results are equal [ 90 ].

  • 3. What is the sampling strategy?

Methodological reviews with narrow research questions may be able to include the entire target population. For example, in the methodological study of Cochrane HIV systematic reviews, Mbuagbaw et al. included all of the available studies ( n  = 103) [ 30 ].

Many methodological studies use random samples of the target population [ 33 , 91 , 92 ]. Alternatively, purposeful sampling may be used, limiting the sample to a subset of research-related reports published within a certain time period, or in journals with a certain ranking or on a topic. Systematic sampling can also be used when random sampling may be challenging to implement.

  • 4. What is the unit of analysis?

Many methodological studies use a research report (e.g. full manuscript of study, abstract portion of the study) as the unit of analysis, and inferences can be made at the study-level. However, both published and unpublished research-related reports can be studied. These may include articles, conference abstracts, registry entries etc.

Some methodological studies report on items which may occur more than once per article. For example, Paquette et al. report on subgroup analyses in Cochrane reviews of atrial fibrillation in which 17 systematic reviews planned 56 subgroup analyses [ 93 ].

This framework is outlined in Fig.  2 .

An external file that holds a picture, illustration, etc.
Object name is 12874_2020_1107_Fig2_HTML.jpg

A proposed framework for methodological studies

Conclusions

Methodological studies have examined different aspects of reporting such as quality, completeness, consistency and adherence to reporting guidelines. As such, many of the methodological study examples cited in this tutorial are related to reporting. However, as an evolving field, the scope of research questions that can be addressed by methodological studies is expected to increase.

In this paper we have outlined the scope and purpose of methodological studies, along with examples of instances in which various approaches have been used. In the absence of formal guidance on the design, conduct, analysis and reporting of methodological studies, we have provided some advice to help make methodological studies consistent. This advice is grounded in good contemporary scientific practice. Generally, the research question should tie in with the sampling approach and planned analysis. We have also highlighted the variables that may inform findings from methodological studies. Lastly, we have provided suggestions for ways in which authors can categorize their methodological studies to inform their design and analysis.

Acknowledgements

Abbreviations.

CONSORTConsolidated Standards of Reporting Trials
EPICOTEvidence, Participants, Intervention, Comparison, Outcome, Timeframe
GRADEGrading of Recommendations, Assessment, Development and Evaluations
PICOTParticipants, Intervention, Comparison, Outcome, Timeframe
PRISMAPreferred Reporting Items of Systematic reviews and Meta-Analyses
SWARStudies Within a Review
SWATStudies Within a Trial

Authors’ contributions

LM conceived the idea and drafted the outline and paper. DOL and LT commented on the idea and draft outline. LM, LP and DOL performed literature searches and data extraction. All authors (LM, DOL, LT, LP, DBA) reviewed several draft versions of the manuscript and approved the final manuscript.

This work did not receive any dedicated funding.

Availability of data and materials

Ethics approval and consent to participate.

Not applicable.

Consent for publication

Competing interests.

DOL, DBA, LM, LP and LT are involved in the development of a reporting guideline for methodological studies.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research report guide: Definition, types, and tips

Last updated

5 March 2024

Reviewed by

Short on time? Get an AI generated summary of this article instead

From successful product launches or software releases to planning major business decisions, research reports serve many vital functions. They can summarize evidence and deliver insights and recommendations to save companies time and resources. They can reveal the most value-adding actions a company should take.

However, poorly constructed reports can have the opposite effect! Taking the time to learn established research-reporting rules and approaches will equip you with in-demand skills. You’ll be able to capture and communicate information applicable to numerous situations and industries, adding another string to your resume bow.

  • What are research reports?

A research report is a collection of contextual data, gathered through organized research, that provides new insights into a particular challenge (which, for this article, is business-related). Research reports are a time-tested method for distilling large amounts of data into a narrow band of focus.

Their effectiveness often hinges on whether the report provides:

Strong, well-researched evidence

Comprehensive analysis

Well-considered conclusions and recommendations

Though the topic possibilities are endless, an effective research report keeps a laser-like focus on the specific questions or objectives the researcher believes are key to achieving success. Many research reports begin as research proposals, which usually include the need for a report to capture the findings of the study and recommend a course of action.

A description of the research method used, e.g., qualitative, quantitative, or other

Statistical analysis

Causal (or explanatory) research (i.e., research identifying relationships between two variables)

Inductive research, also known as ‘theory-building’

Deductive research, such as that used to test theories

Action research, where the research is actively used to drive change

  • Importance of a research report

Research reports can unify and direct a company's focus toward the most appropriate strategic action. Of course, spending resources on a report takes up some of the company's human and financial resources. Choosing when a report is called for is a matter of judgment and experience.

Some development models used heavily in the engineering world, such as Waterfall development, are notorious for over-relying on research reports. With Waterfall development, there is a linear progression through each step of a project, and each stage is precisely documented and reported on before moving to the next.

The pace of the business world is faster than the speed at which your authors can produce and disseminate reports. So how do companies strike the right balance between creating and acting on research reports?

The answer lies, again, in the report's defined objectives. By paring down your most pressing interests and those of your stakeholders, your research and reporting skills will be the lenses that keep your company's priorities in constant focus.

Honing your company's primary objectives can save significant amounts of time and align research and reporting efforts with ever-greater precision.

Some examples of well-designed research objectives are:

Proving whether or not a product or service meets customer expectations

Demonstrating the value of a service, product, or business process to your stakeholders and investors

Improving business decision-making when faced with a lack of time or other constraints

Clarifying the relationship between a critical cause and effect for problematic business processes

Prioritizing the development of a backlog of products or product features

Comparing business or production strategies

Evaluating past decisions and predicting future outcomes

  • Features of a research report

Research reports generally require a research design phase, where the report author(s) determine the most important elements the report must contain.

Just as there are various kinds of research, there are many types of reports.

Here are the standard elements of almost any research-reporting format:

Report summary. A broad but comprehensive overview of what readers will learn in the full report. Summaries are usually no more than one or two paragraphs and address all key elements of the report. Think of the key takeaways your primary stakeholders will want to know if they don’t have time to read the full document.

Introduction. Include a brief background of the topic, the type of research, and the research sample. Consider the primary goal of the report, who is most affected, and how far along the company is in meeting its objectives.

Methods. A description of how the researcher carried out data collection, analysis, and final interpretations of the data. Include the reasons for choosing a particular method. The methods section should strike a balance between clearly presenting the approach taken to gather data and discussing how it is designed to achieve the report's objectives.

Data analysis. This section contains interpretations that lead readers through the results relevant to the report's thesis. If there were unexpected results, include here a discussion on why that might be. Charts, calculations, statistics, and other supporting information also belong here (or, if lengthy, as an appendix). This should be the most detailed section of the research report, with references for further study. Present the information in a logical order, whether chronologically or in order of importance to the report's objectives.

Conclusion. This should be written with sound reasoning, often containing useful recommendations. The conclusion must be backed by a continuous thread of logic throughout the report.

  • How to write a research paper

With a clear outline and robust pool of research, a research paper can start to write itself, but what's a good way to start a research report?

Research report examples are often the quickest way to gain inspiration for your report. Look for the types of research reports most relevant to your industry and consider which makes the most sense for your data and goals.

The research report outline will help you organize the elements of your report. One of the most time-tested report outlines is the IMRaD structure:

Introduction

...and Discussion

Pay close attention to the most well-established research reporting format in your industry, and consider your tone and language from your audience's perspective. Learn the key terms inside and out; incorrect jargon could easily harm the perceived authority of your research paper.

Along with a foundation in high-quality research and razor-sharp analysis, the most effective research reports will also demonstrate well-developed:

Internal logic

Narrative flow

Conclusions and recommendations

Readability, striking a balance between simple phrasing and technical insight

How to gather research data for your report

The validity of research data is critical. Because the research phase usually occurs well before the writing phase, you normally have plenty of time to vet your data.

However, research reports could involve ongoing research, where report authors (sometimes the researchers themselves) write portions of the report alongside ongoing research.

One such research-report example would be an R&D department that knows its primary stakeholders are eager to learn about a lengthy work in progress and any potentially important outcomes.

However you choose to manage the research and reporting, your data must meet robust quality standards before you can rely on it. Vet any research with the following questions in mind:

Does it use statistically valid analysis methods?

Do the researchers clearly explain their research, analysis, and sampling methods?

Did the researchers provide any caveats or advice on how to interpret their data?

Have you gathered the data yourself or were you in close contact with those who did?

Is the source biased?

Usually, flawed research methods become more apparent the further you get through a research report.

It's perfectly natural for good research to raise new questions, but the reader should have no uncertainty about what the data represents. There should be no doubt about matters such as:

Whether the sampling or analysis methods were based on sound and consistent logic

What the research samples are and where they came from

The accuracy of any statistical functions or equations

Validation of testing and measuring processes

When does a report require design validation?

A robust design validation process is often a gold standard in highly technical research reports. Design validation ensures the objects of a study are measured accurately, which lends more weight to your report and makes it valuable to more specialized industries.

Product development and engineering projects are the most common research-report examples that typically involve a design validation process. Depending on the scope and complexity of your research, you might face additional steps to validate your data and research procedures.

If you’re including design validation in the report (or report proposal), explain and justify your data-collection processes. Good design validation builds greater trust in a research report and lends more weight to its conclusions.

Choosing the right analysis method

Just as the quality of your report depends on properly validated research, a useful conclusion requires the most contextually relevant analysis method. This means comparing different statistical methods and choosing the one that makes the most sense for your research.

Most broadly, research analysis comes down to quantitative or qualitative methods (respectively: measurable by a number vs subjectively qualified values). There are also mixed research methods, which bridge the need for merging hard data with qualified assessments and still reach a cohesive set of conclusions.

Some of the most common analysis methods in research reports include:

Significance testing (aka hypothesis analysis), which compares test and control groups to determine how likely the data was the result of random chance.

Regression analysis , to establish relationships between variables, control for extraneous variables , and support correlation analysis.

Correlation analysis (aka bivariate testing), a method to identify and determine the strength of linear relationships between variables. It’s effective for detecting patterns from complex data, but care must be exercised to not confuse correlation with causation.

With any analysis method, it's important to justify which method you chose in the report. You should also provide estimates of the statistical accuracy (e.g., the p-value or confidence level of quantifiable data) of any data analysis.

This requires a commitment to the report's primary aim. For instance, this may be achieving a certain level of customer satisfaction by analyzing the cause and effect of changes to how service is delivered. Even better, use statistical analysis to calculate which change is most positively correlated with improved levels of customer satisfaction.

  • Tips for writing research reports

There's endless good advice for writing effective research reports, and it almost all depends on the subjective aims of the people behind the report. Due to the wide variety of research reports, the best tips will be unique to each author's purpose.

Consider the following research report tips in any order, and take note of the ones most relevant to you:

No matter how in depth or detailed your report might be, provide a well-considered, succinct summary. At the very least, give your readers a quick and effective way to get up to speed.

Pare down your target audience (e.g., other researchers, employees, laypersons, etc.), and adjust your voice for their background knowledge and interest levels

For all but the most open-ended research, clarify your objectives, both for yourself and within the report.

Leverage your team members’ talents to fill in any knowledge gaps you might have. Your team is only as good as the sum of its parts.

Justify why your research proposal’s topic will endure long enough to derive value from the finished report.

Consolidate all research and analysis functions onto a single user-friendly platform. There's no reason to settle for less than developer-grade tools suitable for non-developers.

What's the format of a research report?

The research-reporting format is how the report is structured—a framework the authors use to organize their data, conclusions, arguments, and recommendations. The format heavily determines how the report's outline develops, because the format dictates the overall structure and order of information (based on the report's goals and research objectives).

What's the purpose of a research-report outline?

A good report outline gives form and substance to the report's objectives, presenting the results in a readable, engaging way. For any research-report format, the outline should create momentum along a chain of logic that builds up to a conclusion or interpretation.

What's the difference between a research essay and a research report?

There are several key differences between research reports and essays:

Research report:

Ordered into separate sections

More commercial in nature

Often includes infographics

Heavily descriptive

More self-referential

Usually provides recommendations

Research essay

Does not rely on research report formatting

More academically minded

Normally text-only

Less detailed

Omits discussion of methods

Usually non-prescriptive 

Should you be using a customer insights hub?

Do you want to discover previous research faster?

Do you share your research findings with others?

Do you analyze research data?

Start for free today, add your research, and get to key insights faster

Editor’s picks

Last updated: 18 April 2023

Last updated: 27 February 2023

Last updated: 22 August 2024

Last updated: 5 February 2023

Last updated: 16 August 2024

Last updated: 9 March 2023

Last updated: 30 April 2024

Last updated: 12 December 2023

Last updated: 11 March 2024

Last updated: 4 July 2024

Last updated: 6 March 2024

Last updated: 5 March 2024

Last updated: 13 May 2024

Latest articles

Related topics, .css-je19u9{-webkit-align-items:flex-end;-webkit-box-align:flex-end;-ms-flex-align:flex-end;align-items:flex-end;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-flex-direction:row;-ms-flex-direction:row;flex-direction:row;-webkit-box-flex-wrap:wrap;-webkit-flex-wrap:wrap;-ms-flex-wrap:wrap;flex-wrap:wrap;-webkit-box-pack:center;-ms-flex-pack:center;-webkit-justify-content:center;justify-content:center;row-gap:0;text-align:center;max-width:671px;}@media (max-width: 1079px){.css-je19u9{max-width:400px;}.css-je19u9>span{white-space:pre;}}@media (max-width: 799px){.css-je19u9{max-width:400px;}.css-je19u9>span{white-space:pre;}} decide what to .css-1kiodld{max-height:56px;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;}@media (max-width: 1079px){.css-1kiodld{display:none;}} build next, decide what to build next, log in or sign up.

Get started for free

  • Research Report: Definition, Types + [Writing Guide]

busayo.longe

One of the reasons for carrying out research is to add to the existing body of knowledge. Therefore, when conducting research, you need to document your processes and findings in a research report. 

With a research report, it is easy to outline the findings of your systematic investigation and any gaps needing further inquiry. Knowing how to create a detailed research report will prove useful when you need to conduct research.  

What is a Research Report?

A research report is a well-crafted document that outlines the processes, data, and findings of a systematic investigation. It is an important document that serves as a first-hand account of the research process, and it is typically considered an objective and accurate source of information.

In many ways, a research report can be considered as a summary of the research process that clearly highlights findings, recommendations, and other important details. Reading a well-written research report should provide you with all the information you need about the core areas of the research process.

Features of a Research Report 

So how do you recognize a research report when you see one? Here are some of the basic features that define a research report. 

  • It is a detailed presentation of research processes and findings, and it usually includes tables and graphs. 
  • It is written in a formal language.
  • A research report is usually written in the third person.
  • It is informative and based on first-hand verifiable information.
  • It is formally structured with headings, sections, and bullet points.
  • It always includes recommendations for future actions. 

Types of Research Report 

The research report is classified based on two things; nature of research and target audience.

Nature of Research

  • Qualitative Research Report

This is the type of report written for qualitative research . It outlines the methods, processes, and findings of a qualitative method of systematic investigation. In educational research, a qualitative research report provides an opportunity for one to apply his or her knowledge and develop skills in planning and executing qualitative research projects.

A qualitative research report is usually descriptive in nature. Hence, in addition to presenting details of the research process, you must also create a descriptive narrative of the information.

  • Quantitative Research Report

A quantitative research report is a type of research report that is written for quantitative research. Quantitative research is a type of systematic investigation that pays attention to numerical or statistical values in a bid to find answers to research questions. 

In this type of research report, the researcher presents quantitative data to support the research process and findings. Unlike a qualitative research report that is mainly descriptive, a quantitative research report works with numbers; that is, it is numerical in nature. 

Target Audience

Also, a research report can be said to be technical or popular based on the target audience. If you’re dealing with a general audience, you would need to present a popular research report, and if you’re dealing with a specialized audience, you would submit a technical report. 

  • Technical Research Report

A technical research report is a detailed document that you present after carrying out industry-based research. This report is highly specialized because it provides information for a technical audience; that is, individuals with above-average knowledge in the field of study. 

In a technical research report, the researcher is expected to provide specific information about the research process, including statistical analyses and sampling methods. Also, the use of language is highly specialized and filled with jargon. 

Examples of technical research reports include legal and medical research reports. 

  • Popular Research Report

A popular research report is one for a general audience; that is, for individuals who do not necessarily have any knowledge in the field of study. A popular research report aims to make information accessible to everyone. 

It is written in very simple language, which makes it easy to understand the findings and recommendations. Examples of popular research reports are the information contained in newspapers and magazines. 

Importance of a Research Report 

  • Knowledge Transfer: As already stated above, one of the reasons for carrying out research is to contribute to the existing body of knowledge, and this is made possible with a research report. A research report serves as a means to effectively communicate the findings of a systematic investigation to all and sundry.  
  • Identification of Knowledge Gaps: With a research report, you’d be able to identify knowledge gaps for further inquiry. A research report shows what has been done while hinting at other areas needing systematic investigation. 
  • In market research, a research report would help you understand the market needs and peculiarities at a glance. 
  • A research report allows you to present information in a precise and concise manner. 
  • It is time-efficient and practical because, in a research report, you do not have to spend time detailing the findings of your research work in person. You can easily send out the report via email and have stakeholders look at it. 

Guide to Writing a Research Report

A lot of detail goes into writing a research report, and getting familiar with the different requirements would help you create the ideal research report. A research report is usually broken down into multiple sections, which allows for a concise presentation of information.

Structure and Example of a Research Report

This is the title of your systematic investigation. Your title should be concise and point to the aims, objectives, and findings of a research report. 

  • Table of Contents

This is like a compass that makes it easier for readers to navigate the research report.

An abstract is an overview that highlights all important aspects of the research including the research method, data collection process, and research findings. Think of an abstract as a summary of your research report that presents pertinent information in a concise manner. 

An abstract is always brief; typically 100-150 words and goes straight to the point. The focus of your research abstract should be the 5Ws and 1H format – What, Where, Why, When, Who and How. 

  • Introduction

Here, the researcher highlights the aims and objectives of the systematic investigation as well as the problem which the systematic investigation sets out to solve. When writing the report introduction, it is also essential to indicate whether the purposes of the research were achieved or would require more work.

In the introduction section, the researcher specifies the research problem and also outlines the significance of the systematic investigation. Also, the researcher is expected to outline any jargons and terminologies that are contained in the research.  

  • Literature Review

A literature review is a written survey of existing knowledge in the field of study. In other words, it is the section where you provide an overview and analysis of different research works that are relevant to your systematic investigation. 

It highlights existing research knowledge and areas needing further investigation, which your research has sought to fill. At this stage, you can also hint at your research hypothesis and its possible implications for the existing body of knowledge in your field of study. 

  • An Account of Investigation

This is a detailed account of the research process, including the methodology, sample, and research subjects. Here, you are expected to provide in-depth information on the research process including the data collection and analysis procedures. 

In a quantitative research report, you’d need to provide information surveys, questionnaires and other quantitative data collection methods used in your research. In a qualitative research report, you are expected to describe the qualitative data collection methods used in your research including interviews and focus groups. 

In this section, you are expected to present the results of the systematic investigation. 

This section further explains the findings of the research, earlier outlined. Here, you are expected to present a justification for each outcome and show whether the results are in line with your hypotheses or if other research studies have come up with similar results.

  • Conclusions

This is a summary of all the information in the report. It also outlines the significance of the entire study. 

  • References and Appendices

This section contains a list of all the primary and secondary research sources. 

Tips for Writing a Research Report

  • Define the Context for the Report

As is obtainable when writing an essay, defining the context for your research report would help you create a detailed yet concise document. This is why you need to create an outline before writing so that you do not miss out on anything. 

  • Define your Audience

Writing with your audience in mind is essential as it determines the tone of the report. If you’re writing for a general audience, you would want to present the information in a simple and relatable manner. For a specialized audience, you would need to make use of technical and field-specific terms. 

  • Include Significant Findings

The idea of a research report is to present some sort of abridged version of your systematic investigation. In your report, you should exclude irrelevant information while highlighting only important data and findings. 

  • Include Illustrations

Your research report should include illustrations and other visual representations of your data. Graphs, pie charts, and relevant images lend additional credibility to your systematic investigation.

  • Choose the Right Title

A good research report title is brief, precise, and contains keywords from your research. It should provide a clear idea of your systematic investigation so that readers can grasp the entire focus of your research from the title. 

  • Proofread the Report

Before publishing the document, ensure that you give it a second look to authenticate the information. If you can, get someone else to go through the report, too, and you can also run it through proofreading and editing software. 

How to Gather Research Data for Your Report  

  • Understand the Problem

Every research aims at solving a specific problem or set of problems, and this should be at the back of your mind when writing your research report. Understanding the problem would help you to filter the information you have and include only important data in your report. 

  • Know what your report seeks to achieve

This is somewhat similar to the point above because, in some way, the aim of your research report is intertwined with the objectives of your systematic investigation. Identifying the primary purpose of writing a research report would help you to identify and present the required information accordingly. 

  • Identify your audience

Knowing your target audience plays a crucial role in data collection for a research report. If your research report is specifically for an organization, you would want to present industry-specific information or show how the research findings are relevant to the work that the company does. 

  • Create Surveys/Questionnaires

A survey is a research method that is used to gather data from a specific group of people through a set of questions. It can be either quantitative or qualitative. 

A survey is usually made up of structured questions, and it can be administered online or offline. However, an online survey is a more effective method of research data collection because it helps you save time and gather data with ease. 

You can seamlessly create an online questionnaire for your research on Formplus . With the multiple sharing options available in the builder, you would be able to administer your survey to respondents in little or no time. 

Formplus also has a report summary too l that you can use to create custom visual reports for your research.

Step-by-step guide on how to create an online questionnaire using Formplus  

  • Sign into Formplus

In the Formplus builder, you can easily create different online questionnaires for your research by dragging and dropping preferred fields into your form. To access the Formplus builder, you will need to create an account on Formplus. 

Once you do this, sign in to your account and click on Create new form to begin. 

  • Edit Form Title : Click on the field provided to input your form title, for example, “Research Questionnaire.”
  • Edit Form : Click on the edit icon to edit the form.
  • Add Fields : Drag and drop preferred form fields into your form in the Formplus builder inputs column. There are several field input options for questionnaires in the Formplus builder. 
  • Edit fields
  • Click on “Save”
  • Form Customization: With the form customization options in the form builder, you can easily change the outlook of your form and make it more unique and personalized. Formplus allows you to change your form theme, add background images, and even change the font according to your needs. 
  • Multiple Sharing Options: Formplus offers various form-sharing options, which enables you to share your questionnaire with respondents easily. You can use the direct social media sharing buttons to share your form link to your organization’s social media pages.  You can also send out your survey form as email invitations to your research subjects too. If you wish, you can share your form’s QR code or embed it on your organization’s website for easy access. 

Conclusion  

Always remember that a research report is just as important as the actual systematic investigation because it plays a vital role in communicating research findings to everyone else. This is why you must take care to create a concise document summarizing the process of conducting any research. 

In this article, we’ve outlined essential tips to help you create a research report. When writing your report, you should always have the audience at the back of your mind, as this would set the tone for the document. 

Logo

Connect to Formplus, Get Started Now - It's Free!

  • ethnographic research survey
  • research report
  • research report survey
  • busayo.longe

Formplus

You may also like:

21 Chrome Extensions for Academic Researchers in 2022

In this article, we will discuss a number of chrome extensions you can use to make your research process even seamless

importance of research report in research methodology

How to Write a Problem Statement for your Research

Learn how to write problem statements before commencing any research effort. Learn about its structure and explore examples

Ethnographic Research: Types, Methods + [Question Examples]

Simple guide on ethnographic research, it types, methods, examples and advantages. Also highlights how to conduct an ethnographic...

Assessment Tools: Types, Examples & Importance

In this article, you’ll learn about different assessment tools to help you evaluate performance in various contexts

Formplus - For Seamless Data Collection

Collect data the right way with a versatile data collection tool. try formplus and transform your work productivity today..

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base
  • Dissertation
  • What Is a Research Methodology? | Steps & Tips

What Is a Research Methodology? | Steps & Tips

Published on August 25, 2022 by Shona McCombes and Tegan George. Revised on November 20, 2023.

Your research methodology discusses and explains the data collection and analysis methods you used in your research. A key part of your thesis, dissertation , or research paper , the methodology chapter explains what you did and how you did it, allowing readers to evaluate the reliability and validity of your research and your dissertation topic .

It should include:

  • The type of research you conducted
  • How you collected and analyzed your data
  • Any tools or materials you used in the research
  • How you mitigated or avoided research biases
  • Why you chose these methods
  • Your methodology section should generally be written in the past tense .
  • Academic style guides in your field may provide detailed guidelines on what to include for different types of studies.
  • Your citation style might provide guidelines for your methodology section (e.g., an APA Style methods section ).

Instantly correct all language mistakes in your text

Upload your document to correct all your mistakes in minutes

upload-your-document-ai-proofreader

Table of contents

How to write a research methodology, why is a methods section important, step 1: explain your methodological approach, step 2: describe your data collection methods, step 3: describe your analysis method, step 4: evaluate and justify the methodological choices you made, tips for writing a strong methodology chapter, other interesting articles, frequently asked questions about methodology.

Prevent plagiarism. Run a free check.

Your methods section is your opportunity to share how you conducted your research and why you chose the methods you chose. It’s also the place to show that your research was rigorously conducted and can be replicated .

It gives your research legitimacy and situates it within your field, and also gives your readers a place to refer to if they have any questions or critiques in other sections.

You can start by introducing your overall approach to your research. You have two options here.

Option 1: Start with your “what”

What research problem or question did you investigate?

  • Aim to describe the characteristics of something?
  • Explore an under-researched topic?
  • Establish a causal relationship?

And what type of data did you need to achieve this aim?

  • Quantitative data , qualitative data , or a mix of both?
  • Primary data collected yourself, or secondary data collected by someone else?
  • Experimental data gathered by controlling and manipulating variables, or descriptive data gathered via observations?

Option 2: Start with your “why”

Depending on your discipline, you can also start with a discussion of the rationale and assumptions underpinning your methodology. In other words, why did you choose these methods for your study?

  • Why is this the best way to answer your research question?
  • Is this a standard methodology in your field, or does it require justification?
  • Were there any ethical considerations involved in your choices?
  • What are the criteria for validity and reliability in this type of research ? How did you prevent bias from affecting your data?

Once you have introduced your reader to your methodological approach, you should share full details about your data collection methods .

Quantitative methods

In order to be considered generalizable, you should describe quantitative research methods in enough detail for another researcher to replicate your study.

Here, explain how you operationalized your concepts and measured your variables. Discuss your sampling method or inclusion and exclusion criteria , as well as any tools, procedures, and materials you used to gather your data.

Surveys Describe where, when, and how the survey was conducted.

  • How did you design the questionnaire?
  • What form did your questions take (e.g., multiple choice, Likert scale )?
  • Were your surveys conducted in-person or virtually?
  • What sampling method did you use to select participants?
  • What was your sample size and response rate?

Experiments Share full details of the tools, techniques, and procedures you used to conduct your experiment.

  • How did you design the experiment ?
  • How did you recruit participants?
  • How did you manipulate and measure the variables ?
  • What tools did you use?

Existing data Explain how you gathered and selected the material (such as datasets or archival data) that you used in your analysis.

  • Where did you source the material?
  • How was the data originally produced?
  • What criteria did you use to select material (e.g., date range)?

The survey consisted of 5 multiple-choice questions and 10 questions measured on a 7-point Likert scale.

The goal was to collect survey responses from 350 customers visiting the fitness apparel company’s brick-and-mortar location in Boston on July 4–8, 2022, between 11:00 and 15:00.

Here, a customer was defined as a person who had purchased a product from the company on the day they took the survey. Participants were given 5 minutes to fill in the survey anonymously. In total, 408 customers responded, but not all surveys were fully completed. Due to this, 371 survey results were included in the analysis.

  • Information bias
  • Omitted variable bias
  • Regression to the mean
  • Survivorship bias
  • Undercoverage bias
  • Sampling bias

Qualitative methods

In qualitative research , methods are often more flexible and subjective. For this reason, it’s crucial to robustly explain the methodology choices you made.

Be sure to discuss the criteria you used to select your data, the context in which your research was conducted, and the role you played in collecting your data (e.g., were you an active participant, or a passive observer?)

Interviews or focus groups Describe where, when, and how the interviews were conducted.

  • How did you find and select participants?
  • How many participants took part?
  • What form did the interviews take ( structured , semi-structured , or unstructured )?
  • How long were the interviews?
  • How were they recorded?

Participant observation Describe where, when, and how you conducted the observation or ethnography .

  • What group or community did you observe? How long did you spend there?
  • How did you gain access to this group? What role did you play in the community?
  • How long did you spend conducting the research? Where was it located?
  • How did you record your data (e.g., audiovisual recordings, note-taking)?

Existing data Explain how you selected case study materials for your analysis.

  • What type of materials did you analyze?
  • How did you select them?

In order to gain better insight into possibilities for future improvement of the fitness store’s product range, semi-structured interviews were conducted with 8 returning customers.

Here, a returning customer was defined as someone who usually bought products at least twice a week from the store.

Surveys were used to select participants. Interviews were conducted in a small office next to the cash register and lasted approximately 20 minutes each. Answers were recorded by note-taking, and seven interviews were also filmed with consent. One interviewee preferred not to be filmed.

  • The Hawthorne effect
  • Observer bias
  • The placebo effect
  • Response bias and Nonresponse bias
  • The Pygmalion effect
  • Recall bias
  • Social desirability bias
  • Self-selection bias

Mixed methods

Mixed methods research combines quantitative and qualitative approaches. If a standalone quantitative or qualitative study is insufficient to answer your research question, mixed methods may be a good fit for you.

Mixed methods are less common than standalone analyses, largely because they require a great deal of effort to pull off successfully. If you choose to pursue mixed methods, it’s especially important to robustly justify your methods.

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

Next, you should indicate how you processed and analyzed your data. Avoid going into too much detail: you should not start introducing or discussing any of your results at this stage.

In quantitative research , your analysis will be based on numbers. In your methods section, you can include:

  • How you prepared the data before analyzing it (e.g., checking for missing data , removing outliers , transforming variables)
  • Which software you used (e.g., SPSS, Stata or R)
  • Which statistical tests you used (e.g., two-tailed t test , simple linear regression )

In qualitative research, your analysis will be based on language, images, and observations (often involving some form of textual analysis ).

Specific methods might include:

  • Content analysis : Categorizing and discussing the meaning of words, phrases and sentences
  • Thematic analysis : Coding and closely examining the data to identify broad themes and patterns
  • Discourse analysis : Studying communication and meaning in relation to their social context

Mixed methods combine the above two research methods, integrating both qualitative and quantitative approaches into one coherent analytical process.

Above all, your methodology section should clearly make the case for why you chose the methods you did. This is especially true if you did not take the most standard approach to your topic. In this case, discuss why other methods were not suitable for your objectives, and show how this approach contributes new knowledge or understanding.

In any case, it should be overwhelmingly clear to your reader that you set yourself up for success in terms of your methodology’s design. Show how your methods should lead to results that are valid and reliable, while leaving the analysis of the meaning, importance, and relevance of your results for your discussion section .

  • Quantitative: Lab-based experiments cannot always accurately simulate real-life situations and behaviors, but they are effective for testing causal relationships between variables .
  • Qualitative: Unstructured interviews usually produce results that cannot be generalized beyond the sample group , but they provide a more in-depth understanding of participants’ perceptions, motivations, and emotions.
  • Mixed methods: Despite issues systematically comparing differing types of data, a solely quantitative study would not sufficiently incorporate the lived experience of each participant, while a solely qualitative study would be insufficiently generalizable.

Remember that your aim is not just to describe your methods, but to show how and why you applied them. Again, it’s critical to demonstrate that your research was rigorously conducted and can be replicated.

1. Focus on your objectives and research questions

The methodology section should clearly show why your methods suit your objectives and convince the reader that you chose the best possible approach to answering your problem statement and research questions .

2. Cite relevant sources

Your methodology can be strengthened by referencing existing research in your field. This can help you to:

  • Show that you followed established practice for your type of research
  • Discuss how you decided on your approach by evaluating existing research
  • Present a novel methodological approach to address a gap in the literature

3. Write for your audience

Consider how much information you need to give, and avoid getting too lengthy. If you are using methods that are standard for your discipline, you probably don’t need to give a lot of background or justification.

Regardless, your methodology should be a clear, well-structured text that makes an argument for your approach, not just a list of technical details and procedures.

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Normal distribution
  • Measures of central tendency
  • Chi square tests
  • Confidence interval
  • Quartiles & Quantiles

Methodology

  • Cluster sampling
  • Stratified sampling
  • Thematic analysis
  • Cohort study
  • Peer review
  • Ethnography

Research bias

  • Implicit bias
  • Cognitive bias
  • Conformity bias
  • Hawthorne effect
  • Availability heuristic
  • Attrition bias

Methodology refers to the overarching strategy and rationale of your research project . It involves studying the methods used in your field and the theories or principles behind them, in order to develop an approach that matches your objectives.

Methods are the specific tools and procedures you use to collect and analyze data (for example, experiments, surveys , and statistical tests ).

In shorter scientific papers, where the aim is to report the findings of a specific study, you might simply describe what you did in a methods section .

In a longer or more complex research project, such as a thesis or dissertation , you will probably include a methodology section , where you explain your approach to answering the research questions and cite relevant sources to support your choice of methods.

In a scientific paper, the methodology always comes after the introduction and before the results , discussion and conclusion . The same basic structure also applies to a thesis, dissertation , or research proposal .

Depending on the length and type of document, you might also include a literature review or theoretical framework before the methodology.

Quantitative research deals with numbers and statistics, while qualitative research deals with words and meanings.

Quantitative methods allow you to systematically measure variables and test hypotheses . Qualitative methods allow you to explore concepts and experiences in more detail.

Reliability and validity are both about how well a method measures something:

  • Reliability refers to the  consistency of a measure (whether the results can be reproduced under the same conditions).
  • Validity   refers to the  accuracy of a measure (whether the results really do represent what they are supposed to measure).

If you are doing experimental research, you also have to consider the internal and external validity of your experiment.

A sample is a subset of individuals from a larger population . Sampling means selecting the group that you will actually collect data from in your research. For example, if you are researching the opinions of students in your university, you could survey a sample of 100 students.

In statistics, sampling allows you to test a hypothesis about the characteristics of a population.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

McCombes, S. & George, T. (2023, November 20). What Is a Research Methodology? | Steps & Tips. Scribbr. Retrieved September 5, 2024, from https://www.scribbr.com/dissertation/methodology/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, what is a theoretical framework | guide to organizing, what is a research design | types, guide & examples, qualitative vs. quantitative research | differences, examples & methods, what is your plagiarism score.

  • Open access
  • Published: 07 September 2020

A tutorial on methodological studies: the what, when, how and why

  • Lawrence Mbuagbaw   ORCID: orcid.org/0000-0001-5855-5461 1 , 2 , 3 ,
  • Daeria O. Lawson 1 ,
  • Livia Puljak 4 ,
  • David B. Allison 5 &
  • Lehana Thabane 1 , 2 , 6 , 7 , 8  

BMC Medical Research Methodology volume  20 , Article number:  226 ( 2020 ) Cite this article

41k Accesses

60 Citations

60 Altmetric

Metrics details

Methodological studies – studies that evaluate the design, analysis or reporting of other research-related reports – play an important role in health research. They help to highlight issues in the conduct of research with the aim of improving health research methodology, and ultimately reducing research waste.

We provide an overview of some of the key aspects of methodological studies such as what they are, and when, how and why they are done. We adopt a “frequently asked questions” format to facilitate reading this paper and provide multiple examples to help guide researchers interested in conducting methodological studies. Some of the topics addressed include: is it necessary to publish a study protocol? How to select relevant research reports and databases for a methodological study? What approaches to data extraction and statistical analysis should be considered when conducting a methodological study? What are potential threats to validity and is there a way to appraise the quality of methodological studies?

Appropriate reflection and application of basic principles of epidemiology and biostatistics are required in the design and analysis of methodological studies. This paper provides an introduction for further discussion about the conduct of methodological studies.

Peer Review reports

The field of meta-research (or research-on-research) has proliferated in recent years in response to issues with research quality and conduct [ 1 , 2 , 3 ]. As the name suggests, this field targets issues with research design, conduct, analysis and reporting. Various types of research reports are often examined as the unit of analysis in these studies (e.g. abstracts, full manuscripts, trial registry entries). Like many other novel fields of research, meta-research has seen a proliferation of use before the development of reporting guidance. For example, this was the case with randomized trials for which risk of bias tools and reporting guidelines were only developed much later – after many trials had been published and noted to have limitations [ 4 , 5 ]; and for systematic reviews as well [ 6 , 7 , 8 ]. However, in the absence of formal guidance, studies that report on research differ substantially in how they are named, conducted and reported [ 9 , 10 ]. This creates challenges in identifying, summarizing and comparing them. In this tutorial paper, we will use the term methodological study to refer to any study that reports on the design, conduct, analysis or reporting of primary or secondary research-related reports (such as trial registry entries and conference abstracts).

In the past 10 years, there has been an increase in the use of terms related to methodological studies (based on records retrieved with a keyword search [in the title and abstract] for “methodological review” and “meta-epidemiological study” in PubMed up to December 2019), suggesting that these studies may be appearing more frequently in the literature. See Fig.  1 .

figure 1

Trends in the number studies that mention “methodological review” or “meta-

epidemiological study” in PubMed.

The methods used in many methodological studies have been borrowed from systematic and scoping reviews. This practice has influenced the direction of the field, with many methodological studies including searches of electronic databases, screening of records, duplicate data extraction and assessments of risk of bias in the included studies. However, the research questions posed in methodological studies do not always require the approaches listed above, and guidance is needed on when and how to apply these methods to a methodological study. Even though methodological studies can be conducted on qualitative or mixed methods research, this paper focuses on and draws examples exclusively from quantitative research.

The objectives of this paper are to provide some insights on how to conduct methodological studies so that there is greater consistency between the research questions posed, and the design, analysis and reporting of findings. We provide multiple examples to illustrate concepts and a proposed framework for categorizing methodological studies in quantitative research.

What is a methodological study?

Any study that describes or analyzes methods (design, conduct, analysis or reporting) in published (or unpublished) literature is a methodological study. Consequently, the scope of methodological studies is quite extensive and includes, but is not limited to, topics as diverse as: research question formulation [ 11 ]; adherence to reporting guidelines [ 12 , 13 , 14 ] and consistency in reporting [ 15 ]; approaches to study analysis [ 16 ]; investigating the credibility of analyses [ 17 ]; and studies that synthesize these methodological studies [ 18 ]. While the nomenclature of methodological studies is not uniform, the intents and purposes of these studies remain fairly consistent – to describe or analyze methods in primary or secondary studies. As such, methodological studies may also be classified as a subtype of observational studies.

Parallel to this are experimental studies that compare different methods. Even though they play an important role in informing optimal research methods, experimental methodological studies are beyond the scope of this paper. Examples of such studies include the randomized trials by Buscemi et al., comparing single data extraction to double data extraction [ 19 ], and Carrasco-Labra et al., comparing approaches to presenting findings in Grading of Recommendations, Assessment, Development and Evaluations (GRADE) summary of findings tables [ 20 ]. In these studies, the unit of analysis is the person or groups of individuals applying the methods. We also direct readers to the Studies Within a Trial (SWAT) and Studies Within a Review (SWAR) programme operated through the Hub for Trials Methodology Research, for further reading as a potential useful resource for these types of experimental studies [ 21 ]. Lastly, this paper is not meant to inform the conduct of research using computational simulation and mathematical modeling for which some guidance already exists [ 22 ], or studies on the development of methods using consensus-based approaches.

When should we conduct a methodological study?

Methodological studies occupy a unique niche in health research that allows them to inform methodological advances. Methodological studies should also be conducted as pre-cursors to reporting guideline development, as they provide an opportunity to understand current practices, and help to identify the need for guidance and gaps in methodological or reporting quality. For example, the development of the popular Preferred Reporting Items of Systematic reviews and Meta-Analyses (PRISMA) guidelines were preceded by methodological studies identifying poor reporting practices [ 23 , 24 ]. In these instances, after the reporting guidelines are published, methodological studies can also be used to monitor uptake of the guidelines.

These studies can also be conducted to inform the state of the art for design, analysis and reporting practices across different types of health research fields, with the aim of improving research practices, and preventing or reducing research waste. For example, Samaan et al. conducted a scoping review of adherence to different reporting guidelines in health care literature [ 18 ]. Methodological studies can also be used to determine the factors associated with reporting practices. For example, Abbade et al. investigated journal characteristics associated with the use of the Participants, Intervention, Comparison, Outcome, Timeframe (PICOT) format in framing research questions in trials of venous ulcer disease [ 11 ].

How often are methodological studies conducted?

There is no clear answer to this question. Based on a search of PubMed, the use of related terms (“methodological review” and “meta-epidemiological study”) – and therefore, the number of methodological studies – is on the rise. However, many other terms are used to describe methodological studies. There are also many studies that explore design, conduct, analysis or reporting of research reports, but that do not use any specific terms to describe or label their study design in terms of “methodology”. This diversity in nomenclature makes a census of methodological studies elusive. Appropriate terminology and key words for methodological studies are needed to facilitate improved accessibility for end-users.

Why do we conduct methodological studies?

Methodological studies provide information on the design, conduct, analysis or reporting of primary and secondary research and can be used to appraise quality, quantity, completeness, accuracy and consistency of health research. These issues can be explored in specific fields, journals, databases, geographical regions and time periods. For example, Areia et al. explored the quality of reporting of endoscopic diagnostic studies in gastroenterology [ 25 ]; Knol et al. investigated the reporting of p -values in baseline tables in randomized trial published in high impact journals [ 26 ]; Chen et al. describe adherence to the Consolidated Standards of Reporting Trials (CONSORT) statement in Chinese Journals [ 27 ]; and Hopewell et al. describe the effect of editors’ implementation of CONSORT guidelines on reporting of abstracts over time [ 28 ]. Methodological studies provide useful information to researchers, clinicians, editors, publishers and users of health literature. As a result, these studies have been at the cornerstone of important methodological developments in the past two decades and have informed the development of many health research guidelines including the highly cited CONSORT statement [ 5 ].

Where can we find methodological studies?

Methodological studies can be found in most common biomedical bibliographic databases (e.g. Embase, MEDLINE, PubMed, Web of Science). However, the biggest caveat is that methodological studies are hard to identify in the literature due to the wide variety of names used and the lack of comprehensive databases dedicated to them. A handful can be found in the Cochrane Library as “Cochrane Methodology Reviews”, but these studies only cover methodological issues related to systematic reviews. Previous attempts to catalogue all empirical studies of methods used in reviews were abandoned 10 years ago [ 29 ]. In other databases, a variety of search terms may be applied with different levels of sensitivity and specificity.

Some frequently asked questions about methodological studies

In this section, we have outlined responses to questions that might help inform the conduct of methodological studies.

Q: How should I select research reports for my methodological study?

A: Selection of research reports for a methodological study depends on the research question and eligibility criteria. Once a clear research question is set and the nature of literature one desires to review is known, one can then begin the selection process. Selection may begin with a broad search, especially if the eligibility criteria are not apparent. For example, a methodological study of Cochrane Reviews of HIV would not require a complex search as all eligible studies can easily be retrieved from the Cochrane Library after checking a few boxes [ 30 ]. On the other hand, a methodological study of subgroup analyses in trials of gastrointestinal oncology would require a search to find such trials, and further screening to identify trials that conducted a subgroup analysis [ 31 ].

The strategies used for identifying participants in observational studies can apply here. One may use a systematic search to identify all eligible studies. If the number of eligible studies is unmanageable, a random sample of articles can be expected to provide comparable results if it is sufficiently large [ 32 ]. For example, Wilson et al. used a random sample of trials from the Cochrane Stroke Group’s Trial Register to investigate completeness of reporting [ 33 ]. It is possible that a simple random sample would lead to underrepresentation of units (i.e. research reports) that are smaller in number. This is relevant if the investigators wish to compare multiple groups but have too few units in one group. In this case a stratified sample would help to create equal groups. For example, in a methodological study comparing Cochrane and non-Cochrane reviews, Kahale et al. drew random samples from both groups [ 34 ]. Alternatively, systematic or purposeful sampling strategies can be used and we encourage researchers to justify their selected approaches based on the study objective.

Q: How many databases should I search?

A: The number of databases one should search would depend on the approach to sampling, which can include targeting the entire “population” of interest or a sample of that population. If you are interested in including the entire target population for your research question, or drawing a random or systematic sample from it, then a comprehensive and exhaustive search for relevant articles is required. In this case, we recommend using systematic approaches for searching electronic databases (i.e. at least 2 databases with a replicable and time stamped search strategy). The results of your search will constitute a sampling frame from which eligible studies can be drawn.

Alternatively, if your approach to sampling is purposeful, then we recommend targeting the database(s) or data sources (e.g. journals, registries) that include the information you need. For example, if you are conducting a methodological study of high impact journals in plastic surgery and they are all indexed in PubMed, you likely do not need to search any other databases. You may also have a comprehensive list of all journals of interest and can approach your search using the journal names in your database search (or by accessing the journal archives directly from the journal’s website). Even though one could also search journals’ web pages directly, using a database such as PubMed has multiple advantages, such as the use of filters, so the search can be narrowed down to a certain period, or study types of interest. Furthermore, individual journals’ web sites may have different search functionalities, which do not necessarily yield a consistent output.

Q: Should I publish a protocol for my methodological study?

A: A protocol is a description of intended research methods. Currently, only protocols for clinical trials require registration [ 35 ]. Protocols for systematic reviews are encouraged but no formal recommendation exists. The scientific community welcomes the publication of protocols because they help protect against selective outcome reporting, the use of post hoc methodologies to embellish results, and to help avoid duplication of efforts [ 36 ]. While the latter two risks exist in methodological research, the negative consequences may be substantially less than for clinical outcomes. In a sample of 31 methodological studies, 7 (22.6%) referenced a published protocol [ 9 ]. In the Cochrane Library, there are 15 protocols for methodological reviews (21 July 2020). This suggests that publishing protocols for methodological studies is not uncommon.

Authors can consider publishing their study protocol in a scholarly journal as a manuscript. Advantages of such publication include obtaining peer-review feedback about the planned study, and easy retrieval by searching databases such as PubMed. The disadvantages in trying to publish protocols includes delays associated with manuscript handling and peer review, as well as costs, as few journals publish study protocols, and those journals mostly charge article-processing fees [ 37 ]. Authors who would like to make their protocol publicly available without publishing it in scholarly journals, could deposit their study protocols in publicly available repositories, such as the Open Science Framework ( https://osf.io/ ).

Q: How to appraise the quality of a methodological study?

A: To date, there is no published tool for appraising the risk of bias in a methodological study, but in principle, a methodological study could be considered as a type of observational study. Therefore, during conduct or appraisal, care should be taken to avoid the biases common in observational studies [ 38 ]. These biases include selection bias, comparability of groups, and ascertainment of exposure or outcome. In other words, to generate a representative sample, a comprehensive reproducible search may be necessary to build a sampling frame. Additionally, random sampling may be necessary to ensure that all the included research reports have the same probability of being selected, and the screening and selection processes should be transparent and reproducible. To ensure that the groups compared are similar in all characteristics, matching, random sampling or stratified sampling can be used. Statistical adjustments for between-group differences can also be applied at the analysis stage. Finally, duplicate data extraction can reduce errors in assessment of exposures or outcomes.

Q: Should I justify a sample size?

A: In all instances where one is not using the target population (i.e. the group to which inferences from the research report are directed) [ 39 ], a sample size justification is good practice. The sample size justification may take the form of a description of what is expected to be achieved with the number of articles selected, or a formal sample size estimation that outlines the number of articles required to answer the research question with a certain precision and power. Sample size justifications in methodological studies are reasonable in the following instances:

Comparing two groups

Determining a proportion, mean or another quantifier

Determining factors associated with an outcome using regression-based analyses

For example, El Dib et al. computed a sample size requirement for a methodological study of diagnostic strategies in randomized trials, based on a confidence interval approach [ 40 ].

Q: What should I call my study?

A: Other terms which have been used to describe/label methodological studies include “ methodological review ”, “methodological survey” , “meta-epidemiological study” , “systematic review” , “systematic survey”, “meta-research”, “research-on-research” and many others. We recommend that the study nomenclature be clear, unambiguous, informative and allow for appropriate indexing. Methodological study nomenclature that should be avoided includes “ systematic review” – as this will likely be confused with a systematic review of a clinical question. “ Systematic survey” may also lead to confusion about whether the survey was systematic (i.e. using a preplanned methodology) or a survey using “ systematic” sampling (i.e. a sampling approach using specific intervals to determine who is selected) [ 32 ]. Any of the above meanings of the words “ systematic” may be true for methodological studies and could be potentially misleading. “ Meta-epidemiological study” is ideal for indexing, but not very informative as it describes an entire field. The term “ review ” may point towards an appraisal or “review” of the design, conduct, analysis or reporting (or methodological components) of the targeted research reports, yet it has also been used to describe narrative reviews [ 41 , 42 ]. The term “ survey ” is also in line with the approaches used in many methodological studies [ 9 ], and would be indicative of the sampling procedures of this study design. However, in the absence of guidelines on nomenclature, the term “ methodological study ” is broad enough to capture most of the scenarios of such studies.

Q: Should I account for clustering in my methodological study?

A: Data from methodological studies are often clustered. For example, articles coming from a specific source may have different reporting standards (e.g. the Cochrane Library). Articles within the same journal may be similar due to editorial practices and policies, reporting requirements and endorsement of guidelines. There is emerging evidence that these are real concerns that should be accounted for in analyses [ 43 ]. Some cluster variables are described in the section: “ What variables are relevant to methodological studies?”

A variety of modelling approaches can be used to account for correlated data, including the use of marginal, fixed or mixed effects regression models with appropriate computation of standard errors [ 44 ]. For example, Kosa et al. used generalized estimation equations to account for correlation of articles within journals [ 15 ]. Not accounting for clustering could lead to incorrect p -values, unduly narrow confidence intervals, and biased estimates [ 45 ].

Q: Should I extract data in duplicate?

A: Yes. Duplicate data extraction takes more time but results in less errors [ 19 ]. Data extraction errors in turn affect the effect estimate [ 46 ], and therefore should be mitigated. Duplicate data extraction should be considered in the absence of other approaches to minimize extraction errors. However, much like systematic reviews, this area will likely see rapid new advances with machine learning and natural language processing technologies to support researchers with screening and data extraction [ 47 , 48 ]. However, experience plays an important role in the quality of extracted data and inexperienced extractors should be paired with experienced extractors [ 46 , 49 ].

Q: Should I assess the risk of bias of research reports included in my methodological study?

A : Risk of bias is most useful in determining the certainty that can be placed in the effect measure from a study. In methodological studies, risk of bias may not serve the purpose of determining the trustworthiness of results, as effect measures are often not the primary goal of methodological studies. Determining risk of bias in methodological studies is likely a practice borrowed from systematic review methodology, but whose intrinsic value is not obvious in methodological studies. When it is part of the research question, investigators often focus on one aspect of risk of bias. For example, Speich investigated how blinding was reported in surgical trials [ 50 ], and Abraha et al., investigated the application of intention-to-treat analyses in systematic reviews and trials [ 51 ].

Q: What variables are relevant to methodological studies?

A: There is empirical evidence that certain variables may inform the findings in a methodological study. We outline some of these and provide a brief overview below:

Country: Countries and regions differ in their research cultures, and the resources available to conduct research. Therefore, it is reasonable to believe that there may be differences in methodological features across countries. Methodological studies have reported loco-regional differences in reporting quality [ 52 , 53 ]. This may also be related to challenges non-English speakers face in publishing papers in English.

Authors’ expertise: The inclusion of authors with expertise in research methodology, biostatistics, and scientific writing is likely to influence the end-product. Oltean et al. found that among randomized trials in orthopaedic surgery, the use of analyses that accounted for clustering was more likely when specialists (e.g. statistician, epidemiologist or clinical trials methodologist) were included on the study team [ 54 ]. Fleming et al. found that including methodologists in the review team was associated with appropriate use of reporting guidelines [ 55 ].

Source of funding and conflicts of interest: Some studies have found that funded studies report better [ 56 , 57 ], while others do not [ 53 , 58 ]. The presence of funding would indicate the availability of resources deployed to ensure optimal design, conduct, analysis and reporting. However, the source of funding may introduce conflicts of interest and warrant assessment. For example, Kaiser et al. investigated the effect of industry funding on obesity or nutrition randomized trials and found that reporting quality was similar [ 59 ]. Thomas et al. looked at reporting quality of long-term weight loss trials and found that industry funded studies were better [ 60 ]. Kan et al. examined the association between industry funding and “positive trials” (trials reporting a significant intervention effect) and found that industry funding was highly predictive of a positive trial [ 61 ]. This finding is similar to that of a recent Cochrane Methodology Review by Hansen et al. [ 62 ]

Journal characteristics: Certain journals’ characteristics may influence the study design, analysis or reporting. Characteristics such as journal endorsement of guidelines [ 63 , 64 ], and Journal Impact Factor (JIF) have been shown to be associated with reporting [ 63 , 65 , 66 , 67 ].

Study size (sample size/number of sites): Some studies have shown that reporting is better in larger studies [ 53 , 56 , 58 ].

Year of publication: It is reasonable to assume that design, conduct, analysis and reporting of research will change over time. Many studies have demonstrated improvements in reporting over time or after the publication of reporting guidelines [ 68 , 69 ].

Type of intervention: In a methodological study of reporting quality of weight loss intervention studies, Thabane et al. found that trials of pharmacologic interventions were reported better than trials of non-pharmacologic interventions [ 70 ].

Interactions between variables: Complex interactions between the previously listed variables are possible. High income countries with more resources may be more likely to conduct larger studies and incorporate a variety of experts. Authors in certain countries may prefer certain journals, and journal endorsement of guidelines and editorial policies may change over time.

Q: Should I focus only on high impact journals?

A: Investigators may choose to investigate only high impact journals because they are more likely to influence practice and policy, or because they assume that methodological standards would be higher. However, the JIF may severely limit the scope of articles included and may skew the sample towards articles with positive findings. The generalizability and applicability of findings from a handful of journals must be examined carefully, especially since the JIF varies over time. Even among journals that are all “high impact”, variations exist in methodological standards.

Q: Can I conduct a methodological study of qualitative research?

A: Yes. Even though a lot of methodological research has been conducted in the quantitative research field, methodological studies of qualitative studies are feasible. Certain databases that catalogue qualitative research including the Cumulative Index to Nursing & Allied Health Literature (CINAHL) have defined subject headings that are specific to methodological research (e.g. “research methodology”). Alternatively, one could also conduct a qualitative methodological review; that is, use qualitative approaches to synthesize methodological issues in qualitative studies.

Q: What reporting guidelines should I use for my methodological study?

A: There is no guideline that covers the entire scope of methodological studies. One adaptation of the PRISMA guidelines has been published, which works well for studies that aim to use the entire target population of research reports [ 71 ]. However, it is not widely used (40 citations in 2 years as of 09 December 2019), and methodological studies that are designed as cross-sectional or before-after studies require a more fit-for purpose guideline. A more encompassing reporting guideline for a broad range of methodological studies is currently under development [ 72 ]. However, in the absence of formal guidance, the requirements for scientific reporting should be respected, and authors of methodological studies should focus on transparency and reproducibility.

Q: What are the potential threats to validity and how can I avoid them?

A: Methodological studies may be compromised by a lack of internal or external validity. The main threats to internal validity in methodological studies are selection and confounding bias. Investigators must ensure that the methods used to select articles does not make them differ systematically from the set of articles to which they would like to make inferences. For example, attempting to make extrapolations to all journals after analyzing high-impact journals would be misleading.

Many factors (confounders) may distort the association between the exposure and outcome if the included research reports differ with respect to these factors [ 73 ]. For example, when examining the association between source of funding and completeness of reporting, it may be necessary to account for journals that endorse the guidelines. Confounding bias can be addressed by restriction, matching and statistical adjustment [ 73 ]. Restriction appears to be the method of choice for many investigators who choose to include only high impact journals or articles in a specific field. For example, Knol et al. examined the reporting of p -values in baseline tables of high impact journals [ 26 ]. Matching is also sometimes used. In the methodological study of non-randomized interventional studies of elective ventral hernia repair, Parker et al. matched prospective studies with retrospective studies and compared reporting standards [ 74 ]. Some other methodological studies use statistical adjustments. For example, Zhang et al. used regression techniques to determine the factors associated with missing participant data in trials [ 16 ].

With regard to external validity, researchers interested in conducting methodological studies must consider how generalizable or applicable their findings are. This should tie in closely with the research question and should be explicit. For example. Findings from methodological studies on trials published in high impact cardiology journals cannot be assumed to be applicable to trials in other fields. However, investigators must ensure that their sample truly represents the target sample either by a) conducting a comprehensive and exhaustive search, or b) using an appropriate and justified, randomly selected sample of research reports.

Even applicability to high impact journals may vary based on the investigators’ definition, and over time. For example, for high impact journals in the field of general medicine, Bouwmeester et al. included the Annals of Internal Medicine (AIM), BMJ, the Journal of the American Medical Association (JAMA), Lancet, the New England Journal of Medicine (NEJM), and PLoS Medicine ( n  = 6) [ 75 ]. In contrast, the high impact journals selected in the methodological study by Schiller et al. were BMJ, JAMA, Lancet, and NEJM ( n  = 4) [ 76 ]. Another methodological study by Kosa et al. included AIM, BMJ, JAMA, Lancet and NEJM ( n  = 5). In the methodological study by Thabut et al., journals with a JIF greater than 5 were considered to be high impact. Riado Minguez et al. used first quartile journals in the Journal Citation Reports (JCR) for a specific year to determine “high impact” [ 77 ]. Ultimately, the definition of high impact will be based on the number of journals the investigators are willing to include, the year of impact and the JIF cut-off [ 78 ]. We acknowledge that the term “generalizability” may apply differently for methodological studies, especially when in many instances it is possible to include the entire target population in the sample studied.

Finally, methodological studies are not exempt from information bias which may stem from discrepancies in the included research reports [ 79 ], errors in data extraction, or inappropriate interpretation of the information extracted. Likewise, publication bias may also be a concern in methodological studies, but such concepts have not yet been explored.

A proposed framework

In order to inform discussions about methodological studies, the development of guidance for what should be reported, we have outlined some key features of methodological studies that can be used to classify them. For each of the categories outlined below, we provide an example. In our experience, the choice of approach to completing a methodological study can be informed by asking the following four questions:

What is the aim?

Methodological studies that investigate bias

A methodological study may be focused on exploring sources of bias in primary or secondary studies (meta-bias), or how bias is analyzed. We have taken care to distinguish bias (i.e. systematic deviations from the truth irrespective of the source) from reporting quality or completeness (i.e. not adhering to a specific reporting guideline or norm). An example of where this distinction would be important is in the case of a randomized trial with no blinding. This study (depending on the nature of the intervention) would be at risk of performance bias. However, if the authors report that their study was not blinded, they would have reported adequately. In fact, some methodological studies attempt to capture both “quality of conduct” and “quality of reporting”, such as Richie et al., who reported on the risk of bias in randomized trials of pharmacy practice interventions [ 80 ]. Babic et al. investigated how risk of bias was used to inform sensitivity analyses in Cochrane reviews [ 81 ]. Further, biases related to choice of outcomes can also be explored. For example, Tan et al investigated differences in treatment effect size based on the outcome reported [ 82 ].

Methodological studies that investigate quality (or completeness) of reporting

Methodological studies may report quality of reporting against a reporting checklist (i.e. adherence to guidelines) or against expected norms. For example, Croituro et al. report on the quality of reporting in systematic reviews published in dermatology journals based on their adherence to the PRISMA statement [ 83 ], and Khan et al. described the quality of reporting of harms in randomized controlled trials published in high impact cardiovascular journals based on the CONSORT extension for harms [ 84 ]. Other methodological studies investigate reporting of certain features of interest that may not be part of formally published checklists or guidelines. For example, Mbuagbaw et al. described how often the implications for research are elaborated using the Evidence, Participants, Intervention, Comparison, Outcome, Timeframe (EPICOT) format [ 30 ].

Methodological studies that investigate the consistency of reporting

Sometimes investigators may be interested in how consistent reports of the same research are, as it is expected that there should be consistency between: conference abstracts and published manuscripts; manuscript abstracts and manuscript main text; and trial registration and published manuscript. For example, Rosmarakis et al. investigated consistency between conference abstracts and full text manuscripts [ 85 ].

Methodological studies that investigate factors associated with reporting

In addition to identifying issues with reporting in primary and secondary studies, authors of methodological studies may be interested in determining the factors that are associated with certain reporting practices. Many methodological studies incorporate this, albeit as a secondary outcome. For example, Farrokhyar et al. investigated the factors associated with reporting quality in randomized trials of coronary artery bypass grafting surgery [ 53 ].

Methodological studies that investigate methods

Methodological studies may also be used to describe methods or compare methods, and the factors associated with methods. Muller et al. described the methods used for systematic reviews and meta-analyses of observational studies [ 86 ].

Methodological studies that summarize other methodological studies

Some methodological studies synthesize results from other methodological studies. For example, Li et al. conducted a scoping review of methodological reviews that investigated consistency between full text and abstracts in primary biomedical research [ 87 ].

Methodological studies that investigate nomenclature and terminology

Some methodological studies may investigate the use of names and terms in health research. For example, Martinic et al. investigated the definitions of systematic reviews used in overviews of systematic reviews (OSRs), meta-epidemiological studies and epidemiology textbooks [ 88 ].

Other types of methodological studies

In addition to the previously mentioned experimental methodological studies, there may exist other types of methodological studies not captured here.

What is the design?

Methodological studies that are descriptive

Most methodological studies are purely descriptive and report their findings as counts (percent) and means (standard deviation) or medians (interquartile range). For example, Mbuagbaw et al. described the reporting of research recommendations in Cochrane HIV systematic reviews [ 30 ]. Gohari et al. described the quality of reporting of randomized trials in diabetes in Iran [ 12 ].

Methodological studies that are analytical

Some methodological studies are analytical wherein “analytical studies identify and quantify associations, test hypotheses, identify causes and determine whether an association exists between variables, such as between an exposure and a disease.” [ 89 ] In the case of methodological studies all these investigations are possible. For example, Kosa et al. investigated the association between agreement in primary outcome from trial registry to published manuscript and study covariates. They found that larger and more recent studies were more likely to have agreement [ 15 ]. Tricco et al. compared the conclusion statements from Cochrane and non-Cochrane systematic reviews with a meta-analysis of the primary outcome and found that non-Cochrane reviews were more likely to report positive findings. These results are a test of the null hypothesis that the proportions of Cochrane and non-Cochrane reviews that report positive results are equal [ 90 ].

What is the sampling strategy?

Methodological studies that include the target population

Methodological reviews with narrow research questions may be able to include the entire target population. For example, in the methodological study of Cochrane HIV systematic reviews, Mbuagbaw et al. included all of the available studies ( n  = 103) [ 30 ].

Methodological studies that include a sample of the target population

Many methodological studies use random samples of the target population [ 33 , 91 , 92 ]. Alternatively, purposeful sampling may be used, limiting the sample to a subset of research-related reports published within a certain time period, or in journals with a certain ranking or on a topic. Systematic sampling can also be used when random sampling may be challenging to implement.

What is the unit of analysis?

Methodological studies with a research report as the unit of analysis

Many methodological studies use a research report (e.g. full manuscript of study, abstract portion of the study) as the unit of analysis, and inferences can be made at the study-level. However, both published and unpublished research-related reports can be studied. These may include articles, conference abstracts, registry entries etc.

Methodological studies with a design, analysis or reporting item as the unit of analysis

Some methodological studies report on items which may occur more than once per article. For example, Paquette et al. report on subgroup analyses in Cochrane reviews of atrial fibrillation in which 17 systematic reviews planned 56 subgroup analyses [ 93 ].

This framework is outlined in Fig.  2 .

figure 2

A proposed framework for methodological studies

Conclusions

Methodological studies have examined different aspects of reporting such as quality, completeness, consistency and adherence to reporting guidelines. As such, many of the methodological study examples cited in this tutorial are related to reporting. However, as an evolving field, the scope of research questions that can be addressed by methodological studies is expected to increase.

In this paper we have outlined the scope and purpose of methodological studies, along with examples of instances in which various approaches have been used. In the absence of formal guidance on the design, conduct, analysis and reporting of methodological studies, we have provided some advice to help make methodological studies consistent. This advice is grounded in good contemporary scientific practice. Generally, the research question should tie in with the sampling approach and planned analysis. We have also highlighted the variables that may inform findings from methodological studies. Lastly, we have provided suggestions for ways in which authors can categorize their methodological studies to inform their design and analysis.

Availability of data and materials

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

Abbreviations

Consolidated Standards of Reporting Trials

Evidence, Participants, Intervention, Comparison, Outcome, Timeframe

Grading of Recommendations, Assessment, Development and Evaluations

Participants, Intervention, Comparison, Outcome, Timeframe

Preferred Reporting Items of Systematic reviews and Meta-Analyses

Studies Within a Review

Studies Within a Trial

Chalmers I, Glasziou P. Avoidable waste in the production and reporting of research evidence. Lancet. 2009;374(9683):86–9.

PubMed   Google Scholar  

Chan AW, Song F, Vickers A, Jefferson T, Dickersin K, Gotzsche PC, Krumholz HM, Ghersi D, van der Worp HB. Increasing value and reducing waste: addressing inaccessible research. Lancet. 2014;383(9913):257–66.

PubMed   PubMed Central   Google Scholar  

Ioannidis JP, Greenland S, Hlatky MA, Khoury MJ, Macleod MR, Moher D, Schulz KF, Tibshirani R. Increasing value and reducing waste in research design, conduct, and analysis. Lancet. 2014;383(9912):166–75.

Higgins JP, Altman DG, Gotzsche PC, Juni P, Moher D, Oxman AD, Savovic J, Schulz KF, Weeks L, Sterne JA. The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. BMJ. 2011;343:d5928.

Moher D, Schulz KF, Altman DG. The CONSORT statement: revised recommendations for improving the quality of reports of parallel-group randomised trials. Lancet. 2001;357.

Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP, Clarke M, Devereaux PJ, Kleijnen J, Moher D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med. 2009;6(7):e1000100.

Shea BJ, Hamel C, Wells GA, Bouter LM, Kristjansson E, Grimshaw J, Henry DA, Boers M. AMSTAR is a reliable and valid measurement tool to assess the methodological quality of systematic reviews. J Clin Epidemiol. 2009;62(10):1013–20.

Shea BJ, Reeves BC, Wells G, Thuku M, Hamel C, Moran J, Moher D, Tugwell P, Welch V, Kristjansson E, et al. AMSTAR 2: a critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. Bmj. 2017;358:j4008.

Lawson DO, Leenus A, Mbuagbaw L. Mapping the nomenclature, methodology, and reporting of studies that review methods: a pilot methodological review. Pilot Feasibility Studies. 2020;6(1):13.

Puljak L, Makaric ZL, Buljan I, Pieper D. What is a meta-epidemiological study? Analysis of published literature indicated heterogeneous study designs and definitions. J Comp Eff Res. 2020.

Abbade LPF, Wang M, Sriganesh K, Jin Y, Mbuagbaw L, Thabane L. The framing of research questions using the PICOT format in randomized controlled trials of venous ulcer disease is suboptimal: a systematic survey. Wound Repair Regen. 2017;25(5):892–900.

Gohari F, Baradaran HR, Tabatabaee M, Anijidani S, Mohammadpour Touserkani F, Atlasi R, Razmgir M. Quality of reporting randomized controlled trials (RCTs) in diabetes in Iran; a systematic review. J Diabetes Metab Disord. 2015;15(1):36.

Wang M, Jin Y, Hu ZJ, Thabane A, Dennis B, Gajic-Veljanoski O, Paul J, Thabane L. The reporting quality of abstracts of stepped wedge randomized trials is suboptimal: a systematic survey of the literature. Contemp Clin Trials Commun. 2017;8:1–10.

Shanthanna H, Kaushal A, Mbuagbaw L, Couban R, Busse J, Thabane L: A cross-sectional study of the reporting quality of pilot or feasibility trials in high-impact anesthesia journals Can J Anaesthesia 2018, 65(11):1180–1195.

Kosa SD, Mbuagbaw L, Borg Debono V, Bhandari M, Dennis BB, Ene G, Leenus A, Shi D, Thabane M, Valvasori S, et al. Agreement in reporting between trial publications and current clinical trial registry in high impact journals: a methodological review. Contemporary Clinical Trials. 2018;65:144–50.

Zhang Y, Florez ID, Colunga Lozano LE, Aloweni FAB, Kennedy SA, Li A, Craigie S, Zhang S, Agarwal A, Lopes LC, et al. A systematic survey on reporting and methods for handling missing participant data for continuous outcomes in randomized controlled trials. J Clin Epidemiol. 2017;88:57–66.

CAS   PubMed   Google Scholar  

Hernández AV, Boersma E, Murray GD, Habbema JD, Steyerberg EW. Subgroup analyses in therapeutic cardiovascular clinical trials: are most of them misleading? Am Heart J. 2006;151(2):257–64.

Samaan Z, Mbuagbaw L, Kosa D, Borg Debono V, Dillenburg R, Zhang S, Fruci V, Dennis B, Bawor M, Thabane L. A systematic scoping review of adherence to reporting guidelines in health care literature. J Multidiscip Healthc. 2013;6:169–88.

Buscemi N, Hartling L, Vandermeer B, Tjosvold L, Klassen TP. Single data extraction generated more errors than double data extraction in systematic reviews. J Clin Epidemiol. 2006;59(7):697–703.

Carrasco-Labra A, Brignardello-Petersen R, Santesso N, Neumann I, Mustafa RA, Mbuagbaw L, Etxeandia Ikobaltzeta I, De Stio C, McCullagh LJ, Alonso-Coello P. Improving GRADE evidence tables part 1: a randomized trial shows improved understanding of content in summary-of-findings tables with a new format. J Clin Epidemiol. 2016;74:7–18.

The Northern Ireland Hub for Trials Methodology Research: SWAT/SWAR Information [ https://www.qub.ac.uk/sites/TheNorthernIrelandNetworkforTrialsMethodologyResearch/SWATSWARInformation/ ]. Accessed 31 Aug 2020.

Chick S, Sánchez P, Ferrin D, Morrice D. How to conduct a successful simulation study. In: Proceedings of the 2003 winter simulation conference: 2003; 2003. p. 66–70.

Google Scholar  

Mulrow CD. The medical review article: state of the science. Ann Intern Med. 1987;106(3):485–8.

Sacks HS, Reitman D, Pagano D, Kupelnick B. Meta-analysis: an update. Mount Sinai J Med New York. 1996;63(3–4):216–24.

CAS   Google Scholar  

Areia M, Soares M, Dinis-Ribeiro M. Quality reporting of endoscopic diagnostic studies in gastrointestinal journals: where do we stand on the use of the STARD and CONSORT statements? Endoscopy. 2010;42(2):138–47.

Knol M, Groenwold R, Grobbee D. P-values in baseline tables of randomised controlled trials are inappropriate but still common in high impact journals. Eur J Prev Cardiol. 2012;19(2):231–2.

Chen M, Cui J, Zhang AL, Sze DM, Xue CC, May BH. Adherence to CONSORT items in randomized controlled trials of integrative medicine for colorectal Cancer published in Chinese journals. J Altern Complement Med. 2018;24(2):115–24.

Hopewell S, Ravaud P, Baron G, Boutron I. Effect of editors' implementation of CONSORT guidelines on the reporting of abstracts in high impact medical journals: interrupted time series analysis. BMJ. 2012;344:e4178.

The Cochrane Methodology Register Issue 2 2009 [ https://cmr.cochrane.org/help.htm ]. Accessed 31 Aug 2020.

Mbuagbaw L, Kredo T, Welch V, Mursleen S, Ross S, Zani B, Motaze NV, Quinlan L. Critical EPICOT items were absent in Cochrane human immunodeficiency virus systematic reviews: a bibliometric analysis. J Clin Epidemiol. 2016;74:66–72.

Barton S, Peckitt C, Sclafani F, Cunningham D, Chau I. The influence of industry sponsorship on the reporting of subgroup analyses within phase III randomised controlled trials in gastrointestinal oncology. Eur J Cancer. 2015;51(18):2732–9.

Setia MS. Methodology series module 5: sampling strategies. Indian J Dermatol. 2016;61(5):505–9.

Wilson B, Burnett P, Moher D, Altman DG, Al-Shahi Salman R. Completeness of reporting of randomised controlled trials including people with transient ischaemic attack or stroke: a systematic review. Eur Stroke J. 2018;3(4):337–46.

Kahale LA, Diab B, Brignardello-Petersen R, Agarwal A, Mustafa RA, Kwong J, Neumann I, Li L, Lopes LC, Briel M, et al. Systematic reviews do not adequately report or address missing outcome data in their analyses: a methodological survey. J Clin Epidemiol. 2018;99:14–23.

De Angelis CD, Drazen JM, Frizelle FA, Haug C, Hoey J, Horton R, Kotzin S, Laine C, Marusic A, Overbeke AJPM, et al. Is this clinical trial fully registered?: a statement from the International Committee of Medical Journal Editors*. Ann Intern Med. 2005;143(2):146–8.

Ohtake PJ, Childs JD. Why publish study protocols? Phys Ther. 2014;94(9):1208–9.

Rombey T, Allers K, Mathes T, Hoffmann F, Pieper D. A descriptive analysis of the characteristics and the peer review process of systematic review protocols published in an open peer review journal from 2012 to 2017. BMC Med Res Methodol. 2019;19(1):57.

Grimes DA, Schulz KF. Bias and causal associations in observational research. Lancet. 2002;359(9302):248–52.

Porta M (ed.): A dictionary of epidemiology, 5th edn. Oxford: Oxford University Press, Inc.; 2008.

El Dib R, Tikkinen KAO, Akl EA, Gomaa HA, Mustafa RA, Agarwal A, Carpenter CR, Zhang Y, Jorge EC, Almeida R, et al. Systematic survey of randomized trials evaluating the impact of alternative diagnostic strategies on patient-important outcomes. J Clin Epidemiol. 2017;84:61–9.

Helzer JE, Robins LN, Taibleson M, Woodruff RA Jr, Reich T, Wish ED. Reliability of psychiatric diagnosis. I. a methodological review. Arch Gen Psychiatry. 1977;34(2):129–33.

Chung ST, Chacko SK, Sunehag AL, Haymond MW. Measurements of gluconeogenesis and Glycogenolysis: a methodological review. Diabetes. 2015;64(12):3996–4010.

CAS   PubMed   PubMed Central   Google Scholar  

Sterne JA, Juni P, Schulz KF, Altman DG, Bartlett C, Egger M. Statistical methods for assessing the influence of study characteristics on treatment effects in 'meta-epidemiological' research. Stat Med. 2002;21(11):1513–24.

Moen EL, Fricano-Kugler CJ, Luikart BW, O’Malley AJ. Analyzing clustered data: why and how to account for multiple observations nested within a study participant? PLoS One. 2016;11(1):e0146721.

Zyzanski SJ, Flocke SA, Dickinson LM. On the nature and analysis of clustered data. Ann Fam Med. 2004;2(3):199–200.

Mathes T, Klassen P, Pieper D. Frequency of data extraction errors and methods to increase data extraction quality: a methodological review. BMC Med Res Methodol. 2017;17(1):152.

Bui DDA, Del Fiol G, Hurdle JF, Jonnalagadda S. Extractive text summarization system to aid data extraction from full text in systematic review development. J Biomed Inform. 2016;64:265–72.

Bui DD, Del Fiol G, Jonnalagadda S. PDF text classification to leverage information extraction from publication reports. J Biomed Inform. 2016;61:141–8.

Maticic K, Krnic Martinic M, Puljak L. Assessment of reporting quality of abstracts of systematic reviews with meta-analysis using PRISMA-A and discordance in assessments between raters without prior experience. BMC Med Res Methodol. 2019;19(1):32.

Speich B. Blinding in surgical randomized clinical trials in 2015. Ann Surg. 2017;266(1):21–2.

Abraha I, Cozzolino F, Orso M, Marchesi M, Germani A, Lombardo G, Eusebi P, De Florio R, Luchetta ML, Iorio A, et al. A systematic review found that deviations from intention-to-treat are common in randomized trials and systematic reviews. J Clin Epidemiol. 2017;84:37–46.

Zhong Y, Zhou W, Jiang H, Fan T, Diao X, Yang H, Min J, Wang G, Fu J, Mao B. Quality of reporting of two-group parallel randomized controlled clinical trials of multi-herb formulae: A survey of reports indexed in the Science Citation Index Expanded. Eur J Integrative Med. 2011;3(4):e309–16.

Farrokhyar F, Chu R, Whitlock R, Thabane L. A systematic review of the quality of publications reporting coronary artery bypass grafting trials. Can J Surg. 2007;50(4):266–77.

Oltean H, Gagnier JJ. Use of clustering analysis in randomized controlled trials in orthopaedic surgery. BMC Med Res Methodol. 2015;15:17.

Fleming PS, Koletsi D, Pandis N. Blinded by PRISMA: are systematic reviewers focusing on PRISMA and ignoring other guidelines? PLoS One. 2014;9(5):e96407.

Balasubramanian SP, Wiener M, Alshameeri Z, Tiruvoipati R, Elbourne D, Reed MW. Standards of reporting of randomized controlled trials in general surgery: can we do better? Ann Surg. 2006;244(5):663–7.

de Vries TW, van Roon EN. Low quality of reporting adverse drug reactions in paediatric randomised controlled trials. Arch Dis Child. 2010;95(12):1023–6.

Borg Debono V, Zhang S, Ye C, Paul J, Arya A, Hurlburt L, Murthy Y, Thabane L. The quality of reporting of RCTs used within a postoperative pain management meta-analysis, using the CONSORT statement. BMC Anesthesiol. 2012;12:13.

Kaiser KA, Cofield SS, Fontaine KR, Glasser SP, Thabane L, Chu R, Ambrale S, Dwary AD, Kumar A, Nayyar G, et al. Is funding source related to study reporting quality in obesity or nutrition randomized control trials in top-tier medical journals? Int J Obes. 2012;36(7):977–81.

Thomas O, Thabane L, Douketis J, Chu R, Westfall AO, Allison DB. Industry funding and the reporting quality of large long-term weight loss trials. Int J Obes. 2008;32(10):1531–6.

Khan NR, Saad H, Oravec CS, Rossi N, Nguyen V, Venable GT, Lillard JC, Patel P, Taylor DR, Vaughn BN, et al. A review of industry funding in randomized controlled trials published in the neurosurgical literature-the elephant in the room. Neurosurgery. 2018;83(5):890–7.

Hansen C, Lundh A, Rasmussen K, Hrobjartsson A. Financial conflicts of interest in systematic reviews: associations with results, conclusions, and methodological quality. Cochrane Database Syst Rev. 2019;8:Mr000047.

Kiehna EN, Starke RM, Pouratian N, Dumont AS. Standards for reporting randomized controlled trials in neurosurgery. J Neurosurg. 2011;114(2):280–5.

Liu LQ, Morris PJ, Pengel LH. Compliance to the CONSORT statement of randomized controlled trials in solid organ transplantation: a 3-year overview. Transpl Int. 2013;26(3):300–6.

Bala MM, Akl EA, Sun X, Bassler D, Mertz D, Mejza F, Vandvik PO, Malaga G, Johnston BC, Dahm P, et al. Randomized trials published in higher vs. lower impact journals differ in design, conduct, and analysis. J Clin Epidemiol. 2013;66(3):286–95.

Lee SY, Teoh PJ, Camm CF, Agha RA. Compliance of randomized controlled trials in trauma surgery with the CONSORT statement. J Trauma Acute Care Surg. 2013;75(4):562–72.

Ziogas DC, Zintzaras E. Analysis of the quality of reporting of randomized controlled trials in acute and chronic myeloid leukemia, and myelodysplastic syndromes as governed by the CONSORT statement. Ann Epidemiol. 2009;19(7):494–500.

Alvarez F, Meyer N, Gourraud PA, Paul C. CONSORT adoption and quality of reporting of randomized controlled trials: a systematic analysis in two dermatology journals. Br J Dermatol. 2009;161(5):1159–65.

Mbuagbaw L, Thabane M, Vanniyasingam T, Borg Debono V, Kosa S, Zhang S, Ye C, Parpia S, Dennis BB, Thabane L. Improvement in the quality of abstracts in major clinical journals since CONSORT extension for abstracts: a systematic review. Contemporary Clin trials. 2014;38(2):245–50.

Thabane L, Chu R, Cuddy K, Douketis J. What is the quality of reporting in weight loss intervention studies? A systematic review of randomized controlled trials. Int J Obes. 2007;31(10):1554–9.

Murad MH, Wang Z. Guidelines for reporting meta-epidemiological methodology research. Evidence Based Med. 2017;22(4):139.

METRIC - MEthodological sTudy ReportIng Checklist: guidelines for reporting methodological studies in health research [ http://www.equator-network.org/library/reporting-guidelines-under-development/reporting-guidelines-under-development-for-other-study-designs/#METRIC ]. Accessed 31 Aug 2020.

Jager KJ, Zoccali C, MacLeod A, Dekker FW. Confounding: what it is and how to deal with it. Kidney Int. 2008;73(3):256–60.

Parker SG, Halligan S, Erotocritou M, Wood CPJ, Boulton RW, Plumb AAO, Windsor ACJ, Mallett S. A systematic methodological review of non-randomised interventional studies of elective ventral hernia repair: clear definitions and a standardised minimum dataset are needed. Hernia. 2019.

Bouwmeester W, Zuithoff NPA, Mallett S, Geerlings MI, Vergouwe Y, Steyerberg EW, Altman DG, Moons KGM. Reporting and methods in clinical prediction research: a systematic review. PLoS Med. 2012;9(5):1–12.

Schiller P, Burchardi N, Niestroj M, Kieser M. Quality of reporting of clinical non-inferiority and equivalence randomised trials--update and extension. Trials. 2012;13:214.

Riado Minguez D, Kowalski M, Vallve Odena M, Longin Pontzen D, Jelicic Kadic A, Jeric M, Dosenovic S, Jakus D, Vrdoljak M, Poklepovic Pericic T, et al. Methodological and reporting quality of systematic reviews published in the highest ranking journals in the field of pain. Anesth Analg. 2017;125(4):1348–54.

Thabut G, Estellat C, Boutron I, Samama CM, Ravaud P. Methodological issues in trials assessing primary prophylaxis of venous thrombo-embolism. Eur Heart J. 2005;27(2):227–36.

Puljak L, Riva N, Parmelli E, González-Lorenzo M, Moja L, Pieper D. Data extraction methods: an analysis of internal reporting discrepancies in single manuscripts and practical advice. J Clin Epidemiol. 2020;117:158–64.

Ritchie A, Seubert L, Clifford R, Perry D, Bond C. Do randomised controlled trials relevant to pharmacy meet best practice standards for quality conduct and reporting? A systematic review. Int J Pharm Pract. 2019.

Babic A, Vuka I, Saric F, Proloscic I, Slapnicar E, Cavar J, Pericic TP, Pieper D, Puljak L. Overall bias methods and their use in sensitivity analysis of Cochrane reviews were not consistent. J Clin Epidemiol. 2019.

Tan A, Porcher R, Crequit P, Ravaud P, Dechartres A. Differences in treatment effect size between overall survival and progression-free survival in immunotherapy trials: a Meta-epidemiologic study of trials with results posted at ClinicalTrials.gov. J Clin Oncol. 2017;35(15):1686–94.

Croitoru D, Huang Y, Kurdina A, Chan AW, Drucker AM. Quality of reporting in systematic reviews published in dermatology journals. Br J Dermatol. 2020;182(6):1469–76.

Khan MS, Ochani RK, Shaikh A, Vaduganathan M, Khan SU, Fatima K, Yamani N, Mandrola J, Doukky R, Krasuski RA: Assessing the Quality of Reporting of Harms in Randomized Controlled Trials Published in High Impact Cardiovascular Journals. Eur Heart J Qual Care Clin Outcomes 2019.

Rosmarakis ES, Soteriades ES, Vergidis PI, Kasiakou SK, Falagas ME. From conference abstract to full paper: differences between data presented in conferences and journals. FASEB J. 2005;19(7):673–80.

Mueller M, D’Addario M, Egger M, Cevallos M, Dekkers O, Mugglin C, Scott P. Methods to systematically review and meta-analyse observational studies: a systematic scoping review of recommendations. BMC Med Res Methodol. 2018;18(1):44.

Li G, Abbade LPF, Nwosu I, Jin Y, Leenus A, Maaz M, Wang M, Bhatt M, Zielinski L, Sanger N, et al. A scoping review of comparisons between abstracts and full reports in primary biomedical research. BMC Med Res Methodol. 2017;17(1):181.

Krnic Martinic M, Pieper D, Glatt A, Puljak L. Definition of a systematic review used in overviews of systematic reviews, meta-epidemiological studies and textbooks. BMC Med Res Methodol. 2019;19(1):203.

Analytical study [ https://medical-dictionary.thefreedictionary.com/analytical+study ]. Accessed 31 Aug 2020.

Tricco AC, Tetzlaff J, Pham B, Brehaut J, Moher D. Non-Cochrane vs. Cochrane reviews were twice as likely to have positive conclusion statements: cross-sectional study. J Clin Epidemiol. 2009;62(4):380–6 e381.

Schalken N, Rietbergen C. The reporting quality of systematic reviews and Meta-analyses in industrial and organizational psychology: a systematic review. Front Psychol. 2017;8:1395.

Ranker LR, Petersen JM, Fox MP. Awareness of and potential for dependent error in the observational epidemiologic literature: A review. Ann Epidemiol. 2019;36:15–9 e12.

Paquette M, Alotaibi AM, Nieuwlaat R, Santesso N, Mbuagbaw L. A meta-epidemiological study of subgroup analyses in cochrane systematic reviews of atrial fibrillation. Syst Rev. 2019;8(1):241.

Download references

Acknowledgements

This work did not receive any dedicated funding.

Author information

Authors and affiliations.

Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, ON, Canada

Lawrence Mbuagbaw, Daeria O. Lawson & Lehana Thabane

Biostatistics Unit/FSORC, 50 Charlton Avenue East, St Joseph’s Healthcare—Hamilton, 3rd Floor Martha Wing, Room H321, Hamilton, Ontario, L8N 4A6, Canada

Lawrence Mbuagbaw & Lehana Thabane

Centre for the Development of Best Practices in Health, Yaoundé, Cameroon

Lawrence Mbuagbaw

Center for Evidence-Based Medicine and Health Care, Catholic University of Croatia, Ilica 242, 10000, Zagreb, Croatia

Livia Puljak

Department of Epidemiology and Biostatistics, School of Public Health – Bloomington, Indiana University, Bloomington, IN, 47405, USA

David B. Allison

Departments of Paediatrics and Anaesthesia, McMaster University, Hamilton, ON, Canada

Lehana Thabane

Centre for Evaluation of Medicine, St. Joseph’s Healthcare-Hamilton, Hamilton, ON, Canada

Population Health Research Institute, Hamilton Health Sciences, Hamilton, ON, Canada

You can also search for this author in PubMed   Google Scholar

Contributions

LM conceived the idea and drafted the outline and paper. DOL and LT commented on the idea and draft outline. LM, LP and DOL performed literature searches and data extraction. All authors (LM, DOL, LT, LP, DBA) reviewed several draft versions of the manuscript and approved the final manuscript.

Corresponding author

Correspondence to Lawrence Mbuagbaw .

Ethics declarations

Ethics approval and consent to participate.

Not applicable.

Consent for publication

Competing interests.

DOL, DBA, LM, LP and LT are involved in the development of a reporting guideline for methodological studies.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ . The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/ ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Cite this article.

Mbuagbaw, L., Lawson, D.O., Puljak, L. et al. A tutorial on methodological studies: the what, when, how and why. BMC Med Res Methodol 20 , 226 (2020). https://doi.org/10.1186/s12874-020-01107-7

Download citation

Received : 27 May 2020

Accepted : 27 August 2020

Published : 07 September 2020

DOI : https://doi.org/10.1186/s12874-020-01107-7

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Methodological study
  • Meta-epidemiology
  • Research methods
  • Research-on-research

BMC Medical Research Methodology

ISSN: 1471-2288

importance of research report in research methodology

  • How it works

"Christmas Offer"

Terms & conditions.

As the Christmas season is upon us, we find ourselves reflecting on the past year and those who we have helped to shape their future. It’s been quite a year for us all! The end of the year brings no greater joy than the opportunity to express to you Christmas greetings and good wishes.

At this special time of year, Research Prospect brings joyful discount of 10% on all its services. May your Christmas and New Year be filled with joy.

We are looking back with appreciation for your loyalty and looking forward to moving into the New Year together.

"Claim this offer"

In unfamiliar and hard times, we have stuck by you. This Christmas, Research Prospect brings you all the joy with exciting discount of 10% on all its services.

Offer valid till 5-1-2024

We love being your partner in success. We know you have been working hard lately, take a break this holiday season to spend time with your loved ones while we make sure you succeed in your academics

Discount code: RP23720

researchprospect post subheader

Published by Nicolas at March 21st, 2024 , Revised On March 12, 2024

The Ultimate Guide To Research Methodology

Research methodology is a crucial aspect of any investigative process, serving as the blueprint for the entire research journey. If you are stuck in the methodology section of your research paper , then this blog will guide you on what is a research methodology, its types and how to successfully conduct one. 

Table of Contents

What Is Research Methodology?

Research methodology can be defined as the systematic framework that guides researchers in designing, conducting, and analyzing their investigations. It encompasses a structured set of processes, techniques, and tools employed to gather and interpret data, ensuring the reliability and validity of the research findings. 

Research methodology is not confined to a singular approach; rather, it encapsulates a diverse range of methods tailored to the specific requirements of the research objectives.

Here is why Research methodology is important in academic and professional settings.

Facilitating Rigorous Inquiry

Research methodology forms the backbone of rigorous inquiry. It provides a structured approach that aids researchers in formulating precise thesis statements , selecting appropriate methodologies, and executing systematic investigations. This, in turn, enhances the quality and credibility of the research outcomes.

Ensuring Reproducibility And Reliability

In both academic and professional contexts, the ability to reproduce research outcomes is paramount. A well-defined research methodology establishes clear procedures, making it possible for others to replicate the study. This not only validates the findings but also contributes to the cumulative nature of knowledge.

Guiding Decision-Making Processes

In professional settings, decisions often hinge on reliable data and insights. Research methodology equips professionals with the tools to gather pertinent information, analyze it rigorously, and derive meaningful conclusions.

This informed decision-making is instrumental in achieving organizational goals and staying ahead in competitive environments.

Contributing To Academic Excellence

For academic researchers, adherence to robust research methodology is a hallmark of excellence. Institutions value research that adheres to high standards of methodology, fostering a culture of academic rigour and intellectual integrity. Furthermore, it prepares students with critical skills applicable beyond academia.

Enhancing Problem-Solving Abilities

Research methodology instills a problem-solving mindset by encouraging researchers to approach challenges systematically. It equips individuals with the skills to dissect complex issues, formulate hypotheses , and devise effective strategies for investigation.

Understanding Research Methodology

In the pursuit of knowledge and discovery, understanding the fundamentals of research methodology is paramount. 

Basics Of Research

Research, in its essence, is a systematic and organized process of inquiry aimed at expanding our understanding of a particular subject or phenomenon. It involves the exploration of existing knowledge, the formulation of hypotheses, and the collection and analysis of data to draw meaningful conclusions. 

Research is a dynamic and iterative process that contributes to the continuous evolution of knowledge in various disciplines.

Types of Research

Research takes on various forms, each tailored to the nature of the inquiry. Broadly classified, research can be categorized into two main types:

  • Quantitative Research: This type involves the collection and analysis of numerical data to identify patterns, relationships, and statistical significance. It is particularly useful for testing hypotheses and making predictions.
  • Qualitative Research: Qualitative research focuses on understanding the depth and details of a phenomenon through non-numerical data. It often involves methods such as interviews, focus groups, and content analysis, providing rich insights into complex issues.

Components Of Research Methodology

To conduct effective research, one must go through the different components of research methodology. These components form the scaffolding that supports the entire research process, ensuring its coherence and validity.

Research Design

Research design serves as the blueprint for the entire research project. It outlines the overall structure and strategy for conducting the study. The three primary types of research design are:

  • Exploratory Research: Aimed at gaining insights and familiarity with the topic, often used in the early stages of research.
  • Descriptive Research: Involves portraying an accurate profile of a situation or phenomenon, answering the ‘what,’ ‘who,’ ‘where,’ and ‘when’ questions.
  • Explanatory Research: Seeks to identify the causes and effects of a phenomenon, explaining the ‘why’ and ‘how.’

Data Collection Methods

Choosing the right data collection methods is crucial for obtaining reliable and relevant information. Common methods include:

  • Surveys and Questionnaires: Employed to gather information from a large number of respondents through standardized questions.
  • Interviews: In-depth conversations with participants, offering qualitative insights.
  • Observation: Systematic watching and recording of behaviour, events, or processes in their natural setting.

Data Analysis Techniques

Once data is collected, analysis becomes imperative to derive meaningful conclusions. Different methodologies exist for quantitative and qualitative data:

  • Quantitative Data Analysis: Involves statistical techniques such as descriptive statistics, inferential statistics, and regression analysis to interpret numerical data.
  • Qualitative Data Analysis: Methods like content analysis, thematic analysis, and grounded theory are employed to extract patterns, themes, and meanings from non-numerical data.

The research paper we write have:

  • Precision and Clarity
  • Zero Plagiarism
  • High-level Encryption
  • Authentic Sources

proposals we write

Choosing a Research Method

Selecting an appropriate research method is a critical decision in the research process. It determines the approach, tools, and techniques that will be used to answer the research questions. 

Quantitative Research Methods

Quantitative research involves the collection and analysis of numerical data, providing a structured and objective approach to understanding and explaining phenomena.

Experimental Research

Experimental research involves manipulating variables to observe the effect on another variable under controlled conditions. It aims to establish cause-and-effect relationships.

Key Characteristics:

  • Controlled Environment: Experiments are conducted in a controlled setting to minimize external influences.
  • Random Assignment: Participants are randomly assigned to different experimental conditions.
  • Quantitative Data: Data collected is numerical, allowing for statistical analysis.

Applications: Commonly used in scientific studies and psychology to test hypotheses and identify causal relationships.

Survey Research

Survey research gathers information from a sample of individuals through standardized questionnaires or interviews. It aims to collect data on opinions, attitudes, and behaviours.

  • Structured Instruments: Surveys use structured instruments, such as questionnaires, to collect data.
  • Large Sample Size: Surveys often target a large and diverse group of participants.
  • Quantitative Data Analysis: Responses are quantified for statistical analysis.

Applications: Widely employed in social sciences, marketing, and public opinion research to understand trends and preferences.

Descriptive Research

Descriptive research seeks to portray an accurate profile of a situation or phenomenon. It focuses on answering the ‘what,’ ‘who,’ ‘where,’ and ‘when’ questions.

  • Observation and Data Collection: This involves observing and documenting without manipulating variables.
  • Objective Description: Aim to provide an unbiased and factual account of the subject.
  • Quantitative or Qualitative Data: T his can include both types of data, depending on the research focus.

Applications: Useful in situations where researchers want to understand and describe a phenomenon without altering it, common in social sciences and education.

Qualitative Research Methods

Qualitative research emphasizes exploring and understanding the depth and complexity of phenomena through non-numerical data.

A case study is an in-depth exploration of a particular person, group, event, or situation. It involves detailed, context-rich analysis.

  • Rich Data Collection: Uses various data sources, such as interviews, observations, and documents.
  • Contextual Understanding: Aims to understand the context and unique characteristics of the case.
  • Holistic Approach: Examines the case in its entirety.

Applications: Common in social sciences, psychology, and business to investigate complex and specific instances.

Ethnography

Ethnography involves immersing the researcher in the culture or community being studied to gain a deep understanding of their behaviours, beliefs, and practices.

  • Participant Observation: Researchers actively participate in the community or setting.
  • Holistic Perspective: Focuses on the interconnectedness of cultural elements.
  • Qualitative Data: In-depth narratives and descriptions are central to ethnographic studies.

Applications: Widely used in anthropology, sociology, and cultural studies to explore and document cultural practices.

Grounded Theory

Grounded theory aims to develop theories grounded in the data itself. It involves systematic data collection and analysis to construct theories from the ground up.

  • Constant Comparison: Data is continually compared and analyzed during the research process.
  • Inductive Reasoning: Theories emerge from the data rather than being imposed on it.
  • Iterative Process: The research design evolves as the study progresses.

Applications: Commonly applied in sociology, nursing, and management studies to generate theories from empirical data.

Research design is the structural framework that outlines the systematic process and plan for conducting a study. It serves as the blueprint, guiding researchers on how to collect, analyze, and interpret data.

Exploratory, Descriptive, And Explanatory Designs

Exploratory design.

Exploratory research design is employed when a researcher aims to explore a relatively unknown subject or gain insights into a complex phenomenon.

  • Flexibility: Allows for flexibility in data collection and analysis.
  • Open-Ended Questions: Uses open-ended questions to gather a broad range of information.
  • Preliminary Nature: Often used in the initial stages of research to formulate hypotheses.

Applications: Valuable in the early stages of investigation, especially when the researcher seeks a deeper understanding of a subject before formalizing research questions.

Descriptive Design

Descriptive research design focuses on portraying an accurate profile of a situation, group, or phenomenon.

  • Structured Data Collection: Involves systematic and structured data collection methods.
  • Objective Presentation: Aims to provide an unbiased and factual account of the subject.
  • Quantitative or Qualitative Data: Can incorporate both types of data, depending on the research objectives.

Applications: Widely used in social sciences, marketing, and educational research to provide detailed and objective descriptions.

Explanatory Design

Explanatory research design aims to identify the causes and effects of a phenomenon, explaining the ‘why’ and ‘how’ behind observed relationships.

  • Causal Relationships: Seeks to establish causal relationships between variables.
  • Controlled Variables : Often involves controlling certain variables to isolate causal factors.
  • Quantitative Analysis: Primarily relies on quantitative data analysis techniques.

Applications: Commonly employed in scientific studies and social sciences to delve into the underlying reasons behind observed patterns.

Cross-Sectional Vs. Longitudinal Designs

Cross-sectional design.

Cross-sectional designs collect data from participants at a single point in time.

  • Snapshot View: Provides a snapshot of a population at a specific moment.
  • Efficiency: More efficient in terms of time and resources.
  • Limited Temporal Insights: Offers limited insights into changes over time.

Applications: Suitable for studying characteristics or behaviours that are stable or not expected to change rapidly.

Longitudinal Design

Longitudinal designs involve the collection of data from the same participants over an extended period.

  • Temporal Sequence: Allows for the examination of changes over time.
  • Causality Assessment: Facilitates the assessment of cause-and-effect relationships.
  • Resource-Intensive: Requires more time and resources compared to cross-sectional designs.

Applications: Ideal for studying developmental processes, trends, or the impact of interventions over time.

Experimental Vs Non-experimental Designs

Experimental design.

Experimental designs involve manipulating variables under controlled conditions to observe the effect on another variable.

  • Causality Inference: Enables the inference of cause-and-effect relationships.
  • Quantitative Data: Primarily involves the collection and analysis of numerical data.

Applications: Commonly used in scientific studies, psychology, and medical research to establish causal relationships.

Non-Experimental Design

Non-experimental designs observe and describe phenomena without manipulating variables.

  • Natural Settings: Data is often collected in natural settings without intervention.
  • Descriptive or Correlational: Focuses on describing relationships or correlations between variables.
  • Quantitative or Qualitative Data: This can involve either type of data, depending on the research approach.

Applications: Suitable for studying complex phenomena in real-world settings where manipulation may not be ethical or feasible.

Effective data collection is fundamental to the success of any research endeavour. 

Designing Effective Surveys

Objective Design:

  • Clearly define the research objectives to guide the survey design.
  • Craft questions that align with the study’s goals and avoid ambiguity.

Structured Format:

  • Use a structured format with standardized questions for consistency.
  • Include a mix of closed-ended and open-ended questions for detailed insights.

Pilot Testing:

  • Conduct pilot tests to identify and rectify potential issues with survey design.
  • Ensure clarity, relevance, and appropriateness of questions.

Sampling Strategy:

  • Develop a robust sampling strategy to ensure a representative participant group.
  • Consider random sampling or stratified sampling based on the research goals.

Conducting Interviews

Establishing Rapport:

  • Build rapport with participants to create a comfortable and open environment.
  • Clearly communicate the purpose of the interview and the value of participants’ input.

Open-Ended Questions:

  • Frame open-ended questions to encourage detailed responses.
  • Allow participants to express their thoughts and perspectives freely.

Active Listening:

  • Practice active listening to understand areas and gather rich data.
  • Avoid interrupting and maintain a non-judgmental stance during the interview.

Ethical Considerations:

  • Obtain informed consent and assure participants of confidentiality.
  • Be transparent about the study’s purpose and potential implications.

Observation

1. participant observation.

Immersive Participation:

  • Actively immerse yourself in the setting or group being observed.
  • Develop a deep understanding of behaviours, interactions, and context.

Field Notes:

  • Maintain detailed and reflective field notes during observations.
  • Document observed patterns, unexpected events, and participant reactions.

Ethical Awareness:

  • Be conscious of ethical considerations, ensuring respect for participants.
  • Balance the role of observer and participant to minimize bias.

2. Non-participant Observation

Objective Observation:

  • Maintain a more detached and objective stance during non-participant observation.
  • Focus on recording behaviours, events, and patterns without direct involvement.

Data Reliability:

  • Enhance the reliability of data by reducing observer bias.
  • Develop clear observation protocols and guidelines.

Contextual Understanding:

  • Strive for a thorough understanding of the observed context.
  • Consider combining non-participant observation with other methods for triangulation.

Archival Research

1. using existing data.

Identifying Relevant Archives:

  • Locate and access archives relevant to the research topic.
  • Collaborate with institutions or repositories holding valuable data.

Data Verification:

  • Verify the accuracy and reliability of archived data.
  • Cross-reference with other sources to ensure data integrity.

Ethical Use:

  • Adhere to ethical guidelines when using existing data.
  • Respect copyright and intellectual property rights.

2. Challenges and Considerations

Incomplete or Inaccurate Archives:

  • Address the possibility of incomplete or inaccurate archival records.
  • Acknowledge limitations and uncertainties in the data.

Temporal Bias:

  • Recognize potential temporal biases in archived data.
  • Consider the historical context and changes that may impact interpretation.

Access Limitations:

  • Address potential limitations in accessing certain archives.
  • Seek alternative sources or collaborate with institutions to overcome barriers.

Common Challenges in Research Methodology

Conducting research is a complex and dynamic process, often accompanied by a myriad of challenges. Addressing these challenges is crucial to ensure the reliability and validity of research findings.

Sampling Issues

Sampling bias:.

  • The presence of sampling bias can lead to an unrepresentative sample, affecting the generalizability of findings.
  • Employ random sampling methods and ensure the inclusion of diverse participants to reduce bias.

Sample Size Determination:

  • Determining an appropriate sample size is a delicate balance. Too small a sample may lack statistical power, while an excessively large sample may strain resources.
  • Conduct a power analysis to determine the optimal sample size based on the research objectives and expected effect size.

Data Quality And Validity

Measurement error:.

  • Inaccuracies in measurement tools or data collection methods can introduce measurement errors, impacting the validity of results.
  • Pilot test instruments, calibrate equipment, and use standardized measures to enhance the reliability of data.

Construct Validity:

  • Ensuring that the chosen measures accurately capture the intended constructs is a persistent challenge.
  • Use established measurement instruments and employ multiple measures to assess the same construct for triangulation.

Time And Resource Constraints

Timeline pressures:.

  • Limited timeframes can compromise the depth and thoroughness of the research process.
  • Develop a realistic timeline, prioritize tasks, and communicate expectations with stakeholders to manage time constraints effectively.

Resource Availability:

  • Inadequate resources, whether financial or human, can impede the execution of research activities.
  • Seek external funding, collaborate with other researchers, and explore alternative methods that require fewer resources.

Managing Bias in Research

Selection bias:.

  • Selecting participants in a way that systematically skews the sample can introduce selection bias.
  • Employ randomization techniques, use stratified sampling, and transparently report participant recruitment methods.

Confirmation Bias:

  • Researchers may unintentionally favour information that confirms their preconceived beliefs or hypotheses.
  • Adopt a systematic and open-minded approach, use blinded study designs, and engage in peer review to mitigate confirmation bias.

Tips On How To Write A Research Methodology

Conducting successful research relies not only on the application of sound methodologies but also on strategic planning and effective collaboration. Here are some tips to enhance the success of your research methodology:

Tip 1. Clear Research Objectives

Well-defined research objectives guide the entire research process. Clearly articulate the purpose of your study, outlining specific research questions or hypotheses.

Tip 2. Comprehensive Literature Review

A thorough literature review provides a foundation for understanding existing knowledge and identifying gaps. Invest time in reviewing relevant literature to inform your research design and methodology.

Tip 3. Detailed Research Plan

A detailed plan serves as a roadmap, ensuring all aspects of the research are systematically addressed. Develop a detailed research plan outlining timelines, milestones, and tasks.

Tip 4. Ethical Considerations

Ethical practices are fundamental to maintaining the integrity of research. Address ethical considerations early, obtain necessary approvals, and ensure participant rights are safeguarded.

Tip 5. Stay Updated On Methodologies

Research methodologies evolve, and staying updated is essential for employing the most effective techniques. Engage in continuous learning by attending workshops, conferences, and reading recent publications.

Tip 6. Adaptability In Methods

Unforeseen challenges may arise during research, necessitating adaptability in methods. Be flexible and willing to modify your approach when needed, ensuring the integrity of the study.

Tip 7. Iterative Approach

Research is often an iterative process, and refining methods based on ongoing findings enhance the study’s robustness. Regularly review and refine your research design and methods as the study progresses.

Frequently Asked Questions

What is the research methodology.

Research methodology is the systematic process of planning, executing, and evaluating scientific investigation. It encompasses the techniques, tools, and procedures used to collect, analyze, and interpret data, ensuring the reliability and validity of research findings.

What are the methodologies in research?

Research methodologies include qualitative and quantitative approaches. Qualitative methods involve in-depth exploration of non-numerical data, while quantitative methods use statistical analysis to examine numerical data. Mixed methods combine both approaches for a comprehensive understanding of research questions.

How to write research methodology?

To write a research methodology, clearly outline the study’s design, data collection, and analysis procedures. Specify research tools, participants, and sampling methods. Justify choices and discuss limitations. Ensure clarity, coherence, and alignment with research objectives for a robust methodology section.

How to write the methodology section of a research paper?

In the methodology section of a research paper, describe the study’s design, data collection, and analysis methods. Detail procedures, tools, participants, and sampling. Justify choices, address ethical considerations, and explain how the methodology aligns with research objectives, ensuring clarity and rigour.

What is mixed research methodology?

Mixed research methodology combines both qualitative and quantitative research approaches within a single study. This approach aims to enhance the details and depth of research findings by providing a more comprehensive understanding of the research problem or question.

You May Also Like

Academic integrity: a commitment to honesty and ethical conduct in learning. Upholding originality and proper citation are its cornerstones.

Craft a compelling scholarship motivation letter by showcasing your passion, achievements, and future goals concisely and impactfully.

The important field of management includes a variety of disciplines such as business operations, human resources, healthcare and more. As […]

Ready to place an order?

USEFUL LINKS

Learning resources.

DMCA.com Protection Status

COMPANY DETAILS

Research-Prospect-Writing-Service

  • How It Works

Still have questions? Leave a comment

Add Comment

Checklist: Dissertation Proposal

Enter your email id to get the downloadable right in your inbox!

Examples: Edited Papers

Need editing and proofreading services, research methodology guide: writing tips, types, & examples.

calender

  • Tags: Academic Research , Research

No dissertation or research paper is complete without the research methodology section. Since this is the chapter where you explain how you carried out your research, this is where all the meat is! Here’s where you clearly lay out the steps you have taken to test your hypothesis or research problem.

Through this blog, we’ll unravel the complexities and meaning of research methodology in academic writing , from its fundamental principles and ethics to the diverse types of research methodology in use today. Alongside offering research methodology examples, we aim to guide you on how to write research methodology, ensuring your research endeavors are both impactful and impeccably grounded!

Ensure your research methodology is foolproof. Learn more

Let’s first take a closer look at a simple research methodology definition:

Defining what is research methodology

Research methodology is the set of procedures and techniques used to collect, analyze, and interpret data to understand and solve a research problem. Methodology in research not only includes the design and methods but also the basic principles that guide the choice of specific methods.

Grasping the concept of methodology in research is essential for students and scholars, as it demonstrates the thorough and structured method used to explore a hypothesis or research question. Understanding the definition of methodology in research aids in identifying the methods used to collect data. Be it through any type of research method approach, ensuring adherence to the proper research paper format is crucial.

Now let’s explore some research methodology types:

Types of research methodology

1. qualitative research methodology.

Qualitative research methodology is aimed at understanding concepts, thoughts, or experiences. This approach is descriptive and is often utilized to gather in-depth insights into people’s attitudes, behaviors, or cultures. Qualitative research methodology involves methods like interviews, focus groups, and observation. The strength of this methodology lies in its ability to provide contextual richness.

2. Quantitative research methodology

Quantitative research methodology, on the other hand, is focused on quantifying the problem by generating numerical data or data that can be transformed into usable statistics. It uses measurable data to formulate facts and uncover patterns in research. Quantitative research methodology typically involves surveys, experiments, or statistical analysis. This methodology is appreciated for its ability to produce objective results that are generalizable to a larger population.

3. Mixed-Methods research methodology

Mixed-methods research combines both qualitative and quantitative research methodologies to provide a more comprehensive understanding of the research problem. This approach leverages the strengths of both methodologies to provide a deeper insight into the research question of a research paper .

Research methodology vs. research methods

The research methodology or design is the overall strategy and rationale that you used to carry out the research. Whereas, research methods are the specific tools and processes you use to gather and understand the data you need to test your hypothesis.

Research methodology examples and application

To further understand research methodology, let’s explore some examples of research methodology:

a. Qualitative research methodology example: A study exploring the impact of author branding on author popularity might utilize in-depth interviews to gather personal experiences and perspectives.

b. Quantitative research methodology example: A research project investigating the effects of a book promotion technique on book sales could employ a statistical analysis of profit margins and sales before and after the implementation of the method.

c. Mixed-Methods research methodology example: A study examining the relationship between social media use and academic performance might combine both qualitative and quantitative approaches. It could include surveys to quantitatively assess the frequency of social media usage and its correlation with grades, alongside focus groups or interviews to qualitatively explore students’ perceptions and experiences regarding how social media affects their study habits and academic engagement.

These examples highlight the meaning of methodology in research and how it guides the research process, from data collection to analysis, ensuring the study’s objectives are met efficiently.

Importance of methodology in research papers

When it comes to writing your study, the methodology in research papers or a dissertation plays a pivotal role. A well-crafted methodology section of a research paper or thesis not only enhances the credibility of your research but also provides a roadmap for others to replicate or build upon your work.

How to structure the research methods chapter

Wondering how to write the research methodology section? Follow these steps to create a strong methods chapter:

Step 1: Explain your research methodology

At the start of a research paper , you would have provided the background of your research and stated your hypothesis or research problem. In this section, you will elaborate on your research strategy. 

Begin by restating your research question and proceed to explain what type of research you opted for to test it. Depending on your research, here are some questions you can consider: 

a. Did you use qualitative or quantitative data to test the hypothesis? 

b. Did you perform an experiment where you collected data or are you writing a dissertation that is descriptive/theoretical without data collection? 

c. Did you use primary data that you collected or analyze secondary research data or existing data as part of your study? 

These questions will help you establish the rationale for your study on a broader level, which you will follow by elaborating on the specific methods you used to collect and understand your data. 

Step 2: Explain the methods you used to test your hypothesis 

Now that you have told your reader what type of research you’ve undertaken for the dissertation, it’s time to dig into specifics. State what specific methods you used and explain the conditions and variables involved. Explain what the theoretical framework behind the method was, what samples you used for testing it, and what tools and materials you used to collect the data. 

Step 3: Explain how you analyzed the results

Once you have explained the data collection process, explain how you analyzed and studied the data. Here, your focus is simply to explain the methods of analysis rather than the results of the study. 

Here are some questions you can answer at this stage: 

a. What tools or software did you use to analyze your results? 

b. What parameters or variables did you consider while understanding and studying the data you’ve collected? 

c. Was your analysis based on a theoretical framework? 

Your mode of analysis will change depending on whether you used a quantitative or qualitative research methodology in your study. If you’re working within the hard sciences or physical sciences, you are likely to use a quantitative research methodology (relying on numbers and hard data). If you’re doing a qualitative study, in the social sciences or humanities, your analysis may rely on understanding language and socio-political contexts around your topic. This is why it’s important to establish what kind of study you’re undertaking at the onset. 

Step 4: Defend your choice of methodology 

Now that you have gone through your research process in detail, you’ll also have to make a case for it. Justify your choice of methodology and methods, explaining why it is the best choice for your research question. This is especially important if you have chosen an unconventional approach or you’ve simply chosen to study an existing research problem from a different perspective. Compare it with other methodologies, especially ones attempted by previous researchers, and discuss what contributions using your methodology makes.  

Step 5: Discuss the obstacles you encountered and how you overcame them

No matter how thorough a methodology is, it doesn’t come without its hurdles. This is a natural part of scientific research that is important to document so that your peers and future researchers are aware of it. Writing in a research paper about this aspect of your research process also tells your evaluator that you have actively worked to overcome the pitfalls that came your way and you have refined the research process. 

Tips to write an effective methodology chapter

1. Remember who you are writing for. Keeping sight of the reader/evaluator will help you know what to elaborate on and what information they are already likely to have. You’re condensing months’ work of research in just a few pages, so you should omit basic definitions and information about general phenomena people already know.

2. Do not give an overly elaborate explanation of every single condition in your study. 

3. Skip details and findings irrelevant to the results.

4. Cite references that back your claim and choice of methodology. 

5. Consistently emphasize the relationship between your research question and the methodology you adopted to study it. 

To sum it up, what is methodology in research? It’s the blueprint of your research, essential for ensuring that your study is systematic, rigorous, and credible. Whether your focus is on qualitative research methodology, quantitative research methodology, or a combination of both, understanding and clearly defining your methodology is key to the success of your research.

Once you write the research methodology and complete writing the entire research paper, the next step is to edit your paper. As experts in research paper editing and proofreading services , we’d love to help you perfect your paper!

Here are some other articles that you might find useful: 

  • Essential Research Tips for Essay Writing
  • How to Write a Lab Report: Examples from Academic Editors
  • The Essential Types of Editing Every Writer Needs to Know
  • Editing and Proofreading Academic Papers: A Short Guide
  • The Top 10 Editing and Proofreading Services of 2023

Frequently Asked Questions

What does research methodology mean, what types of research methodologies are there, what is qualitative research methodology, how to determine sample size in research methodology, what is action research methodology.

Found this article helpful?

One comment on “ Research Methodology Guide: Writing Tips, Types, & Examples ”

This is very simplified and direct. Very helpful to understand the research methodology section of a dissertation

Leave a Comment: Cancel reply

Your email address will not be published.

Your vs. You’re: When to Use Your and You’re

Your organization needs a technical editor: here’s why, your guide to the best ebook readers in 2024, writing for the web: 7 expert tips for web content writing.

Subscribe to our Newsletter

Get carefully curated resources about writing, editing, and publishing in the comfort of your inbox.

How to Copyright Your Book?

If you’ve thought about copyrighting your book, you’re on the right path.

© 2024 All rights reserved

  • Terms of service
  • Privacy policy
  • Self Publishing Guide
  • Pre-Publishing Steps
  • Fiction Writing Tips
  • Traditional Publishing
  • Additional Resources
  • Dissertation Writing Guide
  • Essay Writing Guide
  • Academic Writing and Publishing
  • Citation and Referencing
  • Partner with us
  • Annual report
  • Website content
  • Marketing material
  • Job Applicant
  • Cover letter
  • Resource Center
  • Case studies

Writing up a Research Report

  • First Online: 04 January 2024

Cite this chapter

importance of research report in research methodology

  • Stefan Hunziker 3 &
  • Michael Blankenagel 3  

738 Accesses

A research report is one big argument about how and why you came up with your conclusions. To make it a convincing argument, a typical guiding structure has developed. In the different chapters, there are distinct issues that need to be addressed to explain to the reader why your conclusions are valid. The governing principle for writing the report is full disclosure: to explain everything and ensure replicability by another researcher.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save.

  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Barros, L. O. (2016). The only academic phrasebook you’ll ever need . Createspace Independent Publishing Platform.

Google Scholar  

Field, A. (2016). An adventure in statistics. The reality enigma . SAGE.

Field, A. (2020). Discovering statistics using IBM SPSS statistics (5th ed.). SAGE.

Früh, M., Keimer, I., & Blankenagel, M. (2019). The impact of Balanced Scorecard excellence on shareholder returns. IFZ Working Paper No. 0003/2019. https://zenodo.org/record/2571603#.YMDUafkzZaQ . Accessed: 9 June 2021.

Pearl, J., & Mackenzie, D. (2018). The book of why: The new science of cause and effect. Basic Books.

Yin, R. K. (2013). Case study research: Design and methods (5th ed.). SAGE.

Download references

Author information

Authors and affiliations.

Wirtschaft/IFZ, Campus Zug-Rotkreuz, Hochschule Luzern, Zug-Rotkreuz, Zug, Switzerland

Stefan Hunziker & Michael Blankenagel

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Stefan Hunziker .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Fachmedien Wiesbaden GmbH, part of Springer Nature

About this chapter

Hunziker, S., Blankenagel, M. (2024). Writing up a Research Report. In: Research Design in Business and Management. Springer Gabler, Wiesbaden. https://doi.org/10.1007/978-3-658-42739-9_4

Download citation

DOI : https://doi.org/10.1007/978-3-658-42739-9_4

Published : 04 January 2024

Publisher Name : Springer Gabler, Wiesbaden

Print ISBN : 978-3-658-42738-2

Online ISBN : 978-3-658-42739-9

eBook Packages : Business and Management Business and Management (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

importance of research report in research methodology

What Is Research Methodology?

Private Coaching

I f you’re new to formal academic research, it’s quite likely that you’re feeling a little overwhelmed by all the technical lingo that gets thrown around. And who could blame you – “research methodology”, “research methods”, “sampling strategies”… it all seems never-ending!

In this post, we’ll demystify the landscape with plain-language explanations and loads of examples (including easy-to-follow videos), so that you can approach your dissertation, thesis or research project with confidence. Let’s get started.

Research Methodology 101

  • What exactly research methodology means
  • What qualitative , quantitative and mixed methods are
  • What sampling strategy is
  • What data collection methods are
  • What data analysis methods are
  • How to choose your research methodology
  • Example of a research methodology

Free Webinar: Research Methodology 101

What is research methodology?

Research methodology simply refers to the practical “how” of a research study. More specifically, it’s about how  a researcher  systematically designs a study  to ensure valid and reliable results that address the research aims, objectives and research questions . Specifically, how the researcher went about deciding:

  • What type of data to collect (e.g., qualitative or quantitative data )
  • Who  to collect it from (i.e., the sampling strategy )
  • How to  collect  it (i.e., the data collection method )
  • How to  analyse  it (i.e., the data analysis methods )

Within any formal piece of academic research (be it a dissertation, thesis or journal article), you’ll find a research methodology chapter or section which covers the aspects mentioned above. Importantly, a good methodology chapter explains not just   what methodological choices were made, but also explains  why they were made. In other words, the methodology chapter should justify  the design choices, by showing that the chosen methods and techniques are the best fit for the research aims, objectives and research questions. 

So, it’s the same as research design?

Not quite. As we mentioned, research methodology refers to the collection of practical decisions regarding what data you’ll collect, from who, how you’ll collect it and how you’ll analyse it. Research design, on the other hand, is more about the overall strategy you’ll adopt in your study. For example, whether you’ll use an experimental design in which you manipulate one variable while controlling others. You can learn more about research design and the various design types here .

Need a helping hand?

importance of research report in research methodology

What are qualitative, quantitative and mixed-methods?

Qualitative, quantitative and mixed-methods are different types of methodological approaches, distinguished by their focus on words , numbers or both . This is a bit of an oversimplification, but its a good starting point for understanding.

Let’s take a closer look.

Qualitative research refers to research which focuses on collecting and analysing words (written or spoken) and textual or visual data, whereas quantitative research focuses on measurement and testing using numerical data . Qualitative analysis can also focus on other “softer” data points, such as body language or visual elements.

It’s quite common for a qualitative methodology to be used when the research aims and research questions are exploratory  in nature. For example, a qualitative methodology might be used to understand peoples’ perceptions about an event that took place, or a political candidate running for president. 

Contrasted to this, a quantitative methodology is typically used when the research aims and research questions are confirmatory  in nature. For example, a quantitative methodology might be used to measure the relationship between two variables (e.g. personality type and likelihood to commit a crime) or to test a set of hypotheses .

As you’ve probably guessed, the mixed-method methodology attempts to combine the best of both qualitative and quantitative methodologies to integrate perspectives and create a rich picture. If you’d like to learn more about these three methodological approaches, be sure to watch our explainer video below.

What is sampling strategy?

Simply put, sampling is about deciding who (or where) you’re going to collect your data from . Why does this matter? Well, generally it’s not possible to collect data from every single person in your group of interest (this is called the “population”), so you’ll need to engage a smaller portion of that group that’s accessible and manageable (this is called the “sample”).

How you go about selecting the sample (i.e., your sampling strategy) will have a major impact on your study.  There are many different sampling methods  you can choose from, but the two overarching categories are probability   sampling and  non-probability   sampling .

Probability sampling  involves using a completely random sample from the group of people you’re interested in. This is comparable to throwing the names all potential participants into a hat, shaking it up, and picking out the “winners”. By using a completely random sample, you’ll minimise the risk of selection bias and the results of your study will be more generalisable  to the entire population. 

Non-probability sampling , on the other hand,  doesn’t use a random sample . For example, it might involve using a convenience sample, which means you’d only interview or survey people that you have access to (perhaps your friends, family or work colleagues), rather than a truly random sample. With non-probability sampling, the results are typically not generalisable .

To learn more about sampling methods, be sure to check out the video below.

What are data collection methods?

As the name suggests, data collection methods simply refers to the way in which you go about collecting the data for your study. Some of the most common data collection methods include:

  • Interviews (which can be unstructured, semi-structured or structured)
  • Focus groups and group interviews
  • Surveys (online or physical surveys)
  • Observations (watching and recording activities)
  • Biophysical measurements (e.g., blood pressure, heart rate, etc.)
  • Documents and records (e.g., financial reports, court records, etc.)

The choice of which data collection method to use depends on your overall research aims and research questions , as well as practicalities and resource constraints. For example, if your research is exploratory in nature, qualitative methods such as interviews and focus groups would likely be a good fit. Conversely, if your research aims to measure specific variables or test hypotheses, large-scale surveys that produce large volumes of numerical data would likely be a better fit.

What are data analysis methods?

Data analysis methods refer to the methods and techniques that you’ll use to make sense of your data. These can be grouped according to whether the research is qualitative  (words-based) or quantitative (numbers-based).

Popular data analysis methods in qualitative research include:

  • Qualitative content analysis
  • Thematic analysis
  • Discourse analysis
  • Narrative analysis
  • Interpretative phenomenological analysis (IPA)
  • Visual analysis (of photographs, videos, art, etc.)

Qualitative data analysis all begins with data coding , after which an analysis method is applied. In some cases, more than one analysis method is used, depending on the research aims and research questions . In the video below, we explore some  common qualitative analysis methods, along with practical examples.  

  • Descriptive statistics (e.g. means, medians, modes )
  • Inferential statistics (e.g. correlation, regression, structural equation modelling)

How do I choose a research methodology?

As you’ve probably picked up by now, your research aims and objectives have a major influence on the research methodology . So, the starting point for developing your research methodology is to take a step back and look at the big picture of your research, before you make methodology decisions. The first question you need to ask yourself is whether your research is exploratory or confirmatory in nature.

If your research aims and objectives are primarily exploratory in nature, your research will likely be qualitative and therefore you might consider qualitative data collection methods (e.g. interviews) and analysis methods (e.g. qualitative content analysis). 

Conversely, if your research aims and objective are looking to measure or test something (i.e. they’re confirmatory), then your research will quite likely be quantitative in nature, and you might consider quantitative data collection methods (e.g. surveys) and analyses (e.g. statistical analysis).

Designing your research and working out your methodology is a large topic, which we cover extensively on the blog . For now, however, the key takeaway is that you should always start with your research aims, objectives and research questions (the golden thread). Every methodological choice you make needs align with those three components. 

Example of a research methodology chapter

In the video below, we provide a detailed walkthrough of a research methodology from an actual dissertation, as well as an overview of our free methodology template .

Research Methodology Bootcamp

Learn More About Methodology

Triangulation: The Ultimate Credibility Enhancer

Triangulation: The Ultimate Credibility Enhancer

Triangulation is one of the best ways to enhance the credibility of your research. Learn about the different options here.

Research Limitations 101: What You Need To Know

Research Limitations 101: What You Need To Know

Learn everything you need to know about research limitations (AKA limitations of the study). Includes practical examples from real studies.

In Vivo Coding 101: Full Explainer With Examples

In Vivo Coding 101: Full Explainer With Examples

Learn about in vivo coding, a popular qualitative coding technique ideal for studies where the nuances of language are central to the aims.

Process Coding 101: Full Explainer With Examples

Process Coding 101: Full Explainer With Examples

Learn about process coding, a popular qualitative coding technique ideal for studies exploring processes, actions and changes over time.

Qualitative Coding 101: Inductive, Deductive & Hybrid Coding

Qualitative Coding 101: Inductive, Deductive & Hybrid Coding

Inductive, Deductive & Abductive Coding Qualitative Coding Approaches Explained...

📄 FREE TEMPLATES

Research Topic Ideation

Proposal Writing

Literature Review

Methodology & Analysis

Academic Writing

Referencing & Citing

Apps, Tools & Tricks

The Grad Coach Podcast

199 Comments

Leo Balanlay

Thank you for this simple yet comprehensive and easy to digest presentation. God Bless!

Derek Jansen

You’re most welcome, Leo. Best of luck with your research!

Asaf

I found it very useful. many thanks

Solomon F. Joel

This is really directional. A make-easy research knowledge.

Upendo Mmbaga

Thank you for this, I think will help my research proposal

vicky

Thanks for good interpretation,well understood.

Alhaji Alie Kanu

Good morning sorry I want to the search topic

Baraka Gombela

Thank u more

Boyd

Thank you, your explanation is simple and very helpful.

Suleiman Abubakar

Very educative a.nd exciting platform. A bigger thank you and I’ll like to always be with you

Daniel Mondela

That’s the best analysis

Okwuchukwu

So simple yet so insightful. Thank you.

Wendy Lushaba

This really easy to read as it is self-explanatory. Very much appreciated…

Lilian

Thanks for this. It’s so helpful and explicit. For those elements highlighted in orange, they were good sources of referrals for concepts I didn’t understand. A million thanks for this.

Tabe Solomon Matebesi

Good morning, I have been reading your research lessons through out a period of times. They are important, impressive and clear. Want to subscribe and be and be active with you.

Hafiz Tahir

Thankyou So much Sir Derek…

Good morning thanks so much for the on line lectures am a student of university of Makeni.select a research topic and deliberate on it so that we’ll continue to understand more.sorry that’s a suggestion.

James Olukoya

Beautiful presentation. I love it.

ATUL KUMAR

please provide a research mehodology example for zoology

Ogar , Praise

It’s very educative and well explained

Joseph Chan

Thanks for the concise and informative data.

Goja Terhemba John

This is really good for students to be safe and well understand that research is all about

Prakash thapa

Thank you so much Derek sir🖤🙏🤗

Abraham

Very simple and reliable

Chizor Adisa

This is really helpful. Thanks alot. God bless you.

Danushika

very useful, Thank you very much..

nakato justine

thanks a lot its really useful

karolina

in a nutshell..thank you!

Bitrus

Thanks for updating my understanding on this aspect of my Thesis writing.

VEDASTO DATIVA MATUNDA

thank you so much my through this video am competently going to do a good job my thesis

Jimmy

Thanks a lot. Very simple to understand. I appreciate 🙏

Mfumukazi

Very simple but yet insightful Thank you

Adegboyega ADaeBAYO

This has been an eye opening experience. Thank you grad coach team.

SHANTHi

Very useful message for research scholars

Teijili

Really very helpful thank you

sandokhan

yes you are right and i’m left

MAHAMUDUL HASSAN

Research methodology with a simplest way i have never seen before this article.

wogayehu tuji

wow thank u so much

Good morning thanks so much for the on line lectures am a student of university of Makeni.select a research topic and deliberate on is so that we will continue to understand more.sorry that’s a suggestion.

Gebregergish

Very precise and informative.

Javangwe Nyeketa

Thanks for simplifying these terms for us, really appreciate it.

Mary Benard Mwanganya

Thanks this has really helped me. It is very easy to understand.

mandla

I found the notes and the presentation assisting and opening my understanding on research methodology

Godfrey Martin Assenga

Good presentation

Nhubu Tawanda

Im so glad you clarified my misconceptions. Im now ready to fry my onions. Thank you so much. God bless

Odirile

Thank you a lot.

prathap

thanks for the easy way of learning and desirable presentation.

Ajala Tajudeen

Thanks a lot. I am inspired

Visor Likali

Well written

Pondris Patrick

I am writing a APA Format paper . I using questionnaire with 120 STDs teacher for my participant. Can you write me mthology for this research. Send it through email sent. Just need a sample as an example please. My topic is ” impacts of overcrowding on students learning

Thanks for your comment.

We can’t write your methodology for you. If you’re looking for samples, you should be able to find some sample methodologies on Google. Alternatively, you can download some previous dissertations from a dissertation directory and have a look at the methodology chapters therein.

All the best with your research.

Anon

Thank you so much for this!! God Bless

Keke

Thank you. Explicit explanation

Sophy

Thank you, Derek and Kerryn, for making this simple to understand. I’m currently at the inception stage of my research.

Luyanda

Thnks a lot , this was very usefull on my assignment

Beulah Emmanuel

excellent explanation

Gino Raz

I’m currently working on my master’s thesis, thanks for this! I’m certain that I will use Qualitative methodology.

Abigail

Thanks a lot for this concise piece, it was quite relieving and helpful. God bless you BIG…

Yonas Tesheme

I am currently doing my dissertation proposal and I am sure that I will do quantitative research. Thank you very much it was extremely helpful.

zahid t ahmad

Very interesting and informative yet I would like to know about examples of Research Questions as well, if possible.

Maisnam loyalakla

I’m about to submit a research presentation, I have come to understand from your simplification on understanding research methodology. My research will be mixed methodology, qualitative as well as quantitative. So aim and objective of mixed method would be both exploratory and confirmatory. Thanks you very much for your guidance.

Mila Milano

OMG thanks for that, you’re a life saver. You covered all the points I needed. Thank you so much ❤️ ❤️ ❤️

Christabel

Thank you immensely for this simple, easy to comprehend explanation of data collection methods. I have been stuck here for months 😩. Glad I found your piece. Super insightful.

Lika

I’m going to write synopsis which will be quantitative research method and I don’t know how to frame my topic, can I kindly get some ideas..

Arlene

Thanks for this, I was really struggling.

This was really informative I was struggling but this helped me.

Modie Maria Neswiswi

Thanks a lot for this information, simple and straightforward. I’m a last year student from the University of South Africa UNISA South Africa.

Mursel Amin

its very much informative and understandable. I have enlightened.

Mustapha Abubakar

An interesting nice exploration of a topic.

Sarah

Thank you. Accurate and simple🥰

Sikandar Ali Shah

This article was really helpful, it helped me understanding the basic concepts of the topic Research Methodology. The examples were very clear, and easy to understand. I would like to visit this website again. Thank you so much for such a great explanation of the subject.

Debbie

Thanks dude

Deborah

Thank you Doctor Derek for this wonderful piece, please help to provide your details for reference purpose. God bless.

Michael

Many compliments to you

Dana

Great work , thank you very much for the simple explanation

Aryan

Thank you. I had to give a presentation on this topic. I have looked everywhere on the internet but this is the best and simple explanation.

omodara beatrice

thank you, its very informative.

WALLACE

Well explained. Now I know my research methodology will be qualitative and exploratory. Thank you so much, keep up the good work

GEORGE REUBEN MSHEGAME

Well explained, thank you very much.

Ainembabazi Rose

This is good explanation, I have understood the different methods of research. Thanks a lot.

Kamran Saeed

Great work…very well explanation

Hyacinth Chebe Ukwuani

Thanks Derek. Kerryn was just fantastic!

Great to hear that, Hyacinth. Best of luck with your research!

Matobela Joel Marabi

Its a good templates very attractive and important to PhD students and lectuter

Thanks for the feedback, Matobela. Good luck with your research methodology.

Elie

Thank you. This is really helpful.

You’re very welcome, Elie. Good luck with your research methodology.

Sakina Dalal

Well explained thanks

Edward

This is a very helpful site especially for young researchers at college. It provides sufficient information to guide students and equip them with the necessary foundation to ask any other questions aimed at deepening their understanding.

Thanks for the kind words, Edward. Good luck with your research!

Ngwisa Marie-claire NJOTU

Thank you. I have learned a lot.

Great to hear that, Ngwisa. Good luck with your research methodology!

Claudine

Thank you for keeping your presentation simples and short and covering key information for research methodology. My key takeaway: Start with defining your research objective the other will depend on the aims of your research question.

Zanele

My name is Zanele I would like to be assisted with my research , and the topic is shortage of nursing staff globally want are the causes , effects on health, patients and community and also globally

Oluwafemi Taiwo

Thanks for making it simple and clear. It greatly helped in understanding research methodology. Regards.

Francis

This is well simplified and straight to the point

Gabriel mugangavari

Thank you Dr

Dina Haj Ibrahim

I was given an assignment to research 2 publications and describe their research methodology? I don’t know how to start this task can someone help me?

Sure. You’re welcome to book an initial consultation with one of our Research Coaches to discuss how we can assist – https://gradcoach.com/book/new/ .

BENSON ROSEMARY

Thanks a lot I am relieved of a heavy burden.keep up with the good work

Ngaka Mokoena

I’m very much grateful Dr Derek. I’m planning to pursue one of the careers that really needs one to be very much eager to know. There’s a lot of research to do and everything, but since I’ve gotten this information I will use it to the best of my potential.

Pritam Pal

Thank you so much, words are not enough to explain how helpful this session has been for me!

faith

Thanks this has thought me alot.

kenechukwu ambrose

Very concise and helpful. Thanks a lot

Eunice Shatila Sinyemu 32070

Thank Derek. This is very helpful. Your step by step explanation has made it easier for me to understand different concepts. Now i can get on with my research.

Michelle

I wish i had come across this sooner. So simple but yet insightful

yugine the

really nice explanation thank you so much

Goodness

I’m so grateful finding this site, it’s really helpful…….every term well explained and provide accurate understanding especially to student going into an in-depth research for the very first time, even though my lecturer already explained this topic to the class, I think I got the clear and efficient explanation here, much thanks to the author.

lavenda

It is very helpful material

Lubabalo Ntshebe

I would like to be assisted with my research topic : Literature Review and research methodologies. My topic is : what is the relationship between unemployment and economic growth?

Buddhi

Its really nice and good for us.

Ekokobe Aloysius

THANKS SO MUCH FOR EXPLANATION, ITS VERY CLEAR TO ME WHAT I WILL BE DOING FROM NOW .GREAT READS.

Asanka

Short but sweet.Thank you

Shishir Pokharel

Informative article. Thanks for your detailed information.

Badr Alharbi

I’m currently working on my Ph.D. thesis. Thanks a lot, Derek and Kerryn, Well-organized sequences, facilitate the readers’ following.

Tejal

great article for someone who does not have any background can even understand

Hasan Chowdhury

I am a bit confused about research design and methodology. Are they the same? If not, what are the differences and how are they related?

Thanks in advance.

Ndileka Myoli

concise and informative.

Sureka Batagoda

Thank you very much

More Smith

How can we site this article is Harvard style?

Anne

Very well written piece that afforded better understanding of the concept. Thank you!

Denis Eken Lomoro

Am a new researcher trying to learn how best to write a research proposal. I find your article spot on and want to download the free template but finding difficulties. Can u kindly send it to my email, the free download entitled, “Free Download: Research Proposal Template (with Examples)”.

fatima sani

Thank too much

Khamis

Thank you very much for your comprehensive explanation about research methodology so I like to thank you again for giving us such great things.

Aqsa Iftijhar

Good very well explained.Thanks for sharing it.

Krishna Dhakal

Thank u sir, it is really a good guideline.

Vimbainashe

so helpful thank you very much.

Joelma M Monteiro

Thanks for the video it was very explanatory and detailed, easy to comprehend and follow up. please, keep it up the good work

AVINASH KUMAR NIRALA

It was very helpful, a well-written document with precise information.

orebotswe morokane

how do i reference this?

Roy

MLA Jansen, Derek, and Kerryn Warren. “What (Exactly) Is Research Methodology?” Grad Coach, June 2021, gradcoach.com/what-is-research-methodology/.

APA Jansen, D., & Warren, K. (2021, June). What (Exactly) Is Research Methodology? Grad Coach. https://gradcoach.com/what-is-research-methodology/

sheryl

Your explanation is easily understood. Thank you

Dr Christie

Very help article. Now I can go my methodology chapter in my thesis with ease

Alice W. Mbuthia

I feel guided ,Thank you

Joseph B. Smith

This simplification is very helpful. It is simple but very educative, thanks ever so much

Dr. Ukpai Ukpai Eni

The write up is informative and educative. It is an academic intellectual representation that every good researcher can find useful. Thanks

chimbini Joseph

Wow, this is wonderful long live.

Tahir

Nice initiative

Thembsie

thank you the video was helpful to me.

JesusMalick

Thank you very much for your simple and clear explanations I’m really satisfied by the way you did it By now, I think I can realize a very good article by following your fastidious indications May God bless you

G.Horizon

Thanks very much, it was very concise and informational for a beginner like me to gain an insight into what i am about to undertake. I really appreciate.

Adv Asad Ali

very informative sir, it is amazing to understand the meaning of question hidden behind that, and simple language is used other than legislature to understand easily. stay happy.

Jonas Tan

This one is really amazing. All content in your youtube channel is a very helpful guide for doing research. Thanks, GradCoach.

mahmoud ali

research methodologies

Lucas Sinyangwe

Please send me more information concerning dissertation research.

Amamten Jr.

Nice piece of knowledge shared….. #Thump_UP

Hajara Salihu

This is amazing, it has said it all. Thanks to Gradcoach

Gerald Andrew Babu

This is wonderful,very elaborate and clear.I hope to reach out for your assistance in my research very soon.

Safaa

This is the answer I am searching about…

realy thanks a lot

Ahmed Saeed

Thank you very much for this awesome, to the point and inclusive article.

Soraya Kolli

Thank you very much I need validity and reliability explanation I have exams

KuzivaKwenda

Thank you for a well explained piece. This will help me going forward.

Emmanuel Chukwuma

Very simple and well detailed Many thanks

Zeeshan Ali Khan

This is so very simple yet so very effective and comprehensive. An Excellent piece of work.

Molly Wasonga

I wish I saw this earlier on! Great insights for a beginner(researcher) like me. Thanks a mil!

Blessings Chigodo

Thank you very much, for such a simplified, clear and practical step by step both for academic students and general research work. Holistic, effective to use and easy to read step by step. One can easily apply the steps in practical terms and produce a quality document/up-to standard

Thanks for simplifying these terms for us, really appreciated.

Joseph Kyereme

Thanks for a great work. well understood .

Julien

This was very helpful. It was simple but profound and very easy to understand. Thank you so much!

Kishimbo

Great and amazing research guidelines. Best site for learning research

ankita bhatt

hello sir/ma’am, i didn’t find yet that what type of research methodology i am using. because i am writing my report on CSR and collect all my data from websites and articles so which type of methodology i should write in dissertation report. please help me. i am from India.

memory

how does this really work?

princelow presley

perfect content, thanks a lot

George Nangpaak Duut

As a researcher, I commend you for the detailed and simplified information on the topic in question. I would like to remain in touch for the sharing of research ideas on other topics. Thank you

EPHRAIM MWANSA MULENGA

Impressive. Thank you, Grad Coach 😍

Thank you Grad Coach for this piece of information. I have at least learned about the different types of research methodologies.

Varinder singh Rana

Very useful content with easy way

Mbangu Jones Kashweeka

Thank you very much for the presentation. I am an MPH student with the Adventist University of Africa. I have successfully completed my theory and starting on my research this July. My topic is “Factors associated with Dental Caries in (one District) in Botswana. I need help on how to go about this quantitative research

Carolyn Russell

I am so grateful to run across something that was sooo helpful. I have been on my doctorate journey for quite some time. Your breakdown on methodology helped me to refresh my intent. Thank you.

Indabawa Musbahu

thanks so much for this good lecture. student from university of science and technology, Wudil. Kano Nigeria.

Limpho Mphutlane

It’s profound easy to understand I appreciate

Mustafa Salimi

Thanks a lot for sharing superb information in a detailed but concise manner. It was really helpful and helped a lot in getting into my own research methodology.

Rabilu yau

Comment * thanks very much

Ari M. Hussein

This was sooo helpful for me thank you so much i didn’t even know what i had to write thank you!

You’re most welcome 🙂

Varsha Patnaik

Simple and good. Very much helpful. Thank you so much.

STARNISLUS HAAMBOKOMA

This is very good work. I have benefited.

Dr Md Asraul Hoque

Thank you so much for sharing

Nkasa lizwi

This is powerful thank you so much guys

I am nkasa lizwi doing my research proposal on honors with the university of Walter Sisulu Komani I m on part 3 now can you assist me.my topic is: transitional challenges faced by educators in intermediate phase in the Alfred Nzo District.

Atonisah Jonathan

Appreciate the presentation. Very useful step-by-step guidelines to follow.

Bello Suleiman

I appreciate sir

Titilayo

wow! This is super insightful for me. Thank you!

Emerita Guzman

Indeed this material is very helpful! Kudos writers/authors.

TSEDEKE JOHN

I want to say thank you very much, I got a lot of info and knowledge. Be blessed.

Akanji wasiu

I want present a seminar paper on Optimisation of Deep learning-based models on vulnerability detection in digital transactions.

Need assistance

Clement Lokwar

Dear Sir, I want to be assisted on my research on Sanitation and Water management in emergencies areas.

Peter Sone Kome

I am deeply grateful for the knowledge gained. I will be getting in touch shortly as I want to be assisted in my ongoing research.

Nirmala

The information shared is informative, crisp and clear. Kudos Team! And thanks a lot!

Bipin pokhrel

hello i want to study

Kassahun

Hello!! Grad coach teams. I am extremely happy in your tutorial or consultation. i am really benefited all material and briefing. Thank you very much for your generous helps. Please keep it up. If you add in your briefing, references for further reading, it will be very nice.

Ezra

All I have to say is, thank u gyz.

Work

Good, l thanks

Artak Ghonyan

thank you, it is very useful

Trackbacks/Pingbacks

  • What Is A Literature Review (In A Dissertation Or Thesis) - Grad Coach - […] the literature review is to inform the choice of methodology for your own research. As we’ve discussed on the Grad Coach blog,…
  • Free Download: Research Proposal Template (With Examples) - Grad Coach - […] Research design (methodology) […]
  • Dissertation vs Thesis: What's the difference? - Grad Coach - […] and thesis writing on a daily basis – everything from how to find a good research topic to which…

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

Submit Comment

  • Print Friendly
  • Resources Home 🏠
  • Try SciSpace Copilot
  • Search research papers
  • Add Copilot Extension
  • Try AI Detector
  • Try Paraphraser
  • Try Citation Generator
  • April Papers
  • June Papers
  • July Papers

SciSpace Resources

Here's What You Need to Understand About Research Methodology

Deeptanshu D

Table of Contents

Research methodology involves a systematic and well-structured approach to conducting scholarly or scientific inquiries. Knowing the significance of research methodology and its different components is crucial as it serves as the basis for any study.

Typically, your research topic will start as a broad idea you want to investigate more thoroughly. Once you’ve identified a research problem and created research questions , you must choose the appropriate methodology and frameworks to address those questions effectively.

What is the definition of a research methodology?

Research methodology is the process or the way you intend to execute your study. The methodology section of a research paper outlines how you plan to conduct your study. It covers various steps such as collecting data, statistical analysis, observing participants, and other procedures involved in the research process

The methods section should give a description of the process that will convert your idea into a study. Additionally, the outcomes of your process must provide valid and reliable results resonant with the aims and objectives of your research. This thumb rule holds complete validity, no matter whether your paper has inclinations for qualitative or quantitative usage.

Studying research methods used in related studies can provide helpful insights and direction for your own research. Now easily discover papers related to your topic on SciSpace and utilize our AI research assistant, Copilot , to quickly review the methodologies applied in different papers.

Analyze and understand research methodologies faster with SciSpace Copilot

The need for a good research methodology

While deciding on your approach towards your research, the reason or factors you weighed in choosing a particular problem and formulating a research topic need to be validated and explained. A research methodology helps you do exactly that. Moreover, a good research methodology lets you build your argument to validate your research work performed through various data collection methods, analytical methods, and other essential points.

Just imagine it as a strategy documented to provide an overview of what you intend to do.

While undertaking any research writing or performing the research itself, you may get drifted in not something of much importance. In such a case, a research methodology helps you to get back to your outlined work methodology.

A research methodology helps in keeping you accountable for your work. Additionally, it can help you evaluate whether your work is in sync with your original aims and objectives or not. Besides, a good research methodology enables you to navigate your research process smoothly and swiftly while providing effective planning to achieve your desired results.

What is the basic structure of a research methodology?

Usually, you must ensure to include the following stated aspects while deciding over the basic structure of your research methodology:

1. Your research procedure

Explain what research methods you’re going to use. Whether you intend to proceed with quantitative or qualitative, or a composite of both approaches, you need to state that explicitly. The option among the three depends on your research’s aim, objectives, and scope.

2. Provide the rationality behind your chosen approach

Based on logic and reason, let your readers know why you have chosen said research methodologies. Additionally, you have to build strong arguments supporting why your chosen research method is the best way to achieve the desired outcome.

3. Explain your mechanism

The mechanism encompasses the research methods or instruments you will use to develop your research methodology. It usually refers to your data collection methods. You can use interviews, surveys, physical questionnaires, etc., of the many available mechanisms as research methodology instruments. The data collection method is determined by the type of research and whether the data is quantitative data(includes numerical data) or qualitative data (perception, morale, etc.) Moreover, you need to put logical reasoning behind choosing a particular instrument.

4. Significance of outcomes

The results will be available once you have finished experimenting. However, you should also explain how you plan to use the data to interpret the findings. This section also aids in understanding the problem from within, breaking it down into pieces, and viewing the research problem from various perspectives.

5. Reader’s advice

Anything that you feel must be explained to spread more awareness among readers and focus groups must be included and described in detail. You should not just specify your research methodology on the assumption that a reader is aware of the topic.  

All the relevant information that explains and simplifies your research paper must be included in the methodology section. If you are conducting your research in a non-traditional manner, give a logical justification and list its benefits.

6. Explain your sample space

Include information about the sample and sample space in the methodology section. The term "sample" refers to a smaller set of data that a researcher selects or chooses from a larger group of people or focus groups using a predetermined selection method. Let your readers know how you are going to distinguish between relevant and non-relevant samples. How you figured out those exact numbers to back your research methodology, i.e. the sample spacing of instruments, must be discussed thoroughly.

For example, if you are going to conduct a survey or interview, then by what procedure will you select the interviewees (or sample size in case of surveys), and how exactly will the interview or survey be conducted.

7. Challenges and limitations

This part, which is frequently assumed to be unnecessary, is actually very important. The challenges and limitations that your chosen strategy inherently possesses must be specified while you are conducting different types of research.

The importance of a good research methodology

You must have observed that all research papers, dissertations, or theses carry a chapter entirely dedicated to research methodology. This section helps maintain your credibility as a better interpreter of results rather than a manipulator.

A good research methodology always explains the procedure, data collection methods and techniques, aim, and scope of the research. In a research study, it leads to a well-organized, rationality-based approach, while the paper lacking it is often observed as messy or disorganized.

You should pay special attention to validating your chosen way towards the research methodology. This becomes extremely important in case you select an unconventional or a distinct method of execution.

Curating and developing a strong, effective research methodology can assist you in addressing a variety of situations, such as:

  • When someone tries to duplicate or expand upon your research after few years.
  • If a contradiction or conflict of facts occurs at a later time. This gives you the security you need to deal with these contradictions while still being able to defend your approach.
  • Gaining a tactical approach in getting your research completed in time. Just ensure you are using the right approach while drafting your research methodology, and it can help you achieve your desired outcomes. Additionally, it provides a better explanation and understanding of the research question itself.
  • Documenting the results so that the final outcome of the research stays as you intended it to be while starting.

Instruments you could use while writing a good research methodology

As a researcher, you must choose which tools or data collection methods that fit best in terms of the relevance of your research. This decision has to be wise.

There exists many research equipments or tools that you can use to carry out your research process. These are classified as:

a. Interviews (One-on-One or a Group)

An interview aimed to get your desired research outcomes can be undertaken in many different ways. For example, you can design your interview as structured, semi-structured, or unstructured. What sets them apart is the degree of formality in the questions. On the other hand, in a group interview, your aim should be to collect more opinions and group perceptions from the focus groups on a certain topic rather than looking out for some formal answers.

In surveys, you are in better control if you specifically draft the questions you seek the response for. For example, you may choose to include free-style questions that can be answered descriptively, or you may provide a multiple-choice type response for questions. Besides, you can also opt to choose both ways, deciding what suits your research process and purpose better.

c. Sample Groups

Similar to the group interviews, here, you can select a group of individuals and assign them a topic to discuss or freely express their opinions over that. You can simultaneously note down the answers and later draft them appropriately, deciding on the relevance of every response.

d. Observations

If your research domain is humanities or sociology, observations are the best-proven method to draw your research methodology. Of course, you can always include studying the spontaneous response of the participants towards a situation or conducting the same but in a more structured manner. A structured observation means putting the participants in a situation at a previously decided time and then studying their responses.

Of all the tools described above, it is you who should wisely choose the instruments and decide what’s the best fit for your research. You must not restrict yourself from multiple methods or a combination of a few instruments if appropriate in drafting a good research methodology.

Types of research methodology

A research methodology exists in various forms. Depending upon their approach, whether centered around words, numbers, or both, methodologies are distinguished as qualitative, quantitative, or an amalgamation of both.

1. Qualitative research methodology

When a research methodology primarily focuses on words and textual data, then it is generally referred to as qualitative research methodology. This type is usually preferred among researchers when the aim and scope of the research are mainly theoretical and explanatory.

The instruments used are observations, interviews, and sample groups. You can use this methodology if you are trying to study human behavior or response in some situations. Generally, qualitative research methodology is widely used in sociology, psychology, and other related domains.

2. Quantitative research methodology

If your research is majorly centered on data, figures, and stats, then analyzing these numerical data is often referred to as quantitative research methodology. You can use quantitative research methodology if your research requires you to validate or justify the obtained results.

In quantitative methods, surveys, tests, experiments, and evaluations of current databases can be advantageously used as instruments If your research involves testing some hypothesis, then use this methodology.

3. Amalgam methodology

As the name suggests, the amalgam methodology uses both quantitative and qualitative approaches. This methodology is used when a part of the research requires you to verify the facts and figures, whereas the other part demands you to discover the theoretical and explanatory nature of the research question.

The instruments for the amalgam methodology require you to conduct interviews and surveys, including tests and experiments. The outcome of this methodology can be insightful and valuable as it provides precise test results in line with theoretical explanations and reasoning.

The amalgam method, makes your work both factual and rational at the same time.

Final words: How to decide which is the best research methodology?

If you have kept your sincerity and awareness intact with the aims and scope of research well enough, you must have got an idea of which research methodology suits your work best.

Before deciding which research methodology answers your research question, you must invest significant time in reading and doing your homework for that. Taking references that yield relevant results should be your first approach to establishing a research methodology.

Moreover, you should never refrain from exploring other options. Before setting your work in stone, you must try all the available options as it explains why the choice of research methodology that you finally make is more appropriate than the other available options.

You should always go for a quantitative research methodology if your research requires gathering large amounts of data, figures, and statistics. This research methodology will provide you with results if your research paper involves the validation of some hypothesis.

Whereas, if  you are looking for more explanations, reasons, opinions, and public perceptions around a theory, you must use qualitative research methodology.The choice of an appropriate research methodology ultimately depends on what you want to achieve through your research.

Frequently Asked Questions (FAQs) about Research Methodology

1. how to write a research methodology.

You can always provide a separate section for research methodology where you should specify details about the methods and instruments used during the research, discussions on result analysis, including insights into the background information, and conveying the research limitations.

2. What are the types of research methodology?

There generally exists four types of research methodology i.e.

  • Observation
  • Experimental
  • Derivational

3. What is the true meaning of research methodology?

The set of techniques or procedures followed to discover and analyze the information gathered to validate or justify a research outcome is generally called Research Methodology.

4. Where lies the importance of research methodology?

Your research methodology directly reflects the validity of your research outcomes and how well-informed your research work is. Moreover, it can help future researchers cite or refer to your research if they plan to use a similar research methodology.

importance of research report in research methodology

You might also like

Consensus GPT vs. SciSpace GPT: Choose the Best GPT for Research

Consensus GPT vs. SciSpace GPT: Choose the Best GPT for Research

Sumalatha G

Literature Review and Theoretical Framework: Understanding the Differences

Nikhil Seethi

Using AI for research: A beginner’s guide

Shubham Dogra

  • USC Libraries
  • Research Guides

Organizing Your Social Sciences Research Paper

  • 6. The Methodology
  • Purpose of Guide
  • Design Flaws to Avoid
  • Independent and Dependent Variables
  • Glossary of Research Terms
  • Reading Research Effectively
  • Narrowing a Topic Idea
  • Broadening a Topic Idea
  • Extending the Timeliness of a Topic Idea
  • Academic Writing Style
  • Applying Critical Thinking
  • Choosing a Title
  • Making an Outline
  • Paragraph Development
  • Research Process Video Series
  • Executive Summary
  • The C.A.R.S. Model
  • Background Information
  • The Research Problem/Question
  • Theoretical Framework
  • Citation Tracking
  • Content Alert Services
  • Evaluating Sources
  • Primary Sources
  • Secondary Sources
  • Tiertiary Sources
  • Scholarly vs. Popular Publications
  • Qualitative Methods
  • Quantitative Methods
  • Insiderness
  • Using Non-Textual Elements
  • Limitations of the Study
  • Common Grammar Mistakes
  • Writing Concisely
  • Avoiding Plagiarism
  • Footnotes or Endnotes?
  • Further Readings
  • Generative AI and Writing
  • USC Libraries Tutorials and Other Guides
  • Bibliography

The methods section describes actions taken to investigate a research problem and the rationale for the application of specific procedures or techniques used to identify, select, process, and analyze information applied to understanding the problem, thereby, allowing the reader to critically evaluate a study’s overall validity and reliability. The methodology section of a research paper answers two main questions: How was the data collected or generated? And, how was it analyzed? The writing should be direct and precise and always written in the past tense.

Kallet, Richard H. "How to Write the Methods Section of a Research Paper." Respiratory Care 49 (October 2004): 1229-1232.

Importance of a Good Methodology Section

You must explain how you obtained and analyzed your results for the following reasons:

  • Readers need to know how the data was obtained because the method you chose affects the results and, by extension, how you interpreted their significance in the discussion section of your paper.
  • Methodology is crucial for any branch of scholarship because an unreliable method produces unreliable results and, as a consequence, undermines the value of your analysis of the findings.
  • In most cases, there are a variety of different methods you can choose to investigate a research problem. The methodology section of your paper should clearly articulate the reasons why you have chosen a particular procedure or technique.
  • The reader wants to know that the data was collected or generated in a way that is consistent with accepted practice in the field of study. For example, if you are using a multiple choice questionnaire, readers need to know that it offered your respondents a reasonable range of answers to choose from.
  • The method must be appropriate to fulfilling the overall aims of the study. For example, you need to ensure that you have a large enough sample size to be able to generalize and make recommendations based upon the findings.
  • The methodology should discuss the problems that were anticipated and the steps you took to prevent them from occurring. For any problems that do arise, you must describe the ways in which they were minimized or why these problems do not impact in any meaningful way your interpretation of the findings.
  • In the social and behavioral sciences, it is important to always provide sufficient information to allow other researchers to adopt or replicate your methodology. This information is particularly important when a new method has been developed or an innovative use of an existing method is utilized.

Bem, Daryl J. Writing the Empirical Journal Article. Psychology Writing Center. University of Washington; Denscombe, Martyn. The Good Research Guide: For Small-Scale Social Research Projects . 5th edition. Buckingham, UK: Open University Press, 2014; Lunenburg, Frederick C. Writing a Successful Thesis or Dissertation: Tips and Strategies for Students in the Social and Behavioral Sciences . Thousand Oaks, CA: Corwin Press, 2008.

Structure and Writing Style

I.  Groups of Research Methods

There are two main groups of research methods in the social sciences:

  • The e mpirical-analytical group approaches the study of social sciences in a similar manner that researchers study the natural sciences . This type of research focuses on objective knowledge, research questions that can be answered yes or no, and operational definitions of variables to be measured. The empirical-analytical group employs deductive reasoning that uses existing theory as a foundation for formulating hypotheses that need to be tested. This approach is focused on explanation.
  • The i nterpretative group of methods is focused on understanding phenomenon in a comprehensive, holistic way . Interpretive methods focus on analytically disclosing the meaning-making practices of human subjects [the why, how, or by what means people do what they do], while showing how those practices arrange so that it can be used to generate observable outcomes. Interpretive methods allow you to recognize your connection to the phenomena under investigation. However, the interpretative group requires careful examination of variables because it focuses more on subjective knowledge.

II.  Content

The introduction to your methodology section should begin by restating the research problem and underlying assumptions underpinning your study. This is followed by situating the methods you used to gather, analyze, and process information within the overall “tradition” of your field of study and within the particular research design you have chosen to study the problem. If the method you choose lies outside of the tradition of your field [i.e., your review of the literature demonstrates that the method is not commonly used], provide a justification for how your choice of methods specifically addresses the research problem in ways that have not been utilized in prior studies.

The remainder of your methodology section should describe the following:

  • Decisions made in selecting the data you have analyzed or, in the case of qualitative research, the subjects and research setting you have examined,
  • Tools and methods used to identify and collect information, and how you identified relevant variables,
  • The ways in which you processed the data and the procedures you used to analyze that data, and
  • The specific research tools or strategies that you utilized to study the underlying hypothesis and research questions.

In addition, an effectively written methodology section should:

  • Introduce the overall methodological approach for investigating your research problem . Is your study qualitative or quantitative or a combination of both (mixed method)? Are you going to take a special approach, such as action research, or a more neutral stance?
  • Indicate how the approach fits the overall research design . Your methods for gathering data should have a clear connection to your research problem. In other words, make sure that your methods will actually address the problem. One of the most common deficiencies found in research papers is that the proposed methodology is not suitable to achieving the stated objective of your paper.
  • Describe the specific methods of data collection you are going to use , such as, surveys, interviews, questionnaires, observation, archival research. If you are analyzing existing data, such as a data set or archival documents, describe how it was originally created or gathered and by whom. Also be sure to explain how older data is still relevant to investigating the current research problem.
  • Explain how you intend to analyze your results . Will you use statistical analysis? Will you use specific theoretical perspectives to help you analyze a text or explain observed behaviors? Describe how you plan to obtain an accurate assessment of relationships, patterns, trends, distributions, and possible contradictions found in the data.
  • Provide background and a rationale for methodologies that are unfamiliar for your readers . Very often in the social sciences, research problems and the methods for investigating them require more explanation/rationale than widely accepted rules governing the natural and physical sciences. Be clear and concise in your explanation.
  • Provide a justification for subject selection and sampling procedure . For instance, if you propose to conduct interviews, how do you intend to select the sample population? If you are analyzing texts, which texts have you chosen, and why? If you are using statistics, why is this set of data being used? If other data sources exist, explain why the data you chose is most appropriate to addressing the research problem.
  • Provide a justification for case study selection . A common method of analyzing research problems in the social sciences is to analyze specific cases. These can be a person, place, event, phenomenon, or other type of subject of analysis that are either examined as a singular topic of in-depth investigation or multiple topics of investigation studied for the purpose of comparing or contrasting findings. In either method, you should explain why a case or cases were chosen and how they specifically relate to the research problem.
  • Describe potential limitations . Are there any practical limitations that could affect your data collection? How will you attempt to control for potential confounding variables and errors? If your methodology may lead to problems you can anticipate, state this openly and show why pursuing this methodology outweighs the risk of these problems cropping up.

NOTE:   Once you have written all of the elements of the methods section, subsequent revisions should focus on how to present those elements as clearly and as logically as possibly. The description of how you prepared to study the research problem, how you gathered the data, and the protocol for analyzing the data should be organized chronologically. For clarity, when a large amount of detail must be presented, information should be presented in sub-sections according to topic. If necessary, consider using appendices for raw data.

ANOTHER NOTE: If you are conducting a qualitative analysis of a research problem , the methodology section generally requires a more elaborate description of the methods used as well as an explanation of the processes applied to gathering and analyzing of data than is generally required for studies using quantitative methods. Because you are the primary instrument for generating the data [e.g., through interviews or observations], the process for collecting that data has a significantly greater impact on producing the findings. Therefore, qualitative research requires a more detailed description of the methods used.

YET ANOTHER NOTE:   If your study involves interviews, observations, or other qualitative techniques involving human subjects , you may be required to obtain approval from the university's Office for the Protection of Research Subjects before beginning your research. This is not a common procedure for most undergraduate level student research assignments. However, i f your professor states you need approval, you must include a statement in your methods section that you received official endorsement and adequate informed consent from the office and that there was a clear assessment and minimization of risks to participants and to the university. This statement informs the reader that your study was conducted in an ethical and responsible manner. In some cases, the approval notice is included as an appendix to your paper.

III.  Problems to Avoid

Irrelevant Detail The methodology section of your paper should be thorough but concise. Do not provide any background information that does not directly help the reader understand why a particular method was chosen, how the data was gathered or obtained, and how the data was analyzed in relation to the research problem [note: analyzed, not interpreted! Save how you interpreted the findings for the discussion section]. With this in mind, the page length of your methods section will generally be less than any other section of your paper except the conclusion.

Unnecessary Explanation of Basic Procedures Remember that you are not writing a how-to guide about a particular method. You should make the assumption that readers possess a basic understanding of how to investigate the research problem on their own and, therefore, you do not have to go into great detail about specific methodological procedures. The focus should be on how you applied a method , not on the mechanics of doing a method. An exception to this rule is if you select an unconventional methodological approach; if this is the case, be sure to explain why this approach was chosen and how it enhances the overall process of discovery.

Problem Blindness It is almost a given that you will encounter problems when collecting or generating your data, or, gaps will exist in existing data or archival materials. Do not ignore these problems or pretend they did not occur. Often, documenting how you overcame obstacles can form an interesting part of the methodology. It demonstrates to the reader that you can provide a cogent rationale for the decisions you made to minimize the impact of any problems that arose.

Literature Review Just as the literature review section of your paper provides an overview of sources you have examined while researching a particular topic, the methodology section should cite any sources that informed your choice and application of a particular method [i.e., the choice of a survey should include any citations to the works you used to help construct the survey].

It’s More than Sources of Information! A description of a research study's method should not be confused with a description of the sources of information. Such a list of sources is useful in and of itself, especially if it is accompanied by an explanation about the selection and use of the sources. The description of the project's methodology complements a list of sources in that it sets forth the organization and interpretation of information emanating from those sources.

Azevedo, L.F. et al. "How to Write a Scientific Paper: Writing the Methods Section." Revista Portuguesa de Pneumologia 17 (2011): 232-238; Blair Lorrie. “Choosing a Methodology.” In Writing a Graduate Thesis or Dissertation , Teaching Writing Series. (Rotterdam: Sense Publishers 2016), pp. 49-72; Butin, Dan W. The Education Dissertation A Guide for Practitioner Scholars . Thousand Oaks, CA: Corwin, 2010; Carter, Susan. Structuring Your Research Thesis . New York: Palgrave Macmillan, 2012; Kallet, Richard H. “How to Write the Methods Section of a Research Paper.” Respiratory Care 49 (October 2004):1229-1232; Lunenburg, Frederick C. Writing a Successful Thesis or Dissertation: Tips and Strategies for Students in the Social and Behavioral Sciences . Thousand Oaks, CA: Corwin Press, 2008. Methods Section. The Writer’s Handbook. Writing Center. University of Wisconsin, Madison; Rudestam, Kjell Erik and Rae R. Newton. “The Method Chapter: Describing Your Research Plan.” In Surviving Your Dissertation: A Comprehensive Guide to Content and Process . (Thousand Oaks, Sage Publications, 2015), pp. 87-115; What is Interpretive Research. Institute of Public and International Affairs, University of Utah; Writing the Experimental Report: Methods, Results, and Discussion. The Writing Lab and The OWL. Purdue University; Methods and Materials. The Structure, Format, Content, and Style of a Journal-Style Scientific Paper. Department of Biology. Bates College.

Writing Tip

Statistical Designs and Tests? Do Not Fear Them!

Don't avoid using a quantitative approach to analyzing your research problem just because you fear the idea of applying statistical designs and tests. A qualitative approach, such as conducting interviews or content analysis of archival texts, can yield exciting new insights about a research problem, but it should not be undertaken simply because you have a disdain for running a simple regression. A well designed quantitative research study can often be accomplished in very clear and direct ways, whereas, a similar study of a qualitative nature usually requires considerable time to analyze large volumes of data and a tremendous burden to create new paths for analysis where previously no path associated with your research problem had existed.

To locate data and statistics, GO HERE .

Another Writing Tip

Knowing the Relationship Between Theories and Methods

There can be multiple meaning associated with the term "theories" and the term "methods" in social sciences research. A helpful way to delineate between them is to understand "theories" as representing different ways of characterizing the social world when you research it and "methods" as representing different ways of generating and analyzing data about that social world. Framed in this way, all empirical social sciences research involves theories and methods, whether they are stated explicitly or not. However, while theories and methods are often related, it is important that, as a researcher, you deliberately separate them in order to avoid your theories playing a disproportionate role in shaping what outcomes your chosen methods produce.

Introspectively engage in an ongoing dialectic between the application of theories and methods to help enable you to use the outcomes from your methods to interrogate and develop new theories, or ways of framing conceptually the research problem. This is how scholarship grows and branches out into new intellectual territory.

Reynolds, R. Larry. Ways of Knowing. Alternative Microeconomics . Part 1, Chapter 3. Boise State University; The Theory-Method Relationship. S-Cool Revision. United Kingdom.

Yet Another Writing Tip

Methods and the Methodology

Do not confuse the terms "methods" and "methodology." As Schneider notes, a method refers to the technical steps taken to do research . Descriptions of methods usually include defining and stating why you have chosen specific techniques to investigate a research problem, followed by an outline of the procedures you used to systematically select, gather, and process the data [remember to always save the interpretation of data for the discussion section of your paper].

The methodology refers to a discussion of the underlying reasoning why particular methods were used . This discussion includes describing the theoretical concepts that inform the choice of methods to be applied, placing the choice of methods within the more general nature of academic work, and reviewing its relevance to examining the research problem. The methodology section also includes a thorough review of the methods other scholars have used to study the topic.

Bryman, Alan. "Of Methods and Methodology." Qualitative Research in Organizations and Management: An International Journal 3 (2008): 159-168; Schneider, Florian. “What's in a Methodology: The Difference between Method, Methodology, and Theory…and How to Get the Balance Right?” PoliticsEastAsia.com. Chinese Department, University of Leiden, Netherlands.

  • << Previous: Scholarly vs. Popular Publications
  • Next: Qualitative Methods >>
  • Last Updated: Sep 4, 2024 9:40 AM
  • URL: https://libguides.usc.edu/writingguide

Reference management. Clean and simple.

What is research methodology?

importance of research report in research methodology

The basics of research methodology

Why do you need a research methodology, what needs to be included, why do you need to document your research method, what are the different types of research instruments, qualitative / quantitative / mixed research methodologies, how do you choose the best research methodology for you, frequently asked questions about research methodology, related articles.

When you’re working on your first piece of academic research, there are many different things to focus on, and it can be overwhelming to stay on top of everything. This is especially true of budding or inexperienced researchers.

If you’ve never put together a research proposal before or find yourself in a position where you need to explain your research methodology decisions, there are a few things you need to be aware of.

Once you understand the ins and outs, handling academic research in the future will be less intimidating. We break down the basics below:

A research methodology encompasses the way in which you intend to carry out your research. This includes how you plan to tackle things like collection methods, statistical analysis, participant observations, and more.

You can think of your research methodology as being a formula. One part will be how you plan on putting your research into practice, and another will be why you feel this is the best way to approach it. Your research methodology is ultimately a methodological and systematic plan to resolve your research problem.

In short, you are explaining how you will take your idea and turn it into a study, which in turn will produce valid and reliable results that are in accordance with the aims and objectives of your research. This is true whether your paper plans to make use of qualitative methods or quantitative methods.

The purpose of a research methodology is to explain the reasoning behind your approach to your research - you'll need to support your collection methods, methods of analysis, and other key points of your work.

Think of it like writing a plan or an outline for you what you intend to do.

When carrying out research, it can be easy to go off-track or depart from your standard methodology.

Tip: Having a methodology keeps you accountable and on track with your original aims and objectives, and gives you a suitable and sound plan to keep your project manageable, smooth, and effective.

With all that said, how do you write out your standard approach to a research methodology?

As a general plan, your methodology should include the following information:

  • Your research method.  You need to state whether you plan to use quantitative analysis, qualitative analysis, or mixed-method research methods. This will often be determined by what you hope to achieve with your research.
  • Explain your reasoning. Why are you taking this methodological approach? Why is this particular methodology the best way to answer your research problem and achieve your objectives?
  • Explain your instruments.  This will mainly be about your collection methods. There are varying instruments to use such as interviews, physical surveys, questionnaires, for example. Your methodology will need to detail your reasoning in choosing a particular instrument for your research.
  • What will you do with your results?  How are you going to analyze the data once you have gathered it?
  • Advise your reader.  If there is anything in your research methodology that your reader might be unfamiliar with, you should explain it in more detail. For example, you should give any background information to your methods that might be relevant or provide your reasoning if you are conducting your research in a non-standard way.
  • How will your sampling process go?  What will your sampling procedure be and why? For example, if you will collect data by carrying out semi-structured or unstructured interviews, how will you choose your interviewees and how will you conduct the interviews themselves?
  • Any practical limitations?  You should discuss any limitations you foresee being an issue when you’re carrying out your research.

In any dissertation, thesis, or academic journal, you will always find a chapter dedicated to explaining the research methodology of the person who carried out the study, also referred to as the methodology section of the work.

A good research methodology will explain what you are going to do and why, while a poor methodology will lead to a messy or disorganized approach.

You should also be able to justify in this section your reasoning for why you intend to carry out your research in a particular way, especially if it might be a particularly unique method.

Having a sound methodology in place can also help you with the following:

  • When another researcher at a later date wishes to try and replicate your research, they will need your explanations and guidelines.
  • In the event that you receive any criticism or questioning on the research you carried out at a later point, you will be able to refer back to it and succinctly explain the how and why of your approach.
  • It provides you with a plan to follow throughout your research. When you are drafting your methodology approach, you need to be sure that the method you are using is the right one for your goal. This will help you with both explaining and understanding your method.
  • It affords you the opportunity to document from the outset what you intend to achieve with your research, from start to finish.

A research instrument is a tool you will use to help you collect, measure and analyze the data you use as part of your research.

The choice of research instrument will usually be yours to make as the researcher and will be whichever best suits your methodology.

There are many different research instruments you can use in collecting data for your research.

Generally, they can be grouped as follows:

  • Interviews (either as a group or one-on-one). You can carry out interviews in many different ways. For example, your interview can be structured, semi-structured, or unstructured. The difference between them is how formal the set of questions is that is asked of the interviewee. In a group interview, you may choose to ask the interviewees to give you their opinions or perceptions on certain topics.
  • Surveys (online or in-person). In survey research, you are posing questions in which you ask for a response from the person taking the survey. You may wish to have either free-answer questions such as essay-style questions, or you may wish to use closed questions such as multiple choice. You may even wish to make the survey a mixture of both.
  • Focus Groups.  Similar to the group interview above, you may wish to ask a focus group to discuss a particular topic or opinion while you make a note of the answers given.
  • Observations.  This is a good research instrument to use if you are looking into human behaviors. Different ways of researching this include studying the spontaneous behavior of participants in their everyday life, or something more structured. A structured observation is research conducted at a set time and place where researchers observe behavior as planned and agreed upon with participants.

These are the most common ways of carrying out research, but it is really dependent on your needs as a researcher and what approach you think is best to take.

It is also possible to combine a number of research instruments if this is necessary and appropriate in answering your research problem.

There are three different types of methodologies, and they are distinguished by whether they focus on words, numbers, or both.

Data typeWhat is it?Methodology

Quantitative

This methodology focuses more on measuring and testing numerical data. What is the aim of quantitative research?

When using this form of research, your objective will usually be to confirm something.

Surveys, tests, existing databases.

For example, you may use this type of methodology if you are looking to test a set of hypotheses.

Qualitative

Qualitative research is a process of collecting and analyzing both words and textual data.

This form of research methodology is sometimes used where the aim and objective of the research are exploratory.

Observations, interviews, focus groups.

Exploratory research might be used where you are trying to understand human actions i.e. for a study in the sociology or psychology field.

Mixed-method

A mixed-method approach combines both of the above approaches.

The quantitative approach will provide you with some definitive facts and figures, whereas the qualitative methodology will provide your research with an interesting human aspect.

Where you can use a mixed method of research, this can produce some incredibly interesting results. This is due to testing in a way that provides data that is both proven to be exact while also being exploratory at the same time.

➡️ Want to learn more about the differences between qualitative and quantitative research, and how to use both methods? Check out our guide for that!

If you've done your due diligence, you'll have an idea of which methodology approach is best suited to your research.

It’s likely that you will have carried out considerable reading and homework before you reach this point and you may have taken inspiration from other similar studies that have yielded good results.

Still, it is important to consider different options before setting your research in stone. Exploring different options available will help you to explain why the choice you ultimately make is preferable to other methods.

If proving your research problem requires you to gather large volumes of numerical data to test hypotheses, a quantitative research method is likely to provide you with the most usable results.

If instead you’re looking to try and learn more about people, and their perception of events, your methodology is more exploratory in nature and would therefore probably be better served using a qualitative research methodology.

It helps to always bring things back to the question: what do I want to achieve with my research?

Once you have conducted your research, you need to analyze it. Here are some helpful guides for qualitative data analysis:

➡️  How to do a content analysis

➡️  How to do a thematic analysis

➡️  How to do a rhetorical analysis

Research methodology refers to the techniques used to find and analyze information for a study, ensuring that the results are valid, reliable and that they address the research objective.

Data can typically be organized into four different categories or methods: observational, experimental, simulation, and derived.

Writing a methodology section is a process of introducing your methods and instruments, discussing your analysis, providing more background information, addressing your research limitations, and more.

Your research methodology section will need a clear research question and proposed research approach. You'll need to add a background, introduce your research question, write your methodology and add the works you cited during your data collecting phase.

The research methodology section of your study will indicate how valid your findings are and how well-informed your paper is. It also assists future researchers planning to use the same methodology, who want to cite your study or replicate it.

Rhetorical analysis illustration

importance of research report in research methodology

What is Research Methodology? Definition, Types, and Examples

importance of research report in research methodology

Research methodology 1,2 is a structured and scientific approach used to collect, analyze, and interpret quantitative or qualitative data to answer research questions or test hypotheses. A research methodology is like a plan for carrying out research and helps keep researchers on track by limiting the scope of the research. Several aspects must be considered before selecting an appropriate research methodology, such as research limitations and ethical concerns that may affect your research.

The research methodology section in a scientific paper describes the different methodological choices made, such as the data collection and analysis methods, and why these choices were selected. The reasons should explain why the methods chosen are the most appropriate to answer the research question. A good research methodology also helps ensure the reliability and validity of the research findings. There are three types of research methodology—quantitative, qualitative, and mixed-method, which can be chosen based on the research objectives.

What is research methodology ?

A research methodology describes the techniques and procedures used to identify and analyze information regarding a specific research topic. It is a process by which researchers design their study so that they can achieve their objectives using the selected research instruments. It includes all the important aspects of research, including research design, data collection methods, data analysis methods, and the overall framework within which the research is conducted. While these points can help you understand what is research methodology, you also need to know why it is important to pick the right methodology.

Paperpal your AI academic writing assistant

Having a good research methodology in place has the following advantages: 3

  • Helps other researchers who may want to replicate your research; the explanations will be of benefit to them.
  • You can easily answer any questions about your research if they arise at a later stage.
  • A research methodology provides a framework and guidelines for researchers to clearly define research questions, hypotheses, and objectives.
  • It helps researchers identify the most appropriate research design, sampling technique, and data collection and analysis methods.
  • A sound research methodology helps researchers ensure that their findings are valid and reliable and free from biases and errors.
  • It also helps ensure that ethical guidelines are followed while conducting research.
  • A good research methodology helps researchers in planning their research efficiently, by ensuring optimum usage of their time and resources.

Writing the methods section of a research paper? Let Paperpal help you achieve perfection  

Types of research methodology.

There are three types of research methodology based on the type of research and the data required. 1

  • Quantitative research methodology focuses on measuring and testing numerical data. This approach is good for reaching a large number of people in a short amount of time. This type of research helps in testing the causal relationships between variables, making predictions, and generalizing results to wider populations.
  • Qualitative research methodology examines the opinions, behaviors, and experiences of people. It collects and analyzes words and textual data. This research methodology requires fewer participants but is still more time consuming because the time spent per participant is quite large. This method is used in exploratory research where the research problem being investigated is not clearly defined.
  • Mixed-method research methodology uses the characteristics of both quantitative and qualitative research methodologies in the same study. This method allows researchers to validate their findings, verify if the results observed using both methods are complementary, and explain any unexpected results obtained from one method by using the other method.

What are the types of sampling designs in research methodology?

Sampling 4 is an important part of a research methodology and involves selecting a representative sample of the population to conduct the study, making statistical inferences about them, and estimating the characteristics of the whole population based on these inferences. There are two types of sampling designs in research methodology—probability and nonprobability.

  • Probability sampling

In this type of sampling design, a sample is chosen from a larger population using some form of random selection, that is, every member of the population has an equal chance of being selected. The different types of probability sampling are:

  • Systematic —sample members are chosen at regular intervals. It requires selecting a starting point for the sample and sample size determination that can be repeated at regular intervals. This type of sampling method has a predefined range; hence, it is the least time consuming.
  • Stratified —researchers divide the population into smaller groups that don’t overlap but represent the entire population. While sampling, these groups can be organized, and then a sample can be drawn from each group separately.
  • Cluster —the population is divided into clusters based on demographic parameters like age, sex, location, etc.
  • Convenience —selects participants who are most easily accessible to researchers due to geographical proximity, availability at a particular time, etc.
  • Purposive —participants are selected at the researcher’s discretion. Researchers consider the purpose of the study and the understanding of the target audience.
  • Snowball —already selected participants use their social networks to refer the researcher to other potential participants.
  • Quota —while designing the study, the researchers decide how many people with which characteristics to include as participants. The characteristics help in choosing people most likely to provide insights into the subject.

What are data collection methods?

During research, data are collected using various methods depending on the research methodology being followed and the research methods being undertaken. Both qualitative and quantitative research have different data collection methods, as listed below.

Qualitative research 5

  • One-on-one interviews: Helps the interviewers understand a respondent’s subjective opinion and experience pertaining to a specific topic or event
  • Document study/literature review/record keeping: Researchers’ review of already existing written materials such as archives, annual reports, research articles, guidelines, policy documents, etc.
  • Focus groups: Constructive discussions that usually include a small sample of about 6-10 people and a moderator, to understand the participants’ opinion on a given topic.
  • Qualitative observation : Researchers collect data using their five senses (sight, smell, touch, taste, and hearing).

Quantitative research 6

  • Sampling: The most common type is probability sampling.
  • Interviews: Commonly telephonic or done in-person.
  • Observations: Structured observations are most commonly used in quantitative research. In this method, researchers make observations about specific behaviors of individuals in a structured setting.
  • Document review: Reviewing existing research or documents to collect evidence for supporting the research.
  • Surveys and questionnaires. Surveys can be administered both online and offline depending on the requirement and sample size.

Let Paperpal help you write the perfect research methods section. Start now!

What are data analysis methods.

The data collected using the various methods for qualitative and quantitative research need to be analyzed to generate meaningful conclusions. These data analysis methods 7 also differ between quantitative and qualitative research.

Quantitative research involves a deductive method for data analysis where hypotheses are developed at the beginning of the research and precise measurement is required. The methods include statistical analysis applications to analyze numerical data and are grouped into two categories—descriptive and inferential.

Descriptive analysis is used to describe the basic features of different types of data to present it in a way that ensures the patterns become meaningful. The different types of descriptive analysis methods are:

  • Measures of frequency (count, percent, frequency)
  • Measures of central tendency (mean, median, mode)
  • Measures of dispersion or variation (range, variance, standard deviation)
  • Measure of position (percentile ranks, quartile ranks)

Inferential analysis is used to make predictions about a larger population based on the analysis of the data collected from a smaller population. This analysis is used to study the relationships between different variables. Some commonly used inferential data analysis methods are:

  • Correlation: To understand the relationship between two or more variables.
  • Cross-tabulation: Analyze the relationship between multiple variables.
  • Regression analysis: Study the impact of independent variables on the dependent variable.
  • Frequency tables: To understand the frequency of data.
  • Analysis of variance: To test the degree to which two or more variables differ in an experiment.

Qualitative research involves an inductive method for data analysis where hypotheses are developed after data collection. The methods include:

  • Content analysis: For analyzing documented information from text and images by determining the presence of certain words or concepts in texts.
  • Narrative analysis: For analyzing content obtained from sources such as interviews, field observations, and surveys. The stories and opinions shared by people are used to answer research questions.
  • Discourse analysis: For analyzing interactions with people considering the social context, that is, the lifestyle and environment, under which the interaction occurs.
  • Grounded theory: Involves hypothesis creation by data collection and analysis to explain why a phenomenon occurred.
  • Thematic analysis: To identify important themes or patterns in data and use these to address an issue.

How to choose a research methodology?

Here are some important factors to consider when choosing a research methodology: 8

  • Research objectives, aims, and questions —these would help structure the research design.
  • Review existing literature to identify any gaps in knowledge.
  • Check the statistical requirements —if data-driven or statistical results are needed then quantitative research is the best. If the research questions can be answered based on people’s opinions and perceptions, then qualitative research is most suitable.
  • Sample size —sample size can often determine the feasibility of a research methodology. For a large sample, less effort- and time-intensive methods are appropriate.
  • Constraints —constraints of time, geography, and resources can help define the appropriate methodology.

Got writer’s block? Kickstart your research paper writing with Paperpal now!

How to write a research methodology .

A research methodology should include the following components: 3,9

  • Research design —should be selected based on the research question and the data required. Common research designs include experimental, quasi-experimental, correlational, descriptive, and exploratory.
  • Research method —this can be quantitative, qualitative, or mixed-method.
  • Reason for selecting a specific methodology —explain why this methodology is the most suitable to answer your research problem.
  • Research instruments —explain the research instruments you plan to use, mainly referring to the data collection methods such as interviews, surveys, etc. Here as well, a reason should be mentioned for selecting the particular instrument.
  • Sampling —this involves selecting a representative subset of the population being studied.
  • Data collection —involves gathering data using several data collection methods, such as surveys, interviews, etc.
  • Data analysis —describe the data analysis methods you will use once you’ve collected the data.
  • Research limitations —mention any limitations you foresee while conducting your research.
  • Validity and reliability —validity helps identify the accuracy and truthfulness of the findings; reliability refers to the consistency and stability of the results over time and across different conditions.
  • Ethical considerations —research should be conducted ethically. The considerations include obtaining consent from participants, maintaining confidentiality, and addressing conflicts of interest.

Streamline Your Research Paper Writing Process with Paperpal  

The methods section is a critical part of the research papers, allowing researchers to use this to understand your findings and replicate your work when pursuing their own research. However, it is usually also the most difficult section to write. This is where Paperpal can help you overcome the writer’s block and create the first draft in minutes with Paperpal Copilot, its secure generative AI feature suite.  

With Paperpal you can get research advice, write and refine your work, rephrase and verify the writing, and ensure submission readiness, all in one place. Here’s how you can use Paperpal to develop the first draft of your methods section.  

  • Generate an outline: Input some details about your research to instantly generate an outline for your methods section 
  • Develop the section: Use the outline and suggested sentence templates to expand your ideas and develop the first draft.  
  • P araph ras e and trim : Get clear, concise academic text with paraphrasing that conveys your work effectively and word reduction to fix redundancies. 
  • Choose the right words: Enhance text by choosing contextual synonyms based on how the words have been used in previously published work.  
  • Check and verify text : Make sure the generated text showcases your methods correctly, has all the right citations, and is original and authentic. .   

You can repeat this process to develop each section of your research manuscript, including the title, abstract and keywords. Ready to write your research papers faster, better, and without the stress? Sign up for Paperpal and start writing today!

Frequently Asked Questions

Q1. What are the key components of research methodology?

A1. A good research methodology has the following key components:

  • Research design
  • Data collection procedures
  • Data analysis methods
  • Ethical considerations

Q2. Why is ethical consideration important in research methodology?

A2. Ethical consideration is important in research methodology to ensure the readers of the reliability and validity of the study. Researchers must clearly mention the ethical norms and standards followed during the conduct of the research and also mention if the research has been cleared by any institutional board. The following 10 points are the important principles related to ethical considerations: 10

  • Participants should not be subjected to harm.
  • Respect for the dignity of participants should be prioritized.
  • Full consent should be obtained from participants before the study.
  • Participants’ privacy should be ensured.
  • Confidentiality of the research data should be ensured.
  • Anonymity of individuals and organizations participating in the research should be maintained.
  • The aims and objectives of the research should not be exaggerated.
  • Affiliations, sources of funding, and any possible conflicts of interest should be declared.
  • Communication in relation to the research should be honest and transparent.
  • Misleading information and biased representation of primary data findings should be avoided.

importance of research report in research methodology

Q3. What is the difference between methodology and method?

A3. Research methodology is different from a research method, although both terms are often confused. Research methods are the tools used to gather data, while the research methodology provides a framework for how research is planned, conducted, and analyzed. The latter guides researchers in making decisions about the most appropriate methods for their research. Research methods refer to the specific techniques, procedures, and tools used by researchers to collect, analyze, and interpret data, for instance surveys, questionnaires, interviews, etc.

Research methodology is, thus, an integral part of a research study. It helps ensure that you stay on track to meet your research objectives and answer your research questions using the most appropriate data collection and analysis tools based on your research design.

Accelerate your research paper writing with Paperpal. Try for free now!  

  • Research methodologies. Pfeiffer Library website. Accessed August 15, 2023. https://library.tiffin.edu/researchmethodologies/whatareresearchmethodologies
  • Types of research methodology. Eduvoice website. Accessed August 16, 2023. https://eduvoice.in/types-research-methodology/
  • The basics of research methodology: A key to quality research. Voxco. Accessed August 16, 2023. https://www.voxco.com/blog/what-is-research-methodology/
  • Sampling methods: Types with examples. QuestionPro website. Accessed August 16, 2023. https://www.questionpro.com/blog/types-of-sampling-for-social-research/
  • What is qualitative research? Methods, types, approaches, examples. Researcher.Life blog. Accessed August 15, 2023. https://researcher.life/blog/article/what-is-qualitative-research-methods-types-examples/
  • What is quantitative research? Definition, methods, types, and examples. Researcher.Life blog. Accessed August 15, 2023. https://researcher.life/blog/article/what-is-quantitative-research-types-and-examples/
  • Data analysis in research: Types & methods. QuestionPro website. Accessed August 16, 2023. https://www.questionpro.com/blog/data-analysis-in-research/#Data_analysis_in_qualitative_research
  • Factors to consider while choosing the right research methodology. PhD Monster website. Accessed August 17, 2023. https://www.phdmonster.com/factors-to-consider-while-choosing-the-right-research-methodology/
  • What is research methodology? Research and writing guides. Accessed August 14, 2023. https://paperpile.com/g/what-is-research-methodology/
  • Ethical considerations. Business research methodology website. Accessed August 17, 2023. https://research-methodology.net/research-methodology/ethical-considerations/

Paperpal is a comprehensive AI writing toolkit that helps students and researchers achieve 2x the writing in half the time. It leverages 21+ years of STM experience and insights from millions of research articles to provide in-depth academic writing, language editing, and submission readiness support to help you write better, faster.  

Get accurate academic translations, rewriting support, grammar checks, vocabulary suggestions, and generative AI assistance that delivers human precision at machine speed. Try for free or upgrade to Paperpal Prime starting at US$19 a month to access premium features, including consistency, plagiarism, and 30+ submission readiness checks to help you succeed.  

Experience the future of academic writing – Sign up to Paperpal and start writing for free!  

Related Reads:

  • Dangling Modifiers and How to Avoid Them in Your Writing 
  • Research Outlines: How to Write An Introduction Section in Minutes with Paperpal Copilot
  • How to Paraphrase Research Papers Effectively
  • What is a Literature Review? How to Write It (with Examples)

Language and Grammar Rules for Academic Writing

Climatic vs. climactic: difference and examples, you may also like, dissertation printing and binding | types & comparison , what is a dissertation preface definition and examples , how to write a research proposal: (with examples..., how to write your research paper in apa..., how to choose a dissertation topic, how to write a phd research proposal, how to write an academic paragraph (step-by-step guide), maintaining academic integrity with paperpal’s generative ai writing..., research funding basics: what should a grant proposal..., how to write an abstract in research papers....

  • Privacy Policy

Research Method

Home » Research Methodology – Types, Examples and writing Guide

Research Methodology – Types, Examples and writing Guide

Table of Contents

Research Methodology

Research Methodology

Definition:

Research Methodology refers to the systematic and scientific approach used to conduct research, investigate problems, and gather data and information for a specific purpose. It involves the techniques and procedures used to identify, collect , analyze , and interpret data to answer research questions or solve research problems . Moreover, They are philosophical and theoretical frameworks that guide the research process.

Structure of Research Methodology

Research methodology formats can vary depending on the specific requirements of the research project, but the following is a basic example of a structure for a research methodology section:

I. Introduction

  • Provide an overview of the research problem and the need for a research methodology section
  • Outline the main research questions and objectives

II. Research Design

  • Explain the research design chosen and why it is appropriate for the research question(s) and objectives
  • Discuss any alternative research designs considered and why they were not chosen
  • Describe the research setting and participants (if applicable)

III. Data Collection Methods

  • Describe the methods used to collect data (e.g., surveys, interviews, observations)
  • Explain how the data collection methods were chosen and why they are appropriate for the research question(s) and objectives
  • Detail any procedures or instruments used for data collection

IV. Data Analysis Methods

  • Describe the methods used to analyze the data (e.g., statistical analysis, content analysis )
  • Explain how the data analysis methods were chosen and why they are appropriate for the research question(s) and objectives
  • Detail any procedures or software used for data analysis

V. Ethical Considerations

  • Discuss any ethical issues that may arise from the research and how they were addressed
  • Explain how informed consent was obtained (if applicable)
  • Detail any measures taken to ensure confidentiality and anonymity

VI. Limitations

  • Identify any potential limitations of the research methodology and how they may impact the results and conclusions

VII. Conclusion

  • Summarize the key aspects of the research methodology section
  • Explain how the research methodology addresses the research question(s) and objectives

Research Methodology Types

Types of Research Methodology are as follows:

Quantitative Research Methodology

This is a research methodology that involves the collection and analysis of numerical data using statistical methods. This type of research is often used to study cause-and-effect relationships and to make predictions.

Qualitative Research Methodology

This is a research methodology that involves the collection and analysis of non-numerical data such as words, images, and observations. This type of research is often used to explore complex phenomena, to gain an in-depth understanding of a particular topic, and to generate hypotheses.

Mixed-Methods Research Methodology

This is a research methodology that combines elements of both quantitative and qualitative research. This approach can be particularly useful for studies that aim to explore complex phenomena and to provide a more comprehensive understanding of a particular topic.

Case Study Research Methodology

This is a research methodology that involves in-depth examination of a single case or a small number of cases. Case studies are often used in psychology, sociology, and anthropology to gain a detailed understanding of a particular individual or group.

Action Research Methodology

This is a research methodology that involves a collaborative process between researchers and practitioners to identify and solve real-world problems. Action research is often used in education, healthcare, and social work.

Experimental Research Methodology

This is a research methodology that involves the manipulation of one or more independent variables to observe their effects on a dependent variable. Experimental research is often used to study cause-and-effect relationships and to make predictions.

Survey Research Methodology

This is a research methodology that involves the collection of data from a sample of individuals using questionnaires or interviews. Survey research is often used to study attitudes, opinions, and behaviors.

Grounded Theory Research Methodology

This is a research methodology that involves the development of theories based on the data collected during the research process. Grounded theory is often used in sociology and anthropology to generate theories about social phenomena.

Research Methodology Example

An Example of Research Methodology could be the following:

Research Methodology for Investigating the Effectiveness of Cognitive Behavioral Therapy in Reducing Symptoms of Depression in Adults

Introduction:

The aim of this research is to investigate the effectiveness of cognitive-behavioral therapy (CBT) in reducing symptoms of depression in adults. To achieve this objective, a randomized controlled trial (RCT) will be conducted using a mixed-methods approach.

Research Design:

The study will follow a pre-test and post-test design with two groups: an experimental group receiving CBT and a control group receiving no intervention. The study will also include a qualitative component, in which semi-structured interviews will be conducted with a subset of participants to explore their experiences of receiving CBT.

Participants:

Participants will be recruited from community mental health clinics in the local area. The sample will consist of 100 adults aged 18-65 years old who meet the diagnostic criteria for major depressive disorder. Participants will be randomly assigned to either the experimental group or the control group.

Intervention :

The experimental group will receive 12 weekly sessions of CBT, each lasting 60 minutes. The intervention will be delivered by licensed mental health professionals who have been trained in CBT. The control group will receive no intervention during the study period.

Data Collection:

Quantitative data will be collected through the use of standardized measures such as the Beck Depression Inventory-II (BDI-II) and the Generalized Anxiety Disorder-7 (GAD-7). Data will be collected at baseline, immediately after the intervention, and at a 3-month follow-up. Qualitative data will be collected through semi-structured interviews with a subset of participants from the experimental group. The interviews will be conducted at the end of the intervention period, and will explore participants’ experiences of receiving CBT.

Data Analysis:

Quantitative data will be analyzed using descriptive statistics, t-tests, and mixed-model analyses of variance (ANOVA) to assess the effectiveness of the intervention. Qualitative data will be analyzed using thematic analysis to identify common themes and patterns in participants’ experiences of receiving CBT.

Ethical Considerations:

This study will comply with ethical guidelines for research involving human subjects. Participants will provide informed consent before participating in the study, and their privacy and confidentiality will be protected throughout the study. Any adverse events or reactions will be reported and managed appropriately.

Data Management:

All data collected will be kept confidential and stored securely using password-protected databases. Identifying information will be removed from qualitative data transcripts to ensure participants’ anonymity.

Limitations:

One potential limitation of this study is that it only focuses on one type of psychotherapy, CBT, and may not generalize to other types of therapy or interventions. Another limitation is that the study will only include participants from community mental health clinics, which may not be representative of the general population.

Conclusion:

This research aims to investigate the effectiveness of CBT in reducing symptoms of depression in adults. By using a randomized controlled trial and a mixed-methods approach, the study will provide valuable insights into the mechanisms underlying the relationship between CBT and depression. The results of this study will have important implications for the development of effective treatments for depression in clinical settings.

How to Write Research Methodology

Writing a research methodology involves explaining the methods and techniques you used to conduct research, collect data, and analyze results. It’s an essential section of any research paper or thesis, as it helps readers understand the validity and reliability of your findings. Here are the steps to write a research methodology:

  • Start by explaining your research question: Begin the methodology section by restating your research question and explaining why it’s important. This helps readers understand the purpose of your research and the rationale behind your methods.
  • Describe your research design: Explain the overall approach you used to conduct research. This could be a qualitative or quantitative research design, experimental or non-experimental, case study or survey, etc. Discuss the advantages and limitations of the chosen design.
  • Discuss your sample: Describe the participants or subjects you included in your study. Include details such as their demographics, sampling method, sample size, and any exclusion criteria used.
  • Describe your data collection methods : Explain how you collected data from your participants. This could include surveys, interviews, observations, questionnaires, or experiments. Include details on how you obtained informed consent, how you administered the tools, and how you minimized the risk of bias.
  • Explain your data analysis techniques: Describe the methods you used to analyze the data you collected. This could include statistical analysis, content analysis, thematic analysis, or discourse analysis. Explain how you dealt with missing data, outliers, and any other issues that arose during the analysis.
  • Discuss the validity and reliability of your research : Explain how you ensured the validity and reliability of your study. This could include measures such as triangulation, member checking, peer review, or inter-coder reliability.
  • Acknowledge any limitations of your research: Discuss any limitations of your study, including any potential threats to validity or generalizability. This helps readers understand the scope of your findings and how they might apply to other contexts.
  • Provide a summary: End the methodology section by summarizing the methods and techniques you used to conduct your research. This provides a clear overview of your research methodology and helps readers understand the process you followed to arrive at your findings.

When to Write Research Methodology

Research methodology is typically written after the research proposal has been approved and before the actual research is conducted. It should be written prior to data collection and analysis, as it provides a clear roadmap for the research project.

The research methodology is an important section of any research paper or thesis, as it describes the methods and procedures that will be used to conduct the research. It should include details about the research design, data collection methods, data analysis techniques, and any ethical considerations.

The methodology should be written in a clear and concise manner, and it should be based on established research practices and standards. It is important to provide enough detail so that the reader can understand how the research was conducted and evaluate the validity of the results.

Applications of Research Methodology

Here are some of the applications of research methodology:

  • To identify the research problem: Research methodology is used to identify the research problem, which is the first step in conducting any research.
  • To design the research: Research methodology helps in designing the research by selecting the appropriate research method, research design, and sampling technique.
  • To collect data: Research methodology provides a systematic approach to collect data from primary and secondary sources.
  • To analyze data: Research methodology helps in analyzing the collected data using various statistical and non-statistical techniques.
  • To test hypotheses: Research methodology provides a framework for testing hypotheses and drawing conclusions based on the analysis of data.
  • To generalize findings: Research methodology helps in generalizing the findings of the research to the target population.
  • To develop theories : Research methodology is used to develop new theories and modify existing theories based on the findings of the research.
  • To evaluate programs and policies : Research methodology is used to evaluate the effectiveness of programs and policies by collecting data and analyzing it.
  • To improve decision-making: Research methodology helps in making informed decisions by providing reliable and valid data.

Purpose of Research Methodology

Research methodology serves several important purposes, including:

  • To guide the research process: Research methodology provides a systematic framework for conducting research. It helps researchers to plan their research, define their research questions, and select appropriate methods and techniques for collecting and analyzing data.
  • To ensure research quality: Research methodology helps researchers to ensure that their research is rigorous, reliable, and valid. It provides guidelines for minimizing bias and error in data collection and analysis, and for ensuring that research findings are accurate and trustworthy.
  • To replicate research: Research methodology provides a clear and detailed account of the research process, making it possible for other researchers to replicate the study and verify its findings.
  • To advance knowledge: Research methodology enables researchers to generate new knowledge and to contribute to the body of knowledge in their field. It provides a means for testing hypotheses, exploring new ideas, and discovering new insights.
  • To inform decision-making: Research methodology provides evidence-based information that can inform policy and decision-making in a variety of fields, including medicine, public health, education, and business.

Advantages of Research Methodology

Research methodology has several advantages that make it a valuable tool for conducting research in various fields. Here are some of the key advantages of research methodology:

  • Systematic and structured approach : Research methodology provides a systematic and structured approach to conducting research, which ensures that the research is conducted in a rigorous and comprehensive manner.
  • Objectivity : Research methodology aims to ensure objectivity in the research process, which means that the research findings are based on evidence and not influenced by personal bias or subjective opinions.
  • Replicability : Research methodology ensures that research can be replicated by other researchers, which is essential for validating research findings and ensuring their accuracy.
  • Reliability : Research methodology aims to ensure that the research findings are reliable, which means that they are consistent and can be depended upon.
  • Validity : Research methodology ensures that the research findings are valid, which means that they accurately reflect the research question or hypothesis being tested.
  • Efficiency : Research methodology provides a structured and efficient way of conducting research, which helps to save time and resources.
  • Flexibility : Research methodology allows researchers to choose the most appropriate research methods and techniques based on the research question, data availability, and other relevant factors.
  • Scope for innovation: Research methodology provides scope for innovation and creativity in designing research studies and developing new research techniques.

Research Methodology Vs Research Methods

Research MethodologyResearch Methods
Research methodology refers to the philosophical and theoretical frameworks that guide the research process. refer to the techniques and procedures used to collect and analyze data.
It is concerned with the underlying principles and assumptions of research.It is concerned with the practical aspects of research.
It provides a rationale for why certain research methods are used.It determines the specific steps that will be taken to conduct research.
It is broader in scope and involves understanding the overall approach to research.It is narrower in scope and focuses on specific techniques and tools used in research.
It is concerned with identifying research questions, defining the research problem, and formulating hypotheses.It is concerned with collecting data, analyzing data, and interpreting results.
It is concerned with the validity and reliability of research.It is concerned with the accuracy and precision of data.
It is concerned with the ethical considerations of research.It is concerned with the practical considerations of research.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Research Paper Formats

Research Paper Format – Types, Examples and...

Appendix in Research Paper

Appendix in Research Paper – Examples and...

Research Gap

Research Gap – Types, Examples and How to...

Table of Contents

Table of Contents – Types, Formats, Examples

Research Contribution

Research Contribution – Thesis Guide

Theoretical Framework

Theoretical Framework – Types, Examples and...

  • Research Process
  • Manuscript Preparation
  • Manuscript Review
  • Publication Process
  • Publication Recognition
  • Language Editing Services
  • Translation Services

Elsevier QRcode Wechat

Choosing the Right Research Methodology: A Guide for Researchers

  • 3 minute read
  • 51.3K views

Table of Contents

Choosing an optimal research methodology is crucial for the success of any research project. The methodology you select will determine the type of data you collect, how you collect it, and how you analyse it. Understanding the different types of research methods available along with their strengths and weaknesses, is thus imperative to make an informed decision.

Understanding different research methods:

There are several research methods available depending on the type of study you are conducting, i.e., whether it is laboratory-based, clinical, epidemiological, or survey based . Some common methodologies include qualitative research, quantitative research, experimental research, survey-based research, and action research. Each method can be opted for and modified, depending on the type of research hypotheses and objectives.

Qualitative vs quantitative research:

When deciding on a research methodology, one of the key factors to consider is whether your research will be qualitative or quantitative. Qualitative research is used to understand people’s experiences, concepts, thoughts, or behaviours . Quantitative research, on the contrary, deals with numbers, graphs, and charts, and is used to test or confirm hypotheses, assumptions, and theories. 

Qualitative research methodology:

Qualitative research is often used to examine issues that are not well understood, and to gather additional insights on these topics. Qualitative research methods include open-ended survey questions, observations of behaviours described through words, and reviews of literature that has explored similar theories and ideas. These methods are used to understand how language is used in real-world situations, identify common themes or overarching ideas, and describe and interpret various texts. Data analysis for qualitative research typically includes discourse analysis, thematic analysis, and textual analysis. 

Quantitative research methodology:

The goal of quantitative research is to test hypotheses, confirm assumptions and theories, and determine cause-and-effect relationships. Quantitative research methods include experiments, close-ended survey questions, and countable and numbered observations. Data analysis for quantitative research relies heavily on statistical methods.

Analysing qualitative vs quantitative data:

The methods used for data analysis also differ for qualitative and quantitative research. As mentioned earlier, quantitative data is generally analysed using statistical methods and does not leave much room for speculation. It is more structured and follows a predetermined plan. In quantitative research, the researcher starts with a hypothesis and uses statistical methods to test it. Contrarily, methods used for qualitative data analysis can identify patterns and themes within the data, rather than provide statistical measures of the data. It is an iterative process, where the researcher goes back and forth trying to gauge the larger implications of the data through different perspectives and revising the analysis if required.

When to use qualitative vs quantitative research:

The choice between qualitative and quantitative research will depend on the gap that the research project aims to address, and specific objectives of the study. If the goal is to establish facts about a subject or topic, quantitative research is an appropriate choice. However, if the goal is to understand people’s experiences or perspectives, qualitative research may be more suitable. 

Conclusion:

In conclusion, an understanding of the different research methods available, their applicability, advantages, and disadvantages is essential for making an informed decision on the best methodology for your project. If you need any additional guidance on which research methodology to opt for, you can head over to Elsevier Author Services (EAS). EAS experts will guide you throughout the process and help you choose the perfect methodology for your research goals.

Why is data validation important in research

Why is data validation important in research?

Importance-of-Data-Collection

When Data Speak, Listen: Importance of Data Collection and Analysis Methods

You may also like.

what is a descriptive research design

Descriptive Research Design and Its Myriad Uses

Doctor doing a Biomedical Research Paper

Five Common Mistakes to Avoid When Writing a Biomedical Research Paper

Writing in Environmental Engineering

Making Technical Writing in Environmental Engineering Accessible

Risks of AI-assisted Academic Writing

To Err is Not Human: The Dangers of AI-assisted Academic Writing

Importance-of-Data-Collection

Writing a good review article

Scholarly Sources What are They and Where can You Find Them

Scholarly Sources: What are They and Where can You Find Them?

Input your search keywords and press Enter.

Geektonight

  • Research Report
  • Post last modified: 11 January 2022
  • Reading time: 25 mins read
  • Post category: Research Methodology

importance of research report in research methodology

What is Research Report?

Research reporting is the oral or written presentation of the findings in such detail and form as to be readily understood and assessed by the society, economy or particularly by the researchers.

As earlier said that it is the final stage of the research process and its purpose is to convey to interested persons the whole result of the study. Report writing is common to both academic and managerial situations. In academics, a research report is prepared for comprehensive and application-oriented learning. In businesses or organisations, reports are used for the basis of decision making.

Table of Content

  • 1 What is Research Report?
  • 2 Research Report Definition
  • 3.1 Preliminary Part
  • 3.2 Introduction of the Report
  • 3.3 Review of Literature
  • 3.4 The Research Methodology
  • 3.5 Results
  • 3.6 Concluding Remarks
  • 3.7 Bibliography
  • 4 Significance of Report Writing
  • 5 Qualities of Good Report
  • 6.1 Analysis of the subject matter
  • 6.2 Research outline
  • 6.3 Preparation of rough draft
  • 6.4 Rewriting and polishing
  • 6.5 Writing the final draft
  • 7 Precautions for Writing Research Reports
  • 8.1.1 Technical Report
  • 8.1.2 Popular Report
  • 8.2.1 Written Report
  • 8.2.2 Oral Report

Research Report Definition

According to C. A. Brown , “A report is a communication from someone who has information to someone who wants to use that information.”

According to Goode and Hatt , “The preparation of report is the final stage of research, and it’s purpose is to convey to the interested persons the whole result of the study, in sufficient detail and so arranged as to enable each reader to comprehend the data and to determine for himself the validity of the conclusions.”

It is clear from the above definitions of a research report, it is a brief account of the problem of investigation, the justification of its selection and the procedure of analysis and interpretation. It is only a summary of the entire research proceedings.

In other words, it can be defined as written documents, which presents information in a specialized and concise manner.

Contents of Research Report

Although no hard and fast rules can be laid down, the report must contain the following points.

  • Acknowledgement
  • Table of contents
  • List of tables
  • List of graphs
  • Introduction
  • Background of the research study
  • Statement of the problem
  • Brief outline of the chapters
  • Books review
  • Review of articles published in books, journals, periodicals, etc
  • Review of articles published in leading newspapers
  • Working papers / discusssion paper / study reports
  • Articles on authorised websites
  • A broad conclusion and indications for further research
  • The theoretical framework (variables)
  • Model / hypothesis
  • Instruments for data collection
  • Data collection
  • Pilot study
  • Processing of data
  • Hypothesis / model testing
  • Data analysis and interpretation
  • Tables and figures
  • Conclusions
  • Shortcomings
  • Suggestions to the problems
  • Direction for further research

Preliminary Part

The preliminary part may have seven major components – cover, title, preface, acknowledgement, table of contents, list of tables, list of graphs. Long reports presented in book form have a cover made up of a card sheet. The cover contains title of the research report, the authority to whom the report is submitted, name of the author, etc.

The preface introduces the report to the readers. It gives a very brief introduction of the report. In the acknowledgements author mention names of persons and organisations that have extended co-operation and helped in the various stages of research. Table of contents is essential. It gives the title and page number of each chapter.

Introduction of the Report

The introduction of the research report should clearly and logically bring out the background of the problem addressed in the research. The purpose of the introduction is to introduce the research project to the readers. A clear statement of the problem with specific questions to be answered is presented in the introduction. It contains a brief outline of the chapters.

Review of Literature

The third section reviews the important literature related to the study. A comprehensive review of the research literature referred to must be made. Previous research studies and the important writings in the area under study should be reviewed. Review of literature is helpful to provide a background for the development of the present study.

The researcher may review concerned books, articles published in edited books, journals and periodicals. Researcher may also take review of articles published in leading newspapers. A researcher should study working papers/discussion papers/study reports. It is essential for a broad conclusion and indications for further research.

The Research Methodology

Research methodology is an integral part of the research. It should clearly indicate the universe and the selection of samples, techniques of data collection, analysis and interpretation, statistical techniques, etc.

Results contain pilot study, processing of data, hypothesis/model testing, data analysis and interpretation, tables and figures, etc. This is the heart of the research report. If a pilot study is planned to be used, it’s purpose should be given in the research methodology.

The collected data and the information should be edited, coded, tabulated and analysed with a view to arriving at a valid and authentic conclusion. Tables and figures are used to clarify the significant relationship. The results obtained through tables, graphs should be critically interpreted.

Concluding Remarks

The concluding remarks should discuss the results obtained in the earlier sections, as well as their usefulness and implications. It contains findings, conclusions, shortcomings, suggestions to the problem and direction for future research. Findings are statements of factual information based upon the data analysis.

Conclusions must clearly explain whether the hypothesis have been established and rejected. This part requires great expertise and preciseness. A report should also refer to the limitations of the applicability of the research inferences. It is essential to suggest the theoretical, practical and policy implications of the research. The suggestions should be supported by scientific and logical arguments. The future direction of research based on the work completed should also be outlined.

Bibliography

The bibliography is an alphabetic list of books, journal articles, reports, etc, published or unpublished, read, referred to, examined by the researcher in preparing the report. The bibliography should follow standard formats for books, journal articles, research reports.

The end of the research report may consist of appendices, listed in respect of all technical data. Appendices are for the purpose of providing detailed data or information that would be too cumbersome within the main body of the research report.

Significance of Report Writing

Report writing is an important communication medium in organisations. The most crucial findings might have come out through a research report. Report is common to academics and managers also. Reports are used for comprehensive and application oriented learning in academics. In organisations, reports are used for the basis of decision making. The importance of report writing can be discussed as under.

Through research reports, a manager or an executive can quickly get an idea of a current scenario which improves his information base for making sound decisions affecting future operations of the company or enterprise. The research report acts as a means of communication of various research findings to the interested parties, organisations and general public.

Good report writing play, a significant role of conveying unknown facts about the phenomenon to the concerned parties. This may provide new insights and new opportunities to the people. Research report plays a key role in making effective decisions in marketing, production, banking, materials, human resource development and government also. Good report writing is used for economic planning and optimum utilisation of resources for the development of a nation.

Report writing facilitates the validation of generalisation. A research report is an end product of research. As earlier said that report writing provides useful information in arriving at rational decisions that may reform the business and society. The findings, conclusions, suggestions and recommendations are useful to academicians, scholars and policymakers. Report writing provides reference material for further research in the same or similar areas of research to the concerned parties.

While preparing a research report, a researcher should take some proper precautions. Report writing should be simple, lucid and systematic. Report writing should be written speedily without interrupting the continuity of thought. The report writing should sustain the interest of readers.

Qualities of Good Report

Report writing is a highly skilled job. It is a process of analysing, understanding and consolidating the findings and projecting a meaningful view of the phenomenon studied. A good report writing is essential for effective communication.

Following are the essential qualities of good report:

  • A research report is essentially a scientific documentation. It should have a suggestive title, headings and sub-headings, paragraphs arranged in a logical sequence.
  • Good research report should include everything that is relevant and exclude everything that is irrelevant. It means that it should contain the facts rather than opinion.
  • The language of the report should be simple and unambiguous. It means that it should be free from biases of the researchers derived from the past experience. Confusion, pretentiousness and pomposity should be carefully guarded against. It means that the language of the report should be simple, employing appropriate words, idioms and expressions.
  • The report must be free from grammatical mistakes. It must be grammatically accurate. Faulty construction of sentences makes the meaning of the narrative obscure and ambiguous.
  • The report has to take into consideration two facts. Firstly, for whom the report is meant and secondly, what is his level of knowledge. The report has to look to the subject matter of the report and the fact as to the level of knowledge of the person for whom it is meant. Because all reports are not meant for research scholars.

Steps in Writing Research Report

Report writing is a time consuming and expensive exercise. Therefore, reports have to be very sharply focused in purpose content and readership. There is no single universally acceptable method of writing a research report.

Following are the general steps in writing a research report:

Analysis of the subject matter

Research outline, preparation of rough draft, rewriting and polishing, writing the final draft.

This is the first and important step in writing a research report. It is concerned with the development of a subject. Subject matter should be written in a clear, logical and concise manner. The style adopted should be open, straightforward and dignified and folk style language should be avoided.

The data, the reliability and validity of the results of the statistical analysis should be in the form of tables, figures and equations. All redundancy in the data or results presented should be eliminated.

The research outline is an organisational framework prepared by the researcher well in advance. It is an aid to logical organisation of material and a reminder of the points to be stressed in the report. In the process of writing, if need be, outline may be revised accordingly.

Time and place of the study, scope and limitations of the study, study design, summary of pilot study, methods of data collection, analysis interpretation, etc., may be included in a research outline.

Having prepared the primary and secondary data, the researcher has to prepare a rough draft. While preparing the rough draft, the researcher should keep the objectives of the research in mind, and focus on one objective at a time. The researcher should make a checklist of the important points that are necessary to be covered in the manuscript. A researcher should use dictionary and relevant reference materials as and when required.

This is an important step in writing a research report. It takes more time than a rough draft. While rewriting and polishing, a researcher should check the report for weakness in logical development or presentation. He should take breaks in between rewriting and polishing since this gives the time to incubate the ideas.

The last and important step is writing the final draft. The language of the report should be simple, employing appropriate words and expressions and should avoid vague expressions such as ‘it seems’ and ‘there may be’ etc.

It should not used personal pronouns, such as I, We, My, Us, etc and should substitute these by such expressions as a researcher, investigator, etc. Before the final drafting of the report, it is advisable that the researcher should prepare a first draft for critical considerations and possible improvements. It will be helpful in writing the final draft. Finally, the report should be logically outlined with the future directions of the research based on the work completed.

Precautions for Writing Research Reports

A research report is a means of conveying the research study to a specific target audience. The following precautions should be taken while preparing a research report:

  • Its hould belong enough to cover the subject and short enough to preserve interest.
  • It should not be dull and complicated.
  • It should be simple, without the usage of abstract terms and technical jargons.
  • It should offer ready availability of findings with the help of charts, tables and graphs, as readers prefer quick knowledge of main findings.
  • The layout of the report should be in accordance with the objectives of the research study.
  • There should be no grammatical errors and writing should adhere to the techniques of report writing in case of quotations, footnotes and documentations.
  • It should be original, intellectual and contribute to the solution of a problem or add knowledge to the concerned field.
  • Appendices should been listed with respect to all the technical data in the report.
  • It should be attractive, neat and clean, whether handwritten or typed.
  • The report writer should refrain from confusing the possessive form of the word ‘it’ is with ‘it’s.’ The accurate possessive form of ‘it is’ is ‘its.’ The use of ‘it’s’ is the contractive form of ‘it is.
  • A report should not have contractions. Examples are ‘didn’t’ or ‘it’s.’ In report writing, it is best to use the non-contractive form. Therefore, the examples would be replaced by ‘did not’ and ‘it is.’ Using ‘Figure’ instead of ‘Fig.’ and ‘Table’ instead of ‘Tab.’ will spare the reader of having to translate the abbreviations, while reading. If abbreviations are used, use them consistently throughout the report. For example, do not switch among ‘versus,’ and ‘vs’.
  • It is advisable to avoid using the word ‘very’ and other such words that try to embellish a description. They do not add any extra meaning and, therefore, should be dropped.
  • Repetition hampers lucidity. Report writers must avoid repeating the same word more than once within a sentence.
  • When you use the word ‘this’ or ‘these’ make sure you indicate to what you are referring. This reduces the ambiguity in your writing and helps to tie sentences together.
  • Do not use the word ‘they’ to refer to a singular person. You can either rewrite the sentence to avoid needing such a reference or use the singular ‘he or she.’

Types of Research Report

Research reports are designed in order to convey and record the information that will be of practical use to the reader. It is organized into distinct units of specific and highly visible information. The kind of audience addressed in the research report decides the type of report.

Research reports can be categorized on the following basis:

Classification on the Basis of Information

Classification on the basis of representation.

Following are the ways through which the results of the research report can be presented on the basis of information contained:

Technical Report

A technical report is written for other researchers. In writing the technical reports, the importance is mainly given to the methods that have been used to collect the information and data, the presumptions that are made and finally, the various presentation techniques that are used to present the findings and data.

Following are main features of a technical report:

  • Summary: It covers a brief analysis of the findings of the research in a very few pages. 
  • Nature: It contains the reasons for which the research is undertaken, the analysis and the data that is required in order to prepare a report. 
  • Methods employed: It contains a description of the methods that were employed in order to collect the data. 
  • Data: It covers a brief analysis of the various sources from which the data has been collected with their features and drawbacks 
  • Analysis of data and presentation of the findings: It contains the various forms through which the data that has been analysed can be presented. 
  • Conclusions: It contains a brief explanation of findings of the research. 
  • Bibliography: It contains a detailed analysis of the various bibliographies that have been used in order to conduct a research. 
  • Technical appendices: It contains the appendices for the technical matters and for questionnaires and mathematical derivations. 
  • Index: The index of the technical report must be provided at the end of the report.

Popular Report

A popular report is formulated when there is a need to draw conclusions of the findings of the research report. One of the main points of consideration that should be kept in mind while formulating a research report is that it must be simple and attractive. It must be written in a very simple manner that is understandable to all. It must also be made attractive by using large prints, various sub-headings and by giving cartoons occasionally.

Following are the main points that must be kept in mind while preparing a popular report:

  • Findings and their implications : While preparing a popular report, main importance is given to the findings of the information and the conclusions that can be drawn out of these findings.
  • Recommendations for action : If there are any deviations in the report then recommendations are made for taking corrective action in order to rectify the errors.
  • Objective of the study : In a popular report, the specific objective for which the research has been undertaken is presented.
  • Methods employed : The report must contain the various methods that has been employed in order to conduct a research.
  • Results : The results of the research findings must be presented in a suitable and appropriate manner by taking the help of charts and diagrams.
  • Technical appendices : The report must contain an in-depth information used to collect the data in the form of appendices.

Following are the ways through which the results of the research report can be presented on the basis of representation:

  • Writtenreport
  • Oral report

Written Report

A written report plays a vital role in every business operation. The manner in which an organization writes business letters and business reports creates an impression of its standard. Therefore, the organization should emphasize on the improvement of the writing skills of the employees in order to maintain effective relations with their customers.

Writing effective written reports requires a lot of hard work. Therefore, before you begin writing, it is important to know the objective, i.e., the purpose of writing, collection and organization of required data.

Oral Report

At times, oral presentation of the results that are drawn out of research is considered effective, particularly in cases where policy recommendations are to be made. This approach proves beneficial because it provides a medium of interaction between a listener and a speaker. This leads to a better understanding of the findings and their implications.

However, the main drawback of oral presentation is the lack of any permanent records related to the research. Oral presentation of the report is also effective when it is supported with various visual devices, such as slides, wall charts and whiteboards that help in better understanding of the research reports.

Business Ethics

( Click on Topic to Read )

  • What is Ethics?
  • What is Business Ethics?
  • Values, Norms, Beliefs and Standards in Business Ethics
  • Indian Ethos in Management
  • Ethical Issues in Marketing
  • Ethical Issues in HRM
  • Ethical Issues in IT
  • Ethical Issues in Production and Operations Management
  • Ethical Issues in Finance and Accounting
  • What is Corporate Governance?
  • What is Ownership Concentration?
  • What is Ownership Composition?
  • Types of Companies in India
  • Internal Corporate Governance
  • External Corporate Governance
  • Corporate Governance in India
  • What is Enterprise Risk Management (ERM)?
  • What is Assessment of Risk?
  • What is Risk Register?
  • Risk Management Committee

Corporate social responsibility (CSR)

  • Theories of CSR
  • Arguments Against CSR
  • Business Case for CSR
  • Importance of CSR in India
  • Drivers of Corporate Social Responsibility
  • Developing a CSR Strategy
  • Implement CSR Commitments
  • CSR Marketplace
  • CSR at Workplace
  • Environmental CSR
  • CSR with Communities and in Supply Chain
  • Community Interventions
  • CSR Monitoring
  • CSR Reporting
  • Voluntary Codes in CSR
  • What is Corporate Ethics?

Lean Six Sigma

  • What is Six Sigma?
  • What is Lean Six Sigma?
  • Value and Waste in Lean Six Sigma
  • Six Sigma Team
  • MAIC Six Sigma
  • Six Sigma in Supply Chains
  • What is Binomial, Poisson, Normal Distribution?
  • What is Sigma Level?
  • What is DMAIC in Six Sigma?
  • What is DMADV in Six Sigma?
  • Six Sigma Project Charter
  • Project Decomposition in Six Sigma
  • Critical to Quality (CTQ) Six Sigma
  • Process Mapping Six Sigma
  • Flowchart and SIPOC
  • Gage Repeatability and Reproducibility
  • Statistical Diagram
  • Lean Techniques for Optimisation Flow
  • Failure Modes and Effects Analysis (FMEA)
  • What is Process Audits?
  • Six Sigma Implementation at Ford
  • IBM Uses Six Sigma to Drive Behaviour Change
  • Research Methodology
  • What is Research?
  • What is Hypothesis?
  • Sampling Method
  • Research Methods
  • Data Collection in Research
  • Methods of Collecting Data

Application of Business Research

  • Levels of Measurement
  • What is Sampling?
  • Hypothesis Testing
  • What is Management?
  • Planning in Management
  • Decision Making in Management
  • What is Controlling?
  • What is Coordination?
  • What is Staffing?
  • Organization Structure
  • What is Departmentation?
  • Span of Control
  • What is Authority?
  • Centralization vs Decentralization
  • Organizing in Management
  • Schools of Management Thought
  • Classical Management Approach
  • Is Management an Art or Science?
  • Who is a Manager?

Operations Research

  • What is Operations Research?
  • Operation Research Models
  • Linear Programming
  • Linear Programming Graphic Solution
  • Linear Programming Simplex Method
  • Linear Programming Artificial Variable Technique
  • Duality in Linear Programming
  • Transportation Problem Initial Basic Feasible Solution
  • Transportation Problem Finding Optimal Solution
  • Project Network Analysis with Critical Path Method
  • Project Network Analysis Methods
  • Project Evaluation and Review Technique (PERT)
  • Simulation in Operation Research
  • Replacement Models in Operation Research

Operation Management

  • What is Strategy?
  • What is Operations Strategy?
  • Operations Competitive Dimensions
  • Operations Strategy Formulation Process
  • What is Strategic Fit?
  • Strategic Design Process
  • Focused Operations Strategy
  • Corporate Level Strategy
  • Expansion Strategies
  • Stability Strategies
  • Retrenchment Strategies
  • Competitive Advantage
  • Strategic Choice and Strategic Alternatives
  • What is Production Process?
  • What is Process Technology?
  • What is Process Improvement?
  • Strategic Capacity Management
  • Production and Logistics Strategy
  • Taxonomy of Supply Chain Strategies
  • Factors Considered in Supply Chain Planning
  • Operational and Strategic Issues in Global Logistics
  • Logistics Outsourcing Strategy
  • What is Supply Chain Mapping?
  • Supply Chain Process Restructuring
  • Points of Differentiation
  • Re-engineering Improvement in SCM
  • What is Supply Chain Drivers?
  • Supply Chain Operations Reference (SCOR) Model
  • Customer Service and Cost Trade Off
  • Internal and External Performance Measures
  • Linking Supply Chain and Business Performance
  • Netflix’s Niche Focused Strategy
  • Disney and Pixar Merger
  • Process Planning at Mcdonald’s

Service Operations Management

  • What is Service?
  • What is Service Operations Management?
  • What is Service Design?
  • Service Design Process
  • Service Delivery
  • What is Service Quality?
  • Gap Model of Service Quality
  • Juran Trilogy
  • Service Performance Measurement
  • Service Decoupling
  • IT Service Operation
  • Service Operations Management in Different Sector

Procurement Management

  • What is Procurement Management?
  • Procurement Negotiation
  • Types of Requisition
  • RFX in Procurement
  • What is Purchasing Cycle?
  • Vendor Managed Inventory
  • Internal Conflict During Purchasing Operation
  • Spend Analysis in Procurement
  • Sourcing in Procurement
  • Supplier Evaluation and Selection in Procurement
  • Blacklisting of Suppliers in Procurement
  • Total Cost of Ownership in Procurement
  • Incoterms in Procurement
  • Documents Used in International Procurement
  • Transportation and Logistics Strategy
  • What is Capital Equipment?
  • Procurement Process of Capital Equipment
  • Acquisition of Technology in Procurement
  • What is E-Procurement?
  • E-marketplace and Online Catalogues
  • Fixed Price and Cost Reimbursement Contracts
  • Contract Cancellation in Procurement
  • Ethics in Procurement
  • Legal Aspects of Procurement
  • Global Sourcing in Procurement
  • Intermediaries and Countertrade in Procurement

Strategic Management

  • What is Strategic Management?
  • What is Value Chain Analysis?
  • Mission Statement
  • Business Level Strategy
  • What is SWOT Analysis?
  • What is Competitive Advantage?
  • What is Vision?
  • What is Ansoff Matrix?
  • Prahalad and Gary Hammel
  • Strategic Management In Global Environment
  • Competitor Analysis Framework
  • Competitive Rivalry Analysis
  • Competitive Dynamics
  • What is Competitive Rivalry?
  • Five Competitive Forces That Shape Strategy
  • What is PESTLE Analysis?
  • Fragmentation and Consolidation Of Industries
  • What is Technology Life Cycle?
  • What is Diversification Strategy?
  • What is Corporate Restructuring Strategy?
  • Resources and Capabilities of Organization
  • Role of Leaders In Functional-Level Strategic Management
  • Functional Structure In Functional Level Strategy Formulation
  • Information And Control System
  • What is Strategy Gap Analysis?
  • Issues In Strategy Implementation
  • Matrix Organizational Structure
  • What is Strategic Management Process?

Supply Chain

  • What is Supply Chain Management?
  • Supply Chain Planning and Measuring Strategy Performance
  • What is Warehousing?
  • What is Packaging?
  • What is Inventory Management?
  • What is Material Handling?
  • What is Order Picking?
  • Receiving and Dispatch, Processes
  • What is Warehouse Design?
  • What is Warehousing Costs?

You Might Also Like

What is literature review importance, functions, process,, what is research methodology, what is questionnaire design characteristics, types, don’t, what is sampling need, advantages, limitations, sampling process and characteristics of good sample design, what is scaling techniques types, classifications, techniques, cross-sectional and longitudinal research, what is research problem components, identifying, formulating,, what is sample size determination, formula, determining,, types of charts used in data analysis, what is research design types, leave a reply cancel reply.

You must be logged in to post a comment.

World's Best Online Courses at One Place

We’ve spent the time in finding, so you can spend your time in learning

Digital Marketing

Personal Growth

importance of research report in research methodology

importance of research report in research methodology

Development

importance of research report in research methodology

importance of research report in research methodology

importance of research report in research methodology

IEEE Account

  • Change Username/Password
  • Update Address

Purchase Details

  • Payment Options
  • Order History
  • View Purchased Documents

Profile Information

  • Communications Preferences
  • Profession and Education
  • Technical Interests
  • US & Canada: +1 800 678 4333
  • Worldwide: +1 732 981 0060
  • Contact & Support
  • About IEEE Xplore
  • Accessibility
  • Terms of Use
  • Nondiscrimination Policy
  • Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity. © Copyright 2024 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.

Information

  • Author Services

Initiatives

You are accessing a machine-readable page. In order to be human-readable, please install an RSS reader.

All articles published by MDPI are made immediately available worldwide under an open access license. No special permission is required to reuse all or part of the article published by MDPI, including figures and tables. For articles published under an open access Creative Common CC BY license, any part of the article may be reused without permission provided that the original article is clearly cited. For more information, please refer to https://www.mdpi.com/openaccess .

Feature papers represent the most advanced research with significant potential for high impact in the field. A Feature Paper should be a substantial original Article that involves several techniques or approaches, provides an outlook for future research directions and describes possible research applications.

Feature papers are submitted upon individual invitation or recommendation by the scientific editors and must receive positive feedback from the reviewers.

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Original Submission Date Received: .

  • Active Journals
  • Find a Journal
  • Proceedings Series
  • For Authors
  • For Reviewers
  • For Editors
  • For Librarians
  • For Publishers
  • For Societies
  • For Conference Organizers
  • Open Access Policy
  • Institutional Open Access Program
  • Special Issues Guidelines
  • Editorial Process
  • Research and Publication Ethics
  • Article Processing Charges
  • Testimonials
  • Preprints.org
  • SciProfiles
  • Encyclopedia

membranes-logo

Article Menu

importance of research report in research methodology

  • Subscribe SciFeed
  • Recommended Articles
  • Author Biographies
  • Google Scholar
  • on Google Scholar
  • Table of Contents

Find support for a specific problem in the support section of our website.

Please let us know what you think of our products and services.

Visit our dedicated information section to learn more about MDPI.

JSmol Viewer

Research on reverse osmosis (ro)/nanofiltration (nf) membranes based on thin film composite (tfc) structures: mechanism, recent progress and application.

importance of research report in research methodology

1. Introduction

2. mechanism of pa layer formation, 3. modification methods and latest research progress, 3.1. application of new monomers, 3.2. modification of two-phase solution, 3.3. new modification methods, 4. application, 4.1. applications in different fields, 4.1.1. treatment of industrial wastewater, 4.1.2. desalination, 4.1.3. micropollutant, 4.1.4. resource recovery, 4.2. membranes module, 4.3. membrane fouling and damage, 4.3.1. membrane fouling, 4.3.2. membranes damage, 5. conclusions, author contributions, institutional review board statement, informed consent statement, conflicts of interest.

  • Lu, D.; Yao, Z.; Jiao, L.; Waheed, M.; Sun, Z.; Zhang, L. Separation mechanism, selectivity enhancement strategies and advanced materials for mono-/multivalent ion-selective nanofiltration membrane. Adv. Membr. 2022 , 2 , 100032. [ Google Scholar ] [ CrossRef ]
  • Lee, J.; Jang, J.H.; Chae, H.-R.; Lee, S.H.; Lee, C.-H.; Park, P.-K.; Won, Y.-J.; Kim, I.-C. A facile route to enhance the water flux of a thin-film composite reverse osmosis membrane: Incorporating thickness-controlled graphene oxide into a highly porous support layer. J. Mater. Chem. A 2015 , 3 , 22053–22060. [ Google Scholar ] [ CrossRef ]
  • Lau, W.; Ismail, A.; Misdan, N.; Kassim, M. A recent progress in thin film composite membrane: A review. Desalination 2012 , 287 , 190–199. [ Google Scholar ] [ CrossRef ]
  • Yang, Z.; Sun, P.-F.; Li, X.; Gan, B.; Wang, L.; Song, X.; Park, H.-D.; Tang, C.Y. A Critical Review on Thin-Film Nanocomposite Membranes with Interlayered Structure: Mechanisms, Recent Developments, and Environmental Applications. Environ. Sci. Technol. 2020 , 54 , 15563–15583. [ Google Scholar ] [ CrossRef ]
  • Yadav, D.; Karki, S.; Ingole, P.G. Current advances and opportunities in the development of nanofiltration (NF) membranes in the area of wastewater treatment, water desalination, biotechnological and pharmaceutical applications. J. Environ. Chem. Eng. 2022 , 10 , 108109. [ Google Scholar ] [ CrossRef ]
  • Zhao, Y.; Tong, T.; Wang, X.; Lin, S.; Reid, E.M.; Chen, Y. Differentiating Solutes with Precise Nanofiltration for Next Generation Environmental Separations: A Review. Environ. Sci. Technol. 2021 , 55 , 1359–1376. [ Google Scholar ] [ CrossRef ]
  • Farahbakhsh, J.; Vatanpour, V.; Khoshnam, M.; Zargar, M. Recent advancements in the application of new monomers and membrane modification techniques for the fabrication of thin film composite membranes: A review. React. Funct. Polym. 2021 , 166 , 105015. [ Google Scholar ] [ CrossRef ]
  • Lim, Y.J.; Goh, K.; Lai, G.S.; Zhao, Y.; Torres, J.; Wang, R. Unraveling the role of support membrane chemistry and pore properties on the formation of thin-film composite polyamide membranes. J. Membr. Sci. 2021 , 640 , 119805. [ Google Scholar ] [ CrossRef ]
  • Shi, M.; Wang, Z.; Zhao, S.; Wang, J.; Wang, S. A support surface pore structure re-construction method to enhance the flux of TFC RO membrane. J. Membr. Sci. 2017 , 541 , 39–52. [ Google Scholar ] [ CrossRef ]
  • Peng, L.E.; Yao, Z.; Yang, Z.; Guo, H.; Tang, C.Y. Dissecting the Role of Substrate on the Morphology and Separation Properties of Thin Film Composite Polyamide Membranes: Seeing Is Believing. Environ. Sci. Technol. 2020 , 54 , 6978–6986. [ Google Scholar ] [ CrossRef ]
  • Matthews, T.D.; Yan, H.; Cahill, D.G.; Coronell, O.; Mariñas, B.J. Growth dynamics of interfacially polymerized polyamide layers by diffuse reflectance spectroscopy and Rutherford backscattering spectrometry. J. Membr. Sci. 2013 , 429 , 71–80. [ Google Scholar ] [ CrossRef ]
  • Lin, L.; Lopez, R.; Ramon, G.Z.; Coronell, O. Investigating the void structure of the polyamide active layers of thin-film composite membranes. J. Membr. Sci. 2016 , 497 , 365–376. [ Google Scholar ] [ CrossRef ]
  • Li, X.; Wang, Z.; Han, X.; Liu, Y.; Wang, C.; Yan, F.; Wang, J. Regulating the interfacial polymerization process toward high-performance polyamide thin-film composite reverse osmosis and nanofiltration membranes: A review. J. Membr. Sci. 2021 , 640 , 119765. [ Google Scholar ] [ CrossRef ]
  • Wu, S.; Wang, F.; Zhou, S.; Long, L.; Yang, Z.; Tang, C.Y. Vacuum-assisted MPD loading toward promoted nanoscale structure and enhanced water permeance of polyamide RO membrane. Sep. Purif. Technol. 2022 , 297 , 121547. [ Google Scholar ] [ CrossRef ]
  • Seah, M.Q.; Lau, W.J.; Goh, P.S.; Ismail, A.F. Greener synthesis of functionalized-GO incorporated TFN NF membrane for potential recovery of saline water from salt/dye mixed solution. Desalination 2022 , 523 , 115403. [ Google Scholar ] [ CrossRef ]
  • Chen, B.; Yu, S.; Zhao, X. The influence of RO membrane surface properties on surfactant fouling in radioactive wastewater treatment. Process Saf. Environ. Prot. 2021 , 149 , 858–865. [ Google Scholar ] [ CrossRef ]
  • Yu, T.; Zhao, Y.; Sun, S.; Yong, N.G.H.; Li, P.; Wang, L.; Bi, X.; Shi, X.; Chen, D. Low feed water temperature effects on RO membrane fouling development for municipal wastewater reclamation. J. Water Process Eng. 2022 , 49 , 103093. [ Google Scholar ] [ CrossRef ]
  • Hirose, M. The relationship between polymer molecular structure of RO membrane skin layers and their RO performances. J. Membr. Sci. 1997 , 123 , 151–156. [ Google Scholar ] [ CrossRef ]
  • Peng, L.E.; Yao, Z.; Liu, X.; Deng, B.; Guo, H.; Tang, C.Y. Tailoring Polyamide Rejection Layer with Aqueous Carbonate Chemistry for Enhanced Membrane Separation: Mechanistic Insights, Chemistry-Structure-Property Relationship, and Environmental Implications. Environ. Sci. Technol. 2019 , 53 , 9764–9770. [ Google Scholar ] [ CrossRef ]
  • Ma, X.; Yang, Z.; Yao, Z.; Guo, H.; Xu, Z.; Tang, C.Y. Tuning roughness features of thin film composite polyamide membranes for simultaneously enhanced permeability, selectivity and anti-fouling performance. J. Colloid. Interface Sci. 2019 , 540 , 382–388. [ Google Scholar ] [ CrossRef ]
  • Peng, L.E.; Jiang, Y.; Wen, L.; Guo, H.; Yang, Z.; Tang, C.Y. Does interfacial vaporization of organic solvent affect the structure and separation properties of polyamide RO membranes? J. Membr. Sci. 2021 , 625 , 119173. [ Google Scholar ] [ CrossRef ]
  • Peng, L.E.; Yang, Z.; Long, L.; Zhou, S.; Guo, H.; Tang, C.Y. A critical review on porous substrates of TFC polyamide membranes: Mechanisms, membrane performances, and future perspectives. J. Membr. Sci. 2022 , 641 , 119871. [ Google Scholar ] [ CrossRef ]
  • Song, X.; Gan, B.; Qi, S.; Guo, H.; Tang, C.Y.; Zhou, Y.; Gao, C. Intrinsic Nanoscale Structure of Thin Film Composite Polyamide Membranes: Connectivity, Defects, and Structure–Property Correlation, Environ. Sci. Technol. 2020 , 54 , 3559–3569. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Li, L.-Q.; Tang, Y.-J.; Xu, Z.-L. Can the NF membrane directly obtained by the interfacial polymerization of MPD and TMC? J. Membr. Sci. 2022 , 656 , 120618. [ Google Scholar ] [ CrossRef ]
  • Liang, Y.; Zhu, Y.; Liu, C.; Lee, K.-R.; Hung, W.-S.; Wang, Z.; Li, Y.; Elimelech, M.; Jin, J.; Lin, S. Polyamide nanofiltration membrane with highly uniform sub-nanometre pores for sub-1 Å precision separation. Nat. Commun. 2020 , 11 , 2015. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Grzebyk, K.; Armstrong, M.D.; Coronell, O. Accessing greater thickness and new morphology features in polyamide active layers of thin-film composite membranes by reducing restrictions in amine monomer supply. J. Membr. Sci. 2021 , 644 , 120112. [ Google Scholar ] [ CrossRef ]
  • Singh, P.S.; Ray, P.; Xie, Z.; Hoang, M. Synchrotron SAXS to probe cross-linked network of polyamide ‘reverse osmosis’ and ‘nanofiltration’ membranes. J. Membr. Sci. 2012 , 421–422 , 51–59. [ Google Scholar ] [ CrossRef ]
  • Mansouri, J.; Huang, S.; Agostino, A.; Kuchel, R.P.; Leslie, G.; Tang, C.Y.; Fane, A.G. Kinetics of support-free interfacial polymerization polyamide films by in-situ absorbance spectroscopy. Desalination 2023 , 549 , 116349. [ Google Scholar ] [ CrossRef ]
  • Nowbahar, A.; Mansard, V.; Mecca, J.M.; Paul, M.; Arrowood, T.; Squires, T.M. Measuring Interfacial Polymerization Kinetics Using Microfluidic Interferometry. J. Am. Chem. Soc. 2018 , 140 , 3173–3176. [ Google Scholar ] [ CrossRef ]
  • Dennison, J.M.; Xie, X.; Murphy, C.J.; Cahill, D.G. Density; Constants, E. and Thermal Conductivity of Interfacially Polymerized Polyamide Films for Reverse Osmosis Membranes. ACS Appl. Nano Mater. 2018 , 1 , 5008–5018. [ Google Scholar ] [ CrossRef ]
  • Abdikheibari, S.; Lei, W.; Dumée, L.F.; Barlow, A.J.; Baskaran, K. Novel thin film nanocomposite membranes decorated with few-layered boron nitride nanosheets for simultaneously enhanced water flux and organic fouling resistance. Appl. Surf. Sci. 2019 , 488 , 565–577. [ Google Scholar ] [ CrossRef ]
  • Khorshidi, B.; Thundat, T.; Fleck, B.A.; Sadrzadeh, M. A Novel Approach Toward Fabrication of High Performance Thin Film Composite Polyamide Membranes. Sci. Rep. 2016 , 6 , 22069. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Zhou, C.; Shi, Y.; Sun, C.; Yu, S.; Liu, M.; Gao, C. Thin-film composite membranes formed by interfacial polymerization with natural material sericin and trimesoyl chloride for nanofiltration. J. Membr. Sci. 2014 , 471 , 381–391. [ Google Scholar ] [ CrossRef ]
  • Wang, J.; Xu, R.; Yang, F.; Kang, J.; Cao, Y.; Xiang, M. Probing influences of support layer on the morphology of polyamide selective layer of thin film composite membrane. J. Membr. Sci. 2018 , 556 , 374–383. [ Google Scholar ] [ CrossRef ]
  • Chen, Y.; Niu, Q.J.; Hou, Y.; Sun, H. Effect of interfacial polymerization monomer design on the performance and structure of thin film composite nanofiltration and reverse osmosis membranes: A review. Sep. Purif. Technol. 2024 , 330 , 125282. [ Google Scholar ] [ CrossRef ]
  • Zhang, Y.; Wan, Y.; Li, Y.; Pan, G.; Yu, H.; Du, W.; Shi, H.; Wu, C.; Liu, Y. Thin-film composite nanofiltration membrane based on polyurea for extreme pH condition. J. Membr. Sci. 2021 , 635 , 119472. [ Google Scholar ] [ CrossRef ]
  • Xu, J.; Yan, H.; Zhang, Y.; Pan, G.; Liu, Y. The morphology of fully-aromatic polyamide separation layer and its relationship with separation performance of TFC membranes. J. Membr. Sci. 2017 , 541 , 174–188. [ Google Scholar ] [ CrossRef ]
  • Xu, S.-J.; Shen, Q.; Luo, L.-H.; Tong, Y.-H.; Wu, Y.-Z.; Xu, Z.-L.; Zhang, H.-Z. Surfactants attached thin film composite (TFC) nanofiltration (NF) membrane via intermolecular interaction for heavy metals removal. J. Membr. Sci. 2022 , 642 , 119930. [ Google Scholar ] [ CrossRef ]
  • Yuan, B.; Zhao, S.; Xu, S.; Wang, N.; Hu, P.; Chen, K.; Jiang, J.; Cui, J.; Zhang, X.; You, M.; et al. Aliphatic polyamide nanofilm with ordered nanostripe, synergistic pore size and charge density for the enhancement of cation sieving. J. Membr. Sci. 2022 , 660 , 120839. [ Google Scholar ] [ CrossRef ]
  • Zeng, Y.; Wang, L.; Zhang, L.; Yu, J.Q. An acid resistant nanofiltration membrane prepared from a precursor of poly(s-triazine-amine) by interfacial polymerization. J. Membr. Sci. 2018 , 546 , 225–233. [ Google Scholar ] [ CrossRef ]
  • Yong, Z.; Sanchuan, Y.; Meihong, L.; Congjie, G. Polyamide thin film composite membrane prepared from m-phenylenediamine and m-phenylenediamine-5-sulfonic acid. J. Membr. Sci. 2006 , 270 , 162–168. [ Google Scholar ] [ CrossRef ]
  • Buch, P.R.; Mohan, D.J.; Reddy, A.V.R. Preparation, characterization and chlorine stability of aromatic–cycloaliphatic polyamide thin film composite membranes. J. Membr. Sci. 2008 , 309 , 36–44. [ Google Scholar ] [ CrossRef ]
  • Jiang, Z.; Dong, R.; Evans, A.M.; Biere, N.; Ebrahim, M.A.; Li, S.; Anselmetti, D.; Dichtel, W.R.; Livingston, A.G. Aligned macrocycle pores in ultrathin films for accurate molecular sieving. Nature 2022 , 609 , 58–64. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Liu, L.; Yu, S.; Zhou, Y.; Gao, C. Study on a novel polyamide-urea reverse osmosis composite membrane (ICIC–MPD) I. Preparation and characterization of ICIC–MPD membrane. J. Membr. Sci. 2006 , 281 , 88–94. [ Google Scholar ] [ CrossRef ]
  • Zhou, Y.; Yu, S.; Liu, M.; Gao, C. Preparation and characterization of polyamide-urethane thin-film composite membranes. Desalination 2005 , 180 , 189–196. [ Google Scholar ] [ CrossRef ]
  • Li, L.; Zhang, S.; Zhang, X.; Zheng, G. Polyamide thin film composite membranes prepared from 3,4′,5-biphenyl triacyl chloride, 3,3′,5,5′-biphenyl tetraacyl chloride and m-phenylenediamine. J. Membr. Sci. 2007 , 289 , 258–267. [ Google Scholar ] [ CrossRef ]
  • Zhao, Y.; Zhang, Z.; Dai, L.; Mao, H.; Zhang, S. Enhanced both water flux and salt rejection of reverse osmosis membrane through combining isophthaloyl dichloride with biphenyl tetraacyl chloride as organic phase monomer for seawater desalination. J. Membr. Sci. 2017 , 522 , 175–182. [ Google Scholar ] [ CrossRef ]
  • Wu, X.; Chen, T.; Dong, G.; Tian, M.; Wang, J.; Zhang, R.; Zhang, G.; Zhu, J.; Zhang, Y. A critical review on polyamide and polyesteramide nanofiltration membranes: Emerging monomeric structures and interfacial polymerization strategies. Desalination 2024 , 577 , 117379. [ Google Scholar ] [ CrossRef ]
  • Jimenez-Solomon, M.F.; Song, Q.; Jelfs, K.E.; Munoz-Ibanez, M.; Livingston, A.G. Polymer nanofilms with enhanced microporosity by interfacial polymerization. Nat. Mater. 2016 , 15 , 760–767. [ Google Scholar ] [ CrossRef ]
  • Duong, P.H.H.; Anjum, D.H.; Peinemann, K.-V.; Nunes, S.P. Thin porphyrin composite membranes with enhanced organic solvent transport. J. Membr. Sci. 2018 , 563 , 684–693. [ Google Scholar ] [ CrossRef ]
  • Villalobos, L.F.; Huang, T.; Peinemann, K. Cyclodextrin Films with Fast Solvent Transport and Shape-Selective Permeability. Adv. Mater. 2017 , 29 , 1606641. [ Google Scholar ] [ CrossRef ]
  • Jiang, C.; Tian, L.; Hou, Y.; Niu, Q.J. Nanofiltration membranes with enhanced microporosity and inner-pore interconnectivity for water treatment: Excellent balance between permeability and selectivity. J. Membr. Sci. 2019 , 586 , 192–201. [ Google Scholar ] [ CrossRef ]
  • Ali, Z.; Ghanem, B.S.; Wang, Y.; Pacheco, F.; Ogieglo, W.; Vovusha, H.; Genduso, G.; Schwingenschlögl, U.; Han, Y.; Pinnau, I. Finely Tuned Submicroporous Thin-Film Molecular Sieve Membranes for Highly Efficient Fluid Separations. Adv. Mater. 2020 , 32 , 2001132. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Gorgojo, P.; Karan, S.; Wong, H.C.; Jimenez-Solomon, M.F.; Cabral, J.T.; Livingston, A.G. Ultrathin Polymer Films with Intrinsic Microporosity: Anomalous Solvent Permeation and High Flux Membranes. Adv. Funct. Mater. 2014 , 24 , 4729–4737. [ Google Scholar ] [ CrossRef ]
  • Zhao, Y.; Li, N.; Shi, J.; Xia, Y.; Zhu, B.; Shao, R.; Min, C.; Xu, Z.; Deng, H. Extra-thin composite nanofiltration membranes tuned by γ-cyclodextrins containing amphipathic cavities for efficient separation of magnesium/lithium ions. Sep. Purif. Technol. 2022 , 286 , 120419. [ Google Scholar ] [ CrossRef ]
  • Wang, Z.; Liang, S.; Jin, Y.; Zhao, L.; Hu, L. Controlling structure and properties of polyamide nanofilms by varying amines diffusivity in organic phase. J. Membr. Sci. 2019 , 574 , 1–9. [ Google Scholar ] [ CrossRef ]
  • Morgan, P.W.; Kwolek, S.L. Interfacial polycondensation. II. Fundamentals of polymer formation at liquid interfaces. J. Polym. Sci. A Polym. Chem. 1996 , 34 , 531–559. [ Google Scholar ] [ CrossRef ]
  • Li, Y.; Chen, J.; Cai, P.; Wen, Z. Fast Water Transport Through Sub-5 nm Polyamide Nanofilms: The New Upper-Bound of the Permeance-Selectivity Trade-Off in Nanofiltration. J. Mater. Chem. A 2018 , 6 , 4948–4954. [ Google Scholar ] [ CrossRef ]
  • Ma, Z.-Y.; Liu, C.; Xue, Y.-R.; Zhu, C.-Y.; Wu, J.; Xu, Z.-K. Demystifying viscous isoalkanes as the organic solvent in interfacial polymerization for manufacturing desalination membranes. Desalination 2023 , 545 , 116166. [ Google Scholar ] [ CrossRef ]
  • Park, S.; Kwon, S.J.; Kwon, H.; Shin, M.; Park, S.; Park, H.; Park, Y.; Nam, S.; Lee, J.-H. Aromatic solvent-assisted interfacial polymerization to prepare high performance thin film composite reverse osmosis membranes based on hydrophilic supports. Polymer 2018 , 144 , 159–167. [ Google Scholar ] [ CrossRef ]
  • Yan, W.; Wang, Z.; Zhao, S.; Wang, J.; Zhang, P.; Cao, X. Combining co-solvent-optimized interfacial polymerization and protective coating-controlled chlorination for highly permeable reverse osmosis membranes with high rejection. J. Membr. Sci. 2019 , 572 , 61–72. [ Google Scholar ] [ CrossRef ]
  • Lee, J.; Wang, R.; Bae, T.-H. A comprehensive understanding of co-solvent effects on interfacial polymerization: Interaction with trimesoyl chloride. J. Membr. Sci. 2019 , 583 , 70–80. [ Google Scholar ] [ CrossRef ]
  • Kwak, S.-Y.; Jung, S.G.; Kim, S.H. Structure-Motion-Performance Relationship of Flux-Enhanced Reverse Osmosis (RO) Membranes Composed of Aromatic Polyamide Thin Films. Environ. Sci. Technol. 2001 , 35 , 4334–4340. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • You, M.; Wang, B.; An, L.; Xu, F.; Cao, Z.; Meng, J. Different roles of aqueous and organic additives in the morphology and performance of polyamide thin-film composite membranes. Chem. Eng. Res. Des. 2021 , 165 , 1–11. [ Google Scholar ] [ CrossRef ]
  • Li, C.; Zhao, Y.; Lai, G.S.; Wang, R. Investigation of aqueous and organic co-solvents roles in fabricating seawater reverse osmosis membrane. J. Membr. Sci. 2022 , 645 , 120187. [ Google Scholar ] [ CrossRef ]
  • Khorshidi, B.; Soltannia, B.; Thundat, T.; Sadrzadeh, M. Synthesis of thin film composite polyamide membranes: Effect of monohydric and polyhydric alcohol additives in aqueous solution. J. Membr. Sci. 2017 , 523 , 336–345. [ Google Scholar ] [ CrossRef ]
  • Kamada, T.; Kamada, T.; Ohara, T.; Shintani, T.; Tsuru, T. Controlled surface morphology of polyamide membranes via the addition of co-solvent for improved permeate flux. J. Membr. Sci. 2014 , 467 , 303–312. [ Google Scholar ] [ CrossRef ]
  • Li, W.-L.; Fu, P.; Lin, W.-T.; Zhang, Z.-L.; Luo, X.-W.; Yu, Y.-H.; Xu, Z.-K.; Wan, L.-S. High-performance thin-film composite (TFC) membranes with. Results Eng. 2024 , 21 , 101932. [ Google Scholar ] [ CrossRef ]
  • Al-Hobaib, A.S.; AL-Sheetan, K.M.; Shaik, M.R.; Al-Andis, N.M.; Al-Suhybani, M.S. Characterization and Evaluation of Reverse Osmosis Membranes Modified with Ag2O Nanoparticles to Improve Performance. Nanoscale Res. Lett. 2015 , 10 , 379. [ Google Scholar ] [ CrossRef ]
  • Ji, C.; Xue, S.; Tang, Y.-J.; Ma, X.-H.; Xu, Z.-L. Polyamide Membranes with Net-Like Nanostructures Induced by Different Charged MOFs for Elevated Nanofiltration. ACS Appl. Polym. Mater. 2020 , 2 , 585–593. [ Google Scholar ] [ CrossRef ]
  • Lim, Y.J.; Goh, K.; Wang, R. The coming of age of water channels for separation membranes: From biological to biomimetic to synthetic. Chem. Soc. Rev. 2022 , 51 , 4537–4582. [ Google Scholar ] [ CrossRef ]
  • Shen, J. Artificial channels for confined mass transport at the sub-nanometre scale. Nat. Rev. Mater. 2021 , 6 , 294–312. [ Google Scholar ] [ CrossRef ]
  • Shao, W.; Liu, C.; Ma, H.; Hong, Z.; Xie, Q.; Lu, Y. Fabrication of pH-sensitive thin-film nanocomposite nanofiltration membranes with enhanced performance by incorporating amine-functionalized graphene oxide. Appl. Surf. Sci. 2019 , 487 , 1209–1221. [ Google Scholar ] [ CrossRef ]
  • Nair, R.R.; Wu, H.A.; Jayaram, P.N.; Grigorieva, I.V.; Geim, A.K. Unimpeded Permeation of Water through Helium-Leak–Tight Graphene-Based Membranes. Science 2012 , 335 , 442–444. [ Google Scholar ] [ CrossRef ]
  • Liu, Y.; Yan, W.; Wang, Z.; Wang, H.; Zhao, S.; Wang, J.; Zhang, P.; Cao, X. 1-methylimidazole as a novel additive for reverse osmosis membrane with high flux-rejection combinations and good stability. J. Membr. Sci. 2020 , 599 , 117830. [ Google Scholar ] [ CrossRef ]
  • Tsuru, T.; Sasaki, S.; Kamada, T.; Shintani, T.; Ohara, T.; Nagasawa, H.; Nishida, K.; Kanezashi, M.; Yoshioka, T. Multilayered polyamide membranes by spray-assisted 2-step interfacial polymerization for increased performance of trimesoyl chloride (TMC)/m-phenylenediamine (MPD)-derived polyamide membranes. J. Membr. Sci. 2013 , 446 , 504–512. [ Google Scholar ] [ CrossRef ]
  • Yang, S.; Wang, J.; Wang, Y.; Ding, Y.; Zhang, W.; Liu, F. Interfacial polymerized polyamide nanofiltration membrane by demulsification of hexane-in-water droplets through hydrophobic PTFE membrane: Membrane performance and formation mechanism. Sep. Purif. Technol. 2021 , 275 , 119227. [ Google Scholar ] [ CrossRef ]
  • Dai, R.; Yang, Z.; Qiu, Z.; Long, L.; Tang, C.Y.; Wang, Z. Distinct impact of substrate hydrophilicity on performance and structure of TFC NF and RO polyamide membranes. J. Membr. Sci. 2022 , 662 , 120966. [ Google Scholar ] [ CrossRef ]
  • Chen, Y.; Sun, H.; Tang, S.; Feng, H.; Zhang, H.; Chen, K.; Li, P.; Niu, Q.J. Nanofiltration membranes with enhanced performance by constructing an interlayer integrated with dextran nanoparticles and polyethyleneimine coating. J. Membr. Sci. 2022 , 654 , 120537. [ Google Scholar ] [ CrossRef ]
  • Wen, Y.; Zhang, X.; Li, X.; Wang, Z.; Tang, C.Y. Metal–Organic Framework Nanosheets for Thin-Film Composite Membranes with Enhanced Permeability and Selectivity. ACS Appl. Nano Mater. 2020 , 3 , 9238–9248. [ Google Scholar ] [ CrossRef ]
  • Chen, K. A gelatin-zirconium phosphate nanoparticles composite interlayer for enhancing compaction resistance and antifouling performance of TFC NF membrane. J. Membr. Sci. 2024 , 698 , 122567. [ Google Scholar ] [ CrossRef ]
  • Zuo, X.; Chang, K.; Zhao, J.; Xie, Z.; Tang, H.; Li, B.; Chang, Z. Bubble-template-assisted synthesis of hollow fullerene-like MoS 2 nanocages as a lithium ion battery anode material. J. Mater. Chem. A 2016 , 4 , 51–58. [ Google Scholar ] [ CrossRef ]
  • Song, X.; Gan, B.; Yang, Z.; Tang, C.Y.; Gao, C. Confined nanobubbles shape the surface roughness structures of thin film composite polyamide desalination membranes. J. Membr. Sci. 2019 , 582 , 342–349. [ Google Scholar ] [ CrossRef ]
  • Jiang, Z.; Karan, S.; Livingston, A.G. Water Transport through Ultrathin Polyamide Nanofilms Used for Reverse Osmosis. Adv. Mater. 2018 , 30 , 1705973. [ Google Scholar ] [ CrossRef ]
  • Cui, Y.; Liu, X.-Y.; Chung, T.-S. Ultrathin Polyamide Membranes Fabricated from Free-Standing Interfacial Polymerization: Synthesis, Modifications, and Post-treatment. Ind. Eng. Chem. Res. 2017 , 56 , 513–523. [ Google Scholar ] [ CrossRef ]
  • Park, S.-J.; Choi, W.; Nam, S.-E.; Hong, S.; Lee, J.S.; Lee, J.-H. Fabrication of polyamide thin film composite reverse osmosis membranes via support-free interfacial polymerization. J. Membr. Sci. 2017 , 526 , 52–59. [ Google Scholar ] [ CrossRef ]
  • Shui, X.; Li, J.; Zhang, M.; Fang, C.; Zhu, L. Tailoring ultrathin microporous polyamide films with rapid solvent transport by molecular layer-by-layer deposition. J. Membr. Sci. 2021 , 628 , 119249. [ Google Scholar ] [ CrossRef ]
  • Gu, J.; Lee, S.; Stafford, C.M.; Lee, J.S.; Choi, W.; Kim, B.; Baek, K.; Chan, E.P.; Chung, J.Y.; Bang, J.; et al. Molecular Layer-by-Layer Assembled Thin-Film Composite Membranes for Water Desalination. Adv. Mater. 2013 , 25 , 4778–4782. [ Google Scholar ] [ CrossRef ]
  • Mazumder, A.; Sarkar, S.; Sen, D.; Bhattacharjee, C. 1-Membranes for industrial wastewater recovery and reuse. In Resource Recovery in Industrial Waste Waters ; Elsevier: Amsterdam, The Netherlands, 2023; pp. 1–21. [ Google Scholar ]
  • Quist-Jensen, C.A.; Macedonio, F.; Drioli, E. Membrane technology for water production in agriculture: Desalination and wastewater reuse. Desalination 2015 , 364 , 17–32. [ Google Scholar ] [ CrossRef ]
  • Al Aani, S.; Mustafa, T.N.; Hilal, N. Ultrafiltration membranes for wastewater and water process engineering: A comprehensive statistical review over the past decade. J. Water Process Eng. 2020 , 35 , 101241. [ Google Scholar ] [ CrossRef ]
  • Mohammad, A.W.; Ng, C.Y.; Lim, Y.P.; Ng, G.H. Ultrafiltration in Food Processing Industry: Review on Application, Membrane Fouling, and Fouling Control. Food Bioprocess. Technol. 2012 , 5 , 1143–1156. [ Google Scholar ] [ CrossRef ]
  • Razali, N.F.; Mohammad, A.W.; Hilal, N. Effects of polyaniline nanoparticles in polyethersulfone ultrafiltration membranes: Fouling behaviours by different types of foulant. J. Ind. Eng. Chem. 2014 , 20 , 3134–3140. [ Google Scholar ] [ CrossRef ]
  • Zheng, X.; Wen, J.; Shi, L.; Cheng, R.; Zhang, Z. A top-down approach to estimate global RO desalination water production considering uncertainty. Desalination 2020 , 488 , 114523. [ Google Scholar ] [ CrossRef ]
  • Macedonio, F.; Drioli, E. Membrane Engineering for Green Process Engineering. Engineering 2017 , 3 , 290–298. [ Google Scholar ] [ CrossRef ]
  • Khoo, Y.S.; Lau, W.J.; Liang, Y.Y.; Yusof, N.; Ismail, A.F. Surface modification of PA layer of TFC membranes: Does it effective for performance Improvement? J. Ind. Eng. Chem. 2021 , 102 , 271–292. [ Google Scholar ] [ CrossRef ]
  • Cheng, L.; Xie, Y.; Li, X.; Liu, F.; Wang, Y.; Li, J. Lecithin decorated thin film composite (TFC) nanofiltration membranes for enhanced sieving performance. J. Membr. Sci. 2023 , 677 , 121632. [ Google Scholar ] [ CrossRef ]
  • Fajardo-Diaz, J.L.; Morelos-Gomez, A.; Cruz-Silva, R.; Matsumoto, A.; Ueno, Y.; Takeuchi, N.; Kitamura, K.; Miyakawa, H.; Tejima, S.; Takeuchi, K.; et al. Antifouling performance of spiral wound type module made of carbon nanotubes/polyamide composite RO membrane for seawater desalination. Desalination 2022 , 523 , 115445. [ Google Scholar ] [ CrossRef ]
  • Lim, Y.J.; Goh, K.; Kurihara, M.; Wang, R. Seawater desalination by reverse osmosis: Current development and future challenges in membrane fabrication—A review. J. Membr. Sci. 2021 , 629 , 119292. [ Google Scholar ] [ CrossRef ]
  • Voutchkov, N. Considerations for selection of seawater filtration pretreatment system. Desalination 2010 , 261 , 354–364. [ Google Scholar ] [ CrossRef ]
  • Liu, J.; Yue, M.; Zhao, L.; He, J.; Wu, X.; Wang, L. Semi batch dual-pass nanofiltration as scaling-controlled pretreatment for seawater purification and concentration with high recovery rate. Desalination 2021 , 506 , 115015. [ Google Scholar ] [ CrossRef ]
  • Mazhari, R.; Bide, Y.; Hosseini, S.S.; Shokrollahzadeh, S. Modification of polyacrylonitrile TFC-FO membrane by biowaste-derived hydrophilic N-doped carbon quantum dots for enhanced water desalination performance. Desalination 2023 , 565 , 116888. [ Google Scholar ] [ CrossRef ]
  • Patel, M.; Kumar, R.; Kishor, K.; Mlsna, T.; Pittman, C.U.; Mohan, D. Pharmaceuticals of Emerging Concern in Aquatic Systems: Chemistry, Occurrence, Effects, and Removal Methods. Chem. Rev. 2019 , 119 , 3510–3673. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Yadav, D.; Karki, S.; Gohain, M.B.; Ingole, P.G. Development of micropollutants removal process using thin-film nanocomposite membranes prepared by green new vapour-phase interfacial polymerization method. Chem. Eng. J. 2023 , 472 , 144940. [ Google Scholar ] [ CrossRef ]
  • Edo, C.; González-Pleiter, M.; Leganés, F.; Fernández-Piñas, F.; Rosal, R. Fate of microplastics in wastewater treatment plants and their environmental dispersion with effluent and sludge. Environ. Pollut. 2020 , 259 , 113837. [ Google Scholar ] [ CrossRef ]
  • Fryczkowska, B.; Przywara, L. Removal of microplastics from industrial wastewater utilizing an ultrafiltration composite membrane rGO/PAN application. DWT 2021 , 214 , 252–262. [ Google Scholar ] [ CrossRef ]
  • Zhang, B.; Wu, Q.; Gao, S.; Ruan, Y.; Qi, G.; Guo, K.; Zeng, J. Distribution and removal mechanism of microplastics in urban wastewater plants systems via different processes. Environ. Pollut. 2023 , 320 , 121076. [ Google Scholar ] [ CrossRef ]
  • Wang, J.; Yu, W.; Graham, N.J.D.; Jiang, L. Evaluation of a novel polyamide-polyethylenimine nanofiltration membrane for wastewater treatment: Removal of Cu 2+ ions. Chem. Eng. J. 2020 , 392 , 123769. [ Google Scholar ] [ CrossRef ]
  • Tian, J.; Chang, H.; Gao, S.; Zhang, R. How to fabricate a negatively charged NF membrane for heavy metal removal via the interfacial polymerization between PIP and TMC? Desalination 2020 , 491 , 114499. [ Google Scholar ] [ CrossRef ]
  • Wanjiya, M.; Zhang, J.-C.; Wu, B.; Yin, M.-J.; An, Q.-F. Nanofiltration membranes for sustainable removal of heavy metal ions from polluted water: A review and future perspective. Desalination 2024 , 578 , 117441. [ Google Scholar ] [ CrossRef ]
  • Peng, H.Y.; Lau, S.K.; Yong, W.F. Recent advances of thin film composite nanofiltration membranes for Mg 2+ /Li + separation. Adv. Membr. 2024 , 4 , 100093. [ Google Scholar ] [ CrossRef ]
  • Xie, M.; Nghiem, L.D.; Price, W.E.; Elimelech, M. Toward Resource Recovery from Wastewater: Extraction of Phosphorus from Digested Sludge Using a Hybrid Forward Osmosis–Membrane Distillation Process. Environ. Sci. Technol. Lett. 2014 , 1 , 191–195. [ Google Scholar ] [ CrossRef ]
  • Zhu, R.; Wang, S.; Srinivasakannan, C.; Li, S.; Yin, S.; Zhang, L.; Jiang, X.; Zhou, G.; Zhang, N. Lithium extraction from salt lake brines with high magnesium/lithium ratio: A review. Environ. Chem. Lett. 2023 , 21 , 1611–1626. [ Google Scholar ] [ CrossRef ]
  • Wen, X.; Ma, P.; Zhu, C.; He, Q.; Deng, X. Preliminary study on recovering lithium chloride from lithium-containing waters by nanofiltration. Sep. Purif. Technol. 2006 , 49 , 230–236. [ Google Scholar ] [ CrossRef ]
  • Avlonitis, S.A.; Pappas, M.; Moutesidis, K. A unified model for the detailed investigation of membrane modules and RO plants performance. Desalination 2007 , 203 , 218–228. [ Google Scholar ] [ CrossRef ]
  • Qiu, T.Y.; Davies, P.A. Concentration polarization model of spiral-wound membrane modules with application to batch-mode RO desalination of brackish water. Desalination 2015 , 368 , 36–47. [ Google Scholar ] [ CrossRef ]
  • Gu, B.; Xu, X.Y.; Adjiman, C.S. A predictive model for spiral wound reverse osmosis membrane modules: The effect of winding geometry and accurate geometric details. Comput. Chem. Eng. 2017 , 96 , 248–265. [ Google Scholar ] [ CrossRef ]
  • Ali, A.; Shirazi, M.M.A.; Nthunya, L.; Castro-Muñoz, R.; Ismail, N.; Tavajohi, N.; Zaragoza, G.; Quist-Jensen, C.A. Progress in module design for membrane distillation. Desalination 2024 , 581 , 117584. [ Google Scholar ] [ CrossRef ]
  • Li, W.; Bai, B.; He, R.; Song, J.; He, T. Lithium solvent extraction by a novel multiframe flat membrane contactor module. Sep. Purif. Technol. 2024 , 328 , 125061. [ Google Scholar ] [ CrossRef ]
  • Yang, X.; Wang, R.; Fane, A.G. Novel designs for improving the performance of hollow fiber membrane distillation modules. J. Membr. Sci. 2011 , 384 , 52–62. [ Google Scholar ] [ CrossRef ]
  • Singh, D.; Li, L.; Obusckovic, G.; Chau, J.; Sirkar, K.K. Novel cylindrical cross-flow hollow fiber membrane module for direct contact membrane distillation-based desalination. J. Membr. Sci. 2018 , 545 , 312–322. [ Google Scholar ] [ CrossRef ]
  • Thomas, N.; Sreedhar, N.; Al-Ketan, O.; Rowshan, R.; Al-Rub, R.K.A.; Arafat, H. 3D printed triply periodic minimal surfaces as spacers for enhanced heat and mass transfer in membrane distillation. Desalination 2018 , 443 , 256–271. [ Google Scholar ] [ CrossRef ]
  • Ding, X.; Wang, F.; Lin, G.; Tang, B.; Li, X.; Zhou, G.; Wang, W.; Zhang, J.; Shi, Y. The enhancement of separation performance of hollow fiber membrane modules: From the perspective of membranes and membrane modules structural optimization design. Chem. Eng. Sci. 2023 , 280 , 119106. [ Google Scholar ] [ CrossRef ]
  • Contreras-Martínez, J.; García-Payo, C.; Arribas, P.; Rodríguez-Sáez, L.; Lejarazu-Larrañaga, A.; García-Calvo, E.; Khayet, M. Recycled reverse osmosis membranes for forward osmosis technology. Desalination 2021 , 519 , 115312. [ Google Scholar ] [ CrossRef ]
  • Chowdhury, M.R.; Steffes, J.; Huey, B.D.; McCutcheon, J.R. 3D printed polyamide membranes for desalination. Science 2018 , 361 , 682–686. [ Google Scholar ] [ CrossRef ]
  • Qian, X.; Anvari, A.; Hoek, E.M.V.; McCutcheon, J.R. Advancements in conventional and 3D printed feed spacers in membrane modules. Desalination 2023 , 556 , 116518. [ Google Scholar ] [ CrossRef ]
  • Dang, B.V.; Charlton, A.J.; Li, Q.; Kim, Y.C.; Taylor, R.A.; Le-Clech, P.; Barber, T. Can 3D-printed spacers improve filtration at the microscale? Sep. Purif. Technol. 2021 , 256 , 117776. [ Google Scholar ] [ CrossRef ]
  • Sreedhar, N.; Thomas, N.; Al-Ketan, O.; Rowshan, R.; Hernandez, H.; Al-Rub, R.K.A.; Arafat, H.A. 3D printed feed spacers based on triply periodic minimal surfaces for flux enhancement and biofouling mitigation in RO and UF. Desalination 2018 , 425 , 12–21. [ Google Scholar ] [ CrossRef ]
  • Low, Z.-X.; Chua, Y.T.; Ray, B.M.; Mattia, D.; Metcalfe, I.S.; Patterson, D.A. Perspective on 3D printing of separation membranes and comparison to related unconventional fabrication techniques. J. Membr. Sci. 2017 , 523 , 596–613. [ Google Scholar ] [ CrossRef ]
  • Bozkurt, Y.; Karayel, E. D printing technology; methods; biomedical applications, future opportunities and trends. J. Mater. Res. Technol. 2021 , 14 , 1430–1450. [ Google Scholar ] [ CrossRef ]
  • Yanar, N.; Kallem, P.; Son, M.; Park, H.; Kang, S.; Choi, H. A New era of water treatment technologies: 3D printing for membranes. J. Ind. Eng. Chem. 2020 , 91 , 1–14. [ Google Scholar ] [ CrossRef ]
  • Lee, J.-Y.; Tan, W.S.; An, J.; Chua, C.K.; Tang, C.Y.; Fane, A.G.; Chong, T.H. The potential to enhance membrane module design with 3D printing technology. J. Membr. Sci. 2016 , 499 , 480–490. [ Google Scholar ] [ CrossRef ]
  • Ronen, A.; Lerman, S.; Ramon, G.Z.; Dosoretz, C.G. Experimental characterization and numerical simulation of the anti-biofuling activity of nanosilver-modified feed spacers in membrane filtration. J. Membr. Sci. 2015 , 475 , 320–329. [ Google Scholar ] [ CrossRef ]
  • Thamaraiselvan, C.; Carmiel, Y.; Eliad, G.; Sukenik, C.N.; Semiat, R.; Dosoretz, C.G. Modification of a polypropylene feed spacer with metal oxide-thin film by chemical bath deposition for biofouling control in membrane filtration. J. Membr. Sci. 2019 , 573 , 511–519. [ Google Scholar ] [ CrossRef ]
  • Abdelrasoul, A.; Doan, H.; Lohi, A.; Cheng, C. Contaminated particle characteristics influence on membrane fouling. Water Environ. J. 2017 , 31 , 31–38. [ Google Scholar ] [ CrossRef ]
  • Madaeni, S.S.; Samieirad, S. Chemical cleaning of reverse osmosis membrane fouled by wastewater. Desalination 2010 , 257 , 80–86. [ Google Scholar ] [ CrossRef ]
  • Bogler, A.; Lin, S.; Bar-Zeev, E. Biofouling of membrane distillation, forward osmosis and pressure retarded osmosis: Principles, impacts and future directions. J. Membr. Sci. 2017 , 542 , 378–398. [ Google Scholar ] [ CrossRef ]
  • Cai, Y.-H.; Gopalakrishnan, A.; Deshmukh, K.P.; Schäfer, A.I. Renewable energy powered membrane technology: Implications of adhesive interaction between membrane and organic matter on spontaneous osmotic backwash cleaning. Water Res. 2022 , 221 , 118752. [ Google Scholar ] [ CrossRef ]
  • Mi, Y.; Wang, N.; Fang, X.; Cao, J.; Tao, M.; Cao, Z. Interfacial polymerization nanofiltration membrane with visible light photocatalytic self-cleaning performance by incorporation of CQD/TiO 2 . Sep. Purif. Technol. 2021 , 277 , 119500. [ Google Scholar ] [ CrossRef ]
  • Fan, Q.; Yan, L.; Tripp, M.W.; Kachel, S.R.; Chen, M.; Foster, A.S.; Koert, U.; Liljeroth, P.; Gottfried, J.M. Biphenylene network: A nonbenzenoid carbon allotrope. Science 2021 , 372 , 852–856. [ Google Scholar ] [ CrossRef ]
  • Niu, Y.; Meng, K.; Ming, S.; Chen, H.; Yu, X.; Rong, J.; Li, X. Computational simulation of self-cleaning carbon-based membranes with zeolite porous structure for desalination. Diam. Relat. Mater. 2023 , 136 , 109925. [ Google Scholar ] [ CrossRef ]
  • Li, J.; Xie, Y.; Cheng, L.; Li, X.; Liu, F.; Wang, Z. Photo-Fenton reaction derived self-cleaning nanofiltration membrane with MOFs coordinated biopolymers for efficient dye/salt separation. Desalination 2023 , 553 , 116459. [ Google Scholar ] [ CrossRef ]
  • Xu, M.; Feng, X.; Liu, Z.; Han, X.; Zhu, J.; Wang, J.; Bruggen, B.V.D.; Zhang, Y. MOF laminates functionalized polyamide self-cleaning membrane for advanced loose nanofiltration. Sep. Purif. Technol. 2021 , 275 , 119150. [ Google Scholar ] [ CrossRef ]
  • Liu, L.-F.; Cai, Z.-B.; Shen, J.-N.; Wu, L.-X.; Hoek, E.M.V.; Gao, C.-J. Fabrication and characterization of a novel poly(amide-urethane@imide) TFC reverse osmosis membrane with chlorine-tolerant property. J. Membr. Sci. 2014 , 469 , 397–409. [ Google Scholar ] [ CrossRef ]
  • Stolov, M.; Freger, V. Degradation of Polyamide Membranes Exposed to Chlorine: An Impedance Spectroscopy Study. Environ. Sci. Technol. 2019 , 53 , 2618–2625. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Verbeke, R.; Gómez, V.; Vankelecom, I.F.J. Chlorine-resistance of reverse osmosis (RO) polyamide membranes. Prog. Polym. Sci. 2017 , 72 , 1–15. [ Google Scholar ] [ CrossRef ]
  • Lee, K.P.; Arnot, T.C.; Mattia, D. A review of reverse osmosis membrane materials for desalination—Development to date and future potential. J. Membr. Sci. 2011 , 370 , 1–22. [ Google Scholar ] [ CrossRef ]
  • Inukai, S.; Cruz-Silva, R.; Ortiz-Medina, J.; Morelos-Gomez, A.; Takeuchi, K.; Hayashi, T.; Tanioka, A.; Araki, T.; Tejima, S.; Noguchi, T.; et al. High-performance multi-functional reverse osmosis membranes obtained by carbon nanotube·polyamide nanocomposite. Sci. Rep. 2015 , 5 , 13562. [ Google Scholar ] [ CrossRef ]
  • Kim, S.G.; Hyeon, D.H.; Chun, J.H.; Chun, B.-H.; Kim, S.H. Nanocomposite poly(arylene ether sulfone) reverse osmosis membrane containing functional zeolite nanoparticles for seawater desalination. J. Membr. Sci. 2013 , 443 , 10–18. [ Google Scholar ] [ CrossRef ]
  • Li, J.; Peng, H.; Liu, K.; Zhao, Q. Polyester Nanofiltration Membranes for Efficient Cations Separation. Adv. Mater. 2024 , 36 , 2309406. [ Google Scholar ] [ CrossRef ]
  • Hashiba, K.; Nakai, S.; Ohno, M.; Nishijima, W.; Gotoh, T.; Iizawa, T. Deterioration Mechanism of a Tertiary Polyamide Reverse Osmosis Membrane by Hypochlorite. Environ. Sci. Technol. 2019 , 53 , 9109–9117. [ Google Scholar ] [ CrossRef ]
  • Peng, H.; Yu, K.; Liu, X.; Li, J.; Hu, X.; Zhao, Q. Quaternization-spiro design of chlorine-resistant and high-permeance lithium separation membranes. Nat. Commun. 2023 , 14 , 5483. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Guan, D.; Hu, Z.; Xie, P.; Sun, Z.; Zhang, Z.; Shan, Y.; Gong, C.; Wu, Y. Osmotic cleaning to control inorganic fouling of nanofiltration membrane for seawater desalination. J. Environ. Chem. Eng. 2023 , 11 , 110551. [ Google Scholar ] [ CrossRef ]
  • Elimelech, M.; Phillip, W.A. The Future of Seawater Desalination: Energy, Technology, and the Environment. Science 2011 , 333 , 712–717. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Dalanta, F.; Handoko, D.T.; Hadiyanto, H.; Kusworo, T.D. Recent implementations of process intensification strategy in membrane-based technology: A review. Chem. Eng. Res. Des. 2024 , 202 , 74–91. [ Google Scholar ] [ CrossRef ]
  • Gohil, J.M.; Suresh, A.K. Chlorine attack on reverse osmosis membranes: Mechanisms and mitigation strategies. J. Membr. Sci. 2017 , 541 , 108–126. [ Google Scholar ] [ CrossRef ]
  • Zhang, Y.; Yu, D.; Jia, C.; Sun, L.; Tong, A.; Wang, Y.; Wang, Y.; Huang, L.; Tang, J. Advances and promotion strategies of membrane-based methods for extracting lithium from brine. Desalination 2023 , 566 , 116891. [ Google Scholar ] [ CrossRef ]
  • Allouzi, M.M.A.; Tang, D.Y.Y.; Chew, K.W.; Rinklebe, J.; Bolan, N.; Allouzi, S.M.A.; Show, P.L. Micro (nano) plastic pollution: The ecological influence on soil-plant system and human health. Sci. Total Environ. 2021 , 788 , 147815. [ Google Scholar ] [ CrossRef ]

Click here to enlarge figure

Type Name Framework Operating Condition Performances Ref.
amine monomer m-Phenylenediamine (MPD) 1.5 MPa,
25 °C
2000 ppm NaCl
45–60 L/m h
98.8%
[ ]
piperazine (PIP) 3.5 bar,
500 mg/L MgSO
14.3 (L/m hbar)
(98.6%)
[ ]
Tris(2-aminoethyl)amine (TAEA) 1.0 MPa, 25 ℃
2000 ppm
135.9 (L/m h)
S / = 25.94
[ ]
1,3,5(Tri-piperazine)-triazine (TPT) 100 psi, 25 ± 1 °C
2000 ppm MgSO
8.68 (L/m hbar)
98.6%
[ ]
m-phenylenediamine-5-sulfonic acid (SMPD) 15 bar,
2000 ppm,
NaCl
30.0–55.7 (L/m hbar)
47–94%
[ ]
1,3cyclohexanebis(methylamine)
(CHMA)
10 bar,
2000 ppm,
NaCl
56 (L/m hbar)
77%
[ ]
Chloride monomer Trimesoyl chloride (TMC) 1.6 MPa, 25 °C
2000-ppm NaCl
3.31 ± 0.10(L/m hbar)
99.3 ± 0.1%
[ ]
terephthaloyl chloride (TPC) 10 bar, 25 °C7.64 ± 0.1 (L/m hbar)[ ]
5-isocyanato-isophthaloyl chloride (ICIC) 1.55 MPa, 25 °C
NaCl
---- [ ]
5-chloroformyloxy-isophthaloyl chloride (CFIC) 1–3 MPa 25 °C
500–8000 mg/L NaCl
20 (L/m h)
50.2%
[ ]
3,4′,5-biphenyl triacyl chloride (BTRC) 20 bar,
2000 ppm,
NaCl
33 (L/m h)
98.9%
[ ]
3,3′,5,5′-biphenyltetraacyl
chloride (BTEC)
55 bar,
32,800 ppm,
NaCl
30.2–48.3 (L/m h)
99.3–99.7%
[ ]
The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

Geng, H.; Zhang, W.; Zhao, X.; Shao, W.; Wang, H. Research on Reverse Osmosis (RO)/Nanofiltration (NF) Membranes Based on Thin Film Composite (TFC) Structures: Mechanism, Recent Progress and Application. Membranes 2024 , 14 , 190. https://doi.org/10.3390/membranes14090190

Geng H, Zhang W, Zhao X, Shao W, Wang H. Research on Reverse Osmosis (RO)/Nanofiltration (NF) Membranes Based on Thin Film Composite (TFC) Structures: Mechanism, Recent Progress and Application. Membranes . 2024; 14(9):190. https://doi.org/10.3390/membranes14090190

Geng, Huibin, Weihao Zhang, Xiaoxu Zhao, Wei Shao, and Haitao Wang. 2024. "Research on Reverse Osmosis (RO)/Nanofiltration (NF) Membranes Based on Thin Film Composite (TFC) Structures: Mechanism, Recent Progress and Application" Membranes 14, no. 9: 190. https://doi.org/10.3390/membranes14090190

Article Metrics

Article access statistics, further information, mdpi initiatives, follow mdpi.

MDPI

Subscribe to receive issue release notifications and newsletters from MDPI journals

Click through the PLOS taxonomy to find articles in your field.

For more information about PLOS Subject Areas, click here .

Loading metrics

Open Access

Peer-reviewed

Research Article

In-shoe plantar shear stress sensor design, calibration and evaluation for the diabetic foot

Roles Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Project administration, Software, Validation, Visualization, Writing – original draft, Writing – review & editing

Affiliation Department of Mechanical, Aerospace and Civil Engineering (MACE), University of Manchester, Manchester, United Kingdom

ORCID logo

Roles Investigation, Methodology, Writing – review & editing

Roles Conceptualization, Data curation, Funding acquisition, Investigation, Resources, Supervision, Validation, Writing – review & editing

Affiliation Medical School, NIHR Exeter BRC, University of Exeter, Exeter, United Kingdom

Roles Investigation, Methodology, Software, Writing – review & editing

Roles Investigation, Software, Writing – review & editing

Roles Resources, Supervision, Writing – review & editing

Affiliation Musculoskeletal Biomechanics and Research in Science and Engineering faculty of Manchester Metropolitan University, Manchester, United Kingdom

Affiliation Manchester University NHS Foundation Trust within the Departments of Diabetes and Vascular Surgery, Manchester, United Kingdom

Roles Conceptualization, Formal analysis, Funding acquisition, Investigation, Methodology, Project administration, Supervision, Validation, Visualization, Writing – original draft, Writing – review & editing

Roles Conceptualization, Data curation, Formal analysis, Funding acquisition, Investigation, Methodology, Project administration, Resources, Supervision, Validation, Visualization, Writing – original draft, Writing – review & editing

* E-mail: [email protected]

  • Athia H. Haron, 
  • Lutong Li, 
  • Jiawei Shuang, 
  • Chaofan Lin, 
  • Helen Dawes, 
  • Maedeh Mansoubi, 
  • Damian Crosby, 
  • Garry Massey, 
  • Neil Reeves, 

PLOS

  • Published: September 4, 2024
  • https://doi.org/10.1371/journal.pone.0309514
  • Peer Review
  • Reader Comments

Fig 1

Plantar shear stress may have an important role in the formation of a Diabetic Foot Ulcer, but its measurement is regarded as challenging and has limited research. This paper highlights the importance of anatomical specific shear sensor calibration and presents a feasibility study of a novel shear sensing system which has measured in-shoe shear stress from gait activity on both healthy and diabetic subjects. The sensing insole was based on a strain gauge array embedded in a silicone insole backed with a commercial normal pressure sensor. Sensor calibration factors were investigated using a custom mechanical test rig with indenter to exert both normal and shear forces. Indenter size and location were varied to investigate the importance of both loading area and position on measurement accuracy. The sensing insole, coupled with the calibration procedure, was tested one participant with diabetes and one healthy participant during two sessions of 15 minutes of treadmill walking. Calibration with different indenter areas (from 78.5 mm 2 to 707 mm 2 ) and different positions (up to 40 mm from sensor centre) showed variation in measurements of up to 80% and 90% respectively. Shear sensing results demonstrated high repeatability (>97%) and good accuracy (mean absolute error < ±18 kPa) in bench top mechanical tests and less than 21% variability within walking of 15-minutes duration. The results indicate the importance of mechanical coupling between embedded shear sensors and insole materials. It also highlights the importance of using an appropriate calibration method to ensure accurate shear stress measurement. The novel shear stress measurement system presented in this paper, demonstrates a viable method to measure accurate and repeatable in-shoe shear stress using the calibration procedure described. The validation and calibration methods outlined in this paper could be utilised as a standardised approach for the research community to develop and validate similar measurement technologies.

Citation: Haron AH, Li L, Shuang J, Lin C, Dawes H, Mansoubi M, et al. (2024) In-shoe plantar shear stress sensor design, calibration and evaluation for the diabetic foot. PLoS ONE 19(9): e0309514. https://doi.org/10.1371/journal.pone.0309514

Editor: Andrea Tigrini, Polytechnic University of Marche: Universita Politecnica delle Marche, ITALY

Received: January 16, 2024; Accepted: August 14, 2024; Published: September 4, 2024

Copyright: © 2024 Haron et al. This is an open access article distributed under the terms of the Creative Commons Attribution License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: All relevant data are available from the Mendeley Data database (DOI 10.17632/pcggh2rzm3.1 ). Only raw anonymised data can be shared due to GDPR restrictions from HRC ethics committee.

Funding: This work was partially funded by Engineering and Physical Sciences Research Council (EPSRC) grant number EP/W00366X/1.

Competing interests: The authors have declared that no competing interests exist.

Introduction

Diabetic foot ulceration (DFU) affects 15–25% of people with diabetes at some point in their lifetime [ 1 ] and has a high social and economic cost with countries like the UK spending approximately £1 billion annually [ 2 ]. Worldwide the prevalence of diabetes is rising, and it is predicted that 552 million people will have the condition by 2030 [ 3 ]. Measurement of plantar normal stress and plantar shear stress has shown the potential to predict DFU risk [ 4 , 5 ]. However, whilst commercial systems are available to measure normal plantar stress in-shoe there are no commercially available in-shoe plantar shear stress measurement systems. Shear stress has been directly measured during barefoot gait using mechanical sensor arrays coupled with resistive or capacitive sensors [ 6 – 8 ], utilising piezoelectric materials and their charge outputs [ 9 ] and through a variety of optical methods including polycarbonate arrays [ 6 ], optical bend loss [ 7 ] and laser interferometry of bi-refringent films [ 8 ]. Perry et al. [ 10 ] used an array-based device [ 11 ] to study bunching and stretching of adjacent plantar tissue and they found that tissue stretching from shear stress was the predominant mechanism. They report that peak shear stress and peak plantar pressure occur in the same place in 50% of cases, but actually occur at different times, which is contradictory to results reported by other researchers [ 12 ]. Contradictory results are typical from these studies using custom-built shear stress measurement devices due to the relatively low numbers of participants with diabetes tested in the trials, with typical sample sizes of ten. All these measurement methods are bespoke devices and only a handful of foot-to-floor shear stress measurement devices exist worldwide. Larger scale studies with matched control groups are required to provide firm conclusions on plantar surface shear stresses experienced by people with diabetes.

Shear stress measurement is further complicated as all diabetic patients are strongly advised to walk using footwear (and never barefoot), therefore, to understand the shear stresses induced on the plantar surface, in-shoe shear stress measurement must be taken. Although direct shear stress measurement is important in DFU risk management, future use of artificial intelligence methods [ 13 , 14 ] may enable risk management with current measurement technologies.

In-shoe plantar shear stress is difficult to measure and reported measurements vary widely, for example, measurements of shear stress on the 1st metatarsal head varied from 16 kPa [ 15 ] to 140 kPa [ 5 ] in healthy participants. Therefore, either there is widespread inter-participant variability and/or there are mechanisms which cause errors for in-shoe shear stress measurement. Measurement error has been widely reported for in-shoe normal stress systems with causation linked to sensor wear and calibration [ 16 , 17 ]. Specifically, calibrating with similar load ranges to those desired to be measured improved accuracy by up to 20 times [ 16 ] and accuracy was reduced when smaller areas of loading were applied [ 17 ]. It is likely that similar calibration issues will affect in-shoe shear stress sensor measurement accuracy. Researchers have made excellent progress in developing novel in-shoe plantar shear stress measurement systems; however, they have not yet fully considered the implications of calibration methods on measurement accuracy [ 4 , 5 ]. The choice of indenter area of loading, shape and location is also an important consideration for accurate and reliable sensor calibration; despite this, to the authors’ knowledge this has not been investigated and reported in the literature. A key principle in calibration is that the applied loading should be a good representation of the real-world scenario. In the context of plantar foot mechanics, and for example the metatarsal heads, there is variation in the magnitude of loading, area of loading, shape and potentially the location of the bone in relation to the sensor. This paper presents the design and evaluation of an in-shoe shear stress sensor and considers the impact of calibration on measurement accuracy.

This paper describes a sensor system design and conducts a performance investigation. Three investigations were conducted: calibration investigation, loading profile comparison and sensor validation. These investigations and how they relate to one another are shown in Fig 1 .

thumbnail

  • PPT PowerPoint slide
  • PNG larger image
  • TIFF original image

https://doi.org/10.1371/journal.pone.0309514.g001

Sensor system design

Sensing principle..

Coulomb’s law of friction describes frictional force being proportional to reaction load. In the case of shear sensing insoles this means that there can be no shear stress (friction) without normal stress (reaction load) and that the magnitude of associated shear stress will always be less than that of normal stress. Like most other shear sensors in the literature [ 5 , 15 , 18 – 22 ] the shear sensor is embedded in a hyperelastic or viscoelastic, isotropic incompressible elastomer, as opposed to a discrete sensor placed on the insole or isolated from the main body of the insole material.

Fig 2A shows a cylindrical section of elastomer insole with cross-sectional area, A, containing a strain gauge orientated in the shear plane and a normal stress sensor with sensor readings in mV, S, and N, respectively. The material properties (stress-strain relationship) for the silicone are non-linear but can be approximated as three linear regions (low: ≤ ε 1 = 0.04 strain ; medium: ≤ ε 2 = 0.115 strain ; high: > ε 2 strain ); see Fig 2B . The strains for the three linear regions were determined from the stress-strain curve of the silicone under compressive loading at the target stresses of 14 kPa (low), 70 kPa (medium) and 140 kPa (high). Stress-strain relationships for normal compressive loading are given by Eq 1 , where C medium , and C high are negative intercepts in units of pascal ( C low = 0) and E is the gradient in Pascal.

importance of research report in research methodology

[A] Cylindrical section of elastomer containing strain gauge and normal force sensor [B] Stress-strain curve of the elastomer under compression stress. Linear approximations for deformation were made for three regions of the curve (low, medium, and high stress magnitudes), sectioned by the compressive strains ε 1 and ε 2 , with corresponding gradient E used for calibration. [C] Cylindrical section deformed by normal force only. [D] Cylindrical section deformed by both normal and shear forces.

https://doi.org/10.1371/journal.pone.0309514.g002

Fig 2C shows the section being loaded with a normal force which creates a reduction in thickness but an increase in diameter described by Eq 2 (assuming constant volume) which gives sensor readings S N and N N , which are signal voltage measurements (mV) for the shear stress and normal stress respectively, described by Eqs 3 and 4 where k N and k S are constants (sensor gains) determined by experiment with units Pa/mV and strain/mV respectively (other equation parameters defined in Fig 2 with SI units).

importance of research report in research methodology

Fig 2D shows applied loading from both normal and shear force giving a sensor reading S N + S and N N for the shear stress and normal stress respectively. The applied shear stress, σ S , can be determined from Eq 5 and Eq 1 (assuming an isotropic material) which requires measurements from the normal stress sensor, N N , to decouple the effect on the strain gauge from normal force (where i = low , medium or high ).

importance of research report in research methodology

Shear stress sensor design.

The shear stress sensing system primarily consists of the strain gauge rosette, a normal stress sensor, and the flexion stiffener and load concentrator; here on in referred to as the ‘shear stress system sensor’ or ‘SSS sensor’. A 3-element strain measuring rosette (1-RY81-3/120, Hottinger Bruel & Kjaer UK Ltd, Royston, England) was chosen for the shear stress sensor ( Fig 3A ) arranged in rectangular 0°-45°-90° directions to allow for calculation of resultant shear in both the anterior-posterior (AP) and medial-lateral (ML) directions. The sensor was then embedded in silicone (Sil A50 Smooth- Sil Addition Cure silicone, Smooth-On Inc. Macungie, USA). To assemble the sensor, the first 2mm silicone base layer was poured into a custom 3D printed square mould with dimensions of 20 x 20 x 4 mm (width x length x height). After curing the surface was cleaned and the strain gauges were soldered to 2-core 2.8 mm 2 external diameter shielded wires (JY-1060, Pro-Power by Newark, Chicago, USA). The strain gauges were then placed on the surface of the silicone using a custom 3D printed jig with tabs and bolts to align the strain gauges in the correct angular position. A thin second layer of silicone (approximately 0.5 mm thick) was then poured and allowed to fully cure, the jig was then removed and a final layer of silicone was poured on top to give a total thickness of 4 mm. A 15 mm diameter, 0.8 mm thick phenolic sheet material flexion stiffener and load concentrator was placed at the center of the sensor assembly and the top layer of silicone was then allowed to cure. The full assembly of the sensor is shown in Fig 3B and 3C .

thumbnail

[A] Configuration of the strain rosette in the sensor with three strain gauges arranged at 0°– 45° - 90°, and the relationship between the local strain axes and the global applied shear direction axes (Medial-Lateral, ML, and Anterior-Posterior, AP). [B] Section view of the SSS sensor. [C] Top view of the SSS sensor and its dimensions. [D] Locations of SSS sensors in the sensing insole.

https://doi.org/10.1371/journal.pone.0309514.g003

As mentioned in the sensing principle, the shear stress is obtained from Eq 5 , however, for the SSS sensor to measure both AP and ML shear stress, orientation of the strain gauges needs to be considered. From the configuration shown in Fig 3A for stress measurements calculated from strain gauges A, B and C the shear stress is given by Eqs 6 and 7 .

importance of research report in research methodology

Where θ AB and θ BC are the angles between the individual strain gauges in the rosette, which were at 45°.

Shear stress sensor number, placement, and integration.

Key DFU risk areas, accounting for at more than one-third of DFU cases are the calcaneus, first metatarsal head and hallux areas of the foot [ 23 – 26 ], so placement of the SSS sensors in the insole was in these three locations. To maximize accuracy of the measured sensing data, all sensors were anatomically matched to the participant. This was achieved through a ‘palpation and marking paper’ approach in which a healthcare professional identified the bony landmarks of the foot, marked these areas on the foot surface with skin-safe marker, and the participant stands on the paper to transfer the markings. These markings were then used to ensure SSS sensors were correctly located on the silicone insole, with the sensor x-axis aligned with the anterior posterior direction. The signal wires were laid out from the SSS sensor in the ML direction to reduce fatigue loading from flexion during gait. A 1–2 mm depth of silicone was then poured and cured before a further layer of silicone was poured and cured to make a total insole thickness of 5 mm to complete the insole, as shown in Fig 3D . Three normal stress sensors (A301 FlexiForce 0-44N, Tekscan Inc., Norwood, Massachusetts, USA) were then secured to the bottom of the insole with silicone glue (Permatex 80050 Clear RTV Silicone Adhesive Sealant, Permatex, Illinois Tool Works Inc., Solon, Ohio, USA) with their center coincident with the SSS sensors.

Data acquisition system (DAQ) and signal processing.

A Teensy 4.1 32-bit microcontroller (PJRC, Portland, Oregon, USA), ARM Cortex-M7 processor, with clock speed of 600 MHz and integrated SD storage card, was used to collect and store the voltage readings from the SSS sensors ( Fig 4B ). Flexiforce normal stress sensors were connected via a 10 kOhm circuit divider to analog inputs, whilst shear sensing strain gauges were amplified using a 24-bit high-precision analog-to-digital amplifier (HX711 ADC, HALJIA, Zhongai, China) then routed to digital inputs of the microcontroller. All signals were collected at a sampling rate of 80 Hz. Data was logged to the 16GB SD card and streamed via an ESP8266 UART WiFi adapter (Espressif Systems, Shanghai, China) to allow for continuous monitoring. Power was supplied to all components via 3V and 5V power rails from the microcontroller, sourced from an external 3.7V 3500mAh Lithium Polymer battery (LP104567, EEMB, Moscow, Russian Federation) that was regulated through a linear regulator (LDO, B08HQQ32M2, DollaTek, Hong Kong, China). For both left and right foot measurements, two identical systems were used to collect the measurements, and placed on a custom, adjustable neoprene fitness belt (Frienda, China), during walking trials ( Fig 4 ).

thumbnail

[A] Participant walking on a treadmill with the sensor insole system. The data acquisition system (DAQ) was attached to a belt, and each insole (left and right foot) has a separate but identical DAQ input. [B] Block diagram of the DAQ system, collecting data at 80 Hz.

https://doi.org/10.1371/journal.pone.0309514.g004

A custom MATLAB (The Mathworks Inc., Natick Massachusetts, USA) script was used to parse and analyse the data collected. The data was minimally pre-processed before finalized into calibrated stress measurements. This pre-processing stage included removing only obvious outliers (which accounted for up to 0.05% of the measurement data if present). This was made using the filloutlier function with the ‘quartile’ outlier detection option: ‘quartiles’ outliers which were elements more than 1.5 interquartile ranges above the upper quartile (75 percent) or below the lower quartile (25 percent)) and correcting DC offsets. Data from each foot were analyzed separately.

Calibration investigation: Bench top mechanical testing

Experimental setup and test method..

To investigate the effect of calibration on the sensor’s performance, both shear and normal force were applied to the SSS sensor insole (summarised in Fig 1A ). A uniaxial mechanical testing machine (Instron 5982K2680 100kN 350°C, 500N load cell, Instron ® Norwood, Massachusetts, USA) applied and measured shear force using a bespoke shear stress rig through an indenter of area, A, shown in Fig 5A . A normal reaction force was applied through a screw thread to the indenter to facilitate frictional shear stress application. Measurement of normal reaction force was through a load cell and ADC (‎ADN1903027, 196.2 N Weight Sensor Load Cell, Haljia, China) capturing data at 80Hz using an Arduino (Arduino Mega 2560 Rev3, Arduino, Somerville, MA, USA). For pure normal stress loading calibration, the insole was placed flat on a plate in the uniaxial testing machine fitted with a large compression platen on the bottom and an indenter with a specific area, A, applying compression force from the top, shown in Fig 5B .

thumbnail

[A] Custom shear stress rig made of rigid 10 mm acrylic sheet plates which applied the force of the mechanical testing machine as a shear force onto the insole. The shear stress was calculated using the applied force and area of the custom indenter. The indenter’s compressive stiffness was 30.1 MPa, ~12 times stiffer than the silicone sensor of 2.5 MPa. [B] Custom normal stress calibration setup where the insole was placed on a compression platen.

https://doi.org/10.1371/journal.pone.0309514.g005

Sensor loading area investigation.

To evaluate the effect of indenter area, A, five flat ended cylindrical indenters with diameters of, 10, 15, 20, 25, 30 mm were used to load the SSS sensor at its center. While studies have shown that there is a difference between various indenter shape loading profiles and the corresponding mechanical responses of the material [ 27 , 28 ], we determined that the normal stress distribution that was measured at the surface of the SSS sensor was similar for both flat and rounded indenter profiles. The only notable difference was the size of the normal stress distribution, as a flat indenter covered a larger area than the rounded indenter of the same diameter. Thus, choosing a flat indenter of a smaller size gave the same loading results as a larger rounded indenter.

The tests applied a cyclic shear force with a 1 Hz triangular waveform pattern ranging from 0 to 50 N in combination with a constant normal stress of 140 kPa through all the indenters. SSS Sensor output signal, S N + S , in mV was measured for each of the loading areas.

Sensor loading location investigation.

Ideally a sensor would be co-located with the anatomical part applying the load, however, this may not always be practically possible so an understanding of the relationship between the location of the SSS sensor, the location of the applied loading and the accuracy of measurement is required. To investigate the effect of loading location, twelve loading locations were chosen, six in the anterior direction and six in the lateral direction both measuring 0, 10, 15, 20, 30, 40 mm from the center of the shear stress sensor. Loads were applied in both the medial or posterior direction respectively. Cyclic loading was applied to the SSS sensor insole of the same characteristic as the area of loading investigation (see ‘Sensing loading area investigation’ section). SSS Sensor output signal, S N + S , in mV was measured for each of the loading locations.

Loading profile comparison: Human plantar loading specific sensor calibration

Comparison of normal stress profiles..

Shear loading application area and location affect strain measurements, so it is important to consider plantar stress loading from the human foot. During walking plantar stress is dependent on many factors including foot size and anatomy, weight, morbidity and walking patterns, all of which are different between participants. From the sensor calibration investigations in the results section, we can see that (i) loading location and (ii) loading area may affect the output of the SSS sensor so these must be considered during calibration.

  • Loading location variation can be removed by placing the SSS sensors at personalised anatomical locations in the insole, which is the approach we have taken.
  • Loading area variation can be controlled through calibration. This was determined through a comparison and matching of normal stress loading profiles of the specific participant’s foot anatomy with bench top mechanical test experiments involving various loading area sizes (flat cylindrical indenters).

To capture the plantar normal stress loading profiles of our participants, in the SSS sensor locations of the calcaneus, first metatarsal head and the hallux, we conducted measurements in-shoe during a two-minute treadmill walk using an F-scan insole (Tekscan Inc., Boston, USA) coupled with a non-instrumented insole of the same material properties and thickness as our designed insole. Then the test rig ( Fig 4B ) was used with 15, 20, 30 and 40 mm diameter indenter sizes to load the silicone insole from 0 to 250 N (to simulate a normal stress range up to 1400 kPa, which is comparable to the 1000–1900 kPa normal plantar stresses during gait reported in the literature [ 29 , 30 ].

Measurements of plantar normal stress distribution were captured with the same F-scan and insole used with the participants. To simulate the different foot structures, we adjusted the diameter of cylindrical indenters (15, 20, 30 and 40 mm), which were based on the ranges of average anatomical dimensions of the hallux, metatarsal head, and calcaneus bones [ 31 – 36 ], see results and discussion ‘Human plantar loading consideration for sensor calibration’ section. An illustrated summary of this investigation can also be found in Fig 1B .

Statistical analysis as a method for calibration indenter choice.

Comparisons were made between the participant’s mean normal stress profiles with the bench top test rig results (gait data averaged over 20 gait cycles from three different sensing locations hallux, first metatarsal head, and calcaneus, bench top test rig results for 15, 20, 30 and 40 mm indenter diameters). Magnitudes of both results were scaled to have a maximum unity magnitude to enable comparison. The normal stress profiles (normal stress vs displacement across anatomical location) were collected along a 2D cross section of 40 mm in length across the foot-width of loaded area (see results and discussion ‘Human plantar loading consideration for sensor calibration’ section). Calibration indenter diameters for the hallux, first metatarsal head and calcaneus locations were chosen based on either the highest R 2 value from a multiple linear regression between the gait measures and the test rig measures or the maximum measurement sensitivity area of the SSS sensor (see results and discussion ‘Sensor calibration’ section).

Sensor validation: Bench top mechanical testing

The following section describes the sensor validation, as summarised in Fig 1C . A 30 mm diameter indenter was used to calibrate the SSS sensor, as this was determined to be the maximum sensing area of the sensor (see results and discussion ‘Sensor calibration’ section). This was achieved through a series of mechanical tests detailed in Table 1 , with shear stresses applied in both ML and AP directions and conducted at 1Hz, to simulate average walking speed frequency.

thumbnail

https://doi.org/10.1371/journal.pone.0309514.t001

The shear stress magnitudes chosen for low, medium, and high levels were 10%, 50% and 100% of the 140 kPa maximum in-shoe plantar shear stress reported in the literature respectively [ 37 ]. This enabled calculation of the calibration parameters coefficients E low , E high , C medium and C high , according to Eq 1 .

To validate the calibrated SSS sensor, a shear stress of 70 kPa with a normal stress of 125 kPa was applied in both the ML and AP direction at 0.8 Hz. Additionally, a shear stress was also applied in the 45° direction (14 kPa shear stress, 28 kPa normal stress at 1Hz).

Two measurements of error were made. The first was an overall mean absolute error (MAE), which is the mean of the difference between the measurement from the test rig and the calibrated SSS sensor measurement (in kPa). The second was peak error, measured as the percentage error at peak loads between the applied measurement from the test rig and the calibrated SSS sensor measurement. Peak values of measured shear stress were taken from 10 cycles and a standard deviation was calculated. Repeatability was calculated from the SSS sensor measurements as the standard deviation of the peak plantar stresses divided by the mean of the peak plantar stress, presented as percentage (e.g. a mean peak measurement of 100 kPa and a standard deviation of those peak measurements at ± 10 kPa, would result in (10/100) x 100% = 10% deviation from the peak value, and thus 90% repeatability).

Sensor validation: Gait lab treadmill walking

To further validate the sensors, a gait laboratory treadmill walking test was performed on a single anthropometrically matched healthy participant and a single participant with diabetes (both male and 45 years old, weighing 88 kg and 75 kg, height of 1.75 and 1.66 m, EU shoe size 44 and 42, weight per insole area 32 kPa and 35 kPa, walking speed 0.92 ms -1 and 0.95 ms -1 for the healthy participant and participant with diabetes respectively). The study received approval from the NHS Health Research Authority and Health and Care Research Wales (HCRW) Ethics Committee (REC reference: 22/NW/0216), and all participants provided written consent. Trial Registration number: NCT05865353. Participants were recruited between 1 st November 2022 till 30 th May 2023. Data collection was conducted in two parts (1) baseline visit and (2) main data collection, Table 2 .

thumbnail

https://doi.org/10.1371/journal.pone.0309514.t002

Baseline visit.

Anthropometric data was collected, and anatomical landmarks determined using the ‘palpation and marking paper’ method described in the ‘Shear stress sensor number, placement and integration’ section. The participants conducted a 2 minute treadmill walk while wearing a pair of silicone insoles, made from the same materials and dimensions as the sensor insole but without active sensors, and a pair of F-Scan pressure sensing insoles, in a prophylactic shoe (Sponarind 97308, Finn Comfort Inc. Hassfurt, Bavaria, Germany), designed with shock-absorbing properties and a larger volume, ideal for people with diabetes. Normal stress data was collected using the F-scan insoles, at a self-selected gait speed to determine normal plantar stress profiles (results of which were used for the comparison of normal stress profiles, in ‘Human plantar loading specific sensor calibration’ section). Table 2 shows the participant data collected during the baseline visit.

Main data collection.

The participants returned for the main data collection where they were asked to wear the sensing insole in the specialist diabetic shoe. They then walked twice on a split belt treadmill with integrated force plates (M-Gait, Motek Medical BV, Amsterdam, Netherlands) for 15 minutes at their self-selected speed (see Table 2 ).

Data analysis: Shear stress gait measures and repeatability.

Mean and standard deviation of peak shear stress and peak normal stress measurements were extracted from 20 gait cycles measured by the sensing insole. Measurement repeatability was determined and comparisons, between the two walking periods within each individual walking session (start, middle, and end). We collected statistical data for both plantar shear stress and normal stress measurements to perform inter-participant comparisons. These included statistics for Plantar Stresses (Normal, AP Shear, and ML Shear) across all three sensor areas, encompassing mean values, standard deviations, peak stresses, and variability (or percentage difference) of measurements within the 15-minute treadmill walk (intra-walk) and between two treadmill walks (inter-walk).

Results and discussion

Sensor calibration.

Shear stress measurement accuracy is affected by the calibration method. Specifically, the shear stress sensor measured output signal decreases exponentially with both increasing loading application area, and increasing loading distance away from sensor center, see Fig 6 . The results in Fig 6A show that the measured output decreases by ~80% from 1.5 mV to 0.3 mV, for a calibration loading application area of 10 mm diameter to 30 mm diameter respectively. This means that if the sensor was calibrated for the smaller 10 mm area and a larger 30 mm diameter load was applied, the measurements would be underestimated by 80%. Likewise, calibrating for a larger area, and applying load for a small area will greatly overestimate the measurements. Increasing the loading application area increases the area over which the force is distributed over the sensor, thus more of the loading is applied away from the center of the shear stress sensor. From the results shown in Fig 6B and 6C the location of loading application also reduces sensor sensitivity. All this means that the shear stress sensor will only be able to measure accurately if the calibration loading area matches the desired measurement loading application area (or are reasonable similar areas).

thumbnail

Mean peak signal of shear stress (SSS sensor) total output (mV) from 10 cyclic triangular loading. [A]—Effect of area of loading on SSS sensor measured outputs. [B, C]- Effect of location of loading on SSS sensor output for medial and posterior respectively.

https://doi.org/10.1371/journal.pone.0309514.g006

Fig 6B and 6C show the influence of loading location on SSS sensor measurements for the same applied loading area (25 mm diameter indenter). As expected, the SSS sensor measurement for both Anterior-Posterior (AP) and Medial-Lateral (ML) shear loading decreased as the loading distance moved away from the sensor center. This is due to a decrease in deformation of the shear stress sensor as the loading is applied further away from the sensor center. However, it is important to note that there was still a measurable signal at these distances as they are not yet relatively far away from the sensor. This means that measured shear stress from an embedded sensor will not just be from the coincident anatomical location but also have a contribution from adjacent and other relatively close anatomies (e.g. first metatarsal head located sensor may be measuring shear stress contribution from the second metatarsal head). This is due to material coupling, which is that stress applied in one area of the material, in this case the silicone insole, will stress surrounding areas of the material. The implication is that the shear stress sensor will provide more accurate measurements if the loading application location is coincident with the centre of the sensor. This emphasizes the importance of the placement of these discrete sensors, which is why a participant specific sensing insole was manufactured, placing sensors at the exact anatomical location of the boney landmarks, where peak loading is expected.

Although this paper presents the shear stress sensor sensitivities to calibration loading area and calibration loading locations for this sensor it is likely that these observations are true for other embedded in-shoe shear stress sensors. Other researchers measured in-shoe peak shear stresses from gait varied from 9 kPa to 140 kPa and calibration loading area varied from 20 mm diameter area (314 mm 2 ) –10,000 mm 2 (up to half the insole, approximated from the experimental Fig 3 in the paper as there was insufficient detail to give conclusive information on the loading area used) [ 5 , 15 ]. It is likely that these variations in measurements are not due to inherent sensor inaccuracy or participant gait differences but likely to stem from calibration method differences. To the authors’ knowledge, calibration loading area has not been investigated in other published studies, but it is suggested that calibration should be considered for all future in-shoe shear stress measurements.

Human plantar loading consideration for sensor calibration

Fig 7 shows that calibration loading indenter diameters should be 20 mm and 40 mm for the hallux and both the first metatarsal head and the calcaneus respectively. However, due to limitations on sensor sensitivity beyond 30 mm from the center of the sensor a 30 mm indenter diameter was chosen for the first metatarsal head and calcaneus. These choices of calibration indenter diameters were determined from the comparison of the bench top testing normal stress profiles of different indenter diameters, with the participants’ measured normal stress profile during walking. The bench top test showed that all the indenters resulted in normally distributed normal stress profile curves ( Fig 7A ), increasing in curve width with increasing indenter diameters, reflecting a larger contact area of the applied force. An increasing curve width is also expected for the normal stress profiles of anatomical bones with increasing diameters (first metatarsal head ~15 mm, hallux ~20 mm, and calcaneus ~ 40 mm [ 31 – 36 , 38 ]). The participants’ measured normal stress for the hallux and the calcaneus regions of the foot had normal pressure distribution profiles that reflected their anatomical sizes, however, the presence of the second close metatarsal bone influenced the normal stress profile in the first metatarsal head area and widened the normal stress profile, more than what is expected from its anatomical diameter of ~15 mm ( Fig 7B ). The R 2 results of the multiple linear regression reflected this ( Fig 7C ), as the first metatarsal head correlates to the indenter size of 40 mm diameter. The R 2 value of the metatarsal head, however, is small at 0.41, indicating that there may be variability in the pressure distributions in that area, likely from gait variability within a participant’s walk or between participants. The hallux and calcaneus regions of the foot have a normal pressure distribution profile that reflects the loading of the anatomical bones clearly (R 2 ≥ 0.95) and can be matched with an indenter of a similar size to give a representative loading for calibration of 20 mm and 40 mm respectively. However, loading area results from Fig 6A show that sensor sensitivity converges for indenter areas greater than 25–30 mm diameter. Therefore, calibration indenter diameters were reduced to 30 mm for the first metatarsal head and calcaneus.

thumbnail

[A] Experimental normal pressure profiles: (i) Indenter experimental setup, (ii) Normal pressure profile curves width increases with increasing indenter diameter, (iii) F-scan pressure result that shows the cross section used to obtain these values used in ii. [B] Participant pressure profiles: (i) In-shoe gait lab experimental setup (ii) An example of participant’s pressure profile over 20 gait cycles, showing the three normal pressure profiles of the foot at the calcaneus, first met head and hallux, (iii) F-scan pressure result that shows the cross section used to obtain the values. The image also shows the peaks for these three regions (Calcaneus peak CP, Hallux Peak HP and the metatarsal peaks MHP1 and MHP2). [C] Graphical representation of the regression analysis’ coefficient of determination (or R-squared) results. Larger circles indicate a higher R-squared value, and red circles indicate the maximum R-squared in the sensor group. R-squared values are shown above the circles, and maximum is indicated as red font.

https://doi.org/10.1371/journal.pone.0309514.g007

The implications of this for the SSS sensor are that calibration indenter sizes should be between 10–30 mm dependent on expected shear stress application areas. This finding is likely to be true for other embedded in-shoe shear stress sensors in the literature. The limitation from this finding is that to obtain accurate shear stress measurements the user must know something about the shear stress loading profile which may be unknown. A possible way to mitigate for this may be to calibrate the sensor for a range of loading areas and to use a normal stress sensor to determine which indenter calibration area to use in post-processing.

Shear sensor calibration and bench top mechanical test validation

The SSS sensor was highly accurate and repeatable when compared against the bench top mechanical test as seen in Fig 8 . Results from Table 3 show that calibration error was insignificant with the mean absolute error (MAE) over the entire cycle in calibration < 0.00007 kPa for all magnitudes of loading, and errors at peak loading were < 5.8%.

thumbnail

[A] Sensor calibration for both anterior-posterior (AP) and medial-lateral (ML) directions at a ‘medium’ level of posterior and medial shear loading of 1 Hz cyclic loading of up to 70 kPa shear stress, at a constant normal stress of 140 kPa. [B] Sensor validation test result at medium level of shear cyclic loading (up to 70 kPa), at a different loading frequency (~0.85 Hz) and different constant normal stress (125kPa). All results for the different configurations of loading are shown in Table 3 .

https://doi.org/10.1371/journal.pone.0309514.g008

thumbnail

https://doi.org/10.1371/journal.pone.0309514.t003

The errors in the validation of the sensors at loading conditions different from the calibration were higher, but still showed a high accuracy for the sensors. The sensor was most accurate for low–medium shear stress magnitudes with up to <1.8 kPa for MAE, and < 8.7% for error at peak loading (see example of medium magnitude measurements in Fig 8 ). Followed by the measurements at a resultant loading angle of 45° clockwise from the anterior direction (MAE <1.4 kPa; <11.5% peak error). These small errors could be attributed to errors in the validation setup, as an error of ± 5° would correspond to a peak shear stress error of up to 4.6%. The SSS sensor also showed good repeatability for all loading conditions (>97% repeatability in calibration and >96% repeatability in validation).

The highest errors in validation were at high shear stress magnitudes, over the expected plantar shear stress from gait, these were MAE <17.3 kPa and peak error <22.4%. This was likely due to the mechanical coupling of the high normal stress, pushing the total material deformation higher up the hyperelastic stress-strain curve of the sensor material ( Fig 2D ). At this region of the stress-strain curve, very small strains relate to high changes in stress making the SSS sensor more prone to measurement errors. However, the maximum errors translate to an error of ± 31.3 kPa, which is within the standard deviation of most plantar stress measurements from the literature of ± 50 kPa for shear stress [ 1 – 5 , 15 ].

Treadmill walking validation

For treadmill walking the SSS sensors measured the magnitude of shear stresses between 66.5 kPa—152.6 kPa in the AP direction, and 28.4 kPa– 128 kPa in the ML direction, full results are shown in Table 4 . As expected, the ML shear range was lower than the AP shear range, as loading was expected to be predominantly in the AP direction. Loads were cyclic going from zero to peak value with the same frequency as gait which were at speeds of 0.92 and 0.95ms -1 for the healthy participant and participant with diabetes respectively. The only notable differences were in the direction of some of the peak plantar shear stresses.

thumbnail

https://doi.org/10.1371/journal.pone.0309514.t004

No significant differences between both participants peak plantar stress values were observed (t-test of mean peak plantar stresses PPS, p>0.36, p>0.58 and p>0.57). This was expected, as both participants had a similar walking speed (0.92–0.95 ms -1 , and weight per insole area 32.4–35 kPa). However, this study aimed to demonstrate the feasibility, accuracy, and repeatability of the SSS system so no conclusions should be drawn on plantar stress for general people with diabetes and healthy populations for this study.

The shear measurements of the SSS sensor was highly repeatable when comparing data recorded for both within the 15-minute treadmill walk (intra-walk), and between the two 15-minute walks (inter-walk). The mean and standard deviation of the percentage difference of peak plantar stresses were ≤ 8% ± 6% for both investigations. Intra-walk differences were lower than inter-walk–with the highest percentage difference of 21% measured by the SSS sensor for the ML Shear (Hallux, Left foot, participant with diabetes). Other measurements from the shear stress sensors were < 15% difference. For inter-walk, the highest PPS percentage difference was measured by the commercial Flexiforce sensor of 47% difference in normal stress (Hallux, left foot, participant with diabetes), followed by 37% for the AP shear of the SSS sensor (Hallux, right, healthy) and 33% for the ML shear of the SSS sensor (Calcaneus, right, participant with diabetes).

Calibration and material coupling for shear stress sensors

To the author’s knowledge, this study is the first to address in-shoe shear sensing material coupling and unexplored complexities in calibration for shear sensing. The results illustrate that due to sensor and material coupling with adjacent structures the area which contributes to the measured shear can be larger than the area of the sensor. This has important implications for shear sensor calibration, firstly in terms of the location of the sensor and the anatomical region that is to be measured, and secondly in terms of the indenter area used for calibration. These results have significance for all researchers developing systems to measure in-shoe plantar shear stress as these factors will affect the magnitude of shear sensed. Furthermore, these results may partially explain the variation in magnitudes of shear measured at the same anatomical locations by different researchers. A suggested approach for shear sensor calibration is shown below (for detail see methods ‘Human plantar loading specific sensor calibration’ section):

  • Determine the sensing area : Material coupling between the shear sensor and adjacent regions can result in the area sensed being greater than then actual area of the sensor.
  • Determine the distribution of plantar loading : Normal stress distribution will be indicative of shear stress distribution, whilst foot anatomy, for example the hallux, will determine the loading area.
  • Decision for calibration indenter area : Informed by both the sensing area and the distribution and magnitude of plantar loading.

Developed shear stress system sensor

Sensor performance..

A novel Shear Stress System (SSS) sensor composed of a strain gauge rosette, normal pressure sensor and stiffener to concentrate loading at the desired sensor location and mitigate against material coupling was developed and evaluated. Sensor locations were anatomically matched and measured the plantar loading profiles to inform calibration of each sensor at a specific location. This study conducted a thorough experimental validation of the shear sensor through mechanical bench top testing and with human participant treadmill walking. Shear sensing results demonstrated high repeatability (>97%) and high accuracy in the expected measurement range for plantar shear stress (mean absolute errors < ±2 kPa) with error increasing for very high shear stresses (mean absolute errors < ±17 kPa) compared to bench top mechanical tests and repeatability for treadmill walking of 15-minutes duration with less than 21% variability within walking, and less than 37% variability between walks (which was lower than the commercial normal pressure sensors of 47% used in this study).

Limitations.

A rosette strain gauge was chosen for determining unknown principal directions, however it restricted complete strain separation in the AP and ML directions. For exclusive separation, a 0°–90° strain gauge in the ML and AP axes could be adopted. The manual assembly of the sensors and alignment of the sensor in relation to the AP and ML directions affect shear measurement. This has been controlled through careful manufacture, but some small errors will remain. The chosen alignment of the strain gauge rosette in the ML direction was to reduce the fatigue on the soldered joints, this resulted in a decreased sensitivity in the AP direction due to the 45° off-alignment of the gauges with this axis.

Relative stiffness of the silicone and the strain gauge rosette will affect strain transfer between the two materials. Material properties of the silicone is highly important for measurement accuracy, sensitivity, and range, and warrants further investigation.

Future work.

A three-part linear fitting procedure was adopted to calibrate the SSS sensor accommodating the hyperelastic material properties, in the future consideration of alternative fits to capture viscoelastic effects could be made. Despite observing minimal shear sensor temperature response, variability between 20–30°C, literature indicates foot temperatures may be as high as 35° in people with diabetes [ 39 , 40 ], this should be considered in the future. In this proof-of-concept study, the size of calibration area was based on average pressure profiles, a suitable assumption with little participant variation. However, future larger studies may require participant-specific calibration to address varying loading profiles, particularly due to gait variability.

  • View Article
  • PubMed/NCBI
  • Google Scholar
  • 22. Amemiya A, Noguchi H, Oe M, Sanada H, Mori T. Establishment of a measurement method for in-shoe pressure and shear stress in specific regions for diabetic ulcer prevention. 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE; 2016.
  • DOI: 10.62517/jhve.202416108
  • Corpus ID: 271550484

Research on the Construction of Financial Accounting Courses based on SPOC Model

  • Published in Journal of Higher Vocational… 1 January 2024
  • Education, Business, Computer Science
  • Journal of Higher Vocational Education

Related Papers

Showing 1 through 3 of 0 Related Papers

Log in using your username and password

  • Search More Search for this keyword Advanced search
  • Latest content
  • Current issue
  • For authors
  • New editors
  • BMJ Journals

You are here

  • Volume 58, Issue 17
  • Where is the research on sport-related concussion in Olympic athletes? A descriptive report and assessment of the impact of access to multidisciplinary care on recovery
  • Article Text
  • Article info
  • Citation Tools
  • Rapid Responses
  • Article metrics

Download PDF

  • http://orcid.org/0000-0002-3298-5719 Thomas Romeas 1 , 2 , 3 ,
  • http://orcid.org/0000-0003-1748-7241 Félix Croteau 3 , 4 , 5 ,
  • Suzanne Leclerc 3 , 4
  • 1 Sport Sciences , Institut national du sport du Québec , Montreal , Quebec , Canada
  • 2 School of Optometry , Université de Montréal , Montreal , Quebec , Canada
  • 3 IOC Research Centre for Injury Prevention and Protection of Athlete Health , Réseau Francophone Olympique de la Recherche en Médecine du Sport , Montreal , Quebec , Canada
  • 4 Sport Medicine , Institut national du sport du Québec , Montreal , Quebec , Canada
  • 5 School of Physical and Occupational Therapy , McGill University , Montreal , Quebec , Canada
  • Correspondence to Dr Thomas Romeas; thomas.romeas{at}umontreal.ca

Objectives This cohort study reported descriptive statistics in athletes engaged in Summer and Winter Olympic sports who sustained a sport-related concussion (SRC) and assessed the impact of access to multidisciplinary care and injury modifiers on recovery.

Methods 133 athletes formed two subgroups treated in a Canadian sport institute medical clinic: earlier (≤7 days) and late (≥8 days) access. Descriptive sample characteristics were reported and unrestricted return to sport (RTS) was evaluated based on access groups as well as injury modifiers. Correlations were assessed between time to RTS, history of concussions, the number of specialist consults and initial symptoms.

Results 160 SRC (median age 19.1 years; female=86 (54%); male=74 (46%)) were observed with a median (IQR) RTS duration of 34.0 (21.0–63.0) days. Median days to care access was different in the early (1; n SRC =77) and late (20; n SRC =83) groups, resulting in median (IQR) RTS duration of 26.0 (17.0–38.5) and 45.0 (27.5–84.5) days, respectively (p<0.001). Initial symptoms displayed a meaningful correlation with prognosis in this study (p<0.05), and female athletes (52 days (95% CI 42 to 101)) had longer recovery trajectories than male athletes (39 days (95% CI 31 to 65)) in the late access group (p<0.05).

Conclusions Olympic athletes in this cohort experienced an RTS time frame of about a month, partly due to limited access to multidisciplinary care and resources. Earlier access to care shortened the RTS delay. Greater initial symptoms and female sex in the late access group were meaningful modifiers of a longer RTS.

  • Brain Concussion
  • Cohort Studies
  • Retrospective Studies

Data availability statement

Data are available on reasonable request. Due to the confidential nature of the dataset, it will be shared through a controlled access repository and made available on specific and reasonable requests.

https://doi.org/10.1136/bjsports-2024-108211

Statistics from Altmetric.com

Request permissions.

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.

WHAT IS ALREADY KNOWN ON THIS TOPIC

Most data regarding the impact of sport-related concussion (SRC) guidelines on return to sport (RTS) are derived from collegiate or recreational athletes. In these groups, time to RTS has steadily increased in the literature since 2005, coinciding with the evolution of RTS guidelines. However, current evidence suggests that earlier access to care may accelerate recovery and RTS time frames.

WHAT THIS STUDY ADDS

This study reports epidemiological data on the occurrence of SRC in athletes from several Summer and Winter Olympic sports with either early or late access to multidisciplinary care. We found the median time to RTS for Olympic athletes with an SRC was 34.0 days which is longer than that reported in other athletic groups such as professional or collegiate athletes. Time to RTS was reduced by prompt access to multidisciplinary care following SRC, and sex-influenced recovery in the late access group with female athletes having a longer RTS timeline. Greater initial symptoms, but not prior concussion history, were also associated with a longer time to RTS.

HOW THIS STUDY MIGHT AFFECT RESEARCH, PRACTICE OR POLICY

Considerable differences exist in access to care for athletes engaged in Olympic sports, which impact their recovery. In this cohort, several concussions occurred during international competitions where athletes are confronted with poor access to organised healthcare. Pathways for prompt access to multidisciplinary care should be considered by healthcare authorities, especially for athletes who travel internationally and may not have the guidance or financial resources to access recommended care.

Introduction

After two decades of consensus statements, sport-related concussion (SRC) remains a high focus of research, with incidence ranging from 0.1 to 21.5 SRC per 1000 athlete exposures, varying according to age, sex, sport and level of competition. 1 2 Evidence-based guidelines have been proposed by experts to improve its identification and management, such as those from the Concussion in Sport Group. 3 Notably, they recommend specific strategies to improve SRC detection and monitoring such as immediate removal, 4 prompt access to healthcare providers, 5 evidence-based interventions 6 and multidisciplinary team approaches. 7 It is believed that these guidelines contribute to improving the early identification and management of athletes with an SRC, thereby potentially mitigating its long-term consequences.

Nevertheless, evidence regarding the impact of SRC guidelines implementation remains remarkably limited, especially within high-performance sport domains. In fact, most reported SRC data focus on adolescent student-athletes, collegiate and sometimes professional athletes in the USA but often neglect Olympians. 1 2 8–11 Athletes engaged in Olympic sports, often referred to as elite amateurs, are typically classified among the highest performers in elite sport, alongside professional athletes. 12 13 They train year-round and uniquely compete regularly on the international stage in sports that often lack professional leagues and rely on highly variable resources and facilities, mostly dependent on winning medals. 14 Unlike professional athletes, Olympians do not have access to large financial rewards. Although some Olympians work or study in addition to their intensive sports practice, they can devote more time to full-time sports practice compared with collegiate athletes. Competition calendars in Olympians differ from collegiate athletes, with periodic international competitions (eg, World Cups, World Championships) throughout the whole year rather than regular domestic competitions within a shorter season (eg, semester). Olympians outclass most collegiate athletes, and only the best collegiate athletes will have the chance to become Olympians and/or professionals. 12 13 15 In Canada, a primary reason for limited SRC data in Olympic sports is that the Canadian Olympic and Paralympic Sports Institute (COPSI) network only adopted official guidelines in 2018 to standardise care for athletes’ SRC nationwide. 16 17 The second reason could be the absence of a centralised medical structure and surveillance systems, identified as key factors contributing to the under-reporting and underdiagnosis of athletes with an SRC. 18

Among the available evidence on the evolution of SRC management, a 2023 systematic review and meta-analysis in athletic populations including children, adolescents and adults indicated that a full return to sport (RTS) could take up to a month but is estimated to require 19.8 days on average (15.4 days in adults), as opposed to the initial expectation of approximately 10.0 days based on studies published prior to 2005. 19 In comparison, studies focusing strictly on American collegiate athletes report median times to RTS of 16 days. 9 20 21 Notably, a recent study of military cadets reported an even longer return to duty times of 29.4 days on average, attributed to poorer access to care and fewer incentives to return to play compared with elite sports. 22 In addition, several modifiers have also been identified as influencing the time to RTS, such as the history of concussions, type of sport, sex, past medical problems (eg, preinjury modifiers), as well as the initial number of symptoms and their severity (eg, postinjury modifiers). 20 22 The evidence regarding the potential influence of sex on the time to RTS has yielded mixed findings in this area. 23–25 In fact, females are typically under-represented in SRC research, highlighting the need for additional studies that incorporate more balanced sample representation across sexes and control for known sources of bias. 26 Interestingly, a recent Concussion Assessment, Research and Education Consortium study, which included a high representation of concussed female athletes (615 out of 1071 patients), revealed no meaningful differences in RTS between females and males (13.5 and 11.8 days, respectively). 27 Importantly, findings in the sporting population suggested that earlier initiation of clinical care is linked to shorter recovery after concussion. 5 28 However, these factors affecting the time to RTS require a more thorough investigation, especially among athletes engaged in Olympic sports who may or may not have equal access to prompt, high-quality care.

Therefore, the primary objective of this study was to provide descriptive statistics among athletes with SRC engaged in both Summer and Winter Olympic sport programmes over a quadrennial, and to assess the influence of recommended guidelines of the COPSI network and the fifth International Consensus Conference on Concussion in Sport on the duration of RTS performance. 16 17 Building on available evidence, the international schedule constraints, variability in resources 14 and high-performance expectation among this elite population, 22 prolonged durations for RTS, compared with what is typically reported (eg, 16.0 or 15.4 days), were hypothesised in Olympians. 3 19 The secondary objective was to more specifically evaluate the impact of access to multidisciplinary care and injury modifiers on the time to RTS. Based on current evidence, 5 7 29 30 the hypothesis was formulated that athletes with earlier multidisciplinary access would experience a faster RTS. Regarding injury modifiers, it was expected that female and male athletes would show similar time to RTS despite presenting sex-specific characteristics of SRC. 31 The history of concussions, the severity of initial symptoms and the number of specialist consults were expected to be positively correlated to the time to RTS. 20 32

Participants

A total of 133 athletes (F=72; M=61; mean age±SD: 20.7±4.9 years old) who received medical care at the Institut national du sport du Québec, a COPSI training centre set up with a medical clinic, were included in this cohort study with retrospective analysis. They participated in 23 different Summer and Winter Olympic sports which were classified into six categories: team (soccer, water polo), middle distance/power (rowing, swimming), speed/strength (alpine skiing, para alpine skiing, short and long track speed skating), precision/skill-dependent (artistic swimming, diving, equestrian, figure skating, gymnastics, skateboard, synchronised skating, trampoline) and combat/weight-making (boxing, fencing, judo, para judo, karate, para taekwondo, wrestling) sports. 13 This sample consists of two distinct groups: (1) early access group in which athletes had access to a medical integrated support team of multidisciplinary experts within 7 days following their SRC and (2) late access group composed of athletes who had access to a medical integrated support team of multidisciplinary experts eight or more days following their SRC. 5 30 Inclusion criteria for the study were participation in a national or international-level sports programme 13 and having sustained at least one SRC diagnosed by an authorised healthcare practitioner (eg, physician and/or physiotherapist).

Clinical context

The institute clinic provides multidisciplinary services for care of patients with SRC including a broad range of recommended tests for concussion monitoring ( table 1 ). The typical pathway for the athletes consisted of an initial visit to either a sports medicine physician or their team sports therapist. A clinical diagnosis of SRC was then confirmed by a sports medicine physician, and referral for the required multidisciplinary assessments ensued based on the patient’s signs and symptoms. Rehabilitation progression was based on the evaluation of exercise tolerance, 33 priority to return to cognitive tasks and additional targeted support based on clinical findings of a cervical, visual or vestibular nature. 17 The expert team worked in an integrated manner with the athlete and their coaching staff for the rehabilitation phase, including regular round tables and ongoing communication. 34 For some athletes, access to recommended care was fee based, without a priori agreements with a third party payer (eg, National Sports Federation).

  • View inline

Main evaluations performed to guide the return to sport following sport-related concussion

Data collection

Data were collected at the medical clinic using a standardised injury surveillance form based on International Olympic Committee guidelines. 35 All injury characteristics were extracted from the central injury database between 1 July 2018 and 31 July 2022. This period corresponds to a Winter Olympic sports quadrennial but also covers 3 years for Summer Olympic sports due to the postponing of the Tokyo 2020 Olympic Games. Therefore, the observation period includes a typical volume of competitions across sports and minimises differences in exposure based on major sports competition schedules. The information extracted from the database included: participant ID, sex, date of birth, sport, date of injury, type of injury, date of their visit at the clinic, clearance date of unrestricted RTS (eg, defined as step 6 of the RTS strategy with a return to normal gameplay including competitions), the number and type of specialist consults, mechanism of injury (eg, fall, hit), environment where the injury took place (eg, training, competition), history of concussions, history of modifiers (eg, previous head injury, migraines, learning disability, attention deficit disorder or attention deficit/hyperactivity disorder, depression, anxiety, psychotic disorder), as well as the number of symptoms and the total severity score from the first Sport Concussion Assessment Tool 5 (SCAT5) assessment following SRC. 17

Following a Shapiro-Wilk test, medians, IQR and non-parametric tests were used for the analyses because of the absence of normal distributions for all the variables in the dataset (all p<0.001). The skewness was introduced by the presence of individuals that required lengthy recovery periods. One participant was removed from the analysis because their time to consult with the multidisciplinary team was extremely delayed (>1 year).

Descriptive statistics were used to describe the participant’s demographics, SRC characteristics and risk factors in the total sample. Estimated incidences of SRC were also reported for seven resident sports at the institute for which it was possible to quantify a detailed estimate of training volume based on the annual number of training and competition hours as well as the number of athletes in each sport.

To assess if access to multidisciplinary care modified the time to RTS, we compared time to RTS between early and late access groups using a method based on median differences described elsewhere. 36 Wilcoxon rank sum tests were also performed to make between-group comparisons on single variables of age, time to first consult, the number of specialists consulted and medical visits. Fisher’s exact tests were used to compare count data between groups on variables of sex, history of concussion, time since the previous concussion, presence of injury modifiers, environment and mechanism of injury. Bonferroni corrections were applied for multiple comparisons in case of meaningful differences.

To assess if injury modifiers modified time to RTS in the total sample, we compared time to RTS between sexes, history of concussions, time since previous concussion or other injury modifiers using a method based on median differences described elsewhere. 36 Kaplan-Meier curves were drawn to illustrate time to RTS differences between sexes (origin and start time: date of injury; end time: clearance date of unrestricted RTS). Trajectories were then assessed for statistical differences using Cox proportional hazards model. Wilcoxon rank sum tests were employed for comparing the total number of symptoms and severity scores on the SCAT5. The association of multilevel variables on return to play duration was evaluated in the total sample with Kruskal-Wallis rank tests for environment, mechanism of injury, history of concussions and time since previous concussion. For all subsequent analyses of correlations between SCAT5 results and secondary variables, only data obtained from SCAT5 assessments within the acute phase of injury (≤72 hours) were considered (n=65 SRC episodes in the early access group). 37 Spearman rank correlations were estimated between RTS duration, history of concussions, number of specialist consults and total number of SCAT5 symptoms or total symptom severity. All statistical tests were performed using RStudio (R V.4.1.0, The R Foundation for Statistical Computing). The significance level was set to p<0.05.

Equity, diversity and inclusion statement

The study population is representative of the Canadian athletic population in terms of age, gender, demographics and includes a balanced representation of female and male athletes. The study team consists of investigators from different disciplines and countries, but with a predominantly white composition and under-representation of other ethnic groups. Our study population encompasses data from the Institut national du sport du Québec, covering individuals of all genders, ethnicities and geographical regions across Canada.

Patient and public involvement

The patients or the public were not involved in the design, conduct, reporting or dissemination plans of our research.

Sample characteristics

During the 4-year period covered by this retrospective chart review, a total of 160 SRC episodes were recorded in 132 athletes with a median (IQR) age of 19.1 (17.8–22.2) years old ( table 2 ). 13 female and 10 male athletes had multiple SRC episodes during this time. The sample had a relatively balanced number of females (53.8%) and males (46.2%) with SRC included. 60% of the sample reported a history of concussion, with 35.0% reporting having experienced more than two episodes. However, most of these concussions had occurred more than 1 year before the SRC for which they were being treated. Within this sample, 33.1% of participants reported a history of injury modifiers. Importantly, the median (IQR) time to first clinic consult was 10.0 (1.0–20.0) days and the median (IQR) time to RTS was 34.0 (21.0–63.0) days in this sample ( table 3 ). The majority of SRCs occurred during training (56.3%) rather than competition (33.1%) and were mainly due to a fall (63.7%) or a hit (31.3%). The median (IQR) number of follow-up consultations and specialists consulted after the SRC were, respectively, 9 (5.0–14.3) and 3 (2.0–4.0).

Participants demographics

Sport-related concussion characteristics

Among seven sports of the total sample (n=89 SRC), the estimated incidence of athletes with SRC was highest in short-track speed skating (0.47/1000 hours; 95% CI 0.3 to 0.6), and lower in boxing, trampoline, water polo, judo, artistic swimming, and diving (0.24 (95% CI 0.0 to 0.5), 0.16 (95% CI 0.0 to 0.5), 0.13 (95% CI 0.1 to 0.2), 0.11 (95% CI 0.1 to 0.2), 0.09 (95% CI 0.0 to 0.2) and 0.06 (95% CI 0.0 to 0.1)/1000, respectively ( online supplemental material ). Furthermore, most athletes sustained an SRC in training (66.5%; 95% CI 41.0 to 92.0) rather than competition (26.0%; 95% CI 0.0 to 55.0) except for judo athletes (20.0% (95% CI 4.1 to 62.0) and 80.0% (95% CI 38.0 to 96.0), respectively). Falls were the most common injury mechanism in speed skating, trampoline and judo while hits were the most common injury mechanism in boxing, water polo, artistic swimming and diving.

Supplemental material

Access to care.

The median difference in time to RTS was 19 days (95% CI 9.3 to 28.7; p<0.001) between the early (26 (IQR 17.0–38.5) days) and late (45 (IQR 27.5–84.5) days) access groups ( table 3 ; figure 1 ). Importantly, the distribution of SRC environments was different between both groups (p=0.008). The post hoc analysis demonstrated a meaningful difference in the distribution of SRC in training and competition environments between groups (p=0.029) but not for the other comparisons. There was a meaningful difference between the groups in time to first consult (p<0.001; 95% CI −23.0 to −15.0), but no meaningful differences between groups in median age (p=0.176; 95% CI −0.3 to 1.6), sex distribution (p=0.341; 95% CI 0.7 to 2.8), concussion history (p=0.210), time since last concussion (p=0.866), mechanisms of SRC (p=0.412), the presence of modifiers (p=0.313; 95% CI 0.3 to 1.4) and the number of consulted specialists (p=0.368; 95% CI −5.4 to 1.0) or medical visits (p=0.162; 95% CI −1.0 to 3.0).

  • Download figure
  • Open in new tab
  • Download powerpoint

Time to return to sport following sport-related concussion as a function of group’s access to care and sex. Outliers: below=Q1−1.5×IQR; above=Q3+1.5×IQR.

The median difference in time to RTS was 6.5 days (95% CI −19.3 to 5.3; p=0.263; figure 1 ) between female (37.5 (IQR 22.0–65.3) days) and male (31.0 (IQR 20.0–48.0) days) athletes. Survival analyses highlighted an increased hazard of longer recovery trajectory in female compared with male athletes (HR 1.4; 95% CI 1.4 to 0.7; p=0.052; figure 2A ), which was mainly driven by the late (HR 1.8; 95% CI 1.8 to 0.6; p=0.019; figure 2C ) rather than the early (HR 1.1; 95% CI 1.1 to 0.9; p=0.700; figure 2B ) access group. Interestingly, a greater number of female athletes (n=15) required longer than 100 days for RTS as opposed to the male athletes (n=6). There were no meaningful differences between sexes for the total number of symptoms recorded on the SCAT5 (p=0.539; 95% CI −1.0 to 2.0) nor the total symptoms total severity score (p=0.989; 95% CI −5.0 to 5.0).

Time analysis of sex differences in the time to return to sport following sport-related concussion in the (A) total sample, as well as (B) early, and (C) late groups using survival curves with 95% confidence bands and tables of time-specific number of patients at risk (censoring proportion: 0%).

History of modifiers

SRC modifiers are presented in table 2 , and their influence on RTP is shown in table 4 . The median difference in time to RTS was 1.5 days (95% CI −10.6 to 13.6; p=0.807) between athletes with none and one episode of previous concussion, was 3.5 days (95% CI −13.9 to 19.9; p=0.728) between athletes with none and two or more episodes of previous concussion, and was 2 days (95% CI −12.4 to 15.4; p=0.832) between athletes with one and two or more episodes of previous concussion. The history of concussions (none, one, two or more) had no meaningful impact on the time to RTS (p=0.471). The median difference in time to RTS was 4.5 days (95% CI −21.0 to 30.0; p=0.729) between athletes with none and one episode of concussion in the previous year, was 2 days (95% CI −10.0 to 14.0; p=0.744) between athletes with none and one episode of concussion more than 1 year ago, and was 2.5 days (95% CI −27.7 to 22.7; p=0.846) between athletes with an episode of concussion in the previous year and more than 1 year ago. Time since the most recent concussion did not change the time to RTS (p=0.740). The longest time to RTS was observed in the late access group in which athletes had a concussion in the previous year, with a very large spread of durations (65.0 (IQR 33.0–116.5) days). The median difference in time to RTS was 3 days (95% CI −13.1 to 7.1; p=0.561) between athletes with and without other injury modifiers. The history of other injury modifiers had no meaningful influence on the time to RTS (95% CI −6.0 to 11.0; p=0.579).

Preinjury modifiers of time to return to sport following SRC

SCAT5 symptoms and severity scores

Positive associations were observed between the time to RTS and the number of initial symptoms (r=0.3; p=0.010; 95% CI 0.1 to 0.5) or initial severity score (r=0.3; p=0.008; 95% CI 0.1 to 0.5) from the SCAT5. The associations were not meaningful between the number of specialist consultations and the initial number of symptoms (r=−0.1; p=0.633; 95% CI −0.3 to 0.2) or initial severity score (r=−0.1; p=0.432; 95% CI −0.3 to 0.2). Anecdotally, most reported symptoms following SRC were ‘headache’ (86.2%) and ‘pressure in the head’ (80.0%), followed by ‘fatigue’ (72.3%), ‘neck pain’ (70.8%) and ‘not feeling right’ (67.7%; online supplemental material ).

This study is the first to report descriptive data on athletes with SRC collected across several sports during an Olympic quadrennial, including athletes who received the most recent evidence-based care at the time of data collection. Primarily, results indicate that the time to RTS in athletes engaged in Summer and Winter Olympic sports may require a median (IQR) of 34.0 (21.0–63.0) days. Importantly, findings demonstrated that athletes with earlier (≤7 days) access to multidisciplinary concussion care showed faster RTS compared with those with late access. Time to RTS exhibited large variability where sex had a meaningful influence on the recovery pathway in the late access group. Initial symptoms, but not history of concussion, were correlated with prognosis in this sample. The main reported symptoms were consistent with previous studies. 38 39

Time to RTS in Olympic sports

This study provides descriptive data on the impact of SRC monitoring programmes on recovery in elite athletes engaged in Olympic sports. As hypothesised, the median time to RTS found in this study (eg, 34.0 days) was about three times longer than those found in reports from before 2005, and 2 weeks longer than the typical median values (eg, 19.8 days) recently reported in athletic levels including youth (high heterogeneity, I 2 =99.3%). 19 These durations were also twice as long as the median unrestricted time to RTS observed among American collegiate athletes, which averages around 16 days. 9 20 21 However, they were more closely aligned with findings from collegiate athletes with slow recovery (eg, 34.7 days) and evidence from military cadets with poor access where return to duty duration was 29.4 days. 8 22 Several reasons could explain such extended time to RTS, but the most likely seems to be related to the diversity in access among these sports to multidisciplinary services (eg, 10.0 median days (1–20)), well beyond the delays experienced by collegiate athletes, for example (eg, 0.0 median days (0–2)). 40 In the total sample, the delays to first consult with the multidisciplinary clinic were notably mediated by the group with late access, whose athletes had more SRC during international competition. One of the issues for athletes engaged in Olympic sports is that they travel abroad year-round for competitions, in contrast with collegiate athletes who compete domestically. These circumstances likely make access to quality care very variable and make the follow-up of care less centralised. Also, access to resources among these sports is highly variable (eg, medal-dependant), 14 and at the discretion of the sport’s leadership (eg, sport federation), who may decide to prioritise more or fewer resources to concussion management considering the relatively low incidence of this injury. Another explanation for the longer recovery times in these athletes could be the lack of financial incentives to return to play faster, which are less prevalent among Olympic sports compared with professionals. However, the stakes of performance and return to play are still very high among these athletes.

Additionally, it is plausible that studies vary their outcome with shifting operational definitions such as resolution of symptoms, return to activities, graduated return to play or unrestricted RTS. 19 40 It is understood that resolution of symptoms may occur much earlier than return to preinjury performance levels. Finally, an aspect that has been little studied to date is the influence of the sport’s demands on the RTS. For example, acrobatic sports requiring precision/technical skills such as figure skating, trampoline and diving, which involve high visuospatial and vestibular demands, 41 might require more time to recover or elicit symptoms for longer times. Anecdotally, athletes who experienced a long time to RTS (>100 days) were mostly from precision/skill-dependent sports in this sample. The sports demand should be further considered as an injury modifier. More epidemiological reports that consider the latest guidelines are therefore necessary to gain a better understanding of the true time to RTS and impact following SRC in Olympians.

Supporting early multidisciplinary access to care

In this study, athletes who obtained early access to multidisciplinary care after SRC recovered faster than those with late access to multidisciplinary care. This result aligns with findings showing that delayed access to a healthcare practitioner delays recovery, 19 including previous evidence in a sample of patients from a sports medicine clinic (ages 12–22), indicating that the group with a delayed first clinical visit (eg, 8–20 days) was associated with a 5.8 times increased likelihood of a recovery longer than 30 days. 5 Prompt multidisciplinary approach for patients with SRC is suggested to yield greater effectiveness over usual care, 3 6 17 which is currently evaluated under randomised controlled trial. 42 Notably, early physical exercise and prescribed exercise (eg, 48 hours postinjury) are effective in improving recovery compared with strict rest or stretching. 43 44 In fact, preclinical and clinical studies have shown that exercise has the potential to improve neurotransmission, neuroplasticity and cerebral blood flow which supports that the physically trained brain enhanced recovery. 45 46 Prompt access to specialised healthcare professionals can be challenging in some contexts (eg, during international travel), and the cost of accessing medical care privately may prove further prohibitive. This barrier to recovery should be a priority for stakeholders in Olympic sports and given more consideration by health authorities.

Estimated incidences and implications

The estimated incidences of SRC were in the lower range compared with what is reported in other elite sport populations. 1 2 However, the burden of injury remained high for these sports, and the financial resources as well as expertise required to facilitate athletes’ rehabilitation was considerable (median number of consultations: 9.0). Notably, the current standard of public healthcare in Canada does not subsidise the level of support recommended following SRC as first-line care, and the financial subsidisation of this recommended care within each federation is highly dependent on the available funding, varying significantly between sports. 14 Therefore, the ongoing efforts to improve education, prevention and early recognition, modification of rules to make the environments safer and multidisciplinary care access for athletes remain crucial. 7

Strength and limitations

This unique study provides multisport characteristics following the evolution of concussion guidelines in Summer and Winter Olympic sports in North America. Notably, it features a balance between the number of female and male athletes, allowing the analysis of sex differences. 23 26 In a previous review of 171 studies informing consensus statements, samples were mostly composed of more than 80% of male participants, and more than 40% of these studies did not include female participants at all. 26 This study also included multiple non-traditional sports typically not encompassed in SRC research, feature previously identified as a key requirement of future epidemiological research. 47

However, it must be acknowledged that potential confounding factors could influence the results. For example, the number of SRC detected during the study period does not account for potentially unreported concussions. Nevertheless, this figure should be minimal because these athletes are supervised both in training and in competition by medical staff. Next, the sport types were heterogeneous, with inconsistent risk for head impacts or inconsistent sport demand which might have an influence on recovery. Furthermore, the number of participants or sex in each sport was not evenly distributed, with short-track speed skaters representing a large portion of the overall sample (32.5%), for example. Additionally, the number of participants with specific modifiers was too small in the current sample to conclude whether the presence of precise characteristics (eg, history of concussion) impacted the time to RTS. Also, the group with late access was more likely to consist of athletes who sought specialised care for persistent symptoms. These complex cases are often expected to require additional time to recover. 48 Furthermore, athletes in the late group may have sought support outside of the institute medical clinic, without a coordinated multidisciplinary approach. Therefore, the estimation of clinical consultations was tentative for this group and may represent a potential confounding factor in this study.

This is the first study to provide evidence of the prevalence of athletes with SRC and modifiers of recovery in both female and male elite-level athletes across a variety of Summer and Winter Olympic sports. There was a high variability in access to care in this group, and the median (IQR) time to RTS following SRC was 34.0 (21.0–63.0) days. Athletes with earlier access to multidisciplinary care took nearly half the time to RTS compared with those with late access. Sex had a meaningful influence on the recovery pathway in the late access group. Initial symptom number and severity score but not history of concussion were meaningful modifiers of recovery. Injury surveillance programmes targeting national sport organisations should be prioritised to help evaluate the efficacy of recommended injury monitoring programmes and to help athletes engaged in Olympic sports who travel a lot internationally have better access to care. 35 49

Ethics statements

Patient consent for publication.

Not applicable.

Ethics approval

This study involves human participants and was approved by the ethics board of Université de Montréal (certificate #2023-4052). Participants gave informed consent to participate in the study before taking part.

Acknowledgments

The authors would like to thank the members of the concussion interdisciplinary clinic of the Institut national du sport du Québec for collecting the data and for their unconditional support to the athletes.

  • Glover KL ,
  • Chandran A ,
  • Morris SN , et al
  • Patricios JS ,
  • Schneider KJ ,
  • Dvorak J , et al
  • Guskiewicz KM , et al
  • Kontos AP ,
  • Jorgensen-Wagers K ,
  • Trbovich AM , et al
  • Critchley ML ,
  • Anderson V , et al
  • Eliason PH ,
  • Galarneau J-M ,
  • Kolstad AT , et al
  • McAllister TW ,
  • Broglio SP ,
  • Katz BP , et al
  • Liebel SW ,
  • Van Pelt KL ,
  • Pasquina PF , et al
  • Pellman EJ ,
  • Lovell MR ,
  • Viano DC , et al
  • Casson IR , et al
  • McKinney J ,
  • Fee J , et al
  • McKay AKA ,
  • Stellingwerff T ,
  • Smith ES , et al
  • Government of Canada
  • Pereira LA ,
  • Cal Abad CC ,
  • Kobal R , et al
  • ↵ COPSI - sport related concussion guidelines . Available : https://www.ownthepodium.org/en-CA/Initiatives/Sport-Science-Innovation/2018-COPSI-Network-Concussion-Guidelines [Accessed 25 May 2023 ].
  • McCrory P ,
  • Meeuwisse W ,
  • Dvořák J , et al
  • Gardner AJ ,
  • Quarrie KL ,
  • Putukian M ,
  • Purcell L ,
  • Schneider KJ , et al
  • Nguyen JN , et al
  • Lempke LB ,
  • Caccese JB ,
  • Syrydiuk RA , et al
  • D’Lauro C ,
  • Johnson BR ,
  • McGinty G , et al
  • Crossley KM ,
  • Bo K , et al
  • Covassin T ,
  • Harris W , et al
  • Swanik CB ,
  • Swope LM , et al
  • Master CL ,
  • Arbogast KB , et al
  • Walton SR ,
  • Kelshaw PM ,
  • Munce TA , et al
  • Barron TF , et al
  • Tsushima WT ,
  • Riegler K ,
  • Amalfe S , et al
  • Monteiro D ,
  • Silva F , et al
  • Dijkstra HP ,
  • Pollock N ,
  • Chakraverty R , et al
  • Clarsen B ,
  • Derman W , et al
  • Matthews JN ,
  • Echemendia RJ ,
  • Bruce JM , et al
  • Yeates KO ,
  • Räisänen AM ,
  • Premji Z , et al
  • Breedlove K ,
  • McAllister TW , et al
  • Hennig L , et al
  • Register-Mihalik JK ,
  • Guskiewicz KM ,
  • Marshall SW , et al
  • Toomey CM , et al
  • Mannix R , et al
  • Barkhoudarian G ,
  • Haider MN ,
  • Ellis M , et al
  • Harmon KG ,
  • Clugston JR ,
  • Dec K , et al
  • Carson JD ,
  • Lawrence DW ,
  • Kraft SA , et al
  • Martens G ,
  • Edouard P ,
  • Tscholl P , et al

Supplementary materials

Supplementary data.

This web only file has been produced by the BMJ Publishing Group from an electronic file supplied by the author(s) and has not been edited for content.

  • Data supplement 1

X @ThomasRomeas

Correction notice This article has been corrected since it published Online First. The ORCID details have been added for Dr Croteau.

Contributors TR, FC and SL were involved in planning, conducting and reporting the work. François Bieuzen and Magdalena Wojtowicz critically reviewed the manuscript. TR is guarantor.

Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests None declared.

Patient and public involvement Patients and/or the public were not involved in the design, or conduct, or reporting, or dissemination plans of this research.

Provenance and peer review Not commissioned; externally peer reviewed.

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

Read the full text or download the PDF:

COMMENTS

  1. Research Report

    Thesis is a type of research report. A thesis is a long-form research document that presents the findings and conclusions of an original research study conducted by a student as part of a graduate or postgraduate program. It is typically written by a student pursuing a higher degree, such as a Master's or Doctoral degree, although it can also ...

  2. A tutorial on methodological studies: the what, when, how and why

    Many methodological studies use a research report (e.g. full manuscript of study, abstract portion of the study) as the unit of analysis, and inferences can be made at the study-level. However, both published and unpublished research-related reports can be studied. These may include articles, conference abstracts, registry entries etc.

  3. Research report guide: Definition, types, and tips

    Research report guide: Definition, types, and tips

  4. Research Report: Definition, Types + [Writing Guide]

    A research report is a well-crafted document that outlines the processes, data, and findings of a systematic investigation. It is an important document that serves as a first-hand account of the research process, and it is typically considered an objective and accurate source of information.

  5. What Is a Research Methodology?

    What Is a Research Methodology? | Steps & Tips

  6. A tutorial on methodological studies: the what, when, how and why

    A tutorial on methodological studies: the what, when, how and ...

  7. The Ultimate Guide To Research Methodology

    Research methodology can be defined as the systematic framework that guides researchers in designing, conducting, and analyzing their investigations. It encompasses a structured set of processes, techniques, and tools employed to gather and interpret data, ensuring the reliability and validity of the research findings.

  8. Research Methodology Guide: Writing Tips, Types, & Examples

    Research Methodology Guide: Writing Tips, Types, & ...

  9. Writing up a Research Report

    If the assignment is a 2000-word essay, the introduction should be between 160 and 200 words, while a 3500-word report should be between 290 and 350 words. There is no absolute rule for the length. Be as reasonable about it as you can. The introduction contains the relevant background of the problem.

  10. PDF How to Write an Effective Research REport

    How to Write an Effective Research REport

  11. PDF Methodology: What It Is and Why It Is So Important

    SCIENTIFIC METHODOLOGY AND ITS COMPONENTS. Methodologyin science refers to the diverse prin- ciples, procedures, and practices that govern empiri- cal research. It is useful to distinguish five major components to convey the scope of the topics and to organize the subject matter. 1.

  12. What Is Research Methodology? Definition + Examples

    What Is Research Methodology? Definition + Examples

  13. PDF Writing a Research Report

    Use the section headings (outlined above) to assist with your rough plan. Write a thesis statement that clarifies the overall purpose of your report. Jot down anything you already know about the topic in the relevant sections. 3 Do the Research. Steps 1 and 2 will guide your research for this report.

  14. Your Step-by-Step Guide to Writing a Good Research Methodology

    Your Step-by-Step Guide to Writing a Good Research ...

  15. 6. The Methodology

    Organizing Your Social Sciences Research Paper

  16. What is research methodology? [Update 2024]

    A research methodology encompasses the way in which you intend to carry out your research. This includes how you plan to tackle things like collection methods, statistical analysis, participant observations, and more. You can think of your research methodology as being a formula. One part will be how you plan on putting your research into ...

  17. What is Research Methodology? Definition, Types, and Examples

    What is Research Methodology? Definition, Types, and ...

  18. What Is Research Methodology? (Why It's Important and Types)

    What Is Research Methodology? (Why It's Important and ...

  19. Research Methodology

    The research methodology is an important section of any research paper or thesis, as it describes the methods and procedures that will be used to conduct the research. It should include details about the research design, data collection methods, data analysis techniques, and any ethical considerations.

  20. Literature review as a research methodology: An overview and guidelines

    Literature review as a research methodology: An overview ...

  21. Research Methodology WRITING A RESEARCH REPORT

    Research Methodology WRITING A RESEARCH REPORT

  22. Choosing the Right Research Methodology: A Guide

    Choosing the Right Research Methodology: A Guide

  23. What Is Research Report? Definition, Contents ...

    What Is Research Report? Definition, Contents, ...

  24. Research on Detection and Defense Methods of Adversarial Samples

    As an important part of artificial intelligence technology, deep learning is widely used in computer vision, natural language processing and other fields. Studies have shown that the existence of adversarial attacks poses a potential threat to the secure application of deep learning models, which in turn affects the security of the model.On the basis of briefly describing the concept of ...

  25. JMSE

    This paper summarizes the current research status on the mechanical properties of VLAs under cyclic loading, analyzing the mechanisms by which cyclic loads affect these properties. Additionally, it reviews and summarizes the research methods applied to studying VLAs under cyclic loading, discussing the issues inherent in various methodologies.

  26. Membranes

    The global shortage of clean water is a major problem, even in water-rich regions. To solve this problem, low-cost and energy-efficient water treatment methods are needed. Membrane separation technology (MST), as a separation method with low energy consumption, low cost, and good separation effect, has been widely used to deal with seawater desalination, resource recovery, industrial ...

  27. In-shoe plantar shear stress sensor design, calibration and evaluation

    Plantar shear stress may have an important role in the formation of a Diabetic Foot Ulcer, but its measurement is regarded as challenging and has limited research. This paper highlights the importance of anatomical specific shear sensor calibration and presents a feasibility study of a novel shear sensing system which has measured in-shoe shear stress from gait activity on both healthy and ...

  28. Research on the Construction of Financial Accounting Courses based on

    The construction path of the SPOC blended teaching model in the college course of "Financial Accounting", which integrates online teaching platforms and traditional face-to-face teaching to improve students' learning effectiveness and participation, is explored. In the current information age, with the continuous advancement of technology, the teaching mode of higher education is also ...

  29. Where is the research on sport-related concussion in Olympic athletes

    Objectives This cohort study reported descriptive statistics in athletes engaged in Summer and Winter Olympic sports who sustained a sport-related concussion (SRC) and assessed the impact of access to multidisciplinary care and injury modifiers on recovery. Methods 133 athletes formed two subgroups treated in a Canadian sport institute medical clinic: earlier (≤7 days) and late (≥8 days ...