The Journal of Artificial Intelligence Research (JAIR) is dedicated to the rapid dissemination of important research results to the global artificial intelligence (AI) community. The journal’s scope encompasses all areas of AI, including agents and multi-agent systems, automated reasoning, constraint processing and search, knowledge representation, machine learning, natural language, planning and scheduling, robotics and vision, and uncertainty in AI.
Current Issue
Vol. 81 (2024)
Published: 2024-09-11
Uncertainty as a Fairness Measure
The human in interactive machine learning: analysis and perspectives for ambient intelligence, the effect of preferences in abstract argumentation under a claim-centric view, digraph k-coloring games: new algorithms and experiments, opening the analogical portal to explainability: can analogies help laypeople in ai-assisted decision making, separating and collapsing electoral control types, the state of computer vision research in africa, understanding what affects the generalization gap in visual reinforcement learning: theory and empirical evidence.
Advertisement
Artificial intelligence and machine learning research: towards digital transformation at a global scale
- Published: 17 April 2021
- Volume 13 , pages 3319–3321, ( 2022 )
Cite this article
- Akila Sarirete 1 ,
- Zain Balfagih 1 ,
- Tayeb Brahimi 1 ,
- Miltiadis D. Lytras 1 , 2 &
- Anna Visvizi 3 , 4
27k Accesses
Explore all metrics
Avoid common mistakes on your manuscript.
Artificial intelligence (AI) is reshaping how we live, learn, and work. Until recently, AI used to be a fanciful concept, more closely associated with science fiction rather than with anything else. However, driven by unprecedented advances in sophisticated information and communication technology (ICT), AI today is synonymous technological progress already attained and the one yet to come in all spheres of our lives (Chui et al. 2018 ; Lytras et al. 2018 , 2019 ).
Considering that Machine Learning (ML) and AI are apt to reach unforeseen levels of accuracy and efficiency, this special issue sought to promote research on AI and ML seen as functions of data-driven innovation and digital transformation. The combination of expanding ICT-driven capabilities and capacities identifiable across our socio-economic systems along with growing consumer expectations vis-a-vis technology and its value-added for our societies, requires multidisciplinary research and research agenda on AI and ML (Lytras et al. 2021 ; Visvizi et al. 2020 ; Chui et al. 2020 ). Such a research agenda should oscilate around the following five defining issues (Fig. 1 ):
Source: The Authors
An AI-Driven Digital Transformation in all aspects of human activity/
Integration of diverse data-warehouses to unified ecosystems of AI and ML value-based services
Deployment of robust AI and ML processing capabilities for enhanced decision making and generation of value our of data.
Design of innovative novel AI and ML applications for predictive and analytical capabilities
Design of sophisticated AI and ML-enabled intelligence components with critical social impact
Promotion of the Digital Transformation in all the aspects of human activity including business, healthcare, government, commerce, social intelligence etc.
Such development will also have a critical impact on government, policies, regulations and initiatives aiming to interpret the value of the AI-driven digital transformation to the sustainable economic development of our planet. Additionally the disruptive character of AI and ML technology and research will required further research on business models and management of innovation capabilities.
This special issue is based on submissions invited from the 17th Annual Learning and Technology Conference 2019 that was held at Effat University and open call jointly. Several very good submissions were received. All of them were subjected a rigorous peer review process specific to the Ambient Intelligence and Humanized Computing Journal.
A variety of innovative topics are included in the agenda of the published papers in this special issue including topics such as:
Stock market Prediction using Machine learning
Detection of Apple Diseases and Pests based on Multi-Model LSTM-based Convolutional Neural Networks
ML for Searching
Machine Learning for Learning Automata
Entity recognition & Relation Extraction
Intelligent Surveillance Systems
Activity Recognition and K-Means Clustering
Distributed Mobility Management
Review Rating Prediction with Deep Learning
Cybersecurity: Botnet detection with Deep learning
Self-Training methods
Neuro-Fuzzy Inference systems
Fuzzy Controllers
Monarch Butterfly Optimized Control with Robustness Analysis
GMM methods for speaker age and gender classification
Regression methods for Permeability Prediction of Petroleum Reservoirs
Surface EMG Signal Classification
Pattern Mining
Human Activity Recognition in Smart Environments
Teaching–Learning based Optimization Algorithm
Big Data Analytics
Diagnosis based on Event-Driven Processing and Machine Learning for Mobile Healthcare
Over a decade ago, Effat University envisioned a timely platform that brings together educators, researchers and tech enthusiasts under one roof and functions as a fount for creativity and innovation. It was a dream that such platform bridges the existing gap and becomes a leading hub for innovators across disciplines to share their knowledge and exchange novel ideas. It was in 2003 that this dream was realized and the first Learning & Technology Conference was held. Up until today, the conference has covered a variety of cutting-edge themes such as Digital Literacy, Cyber Citizenship, Edutainment, Massive Open Online Courses, and many, many others. The conference has also attracted key, prominent figures in the fields of sciences and technology such as Farouq El Baz from NASA, Queen Rania Al-Abdullah of Jordan, and many others who addressed large, eager-to-learn audiences and inspired many with unique stories.
While emerging innovations, such as Artificial Intelligence technologies, are seen today as promising instruments that could pave our way to the future, these were also the focal points around which fruitful discussions have always taken place here at the L&T. The (AI) was selected for this conference due to its great impact. The Saudi government realized this impact of AI and already started actual steps to invest in AI. It is stated in the Kingdome Vision 2030: "In technology, we will increase our investments in, and lead, the digital economy." Dr. Ahmed Al Theneyan, Deputy Minister of Technology, Industry and Digital Capabilities, stated that: "The Government has invested around USD 3 billion in building the infrastructure so that the country is AI-ready and can become a leader in AI use." Vision 2030 programs also promote innovation in technologies. Another great step that our country made is establishing NEOM city (the model smart city).
Effat University realized this ambition and started working to make it a reality by offering academic programs that support the different sectors needed in such projects. For example, the master program in Energy Engineering was launched four years ago to support the energy sector. Also, the bachelor program of Computer Science has tracks in Artificial Intelligence and Cyber Security which was launched in Fall 2020 semester. Additionally, Energy & Technology and Smart Building Research Centers were established to support innovation in the technology and energy sectors. In general, Effat University works effectively in supporting the KSA to achieve its vision in this time of national transformation by graduating skilled citizen in different fields of technology.
The guest editors would like to take this opportunity to thank all the authors for the efforts they put in the preparation of their manuscripts and for their valuable contributions. We wish to express our deepest gratitude to the referees, who provided instrumental and constructive feedback to the authors. We also extend our sincere thanks and appreciation for the organizing team under the leadership of the Chair of L&T 2019 Conference Steering Committee, Dr. Haifa Jamal Al-Lail, University President, for her support and dedication.
Our sincere thanks go to the Editor-in-Chief for his kind help and support.
Chui KT, Lytras MD, Visvizi A (2018) Energy sustainability in smart cities: artificial intelligence, smart monitoring, and optimization of energy consumption. Energies 11(11):2869
Article Google Scholar
Chui KT, Fung DCL, Lytras MD, Lam TM (2020) Predicting at-risk university students in a virtual learning environment via a machine learning algorithm. Comput Human Behav 107:105584
Lytras MD, Visvizi A, Daniela L, Sarirete A, De Pablos PO (2018) Social networks research for sustainable smart education. Sustainability 10(9):2974
Lytras MD, Visvizi A, Sarirete A (2019) Clustering smart city services: perceptions, expectations, responses. Sustainability 11(6):1669
Lytras MD, Visvizi A, Chopdar PK, Sarirete A, Alhalabi W (2021) Information management in smart cities: turning end users’ views into multi-item scale development, validation, and policy-making recommendations. Int J Inf Manag 56:102146
Visvizi A, Jussila J, Lytras MD, Ijäs M (2020) Tweeting and mining OECD-related microcontent in the post-truth era: A cloud-based app. Comput Human Behav 107:105958
Download references
Author information
Authors and affiliations.
Effat College of Engineering, Effat Energy and Technology Research Center, Effat University, P.O. Box 34689, Jeddah, Saudi Arabia
Akila Sarirete, Zain Balfagih, Tayeb Brahimi & Miltiadis D. Lytras
King Abdulaziz University, Jeddah, 21589, Saudi Arabia
Miltiadis D. Lytras
Effat College of Business, Effat University, P.O. Box 34689, Jeddah, Saudi Arabia
Anna Visvizi
Institute of International Studies (ISM), SGH Warsaw School of Economics, Aleja Niepodległości 162, 02-554, Warsaw, Poland
You can also search for this author in PubMed Google Scholar
Corresponding author
Correspondence to Akila Sarirete .
Additional information
Publisher's note.
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Reprints and permissions
About this article
Sarirete, A., Balfagih, Z., Brahimi, T. et al. Artificial intelligence and machine learning research: towards digital transformation at a global scale. J Ambient Intell Human Comput 13 , 3319–3321 (2022). https://doi.org/10.1007/s12652-021-03168-y
Download citation
Published : 17 April 2021
Issue Date : July 2022
DOI : https://doi.org/10.1007/s12652-021-03168-y
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
- Find a journal
- Publish with us
- Track your research
IMAGES
VIDEO
COMMENTS
The journal’s scope encompasses all areas of AI, including agents and multi-agent systems, automated reasoning, constraint processing and search, knowledge representation, machine learning, natural language, planning and scheduling, robotics and vision, and uncertainty in AI.
We structure the thoughtlet by first scoping the state of the art of academic research on AI and projects; second, by providing empirical results from a survey on practical AI implementations in organizations; and third, by deriving some potential topics for future research and guidelines on the execution and reporting of related studies.
Artificial intelligence and machine learning research: towards digital transformation at a global scale. Editorial. Published: 17 April 2021. Volume 13, pages 3319–3321, (2022) Cite this article. Download PDF. Akila Sarirete, Zain Balfagih, Tayeb Brahimi, Miltiadis D. Lytras & Anna Visvizi. 26k Accesses. 16 Citations. Explore all metrics.
Artificial Intelligence (AI) is increasingly adopted by organizations to innovate, and this is ever more reflected in scholarly work. To illustrate, assess and map research at the intersection of AI and innovation, we performed a Systematic Literature Review (SLR) of published work indexed in the Clarivate Web of Science (WOS) and Elsevier ...
This study contributes to AI research by providing insights into current issues, research methodology, level of analysis and conceptual approaches, and AI framework to help identify research gaps for future investigations.
AIJ welcomes basic and applied papers describing mature, complete, and novel research that articulate methods for, and provide insight into artificial intelligence and the production of artificial intelligent systems.