Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • What Is a Case Study? | Definition, Examples & Methods

What Is a Case Study? | Definition, Examples & Methods

Published on May 8, 2019 by Shona McCombes . Revised on November 20, 2023.

A case study is a detailed study of a specific subject, such as a person, group, place, event, organization, or phenomenon. Case studies are commonly used in social, educational, clinical, and business research.

A case study research design usually involves qualitative methods , but quantitative methods are sometimes also used. Case studies are good for describing , comparing, evaluating and understanding different aspects of a research problem .

Table of contents

When to do a case study, step 1: select a case, step 2: build a theoretical framework, step 3: collect your data, step 4: describe and analyze the case, other interesting articles.

A case study is an appropriate research design when you want to gain concrete, contextual, in-depth knowledge about a specific real-world subject. It allows you to explore the key characteristics, meanings, and implications of the case.

Case studies are often a good choice in a thesis or dissertation . They keep your project focused and manageable when you don’t have the time or resources to do large-scale research.

You might use just one complex case study where you explore a single subject in depth, or conduct multiple case studies to compare and illuminate different aspects of your research problem.

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

Once you have developed your problem statement and research questions , you should be ready to choose the specific case that you want to focus on. A good case study should have the potential to:

  • Provide new or unexpected insights into the subject
  • Challenge or complicate existing assumptions and theories
  • Propose practical courses of action to resolve a problem
  • Open up new directions for future research

TipIf your research is more practical in nature and aims to simultaneously investigate an issue as you solve it, consider conducting action research instead.

Unlike quantitative or experimental research , a strong case study does not require a random or representative sample. In fact, case studies often deliberately focus on unusual, neglected, or outlying cases which may shed new light on the research problem.

Example of an outlying case studyIn the 1960s the town of Roseto, Pennsylvania was discovered to have extremely low rates of heart disease compared to the US average. It became an important case study for understanding previously neglected causes of heart disease.

However, you can also choose a more common or representative case to exemplify a particular category, experience or phenomenon.

Example of a representative case studyIn the 1920s, two sociologists used Muncie, Indiana as a case study of a typical American city that supposedly exemplified the changing culture of the US at the time.

While case studies focus more on concrete details than general theories, they should usually have some connection with theory in the field. This way the case study is not just an isolated description, but is integrated into existing knowledge about the topic. It might aim to:

  • Exemplify a theory by showing how it explains the case under investigation
  • Expand on a theory by uncovering new concepts and ideas that need to be incorporated
  • Challenge a theory by exploring an outlier case that doesn’t fit with established assumptions

To ensure that your analysis of the case has a solid academic grounding, you should conduct a literature review of sources related to the topic and develop a theoretical framework . This means identifying key concepts and theories to guide your analysis and interpretation.

There are many different research methods you can use to collect data on your subject. Case studies tend to focus on qualitative data using methods such as interviews , observations , and analysis of primary and secondary sources (e.g., newspaper articles, photographs, official records). Sometimes a case study will also collect quantitative data.

Example of a mixed methods case studyFor a case study of a wind farm development in a rural area, you could collect quantitative data on employment rates and business revenue, collect qualitative data on local people’s perceptions and experiences, and analyze local and national media coverage of the development.

The aim is to gain as thorough an understanding as possible of the case and its context.

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

single case study sample

In writing up the case study, you need to bring together all the relevant aspects to give as complete a picture as possible of the subject.

How you report your findings depends on the type of research you are doing. Some case studies are structured like a standard scientific paper or thesis , with separate sections or chapters for the methods , results and discussion .

Others are written in a more narrative style, aiming to explore the case from various angles and analyze its meanings and implications (for example, by using textual analysis or discourse analysis ).

In all cases, though, make sure to give contextual details about the case, connect it back to the literature and theory, and discuss how it fits into wider patterns or debates.

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Normal distribution
  • Degrees of freedom
  • Null hypothesis
  • Discourse analysis
  • Control groups
  • Mixed methods research
  • Non-probability sampling
  • Quantitative research
  • Ecological validity

Research bias

  • Rosenthal effect
  • Implicit bias
  • Cognitive bias
  • Selection bias
  • Negativity bias
  • Status quo bias

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

McCombes, S. (2023, November 20). What Is a Case Study? | Definition, Examples & Methods. Scribbr. Retrieved April 12, 2024, from https://www.scribbr.com/methodology/case-study/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, primary vs. secondary sources | difference & examples, what is a theoretical framework | guide to organizing, what is action research | definition & examples, what is your plagiarism score.

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • HHS Author Manuscripts

Logo of nihpa

Single-Case Experimental Designs: A Systematic Review of Published Research and Current Standards

Justin d. smith.

Child and Family Center, University of Oregon

This article systematically reviews the research design and methodological characteristics of single-case experimental design (SCED) research published in peer-reviewed journals between 2000 and 2010. SCEDs provide researchers with a flexible and viable alternative to group designs with large sample sizes. However, methodological challenges have precluded widespread implementation and acceptance of the SCED as a viable complementary methodology to the predominant group design. This article includes a description of the research design, measurement, and analysis domains distinctive to the SCED; a discussion of the results within the framework of contemporary standards and guidelines in the field; and a presentation of updated benchmarks for key characteristics (e.g., baseline sampling, method of analysis), and overall, it provides researchers and reviewers with a resource for conducting and evaluating SCED research. The results of the systematic review of 409 studies suggest that recently published SCED research is largely in accordance with contemporary criteria for experimental quality. Analytic method emerged as an area of discord. Comparison of the findings of this review with historical estimates of the use of statistical analysis indicates an upward trend, but visual analysis remains the most common analytic method and also garners the most support amongst those entities providing SCED standards. Although consensus exists along key dimensions of single-case research design and researchers appear to be practicing within these parameters, there remains a need for further evaluation of assessment and sampling techniques and data analytic methods.

The single-case experiment has a storied history in psychology dating back to the field’s founders: Fechner (1889) , Watson (1925) , and Skinner (1938) . It has been used to inform and develop theory, examine interpersonal processes, study the behavior of organisms, establish the effectiveness of psychological interventions, and address a host of other research questions (for a review, see Morgan & Morgan, 2001 ). In recent years the single-case experimental design (SCED) has been represented in the literature more often than in past decades, as is evidenced by recent reviews ( Hammond & Gast, 2010 ; Shadish & Sullivan, 2011 ), but it still languishes behind the more prominent group design in nearly all subfields of psychology. Group designs are often professed to be superior because they minimize, although do not necessarily eliminate, the major internal validity threats to drawing scientifically valid inferences from the results ( Shadish, Cook, & Campbell, 2002 ). SCEDs provide a rigorous, methodologically sound alternative method of evaluation (e.g., Barlow, Nock, & Hersen, 2008 ; Horner et al., 2005 ; Kazdin, 2010 ; Kratochwill & Levin, 2010 ; Shadish et al., 2002 ) but are often overlooked as a true experimental methodology capable of eliciting legitimate inferences (e.g., Barlow et al., 2008 ; Kazdin, 2010 ). Despite a shift in the zeitgeist from single-case experiments to group designs more than a half century ago, recent and rapid methodological advancements suggest that SCEDs are poised for resurgence.

Single case refers to the participant or cluster of participants (e.g., a classroom, hospital, or neighborhood) under investigation. In contrast to an experimental group design in which one group is compared with another, participants in a single-subject experiment research provide their own control data for the purpose of comparison in a within-subject rather than a between-subjects design. SCEDs typically involve a comparison between two experimental time periods, known as phases. This approach typically includes collecting a representative baseline phase to serve as a comparison with subsequent phases. In studies examining single subjects that are actually groups (i.e., classroom, school), there are additional threats to internal validity of the results, as noted by Kratochwill and Levin (2010) , which include setting or site effects.

The central goal of the SCED is to determine whether a causal or functional relationship exists between a researcher-manipulated independent variable (IV) and a meaningful change in the dependent variable (DV). SCEDs generally involve repeated, systematic assessment of one or more IVs and DVs over time. The DV is measured repeatedly across and within all conditions or phases of the IV. Experimental control in SCEDs includes replication of the effect either within or between participants ( Horner et al., 2005 ). Randomization is another way in which threats to internal validity can be experimentally controlled. Kratochwill and Levin (2010) recently provided multiple suggestions for adding a randomization component to SCEDs to improve the methodological rigor and internal validity of the findings.

Examination of the effectiveness of interventions is perhaps the area in which SCEDs are most well represented ( Morgan & Morgan, 2001 ). Researchers in behavioral medicine and in clinical, health, educational, school, sport, rehabilitation, and counseling psychology often use SCEDs because they are particularly well suited to examining the processes and outcomes of psychological and behavioral interventions (e.g., Borckardt et al., 2008 ; Kazdin, 2010 ; Robey, Schultz, Crawford, & Sinner, 1999 ). Skepticism about the clinical utility of the randomized controlled trial (e.g., Jacobsen & Christensen, 1996 ; Wachtel, 2010 ; Westen & Bradley, 2005 ; Westen, Novotny, & Thompson-Brenner, 2004 ) has renewed researchers’ interest in SCEDs as a means to assess intervention outcomes (e.g., Borckardt et al., 2008 ; Dattilio, Edwards, & Fishman, 2010 ; Horner et al., 2005 ; Kratochwill, 2007 ; Kratochwill & Levin, 2010 ). Although SCEDs are relatively well represented in the intervention literature, it is by no means their sole home: Examples appear in nearly every subfield of psychology (e.g., Bolger, Davis, & Rafaeli, 2003 ; Piasecki, Hufford, Solham, & Trull, 2007 ; Reis & Gable, 2000 ; Shiffman, Stone, & Hufford, 2008 ; Soliday, Moore, & Lande, 2002 ). Aside from the current preference for group-based research designs, several methodological challenges have repressed the proliferation of the SCED.

Methodological Complexity

SCEDs undeniably present researchers with a complex array of methodological and research design challenges, such as establishing a representative baseline, managing the nonindependence of sequential observations (i.e., autocorrelation, serial dependence), interpreting single-subject effect sizes, analyzing the short data streams seen in many applications, and appropriately addressing the matter of missing observations. In the field of intervention research for example, Hser et al. (2001) noted that studies using SCEDs are “rare” because of the minimum number of observations that are necessary (e.g., 3–5 data points in each phase) and the complexity of available data analysis approaches. Advances in longitudinal person-based trajectory analysis (e.g., Nagin, 1999 ), structural equation modeling techniques (e.g., Lubke & Muthén, 2005 ), time-series forecasting (e.g., autoregressive integrated moving averages; Box & Jenkins, 1970 ), and statistical programs designed specifically for SCEDs (e.g., Simulation Modeling Analysis; Borckardt, 2006 ) have provided researchers with robust means of analysis, but they might not be feasible methods for the average psychological scientist.

Application of the SCED has also expanded. Today, researchers use variants of the SCED to examine complex psychological processes and the relationship between daily and momentary events in peoples’ lives and their psychological correlates. Research in nearly all subfields of psychology has begun to use daily diary and ecological momentary assessment (EMA) methods in the context of the SCED, opening the door to understanding increasingly complex psychological phenomena (see Bolger et al., 2003 ; Shiffman et al., 2008 ). In contrast to the carefully controlled laboratory experiment that dominated research in the first half of the twentieth century (e.g., Skinner, 1938 ; Watson, 1925 ), contemporary proponents advocate application of the SCED in naturalistic studies to increase the ecological validity of empirical findings (e.g., Bloom, Fisher, & Orme, 2003 ; Borckardt et al., 2008 ; Dattilio et al., 2010 ; Jacobsen & Christensen, 1996 ; Kazdin, 2008 ; Morgan & Morgan, 2001 ; Westen & Bradley, 2005 ; Westen et al., 2004 ). Recent advancements and expanded application of SCEDs indicate a need for updated design and reporting standards.

Many current benchmarks in the literature concerning key parameters of the SCED were established well before current advancements and innovations, such as the suggested minimum number of data points in the baseline phase(s), which remains a disputed area of SCED research (e.g., Center, Skiba, & Casey, 1986 ; Huitema, 1985 ; R. R. Jones, Vaught, & Weinrott, 1977 ; Sharpley, 1987 ). This article comprises (a) an examination of contemporary SCED methodological and reporting standards; (b) a systematic review of select design, measurement, and statistical characteristics of published SCED research during the past decade; and (c) a broad discussion of the critical aspects of this research to inform methodological improvements and study reporting standards. The reader will garner a fundamental understanding of what constitutes appropriate methodological soundness in single-case experimental research according to the established standards in the field, which can be used to guide the design of future studies, improve the presentation of publishable empirical findings, and inform the peer-review process. The discussion begins with the basic characteristics of the SCED, including an introduction to time-series, daily diary, and EMA strategies, and describes how current reporting and design standards apply to each of these areas of single-case research. Interweaved within this presentation are the results of a systematic review of SCED research published between 2000 and 2010 in peer-reviewed outlets and a discussion of the way in which these findings support, or differ from, existing design and reporting standards and published SCED benchmarks.

Review of Current SCED Guidelines and Reporting Standards

In contrast to experimental group comparison studies, which conform to generally well agreed upon methodological design and reporting guidelines, such as the CONSORT ( Moher, Schulz, Altman, & the CONSORT Group, 2001 ) and TREND ( Des Jarlais, Lyles, & Crepaz, 2004 ) statements for randomized and nonrandomized trials, respectively, there is comparatively much less consensus when it comes to the SCED. Until fairly recently, design and reporting guidelines for single-case experiments were almost entirely absent in the literature and were typically determined by the preferences of a research subspecialty or a particular journal’s editorial board. Factions still exist within the larger field of psychology, as can be seen in the collection of standards presented in this article, particularly in regard to data analytic methods of SCEDs, but fortunately there is budding agreement about certain design and measurement characteristics. A number of task forces, professional groups, and independent experts in the field have recently put forth guidelines; each has a relatively distinct purpose, which likely accounts for some of the discrepancies between them. In what is to be a central theme of this article, researchers are ultimately responsible for thoughtfully and synergistically combining research design, measurement, and analysis aspects of a study.

This review presents the more prominent, comprehensive, and recently established SCED standards. Six sources are discussed: (1) Single-Case Design Technical Documentation from the What Works Clearinghouse (WWC; Kratochwill et al., 2010 ); (2) the APA Division 12 Task Force on Psychological Interventions, with contributions from the Division 12 Task Force on Promotion and Dissemination of Psychological Procedures and the APA Task Force for Psychological Intervention Guidelines (DIV12; presented in Chambless & Hollon, 1998 ; Chambless & Ollendick, 2001 ), adopted and expanded by APA Division 53, the Society for Clinical Child and Adolescent Psychology ( Weisz & Hawley, 1998 , 1999 ); (3) the APA Division 16 Task Force on Evidence-Based Interventions in School Psychology (DIV16; Members of the Task Force on Evidence-Based Interventions in School Psychology. Chair: T. R. Kratochwill, 2003); (4) the National Reading Panel (NRP; National Institute of Child Health and Human Development, 2000 ); (5) the Single-Case Experimental Design Scale ( Tate et al., 2008 ); and (6) the reporting guidelines for EMA put forth by Stone & Shiffman (2002) . Although the specific purposes of each source differ somewhat, the overall aim is to provide researchers and reviewers with agreed-upon criteria to be used in the conduct and evaluation of SCED research. The standards provided by WWC, DIV12, DIV16, and the NRP represent the efforts of task forces. The Tate et al. scale was selected for inclusion in this review because it represents perhaps the only psychometrically validated tool for assessing the rigor of SCED methodology. Stone and Shiffman’s (2002) standards were intended specifically for EMA methods, but many of their criteria also apply to time-series, daily diary, and other repeated-measurement and sampling methods, making them pertinent to this article. The design, measurement, and analysis standards are presented in the later sections of this article and notable concurrences, discrepancies, strengths, and deficiencies are summarized.

Systematic Review Search Procedures and Selection Criteria

Search strategy.

A comprehensive search strategy of SCEDs was performed to identify studies published in peer-reviewed journals meeting a priori search and inclusion criteria. First, a computer-based PsycINFO search of articles published between 2000 and 2010 (search conducted in July 2011) was conducted that used the following primary key terms and phrases that appeared anywhere in the article (asterisks denote that any characters/letters can follow the last character of the search term): alternating treatment design, changing criterion design, experimental case*, multiple baseline design, replicated single-case design, simultaneous treatment design, time-series design. The search was limited to studies published in the English language and those appearing in peer-reviewed journals within the specified publication year range. Additional limiters of the type of article were also used in PsycINFO to increase specificity: The search was limited to include methodologies indexed as either quantitative study OR treatment outcome/randomized clinical trial and NOT field study OR interview OR focus group OR literature review OR systematic review OR mathematical model OR qualitative study.

Study selection

The author used a three-phase study selection, screening, and coding procedure to select the highest number of applicable studies. Phase 1 consisted of the initial systematic review conducted using PsycINFO, which resulted in 571 articles. In Phase 2, titles and abstracts were screened: Articles appearing to use a SCED were retained (451) for Phase 3, in which the author and a trained research assistant read each full-text article and entered the characteristics of interest into a database. At each phase of the screening process, studies that did not use a SCED or that either self-identified as, or were determined to be, quasi-experimental were dropped. Of the 571 original studies, 82 studies were determined to be quasi-experimental. The definition of a quasi-experimental design used in the screening procedure conforms to the descriptions provided by Kazdin (2010) and Shadish et al. (2002) regarding the necessary components of an experimental design. For example, reversal designs require a minimum of four phases (e.g., ABAB), and multiple baseline designs must demonstrate replication of the effect across at least three conditions (e.g., subjects, settings, behaviors). Sixteen studies were unavailable in full text in English, and five could not be obtained in full text and were thus dropped. The remaining articles that were not retained for review (59) were determined not to be SCED studies meeting our inclusion criteria, but had been identified in our PsycINFO search using the specified keyword and methodology terms. For this review, 409 studies were selected. The sources of the 409 reviewed studies are summarized in Table 1 . A complete bibliography of the 571 studies appearing in the initial search, with the included studies marked, is available online as an Appendix or from the author.

Journal Sources of Studies Included in the Systematic Review (N = 409)

Note: Each of the following journal titles contributed 1 study unless otherwise noted in parentheses: Augmentative and Alternative Communication; Acta Colombiana de Psicología; Acta Comportamentalia; Adapted Physical Activity Quarterly (2); Addiction Research and Theory; Advances in Speech Language Pathology; American Annals of the Deaf; American Journal of Education; American Journal of Occupational Therapy; American Journal of Speech-Language Pathology; The American Journal on Addictions; American Journal on Mental Retardation; Applied Ergonomics; Applied Psychophysiology and Biofeedback; Australian Journal of Guidance & Counseling; Australian Psychologist; Autism; The Behavior Analyst; The Behavior Analyst Today; Behavior Analysis in Practice (2); Behavior and Social Issues (2); Behaviour Change (2); Behavioural and Cognitive Psychotherapy; Behaviour Research and Therapy (3); Brain and Language (2); Brain Injury (2); Canadian Journal of Occupational Therapy (2); Canadian Journal of School Psychology; Career Development for Exceptional Individuals; Chinese Mental Health Journal; Clinical Linguistics and Phonetics; Clinical Psychology & Psychotherapy; Cognitive and Behavioral Practice; Cognitive Computation; Cognitive Therapy and Research; Communication Disorders Quarterly; Developmental Medicine & Child Neurology (2); Developmental Neurorehabilitation (2); Disability and Rehabilitation: An International, Multidisciplinary Journal (3); Disability and Rehabilitation: Assistive Technology; Down Syndrome: Research & Practice; Drug and Alcohol Dependence (2); Early Childhood Education Journal (2); Early Childhood Services: An Interdisciplinary Journal of Effectiveness; Educational Psychology (2); Education and Training in Autism and Developmental Disabilities; Electronic Journal of Research in Educational Psychology; Environment and Behavior (2); European Eating Disorders Review; European Journal of Sport Science; European Review of Applied Psychology; Exceptional Children; Exceptionality; Experimental and Clinical Psychopharmacology; Family & Community Health: The Journal of Health Promotion & Maintenance; Headache: The Journal of Head and Face Pain; International Journal of Behavioral Consultation and Therapy (2); International Journal of Disability; Development and Education (2); International Journal of Drug Policy; International Journal of Psychology; International Journal of Speech-Language Pathology; International Psychogeriatrics; Japanese Journal of Behavior Analysis (3); Japanese Journal of Special Education; Journal of Applied Research in Intellectual Disabilities (2); Journal of Applied Sport Psychology (3); Journal of Attention Disorders (2); Journal of Behavior Therapy and Experimental Psychiatry; Journal of Child Psychology and Psychiatry; Journal of Clinical Psychology in Medical Settings; Journal of Clinical Sport Psychology; Journal of Cognitive Psychotherapy; Journal of Consulting and Clinical Psychology (2); Journal of Deaf Studies and Deaf Education; Journal of Educational & Psychological Consultation (2); Journal of Evidence-Based Practices for Schools (2); Journal of the Experimental Analysis of Behavior (2); Journal of General Internal Medicine; Journal of Intellectual and Developmental Disabilities; Journal of Intellectual Disability Research (2); Journal of Medical Speech-Language Pathology; Journal of Neurology, Neurosurgery & Psychiatry; Journal of Paediatrics and Child Health; Journal of Prevention and Intervention in the Community; Journal of Safety Research; Journal of School Psychology (3); The Journal of Socio-Economics; The Journal of Special Education; Journal of Speech, Language, and Hearing Research (2); Journal of Sport Behavior; Journal of Substance Abuse Treatment; Journal of the International Neuropsychological Society; Journal of Traumatic Stress; The Journals of Gerontology: Series B: Psychological Sciences and Social Sciences; Language, Speech, and Hearing Services in Schools; Learning Disabilities Research & Practice (2); Learning Disability Quarterly (2); Music Therapy Perspectives; Neurorehabilitation and Neural Repair; Neuropsychological Rehabilitation (2); Pain; Physical Education and Sport Pedagogy (2); Preventive Medicine: An International Journal Devoted to Practice and Theory; Psychological Assessment; Psychological Medicine: A Journal of Research in Psychiatry and the Allied Sciences; The Psychological Record; Reading and Writing; Remedial and Special Education (3); Research and Practice for Persons with Severe Disabilities (2); Restorative Neurology and Neuroscience; School Psychology International; Seminars in Speech and Language; Sleep and Hypnosis; School Psychology Quarterly; Social Work in Health Care; The Sport Psychologist (3); Therapeutic Recreation Journal (2); The Volta Review; Work: Journal of Prevention, Assessment & Rehabilitation.

Coding criteria amplifications

A comprehensive description of the coding criteria for each category in this review is available from the author by request. The primary coding criteria are described here and in later sections of this article.

  • Research design was classified into one of the types discussed later in the section titled Predominant Single-Case Experimental Designs on the basis of the authors’ stated design type. Secondary research designs were then coded when applicable (i.e., mixed designs). Distinctions between primary and secondary research designs were made based on the authors’ description of their study. For example, if an author described the study as a “multiple baseline design with time-series measurement,” the primary research design would be coded as being multiple baseline, and time-series would be coded as the secondary research design.
  • Observer ratings were coded as present when observational coding procedures were described and/or the results of a test of interobserver agreement were reported.
  • Interrater reliability for observer ratings was coded as present in any case in which percent agreement, alpha, kappa, or another appropriate statistic was reported, regardless of the amount of the total data that were examined for agreement.
  • Daily diary, daily self-report, and EMA codes were given when authors explicitly described these procedures in the text by name. Coders did not infer the use of these measurement strategies.
  • The number of baseline observations was either taken directly from the figures provided in text or was simply counted in graphical displays of the data when this was determined to be a reliable approach. In some cases, it was not possible to reliably determine the number of baseline data points from the graphical display of data, in which case, the “unavailable” code was assigned. Similarly, the “unavailable” code was assigned when the number of observations was either unreported or ambiguous, or only a range was provided and thus no mean could be determined. Similarly, the mean number of baseline observations was calculated for each study prior to further descriptive statistical analyses because a number of studies reported means only.
  • The coding of the analytic method used in the reviewed studies is discussed later in the section titled Discussion of Review Results and Coding of Analytic Methods .

Results of the Systematic Review

Descriptive statistics of the design, measurement, and analysis characteristics of the reviewed studies are presented in Table 2 . The results and their implications are discussed in the relevant sections throughout the remainder of the article.

Descriptive Statistics of Reviewed SCED Characteristics

Note. % refers to the proportion of reviewed studies that satisfied criteria for this code: For example, the percent of studies reporting observer ratings.

Discussion of the Systematic Review Results in Context

The SCED is a very flexible methodology and has many variants. Those mentioned here are the building blocks from which other designs are then derived. For those readers interested in the nuances of each design, Barlow et al., (2008) ; Franklin, Allison, and Gorman (1997) ; Kazdin (2010) ; and Kratochwill and Levin (1992) , among others, provide cogent, in-depth discussions. Identifying the appropriate SCED depends upon many factors, including the specifics of the IV, the setting in which the study will be conducted, participant characteristics, the desired or hypothesized outcomes, and the research question(s). Similarly, the researcher’s selection of measurement and analysis techniques is determined by these factors.

Predominant Single-Case Experimental Designs

Alternating/simultaneous designs (6%; primary design of the studies reviewed).

Alternating and simultaneous designs involve an iterative manipulation of the IV(s) across different phases to show that changes in the DV vary systematically as a function of manipulating the IV(s). In these multielement designs, the researcher has the option to alternate the introduction of two or more IVs or present two or more IVs at the same time. In the alternating variation, the researcher is able to determine the relative impact of two different IVs on the DV, when all other conditions are held constant. Another variation of this design is to alternate IVs across various conditions that could be related to the DV (e.g., class period, interventionist). Similarly, the simultaneous design would occur when the IVs were presented at the same time within the same phase of the study.

Changing criterion design (4%)

Changing criterion designs are used to demonstrate a gradual change in the DV over the course of the phase involving the active manipulation of the IV. Criteria indicating that a change has occurred happen in a step-wise manner, in which the criterion shifts as the participant responds to the presence of the manipulated IV. The changing criterion design is particularly useful in applied intervention research for a number of reasons. The IV is continuous and never withdrawn, unlike the strategy used in a reversal design. This is particularly important in situations where removal of a psychological intervention would be either detrimental or dangerous to the participant, or would be otherwise unfeasible or unethical. The multiple baseline design also does not withdraw intervention, but it requires replicating the effects of the intervention across participants, settings, or situations. A changing criterion design can be accomplished with one participant in one setting without withholding or withdrawing treatment.

Multiple baseline/combined series design (69%)

The multiple baseline or combined series design can be used to test within-subject change across conditions and often involves multiple participants in a replication context. The multiple baseline design is quite simple in many ways, essentially consisting of a number of repeated, miniature AB experiments or variations thereof. Introduction of the IV is staggered temporally across multiple participants or across multiple within-subject conditions, which allows the researcher to demonstrate that changes in the DV reliably occur only when the IV is introduced, thus controlling for the effects of extraneous factors. Multiple baseline designs can be used both within and across units (i.e., persons or groups of persons). When the baseline phase of each subject begins simultaneously, it is called a concurrent multiple baseline design. In a nonconcurrent variation, baseline periods across subjects begin at different points in time. The multiple baseline design is useful in many settings in which withdrawal of the IV would not be appropriate or when introduction of the IV is hypothesized to result in permanent change that would not reverse when the IV is withdrawn. The major drawback of this design is that the IV must be initially withheld for a period of time to ensure different starting points across the different units in the baseline phase. Depending upon the nature of the research questions, withholding an IV, such as a treatment, could be potentially detrimental to participants.

Reversal designs (17%)

Reversal designs are also known as introduction and withdrawal and are denoted as ABAB designs in their simplest form. As the name suggests, the reversal design involves collecting a baseline measure of the DV (the first A phase), introducing the IV (the first B phase), removing the IV while continuing to assess the DV (the second A phase), and then reintroducing the IV (the second B phase). This pattern can be repeated as many times as is necessary to demonstrate an effect or otherwise address the research question. Reversal designs are useful when the manipulation is hypothesized to result in changes in the DV that are expected to reverse or discontinue when the manipulation is not present. Maintenance of an effect is often necessary to uphold the findings of reversal designs. The demonstration of an effect is evident in reversal designs when improvement occurs during the first manipulation phase, compared to the first baseline phase, then reverts to or approaches original baseline levels during the second baseline phase when the manipulation has been withdrawn, and then improves again when the manipulation in then reinstated. This pattern of reversal, when the manipulation is introduced and then withdrawn, is essential to attributing changes in the DV to the IV. However, maintenance of the effects in a reversal design, in which the DV is hypothesized to reverse when the IV is withdrawn, is not incompatible ( Kazdin, 2010 ). Maintenance is demonstrated by repeating introduction–withdrawal segments until improvement in the DV becomes permanent even when the IV is withdrawn. There is not always a need to demonstrate maintenance in all applications, nor is it always possible or desirable, but it is paramount in the learning and intervention research contexts.

Mixed designs (10%)

Mixed designs include a combination of more than one SCED (e.g., a reversal design embedded within a multiple baseline) or an SCED embedded within a group design (i.e., a randomized controlled trial comparing two groups of multiple baseline experiments). Mixed designs afford the researcher even greater flexibility in designing a study to address complex psychological hypotheses, but also capitalize on the strengths of the various designs. See Kazdin (2010) for a discussion of the variations and utility of mixed designs.

Related Nonexperimental Designs

Quasi-experimental designs.

In contrast to the designs previously described, all of which constitute “true experiments” ( Kazdin, 2010 ; Shadish et al., 2002 ), in quasi-experimental designs the conditions of a true experiment (e.g., active manipulation of the IV, replication of the effect) are approximated and are not readily under the control of the researcher. Because the focus of this article is on experimental designs, quasi-experiments are not discussed in detail; instead the reader is referred to Kazdin (2010) and Shadish et al. (2002) .

Ecological and naturalistic single-case designs

For a single-case design to be experimental, there must be active manipulation of the IV, but in some applications, such as those that might be used in social and personality psychology, the researcher might be interested in measuring naturally occurring phenomena and examining their temporal relationships. Thus, the researcher will not use a manipulation. An example of this type of research might be a study about the temporal relationship between alcohol consumption and depressed mood, which can be measured reliably using EMA methods. Psychotherapy process researchers also use this type of design to assess dyadic relationship dynamics between therapists and clients (e.g., Tschacher & Ramseyer, 2009 ).

Research Design Standards

Each of the reviewed standards provides some degree of direction regarding acceptable research designs. The WWC provides the most detailed and specific requirements regarding design characteristics. Those guidelines presented in Tables 3 , ​ ,4, 4 , and ​ and5 5 are consistent with the methodological rigor necessary to meet the WWC distinction “meets standards.” The WWC also provides less-stringent standards for a “meets standards with reservations” distinction. When minimum criteria in the design, measurement, or analysis sections of a study are not met, it is rated “does not meet standards” ( Kratochwill et al., 2010 ). Many SCEDs are acceptable within the standards of DIV12, DIV16, NRP, and in the Tate et al. SCED scale. DIV12 specifies that replication occurs across a minimum of three successive cases, which differs from the WWC specifications, which allow for three replications within a single-subject design but does not necessarily need to be across multiple subjects. DIV16 does not require, but seems to prefer, a multiple baseline design with a between-subject replication. Tate et al. state that the “design allows for the examination of cause and effect relationships to demonstrate efficacy” (p. 400, 2008). Determining whether or not a design meets this requirement is left up to the evaluator, who might then refer to one of the other standards or another source for direction.

Research Design Standards and Guidelines

Measurement and Assessment Standards and Guidelines

Analysis Standards and Guidelines

The Stone and Shiffman (2002) standards for EMA are concerned almost entirely with the reporting of measurement characteristics and less so with research design. One way in which these standards differ from those of other sources is in the active manipulation of the IV. Many research questions in EMA, daily diary, and time-series designs are concerned with naturally occurring phenomena, and a researcher manipulation would run counter to this aim. The EMA standards become important when selecting an appropriate measurement strategy within the SCED. In EMA applications, as is also true in some other time-series and daily diary designs, researcher manipulation occurs as a function of the sampling interval in which DVs of interest are measured according to fixed time schedules (e.g., reporting occurs at the end of each day), random time schedules (e.g., the data collection device prompts the participant to respond at random intervals throughout the day), or on an event-based schedule (e.g., reporting occurs after a specified event takes place).

Measurement

The basic measurement requirement of the SCED is a repeated assessment of the DV across each phase of the design in order to draw valid inferences regarding the effect of the IV on the DV. In other applications, such as those used by personality and social psychology researchers to study various human phenomena ( Bolger et al., 2003 ; Reis & Gable, 2000 ), sampling strategies vary widely depending on the topic area under investigation. Regardless of the research area, SCEDs are most typically concerned with within-person change and processes and involve a time-based strategy, most commonly to assess global daily averages or peak daily levels of the DV. Many sampling strategies, such as time-series, in which reporting occurs at uniform intervals or on event-based, fixed, or variable schedules, are also appropriate measurement methods and are common in psychological research (see Bolger et al., 2003 ).

Repeated-measurement methods permit the natural, even spontaneous, reporting of information ( Reis, 1994 ), which reduces the biases of retrospection by minimizing the amount of time elapsed between an experience and the account of this experience ( Bolger et al., 2003 ). Shiffman et al. (2008) aptly noted that the majority of research in the field of psychology relies heavily on retrospective assessment measures, even though retrospective reports have been found to be susceptible to state-congruent recall (e.g., Bower, 1981 ) and a tendency to report peak levels of the experience instead of giving credence to temporal fluctuations ( Redelmeier & Kahneman, 1996 ; Stone, Broderick, Kaell, Deles-Paul, & Porter, 2000 ). Furthermore, Shiffman et al. (1997) demonstrated that subjective aggregate accounts were a poor fit to daily reported experiences, which can be attributed to reductions in measurement error resulting in increased validity and reliability of the daily reports.

The necessity of measuring at least one DV repeatedly means that the selected assessment method, instrument, and/or construct must be sensitive to change over time and be capable of reliably and validly capturing change. Horner et al. (2005) discusses the important features of outcome measures selected for use in these types of designs. Kazdin (2010) suggests that measures be dimensional, which can more readily detect effects than categorical and binary measures. Although using an established measure or scale, such as the Outcome Questionnaire System ( M. J. Lambert, Hansen, & Harmon, 2010 ), provides empirically validated items for assessing various outcomes, most measure validation studies conducted on this type of instrument involve between-subject designs, which is no guarantee that these measures are reliable and valid for assessing within-person variability. Borsboom, Mellenbergh, and van Heerden (2003) suggest that researchers adapting validated measures should consider whether the items they propose using have a factor structure within subjects similar to that obtained between subjects. This is one of the reasons that SCEDs often use observational assessments from multiple sources and report the interrater reliability of the measure. Self-report measures are acceptable practice in some circles, but generally additional assessment methods or informants are necessary to uphold the highest methodological standards. The results of this review indicate that the majority of studies include observational measurement (76.0%). Within those studies, nearly all (97.1%) reported interrater reliability procedures and results. The results within each design were similar, with the exception of time-series designs, which used observer ratings in only half of the reviewed studies.

Time-series

Time-series designs are defined by repeated measurement of variables of interest over a period of time ( Box & Jenkins, 1970 ). Time-series measurement most often occurs in uniform intervals; however, this is no longer a constraint of time-series designs (see Harvey, 2001 ). Although uniform interval reporting is not necessary in SCED research, repeated measures often occur at uniform intervals, such as once each day or each week, which constitutes a time-series design. The time-series design has been used in various basic science applications ( Scollon, Kim-Pietro, & Diener, 2003 ) across nearly all subspecialties in psychology (e.g., Bolger et al., 2003 ; Piasecki et al., 2007 ; for a review, see Reis & Gable, 2000 ; Soliday et al., 2002 ). The basic time-series formula for a two-phase (AB) data stream is presented in Equation 1 . In this formula α represents the step function of the data stream; S represents the change between the first and second phases, which is also the intercept in a two-phase data stream and a step function being 0 at times i = 1, 2, 3…n1 and 1 at times i = n1+1, n1+2, n1+3…n; n 1 is the number of observations in the baseline phase; n is the total number of data points in the data stream; i represents time; and ε i = ρε i −1 + e i , which indicates the relationship between the autoregressive function (ρ) and the distribution of the data in the stream.

Time-series formulas become increasingly complex when seasonality and autoregressive processes are modeled in the analytic procedures, but these are rarely of concern for short time-series data streams in SCEDs. For a detailed description of other time-series design and analysis issues, see Borckardt et al. (2008) , Box and Jenkins (1970) , Crosbie (1993) , R. R. Jones et al. (1977) , and Velicer and Fava (2003) .

Time-series and other repeated-measures methodologies also enable examination of temporal effects. Borckardt et al. (2008) and others have noted that time-series designs have the potential to reveal how change occurs, not simply if it occurs. This distinction is what most interested Skinner (1938) , but it often falls below the purview of today’s researchers in favor of group designs, which Skinner felt obscured the process of change. In intervention and psychopathology research, time-series designs can assess mediators of change ( Doss & Atkins, 2006 ), treatment processes ( Stout, 2007 ; Tschacher & Ramseyer, 2009 ), and the relationship between psychological symptoms (e.g., Alloy, Just, & Panzarella, 1997 ; Hanson & Chen, 2010 ; Oslin, Cary, Slaymaker, Colleran, & Blow, 2009 ), and might be capable of revealing mechanisms of change ( Kazdin, 2007 , 2009 , 2010 ). Between- and within-subject SCED designs with repeated measurements enable researchers to examine similarities and differences in the course of change, both during and as a result of manipulating an IV. Temporal effects have been largely overlooked in many areas of psychological science ( Bolger et al., 2003 ): Examining temporal relationships is sorely needed to further our understanding of the etiology and amplification of numerous psychological phenomena.

Time-series studies were very infrequently found in this literature search (2%). Time-series studies traditionally occur in subfields of psychology in which single-case research is not often used (e.g., personality, physiological/biological). Recent advances in methods for collecting and analyzing time-series data (e.g., Borckardt et al., 2008 ) could expand the use of time-series methodology in the SCED community. One problem with drawing firm conclusions from this particular review finding is a semantic factor: Time-series is a specific term reserved for measurement occurring at a uniform interval. However, SCED research appears to not yet have adopted this language when referring to data collected in this fashion. When time-series data analytic methods are not used, the matter of measurement interval is of less importance and might not need to be specified or described as a time-series. An interesting extension of this work would be to examine SCED research that used time-series measurement strategies but did not label it as such. This is important because then it could be determined how many SCEDs could be analyzed with time-series statistical methods.

Daily diary and ecological momentary assessment methods

EMA and daily diary approaches represent methodological procedures for collecting repeated measurements in time-series and non-time-series experiments, which are also known as experience sampling. Presenting an in-depth discussion of the nuances of these sampling techniques is well beyond the scope of this paper. The reader is referred to the following review articles: daily diary ( Bolger et al., 2003 ; Reis & Gable, 2000 ; Thiele, Laireiter, & Baumann, 2002 ), and EMA ( Shiffman et al., 2008 ). Experience sampling in psychology has burgeoned in the past two decades as technological advances have permitted more precise and immediate reporting by participants (e.g., Internet-based, two-way pagers, cellular telephones, handheld computers) than do paper and pencil methods (for reviews see Barrett & Barrett, 2001 ; Shiffman & Stone, 1998 ). Both methods have practical limitations and advantages. For example, electronic methods are more costly and may exclude certain subjects from participating in the study, either because they do not have access to the necessary technology or they do not have the familiarity or savvy to successfully complete reporting. Electronic data collection methods enable the researcher to prompt responses at random or predetermined intervals and also accurately assess compliance. Paper and pencil methods have been criticized for their inability to reliably track respondents’ compliance: Palermo, Valenzuela, and Stork (2004) found better compliance with electronic diaries than with paper and pencil. On the other hand, Green, Rafaeli, Bolger, Shrout, & Reis (2006) demonstrated the psychometric data structure equivalence between these two methods, suggesting that the data collected in either method will yield similar statistical results given comparable compliance rates.

Daily diary/daily self-report and EMA measurement were somewhat rarely represented in this review, occurring in only 6.1% of the total studies. EMA methods had been used in only one of the reviewed studies. The recent proliferation of EMA and daily diary studies in psychology reported by others ( Bolger et al., 2003 ; Piasecki et al., 2007 ; Shiffman et al., 2008 ) suggests that these methods have not yet reached SCED researchers, which could in part have resulted from the long-held supremacy of observational measurement in fields that commonly practice single-case research.

Measurement Standards

As was previously mentioned, measurement in SCEDs requires the reliable assessment of change over time. As illustrated in Table 4 , DIV16 and the NRP explicitly require that reliability of all measures be reported. DIV12 provides little direction in the selection of the measurement instrument, except to require that three or more clinically important behaviors with relative independence be assessed. Similarly, the only item concerned with measurement on the Tate et al. scale specifies assessing behaviors consistent with the target of the intervention. The WWC and the Tate et al. scale require at least two independent assessors of the DV and that interrater reliability meeting minimum established thresholds be reported. Furthermore, WWC requires that interrater reliability be assessed on at least 20% of the data in each phase and in each condition. DIV16 expects that assessment of the outcome measures will be multisource and multimethod, when applicable. The interval of measurement is not specified by any of the reviewed sources. The WWC and the Tate et al. scale require that DVs be measured repeatedly across phases (e.g., baseline and treatment), which is a typical requirement of a SCED. The NRP asks that the time points at which DV measurement occurred be reported.

The baseline measurement represents one of the most crucial design elements of the SCED. Because subjects provide their own data for comparison, gathering a representative, stable sampling of behavior before manipulating the IV is essential to accurately inferring an effect. Some researchers have reported the typical length of the baseline period to range from 3 to 12 observations in intervention research applications (e.g., Center et al., 1986 ; Huitema, 1985 ; R. R. Jones et al., 1977 ; Sharpley, 1987 ); Huitema’s (1985) review of 881 experiments published in the Journal of Applied Behavior Analysis resulted in a modal number of three to four baseline points. Center et al. (1986) suggested five as the minimum number of baseline measurements needed to accurately estimate autocorrelation. Longer baseline periods suggest a greater likelihood of a representative measurement of the DVs, which has been found to increase the validity of the effects and reduce bias resulting from autocorrelation ( Huitema & McKean, 1994 ). The results of this review are largely consistent with those of previous researchers: The mean number of baseline observations was found to be 10.22 ( SD = 9.59), and 6 was the modal number of observations. Baseline data were available in 77.8% of the reviewed studies. Although the baseline assessment has tremendous bearing on the results of a SCED study, it was often difficult to locate the exact number of data points. Similarly, the number of data points assessed across all phases of the study were not easily identified.

The WWC, DIV12, and DIV16 agree that a minimum of three data points during the baseline is necessary. However, to receive the highest rating by the WWC, five data points are necessary in each phase, including the baseline and any subsequent withdrawal baselines as would occur in a reversal design. DIV16 explicitly states that more than three points are preferred and further stipulates that the baseline must demonstrate stability (i.e., limited variability), absence of overlap between the baseline and other phases, absence of a trend, and that the level of the baseline measurement is severe enough to warrant intervention; each of these aspects of the data is important in inferential accuracy. Detrending techniques can be used to address baseline data trend. The integration option in ARIMA-based modeling and the empirical mode decomposition method ( Wu, Huang, Long, & Peng, 2007 ) are two sophisticated detrending techniques. In regression-based analytic methods, detrending can be accomplished by simply regressing each variable in the model on time (i.e., the residuals become the detrended series), which is analogous to adding a linear, exponential, or quadratic term to the regression equation.

NRP does not provide a minimum for data points, nor does the Tate et al. scale, which requires only a sufficient sampling of baseline behavior. Although the mean and modal number of baseline observations is well within these parameters, seven (1.7%) studies reported mean baselines of less than three data points.

Establishing a uniform minimum number of required baseline observations would provide researchers and reviewers with only a starting guide. The baseline phase is important in SCED research because it establishes a trend that can then be compared with that of subsequent phases. Although a minimum number of observations might be required to meet standards, many more might be necessary to establish a trend when there is variability and trends in the direction of the expected effect. The selected data analytic approach also has some bearing on the number of necessary baseline observations. This is discussed further in the Analysis section.

Reporting of repeated measurements

Stone and Shiffman (2002) provide a comprehensive set of guidelines for the reporting of EMA data, which can also be applied to other repeated-measurement strategies. Because the application of EMA is widespread and not confined to specific research designs, Stone and Shiffman intentionally place few restraints on researchers regarding selection of the DV and the reporter, which is determined by the research question under investigation. The methods of measurement, however, are specified in detail: Descriptions of prompting, recording of responses, participant-initiated entries, and the data acquisition interface (e.g., paper and pencil diary, PDA, cellular telephone) ought to be provided with sufficient detail for replication. Because EMA specifically, and time-series/daily diary methods similarly, are primarily concerned with the interval of assessment, Stone and Shiffman suggest reporting the density and schedule of assessment. The approach is generally determined by the nature of the research question and pragmatic considerations, such as access to electronic data collection devices at certain times of the day and participant burden. Compliance and missing data concerns are present in any longitudinal research design, but they are of particular importance in repeated-measurement applications with frequent measurement. When the research question pertains to temporal effects, compliance becomes paramount, and timely, immediate responding is necessary. For this reason, compliance decisions, rates of missing data, and missing data management techniques must be reported. The effect of missing data in time-series data streams has been the topic of recent research in the social sciences (e.g., Smith, Borckardt, & Nash, in press ; Velicer & Colby, 2005a , 2005b ). The results and implications of these and other missing data studies are discussed in the next section.

Analysis of SCED Data

Visual analysis.

Experts in the field generally agree about the majority of critical single-case experiment design and measurement characteristics. Analysis, on the other hand, is an area of significant disagreement, yet it has also received extensive recent attention and advancement. Debate regarding the appropriateness and accuracy of various methods for analyzing SCED data, the interpretation of single-case effect sizes, and other concerns vital to the validity of SCED results has been ongoing for decades, and no clear consensus has been reached. Visual analysis, following systematic procedures such as those provided by Franklin, Gorman, Beasley, and Allison (1997) and Parsonson and Baer (1978) , remains the standard by which SCED data are most commonly analyzed ( Parker, Cryer, & Byrns, 2006 ). Visual analysis can arguably be applied to all SCEDs. However, a number of baseline data characteristics must be met for effects obtained through visual analysis to be valid and reliable. The baseline phase must be relatively stable; free of significant trend, particularly in the hypothesized direction of the effect; have minimal overlap of data with subsequent phases; and have a sufficient sampling of behavior to be considered representative ( Franklin, Gorman, et al., 1997 ; Parsonson & Baer, 1978 ). The effect of baseline trend on visual analysis, and a technique to control baseline trend, are offered by Parker et al. (2006) . Kazdin (2010) suggests using statistical analysis when a trend or significant variability appears in the baseline phase, two conditions that ought to preclude the use of visual analysis techniques. Visual analysis methods are especially adept at determining intervention effects and can be of particular relevance in real-world applications (e.g., Borckardt et al., 2008 ; Kratochwill, Levin, Horner, & Swoboda, 2011 ).

However, visual analysis has its detractors. It has been shown to be inconsistent, can be affected by autocorrelation, and results in overestimation of effect (e.g., Matyas & Greenwood, 1990 ). Visual analysis as a means of estimating an effect precludes the results of SCED research from being included in meta-analysis, and also makes it very difficult to compare results to the effect sizes generated by other statistical methods. Yet, visual analysis proliferates in large part because SCED researchers are familiar with these methods and are not only generally unfamiliar with statistical approaches, but lack agreement about their appropriateness. Still, top experts in single-case analysis champion the use of statistical methods alongside visual analysis whenever it is appropriate to do so ( Kratochwill et al., 2011 ).

Statistical analysis

Statistical analysis of SCED data consists generally of an attempt to address one or more of three broad research questions: (1) Does introduction/manipulation of the IV result in statistically significant change in the level of the DV (level-change or phase-effect analysis)? (2) Does introduction/manipulation of the IV result in statistically significant change in the slope of the DV over time (slope-change analysis)? and (3) Do meaningful relationships exist between the trajectory of the DV and other potential covariates? Level- and slope-change analyses are relevant to intervention effectiveness studies and other research questions in which the IV is expected to result in changes in the DV in a particular direction. Visual analysis methods are most adept at addressing research questions pertaining to changes in level and slope (Questions 1 and 2), most often using some form of graphical representation and standardized computation of a mean level or trend line within and between each phase of interest (e.g., Horner & Spaulding, 2010 ; Kratochwill et al., 2011 ; Matyas & Greenwood, 1990 ). Research questions in other areas of psychological science might address the relationship between DVs or the slopes of DVs (Question 3). A number of sophisticated modeling approaches (e.g., cross-lag, multilevel, panel, growth mixture, latent class analysis) may be used for this type of question, and some are discussed in greater detail later in this section. However, a discussion about the nuances of this type of analysis and all their possible methods is well beyond the scope of this article.

The statistical analysis of SCEDs is a contentious issue in the field. Not only is there no agreed-upon statistical method, but the practice of statistical analysis in the context of the SCED is viewed by some as unnecessary (see Shadish, Rindskopf, & Hedges, 2008 ). Traditional trends in the prevalence of statistical analysis usage by SCED researchers are revealing: Busk & Marascuilo (1992) found that only 10% of the published single-case studies they reviewed used statistical analysis; Brossart, Parker, Olson, & Mahadevan (2006) estimated that this figure had roughly doubled by 2006. A range of concerns regarding single-case effect size calculation and interpretation is discussed in significant detail elsewhere (e.g., Campbell, 2004 ; Cohen, 1994 ; Ferron & Sentovich, 2002 ; Ferron & Ware, 1995 ; Kirk, 1996 ; Manolov & Solanas, 2008 ; Olive & Smith, 2005 ; Parker & Brossart, 2003 ; Robey et al., 1999 ; Smith et al., in press ; Velicer & Fava, 2003 ). One concern is the lack of a clearly superior method across datasets. Although statistical methods for analyzing SCEDs abound, few studies have examined their comparative performance with the same dataset. The most recent studies of this kind, performed by Brossart et al. (2006) , Campbell (2004) , Parker and Brossart (2003) , and Parker and Vannest (2009) , found that the more promising available statistical analysis methods yielded moderately different results on the same data series, which led them to conclude that each available method is equipped to adequately address only a relatively narrow spectrum of data. Given these findings, analysts need to select an appropriate model for the research questions and data structure, being mindful of how modeling results can be influenced by extraneous factors.

The current standards unfortunately provide little guidance in the way of statistical analysis options. This article presents an admittedly cursory introduction to available statistical methods; many others are not covered in this review. The following articles provide more in-depth discussion and description of other methods: Barlow et al. (2008) ; Franklin et al., (1997) ; Kazdin (2010) ; and Kratochwill and Levin (1992 , 2010 ). Shadish et al. (2008) summarize more recently developed methods. Similarly, a Special Issue of Evidence-Based Communication Assessment and Intervention (2008, Volume 2) provides articles and discussion of the more promising statistical methods for SCED analysis. An introduction to autocorrelation and its implications for statistical analysis is necessary before specific analytic methods can be discussed. It is also pertinent at this time to discuss the implications of missing data.

Autocorrelation

Many repeated measurements within a single subject or unit create a situation that most psychological researchers are unaccustomed to dealing with: autocorrelated data, which is the nonindependence of sequential observations, also known as serial dependence. Basic and advanced discussions of autocorrelation in single-subject data can be found in Borckardt et al. (2008) , Huitema (1985) , and Marshall (1980) , and discussions of autocorrelation in multilevel models can be found in Snijders and Bosker (1999) and Diggle and Liang (2001) . Along with trend and seasonal variation, autocorrelation is one example of the internal structure of repeated measurements. In the social sciences, autocorrelated data occur most naturally in the fields of physiological psychology, econometrics, and finance, where each phase of interest has potentially hundreds or even thousands of observations that are tightly packed across time (e.g., electroencephalography actuarial data, financial market indices). Applied SCED research in most areas of psychology is more likely to have measurement intervals of day, week, or hour.

Autocorrelation is a direct result of the repeated-measurement requirements of the SCED, but its effect is most noticeable and problematic when one is attempting to analyze these data. Many commonly used data analytic approaches, such as analysis of variance, assume independence of observations and can produce spurious results when the data are nonindependent. Even statistically insignificant autocorrelation estimates are generally viewed as sufficient to cause inferential bias when conventional statistics are used (e.g., Busk & Marascuilo, 1988 ; R. R. Jones et al., 1977 ; Matyas & Greenwood, 1990 ). The effect of autocorrelation on statistical inference in single-case applications has also been known for quite some time (e.g., R. R. Jones et al., 1977 ; Kanfer, 1970 ; Kazdin, 1981 ; Marshall, 1980 ). The findings of recent simulation studies of single-subject data streams indicate that autocorrelation is a nontrivial matter. For example, Manolov and Solanas (2008) determined that calculated effect sizes were linearly related to the autocorrelation of the data stream, and Smith et al. (in press) demonstrated that autocorrelation estimates in the vicinity of 0.80 negatively affect the ability to correctly infer a significant level-change effect using a standardized mean differences method. Huitema and colleagues (e.g., Huitema, 1985 ; Huitema & McKean, 1994 ) argued that autocorrelation is rarely a concern in applied research. Huitema’s methods and conclusions have been questioned and opposing data have been published (e.g., Allison & Gorman, 1993 ; Matyas & Greenwood, 1990 ; Robey et al., 1999 ), resulting in abandonment of the position that autocorrelation can be conscionably ignored without compromising the validity of the statistical procedures. Procedures for removing autocorrelation in the data stream prior to calculating effect sizes are offered as one option: One of the more promising analysis methods, autoregressive integrated moving averages (discussed later in this article), was specifically designed to remove the internal structure of time-series data, such as autocorrelation, trend, and seasonality ( Box & Jenkins, 1970 ; Tiao & Box, 1981 ).

Missing observations

Another concern inherent in repeated-measures designs is missing data. Daily diary and EMA methods are intended to reduce the risk of retrospection error by eliciting accurate, real-time information ( Bolger et al., 2003 ). However, these methods are subject to missing data as a result of honest forgetfulness, not possessing the diary collection tool at the specified time of collection, and intentional or systematic noncompliance. With paper and pencil diaries and some electronic methods, subjects might be able to complete missed entries retrospectively, defeating the temporal benefits of these assessment strategies ( Bolger et al., 2003 ). Methods of managing noncompliance through the study design and measurement methods include training the subject to use the data collection device appropriately, using technology to prompt responding and track the time of response, and providing incentives to participants for timely compliance (for additional discussion of this topic, see Bolger et al., 2003 ; Shiffman & Stone, 1998 ).

Even when efforts are made to maximize compliance during the conduct of the research, the problem of missing data is often unavoidable. Numerous approaches exist for handling missing observations in group multivariate designs (e.g., Horton & Kleinman, 2007 ; Ibrahim, Chen, Lipsitz, & Herring, 2005 ). Ragunathan (2004) and others concluded that full information and raw data maximum likelihood methods are preferable. Velicer and Colby (2005a , 2005b ) established the superiority of maximum likelihood methods over listwise deletion, mean of adjacent observations, and series mean substitution in the estimation of various critical time-series data parameters. Smith et al. (in press) extended these findings regarding the effect of missing data on inferential precision. They found that managing missing data with the EM procedure ( Dempster, Laird, & Rubin, 1977 ), a maximum likelihood algorithm, did not affect one’s ability to correctly infer a significant effect. However, lag-1 autocorrelation estimates in the vicinity of 0.80 resulted in insufficient power sensitivity (< 0.80), regardless of the proportion of missing data (10%, 20%, 30%, or 40%). 1 Although maximum likelihood methods have garnered some empirical support, methodological strategies that minimize missing data, particularly systematically missing data, are paramount to post-hoc statistical remedies.

Nonnormal distribution of data

In addition to the autocorrelated nature of SCED data, typical measurement methods also present analytic challenges. Many statistical methods, particularly those involving model finding, assume that the data are normally distributed. This is often not satisfied in SCED research when measurements involve count data, observer-rated behaviors, and other, similar metrics that result in skewed distributions. Techniques are available to manage nonnormal distributions in regression-based analysis, such as zero-inflated Poisson regression ( D. Lambert, 1992 ) and negative binomial regression ( Gardner, Mulvey, & Shaw, 1995 ), but many other statistical analysis methods do not include these sophisticated techniques. A skewed data distribution is perhaps one of the reasons Kazdin (2010) suggests not using count, categorical, or ordinal measurement methods.

Available statistical analysis methods

Following is a basic introduction to the more promising and prevalent analytic methods for SCED research. Because there is little consensus regarding the superiority of any single method, the burden unfortunately falls on the researcher to select a method capable of addressing the research question and handling the data involved in the study. Some indications and contraindications are provided for each method presented here.

Multilevel and structural equation modeling

Multilevel modeling (MLM; e.g., Schmidt, Perels, & Schmitz, 2010 ) techniques represent the state of the art among parametric approaches to SCED analysis, particularly when synthesizing SCED results ( Shadish et al., 2008 ). MLM and related latent growth curve and factor mixture methods in structural equation modeling (SEM; e.g., Lubke & Muthén, 2005 ; B. O. Muthén & Curran, 1997 ) are particularly effective for evaluating trajectories and slopes in longitudinal data and relating changes to potential covariates. MLM and related hierarchical linear models (HLM) can also illuminate the relationship between the trajectories of different variables under investigation and clarify whether or not these relationships differ amongst the subjects in the study. Time-series and cross-lag analyses can also be used in MLM and SEM ( Chow, Ho, Hamaker, & Dolan, 2010 ; du Toit & Browne, 2007 ). However, they generally require sophisticated model-fitting techniques, making them difficult for many social scientists to implement. The structure (autocorrelation) and trend of the data can also complicate many MLM methods. The common, short data streams in SCED research and the small number of subjects also present problems to MLM and SEM approaches, which were developed for data with significantly greater numbers of observations when the number of subjects is fewer, and for a greater number of participants for model-fitting purposes, particularly when there are fewer data points. Still, MLM and related techniques arguably represent the most promising analytic methods.

A number of software options 2 exist for SEM. Popular statistical packages in the social sciences provide SEM options, such as PROC CALIS in SAS ( SAS Institute Inc., 2008 ), the AMOS module ( Arbuckle, 2006 ) of SPSS ( SPSS Statistics, 2011 ), and the sempackage for R ( R Development Core Team, 2005 ), the use of which is described by Fox ( Fox, 2006 ). A number of stand-alone software options are also available for SEM applications, including Mplus ( L. K. Muthén & Muthén, 2010 ) and Stata ( StataCorp., 2011 ). Each of these programs also provides options for estimating multilevel/hierarchical models (for a review of using these programs for MLM analysis see Albright & Marinova, 2010 ). Hierarchical linear and nonlinear modeling can also be accomplished using the HLM 7 program ( Raudenbush, Bryk, & Congdon, 2011 ).

Autoregressive moving averages (ARMA; e.g., Browne & Nesselroade, 2005 ; Liu & Hudack, 1995 ; Tiao & Box, 1981 )

Two primary points have been raised regarding ARMA modeling: length of the data stream and feasibility of the modeling technique. ARMA models generally require 30–50 observations in each phase when analyzing a single-subject experiment (e.g., Borckardt et al., 2008 ; Box & Jenkins, 1970 ), which is often difficult to satisfy in applied psychological research applications. However, ARMA models in an SEM framework, such as those described by du Toit & Browne (2001) , are well suited for longitudinal panel data with few observations and many subjects. Autoregressive SEM models are also applicable under similar conditions. Model-fitting options are available in SPSS, R, and SAS via PROC ARMA.

ARMA modeling also requires considerable training in the method and rather advanced knowledge about statistical methods (e.g., Kratochwill & Levin, 1992 ). However, Brossart et al. (2006) point out that ARMA-based approaches can produce excellent results when there is no “model finding” and a simple lag-1 model, with no differencing and no moving average, is used. This approach can be taken for many SCED applications when phase- or slope-change analyses are of interest with a single, or very few, subjects. As already mentioned, this method is particularly useful when one is seeking to account for autocorrelation or other over-time variations that are not directly related to the experimental or intervention effect of interest (i.e., detrending). ARMA and other time-series analysis methods require missing data to be managed prior to analysis by means of options such as full information maximum likelihood estimation, multiple imputation, or the Kalman filter (see Box & Jenkins, 1970 ; Hamilton, 1994 ; Shumway & Stoffer, 1982 ) because listwise deletion has been shown to result in inaccurate time-series parameter estimates ( Velicer & Colby, 2005a ).

Standardized mean differences

Standardized mean differences approaches include the common Cohen’s d , Glass’s Delta, and Hedge’s g that are used in the analysis of group designs. The computational properties of mean differences approaches to SCEDs are identical to those used for group comparisons, except that the results represent within-case variation instead of the variation between groups, which suggests that the obtained effect sizes are not interpretively equivalent. The advantage of the mean differences approach is its simplicity of calculation and also its familiarity to social scientists. The primary drawback of these approaches is that they were not developed to contend with autocorrelated data. However, Manolov and Solanas (2008) reported that autocorrelation least affected effect sizes calculated using standardized mean differences approaches. To the applied-research scientist this likely represents the most accessible analytic approach, because statistical software is not required to calculate these effect sizes. The resultant effect sizes of single subject standardized mean differences analysis must be interpreted cautiously because their relation to standard effect size benchmarks, such as those provided by Cohen (1988) , is unknown. Standardized mean differences approaches are appropriate only when examining significant differences between phases of the study and cannot illuminate trajectories or relationships between variables.

Other analytic approaches

Researchers have offered other analytic methods to deal with the characteristics of SCED data. A number of methods for analyzing N -of-1 experiments have been developed. Borckardt’s Simulation Modeling Analysis (2006) program provides a method for analyzing level- and slope-change in short (<30 observations per phase; see Borckardt et al., 2008 ), autocorrelated data streams that is statistically sophisticated, yet accessible and freely available to typical psychological scientists and clinicians. A replicated single-case time-series design conducted by Smith, Handler, & Nash (2010) provides an example of SMA application. The Singwin Package, described in Bloom et al., (2003) , is a another easy-to-use parametric approach for analyzing single-case experiments. A number of nonparametric approaches have also been developed that emerged from the visual analysis tradition: Some examples include percent nonoverlapping data ( Scruggs, Mastropieri, & Casto, 1987 ) and nonoverlap of all pairs ( Parker & Vannest, 2009 ); however, these methods have come under scrutiny, and Wolery, Busick, Reichow, and Barton (2010) have suggested abandoning them altogether. Each of these methods appears to be well suited for managing specific data characteristics, but they should not be used to analyze data streams beyond their intended purpose until additional empirical research is conducted.

Combining SCED Results

Beyond the issue of single-case analysis is the matter of integrating and meta-analyzing the results of single-case experiments. SCEDs have been given short shrift in the majority of meta-analytic literature ( Littell, Corcoran, & Pillai, 2008 ; Shadish et al., 2008 ), with only a few exceptions ( Carr et al., 1999 ; Horner & Spaulding, 2010 ). Currently, few proven methods exist for integrating the results of multiple single-case experiments. Allison and Gorman (1993) and Shadish et al. (2008) present the problems associated with meta-analyzing single-case effect sizes, and W. P. Jones (2003) , Manolov and Solanas (2008) , Scruggs and Mastropieri (1998) , and Shadish et al. (2008) offer four different potential statistical solutions for this problem, none of which appear to have received consensus amongst researchers. The ability to synthesize and compare single-case effect sizes, particularly effect sizes garnered through group design research, is undoubtedly necessary to increase SCED proliferation.

Discussion of Review Results and Coding of Analytic Methods

The coding criteria for this review were quite stringent in terms of what was considered to be either visual or statistical analysis. For visual analysis to be coded as present, it was necessary for the authors to self-identify as having used a visual analysis method. In many cases, it could likely be inferred that visual analysis had been used, but it was often not specified. Similarly, statistical analysis was reserved for analytic methods that produced an effect. 3 Analyses that involved comparing magnitude of change using raw count data or percentages were not considered rigorous enough. These two narrow definitions of visual and statistical analysis contributed to the high rate of unreported analytic method, shown in Table 1 (52.3%). A better representation of the use of visual and statistical analysis would likely be the percentage of studies within those that reported a method of analysis. Under these parameters, 41.5% used visual analysis and 31.3% used statistical analysis. Included in these figures are studies that included both visual and statistical methods (11%). These findings are slightly higher than those estimated by Brossart et al. (2006) , who estimated statistical analysis is used in about 20% of SCED studies. Visual analysis continues to undoubtedly be the most prevalent method, but there appears to be a trend for increased use of statistical approaches, which is likely to only gain momentum as innovations continue.

Analysis Standards

The standards selected for inclusion in this review offer minimal direction in the way of analyzing the results of SCED research. Table 5 summarizes analysis-related information provided by the six reviewed sources for SCED standards. Visual analysis is acceptable to DV12 and DIV16, along with unspecified statistical approaches. In the WWC standards, visual analysis is the acceptable method of determining an intervention effect, with statistical analyses and randomization tests permissible as a complementary or supporting method to the results of visual analysis methods. However, the authors of the WWC standards state, “As the field reaches greater consensus about appropriate statistical analyses and quantitative effect-size measures, new standards for effect demonstration will need to be developed” ( Kratochwill et al., 2010 , p.16). The NRP and DIV12 seem to prefer statistical methods when they are warranted. The Tate at al. scale accepts only statistical analysis with the reporting of an effect size. Only the WWC and DIV16 provide guidance in the use of statistical analysis procedures: The WWC “recommends” nonparametric and parametric approaches, multilevel modeling, and regression when statistical analysis is used. DIV16 refers the reader to Wilkinson and the Task Force on Statistical Inference of the APA Board of Scientific Affairs (1999) for direction in this matter. Statistical analysis of daily diary and EMA methods is similarly unsettled. Stone and Shiffman (2002) ask for a detailed description of the statistical procedures used, in order for the approach to be replicated and evaluated. They provide direction for analyzing aggregated and disaggregated data. They also aptly note that because many different modes of analysis exist, researchers must carefully match the analytic approach to the hypotheses being pursued.

Limitations and Future Directions

This review has a number of limitations that leave the door open for future study of SCED methodology. Publication bias is a concern in any systematic review. This is particularly true for this review because the search was limited to articles published in peer-reviewed journals. This strategy was chosen in order to inform changes in the practice of reporting and of reviewing, but it also is likely to have inflated the findings regarding the methodological rigor of the reviewed works. Inclusion of book chapters, unpublished studies, and dissertations would likely have yielded somewhat different results.

A second concern is the stringent coding criteria in regard to the analytic methods and the broad categorization into visual and statistical analytic approaches. The selection of an appropriate method for analyzing SCED data is perhaps the murkiest area of this type of research. Future reviews that evaluate the appropriateness of selected analytic strategies and provide specific decision-making guidelines for researchers would be a very useful contribution to the literature. Although six sources of standards apply to SCED research reviewed in this article, five of them were developed almost exclusively to inform psychological and behavioral intervention research. The principles of SCED research remain the same in different contexts, but there is a need for non–intervention scientists to weigh in on these standards.

Finally, this article provides a first step in the synthesis of the available SCED reporting guidelines. However, it does not resolve disagreements, nor does it purport to be a definitive source. In the future, an entity with the authority to construct such a document ought to convene and establish a foundational, adaptable, and agreed-upon set of guidelines that cuts across subspecialties but is applicable to many, if not all, areas of psychological research, which is perhaps an idealistic goal. Certain preferences will undoubtedly continue to dictate what constitutes acceptable practice in each subspecialty of psychology, but uniformity along critical dimensions will help advance SCED research.

Conclusions

The first decade of the twenty-first century has seen an upwelling of SCED research across nearly all areas of psychology. This article contributes updated benchmarks in terms of the frequency with which SCED design and methodology characteristics are used, including the number of baseline observations, assessment and measurement practices, and data analytic approaches, most of which are largely consistent with previously reported benchmarks. However, this review is much broader than those of previous research teams and also breaks down the characteristics of single-case research by the predominant design. With the recent SCED proliferation came a number of standards for the conduct and reporting of such research. This article also provides a much-needed synthesis of recent SCED standards that can inform the work of researchers, reviewers, and funding agencies conducting and evaluating single-case research, which reveals many areas of consensus as well as areas of significant disagreement. It appears that the question of where to go next is very relevant at this point in time. The majority of the research design and measurement characteristics of the SCED are reasonably well established, and the results of this review suggest general practice that is in accord with existing standards and guidelines, at least in regard to published peer-reviewed works. In general, the published literature appears to be meeting the basic design and measurement requirement to ensure adequate internal validity of SCED studies.

Consensus regarding the superiority of any one analytic method stands out as an area of divergence. Judging by the current literature and lack of consensus, researchers will need to carefully select a method that matches the research design, hypotheses, and intended conclusions of the study, while also considering the most up-to-date empirical support for the chosen analytic method, whether it be visual or statistical. In some cases the number of observations and subjects in the study will dictate which analytic methods can and cannot be used. In the case of the true N -of-1 experiment, there are relatively few sound analytic methods, and even fewer that are robust with shorter data streams (see Borckardt et al., 2008 ). As the number of observations and subjects increases, sophisticated modeling techniques, such as MLM, SEM, and ARMA, become applicable. Trends in the data and autocorrelation further obfuscate the development of a clear statistical analysis selection algorithm, which currently does not exist. Autocorrelation was rarely addressed or discussed in the articles reviewed, except when the selected statistical analysis dictated consideration. Given the empirical evidence regarding the effect of autocorrelation on visual and statistical analysis, researchers need to address this more explicitly. Missing-data considerations are similarly left out when they are unnecessary for analytic purposes. As newly devised statistical analysis approaches mature and are compared with one another for appropriateness in specific SCED applications, guidelines for statistical analysis will necessarily be revised. Similarly, empirically derived guidance, in the form of a decision tree, must be developed to ensure application of appropriate methods based on characteristics of the data and the research questions being addressed. Researchers could also benefit from tutorials and comparative reviews of different software packages: This is a needed area of future research. Powerful and reliable statistical analyses help move the SCED up the ladder of experimental designs and attenuate the view that the method applies primarily to pilot studies and idiosyncratic research questions and situations.

Another potential future advancement of SCED research comes in the area of measurement. Currently, SCED research gives significant weight to observer ratings and seems to discourage other forms of data collection methods. This is likely due to the origins of the SCED in behavioral assessment and applied behavior analysis, which remains a present-day stronghold. The dearth of EMA and diary-like sampling procedures within the SCED research reviewed, yet their ever-growing prevalence in the larger psychological research arena, highlights an area for potential expansion. Observational measurement, although reliable and valid in many contexts, is time and resource intensive and not feasible in all areas in which psychologists conduct research. It seems that numerous untapped research questions are stifled because of this measurement constraint. SCED researchers developing updated standards in the future should include guidelines for the appropriate measurement requirement of non-observer-reported data. For example, the results of this review indicate that reporting of repeated measurements, particularly the high-density type found in diary and EMA sampling strategies, ought to be more clearly spelled out, with specific attention paid to autocorrelation and trend in the data streams. In the event that SCED researchers adopt self-reported assessment strategies as viable alternatives to observation, a set of standards explicitly identifying the necessary psychometric properties of the measures and specific items used would be in order.

Along similar lines, SCED researchers could take a page from other areas of psychology that champion multimethod and multisource evaluation of primary outcomes. In this way, the long-standing tradition of observational assessment and the cutting-edge technological methods of EMA and daily diary could be married with the goal of strengthening conclusions drawn from SCED research and enhancing the validity of self-reported outcome assessment. The results of this review indicate that they rarely intersect today, and I urge SCED researchers to adopt other methods of assessment informed by time-series, daily diary, and EMA methods. The EMA standards could serve as a jumping-off point for refined measurement and assessment reporting standards in the context of multimethod SCED research.

One limitation of the current SCED standards is their relatively limited scope. To clarify, with the exception of the Stone & Shiffman EMA reporting guidelines, the other five sources of standards were developed in the context of designing and evaluating intervention research. Although this is likely to remain its patent emphasis, SCEDs are capable of addressing other pertinent research questions in the psychological sciences, and the current standards truly only roughly approximate salient crosscutting SCED characteristics. I propose developing broad SCED guidelines that address the specific design, measurement, and analysis issues in a manner that allows it to be useful across applications, as opposed to focusing solely on intervention effects. To accomplish this task, methodology experts across subspecialties in psychology would need to convene. Admittedly this is no small task.

Perhaps funding agencies will also recognize the fiscal and practical advantages of SCED research in certain areas of psychology. One example is in the field of intervention effectiveness, efficacy, and implementation research. A few exemplary studies using robust forms of SCED methodology are needed in the literature. Case-based methodologies will never supplant the group design as the gold standard in experimental applications, nor should that be the goal. Instead, SCEDs provide a viable and valid alternative experimental methodology that could stimulate new areas of research and answer questions that group designs cannot. With the astonishing number of studies emerging every year that use single-case designs and explore the methodological aspects of the design, we are poised to witness and be a part of an upsurge in the sophisticated application of the SCED. When federal grant-awarding agencies and journal editors begin to use formal standards while making funding and publication decisions, the field will benefit.

Last, for the practice of SCED research to continue and mature, graduate training programs must provide students with instruction in all areas of the SCED. This is particularly true of statistical analysis techniques that are not often taught in departments of psychology and education, where the vast majority of SCED studies seem to be conducted. It is quite the conundrum that the best available statistical analytic methods are often cited as being inaccessible to social science researchers who conduct this type of research. This need not be the case. To move the field forward, emerging scientists must be able to apply the most state-of-the-art research designs, measurement techniques, and analytic methods.

Acknowledgments

Research support for the author was provided by research training grant MH20012 from the National Institute of Mental Health, awarded to Elizabeth A. Stormshak. The author gratefully acknowledges Robert Horner and Laura Lee McIntyre, University of Oregon; Michael Nash, University of Tennessee; John Ferron, University of South Florida; the Action Editor, Lisa Harlow, and the anonymous reviewers for their thoughtful suggestions and guidance in shaping this article; Cheryl Mikkola for her editorial support; and Victoria Mollison for her assistance in the systematic review process.

Appendix. Results of Systematic Review Search and Studies Included in the Review

Psycinfo search conducted july 2011.

  • Alternating treatment design
  • Changing criterion design
  • Experimental case*
  • Multiple baseline design
  • Replicated single-case design
  • Simultaneous treatment design
  • Time-series design
  • Quantitative study OR treatment outcome/randomized clinical trial
  • NOT field study OR interview OR focus group OR literature review OR systematic review OR mathematical model OR qualitative study
  • Publication range: 2000–2010
  • Published in peer-reviewed journals
  • Available in the English Language

Bibliography

(* indicates inclusion in study: N = 409)

1 Autocorrelation estimates in this range can be caused by trends in the data streams, which creates complications in terms of detecting level-change effects. The Smith et al. (in press) study used a Monte Carlo simulation to control for trends in the data streams, but trends are likely to exist in real-world data with high lag-1 autocorrelation estimates.

2 The author makes no endorsement regarding the superiority of any statistical program or package over another by their mention or exclusion in this article. The author also has no conflicts of interest in this regard.

3 However, it should be noted that it was often very difficult to locate an actual effect size reported in studies that used statistical analysis. Although this issue would likely have added little to this review, it does inhibit the inclusion of the results in meta-analysis.

  • Albright JJ, Marinova DM. Estimating multilevel modelsuUsing SPSS, Stata, and SAS. Indiana University; 2010. Retrieved from http://www.iub.edu/%7Estatmath/stat/all/hlm/hlm.pdf . [ Google Scholar ]
  • Allison DB, Gorman BS. Calculating effect sizes for meta-analysis: The case of the single case. Behavior Research and Therapy. 1993; 31 (6):621–631. doi: 10.1016/0005-7967(93)90115-B. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Alloy LB, Just N, Panzarella C. Attributional style, daily life events, and hopelessness depression: Subtype validation by prospective variability and specificity of symptoms. Cognitive Therapy Research. 1997; 21 :321–344. doi: 10.1023/A:1021878516875. [ CrossRef ] [ Google Scholar ]
  • Arbuckle JL. Amos (Version 7.0) Chicago, IL: SPSS, Inc; 2006. [ Google Scholar ]
  • Barlow DH, Nock MK, Hersen M. Single case research designs: Strategies for studying behavior change. 3. New York, NY: Allyn and Bacon; 2008. [ Google Scholar ]
  • Barrett LF, Barrett DJ. An introduction to computerized experience sampling in psychology. Social Science Computer Review. 2001; 19 (2):175–185. doi: 10.1177/089443930101900204. [ CrossRef ] [ Google Scholar ]
  • Bloom M, Fisher J, Orme JG. Evaluating practice: Guidelines for the accountable professional. 4. Boston, MA: Allyn & Bacon; 2003. [ Google Scholar ]
  • Bolger N, Davis A, Rafaeli E. Diary methods: Capturing life as it is lived. Annual Review of Psychology. 2003; 54 :579–616. doi: 10.1146/annurev.psych.54.101601.145030. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Borckardt JJ. Simulation Modeling Analysis: Time series analysis program for short time series data streams (Version 8.3.3) Charleston, SC: Medical University of South Carolina; 2006. [ Google Scholar ]
  • Borckardt JJ, Nash MR, Murphy MD, Moore M, Shaw D, O’Neil P. Clinical practice as natural laboratory for psychotherapy research. American Psychologist. 2008; 63 :1–19. doi: 10.1037/0003-066X.63.2.77. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Borsboom D, Mellenbergh GJ, van Heerden J. The theoretical status of latent variables. Psychological Review. 2003; 110 (2):203–219. doi: 10.1037/0033-295X.110.2.203. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Bower GH. Mood and memory. American Psychologist. 1981; 36 (2):129–148. doi: 10.1037/0003-066x.36.2.129. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Box GEP, Jenkins GM. Time-series analysis: Forecasting and control. San Francisco, CA: Holden-Day; 1970. [ Google Scholar ]
  • Brossart DF, Parker RI, Olson EA, Mahadevan L. The relationship between visual analysis and five statistical analyses in a simple AB single-case research design. Behavior Modification. 2006; 30 (5):531–563. doi: 10.1177/0145445503261167. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Browne MW, Nesselroade JR. Representing psychological processes with dynamic factor models: Some promising uses and extensions of autoregressive moving average time series models. In: Maydeu-Olivares A, McArdle JJ, editors. Contemporary psychometrics: A festschrift for Roderick P McDonald. Mahwah, NJ: Lawrence Erlbaum Associates Publishers; 2005. pp. 415–452. [ Google Scholar ]
  • Busk PL, Marascuilo LA. Statistical analysis in single-case research: Issues, procedures, and recommendations, with applications to multiple behaviors. In: Kratochwill TR, Levin JR, editors. Single-case research design and analysis: New directions for psychology and education. Hillsdale, NJ, England: Lawrence Erlbaum Associates, Inc; 1992. pp. 159–185. [ Google Scholar ]
  • Busk PL, Marascuilo RC. Autocorrelation in single-subject research: A counterargument to the myth of no autocorrelation. Behavioral Assessment. 1988; 10 :229–242. [ Google Scholar ]
  • Campbell JM. Statistical comparison of four effect sizes for single-subject designs. Behavior Modification. 2004; 28 (2):234–246. doi: 10.1177/0145445503259264. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Carr EG, Horner RH, Turnbull AP, Marquis JG, Magito McLaughlin D, McAtee ML, Doolabh A. Positive behavior support for people with developmental disabilities: A research synthesis. Washington, DC: American Association on Mental Retardation; 1999. [ Google Scholar ]
  • Center BA, Skiba RJ, Casey A. A methodology for the quantitative synthesis of intra-subject design research. Journal of Educational Science. 1986; 19 :387–400. doi: 10.1177/002246698501900404. [ CrossRef ] [ Google Scholar ]
  • Chambless DL, Hollon SD. Defining empirically supported therapies. Journal of Consulting and Clinical Psychology. 1998; 66 (1):7–18. doi: 10.1037/0022-006X.66.1.7. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Chambless DL, Ollendick TH. Empirically supported psychological interventions: Controversies and evidence. Annual Review of Psychology. 2001; 52 :685–716. doi: 10.1146/annurev.psych.52.1.685. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Chow S-M, Ho M-hR, Hamaker EL, Dolan CV. Equivalence and differences between structural equation modeling and state-space modeling techniques. Structural Equation Modeling. 2010; 17 (2):303–332. doi: 10.1080/10705511003661553. [ CrossRef ] [ Google Scholar ]
  • Cohen J. Statistical power analysis for the bahavioral sciences. 2. Hillsdale, NJ: Erlbaum; 1988. [ Google Scholar ]
  • Cohen J. The earth is round (p < .05) American Psychologist. 1994; 49 :997–1003. doi: 10.1037/0003-066X.49.12.997. [ CrossRef ] [ Google Scholar ]
  • Crosbie J. Interrupted time-series analysis with brief single-subject data. Journal of Consulting and Clinical Psychology. 1993; 61 (6):966–974. doi: 10.1037/0022-006X.61.6.966. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Dattilio FM, Edwards JA, Fishman DB. Case studies within a mixed methods paradigm: Toward a resolution of the alienation between researcher and practitioner in psychotherapy research. Psychotherapy: Theory, Research, Practice, Training. 2010; 47 (4):427–441. doi: 10.1037/a0021181. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Dempster A, Laird N, Rubin DB. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B. 1977; 39 (1):1–38. [ Google Scholar ]
  • Des Jarlais DC, Lyles C, Crepaz N. Improving the reporting quality of nonrandomized evaluations of behavioral and public health interventions: the TREND statement. American Journal of Public Health. 2004; 94 (3):361–366. doi: 10.2105/ajph.94.3.361. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Diggle P, Liang KY. Analyses of longitudinal data. New York: Oxford University Press; 2001. [ Google Scholar ]
  • Doss BD, Atkins DC. Investigating treatment mediators when simple random assignment to a control group is not possible. Clinical Psychology: Science and Practice. 2006; 13 (4):321–336. doi: 10.1111/j.1468-2850.2006.00045.x. [ CrossRef ] [ Google Scholar ]
  • du Toit SHC, Browne MW. The covariance structure of a vector ARMA time series. In: Cudeck R, du Toit SHC, Sörbom D, editors. Structural equation modeling: Present and future. Lincolnwood, IL: Scientific Software International; 2001. pp. 279–314. [ Google Scholar ]
  • du Toit SHC, Browne MW. Structural equation modeling of multivariate time series. Multivariate Behavioral Research. 2007; 42 :67–101. doi: 10.1080/00273170701340953. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Fechner GT. Elemente der psychophysik [Elements of psychophysics] Leipzig, Germany: Breitkopf & Hartel; 1889. [ Google Scholar ]
  • Ferron J, Sentovich C. Statistical power of randomization tests used with multiple-baseline designs. The Journal of Experimental Education. 2002; 70 :165–178. doi: 10.1080/00220970209599504. [ CrossRef ] [ Google Scholar ]
  • Ferron J, Ware W. Analyzing single-case data: The power of randomization tests. The Journal of Experimental Education. 1995; 63 :167–178. [ Google Scholar ]
  • Fox J. TEACHER’S CORNER: Structural equation modeling with the sem package in R. Structural Equation Modeling: A Multidisciplinary Journal. 2006; 13 (3):465–486. doi: 10.1207/s15328007sem1303_7. [ CrossRef ] [ Google Scholar ]
  • Franklin RD, Allison DB, Gorman BS, editors. Design and analysis of single-case research. Mahwah, NJ: Lawrence Erlbaum Associates; 1997. [ Google Scholar ]
  • Franklin RD, Gorman BS, Beasley TM, Allison DB. Graphical display and visual analysis. In: Franklin RD, Allison DB, Gorman BS, editors. Design and analysis of single-case research. Mahway, NJ: Lawrence Erlbaum Associates, Publishers; 1997. pp. 119–158. [ Google Scholar ]
  • Gardner W, Mulvey EP, Shaw EC. Regression analyses of counts and rates: Poisson, overdispersed Poisson, and negative binomial models. Psychological Bulletin. 1995; 118 (3):392–404. doi: 10.1037/0033-2909.118.3.392. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Green AS, Rafaeli E, Bolger N, Shrout PE, Reis HT. Paper or plastic? Data equivalence in paper and electronic diaries. Psychological Methods. 2006; 11 (1):87–105. doi: 10.1037/1082-989X.11.1.87. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Hamilton JD. Time series analysis. Princeton, NJ: Princeton University Press; 1994. [ Google Scholar ]
  • Hammond D, Gast DL. Descriptive analysis of single-subject research designs: 1983–2007. Education and Training in Autism and Developmental Disabilities. 2010; 45 :187–202. [ Google Scholar ]
  • Hanson MD, Chen E. Daily stress, cortisol, and sleep: The moderating role of childhood psychosocial environments. Health Psychology. 2010; 29 (4):394–402. doi: 10.1037/a0019879. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Harvey AC. Forecasting, structural time series models and the Kalman filter. Cambridge, MA: Cambridge University Press; 2001. [ Google Scholar ]
  • Horner RH, Carr EG, Halle J, McGee G, Odom S, Wolery M. The use of single-subject research to identify evidence-based practice in special education. Exceptional Children. 2005; 71 :165–179. [ Google Scholar ]
  • Horner RH, Spaulding S. Single-case research designs. In: Salkind NJ, editor. Encyclopedia of research design. Thousand Oaks, CA: Sage Publications; 2010. [ Google Scholar ]
  • Horton NJ, Kleinman KP. Much ado about nothing: A comparison of missing data methods and software to fit incomplete data regression models. The American Statistician. 2007; 61 (1):79–90. doi: 10.1198/000313007X172556. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Hser Y, Shen H, Chou C, Messer SC, Anglin MD. Analytic approaches for assessing long-term treatment effects. Evaluation Review. 2001; 25 (2):233–262. doi: 10.1177/0193841X0102500206. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Huitema BE. Autocorrelation in applied behavior analysis: A myth. Behavioral Assessment. 1985; 7 (2):107–118. [ Google Scholar ]
  • Huitema BE, McKean JW. Reduced bias autocorrelation estimation: Three jackknife methods. Educational and Psychological Measurement. 1994; 54 (3):654–665. doi: 10.1177/0013164494054003008. [ CrossRef ] [ Google Scholar ]
  • Ibrahim JG, Chen M-H, Lipsitz SR, Herring AH. Missing-data methods for generalized linear models: A comparative review. Journal of the American Statistical Association. 2005; 100 (469):332–346. doi: 10.1198/016214504000001844. [ CrossRef ] [ Google Scholar ]
  • Institute of Medicine. Reducing risks for mental disorders: Frontiers for preventive intervention research. Washington, DC: National Academy Press; 1994. [ PubMed ] [ Google Scholar ]
  • Jacobsen NS, Christensen A. Studying the effectiveness of psychotherapy: How well can clinical trials do the job? American Psychologist. 1996; 51 :1031–1039. doi: 10.1037/0003-066X.51.10.1031. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Jones RR, Vaught RS, Weinrott MR. Time-series analysis in operant research. Journal of Behavior Analysis. 1977; 10 (1):151–166. doi: 10.1901/jaba.1977.10-151. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Jones WP. Single-case time series with Bayesian analysis: A practitioner’s guide. Measurement and Evaluation in Counseling and Development. 2003; 36 (28–39) [ Google Scholar ]
  • Kanfer H. Self-monitoring: Methodological limitations and clinical applications. Journal of Consulting and Clinical Psychology. 1970; 35 (2):148–152. doi: 10.1037/h0029874. [ CrossRef ] [ Google Scholar ]
  • Kazdin AE. Drawing valid inferences from case studies. Journal of Consulting and Clinical Psychology. 1981; 49 (2):183–192. doi: 10.1037/0022-006X.49.2.183. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Kazdin AE. Mediators and mechanisms of change in psychotherapy research. Annual Review of Clinical Psychology. 2007; 3 :1–27. doi: 10.1146/annurev.clinpsy.3.022806.091432. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Kazdin AE. Evidence-based treatment and practice: New opportunities to bridge clinical research and practice, enhance the knowledge base, and improve patient care. American Psychologist. 2008; 63 (3):146–159. doi: 10.1037/0003-066X.63.3.146. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Kazdin AE. Understanding how and why psychotherapy leads to change. Psychotherapy Research. 2009; 19 (4):418–428. doi: 10.1080/10503300802448899. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Kazdin AE. Single-case research designs: Methods for clinical and applied settings. 2. New York, NY: Oxford University Press; 2010. [ Google Scholar ]
  • Kirk RE. Practical significance: A concept whose time has come. Educational and Psychological Measurement. 1996; 56 :746–759. doi: 10.1177/0013164496056005002. [ CrossRef ] [ Google Scholar ]
  • Kratochwill TR. Preparing psychologists for evidence-based school practice: Lessons learned and challenges ahead. American Psychologist. 2007; 62 :829–843. doi: 10.1037/0003-066X.62.8.829. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Kratochwill TR, Hitchcock J, Horner RH, Levin JR, Odom SL, Rindskopf DM, Shadish WR. Single-case designs technical documentation. 2010 Retrieved from What Works Clearinghouse website: http://ies.ed.gov/ncee/wwc/pdf/wwc_scd.pdf . Retrieved from http://ies.ed.gov/ncee/wwc/pdf/wwc_scd.pdf .
  • Kratochwill TR, Levin JR. Single-case research design and analysis: New directions for psychology and education. Hillsdale, NJ: Lawrence Erlbaum Associates, Inc; 1992. [ Google Scholar ]
  • Kratochwill TR, Levin JR. Enhancing the scientific credibility of single-case intervention research: Randomization to the rescue. Psychological Methods. 2010; 15 (2):124–144. doi: 10.1037/a0017736. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Kratochwill TR, Levin JR, Horner RH, Swoboda C. Visual analysis of single-case intervention research: Conceptual and methodological considerations (WCER Working Paper No. 2011-6) 2011 Retrieved from University of Wisconsin–Madison, Wisconsin Center for Education Research website: http://www.wcer.wisc.edu/publications/workingPapers/papers.php .
  • Lambert D. Zero-inflated poisson regression, with an application to defects in manufacturing. Technometrics. 1992; 34 (1):1–14. [ Google Scholar ]
  • Lambert MJ, Hansen NB, Harmon SC. Developing and Delivering Practice-Based Evidence. John Wiley & Sons, Ltd; 2010. Outcome Questionnaire System (The OQ System): Development and practical applications in healthcare settings; pp. 139–154. [ Google Scholar ]
  • Littell JH, Corcoran J, Pillai VK. Systematic reviews and meta-analysis. New York: Oxford University Press; 2008. [ Google Scholar ]
  • Liu LM, Hudack GB. The SCA statistical system. Vector ARMA modeling of multiple time series. Oak Brook, IL: Scientific Computing Associates Corporation; 1995. [ Google Scholar ]
  • Lubke GH, Muthén BO. Investigating population heterogeneity with factor mixture models. Psychological Methods. 2005; 10 (1):21–39. doi: 10.1037/1082-989x.10.1.21. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Manolov R, Solanas A. Comparing N = 1 effect sizes in presence of autocorrelation. Behavior Modification. 2008; 32 (6):860–875. doi: 10.1177/0145445508318866. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Marshall RJ. Autocorrelation estimation of time series with randomly missing observations. Biometrika. 1980; 67 (3):567–570. doi: 10.1093/biomet/67.3.567. [ CrossRef ] [ Google Scholar ]
  • Matyas TA, Greenwood KM. Visual analysis of single-case time series: Effects of variability, serial dependence, and magnitude of intervention effects. Journal of Applied Behavior Analysis. 1990; 23 (3):341–351. doi: 10.1901/jaba.1990.23-341. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Kratochwill TR, Chair Members of the Task Force on Evidence-Based Interventions in School Psychology. Procedural and coding manual for review of evidence-based interventions. 2003 Retrieved July 18, 2011 from http://www.sp-ebi.org/documents/_workingfiles/EBImanual1.pdf .
  • Moher D, Schulz KF, Altman DF the CONSORT Group. The CONSORT statement: Revised recommendations for improving the quality of reports of parallel-group randomized trials. Journal of the American Medical Association. 2001; 285 :1987–1991. doi: 10.1001/jama.285.15.1987. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Morgan DL, Morgan RK. Single-participant research design: Bringing science to managed care. American Psychologist. 2001; 56 (2):119–127. doi: 10.1037/0003-066X.56.2.119. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Muthén BO, Curran PJ. General longitudinal modeling of individual differences in experimental designs: A latent variable framework for analysis and power estimation. Psychological Methods. 1997; 2 (4):371–402. doi: 10.1037/1082-989x.2.4.371. [ CrossRef ] [ Google Scholar ]
  • Muthén LK, Muthén BO. Mplus (Version 6.11) Los Angeles, CA: Muthén & Muthén; 2010. [ Google Scholar ]
  • Nagin DS. Analyzing developmental trajectories: A semiparametric, group-based approach. Psychological Methods. 1999; 4 (2):139–157. doi: 10.1037/1082-989x.4.2.139. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • National Institute of Child Health and Human Development. Report of the National Reading Panel. Teaching children to read: An evidence-based assessment of the scientific research literature on reading and its implications for reading instruction (NIH Publication No. 00-4769) Washington, DC: U.S. Government Printing Office; 2000. [ Google Scholar ]
  • Olive ML, Smith BW. Effect size calculations and single subject designs. Educational Psychology. 2005; 25 (2–3):313–324. doi: 10.1080/0144341042000301238. [ CrossRef ] [ Google Scholar ]
  • Oslin DW, Cary M, Slaymaker V, Colleran C, Blow FC. Daily ratings measures of alcohol craving during an inpatient stay define subtypes of alcohol addiction that predict subsequent risk for resumption of drinking. Drug and Alcohol Dependence. 2009; 103 (3):131–136. doi: 10.1016/J.Drugalcdep.2009.03.009. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Palermo TP, Valenzuela D, Stork PP. A randomized trial of electronic versus paper pain diaries in children: Impact on compliance, accuracy, and acceptability. Pain. 2004; 107 (3):213–219. doi: 10.1016/j.pain.2003.10.005. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Parker RI, Brossart DF. Evaluating single-case research data: A comparison of seven statistical methods. Behavior Therapy. 2003; 34 (2):189–211. doi: 10.1016/S0005-7894(03)80013-8. [ CrossRef ] [ Google Scholar ]
  • Parker RI, Cryer J, Byrns G. Controlling baseline trend in single case research. School Psychology Quarterly. 2006; 21 (4):418–440. doi: 10.1037/h0084131. [ CrossRef ] [ Google Scholar ]
  • Parker RI, Vannest K. An improved effect size for single-case research: Nonoverlap of all pairs. Behavior Therapy. 2009; 40 (4):357–367. doi: 10.1016/j.beth.2008.10.006. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Parsonson BS, Baer DM. The analysis and presentation of graphic data. In: Kratochwill TR, editor. Single subject research. New York, NY: Academic Press; 1978. pp. 101–166. [ Google Scholar ]
  • Parsonson BS, Baer DM. The visual analysis of data, and current research into the stimuli controlling it. In: Kratochwill TR, Levin JR, editors. Single-case research design and analysis: New directions for psychology and education. Hillsdale, NJ; England: Lawrence Erlbaum Associates, Inc; 1992. pp. 15–40. [ Google Scholar ]
  • Piasecki TM, Hufford MR, Solham M, Trull TJ. Assessing clients in their natural environments with electronic diaries: Rationale, benefits, limitations, and barriers. Psychological Assessment. 2007; 19 (1):25–43. doi: 10.1037/1040-3590.19.1.25. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • R Development Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2005. [ Google Scholar ]
  • Ragunathan TE. What do we do with missing data? Some options for analysis of incomplete data. Annual Review of Public Health. 2004; 25 :99–117. doi: 10.1146/annurev.publhealth.25.102802.124410. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Raudenbush SW, Bryk AS, Congdon R. HLM 7 Hierarchical Linear and Nonlinear Modeling. Scientific Software International, Inc; 2011. [ Google Scholar ]
  • Redelmeier DA, Kahneman D. Patients’ memories of painful medical treatments: Real-time and retrospective evaluations of two minimally invasive procedures. Pain. 1996; 66 (1):3–8. doi: 10.1016/0304-3959(96)02994-6. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Reis HT. Domains of experience: Investigating relationship processes from three perspectives. In: Erber R, Gilmore R, editors. Theoretical frameworks in personal relationships. Mahwah, NJ: Erlbaum; 1994. pp. 87–110. [ Google Scholar ]
  • Reis HT, Gable SL. Event sampling and other methods for studying everyday experience. In: Reis HT, Judd CM, editors. Handbook of research methods in social and personality psychology. New York, NY: Cambridge University Press; 2000. pp. 190–222. [ Google Scholar ]
  • Robey RR, Schultz MC, Crawford AB, Sinner CA. Single-subject clinical-outcome research: Designs, data, effect sizes, and analyses. Aphasiology. 1999; 13 (6):445–473. doi: 10.1080/026870399402028. [ CrossRef ] [ Google Scholar ]
  • Rossi PH, Freeman HE. Evaluation: A systematic approach. 5. Thousand Oaks, CA: Sage; 1993. [ Google Scholar ]
  • SAS Institute Inc. The SAS system for Windows, Version 9. Cary, NC: SAS Institute Inc; 2008. [ Google Scholar ]
  • Schmidt M, Perels F, Schmitz B. How to perform idiographic and a combination of idiographic and nomothetic approaches: A comparison of time series analyses and hierarchical linear modeling. Journal of Psychology. 2010; 218 (3):166–174. doi: 10.1027/0044-3409/a000026. [ CrossRef ] [ Google Scholar ]
  • Scollon CN, Kim-Pietro C, Diener E. Experience sampling: Promises and pitfalls, strengths and weaknesses. Assessing Well-Being. 2003; 4 :5–35. doi: 10.1007/978-90-481-2354-4_8. [ CrossRef ] [ Google Scholar ]
  • Scruggs TE, Mastropieri MA. Summarizing single-subject research: Issues and applications. Behavior Modification. 1998; 22 (3):221–242. doi: 10.1177/01454455980223001. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Scruggs TE, Mastropieri MA, Casto G. The quantitative synthesis of single-subject research. Remedial and Special Education. 1987; 8 (2):24–33. doi: 10.1177/074193258700800206. [ CrossRef ] [ Google Scholar ]
  • Shadish WR, Cook TD, Campbell DT. Experimental and quasi-experimental designs for generalized causal inference. Boston, MA: Houghton Mifflin; 2002. [ Google Scholar ]
  • Shadish WR, Rindskopf DM, Hedges LV. The state of the science in the meta-analysis of single-case experimental designs. Evidence-Based Communication Assessment and Intervention. 2008; 3 :188–196. doi: 10.1080/17489530802581603. [ CrossRef ] [ Google Scholar ]
  • Shadish WR, Sullivan KJ. Characteristics of single-case designs used to assess treatment effects in 2008. Behavior Research Methods. 2011; 43 :971–980. doi: 10.3758/s13428-011-0111-y. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Sharpley CF. Time-series analysis of behavioural data: An update. Behaviour Change. 1987; 4 :40–45. [ Google Scholar ]
  • Shiffman S, Hufford M, Hickcox M, Paty JA, Gnys M, Kassel JD. Remember that? A comparison of real-time versus retrospective recall of smoking lapses. Journal of Consulting and Clinical Psychology. 1997; 65 :292–300. doi: 10.1037/0022-006X.65.2.292.a. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Shiffman S, Stone AA. Ecological momentary assessment: A new tool for behavioral medicine research. In: Krantz DS, Baum A, editors. Technology and methods in behavioral medicine. Mahwah, NJ: Erlbaum; 1998. pp. 117–131. [ Google Scholar ]
  • Shiffman S, Stone AA, Hufford MR. Ecological momentary assessment. Annual Review of Clinical Psychology. 2008; 4 :1–32. doi: 10.1146/annurev.clinpsy.3.022806.091415. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Shumway RH, Stoffer DS. An approach to time series smoothing and forecasting using the EM Algorithm. Journal of Time Series Analysis. 1982; 3 (4):253–264. doi: 10.1111/j.1467-9892.1982.tb00349.x. [ CrossRef ] [ Google Scholar ]
  • Skinner BF. The behavior of organisms. New York, NY: Appleton-Century-Crofts; 1938. [ Google Scholar ]
  • Smith JD, Borckardt JJ, Nash MR. Inferential precision in single-case time-series datastreams: How well does the EM Procedure perform when missing observations occur in autocorrelated data? Behavior Therapy. doi: 10.1016/j.beth.2011.10.001. (in press) [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Smith JD, Handler L, Nash MR. Therapeutic Assessment for preadolescent boys with oppositional-defiant disorder: A replicated single-case time-series design. Psychological Assessment. 2010; 22 (3):593–602. doi: 10.1037/a0019697. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Snijders TAB, Bosker RJ. Multilevel analysis: An introduction to basic and advanced multilevel modeling. Thousand Oaks, CA: Sage; 1999. [ Google Scholar ]
  • Soliday E, Moore KJ, Lande MB. Daily reports and pooled time series analysis: Pediatric psychology applications. Journal of Pediatric Psychology. 2002; 27 (1):67–76. doi: 10.1093/jpepsy/27.1.67. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • SPSS Statistics. Chicago, IL: SPSS Inc; 2011. (Version 20.0.0) [ Google Scholar ]
  • StataCorp. Stata Statistical Software: Release 12. College Station, TX: StataCorp LP; 2011. [ Google Scholar ]
  • Stone AA, Broderick JE, Kaell AT, Deles-Paul PAEG, Porter LE. Does the peak-end phenomenon observed in laboratory pain studies apply to real-world pain in rheumatoid arthritics? Journal of Pain. 2000; 1 :212–217. doi: 10.1054/jpai.2000.7568. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Stone AA, Shiffman S. Capturing momentary, self-report data: A proposal for reporting guidelines. Annals of Behavioral Medicine. 2002; 24 :236–243. doi: 10.1207/S15324796ABM2403_09. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Stout RL. Advancing the analysis of treatment process. Addiction. 2007; 102 :1539–1545. doi: 10.1111/j.1360-0443.2007.01880.x. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Tate RL, McDonald S, Perdices M, Togher L, Schultz R, Savage S. Rating the methodological quality of single-subject designs and N-of-1 trials: Introducing the Single-Case Experimental Design (SCED) Scale. Neuropsychological Rehabilitation. 2008; 18 (4):385–401. doi: 10.1080/09602010802009201. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Thiele C, Laireiter A-R, Baumann U. Diaries in clinical psychology and psychotherapy: A selective review. Clinical Psychology & Psychotherapy. 2002; 9 (1):1–37. doi: 10.1002/cpp.302. [ CrossRef ] [ Google Scholar ]
  • Tiao GC, Box GEP. Modeling multiple time series with applications. Journal of the American Statistical Association. 1981; 76 :802–816. [ Google Scholar ]
  • Tschacher W, Ramseyer F. Modeling psychotherapy process by time-series panel analysis (TSPA) Psychotherapy Research. 2009; 19 (4):469–481. doi: 10.1080/10503300802654496. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Velicer WF, Colby SM. A comparison of missing-data procedures for ARIMA time-series analysis. Educational and Psychological Measurement. 2005a; 65 (4):596–615. doi: 10.1177/0013164404272502. [ CrossRef ] [ Google Scholar ]
  • Velicer WF, Colby SM. Missing data and the general transformation approach to time series analysis. In: Maydeu-Olivares A, McArdle JJ, editors. Contemporary psychometrics. A festschrift to Roderick P McDonald. Hillsdale, NJ: Lawrence Erlbaum; 2005b. pp. 509–535. [ Google Scholar ]
  • Velicer WF, Fava JL. Time series analysis. In: Schinka J, Velicer WF, Weiner IB, editors. Research methods in psychology. Vol. 2. New York, NY: John Wiley & Sons; 2003. [ Google Scholar ]
  • Wachtel PL. Beyond “ESTs”: Problematic assumptions in the pursuit of evidence-based practice. Psychoanalytic Psychology. 2010; 27 (3):251–272. doi: 10.1037/a0020532. [ CrossRef ] [ Google Scholar ]
  • Watson JB. Behaviorism. New York, NY: Norton; 1925. [ Google Scholar ]
  • Weisz JR, Hawley KM. Finding, evaluating, refining, and applying empirically supported treatments for children and adolescents. Journal of Clinical Child Psychology. 1998; 27 :206–216. doi: 10.1207/s15374424jccp2702_7. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Weisz JR, Hawley KM. Procedural and coding manual for identification of beneficial treatments. Washinton, DC: American Psychological Association, Society for Clinical Psychology, Division 12, Committee on Science and Practice; 1999. [ Google Scholar ]
  • Westen D, Bradley R. Empirically supported complexity. Current Directions in Psychological Science. 2005; 14 :266–271. doi: 10.1111/j.0963-7214.2005.00378.x. [ CrossRef ] [ Google Scholar ]
  • Westen D, Novotny CM, Thompson-Brenner HK. The empirical status of empirically supported psychotherapies: Assumptions, findings, and reporting controlled clinical trials. Psychological Bulletin. 2004; 130 :631–663. doi: 10.1037/0033-2909.130.4.631. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Wilkinson L The Task Force on Statistical Inference. Statistical methods in psychology journals: Guidelines and explanations. American Psychologist. 1999; 54 :694–704. doi: 10.1037/0003-066X.54.8.594. [ CrossRef ] [ Google Scholar ]
  • Wolery M, Busick M, Reichow B, Barton EE. Comparison of overlap methods for quantitatively synthesizing single-subject data. The Journal of Special Education. 2010; 44 (1):18–28. doi: 10.1177/0022466908328009. [ CrossRef ] [ Google Scholar ]
  • Wu Z, Huang NE, Long SR, Peng C-K. On the trend, detrending, and variability of nonlinear and nonstationary time series. Proceedings of the National Academy of Sciences. 2007; 104 (38):14889–14894. doi: 10.1073/pnas.0701020104. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Perspective
  • Published: 22 November 2022

Single case studies are a powerful tool for developing, testing and extending theories

  • Lyndsey Nickels   ORCID: orcid.org/0000-0002-0311-3524 1 , 2 ,
  • Simon Fischer-Baum   ORCID: orcid.org/0000-0002-6067-0538 3 &
  • Wendy Best   ORCID: orcid.org/0000-0001-8375-5916 4  

Nature Reviews Psychology volume  1 ,  pages 733–747 ( 2022 ) Cite this article

641 Accesses

5 Citations

26 Altmetric

Metrics details

  • Neurological disorders

Psychology embraces a diverse range of methodologies. However, most rely on averaging group data to draw conclusions. In this Perspective, we argue that single case methodology is a valuable tool for developing and extending psychological theories. We stress the importance of single case and case series research, drawing on classic and contemporary cases in which cognitive and perceptual deficits provide insights into typical cognitive processes in domains such as memory, delusions, reading and face perception. We unpack the key features of single case methodology, describe its strengths, its value in adjudicating between theories, and outline its benefits for a better understanding of deficits and hence more appropriate interventions. The unique insights that single case studies have provided illustrate the value of in-depth investigation within an individual. Single case methodology has an important place in the psychologist’s toolkit and it should be valued as a primary research tool.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 12 digital issues and online access to articles

55,14 € per year

only 4,60 € per issue

Rent or buy this article

Prices vary by article type

Prices may be subject to local taxes which are calculated during checkout

single case study sample

Similar content being viewed by others

single case study sample

Comparing meta-analyses and preregistered multiple-laboratory replication projects

Amanda Kvarven, Eirik Strømland & Magnus Johannesson

single case study sample

The fundamental importance of method to theory

Rick Dale, Anne S. Warlaumont & Kerri L. Johnson

single case study sample

A critical evaluation of the p-factor literature

Ashley L. Watts, Ashley L. Greene, … Eiko I. Fried

Corkin, S. Permanent Present Tense: The Unforgettable Life Of The Amnesic Patient, H. M . Vol. XIX, 364 (Basic Books, 2013).

Lilienfeld, S. O. Psychology: From Inquiry To Understanding (Pearson, 2019).

Schacter, D. L., Gilbert, D. T., Nock, M. K. & Wegner, D. M. Psychology (Worth Publishers, 2019).

Eysenck, M. W. & Brysbaert, M. Fundamentals Of Cognition (Routledge, 2018).

Squire, L. R. Memory and brain systems: 1969–2009. J. Neurosci. 29 , 12711–12716 (2009).

Article   PubMed   PubMed Central   Google Scholar  

Corkin, S. What’s new with the amnesic patient H.M.? Nat. Rev. Neurosci. 3 , 153–160 (2002).

Article   PubMed   Google Scholar  

Schubert, T. M. et al. Lack of awareness despite complex visual processing: evidence from event-related potentials in a case of selective metamorphopsia. Proc. Natl Acad. Sci. USA 117 , 16055–16064 (2020).

Behrmann, M. & Plaut, D. C. Bilateral hemispheric processing of words and faces: evidence from word impairments in prosopagnosia and face impairments in pure alexia. Cereb. Cortex 24 , 1102–1118 (2014).

Plaut, D. C. & Behrmann, M. Complementary neural representations for faces and words: a computational exploration. Cogn. Neuropsychol. 28 , 251–275 (2011).

Haxby, J. V. et al. Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 293 , 2425–2430 (2001).

Hirshorn, E. A. et al. Decoding and disrupting left midfusiform gyrus activity during word reading. Proc. Natl Acad. Sci. USA 113 , 8162–8167 (2016).

Kosakowski, H. L. et al. Selective responses to faces, scenes, and bodies in the ventral visual pathway of infants. Curr. Biol. 32 , 265–274.e5 (2022).

Harlow, J. Passage of an iron rod through the head. Boston Med. Surgical J . https://doi.org/10.1176/jnp.11.2.281 (1848).

Broca, P. Remarks on the seat of the faculty of articulated language, following an observation of aphemia (loss of speech). Bull. Soc. Anat. 6 , 330–357 (1861).

Google Scholar  

Dejerine, J. Contribution A L’étude Anatomo-pathologique Et Clinique Des Différentes Variétés De Cécité Verbale: I. Cécité Verbale Avec Agraphie Ou Troubles Très Marqués De L’écriture; II. Cécité Verbale Pure Avec Intégrité De L’écriture Spontanée Et Sous Dictée (Société de Biologie, 1892).

Liepmann, H. Das Krankheitsbild der Apraxie (“motorischen Asymbolie”) auf Grund eines Falles von einseitiger Apraxie (Fortsetzung). Eur. Neurol. 8 , 102–116 (1900).

Article   Google Scholar  

Basso, A., Spinnler, H., Vallar, G. & Zanobio, M. E. Left hemisphere damage and selective impairment of auditory verbal short-term memory. A case study. Neuropsychologia 20 , 263–274 (1982).

Humphreys, G. W. & Riddoch, M. J. The fractionation of visual agnosia. In Visual Object Processing: A Cognitive Neuropsychological Approach 281–306 (Lawrence Erlbaum, 1987).

Whitworth, A., Webster, J. & Howard, D. A Cognitive Neuropsychological Approach To Assessment And Intervention In Aphasia (Psychology Press, 2014).

Caramazza, A. On drawing inferences about the structure of normal cognitive systems from the analysis of patterns of impaired performance: the case for single-patient studies. Brain Cogn. 5 , 41–66 (1986).

Caramazza, A. & McCloskey, M. The case for single-patient studies. Cogn. Neuropsychol. 5 , 517–527 (1988).

Shallice, T. Cognitive neuropsychology and its vicissitudes: the fate of Caramazza’s axioms. Cogn. Neuropsychol. 32 , 385–411 (2015).

Shallice, T. From Neuropsychology To Mental Structure (Cambridge Univ. Press, 1988).

Coltheart, M. Assumptions and methods in cognitive neuropscyhology. In The Handbook Of Cognitive Neuropsychology: What Deficits Reveal About The Human Mind (ed. Rapp, B.) 3–22 (Psychology Press, 2001).

McCloskey, M. & Chaisilprungraung, T. The value of cognitive neuropsychology: the case of vision research. Cogn. Neuropsychol. 34 , 412–419 (2017).

McCloskey, M. The future of cognitive neuropsychology. In The Handbook Of Cognitive Neuropsychology: What Deficits Reveal About The Human Mind (ed. Rapp, B.) 593–610 (Psychology Press, 2001).

Lashley, K. S. In search of the engram. In Physiological Mechanisms in Animal Behavior 454–482 (Academic Press, 1950).

Squire, L. R. & Wixted, J. T. The cognitive neuroscience of human memory since H.M. Annu. Rev. Neurosci. 34 , 259–288 (2011).

Stone, G. O., Vanhoy, M. & Orden, G. C. V. Perception is a two-way street: feedforward and feedback phonology in visual word recognition. J. Mem. Lang. 36 , 337–359 (1997).

Perfetti, C. A. The psycholinguistics of spelling and reading. In Learning To Spell: Research, Theory, And Practice Across Languages 21–38 (Lawrence Erlbaum, 1997).

Nickels, L. The autocue? self-generated phonemic cues in the treatment of a disorder of reading and naming. Cogn. Neuropsychol. 9 , 155–182 (1992).

Rapp, B., Benzing, L. & Caramazza, A. The autonomy of lexical orthography. Cogn. Neuropsychol. 14 , 71–104 (1997).

Bonin, P., Roux, S. & Barry, C. Translating nonverbal pictures into verbal word names. Understanding lexical access and retrieval. In Past, Present, And Future Contributions Of Cognitive Writing Research To Cognitive Psychology 315–522 (Psychology Press, 2011).

Bonin, P., Fayol, M. & Gombert, J.-E. Role of phonological and orthographic codes in picture naming and writing: an interference paradigm study. Cah. Psychol. Cogn./Current Psychol. Cogn. 16 , 299–324 (1997).

Bonin, P., Fayol, M. & Peereman, R. Masked form priming in writing words from pictures: evidence for direct retrieval of orthographic codes. Acta Psychol. 99 , 311–328 (1998).

Bentin, S., Allison, T., Puce, A., Perez, E. & McCarthy, G. Electrophysiological studies of face perception in humans. J. Cogn. Neurosci. 8 , 551–565 (1996).

Jeffreys, D. A. Evoked potential studies of face and object processing. Vis. Cogn. 3 , 1–38 (1996).

Laganaro, M., Morand, S., Michel, C. M., Spinelli, L. & Schnider, A. ERP correlates of word production before and after stroke in an aphasic patient. J. Cogn. Neurosci. 23 , 374–381 (2011).

Indefrey, P. & Levelt, W. J. M. The spatial and temporal signatures of word production components. Cognition 92 , 101–144 (2004).

Valente, A., Burki, A. & Laganaro, M. ERP correlates of word production predictors in picture naming: a trial by trial multiple regression analysis from stimulus onset to response. Front. Neurosci. 8 , 390 (2014).

Kittredge, A. K., Dell, G. S., Verkuilen, J. & Schwartz, M. F. Where is the effect of frequency in word production? Insights from aphasic picture-naming errors. Cogn. Neuropsychol. 25 , 463–492 (2008).

Domdei, N. et al. Ultra-high contrast retinal display system for single photoreceptor psychophysics. Biomed. Opt. Express 9 , 157 (2018).

Poldrack, R. A. et al. Long-term neural and physiological phenotyping of a single human. Nat. Commun. 6 , 8885 (2015).

Coltheart, M. The assumptions of cognitive neuropsychology: reflections on Caramazza (1984, 1986). Cogn. Neuropsychol. 34 , 397–402 (2017).

Badecker, W. & Caramazza, A. A final brief in the case against agrammatism: the role of theory in the selection of data. Cognition 24 , 277–282 (1986).

Fischer-Baum, S. Making sense of deviance: Identifying dissociating cases within the case series approach. Cogn. Neuropsychol. 30 , 597–617 (2013).

Nickels, L., Howard, D. & Best, W. On the use of different methodologies in cognitive neuropsychology: drink deep and from several sources. Cogn. Neuropsychol. 28 , 475–485 (2011).

Dell, G. S. & Schwartz, M. F. Who’s in and who’s out? Inclusion criteria, model evaluation, and the treatment of exceptions in case series. Cogn. Neuropsychol. 28 , 515–520 (2011).

Schwartz, M. F. & Dell, G. S. Case series investigations in cognitive neuropsychology. Cogn. Neuropsychol. 27 , 477–494 (2010).

Cohen, J. A power primer. Psychol. Bull. 112 , 155–159 (1992).

Martin, R. C. & Allen, C. Case studies in neuropsychology. In APA Handbook Of Research Methods In Psychology Vol. 2 Research Designs: Quantitative, Qualitative, Neuropsychological, And Biological (eds Cooper, H. et al.) 633–646 (American Psychological Association, 2012).

Leivada, E., Westergaard, M., Duñabeitia, J. A. & Rothman, J. On the phantom-like appearance of bilingualism effects on neurocognition: (how) should we proceed? Bilingualism 24 , 197–210 (2021).

Arnett, J. J. The neglected 95%: why American psychology needs to become less American. Am. Psychol. 63 , 602–614 (2008).

Stolz, J. A., Besner, D. & Carr, T. H. Implications of measures of reliability for theories of priming: activity in semantic memory is inherently noisy and uncoordinated. Vis. Cogn. 12 , 284–336 (2005).

Cipora, K. et al. A minority pulls the sample mean: on the individual prevalence of robust group-level cognitive phenomena — the instance of the SNARC effect. Preprint at psyArXiv https://doi.org/10.31234/osf.io/bwyr3 (2019).

Andrews, S., Lo, S. & Xia, V. Individual differences in automatic semantic priming. J. Exp. Psychol. Hum. Percept. Perform. 43 , 1025–1039 (2017).

Tan, L. C. & Yap, M. J. Are individual differences in masked repetition and semantic priming reliable? Vis. Cogn. 24 , 182–200 (2016).

Olsson-Collentine, A., Wicherts, J. M. & van Assen, M. A. L. M. Heterogeneity in direct replications in psychology and its association with effect size. Psychol. Bull. 146 , 922–940 (2020).

Gratton, C. & Braga, R. M. Editorial overview: deep imaging of the individual brain: past, practice, and promise. Curr. Opin. Behav. Sci. 40 , iii–vi (2021).

Fedorenko, E. The early origins and the growing popularity of the individual-subject analytic approach in human neuroscience. Curr. Opin. Behav. Sci. 40 , 105–112 (2021).

Xue, A. et al. The detailed organization of the human cerebellum estimated by intrinsic functional connectivity within the individual. J. Neurophysiol. 125 , 358–384 (2021).

Petit, S. et al. Toward an individualized neural assessment of receptive language in children. J. Speech Lang. Hear. Res. 63 , 2361–2385 (2020).

Jung, K.-H. et al. Heterogeneity of cerebral white matter lesions and clinical correlates in older adults. Stroke 52 , 620–630 (2021).

Falcon, M. I., Jirsa, V. & Solodkin, A. A new neuroinformatics approach to personalized medicine in neurology: the virtual brain. Curr. Opin. Neurol. 29 , 429–436 (2016).

Duncan, G. J., Engel, M., Claessens, A. & Dowsett, C. J. Replication and robustness in developmental research. Dev. Psychol. 50 , 2417–2425 (2014).

Open Science Collaboration. Estimating the reproducibility of psychological science. Science 349 , aac4716 (2015).

Tackett, J. L., Brandes, C. M., King, K. M. & Markon, K. E. Psychology’s replication crisis and clinical psychological science. Annu. Rev. Clin. Psychol. 15 , 579–604 (2019).

Munafò, M. R. et al. A manifesto for reproducible science. Nat. Hum. Behav. 1 , 0021 (2017).

Oldfield, R. C. & Wingfield, A. The time it takes to name an object. Nature 202 , 1031–1032 (1964).

Oldfield, R. C. & Wingfield, A. Response latencies in naming objects. Q. J. Exp. Psychol. 17 , 273–281 (1965).

Brysbaert, M. How many participants do we have to include in properly powered experiments? A tutorial of power analysis with reference tables. J. Cogn. 2 , 16 (2019).

Brysbaert, M. Power considerations in bilingualism research: time to step up our game. Bilingualism https://doi.org/10.1017/S1366728920000437 (2020).

Machery, E. What is a replication? Phil. Sci. 87 , 545–567 (2020).

Nosek, B. A. & Errington, T. M. What is replication? PLoS Biol. 18 , e3000691 (2020).

Li, X., Huang, L., Yao, P. & Hyönä, J. Universal and specific reading mechanisms across different writing systems. Nat. Rev. Psychol. 1 , 133–144 (2022).

Rapp, B. (Ed.) The Handbook Of Cognitive Neuropsychology: What Deficits Reveal About The Human Mind (Psychology Press, 2001).

Code, C. et al. Classic Cases In Neuropsychology (Psychology Press, 1996).

Patterson, K., Marshall, J. C. & Coltheart, M. Surface Dyslexia: Neuropsychological And Cognitive Studies Of Phonological Reading (Routledge, 2017).

Marshall, J. C. & Newcombe, F. Patterns of paralexia: a psycholinguistic approach. J. Psycholinguist. Res. 2 , 175–199 (1973).

Castles, A. & Coltheart, M. Varieties of developmental dyslexia. Cognition 47 , 149–180 (1993).

Khentov-Kraus, L. & Friedmann, N. Vowel letter dyslexia. Cogn. Neuropsychol. 35 , 223–270 (2018).

Winskel, H. Orthographic and phonological parafoveal processing of consonants, vowels, and tones when reading Thai. Appl. Psycholinguist. 32 , 739–759 (2011).

Hepner, C., McCloskey, M. & Rapp, B. Do reading and spelling share orthographic representations? Evidence from developmental dysgraphia. Cogn. Neuropsychol. 34 , 119–143 (2017).

Hanley, J. R. & Sotiropoulos, A. Developmental surface dysgraphia without surface dyslexia. Cogn. Neuropsychol. 35 , 333–341 (2018).

Zihl, J. & Heywood, C. A. The contribution of single case studies to the neuroscience of vision: single case studies in vision neuroscience. Psych. J. 5 , 5–17 (2016).

Bouvier, S. E. & Engel, S. A. Behavioral deficits and cortical damage loci in cerebral achromatopsia. Cereb. Cortex 16 , 183–191 (2006).

Zihl, J. & Heywood, C. A. The contribution of LM to the neuroscience of movement vision. Front. Integr. Neurosci. 9 , 6 (2015).

Dotan, D. & Friedmann, N. Separate mechanisms for number reading and word reading: evidence from selective impairments. Cortex 114 , 176–192 (2019).

McCloskey, M. & Schubert, T. Shared versus separate processes for letter and digit identification. Cogn. Neuropsychol. 31 , 437–460 (2014).

Fayol, M. & Seron, X. On numerical representations. Insights from experimental, neuropsychological, and developmental research. In Handbook of Mathematical Cognition (ed. Campbell, J.) 3–23 (Psychological Press, 2005).

Bornstein, B. & Kidron, D. P. Prosopagnosia. J. Neurol. Neurosurg. Psychiat. 22 , 124–131 (1959).

Kühn, C. D., Gerlach, C., Andersen, K. B., Poulsen, M. & Starrfelt, R. Face recognition in developmental dyslexia: evidence for dissociation between faces and words. Cogn. Neuropsychol. 38 , 107–115 (2021).

Barton, J. J. S., Albonico, A., Susilo, T., Duchaine, B. & Corrow, S. L. Object recognition in acquired and developmental prosopagnosia. Cogn. Neuropsychol. 36 , 54–84 (2019).

Renault, B., Signoret, J.-L., Debruille, B., Breton, F. & Bolgert, F. Brain potentials reveal covert facial recognition in prosopagnosia. Neuropsychologia 27 , 905–912 (1989).

Bauer, R. M. Autonomic recognition of names and faces in prosopagnosia: a neuropsychological application of the guilty knowledge test. Neuropsychologia 22 , 457–469 (1984).

Haan, E. H. F., de, Young, A. & Newcombe, F. Face recognition without awareness. Cogn. Neuropsychol. 4 , 385–415 (1987).

Ellis, H. D. & Lewis, M. B. Capgras delusion: a window on face recognition. Trends Cogn. Sci. 5 , 149–156 (2001).

Ellis, H. D., Young, A. W., Quayle, A. H. & De Pauw, K. W. Reduced autonomic responses to faces in Capgras delusion. Proc. R. Soc. Lond. B 264 , 1085–1092 (1997).

Collins, M. N., Hawthorne, M. E., Gribbin, N. & Jacobson, R. Capgras’ syndrome with organic disorders. Postgrad. Med. J. 66 , 1064–1067 (1990).

Enoch, D., Puri, B. K. & Ball, H. Uncommon Psychiatric Syndromes 5th edn (Routledge, 2020).

Tranel, D., Damasio, H. & Damasio, A. R. Double dissociation between overt and covert face recognition. J. Cogn. Neurosci. 7 , 425–432 (1995).

Brighetti, G., Bonifacci, P., Borlimi, R. & Ottaviani, C. “Far from the heart far from the eye”: evidence from the Capgras delusion. Cogn. Neuropsychiat. 12 , 189–197 (2007).

Coltheart, M., Langdon, R. & McKay, R. Delusional belief. Annu. Rev. Psychol. 62 , 271–298 (2011).

Coltheart, M. Cognitive neuropsychiatry and delusional belief. Q. J. Exp. Psychol. 60 , 1041–1062 (2007).

Coltheart, M. & Davies, M. How unexpected observations lead to new beliefs: a Peircean pathway. Conscious. Cogn. 87 , 103037 (2021).

Coltheart, M. & Davies, M. Failure of hypothesis evaluation as a factor in delusional belief. Cogn. Neuropsychiat. 26 , 213–230 (2021).

McCloskey, M. et al. A developmental deficit in localizing objects from vision. Psychol. Sci. 6 , 112–117 (1995).

McCloskey, M., Valtonen, J. & Cohen Sherman, J. Representing orientation: a coordinate-system hypothesis and evidence from developmental deficits. Cogn. Neuropsychol. 23 , 680–713 (2006).

McCloskey, M. Spatial representations and multiple-visual-systems hypotheses: evidence from a developmental deficit in visual location and orientation processing. Cortex 40 , 677–694 (2004).

Gregory, E. & McCloskey, M. Mirror-image confusions: implications for representation and processing of object orientation. Cognition 116 , 110–129 (2010).

Gregory, E., Landau, B. & McCloskey, M. Representation of object orientation in children: evidence from mirror-image confusions. Vis. Cogn. 19 , 1035–1062 (2011).

Laine, M. & Martin, N. Cognitive neuropsychology has been, is, and will be significant to aphasiology. Aphasiology 26 , 1362–1376 (2012).

Howard, D. & Patterson, K. The Pyramids And Palm Trees Test: A Test Of Semantic Access From Words And Pictures (Thames Valley Test Co., 1992).

Kay, J., Lesser, R. & Coltheart, M. PALPA: Psycholinguistic Assessments Of Language Processing In Aphasia. 2: Picture & Word Semantics, Sentence Comprehension (Erlbaum, 2001).

Franklin, S. Dissociations in auditory word comprehension; evidence from nine fluent aphasic patients. Aphasiology 3 , 189–207 (1989).

Howard, D., Swinburn, K. & Porter, G. Putting the CAT out: what the comprehensive aphasia test has to offer. Aphasiology 24 , 56–74 (2010).

Conti-Ramsden, G., Crutchley, A. & Botting, N. The extent to which psychometric tests differentiate subgroups of children with SLI. J. Speech Lang. Hear. Res. 40 , 765–777 (1997).

Bishop, D. V. M. & McArthur, G. M. Individual differences in auditory processing in specific language impairment: a follow-up study using event-related potentials and behavioural thresholds. Cortex 41 , 327–341 (2005).

Bishop, D. V. M., Snowling, M. J., Thompson, P. A. & Greenhalgh, T., and the CATALISE-2 consortium. Phase 2 of CATALISE: a multinational and multidisciplinary Delphi consensus study of problems with language development: terminology. J. Child. Psychol. Psychiat. 58 , 1068–1080 (2017).

Wilson, A. J. et al. Principles underlying the design of ‘the number race’, an adaptive computer game for remediation of dyscalculia. Behav. Brain Funct. 2 , 19 (2006).

Basso, A. & Marangolo, P. Cognitive neuropsychological rehabilitation: the emperor’s new clothes? Neuropsychol. Rehabil. 10 , 219–229 (2000).

Murad, M. H., Asi, N., Alsawas, M. & Alahdab, F. New evidence pyramid. Evidence-based Med. 21 , 125–127 (2016).

Greenhalgh, T., Howick, J. & Maskrey, N., for the Evidence Based Medicine Renaissance Group. Evidence based medicine: a movement in crisis? Br. Med. J. 348 , g3725–g3725 (2014).

Best, W., Ping Sze, W., Edmundson, A. & Nickels, L. What counts as evidence? Swimming against the tide: valuing both clinically informed experimentally controlled case series and randomized controlled trials in intervention research. Evidence-based Commun. Assess. Interv. 13 , 107–135 (2019).

Best, W. et al. Understanding differing outcomes from semantic and phonological interventions with children with word-finding difficulties: a group and case series study. Cortex 134 , 145–161 (2021).

OCEBM Levels of Evidence Working Group. The Oxford Levels of Evidence 2. CEBM https://www.cebm.ox.ac.uk/resources/levels-of-evidence/ocebm-levels-of-evidence (2011).

Holler, D. E., Behrmann, M. & Snow, J. C. Real-world size coding of solid objects, but not 2-D or 3-D images, in visual agnosia patients with bilateral ventral lesions. Cortex 119 , 555–568 (2019).

Duchaine, B. C., Yovel, G., Butterworth, E. J. & Nakayama, K. Prosopagnosia as an impairment to face-specific mechanisms: elimination of the alternative hypotheses in a developmental case. Cogn. Neuropsychol. 23 , 714–747 (2006).

Hartley, T. et al. The hippocampus is required for short-term topographical memory in humans. Hippocampus 17 , 34–48 (2007).

Pishnamazi, M. et al. Attentional bias towards and away from fearful faces is modulated by developmental amygdala damage. Cortex 81 , 24–34 (2016).

Rapp, B., Fischer-Baum, S. & Miozzo, M. Modality and morphology: what we write may not be what we say. Psychol. Sci. 26 , 892–902 (2015).

Yong, K. X. X., Warren, J. D., Warrington, E. K. & Crutch, S. J. Intact reading in patients with profound early visual dysfunction. Cortex 49 , 2294–2306 (2013).

Rockland, K. S. & Van Hoesen, G. W. Direct temporal–occipital feedback connections to striate cortex (V1) in the macaque monkey. Cereb. Cortex 4 , 300–313 (1994).

Haynes, J.-D., Driver, J. & Rees, G. Visibility reflects dynamic changes of effective connectivity between V1 and fusiform cortex. Neuron 46 , 811–821 (2005).

Tanaka, K. Mechanisms of visual object recognition: monkey and human studies. Curr. Opin. Neurobiol. 7 , 523–529 (1997).

Fischer-Baum, S., McCloskey, M. & Rapp, B. Representation of letter position in spelling: evidence from acquired dysgraphia. Cognition 115 , 466–490 (2010).

Houghton, G. The problem of serial order: a neural network model of sequence learning and recall. In Current Research In Natural Language Generation (eds Dale, R., Mellish, C. & Zock, M.) 287–319 (Academic Press, 1990).

Fieder, N., Nickels, L., Biedermann, B. & Best, W. From “some butter” to “a butter”: an investigation of mass and count representation and processing. Cogn. Neuropsychol. 31 , 313–349 (2014).

Fieder, N., Nickels, L., Biedermann, B. & Best, W. How ‘some garlic’ becomes ‘a garlic’ or ‘some onion’: mass and count processing in aphasia. Neuropsychologia 75 , 626–645 (2015).

Schröder, A., Burchert, F. & Stadie, N. Training-induced improvement of noncanonical sentence production does not generalize to comprehension: evidence for modality-specific processes. Cogn. Neuropsychol. 32 , 195–220 (2015).

Stadie, N. et al. Unambiguous generalization effects after treatment of non-canonical sentence production in German agrammatism. Brain Lang. 104 , 211–229 (2008).

Schapiro, A. C., Gregory, E., Landau, B., McCloskey, M. & Turk-Browne, N. B. The necessity of the medial temporal lobe for statistical learning. J. Cogn. Neurosci. 26 , 1736–1747 (2014).

Schapiro, A. C., Kustner, L. V. & Turk-Browne, N. B. Shaping of object representations in the human medial temporal lobe based on temporal regularities. Curr. Biol. 22 , 1622–1627 (2012).

Baddeley, A., Vargha-Khadem, F. & Mishkin, M. Preserved recognition in a case of developmental amnesia: implications for the acaquisition of semantic memory? J. Cogn. Neurosci. 13 , 357–369 (2001).

Snyder, J. J. & Chatterjee, A. Spatial-temporal anisometries following right parietal damage. Neuropsychologia 42 , 1703–1708 (2004).

Ashkenazi, S., Henik, A., Ifergane, G. & Shelef, I. Basic numerical processing in left intraparietal sulcus (IPS) acalculia. Cortex 44 , 439–448 (2008).

Lebrun, M.-A., Moreau, P., McNally-Gagnon, A., Mignault Goulet, G. & Peretz, I. Congenital amusia in childhood: a case study. Cortex 48 , 683–688 (2012).

Vannuscorps, G., Andres, M. & Pillon, A. When does action comprehension need motor involvement? Evidence from upper limb aplasia. Cogn. Neuropsychol. 30 , 253–283 (2013).

Jeannerod, M. Neural simulation of action: a unifying mechanism for motor cognition. NeuroImage 14 , S103–S109 (2001).

Blakemore, S.-J. & Decety, J. From the perception of action to the understanding of intention. Nat. Rev. Neurosci. 2 , 561–567 (2001).

Rizzolatti, G. & Craighero, L. The mirror-neuron system. Annu. Rev. Neurosci. 27 , 169–192 (2004).

Forde, E. M. E., Humphreys, G. W. & Remoundou, M. Disordered knowledge of action order in action disorganisation syndrome. Neurocase 10 , 19–28 (2004).

Mazzi, C. & Savazzi, S. The glamor of old-style single-case studies in the neuroimaging era: insights from a patient with hemianopia. Front. Psychol. 10 , 965 (2019).

Coltheart, M. What has functional neuroimaging told us about the mind (so far)? (Position Paper Presented to the European Cognitive Neuropsychology Workshop, Bressanone, 2005). Cortex 42 , 323–331 (2006).

Page, M. P. A. What can’t functional neuroimaging tell the cognitive psychologist? Cortex 42 , 428–443 (2006).

Blank, I. A., Kiran, S. & Fedorenko, E. Can neuroimaging help aphasia researchers? Addressing generalizability, variability, and interpretability. Cogn. Neuropsychol. 34 , 377–393 (2017).

Niv, Y. The primacy of behavioral research for understanding the brain. Behav. Neurosci. 135 , 601–609 (2021).

Crawford, J. R. & Howell, D. C. Comparing an individual’s test score against norms derived from small samples. Clin. Neuropsychol. 12 , 482–486 (1998).

Crawford, J. R., Garthwaite, P. H. & Ryan, K. Comparing a single case to a control sample: testing for neuropsychological deficits and dissociations in the presence of covariates. Cortex 47 , 1166–1178 (2011).

McIntosh, R. D. & Rittmo, J. Ö. Power calculations in single-case neuropsychology: a practical primer. Cortex 135 , 146–158 (2021).

Patterson, K. & Plaut, D. C. “Shallow draughts intoxicate the brain”: lessons from cognitive science for cognitive neuropsychology. Top. Cogn. Sci. 1 , 39–58 (2009).

Lambon Ralph, M. A., Patterson, K. & Plaut, D. C. Finite case series or infinite single-case studies? Comments on “Case series investigations in cognitive neuropsychology” by Schwartz and Dell (2010). Cogn. Neuropsychol. 28 , 466–474 (2011).

Horien, C., Shen, X., Scheinost, D. & Constable, R. T. The individual functional connectome is unique and stable over months to years. NeuroImage 189 , 676–687 (2019).

Epelbaum, S. et al. Pure alexia as a disconnection syndrome: new diffusion imaging evidence for an old concept. Cortex 44 , 962–974 (2008).

Fischer-Baum, S. & Campana, G. Neuroplasticity and the logic of cognitive neuropsychology. Cogn. Neuropsychol. 34 , 403–411 (2017).

Paul, S., Baca, E. & Fischer-Baum, S. Cerebellar contributions to orthographic working memory: a single case cognitive neuropsychological investigation. Neuropsychologia 171 , 108242 (2022).

Feinstein, J. S., Adolphs, R., Damasio, A. & Tranel, D. The human amygdala and the induction and experience of fear. Curr. Biol. 21 , 34–38 (2011).

Crawford, J., Garthwaite, P. & Gray, C. Wanted: fully operational definitions of dissociations in single-case studies. Cortex 39 , 357–370 (2003).

McIntosh, R. D. Simple dissociations for a higher-powered neuropsychology. Cortex 103 , 256–265 (2018).

McIntosh, R. D. & Brooks, J. L. Current tests and trends in single-case neuropsychology. Cortex 47 , 1151–1159 (2011).

Best, W., Schröder, A. & Herbert, R. An investigation of a relative impairment in naming non-living items: theoretical and methodological implications. J. Neurolinguistics 19 , 96–123 (2006).

Franklin, S., Howard, D. & Patterson, K. Abstract word anomia. Cogn. Neuropsychol. 12 , 549–566 (1995).

Coltheart, M., Patterson, K. E. & Marshall, J. C. Deep Dyslexia (Routledge, 1980).

Nickels, L., Kohnen, S. & Biedermann, B. An untapped resource: treatment as a tool for revealing the nature of cognitive processes. Cogn. Neuropsychol. 27 , 539–562 (2010).

Download references

Acknowledgements

The authors thank all of those pioneers of and advocates for single case study research who have mentored, inspired and encouraged us over the years, and the many other colleagues with whom we have discussed these issues.

Author information

Authors and affiliations.

School of Psychological Sciences & Macquarie University Centre for Reading, Macquarie University, Sydney, New South Wales, Australia

Lyndsey Nickels

NHMRC Centre of Research Excellence in Aphasia Recovery and Rehabilitation, Australia

Psychological Sciences, Rice University, Houston, TX, USA

Simon Fischer-Baum

Psychology and Language Sciences, University College London, London, UK

You can also search for this author in PubMed   Google Scholar

Contributions

L.N. led and was primarily responsible for the structuring and writing of the manuscript. All authors contributed to all aspects of the article.

Corresponding author

Correspondence to Lyndsey Nickels .

Ethics declarations

Competing interests.

The authors declare no competing interests.

Peer review

Peer review information.

Nature Reviews Psychology thanks Yanchao Bi, Rob McIntosh, and the other, anonymous, reviewer for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Cite this article.

Nickels, L., Fischer-Baum, S. & Best, W. Single case studies are a powerful tool for developing, testing and extending theories. Nat Rev Psychol 1 , 733–747 (2022). https://doi.org/10.1038/s44159-022-00127-y

Download citation

Accepted : 13 October 2022

Published : 22 November 2022

Issue Date : December 2022

DOI : https://doi.org/10.1038/s44159-022-00127-y

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

single case study sample

  • Subject List
  • Take a Tour
  • For Authors
  • Subscriber Services
  • Publications
  • African American Studies
  • African Studies
  • American Literature
  • Anthropology
  • Architecture Planning and Preservation
  • Art History
  • Atlantic History
  • Biblical Studies
  • British and Irish Literature
  • Childhood Studies
  • Chinese Studies
  • Cinema and Media Studies
  • Communication
  • Criminology
  • Environmental Science
  • Evolutionary Biology
  • International Law
  • International Relations
  • Islamic Studies
  • Jewish Studies
  • Latin American Studies
  • Latino Studies
  • Linguistics
  • Literary and Critical Theory
  • Medieval Studies
  • Military History
  • Political Science
  • Public Health
  • Renaissance and Reformation
  • Social Work
  • Urban Studies
  • Victorian Literature
  • Browse All Subjects

How to Subscribe

  • Free Trials

In This Article Expand or collapse the "in this article" section Single-Case Experimental Designs

Introduction, general overviews and primary textbooks.

  • Textbooks in Applied Behavior Analysis
  • Types of Single-Case Experimental Designs
  • Model Building and Randomization in Single-Case Experimental Designs
  • Visual Analysis of Single-Case Experimental Designs
  • Effect Size Estimates in Single-Case Experimental Designs
  • Reporting Single-Case Design Intervention Research

Related Articles Expand or collapse the "related articles" section about

About related articles close popup.

Lorem Ipsum Sit Dolor Amet

Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Aliquam ligula odio, euismod ut aliquam et, vestibulum nec risus. Nulla viverra, arcu et iaculis consequat, justo diam ornare tellus, semper ultrices tellus nunc eu tellus.

  • Action Research
  • Ambulatory Assessment in Behavioral Science
  • Effect Size
  • Mediation Analysis
  • Path Models
  • Research Methods for Studying Daily Life

Other Subject Areas

Forthcoming articles expand or collapse the "forthcoming articles" section.

  • Data Visualization
  • Remote Work
  • Workforce Training Evaluation
  • Find more forthcoming articles...
  • Export Citations
  • Share This Facebook LinkedIn Twitter

Single-Case Experimental Designs by S. Andrew Garbacz , Thomas R. Kratochwill LAST MODIFIED: 29 July 2020 DOI: 10.1093/obo/9780199828340-0265

Single-case experimental designs are a family of experimental designs that are characterized by researcher manipulation of an independent variable and repeated measurement of a dependent variable before (i.e., baseline) and after (i.e., intervention phase) introducing the independent variable. In single-case experimental designs a case is the unit of intervention and analysis (e.g., a child, a school). Because measurement within each case is conducted before and after manipulation of the independent variable, the case typically serves as its own control. Experimental variants of single-case designs provide a basis for determining a causal relation by replication of the intervention through (a) introducing and withdrawing the independent variable, (b) manipulating the independent variable across different phases, and (c) introducing the independent variable in a staggered fashion across different points in time. Due to their economy of resources, single-case designs may be useful during development activities and allow for rapid replication across studies.

Several sources provide overviews of single-case experimental designs. Barlow, et al. 2009 includes an overview for the development of single-case experimental designs, describes key considerations for designing and conducting single-case experimental design research, and reviews procedural elements, assessment strategies, and replication considerations. Kazdin 2011 provides detailed coverage of single-case experimental design variants as well as approaches for evaluating data in single-case experimental designs. Kratochwill and Levin 2014 describes key methodological features that underlie single-case experimental designs, including philosophical and statistical foundations and data evaluation. Ledford and Gast 2018 covers research conceptualization and writing, design variants within single-case experimental design, definitions of variables and associated measurement, and approaches to organize and evaluate data. Riley-Tillman and Burns 2009 provides a practical orientation to single-case experimental designs to facilitate uptake and use in applied settings.

Barlow, D. H., M. K. Nock, and M. Hersen, eds. 2009. Single case experimental designs: Strategies for studying behavior change . 3d ed. New York: Pearson.

A comprehensive reference about the process of designing and conducting single-case experimental design studies. Chapters are integrative but can stand alone.

Kazdin, A. E. 2011. Single-case research designs: Methods for clinical and applied settings . 2d ed. New York: Oxford Univ. Press.

A complete overview and description of single-case experimental design variants as well as information about data evaluation.

Kratochwill, T. R., and J. R. Levin, eds. 2014. Single-case intervention research: Methodological and statistical advances . New York: Routledge.

The authors describe in depth the methodological and analytic considerations necessary for designing and conducting research that uses a single-case experimental design. In addition, the text includes chapters from leaders in psychology and education who provide critical perspectives about the use of single-case experimental designs.

Ledford, J. R., and D. L. Gast, eds. 2018. Single case research methodology: Applications in special education and behavioral sciences . New York: Routledge.

Covers the research process from writing literature reviews, to designing, conducting, and evaluating single-case experimental design studies.

Riley-Tillman, T. C., and M. K. Burns. 2009. Evaluating education interventions: Single-case design for measuring response to intervention . New York: Guilford Press.

Focuses on accelerating uptake and use of single-case experimental designs in applied settings. This book provides a practical, “nuts and bolts” orientation to conducting single-case experimental design research.

back to top

Users without a subscription are not able to see the full content on this page. Please subscribe or login .

Oxford Bibliographies Online is available by subscription and perpetual access to institutions. For more information or to contact an Oxford Sales Representative click here .

  • About Psychology »
  • Meet the Editorial Board »
  • Abnormal Psychology
  • Academic Assessment
  • Acculturation and Health
  • Action Regulation Theory
  • Addictive Behavior
  • Adolescence
  • Adoption, Social, Psychological, and Evolutionary Perspect...
  • Advanced Theory of Mind
  • Affective Forecasting
  • Affirmative Action
  • Ageism at Work
  • Allport, Gordon
  • Alzheimer’s Disease
  • Analysis of Covariance (ANCOVA)
  • Animal Behavior
  • Animal Learning
  • Anxiety Disorders
  • Art and Aesthetics, Psychology of
  • Artificial Intelligence, Machine Learning, and Psychology
  • Assessment and Clinical Applications of Individual Differe...
  • Attachment in Social and Emotional Development across the ...
  • Attention-Deficit/Hyperactivity Disorder (ADHD) in Adults
  • Attention-Deficit/Hyperactivity Disorder (ADHD) in Childre...
  • Attitudinal Ambivalence
  • Attraction in Close Relationships
  • Attribution Theory
  • Authoritarian Personality
  • Bayesian Statistical Methods in Psychology
  • Behavior Therapy, Rational Emotive
  • Behavioral Economics
  • Behavioral Genetics
  • Belief Perseverance
  • Bereavement and Grief
  • Biological Psychology
  • Birth Order
  • Body Image in Men and Women
  • Bystander Effect
  • Categorical Data Analysis in Psychology
  • Childhood and Adolescence, Peer Victimization and Bullying...
  • Clark, Mamie Phipps
  • Clinical Neuropsychology
  • Clinical Psychology
  • Cognitive Consistency Theories
  • Cognitive Dissonance Theory
  • Cognitive Neuroscience
  • Communication, Nonverbal Cues and
  • Comparative Psychology
  • Competence to Stand Trial: Restoration Services
  • Competency to Stand Trial
  • Computational Psychology
  • Conflict Management in the Workplace
  • Conformity, Compliance, and Obedience
  • Consciousness
  • Coping Processes
  • Correspondence Analysis in Psychology
  • Counseling Psychology
  • Creativity at Work
  • Critical Thinking
  • Cross-Cultural Psychology
  • Cultural Psychology
  • Daily Life, Research Methods for Studying
  • Data Science Methods for Psychology
  • Data Sharing in Psychology
  • Death and Dying
  • Deceiving and Detecting Deceit
  • Defensive Processes
  • Depressive Disorders
  • Development, Prenatal
  • Developmental Psychology (Cognitive)
  • Developmental Psychology (Social)
  • Diagnostic and Statistical Manual of Mental Disorders (DSM...
  • Discrimination
  • Dissociative Disorders
  • Drugs and Behavior
  • Eating Disorders
  • Ecological Psychology
  • Educational Settings, Assessment of Thinking in
  • Embodiment and Embodied Cognition
  • Emerging Adulthood
  • Emotional Intelligence
  • Empathy and Altruism
  • Employee Stress and Well-Being
  • Environmental Neuroscience and Environmental Psychology
  • Ethics in Psychological Practice
  • Event Perception
  • Evolutionary Psychology
  • Expansive Posture
  • Experimental Existential Psychology
  • Exploratory Data Analysis
  • Eyewitness Testimony
  • Eysenck, Hans
  • Factor Analysis
  • Festinger, Leon
  • Five-Factor Model of Personality
  • Flynn Effect, The
  • Forensic Psychology
  • Forgiveness
  • Friendships, Children's
  • Fundamental Attribution Error/Correspondence Bias
  • Gambler's Fallacy
  • Game Theory and Psychology
  • Geropsychology, Clinical
  • Global Mental Health
  • Habit Formation and Behavior Change
  • Health Psychology
  • Health Psychology Research and Practice, Measurement in
  • Heider, Fritz
  • Heuristics and Biases
  • History of Psychology
  • Human Factors
  • Humanistic Psychology
  • Implicit Association Test (IAT)
  • Industrial and Organizational Psychology
  • Inferential Statistics in Psychology
  • Insanity Defense, The
  • Intelligence
  • Intelligence, Crystallized and Fluid
  • Intercultural Psychology
  • Intergroup Conflict
  • International Classification of Diseases and Related Healt...
  • International Psychology
  • Interviewing in Forensic Settings
  • Intimate Partner Violence, Psychological Perspectives on
  • Introversion–Extraversion
  • Item Response Theory
  • Law, Psychology and
  • Lazarus, Richard
  • Learned Helplessness
  • Learning Theory
  • Learning versus Performance
  • LGBTQ+ Romantic Relationships
  • Lie Detection in a Forensic Context
  • Life-Span Development
  • Locus of Control
  • Loneliness and Health
  • Mathematical Psychology
  • Meaning in Life
  • Mechanisms and Processes of Peer Contagion
  • Media Violence, Psychological Perspectives on
  • Memories, Autobiographical
  • Memories, Flashbulb
  • Memories, Repressed and Recovered
  • Memory, False
  • Memory, Human
  • Memory, Implicit versus Explicit
  • Memory in Educational Settings
  • Memory, Semantic
  • Meta-Analysis
  • Metacognition
  • Metaphor, Psychological Perspectives on
  • Microaggressions
  • Military Psychology
  • Mindfulness
  • Mindfulness and Education
  • Minnesota Multiphasic Personality Inventory (MMPI)
  • Money, Psychology of
  • Moral Conviction
  • Moral Development
  • Moral Psychology
  • Moral Reasoning
  • Nature versus Nurture Debate in Psychology
  • Neuroscience of Associative Learning
  • Nonergodicity in Psychology and Neuroscience
  • Nonparametric Statistical Analysis in Psychology
  • Observational (Non-Randomized) Studies
  • Obsessive-Complusive Disorder (OCD)
  • Occupational Health Psychology
  • Olfaction, Human
  • Operant Conditioning
  • Optimism and Pessimism
  • Organizational Justice
  • Parenting Stress
  • Parenting Styles
  • Parents' Beliefs about Children
  • Peace Psychology
  • Perception, Person
  • Performance Appraisal
  • Personality and Health
  • Personality Disorders
  • Personality Psychology
  • Phenomenological Psychology
  • Placebo Effects in Psychology
  • Play Behavior
  • Positive Psychological Capital (PsyCap)
  • Positive Psychology
  • Posttraumatic Stress Disorder (PTSD)
  • Prejudice and Stereotyping
  • Pretrial Publicity
  • Prisoner's Dilemma
  • Problem Solving and Decision Making
  • Procrastination
  • Prosocial Behavior
  • Prosocial Spending and Well-Being
  • Protocol Analysis
  • Psycholinguistics
  • Psychological Literacy
  • Psychological Perspectives on Food and Eating
  • Psychology, Political
  • Psychoneuroimmunology
  • Psychophysics, Visual
  • Psychotherapy
  • Psychotic Disorders
  • Publication Bias in Psychology
  • Reasoning, Counterfactual
  • Rehabilitation Psychology
  • Relationships
  • Reliability–Contemporary Psychometric Conceptions
  • Religion, Psychology and
  • Replication Initiatives in Psychology
  • Research Methods
  • Risk Taking
  • Role of the Expert Witness in Forensic Psychology, The
  • Sample Size Planning for Statistical Power and Accurate Es...
  • Schizophrenic Disorders
  • School Psychology
  • School Psychology, Counseling Services in
  • Self, Gender and
  • Self, Psychology of the
  • Self-Construal
  • Self-Control
  • Self-Deception
  • Self-Determination Theory
  • Self-Efficacy
  • Self-Esteem
  • Self-Monitoring
  • Self-Regulation in Educational Settings
  • Self-Report Tests, Measures, and Inventories in Clinical P...
  • Sensation Seeking
  • Sex and Gender
  • Sexual Minority Parenting
  • Sexual Orientation
  • Signal Detection Theory and its Applications
  • Simpson's Paradox in Psychology
  • Single People
  • Single-Case Experimental Designs
  • Skinner, B.F.
  • Sleep and Dreaming
  • Small Groups
  • Social Class and Social Status
  • Social Cognition
  • Social Neuroscience
  • Social Support
  • Social Touch and Massage Therapy Research
  • Somatoform Disorders
  • Spatial Attention
  • Sports Psychology
  • Stanford Prison Experiment (SPE): Icon and Controversy
  • Stereotype Threat
  • Stereotypes
  • Stress and Coping, Psychology of
  • Student Success in College
  • Subjective Wellbeing Homeostasis
  • Taste, Psychological Perspectives on
  • Teaching of Psychology
  • Terror Management Theory
  • Testing and Assessment
  • The Concept of Validity in Psychological Assessment
  • The Neuroscience of Emotion Regulation
  • The Reasoned Action Approach and the Theories of Reasoned ...
  • The Weapon Focus Effect in Eyewitness Memory
  • Theory of Mind
  • Therapies, Person-Centered
  • Therapy, Cognitive-Behavioral
  • Thinking Skills in Educational Settings
  • Time Perception
  • Trait Perspective
  • Trauma Psychology
  • Twin Studies
  • Type A Behavior Pattern (Coronary Prone Personality)
  • Unconscious Processes
  • Video Games and Violent Content
  • Virtues and Character Strengths
  • Women and Science, Technology, Engineering, and Math (STEM...
  • Women, Psychology of
  • Work Well-Being
  • Wundt, Wilhelm
  • Privacy Policy
  • Cookie Policy
  • Legal Notice
  • Accessibility

Powered by:

  • [66.249.64.20|45.133.227.243]
  • 45.133.227.243

The Advantages and Limitations of Single Case Study Analysis

single case study sample

As Andrew Bennett and Colin Elman have recently noted, qualitative research methods presently enjoy “an almost unprecedented popularity and vitality… in the international relations sub-field”, such that they are now “indisputably prominent, if not pre-eminent” (2010: 499). This is, they suggest, due in no small part to the considerable advantages that case study methods in particular have to offer in studying the “complex and relatively unstructured and infrequent phenomena that lie at the heart of the subfield” (Bennett and Elman, 2007: 171). Using selected examples from within the International Relations literature[1], this paper aims to provide a brief overview of the main principles and distinctive advantages and limitations of single case study analysis. Divided into three inter-related sections, the paper therefore begins by first identifying the underlying principles that serve to constitute the case study as a particular research strategy, noting the somewhat contested nature of the approach in ontological, epistemological, and methodological terms. The second part then looks to the principal single case study types and their associated advantages, including those from within the recent ‘third generation’ of qualitative International Relations (IR) research. The final section of the paper then discusses the most commonly articulated limitations of single case studies; while accepting their susceptibility to criticism, it is however suggested that such weaknesses are somewhat exaggerated. The paper concludes that single case study analysis has a great deal to offer as a means of both understanding and explaining contemporary international relations.

The term ‘case study’, John Gerring has suggested, is “a definitional morass… Evidently, researchers have many different things in mind when they talk about case study research” (2006a: 17). It is possible, however, to distil some of the more commonly-agreed principles. One of the most prominent advocates of case study research, Robert Yin (2009: 14) defines it as “an empirical enquiry that investigates a contemporary phenomenon in depth and within its real-life context, especially when the boundaries between phenomenon and context are not clearly evident”. What this definition usefully captures is that case studies are intended – unlike more superficial and generalising methods – to provide a level of detail and understanding, similar to the ethnographer Clifford Geertz’s (1973) notion of ‘thick description’, that allows for the thorough analysis of the complex and particularistic nature of distinct phenomena. Another frequently cited proponent of the approach, Robert Stake, notes that as a form of research the case study “is defined by interest in an individual case, not by the methods of inquiry used”, and that “the object of study is a specific, unique, bounded system” (2008: 443, 445). As such, three key points can be derived from this – respectively concerning issues of ontology, epistemology, and methodology – that are central to the principles of single case study research.

First, the vital notion of ‘boundedness’ when it comes to the particular unit of analysis means that defining principles should incorporate both the synchronic (spatial) and diachronic (temporal) elements of any so-called ‘case’. As Gerring puts it, a case study should be “an intensive study of a single unit… a spatially bounded phenomenon – e.g. a nation-state, revolution, political party, election, or person – observed at a single point in time or over some delimited period of time” (2004: 342). It is important to note, however, that – whereas Gerring refers to a single unit of analysis – it may be that attention also necessarily be given to particular sub-units. This points to the important difference between what Yin refers to as an ‘holistic’ case design, with a single unit of analysis, and an ’embedded’ case design with multiple units of analysis (Yin, 2009: 50-52). The former, for example, would examine only the overall nature of an international organization, whereas the latter would also look to specific departments, programmes, or policies etc.

Secondly, as Tim May notes of the case study approach, “even the most fervent advocates acknowledge that the term has entered into understandings with little specification or discussion of purpose and process” (2011: 220). One of the principal reasons for this, he argues, is the relationship between the use of case studies in social research and the differing epistemological traditions – positivist, interpretivist, and others – within which it has been utilised. Philosophy of science concerns are obviously a complex issue, and beyond the scope of much of this paper. That said, the issue of how it is that we know what we know – of whether or not a single independent reality exists of which we as researchers can seek to provide explanation – does lead us to an important distinction to be made between so-called idiographic and nomothetic case studies (Gerring, 2006b). The former refers to those which purport to explain only a single case, are concerned with particularisation, and hence are typically (although not exclusively) associated with more interpretivist approaches. The latter are those focused studies that reflect upon a larger population and are more concerned with generalisation, as is often so with more positivist approaches[2]. The importance of this distinction, and its relation to the advantages and limitations of single case study analysis, is returned to below.

Thirdly, in methodological terms, given that the case study has often been seen as more of an interpretivist and idiographic tool, it has also been associated with a distinctly qualitative approach (Bryman, 2009: 67-68). However, as Yin notes, case studies can – like all forms of social science research – be exploratory, descriptive, and/or explanatory in nature. It is “a common misconception”, he notes, “that the various research methods should be arrayed hierarchically… many social scientists still deeply believe that case studies are only appropriate for the exploratory phase of an investigation” (Yin, 2009: 6). If case studies can reliably perform any or all three of these roles – and given that their in-depth approach may also require multiple sources of data and the within-case triangulation of methods – then it becomes readily apparent that they should not be limited to only one research paradigm. Exploratory and descriptive studies usually tend toward the qualitative and inductive, whereas explanatory studies are more often quantitative and deductive (David and Sutton, 2011: 165-166). As such, the association of case study analysis with a qualitative approach is a “methodological affinity, not a definitional requirement” (Gerring, 2006a: 36). It is perhaps better to think of case studies as transparadigmatic; it is mistaken to assume single case study analysis to adhere exclusively to a qualitative methodology (or an interpretivist epistemology) even if it – or rather, practitioners of it – may be so inclined. By extension, this also implies that single case study analysis therefore remains an option for a multitude of IR theories and issue areas; it is how this can be put to researchers’ advantage that is the subject of the next section.

Having elucidated the defining principles of the single case study approach, the paper now turns to an overview of its main benefits. As noted above, a lack of consensus still exists within the wider social science literature on the principles and purposes – and by extension the advantages and limitations – of case study research. Given that this paper is directed towards the particular sub-field of International Relations, it suggests Bennett and Elman’s (2010) more discipline-specific understanding of contemporary case study methods as an analytical framework. It begins however, by discussing Harry Eckstein’s seminal (1975) contribution to the potential advantages of the case study approach within the wider social sciences.

Eckstein proposed a taxonomy which usefully identified what he considered to be the five most relevant types of case study. Firstly were so-called configurative-idiographic studies, distinctly interpretivist in orientation and predicated on the assumption that “one cannot attain prediction and control in the natural science sense, but only understanding ( verstehen )… subjective values and modes of cognition are crucial” (1975: 132). Eckstein’s own sceptical view was that any interpreter ‘simply’ considers a body of observations that are not self-explanatory and “without hard rules of interpretation, may discern in them any number of patterns that are more or less equally plausible” (1975: 134). Those of a more post-modernist bent, of course – sharing an “incredulity towards meta-narratives”, in Lyotard’s (1994: xxiv) evocative phrase – would instead suggest that this more free-form approach actually be advantageous in delving into the subtleties and particularities of individual cases.

Eckstein’s four other types of case study, meanwhile, promote a more nomothetic (and positivist) usage. As described, disciplined-configurative studies were essentially about the use of pre-existing general theories, with a case acting “passively, in the main, as a receptacle for putting theories to work” (Eckstein, 1975: 136). As opposed to the opportunity this presented primarily for theory application, Eckstein identified heuristic case studies as explicit theoretical stimulants – thus having instead the intended advantage of theory-building. So-called p lausibility probes entailed preliminary attempts to determine whether initial hypotheses should be considered sound enough to warrant more rigorous and extensive testing. Finally, and perhaps most notably, Eckstein then outlined the idea of crucial case studies , within which he also included the idea of ‘most-likely’ and ‘least-likely’ cases; the essential characteristic of crucial cases being their specific theory-testing function.

Whilst Eckstein’s was an early contribution to refining the case study approach, Yin’s (2009: 47-52) more recent delineation of possible single case designs similarly assigns them roles in the applying, testing, or building of theory, as well as in the study of unique cases[3]. As a subset of the latter, however, Jack Levy (2008) notes that the advantages of idiographic cases are actually twofold. Firstly, as inductive/descriptive cases – akin to Eckstein’s configurative-idiographic cases – whereby they are highly descriptive, lacking in an explicit theoretical framework and therefore taking the form of “total history”. Secondly, they can operate as theory-guided case studies, but ones that seek only to explain or interpret a single historical episode rather than generalise beyond the case. Not only does this therefore incorporate ‘single-outcome’ studies concerned with establishing causal inference (Gerring, 2006b), it also provides room for the more postmodern approaches within IR theory, such as discourse analysis, that may have developed a distinct methodology but do not seek traditional social scientific forms of explanation.

Applying specifically to the state of the field in contemporary IR, Bennett and Elman identify a ‘third generation’ of mainstream qualitative scholars – rooted in a pragmatic scientific realist epistemology and advocating a pluralistic approach to methodology – that have, over the last fifteen years, “revised or added to essentially every aspect of traditional case study research methods” (2010: 502). They identify ‘process tracing’ as having emerged from this as a central method of within-case analysis. As Bennett and Checkel observe, this carries the advantage of offering a methodologically rigorous “analysis of evidence on processes, sequences, and conjunctures of events within a case, for the purposes of either developing or testing hypotheses about causal mechanisms that might causally explain the case” (2012: 10).

Harnessing various methods, process tracing may entail the inductive use of evidence from within a case to develop explanatory hypotheses, and deductive examination of the observable implications of hypothesised causal mechanisms to test their explanatory capability[4]. It involves providing not only a coherent explanation of the key sequential steps in a hypothesised process, but also sensitivity to alternative explanations as well as potential biases in the available evidence (Bennett and Elman 2010: 503-504). John Owen (1994), for example, demonstrates the advantages of process tracing in analysing whether the causal factors underpinning democratic peace theory are – as liberalism suggests – not epiphenomenal, but variously normative, institutional, or some given combination of the two or other unexplained mechanism inherent to liberal states. Within-case process tracing has also been identified as advantageous in addressing the complexity of path-dependent explanations and critical junctures – as for example with the development of political regime types – and their constituent elements of causal possibility, contingency, closure, and constraint (Bennett and Elman, 2006b).

Bennett and Elman (2010: 505-506) also identify the advantages of single case studies that are implicitly comparative: deviant, most-likely, least-likely, and crucial cases. Of these, so-called deviant cases are those whose outcome does not fit with prior theoretical expectations or wider empirical patterns – again, the use of inductive process tracing has the advantage of potentially generating new hypotheses from these, either particular to that individual case or potentially generalisable to a broader population. A classic example here is that of post-independence India as an outlier to the standard modernisation theory of democratisation, which holds that higher levels of socio-economic development are typically required for the transition to, and consolidation of, democratic rule (Lipset, 1959; Diamond, 1992). Absent these factors, MacMillan’s single case study analysis (2008) suggests the particularistic importance of the British colonial heritage, the ideology and leadership of the Indian National Congress, and the size and heterogeneity of the federal state.

Most-likely cases, as per Eckstein above, are those in which a theory is to be considered likely to provide a good explanation if it is to have any application at all, whereas least-likely cases are ‘tough test’ ones in which the posited theory is unlikely to provide good explanation (Bennett and Elman, 2010: 505). Levy (2008) neatly refers to the inferential logic of the least-likely case as the ‘Sinatra inference’ – if a theory can make it here, it can make it anywhere. Conversely, if a theory cannot pass a most-likely case, it is seriously impugned. Single case analysis can therefore be valuable for the testing of theoretical propositions, provided that predictions are relatively precise and measurement error is low (Levy, 2008: 12-13). As Gerring rightly observes of this potential for falsification:

“a positivist orientation toward the work of social science militates toward a greater appreciation of the case study format, not a denigration of that format, as is usually supposed” (Gerring, 2007: 247, emphasis added).

In summary, the various forms of single case study analysis can – through the application of multiple qualitative and/or quantitative research methods – provide a nuanced, empirically-rich, holistic account of specific phenomena. This may be particularly appropriate for those phenomena that are simply less amenable to more superficial measures and tests (or indeed any substantive form of quantification) as well as those for which our reasons for understanding and/or explaining them are irreducibly subjective – as, for example, with many of the normative and ethical issues associated with the practice of international relations. From various epistemological and analytical standpoints, single case study analysis can incorporate both idiographic sui generis cases and, where the potential for generalisation may exist, nomothetic case studies suitable for the testing and building of causal hypotheses. Finally, it should not be ignored that a signal advantage of the case study – with particular relevance to international relations – also exists at a more practical rather than theoretical level. This is, as Eckstein noted, “that it is economical for all resources: money, manpower, time, effort… especially important, of course, if studies are inherently costly, as they are if units are complex collective individuals ” (1975: 149-150, emphasis added).

Limitations

Single case study analysis has, however, been subject to a number of criticisms, the most common of which concern the inter-related issues of methodological rigour, researcher subjectivity, and external validity. With regard to the first point, the prototypical view here is that of Zeev Maoz (2002: 164-165), who suggests that “the use of the case study absolves the author from any kind of methodological considerations. Case studies have become in many cases a synonym for freeform research where anything goes”. The absence of systematic procedures for case study research is something that Yin (2009: 14-15) sees as traditionally the greatest concern due to a relative absence of methodological guidelines. As the previous section suggests, this critique seems somewhat unfair; many contemporary case study practitioners – and representing various strands of IR theory – have increasingly sought to clarify and develop their methodological techniques and epistemological grounding (Bennett and Elman, 2010: 499-500).

A second issue, again also incorporating issues of construct validity, concerns that of the reliability and replicability of various forms of single case study analysis. This is usually tied to a broader critique of qualitative research methods as a whole. However, whereas the latter obviously tend toward an explicitly-acknowledged interpretive basis for meanings, reasons, and understandings:

“quantitative measures appear objective, but only so long as we don’t ask questions about where and how the data were produced… pure objectivity is not a meaningful concept if the goal is to measure intangibles [as] these concepts only exist because we can interpret them” (Berg and Lune, 2010: 340).

The question of researcher subjectivity is a valid one, and it may be intended only as a methodological critique of what are obviously less formalised and researcher-independent methods (Verschuren, 2003). Owen (1994) and Layne’s (1994) contradictory process tracing results of interdemocratic war-avoidance during the Anglo-American crisis of 1861 to 1863 – from liberal and realist standpoints respectively – are a useful example. However, it does also rest on certain assumptions that can raise deeper and potentially irreconcilable ontological and epistemological issues. There are, regardless, plenty such as Bent Flyvbjerg (2006: 237) who suggest that the case study contains no greater bias toward verification than other methods of inquiry, and that “on the contrary, experience indicates that the case study contains a greater bias toward falsification of preconceived notions than toward verification”.

The third and arguably most prominent critique of single case study analysis is the issue of external validity or generalisability. How is it that one case can reliably offer anything beyond the particular? “We always do better (or, in the extreme, no worse) with more observation as the basis of our generalization”, as King et al write; “in all social science research and all prediction, it is important that we be as explicit as possible about the degree of uncertainty that accompanies out prediction” (1994: 212). This is an unavoidably valid criticism. It may be that theories which pass a single crucial case study test, for example, require rare antecedent conditions and therefore actually have little explanatory range. These conditions may emerge more clearly, as Van Evera (1997: 51-54) notes, from large-N studies in which cases that lack them present themselves as outliers exhibiting a theory’s cause but without its predicted outcome. As with the case of Indian democratisation above, it would logically be preferable to conduct large-N analysis beforehand to identify that state’s non-representative nature in relation to the broader population.

There are, however, three important qualifiers to the argument about generalisation that deserve particular mention here. The first is that with regard to an idiographic single-outcome case study, as Eckstein notes, the criticism is “mitigated by the fact that its capability to do so [is] never claimed by its exponents; in fact it is often explicitly repudiated” (1975: 134). Criticism of generalisability is of little relevance when the intention is one of particularisation. A second qualifier relates to the difference between statistical and analytical generalisation; single case studies are clearly less appropriate for the former but arguably retain significant utility for the latter – the difference also between explanatory and exploratory, or theory-testing and theory-building, as discussed above. As Gerring puts it, “theory confirmation/disconfirmation is not the case study’s strong suit” (2004: 350). A third qualification relates to the issue of case selection. As Seawright and Gerring (2008) note, the generalisability of case studies can be increased by the strategic selection of cases. Representative or random samples may not be the most appropriate, given that they may not provide the richest insight (or indeed, that a random and unknown deviant case may appear). Instead, and properly used , atypical or extreme cases “often reveal more information because they activate more actors… and more basic mechanisms in the situation studied” (Flyvbjerg, 2006). Of course, this also points to the very serious limitation, as hinted at with the case of India above, that poor case selection may alternatively lead to overgeneralisation and/or grievous misunderstandings of the relationship between variables or processes (Bennett and Elman, 2006a: 460-463).

As Tim May (2011: 226) notes, “the goal for many proponents of case studies […] is to overcome dichotomies between generalizing and particularizing, quantitative and qualitative, deductive and inductive techniques”. Research aims should drive methodological choices, rather than narrow and dogmatic preconceived approaches. As demonstrated above, there are various advantages to both idiographic and nomothetic single case study analyses – notably the empirically-rich, context-specific, holistic accounts that they have to offer, and their contribution to theory-building and, to a lesser extent, that of theory-testing. Furthermore, while they do possess clear limitations, any research method involves necessary trade-offs; the inherent weaknesses of any one method, however, can potentially be offset by situating them within a broader, pluralistic mixed-method research strategy. Whether or not single case studies are used in this fashion, they clearly have a great deal to offer.

References 

Bennett, A. and Checkel, J. T. (2012) ‘Process Tracing: From Philosophical Roots to Best Practice’, Simons Papers in Security and Development, No. 21/2012, School for International Studies, Simon Fraser University: Vancouver.

Bennett, A. and Elman, C. (2006a) ‘Qualitative Research: Recent Developments in Case Study Methods’, Annual Review of Political Science , 9, 455-476.

Bennett, A. and Elman, C. (2006b) ‘Complex Causal Relations and Case Study Methods: The Example of Path Dependence’, Political Analysis , 14, 3, 250-267.

Bennett, A. and Elman, C. (2007) ‘Case Study Methods in the International Relations Subfield’, Comparative Political Studies , 40, 2, 170-195.

Bennett, A. and Elman, C. (2010) Case Study Methods. In C. Reus-Smit and D. Snidal (eds) The Oxford Handbook of International Relations . Oxford University Press: Oxford. Ch. 29.

Berg, B. and Lune, H. (2012) Qualitative Research Methods for the Social Sciences . Pearson: London.

Bryman, A. (2012) Social Research Methods . Oxford University Press: Oxford.

David, M. and Sutton, C. D. (2011) Social Research: An Introduction . SAGE Publications Ltd: London.

Diamond, J. (1992) ‘Economic development and democracy reconsidered’, American Behavioral Scientist , 35, 4/5, 450-499.

Eckstein, H. (1975) Case Study and Theory in Political Science. In R. Gomm, M. Hammersley, and P. Foster (eds) Case Study Method . SAGE Publications Ltd: London.

Flyvbjerg, B. (2006) ‘Five Misunderstandings About Case-Study Research’, Qualitative Inquiry , 12, 2, 219-245.

Geertz, C. (1973) The Interpretation of Cultures: Selected Essays by Clifford Geertz . Basic Books Inc: New York.

Gerring, J. (2004) ‘What is a Case Study and What Is It Good for?’, American Political Science Review , 98, 2, 341-354.

Gerring, J. (2006a) Case Study Research: Principles and Practices . Cambridge University Press: Cambridge.

Gerring, J. (2006b) ‘Single-Outcome Studies: A Methodological Primer’, International Sociology , 21, 5, 707-734.

Gerring, J. (2007) ‘Is There a (Viable) Crucial-Case Method?’, Comparative Political Studies , 40, 3, 231-253.

King, G., Keohane, R. O. and Verba, S. (1994) Designing Social Inquiry: Scientific Inference in Qualitative Research . Princeton University Press: Chichester.

Layne, C. (1994) ‘Kant or Cant: The Myth of the Democratic Peace’, International Security , 19, 2, 5-49.

Levy, J. S. (2008) ‘Case Studies: Types, Designs, and Logics of Inference’, Conflict Management and Peace Science , 25, 1-18.

Lipset, S. M. (1959) ‘Some Social Requisites of Democracy: Economic Development and Political Legitimacy’, The American Political Science Review , 53, 1, 69-105.

Lyotard, J-F. (1984) The Postmodern Condition: A Report on Knowledge . University of Minnesota Press: Minneapolis.

MacMillan, A. (2008) ‘Deviant Democratization in India’, Democratization , 15, 4, 733-749.

Maoz, Z. (2002) Case study methodology in international studies: from storytelling to hypothesis testing. In F. P. Harvey and M. Brecher (eds) Evaluating Methodology in International Studies . University of Michigan Press: Ann Arbor.

May, T. (2011) Social Research: Issues, Methods and Process . Open University Press: Maidenhead.

Owen, J. M. (1994) ‘How Liberalism Produces Democratic Peace’, International Security , 19, 2, 87-125.

Seawright, J. and Gerring, J. (2008) ‘Case Selection Techniques in Case Study Research: A Menu of Qualitative and Quantitative Options’, Political Research Quarterly , 61, 2, 294-308.

Stake, R. E. (2008) Qualitative Case Studies. In N. K. Denzin and Y. S. Lincoln (eds) Strategies of Qualitative Inquiry . Sage Publications: Los Angeles. Ch. 17.

Van Evera, S. (1997) Guide to Methods for Students of Political Science . Cornell University Press: Ithaca.

Verschuren, P. J. M. (2003) ‘Case study as a research strategy: some ambiguities and opportunities’, International Journal of Social Research Methodology , 6, 2, 121-139.

Yin, R. K. (2009) Case Study Research: Design and Methods . SAGE Publications Ltd: London.

[1] The paper follows convention by differentiating between ‘International Relations’ as the academic discipline and ‘international relations’ as the subject of study.

[2] There is some similarity here with Stake’s (2008: 445-447) notion of intrinsic cases, those undertaken for a better understanding of the particular case, and instrumental ones that provide insight for the purposes of a wider external interest.

[3] These may be unique in the idiographic sense, or in nomothetic terms as an exception to the generalising suppositions of either probabilistic or deterministic theories (as per deviant cases, below).

[4] Although there are “philosophical hurdles to mount”, according to Bennett and Checkel, there exists no a priori reason as to why process tracing (as typically grounded in scientific realism) is fundamentally incompatible with various strands of positivism or interpretivism (2012: 18-19). By extension, it can therefore be incorporated by a range of contemporary mainstream IR theories.

— Written by: Ben Willis Written at: University of Plymouth Written for: David Brockington Date written: January 2013

Further Reading on E-International Relations

  • Identity in International Conflicts: A Case Study of the Cuban Missile Crisis
  • Imperialism’s Legacy in the Study of Contemporary Politics: The Case of Hegemonic Stability Theory
  • Recreating a Nation’s Identity Through Symbolism: A Chinese Case Study
  • Ontological Insecurity: A Case Study on Israeli-Palestinian Conflict in Jerusalem
  • Terrorists or Freedom Fighters: A Case Study of ETA
  • A Critical Assessment of Eco-Marxism: A Ghanaian Case Study

Please Consider Donating

Before you download your free e-book, please consider donating to support open access publishing.

E-IR is an independent non-profit publisher run by an all volunteer team. Your donations allow us to invest in new open access titles and pay our bandwidth bills to ensure we keep our existing titles free to view. Any amount, in any currency, is appreciated. Many thanks!

Donations are voluntary and not required to download the e-book - your link to download is below.

single case study sample

  • Privacy Policy

Buy Me a Coffee

Research Method

Home » Case Study – Methods, Examples and Guide

Case Study – Methods, Examples and Guide

Table of Contents

Case Study Research

A case study is a research method that involves an in-depth examination and analysis of a particular phenomenon or case, such as an individual, organization, community, event, or situation.

It is a qualitative research approach that aims to provide a detailed and comprehensive understanding of the case being studied. Case studies typically involve multiple sources of data, including interviews, observations, documents, and artifacts, which are analyzed using various techniques, such as content analysis, thematic analysis, and grounded theory. The findings of a case study are often used to develop theories, inform policy or practice, or generate new research questions.

Types of Case Study

Types and Methods of Case Study are as follows:

Single-Case Study

A single-case study is an in-depth analysis of a single case. This type of case study is useful when the researcher wants to understand a specific phenomenon in detail.

For Example , A researcher might conduct a single-case study on a particular individual to understand their experiences with a particular health condition or a specific organization to explore their management practices. The researcher collects data from multiple sources, such as interviews, observations, and documents, and uses various techniques to analyze the data, such as content analysis or thematic analysis. The findings of a single-case study are often used to generate new research questions, develop theories, or inform policy or practice.

Multiple-Case Study

A multiple-case study involves the analysis of several cases that are similar in nature. This type of case study is useful when the researcher wants to identify similarities and differences between the cases.

For Example, a researcher might conduct a multiple-case study on several companies to explore the factors that contribute to their success or failure. The researcher collects data from each case, compares and contrasts the findings, and uses various techniques to analyze the data, such as comparative analysis or pattern-matching. The findings of a multiple-case study can be used to develop theories, inform policy or practice, or generate new research questions.

Exploratory Case Study

An exploratory case study is used to explore a new or understudied phenomenon. This type of case study is useful when the researcher wants to generate hypotheses or theories about the phenomenon.

For Example, a researcher might conduct an exploratory case study on a new technology to understand its potential impact on society. The researcher collects data from multiple sources, such as interviews, observations, and documents, and uses various techniques to analyze the data, such as grounded theory or content analysis. The findings of an exploratory case study can be used to generate new research questions, develop theories, or inform policy or practice.

Descriptive Case Study

A descriptive case study is used to describe a particular phenomenon in detail. This type of case study is useful when the researcher wants to provide a comprehensive account of the phenomenon.

For Example, a researcher might conduct a descriptive case study on a particular community to understand its social and economic characteristics. The researcher collects data from multiple sources, such as interviews, observations, and documents, and uses various techniques to analyze the data, such as content analysis or thematic analysis. The findings of a descriptive case study can be used to inform policy or practice or generate new research questions.

Instrumental Case Study

An instrumental case study is used to understand a particular phenomenon that is instrumental in achieving a particular goal. This type of case study is useful when the researcher wants to understand the role of the phenomenon in achieving the goal.

For Example, a researcher might conduct an instrumental case study on a particular policy to understand its impact on achieving a particular goal, such as reducing poverty. The researcher collects data from multiple sources, such as interviews, observations, and documents, and uses various techniques to analyze the data, such as content analysis or thematic analysis. The findings of an instrumental case study can be used to inform policy or practice or generate new research questions.

Case Study Data Collection Methods

Here are some common data collection methods for case studies:

Interviews involve asking questions to individuals who have knowledge or experience relevant to the case study. Interviews can be structured (where the same questions are asked to all participants) or unstructured (where the interviewer follows up on the responses with further questions). Interviews can be conducted in person, over the phone, or through video conferencing.

Observations

Observations involve watching and recording the behavior and activities of individuals or groups relevant to the case study. Observations can be participant (where the researcher actively participates in the activities) or non-participant (where the researcher observes from a distance). Observations can be recorded using notes, audio or video recordings, or photographs.

Documents can be used as a source of information for case studies. Documents can include reports, memos, emails, letters, and other written materials related to the case study. Documents can be collected from the case study participants or from public sources.

Surveys involve asking a set of questions to a sample of individuals relevant to the case study. Surveys can be administered in person, over the phone, through mail or email, or online. Surveys can be used to gather information on attitudes, opinions, or behaviors related to the case study.

Artifacts are physical objects relevant to the case study. Artifacts can include tools, equipment, products, or other objects that provide insights into the case study phenomenon.

How to conduct Case Study Research

Conducting a case study research involves several steps that need to be followed to ensure the quality and rigor of the study. Here are the steps to conduct case study research:

  • Define the research questions: The first step in conducting a case study research is to define the research questions. The research questions should be specific, measurable, and relevant to the case study phenomenon under investigation.
  • Select the case: The next step is to select the case or cases to be studied. The case should be relevant to the research questions and should provide rich and diverse data that can be used to answer the research questions.
  • Collect data: Data can be collected using various methods, such as interviews, observations, documents, surveys, and artifacts. The data collection method should be selected based on the research questions and the nature of the case study phenomenon.
  • Analyze the data: The data collected from the case study should be analyzed using various techniques, such as content analysis, thematic analysis, or grounded theory. The analysis should be guided by the research questions and should aim to provide insights and conclusions relevant to the research questions.
  • Draw conclusions: The conclusions drawn from the case study should be based on the data analysis and should be relevant to the research questions. The conclusions should be supported by evidence and should be clearly stated.
  • Validate the findings: The findings of the case study should be validated by reviewing the data and the analysis with participants or other experts in the field. This helps to ensure the validity and reliability of the findings.
  • Write the report: The final step is to write the report of the case study research. The report should provide a clear description of the case study phenomenon, the research questions, the data collection methods, the data analysis, the findings, and the conclusions. The report should be written in a clear and concise manner and should follow the guidelines for academic writing.

Examples of Case Study

Here are some examples of case study research:

  • The Hawthorne Studies : Conducted between 1924 and 1932, the Hawthorne Studies were a series of case studies conducted by Elton Mayo and his colleagues to examine the impact of work environment on employee productivity. The studies were conducted at the Hawthorne Works plant of the Western Electric Company in Chicago and included interviews, observations, and experiments.
  • The Stanford Prison Experiment: Conducted in 1971, the Stanford Prison Experiment was a case study conducted by Philip Zimbardo to examine the psychological effects of power and authority. The study involved simulating a prison environment and assigning participants to the role of guards or prisoners. The study was controversial due to the ethical issues it raised.
  • The Challenger Disaster: The Challenger Disaster was a case study conducted to examine the causes of the Space Shuttle Challenger explosion in 1986. The study included interviews, observations, and analysis of data to identify the technical, organizational, and cultural factors that contributed to the disaster.
  • The Enron Scandal: The Enron Scandal was a case study conducted to examine the causes of the Enron Corporation’s bankruptcy in 2001. The study included interviews, analysis of financial data, and review of documents to identify the accounting practices, corporate culture, and ethical issues that led to the company’s downfall.
  • The Fukushima Nuclear Disaster : The Fukushima Nuclear Disaster was a case study conducted to examine the causes of the nuclear accident that occurred at the Fukushima Daiichi Nuclear Power Plant in Japan in 2011. The study included interviews, analysis of data, and review of documents to identify the technical, organizational, and cultural factors that contributed to the disaster.

Application of Case Study

Case studies have a wide range of applications across various fields and industries. Here are some examples:

Business and Management

Case studies are widely used in business and management to examine real-life situations and develop problem-solving skills. Case studies can help students and professionals to develop a deep understanding of business concepts, theories, and best practices.

Case studies are used in healthcare to examine patient care, treatment options, and outcomes. Case studies can help healthcare professionals to develop critical thinking skills, diagnose complex medical conditions, and develop effective treatment plans.

Case studies are used in education to examine teaching and learning practices. Case studies can help educators to develop effective teaching strategies, evaluate student progress, and identify areas for improvement.

Social Sciences

Case studies are widely used in social sciences to examine human behavior, social phenomena, and cultural practices. Case studies can help researchers to develop theories, test hypotheses, and gain insights into complex social issues.

Law and Ethics

Case studies are used in law and ethics to examine legal and ethical dilemmas. Case studies can help lawyers, policymakers, and ethical professionals to develop critical thinking skills, analyze complex cases, and make informed decisions.

Purpose of Case Study

The purpose of a case study is to provide a detailed analysis of a specific phenomenon, issue, or problem in its real-life context. A case study is a qualitative research method that involves the in-depth exploration and analysis of a particular case, which can be an individual, group, organization, event, or community.

The primary purpose of a case study is to generate a comprehensive and nuanced understanding of the case, including its history, context, and dynamics. Case studies can help researchers to identify and examine the underlying factors, processes, and mechanisms that contribute to the case and its outcomes. This can help to develop a more accurate and detailed understanding of the case, which can inform future research, practice, or policy.

Case studies can also serve other purposes, including:

  • Illustrating a theory or concept: Case studies can be used to illustrate and explain theoretical concepts and frameworks, providing concrete examples of how they can be applied in real-life situations.
  • Developing hypotheses: Case studies can help to generate hypotheses about the causal relationships between different factors and outcomes, which can be tested through further research.
  • Providing insight into complex issues: Case studies can provide insights into complex and multifaceted issues, which may be difficult to understand through other research methods.
  • Informing practice or policy: Case studies can be used to inform practice or policy by identifying best practices, lessons learned, or areas for improvement.

Advantages of Case Study Research

There are several advantages of case study research, including:

  • In-depth exploration: Case study research allows for a detailed exploration and analysis of a specific phenomenon, issue, or problem in its real-life context. This can provide a comprehensive understanding of the case and its dynamics, which may not be possible through other research methods.
  • Rich data: Case study research can generate rich and detailed data, including qualitative data such as interviews, observations, and documents. This can provide a nuanced understanding of the case and its complexity.
  • Holistic perspective: Case study research allows for a holistic perspective of the case, taking into account the various factors, processes, and mechanisms that contribute to the case and its outcomes. This can help to develop a more accurate and comprehensive understanding of the case.
  • Theory development: Case study research can help to develop and refine theories and concepts by providing empirical evidence and concrete examples of how they can be applied in real-life situations.
  • Practical application: Case study research can inform practice or policy by identifying best practices, lessons learned, or areas for improvement.
  • Contextualization: Case study research takes into account the specific context in which the case is situated, which can help to understand how the case is influenced by the social, cultural, and historical factors of its environment.

Limitations of Case Study Research

There are several limitations of case study research, including:

  • Limited generalizability : Case studies are typically focused on a single case or a small number of cases, which limits the generalizability of the findings. The unique characteristics of the case may not be applicable to other contexts or populations, which may limit the external validity of the research.
  • Biased sampling: Case studies may rely on purposive or convenience sampling, which can introduce bias into the sample selection process. This may limit the representativeness of the sample and the generalizability of the findings.
  • Subjectivity: Case studies rely on the interpretation of the researcher, which can introduce subjectivity into the analysis. The researcher’s own biases, assumptions, and perspectives may influence the findings, which may limit the objectivity of the research.
  • Limited control: Case studies are typically conducted in naturalistic settings, which limits the control that the researcher has over the environment and the variables being studied. This may limit the ability to establish causal relationships between variables.
  • Time-consuming: Case studies can be time-consuming to conduct, as they typically involve a detailed exploration and analysis of a specific case. This may limit the feasibility of conducting multiple case studies or conducting case studies in a timely manner.
  • Resource-intensive: Case studies may require significant resources, including time, funding, and expertise. This may limit the ability of researchers to conduct case studies in resource-constrained settings.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Questionnaire

Questionnaire – Definition, Types, and Examples

Observational Research

Observational Research – Methods and Guide

Quantitative Research

Quantitative Research – Methods, Types and...

Qualitative Research Methods

Qualitative Research Methods

Explanatory Research

Explanatory Research – Types, Methods, Guide

Survey Research

Survey Research – Types, Methods, Examples

  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Best Family Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Guided Meditations
  • Verywell Mind Insights
  • 2023 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

What Is a Case Study?

Weighing the pros and cons of this method of research

Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

single case study sample

Cara Lustik is a fact-checker and copywriter.

single case study sample

Verywell / Colleen Tighe

  • Pros and Cons

What Types of Case Studies Are Out There?

Where do you find data for a case study, how do i write a psychology case study.

A case study is an in-depth study of one person, group, or event. In a case study, nearly every aspect of the subject's life and history is analyzed to seek patterns and causes of behavior. Case studies can be used in many different fields, including psychology, medicine, education, anthropology, political science, and social work.

The point of a case study is to learn as much as possible about an individual or group so that the information can be generalized to many others. Unfortunately, case studies tend to be highly subjective, and it is sometimes difficult to generalize results to a larger population.

While case studies focus on a single individual or group, they follow a format similar to other types of psychology writing. If you are writing a case study, we got you—here are some rules of APA format to reference.  

At a Glance

A case study, or an in-depth study of a person, group, or event, can be a useful research tool when used wisely. In many cases, case studies are best used in situations where it would be difficult or impossible for you to conduct an experiment. They are helpful for looking at unique situations and allow researchers to gather a lot of˜ information about a specific individual or group of people. However, it's important to be cautious of any bias we draw from them as they are highly subjective.

What Are the Benefits and Limitations of Case Studies?

A case study can have its strengths and weaknesses. Researchers must consider these pros and cons before deciding if this type of study is appropriate for their needs.

One of the greatest advantages of a case study is that it allows researchers to investigate things that are often difficult or impossible to replicate in a lab. Some other benefits of a case study:

  • Allows researchers to capture information on the 'how,' 'what,' and 'why,' of something that's implemented
  • Gives researchers the chance to collect information on why one strategy might be chosen over another
  • Permits researchers to develop hypotheses that can be explored in experimental research

On the other hand, a case study can have some drawbacks:

  • It cannot necessarily be generalized to the larger population
  • Cannot demonstrate cause and effect
  • It may not be scientifically rigorous
  • It can lead to bias

Researchers may choose to perform a case study if they want to explore a unique or recently discovered phenomenon. Through their insights, researchers develop additional ideas and study questions that might be explored in future studies.

It's important to remember that the insights from case studies cannot be used to determine cause-and-effect relationships between variables. However, case studies may be used to develop hypotheses that can then be addressed in experimental research.

Case Study Examples

There have been a number of notable case studies in the history of psychology. Much of  Freud's work and theories were developed through individual case studies. Some great examples of case studies in psychology include:

  • Anna O : Anna O. was a pseudonym of a woman named Bertha Pappenheim, a patient of a physician named Josef Breuer. While she was never a patient of Freud's, Freud and Breuer discussed her case extensively. The woman was experiencing symptoms of a condition that was then known as hysteria and found that talking about her problems helped relieve her symptoms. Her case played an important part in the development of talk therapy as an approach to mental health treatment.
  • Phineas Gage : Phineas Gage was a railroad employee who experienced a terrible accident in which an explosion sent a metal rod through his skull, damaging important portions of his brain. Gage recovered from his accident but was left with serious changes in both personality and behavior.
  • Genie : Genie was a young girl subjected to horrific abuse and isolation. The case study of Genie allowed researchers to study whether language learning was possible, even after missing critical periods for language development. Her case also served as an example of how scientific research may interfere with treatment and lead to further abuse of vulnerable individuals.

Such cases demonstrate how case research can be used to study things that researchers could not replicate in experimental settings. In Genie's case, her horrific abuse denied her the opportunity to learn a language at critical points in her development.

This is clearly not something researchers could ethically replicate, but conducting a case study on Genie allowed researchers to study phenomena that are otherwise impossible to reproduce.

There are a few different types of case studies that psychologists and other researchers might use:

  • Collective case studies : These involve studying a group of individuals. Researchers might study a group of people in a certain setting or look at an entire community. For example, psychologists might explore how access to resources in a community has affected the collective mental well-being of those who live there.
  • Descriptive case studies : These involve starting with a descriptive theory. The subjects are then observed, and the information gathered is compared to the pre-existing theory.
  • Explanatory case studies : These   are often used to do causal investigations. In other words, researchers are interested in looking at factors that may have caused certain things to occur.
  • Exploratory case studies : These are sometimes used as a prelude to further, more in-depth research. This allows researchers to gather more information before developing their research questions and hypotheses .
  • Instrumental case studies : These occur when the individual or group allows researchers to understand more than what is initially obvious to observers.
  • Intrinsic case studies : This type of case study is when the researcher has a personal interest in the case. Jean Piaget's observations of his own children are good examples of how an intrinsic case study can contribute to the development of a psychological theory.

The three main case study types often used are intrinsic, instrumental, and collective. Intrinsic case studies are useful for learning about unique cases. Instrumental case studies help look at an individual to learn more about a broader issue. A collective case study can be useful for looking at several cases simultaneously.

The type of case study that psychology researchers use depends on the unique characteristics of the situation and the case itself.

There are a number of different sources and methods that researchers can use to gather information about an individual or group. Six major sources that have been identified by researchers are:

  • Archival records : Census records, survey records, and name lists are examples of archival records.
  • Direct observation : This strategy involves observing the subject, often in a natural setting . While an individual observer is sometimes used, it is more common to utilize a group of observers.
  • Documents : Letters, newspaper articles, administrative records, etc., are the types of documents often used as sources.
  • Interviews : Interviews are one of the most important methods for gathering information in case studies. An interview can involve structured survey questions or more open-ended questions.
  • Participant observation : When the researcher serves as a participant in events and observes the actions and outcomes, it is called participant observation.
  • Physical artifacts : Tools, objects, instruments, and other artifacts are often observed during a direct observation of the subject.

If you have been directed to write a case study for a psychology course, be sure to check with your instructor for any specific guidelines you need to follow. If you are writing your case study for a professional publication, check with the publisher for their specific guidelines for submitting a case study.

Here is a general outline of what should be included in a case study.

Section 1: A Case History

This section will have the following structure and content:

Background information : The first section of your paper will present your client's background. Include factors such as age, gender, work, health status, family mental health history, family and social relationships, drug and alcohol history, life difficulties, goals, and coping skills and weaknesses.

Description of the presenting problem : In the next section of your case study, you will describe the problem or symptoms that the client presented with.

Describe any physical, emotional, or sensory symptoms reported by the client. Thoughts, feelings, and perceptions related to the symptoms should also be noted. Any screening or diagnostic assessments that are used should also be described in detail and all scores reported.

Your diagnosis : Provide your diagnosis and give the appropriate Diagnostic and Statistical Manual code. Explain how you reached your diagnosis, how the client's symptoms fit the diagnostic criteria for the disorder(s), or any possible difficulties in reaching a diagnosis.

Section 2: Treatment Plan

This portion of the paper will address the chosen treatment for the condition. This might also include the theoretical basis for the chosen treatment or any other evidence that might exist to support why this approach was chosen.

  • Cognitive behavioral approach : Explain how a cognitive behavioral therapist would approach treatment. Offer background information on cognitive behavioral therapy and describe the treatment sessions, client response, and outcome of this type of treatment. Make note of any difficulties or successes encountered by your client during treatment.
  • Humanistic approach : Describe a humanistic approach that could be used to treat your client, such as client-centered therapy . Provide information on the type of treatment you chose, the client's reaction to the treatment, and the end result of this approach. Explain why the treatment was successful or unsuccessful.
  • Psychoanalytic approach : Describe how a psychoanalytic therapist would view the client's problem. Provide some background on the psychoanalytic approach and cite relevant references. Explain how psychoanalytic therapy would be used to treat the client, how the client would respond to therapy, and the effectiveness of this treatment approach.
  • Pharmacological approach : If treatment primarily involves the use of medications, explain which medications were used and why. Provide background on the effectiveness of these medications and how monotherapy may compare with an approach that combines medications with therapy or other treatments.

This section of a case study should also include information about the treatment goals, process, and outcomes.

When you are writing a case study, you should also include a section where you discuss the case study itself, including the strengths and limitiations of the study. You should note how the findings of your case study might support previous research. 

In your discussion section, you should also describe some of the implications of your case study. What ideas or findings might require further exploration? How might researchers go about exploring some of these questions in additional studies?

Need More Tips?

Here are a few additional pointers to keep in mind when formatting your case study:

  • Never refer to the subject of your case study as "the client." Instead, use their name or a pseudonym.
  • Read examples of case studies to gain an idea about the style and format.
  • Remember to use APA format when citing references .

Crowe S, Cresswell K, Robertson A, Huby G, Avery A, Sheikh A. The case study approach .  BMC Med Res Methodol . 2011;11:100.

Crowe S, Cresswell K, Robertson A, Huby G, Avery A, Sheikh A. The case study approach . BMC Med Res Methodol . 2011 Jun 27;11:100. doi:10.1186/1471-2288-11-100

Gagnon, Yves-Chantal.  The Case Study as Research Method: A Practical Handbook . Canada, Chicago Review Press Incorporated DBA Independent Pub Group, 2010.

Yin, Robert K. Case Study Research and Applications: Design and Methods . United States, SAGE Publications, 2017.

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

Book cover

Research Design in Business and Management pp 141–170 Cite as

Single Case Research Design

  • Stefan Hunziker 3 &
  • Michael Blankenagel 3  
  • First Online: 04 January 2024

347 Accesses

This chapter addresses single-case research designs’ peculiarities, characteristics, and significant fallacies. A single case research design is a collective term for an in-depth analysis of a small non-random sample. The focus of this design is in-depth. This characteristic distinguishes the case study research from other research designs that understand the individual case as a relatively insignificant and interchangeable aspect of a population or sample. Also, researchers find relevant information on writing a single case research design paper and learn about typical methods used for this research design. The chapter closes by referring to overlapping and adjacent research designs.

This is a preview of subscription content, log in via an institution .

Buying options

  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Barratt, M., Choi, T. Y., & Li, M. (2011). Qualitative case studies in operations management: Trends, research outcomes, and future research implications. Journal of Operations Management, 29 (4), 329–342.

Google Scholar  

Baškarada, S. (2014). Qualitative case studies guidelines. The Qualitative Report, 19 (40), 1–25.

Berg, B., & Lune, H. (2012). Qualitative research methods for the social sciences . Pearson.

Berry, L. L., Conant, J. S. & Parasuraman, A. (1991), “A framework for conducting a servicemarketing audit”. Journal of the Academy of Marketing Science, 19 , 255–266.

Bryman, A. (2004). Social research methods 2nd edn. Oxford University Press, 592.

Burns, R. B. (2000). Introduction to research methods . United States of America.

Boos, M., (1992). A Typologie of Case Studies, in: M. O’S´uilleabhain, E.A. Stuhler, D. de Tombe (Eds.), Research on Cases and Theories , (Vol. I), München.

Creswell, J. W. (2013). Qualitative inquiry and research design. Choosing among five approaches (3rd ed.). SAGE.

Darke, P., Shanks, G., & Broadbent, M. (1998). Successfully completing case study research: Combining rigour, relevance and pragmatism. Inform Syst J, 8 (4), 273–289.

Article   Google Scholar  

Dey, I. (1999). Grounding grounded theory: Guidelines for qualitative inquiry . Academic Press.

Dick, B. (2005). Grounded theory: A thumbnail sketch. Retrieved 11 June 2021 from http://www.scu.edu.au/schools/gcm/ar/arp/grounded.html .

Dooley, L. M. (2002). Case study research and theory building. Advances in Developing Human Resources, 4 (3), 335–354.

Dubé, L., & Paré, G. (2003). Rigor in information systems positivist case research: Current practices, trends, and recommendations. MIS Quarterly, 27, 597–635.

Edmonds, W. A., & Kennedy, T. D. (2012). An applied reference guide to research designs: Quantitative, qualitative, and mixed methods . Sage.

Edmondson, A. & McManus, S. (2007). Methodological fit in management field research. The Academy of Management Review, 32 (4), 1155–1179.

Eisenhardt, K. M. (1989). Building theories from case study research. Academy of Management Review, 14 (4), 532–550.

Flynn, B. B., Sakakibara, S., Schroeder, R. G., Bates, K. A., & Flynn, E. J. (1990). Empirical research methods in operations management. Journal of Operations Management, 9 (2), 250–284.

Flyvbjerg, B. (2001). Making social science matter: Why social inquiry fails and how it can succeed again . Cambridge University Press.

Flyvbjerg, B. (2006). Five misunderstandings about case-study research. Qualitative Inquiry, 12 (2), 219–245.

General Accounting Office. (1990). Case study evaluations. Retrieved May 15, 2021, from https://www.gao.gov/assets/pemd-10.1.9.pdf .

Gerring, J. (2004). What is a case study and what is it good for? American Political Science Review, 98 (2), 341–354.

Glaser, B. G. (1978). Theoretical sensitivity: Advances in the methodology of grounded theory . Sociology Press.

Glaser, B., & Strauss, A. (1967). The discovery of grounded theory: Strategies for qualitative research . Sociology Press.

Gomm, R. (2000). Case study method. Key issues, key texts . SAGE.

Halaweh, M., Fidler, C., & McRobb, S. (2008). Integrating the Grounded Theory Method and Case Study Research Methodology Within IS Research: A Possible ‘Road Map’, ICIS 2008 Proceedings

Halaweh, M. (2012). Integration of grounded theory and case study: An exemplary application from e-commerce security perception research. Journal of Information Technology Theory and Application (JITTA), 13 (1).

Hancock, D., & Algozzine, B. (2016). Doing case study research: A practical guide for beginning researchers (3rd ed.). Teachers College Press.

Hekkala, R. (2007). Grounded theory—the two faces of the methodology and their manifestation in IS research. In Proceedings of the 30th Information Systems Research Seminar in Scandinavia IRIS, 11–14 August, Tampere, Finland (pp. 1–12).

Horton, J., Macve, R., & Struyven, G. (2004). Qualitative Research: Experiences in Using Semi-Structured Interviews. In: Humphrey, Christopher and Lee, Bill H. K., (eds.) The Real Life Guide to Accounting Research: a Behind-The-Scenes View of Using Qualitative Research Methods. Elsevier Science (Firm) , (pp. 339–358 ), Amsterdam, The Netherlands.

Hyett, N., Kenny, A., & Dickson-Swift, V. (2014). Methodology or method? A critical review of qualitative case study reports. International Journal of Qualitative Studies on Health and Well-Being, 9, 23606.

Keating, P. J. (1995). A framework for classifying and evaluating the theoretical contributions of case research in management accounting. Journal of Management Accounting Research, 7, 66.

Levy, J. S. (2008). Case studies: Types, designs, and logics of inference. Conflict Management and Peace Science, 25 (1), 1–18.

Maoz, Z. (2002). Case study methodology in international studies: from storytelling to hypothesis testing. In F. P. Harvey & M. Brecher (Eds.). Evaluating methodology in international studies . University of Michigan Press.

Mayring, P. (2010). Design. In G. Mey & K. Mruck (Hrsg.), Handbuch qualitative Forschung in der Psychologie (S. 225–237). VS Verlag für Sozialwissenschaften.

May, T. (2011). Social research: Issues, methods and process . Open University Press/Mc.

Merriam, S. B. (2002). Qualitative Research in Practice: Examples For discussion and Analysis . Jossey-Bass Publishers.

Merriam, S. B. (2009). Qualitative research in practice: Examples for discussion and analysis . Jossey-Bass publishers.

Meyer, J.-A., & Kittel-Wegner, E. (2002a). Die Fallstudie in der betriebswirtschaftlichen Forschung und Lehre . Stiftungslehrstuhl für ABWL, insb. kleine und mittlere Unternehmen, Universität.

Meyer, J.-A., & Kittel-Wegner, E. (2002b). Die Fallstudie in der betriebswirtschaftlichen Forschung und Lehre, Schriften zu Management und KMU, Nr. 2/02, Universität Flensburg, Mai 2002.

Mitchell, J. C. (1983). Case and situation analysis. The Sociological Review, 31 (2), 187–211.

Ng. (2005). A principal-distributor collaboration moden in the crane industry. Ph.D. Thesis, Graduate College of Management, Southern Cross University, Australia.

Ng, Y. N. K. & Hase, S. (2008). Grounded suggestions for doing a grounded theory business research. Electronic Journal on Business Research Methods, 6 (2).

Otley, D., Anthony J.B. (1994), “Case study research in management accounting and control”. Management Accounting Research, 5 , 45–65.

Onwuegbuzie, A. J., Leech, N. L., & Collins, K. M. (2012). Qualitative analysis techniques for the review of the literature. Qualitative Report, 17 (56).

Piekkari, R., Welch, C., & Paavilainen, E. (2009). The case study as disciplinary convention. Organizational Research Methods, 12 (3), 567–589.

Ridder, H.-G. (2016). Case study research. Approaches, methods, contribution to theory. Sozialwissenschaftliche Forschungsmethoden (vol. 12). Rainer Hampp Verlag.

Ridder, H.-G. (2017). The theory contribution of case study research designs. Business Research, 10 (2), 281–305.

Stake, R. E. (1995). The art of case study research . Sage.

Stake, R. E. (2005). Qualitative case studies. The SAGE handbook of qualitative research (3rd ed.), eds. N. K. Denzin & Y. S. Lincoln (pp. 443–466).

Strauss, A. L., & Corbin, J. (1990). Basics of qualitative research: Grounded theory procedures and techniques . Sage publications.

Strauss, A. L., & Corbin, J. (1998). Basics of qualitative research techniques and procedures for developing grounded theory . Sage.

Tight, M. (2003). Researching higher education . Society for Research into Higher Education; Open University Press.

Tight, M. (2010). The curious case of case study: A viewpoint. International Journal of Social Research Methodology, 13 (4), 329–339.

Walsham, G. (1995). Interpretive case studies in IS research: nature and method. Eur J Inf Syst 4, 74–81.

Walsham, G. (2006). Doing interpretive research. European Journal of Information Systems, 15 (3), 320–330.

Welch, C., Piekkari, R., Plakoyiannaki, E., & Paavilainen-Mäntymäki, E. (2011). Theorising from case studies: Towards a pluralist future for international business research. Journal of International Business Studies, 42 (5), 740–762.

Woods, M. (2009). A contingency theory perspective on the risk management control system within Birmingham city council. Management Accounting Research, 20 (1), 69–81.

Yin, R. K. (1994). Discovering the future of the case study. Method in evaluation research. American Journal of Evaluation, 15 (3), 283–290.

Yin, R. K. (2004). Case study research: Design and methods (3rd ed.). Chongqing University Press.

Yin, R. K. (2009). Case study research: Design and methods (4th ed.). SAGE.

Yin, R. K. (2014). Case study research. Design and methods (5th ed.). SAGE.

Download references

Author information

Authors and affiliations.

Wirtschaft/IFZ, Campus Zug-Rotkreuz, Hochschule Luzern, Zug-Rotkreuz, Zug, Switzerland

Stefan Hunziker & Michael Blankenagel

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Stefan Hunziker .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Fachmedien Wiesbaden GmbH, part of Springer Nature

About this chapter

Cite this chapter.

Hunziker, S., Blankenagel, M. (2024). Single Case Research Design. In: Research Design in Business and Management. Springer Gabler, Wiesbaden. https://doi.org/10.1007/978-3-658-42739-9_8

Download citation

DOI : https://doi.org/10.1007/978-3-658-42739-9_8

Published : 04 January 2024

Publisher Name : Springer Gabler, Wiesbaden

Print ISBN : 978-3-658-42738-2

Online ISBN : 978-3-658-42739-9

eBook Packages : Business and Management Business and Management (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

How to write a case study — examples, templates, and tools

How to write a case study — examples, templates, and tools marquee

It’s a marketer’s job to communicate the effectiveness of a product or service to potential and current customers to convince them to buy and keep business moving. One of the best methods for doing this is to share success stories that are relatable to prospects and customers based on their pain points, experiences, and overall needs.

That’s where case studies come in. Case studies are an essential part of a content marketing plan. These in-depth stories of customer experiences are some of the most effective at demonstrating the value of a product or service. Yet many marketers don’t use them, whether because of their regimented formats or the process of customer involvement and approval.

A case study is a powerful tool for showcasing your hard work and the success your customer achieved. But writing a great case study can be difficult if you’ve never done it before or if it’s been a while. This guide will show you how to write an effective case study and provide real-world examples and templates that will keep readers engaged and support your business.

In this article, you’ll learn:

What is a case study?

How to write a case study, case study templates, case study examples, case study tools.

A case study is the detailed story of a customer’s experience with a product or service that demonstrates their success and often includes measurable outcomes. Case studies are used in a range of fields and for various reasons, from business to academic research. They’re especially impactful in marketing as brands work to convince and convert consumers with relatable, real-world stories of actual customer experiences.

The best case studies tell the story of a customer’s success, including the steps they took, the results they achieved, and the support they received from a brand along the way. To write a great case study, you need to:

  • Celebrate the customer and make them — not a product or service — the star of the story.
  • Craft the story with specific audiences or target segments in mind so that the story of one customer will be viewed as relatable and actionable for another customer.
  • Write copy that is easy to read and engaging so that readers will gain the insights and messages intended.
  • Follow a standardized format that includes all of the essentials a potential customer would find interesting and useful.
  • Support all of the claims for success made in the story with data in the forms of hard numbers and customer statements.

Case studies are a type of review but more in depth, aiming to show — rather than just tell — the positive experiences that customers have with a brand. Notably, 89% of consumers read reviews before deciding to buy, and 79% view case study content as part of their purchasing process. When it comes to B2B sales, 52% of buyers rank case studies as an important part of their evaluation process.

Telling a brand story through the experience of a tried-and-true customer matters. The story is relatable to potential new customers as they imagine themselves in the shoes of the company or individual featured in the case study. Showcasing previous customers can help new ones see themselves engaging with your brand in the ways that are most meaningful to them.

Besides sharing the perspective of another customer, case studies stand out from other content marketing forms because they are based on evidence. Whether pulling from client testimonials or data-driven results, case studies tend to have more impact on new business because the story contains information that is both objective (data) and subjective (customer experience) — and the brand doesn’t sound too self-promotional.

89% of consumers read reviews before buying, 79% view case studies, and 52% of B2B buyers prioritize case studies in the evaluation process.

Case studies are unique in that there’s a fairly standardized format for telling a customer’s story. But that doesn’t mean there isn’t room for creativity. It’s all about making sure that teams are clear on the goals for the case study — along with strategies for supporting content and channels — and understanding how the story fits within the framework of the company’s overall marketing goals.

Here are the basic steps to writing a good case study.

1. Identify your goal

Start by defining exactly who your case study will be designed to help. Case studies are about specific instances where a company works with a customer to achieve a goal. Identify which customers are likely to have these goals, as well as other needs the story should cover to appeal to them.

The answer is often found in one of the buyer personas that have been constructed as part of your larger marketing strategy. This can include anything from new leads generated by the marketing team to long-term customers that are being pressed for cross-sell opportunities. In all of these cases, demonstrating value through a relatable customer success story can be part of the solution to conversion.

2. Choose your client or subject

Who you highlight matters. Case studies tie brands together that might otherwise not cross paths. A writer will want to ensure that the highlighted customer aligns with their own company’s brand identity and offerings. Look for a customer with positive name recognition who has had great success with a product or service and is willing to be an advocate.

The client should also match up with the identified target audience. Whichever company or individual is selected should be a reflection of other potential customers who can see themselves in similar circumstances, having the same problems and possible solutions.

Some of the most compelling case studies feature customers who:

  • Switch from one product or service to another while naming competitors that missed the mark.
  • Experience measurable results that are relatable to others in a specific industry.
  • Represent well-known brands and recognizable names that are likely to compel action.
  • Advocate for a product or service as a champion and are well-versed in its advantages.

Whoever or whatever customer is selected, marketers must ensure they have the permission of the company involved before getting started. Some brands have strict review and approval procedures for any official marketing or promotional materials that include their name. Acquiring those approvals in advance will prevent any miscommunication or wasted effort if there is an issue with their legal or compliance teams.

3. Conduct research and compile data

Substantiating the claims made in a case study — either by the marketing team or customers themselves — adds validity to the story. To do this, include data and feedback from the client that defines what success looks like. This can be anything from demonstrating return on investment (ROI) to a specific metric the customer was striving to improve. Case studies should prove how an outcome was achieved and show tangible results that indicate to the customer that your solution is the right one.

This step could also include customer interviews. Make sure that the people being interviewed are key stakeholders in the purchase decision or deployment and use of the product or service that is being highlighted. Content writers should work off a set list of questions prepared in advance. It can be helpful to share these with the interviewees beforehand so they have time to consider and craft their responses. One of the best interview tactics to keep in mind is to ask questions where yes and no are not natural answers. This way, your subject will provide more open-ended responses that produce more meaningful content.

4. Choose the right format

There are a number of different ways to format a case study. Depending on what you hope to achieve, one style will be better than another. However, there are some common elements to include, such as:

  • An engaging headline
  • A subject and customer introduction
  • The unique challenge or challenges the customer faced
  • The solution the customer used to solve the problem
  • The results achieved
  • Data and statistics to back up claims of success
  • A strong call to action (CTA) to engage with the vendor

It’s also important to note that while case studies are traditionally written as stories, they don’t have to be in a written format. Some companies choose to get more creative with their case studies and produce multimedia content, depending on their audience and objectives. Case study formats can include traditional print stories, interactive web or social content, data-heavy infographics, professionally shot videos, podcasts, and more.

5. Write your case study

We’ll go into more detail later about how exactly to write a case study, including templates and examples. Generally speaking, though, there are a few things to keep in mind when writing your case study.

  • Be clear and concise. Readers want to get to the point of the story quickly and easily, and they’ll be looking to see themselves reflected in the story right from the start.
  • Provide a big picture. Always make sure to explain who the client is, their goals, and how they achieved success in a short introduction to engage the reader.
  • Construct a clear narrative. Stick to the story from the perspective of the customer and what they needed to solve instead of just listing product features or benefits.
  • Leverage graphics. Incorporating infographics, charts, and sidebars can be a more engaging and eye-catching way to share key statistics and data in readable ways.
  • Offer the right amount of detail. Most case studies are one or two pages with clear sections that a reader can skim to find the information most important to them.
  • Include data to support claims. Show real results — both facts and figures and customer quotes — to demonstrate credibility and prove the solution works.

6. Promote your story

Marketers have a number of options for distribution of a freshly minted case study. Many brands choose to publish case studies on their website and post them on social media. This can help support SEO and organic content strategies while also boosting company credibility and trust as visitors see that other businesses have used the product or service.

Marketers are always looking for quality content they can use for lead generation. Consider offering a case study as gated content behind a form on a landing page or as an offer in an email message. One great way to do this is to summarize the content and tease the full story available for download after the user takes an action.

Sales teams can also leverage case studies, so be sure they are aware that the assets exist once they’re published. Especially when it comes to larger B2B sales, companies often ask for examples of similar customer challenges that have been solved.

Now that you’ve learned a bit about case studies and what they should include, you may be wondering how to start creating great customer story content. Here are a couple of templates you can use to structure your case study.

Template 1 — Challenge-solution-result format

  • Start with an engaging title. This should be fewer than 70 characters long for SEO best practices. One of the best ways to approach the title is to include the customer’s name and a hint at the challenge they overcame in the end.
  • Create an introduction. Lead with an explanation as to who the customer is, the need they had, and the opportunity they found with a specific product or solution. Writers can also suggest the success the customer experienced with the solution they chose.
  • Present the challenge. This should be several paragraphs long and explain the problem the customer faced and the issues they were trying to solve. Details should tie into the company’s products and services naturally. This section needs to be the most relatable to the reader so they can picture themselves in a similar situation.
  • Share the solution. Explain which product or service offered was the ideal fit for the customer and why. Feel free to delve into their experience setting up, purchasing, and onboarding the solution.
  • Explain the results. Demonstrate the impact of the solution they chose by backing up their positive experience with data. Fill in with customer quotes and tangible, measurable results that show the effect of their choice.
  • Ask for action. Include a CTA at the end of the case study that invites readers to reach out for more information, try a demo, or learn more — to nurture them further in the marketing pipeline. What you ask of the reader should tie directly into the goals that were established for the case study in the first place.

Template 2 — Data-driven format

  • Start with an engaging title. Be sure to include a statistic or data point in the first 70 characters. Again, it’s best to include the customer’s name as part of the title.
  • Create an overview. Share the customer’s background and a short version of the challenge they faced. Present the reason a particular product or service was chosen, and feel free to include quotes from the customer about their selection process.
  • Present data point 1. Isolate the first metric that the customer used to define success and explain how the product or solution helped to achieve this goal. Provide data points and quotes to substantiate the claim that success was achieved.
  • Present data point 2. Isolate the second metric that the customer used to define success and explain what the product or solution did to achieve this goal. Provide data points and quotes to substantiate the claim that success was achieved.
  • Present data point 3. Isolate the final metric that the customer used to define success and explain what the product or solution did to achieve this goal. Provide data points and quotes to substantiate the claim that success was achieved.
  • Summarize the results. Reiterate the fact that the customer was able to achieve success thanks to a specific product or service. Include quotes and statements that reflect customer satisfaction and suggest they plan to continue using the solution.
  • Ask for action. Include a CTA at the end of the case study that asks readers to reach out for more information, try a demo, or learn more — to further nurture them in the marketing pipeline. Again, remember that this is where marketers can look to convert their content into action with the customer.

While templates are helpful, seeing a case study in action can also be a great way to learn. Here are some examples of how Adobe customers have experienced success.

Juniper Networks

One example is the Adobe and Juniper Networks case study , which puts the reader in the customer’s shoes. The beginning of the story quickly orients the reader so that they know exactly who the article is about and what they were trying to achieve. Solutions are outlined in a way that shows Adobe Experience Manager is the best choice and a natural fit for the customer. Along the way, quotes from the client are incorporated to help add validity to the statements. The results in the case study are conveyed with clear evidence of scale and volume using tangible data.

A Lenovo case study showing statistics, a pull quote and featured headshot, the headline "The customer is king.," and Adobe product links.

The story of Lenovo’s journey with Adobe is one that spans years of planning, implementation, and rollout. The Lenovo case study does a great job of consolidating all of this into a relatable journey that other enterprise organizations can see themselves taking, despite the project size. This case study also features descriptive headers and compelling visual elements that engage the reader and strengthen the content.

Tata Consulting

When it comes to using data to show customer results, this case study does an excellent job of conveying details and numbers in an easy-to-digest manner. Bullet points at the start break up the content while also helping the reader understand exactly what the case study will be about. Tata Consulting used Adobe to deliver elevated, engaging content experiences for a large telecommunications client of its own — an objective that’s relatable for a lot of companies.

Case studies are a vital tool for any marketing team as they enable you to demonstrate the value of your company’s products and services to others. They help marketers do their job and add credibility to a brand trying to promote its solutions by using the experiences and stories of real customers.

When you’re ready to get started with a case study:

  • Think about a few goals you’d like to accomplish with your content.
  • Make a list of successful clients that would be strong candidates for a case study.
  • Reach out to the client to get their approval and conduct an interview.
  • Gather the data to present an engaging and effective customer story.

Adobe can help

There are several Adobe products that can help you craft compelling case studies. Adobe Experience Platform helps you collect data and deliver great customer experiences across every channel. Once you’ve created your case studies, Experience Platform will help you deliver the right information to the right customer at the right time for maximum impact.

To learn more, watch the Adobe Experience Platform story .

Keep in mind that the best case studies are backed by data. That’s where Adobe Real-Time Customer Data Platform and Adobe Analytics come into play. With Real-Time CDP, you can gather the data you need to build a great case study and target specific customers to deliver the content to the right audience at the perfect moment.

Watch the Real-Time CDP overview video to learn more.

Finally, Adobe Analytics turns real-time data into real-time insights. It helps your business collect and synthesize data from multiple platforms to make more informed decisions and create the best case study possible.

Request a demo to learn more about Adobe Analytics.

https://business.adobe.com/blog/perspectives/b2b-ecommerce-10-case-studies-inspire-you

https://business.adobe.com/blog/basics/business-case

https://business.adobe.com/blog/basics/what-is-real-time-analytics

How to write a case study — examples, templates, and tools card image

We use essential cookies to make Venngage work. By clicking “Accept All Cookies”, you agree to the storing of cookies on your device to enhance site navigation, analyze site usage, and assist in our marketing efforts.

Manage Cookies

Cookies and similar technologies collect certain information about how you’re using our website. Some of them are essential, and without them you wouldn’t be able to use Venngage. But others are optional, and you get to choose whether we use them or not.

Strictly Necessary Cookies

These cookies are always on, as they’re essential for making Venngage work, and making it safe. Without these cookies, services you’ve asked for can’t be provided.

Show cookie providers

  • Google Login

Functionality Cookies

These cookies help us provide enhanced functionality and personalisation, and remember your settings. They may be set by us or by third party providers.

Performance Cookies

These cookies help us analyze how many people are using Venngage, where they come from and how they're using it. If you opt out of these cookies, we can’t get feedback to make Venngage better for you and all our users.

  • Google Analytics

Targeting Cookies

These cookies are set by our advertising partners to track your activity and show you relevant Venngage ads on other sites as you browse the internet.

  • Google Tag Manager
  • Infographics
  • Daily Infographics
  • Graphic Design
  • Graphs and Charts
  • Data Visualization
  • Human Resources
  • Training and Development
  • Beginner Guides

Blog Graphic Design

15+ Professional Case Study Examples [Design Tips + Templates]

By Alice Corner , Jan 12, 2023

Venngage case study examples

Have you ever bought something — within the last 10 years or so — without reading its reviews or without a recommendation or prior experience of using it?

If the answer is no — or at least, rarely — you get my point.

Positive reviews matter for selling to regular customers, and for B2B or SaaS businesses, detailed case studies are important too.

Wondering how to craft a compelling case study ? No worries—I’ve got you covered with 15 marketing case study templates , helpful tips, and examples to ensure your case study converts effectively.

Click to jump ahead:

  • What is a Case Study?

Business Case Study Examples

Simple case study examples.

  • Marketing Case Study Examples

Sales Case Study Examples

  • Case Study FAQs

What is a case study?

A case study is an in-depth, detailed analysis of a specific real-world situation. For example, a case study can be about an individual, group, event, organization, or phenomenon. The purpose of a case study is to understand its complexities and gain insights into a particular instance or situation.

In the context of a business, however, case studies take customer success stories and explore how they use your product to help them achieve their business goals.

Case Study Definition LinkedIn Post

As well as being valuable marketing tools , case studies are a good way to evaluate your product as it allows you to objectively examine how others are using it.

It’s also a good way to interview your customers about why they work with you.

Related: What is a Case Study? [+6 Types of Case Studies]

Marketing Case Study Template

A marketing case study showcases how your product or services helped potential clients achieve their business goals. You can also create case studies of internal, successful marketing projects. A marketing case study typically includes:

  • Company background and history
  • The challenge
  • How you helped
  • Specific actions taken
  • Visuals or Data
  • Client testimonials

Here’s an example of a marketing case study template:

marketing case study example

Whether you’re a B2B or B2C company, business case studies can be a powerful resource to help with your sales, marketing, and even internal departmental awareness.

Business and business management case studies should encompass strategic insights alongside anecdotal and qualitative findings, like in the business case study examples below.

Conduct a B2B case study by researching the company holistically

When it comes to writing a case study, make sure you approach the company holistically and analyze everything from their social media to their sales.

Think about every avenue your product or service has been of use to your case study company, and ask them about the impact this has had on their wider company goals.

Venngage orange marketing case study example

In business case study examples like the one above, we can see that the company has been thought about holistically simply by the use of icons.

By combining social media icons with icons that show in-person communication we know that this is a well-researched and thorough case study.

This case study report example could also be used within an annual or end-of-year report.

Highlight the key takeaway from your marketing case study

To create a compelling case study, identify the key takeaways from your research. Use catchy language to sum up this information in a sentence, and present this sentence at the top of your page.

This is “at a glance” information and it allows people to gain a top-level understanding of the content immediately. 

Purple SAAS Business Case Study Template

You can use a large, bold, contrasting font to help this information stand out from the page and provide interest.

Learn  how to choose fonts  effectively with our Venngage guide and once you’ve done that.

Upload your fonts and  brand colors  to Venngage using the  My Brand Kit  tool and see them automatically applied to your designs.

The heading is the ideal place to put the most impactful information, as this is the first thing that people will read.

In this example, the stat of “Increase[d] lead quality by 90%” is used as the header. It makes customers want to read more to find out how exactly lead quality was increased by such a massive amount.

Purple SAAS Business Case Study Template Header

If you’re conducting an in-person interview, you could highlight a direct quote or insight provided by your interview subject.

Pick out a catchy sentence or phrase, or the key piece of information your interview subject provided and use that as a way to draw a potential customer in.

Use charts to visualize data in your business case studies

Charts are an excellent way to visualize data and to bring statistics and information to life. Charts make information easier to understand and to illustrate trends or patterns.

Making charts is even easier with Venngage.

In this consulting case study example, we can see that a chart has been used to demonstrate the difference in lead value within the Lead Elves case study.

Adding a chart here helps break up the information and add visual value to the case study. 

Red SAAS Business Case Study Template

Using charts in your case study can also be useful if you’re creating a project management case study.

You could use a Gantt chart or a project timeline to show how you have managed the project successfully.

event marketing project management gantt chart example

Use direct quotes to build trust in your marketing case study

To add an extra layer of authenticity you can include a direct quote from your customer within your case study.

According to research from Nielsen , 92% of people will trust a recommendation from a peer and 70% trust recommendations even if they’re from somebody they don’t know.

Case study peer recommendation quote

So if you have a customer or client who can’t stop singing your praises, make sure you get a direct quote from them and include it in your case study.

You can either lift part of the conversation or interview, or you can specifically request a quote. Make sure to ask for permission before using the quote.

Contrast Lead Generation Business Case Study Template

This design uses a bright contrasting speech bubble to show that it includes a direct quote, and helps the quote stand out from the rest of the text.

This will help draw the customer’s attention directly to the quote, in turn influencing them to use your product or service.

Less is often more, and this is especially true when it comes to creating designs. Whilst you want to create a professional-looking, well-written and design case study – there’s no need to overcomplicate things.

These simple case study examples show that smart clean designs and informative content can be an effective way to showcase your successes.

Use colors and fonts to create a professional-looking case study

Business case studies shouldn’t be boring. In fact, they should be beautifully and professionally designed.

This means the normal rules of design apply. Use fonts, colors, and icons to create an interesting and visually appealing case study.

In this case study example, we can see how multiple fonts have been used to help differentiate between the headers and content, as well as complementary colors and eye-catching icons.

Blue Simple Business Case Study Template

Marketing case study examples

Marketing case studies are incredibly useful for showing your marketing successes. Every successful marketing campaign relies on influencing a consumer’s behavior, and a great case study can be a great way to spotlight your biggest wins.

In the marketing case study examples below, a variety of designs and techniques to create impactful and effective case studies.

Show off impressive results with a bold marketing case study

Case studies are meant to show off your successes, so make sure you feature your positive results prominently. Using bold and bright colors as well as contrasting shapes, large bold fonts, and simple icons is a great way to highlight your wins.

In well-written case study examples like the one below, the big wins are highlighted on the second page with a bright orange color and are highlighted in circles.

Making the important data stand out is especially important when attracting a prospective customer with marketing case studies.

Light simplebusiness case study template

Use a simple but clear layout in your case study

Using a simple layout in your case study can be incredibly effective, like in the example of a case study below.

Keeping a clean white background, and using slim lines to help separate the sections is an easy way to format your case study.

Making the information clear helps draw attention to the important results, and it helps improve the  accessibility of the design .

Business case study examples like this would sit nicely within a larger report, with a consistent layout throughout.

Modern lead Generaton Business Case Study Template

Use visuals and icons to create an engaging and branded business case study

Nobody wants to read pages and pages of text — and that’s why Venngage wants to help you communicate your ideas visually.

Using icons, graphics, photos, or patterns helps create a much more engaging design. 

With this Blue Cap case study icons, colors, and impactful pattern designs have been used to create an engaging design that catches your eye.

Social Media Business Case Study template

Use a monochromatic color palette to create a professional and clean case study

Let your research shine by using a monochromatic and minimalistic color palette.

By sticking to one color, and leaving lots of blank space you can ensure your design doesn’t distract a potential customer from your case study content.

Color combination examples

In this case study on Polygon Media, the design is simple and professional, and the layout allows the prospective customer to follow the flow of information.

The gradient effect on the left-hand column helps break up the white background and adds an interesting visual effect.

Gray Lead Generation Business Case Study Template

Did you know you can generate an accessible color palette with Venngage? Try our free accessible color palette generator today and create a case study that delivers and looks pleasant to the eye:

Venngage's accessible color palette generator

Add long term goals in your case study

When creating a case study it’s a great idea to look at both the short term and the long term goals of the company to gain the best understanding possible of the insights they provide.

Short-term goals will be what the company or person hopes to achieve in the next few months, and long-term goals are what the company hopes to achieve in the next few years.

Check out this modern pattern design example of a case study below:

Lead generation business case study template

In this case study example, the short and long-term goals are clearly distinguished by light blue boxes and placed side by side so that they are easy to compare.

Lead generation case study example short term goals

Use a strong introductory paragraph to outline the overall strategy and goals before outlining the specific short-term and long-term goals to help with clarity.

This strategy can also be handy when creating a consulting case study.

Use data to make concrete points about your sales and successes

When conducting any sort of research stats, facts, and figures are like gold dust (aka, really valuable).

Being able to quantify your findings is important to help understand the information fully. Saying sales increased 10% is much more effective than saying sales increased.

While sales dashboards generally tend it make it all about the numbers and charts, in sales case study examples, like this one, the key data and findings can be presented with icons. This contributes to the potential customer’s better understanding of the report.

They can clearly comprehend the information and it shows that the case study has been well researched.

Vibrant Content Marketing Case Study Template

Use emotive, persuasive, or action based language in your marketing case study

Create a compelling case study by using emotive, persuasive and action-based language when customizing your case study template.

Case study example pursuasive language

In this well-written case study example, we can see that phrases such as “Results that Speak Volumes” and “Drive Sales” have been used.

Using persuasive language like you would in a blog post. It helps inspire potential customers to take action now.

Bold Content Marketing Case Study Template

Keep your potential customers in mind when creating a customer case study for marketing

82% of marketers use case studies in their marketing  because it’s such an effective tool to help quickly gain customers’ trust and to showcase the potential of your product.

Why are case studies such an important tool in content marketing?

By writing a case study you’re telling potential customers that they can trust you because you’re showing them that other people do.

Not only that, but if you have a SaaS product, business case studies are a great way to show how other people are effectively using your product in their company.

In this case study, Network is demonstrating how their product has been used by Vortex Co. with great success; instantly showing other potential customers that their tool works and is worth using.

Teal Social Media Business Case Study Template

Related: 10+ Case Study Infographic Templates That Convert

Case studies are particularly effective as a sales technique.

A sales case study is like an extended customer testimonial, not only sharing opinions of your product – but showcasing the results you helped your customer achieve.

Make impactful statistics pop in your sales case study

Writing a case study doesn’t mean using text as the only medium for sharing results.

You should use icons to highlight areas of your research that are particularly interesting or relevant, like in this example of a case study:

Coral content marketing case study template.jpg

Icons are a great way to help summarize information quickly and can act as visual cues to help draw the customer’s attention to certain areas of the page.

In some of the business case study examples above, icons are used to represent the impressive areas of growth and are presented in a way that grabs your attention.

Use high contrast shapes and colors to draw attention to key information in your sales case study

Help the key information stand out within your case study by using high contrast shapes and colors.

Use a complementary or contrasting color, or use a shape such as a rectangle or a circle for maximum impact.

Blue case study example case growth

This design has used dark blue rectangles to help separate the information and make it easier to read.

Coupled with icons and strong statistics, this information stands out on the page and is easily digestible and retainable for a potential customer.

Blue Content Marketing Case Study Tempalte

Case Study Examples Summary

Once you have created your case study, it’s best practice to update your examples on a regular basis to include up-to-date statistics, data, and information.

You should update your business case study examples often if you are sharing them on your website .

It’s also important that your case study sits within your brand guidelines – find out how Venngage’s My Brand Kit tool can help you create consistently branded case study templates.

Case studies are important marketing tools – but they shouldn’t be the only tool in your toolbox. Content marketing is also a valuable way to earn consumer trust.

Case Study FAQ

Why should you write a case study.

Case studies are an effective marketing technique to engage potential customers and help build trust.

By producing case studies featuring your current clients or customers, you are showcasing how your tool or product can be used. You’re also showing that other people endorse your product.

In addition to being a good way to gather positive testimonials from existing customers , business case studies are good educational resources and can be shared amongst your company or team, and used as a reference for future projects.

How should you write a case study?

To create a great case study, you should think strategically. The first step, before starting your case study research, is to think about what you aim to learn or what you aim to prove.

You might be aiming to learn how a company makes sales or develops a new product. If this is the case, base your questions around this.

You can learn more about writing a case study  from our extensive guide.

Related: How to Present a Case Study like a Pro (With Examples)

Some good questions you could ask would be:

  • Why do you use our tool or service?
  • How often do you use our tool or service?
  • What does the process of using our product look like to you?
  • If our product didn’t exist, what would you be doing instead?
  • What is the number one benefit you’ve found from using our tool?

You might also enjoy:

  • 12 Essential Consulting Templates For Marketing, Planning and Branding
  • Best Marketing Strategies for Consultants and Freelancers in 2019 [Study + Infographic]

IMAGES

  1. 10+ Successful Case Study Examples (Design Tips + Free Case Study Format)

    single case study sample

  2. 49 Free Case Study Templates ( + Case Study Format Examples + )

    single case study sample

  3. Case study 5

    single case study sample

  4. Case Study Solution, Case Study Analysis, Case Solution of all Case Studies by Case Solution and

    single case study sample

  5. Sample Case Studies Used In Research

    single case study sample

  6. 15+ Case Study Examples, Design Tips & Templates

    single case study sample

VIDEO

  1. 10

  2. Case Interview Example

  3. MPC-005, BLOCK-3, UNIT-2 #IGNOU-#MAPC 1st Year

  4. Maximizing Trial Success: Selecting Key Facts

  5. Saddle pressure mapping in bikefitting: single case study with female rider

  6. How to write a Use Case Description with a template?

COMMENTS

  1. Single-Case Design, Analysis, and Quality Assessment for Intervention Research

    The purpose of this article is to describe single-case studies, and contrast them with case studies and randomized clinical trials. We will highlight current research designs, analysis techniques, and quality appraisal tools relevant for single-case rehabilitation research. ... and practice effects. 2,12 Sample data from a single case AB study ...

  2. PDF Single-Case Design Research Methods

    Studies that use a single-case design (SCD) measure outcomes for cases (such as a child or family) repeatedly during multiple phases of a study to determine the success of an intervention. The number of phases in the study will depend on the research questions, intervention, and outcome(s) of interest (see Types of SCDs on page 4 for examples).

  3. Case Study Methodology of Qualitative Research: Key Attributes and

    Within a case study research, one may study a single case or multiple cases. Single case studies are most common in case study researches. Yin (2014, p. 59) says that single cases are 'eminently justifiable' under certain conditions: (a) when the case under study is unique or atypical, and hence, its study is revelatory, (b) when the case ...

  4. Single Case Research Design

    A single case study research design is a collective term for an in-depth analysis of a small non-random sample. The focus on this design is on in-depth. This characteristic distinguishes the case study research from other research designs that understand the individual case as a rather insignificant and interchangeable aspect of a population or ...

  5. What Is a Case Study?

    Revised on November 20, 2023. A case study is a detailed study of a specific subject, such as a person, group, place, event, organization, or phenomenon. Case studies are commonly used in social, educational, clinical, and business research. A case study research design usually involves qualitative methods, but quantitative methods are ...

  6. (PDF) Qualitative Case Study Methodology: Study Design and

    so, you can consider a holisti c single case study (Yin, 2003). Pamela Baxter and Susan Jack 550. ... a more efficient and easy-to-understand reorganization of the case study examples, and updated ...

  7. Single-Case Experimental Designs: A Systematic Review of Published

    The single-case experiment has a storied history in psychology dating back to the field's founders: Fechner (1889), Watson (1925), and Skinner (1938).It has been used to inform and develop theory, examine interpersonal processes, study the behavior of organisms, establish the effectiveness of psychological interventions, and address a host of other research questions (for a review, see ...

  8. PDF Single Cases: The What, Why and How

    Single case research typically requires a large amount of data since the justification of. using one case is often unusual access to a level of granular detail not permitted by multiple. cases. Researchers can generally collect three types of qualitative data: (1) interviews, (2) archival data, and (3) observations.

  9. Single case studies are a powerful tool for developing ...

    The unique insights that single case studies have provided illustrate the value of in-depth investigation within an individual. ... K. Comparing a single case to a control sample: testing for ...

  10. Single-Case Experimental Designs

    Single-case experimental designs are a family of experimental designs that are characterized by researcher manipulation of an independent variable and repeated measurement of a dependent variable before (i.e., baseline) and after (i.e., intervention phase) introducing the independent variable. In single-case experimental designs a case is the ...

  11. The Advantages and Limitations of Single Case Study Analysis

    Single case study analyses offer empirically-rich, context-specific, holistic accounts and contribute to both theory-building and, to a lesser extent, theory-testing. ... and infrequent phenomena that lie at the heart of the subfield" (Bennett and Elman, 2007: 171). Using selected examples from within the International Relations literature[1 ...

  12. Case Study

    A single-case study is an in-depth analysis of a single case. This type of case study is useful when the researcher wants to understand a specific phenomenon in detail. ... Examples of Case Study. Here are some examples of case study research: The Hawthorne Studies: Conducted between 1924 and 1932, the Hawthorne Studies were a series of case ...

  13. Case Study: Definition, Examples, Types, and How to Write

    A case study is an in-depth study of one person, group, or event. In a case study, nearly every aspect of the subject's life and history is analyzed to seek patterns and causes of behavior. Case studies can be used in many different fields, including psychology, medicine, education, anthropology, political science, and social work.

  14. The Family of Single-Case Experimental Designs

    Abstract. Single-case experimental designs (SCEDs) represent a family of research designs that use experimental methods to study the effects of treatments on outcomes. The fundamental unit of analysis is the single case—which can be an individual, clinic, or community—ideally with replications of effects within and/or between cases.

  15. PDF Design Options for Home Visiting Evaluation SINGLE CASE DESIGN BRIEF

    Single case design (SCD), often referred to as single subject design, is an evaluation method that can be used to rigorously test the success of an intervention or treatment on a particular case (i.e., a person, school, community) and to also provide evidence about the general effectiveness of an intervention using a relatively small sample size.

  16. Single Case Research Design

    Policies and ethics. This chapter addresses single-case research designs' peculiarities, characteristics, and significant fallacies. A single case research design is a collective term for an in-depth analysis of a small non-random sample. The focus of this design is in-depth.

  17. Case Study Method: A Step-by-Step Guide for Business Researchers

    The authors have recently conducted an in-depth case study in the Information and Communication Technology (ICT) industry of New Zealand. A multiple case studies approach was adopted that spanned over 2 years, as it is difficult to investigate all the aspects of a phenomenon in a single case study (Cruzes, Dybå, Runeson, & Höst, 2015). The ...

  18. (PDF) Publishing a single-case study

    likely know, the study of a single case has a. long and important tradition in behavior. therapy (see chapter 9 of Hayes, Barlow, &. Nelson-Gray, 1999, for an inspiring discus-. sion of this topic ...

  19. Single Case Study

    Case study. Nikolai Mansourov, Djenana Campara, in System Assurance, 2011. Publisher Summary. This chapter uses a single case study to illustrate some of the activities of a system assurance evaluation, highlighting the exchanges of content and managing pieces of cyber-security knowledge in an integrated system model throughout the entire system assurance project.

  20. How to write a case study

    Case study examples. While templates are helpful, seeing a case study in action can also be a great way to learn. Here are some examples of how Adobe customers have experienced success. Juniper Networks. One example is the Adobe and Juniper Networks case study, which puts the reader in the customer's shoes.

  21. PDF Developing Sampling Frame for Case Study: Challenges and Conditions

    Examples of single-case that can be studied are an individual, an organization or a community. A single-case that involves one participant is common in clinical psychology, medical ... Third, a single-case study can be the design of choice when it involves revelatory case. Liebow (in Yin, 2009) conducted such study to unfold the everyday lives ...

  22. 15+ Case Study Examples, Design Tips & Templates

    This means the normal rules of design apply. Use fonts, colors, and icons to create an interesting and visually appealing case study. In this case study example, we can see how multiple fonts have been used to help differentiate between the headers and content, as well as complementary colors and eye-catching icons.