Quantitative Data Analysis: A Comprehensive Guide

By: Ofem Eteng | Published: May 18, 2022

Related Articles

how to write data analysis for quantitative research

A healthcare giant successfully introduces the most effective drug dosage through rigorous statistical modeling, saving countless lives. A marketing team predicts consumer trends with uncanny accuracy, tailoring campaigns for maximum impact.

Table of Contents

These trends and dosages are not just any numbers but are a result of meticulous quantitative data analysis. Quantitative data analysis offers a robust framework for understanding complex phenomena, evaluating hypotheses, and predicting future outcomes.

In this blog, we’ll walk through the concept of quantitative data analysis, the steps required, its advantages, and the methods and techniques that are used in this analysis. Read on!

What is Quantitative Data Analysis?

Quantitative data analysis is a systematic process of examining, interpreting, and drawing meaningful conclusions from numerical data. It involves the application of statistical methods, mathematical models, and computational techniques to understand patterns, relationships, and trends within datasets.

Quantitative data analysis methods typically work with algorithms, mathematical analysis tools, and software to gain insights from the data, answering questions such as how many, how often, and how much. Data for quantitative data analysis is usually collected from close-ended surveys, questionnaires, polls, etc. The data can also be obtained from sales figures, email click-through rates, number of website visitors, and percentage revenue increase. 

Ditch the manual process of writing long commands to migrate your data and choose Hevo’s no-code platform to streamline your migration process to get analysis-ready data .

  • Transform your data for analysis with features like drag and drop and custom Python scripts.
  • 150+ connectors , including 60+ free sources.
  • Eliminate the need for manual schema mapping with the auto-mapping feature.

Try Hevo and discover how companies like EdApp have chosen Hevo over tools like Stitch to “build faster and more granular in-app reporting for their customers.”

Quantitative Data Analysis vs Qualitative Data Analysis

When we talk about data, we directly think about the pattern, the relationship, and the connection between the datasets – analyzing the data in short. Therefore when it comes to data analysis, there are broadly two types – Quantitative Data Analysis and Qualitative Data Analysis.

Quantitative data analysis revolves around numerical data and statistics, which are suitable for functions that can be counted or measured. In contrast, qualitative data analysis includes description and subjective information – for things that can be observed but not measured.

Let us differentiate between Quantitative Data Analysis and Quantitative Data Analysis for a better understanding.

Numerical data – statistics, counts, metrics measurementsText data – customer feedback, opinions, documents, notes, audio/video recordings
Close-ended surveys, polls and experiments.Open-ended questions, descriptive interviews
What? How much? Why (to a certain extent)?How? Why? What are individual experiences and motivations?
Statistical programming software like R, Python, SAS and Data visualization like Tableau, Power BINVivo, Atlas.ti for qualitative coding.
Word processors and highlighters – Mindmaps and visual canvases
Best used for large sample sizes for quick answers.Best used for small to middle sample sizes for descriptive insights

Data Preparation Steps for Quantitative Data Analysis

Quantitative data has to be gathered and cleaned before proceeding to the stage of analyzing it. Below are the steps to prepare a data before quantitative research analysis:

  • Step 1: Data Collection

Before beginning the analysis process, you need data. Data can be collected through rigorous quantitative research, which includes methods such as interviews, focus groups, surveys, and questionnaires.

  • Step 2: Data Cleaning

Once the data is collected, begin the data cleaning process by scanning through the entire data for duplicates, errors, and omissions. Keep a close eye for outliers (data points that are significantly different from the majority of the dataset) because they can skew your analysis results if they are not removed.

This data-cleaning process ensures data accuracy, consistency and relevancy before analysis.

  • Step 3: Data Analysis and Interpretation

Now that you have collected and cleaned your data, it is now time to carry out the quantitative analysis. There are two methods of quantitative data analysis, which we will discuss in the next section.

However, if you have data from multiple sources, collecting and cleaning it can be a cumbersome task. This is where Hevo Data steps in. With Hevo, extracting, transforming, and loading data from source to destination becomes a seamless task, eliminating the need for manual coding. This not only saves valuable time but also enhances the overall efficiency of data analysis and visualization, empowering users to derive insights quickly and with precision

Now that you are familiar with what quantitative data analysis is and how to prepare your data for analysis, the focus will shift to the purpose of this article, which is to describe the methods and techniques of quantitative data analysis.

how to write data analysis for quantitative research

Methods and Techniques of Quantitative Data Analysis

Quantitative data analysis employs two techniques to extract meaningful insights from datasets, broadly. The first method is descriptive statistics, which summarizes and portrays essential features of a dataset, such as mean, median, and standard deviation.

Inferential statistics, the second method, extrapolates insights and predictions from a sample dataset to make broader inferences about an entire population, such as hypothesis testing and regression analysis.

An in-depth explanation of both the methods is provided below:

  • Descriptive Statistics
  • Inferential Statistics

1) Descriptive Statistics

Descriptive statistics as the name implies is used to describe a dataset. It helps understand the details of your data by summarizing it and finding patterns from the specific data sample. They provide absolute numbers obtained from a sample but do not necessarily explain the rationale behind the numbers and are mostly used for analyzing single variables. The methods used in descriptive statistics include: 

  • Mean:   This calculates the numerical average of a set of values.
  • Median: This is used to get the midpoint of a set of values when the numbers are arranged in numerical order.
  • Mode: This is used to find the most commonly occurring value in a dataset.
  • Percentage: This is used to express how a value or group of respondents within the data relates to a larger group of respondents.
  • Frequency: This indicates the number of times a value is found.
  • Range: This shows the highest and lowest values in a dataset.
  • Standard Deviation: This is used to indicate how dispersed a range of numbers is, meaning, it shows how close all the numbers are to the mean.
  • Skewness: It indicates how symmetrical a range of numbers is, showing if they cluster into a smooth bell curve shape in the middle of the graph or if they skew towards the left or right.

how to write data analysis for quantitative research

2) Inferential Statistics

In quantitative analysis, the expectation is to turn raw numbers into meaningful insight using numerical values, and descriptive statistics is all about explaining details of a specific dataset using numbers, but it does not explain the motives behind the numbers; hence, a need for further analysis using inferential statistics.

Inferential statistics aim to make predictions or highlight possible outcomes from the analyzed data obtained from descriptive statistics. They are used to generalize results and make predictions between groups, show relationships that exist between multiple variables, and are used for hypothesis testing that predicts changes or differences.

There are various statistical analysis methods used within inferential statistics; a few are discussed below.

  • Cross Tabulations: Cross tabulation or crosstab is used to show the relationship that exists between two variables and is often used to compare results by demographic groups. It uses a basic tabular form to draw inferences between different data sets and contains data that is mutually exclusive or has some connection with each other. Crosstabs help understand the nuances of a dataset and factors that may influence a data point.
  • Regression Analysis: Regression analysis estimates the relationship between a set of variables. It shows the correlation between a dependent variable (the variable or outcome you want to measure or predict) and any number of independent variables (factors that may impact the dependent variable). Therefore, the purpose of the regression analysis is to estimate how one or more variables might affect a dependent variable to identify trends and patterns to make predictions and forecast possible future trends. There are many types of regression analysis, and the model you choose will be determined by the type of data you have for the dependent variable. The types of regression analysis include linear regression, non-linear regression, binary logistic regression, etc.
  • Monte Carlo Simulation: Monte Carlo simulation, also known as the Monte Carlo method, is a computerized technique of generating models of possible outcomes and showing their probability distributions. It considers a range of possible outcomes and then tries to calculate how likely each outcome will occur. Data analysts use it to perform advanced risk analyses to help forecast future events and make decisions accordingly.
  • Analysis of Variance (ANOVA): This is used to test the extent to which two or more groups differ from each other. It compares the mean of various groups and allows the analysis of multiple groups.
  • Factor Analysis:   A large number of variables can be reduced into a smaller number of factors using the factor analysis technique. It works on the principle that multiple separate observable variables correlate with each other because they are all associated with an underlying construct. It helps in reducing large datasets into smaller, more manageable samples.
  • Cohort Analysis: Cohort analysis can be defined as a subset of behavioral analytics that operates from data taken from a given dataset. Rather than looking at all users as one unit, cohort analysis breaks down data into related groups for analysis, where these groups or cohorts usually have common characteristics or similarities within a defined period.
  • MaxDiff Analysis: This is a quantitative data analysis method that is used to gauge customers’ preferences for purchase and what parameters rank higher than the others in the process. 
  • Cluster Analysis: Cluster analysis is a technique used to identify structures within a dataset. Cluster analysis aims to be able to sort different data points into groups that are internally similar and externally different; that is, data points within a cluster will look like each other and different from data points in other clusters.
  • Time Series Analysis: This is a statistical analytic technique used to identify trends and cycles over time. It is simply the measurement of the same variables at different times, like weekly and monthly email sign-ups, to uncover trends, seasonality, and cyclic patterns. By doing this, the data analyst can forecast how variables of interest may fluctuate in the future. 
  • SWOT analysis: This is a quantitative data analysis method that assigns numerical values to indicate strengths, weaknesses, opportunities, and threats of an organization, product, or service to show a clearer picture of competition to foster better business strategies

How to Choose the Right Method for your Analysis?

Choosing between Descriptive Statistics or Inferential Statistics can be often confusing. You should consider the following factors before choosing the right method for your quantitative data analysis:

1. Type of Data

The first consideration in data analysis is understanding the type of data you have. Different statistical methods have specific requirements based on these data types, and using the wrong method can render results meaningless. The choice of statistical method should align with the nature and distribution of your data to ensure meaningful and accurate analysis.

2. Your Research Questions

When deciding on statistical methods, it’s crucial to align them with your specific research questions and hypotheses. The nature of your questions will influence whether descriptive statistics alone, which reveal sample attributes, are sufficient or if you need both descriptive and inferential statistics to understand group differences or relationships between variables and make population inferences.

Pros and Cons of Quantitative Data Analysis

1. Objectivity and Generalizability:

  • Quantitative data analysis offers objective, numerical measurements, minimizing bias and personal interpretation.
  • Results can often be generalized to larger populations, making them applicable to broader contexts.

Example: A study using quantitative data analysis to measure student test scores can objectively compare performance across different schools and demographics, leading to generalizable insights about educational strategies.

2. Precision and Efficiency:

  • Statistical methods provide precise numerical results, allowing for accurate comparisons and prediction.
  • Large datasets can be analyzed efficiently with the help of computer software, saving time and resources.

Example: A marketing team can use quantitative data analysis to precisely track click-through rates and conversion rates on different ad campaigns, quickly identifying the most effective strategies for maximizing customer engagement.

3. Identification of Patterns and Relationships:

  • Statistical techniques reveal hidden patterns and relationships between variables that might not be apparent through observation alone.
  • This can lead to new insights and understanding of complex phenomena.

Example: A medical researcher can use quantitative analysis to pinpoint correlations between lifestyle factors and disease risk, aiding in the development of prevention strategies.

1. Limited Scope:

  • Quantitative analysis focuses on quantifiable aspects of a phenomenon ,  potentially overlooking important qualitative nuances, such as emotions, motivations, or cultural contexts.

Example: A survey measuring customer satisfaction with numerical ratings might miss key insights about the underlying reasons for their satisfaction or dissatisfaction, which could be better captured through open-ended feedback.

2. Oversimplification:

  • Reducing complex phenomena to numerical data can lead to oversimplification and a loss of richness in understanding.

Example: Analyzing employee productivity solely through quantitative metrics like hours worked or tasks completed might not account for factors like creativity, collaboration, or problem-solving skills, which are crucial for overall performance.

3. Potential for Misinterpretation:

  • Statistical results can be misinterpreted if not analyzed carefully and with appropriate expertise.
  • The choice of statistical methods and assumptions can significantly influence results.

This blog discusses the steps, methods, and techniques of quantitative data analysis. It also gives insights into the methods of data collection, the type of data one should work with, and the pros and cons of such analysis.

Gain a better understanding of data analysis with these essential reads:

  • Data Analysis and Modeling: 4 Critical Differences
  • Exploratory Data Analysis Simplified 101
  • 25 Best Data Analysis Tools in 2024

Carrying out successful data analysis requires prepping the data and making it analysis-ready. That is where Hevo steps in.

Want to give Hevo a try? Sign Up for a 14-day free trial and experience the feature-rich Hevo suite first hand. You may also have a look at the amazing Hevo price , which will assist you in selecting the best plan for your requirements.

Share your experience of understanding Quantitative Data Analysis in the comment section below! We would love to hear your thoughts.

Ofem Eteng is a seasoned technical content writer with over 12 years of experience. He has held pivotal roles such as System Analyst (DevOps) at Dagbs Nigeria Limited and Full-Stack Developer at Pedoquasphere International Limited. He specializes in data science, data analytics and cutting-edge technologies, making him an expert in the data industry.

No-code Data Pipeline for your Data Warehouse

  • Data Analysis
  • Data Warehouse
  • Quantitative Data Analysis

Continue Reading

how to write data analysis for quantitative research

Data Mesh vs Data Warehouse: A Guide to Choosing the Right Data Architecture

how to write data analysis for quantitative research

Vinita Mittal

Data Lake vs Data Warehouse: How to choose?

how to write data analysis for quantitative research

Rashmi Joshi

Matillion vs dbt: 5 Key Differences

I want to read this e-book.

how to write data analysis for quantitative research

Logo for Rhode Island College Digital Publishing

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

Quantitative Data Analysis

9 Presenting the Results of Quantitative Analysis

Mikaila Mariel Lemonik Arthur

This chapter provides an overview of how to present the results of quantitative analysis, in particular how to create effective tables for displaying quantitative results and how to write quantitative research papers that effectively communicate the methods used and findings of quantitative analysis.

Writing the Quantitative Paper

Standard quantitative social science papers follow a specific format. They begin with a title page that includes a descriptive title, the author(s)’ name(s), and a 100 to 200 word abstract that summarizes the paper. Next is an introduction that makes clear the paper’s research question, details why this question is important, and previews what the paper will do. After that comes a literature review, which ends with a summary of the research question(s) and/or hypotheses. A methods section, which explains the source of data, sample, and variables and quantitative techniques used, follows. Many analysts will include a short discussion of their descriptive statistics in the methods section. A findings section details the findings of the analysis, supported by a variety of tables, and in some cases graphs, all of which are explained in the text. Some quantitative papers, especially those using more complex techniques, will include equations. Many papers follow the findings section with a discussion section, which provides an interpretation of the results in light of both the prior literature and theory presented in the literature review and the research questions/hypotheses. A conclusion ends the body of the paper. This conclusion should summarize the findings, answering the research questions and stating whether any hypotheses were supported, partially supported, or not supported. Limitations of the research are detailed. Papers typically include suggestions for future research, and where relevant, some papers include policy implications. After the body of the paper comes the works cited; some papers also have an Appendix that includes additional tables and figures that did not fit into the body of the paper or additional methodological details. While this basic format is similar for papers regardless of the type of data they utilize, there are specific concerns relating to quantitative research in terms of the methods and findings that will be discussed here.

In the methods section, researchers clearly describe the methods they used to obtain and analyze the data for their research. When relying on data collected specifically for a given paper, researchers will need to discuss the sample and data collection; in most cases, though, quantitative research relies on pre-existing datasets. In these cases, researchers need to provide information about the dataset, including the source of the data, the time it was collected, the population, and the sample size. Regardless of the source of the data, researchers need to be clear about which variables they are using in their research and any transformations or manipulations of those variables. They also need to explain the specific quantitative techniques that they are using in their analysis; if different techniques are used to test different hypotheses, this should be made clear. In some cases, publications will require that papers be submitted along with any code that was used to produce the analysis (in SPSS terms, the syntax files), which more advanced researchers will usually have on hand. In many cases, basic descriptive statistics are presented in tabular form and explained within the methods section.

The findings sections of quantitative papers are organized around explaining the results as shown in tables and figures. Not all results are depicted in tables and figures—some minor or null findings will simply be referenced—but tables and figures should be produced for all findings to be discussed at any length. If there are too many tables and figures, some can be moved to an appendix after the body of the text and referred to in the text (e.g. “See Table 12 in Appendix A”).

Discussions of the findings should not simply restate the contents of the table. Rather, they should explain and interpret it for readers, and they should do so in light of the hypothesis or hypotheses that are being tested. Conclusions—discussions of whether the hypothesis or hypotheses are supported or not supported—should wait for the conclusion of the paper.

Creating Effective Tables

When creating tables to display the results of quantitative analysis, the most important goals are to create tables that are clear and concise but that also meet standard conventions in the field. This means, first of all, paring down the volume of information produced in the statistical output to just include the information most necessary for interpreting the results, but doing so in keeping with standard table conventions. It also means making tables that are well-formatted and designed, so that readers can understand what the tables are saying without struggling to find information. For example, tables (as well as figures such as graphs) need clear captions; they are typically numbered and referred to by number in the text. Columns and rows should have clear headings. Depending on the content of the table, formatting tools may need to be used to set off header rows/columns and/or total rows/columns; cell-merging tools may be necessary; and shading may be important in tables with many rows or columns.

Here, you will find some instructions for creating tables of results from descriptive, crosstabulation, correlation, and regression analysis that are clear, concise, and meet normal standards for data display in social science. In addition, after the instructions for creating tables, you will find an example of how a paper incorporating each table might describe that table in the text.

Descriptive Statistics

When presenting the results of descriptive statistics, we create one table with columns for each type of descriptive statistic and rows for each variable. Note, of course, that depending on level of measurement only certain descriptive statistics are appropriate for a given variable, so there may be many cells in the table marked with an — to show that this statistic is not calculated for this variable. So, consider the set of descriptive statistics below, for occupational prestige, age, highest degree earned, and whether the respondent was born in this country.

Table 1. SPSS Ouput: Selected Descriptive Statistics
Statistics
R’s occupational prestige score (2010) Age of respondent
N Valid 3873 3699
Missing 159 333
Mean 46.54 52.16
Median 47.00 53.00
Std. Deviation 13.811 17.233
Variance 190.745 296.988
Skewness .141 .018
Std. Error of Skewness .039 .040
Kurtosis -.809 -1.018
Std. Error of Kurtosis .079 .080
Range 64 71
Minimum 16 18
Maximum 80 89
Percentiles 25 35.00 37.00
50 47.00 53.00
75 59.00 66.00
Statistics
R’s highest degree
N Valid 4009
Missing 23
Median 2.00
Mode 1
Range 4
Minimum 0
Maximum 4
R’s highest degree
Frequency Percent Valid Percent Cumulative Percent
Valid less than high school 246 6.1 6.1 6.1
high school 1597 39.6 39.8 46.0
associate/junior college 370 9.2 9.2 55.2
bachelor’s 1036 25.7 25.8 81.0
graduate 760 18.8 19.0 100.0
Total 4009 99.4 100.0
Missing System 23 .6
Total 4032 100.0
Statistics
Was r born in this country
N Valid 3960
Missing 72
Mean 1.11
Mode 1
Was r born in this country
Frequency Percent Valid Percent Cumulative Percent
Valid yes 3516 87.2 88.8 88.8
no 444 11.0 11.2 100.0
Total 3960 98.2 100.0
Missing System 72 1.8
Total 4032 100.0

To display these descriptive statistics in a paper, one might create a table like Table 2. Note that for discrete variables, we use the value label in the table, not the value.

Table 2. Descriptive Statistics
46.54 52.16 1.11
47 53 1: Associates (9.2%) 1: Yes (88.8%)
2: High School (39.8%)
13.811 17.233
190.745 296.988
0.141 0.018
-0.809 -1.018
64 (16-80) 71 (18-89) Less than High School (0) –  Graduate (4)
35-59 37-66
3873 3699 4009 3960

If we were then to discuss our descriptive statistics in a quantitative paper, we might write something like this (note that we do not need to repeat every single detail from the table, as readers can peruse the table themselves):

This analysis relies on four variables from the 2021 General Social Survey: occupational prestige score, age, highest degree earned, and whether the respondent was born in the United States. Descriptive statistics for all four variables are shown in Table 2. The median occupational prestige score is 47, with a range from 16 to 80. 50% of respondents had occupational prestige scores scores between 35 and 59. The median age of respondents is 53, with a range from 18 to 89. 50% of respondents are between ages 37 and 66. Both variables have little skew. Highest degree earned ranges from less than high school to a graduate degree; the median respondent has earned an associate’s degree, while the modal response (given by 39.8% of the respondents) is a high school degree. 88.8% of respondents were born in the United States.

Crosstabulation

When presenting the results of a crosstabulation, we simplify the table so that it highlights the most important information—the column percentages—and include the significance and association below the table. Consider the SPSS output below.

Table 3. R’s highest degree * R’s subjective class identification Crosstabulation
R’s subjective class identification Total
lower class working class middle class upper class
R’s highest degree less than high school Count 65 106 68 7 246
% within R’s subjective class identification 18.8% 7.1% 3.4% 4.2% 6.2%
high school Count 217 800 551 23 1591
% within R’s subjective class identification 62.9% 53.7% 27.6% 13.9% 39.8%
associate/junior college Count 30 191 144 3 368
% within R’s subjective class identification 8.7% 12.8% 7.2% 1.8% 9.2%
bachelor’s Count 27 269 686 49 1031
% within R’s subjective class identification 7.8% 18.1% 34.4% 29.5% 25.8%
graduate Count 6 123 546 84 759
% within R’s subjective class identification 1.7% 8.3% 27.4% 50.6% 19.0%
Total Count 345 1489 1995 166 3995
% within R’s subjective class identification 100.0% 100.0% 100.0% 100.0% 100.0%
Chi-Square Tests
Value df Asymptotic Significance (2-sided)
Pearson Chi-Square 819.579 12 <.001
Likelihood Ratio 839.200 12 <.001
Linear-by-Linear Association 700.351 1 <.001
N of Valid Cases 3995
a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 10.22.
Symmetric Measures
Value Asymptotic Standard Error Approximate T Approximate Significance
Interval by Interval Pearson’s R .419 .013 29.139 <.001
Ordinal by Ordinal Spearman Correlation .419 .013 29.158 <.001
N of Valid Cases 3995
a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Table 4 shows how a table suitable for include in a paper might look if created from the SPSS output in Table 3. Note that we use asterisks to indicate the significance level of the results: * means p < 0.05; ** means p < 0.01; *** means p < 0.001; and no stars mean p > 0.05 (and thus that the result is not significant). Also note than N is the abbreviation for the number of respondents.

 
18.8% 7.1% 3.4% 4.2% 6.2%
62.9% 53.7% 27.6% 13.9% 39.8%
8.7% 12.8% 7.2% 1.8% 9.2%
7.8% 18.1% 34.4% 29.5% 25.8%
1.7% 8.3% 27.4% 50.6% 19.0%
N: 3995 Spearman Correlation 0.419***

If we were going to discuss the results of this crosstabulation in a quantitative research paper, the discussion might look like this:

A crosstabulation of respondent’s class identification and their highest degree earned, with class identification as the independent variable, is significant, with a Spearman correlation of 0.419, as shown in Table 4. Among lower class and working class respondents, more than 50% had earned a high school degree. Less than 20% of poor respondents and less than 40% of working-class respondents had earned more than a high school degree. In contrast, the majority of middle class and upper class respondents had earned at least a bachelor’s degree. In fact, 50% of upper class respondents had earned a graduate degree.

Correlation

When presenting a correlating matrix, one of the most important things to note is that we only present half the table so as not to include duplicated results. Think of the line through the table where empty cells exist to represent the correlation between a variable and itself, and include only the triangle of data either above or below that line of cells. Consider the output in Table 5.

Table 5. SPSS Output: Correlations
Age of respondent R’s occupational prestige score (2010) Highest year of school R completed R’s family income in 1986 dollars
Age of respondent Pearson Correlation 1 .087 .014 .017
Sig. (2-tailed) <.001 .391 .314
N 3699 3571 3683 3336
R’s occupational prestige score (2010) Pearson Correlation .087 1 .504 .316
Sig. (2-tailed) <.001 <.001 <.001
N 3571 3873 3817 3399
Highest year of school R completed Pearson Correlation .014 .504 1 .360
Sig. (2-tailed) .391 <.001 <.001
N 3683 3817 3966 3497
R’s family income in 1986 dollars Pearson Correlation .017 .316 .360 1
Sig. (2-tailed) .314 <.001 <.001
N 3336 3399 3497 3509
**. Correlation is significant at the 0.01 level (2-tailed).

Table 6 shows what the contents of Table 5 might look like when a table is constructed in a fashion suitable for publication.

Table 6. Correlation Matrix
1
0.087*** 1
0.014 0.504*** 1
0.017 0.316*** 0.360*** 1

If we were to discuss the results of this bivariate correlation analysis in a quantitative paper, the discussion might look like this:

Bivariate correlations were run among variables measuring age, occupational prestige, the highest year of school respondents completed, and family income in constant 1986 dollars, as shown in Table 6. Correlations between age and highest year of school completed and between age and family income are not significant. All other correlations are positive and significant at the p<0.001 level. The correlation between age and occupational prestige is weak; the correlations between income and occupational prestige and between income and educational attainment are moderate, and the correlation between education and occupational prestige is strong.

To present the results of a regression, we create one table that includes all of the key information from the multiple tables of SPSS output. This includes the R 2 and significance of the regression, either the B or the beta values (different analysts have different preferences here) for each variable, and the standard error and significance of each variable. Consider the SPSS output in Table 7.

Table 7. SPSS Output: Regression
Model R R Square Adjusted R Square Std. Error of the Estimate
1 .395 .156 .155 36729.04841
a. Predictors: (Constant), Highest year of school R completed, Age of respondent, R’s occupational prestige score (2010)
ANOVA
Model Sum of Squares df Mean Square F Sig.
1 Regression 805156927306.583 3 268385642435.528 198.948 <.001
Residual 4351948187487.015 3226 1349022996.741
Total 5157105114793.598 3229
a. Dependent Variable: R’s family income in 1986 dollars
b. Predictors: (Constant), Highest year of school R completed, Age of respondent, R’s occupational prestige score (2010)
Coefficients
Model Unstandardized Coefficients Standardized Coefficients t Sig. Collinearity Statistics
B Std. Error Beta Tolerance VIF
1 (Constant) -44403.902 4166.576 -10.657 <.001
Age of respondent 9.547 38.733 .004 .246 .805 .993 1.007
R’s occupational prestige score (2010) 522.887 54.327 .181 9.625 <.001 .744 1.345
Highest year of school R completed 3988.545 274.039 .272 14.555 <.001 .747 1.339
a. Dependent Variable: R’s family income in 1986 dollars

The regression output in shown in Table 7 contains a lot of information. We do not include all of this information when making tables suitable for publication. As can be seen in Table 8, we include the Beta (or the B), the standard error, and the significance asterisk for each variable; the R 2 and significance for the overall regression; the degrees of freedom (which tells readers the sample size or N); and the constant; along with the key to p/significance values.

Table 8. Regression Results for Dependent Variable Family Income in 1986 Dollars
Age 0.004
(38.733)
Occupational Prestige Score 0.181***
(54.327)
Highest Year of School Completed 0.272***
(274.039)
Degrees of Freedom 3229
Constant -44,403.902

If we were to discuss the results of this regression in a quantitative paper, the results might look like this:

Table 8 shows the results of a regression in which age, occupational prestige, and highest year of school completed are the independent variables and family income is the dependent variable. The regression results are significant, and all of the independent variables taken together explain 15.6% of the variance in family income. Age is not a significant predictor of income, while occupational prestige and educational attainment are. Educational attainment has a larger effect on family income than does occupational prestige. For every year of additional education attained, family income goes up on average by $3,988.545; for every one-unit increase in occupational prestige score, family income goes up on average by $522.887. [1]
  • Choose two discrete variables and three continuous variables from a dataset of your choice. Produce appropriate descriptive statistics on all five of the variables and create a table of the results suitable for inclusion in a paper.
  • Using the two discrete variables you have chosen, produce an appropriate crosstabulation, with significance and measure of association. Create a table of the results suitable for inclusion in a paper.
  • Using the three continuous variables you have chosen, produce a correlation matrix. Create a table of the results suitable for inclusion in a paper.
  • Using the three continuous variables you have chosen, produce a multivariate linear regression. Create a table of the results suitable for inclusion in a paper.
  • Write a methods section describing the dataset, analytical methods, and variables you utilized in questions 1, 2, 3, and 4 and explaining the results of your descriptive analysis.
  • Write a findings section explaining the results of the analyses you performed in questions 2, 3, and 4.
  • Note that the actual numberical increase comes from the B values, which are shown in the SPSS output in Table 7 but not in the reformatted Table 8. ↵

Social Data Analysis Copyright © 2021 by Mikaila Mariel Lemonik Arthur is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Quantitative Analysis: the guide for beginners

Julián Cárdenas at University of Valencia

  • University of Valencia

Abstract and Figures

Research process

Discover the world's research

  • 25+ million members
  • 160+ million publication pages
  • 2.3+ billion citations

Iwan Suhardjo

  • Meiliana Meiliana
  • Justin Justin
  • Viandi Agustinus
  • Tshireletso Philemon Kgosiemang

Samuel Khoza

  • Akanksha Kamble
  • Vinaya Dandekar
  • Dr. Parag Sawant
  • Alan Bryman
  • Recruit researchers
  • Join for free
  • Login Email Tip: Most researchers use their institutional email address as their ResearchGate login Password Forgot password? Keep me logged in Log in or Continue with Google Welcome back! Please log in. Email · Hint Tip: Most researchers use their institutional email address as their ResearchGate login Password Forgot password? Keep me logged in Log in or Continue with Google No account? Sign up

how to write data analysis for quantitative research

How To Write The Results/Findings Chapter

For quantitative studies (dissertations & theses).

By: Derek Jansen (MBA) | Expert Reviewed By: Kerryn Warren (PhD) | July 2021

So, you’ve completed your quantitative data analysis and it’s time to report on your findings. But where do you start? In this post, we’ll walk you through the results chapter (also called the findings or analysis chapter), step by step, so that you can craft this section of your dissertation or thesis with confidence. If you’re looking for information regarding the results chapter for qualitative studies, you can find that here .

Overview: Quantitative Results Chapter

  • What exactly the results chapter is
  • What you need to include in your chapter
  • How to structure the chapter
  • Tips and tricks for writing a top-notch chapter
  • Free results chapter template

What exactly is the results chapter?

The results chapter (also referred to as the findings or analysis chapter) is one of the most important chapters of your dissertation or thesis because it shows the reader what you’ve found in terms of the quantitative data you’ve collected. It presents the data using a clear text narrative, supported by tables, graphs and charts. In doing so, it also highlights any potential issues (such as outliers or unusual findings) you’ve come across.

But how’s that different from the discussion chapter?

Well, in the results chapter, you only present your statistical findings. Only the numbers, so to speak – no more, no less. Contrasted to this, in the discussion chapter , you interpret your findings and link them to prior research (i.e. your literature review), as well as your research objectives and research questions . In other words, the results chapter presents and describes the data, while the discussion chapter interprets the data.

Let’s look at an example.

In your results chapter, you may have a plot that shows how respondents to a survey  responded: the numbers of respondents per category, for instance. You may also state whether this supports a hypothesis by using a p-value from a statistical test. But it is only in the discussion chapter where you will say why this is relevant or how it compares with the literature or the broader picture. So, in your results chapter, make sure that you don’t present anything other than the hard facts – this is not the place for subjectivity.

It’s worth mentioning that some universities prefer you to combine the results and discussion chapters. Even so, it is good practice to separate the results and discussion elements within the chapter, as this ensures your findings are fully described. Typically, though, the results and discussion chapters are split up in quantitative studies. If you’re unsure, chat with your research supervisor or chair to find out what their preference is.

Free template for results section of a dissertation or thesis

What should you include in the results chapter?

Following your analysis, it’s likely you’ll have far more data than are necessary to include in your chapter. In all likelihood, you’ll have a mountain of SPSS or R output data, and it’s your job to decide what’s most relevant. You’ll need to cut through the noise and focus on the data that matters.

This doesn’t mean that those analyses were a waste of time – on the contrary, those analyses ensure that you have a good understanding of your dataset and how to interpret it. However, that doesn’t mean your reader or examiner needs to see the 165 histograms you created! Relevance is key.

How do I decide what’s relevant?

At this point, it can be difficult to strike a balance between what is and isn’t important. But the most important thing is to ensure your results reflect and align with the purpose of your study .  So, you need to revisit your research aims, objectives and research questions and use these as a litmus test for relevance. Make sure that you refer back to these constantly when writing up your chapter so that you stay on track.

There must be alignment between your research aims objectives and questions

As a general guide, your results chapter will typically include the following:

  • Some demographic data about your sample
  • Reliability tests (if you used measurement scales)
  • Descriptive statistics
  • Inferential statistics (if your research objectives and questions require these)
  • Hypothesis tests (again, if your research objectives and questions require these)

We’ll discuss each of these points in more detail in the next section.

Importantly, your results chapter needs to lay the foundation for your discussion chapter . This means that, in your results chapter, you need to include all the data that you will use as the basis for your interpretation in the discussion chapter.

For example, if you plan to highlight the strong relationship between Variable X and Variable Y in your discussion chapter, you need to present the respective analysis in your results chapter – perhaps a correlation or regression analysis.

Need a helping hand?

how to write data analysis for quantitative research

How do I write the results chapter?

There are multiple steps involved in writing up the results chapter for your quantitative research. The exact number of steps applicable to you will vary from study to study and will depend on the nature of the research aims, objectives and research questions . However, we’ll outline the generic steps below.

Step 1 – Revisit your research questions

The first step in writing your results chapter is to revisit your research objectives and research questions . These will be (or at least, should be!) the driving force behind your results and discussion chapters, so you need to review them and then ask yourself which statistical analyses and tests (from your mountain of data) would specifically help you address these . For each research objective and research question, list the specific piece (or pieces) of analysis that address it.

At this stage, it’s also useful to think about the key points that you want to raise in your discussion chapter and note these down so that you have a clear reminder of which data points and analyses you want to highlight in the results chapter. Again, list your points and then list the specific piece of analysis that addresses each point. 

Next, you should draw up a rough outline of how you plan to structure your chapter . Which analyses and statistical tests will you present and in what order? We’ll discuss the “standard structure” in more detail later, but it’s worth mentioning now that it’s always useful to draw up a rough outline before you start writing (this advice applies to any chapter).

Step 2 – Craft an overview introduction

As with all chapters in your dissertation or thesis, you should start your quantitative results chapter by providing a brief overview of what you’ll do in the chapter and why . For example, you’d explain that you will start by presenting demographic data to understand the representativeness of the sample, before moving onto X, Y and Z.

This section shouldn’t be lengthy – a paragraph or two maximum. Also, it’s a good idea to weave the research questions into this section so that there’s a golden thread that runs through the document.

Your chapter must have a golden thread

Step 3 – Present the sample demographic data

The first set of data that you’ll present is an overview of the sample demographics – in other words, the demographics of your respondents.

For example:

  • What age range are they?
  • How is gender distributed?
  • How is ethnicity distributed?
  • What areas do the participants live in?

The purpose of this is to assess how representative the sample is of the broader population. This is important for the sake of the generalisability of the results. If your sample is not representative of the population, you will not be able to generalise your findings. This is not necessarily the end of the world, but it is a limitation you’ll need to acknowledge.

Of course, to make this representativeness assessment, you’ll need to have a clear view of the demographics of the population. So, make sure that you design your survey to capture the correct demographic information that you will compare your sample to.

But what if I’m not interested in generalisability?

Well, even if your purpose is not necessarily to extrapolate your findings to the broader population, understanding your sample will allow you to interpret your findings appropriately, considering who responded. In other words, it will help you contextualise your findings . For example, if 80% of your sample was aged over 65, this may be a significant contextual factor to consider when interpreting the data. Therefore, it’s important to understand and present the demographic data.

 Step 4 – Review composite measures and the data “shape”.

Before you undertake any statistical analysis, you’ll need to do some checks to ensure that your data are suitable for the analysis methods and techniques you plan to use. If you try to analyse data that doesn’t meet the assumptions of a specific statistical technique, your results will be largely meaningless. Therefore, you may need to show that the methods and techniques you’ll use are “allowed”.

Most commonly, there are two areas you need to pay attention to:

#1: Composite measures

The first is when you have multiple scale-based measures that combine to capture one construct – this is called a composite measure .  For example, you may have four Likert scale-based measures that (should) all measure the same thing, but in different ways. In other words, in a survey, these four scales should all receive similar ratings. This is called “ internal consistency ”.

Internal consistency is not guaranteed though (especially if you developed the measures yourself), so you need to assess the reliability of each composite measure using a test. Typically, Cronbach’s Alpha is a common test used to assess internal consistency – i.e., to show that the items you’re combining are more or less saying the same thing. A high alpha score means that your measure is internally consistent. A low alpha score means you may need to consider scrapping one or more of the measures.

#2: Data shape

The second matter that you should address early on in your results chapter is data shape. In other words, you need to assess whether the data in your set are symmetrical (i.e. normally distributed) or not, as this will directly impact what type of analyses you can use. For many common inferential tests such as T-tests or ANOVAs (we’ll discuss these a bit later), your data needs to be normally distributed. If it’s not, you’ll need to adjust your strategy and use alternative tests.

To assess the shape of the data, you’ll usually assess a variety of descriptive statistics (such as the mean, median and skewness), which is what we’ll look at next.

Descriptive statistics

Step 5 – Present the descriptive statistics

Now that you’ve laid the foundation by discussing the representativeness of your sample, as well as the reliability of your measures and the shape of your data, you can get started with the actual statistical analysis. The first step is to present the descriptive statistics for your variables.

For scaled data, this usually includes statistics such as:

  • The mean – this is simply the mathematical average of a range of numbers.
  • The median – this is the midpoint in a range of numbers when the numbers are arranged in order.
  • The mode – this is the most commonly repeated number in the data set.
  • Standard deviation – this metric indicates how dispersed a range of numbers is. In other words, how close all the numbers are to the mean (the average).
  • Skewness – this indicates how symmetrical a range of numbers is. In other words, do they tend to cluster into a smooth bell curve shape in the middle of the graph (this is called a normal or parametric distribution), or do they lean to the left or right (this is called a non-normal or non-parametric distribution).
  • Kurtosis – this metric indicates whether the data are heavily or lightly-tailed, relative to the normal distribution. In other words, how peaked or flat the distribution is.

A large table that indicates all the above for multiple variables can be a very effective way to present your data economically. You can also use colour coding to help make the data more easily digestible.

For categorical data, where you show the percentage of people who chose or fit into a category, for instance, you can either just plain describe the percentages or numbers of people who responded to something or use graphs and charts (such as bar graphs and pie charts) to present your data in this section of the chapter.

When using figures, make sure that you label them simply and clearly , so that your reader can easily understand them. There’s nothing more frustrating than a graph that’s missing axis labels! Keep in mind that although you’ll be presenting charts and graphs, your text content needs to present a clear narrative that can stand on its own. In other words, don’t rely purely on your figures and tables to convey your key points: highlight the crucial trends and values in the text. Figures and tables should complement the writing, not carry it .

Depending on your research aims, objectives and research questions, you may stop your analysis at this point (i.e. descriptive statistics). However, if your study requires inferential statistics, then it’s time to deep dive into those .

Dive into the inferential statistics

Step 6 – Present the inferential statistics

Inferential statistics are used to make generalisations about a population , whereas descriptive statistics focus purely on the sample . Inferential statistical techniques, broadly speaking, can be broken down into two groups .

First, there are those that compare measurements between groups , such as t-tests (which measure differences between two groups) and ANOVAs (which measure differences between multiple groups). Second, there are techniques that assess the relationships between variables , such as correlation analysis and regression analysis. Within each of these, some tests can be used for normally distributed (parametric) data and some tests are designed specifically for use on non-parametric data.

There are a seemingly endless number of tests that you can use to crunch your data, so it’s easy to run down a rabbit hole and end up with piles of test data. Ultimately, the most important thing is to make sure that you adopt the tests and techniques that allow you to achieve your research objectives and answer your research questions .

In this section of the results chapter, you should try to make use of figures and visual components as effectively as possible. For example, if you present a correlation table, use colour coding to highlight the significance of the correlation values, or scatterplots to visually demonstrate what the trend is. The easier you make it for your reader to digest your findings, the more effectively you’ll be able to make your arguments in the next chapter.

make it easy for your reader to understand your quantitative results

Step 7 – Test your hypotheses

If your study requires it, the next stage is hypothesis testing. A hypothesis is a statement , often indicating a difference between groups or relationship between variables, that can be supported or rejected by a statistical test. However, not all studies will involve hypotheses (again, it depends on the research objectives), so don’t feel like you “must” present and test hypotheses just because you’re undertaking quantitative research.

The basic process for hypothesis testing is as follows:

  • Specify your null hypothesis (for example, “The chemical psilocybin has no effect on time perception).
  • Specify your alternative hypothesis (e.g., “The chemical psilocybin has an effect on time perception)
  • Set your significance level (this is usually 0.05)
  • Calculate your statistics and find your p-value (e.g., p=0.01)
  • Draw your conclusions (e.g., “The chemical psilocybin does have an effect on time perception”)

Finally, if the aim of your study is to develop and test a conceptual framework , this is the time to present it, following the testing of your hypotheses. While you don’t need to develop or discuss these findings further in the results chapter, indicating whether the tests (and their p-values) support or reject the hypotheses is crucial.

Step 8 – Provide a chapter summary

To wrap up your results chapter and transition to the discussion chapter, you should provide a brief summary of the key findings . “Brief” is the keyword here – much like the chapter introduction, this shouldn’t be lengthy – a paragraph or two maximum. Highlight the findings most relevant to your research objectives and research questions, and wrap it up.

Some final thoughts, tips and tricks

Now that you’ve got the essentials down, here are a few tips and tricks to make your quantitative results chapter shine:

  • When writing your results chapter, report your findings in the past tense . You’re talking about what you’ve found in your data, not what you are currently looking for or trying to find.
  • Structure your results chapter systematically and sequentially . If you had two experiments where findings from the one generated inputs into the other, report on them in order.
  • Make your own tables and graphs rather than copying and pasting them from statistical analysis programmes like SPSS. Check out the DataIsBeautiful reddit for some inspiration.
  • Once you’re done writing, review your work to make sure that you have provided enough information to answer your research questions , but also that you didn’t include superfluous information.

If you’ve got any questions about writing up the quantitative results chapter, please leave a comment below. If you’d like 1-on-1 assistance with your quantitative analysis and discussion, check out our hands-on coaching service , or book a free consultation with a friendly coach.

how to write data analysis for quantitative research

Psst... there’s more!

This post was based on one of our popular Research Bootcamps . If you're working on a research project, you'll definitely want to check this out ...

Soo

Thank you. I will try my best to write my results.

Lord

Awesome content 👏🏾

Tshepiso

this was great explaination

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

how to write data analysis for quantitative research

  • Print Friendly
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • QuestionPro

survey software icon

  • Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case AskWhy Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
  • Resources Blog eBooks Survey Templates Case Studies Training Help center

how to write data analysis for quantitative research

Home Market Research

Data Analysis in Research: Types & Methods

data-analysis-in-research

Content Index

Why analyze data in research?

Types of data in research, finding patterns in the qualitative data, methods used for data analysis in qualitative research, preparing data for analysis, methods used for data analysis in quantitative research, considerations in research data analysis, what is data analysis in research.

Definition of research in data analysis: According to LeCompte and Schensul, research data analysis is a process used by researchers to reduce data to a story and interpret it to derive insights. The data analysis process helps reduce a large chunk of data into smaller fragments, which makes sense. 

Three essential things occur during the data analysis process — the first is data organization . Summarization and categorization together contribute to becoming the second known method used for data reduction. It helps find patterns and themes in the data for easy identification and linking. The third and last way is data analysis – researchers do it in both top-down and bottom-up fashion.

LEARN ABOUT: Research Process Steps

On the other hand, Marshall and Rossman describe data analysis as a messy, ambiguous, and time-consuming but creative and fascinating process through which a mass of collected data is brought to order, structure and meaning.

We can say that “the data analysis and data interpretation is a process representing the application of deductive and inductive logic to the research and data analysis.”

Researchers rely heavily on data as they have a story to tell or research problems to solve. It starts with a question, and data is nothing but an answer to that question. But, what if there is no question to ask? Well! It is possible to explore data even without a problem – we call it ‘Data Mining’, which often reveals some interesting patterns within the data that are worth exploring.

Irrelevant to the type of data researchers explore, their mission and audiences’ vision guide them to find the patterns to shape the story they want to tell. One of the essential things expected from researchers while analyzing data is to stay open and remain unbiased toward unexpected patterns, expressions, and results. Remember, sometimes, data analysis tells the most unforeseen yet exciting stories that were not expected when initiating data analysis. Therefore, rely on the data you have at hand and enjoy the journey of exploratory research. 

Create a Free Account

Every kind of data has a rare quality of describing things after assigning a specific value to it. For analysis, you need to organize these values, processed and presented in a given context, to make it useful. Data can be in different forms; here are the primary data types.

  • Qualitative data: When the data presented has words and descriptions, then we call it qualitative data . Although you can observe this data, it is subjective and harder to analyze data in research, especially for comparison. Example: Quality data represents everything describing taste, experience, texture, or an opinion that is considered quality data. This type of data is usually collected through focus groups, personal qualitative interviews , qualitative observation or using open-ended questions in surveys.
  • Quantitative data: Any data expressed in numbers of numerical figures are called quantitative data . This type of data can be distinguished into categories, grouped, measured, calculated, or ranked. Example: questions such as age, rank, cost, length, weight, scores, etc. everything comes under this type of data. You can present such data in graphical format, charts, or apply statistical analysis methods to this data. The (Outcomes Measurement Systems) OMS questionnaires in surveys are a significant source of collecting numeric data.
  • Categorical data: It is data presented in groups. However, an item included in the categorical data cannot belong to more than one group. Example: A person responding to a survey by telling his living style, marital status, smoking habit, or drinking habit comes under the categorical data. A chi-square test is a standard method used to analyze this data.

Learn More : Examples of Qualitative Data in Education

Data analysis in qualitative research

Data analysis and qualitative data research work a little differently from the numerical data as the quality data is made up of words, descriptions, images, objects, and sometimes symbols. Getting insight from such complicated information is a complicated process. Hence it is typically used for exploratory research and data analysis .

Although there are several ways to find patterns in the textual information, a word-based method is the most relied and widely used global technique for research and data analysis. Notably, the data analysis process in qualitative research is manual. Here the researchers usually read the available data and find repetitive or commonly used words. 

For example, while studying data collected from African countries to understand the most pressing issues people face, researchers might find  “food”  and  “hunger” are the most commonly used words and will highlight them for further analysis.

LEARN ABOUT: Level of Analysis

The keyword context is another widely used word-based technique. In this method, the researcher tries to understand the concept by analyzing the context in which the participants use a particular keyword.  

For example , researchers conducting research and data analysis for studying the concept of ‘diabetes’ amongst respondents might analyze the context of when and how the respondent has used or referred to the word ‘diabetes.’

The scrutiny-based technique is also one of the highly recommended  text analysis  methods used to identify a quality data pattern. Compare and contrast is the widely used method under this technique to differentiate how a specific text is similar or different from each other. 

For example: To find out the “importance of resident doctor in a company,” the collected data is divided into people who think it is necessary to hire a resident doctor and those who think it is unnecessary. Compare and contrast is the best method that can be used to analyze the polls having single-answer questions types .

Metaphors can be used to reduce the data pile and find patterns in it so that it becomes easier to connect data with theory.

Variable Partitioning is another technique used to split variables so that researchers can find more coherent descriptions and explanations from the enormous data.

LEARN ABOUT: Qualitative Research Questions and Questionnaires

There are several techniques to analyze the data in qualitative research, but here are some commonly used methods,

  • Content Analysis:  It is widely accepted and the most frequently employed technique for data analysis in research methodology. It can be used to analyze the documented information from text, images, and sometimes from the physical items. It depends on the research questions to predict when and where to use this method.
  • Narrative Analysis: This method is used to analyze content gathered from various sources such as personal interviews, field observation, and  surveys . The majority of times, stories, or opinions shared by people are focused on finding answers to the research questions.
  • Discourse Analysis:  Similar to narrative analysis, discourse analysis is used to analyze the interactions with people. Nevertheless, this particular method considers the social context under which or within which the communication between the researcher and respondent takes place. In addition to that, discourse analysis also focuses on the lifestyle and day-to-day environment while deriving any conclusion.
  • Grounded Theory:  When you want to explain why a particular phenomenon happened, then using grounded theory for analyzing quality data is the best resort. Grounded theory is applied to study data about the host of similar cases occurring in different settings. When researchers are using this method, they might alter explanations or produce new ones until they arrive at some conclusion.

LEARN ABOUT: 12 Best Tools for Researchers

Data analysis in quantitative research

The first stage in research and data analysis is to make it for the analysis so that the nominal data can be converted into something meaningful. Data preparation consists of the below phases.

Phase I: Data Validation

Data validation is done to understand if the collected data sample is per the pre-set standards, or it is a biased data sample again divided into four different stages

  • Fraud: To ensure an actual human being records each response to the survey or the questionnaire
  • Screening: To make sure each participant or respondent is selected or chosen in compliance with the research criteria
  • Procedure: To ensure ethical standards were maintained while collecting the data sample
  • Completeness: To ensure that the respondent has answered all the questions in an online survey. Else, the interviewer had asked all the questions devised in the questionnaire.

Phase II: Data Editing

More often, an extensive research data sample comes loaded with errors. Respondents sometimes fill in some fields incorrectly or sometimes skip them accidentally. Data editing is a process wherein the researchers have to confirm that the provided data is free of such errors. They need to conduct necessary checks and outlier checks to edit the raw edit and make it ready for analysis.

Phase III: Data Coding

Out of all three, this is the most critical phase of data preparation associated with grouping and assigning values to the survey responses . If a survey is completed with a 1000 sample size, the researcher will create an age bracket to distinguish the respondents based on their age. Thus, it becomes easier to analyze small data buckets rather than deal with the massive data pile.

LEARN ABOUT: Steps in Qualitative Research

After the data is prepared for analysis, researchers are open to using different research and data analysis methods to derive meaningful insights. For sure, statistical analysis plans are the most favored to analyze numerical data. In statistical analysis, distinguishing between categorical data and numerical data is essential, as categorical data involves distinct categories or labels, while numerical data consists of measurable quantities. The method is again classified into two groups. First, ‘Descriptive Statistics’ used to describe data. Second, ‘Inferential statistics’ that helps in comparing the data .

Descriptive statistics

This method is used to describe the basic features of versatile types of data in research. It presents the data in such a meaningful way that pattern in the data starts making sense. Nevertheless, the descriptive analysis does not go beyond making conclusions. The conclusions are again based on the hypothesis researchers have formulated so far. Here are a few major types of descriptive analysis methods.

Measures of Frequency

  • Count, Percent, Frequency
  • It is used to denote home often a particular event occurs.
  • Researchers use it when they want to showcase how often a response is given.

Measures of Central Tendency

  • Mean, Median, Mode
  • The method is widely used to demonstrate distribution by various points.
  • Researchers use this method when they want to showcase the most commonly or averagely indicated response.

Measures of Dispersion or Variation

  • Range, Variance, Standard deviation
  • Here the field equals high/low points.
  • Variance standard deviation = difference between the observed score and mean
  • It is used to identify the spread of scores by stating intervals.
  • Researchers use this method to showcase data spread out. It helps them identify the depth until which the data is spread out that it directly affects the mean.

Measures of Position

  • Percentile ranks, Quartile ranks
  • It relies on standardized scores helping researchers to identify the relationship between different scores.
  • It is often used when researchers want to compare scores with the average count.

For quantitative research use of descriptive analysis often give absolute numbers, but the in-depth analysis is never sufficient to demonstrate the rationale behind those numbers. Nevertheless, it is necessary to think of the best method for research and data analysis suiting your survey questionnaire and what story researchers want to tell. For example, the mean is the best way to demonstrate the students’ average scores in schools. It is better to rely on the descriptive statistics when the researchers intend to keep the research or outcome limited to the provided  sample  without generalizing it. For example, when you want to compare average voting done in two different cities, differential statistics are enough.

Descriptive analysis is also called a ‘univariate analysis’ since it is commonly used to analyze a single variable.

Inferential statistics

Inferential statistics are used to make predictions about a larger population after research and data analysis of the representing population’s collected sample. For example, you can ask some odd 100 audiences at a movie theater if they like the movie they are watching. Researchers then use inferential statistics on the collected  sample  to reason that about 80-90% of people like the movie. 

Here are two significant areas of inferential statistics.

  • Estimating parameters: It takes statistics from the sample research data and demonstrates something about the population parameter.
  • Hypothesis test: I t’s about sampling research data to answer the survey research questions. For example, researchers might be interested to understand if the new shade of lipstick recently launched is good or not, or if the multivitamin capsules help children to perform better at games.

These are sophisticated analysis methods used to showcase the relationship between different variables instead of describing a single variable. It is often used when researchers want something beyond absolute numbers to understand the relationship between variables.

Here are some of the commonly used methods for data analysis in research.

  • Correlation: When researchers are not conducting experimental research or quasi-experimental research wherein the researchers are interested to understand the relationship between two or more variables, they opt for correlational research methods.
  • Cross-tabulation: Also called contingency tables,  cross-tabulation  is used to analyze the relationship between multiple variables.  Suppose provided data has age and gender categories presented in rows and columns. A two-dimensional cross-tabulation helps for seamless data analysis and research by showing the number of males and females in each age category.
  • Regression analysis: For understanding the strong relationship between two variables, researchers do not look beyond the primary and commonly used regression analysis method, which is also a type of predictive analysis used. In this method, you have an essential factor called the dependent variable. You also have multiple independent variables in regression analysis. You undertake efforts to find out the impact of independent variables on the dependent variable. The values of both independent and dependent variables are assumed as being ascertained in an error-free random manner.
  • Frequency tables: The statistical procedure is used for testing the degree to which two or more vary or differ in an experiment. A considerable degree of variation means research findings were significant. In many contexts, ANOVA testing and variance analysis are similar.
  • Analysis of variance: The statistical procedure is used for testing the degree to which two or more vary or differ in an experiment. A considerable degree of variation means research findings were significant. In many contexts, ANOVA testing and variance analysis are similar.
  • Researchers must have the necessary research skills to analyze and manipulation the data , Getting trained to demonstrate a high standard of research practice. Ideally, researchers must possess more than a basic understanding of the rationale of selecting one statistical method over the other to obtain better data insights.
  • Usually, research and data analytics projects differ by scientific discipline; therefore, getting statistical advice at the beginning of analysis helps design a survey questionnaire, select data collection methods , and choose samples.

LEARN ABOUT: Best Data Collection Tools

  • The primary aim of data research and analysis is to derive ultimate insights that are unbiased. Any mistake in or keeping a biased mind to collect data, selecting an analysis method, or choosing  audience  sample il to draw a biased inference.
  • Irrelevant to the sophistication used in research data and analysis is enough to rectify the poorly defined objective outcome measurements. It does not matter if the design is at fault or intentions are not clear, but lack of clarity might mislead readers, so avoid the practice.
  • The motive behind data analysis in research is to present accurate and reliable data. As far as possible, avoid statistical errors, and find a way to deal with everyday challenges like outliers, missing data, data altering, data mining , or developing graphical representation.

LEARN MORE: Descriptive Research vs Correlational Research The sheer amount of data generated daily is frightening. Especially when data analysis has taken center stage. in 2018. In last year, the total data supply amounted to 2.8 trillion gigabytes. Hence, it is clear that the enterprises willing to survive in the hypercompetitive world must possess an excellent capability to analyze complex research data, derive actionable insights, and adapt to the new market needs.

LEARN ABOUT: Average Order Value

QuestionPro is an online survey platform that empowers organizations in data analysis and research and provides them a medium to collect data by creating appealing surveys.

MORE LIKE THIS

Employee Recognition Programs

Employee Recognition Programs: A Complete Guide

Sep 11, 2024

Agile Qual for Rapid Insights

A guide to conducting agile qualitative research for rapid insights with Digsite 

Cultural Insights

Cultural Insights: What it is, Importance + How to Collect?

Sep 10, 2024

When thinking about Customer Experience, so much of what we discuss is focused on measurement, dashboards, analytics, and insights. However, the “product” that is provided can be just as important.

Was The Experience Memorable? — Tuesday CX Thoughts

Other categories.

  • Academic Research
  • Artificial Intelligence
  • Assessments
  • Brand Awareness
  • Case Studies
  • Communities
  • Consumer Insights
  • Customer effort score
  • Customer Engagement
  • Customer Experience
  • Customer Loyalty
  • Customer Research
  • Customer Satisfaction
  • Employee Benefits
  • Employee Engagement
  • Employee Retention
  • Friday Five
  • General Data Protection Regulation
  • Insights Hub
  • Life@QuestionPro
  • Market Research
  • Mobile diaries
  • Mobile Surveys
  • New Features
  • Online Communities
  • Question Types
  • Questionnaire
  • QuestionPro Products
  • Release Notes
  • Research Tools and Apps
  • Revenue at Risk
  • Survey Templates
  • Training Tips
  • Tuesday CX Thoughts (TCXT)
  • Uncategorized
  • What’s Coming Up
  • Workforce Intelligence

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base
  • Dissertation
  • How to Write a Results Section | Tips & Examples

How to Write a Results Section | Tips & Examples

Published on August 30, 2022 by Tegan George . Revised on July 18, 2023.

A results section is where you report the main findings of the data collection and analysis you conducted for your thesis or dissertation . You should report all relevant results concisely and objectively, in a logical order. Don’t include subjective interpretations of why you found these results or what they mean—any evaluation should be saved for the discussion section .

Instantly correct all language mistakes in your text

Upload your document to correct all your mistakes in minutes

upload-your-document-ai-proofreader

Table of contents

How to write a results section, reporting quantitative research results, reporting qualitative research results, results vs. discussion vs. conclusion, checklist: research results, other interesting articles, frequently asked questions about results sections.

When conducting research, it’s important to report the results of your study prior to discussing your interpretations of it. This gives your reader a clear idea of exactly what you found and keeps the data itself separate from your subjective analysis.

Here are a few best practices:

  • Your results should always be written in the past tense.
  • While the length of this section depends on how much data you collected and analyzed, it should be written as concisely as possible.
  • Only include results that are directly relevant to answering your research questions . Avoid speculative or interpretative words like “appears” or “implies.”
  • If you have other results you’d like to include, consider adding them to an appendix or footnotes.
  • Always start out with your broadest results first, and then flow into your more granular (but still relevant) ones. Think of it like a shoe store: first discuss the shoes as a whole, then the sneakers, boots, sandals, etc.

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

If you conducted quantitative research , you’ll likely be working with the results of some sort of statistical analysis .

Your results section should report the results of any statistical tests you used to compare groups or assess relationships between variables . It should also state whether or not each hypothesis was supported.

The most logical way to structure quantitative results is to frame them around your research questions or hypotheses. For each question or hypothesis, share:

  • A reminder of the type of analysis you used (e.g., a two-sample t test or simple linear regression ). A more detailed description of your analysis should go in your methodology section.
  • A concise summary of each relevant result, both positive and negative. This can include any relevant descriptive statistics (e.g., means and standard deviations ) as well as inferential statistics (e.g., t scores, degrees of freedom , and p values ). Remember, these numbers are often placed in parentheses.
  • A brief statement of how each result relates to the question, or whether the hypothesis was supported. You can briefly mention any results that didn’t fit with your expectations and assumptions, but save any speculation on their meaning or consequences for your discussion  and conclusion.

A note on tables and figures

In quantitative research, it’s often helpful to include visual elements such as graphs, charts, and tables , but only if they are directly relevant to your results. Give these elements clear, descriptive titles and labels so that your reader can easily understand what is being shown. If you want to include any other visual elements that are more tangential in nature, consider adding a figure and table list .

As a rule of thumb:

  • Tables are used to communicate exact values, giving a concise overview of various results
  • Graphs and charts are used to visualize trends and relationships, giving an at-a-glance illustration of key findings

Don’t forget to also mention any tables and figures you used within the text of your results section. Summarize or elaborate on specific aspects you think your reader should know about rather than merely restating the same numbers already shown.

A two-sample t test was used to test the hypothesis that higher social distance from environmental problems would reduce the intent to donate to environmental organizations, with donation intention (recorded as a score from 1 to 10) as the outcome variable and social distance (categorized as either a low or high level of social distance) as the predictor variable.Social distance was found to be positively correlated with donation intention, t (98) = 12.19, p < .001, with the donation intention of the high social distance group 0.28 points higher, on average, than the low social distance group (see figure 1). This contradicts the initial hypothesis that social distance would decrease donation intention, and in fact suggests a small effect in the opposite direction.

Example of using figures in the results section

Figure 1: Intention to donate to environmental organizations based on social distance from impact of environmental damage.

In qualitative research , your results might not all be directly related to specific hypotheses. In this case, you can structure your results section around key themes or topics that emerged from your analysis of the data.

For each theme, start with general observations about what the data showed. You can mention:

  • Recurring points of agreement or disagreement
  • Patterns and trends
  • Particularly significant snippets from individual responses

Next, clarify and support these points with direct quotations. Be sure to report any relevant demographic information about participants. Further information (such as full transcripts , if appropriate) can be included in an appendix .

When asked about video games as a form of art, the respondents tended to believe that video games themselves are not an art form, but agreed that creativity is involved in their production. The criteria used to identify artistic video games included design, story, music, and creative teams.One respondent (male, 24) noted a difference in creativity between popular video game genres:

“I think that in role-playing games, there’s more attention to character design, to world design, because the whole story is important and more attention is paid to certain game elements […] so that perhaps you do need bigger teams of creative experts than in an average shooter or something.”

Responses suggest that video game consumers consider some types of games to have more artistic potential than others.

Your results section should objectively report your findings, presenting only brief observations in relation to each question, hypothesis, or theme.

It should not  speculate about the meaning of the results or attempt to answer your main research question . Detailed interpretation of your results is more suitable for your discussion section , while synthesis of your results into an overall answer to your main research question is best left for your conclusion .

Don't submit your assignments before you do this

The academic proofreading tool has been trained on 1000s of academic texts. Making it the most accurate and reliable proofreading tool for students. Free citation check included.

how to write data analysis for quantitative research

Try for free

I have completed my data collection and analyzed the results.

I have included all results that are relevant to my research questions.

I have concisely and objectively reported each result, including relevant descriptive statistics and inferential statistics .

I have stated whether each hypothesis was supported or refuted.

I have used tables and figures to illustrate my results where appropriate.

All tables and figures are correctly labelled and referred to in the text.

There is no subjective interpretation or speculation on the meaning of the results.

You've finished writing up your results! Use the other checklists to further improve your thesis.

If you want to know more about AI for academic writing, AI tools, or research bias, make sure to check out some of our other articles with explanations and examples or go directly to our tools!

Research bias

  • Survivorship bias
  • Self-serving bias
  • Availability heuristic
  • Halo effect
  • Hindsight bias
  • Deep learning
  • Generative AI
  • Machine learning
  • Reinforcement learning
  • Supervised vs. unsupervised learning

 (AI) Tools

  • Grammar Checker
  • Paraphrasing Tool
  • Text Summarizer
  • AI Detector
  • Plagiarism Checker
  • Citation Generator

The results chapter of a thesis or dissertation presents your research results concisely and objectively.

In quantitative research , for each question or hypothesis , state:

  • The type of analysis used
  • Relevant results in the form of descriptive and inferential statistics
  • Whether or not the alternative hypothesis was supported

In qualitative research , for each question or theme, describe:

  • Recurring patterns
  • Significant or representative individual responses
  • Relevant quotations from the data

Don’t interpret or speculate in the results chapter.

Results are usually written in the past tense , because they are describing the outcome of completed actions.

The results chapter or section simply and objectively reports what you found, without speculating on why you found these results. The discussion interprets the meaning of the results, puts them in context, and explains why they matter.

In qualitative research , results and discussion are sometimes combined. But in quantitative research , it’s considered important to separate the objective results from your interpretation of them.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

George, T. (2023, July 18). How to Write a Results Section | Tips & Examples. Scribbr. Retrieved September 9, 2024, from https://www.scribbr.com/dissertation/results/

Is this article helpful?

Tegan George

Tegan George

Other students also liked, what is a research methodology | steps & tips, how to write a discussion section | tips & examples, how to write a thesis or dissertation conclusion, what is your plagiarism score.

Research-Methodology

Quantitative Data Analysis

In quantitative data analysis you are expected to turn raw numbers into meaningful data through the application of rational and critical thinking. Quantitative data analysis may include the calculation of frequencies of variables and differences between variables. A quantitative approach is usually associated with finding evidence to either support or reject hypotheses you have formulated at the earlier stages of your research process .

The same figure within data set can be interpreted in many different ways; therefore it is important to apply fair and careful judgement.

For example, questionnaire findings of a research titled “A study into the impacts of informal management-employee communication on the levels of employee motivation: a case study of Agro Bravo Enterprise” may indicate that the majority 52% of respondents assess communication skills of their immediate supervisors as inadequate.

This specific piece of primary data findings needs to be critically analyzed and objectively interpreted through comparing it to other findings within the framework of the same research. For example, organizational culture of Agro Bravo Enterprise, leadership style, the levels of frequency of management-employee communications need to be taken into account during the data analysis.

Moreover, literature review findings conducted at the earlier stages of the research process need to be referred to in order to reflect the viewpoints of other authors regarding the causes of employee dissatisfaction with management communication. Also, secondary data needs to be integrated in data analysis in a logical and unbiased manner.

Let’s take another example. You are writing a dissertation exploring the impacts of foreign direct investment (FDI) on the levels of economic growth in Vietnam using correlation quantitative data analysis method . You have specified FDI and GDP as variables for your research and correlation tests produced correlation coefficient of 0.9.

In this case simply stating that there is a strong positive correlation between FDI and GDP would not suffice; you have to provide explanation about the manners in which the growth on the levels of FDI may contribute to the growth of GDP by referring to the findings of the literature review and applying your own critical and rational reasoning skills.

A set of analytical software can be used to assist with analysis of quantitative data. The following table  illustrates the advantages and disadvantages of three popular quantitative data analysis software: Microsoft Excel, Microsoft Access and SPSS.

Cost effective or Free of Charge

Can be sent as e-mail attachments & viewed by most smartphones

All in one program

Excel files can be secured by a password

Big Excel files may run slowly

Numbers of rows and columns are limited

Advanced analysis functions are time consuming to be learned by beginners

Virus vulnerability through macros

 

One of the cheapest amongst premium programs

Flexible information retrieval

Ease of use

 

Difficult in dealing with large database

Low level of interactivity

Remote use requires installation of the same version of Microsoft Access

Broad coverage of formulas and statistical routines

Data files can be imported through other programs

Annually updated to increase sophistication

Expensive cost

Limited license duration

Confusion among the different versions due to regular update

Advantages and disadvantages of popular quantitative analytical software

Quantitative data analysis with the application of statistical software consists of the following stages [1] :

  • Preparing and checking the data. Input of data into computer.
  • Selecting the most appropriate tables and diagrams to use according to your research objectives.
  • Selecting the most appropriate statistics to describe your data.
  • Selecting the most appropriate statistics to examine relationships and trends in your data.

It is important to note that while the application of various statistical software and programs are invaluable to avoid drawing charts by hand or undertake calculations manually, it is easy to use them incorrectly. In other words, quantitative data analysis is “a field where it is not at all difficult to carry out an analysis which is simply wrong, or inappropriate for your data or purposes. And the negative side of readily available specialist statistical software is that it becomes that much easier to generate elegantly presented rubbish” [2] .

Therefore, it is important for you to seek advice from your dissertation supervisor regarding statistical analyses in general and the choice and application of statistical software in particular.

My  e-book,  The Ultimate Guide to Writing a Dissertation in Business Studies: a step by step approach  contains a detailed, yet simple explanation of quantitative data analysis methods . The e-book explains all stages of the research process starting from the selection of the research area to writing personal reflection. Important elements of dissertations such as research philosophy, research approach, research design, methods of data collection and data analysis are explained in simple words. John Dudovskiy

Quantitative Data Analysis

[1] Saunders, M., Lewis, P. & Thornhill, A. (2012) “Research Methods for Business Students” 6th edition, Pearson Education Limited.

[2] Robson, C. (2011) Real World Research: A Resource for Users of Social Research Methods in Applied Settings (3rd edn). Chichester: John Wiley.

Are you an agency specialized in UX, digital marketing, or growth? Join our Partner Program

Learn / Guides / Quantitative data analysis guide

Back to guides

The ultimate guide to quantitative data analysis

Numbers help us make sense of the world. We collect quantitative data on our speed and distance as we drive, the number of hours we spend on our cell phones, and how much we save at the grocery store.

Our businesses run on numbers, too. We spend hours poring over key performance indicators (KPIs) like lead-to-client conversions, net profit margins, and bounce and churn rates.

But all of this quantitative data can feel overwhelming and confusing. Lists and spreadsheets of numbers don’t tell you much on their own—you have to conduct quantitative data analysis to understand them and make informed decisions.

Last updated

Reading time.

how to write data analysis for quantitative research

This guide explains what quantitative data analysis is and why it’s important, and gives you a four-step process to conduct a quantitative data analysis, so you know exactly what’s happening in your business and what your users need .

Collect quantitative customer data with Hotjar

Use Hotjar’s tools to gather the customer insights you need to make quantitative data analysis a breeze.

What is quantitative data analysis? 

Quantitative data analysis is the process of analyzing and interpreting numerical data. It helps you make sense of information by identifying patterns, trends, and relationships between variables through mathematical calculations and statistical tests. 

With quantitative data analysis, you turn spreadsheets of individual data points into meaningful insights to drive informed decisions. Columns of numbers from an experiment or survey transform into useful insights—like which marketing campaign asset your average customer prefers or which website factors are most closely connected to your bounce rate. 

Without analytics, data is just noise. Analyzing data helps you make decisions which are informed and free from bias.

What quantitative data analysis is not

But as powerful as quantitative data analysis is, it’s not without its limitations. It only gives you the what, not the why . For example, it can tell you how many website visitors or conversions you have on an average day, but it can’t tell you why users visited your site or made a purchase.

For the why behind user behavior, you need qualitative data analysis , a process for making sense of qualitative research like open-ended survey responses, interview clips, or behavioral observations. By analyzing non-numerical data, you gain useful contextual insights to shape your strategy, product, and messaging. 

Quantitative data analysis vs. qualitative data analysis 

Let’s take an even deeper dive into the differences between quantitative data analysis and qualitative data analysis to explore what they do and when you need them.

how to write data analysis for quantitative research

The bottom line: quantitative data analysis and qualitative data analysis are complementary processes. They work hand-in-hand to tell you what’s happening in your business and why.  

💡 Pro tip: easily toggle between quantitative and qualitative data analysis with Hotjar Funnels . 

The Funnels tool helps you visualize quantitative metrics like drop-off and conversion rates in your sales or conversion funnel to understand when and where users leave your website. You can break down your data even further to compare conversion performance by user segment.

Spot a potential issue? A single click takes you to relevant session recordings , where you see user behaviors like mouse movements, scrolls, and clicks. With this qualitative data to provide context, you'll better understand what you need to optimize to streamline the user experience (UX) and increase conversions .

Hotjar Funnels lets you quickly explore the story behind the quantitative data

4 benefits of quantitative data analysis

There’s a reason product, web design, and marketing teams take time to analyze metrics: the process pays off big time. 

Four major benefits of quantitative data analysis include:

1. Make confident decisions 

With quantitative data analysis, you know you’ve got data-driven insights to back up your decisions . For example, if you launch a concept testing survey to gauge user reactions to a new logo design, and 92% of users rate it ‘very good’—you'll feel certain when you give the designer the green light. 

Since you’re relying less on intuition and more on facts, you reduce the risks of making the wrong decision. (You’ll also find it way easier to get buy-in from team members and stakeholders for your next proposed project. 🙌)

2. Reduce costs

By crunching the numbers, you can spot opportunities to reduce spend . For example, if an ad campaign has lower-than-average click-through rates , you might decide to cut your losses and invest your budget elsewhere. 

Or, by analyzing ecommerce metrics , like website traffic by source, you may find you’re getting very little return on investment from a certain social media channel—and scale back spending in that area.

3. Personalize the user experience

Quantitative data analysis helps you map the customer journey , so you get a better sense of customers’ demographics, what page elements they interact with on your site, and where they drop off or convert . 

These insights let you better personalize your website, product, or communication, so you can segment ads, emails, and website content for specific user personas or target groups.

4. Improve user satisfaction and delight

Quantitative data analysis lets you see where your website or product is doing well—and where it falls short for your users . For example, you might see stellar results from KPIs like time on page, but conversion rates for that page are low. 

These quantitative insights encourage you to dive deeper into qualitative data to see why that’s happening—looking for moments of confusion or frustration on session recordings, for example—so you can make adjustments and optimize your conversions by improving customer satisfaction and delight.

💡Pro tip: use Net Promoter Score® (NPS) surveys to capture quantifiable customer satisfaction data that’s easy for you to analyze and interpret. 

With an NPS tool like Hotjar, you can create an on-page survey to ask users how likely they are to recommend you to others on a scale from 0 to 10. (And for added context, you can ask follow-up questions about why customers selected the rating they did—rich qualitative data is always a bonus!)

how to write data analysis for quantitative research

Hotjar graphs your quantitative NPS data to show changes over time

4 steps to effective quantitative data analysis 

Quantitative data analysis sounds way more intimidating than it actually is. Here’s how to make sense of your company’s numbers in just four steps:

1. Collect data

Before you can actually start the analysis process, you need data to analyze. This involves conducting quantitative research and collecting numerical data from various sources, including: 

Interviews or focus groups 

Website analytics

Observations, from tools like heatmaps or session recordings

Questionnaires, like surveys or on-page feedback widgets

Just ensure the questions you ask in your surveys are close-ended questions—providing respondents with select choices to choose from instead of open-ended questions that allow for free responses.

how to write data analysis for quantitative research

Hotjar’s pricing plans survey template provides close-ended questions

 2. Clean data

Once you’ve collected your data, it’s time to clean it up. Look through your results to find errors, duplicates, and omissions. Keep an eye out for outliers, too. Outliers are data points that differ significantly from the rest of the set—and they can skew your results if you don’t remove them.

By taking the time to clean your data set, you ensure your data is accurate, consistent, and relevant before it’s time to analyze. 

3. Analyze and interpret data

At this point, your data’s all cleaned up and ready for the main event. This step involves crunching the numbers to find patterns and trends via mathematical and statistical methods. 

Two main branches of quantitative data analysis exist: 

Descriptive analysis : methods to summarize or describe attributes of your data set. For example, you may calculate key stats like distribution and frequency, or mean, median, and mode.

Inferential analysis : methods that let you draw conclusions from statistics—like analyzing the relationship between variables or making predictions. These methods include t-tests, cross-tabulation, and factor analysis. (For more detailed explanations and how-tos, head to our guide on quantitative data analysis methods.)

Then, interpret your data to determine the best course of action. What does the data suggest you do ? For example, if your analysis shows a strong correlation between email open rate and time sent, you may explore optimal send times for each user segment.

4. Visualize and share data

Once you’ve analyzed and interpreted your data, create easy-to-read, engaging data visualizations—like charts, graphs, and tables—to present your results to team members and stakeholders. Data visualizations highlight similarities and differences between data sets and show the relationships between variables.

Software can do this part for you. For example, the Hotjar Dashboard shows all of your key metrics in one place—and automatically creates bar graphs to show how your top pages’ performance compares. And with just one click, you can navigate to the Trends tool to analyze product metrics for different segments on a single chart. 

Hotjar Trends lets you compare metrics across segments

Discover rich user insights with quantitative data analysis

Conducting quantitative data analysis takes a little bit of time and know-how, but it’s much more manageable than you might think. 

By choosing the right methods and following clear steps, you gain insights into product performance and customer experience —and you’ll be well on your way to making better decisions and creating more customer satisfaction and loyalty.

FAQs about quantitative data analysis

What is quantitative data analysis.

Quantitative data analysis is the process of making sense of numerical data through mathematical calculations and statistical tests. It helps you identify patterns, relationships, and trends to make better decisions.

How is quantitative data analysis different from qualitative data analysis?

Quantitative and qualitative data analysis are both essential processes for making sense of quantitative and qualitative research .

Quantitative data analysis helps you summarize and interpret numerical results from close-ended questions to understand what is happening. Qualitative data analysis helps you summarize and interpret non-numerical results, like opinions or behavior, to understand why the numbers look like they do.

 If you want to make strong data-driven decisions, you need both.

What are some benefits of quantitative data analysis?

Quantitative data analysis turns numbers into rich insights. Some benefits of this process include: 

Making more confident decisions

Identifying ways to cut costs

Personalizing the user experience

Improving customer satisfaction

What methods can I use to analyze quantitative data?

Quantitative data analysis has two branches: descriptive statistics and inferential statistics. 

Descriptive statistics provide a snapshot of the data’s features by calculating measures like mean, median, and mode. 

Inferential statistics , as the name implies, involves making inferences about what the data means. Dozens of methods exist for this branch of quantitative data analysis, but three commonly used techniques are: 

Cross tabulation

Factor analysis

A Complete Guide to Quantitative Research Methods

quantitative research methods

Numbers are everywhere and drive our day-to-day lives. We take decisions based on numbers, both at work and in our personal lives. For example, an organization may rely on sales numbers to see if it’s succeeding or failing, and a group of friends planning a vacation may look at ticket prices to pick a place.

In the social domain, numbers are just as important. They help identify what interventions are needed, whether ongoing projects are effective, and more. But how do organizations in the social domain get the numbers they need?

This is where quantitative research comes in. Quantitative research is the process of collecting numerical data through standardized techniques, then applying statistical methods to derive insights from it.

When is quantitative research useful?

The goal of quantitative research methods is to collect numerical data from a group of people, then generalize those results to a larger group of people to explain a phenomenon. Researchers generally use quantitative research when they want get objective, conclusive answers.

For example, a chocolate brand may run a survey among a sample of their target group (teenagers in the United States) to check whether they like the taste of the chocolate. The result of this survey would reveal how all teenagers in the U.S. feel about the chocolate.

quantitative research methods, literacy

Similarly, an organization running a project to improve a village’s literacy rate may look at how many people came to their program, how many people dropped out, and each person’s literacy score before and after the program. They can use these metrics to evaluate the overall success of their program.

Unlike  qualitative research , quantitative research is generally not used in the early stages of research for exploring a question or scoping out a problem. It is generally used to answer clear, pre-defined questions in the advanced stages of a research study.

How can you plan a quantitative research exercise?

  • Identify the research problem . An example would be, how well do New Delhi’s government schools ensure that students complete their education?
  • Prepare the research questions that need to be answered to address the research problem. For example, what percentage of students drop out of government schools in New Delhi?
  • Review existing literature on the research problem and questions to ensure that there is no duplication. If someone has already answered this, you can rely on their results.
  • Develop a research plan . This includes identifying the target group, sample , and method of data collection ; conducting data analysis; collating recommendations; and arriving at a conclusion.

What are the advantages of quantitative research methods?

  • Quantitative research methods provide an relatively conclusive answer to the research questions.
  • When the data is collected and analyzed in accordance with standardized, reputable methodology, the results are usually trustworthy.
  • With statistically significant sample sizes, the results can be generalized to an entire target group.

Samples have to be carefully designed and chosen, else their results can’t be generalized. Learn how to choose the right sampling technique for your survey.

What are the limitations of quantitative research methods?

  • Does not account for people’s thoughts or perceptions about what you’re evaluating.
  • Does not explore the “why” and “how” behind a phenomenon.

What quantitative research methods can you use?

Here are four quantitative research methods that you can use to collect data for a quantitative research study:

Questionnaires

This is the most common way to collect quantitative data. A questionnaire (also called a survey) is a series of questions, usually written on paper or a digital form. Researchers give the questionnaire to their sample, and each participant answers the questions. The questions are designed to gather data that will help researchers answer their research questions.

quantitative research methods, closed-ended question, open-ended question, atlan collect

Typically, a questionnaire has closed-ended questions — that is, the participant chooses an answer from the given options. However, a questionnaire may also have quantitative open-ended questions. In the open-ended example above, the participants could write a simple number like “4”, a range like “I usually go one or two times per week” or a more complex response like “Most weeks I go twice, but this week I went 4 times because I kept forgetting my grocery list. During the winter, I only go once a week.”

Understanding closed and open-ended questions is crucial to designing a great survey and collecting high quality data. Learn more with our complete guide about when and how to use closed and open-ended questions.

A good questionnaire should have clear language, correct grammar and spelling, and a clear objective.

Advantages:

  • Questionnaires are often less time consuming than interviews or other in-person quantitative research methods.
  • They’re a common, fairly simple way to collect data.
  • They can be a cost-effective option for gathering data from a large sample.

Limitations:

  • Responses may lack depth and provide limited information.
  • Respondents may lose interest or quit if the questionnaire is long.
  • Respondents may not understand all questions, which would lead to inaccurate responses.

Response bias — a set of factors that lead participants answer a question incorrectly — can be deadly for data quality. Learn how it happens and how to avoid it.

how to write data analysis for quantitative research

An interview for quantitative research involves verbal communication between the participant and researcher, whose goal is to gather numerical data. The interview can be conducted face-to-face or over the phone, and it can be structured or unstructured.

In a structured interview, the researcher asks a fixed set of questions to every participant. The questions and their order are pre-decided by the researcher. The interview follows a formal pattern. Structured interviews are more cost efficient and can be less time consuming.

In an unstructured interview, the researcher thinks of his/her questions as the interview proceeds. This type of interview is conversational in nature and can last a few hours. This type of interview allows the researcher to be flexible and ask questions depending on the participant’s responses. This quantitative research method can provide more in-depth information, since it allows researchers to delve deeper into a participant’s response.

  • Interviews can provide more in-depth information.
  • Interviews are more flexible than questionnaires, since interviewers can adapt their questions to each participant or ask follow-up questions.
  • Interviewers can clarify participants’ questions, which will help them get clearer, more accurate data.
  • Interviewing one person at a time can be time-consuming.
  • Travel, interviewer salaries and other expenses can make interviews an expensive data collection tool.
  • With unstructured interviews, it can be difficult to quantify some responses.

One way to speed up interviews is to conduct them with multiple people at one time in a focus group discussion. Learn more about how to conduct a great FGD.

Observation

Observation is a systematic way to collect data by observing people in natural situations or settings. Though it is mostly used for collecting qualitative data, observation can also be used to collect quantitative data.

Observation can be simple or behavioral. Simple observations are usually numerical, like how many cars pass through a given intersection each hour or how many students are asleep during a class. Behavioral observation, on the other hand, observes and interprets people’s behavior, like how many cars are driving dangerously or how engaging a lecturer is.

Simple observation can be a good way to collect numerical data. This can be done by pre-defining clear numerical variables that can be collected during observation — for example, what time employees leave the office. This data can be collected by observing employees over a period of time and recording when each person leaves.

  • Observation is often an inexpensive way to collect data.
  • Since researchers are recording the data themselves (rather than participants reporting the data), most of the collected data will generally be usable.
  • Data collection can be stopped and started by researchers at any time, making it a flexible data collection tool.
  • Researchers need to be extensively trained to undertake observation and record data correctly.
  • Sometimes the environment or research may bias the data, like when participants know they’re being observed.
  • If the situation to be observed sometimes doesn’t happen, researchers may waste a lot of time during data collection.

Simple vs. behavioral is just one type of observation. Learn more about the 5 different types of observation and when you should use each to collect different types of data.

how to write data analysis for quantitative research

Since quantitative research depends on numerical data, records (also known as external data) can provide critical information to answer research questions. Records are numbers and statistics that institutions use to track activities, like attendance in a school or the number of patients admitted in a hospital.

For example, the Government of India conducts the Census every 10 years, which is a record of the country’s population. This data can be used by a researcher who is addressing a population-related research problem.

  • Records often include comprehensive data captured over a long period of time.
  • Data collection time is minimal, since the data has already been collected and recorded by someone else.
  • Records often only provide numerical data, not the reason or cause behind the data.
  • Cleaning badly structured or formatted records can take a long time.
  • If a record is incomplete or inaccurate, there is often no way to fix it.

Summing it up

Quantitative research methods are one of the best tools to identify a problem or phenomenon, how widespread it is, and how it is changing over time. After identifying a problem, quantitative research can also be used to come up with a trustworthy solution, identified using numerical data collected through standardized techniques.

Image credits:  Curtis MacNewton ,  Brijesh Nirmal ,  Charles Deluvio , and Atlan.

' src=

Related Posts

how to write data analysis for quantitative research

3 Myths About Paper-Based Data Collection

data validations

18 Data Validations That Will Help You Collect Accurate Data

informed consent

Everything You Need to Know About Informed Consent

14 comments.

' src=

Very useful for research

' src=

Very easy to read and informative book. Well written. Thany thanks for the download.

' src=

It is concise and practical as well as easy to understand.

' src=

Nice book but I kind find a way to download it. Kindly let me know how to download it. Thanks

' src=

Hello Micah Nalianya Greetings! Kindly tell me how to download the book. Simeon

' src=

Hi Micah and Simeon! You can download our data collection ebook here: https://socialcops.com/ebooks/data-collection/

' src=

I have loved reviewing the brief write up. Good revision for me. Thanks

' src=

The text contains concise and important tips on data collection techniques.

' src=

Thanks for an explicit and precise outline of data collection methods.

' src=

thank you very much, this guide is really useful and easy to understand. Specially for students that just have started research.

' src=

Thank you so much for sharing me this very important material.

' src=

I am highly impressed with the simply ways you explain methods of collecting data. I am a Monitoring and Evaluation Specialist and I will like to be receiving your regular publications.

' src=

i have benefited from the work. well organized .thank you

' src=

interview is a qualitative method not quantitative.

Write A Comment Cancel Reply

Save my name, email, and website in this browser for the next time I comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed .

  • The Future of the Modern Data Stack in 2023
  • The Third-Generation Data Catalog Primer
  • The Secrets of a Modern Data Leader
  • The Ultimate Guide to Evaluating Data Lineage
  • How Active Metadata Helps Modern Organizations Embrace the DataOps Way
  • Inside Atlan

Type above and press Enter to search. Press Esc to cancel.

how to write data analysis for quantitative research

How To Write Methodology For A Quantitative Study?

Methodology Chapter Provides Information On All The Steps Taken For The Study Of A Problem And The Justifications Given For Specific Steps Taken To Gather, Process, And Analyze Data Related To Understanding The Problem. The Chapter Allows The Reader To Understand And Evaluate The Research Design And Thus Validate It.

how to write data analysis for quantitative research

Quantitative Study: Quantitative Research Is The Quantification Of A Problem Via Generating Numerical Data That Are Most Often Converted Into Statistics. The Statistical Analysis In Research Methodology Helps In Proving Or Disproving A Thesis. The Research Is Usually Conducted Among A Broad Populace In The Form Of Questionnaire, Polls And Other Surveys Which Involves The Participants To Reply In Numbers. This Means Quantitative Research Falls Under The Headings Of Empirical Or Statistical Studies. Its Main Characteristics Are :

  • Use Of Standard Instruments To Gather Data.
  • Sizes Of The Samples Are Proportional To That Of The Population In Question.
  • Research Is Conducted On A Well-Defined Question.
  • Studies Are Well Designed Before The Process.
  • Numerical Data That Quantify A Problem Or An Area Of Research Using Various Means Like Charts, Tables, Graphs, Etc. Data Collection Carried Out Through Surveys, Questionnaires, Etc.

A Methodology Chapter For A Quantitative Study Explains The Following In A Direct And Precise Manner:

How Was The Data Generated? How Was It Processed? Why Was The Design, That Was Used, Used?

Any Methodology Chapter Must Be Written In The Past Tense And Follows The Following Guidelines: Chapter Provides Information On The Methods Of Data Collection To Enable The Readers To Understand The Process.

how to write data analysis for quantitative research

  • Significance Of The Methodology Is That A Proper Methodology Validates The Study As A Whole.
  • Methodology Section Should Provide A Rationale For Choosing A Particular Design.
  • Methods Used Must Be Valid And Conforming To The Conventional Norms Of Research. As Such, The Methodology Chapter Must Provide Enough Evidence To Support The Credibility Of Each Method Used.
  • The Appropriateness Of The Methods Chosen Must Be Stated. Only The Methods That Are Appropriate To The Scale Of The Subject In Investigation Must Be Chosen.
  • The Chapter Must Contain Information On The Constraints And Challenges That Were Anticipated Before The Beginning Of The Study, The Steps Taken To Prevent The Problems From Occurring, And The Ways The Constraints That Did Occur Were Tackled With Minimal Impact And How The Said Impact Doesn’t Affect The Outcome Of The Study.
  • Necessary Information To Replicate Any Particular Method Must Be Provided Concisely In The Chapter.

A methodology for a quantitative study begins with a reiteration of the research question and its context.

how to write data analysis for quantitative research

This is followed by the research design , where the methods used to gather, process and analyze the data are given. This is usually preceded or followed by a justification of the appropriateness of the research design . Then, the information on the pilot study is given. It is followed by the precise information on sampling strategies, instrument design, and methods of data analysis . ‘ Ethical considerations ’ comes next . Here the researcher informs the reader of the measures taken to ensure participants privacy and consent, etc. Penultimate to concluding the methodology chapter is problems and limitations, where the reader is informed of all the constraints the researcher anticipated and all the problems that occurred and the limitations methods may pose to the overall study.

Links, Related Posts

– indispensable qualitative research methods.

  • Qualitative Research Design Methodology
  • Quantitative Research Design Methodology
  • Research Methodology Help
  • Research Methodology Services

statistical data analysis uk, dissertation data analysis help, qualitative data analysis services statistical analysis services for students, spss data analysis services

  • A global market analysis (1)
  • Academic (22)
  • Algorithms (1)
  • Big Data Analytics (4)
  • Bio Statistics (3)
  • Clinical Prediction Model (1)
  • Corporate (9)
  • Corporate statistics service (1)
  • Data Analyses (23)
  • Data collection (11)
  • Genomics & Bioinformatics (1)
  • Guidelines (2)
  • Machine Learning – Blogs (1)
  • Network Analysis (1)
  • Predictive analyses (2)
  • Qualitative (1)
  • Quantitaive (2)
  • Quantitative Data analysis service (1)
  • Research (59)
  • Shipping & Logistics (1)
  • Statistical analysis service (7)
  • Statistical models (1)
  • Statistical Report Writing (1)
  • Statistical Software (10)
  • Statistics (64)
  • Survey & Interview from Statswork (1)
  • Uncategorized (3)

Recent Posts

  • Top 10 Machine Learning Algorithms Expected to Shape the Future of AI
  • Data-Driven Governance: Revolutionizing State Youth Policies through Web Scraping
  • The Future is Now: The Potential of Predictive Analytics Models and Algorithms
  • 2024 Vision: Exploring the Impact and Evolution of Advanced Analytics Tools
  • Application of machine learning in marketing

Statswork is a pioneer statistical consulting company providing full assistance to researchers and scholars. Statswork offers expert consulting assistance and enhancing researchers by our distinct statistical process and communication throughout the research process with us.

Functional Area

– Research Planning – Tool Development – Data Mining – Data Collection – Statistics Coursework – Research Methodology – Meta Analysis – Data Analysis

  • – Corporate
  • – Statistical Software
  • – Statistics

Corporate Office

#10, Kutty Street, Nungambakkam, Chennai, Tamil Nadu – 600034, India No : +91 4433182000, UK No : +44-1223926607 , US No : +1-9725029262 Email: [email protected]

Website: www.statswork.com

© 2024 Statswork. All Rights Reserved

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • J Korean Med Sci
  • v.38(37); 2023 Sep 18
  • PMC10506897

Logo of jkms

Conducting and Writing Quantitative and Qualitative Research

Edward barroga.

1 Department of Medical Education, Showa University School of Medicine, Tokyo, Japan.

Glafera Janet Matanguihan

2 Department of Biological Sciences, Messiah University, Mechanicsburg, PA, USA.

Atsuko Furuta

Makiko arima, shizuma tsuchiya, chikako kawahara, yusuke takamiya.

Comprehensive knowledge of quantitative and qualitative research systematizes scholarly research and enhances the quality of research output. Scientific researchers must be familiar with them and skilled to conduct their investigation within the frames of their chosen research type. When conducting quantitative research, scientific researchers should describe an existing theory, generate a hypothesis from the theory, test their hypothesis in novel research, and re-evaluate the theory. Thereafter, they should take a deductive approach in writing the testing of the established theory based on experiments. When conducting qualitative research, scientific researchers raise a question, answer the question by performing a novel study, and propose a new theory to clarify and interpret the obtained results. After which, they should take an inductive approach to writing the formulation of concepts based on collected data. When scientific researchers combine the whole spectrum of inductive and deductive research approaches using both quantitative and qualitative research methodologies, they apply mixed-method research. Familiarity and proficiency with these research aspects facilitate the construction of novel hypotheses, development of theories, or refinement of concepts.

Graphical Abstract

An external file that holds a picture, illustration, etc.
Object name is jkms-38-e291-abf001.jpg

INTRODUCTION

Novel research studies are conceptualized by scientific researchers first by asking excellent research questions and developing hypotheses, then answering these questions by testing their hypotheses in ethical research. 1 , 2 , 3 Before they conduct novel research studies, scientific researchers must possess considerable knowledge of both quantitative and qualitative research. 2

In quantitative research, researchers describe existing theories, generate and test a hypothesis in novel research, and re-evaluate existing theories deductively based on their experimental results. 1 , 4 , 5 In qualitative research, scientific researchers raise and answer research questions by performing a novel study, then propose new theories by clarifying their results inductively. 1 , 6

RATIONALE OF THIS ARTICLE

When researchers have a limited knowledge of both research types and how to conduct them, this can result in substandard investigation. Researchers must be familiar with both types of research and skilled to conduct their investigations within the frames of their chosen type of research. Thus, meticulous care is needed when planning quantitative and qualitative research studies to avoid unethical research and poor outcomes.

Understanding the methodological and writing assumptions 7 , 8 underpinning quantitative and qualitative research, especially by non-Anglophone researchers, is essential for their successful conduct. Scientific researchers, especially in the academe, face pressure to publish in international journals 9 where English is the language of scientific communication. 10 , 11 In particular, non-Anglophone researchers face challenges related to linguistic, stylistic, and discourse differences. 11 , 12 Knowing the assumptions of the different types of research will help clarify research questions and methodologies, easing the challenge and help.

SEARCH FOR RELEVANT ARTICLES

To identify articles relevant to this topic, we adhered to the search strategy recommended by Gasparyan et al. 7 We searched through PubMed, Scopus, Directory of Open Access Journals, and Google Scholar databases using the following keywords: quantitative research, qualitative research, mixed-method research, deductive reasoning, inductive reasoning, study design, descriptive research, correlational research, experimental research, causal-comparative research, quasi-experimental research, historical research, ethnographic research, meta-analysis, narrative research, grounded theory, phenomenology, case study, and field research.

AIMS OF THIS ARTICLE

This article aims to provide a comparative appraisal of qualitative and quantitative research for scientific researchers. At present, there is still a need to define the scope of qualitative research, especially its essential elements. 13 Consensus on the critical appraisal tools to assess the methodological quality of qualitative research remains lacking. 14 Framing and testing research questions can be challenging in qualitative research. 2 In the healthcare system, it is essential that research questions address increasingly complex situations. Therefore, research has to be driven by the kinds of questions asked and the corresponding methodologies to answer these questions. 15 The mixed-method approach also needs to be clarified as this would appear to arise from different philosophical underpinnings. 16

This article also aims to discuss how particular types of research should be conducted and how they should be written in adherence to international standards. In the US, Europe, and other countries, responsible research and innovation was conceptualized and promoted with six key action points: engagement, gender equality, science education, open access, ethics and governance. 17 , 18 International ethics standards in research 19 as well as academic integrity during doctoral trainings are now integral to the research process. 20

POTENTIAL BENEFITS FROM THIS ARTICLE

This article would be beneficial for researchers in further enhancing their understanding of the theoretical, methodological, and writing aspects of qualitative and quantitative research, and their combination.

Moreover, this article reviews the basic features of both research types and overviews the rationale for their conduct. It imparts information on the most common forms of quantitative and qualitative research, and how they are carried out. These aspects would be helpful for selecting the optimal methodology to use for research based on the researcher’s objectives and topic.

This article also provides information on the strengths and weaknesses of quantitative and qualitative research. Such information would help researchers appreciate the roles and applications of both research types and how to gain from each or their combination. As different research questions require different types of research and analyses, this article is anticipated to assist researchers better recognize the questions answered by quantitative and qualitative research.

Finally, this article would help researchers to have a balanced perspective of qualitative and quantitative research without considering one as superior to the other.

TYPES OF RESEARCH

Research can be classified into two general types, quantitative and qualitative. 21 Both types of research entail writing a research question and developing a hypothesis. 22 Quantitative research involves a deductive approach to prove or disprove the hypothesis that was developed, whereas qualitative research involves an inductive approach to create a hypothesis. 23 , 24 , 25 , 26

In quantitative research, the hypothesis is stated before testing. In qualitative research, the hypothesis is developed through inductive reasoning based on the data collected. 27 , 28 For types of data and their analysis, qualitative research usually includes data in the form of words instead of numbers more commonly used in quantitative research. 29

Quantitative research usually includes descriptive, correlational, causal-comparative / quasi-experimental, and experimental research. 21 On the other hand, qualitative research usually encompasses historical, ethnographic, meta-analysis, narrative, grounded theory, phenomenology, case study, and field research. 23 , 25 , 28 , 30 A summary of the features, writing approach, and examples of published articles for each type of qualitative and quantitative research is shown in Table 1 . 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43

ResearchTypeMethodology featureResearch writing pointersExample of published article
QuantitativeDescriptive researchDescribes status of identified variable to provide systematic information about phenomenonExplain how a situation, sample, or variable was examined or observed as it occurred without investigator interferenceÖstlund AS, Kristofferzon ML, Häggström E, Wadensten B. Primary care nurses’ performance in motivational interviewing: a quantitative descriptive study. 2015;16(1):89.
Correlational researchDetermines and interprets extent of relationship between two or more variables using statistical dataDescribe the establishment of reliability and validity, converging evidence, relationships, and predictions based on statistical dataDíaz-García O, Herranz Aguayo I, Fernández de Castro P, Ramos JL. Lifestyles of Spanish elders from supervened SARS-CoV-2 variant onwards: A correlational research on life satisfaction and social-relational praxes. 2022;13:948745.
Causal-comparative/Quasi-experimental researchEstablishes cause-effect relationships among variablesWrite about comparisons of the identified control groups exposed to the treatment variable with unexposed groups : Sharma MK, Adhikari R. Effect of school water, sanitation, and hygiene on health status among basic level students in Nepal. Environ Health Insights 2022;16:11786302221095030.
Uses non-randomly assigned groups where it is not logically feasible to conduct a randomized controlled trialProvide clear descriptions of the causes determined after making data analyses and conclusions, and known and unknown variables that could potentially affect the outcome
[The study applies a causal-comparative research design]
: Tuna F, Tunçer B, Can HB, Süt N, Tuna H. Immediate effect of Kinesio taping® on deep cervical flexor endurance: a non-controlled, quasi-experimental pre-post quantitative study. 2022;40(6):528-35.
Experimental researchEstablishes cause-effect relationship among group of variables making up a study using scientific methodDescribe how an independent variable was manipulated to determine its effects on dependent variablesHyun C, Kim K, Lee S, Lee HH, Lee J. Quantitative evaluation of the consciousness level of patients in a vegetative state using virtual reality and an eye-tracking system: a single-case experimental design study. 2022;32(10):2628-45.
Explain the random assignments of subjects to experimental treatments
QualitativeHistorical researchDescribes past events, problems, issues, and factsWrite the research based on historical reportsSilva Lima R, Silva MA, de Andrade LS, Mello MA, Goncalves MF. Construction of professional identity in nursing students: qualitative research from the historical-cultural perspective. 2020;28:e3284.
Ethnographic researchDevelops in-depth analytical descriptions of current systems, processes, and phenomena or understandings of shared beliefs and practices of groups or cultureCompose a detailed report of the interpreted dataGammeltoft TM, Huyền Diệu BT, Kim Dung VT, Đức Anh V, Minh Hiếu L, Thị Ái N. Existential vulnerability: an ethnographic study of everyday lives with diabetes in Vietnam. 2022;29(3):271-88.
Meta-analysisAccumulates experimental and correlational results across independent studies using statistical methodSpecify the topic, follow reporting guidelines, describe the inclusion criteria, identify key variables, explain the systematic search of databases, and detail the data extractionOeljeklaus L, Schmid HL, Kornfeld Z, Hornberg C, Norra C, Zerbe S, et al. Therapeutic landscapes and psychiatric care facilities: a qualitative meta-analysis. 2022;19(3):1490.
Narrative researchStudies an individual and gathers data by collecting stories for constructing a narrative about the individual’s experiences and their meaningsWrite an in-depth narration of events or situations focused on the participantsAnderson H, Stocker R, Russell S, Robinson L, Hanratty B, Robinson L, et al. Identity construction in the very old: a qualitative narrative study. 2022;17(12):e0279098.
Grounded theoryEngages in inductive ground-up or bottom-up process of generating theory from dataWrite the research as a theory and a theoretical model.Amini R, Shahboulaghi FM, Tabrizi KN, Forouzan AS. Social participation among Iranian community-dwelling older adults: a grounded theory study. 2022;11(6):2311-9.
Describe data analysis procedure about theoretical coding for developing hypotheses based on what the participants say
PhenomenologyAttempts to understand subjects’ perspectivesWrite the research report by contextualizing and reporting the subjects’ experiencesGreen G, Sharon C, Gendler Y. The communication challenges and strength of nurses’ intensive corona care during the two first pandemic waves: a qualitative descriptive phenomenology study. 2022;10(5):837.
Case studyAnalyzes collected data by detailed identification of themes and development of narratives written as in-depth study of lessons from caseWrite the report as an in-depth study of possible lessons learned from the caseHorton A, Nugus P, Fortin MC, Landsberg D, Cantarovich M, Sandal S. Health system barriers and facilitators to living donor kidney transplantation: a qualitative case study in British Columbia. 2022;10(2):E348-56.
Field researchDirectly investigates and extensively observes social phenomenon in natural environment without implantation of controls or experimental conditionsDescribe the phenomenon under the natural environment over timeBuus N, Moensted M. Collectively learning to talk about personal concerns in a peer-led youth program: a field study of a community of practice. 2022;30(6):e4425-32.

QUANTITATIVE RESEARCH

Deductive approach.

The deductive approach is used to prove or disprove the hypothesis in quantitative research. 21 , 25 Using this approach, researchers 1) make observations about an unclear or new phenomenon, 2) investigate the current theory surrounding the phenomenon, and 3) hypothesize an explanation for the observations. Afterwards, researchers will 4) predict outcomes based on the hypotheses, 5) formulate a plan to test the prediction, and 6) collect and process the data (or revise the hypothesis if the original hypothesis was false). Finally, researchers will then 7) verify the results, 8) make the final conclusions, and 9) present and disseminate their findings ( Fig. 1A ).

An external file that holds a picture, illustration, etc.
Object name is jkms-38-e291-g001.jpg

Types of quantitative research

The common types of quantitative research include (a) descriptive, (b) correlational, c) experimental research, and (d) causal-comparative/quasi-experimental. 21

Descriptive research is conducted and written by describing the status of an identified variable to provide systematic information about a phenomenon. A hypothesis is developed and tested after data collection, analysis, and synthesis. This type of research attempts to factually present comparisons and interpretations of findings based on analyses of the characteristics, progression, or relationships of a certain phenomenon by manipulating the employed variables or controlling the involved conditions. 44 Here, the researcher examines, observes, and describes a situation, sample, or variable as it occurs without investigator interference. 31 , 45 To be meaningful, the systematic collection of information requires careful selection of study units by precise measurement of individual variables 21 often expressed as ranges, means, frequencies, and/or percentages. 31 , 45 Descriptive statistical analysis using ANOVA, Student’s t -test, or the Pearson coefficient method has been used to analyze descriptive research data. 46

Correlational research is performed by determining and interpreting the extent of a relationship between two or more variables using statistical data. This involves recognizing data trends and patterns without necessarily proving their causes. The researcher studies only the data, relationships, and distributions of variables in a natural setting, but does not manipulate them. 21 , 45 Afterwards, the researcher establishes reliability and validity, provides converging evidence, describes relationship, and makes predictions. 47

Experimental research is usually referred to as true experimentation. The researcher establishes the cause-effect relationship among a group of variables making up a study using the scientific method or process. This type of research attempts to identify the causal relationships between variables through experiments by arbitrarily controlling the conditions or manipulating the variables used. 44 The scientific manuscript would include an explanation of how the independent variable was manipulated to determine its effects on the dependent variables. The write-up would also describe the random assignments of subjects to experimental treatments. 21

Causal-comparative/quasi-experimental research closely resembles true experimentation but is conducted by establishing the cause-effect relationships among variables. It may also be conducted to establish the cause or consequences of differences that already exist between, or among groups of individuals. 48 This type of research compares outcomes between the intervention groups in which participants are not randomized to their respective interventions because of ethics- or feasibility-related reasons. 49 As in true experiments, the researcher identifies and measures the effects of the independent variable on the dependent variable. However, unlike true experiments, the researchers do not manipulate the independent variable.

In quasi-experimental research, naturally formed or pre-existing groups that are not randomly assigned are used, particularly when an ethical, randomized controlled trial is not feasible or logical. 50 The researcher identifies control groups as those which have been exposed to the treatment variable, and then compares these with the unexposed groups. The causes are determined and described after data analysis, after which conclusions are made. The known and unknown variables that could still affect the outcome are also included. 7

QUALITATIVE RESEARCH

Inductive approach.

Qualitative research involves an inductive approach to develop a hypothesis. 21 , 25 Using this approach, researchers answer research questions and develop new theories, but they do not test hypotheses or previous theories. The researcher seldom examines the effectiveness of an intervention, but rather explores the perceptions, actions, and feelings of participants using interviews, content analysis, observations, or focus groups. 25 , 45 , 51

Distinctive features of qualitative research

Qualitative research seeks to elucidate about the lives of people, including their lived experiences, behaviors, attitudes, beliefs, personality characteristics, emotions, and feelings. 27 , 30 It also explores societal, organizational, and cultural issues. 30 This type of research provides a good story mimicking an adventure which results in a “thick” description that puts readers in the research setting. 52

The qualitative research questions are open-ended, evolving, and non-directional. 26 The research design is usually flexible and iterative, commonly employing purposive sampling. The sample size depends on theoretical saturation, and data is collected using in-depth interviews, focus groups, and observations. 27

In various instances, excellent qualitative research may offer insights that quantitative research cannot. Moreover, qualitative research approaches can describe the ‘lived experience’ perspectives of patients, practitioners, and the public. 53 Interestingly, recent developments have looked into the use of technology in shaping qualitative research protocol development, data collection, and analysis phases. 54

Qualitative research employs various techniques, including conversational and discourse analysis, biographies, interviews, case-studies, oral history, surveys, documentary and archival research, audiovisual analysis, and participant observations. 26

Conducting qualitative research

To conduct qualitative research, investigators 1) identify a general research question, 2) choose the main methods, sites, and subjects, and 3) determine methods of data documentation access to subjects. Researchers also 4) decide on the various aspects for collecting data (e.g., questions, behaviors to observe, issues to look for in documents, how much (number of questions, interviews, or observations), 5) clarify researchers’ roles, and 6) evaluate the study’s ethical implications in terms of confidentiality and sensitivity. Afterwards, researchers 7) collect data until saturation, 8) interpret data by identifying concepts and theories, and 9) revise the research question if necessary and form hypotheses. In the final stages of the research, investigators 10) collect and verify data to address revisions, 11) complete the conceptual and theoretical framework to finalize their findings, and 12) present and disseminate findings ( Fig. 1B ).

Types of qualitative research

The different types of qualitative research include (a) historical research, (b) ethnographic research, (c) meta-analysis, (d) narrative research, (e) grounded theory, (f) phenomenology, (g) case study, and (h) field research. 23 , 25 , 28 , 30

Historical research is conducted by describing past events, problems, issues, and facts. The researcher gathers data from written or oral descriptions of past events and attempts to recreate the past without interpreting the events and their influence on the present. 6 Data is collected using documents, interviews, and surveys. 55 The researcher analyzes these data by describing the development of events and writes the research based on historical reports. 2

Ethnographic research is performed by observing everyday life details as they naturally unfold. 2 It can also be conducted by developing in-depth analytical descriptions of current systems, processes, and phenomena or by understanding the shared beliefs and practices of a particular group or culture. 21 The researcher collects extensive narrative non-numerical data based on many variables over an extended period, in a natural setting within a specific context. To do this, the researcher uses interviews, observations, and active participation. These data are analyzed by describing and interpreting them and developing themes. A detailed report of the interpreted data is then provided. 2 The researcher immerses himself/herself into the study population and describes the actions, behaviors, and events from the perspective of someone involved in the population. 23 As examples of its application, ethnographic research has helped to understand a cultural model of family and community nursing during the coronavirus disease 2019 outbreak. 56 It has also been used to observe the organization of people’s environment in relation to cardiovascular disease management in order to clarify people’s real expectations during follow-up consultations, possibly contributing to the development of innovative solutions in care practices. 57

Meta-analysis is carried out by accumulating experimental and correlational results across independent studies using a statistical method. 21 The report is written by specifying the topic and meta-analysis type. In the write-up, reporting guidelines are followed, which include description of inclusion criteria and key variables, explanation of the systematic search of databases, and details of data extraction. Meta-analysis offers in-depth data gathering and analysis to achieve deeper inner reflection and phenomenon examination. 58

Narrative research is performed by collecting stories for constructing a narrative about an individual’s experiences and the meanings attributed to them by the individual. 9 It aims to hear the voice of individuals through their account or experiences. 17 The researcher usually conducts interviews and analyzes data by storytelling, content review, and theme development. The report is written as an in-depth narration of events or situations focused on the participants. 2 , 59 Narrative research weaves together sequential events from one or two individuals to create a “thick” description of a cohesive story or narrative. 23 It facilitates understanding of individuals’ lives based on their own actions and interpretations. 60

Grounded theory is conducted by engaging in an inductive ground-up or bottom-up strategy of generating a theory from data. 24 The researcher incorporates deductive reasoning when using constant comparisons. Patterns are detected in observations and then a working hypothesis is created which directs the progression of inquiry. The researcher collects data using interviews and questionnaires. These data are analyzed by coding the data, categorizing themes, and describing implications. The research is written as a theory and theoretical models. 2 In the write-up, the researcher describes the data analysis procedure (i.e., theoretical coding used) for developing hypotheses based on what the participants say. 61 As an example, a qualitative approach has been used to understand the process of skill development of a nurse preceptor in clinical teaching. 62 A researcher can also develop a theory using the grounded theory approach to explain the phenomena of interest by observing a population. 23

Phenomenology is carried out by attempting to understand the subjects’ perspectives. This approach is pertinent in social work research where empathy and perspective are keys to success. 21 Phenomenology studies an individual’s lived experience in the world. 63 The researcher collects data by interviews, observations, and surveys. 16 These data are analyzed by describing experiences, examining meanings, and developing themes. The researcher writes the report by contextualizing and reporting the subjects’ experience. This research approach describes and explains an event or phenomenon from the perspective of those who have experienced it. 23 Phenomenology understands the participants’ experiences as conditioned by their worldviews. 52 It is suitable for a deeper understanding of non-measurable aspects related to the meanings and senses attributed by individuals’ lived experiences. 60

Case study is conducted by collecting data through interviews, observations, document content examination, and physical inspections. The researcher analyzes the data through a detailed identification of themes and the development of narratives. The report is written as an in-depth study of possible lessons learned from the case. 2

Field research is performed using a group of methodologies for undertaking qualitative inquiries. The researcher goes directly to the social phenomenon being studied and observes it extensively. In the write-up, the researcher describes the phenomenon under the natural environment over time with no implantation of controls or experimental conditions. 45

DIFFERENCES BETWEEN QUANTITATIVE AND QUALITATIVE RESEARCH

Scientific researchers must be aware of the differences between quantitative and qualitative research in terms of their working mechanisms to better understand their specific applications. This knowledge will be of significant benefit to researchers, especially during the planning process, to ensure that the appropriate type of research is undertaken to fulfill the research aims.

In terms of quantitative research data evaluation, four well-established criteria are used: internal validity, external validity, reliability, and objectivity. 23 The respective correlating concepts in qualitative research data evaluation are credibility, transferability, dependability, and confirmability. 30 Regarding write-up, quantitative research papers are usually shorter than their qualitative counterparts, which allows the latter to pursue a deeper understanding and thus producing the so-called “thick” description. 29

Interestingly, a major characteristic of qualitative research is that the research process is reversible and the research methods can be modified. This is in contrast to quantitative research in which hypothesis setting and testing take place unidirectionally. This means that in qualitative research, the research topic and question may change during literature analysis, and that the theoretical and analytical methods could be altered during data collection. 44

Quantitative research focuses on natural, quantitative, and objective phenomena, whereas qualitative research focuses on social, qualitative, and subjective phenomena. 26 Quantitative research answers the questions “what?” and “when?,” whereas qualitative research answers the questions “why?,” “how?,” and “how come?.” 64

Perhaps the most important distinction between quantitative and qualitative research lies in the nature of the data being investigated and analyzed. Quantitative research focuses on statistical, numerical, and quantitative aspects of phenomena, and employ the same data collection and analysis, whereas qualitative research focuses on the humanistic, descriptive, and qualitative aspects of phenomena. 26 , 28

Structured versus unstructured processes

The aims and types of inquiries determine the difference between quantitative and qualitative research. In quantitative research, statistical data and a structured process are usually employed by the researcher. Quantitative research usually suggests quantities (i.e., numbers). 65 On the other hand, researchers typically use opinions, reasons, verbal statements, and an unstructured process in qualitative research. 63 Qualitative research is more related to quality or kind. 65

In quantitative research, the researcher employs a structured process for collecting quantifiable data. Often, a close-ended questionnaire is used wherein the response categories for each question are designed in which values can be assigned and analyzed quantitatively using a common scale. 66 Quantitative research data is processed consecutively from data management, then data analysis, and finally to data interpretation. Data should be free from errors and missing values. In data management, variables are defined and coded. In data analysis, statistics (e.g., descriptive, inferential) as well as central tendency (i.e., mean, median, mode), spread (standard deviation), and parameter estimation (confidence intervals) measures are used. 67

In qualitative research, the researcher uses an unstructured process for collecting data. These non-statistical data may be in the form of statements, stories, or long explanations. Various responses according to respondents may not be easily quantified using a common scale. 66

Composing a qualitative research paper resembles writing a quantitative research paper. Both papers consist of a title, an abstract, an introduction, objectives, methods, findings, and discussion. However, a qualitative research paper is less regimented than a quantitative research paper. 27

Quantitative research as a deductive hypothesis-testing design

Quantitative research can be considered as a hypothesis-testing design as it involves quantification, statistics, and explanations. It flows from theory to data (i.e., deductive), focuses on objective data, and applies theories to address problems. 45 , 68 It collects numerical or statistical data; answers questions such as how many, how often, how much; uses questionnaires, structured interview schedules, or surveys 55 as data collection tools; analyzes quantitative data in terms of percentages, frequencies, statistical comparisons, graphs, and tables showing statistical values; and reports the final findings in the form of statistical information. 66 It uses variable-based models from individual cases and findings are stated in quantified sentences derived by deductive reasoning. 24

In quantitative research, a phenomenon is investigated in terms of the relationship between an independent variable and a dependent variable which are numerically measurable. The research objective is to statistically test whether the hypothesized relationship is true. 68 Here, the researcher studies what others have performed, examines current theories of the phenomenon being investigated, and then tests hypotheses that emerge from those theories. 4

Quantitative hypothesis-testing research has certain limitations. These limitations include (a) problems with selection of meaningful independent and dependent variables, (b) the inability to reflect subjective experiences as variables since variables are usually defined numerically, and (c) the need to state a hypothesis before the investigation starts. 61

Qualitative research as an inductive hypothesis-generating design

Qualitative research can be considered as a hypothesis-generating design since it involves understanding and descriptions in terms of context. It flows from data to theory (i.e., inductive), focuses on observation, and examines what happens in specific situations with the aim of developing new theories based on the situation. 45 , 68 This type of research (a) collects qualitative data (e.g., ideas, statements, reasons, characteristics, qualities), (b) answers questions such as what, why, and how, (c) uses interviews, observations, or focused-group discussions as data collection tools, (d) analyzes data by discovering patterns of changes, causal relationships, or themes in the data; and (e) reports the final findings as descriptive information. 61 Qualitative research favors case-based models from individual characteristics, and findings are stated using context-dependent existential sentences that are justifiable by inductive reasoning. 24

In qualitative research, texts and interviews are analyzed and interpreted to discover meaningful patterns characteristic of a particular phenomenon. 61 Here, the researcher starts with a set of observations and then moves from particular experiences to a more general set of propositions about those experiences. 4

Qualitative hypothesis-generating research involves collecting interview data from study participants regarding a phenomenon of interest, and then using what they say to develop hypotheses. It involves the process of questioning more than obtaining measurements; it generates hypotheses using theoretical coding. 61 When using large interview teams, the key to promoting high-level qualitative research and cohesion in large team methods and successful research outcomes is the balance between autonomy and collaboration. 69

Qualitative data may also include observed behavior, participant observation, media accounts, and cultural artifacts. 61 Focus group interviews are usually conducted, audiotaped or videotaped, and transcribed. Afterwards, the transcript is analyzed by several researchers.

Qualitative research also involves scientific narratives and the analysis and interpretation of textual or numerical data (or both), mostly from conversations and discussions. Such approach uncovers meaningful patterns that describe a particular phenomenon. 2 Thus, qualitative research requires skills in grasping and contextualizing data, as well as communicating data analysis and results in a scientific manner. The reflective process of the inquiry underscores the strengths of a qualitative research approach. 2

Combination of quantitative and qualitative research

When both quantitative and qualitative research methods are used in the same research, mixed-method research is applied. 25 This combination provides a complete view of the research problem and achieves triangulation to corroborate findings, complementarity to clarify results, expansion to extend the study’s breadth, and explanation to elucidate unexpected results. 29

Moreover, quantitative and qualitative findings are integrated to address the weakness of both research methods 29 , 66 and to have a more comprehensive understanding of the phenomenon spectrum. 66

For data analysis in mixed-method research, real non-quantitized qualitative data and quantitative data must both be analyzed. 70 The data obtained from quantitative analysis can be further expanded and deepened by qualitative analysis. 23

In terms of assessment criteria, Hammersley 71 opined that qualitative and quantitative findings should be judged using the same standards of validity and value-relevance. Both approaches can be mutually supportive. 52

Quantitative and qualitative research must be carefully studied and conducted by scientific researchers to avoid unethical research and inadequate outcomes. Quantitative research involves a deductive process wherein a research question is answered with a hypothesis that describes the relationship between independent and dependent variables, and the testing of the hypothesis. This investigation can be aptly termed as hypothesis-testing research involving the analysis of hypothesis-driven experimental studies resulting in a test of significance. Qualitative research involves an inductive process wherein a research question is explored to generate a hypothesis, which then leads to the development of a theory. This investigation can be aptly termed as hypothesis-generating research. When the whole spectrum of inductive and deductive research approaches is combined using both quantitative and qualitative research methodologies, mixed-method research is applied, and this can facilitate the construction of novel hypotheses, development of theories, or refinement of concepts.

Disclosure: The authors have no potential conflicts of interest to disclose.

Author Contributions:

  • Conceptualization: Barroga E, Matanguihan GJ.
  • Data curation: Barroga E, Matanguihan GJ, Furuta A, Arima M, Tsuchiya S, Kawahara C, Takamiya Y, Izumi M.
  • Formal analysis: Barroga E, Matanguihan GJ, Furuta A, Arima M, Tsuchiya S, Kawahara C.
  • Investigation: Barroga E, Matanguihan GJ, Takamiya Y, Izumi M.
  • Methodology: Barroga E, Matanguihan GJ, Furuta A, Arima M, Tsuchiya S, Kawahara C, Takamiya Y, Izumi M.
  • Project administration: Barroga E, Matanguihan GJ.
  • Resources: Barroga E, Matanguihan GJ, Furuta A, Arima M, Tsuchiya S, Kawahara C, Takamiya Y, Izumi M.
  • Supervision: Barroga E.
  • Validation: Barroga E, Matanguihan GJ, Furuta A, Arima M, Tsuchiya S, Kawahara C, Takamiya Y, Izumi M.
  • Visualization: Barroga E, Matanguihan GJ.
  • Writing - original draft: Barroga E, Matanguihan GJ.
  • Writing - review & editing: Barroga E, Matanguihan GJ, Furuta A, Arima M, Tsuchiya S, Kawahara C, Takamiya Y, Izumi M.

Advertisement

Advertisement

Pakistani students’ perceptions about knowledge, use and impact of artificial intelligence (AI) on academic writing: a case study

  • Published: 11 September 2024

Cite this article

how to write data analysis for quantitative research

  • Shaista Rashid 1 ,
  • Sadia Malik   ORCID: orcid.org/0000-0002-4989-2359 2 ,
  • Faheem Abbas 2 &
  • Javaria Ahmad Khan 3  

Integrating artificial intelligence (AI) in language pedagogy can help learn and develop many skills. In this context, this study explores Pakistani students' perceptions and trends regarding the knowledge, use, and impact of AI on their academic writing. The data was collected using a quantitative method, using a questionnaire through cluster sampling of four faculties and random sampling of 229 students from Bahuddin Zakariya University, Multan, Pakistan. Data is subjected to frequency analysis, Kruskal–Wallis hypothesis test, and chi-square association test using SPSS. The findings reveal that most students agree regarding the knowledge, use, and impact of AI on their academic writing. For the Kruskal–Wallis test, significant variations are seen in semesters and age groups for all three variables; however, only the knowledge variable shows significant variation across faculties. Moreover, chi-square test results indicate an association among components of knowledge, use, and impact of AI. The research suggests that academia should introduce AI as a pedagogical tool to improve students' comprehension, productivity, and writing quality. Furthermore, trends indicate that comprehensive policy formulation should be implemented to equip students of all faculties, semesters, and age groups to use technology equally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save.

  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime

Price includes VAT (Russian Federation)

Instant access to the full article PDF.

Rent this article via DeepDyve

Institutional subscriptions

how to write data analysis for quantitative research

Explore related subjects

  • Artificial Intelligence
  • Digital Education and Educational Technology

Data availability

The data was collected through questionnaire using Google Forms; SPSS file can be provided if requested.

Ahmed, M., Siddiqui, M., & Usman, T. (2024). Impact of artificial intelligence-based writing assistant on the academic writing skills of university faculty in Pakistan. International Journal of Human and Society, 4 (1), 539–545.

Google Scholar  

Aladini, A. (2023). AI applications impact on improving EFL university academic writing skills and their logical thinking. Al-’ulūm Al-Tarbawiyyaẗ, 31 (2), 25–44. https://doi.org/10.21608/ssj.2023.320166

Article   Google Scholar  

Ali, Z. (2020). Artificial intelligence (AI): A review of its uses in language teaching and learning. IOP Conference Series: Materials Science and Engineering, 769 (1), 012043. https://doi.org/10.1088/1757-899x/769/1/012043

Almusharraf, N., & Bailey, D. (2021). A regression analysis approach to measuring the influence of student characteristics on language learning strategies. International Journal of Instruction, 14 (4), 463–482. https://doi.org/10.29333/iji.2021.14428a

Beiki, M. (2022). Review of writing-related theories. Cultural Arts Research and Development, 2 (1), 27–33. https://doi.org/10.55121/card.v2i1.20

Burkhard. (2022). Student perceptions of AI-powered writing tools: Towards individualized teaching strategies. 19th International Conference on Cognition and Exploratory Learning in Digital Age (CELDA 2022) . https://doi.org/10.33965/celda2022_202207l010

Chaudhry, I. S., Sarwary, S. A. M., Refae, G. A. E., & Chabchoub, H. (2023). Time to revisit existing student’s performance evaluation approach in higher education sector in a new era of Chatgpt — a case study. Cogent Education, 10 (1), 2210461. https://doi.org/10.1080/2331186x.2023.2210461

Chen, L., Chen, P., & Lin, Z. (2020). Artificial intelligence in education: A review. IEEE Access, 8 , 75264–75278. https://doi.org/10.1109/access.2020.2988510

Cunningham, U., Rashid, S., & Van Le, T. (2019). The effect of learner training on the use of digital tools to support English writing skills. Asian EFL Journal , 21 , 27–49. http://uu.diva-portal.org/smash/record.jsf?pid=diva2:1300583

Dhara, S., Chatterjee, S., Chaudhuri, R., Goswami, A., & Ghosh, S. K. (2022). Artificial intelligence in assessment of students’ performance. In CRC Press eBooks (pp. 153–167). https://doi.org/10.1201/9781003184157-8

Dizon, G., & Gayed, J. M. (2021). Examining the impact of Grammarly on the quality of mobile L2 writing. The JALT CALL Journal, 17 (2), 74–92. https://doi.org/10.29140/jaltcall.v17n2.336

Feise, R. J. (2002). Do multiple outcome measures require p-value adjustment? BMC Medical Research Methodology, 2 (1), 8. https://doi.org/10.1186/1471-2288-2-8

Fitria, T. N. (2021). Grammarly as AI-powered English writing assistant: students’ alternative for writing English. Metathesis, 5 (1), 65–78. https://doi.org/10.31002/metathesis.v5i1.3519

Flavell, J. H. (1979). Metacognition and cognitive monitoring: A new area of cognitive-developmental inquiry. American Psychologist, 34 (10), 906–911. https://doi.org/10.1037/0003-066x.34.10.906

Ghafar, Z. N., Salh, H. F., Abdulrahim, M. A., Farxha, S. S., Arf, S. F., & Rahim, R. I. (2023). The role of artificial intelligence technology on English language learning: a literature review. Canadian Journal of Language and Literature Studies, 3 (2), 17–31. https://doi.org/10.53103/cjlls.v3i2.87

Ginting, P., Batubara, H. M., & Hasnah, Y. (2023). Artificial intelligence powered writing tools as adaptable aids for academic writing: Insight from EFL college learners in writing final project. Zenodo, 6 (10), 4640–4650. https://doi.org/10.5281/zenodo.8407887

Grájeda, A., Burgos, J., Olivera, P. C., & Sanjinés, A. (2023). Assessing student-perceived impact of using artificial intelligence tools: Construction of a synthetic index of application in higher education. Cogent Education, 11 (1), 2287917. https://doi.org/10.1080/2331186x.2023.2287917

Imran, M., & Almusharraf, N. (2023). Analyzing the role of ChatGPT as a writing assistant at higher education level: A systematic review of the literature. Contemporary Educational Technology, 15 (4), ep464. https://doi.org/10.30935/cedtech/13605

Kaur, P., Stoltzfus, J., & Yellapu, V. (2018). Descriptive statistics. Biostatistics, 4 (1), 60–67. https://doi.org/10.4103/ijam.ijam_7_18

Keleş, P. U., & Aydın, S. (2021). University students’ perceptions about artificial intelligence. Shanlax International Journal of Education, 9 , 212–220. https://doi.org/10.34293/education.v9is1-may.4014

Knowles, E. (2005). The Oxford dictionary of phrase and fable. In Oxford University Press eBooks . https://doi.org/10.1093/acref/9780198609810.001.0001

Kothari, C. R. (2004). Research methodology: Methods and techniques . New Age International.

LeCompte, M. D., & Schensul, J. J. (2015). Ethics in ethnography: A mixed methods approach . AltaMira Press.

Lei, H. (2022). High school students’ foreign language vocabulary acquisition in the era of artificial intelligence. Advances in Social Science, Education and Humanities Research, 637 , 669–662. https://doi.org/10.2991/assehr.k.220131.121

Li, A. W. (2023). Using Perceptive to support AI-based online writing assessment across the disciplines. Assessing Writing, 57 , 100746. https://doi.org/10.1016/j.asw.2023.100746

Mahmud, F. A. (2023). Investigating EFL students’ writing skills through artificial intelligence: Wordtune application as a tool. Journal of Language Teaching and Research, 14 (5), 1395–1404. https://doi.org/10.17507/jltr.1405.28

Malik, A. R., Pratiwi, Y., Andajani, K., Numertayasa, I. W., Suharti, S., Darwis, A., & Marzuki, M. (2023). Exploring artificial intelligence in academic essay: Higher education student’s perspective. International Journal of Educational Research Open, 5 , 100296. https://doi.org/10.1016/j.ijedro.2023.100296

Malik, S., Sadiq, U., & Khan, J. A. (2021). Belief, practices, and challenges of Pakistani primary grade government school teachers: Variable analysis affecting pronunciation and phonics teaching. Humanities & Social Sciences Reviews, 9 (1), 206–217. https://doi.org/10.18510/hssr.2021.9122

Marzuki, Widiati, U., Rusdin, D., Darwin, D., & Indrawati, I. (2023). The impact of AI writing tools on the content and organization of students’ writing: EFL teachers’ perspective. Cogent Education, 10 (2), 1–17. https://doi.org/10.1080/2331186x.2023.2236469

Mayo, D. G., & Cox, D. R. (2006). Frequentist statistics as a theory of inductive inference. In Institute of Mathematical Statistics eBooks (pp. 77–97). https://doi.org/10.1214/074921706000000400

McHugh, M. L. (2013). The chi-square test of independence. Biochemia Medica, 23 (2), 143–149. https://doi.org/10.11613/bm.2013.018

Nazari, N., Shabbir, M. S., & Setiawan, R. (2021). Application of artificial intelligence powered digital writing assistant in higher education: Randomized controlled trial. Heliyon, 7 (5), e07014. https://doi.org/10.1016/j.heliyon.2021.e07014

Ostertagová, E., Ostertag, O., & Kováč, J. (2014). Methodology and application of the Kruskal-Wallis test. Applied Mechanics and Materials, 611 , 115–120. https://doi.org/10.4028/www.scientific.net/amm.611.115

Pacheco-Mendoza, S., Guevara, C., Samaniego, J., & Fernandez, J. (2023). Artificial intelligence in higher education: A predictive model for academic performance. Education Sciences, 13 (10), 990. https://doi.org/10.3390/educsci13100990

Park, J. (2019). An AI-based English grammar checker vs. human raters in evaluating EFL learners’ writing. Multimedia-Assisted Language Learning , 22 (1), 112–131. https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002449524

Rashid, S., Cunningham, U., Watson, K., & Howard, J. (2018). Revisiting the digital divide(s): Technology-enhanced English language practices at a university in Pakistan. Australian Journal of Applied Linguistics, 1 (2), 64–87. https://doi.org/10.29140/ajal.v1n2.7

Ribeiro, R. (2022). AI in English Language Learning | Cambridge English . World of Better Learning | Cambridge University Press. https://www.cambridge.org/elt/blog/2020/03/09/artificial-intelligence-english-language-learning/

Rothman, K. J. (1990). No adjustments are needed for multiple comparisons. Epidemiology, 1 (1), 43–46. https://doi.org/10.1097/00001648-199001000-00010

Rusmiyanto, R., Huriati, N., Fitriani, N., Tyas, N. K., Rofi’i, A., & Sari, M. N. (2023). The role of artificial intelligence (AI) in developing English language learner’s communication skills. Journal on Education, 6 (1), 750–757. https://doi.org/10.31004/joe.v6i1.2990

Saini, N. (2023). Research paper on artificial intelligence and its applications. International Journal for Research Trends and Innovation, 8 (4), 356–360.

Sharifi, A., Ahmadi, M., & Ala, A. (2021). The impact of artificial intelligence and digital style on industry and energy post-COVID-19 pandemic. Environmental Science and Pollution Research, 28 (34), 46964–46984. https://doi.org/10.1007/s11356-021-15292-5

Slimi, Z. (2023). The impact of artificial intelligence on higher education: An empirical study. European Journal of Educational Sciences . https://doi.org/10.19044/ejes.v10no1a17

Sumakul, D. T. Y. G., Hamied, F. A., & Sukyadi, D. (2022). Students’ perceptions of the use of AI in a writing class. Advances in Social Science, Education and Humanities Research, 624 , 52–57. https://doi.org/10.2991/assehr.k.220201.009

Toncic, J. (2020). Teachers, AI grammar checkers, and the newest literacies: Emending writing pedagogy and assessment. Digital Culture & Education, 12 (1), 26–51.

Turner, E. (2021). Causes for leaving jobs: A comparative analysis. 2nd International Conference on Research in Management . https://doi.org/10.33422/2nd.icrmanagement.2021.02.43

Utami, S. P. T., Andayani, A., Winarni, R., & Sumarwati, S. (2023). Utilization of artificial intelligence technology in an academic writing class: How do Indonesian students perceive? Contemporary Educational Technology, 15 (4), ep450. https://doi.org/10.30935/cedtech/13419

Verma, M. (2018). Artificial intelligence and its scope in different areas with special reference to the field of education. International Journal of Advanced Educational Research , 3 (1), 5–10. http://files.eric.ed.gov/fulltext/ED604401.pdf

Victorivna, K. L., Oleksandrovych, V. A., Oleksandrivna, K. I., & Oleksandrivna, K. N. (2022). Artificial intelligence in language learning: What are we afraid of? Arab World English Journal, 8 , 262–273. https://doi.org/10.24093/awej/call8.18

Wang, T., Lund, B., Marengo, A., Pagano, A., Mannuru, N. R., Teel, Z. A., & Pange, J. (2023). Exploring the potential impact of artificial intelligence (AI) on international students in higher education: Generative AI, chatbots, analytics, and international student success. Applied Sciences, 13 (11), 6716. https://doi.org/10.3390/app13116716

Zhao, X. (2022). Leveraging artificial intelligence (AI) technology for English writing: Introducing Wordtune as a digital writing assistant for EFL writers. RELC Journal, 54 (3), 890–894. https://doi.org/10.1177/00336882221094089

Download references

Acknowledgements

The authors would like to thank Prince Sultan University for its support.

No funding was sought from any external source for this research.

Author information

Authors and affiliations.

Prince Sultan University, Riyadh, Saudi Arabia

Shaista Rashid

Department of English, Bahauddin Zakariya University, Multan, Pakistan

Sadia Malik & Faheem Abbas

Department of Statistics, Bahauddin Zakariya University, Multan, Pakistan

Javaria Ahmad Khan

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Sadia Malik .

Ethics declarations

Conflict of interest.

There is no conflict of interest of any sort.

Ethical statement

All participants gave their informed consent for inclusion before they participated in the study. Their responses were evaluated anonymously as the data was presented in aggregate form.

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Rashid, S., Malik, S., Abbas, F. et al. Pakistani students’ perceptions about knowledge, use and impact of artificial intelligence (AI) on academic writing: a case study. J. Comput. Educ. (2024). https://doi.org/10.1007/s40692-024-00338-7

Download citation

Received : 15 May 2024

Revised : 08 August 2024

Accepted : 14 August 2024

Published : 11 September 2024

DOI : https://doi.org/10.1007/s40692-024-00338-7

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Artificial intelligence
  • Academic writing
  • Higher education
  • Language pedagogy
  • Find a journal
  • Publish with us
  • Track your research

IMAGES

  1. Quantitative Data Analysis Outline

    how to write data analysis for quantitative research

  2. Steps in quantitative data analysis

    how to write data analysis for quantitative research

  3. What Is Data Analysis In Quantitative Research

    how to write data analysis for quantitative research

  4. Steps in Quantitative Data Analysis

    how to write data analysis for quantitative research

  5. Quantitative Data Analysis: A Complete Guide

    how to write data analysis for quantitative research

  6. Quantitative Analysis

    how to write data analysis for quantitative research

VIDEO

  1. Quantitative research analysis

  2. Standard Multiple Regression in SPSS

  3. Linear Regression Analysis in SPSS

  4. Day-5 Application of SPSS for Data Analysis (Quantitative Data Analysis)

  5. Day-6 Application of Excel for Data Analysis (Quantitative Data Analysis)

  6. Understanding Quantitative Research Methods

COMMENTS

  1. Quantitative Data Analysis: A Comprehensive Guide

    Below are the steps to prepare a data before quantitative research analysis: Step 1: Data Collection. Before beginning the analysis process, you need data. Data can be collected through rigorous quantitative research, which includes methods such as interviews, focus groups, surveys, and questionnaires. Step 2: Data Cleaning.

  2. A Really Simple Guide to Quantitative Data Analysis

    It is important to know w hat kind of data you are planning to collect or analyse as this w ill. affect your analysis method. A 12 step approach to quantitative data analysis. Step 1: Start with ...

  3. The Beginner's Guide to Statistical Analysis

    Step 1: Write your hypotheses and plan your research design. To collect valid data for statistical analysis, you first need to specify your hypotheses and plan out your research design. Writing statistical hypotheses. The goal of research is often to investigate a relationship between variables within a population. You start with a prediction ...

  4. Quantitative Data Analysis Methods & Techniques 101

    The two "branches" of quantitative analysis. As I mentioned, quantitative analysis is powered by statistical analysis methods.There are two main "branches" of statistical methods that are used - descriptive statistics and inferential statistics.In your research, you might only use descriptive statistics, or you might use a mix of both, depending on what you're trying to figure out.

  5. 9 Presenting the Results of Quantitative Analysis

    9 Presenting the Results of Quantitative Analysis . Mikaila Mariel Lemonik Arthur. This chapter provides an overview of how to present the results of quantitative analysis, in particular how to create effective tables for displaying quantitative results and how to write quantitative research papers that effectively communicate the methods used and findings of quantitative analysis.

  6. (PDF) Quantitative Analysis: the guide for beginners

    quantitative (numbers) and qualitative (words or images) data. The combination of. quantitative and qualitative research methods is called mixed methods. For example, first, numerical data are ...

  7. InfoGuides: QUANTitative Analysis & Statistics: Write a Paper

    When aligned with Miller's twelve fundamental principles for quantitative writing, this approach will empower readers--whether students or experienced researchers--to communicate their findings clearly and effectively. Call Number: T11 .M484 2005; Also available ONLINE through Mason Libraries. ISBN: 9780226527871. Publication Date: 2013-07-23.

  8. A practical guide to data analysis in general literature reviews

    This article is a practical guide to conducting data analysis in general literature reviews. The general literature review is a synthesis and analysis of published research on a relevant clinical issue, and is a common format for academic theses at the bachelor's and master's levels in nursing, physiotherapy, occupational therapy, public health and other related fields.

  9. Dissertation Results/Findings Chapter (Quantitative)

    The results chapter (also referred to as the findings or analysis chapter) is one of the most important chapters of your dissertation or thesis because it shows the reader what you've found in terms of the quantitative data you've collected. It presents the data using a clear text narrative, supported by tables, graphs and charts.

  10. PDF A Really Simple Guide to Quantitative Data Analysis

    based decisions rather than exact mathematical proof.The quantitative research processThis guide focuses on descriptive statistics and statistical testing as these are the c. mmon forms of quantitative data analysis required at the university and research level. It is assumed that dat. ollowing stages:Define your aim and research questionsCarry ...

  11. Quantitative Data Analysis Methods, Types + Techniques

    8. Weight customer feedback. So far, the quantitative data analysis methods on this list have leveraged numeric data only. However, there are ways to turn qualitative data into quantifiable feedback and to mix and match data sources. For example, you might need to analyze user feedback from multiple surveys.

  12. A Practical Guide to Writing Quantitative and Qualitative Research

    INTRODUCTION. Scientific research is usually initiated by posing evidenced-based research questions which are then explicitly restated as hypotheses.1,2 The hypotheses provide directions to guide the study, solutions, explanations, and expected results.3,4 Both research questions and hypotheses are essentially formulated based on conventional theories and real-world processes, which allow the ...

  13. What Is Quantitative Research?

    Revised on June 22, 2023. Quantitative research is the process of collecting and analyzing numerical data. It can be used to find patterns and averages, make predictions, test causal relationships, and generalize results to wider populations. Quantitative research is the opposite of qualitative research, which involves collecting and analyzing ...

  14. Data Analysis in Research: Types & Methods

    Definition of research in data analysis: According to LeCompte and Schensul, research data analysis is a process used by researchers to reduce data to a story and interpret it to derive insights. The data analysis process helps reduce a large chunk of data into smaller fragments, which makes sense. Three essential things occur during the data ...

  15. PDF Developing a Quantitative Data Analysis Plan

    A Data Analysis Plan (DAP) is about putting thoughts into a plan of action. Research questions are often framed broadly and need to be clarified and funnelled down into testable hypotheses and action steps. The DAP provides an opportunity for input from collaborators and provides a platform for training. Having a clear plan of action is also ...

  16. How to Write a Results Section

    The most logical way to structure quantitative results is to frame them around your research questions or hypotheses. For each question or hypothesis, share: A reminder of the type of analysis you used (e.g., a two-sample t test or simple linear regression). A more detailed description of your analysis should go in your methodology section.

  17. Quantitative Data Analysis

    My e-book, The Ultimate Guide to Writing a Dissertation in Business Studies: a step by step approach contains a detailed, yet simple explanation of quantitative data analysis methods. The e-book explains all stages of the research process starting from the selection of the research area to writing personal reflection.

  18. Quantitative Data Analysis: A Complete Guide

    Here's how to make sense of your company's numbers in just four steps: 1. Collect data. Before you can actually start the analysis process, you need data to analyze. This involves conducting quantitative research and collecting numerical data from various sources, including: Interviews or focus groups.

  19. Research Design: Decide on your Data Analysis Strategy

    The last step of designing your research is planning your data analysis strategies. In this video, we'll take a look at some common approaches for both quant...

  20. A Complete Guide to Quantitative Research Methods

    Quantitative research methods provide an relatively conclusive answer to the research questions. When the data is collected and analyzed in accordance with standardized, reputable methodology, the results are usually trustworthy. With statistically significant sample sizes, the results can be generalized to an entire target group.

  21. How to Use Quantitative Data Analysis in a Thesis

    It refers to the statistical analysis of numerical data. Thus, it contrasts with qualitative data analysis, which refers to the analysis of non-numerical data. Note that it's possible to conduct a quantitative analysis of qualitative data; however, you must first convert such qualitative data into numerical form without losing their meaning.

  22. How To Write Methodology For A Quantitative Study?

    A methodology for a quantitative study begins with a reiteration of the research question and its context. Methodology for a Quantitative study. This is followed by the research design, where the methods used to gather, process and analyze the data are given. This is usually preceded or followed by a justification of the appropriateness of the ...

  23. Conducting and Writing Quantitative and Qualitative Research

    In quantitative research, the hypothesis is stated before testing. In qualitative research, the hypothesis is developed through inductive reasoning based on the data collected.27,28 For types of data and their analysis, qualitative research usually includes data in the form of words instead of numbers more commonly used in quantitative research.29

  24. Pakistani students' perceptions about knowledge, use and impact of

    Integrating artificial intelligence (AI) in language pedagogy can help learn and develop many skills. In this context, this study explores Pakistani students' perceptions and trends regarding the knowledge, use, and impact of AI on their academic writing. The data was collected using a quantitative method, using a questionnaire through cluster sampling of four faculties and random sampling of ...