• Privacy Policy

Research Method

Home » Descriptive vs Experimental Research

Descriptive vs Experimental Research

Table of Contents

Descriptive vs Experimental Research

Descriptive research and experimental research are two different research approaches used in various fields, such as social sciences, psychology, and marketing. Their differences are as follows:

Descriptive Research

Descriptive Research is a research approach that involves collecting data to describe a phenomenon or group. The goal of descriptive research is to provide an accurate and detailed picture of a particular population, event, or situation. Descriptive research can be conducted using various methods, such as surveys, observations, and case studies.

Experimental Research

Experimental Research , on the other hand, is a research approach that involves manipulating one or more variables to observe the effect on another variable. The goal of experimental research is to establish a cause-and-effect relationship between the variables. Experimental research is typically conducted in a controlled environment and involves random assignment of participants to different groups to ensure that the groups are equivalent. The data is collected through measurements and observations, and statistical analysis is used to test the hypotheses.

Here’s a comparison table that highlights the differences between descriptive research and experimental research:

Also see Research Methods

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Inductive Vs Deductive Research

Inductive Vs Deductive Research

Exploratory Vs Explanatory Research

Exploratory Vs Explanatory Research

Basic Vs Applied Research

Basic Vs Applied Research

Generative Vs Evaluative Research

Generative Vs Evaluative Research

Reliability Vs Validity

Reliability Vs Validity

Longitudinal Vs Cross-Sectional Research

Longitudinal Vs Cross-Sectional Research

The Four Types of Research Design — Everything You Need to Know

Jenny Romanchuk

Updated: December 11, 2023

Published: January 18, 2023

When you conduct research, you need to have a clear idea of what you want to achieve and how to accomplish it. A good research design enables you to collect accurate and reliable data to draw valid conclusions.

research design used to test different beauty products

In this blog post, we'll outline the key features of the four common types of research design with real-life examples from UnderArmor, Carmex, and more. Then, you can easily choose the right approach for your project.

Table of Contents

What is research design?

The four types of research design, research design examples.

Research design is the process of planning and executing a study to answer specific questions. This process allows you to test hypotheses in the business or scientific fields.

Research design involves choosing the right methodology, selecting the most appropriate data collection methods, and devising a plan (or framework) for analyzing the data. In short, a good research design helps us to structure our research.

Marketers use different types of research design when conducting research .

There are four common types of research design — descriptive, correlational, experimental, and diagnostic designs. Let’s take a look at each in more detail.

Researchers use different designs to accomplish different research objectives. Here, we'll discuss how to choose the right type, the benefits of each, and use cases.

Research can also be classified as quantitative or qualitative at a higher level. Some experiments exhibit both qualitative and quantitative characteristics.

descriptive research design vs experimental research design

Free Market Research Kit

5 Research and Planning Templates + a Free Guide on How to Use Them in Your Market Research

  • SWOT Analysis Template
  • Survey Template
  • Focus Group Template

You're all set!

Click this link to access this resource at any time.

Experimental

An experimental design is used when the researcher wants to examine how variables interact with each other. The researcher manipulates one variable (the independent variable) and observes the effect on another variable (the dependent variable).

In other words, the researcher wants to test a causal relationship between two or more variables.

In marketing, an example of experimental research would be comparing the effects of a television commercial versus an online advertisement conducted in a controlled environment (e.g. a lab). The objective of the research is to test which advertisement gets more attention among people of different age groups, gender, etc.

Another example is a study of the effect of music on productivity. A researcher assigns participants to one of two groups — those who listen to music while working and those who don't — and measure their productivity.

The main benefit of an experimental design is that it allows the researcher to draw causal relationships between variables.

One limitation: This research requires a great deal of control over the environment and participants, making it difficult to replicate in the real world. In addition, it’s quite costly.

Best for: Testing a cause-and-effect relationship (i.e., the effect of an independent variable on a dependent variable).

Correlational

A correlational design examines the relationship between two or more variables without intervening in the process.

Correlational design allows the analyst to observe natural relationships between variables. This results in data being more reflective of real-world situations.

For example, marketers can use correlational design to examine the relationship between brand loyalty and customer satisfaction. In particular, the researcher would look for patterns or trends in the data to see if there is a relationship between these two entities.

Similarly, you can study the relationship between physical activity and mental health. The analyst here would ask participants to complete surveys about their physical activity levels and mental health status. Data would show how the two variables are related.

Best for: Understanding the extent to which two or more variables are associated with each other in the real world.

Descriptive

Descriptive research refers to a systematic process of observing and describing what a subject does without influencing them.

Methods include surveys, interviews, case studies, and observations. Descriptive research aims to gather an in-depth understanding of a phenomenon and answers when/what/where.

SaaS companies use descriptive design to understand how customers interact with specific features. Findings can be used to spot patterns and roadblocks.

For instance, product managers can use screen recordings by Hotjar to observe in-app user behavior. This way, the team can precisely understand what is happening at a certain stage of the user journey and act accordingly.

Brand24, a social listening tool, tripled its sign-up conversion rate from 2.56% to 7.42%, thanks to locating friction points in the sign-up form through screen recordings.

different types of research design: descriptive research example.

Carma Laboratories worked with research company MMR to measure customers’ reactions to the lip-care company’s packaging and product . The goal was to find the cause of low sales for a recently launched line extension in Europe.

The team moderated a live, online focus group. Participants were shown w product samples, while AI and NLP natural language processing identified key themes in customer feedback.

This helped uncover key reasons for poor performance and guided changes in packaging.

research design example, tweezerman

Study designs are the set of methods and procedures used to collect and analyze data in a study.

Broadly speaking, there are 2 types of study designs: descriptive studies and analytical studies.

Descriptive studies

  • Describes specific characteristics in a population of interest
  • The most common forms are case reports and case series
  • In a case report, we discuss our experience with the patient’s symptoms, signs, diagnosis, and treatment
  • In a case series, several patients with similar experiences are grouped.

Analytical Studies

Analytical studies are of 2 types: observational and experimental.

Observational studies are studies that we conduct without any intervention or experiment. In those studies, we purely observe the outcomes.  On the other hand, in experimental studies, we conduct experiments and interventions.

Observational studies

Observational studies include many subtypes. Below, I will discuss the most common designs.

Cross-sectional study:

  • This design is transverse where we take a specific sample at a specific time without any follow-up
  • It allows us to calculate the frequency of disease ( p revalence ) or the frequency of a risk factor
  • This design is easy to conduct
  • For example – if we want to know the prevalence of migraine in a population, we can conduct a cross-sectional study whereby we take a sample from the population and calculate the number of patients with migraine headaches.

Cohort study:

  • We conduct this study by comparing two samples from the population: one sample with a risk factor while the other lacks this risk factor
  • It shows us the risk of developing the disease in individuals with the risk factor compared to those without the risk factor ( RR = relative risk )
  • Prospective : we follow the individuals in the future to know who will develop the disease
  • Retrospective : we look to the past to know who developed the disease (e.g. using medical records)
  • This design is the strongest among the observational studies
  • For example – to find out the relative risk of developing chronic obstructive pulmonary disease (COPD) among smokers, we take a sample including smokers and non-smokers. Then, we calculate the number of individuals with COPD among both.

Case-Control Study:

  • We conduct this study by comparing 2 groups: one group with the disease (cases) and another group without the disease (controls)
  • This design is always retrospective
  •  We aim to find out the odds of having a risk factor or an exposure if an individual has a specific disease (Odds ratio)
  •  Relatively easy to conduct
  • For example – we want to study the odds of being a smoker among hypertensive patients compared to normotensive ones. To do so, we choose a group of patients diagnosed with hypertension and another group that serves as the control (normal blood pressure). Then we study their smoking history to find out if there is a correlation.

Experimental Studies

  • Also known as interventional studies
  • Can involve animals and humans
  • Pre-clinical trials involve animals
  • Clinical trials are experimental studies involving humans
  • In clinical trials, we study the effect of an intervention compared to another intervention or placebo. As an example, I have listed the four phases of a drug trial:

I:  We aim to assess the safety of the drug ( is it safe ? )

II: We aim to assess the efficacy of the drug ( does it work ? )

III: We want to know if this drug is better than the old treatment ( is it better ? )

IV: We follow-up to detect long-term side effects ( can it stay in the market ? )

  • In randomized controlled trials, one group of participants receives the control, while the other receives the tested drug/intervention. Those studies are the best way to evaluate the efficacy of a treatment.

Finally, the figure below will help you with your understanding of different types of study designs.

A visual diagram describing the following. Two types of epidemiological studies are descriptive and analytical. Types of descriptive studies are case reports, case series, descriptive surveys. Types of analytical studies are observational or experimental. Observational studies can be cross-sectional, case-control or cohort studies. Types of experimental studies can be lab trials or field trials.

References (pdf)

You may also be interested in the following blogs for further reading:

An introduction to randomized controlled trials

Case-control and cohort studies: a brief overview

Cohort studies: prospective and retrospective designs

Prevalence vs Incidence: what is the difference?

' src=

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

No Comments on An introduction to different types of study design

' src=

you are amazing one!! if I get you I’m working with you! I’m student from Ethiopian higher education. health sciences student

' src=

Very informative and easy understandable

' src=

You are my kind of doctor. Do not lose sight of your objective.

' src=

Wow very erll explained and easy to understand

' src=

I’m Khamisu Habibu community health officer student from Abubakar Tafawa Balewa university teaching hospital Bauchi, Nigeria, I really appreciate your write up and you have make it clear for the learner. thank you

' src=

well understood,thank you so much

' src=

Well understood…thanks

' src=

Simply explained. Thank You.

' src=

Thanks a lot for this nice informative article which help me to understand different study designs that I felt difficult before

' src=

That’s lovely to hear, Mona, thank you for letting the author know how useful this was. If there are any other particular topics you think would be useful to you, and are not already on the website, please do let us know.

' src=

it is very informative and useful.

thank you statistician

Fabulous to hear, thank you John.

' src=

Thanks for this information

Thanks so much for this information….I have clearly known the types of study design Thanks

That’s so good to hear, Mirembe, thank you for letting the author know.

' src=

Very helpful article!! U have simplified everything for easy understanding

' src=

I’m a health science major currently taking statistics for health care workers…this is a challenging class…thanks for the simified feedback.

That’s good to hear this has helped you. Hopefully you will find some of the other blogs useful too. If you see any topics that are missing from the website, please do let us know!

' src=

Hello. I liked your presentation, the fact that you ranked them clearly is very helpful to understand for people like me who is a novelist researcher. However, I was expecting to read much more about the Experimental studies. So please direct me if you already have or will one day. Thank you

Dear Ay. My sincere apologies for not responding to your comment sooner. You may find it useful to filter the blogs by the topic of ‘Study design and research methods’ – here is a link to that filter: https://s4be.cochrane.org/blog/topic/study-design/ This will cover more detail about experimental studies. Or have a look on our library page for further resources there – you’ll find that on the ‘Resources’ drop down from the home page.

However, if there are specific things you feel you would like to learn about experimental studies, that are missing from the website, it would be great if you could let me know too. Thank you, and best of luck. Emma

' src=

Great job Mr Hadi. I advise you to prepare and study for the Australian Medical Board Exams as soon as you finish your undergrad study in Lebanon. Good luck and hope we can meet sometime in the future. Regards ;)

' src=

You have give a good explaination of what am looking for. However, references am not sure of where to get them from.

Subscribe to our newsletter

You will receive our monthly newsletter and free access to Trip Premium.

Related Articles

""

Cluster Randomized Trials: Concepts

This blog summarizes the concepts of cluster randomization, and the logistical and statistical considerations while designing a cluster randomized controlled trial.

""

Expertise-based Randomized Controlled Trials

This blog summarizes the concepts of Expertise-based randomized controlled trials with a focus on the advantages and challenges associated with this type of study.

descriptive research design vs experimental research design

A well-designed cohort study can provide powerful results. This blog introduces prospective and retrospective cohort studies, discussing the advantages, disadvantages and use of these type of study designs.

Logo for TRU Pressbooks

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

2.2 Research Designs in Psychology

Learning objectives.

  • Differentiate the goals of descriptive, correlational, and experimental research designs, and explain the advantages and disadvantages of each.

Psychologists agree that if their ideas and theories about human behaviour are to be taken seriously, they must be backed up by data. Researchers have a variety of research designs available to them in testing their predictions. A research design  is the specific method a researcher uses to collect, analyze, and interpret data. Psychologists use three major types of research designs in their research, and each provides an essential avenue for scientific investigation. Descriptive research  is designed to provide a snapshot of the current state of affairs. Correlational research  is designed to discover relationships among variables. Experimental research is designed to assess cause and effect. Each of the three research designs has specific strengths and limitations, and it is important to understand how each differs. See the table below for a summary.

Descriptive research: Assessing the current state of affairs

Descriptive research is designed to create a snapshot of the current thoughts, feelings, or behaviour of individuals. This section reviews four types of descriptive research: case studies, surveys and tests, naturalistic observation, and laboratory observation.

Sometimes the data in a descriptive research project are collected from only a small set of individuals, often only one person or a single small group. These research designs are known as case studies , which are descriptive records of one or more individual’s experiences and behaviour. Sometimes case studies involve ordinary individuals, as when developmental psychologist Jean Piaget used his observation of his own children to develop his stage theory of cognitive development. More frequently, case studies are conducted on individuals who have unusual or abnormal experiences or characteristics, this may include those who find themselves in particularly difficult or stressful situations. The assumption is that carefully studying individuals can give us results that tell us something about human nature. Of course, one individual cannot necessarily represent a larger group of people who were in the same circumstances.

Sigmund Freud was a master of using the psychological difficulties of individuals to draw conclusions about basic psychological processes. Freud wrote case studies of some of his most interesting patients and used these careful examinations to develop his important theories of personality. One classic example is Freud’s description of “Little Hans,” a child whose fear of horses was interpreted in terms of repressed sexual impulses and the Oedipus complex (Freud, 1909/1964).

Another well-known case study is of Phineas Gage, a man whose thoughts and emotions were extensively studied by cognitive psychologists after a railroad spike was blasted through his skull in an accident. Although there are questions about the interpretation of this case study (Kotowicz, 2007), it did provide early evidence that the brain’s frontal lobe is involved in emotion and morality (Damasio et al., 2005). An interesting example of a case study in clinical psychology is described by Milton Rokeach (1964), who investigated in detail the beliefs of and interactions among three patients with schizophrenia, all of whom were convinced they were Jesus Christ.

Research using case studies has some unique challenges when it comes to interpreting the data. By definition, case studies are based on one or a very small number of individuals. While their situations may be unique, we cannot know how well they represent what would be found in other cases. Furthermore, the information obtained in a case study may be inaccurate or incomplete. While researchers do their best to objectively understand one case, making any generalizations to other people is problematic. Researchers can usually only speculate about cause and effect, and even then, they must do so with great caution. Case studies are particularly useful when researchers are starting out to study something about which there is not much research or as a source for generating hypotheses that can be tested using other research designs.

In other cases, the data from descriptive research projects come in the form of a survey , which is a measure administered through either an interview or a written questionnaire to get a picture of the beliefs or behaviours of a sample of people of interest. The people chosen to participate in the research, known as the sample , are selected to be representative of all the people that the researcher wishes to know about, known as the population . The representativeness of samples is enormously important. For example, a representative sample of Canadians must reflect Canada’s demographic make-up in terms of age, sex, gender orientation, socioeconomic status, ethnicity, and so on. Research based on unrepresentative samples is limited in generalizability , meaning it will not apply well to anyone who was not represented in the sample. Psychologists use surveys to measure a wide variety of behaviours, attitudes, opinions, and facts. Surveys could be used to measure the amount of exercise people get every week, eating or drinking habits, attitudes towards climate change, and so on. These days, many surveys are available online, and they tend to be aimed at a wide audience. Statistics Canada is a rich source of surveys of Canadians on a diverse array of topics. Their databases are searchable and downloadable, and many deal with topics of interest to psychologists, such as mental health, wellness, and so on. Their raw data may be used by psychologists who are able to take advantage of the fact that the data have already been collected. This is called archival research .

Related to surveys are psychological tests . These are measures developed by psychologists to assess one’s score on a psychological construct, such as extroversion, self-esteem, or aptitude for a particular career. The difference between surveys and tests is really down to what is being measured, with surveys more likely to be fact-gathering and tests more likely to provide a score on a psychological construct.

As you might imagine, respondents to surveys and psychological tests are not always accurate or truthful in their replies. Respondents may also skew their answers in the direction they think is more socially desirable or in line with what the researcher expects. Sometimes people do not have good insight into their own behaviour and are not accurate in judging themselves. Sometimes tests have built-in social desirability or lie scales that attempt to help researchers understand when someone’s scores might need to be discarded from the research because they are not accurate.

Tests and surveys are only useful if they are valid and reliable . Validity exists when an instrument actually measures what you think it measures (e.g., a test of intelligence that actually measures how many years of education you have lacks validity). Demonstrating the validity of a test or survey is the responsibility of any researcher who uses the instrument. Reliability is a related but different construct; it exists when a test or survey gives the same responses from time to time or in different situations. For example, if you took an intelligence test three times and every time it gave you a different score, that would not be a reliable test. Demonstrating the reliability of tests and surveys is another responsibility of researchers. There are different types of validity and reliability, and there is a branch of psychology devoted to understanding not only how to demonstrate that tests and surveys are valid and reliable, but also how to improve them.

An important criticism of psychological research is its reliance on so-called WEIRD samples (Henrich, Heine, & Norenzayan, 2010). WEIRD stands for Western, educated, industrialized, rich, and democratic. People fitting the WEIRD description have been over-represented in psychological research, while people from poorer, less-educated backgrounds, for example, have participated far less often. This criticism is important because in psychology we may be trying to understand something about people in general. For example, if we want to understand whether early enrichment programs can boost IQ scores later, we need to conduct this research using people from a variety of backgrounds and situations. Most of the world’s population is not WEIRD, so psychologists trying to conduct research that has broad generalizability need to expand their participant pool to include a more representative sample.

Another type of descriptive research is  naturalistic observation , which refers to research based on the observation of everyday events. For instance, a developmental psychologist who watches children on a playground and describes what they say to each other while they play is conducting naturalistic observation, as is a biopsychologist who observes animals in their natural habitats. Naturalistic observation is challenging because, in order for it to be accurate, the observer must be effectively invisible. Imagine walking onto a playground, armed with a clipboard and pencil to watch children a few feet away. The presence of an adult may change the way the children behave; if the children know they are being watched, they may not behave in the same ways as they would when no adult is present. Researchers conducting naturalistic observation studies have to find ways to recede into the background so that their presence does not cause the behaviour they are watching to change. They also must find ways to record their observations systematically and completely — not an easy task if you are watching children, for example. As such, it is common to have multiple observers working independently; their combined observations can provide a more accurate record of what occurred.

Sometimes, researchers conducting observational research move out of the natural world and into a laboratory. Laboratory observation allows much more control over the situation and setting in which the participants will be observed. The downside to moving into a laboratory is the potential artificiality of the setting; the participants may not behave the same way in the lab as they would in the natural world, so the behaviour that is observed may not be completely authentic. Consider the researcher who is interested in aggression in children. They might go to a school playground and record what occurs; however, this could be quite time-consuming if the frequency is low or if the children are playing some distance away and their behaviour is difficult to interpret. Instead, the researcher could construct a play setting in a laboratory and attempt to observe aggressive behaviours in this smaller and more controlled context; for instance, they could only provide one highly desirable toy instead of one for each child. What they gain in control, they lose in artificiality. In this example, the possibility for children to act differently in the lab than they would in the real world would create a challenge in interpreting results.

Correlational research: Seeking relationships among variables

In contrast to descriptive research — which is designed primarily to provide a snapshot of behaviour, attitudes, and so on — correlational research involves measuring the relationship between two variables. Variables can be behaviours, attitudes, and so on. Anything that can be measured is a potential variable. The key aspect of correlational research is that the researchers are not asking some of their participants to do one thing and others to do something else; all of the participants are providing scores on the same two variables. Correlational research is not about how an individual scores; rather, it seeks to understand the association between two things in a larger sample of people. The previous comments about the representativeness of the sample all apply in correlational research. Researchers try to find a sample that represents the population of interest.

An example of correlation research would be to measure the association between height and weight. We should expect that there is a relationship because taller people have more mass and therefore should weigh more than short people. We know from observation, however, that there are many tall, thin people just as there are many short, overweight people. In other words, we would expect that in a group of people, height and weight should be systematically related (i.e., correlated), but the degree of relatedness is not expected to be perfect. Imagine we repeated this study with samples representing different populations: elite athletes, women over 50, children under 5, and so on. We might make different predictions about the relationship between height and weight based on the characteristics of the sample. This highlights the importance of obtaining a representative sample.

Psychologists make frequent use of correlational research designs. Examples might be the association between shyness and number of Facebook friends, between age and conservatism, between time spent on social media and grades in school, and so on. Correlational research designs tend to be relatively less expensive because they are time-limited and can often be conducted without much equipment. Online survey platforms have made data collection easier than ever. Some correlational research does not even necessitate collecting data; researchers using archival data sets as described above simply download the raw data from another source. For example, suppose you were interested in whether or not height is related to the number of points scored in hockey players. You could extract data for both variables from nhl.com , the official National Hockey League website, and conduct archival research using the data that have already been collected.

Correlational research designs look for associations between variables. A statistic that measures that association is the correlation coefficient. Correlation coefficients can be either positive or negative, and they range in value from -1.0 through 0 to 1.0. The most common statistical measure is the Pearson correlation coefficient , which is symbolized by the letter r . Positive values of r (e.g., r = .54 or r = .67) indicate that the relationship is positive, whereas negative values of r (e.g., r = –.30 or r = –.72) indicate negative relationships. The closer the coefficient is to -1 or +1, and the further away from zero, the greater the size of the association between the two variables. For instance, r = –.54 is a stronger relationship than r = .30, and r = .72 is a stronger relationship than r = –.57. Correlations of 0 indicate no relationship between the two variables.

Examples of positive correlation coefficients would include those between height and weight, between education and income, and between age and mathematical abilities in children. In each case, people who score higher, or lower, on one of the variables also tend to score higher, or lower, on the other variable. Negative correlations occur when people score high on one variable and low on the other. Examples of negative linear relationships include those between the age of a child and the number of diapers the child uses and between time practising and errors made on a learning task. In these cases, people who score higher on one of the variables tend to score lower on the other variable. Note that the correlation coefficient does not tell you anything about one specific person’s score.

One way of organizing the data from a correlational study with two variables is to graph the values of each of the measured variables using a scatterplot. A scatterplot  is a visual image of the relationship between two variables (see Figure 2.3 ). A point is plotted for each individual at the intersection of his or her scores for the two variables. In this example, data extracted from the official National Hockey League (NHL) website of 30 randomly picked hockey players for the 2017/18 season. For each of these players, there is a dot representing player height and number of points (i.e., goals plus assists). The slope or angle of the dotted line through the middle of the scatter tells us something about the strength and direction of the correlation. In this case, the line slopes up slightly to the right, indicating a positive but small correlation. In these NHL players, there is not much of relationship between height and points. The Pearson correlation calculated for this sample is r = 0.14. It is possible that the correlation would be totally different in a different sample of players, such as a greater number, only those who played a full season, only rookies, only forwards, and so on.

For practise constructing and interpreting scatterplots, see the following:

  • Interactive Quiz: Positive and Negative Associations in Scatterplots (Khan Academy, 2018)

When the association between the variables on the scatterplot can be easily approximated with a straight line, the variables are said to have a linear relationship . We are only going to consider linear relationships here. Just be aware that some pairs of variables have non-linear relationships, such as the relationship between physiological arousal and performance. Both high and low arousal are associated with sub-optimal performance, shown by a U-shaped scatterplot curve.

The most important limitation of correlational research designs is that they cannot be used to draw conclusions about the causal relationships among the measured variables; in other words, we cannot know what causes what in correlational research. Consider, for instance, a researcher who has hypothesized that viewing violent behaviour will cause increased aggressive play in children. The researcher has collected, from a sample of Grade 4 children, a measure of how many violent television shows each child views during the week as well as a measure of how aggressively each child plays on the school playground. From the data collected, the researcher discovers a positive correlation between the two measured variables.

Although this positive correlation appears to support the researcher’s hypothesis, it cannot be taken to indicate that viewing violent television causes aggressive behaviour. Although the researcher is tempted to assume that viewing violent television causes aggressive play, there are other possibilities. One alternative possibility is that the causal direction is exactly opposite of what has been hypothesized; perhaps children who have behaved aggressively at school are more likely to prefer violent television shows at home.

Still another possible explanation for the observed correlation is that it has been produced by a so-called third variable , one that is not part of the research hypothesis but that causes both of the observed variables and, thus, the correlation between them. In our example, a potential third variable is the discipline style of the children’s parents. Parents who use a harsh and punitive discipline style may allow children to watch violent television and to behave aggressively in comparison to children whose parents use less different types of discipline.

To review, whenever we have a correlation that is not zero, there are three potential pathways of cause and effect that must be acknowledged. The easiest way to practise understanding this challenge is to automatically designate the two variables X and Y. It does not matter which is which. Then, think through any ways in which X might cause Y. Then, flip the direction of cause and effect, and consider how Y might cause X. Finally, and possibly the most challenging, try to think of other variables — let’s call these C — that were not part of the original correlation, which cause both X and Y. Understanding these potential explanations for correlational research is an important aspect of scientific literacy. In the above example, we have shown how X (i.e., viewing violent TV) could cause Y (i.e., aggressive behaviour), how Y could cause X, and how C (i.e., parenting) could cause both X and Y.

Test your understanding with each example below. Find three different interpretations of cause and effect using the procedure outlined above. In each case, identify variables X, Y, and C:

  • A positive correlation between dark chocolate consumption and health
  • A negative correlation between sleep and smartphone use
  • A positive correlation between children’s aggressiveness and time spent playing video games
  • A negative association between time spent exercising and consumption of junk food

In sum, correlational research designs have both strengths and limitations. One strength is that they can be used when experimental research is not possible or when fewer resources are available. Correlational designs also have the advantage of allowing the researcher to study behaviour as it occurs in everyday life. We can also use correlational designs to make predictions, such as predicting the success of job trainees based on their test scores during training. They are also excellent sources of suggested avenues for further research, but we cannot use such correlational information to understand cause and effect. For that, researchers rely on experiments.

Experimental research: Understanding the causes of behaviour

The goal of experimental research design is to provide definitive conclusions about the causal relationships among the variables in the research hypothesis. In an experimental research design, there are independent variables and dependent variables. The independent variable  is the one manipulated by the researchers so that there is more than one condition. The dependent variable is the outcome or score on the measure of interest that is dependent on the actions of the independent variable. Let’s consider a classic drug study to illustrate the relationship between independent and dependent variables. To begin, a sample of people with a medical condition are randomly assigned to one of two conditions. In one condition, they are given a drug over a period of time. In the other condition, a placebo is given for the same period of time. To be clear, a placebo is a type of medication that looks like the real thing but is actually chemically inert, sometimes referred to as a”sugar pill.” After the testing period, the groups are compared to see if the drug condition shows better improvement in health than the placebo condition.

While the basic design of experiments is quite simple, the success of experimental research rests on meeting a number of criteria. Some important criteria are:

  • Participants must be randomly assigned to the conditions so that there are no differences between the groups. In the drug study example, you could not assign the males to the drug condition and the females to the placebo condition. The groups must be demographically equivalent.
  • There must be a control condition. Having a condition that does not receive treatment allows experimenters to compare the results of the drug to the results of placebo.
  • The only thing that can change between the conditions is the independent variable. For example, the participants in the drug study should receive the medication at the same place, from the same person, at the same time, and so on, for both conditions. Experiments often employ double-blind procedures in which neither the experimenter nor the participants know which condition any participant is in during the experiment. In a single-blind procedure, the participants do not know which condition they are in.
  • The sample size has to be large and diverse enough to represent the population of interest. For example, a pharmaceutical company should not use only men in their drug study if the drug will eventually be prescribed to women as well.
  • Experimenter effects should be minimized. This means that if there is a difference in scores on the dependent variable, they should not be attributable to something the experimenter did or did not do. For example, if an experiment involved comparing a yoga condition with an exercise condition, experimenters would need to make sure that they treated the participants exactly the same in each condition. They would need to control the amount of time they spent with the participants, how much they interacted verbally, smiled at the participants, and so on. Experimenters often employ research assistants who are blind to the participants’ condition to interact with the participants.

As you can probably see, much of experimental design is about control. The experimenters have a high degree of control over who does what. All of this tight control is to try to ensure that if there is a difference between the different levels of the independent variable, it is detectable. In other words, if there is even a small difference between a drug and placebo, it is detected. Furthermore, this level of control is aimed at ensuring that the only difference between conditions is the one the experimenters are testing while making correct and accurate determinations about cause and effect.

Research Focus

Video games and aggression

Consider an experiment conducted by Craig Anderson and Karen Dill (2000). The study was designed to test the hypothesis that viewing violent video games would increase aggressive behaviour. In this research, male and female undergraduates from Iowa State University were given a chance to play with either a violent video game (e.g., Wolfenstein 3D) or a nonviolent video game (e.g., Myst). During the experimental session, the participants played their assigned video games for 15 minutes. Then, after the play, each participant played a competitive game with an opponent in which the participant could deliver blasts of white noise through the earphones of the opponent. The operational definition of the dependent variable (i.e., aggressive behaviour) was the level and duration of noise delivered to the opponent. The design of the experiment is shown below (see Figure 2.4 ).

There are two strong advantages of the experimental research design. First, there is assurance that the independent variable, also known as the experimental manipulation , occurs prior to the measured dependent variable; second, there is creation of initial equivalence between the conditions of the experiment, which is made possible by using random assignment to conditions.

Experimental designs have two very nice features. For one, they guarantee that the independent variable occurs prior to the measurement of the dependent variable. This eliminates the possibility of reverse causation. Second, the influence of common-causal variables is controlled, and thus eliminated, by creating initial equivalence among the participants in each of the experimental conditions before the manipulation occurs.

The most common method of creating equivalence among the experimental conditions is through random assignment to conditions, a procedure in which the condition that each participant is assigned to is determined through a random process, such as drawing numbers out of an envelope or using a random number table. Anderson and Dill first randomly assigned about 100 participants to each of their two groups: Group A and Group B. Since they used random assignment to conditions, they could be confident that, before the experimental manipulation occurred, the students in Group A were, on average, equivalent to the students in Group B on every possible variable, including variables that are likely to be related to aggression, such as parental discipline style, peer relationships, hormone levels, diet — and in fact everything else.

Then, after they had created initial equivalence, Anderson and Dill created the experimental manipulation; they had the participants in Group A play the violent game and the participants in Group B play the nonviolent game. Then, they compared the dependent variable (i.e., the white noise blasts) between the two groups, finding that the students who had viewed the violent video game gave significantly longer noise blasts than did the students who had played the nonviolent game.

Anderson and Dill had from the outset created initial equivalence between the groups. This initial equivalence allowed them to observe differences in the white noise levels between the two groups after the experimental manipulation, leading to the conclusion that it was the independent variable, and not some other variable, that caused these differences. The idea is that the only thing that was different between the students in the two groups was the video game they had played.

Sometimes, experimental research has a confound. A confound is a variable that has slipped unwanted into the research and potentially caused the results because it has created a systematic difference between the levels of the independent variable. In other words, the confound caused the results, not the independent variable. For example, suppose you were a researcher who wanted to know if eating sugar just before an exam was beneficial. You obtain a large sample of students, divide them randomly into two groups, give everyone the same material to study, and then give half of the sample a chocolate bar containing high levels of sugar and the other half a glass of water before they write their test. Lo and behold, you find the chocolate bar group does better. However, the chocolate bar also contains caffeine, fat and other ingredients. These other substances besides sugar are potential confounds; for example, perhaps caffeine rather than sugar caused the group to perform better. Confounds introduce a systematic difference between levels of the independent variable such that it is impossible to distinguish between effects due to the independent variable and effects due to the confound.

Despite the advantage of determining causation, experiments do have limitations. One is that they are often conducted in laboratory situations rather than in the everyday lives of people. Therefore, we do not know whether results that we find in a laboratory setting will necessarily hold up in everyday life. Do people act the same in a laboratory as they do in real life? Often researchers are forced to balance the need for experimental control with the use of laboratory conditions that can only approximate real life.

Additionally, it is very important to understand that many of the variables that psychologists are interested in are not things that can be manipulated experimentally. For example, psychologists interested in sex differences cannot randomly assign participants to be men or women. If a researcher wants to know if early attachments to parents are important for the development of empathy, or in the formation of adult romantic relationships, the participants cannot be randomly assigned to childhood attachments. Thus, a large number of human characteristics cannot be manipulated or assigned. This means that research may look experimental because it has different conditions (e.g., men or women, rich or poor, highly intelligent or not so intelligent, etc.); however, it is quasi-experimental . The challenge in interpreting quasi-experimental research is that the inability to randomly assign the participants to condition results in uncertainty about cause and effect. For example, if you find that men and women differ in some ability, it could be biology that is the cause, but it is equally likely it could be the societal experience of being male or female that is responsible.

Of particular note, while experiments are the gold standard for understanding cause and effect, a large proportion of psychology research is not experimental for a variety of practical and ethical reasons.

Key Takeaways

  • Descriptive, correlational, and experimental research designs are used to collect and analyze data.
  • Descriptive designs include case studies, surveys, psychological tests, naturalistic observation, and laboratory observation. The goal of these designs is to get a picture of the participants’ current thoughts, feelings, or behaviours.
  • Correlational research designs measure the relationship between two or more variables. The variables may be presented on a scatterplot to visually show the relationships. The Pearson correlation coefficient is a measure of the strength of linear relationship between two variables. Correlations have three potential pathways for interpreting cause and effect.
  • Experimental research involves the manipulation of an independent variable and the measurement of a dependent variable. Done correctly, experiments allow researchers to make conclusions about cause and effect. There are a number of criteria that must be met in experimental design. Not everything can be studied experimentally, and laboratory experiments may not replicate real-life conditions well.

Exercises and Critical Thinking

  • There is a negative correlation between how close students sit to the front of the classroom and their final grade in the class. Explain some possible reasons for this.
  • Imagine you are tasked with creating a survey of online habits of Canadian teenagers. What questions would you ask and why? How valid and reliable would your test be?
  • Imagine a researcher wants to test the hypothesis that participating in psychotherapy will cause a decrease in reported anxiety. Describe the type of research design the investigator might use to draw this conclusion. What would be the independent and dependent variables in the research?

Image Attributions

Figure 2.2. This Might Be Me in a Few Years by Frank Kovalchek is used under a CC BY 2.0 license.

Figure 2.3. Used under a CC BY-NC-SA 4.0 license.

Figure 2.4. Used under a CC BY-NC-SA 4.0 license.

Anderson, C. A., & Dill, K. E. (2000). Video games and aggressive thoughts, feelings, and behavior in the laboratory and in life.  Journal of Personality and Social Psychology, 78 (4), 772–790.

Damasio, H., Grabowski, T., Frank, R., Galaburda, A. M., Damasio, A. R., Cacioppo, J. T., & Berntson, G. G. (2005). The return of Phineas Gage: Clues about the brain from the skull of a famous patient. In  Social neuroscience: Key readings (pp. 21–28). New York, NY: Psychology Press.

Freud, S. (1909/1964). Analysis of phobia in a five-year-old boy. In E. A. Southwell & M. Merbaum (Eds.),  Personality: Readings in theory and research (pp. 3–32). Belmont, CA: Wadsworth. (Original work published 1909)

Henrich, J., Heine, S. J., & Norenzaya, A. (2010). The weirdest people in the world? Behavioral and Brain Sciences, 33 , 61–83.

Kotowicz, Z. (2007). The strange case of Phineas Gage.  History of the Human Sciences, 20 (1), 115–131.

Rokeach, M. (1964).  The three Christs of Ypsilanti: A psychological study . New York, NY: Knopf.

Stangor, C. (2011). Research methods for the behavioral sciences (4th ed.) . Mountain View, CA: Cengage.

Psychology - 1st Canadian Edition Copyright © 2020 by Sally Walters is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

descriptive research design vs experimental research design

  • Survey Software The world’s leading omnichannel survey software
  • Online Survey Tools Create sophisticated surveys with ease.
  • Mobile Offline Conduct efficient field surveys.
  • Text Analysis
  • Close The Loop
  • Automated Translations
  • NPS Dashboard
  • CATI Manage high volume phone surveys efficiently
  • Cloud/On-premise Dialer TCPA compliant Cloud & on-premise dialer
  • IVR Survey Software Boost productivity with automated call workflows.
  • Analytics Analyze survey data with visual dashboards
  • Panel Manager Nurture a loyal community of respondents.
  • Survey Portal Best-in-class user friendly survey portal.
  • Voxco Audience Conduct targeted sample research in hours.

descriptive research design vs experimental research design

Find the best survey software for you! (Along with a checklist to compare platforms)

Get Buyer’s Guide

  • 100+ question types
  • Drag-and-drop interface
  • Skip logic and branching
  • Multi-lingual survey
  • Text piping
  • Question library
  • CSS customization
  • White-label surveys
  • Customizable ‘Thank You’ page
  • Customizable survey theme
  • Reminder send-outs
  • Survey rewards
  • Social media
  • Website surveys
  • Correlation analysis
  • Cross-tabulation analysis
  • Trend analysis
  • Real-time dashboard
  • Customizable report
  • Email address validation
  • Recaptcha validation
  • SSL security

Take a peek at our powerful survey features to design surveys that scale discoveries.

Download feature sheet.

  • Hospitality
  • Financial Services
  • Academic Research
  • Customer Experience
  • Employee Experience
  • Product Experience
  • Market Research
  • Social Research
  • Data Analysis

Explore Voxco 

Need to map Voxco’s features & offerings? We can help!

Watch a Demo 

Download Brochures 

Get a Quote

  • NPS Calculator
  • CES Calculator
  • A/B Testing Calculator
  • Margin of Error Calculator
  • Sample Size Calculator
  • CX Strategy & Management Hub
  • Market Research Hub
  • Patient Experience Hub
  • Employee Experience Hub
  • Market Research Guide
  • Customer Experience Guide
  • The Voxco Guide to Customer Experience
  • NPS Knowledge Hub
  • Survey Research Guides
  • Survey Template Library
  • Webinars and Events
  • Feature Sheets
  • Try a sample survey
  • Professional services

Find the best customer experience platform

Uncover customer pain points, analyze feedback and run successful CX programs with the best CX platform for your team.

Get the Guide Now

descriptive research design vs experimental research design

We’ve been avid users of the Voxco platform now for over 20 years. It gives us the flexibility to routinely enhance our survey toolkit and provides our clients with a more robust dataset and story to tell their clients.

VP Innovation & Strategic Partnerships, The Logit Group

  • Client Stories
  • Voxco Reviews
  • Why Voxco Research?
  • Careers at Voxco
  • Vulnerabilities and Ethical Hacking

Explore Regional Offices

  • Cloud/On-premise Dialer TCPA compliant Cloud on-premise dialer
  • Predictive Analytics
  • Customer 360
  • Customer Loyalty
  • Fraud & Risk Management
  • AI/ML Enablement Services
  • Credit Underwriting

Get Buyer’s Guide

  • SMS surveys
  • Banking & Financial Services
  • Retail Solution
  • Risk Management
  • Customer Lifecycle Solutions
  • Net Promoter Score
  • Customer Behaviour Analytics
  • Customer Segmentation
  • Data Unification

Explore Voxco 

Watch a Demo 

Download Brochures 

  • CX Strategy & Management Hub
  • Blogs & White papers
  • Case Studies

descriptive research design vs experimental research design

VP Innovation & Strategic Partnerships, The Logit Group

  • Why Voxco Intelligence?
  • Our clients
  • Client stories
  • Featuresheets

Descriptive Research

Descriptive vs experimental research

  • October 7, 2021

Exclusive Step by Step guide to Descriptive Research

Get ready to uncover the how, when, what, and where questions in a research problem

SHARE THE ARTICLE ON

Descriptive research and experimental research are both types of quantitative research. Quantitative research refers to the process of analyzing data in its numeric form. The objective of quantitative research is to examine social phenomena by collecting objective data. 

But there is a difference in the way descriptive research and experimental research are performed and the insights they deliver. We will explore how different the two research types are from one another. 

Before we jump into exploring descriptive vs experimental research, let’s define the two types.

What is Descriptive Research?

Descriptive research is a method to describe the demographics of the research variables. The demographics being “why, what, when, how” regarding the subject variable. Rather than limiting its approach to qualitative or quantitative, descriptive research is mostly observational. The reason being obvious, the variables are not influenced by any external variables and are observed to derive results from it. 

Descriptive research aims to statistically analyze the data collected through observations and surveys or case studies. The variables that are being observed are not controlled. As descriptive research digs out the patterns in the data, it helps researchers get future insights depending on the pattern. 

Methods of descriptive research:

  • Observation – as the name suggests, this includes observing a variable in the study. It can be qualitative or quantitative in nature. Quantitative observations will give data that is numerically represented, whereas qualitative observations are more brief and long to analyze. 

For example, a company owner decides to implement new soft skill training among the employees. After the training is over he observes their speech and performance to figure out how effective the training program was. 

  • Surveys – are the most common form of gathering feedback from the customers. This includes questionnaires regarding the topic which the responders will answer. It can be conducted online as well as offline and provides vast areas of channels to circulate them through. 

The main advantage of surveys is that it gets your hands on large amounts of data in a short time span. 

For example, a company owner wants to get feedback on a recent meeting. He will ask both open-ended as well as close-ended questions.

  • Case studies – it is a deep study of an individual or group. It helps your frame hypothesis or theories. As it studies a natural phenomenon, researchers’ biases are avoided. Another reason is, a not-so-genuine responder. It would be unfair to study this responder who is a lot different from the general population and then generalize his results to the entire population. 

For example, a company owner studies an employee who travels far to come to the office. He may have a different experience with his traveling and its effect on his work, then the other employees. 

Descriptive Research

What is Experimental Research?

Experimental research is a scientific approach to dealing with two or more variables. It is basically an experiment conducted to bring out the cause-effect relationship between those variables. 

The experiment has two groups, a treatment group, and a control group. A researcher starts an experiment by keeping a problem statement in mind, and that includes a control variable. The treatment group undergoes the changes that the researcher wants to experiment with, and the control group doesn’t go through any treatment. At the end of the experiment, the researcher concludes how the independent variable affects the dependent variable when the course is changed. 

Experimental research aims to help you make meaningful insights out of the gathered data. It is useful in testing your hypothesis and making decisions about it. Experimental research is said to be successful when the manipulation of the independent variable brings about a change in the variable that is under study. 

Methods of experimental research:

Pre-experimental Design

It is sort of a dry run before a true experiment takes place. It studies one or two groups when they are put under the researcher’s treatment. This gives an idea of whether the treatment will solve the problem at hand or not. And if yes, then what is the right way to carry out the experiment when it actually takes place. 

The 3 kinds are; 

  • One-shot case study research design
  • One-group pretest-posttest research design
  • Static group comparison 

[Related read: Pre-experimental Design ]

True-experimental Research Design  

It is hypothesis-testing research, which at the end of the study, will either support or refute the hypothesis. You can say this research is based on the foreground of the pre-experimental research. 

True experiments work on hypothesis testing with the help of independent and dependent variables, pre-testing and post-testing, treatment groups and control groups, and control variables. In addition to that, the samples are selected at random. 

For example, a teacher wants to know the average maths marks of her class. She will randomly select students to take the math test. 

Quasi-experimental Research  

It is similar to a true experiment but surely not the same. Just like true experiments, it also includes independent and dependent variables, pre-tests and post-tests, and treatment and control groups. 

The major difference is that it does not include randomization of samples and control variables. As a result of which, the participants are assigned to the experimental groups through a study that decides which participants to put in which experimental group. 

For example, a teacher wants to know how her class is doing in math, but more importantly, she wants to study the students that have an average score on a math test. So she will select only those students who have an average score in math. 

Descriptive Vs. Experimental Research

Definition .

Descriptive research is a method that describes a study or a topic. It defines the characteristics of the variable under research and answers the questions related to it. 

Whereas experimental research is a scientific approach to testing a theory or a hypothesis using experimental groups and control variables. 

Descriptive research will help you gather data on a subject or understand a population or group. 

Experimental research will help you establish a cause-effect relationship between two or more variables. 

Descriptive research aims towards studying the demographics related to a subject group. Experimental research aims to test hypotheses and theories, which include cause-effect variables. 

Descriptive research is sociological and psychological in nature. 

Experimental research uses a more scientific experimental approach to test the problems. 

Both of them differ in terms of external interventions. Descriptive research doesn’t face any, while experimental research has control variables. 

Method to gather data

In descriptive research , the study can be done by collecting qualitative and quantitative data types. 

But when it comes to experimental research , the data has to be quantitative in nature. 

New call-to-action

Descriptive Vs. Experimental Research: Comparison Chart

Conclusion;.

Despite falling under the types of quantitative research, descriptive research & experimental research differ significantly. This concludes all points of difference between the two research types. Next time you have to decide which research method, you can refer to this blog.

Wondering what will be the cost of conducting survey research using Voxco?

The main difference between the two is that – descriptive research is a qualitative or quantitative approach dedicated to observing the variable demographics under its natural habitat. While experimental research includes a scientific quantitative approach to test hypotheses and theories using control variables.

One example can be, a software company wants to develop a new shopping application. For that, they will observe the regular shopping experiences of the customers and what are current options they are preferring. Second example can be a researcher who wants to study social media experiences for different people belonging to different age groups.

Two things that will differentiate the two prime research methodologies can be:

  • Descriptive research deals with observation and no external intervention while experimental research totally depends on the intervention. This intervention is caused by manipulation of the independent variable. 
  • The use of descriptive research is done when you want to observe a certain group or an individual while experimental research is used when you have a theory and you want to test it out by experimenting on the variables. 

For instance, a new teaching strategy for math is tested for its effects. A random selection of students is done to undergo the special training for the subject. At the end of the training, results of the math tests are compared with the results before the training program. This will let the management know how effective the training is. 

  • It has dependent and independent variables that give the cause-effect relationship between the variables. 
  • It has pre-test and post-test study to compare the results of the experiment before the treatment and after the treatment. 
  • Random sampling helps both the treatment group and control groups to have equal quality of participants. 

As descriptive research is an observational and experimental research is, well, experiment based, both have their own importance depending on the research problem. Use descriptive research when you just have to observe a group in its environment and develop an understanding on the subject. Use experimental research when you have to test a hypothesis or establish a cause-effect relation between two or more variables. 

Experimental research includes independent and dependent variables, it compares the pretest and post-tests while including randomization of samples and control variables. While non-experimental research doesn’t have randomization of the samples and it doesn’t manipulate the independent variables even if it is about establishing causal relationships between the variables. 

Explore Voxco Survey Software

Online page new product image3 02.png 1

+ Omnichannel Survey Software 

+ Online Survey Software 

+ CATI Survey Software 

+ IVR Survey Software 

+ Market Research Tool

+ Customer Experience Tool 

+ Product Experience Software 

+ Enterprise Survey Software 

Descriptive vs experimental research Post event survey

Post event survey questions

Post Event Survey Questions SHARE THE ARTICLE ON Table of Contents WHAT IS POST EVENT SURVEY? Post-event surveys are one of the most accurate methods

All you need to know about running a successful VoC program cvr

Why is the voice of customer important? – Duplicate

Why is The Voice of Customer Important? SHARE THE ARTICLE ON Table of Contents Voice of Customer (VoC) is referred to as a technique to

Descriptive vs experimental research Post event survey

Design your surveys with survey chaining

Design your surveys with survey chaining SHARE THE ARTICLE ON Table of Contents Some survey topics require in-depth data digging and extensive questions to be

Customer appreciation: Definition and ways to achieve it

Customer appreciation: Definition and ways to achieve it SHARE THE ARTICLE ON Share on facebook Share on twitter Share on linkedin Table of Contents What

Common Research Methodologies

Mastering Common Research Methodologies SHARE THE ARTICLE ON Table of Contents Research is crucial in expanding our knowledge and understanding of various disciplines. It provides

insurance care feature 400x250 1

CX marks the spot – Advancements in the Insurance Sector

Free Download: Generate customer journey insights using our customer experience templates.  Download Now CX Strategy & Management Hub TALK TO A CX EXPERT It can

We use cookies in our website to give you the best browsing experience and to tailor advertising. By continuing to use our website, you give us consent to the use of cookies. Read More

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology
  • Descriptive Research Design | Definition, Methods & Examples

Descriptive Research Design | Definition, Methods & Examples

Published on 5 May 2022 by Shona McCombes . Revised on 10 October 2022.

Descriptive research aims to accurately and systematically describe a population, situation or phenomenon. It can answer what , where , when , and how   questions , but not why questions.

A descriptive research design can use a wide variety of research methods  to investigate one or more variables . Unlike in experimental research , the researcher does not control or manipulate any of the variables, but only observes and measures them.

Table of contents

When to use a descriptive research design, descriptive research methods.

Descriptive research is an appropriate choice when the research aim is to identify characteristics, frequencies, trends, and categories.

It is useful when not much is known yet about the topic or problem. Before you can research why something happens, you need to understand how, when, and where it happens.

  • How has the London housing market changed over the past 20 years?
  • Do customers of company X prefer product Y or product Z?
  • What are the main genetic, behavioural, and morphological differences between European wildcats and domestic cats?
  • What are the most popular online news sources among under-18s?
  • How prevalent is disease A in population B?

Prevent plagiarism, run a free check.

Descriptive research is usually defined as a type of quantitative research , though qualitative research can also be used for descriptive purposes. The research design should be carefully developed to ensure that the results are valid and reliable .

Survey research allows you to gather large volumes of data that can be analysed for frequencies, averages, and patterns. Common uses of surveys include:

  • Describing the demographics of a country or region
  • Gauging public opinion on political and social topics
  • Evaluating satisfaction with a company’s products or an organisation’s services

Observations

Observations allow you to gather data on behaviours and phenomena without having to rely on the honesty and accuracy of respondents. This method is often used by psychological, social, and market researchers to understand how people act in real-life situations.

Observation of physical entities and phenomena is also an important part of research in the natural sciences. Before you can develop testable hypotheses , models, or theories, it’s necessary to observe and systematically describe the subject under investigation.

Case studies

A case study can be used to describe the characteristics of a specific subject (such as a person, group, event, or organisation). Instead of gathering a large volume of data to identify patterns across time or location, case studies gather detailed data to identify the characteristics of a narrowly defined subject.

Rather than aiming to describe generalisable facts, case studies often focus on unusual or interesting cases that challenge assumptions, add complexity, or reveal something new about a research problem .

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

McCombes, S. (2022, October 10). Descriptive Research Design | Definition, Methods & Examples. Scribbr. Retrieved 27 May 2024, from https://www.scribbr.co.uk/research-methods/descriptive-research-design/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, a quick guide to experimental design | 5 steps & examples, correlational research | guide, design & examples, qualitative vs quantitative research | examples & methods.

Pediaa.Com

Home » Education » Difference Between Descriptive and Experimental Research

Difference Between Descriptive and Experimental Research

The main difference between descriptive and experimental research is that the descriptive research describes the characteristics of the study group or a certain occurrence while the experimental research manipulates the variables to arrive at conclusions.

Descriptive research and experimental research are two types of research people use when doing varied research studies. Both these research types have their own methods that facilitate the researcher to gain maximum outcomes.

Key Areas Covered

1. What is Descriptive Research      – Definition, Aim, Methods 2. What is Experimental Research      – Definition, Aim, Methods 3. What is the Difference Between Descriptive and Experimental Research       – Comparison of Key Differences

Descriptive Research, Experimental Research, Research

Difference Between Descriptive and Experimental Research - Comparison Summary

What is Descriptive Research

Descriptive research is a type of research that studies the participants that take part in the research or a certain situation. Descriptive research does not limit to either of quantitative or qualitative research methodologies, but instead, it uses elements of both, often within the same study. Therefore, a descriptive researcher often uses three major ways to collect and analyse the data. They are observations, case studies and surveys.

Descriptive studies are aimed at finding out “what is,” therefore, observational and survey methods are frequently used to collect descriptive data (Borg & Gall, 1989). Thus, the main focus of descriptive research is to answer the question ‘what’ with concern to the study group. Moreover, descriptive research, primarily concerned with finding out “what is,” that might be applied to investigate the particular study group or the situation. Therefore,  descriptive research does not give answers to the cause and effect of the particular occurrence that is studied. 

Difference Between Descriptive and Experimental Research

Therefore, descriptive research assists to make specific conclusions regarding situations such as marketing products according to the needs of the customers, to estimate the percentages of units in a specified population according to a certain behaviour, etc. Some examples of descriptive researches include population census and product marketing surveys.

What is Experimental Research?

Experimental research is the research study where the scientist actively influences something to observe the consequences. Experimental research uses manipulation and controlled testing to understand causal processes. Therefore, in this type of research, the researcher manipulates one given variable and controls the others to come to a conclusion.

This type of research typically includes a hypothesis, a variable that can be manipulated, measured, calculated and compared. Eventually, the collected data and results will either support or reject the hypothesis of the researcher. Therefore, one could call this research type as a true experiment.

Main Difference - Descriptive vs Experimental Research

In this research type, the researcher manipulates the independent variables such as treatment method and teaching methodology, and measures the impact it has on the dependent variables such as cure and student comprehension in order to establish a cause-effect relationship between these two variables. Therefore, this research type can answer the questions of cause, effect and results, thus, making it possible to make hypothetical assumptions based on the gathered data. Therefore, unlike descriptive research which answers’ what is’, experimental research answers the question ‘what if’. Therefore, usually, this type of research uses quantitative data collection methodology.

Evidently, this type of research is mostly conducted in a controlled environment, usually a laboratory. Experimental research is mostly used in sciences such as sociology and psychology, physics, chemistry, biology, medicine, etc.

Descriptive research is the type of research where characteristics of the study group or a certain occurrence are described while experimental research is the research type that manipulates variables to come to a conclusion. This is the main difference between descriptive and experimental research.

Descriptive research is useful in gathering data on a certain population or a specific occurrence while experimental research is useful in finding out the cause-effect of a causal relationship, correlation etc

The aim of the descriptive research is to describe the characteristics of the study group, thus answering the question ‘what is’ while the aim of the experimental research is to manipulate the given variables so as to support or reject the assumed hypothesis. Hence it answers the question ‘what if’.

Type of Studies

Descriptive research typically includes sociological and psychological studies while experimental research typically includes forensic studies, biological and other laboratory studies, etc.

Data Collection

Descriptive research uses both qualitative and quantitative methodologies while experimental research primarily uses quantitative methodology.

Descriptive and experimental research are two significant types of research. Both these research types are helpful in analysing certain occurrences and study groups. The main difference between descriptive and experimental research is that descriptive research describes the characteristics of the research subject while the experimental research manipulates the research subject or the variables to come to a conclusion. Similarly, descriptive research answers the question ‘what is’ while experimental research answers the question ‘what if’.

1. “Descriptive Research.” Wikipedia, Wikimedia Foundation, 19 June 2018, Available here . 2. “WHAT IS DESCRIPTIVE RESEARCH?”, The Handbook of Research for Educational Communications and Technologies, Available here . 3. ” Descriptive Research Design: Definition, Examples & Types” Study.com, Available here . 4. “Experimental Research – A Guide to Scientific Experiments.” Observation Bias, Available here . 5. Wattoo, Shafqat. “Experimental Research.” LinkedIn SlideShare, 3 Feb. 2012, Available here .

Image Courtesy:

1. “Survey” (Public Domain) via PublicDomainPictures.net 2. “Experiment Pasteur English” By Carmel830 – Own work (Public Domain) via Commons Wikimedia

' src=

About the Author: Upen

Upen, BA (Honours) in Languages and Linguistics, has academic experiences and knowledge on international relations and politics. Her academic interests are English language, European and Oriental Languages, Internal Affairs and International Politics, and Psychology.

​You May Also Like These

Leave a reply cancel reply.

Logo for M Libraries Publishing

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

2.2 Psychologists Use Descriptive, Correlational, and Experimental Research Designs to Understand Behavior

Learning objectives.

  • Differentiate the goals of descriptive, correlational, and experimental research designs and explain the advantages and disadvantages of each.
  • Explain the goals of descriptive research and the statistical techniques used to interpret it.
  • Summarize the uses of correlational research and describe why correlational research cannot be used to infer causality.
  • Review the procedures of experimental research and explain how it can be used to draw causal inferences.

Psychologists agree that if their ideas and theories about human behavior are to be taken seriously, they must be backed up by data. However, the research of different psychologists is designed with different goals in mind, and the different goals require different approaches. These varying approaches, summarized in Table 2.2 “Characteristics of the Three Research Designs” , are known as research designs . A research design is the specific method a researcher uses to collect, analyze, and interpret data . Psychologists use three major types of research designs in their research, and each provides an essential avenue for scientific investigation. Descriptive research is research designed to provide a snapshot of the current state of affairs . Correlational research is research designed to discover relationships among variables and to allow the prediction of future events from present knowledge . Experimental research is research in which initial equivalence among research participants in more than one group is created, followed by a manipulation of a given experience for these groups and a measurement of the influence of the manipulation . Each of the three research designs varies according to its strengths and limitations, and it is important to understand how each differs.

Table 2.2 Characteristics of the Three Research Designs

Stangor, C. (2011). Research methods for the behavioral sciences (4th ed.). Mountain View, CA: Cengage.

Descriptive Research: Assessing the Current State of Affairs

Descriptive research is designed to create a snapshot of the current thoughts, feelings, or behavior of individuals. This section reviews three types of descriptive research: case studies , surveys , and naturalistic observation .

Sometimes the data in a descriptive research project are based on only a small set of individuals, often only one person or a single small group. These research designs are known as case studies — descriptive records of one or more individual’s experiences and behavior . Sometimes case studies involve ordinary individuals, as when developmental psychologist Jean Piaget used his observation of his own children to develop his stage theory of cognitive development. More frequently, case studies are conducted on individuals who have unusual or abnormal experiences or characteristics or who find themselves in particularly difficult or stressful situations. The assumption is that by carefully studying individuals who are socially marginal, who are experiencing unusual situations, or who are going through a difficult phase in their lives, we can learn something about human nature.

Sigmund Freud was a master of using the psychological difficulties of individuals to draw conclusions about basic psychological processes. Freud wrote case studies of some of his most interesting patients and used these careful examinations to develop his important theories of personality. One classic example is Freud’s description of “Little Hans,” a child whose fear of horses the psychoanalyst interpreted in terms of repressed sexual impulses and the Oedipus complex (Freud (1909/1964).

Three news papers on a table (The Daily Telegraph, The Guardian, and The Times), all predicting Obama has the edge in the early polls.

Political polls reported in newspapers and on the Internet are descriptive research designs that provide snapshots of the likely voting behavior of a population.

Another well-known case study is Phineas Gage, a man whose thoughts and emotions were extensively studied by cognitive psychologists after a railroad spike was blasted through his skull in an accident. Although there is question about the interpretation of this case study (Kotowicz, 2007), it did provide early evidence that the brain’s frontal lobe is involved in emotion and morality (Damasio et al., 2005). An interesting example of a case study in clinical psychology is described by Rokeach (1964), who investigated in detail the beliefs and interactions among three patients with schizophrenia, all of whom were convinced they were Jesus Christ.

In other cases the data from descriptive research projects come in the form of a survey — a measure administered through either an interview or a written questionnaire to get a picture of the beliefs or behaviors of a sample of people of interest . The people chosen to participate in the research (known as the sample ) are selected to be representative of all the people that the researcher wishes to know about (the population ). In election polls, for instance, a sample is taken from the population of all “likely voters” in the upcoming elections.

The results of surveys may sometimes be rather mundane, such as “Nine out of ten doctors prefer Tymenocin,” or “The median income in Montgomery County is $36,712.” Yet other times (particularly in discussions of social behavior), the results can be shocking: “More than 40,000 people are killed by gunfire in the United States every year,” or “More than 60% of women between the ages of 50 and 60 suffer from depression.” Descriptive research is frequently used by psychologists to get an estimate of the prevalence (or incidence ) of psychological disorders.

A final type of descriptive research—known as naturalistic observation —is research based on the observation of everyday events . For instance, a developmental psychologist who watches children on a playground and describes what they say to each other while they play is conducting descriptive research, as is a biopsychologist who observes animals in their natural habitats. One example of observational research involves a systematic procedure known as the strange situation , used to get a picture of how adults and young children interact. The data that are collected in the strange situation are systematically coded in a coding sheet such as that shown in Table 2.3 “Sample Coding Form Used to Assess Child’s and Mother’s Behavior in the Strange Situation” .

Table 2.3 Sample Coding Form Used to Assess Child’s and Mother’s Behavior in the Strange Situation

The results of descriptive research projects are analyzed using descriptive statistics — numbers that summarize the distribution of scores on a measured variable . Most variables have distributions similar to that shown in Figure 2.5 “Height Distribution” , where most of the scores are located near the center of the distribution, and the distribution is symmetrical and bell-shaped. A data distribution that is shaped like a bell is known as a normal distribution .

Table 2.4 Height and Family Income for 25 Students

Figure 2.5 Height Distribution

The distribution of the heights of the students in a class will form a normal distribution. In this sample the mean (M) = 67.12 and the standard deviation (s) = 2.74.

The distribution of the heights of the students in a class will form a normal distribution. In this sample the mean ( M ) = 67.12 and the standard deviation ( s ) = 2.74.

A distribution can be described in terms of its central tendency —that is, the point in the distribution around which the data are centered—and its dispersion , or spread. The arithmetic average, or arithmetic mean , is the most commonly used measure of central tendency . It is computed by calculating the sum of all the scores of the variable and dividing this sum by the number of participants in the distribution (denoted by the letter N ). In the data presented in Figure 2.5 “Height Distribution” , the mean height of the students is 67.12 inches. The sample mean is usually indicated by the letter M .

In some cases, however, the data distribution is not symmetrical. This occurs when there are one or more extreme scores (known as outliers ) at one end of the distribution. Consider, for instance, the variable of family income (see Figure 2.6 “Family Income Distribution” ), which includes an outlier (a value of $3,800,000). In this case the mean is not a good measure of central tendency. Although it appears from Figure 2.6 “Family Income Distribution” that the central tendency of the family income variable should be around $70,000, the mean family income is actually $223,960. The single very extreme income has a disproportionate impact on the mean, resulting in a value that does not well represent the central tendency.

The median is used as an alternative measure of central tendency when distributions are not symmetrical. The median is the score in the center of the distribution, meaning that 50% of the scores are greater than the median and 50% of the scores are less than the median . In our case, the median household income ($73,000) is a much better indication of central tendency than is the mean household income ($223,960).

Figure 2.6 Family Income Distribution

The distribution of family incomes is likely to be nonsymmetrical because some incomes can be very large in comparison to most incomes. In this case the median or the mode is a better indicator of central tendency than is the mean.

The distribution of family incomes is likely to be nonsymmetrical because some incomes can be very large in comparison to most incomes. In this case the median or the mode is a better indicator of central tendency than is the mean.

A final measure of central tendency, known as the mode , represents the value that occurs most frequently in the distribution . You can see from Figure 2.6 “Family Income Distribution” that the mode for the family income variable is $93,000 (it occurs four times).

In addition to summarizing the central tendency of a distribution, descriptive statistics convey information about how the scores of the variable are spread around the central tendency. Dispersion refers to the extent to which the scores are all tightly clustered around the central tendency, like this:

Graph of a tightly clustered central tendency.

Or they may be more spread out away from it, like this:

Graph of a more spread out central tendency.

One simple measure of dispersion is to find the largest (the maximum ) and the smallest (the minimum ) observed values of the variable and to compute the range of the variable as the maximum observed score minus the minimum observed score. You can check that the range of the height variable in Figure 2.5 “Height Distribution” is 72 – 62 = 10. The standard deviation , symbolized as s , is the most commonly used measure of dispersion . Distributions with a larger standard deviation have more spread. The standard deviation of the height variable is s = 2.74, and the standard deviation of the family income variable is s = $745,337.

An advantage of descriptive research is that it attempts to capture the complexity of everyday behavior. Case studies provide detailed information about a single person or a small group of people, surveys capture the thoughts or reported behaviors of a large population of people, and naturalistic observation objectively records the behavior of people or animals as it occurs naturally. Thus descriptive research is used to provide a relatively complete understanding of what is currently happening.

Despite these advantages, descriptive research has a distinct disadvantage in that, although it allows us to get an idea of what is currently happening, it is usually limited to static pictures. Although descriptions of particular experiences may be interesting, they are not always transferable to other individuals in other situations, nor do they tell us exactly why specific behaviors or events occurred. For instance, descriptions of individuals who have suffered a stressful event, such as a war or an earthquake, can be used to understand the individuals’ reactions to the event but cannot tell us anything about the long-term effects of the stress. And because there is no comparison group that did not experience the stressful situation, we cannot know what these individuals would be like if they hadn’t had the stressful experience.

Correlational Research: Seeking Relationships Among Variables

In contrast to descriptive research, which is designed primarily to provide static pictures, correlational research involves the measurement of two or more relevant variables and an assessment of the relationship between or among those variables. For instance, the variables of height and weight are systematically related (correlated) because taller people generally weigh more than shorter people. In the same way, study time and memory errors are also related, because the more time a person is given to study a list of words, the fewer errors he or she will make. When there are two variables in the research design, one of them is called the predictor variable and the other the outcome variable . The research design can be visualized like this, where the curved arrow represents the expected correlation between the two variables:

Figure 2.2.2

Left: Predictor variable, Right: Outcome variable.

One way of organizing the data from a correlational study with two variables is to graph the values of each of the measured variables using a scatter plot . As you can see in Figure 2.10 “Examples of Scatter Plots” , a scatter plot is a visual image of the relationship between two variables . A point is plotted for each individual at the intersection of his or her scores for the two variables. When the association between the variables on the scatter plot can be easily approximated with a straight line, as in parts (a) and (b) of Figure 2.10 “Examples of Scatter Plots” , the variables are said to have a linear relationship .

When the straight line indicates that individuals who have above-average values for one variable also tend to have above-average values for the other variable, as in part (a), the relationship is said to be positive linear . Examples of positive linear relationships include those between height and weight, between education and income, and between age and mathematical abilities in children. In each case people who score higher on one of the variables also tend to score higher on the other variable. Negative linear relationships , in contrast, as shown in part (b), occur when above-average values for one variable tend to be associated with below-average values for the other variable. Examples of negative linear relationships include those between the age of a child and the number of diapers the child uses, and between practice on and errors made on a learning task. In these cases people who score higher on one of the variables tend to score lower on the other variable.

Relationships between variables that cannot be described with a straight line are known as nonlinear relationships . Part (c) of Figure 2.10 “Examples of Scatter Plots” shows a common pattern in which the distribution of the points is essentially random. In this case there is no relationship at all between the two variables, and they are said to be independent . Parts (d) and (e) of Figure 2.10 “Examples of Scatter Plots” show patterns of association in which, although there is an association, the points are not well described by a single straight line. For instance, part (d) shows the type of relationship that frequently occurs between anxiety and performance. Increases in anxiety from low to moderate levels are associated with performance increases, whereas increases in anxiety from moderate to high levels are associated with decreases in performance. Relationships that change in direction and thus are not described by a single straight line are called curvilinear relationships .

Figure 2.10 Examples of Scatter Plots

Some examples of relationships between two variables as shown in scatter plots. Note that the Pearson correlation coefficient (r) between variables that have curvilinear relationships will likely be close to zero.

Some examples of relationships between two variables as shown in scatter plots. Note that the Pearson correlation coefficient ( r ) between variables that have curvilinear relationships will likely be close to zero.

Adapted from Stangor, C. (2011). Research methods for the behavioral sciences (4th ed.). Mountain View, CA: Cengage.

The most common statistical measure of the strength of linear relationships among variables is the Pearson correlation coefficient , which is symbolized by the letter r . The value of the correlation coefficient ranges from r = –1.00 to r = +1.00. The direction of the linear relationship is indicated by the sign of the correlation coefficient. Positive values of r (such as r = .54 or r = .67) indicate that the relationship is positive linear (i.e., the pattern of the dots on the scatter plot runs from the lower left to the upper right), whereas negative values of r (such as r = –.30 or r = –.72) indicate negative linear relationships (i.e., the dots run from the upper left to the lower right). The strength of the linear relationship is indexed by the distance of the correlation coefficient from zero (its absolute value). For instance, r = –.54 is a stronger relationship than r = .30, and r = .72 is a stronger relationship than r = –.57. Because the Pearson correlation coefficient only measures linear relationships, variables that have curvilinear relationships are not well described by r , and the observed correlation will be close to zero.

It is also possible to study relationships among more than two measures at the same time. A research design in which more than one predictor variable is used to predict a single outcome variable is analyzed through multiple regression (Aiken & West, 1991). Multiple regression is a statistical technique, based on correlation coefficients among variables, that allows predicting a single outcome variable from more than one predictor variable . For instance, Figure 2.11 “Prediction of Job Performance From Three Predictor Variables” shows a multiple regression analysis in which three predictor variables are used to predict a single outcome. The use of multiple regression analysis shows an important advantage of correlational research designs—they can be used to make predictions about a person’s likely score on an outcome variable (e.g., job performance) based on knowledge of other variables.

Figure 2.11 Prediction of Job Performance From Three Predictor Variables

Multiple regression allows scientists to predict the scores on a single outcome variable using more than one predictor variable.

Multiple regression allows scientists to predict the scores on a single outcome variable using more than one predictor variable.

An important limitation of correlational research designs is that they cannot be used to draw conclusions about the causal relationships among the measured variables. Consider, for instance, a researcher who has hypothesized that viewing violent behavior will cause increased aggressive play in children. He has collected, from a sample of fourth-grade children, a measure of how many violent television shows each child views during the week, as well as a measure of how aggressively each child plays on the school playground. From his collected data, the researcher discovers a positive correlation between the two measured variables.

Although this positive correlation appears to support the researcher’s hypothesis, it cannot be taken to indicate that viewing violent television causes aggressive behavior. Although the researcher is tempted to assume that viewing violent television causes aggressive play,

Viewing violent TV may lead to aggressive play.

there are other possibilities. One alternate possibility is that the causal direction is exactly opposite from what has been hypothesized. Perhaps children who have behaved aggressively at school develop residual excitement that leads them to want to watch violent television shows at home:

Or perhaps aggressive play leads to viewing violent TV.

Although this possibility may seem less likely, there is no way to rule out the possibility of such reverse causation on the basis of this observed correlation. It is also possible that both causal directions are operating and that the two variables cause each other:

One may cause the other, but there could be a common-causal variable.

Still another possible explanation for the observed correlation is that it has been produced by the presence of a common-causal variable (also known as a third variable ). A common-causal variable is a variable that is not part of the research hypothesis but that causes both the predictor and the outcome variable and thus produces the observed correlation between them . In our example a potential common-causal variable is the discipline style of the children’s parents. Parents who use a harsh and punitive discipline style may produce children who both like to watch violent television and who behave aggressively in comparison to children whose parents use less harsh discipline:

An example: Parents' discipline style may cause viewing violent TV, and it may also cause aggressive play.

In this case, television viewing and aggressive play would be positively correlated (as indicated by the curved arrow between them), even though neither one caused the other but they were both caused by the discipline style of the parents (the straight arrows). When the predictor and outcome variables are both caused by a common-causal variable, the observed relationship between them is said to be spurious . A spurious relationship is a relationship between two variables in which a common-causal variable produces and “explains away” the relationship . If effects of the common-causal variable were taken away, or controlled for, the relationship between the predictor and outcome variables would disappear. In the example the relationship between aggression and television viewing might be spurious because by controlling for the effect of the parents’ disciplining style, the relationship between television viewing and aggressive behavior might go away.

Common-causal variables in correlational research designs can be thought of as “mystery” variables because, as they have not been measured, their presence and identity are usually unknown to the researcher. Since it is not possible to measure every variable that could cause both the predictor and outcome variables, the existence of an unknown common-causal variable is always a possibility. For this reason, we are left with the basic limitation of correlational research: Correlation does not demonstrate causation. It is important that when you read about correlational research projects, you keep in mind the possibility of spurious relationships, and be sure to interpret the findings appropriately. Although correlational research is sometimes reported as demonstrating causality without any mention being made of the possibility of reverse causation or common-causal variables, informed consumers of research, like you, are aware of these interpretational problems.

In sum, correlational research designs have both strengths and limitations. One strength is that they can be used when experimental research is not possible because the predictor variables cannot be manipulated. Correlational designs also have the advantage of allowing the researcher to study behavior as it occurs in everyday life. And we can also use correlational designs to make predictions—for instance, to predict from the scores on their battery of tests the success of job trainees during a training session. But we cannot use such correlational information to determine whether the training caused better job performance. For that, researchers rely on experiments.

Experimental Research: Understanding the Causes of Behavior

The goal of experimental research design is to provide more definitive conclusions about the causal relationships among the variables in the research hypothesis than is available from correlational designs. In an experimental research design, the variables of interest are called the independent variable (or variables ) and the dependent variable . The independent variable in an experiment is the causing variable that is created (manipulated) by the experimenter . The dependent variable in an experiment is a measured variable that is expected to be influenced by the experimental manipulation . The research hypothesis suggests that the manipulated independent variable or variables will cause changes in the measured dependent variables. We can diagram the research hypothesis by using an arrow that points in one direction. This demonstrates the expected direction of causality:

Figure 2.2.3

Viewing violence (independent variable) and aggressive behavior (dependent variable).

Research Focus: Video Games and Aggression

Consider an experiment conducted by Anderson and Dill (2000). The study was designed to test the hypothesis that viewing violent video games would increase aggressive behavior. In this research, male and female undergraduates from Iowa State University were given a chance to play with either a violent video game (Wolfenstein 3D) or a nonviolent video game (Myst). During the experimental session, the participants played their assigned video games for 15 minutes. Then, after the play, each participant played a competitive game with an opponent in which the participant could deliver blasts of white noise through the earphones of the opponent. The operational definition of the dependent variable (aggressive behavior) was the level and duration of noise delivered to the opponent. The design of the experiment is shown in Figure 2.17 “An Experimental Research Design” .

Figure 2.17 An Experimental Research Design

Two advantages of the experimental research design are (1) the assurance that the independent variable (also known as the experimental manipulation) occurs prior to the measured dependent variable, and (2) the creation of initial equivalence between the conditions of the experiment (in this case by using random assignment to conditions).

Two advantages of the experimental research design are (1) the assurance that the independent variable (also known as the experimental manipulation) occurs prior to the measured dependent variable, and (2) the creation of initial equivalence between the conditions of the experiment (in this case by using random assignment to conditions).

Experimental designs have two very nice features. For one, they guarantee that the independent variable occurs prior to the measurement of the dependent variable. This eliminates the possibility of reverse causation. Second, the influence of common-causal variables is controlled, and thus eliminated, by creating initial equivalence among the participants in each of the experimental conditions before the manipulation occurs.

The most common method of creating equivalence among the experimental conditions is through random assignment to conditions , a procedure in which the condition that each participant is assigned to is determined through a random process, such as drawing numbers out of an envelope or using a random number table . Anderson and Dill first randomly assigned about 100 participants to each of their two groups (Group A and Group B). Because they used random assignment to conditions, they could be confident that, before the experimental manipulation occurred, the students in Group A were, on average, equivalent to the students in Group B on every possible variable, including variables that are likely to be related to aggression, such as parental discipline style, peer relationships, hormone levels, diet—and in fact everything else.

Then, after they had created initial equivalence, Anderson and Dill created the experimental manipulation—they had the participants in Group A play the violent game and the participants in Group B play the nonviolent game. Then they compared the dependent variable (the white noise blasts) between the two groups, finding that the students who had viewed the violent video game gave significantly longer noise blasts than did the students who had played the nonviolent game.

Anderson and Dill had from the outset created initial equivalence between the groups. This initial equivalence allowed them to observe differences in the white noise levels between the two groups after the experimental manipulation, leading to the conclusion that it was the independent variable (and not some other variable) that caused these differences. The idea is that the only thing that was different between the students in the two groups was the video game they had played.

Despite the advantage of determining causation, experiments do have limitations. One is that they are often conducted in laboratory situations rather than in the everyday lives of people. Therefore, we do not know whether results that we find in a laboratory setting will necessarily hold up in everyday life. Second, and more important, is that some of the most interesting and key social variables cannot be experimentally manipulated. If we want to study the influence of the size of a mob on the destructiveness of its behavior, or to compare the personality characteristics of people who join suicide cults with those of people who do not join such cults, these relationships must be assessed using correlational designs, because it is simply not possible to experimentally manipulate these variables.

Key Takeaways

  • Descriptive, correlational, and experimental research designs are used to collect and analyze data.
  • Descriptive designs include case studies, surveys, and naturalistic observation. The goal of these designs is to get a picture of the current thoughts, feelings, or behaviors in a given group of people. Descriptive research is summarized using descriptive statistics.
  • Correlational research designs measure two or more relevant variables and assess a relationship between or among them. The variables may be presented on a scatter plot to visually show the relationships. The Pearson Correlation Coefficient ( r ) is a measure of the strength of linear relationship between two variables.
  • Common-causal variables may cause both the predictor and outcome variable in a correlational design, producing a spurious relationship. The possibility of common-causal variables makes it impossible to draw causal conclusions from correlational research designs.
  • Experimental research involves the manipulation of an independent variable and the measurement of a dependent variable. Random assignment to conditions is normally used to create initial equivalence between the groups, allowing researchers to draw causal conclusions.

Exercises and Critical Thinking

  • There is a negative correlation between the row that a student sits in in a large class (when the rows are numbered from front to back) and his or her final grade in the class. Do you think this represents a causal relationship or a spurious relationship, and why?
  • Think of two variables (other than those mentioned in this book) that are likely to be correlated, but in which the correlation is probably spurious. What is the likely common-causal variable that is producing the relationship?
  • Imagine a researcher wants to test the hypothesis that participating in psychotherapy will cause a decrease in reported anxiety. Describe the type of research design the investigator might use to draw this conclusion. What would be the independent and dependent variables in the research?

Aiken, L., & West, S. (1991). Multiple regression: Testing and interpreting interactions . Newbury Park, CA: Sage.

Ainsworth, M. S., Blehar, M. C., Waters, E., & Wall, S. (1978). Patterns of attachment: A psychological study of the strange situation . Hillsdale, NJ: Lawrence Erlbaum Associates.

Anderson, C. A., & Dill, K. E. (2000). Video games and aggressive thoughts, feelings, and behavior in the laboratory and in life. Journal of Personality and Social Psychology, 78 (4), 772–790.

Damasio, H., Grabowski, T., Frank, R., Galaburda, A. M., Damasio, A. R., Cacioppo, J. T., & Berntson, G. G. (2005). The return of Phineas Gage: Clues about the brain from the skull of a famous patient. In Social neuroscience: Key readings. (pp. 21–28). New York, NY: Psychology Press.

Freud, S. (1964). Analysis of phobia in a five-year-old boy. In E. A. Southwell & M. Merbaum (Eds.), Personality: Readings in theory and research (pp. 3–32). Belmont, CA: Wadsworth. (Original work published 1909)

Kotowicz, Z. (2007). The strange case of Phineas Gage. History of the Human Sciences, 20 (1), 115–131.

Rokeach, M. (1964). The three Christs of Ypsilanti: A psychological study . New York, NY: Knopf.

Introduction to Psychology Copyright © 2015 by University of Minnesota is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Sociology Institute

Understanding Survey Research Designs: Experimental vs Descriptive

descriptive research design vs experimental research design

Table of Contents

Have you ever wondered how researchers gather data to explore trends, opinions, or behaviors among large groups of people? Survey research designs are a critical tool in the arsenal of social scientists, marketers, and policy makers. But not all surveys are created equal; they come in different formats with varying purposes. Today, let’s demystify two primary types of survey research designs : experimental and descriptive. By understanding their unique characteristics and applications, you’ll gain insights into how conclusions about our world are drawn from carefully collected data.

What is survey research design?

Before diving into the specific types, let’s clarify what we mean by survey research design. It’s a framework that guides the collection, analysis, and interpretation of data gathered through questionnaires or interviews. This design determines how a survey is conducted, the target population, the sampling method, and how results are analyzed to ensure that the information collected is relevant, reliable, and can support or refute a research hypothesis.

Experimental survey research design

In experimental survey research design s, the researcher manipulates one or more variables to observe their effect on another variable. This method is often used to establish cause-and-effect relationships. Here’s what defines an experimental design:

  • Controlled manipulation of variables: The researcher introduces changes to the independent variable\(s\) to see the effects on the dependent variable\(s\) .
  • Random assignment: Participants are randomly assigned to different groups (e.g., control and experimental) to ensure that the groups are comparable.
  • Comparison of groups: By comparing data from different groups, researchers can infer the impact of the manipulated variable.

Types of experimental designs

Within experimental designs, there are several subtypes, including true experiments , quasi\-experiments , and pre\-experimental designs . True experiments have strict control over variables and random assignment , while quasi-experiments lack random assignment. Pre-experimental designs are the least rigorous, often lacking both control and randomization.

Descriptive survey research design

Unlike experimental designs, descriptive survey research design s do not involve manipulation or control of variables. Instead, they aim to describe characteristics of a population or phenomenon as they naturally occur. Attributes of descriptive design include:

  • No manipulation: The researcher observes without intervening in the natural setting.
  • Focus on current status: Descriptive surveys often aim to provide a snapshot of the current state of affairs.
  • Wide range of data: They can collect a vast array of data, from opinions to demographic information.

Applications of descriptive survey designs

Descriptive surveys are widely used in various fields for different purposes. They can track consumer preferences , measure employee satisfaction , or gauge public opinion on social issues. The key is that they seek to paint a picture of what exists or what people believe at a given moment in time.

Choosing the right survey design

Deciding whether to use an experimental or descriptive survey design hinges on the research question. If the goal is to determine causality , experimental designs are the go-to. However, if the objective is to describe or explore a phenomenon without altering the environment, descriptive designs are more appropriate. Considerations include:

  • Research objectives: What are you trying to find out? Do you want to test a hypothesis or simply describe a situation?
  • Resources available: Experimental designs often require more resources in terms of time, money, and expertise.
  • Ethical considerations: Some questions may not be ethically testable in an experimental design due to the need for manipulation.

Challenges and limitations

Both experimental and descriptive survey research designs come with their own set of challenges and limitations. For experimental designs, ensuring a truly random assignment can be difficult, and external variables may still influence outcomes. Descriptive designs may suffer from biases in self\-reporting and are unable to provide causal explanations.

Best practices in survey research design

To maximize the effectiveness of a survey research design, whether experimental or descriptive, researchers should adhere to best practices:

  • Clear and concise questionnaire: Questions should be easily understandable and focused on the research objectives.
  • Representative sampling: The sample should accurately reflect the population being studied.
  • Rigorous analysis: Statistical methods should be appropriate for the data and research questions.
  • Transparency: Researchers should be transparent about methodologies, challenges, and potential biases in their work.

Survey research designs are powerful tools that, when used correctly, provide valuable insights into human behavior and preferences. Whether experimental or descriptive, each design has its rightful place depending on the research question. By considering goals, resources, and ethical implications, researchers can select the design that best fits their needs, leading to more accurate and impactful findings.

What do you think? How might understanding these research designs change the way you view poll results or studies shared in the media? Can you think of a situation where one design may be more beneficial than the other?

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

Submit Comment

Research Methodologies & Methods

1 Logic of Inquiry in Social Research

  • A Science of Society
  • Comte’s Ideas on the Nature of Sociology
  • Observation in Social Sciences
  • Logical Understanding of Social Reality

2 Empirical Approach

  • Empirical Approach
  • Rules of Data Collection
  • Cultural Relativism
  • Problems Encountered in Data Collection
  • Difference between Common Sense and Science
  • What is Ethical?
  • What is Normal?
  • Understanding the Data Collected
  • Managing Diversities in Social Research
  • Problematising the Object of Study
  • Conclusion: Return to Good Old Empirical Approach

3 Diverse Logic of Theory Building

  • Concern with Theory in Sociology
  • Concepts: Basic Elements of Theories
  • Why Do We Need Theory?
  • Hypothesis Description and Experimentation
  • Controlled Experiment
  • Designing an Experiment
  • How to Test a Hypothesis
  • Sensitivity to Alternative Explanations
  • Rival Hypothesis Construction
  • The Use and Scope of Social Science Theory
  • Theory Building and Researcher’s Values

4 Theoretical Analysis

  • Premises of Evolutionary and Functional Theories
  • Critique of Evolutionary and Functional Theories
  • Turning away from Functionalism
  • What after Functionalism
  • Post-modernism
  • Trends other than Post-modernism

5 Issues of Epistemology

  • Some Major Concerns of Epistemology
  • Rationalism
  • Phenomenology: Bracketing Experience

6 Philosophy of Social Science

  • Foundations of Science
  • Science, Modernity, and Sociology
  • Rethinking Science
  • Crisis in Foundation

7 Positivism and its Critique

  • Heroic Science and Origin of Positivism
  • Early Positivism
  • Consolidation of Positivism
  • Critiques of Positivism

8 Hermeneutics

  • Methodological Disputes in the Social Sciences
  • Tracing the History of Hermeneutics
  • Hermeneutics and Sociology
  • Philosophical Hermeneutics
  • The Hermeneutics of Suspicion
  • Phenomenology and Hermeneutics

9 Comparative Method

  • Relationship with Common Sense; Interrogating Ideological Location
  • The Historical Context
  • Elements of the Comparative Approach

10 Feminist Approach

  • Features of the Feminist Method
  • Feminist Methods adopt the Reflexive Stance
  • Feminist Discourse in India

11 Participatory Method

  • Delineation of Key Features

12 Types of Research

  • Basic and Applied Research
  • Descriptive and Analytical Research
  • Empirical and Exploratory Research
  • Quantitative and Qualitative Research
  • Explanatory (Causal) and Longitudinal Research
  • Experimental and Evaluative Research
  • Participatory Action Research

13 Methods of Research

  • Evolutionary Method
  • Comparative Method
  • Historical Method
  • Personal Documents

14 Elements of Research Design

  • Structuring the Research Process

15 Sampling Methods and Estimation of Sample Size

  • Classification of Sampling Methods
  • Sample Size

16 Measures of Central Tendency

  • Relationship between Mean, Mode, and Median
  • Choosing a Measure of Central Tendency

17 Measures of Dispersion and Variability

  • The Variance
  • The Standard Deviation
  • Coefficient of Variation

18 Statistical Inference- Tests of Hypothesis

  • Statistical Inference
  • Tests of Significance

19 Correlation and Regression

  • Correlation
  • Method of Calculating Correlation of Ungrouped Data
  • Method Of Calculating Correlation Of Grouped Data

20 Survey Method

  • Rationale of Survey Research Method
  • History of Survey Research
  • Defining Survey Research
  • Sampling and Survey Techniques
  • Operationalising Survey Research Tools
  • Advantages and Weaknesses of Survey Research

21 Survey Design

  • Preliminary Considerations
  • Stages / Phases in Survey Research
  • Formulation of Research Question
  • Survey Research Designs
  • Sampling Design

22 Survey Instrumentation

  • Techniques/Instruments for Data Collection
  • Questionnaire Construction
  • Issues in Designing a Survey Instrument

23 Survey Execution and Data Analysis

  • Problems and Issues in Executing Survey Research
  • Data Analysis
  • Ethical Issues in Survey Research

24 Field Research – I

  • History of Field Research
  • Ethnography
  • Theme Selection
  • Gaining Entry in the Field
  • Key Informants
  • Participant Observation

25 Field Research – II

  • Interview its Types and Process
  • Feminist and Postmodernist Perspectives on Interviewing
  • Narrative Analysis
  • Interpretation
  • Case Study and its Types
  • Life Histories
  • Oral History
  • PRA and RRA Techniques

26 Reliability, Validity and Triangulation

  • Concepts of Reliability and Validity
  • Three Types of “Reliability”
  • Working Towards Reliability
  • Procedural Validity
  • Field Research as a Validity Check
  • Method Appropriate Criteria
  • Triangulation
  • Ethical Considerations in Qualitative Research

27 Qualitative Data Formatting and Processing

  • Qualitative Data Processing and Analysis
  • Description
  • Classification
  • Making Connections
  • Theoretical Coding
  • Qualitative Content Analysis

28 Writing up Qualitative Data

  • Problems of Writing Up
  • Grasp and Then Render
  • “Writing Down” and “Writing Up”
  • Write Early
  • Writing Styles
  • First Draft

29 Using Internet and Word Processor

  • What is Internet and How Does it Work?
  • Internet Services
  • Searching on the Web: Search Engines
  • Accessing and Using Online Information
  • Online Journals and Texts
  • Statistical Reference Sites
  • Data Sources
  • Uses of E-mail Services in Research

30 Using SPSS for Data Analysis Contents

  • Introduction
  • Starting and Exiting SPSS
  • Creating a Data File
  • Univariate Analysis
  • Bivariate Analysis

31 Using SPSS in Report Writing

  • Why to Use SPSS
  • Working with SPSS Output
  • Copying SPSS Output to MS Word Document

32 Tabulation and Graphic Presentation- Case Studies

  • Structure for Presentation of Research Findings
  • Data Presentation: Editing, Coding, and Transcribing
  • Case Studies
  • Qualitative Data Analysis and Presentation through Software
  • Types of ICT used for Research

33 Guidelines to Research Project Assignment

  • Overview of Research Methodologies and Methods (MSO 002)
  • Research Project Objectives
  • Preparation for Research Project
  • Stages of the Research Project
  • Supervision During the Research Project
  • Submission of Research Project
  • Methodology for Evaluating Research Project

Share on Mastodon

  • What is descriptive research?

Last updated

5 February 2023

Reviewed by

Cathy Heath

Short on time? Get an AI generated summary of this article instead

Descriptive research is a common investigatory model used by researchers in various fields, including social sciences, linguistics, and academia.

Read on to understand the characteristics of descriptive research and explore its underlying techniques, processes, and procedures.

Analyze your descriptive research

Dovetail streamlines analysis to help you uncover and share actionable insights

Descriptive research is an exploratory research method. It enables researchers to precisely and methodically describe a population, circumstance, or phenomenon.

As the name suggests, descriptive research describes the characteristics of the group, situation, or phenomenon being studied without manipulating variables or testing hypotheses . This can be reported using surveys , observational studies, and case studies. You can use both quantitative and qualitative methods to compile the data.

Besides making observations and then comparing and analyzing them, descriptive studies often develop knowledge concepts and provide solutions to critical issues. It always aims to answer how the event occurred, when it occurred, where it occurred, and what the problem or phenomenon is.

  • Characteristics of descriptive research

The following are some of the characteristics of descriptive research:

Quantitativeness

Descriptive research can be quantitative as it gathers quantifiable data to statistically analyze a population sample. These numbers can show patterns, connections, and trends over time and can be discovered using surveys, polls, and experiments.

Qualitativeness

Descriptive research can also be qualitative. It gives meaning and context to the numbers supplied by quantitative descriptive research .

Researchers can use tools like interviews, focus groups, and ethnographic studies to illustrate why things are what they are and help characterize the research problem. This is because it’s more explanatory than exploratory or experimental research.

Uncontrolled variables

Descriptive research differs from experimental research in that researchers cannot manipulate the variables. They are recognized, scrutinized, and quantified instead. This is one of its most prominent features.

Cross-sectional studies

Descriptive research is a cross-sectional study because it examines several areas of the same group. It involves obtaining data on multiple variables at the personal level during a certain period. It’s helpful when trying to understand a larger community’s habits or preferences.

Carried out in a natural environment

Descriptive studies are usually carried out in the participants’ everyday environment, which allows researchers to avoid influencing responders by collecting data in a natural setting. You can use online surveys or survey questions to collect data or observe.

Basis for further research

You can further dissect descriptive research’s outcomes and use them for different types of investigation. The outcomes also serve as a foundation for subsequent investigations and can guide future studies. For example, you can use the data obtained in descriptive research to help determine future research designs.

  • Descriptive research methods

There are three basic approaches for gathering data in descriptive research: observational, case study, and survey.

You can use surveys to gather data in descriptive research. This involves gathering information from many people using a questionnaire and interview .

Surveys remain the dominant research tool for descriptive research design. Researchers can conduct various investigations and collect multiple types of data (quantitative and qualitative) using surveys with diverse designs.

You can conduct surveys over the phone, online, or in person. Your survey might be a brief interview or conversation with a set of prepared questions intended to obtain quick information from the primary source.

Observation

This descriptive research method involves observing and gathering data on a population or phenomena without manipulating variables. It is employed in psychology, market research , and other social science studies to track and understand human behavior.

Observation is an essential component of descriptive research. It entails gathering data and analyzing it to see whether there is a relationship between the two variables in the study. This strategy usually allows for both qualitative and quantitative data analysis.

Case studies

A case study can outline a specific topic’s traits. The topic might be a person, group, event, or organization.

It involves using a subset of a larger group as a sample to characterize the features of that larger group.

You can generalize knowledge gained from studying a case study to benefit a broader audience.

This approach entails carefully examining a particular group, person, or event over time. You can learn something new about the study topic by using a small group to better understand the dynamics of the entire group.

  • Types of descriptive research

There are several types of descriptive study. The most well-known include cross-sectional studies, census surveys, sample surveys, case reports, and comparison studies.

Case reports and case series

In the healthcare and medical fields, a case report is used to explain a patient’s circumstances when suffering from an uncommon illness or displaying certain symptoms. Case reports and case series are both collections of related cases. They have aided the advancement of medical knowledge on countless occasions.

The normative component is an addition to the descriptive survey. In the descriptive–normative survey, you compare the study’s results to the norm.

Descriptive survey

This descriptive type of research employs surveys to collect information on various topics. This data aims to determine the degree to which certain conditions may be attained.

You can extrapolate or generalize the information you obtain from sample surveys to the larger group being researched.

Correlative survey

Correlative surveys help establish if there is a positive, negative, or neutral connection between two variables.

Performing census surveys involves gathering relevant data on several aspects of a given population. These units include individuals, families, organizations, objects, characteristics, and properties.

During descriptive research, you gather different degrees of interest over time from a specific population. Cross-sectional studies provide a glimpse of a phenomenon’s prevalence and features in a population. There are no ethical challenges with them and they are quite simple and inexpensive to carry out.

Comparative studies

These surveys compare the two subjects’ conditions or characteristics. The subjects may include research variables, organizations, plans, and people.

Comparison points, assumption of similarities, and criteria of comparison are three important variables that affect how well and accurately comparative studies are conducted.

For instance, descriptive research can help determine how many CEOs hold a bachelor’s degree and what proportion of low-income households receive government help.

  • Pros and cons

The primary advantage of descriptive research designs is that researchers can create a reliable and beneficial database for additional study. To conduct any inquiry, you need access to reliable information sources that can give you a firm understanding of a situation.

Quantitative studies are time- and resource-intensive, so knowing the hypotheses viable for testing is crucial. The basic overview of descriptive research provides helpful hints as to which variables are worth quantitatively examining. This is why it’s employed as a precursor to quantitative research designs.

Some experts view this research as untrustworthy and unscientific. However, there is no way to assess the findings because you don’t manipulate any variables statistically.

Cause-and-effect correlations also can’t be established through descriptive investigations. Additionally, observational study findings cannot be replicated, which prevents a review of the findings and their replication.

The absence of statistical and in-depth analysis and the rather superficial character of the investigative procedure are drawbacks of this research approach.

  • Descriptive research examples and applications

Several descriptive research examples are emphasized based on their types, purposes, and applications. Research questions often begin with “What is …” These studies help find solutions to practical issues in social science, physical science, and education.

Here are some examples and applications of descriptive research:

Determining consumer perception and behavior

Organizations use descriptive research designs to determine how various demographic groups react to a certain product or service.

For example, a business looking to sell to its target market should research the market’s behavior first. When researching human behavior in response to a cause or event, the researcher pays attention to the traits, actions, and responses before drawing a conclusion.

Scientific classification

Scientific descriptive research enables the classification of organisms and their traits and constituents.

Measuring data trends

A descriptive study design’s statistical capabilities allow researchers to track data trends over time. It’s frequently used to determine the study target’s current circumstances and underlying patterns.

Conduct comparison

Organizations can use a descriptive research approach to learn how various demographics react to a certain product or service. For example, you can study how the target market responds to a competitor’s product and use that information to infer their behavior.

  • Bottom line

A descriptive research design is suitable for exploring certain topics and serving as a prelude to larger quantitative investigations. It provides a comprehensive understanding of the “what” of the group or thing you’re investigating.

This research type acts as the cornerstone of other research methodologies . It is distinctive because it can use quantitative and qualitative research approaches at the same time.

What is descriptive research design?

Descriptive research design aims to systematically obtain information to describe a phenomenon, situation, or population. More specifically, it helps answer the what, when, where, and how questions regarding the research problem rather than the why.

How does descriptive research compare to qualitative research?

Despite certain parallels, descriptive research concentrates on describing phenomena, while qualitative research aims to understand people better.

How do you analyze descriptive research data?

Data analysis involves using various methodologies, enabling the researcher to evaluate and provide results regarding validity and reliability.

Should you be using a customer insights hub?

Do you want to discover previous research faster?

Do you share your research findings with others?

Do you analyze research data?

Start for free today, add your research, and get to key insights faster

Editor’s picks

Last updated: 13 April 2023

Last updated: 14 February 2024

Last updated: 27 January 2024

Last updated: 18 April 2023

Last updated: 8 February 2023

Last updated: 23 January 2024

Last updated: 30 January 2024

Last updated: 7 February 2023

Last updated: 18 May 2023

Last updated: 31 January 2024

Last updated: 13 May 2024

Latest articles

Related topics, .css-je19u9{-webkit-align-items:flex-end;-webkit-box-align:flex-end;-ms-flex-align:flex-end;align-items:flex-end;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-flex-direction:row;-ms-flex-direction:row;flex-direction:row;-webkit-box-flex-wrap:wrap;-webkit-flex-wrap:wrap;-ms-flex-wrap:wrap;flex-wrap:wrap;-webkit-box-pack:center;-ms-flex-pack:center;-webkit-justify-content:center;justify-content:center;row-gap:0;text-align:center;max-width:671px;}@media (max-width: 1079px){.css-je19u9{max-width:400px;}.css-je19u9>span{white-space:pre;}}@media (max-width: 799px){.css-je19u9{max-width:400px;}.css-je19u9>span{white-space:pre;}} decide what to .css-1kiodld{max-height:56px;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;}@media (max-width: 1079px){.css-1kiodld{display:none;}} build next, decide what to build next.

descriptive research design vs experimental research design

Users report unexpectedly high data usage, especially during streaming sessions.

descriptive research design vs experimental research design

Users find it hard to navigate from the home page to relevant playlists in the app.

descriptive research design vs experimental research design

It would be great to have a sleep timer feature, especially for bedtime listening.

descriptive research design vs experimental research design

I need better filters to find the songs or artists I’m looking for.

Log in or sign up

Get started for free

Enago Academy

Experimental Research Design — 6 mistakes you should never make!

' src=

Since school days’ students perform scientific experiments that provide results that define and prove the laws and theorems in science. These experiments are laid on a strong foundation of experimental research designs.

An experimental research design helps researchers execute their research objectives with more clarity and transparency.

In this article, we will not only discuss the key aspects of experimental research designs but also the issues to avoid and problems to resolve while designing your research study.

Table of Contents

What Is Experimental Research Design?

Experimental research design is a framework of protocols and procedures created to conduct experimental research with a scientific approach using two sets of variables. Herein, the first set of variables acts as a constant, used to measure the differences of the second set. The best example of experimental research methods is quantitative research .

Experimental research helps a researcher gather the necessary data for making better research decisions and determining the facts of a research study.

When Can a Researcher Conduct Experimental Research?

A researcher can conduct experimental research in the following situations —

  • When time is an important factor in establishing a relationship between the cause and effect.
  • When there is an invariable or never-changing behavior between the cause and effect.
  • Finally, when the researcher wishes to understand the importance of the cause and effect.

Importance of Experimental Research Design

To publish significant results, choosing a quality research design forms the foundation to build the research study. Moreover, effective research design helps establish quality decision-making procedures, structures the research to lead to easier data analysis, and addresses the main research question. Therefore, it is essential to cater undivided attention and time to create an experimental research design before beginning the practical experiment.

By creating a research design, a researcher is also giving oneself time to organize the research, set up relevant boundaries for the study, and increase the reliability of the results. Through all these efforts, one could also avoid inconclusive results. If any part of the research design is flawed, it will reflect on the quality of the results derived.

Types of Experimental Research Designs

Based on the methods used to collect data in experimental studies, the experimental research designs are of three primary types:

1. Pre-experimental Research Design

A research study could conduct pre-experimental research design when a group or many groups are under observation after implementing factors of cause and effect of the research. The pre-experimental design will help researchers understand whether further investigation is necessary for the groups under observation.

Pre-experimental research is of three types —

  • One-shot Case Study Research Design
  • One-group Pretest-posttest Research Design
  • Static-group Comparison

2. True Experimental Research Design

A true experimental research design relies on statistical analysis to prove or disprove a researcher’s hypothesis. It is one of the most accurate forms of research because it provides specific scientific evidence. Furthermore, out of all the types of experimental designs, only a true experimental design can establish a cause-effect relationship within a group. However, in a true experiment, a researcher must satisfy these three factors —

  • There is a control group that is not subjected to changes and an experimental group that will experience the changed variables
  • A variable that can be manipulated by the researcher
  • Random distribution of the variables

This type of experimental research is commonly observed in the physical sciences.

3. Quasi-experimental Research Design

The word “Quasi” means similarity. A quasi-experimental design is similar to a true experimental design. However, the difference between the two is the assignment of the control group. In this research design, an independent variable is manipulated, but the participants of a group are not randomly assigned. This type of research design is used in field settings where random assignment is either irrelevant or not required.

The classification of the research subjects, conditions, or groups determines the type of research design to be used.

experimental research design

Advantages of Experimental Research

Experimental research allows you to test your idea in a controlled environment before taking the research to clinical trials. Moreover, it provides the best method to test your theory because of the following advantages:

  • Researchers have firm control over variables to obtain results.
  • The subject does not impact the effectiveness of experimental research. Anyone can implement it for research purposes.
  • The results are specific.
  • Post results analysis, research findings from the same dataset can be repurposed for similar research ideas.
  • Researchers can identify the cause and effect of the hypothesis and further analyze this relationship to determine in-depth ideas.
  • Experimental research makes an ideal starting point. The collected data could be used as a foundation to build new research ideas for further studies.

6 Mistakes to Avoid While Designing Your Research

There is no order to this list, and any one of these issues can seriously compromise the quality of your research. You could refer to the list as a checklist of what to avoid while designing your research.

1. Invalid Theoretical Framework

Usually, researchers miss out on checking if their hypothesis is logical to be tested. If your research design does not have basic assumptions or postulates, then it is fundamentally flawed and you need to rework on your research framework.

2. Inadequate Literature Study

Without a comprehensive research literature review , it is difficult to identify and fill the knowledge and information gaps. Furthermore, you need to clearly state how your research will contribute to the research field, either by adding value to the pertinent literature or challenging previous findings and assumptions.

3. Insufficient or Incorrect Statistical Analysis

Statistical results are one of the most trusted scientific evidence. The ultimate goal of a research experiment is to gain valid and sustainable evidence. Therefore, incorrect statistical analysis could affect the quality of any quantitative research.

4. Undefined Research Problem

This is one of the most basic aspects of research design. The research problem statement must be clear and to do that, you must set the framework for the development of research questions that address the core problems.

5. Research Limitations

Every study has some type of limitations . You should anticipate and incorporate those limitations into your conclusion, as well as the basic research design. Include a statement in your manuscript about any perceived limitations, and how you considered them while designing your experiment and drawing the conclusion.

6. Ethical Implications

The most important yet less talked about topic is the ethical issue. Your research design must include ways to minimize any risk for your participants and also address the research problem or question at hand. If you cannot manage the ethical norms along with your research study, your research objectives and validity could be questioned.

Experimental Research Design Example

In an experimental design, a researcher gathers plant samples and then randomly assigns half the samples to photosynthesize in sunlight and the other half to be kept in a dark box without sunlight, while controlling all the other variables (nutrients, water, soil, etc.)

By comparing their outcomes in biochemical tests, the researcher can confirm that the changes in the plants were due to the sunlight and not the other variables.

Experimental research is often the final form of a study conducted in the research process which is considered to provide conclusive and specific results. But it is not meant for every research. It involves a lot of resources, time, and money and is not easy to conduct, unless a foundation of research is built. Yet it is widely used in research institutes and commercial industries, for its most conclusive results in the scientific approach.

Have you worked on research designs? How was your experience creating an experimental design? What difficulties did you face? Do write to us or comment below and share your insights on experimental research designs!

Frequently Asked Questions

Randomization is important in an experimental research because it ensures unbiased results of the experiment. It also measures the cause-effect relationship on a particular group of interest.

Experimental research design lay the foundation of a research and structures the research to establish quality decision making process.

There are 3 types of experimental research designs. These are pre-experimental research design, true experimental research design, and quasi experimental research design.

The difference between an experimental and a quasi-experimental design are: 1. The assignment of the control group in quasi experimental research is non-random, unlike true experimental design, which is randomly assigned. 2. Experimental research group always has a control group; on the other hand, it may not be always present in quasi experimental research.

Experimental research establishes a cause-effect relationship by testing a theory or hypothesis using experimental groups or control variables. In contrast, descriptive research describes a study or a topic by defining the variables under it and answering the questions related to the same.

' src=

good and valuable

Very very good

Good presentation.

Rate this article Cancel Reply

Your email address will not be published.

descriptive research design vs experimental research design

Enago Academy's Most Popular Articles

What is Academic Integrity and How to Uphold it [FREE CHECKLIST]

Ensuring Academic Integrity and Transparency in Academic Research: A comprehensive checklist for researchers

Academic integrity is the foundation upon which the credibility and value of scientific findings are…

7 Step Guide for Optimizing Impactful Research Process

  • Publishing Research
  • Reporting Research

How to Optimize Your Research Process: A step-by-step guide

For researchers across disciplines, the path to uncovering novel findings and insights is often filled…

Launch of "Sony Women in Technology Award with Nature"

  • Industry News
  • Trending Now

Breaking Barriers: Sony and Nature unveil “Women in Technology Award”

Sony Group Corporation and the prestigious scientific journal Nature have collaborated to launch the inaugural…

Guide to Adhere Good Research Practice (FREE CHECKLIST)

Achieving Research Excellence: Checklist for good research practices

Academia is built on the foundation of trustworthy and high-quality research, supported by the pillars…

ResearchSummary

  • Promoting Research

Plain Language Summary — Communicating your research to bridge the academic-lay gap

Science can be complex, but does that mean it should not be accessible to the…

Choosing the Right Analytical Approach: Thematic analysis vs. content analysis for…

Comparing Cross Sectional and Longitudinal Studies: 5 steps for choosing the right…

Research Recommendations – Guiding policy-makers for evidence-based decision making

descriptive research design vs experimental research design

Sign-up to read more

Subscribe for free to get unrestricted access to all our resources on research writing and academic publishing including:

  • 2000+ blog articles
  • 50+ Webinars
  • 10+ Expert podcasts
  • 50+ Infographics
  • 10+ Checklists
  • Research Guides

We hate spam too. We promise to protect your privacy and never spam you.

I am looking for Editing/ Proofreading services for my manuscript Tentative date of next journal submission:

descriptive research design vs experimental research design

As a researcher, what do you consider most when choosing an image manipulation detector?

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • J Athl Train
  • v.45(1); Jan-Feb 2010

Study/Experimental/Research Design: Much More Than Statistics

Kenneth l. knight.

Brigham Young University, Provo, UT

The purpose of study, experimental, or research design in scientific manuscripts has changed significantly over the years. It has evolved from an explanation of the design of the experiment (ie, data gathering or acquisition) to an explanation of the statistical analysis. This practice makes “Methods” sections hard to read and understand.

To clarify the difference between study design and statistical analysis, to show the advantages of a properly written study design on article comprehension, and to encourage authors to correctly describe study designs.

Description:

The role of study design is explored from the introduction of the concept by Fisher through modern-day scientists and the AMA Manual of Style . At one time, when experiments were simpler, the study design and statistical design were identical or very similar. With the complex research that is common today, which often includes manipulating variables to create new variables and the multiple (and different) analyses of a single data set, data collection is very different than statistical design. Thus, both a study design and a statistical design are necessary.

Advantages:

Scientific manuscripts will be much easier to read and comprehend. A proper experimental design serves as a road map to the study methods, helping readers to understand more clearly how the data were obtained and, therefore, assisting them in properly analyzing the results.

Study, experimental, or research design is the backbone of good research. It directs the experiment by orchestrating data collection, defines the statistical analysis of the resultant data, and guides the interpretation of the results. When properly described in the written report of the experiment, it serves as a road map to readers, 1 helping them negotiate the “Methods” section, and, thus, it improves the clarity of communication between authors and readers.

A growing trend is to equate study design with only the statistical analysis of the data. The design statement typically is placed at the end of the “Methods” section as a subsection called “Experimental Design” or as part of a subsection called “Data Analysis.” This placement, however, equates experimental design and statistical analysis, minimizing the effect of experimental design on the planning and reporting of an experiment. This linkage is inappropriate, because some of the elements of the study design that should be described at the beginning of the “Methods” section are instead placed in the “Statistical Analysis” section or, worse, are absent from the manuscript entirely.

Have you ever interrupted your reading of the “Methods” to sketch out the variables in the margins of the paper as you attempt to understand how they all fit together? Or have you jumped back and forth from the early paragraphs of the “Methods” section to the “Statistics” section to try to understand which variables were collected and when? These efforts would be unnecessary if a road map at the beginning of the “Methods” section outlined how the independent variables were related, which dependent variables were measured, and when they were measured. When they were measured is especially important if the variables used in the statistical analysis were a subset of the measured variables or were computed from measured variables (such as change scores).

The purpose of this Communications article is to clarify the purpose and placement of study design elements in an experimental manuscript. Adopting these ideas may improve your science and surely will enhance the communication of that science. These ideas will make experimental manuscripts easier to read and understand and, therefore, will allow them to become part of readers' clinical decision making.

WHAT IS A STUDY (OR EXPERIMENTAL OR RESEARCH) DESIGN?

The terms study design, experimental design, and research design are often thought to be synonymous and are sometimes used interchangeably in a single paper. Avoid doing so. Use the term that is preferred by the style manual of the journal for which you are writing. Study design is the preferred term in the AMA Manual of Style , 2 so I will use it here.

A study design is the architecture of an experimental study 3 and a description of how the study was conducted, 4 including all elements of how the data were obtained. 5 The study design should be the first subsection of the “Methods” section in an experimental manuscript (see the Table ). “Statistical Design” or, preferably, “Statistical Analysis” or “Data Analysis” should be the last subsection of the “Methods” section.

Table. Elements of a “Methods” Section

An external file that holds a picture, illustration, etc.
Object name is i1062-6050-45-1-98-t01.jpg

The “Study Design” subsection describes how the variables and participants interacted. It begins with a general statement of how the study was conducted (eg, crossover trials, parallel, or observational study). 2 The second element, which usually begins with the second sentence, details the number of independent variables or factors, the levels of each variable, and their names. A shorthand way of doing so is with a statement such as “A 2 × 4 × 8 factorial guided data collection.” This tells us that there were 3 independent variables (factors), with 2 levels of the first factor, 4 levels of the second factor, and 8 levels of the third factor. Following is a sentence that names the levels of each factor: for example, “The independent variables were sex (male or female), training program (eg, walking, running, weight lifting, or plyometrics), and time (2, 4, 6, 8, 10, 15, 20, or 30 weeks).” Such an approach clearly outlines for readers how the various procedures fit into the overall structure and, therefore, enhances their understanding of how the data were collected. Thus, the design statement is a road map of the methods.

The dependent (or measurement or outcome) variables are then named. Details of how they were measured are not given at this point in the manuscript but are explained later in the “Instruments” and “Procedures” subsections.

Next is a paragraph detailing who the participants were and how they were selected, placed into groups, and assigned to a particular treatment order, if the experiment was a repeated-measures design. And although not a part of the design per se, a statement about obtaining written informed consent from participants and institutional review board approval is usually included in this subsection.

The nuts and bolts of the “Methods” section follow, including such things as equipment, materials, protocols, etc. These are beyond the scope of this commentary, however, and so will not be discussed.

The last part of the “Methods” section and last part of the “Study Design” section is the “Data Analysis” subsection. It begins with an explanation of any data manipulation, such as how data were combined or how new variables (eg, ratios or differences between collected variables) were calculated. Next, readers are told of the statistical measures used to analyze the data, such as a mixed 2 × 4 × 8 analysis of variance (ANOVA) with 2 between-groups factors (sex and training program) and 1 within-groups factor (time of measurement). Researchers should state and reference the statistical package and procedure(s) within the package used to compute the statistics. (Various statistical packages perform analyses slightly differently, so it is important to know the package and specific procedure used.) This detail allows readers to judge the appropriateness of the statistical measures and the conclusions drawn from the data.

STATISTICAL DESIGN VERSUS STATISTICAL ANALYSIS

Avoid using the term statistical design . Statistical methods are only part of the overall design. The term gives too much emphasis to the statistics, which are important, but only one of many tools used in interpreting data and only part of the study design:

The most important issues in biostatistics are not expressed with statistical procedures. The issues are inherently scientific, rather than purely statistical, and relate to the architectural design of the research, not the numbers with which the data are cited and interpreted. 6

Stated another way, “The justification for the analysis lies not in the data collected but in the manner in which the data were collected.” 3 “Without the solid foundation of a good design, the edifice of statistical analysis is unsafe.” 7 (pp4–5)

The intertwining of study design and statistical analysis may have been caused (unintentionally) by R.A. Fisher, “… a genius who almost single-handedly created the foundations for modern statistical science.” 8 Most research did not involve statistics until Fisher invented the concepts and procedures of ANOVA (in 1921) 9 , 10 and experimental design (in 1935). 11 His books became standard references for scientists in many disciplines. As a result, many ANOVA books were titled Experimental Design (see, for example, Edwards 12 ), and ANOVA courses taught in psychology and education departments included the words experimental design in their course titles.

Before the widespread use of computers to analyze data, designs were much simpler, and often there was little difference between study design and statistical analysis. So combining the 2 elements did not cause serious problems. This is no longer true, however, for 3 reasons: (1) Research studies are becoming more complex, with multiple independent and dependent variables. The procedures sections of these complex studies can be difficult to understand if your only reference point is the statistical analysis and design. (2) Dependent variables are frequently measured at different times. (3) How the data were collected is often not directly correlated with the statistical design.

For example, assume the goal is to determine the strength gain in novice and experienced athletes as a result of 3 strength training programs. Rate of change in strength is not a measurable variable; rather, it is calculated from strength measurements taken at various time intervals during the training. So the study design would be a 2 × 2 × 3 factorial with independent variables of time (pretest or posttest), experience (novice or advanced), and training (isokinetic, isotonic, or isometric) and a dependent variable of strength. The statistical design , however, would be a 2 × 3 factorial with independent variables of experience (novice or advanced) and training (isokinetic, isotonic, or isometric) and a dependent variable of strength gain. Note that data were collected according to a 3-factor design but were analyzed according to a 2-factor design and that the dependent variables were different. So a single design statement, usually a statistical design statement, would not communicate which data were collected or how. Readers would be left to figure out on their own how the data were collected.

MULTIVARIATE RESEARCH AND THE NEED FOR STUDY DESIGNS

With the advent of electronic data gathering and computerized data handling and analysis, research projects have increased in complexity. Many projects involve multiple dependent variables measured at different times, and, therefore, multiple design statements may be needed for both data collection and statistical analysis. Consider, for example, a study of the effects of heat and cold on neural inhibition. The variables of H max and M max are measured 3 times each: before, immediately after, and 30 minutes after a 20-minute treatment with heat or cold. Muscle temperature might be measured each minute before, during, and after the treatment. Although the minute-by-minute data are important for graphing temperature fluctuations during the procedure, only 3 temperatures (time 0, time 20, and time 50) are used for statistical analysis. A single dependent variable H max :M max ratio is computed to illustrate neural inhibition. Again, a single statistical design statement would tell little about how the data were obtained. And in this example, separate design statements would be needed for temperature measurement and H max :M max measurements.

As stated earlier, drawing conclusions from the data depends more on how the data were measured than on how they were analyzed. 3 , 6 , 7 , 13 So a single study design statement (or multiple such statements) at the beginning of the “Methods” section acts as a road map to the study and, thus, increases scientists' and readers' comprehension of how the experiment was conducted (ie, how the data were collected). Appropriate study design statements also increase the accuracy of conclusions drawn from the study.

CONCLUSIONS

The goal of scientific writing, or any writing, for that matter, is to communicate information. Including 2 design statements or subsections in scientific papers—one to explain how the data were collected and another to explain how they were statistically analyzed—will improve the clarity of communication and bring praise from readers. To summarize:

  • Purge from your thoughts and vocabulary the idea that experimental design and statistical design are synonymous.
  • Study or experimental design plays a much broader role than simply defining and directing the statistical analysis of an experiment.
  • A properly written study design serves as a road map to the “Methods” section of an experiment and, therefore, improves communication with the reader.
  • Study design should include a description of the type of design used, each factor (and each level) involved in the experiment, and the time at which each measurement was made.
  • Clarify when the variables involved in data collection and data analysis are different, such as when data analysis involves only a subset of a collected variable or a resultant variable from the mathematical manipulation of 2 or more collected variables.

Acknowledgments

Thanks to Thomas A. Cappaert, PhD, ATC, CSCS, CSE, for suggesting the link between R.A. Fisher and the melding of the concepts of research design and statistics.

Understanding the mechanisms behind descriptive norms on influenza vaccination intention: the role of concerns about vaccine safety and effectiveness

  • Published: 24 May 2024

Cite this article

descriptive research design vs experimental research design

  • Xiaokang Lyu   ORCID: orcid.org/0000-0001-7270-7396 1 , 2 ,
  • Tingting Yang 1 ,
  • Yi Wang 1 &
  • Chunye Fu 1  

40 Accesses

Explore all metrics

Despite the proven effectiveness of influenza vaccines, vaccination coverage remains suboptimal globally. Descriptive norms messaging highlighting low influenza vaccination rates is often presented to the public. This study investigated the influence of descriptive norms on influenza vaccination intentions and assessed whether the interaction of value framing with herd-immunity threshold moderates this effect. Utilizing an online experiment, a 2 (descriptive norms: 20% vs. 80%) × 2 (value framing: individual immunity vs. herd immunity) × 2 (herd-immunity threshold: uncertain vs. 90%) between-subjects fractional design was conducted with 803 participants (female 62%, mean age 31 years). The results revealed that low descriptive norms decreased influenza vaccination intention by amplifying concerns about the vaccine’s safety and effectiveness. While framing the value of herd immunity increased vaccination intention when the herd-immunity threshold was uncertain, it did not mitigate the negative impact of low descriptive norms. These findings offer novel insights into the cognitive mechanisms underpinning norm-based social influence on vaccination intentions and suggest that public health officials should exercise caution when presenting vaccine coverage statistics to the public to avoid inadvertently discouraging vaccination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Russian Federation)

Instant access to the full article PDF.

Rent this article via DeepDyve

Institutional subscriptions

descriptive research design vs experimental research design

Similar content being viewed by others

descriptive research design vs experimental research design

The impact of fake news on social media and its influence on health during the COVID-19 pandemic: a systematic review

descriptive research design vs experimental research design

The Misinformation Susceptibility Test (MIST): A psychometrically validated measure of news veracity discernment

descriptive research design vs experimental research design

The Relationship Between Social Media Use and Beliefs in Conspiracy Theories and Misinformation

Data availability.

The data that support the findings of this study are openly available in Figshare at https://doi.org/10.6084/m9.figshare.23899689 .

Akel, K. B., Masters, N. B., Shih, S. F., Lu, Y., & Wagner, A. L. (2021). Modification of a vaccine hesitancy scale for use in adult vaccinations in the United States and China. Human Vaccines & Immunotherapeutics, 17 (8), 2639–2646. https://doi.org/10.1080/21645515.2021.1884476

Article   Google Scholar  

Anderson, R. M., & May, R. M. (1985). Vaccination and herd immunity to infectious diseases. Nature, 318 (6044), 323–329. https://doi.org/10.1038/318323a0

Article   PubMed   Google Scholar  

Arnesen, S., Bærøe, K., Cappelen, C., & Carlsen, B. (2018). Could information about herd immunity help us achieve herd immunity? Evidence from a population representative survey experiment. Scandinavian Journal of Public Health, 46 (8), 854–858. https://doi.org/10.1177/1403494818770298

Aschwanden, C. (2021). Five reasons why COVID herd immunity is probably impossible. Nature, 591 (7851), 520–522. https://doi.org/10.1038/d41586-021-00728-2

Belle, N., & Cantarelli, P. (2021). Nudging public employees through descriptive social norms in healthcare organizations. Public Administration Review, 81 (4), 589–598. https://doi.org/10.1111/puar.13353

Betsch, C., Böhm, R., Korn, L., & Holtmann, C. (2017). On the benefits of explaining herd immunity in vaccine advocacy. Nature Human Behaviour, 1 (3), 1–6. https://doi.org/10.1038/s41562-017-0056

Betsch, C., Böhm, R., & Korn, L. (2018). Moral values do not affect prosocial vaccination. Nature Human Behaviour, 2 (12), 881–882. https://doi.org/10.1038/s41562-018-0478-1

Böhm, R., Meier, N. W., Groß, M., Korn, L., & Betsch, C. (2019). The willingness to vaccinate increases when vaccination protects others who have low responsibility for not being vaccinated. Journal of Behavioral Medicine, 42 (3), 381–391. https://doi.org/10.1007/s10865-018-9985-9

Bolin, J. H. (2014). Introduction to mediation, moderation, and conditional process analysis: A regression-based approach. Journal of Educational Measurement, 51 (3), 335–337. https://doi.org/10.1111/jedm.12050

Brewer, N. T., Chapman, G. B., Rothman, A. J., Leask, J., & Kempe, A. (2017). Increasing vaccination: Putting psychological science into action. Psychological Science in the Public Interest, 18 (3), 149–207. https://doi.org/10.1177/1529100618760521

Brooks, L. C., Farrow, D. C., Hyun, S., Tibshirani, R. J., & Rosenfeld, R. (2015). Flexible modeling of epidemics with an empirical bayes framework. PLoS Computational Biology, 11 (8), e1004382. https://doi.org/10.1371/journal.pcbi.1004382

Article   PubMed   PubMed Central   Google Scholar  

Brug, J., Aro, A. R., Oenema, A., de Zwart, O., Richardus, J. H., & Bishop, G. D. (2004). SARS risk perception, knowledge, precautions, and information sources, the Netherlands. Emerging Infectious Diseases, 10 (8), 1486–1489. https://doi.org/10.3201/eid1008.040283

Centers for Disease Control and Prevention. (2022). Flu Vaccination Coverage, United States, 2021–22 Influenza Season . https://www.cdc.gov/flu/fluvaxview/coverage-2022estimates.htm . 6 July 2023.

Chen, J. R., Liu, Y. M., Tseng, Y. C., & Ma, C. (2020). Better influenza vaccines: An industry perspective. Journal of Biomedical Science, 27 (1), 33. https://doi.org/10.1186/s12929-020-0626-6

Cialdini, R. B., Kallgren, C. A., & Reno, R. R. (1991). A focus theory of normative conduct: A theoretical refinement and reevaluation of the role of norms in human behavior. Advances in Experimental Social Psychology, 24 , 201–234. https://doi.org/10.1016/S0065-2601(08)60330-5

Elgaaied-Gambier, L., Monnot, E., & Reniou, F. (2018). Using descriptive norm appeals effectively to promote green behavior. Journal of Business Research, 82 , 179–191. https://doi.org/10.1016/j.jbusres.2017.09.032

European Centre for Disease Prevention and Control. (2018). Seasonal influenza vaccination in Europe– Vaccination recommendations and coverage rates in the EU Member States for the 2017–18 influenza season.   https://www.ecdc.europa.eu/sites/default/files/documents/Seasonal-influenza-vaccination-antiviral-use-eueea-2017-18.pdf . 6 July 2023.

Faul, F., Erdfelde, E., Lang, A. G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39 (2), 175–191. https://doi.org/10.3758/bf03193146

Fine, P., Eames, K., & Heymann, D. L. (2011). “Herd immunity”: A rough guide. Clinical Infectious Diseases, 52 (7), 911–916. https://doi.org/10.1093/cid/cir007

Fu, C., Lyu, X., & Mi, M. (2022). Collective value promotes the willingness to share provaccination messages on social media in China: Randomized controlled trial. JMIR Formative Research, 6 (10), e35744. https://doi.org/10.2196/35744

Fuller, J. A., Villamor, E., Cevallos, W., Trostle, J., & Eisenberg, J. N. (2016). I get height with a little help from my friends: Herd protection from sanitation on child growth in rural Ecuador. International Journal of Epidemiology, 45 (2), 460–469. https://doi.org/10.1093/ije/dyv368

Gelfand, M. J., & Harrington, J. R. (2015). The motivational force of descriptive norms: For whom and when are descriptive norms most predictive of behavior? Journal of Cross-Cultural Psychology, 46 (10), 1273–1278. https://doi.org/10.1177/0022022115600796

Giubilini, A. (2021). Vaccination ethics. British Medical Bulletin, 137 (1), 4–12. https://doi.org/10.1093/bmb/ldaa036

Grohskopf, L. A., Blanton, L. H., Ferdinands, J. M., Chung, J. R., Broder, K. R., Talbot, H. K., Morgan, R. L., & Fry, A. M. (2022). Prevention and control of seasonal influenza with vaccines: Recommendations of the advisory committee on immunization practices - United States, 2022-23 influenza season. MMWR Recommendations and Reports, 71 (1), 1–28. https://doi.org/10.15585/mmwr.rr7101a1

Habib, R., White, K., & Hoegg, J. A. J. (2021). Everybody thinks we should but nobody does: How combined injunctive and descriptive norms motivate organ donor registration. Journal of Consumer Psychology, 31 (3), 621–630. https://doi.org/10.1002/jcpy.1220

Hakim, H., Provencher, T., Chambers, C. T., Driedger, S. M., Dube, E., Gavaruzzi, T., & Witteman, H. O. (2019). Interventions to help people understand community immunity: A systematic review. Vaccine, 37 (2), 235–247. https://doi.org/10.1016/j.vaccine.2018.11.016

Han, K., Francis, M. R., Xia, A., Zhang, R., & Hou, Z. (2022). Influenza vaccination uptake and its determinants during the 2019–2020 and early 2020–2021 flu seasons among migrants in Shanghai, China: A cross-sectional survey. Human Vaccines & Immunotherapeutics, 18 (1), 1–8. https://doi.org/10.1080/21645515.2021.2016006

Hong, Y., & Kim, S. (2020). Influence of presumed media influence for health prevention: How mass media indirectly promote health prevention behaviors through descriptive norms. Health Communication, 35 (14), 1800–1810. https://doi.org/10.1080/10410236.2019.1663585

Lazić, A., & Žeželj, I. (2022). Negativity in online news coverage of vaccination rates in Serbia: A content analysis. Psychology & Health , 1–19. https://doi.org/10.1080/08870446.2022.2121962 . Advance online publication.

Lazić, A., Kalinova, K. N., Packer, J., Pae, R., Petrović, M. B., Popović, D., Sievert, D. E. C., & Stafford-Johnson, N. (2021). Social nudges for vaccination: How communicating herd behaviour influences vaccination intentions. British Journal of Health Psychology, 26 (4), 1219–1237. https://doi.org/10.1111/bjhp.12556

Lee, M., & You, M. (2022). Direct and indirect associations of media use with COVID-19 vaccine hesitancy in South Korea: Cross-sectional web-based survey. Journal of Medical Internet Research, 24 (1), e32329. https://doi.org/10.2196/32329

Leng, A., Maitland, E., Wang, S., Nicholas, S., Liu, R., & Wang, J. (2021). Individual preferences for COVID-19 vaccination in China. Vaccine, 39 (2), 247–254. https://doi.org/10.1016/j.vaccine.2020.12.009

Linden, S. V. D. (2017). Determinants and measurement of climate change risk perception, worry, and concern. The Oxford encyclopedia of climate change communication . Oxford University Press. https://doi.org/10.1093/acrefore/9780190228620.013.318

Lisciandra, C., Hartmann, S., & Muldoon, R. (2014). Why are there descriptive norms? Because we looked for them. Synthese, 191 , 4409–4429. https://doi.org/10.1007/s11229-014-0534-y

McNeill, L. H., Kreuter, M. W., & Subramanian, S. V. (2006). Social environment and physical activity: A review of concepts and evidence. Social Science & Medicine, 63 (4), 1011–1022. https://doi.org/10.1016/j.socscimed.2006.03.012

Metcalf, C. J. E., Ferrari, M., Graham, A. L., & Grenfell, B. T. (2015). Understanding herd immunity. Trends in Immunology, 36 (12), 753–755. https://doi.org/10.1016/j.it.2015.10.004

Moehring, A., Collis, A., Garimella, K., Rahimian, M. A., Aral, S., & Eckles, D. (2023). Providing normative information increases intentions to accept a COVID-19 vaccine. Nature Communications, 14 (1), 126. https://doi.org/10.1038/s41467-022-35052-4

Napper, L. E., Fisher, D. G., & Reynolds, G. L. (2012). Development of the perceived risk of HIV scale. AIDS and Behavior, 16 (4), 1075–1083. https://doi.org/10.1007/s10461-011-0003-2

Nowak, G. J., Gellin, B. G., MacDonald, N. E., Butler, R., & the SAGE Working Group on Vaccine Hesitancy. (2015). Addressing vaccine hesitancy: The potential value of commercial and social marketing principles and practices. Vaccine, 33 (34), 4204–4211. https://doi.org/10.1016/j.vaccine.2015.04.039

Nyhan, B., Reifler, J., Richey, S., & Freed, G. L. (2014). Effective messages in vaccine promotion: A randomized trial. Pediatrics, 133 (4), e835–e842. https://doi.org/10.1542/peds.2013-2365

Office of Disease Prevention and Health Promotion. (2020). Immunization and infectious diseases. Healthy People 2030. U.S . Department of Health and Human Services. https://health.gov/healthypeople/objectives-and-data/browse-objectives/vaccination/increase-proportion-people-who-get-flu-vaccine-every-year-iid-09  . 28 March 2024.

Park, H. S., Klein, K. A., Smith, S., & Martell, D. (2009). Separating subjective norms, university descriptive and injunctive norms, and U.S. descriptive and injunctive norms for drinking behavior intentions. Health Communication, 24 (8), 746–751. https://doi.org/10.1080/10410230903265912

Randolph, H. E., & Barreiro, L. B. (2020). Herd immunity: Understanding COVID-19. Immunity, 52 (5), 737–741. https://doi.org/10.1016/j.immuni.2020.04.012

Ryoo, Y., & Kim, W. (2023). Using descriptive and injunctive norms to encourage COVID-19 social distancing and vaccinations. Health Communication, 38 (4), 732–741. https://doi.org/10.1080/10410236.2021.1973702

Smith, D. R. (2019). Herd immunity. The veterinary clinics of North America. Food Animal Practice, 35 (3), 593–604. https://doi.org/10.1016/j.cvfa.2019.07.001

Sparkman, G., & Walton, G. M. (2017). Dynamic norms promote sustainable behavior, even if it is counternormative. Psychological Science, 28 (11), 1663–1674. https://doi.org/10.1177/0956797617719950

Van Bavel, J. J., Baicker, K., Boggio, P. S., Capraro, V., Cichocka, A., Cikara, M.,… Willer, R. (2020). Using social and behavioural science to support COVID-19 pandemic response. Nature Human Behaviour, 4 (5), 460–471. https://doi.org/10.1038/s41562-020-0884-z

Vandaele, M., & Stålhammar, S. (2022). Hope dies, action begins? The role of hope for proactive sustainability engagement among university students. International Journal of Sustainability in Higher Education, 23 (8), 272–289. https://doi.org/10.1108/IJSHE-11-2021-0463

Verelst, F., Willem, L., Kessels, R., & Beutels, P. (2018). Individual decisions to vaccinate one’s child or oneself: A discrete choice experiment rejecting free-riding motives. Social Science & Medicine, 207 , 106–116. https://doi.org/10.1016/j.socscimed.2018.04.038

Wagner, A. L., Huang, Z., Ren, J., Laffoon, M., Ji, M., Pinckney, L. C., Sun, X., Prosser, L. A., Boulton, M. L., & Zikmund-Fisher, B. J. (2021). Vaccine hesitancy and concerns about vaccine safety and effectiveness in Shanghai, China. American Journal of Preventive Medicine, 60 (1), S77–S86. https://doi.org/10.1016/j.amepre.2020.09.003

White, K., & Simpson, B. (2013). When do (and don’t) normative appeals influence sustainable consumer behaviors? Journal of Marketing, 77 (2), 78–95. https://doi.org/10.1509/jm.11.0278

WHO. (2019). Global influenza strategy 2019–2030 . World Health Organization. https://apps.who.int/iris/handle/10665/311184 . 28 March 2024.

Wu, J., Chen, C. H., Wang, H., & Zhang, J. (2022). Higher collective responsibility, higher COVID-19 vaccine uptake, and interaction with vaccine attitude: Results from propensity score matching. Vaccines, 10 (8), 1295. https://doi.org/10.3390/vaccines10081295

Xiao, X., & Borah, P. (2021). Do norms matter? Examining norm-based messages in HPV vaccination promotion. Health Communication, 36 (12), 1476–1484. https://doi.org/10.1080/10410236.2020.1770506

Zou, X., & Savani, K. (2019). Descriptive norms for me, injunctive norms for you: Using norms to explain the risk gap. Judgment and Decision Making, 14 (6), 644–648. https://doi.org/10.1017/S1930297500005362

Download references

This work was supported by the the National Social Science Foundation of China under Grant 20ASH015.

Author information

Authors and affiliations.

Department of Social Psychology, School of Sociology, Nankai University, Tianjin, 300350, China

Xiaokang Lyu, Tingting Yang, Yi Wang & Chunye Fu

Computational Social Science Laboratory, Nankai University, Tianjin, China

Xiaokang Lyu

You can also search for this author in PubMed   Google Scholar

Contributions

Conceptualization, Xiaokang Lyu, Chunye Fu, and Tingting Yang; methodology, Xiaokang Lyu and Chunye Fu; validation, Xiaokang Lyu; formal analysis, Chunye Fu; investigation, Xiaokang Lyu; data curation, Yi Wang; writing—original draft preparation, Xiaokang Lyu, Chunye Fu, and Tingting Yang; writing—review and editing, Xiaokang Lyu; visualization, Xiaokang Lyu; supervision, Xiaokang Lyu; project administration, Xiaokang Lyu.; funding acquisition, Xiaokang Lyu.

Corresponding author

Correspondence to Chunye Fu .

Ethics declarations

Informed consent.

Informed consent was obtained from all participants involved in the study.

Institutional review board statement

The study was conducted according to the guidelines of the Declaration of Helsinki, and approved by the Institutional Review Board of Nankai University (NKUIRB2022103).

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Lyu, X., Yang, T., Wang, Y. et al. Understanding the mechanisms behind descriptive norms on influenza vaccination intention: the role of concerns about vaccine safety and effectiveness. Curr Psychol (2024). https://doi.org/10.1007/s12144-024-06142-x

Download citation

Accepted : 10 May 2024

Published : 24 May 2024

DOI : https://doi.org/10.1007/s12144-024-06142-x

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Influenza vaccination
  • Descriptive norms
  • Herd immunity framing
  • Social influence
  • Find a journal
  • Publish with us
  • Track your research

IMAGES

  1. Difference Between Descriptive and Experimental Research

    descriptive research design vs experimental research design

  2. Explain the Difference Between Descriptive and Experimental Research

    descriptive research design vs experimental research design

  3. The 3 Types Of Experimental Design (2024)

    descriptive research design vs experimental research design

  4. Descriptive Research vs. Experimental Research: What’s the Difference?

    descriptive research design vs experimental research design

  5. descriptive study vs case study

    descriptive research design vs experimental research design

  6. Descriptive vs Experimental Research

    descriptive research design vs experimental research design

VIDEO

  1. Research Design, Research Method: What's the Difference?

  2. Descriptive Research Design #researchmethodology

  3. Topic 8

  4. Exploratory vs Descriptive Research|Difference between exploratory and descriptive research

  5. CSIR SO/ASO PAPER -3 DESCRIPTIVE KI TAYARI KAISE KARE

  6. Descriptive research design

COMMENTS

  1. Descriptive vs Experimental Research

    Descriptive Research is a research approach that involves collecting data to describe a phenomenon or group. The goal of descriptive research is to provide an accurate and detailed picture of a particular population, event, or situation. Descriptive research can be conducted using various methods, such as surveys, observations, and case studies.

  2. Types of Research Designs Compared

    You can also create a mixed methods research design that has elements of both. Descriptive research vs experimental research. Descriptive research gathers data without controlling any variables, while experimental research manipulates and controls variables to determine cause and effect.

  3. The Four Types of Research Design

    In short, a good research design helps us to structure our research. Marketers use different types of research design when conducting research. There are four common types of research design — descriptive, correlational, experimental, and diagnostic designs. Let's take a look at each in more detail.

  4. Descriptive Research

    Descriptive research aims to accurately and systematically describe a population, situation or phenomenon. It can answer what, where, when and how questions, but not why questions. A descriptive research design can use a wide variety of research methods to investigate one or more variables. Unlike in experimental research, the researcher does ...

  5. What Is a Research Design

    A research design is a strategy for answering your research question using empirical data. Creating a research design means making decisions about: Your overall research objectives and approach. Whether you'll rely on primary research or secondary research. Your sampling methods or criteria for selecting subjects. Your data collection methods.

  6. Study designs in biomedical research: an introduction to the different

    We may approach this study by 2 longitudinal designs: Prospective: we follow the individuals in the future to know who will develop the disease. Retrospective: we look to the past to know who developed the disease (e.g. using medical records) This design is the strongest among the observational studies. For example - to find out the relative ...

  7. 2.2 Research Designs in Psychology

    Correlational research is designed to discover relationships among variables. Experimental research is designed to assess cause and effect. Each of the three research designs has specific strengths and limitations, and it is important to understand how each differs. See the table below for a summary. Table 2.2.

  8. Descriptive vs experimental research

    Definition. Descriptive research is a method that describes a study or a topic. It defines the characteristics of the variable under research and answers the questions related to it. Whereas experimental research is a scientific approach to testing a theory or a hypothesis using experimental groups and control variables.

  9. Descriptive Research Design

    Descriptive research aims to accurately and systematically describe a population, situation or phenomenon. It can answer what, where, when, and how questions, but not why questions. A descriptive research design can use a wide variety of research methods to investigate one or more variables. Unlike in experimental research, the researcher does ...

  10. Study designs: Part 1

    The study design used to answer a particular research question depends on the nature of the question and the availability of resources. In this article, which is the first part of a series on "study designs," we provide an overview of research study designs and their classification. The subsequent articles will focus on individual designs.

  11. Difference Between Descriptive and Experimental Research

    Descriptive research and experimental research are two types of research people use when doing varied research studies. Both these research types have their own methods that facilitate the researcher to gain maximum outcomes. ... " Descriptive Research Design: Definition, Examples & Types" Study.com, Available here. 4. "Experimental ...

  12. Study designs: Part 2

    INTRODUCTION. In our previous article in this series, [ 1] we introduced the concept of "study designs"- as "the set of methods and procedures used to collect and analyze data on variables specified in a particular research question.". Study designs are primarily of two types - observational and interventional, with the former being ...

  13. 2.2 Psychologists Use Descriptive, Correlational, and Experimental

    The goal of experimental research design is to provide more definitive conclusions about the causal relationships among the variables in the research hypothesis than is available from correlational designs. In an experimental research design, the variables of interest are called the independent variable (or variables) and the dependent variable.

  14. Understanding Survey Research Designs: Experimental vs Descriptive

    Both experimental and descriptive survey research designs come with their own set of challenges and limitations. For experimental designs, ensuring a truly random assignment can be difficult, and external variables may still influence outcomes. Descriptive designs may suffer from biases in self\-reporting and are unable to provide causal ...

  15. Descriptive Research: Design, Methods, Examples, and FAQs

    Descriptive research differs from experimental research in that researchers cannot manipulate the variables. They are recognized, scrutinized, and quantified instead. This is one of its most prominent features. Cross-sectional studies. Descriptive research is a cross-sectional study because it examines several areas of the same group.

  16. What is Descriptive Research? Definition, Methods, Types and Examples

    Descriptive research is a methodological approach that seeks to depict the characteristics of a phenomenon or subject under investigation. In scientific inquiry, it serves as a foundational tool for researchers aiming to observe, record, and analyze the intricate details of a particular topic. This method provides a rich and detailed account ...

  17. Experimental Research Designs: Types, Examples & Advantages

    Based on the methods used to collect data in experimental studies, the experimental research designs are of three primary types: 1. Pre-experimental Research Design. A research study could conduct pre-experimental research design when a group or many groups are under observation after implementing factors of cause and effect of the research.

  18. Demystifying the research process: understanding a descriptive

    Descriptive-comparative research is a quantitative research design that aims to describe the differences between groups in a population without manipulating the independent variable (Mary Ann ...

  19. PDF Quantitative Research Designs: Experimental, Quasi-Experimental, and

    Quasi-Experimental Designs Descriptive Quantitative Designs Additional Types of Designs Researcher Interview: Intervention Research, Dr. Leslie Cunningham-Sabo, PhD, RDN learning OutCOmes Discuss five considerations when planning a research design. Explain the three essential components of experimental designs, and compare and contrast the ...

  20. Study/Experimental/Research Design: Much More Than Statistics

    Study, experimental, or research design is the backbone of good research. It directs the experiment by orchestrating data collection, defines the statistical analysis of the resultant data, and guides the interpretation of the results. When properly described in the written report of the experiment, it serves as a road map to readers, 1 helping ...

  21. Experimental Research Design

    Experimental research design is centrally concerned with constructing research that is high in causal (internal) validity. Randomized experimental designs provide the highest levels of causal validity. Quasi-experimental designs have a number of potential threats to their causal validity. Yet, new quasi-experimental designs adopted from fields ...

  22. Understanding the mechanisms behind descriptive norms on ...

    We implemented an online experiment utilizing a 2 (descriptive norms: 20% vs. 80%) × 2 (value framing: individual immunity vs. herd immunity) × 2 (herd-immunity threshold: uncertain vs. 90%) between-subjects fractional factorial design. The descriptive norms levels were set at 20% and 80%, both 30% away from the mean value of 50%, to create a ...