loading

How it works

For Business

Join Mind Tools

Article • 8 min read

Critical Thinking

Developing the right mindset and skills.

By the Mind Tools Content Team

We make hundreds of decisions every day and, whether we realize it or not, we're all critical thinkers.

We use critical thinking each time we weigh up our options, prioritize our responsibilities, or think about the likely effects of our actions. It's a crucial skill that helps us to cut out misinformation and make wise decisions. The trouble is, we're not always very good at it!

In this article, we'll explore the key skills that you need to develop your critical thinking skills, and how to adopt a critical thinking mindset, so that you can make well-informed decisions.

What Is Critical Thinking?

Critical thinking is the discipline of rigorously and skillfully using information, experience, observation, and reasoning to guide your decisions, actions, and beliefs. You'll need to actively question every step of your thinking process to do it well.

Collecting, analyzing and evaluating information is an important skill in life, and a highly valued asset in the workplace. People who score highly in critical thinking assessments are also rated by their managers as having good problem-solving skills, creativity, strong decision-making skills, and good overall performance. [1]

Key Critical Thinking Skills

Critical thinkers possess a set of key characteristics which help them to question information and their own thinking. Focus on the following areas to develop your critical thinking skills:

Being willing and able to explore alternative approaches and experimental ideas is crucial. Can you think through "what if" scenarios, create plausible options, and test out your theories? If not, you'll tend to write off ideas and options too soon, so you may miss the best answer to your situation.

To nurture your curiosity, stay up to date with facts and trends. You'll overlook important information if you allow yourself to become "blinkered," so always be open to new information.

But don't stop there! Look for opposing views or evidence to challenge your information, and seek clarification when things are unclear. This will help you to reassess your beliefs and make a well-informed decision later. Read our article, Opening Closed Minds , for more ways to stay receptive.

Logical Thinking

You must be skilled at reasoning and extending logic to come up with plausible options or outcomes.

It's also important to emphasize logic over emotion. Emotion can be motivating but it can also lead you to take hasty and unwise action, so control your emotions and be cautious in your judgments. Know when a conclusion is "fact" and when it is not. "Could-be-true" conclusions are based on assumptions and must be tested further. Read our article, Logical Fallacies , for help with this.

Use creative problem solving to balance cold logic. By thinking outside of the box you can identify new possible outcomes by using pieces of information that you already have.

Self-Awareness

Many of the decisions we make in life are subtly informed by our values and beliefs. These influences are called cognitive biases and it can be difficult to identify them in ourselves because they're often subconscious.

Practicing self-awareness will allow you to reflect on the beliefs you have and the choices you make. You'll then be better equipped to challenge your own thinking and make improved, unbiased decisions.

One particularly useful tool for critical thinking is the Ladder of Inference . It allows you to test and validate your thinking process, rather than jumping to poorly supported conclusions.

Developing a Critical Thinking Mindset

Combine the above skills with the right mindset so that you can make better decisions and adopt more effective courses of action. You can develop your critical thinking mindset by following this process:

Gather Information

First, collect data, opinions and facts on the issue that you need to solve. Draw on what you already know, and turn to new sources of information to help inform your understanding. Consider what gaps there are in your knowledge and seek to fill them. And look for information that challenges your assumptions and beliefs.

Be sure to verify the authority and authenticity of your sources. Not everything you read is true! Use this checklist to ensure that your information is valid:

  • Are your information sources trustworthy ? (For example, well-respected authors, trusted colleagues or peers, recognized industry publications, websites, blogs, etc.)
  • Is the information you have gathered up to date ?
  • Has the information received any direct criticism ?
  • Does the information have any errors or inaccuracies ?
  • Is there any evidence to support or corroborate the information you have gathered?
  • Is the information you have gathered subjective or biased in any way? (For example, is it based on opinion, rather than fact? Is any of the information you have gathered designed to promote a particular service or organization?)

If any information appears to be irrelevant or invalid, don't include it in your decision making. But don't omit information just because you disagree with it, or your final decision will be flawed and bias.

Now observe the information you have gathered, and interpret it. What are the key findings and main takeaways? What does the evidence point to? Start to build one or two possible arguments based on what you have found.

You'll need to look for the details within the mass of information, so use your powers of observation to identify any patterns or similarities. You can then analyze and extend these trends to make sensible predictions about the future.

To help you to sift through the multiple ideas and theories, it can be useful to group and order items according to their characteristics. From here, you can compare and contrast the different items. And once you've determined how similar or different things are from one another, Paired Comparison Analysis can help you to analyze them.

The final step involves challenging the information and rationalizing its arguments.

Apply the laws of reason (induction, deduction, analogy) to judge an argument and determine its merits. To do this, it's essential that you can determine the significance and validity of an argument to put it in the correct perspective. Take a look at our article, Rational Thinking , for more information about how to do this.

Once you have considered all of the arguments and options rationally, you can finally make an informed decision.

Afterward, take time to reflect on what you have learned and what you found challenging. Step back from the detail of your decision or problem, and look at the bigger picture. Record what you've learned from your observations and experience.

Critical thinking involves rigorously and skilfully using information, experience, observation, and reasoning to guide your decisions, actions and beliefs. It's a useful skill in the workplace and in life.

You'll need to be curious and creative to explore alternative possibilities, but rational to apply logic, and self-aware to identify when your beliefs could affect your decisions or actions.

You can demonstrate a high level of critical thinking by validating your information, analyzing its meaning, and finally evaluating the argument.

Critical Thinking Infographic

See Critical Thinking represented in our infographic: An Elementary Guide to Critical Thinking .

the 3 key attitudes necessary for critical thinking are

You've accessed 1 of your 2 free resources.

Get unlimited access

Discover more content

How can i improve my memory.

Four Techniques That Can Help

What Is Leadership?

How to Lead Your Team Skilfully

Add comment

Comments (1)

priyanka ghogare

the 3 key attitudes necessary for critical thinking are

Gain essential management and leadership skills

Busy schedule? No problem. Learn anytime, anywhere. 

Subscribe to unlimited access to meticulously researched, evidence-based resources.

Join today and take advantage of our 30% offer, available until May 31st .

Sign-up to our newsletter

Subscribing to the Mind Tools newsletter will keep you up-to-date with our latest updates and newest resources.

Subscribe now

Business Skills

Personal Development

Leadership and Management

Member Extras

Most Popular

Latest Updates

Article a0pows5

Winning Body Language

Article andjil2

Business Stripped Bare

Mind Tools Store

About Mind Tools Content

Discover something new today

Nine ways to get the best from x (twitter).

Growing Your Business Quickly and Safely on Social Media

Managing Your Emotions at Work

Controlling Your Feelings... Before They Control You

How Emotionally Intelligent Are You?

Boosting Your People Skills

Self-Assessment

What's Your Leadership Style?

Learn About the Strengths and Weaknesses of the Way You Like to Lead

Recommended for you

What is posdcorb.

Running Your Team in the Most Efficient Way

Business Operations and Process Management

Strategy Tools

Customer Service

Business Ethics and Values

Handling Information and Data

Project Management

Knowledge Management

Self-Development and Goal Setting

Time Management

Presentation Skills

Learning Skills

Career Skills

Communication Skills

Negotiation, Persuasion and Influence

Working With Others

Difficult Conversations

Creativity Tools

Self-Management

Work-Life Balance

Stress Management and Wellbeing

Coaching and Mentoring

Change Management

Team Management

Managing Conflict

Delegation and Empowerment

Performance Management

Leadership Skills

Developing Your Team

Talent Management

Problem Solving

Decision Making

Member Podcast

More From Forbes

The seven key steps of critical thinking.

Forbes Coaches Council

  • Share to Facebook
  • Share to Twitter
  • Share to Linkedin

Shutterstock

As leaders, it is our job to get the very best out of our workforce. We focus on how best to motivate, inspire and create an environment in which employees are satisfied, engaged and productive. This leads us to deliver an excellent customer/client experience.

But all in all, the effort we put into growing our workforce, we often forget the one person who is in constant need of development: ourselves. In particular, we neglect the soft skills that are vital to becoming the best professional possible — one of them being critical thinking.

When you're able to critically think, it opens the door for employee engagement, as you become the go-to person for assistance with issues, challenges and problems. In turn, you teach your workforce how to critically think and problem solve.

Let’s take a look at the key steps in developing critical thinking skills.

What Is Critical Thinking?

One of my favorite definitions of critical thinking comes from Edward Glaser. He said , “The ability to think critically, as conceived in this volume, involves three things:

1. An attitude of being disposed to consider in a thoughtful way the problems and subjects that come within the range of one’s experiences

2. Knowledge of the methods of logical inquiry and reasoning

3. Some skill in applying those methods."

In short, the ability to think critically is the art of analyzing and evaluating data for a practical approach to understanding the data, then determining what to believe and how to act.

The three characteristics of critical thinking include:

•  Being quick and decisive:  One of the most admirable leadership qualities the ability to be quick and decisive with decisions. There are times where an answer just needs to be given and given right now. But that doesn't mean you should make a decision just to make one. Sometimes, quick decisions can fall flat. I know some of mine have.

• Being resourceful and creative:  Over the years, members of my workforce have come to me with challenges and have needed some creativity and resourcefulness. As they spell out the situation, you listen to the issue, analyze their dilemma and guide them the best way possible. Thinking outside the box and sharing how to get there is a hallmark of a great leader.

• Being systematic and organized:  Martin Gabel is quoted as saying , “Don’t just do something, stand there.” Sometimes, taking a minute to be systematic and follow an organized approach makes all the difference. This is where critical thinking meets problem solving. Define the problem, come up with a list of solutions, then select the best answer, implement it, create an evaluation tool and fine-tune as needed.

Components Of Critical Thinking

Now that you know the what and why of becoming a critical thinker, let’s focus on the how best to develop this skill.

1. Identify the problem or situation, then define what influenced this to occur in the first place.

2. Investigate the opinions and arguments of the individuals involved in this process. Any time you have differences of opinions, it is vital that you research independently, so as not to be influenced by a specific bias.

3. Evaluate information factually. Recognizing predispositions of those involved is a challenging task at times. It is your responsibility to weigh the information from all sources and come to your own conclusions.

4. Establish significance. Figure out what information is most important for you to consider in the current situation. Sometimes, you just have to remove data points that have no relevance.

5. Be open-minded and consider all points of view. This is a good time to pull the team into finding the best solution. This point will allow you to develop the critical-thinking skills of those you lead.

6. Take time to reflect once you have gathered all the information. In order to be decisive and make decisions quickly, you need to take time to unwrap all the information and set a plan of attack. If you are taking time to think about the best solution, keep your workforce and leaders apprised of your process and timeline.

7. Communicate your findings and results. This is a crucial yet often overlooked component. Failing to do so can cause much confusion in the organization.

Developing your critical-thinking skills is fundamental to your leadership success. As you set off to develop these abilities, it will require a clear, sometimes difficult evaluation of your current level of critical thinking. From there you can determine the best way to polish and strengthen your current skill set and establish a plan for your future growth.

Chris Cebollero

  • Editorial Standards
  • Reprints & Permissions

University of Louisville

  • Programs & Services
  • Delphi Center

Ideas to Action (i2a)

  • Paul-Elder Critical Thinking Framework

Critical thinking is that mode of thinking – about any subject, content, or problem — in which the thinker improves the quality of his or her thinking by skillfully taking charge of the structures inherent in thinking and imposing intellectual standards upon them. (Paul and Elder, 2001). The Paul-Elder framework has three components:

  • The elements of thought (reasoning)
  • The  intellectual standards that should be applied to the elements of reasoning
  • The intellectual traits associated with a cultivated critical thinker that result from the consistent and disciplined application of the intellectual standards to the elements of thought

Graphic Representation of Paul-Elder Critical Thinking Framework

According to Paul and Elder (1997), there are two essential dimensions of thinking that students need to master in order to learn how to upgrade their thinking. They need to be able to identify the "parts" of their thinking, and they need to be able to assess their use of these parts of thinking.

Elements of Thought (reasoning)

The "parts" or elements of thinking are as follows:

  • All reasoning has a purpose
  • All reasoning is an attempt to figure something out, to settle some question, to solve some problem
  • All reasoning is based on assumptions
  • All reasoning is done from some point of view
  • All reasoning is based on data, information and evidence
  • All reasoning is expressed through, and shaped by, concepts and ideas
  • All reasoning contains inferences or interpretations by which we draw conclusions and give meaning to data
  • All reasoning leads somewhere or has implications and consequences

Universal Intellectual Standards

The intellectual standards that are to these elements are used to determine the quality of reasoning. Good critical thinking requires having a command of these standards. According to Paul and Elder (1997 ,2006), the ultimate goal is for the standards of reasoning to become infused in all thinking so as to become the guide to better and better reasoning. The intellectual standards include:

Intellectual Traits

Consistent application of the standards of thinking to the elements of thinking result in the development of intellectual traits of:

  • Intellectual Humility
  • Intellectual Courage
  • Intellectual Empathy
  • Intellectual Autonomy
  • Intellectual Integrity
  • Intellectual Perseverance
  • Confidence in Reason
  • Fair-mindedness

Characteristics of a Well-Cultivated Critical Thinker

Habitual utilization of the intellectual traits produce a well-cultivated critical thinker who is able to:

  • Raise vital questions and problems, formulating them clearly and precisely
  • Gather and assess relevant information, using abstract ideas to interpret it effectively
  • Come to well-reasoned conclusions and solutions, testing them against relevant criteria and standards;
  • Think open-mindedly within alternative systems of thought, recognizing and assessing, as need be, their assumptions, implications, and practical consequences; and
  • Communicate effectively with others in figuring out solutions to complex problems

Paul, R. and Elder, L. (2010). The Miniature Guide to Critical Thinking Concepts and Tools. Dillon Beach: Foundation for Critical Thinking Press.

  • SACS & QEP
  • Planning and Implementation
  • What is Critical Thinking?
  • Why Focus on Critical Thinking?
  • Culminating Undergraduate Experience
  • Community Engagement
  • Frequently Asked Questions
  • What is i2a?

Copyright © 2012 - University of Louisville , Delphi Center

ABLE blog: thoughts, learnings and experiences

  • Productivity
  • Thoughtful learning

9 characteristics of critical thinking (and how you can develop them)

9 characteristics of critical thinking (and how you can develop them)

It's no secret that critical thinking is essential for growth and success. Yet many people aren't quite sure what it means — it sounds like being a critic or cynical, traits that many people want to avoid.

However, thinking critically isn't about being negative. On the contrary, effective critical thinkers possess many positive traits. Attributes like curiosity, compassion, and communication are among the top commonalities that critical thinkers share, and the good news is that we can all learn to develop these capabilities.

This article will discuss some of the principal characteristics of critical thinking and how developing these qualities can help you improve your decision-making and problem-solving skills. With a bit of self-reflection and practice, you'll be well on your way to making better decisions, solving complex problems, and achieving success across all areas of your life.

What is critical thinking?

Scholarly works on critical thinking propose many ways of interpreting the concept ( at least 17 in one reference! ), making it challenging to pinpoint one exact definition. In general, critical thinking refers to rational, goal-directed thought through logical arguments and reasoning. We use critical thinking to objectively assess and evaluate information to form reasonable judgments.

Critical thinking has its roots in ancient Greece. The philosopher Socrates is credited with being one of the first to encourage his students to think critically about their beliefs and ideas. Socrates believed that by encouraging people to question their assumptions, they would be able to see the flaws in their reasoning and improve their thought processes.

Today, critical thinking skills are considered vital for success in academia and everyday life. One of the defining " 21st-century skills ," critical thinking is integral to problem-solving, decision making, and goal setting.

Why is it necessary to develop critical thinking skills?

Characteristics of critical thinking: question marks and a light bulb icon

Critical thinking skills help us learn new information, understand complex concepts, and make better decisions. The ability to be objective and reasonable is an asset that can enhance personal and professional relationships.

The U.S. Department of Labor reports critical thinking is among the top desired skills in the workplace. The ability to develop a properly thought-out solution in a reasonable amount of time is highly valued by employers. Companies want employees who can solve problems independently and work well in a team. A desirable employee can evaluate situations critically and creatively, collaborate with others, and make sound judgments.

Critical thinking is an essential component of academic study as well. Critical thinking skills are vital to learners because they allow students to build on their prior knowledge and construct new understandings. This will enable learners to expand their knowledge and experience across various subjects.

Despite its importance, though, critical thinking is not something that we develop naturally or casually. Even though critical thinking is considered an essential learning outcome in many universities, only 45% of college students in a well-known study reported that their skills had improved after two years of classes.

9 characteristics of critical thinking

Clearly, improving our ability to think critically will require some self-improvement work. As lifelong learners, we can use this opportunity for self-reflection to identify where we can improve our thinking processes.

Strong critical thinkers possess a common set of personality traits, habits, and dispositions. Being aware of these attributes and putting them into action can help us develop a strong foundation for critical thinking. These essential characteristics of critical thinking can be used as a toolkit for applying specific thinking processes to any given situation.

Characteristics of critical thinking: illustration of a human head with a lightbulb in it

Curiosity is one of the most significant characteristics of critical thinking. Research has shown that a state of curiosity drives us to continually seek new information . This inquisitiveness supports critical thinking as we need to constantly expand our knowledge to make well-informed decisions.

Curiosity also facilitates critical thinking because it encourages us to question our thoughts and mental models, the filters we use to understand the world. This is essential to avoid critical thinking barriers like biases and misconceptions. Challenging our beliefs and getting curious about all sides of an issue will help us have an open mind during the critical thinking process.

Actionable Tip: Choose to be curious. When you ask “why,” you learn about things around you and clarify ambiguities. Google anything you are curious about, read new books, and play with a child. Kids have a natural curiosity that can be inspiring.

the 3 key attitudes necessary for critical thinking are

Pique your curiosity

ABLE is the next-level all-in-one knowledge acquisition and productivity app for avid learners and curious minds.

2. Analytical

Investigation is a crucial component of critical thinking, so it's important to be analytical. Analytical thinking involves breaking down complex ideas into their simplest forms . The first step when tackling a problem or making a decision is to analyze information and consider it in smaller pieces. Then, we use critical thinking by gathering additional information before getting to a judgment or solution.

Being analytical is helpful for critical thinking because it allows us to look at data in detail. When examining an issue from various perspectives, we should pay close attention to these details to arrive at a decision based on facts. Taking these steps is crucial to making good decisions.

Actionable Tip: Become aware of your daily surroundings. Examine how things work — breaking things down into steps will encourage analysis. You can also play brain and puzzle games. These provide an enjoyable way to stimulate analytical thinking.

3. Introspective

Critical thinkers are typically introspective. Introspection is a process of examining our own thoughts and feelings. We do this as a form of metacognition, or thinking about thinking. Researchers believe that we can improve our problem-solving skills by using metacognition to analyze our reasoning processes .

Being introspective is essential to critical thinking because it helps us be self-aware. Self-awareness encourages us to acknowledge and face our own biases, prejudices, and selfish tendencies. If we know our assumptions, we can question them and suspend judgment until we have all the facts.

Actionable Tip: Start a journal. Keep track of your thoughts, feelings, and opinions throughout the day, especially when faced with difficult decisions. Look for patterns. You can avoid common thought fallacies by being aware of them.

4. Able to make inferences

Another characteristic of critical thinking is the ability to make inferences, which are logical conclusions based on reviewing the facts, events, and ideas available. Analyzing the available information and observing patterns and trends will help you find relationships and make informed decisions based on what is likely to happen.

The ability to distinguish assumptions from inferences is crucial to critical thinking. We decide something is true by inference because another thing is also true, but we decide something by assumption because of what we believe or think we know. While both assumptions and inferences can be valid or invalid, inferences are more rational because data support them.

Actionable Tip: Keep an eye on your choices and patterns during the day, noticing when you infer. Practice applying the Inference Equation — I observe + I already know = So now I am thinking — to help distinguish when you infer or assume.

5. Observant

Wooden blocks with icons of the 5 senses

Observation skills are also a key part of critical thinking. Observation is more than just looking — it involves arranging, combining, and classifying information through all five senses to build understanding. People with keen observation skills notice small details and catch slight changes in their surroundings.

Observation is one of the first skills we learn as children , and it is critical for problem-solving. Being observant allows us to collect more information about a situation and use that information to make better decisions and solve problems. Further, it facilitates seeing things from different perspectives and finding alternative solutions.

Actionable Tip: Limit your use of devices, and be mindful of your surroundings. Notice and name one thing for each of your five senses when you enter a new environment or even a familiar one. Being aware of what you see, hear, smell, taste, and touch allows you to fully experience the moment and it develops your ability to observe your surroundings.

6. Open-minded and compassionate

Open-minded and compassionate people are good critical thinkers. Being open-minded means considering new ideas and perspectives, even if they conflict with your own. This allows you to examine different sides of an issue without immediately dismissing them. Likewise, compassionate people can empathize with others, even if they disagree. When you understand another person's point of view, you can find common ground and understanding.

Critical thinking requires an open mind when analyzing opposing arguments and compassion when listening to the perspective of others. By exploring different viewpoints and seeking to understand others' perspectives, critical thinkers can gain a more well-rounded understanding of an issue. Using this deeper understanding, we can make better decisions and solve more complex problems.

Actionable Tip: Cultivate open-mindedness and compassion by regularly exposing yourself to new ideas and views. Read books on unfamiliar topics, listen to podcasts with diverse opinions, or talk with people from different backgrounds.

7. Able to determine relevance

The ability to assess relevance is an essential characteristic of critical thinking. Relevance is defined as being logically connected and significant to the subject. When a fact or statement is essential to a topic, it can be deemed relevant.

Relevance plays a vital role in many stages of the critical thinking process . It's especially crucial to identify the most pertinent facts before evaluating an argument. Despite being accurate and seemingly meaningful, a point may not matter much to your subject. Your criteria and standards are equally relevant, as you can't make a sound decision with irrelevant guidelines.

Actionable Tip: When you're in a conversation, pay attention to how each statement relates to what you're talking about. It's surprising how often we stray from the point with irrelevant information. Asking yourself, "How does that relate to the topic?" can help you spot unrelated issues.

I CAN or I WILL written in wooden blocks

Critical thinking requires willingness. Some scholars argue that the "willingness to inquire" is the most fundamental characteristic of critical thinking , which encompasses all the others. Being willing goes hand in hand with other traits, like being flexible and humble. Flexible thinkers are willing to adapt their thinking to new evidence or arguments. Those who are humble are willing to acknowledge their faults and recognize their limitations.

It's essential for critical thinking that we have an open mind and are willing to challenge the status quo. The willingness to question assumptions, consider multiple perspectives, and think outside the box allows critical thinkers to reach new and necessary conclusions.

Actionable Tip: Cultivate willingness by adopting a growth mindset. See challenges as learning opportunities. Celebrate others' accomplishments, and get curious about what led to their success.

9. Effective communicators

Being a good critical thinker requires effective communication. Effective critical thinkers know that communication is imperative when solving problems. They can articulate their goals and concerns clearly while recognizing others' perspectives. Critical thinking requires people to be able to listen to each other's opinions and share their experiences respectfully to find the best solutions.

A good communicator is also an attentive and active listener. Listening actively goes beyond simply hearing what someone says. Being engaged in the discussion involves:

  • Listening to what they say
  • Being present
  • Asking questions that clarify their position

Actively listening is crucial for critical thinking because it helps us understand other people's perspectives.

Actionable Tip: The next time you speak with a friend, family member, or even a complete stranger, take the time to genuinely listen to what they're saying. It may surprise you how much you can learn about others — and about yourself — when you take the time to listen carefully.

The nine traits above represent just a few of the most common characteristics of critical thinking. By developing or strengthening these characteristics, you can enhance your capacity for critical thinking.

Get to the core of critical thinking

Critical thinking is essential for success in every aspect of life, from personal relationships to professional careers. By developing your critical thinking skills , you can challenge the status quo and gain a new perspective on the world around you. You can start improving your critical thinking skills today by determining which characteristics of critical thinking you need to work on and using the actionable tips to strengthen them. With practice, you can become a great critical thinker.

I hope you have enjoyed reading this article. Feel free to share, recommend and connect 🙏

Connect with me on Twitter 👉   https://twitter.com/iamborisv

And follow Able's journey on Twitter: https://twitter.com/meet_able

And subscribe to our newsletter to read more valuable articles before it gets published on our blog.

Now we're building a Discord community of like-minded people, and we would be honoured and delighted to see you there.

Erin E. Rupp

Erin E. Rupp

Read more posts by this author

3 critical thinking strategies to enhance your problem-solving skills

5 remedies for poor time management (and how to know if you need them).

What is abstract thinking? 10 activities to improve your abstract thinking skills

What is abstract thinking? 10 activities to improve your abstract thinking skills

5 examples of cognitive learning theory (and how you can use them)

5 examples of cognitive learning theory (and how you can use them)

0 results found.

  • Aegis Alpha SA
  • We build in public

Building with passion in

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons

Margin Size

  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Humanities LibreTexts

3.1: Breaking down critical thinking into categories

  • Last updated
  • Save as PDF
  • Page ID 225895

\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

\( \newcommand{\Span}{\mathrm{span}}\)

\( \newcommand{\id}{\mathrm{id}}\)

\( \newcommand{\kernel}{\mathrm{null}\,}\)

\( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\)

\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\)

\( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

\( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vectorC}[1]{\textbf{#1}} \)

\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

WHAT IS CRITICAL THINKING?

  • Critical thinking is a set of skills designed to help the thinker analyze, assess and question a given situation or reading.
  • Critical thinking skills push the thinker to reject simplistic conclusions based on human irrationality, false assumptions, prejudices, biases and anecdotal evidence.
  • Critical thinking skills give thinkers confidence that they can see issues which are complex and which have several answers and points of view and that opinions and insights can change with new information.

WHAT DO CRITICAL THINKERS DO?

  • Consider all sides of an issue
  • Judge well the quality of an argument
  • Judge well the credibility of sources
  • Create convincing arguments using sound evidence and analysis
  • Effectively recognize and use ethos (ethics), pathos (empathy) and logos (logic) in argument

WHY IS IT IMPORTANT?

People will listen to and respect critical thinkers with these abilities because…

  • Considering all sides of an issue means they are open-minded, informed, and mindful of alternatives and other points of view.
  • Judging well the quality of an argument means they can effectively identify and evaluate another’s reasons, assumptions and conclusions and not be fooled into believing false or unsubstantiated claims.
  • Judging well the credibility of sources means they can recognize and present the most reputable, trustworthy and convincing evidence.
  • Creating convincing arguments using sound evidence and analysis means they can formulate plausible hypotheses and draw conclusions which are thoughtful and verifiable.
  • Effectively recognizing and using ethos, pathos and logos in argument means they construct well-crafted points using a balance of morality and ethics, consideration and empathy for others, as well as sound and logical reasoning.

HOW DO I USE CRITICAL THINKING?

Breaking down into categories how to analyze a topic or text (one written by you or another author) will help you examine it thoroughly and critically. Use these questions to assist you:

Clarity: Is it understandable and can the meaning be clearly grasped?

  • Is the main idea clear?
  • Can examples be added to better illustrate the points?
  • Are there confusing or unrelated points?

Accuracy: Is it free from errors or distortions—is it true?

  • Do I need to verify the truth of the claims?
  • Is credible evidence used correctly and fairly?
  • Is additional research needed?

Precision: Is it exact with specific details?

  • Can the wording be more exact?
  • Are the claims too general?
  • Are claims supported with concrete evidence?

Relevance: How does it relate to the topic or assignment?

  • Does it help illuminate the topic or assignment?
  • Does it provide new or important information?
  • Who does the content have the most relevance for?

Depth: Does it contain complexities and delve into the larger implications?

  • What are some of the complexities explored?
  • What are some of the difficulties that should be addressed?
  • What are the larger implications or impact?

Breadth: Does it encompass multiple viewpoints?

  • Do I need to look at this from another perspective?
  • What other people would have differing viewpoints?
  • Do I need to look at this in other ways?

Logic: Do the parts make sense together and are there no contradictions?

  • Do all the points work together logically to prove one clear argument?
  • Does one paragraph follow logically from the next?
  • Does the evidence directly prove the main points?

Significance: Does it focus on what is important?

  • Is this the most important aspect to consider?
  • Which of the facts or points are the most important?
  • Does it examine a larger significance?

Fairness: Is it justifiable and not self-serving or one-sided?

  • Do I have any vested interest in this issue that can affect my reaction?
  • Is personal bias or a hidden agenda driving the point?
  • Are the viewpoints of others sympathetically represented?

Use this chart to help you apply these critical thinking categories to a particular text or topic:

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Front Psychol

Metacognitive Strategies and Development of Critical Thinking in Higher Education

Silvia f. rivas.

1 Departamento de Psicología Básica, Psicobiología y Metodología de CC, Facultad de Psicología, Universidad de Salamanca, Salamanca, Spain

Carlos Saiz

Carlos ossa.

2 Departamento de Ciencias de la Educación, Facultad de Educación y Humanidades, Universidad del Bío-Bío, Sede Chillán, Chile

Associated Data

The original contributions presented in the study are included in the article/supplementary material; further inquiries can be directed to the corresponding author.

More and more often, we hear that higher education should foment critical thinking. The new skills focus for university teaching grants a central role to critical thinking in new study plans; however, using these skills well requires a certain degree of conscientiousness and its regulation. Metacognition therefore plays a crucial role in developing critical thinking and consists of a person being aware of their own thinking processes in order to improve them for better knowledge acquisition. Critical thinking depends on these metacognitive mechanisms functioning well, being conscious of the processes, actions, and emotions in play, and thereby having the chance to understand what has not been done well and correcting it. Even when there is evidence of the relation between metacognitive processes and critical thinking, there are still few initiatives which seek to clarify which process determines which other one, or whether there is interdependence between both. What we present in this study is therefore an intervention proposal to develop critical thinking and meta knowledge skills. In this context, Problem-Based Learning is a useful tool to develop these skills in higher education. The ARDESOS-DIAPROVE program seeks to foment critical thinking via metacognition and Problem-Based Learning methodology. It is known that learning quality improves when students apply metacognition; it is also known that effective problem-solving depends not only on critical thinking, but also on the skill of realization, and of cognitive and non-cognitive regulation. The study presented hereinafter therefore has the fundamental objective of showing whether instruction in critical thinking (ARDESOS-DIAPROVE) influences students’ metacognitive processes. One consequence of this is that critical thinking improves with the use of metacognition. The sample was comprised of first-year psychology students at Public University of the North of Spain who were undergoing the aforementioned program; PENCRISAL was used to evaluate critical thinking skills and the Metacognitive Activities Inventory (MAI) for evaluating metacognition. We expected an increase in critical thinking scores and metacognition following this intervention. As a conclusion, we indicate actions to incentivize metacognitive work among participants, both individually via reflective questions and decision diagrams, and at the interactional level with dialogues and reflective debates which strengthen critical thinking.

Introduction

One of the principal objectives which education must cover is helping our students become autonomous and effective. Students’ ability to use strategies which help them direct their motivation toward action in the direction of the meta-proposal is a central aspect to keep at the front of our minds when considering education. This is where metacognition comes into play—knowledge about knowledge itself, a component which is in charge of directing, monitoring, regulating, organizing, and planning our skills in a helpful way, once these have come into operation. Metacognition helps form autonomous students, increasing consciousness about their own cognitive processes and their self-regulation so that they can regulate their own learning and transfer it to any area of their lives. As we see, it is a conscious activity of high-level thinking which allows us to look into and reflect upon how we learn and to control our own strategies and learning processes. We must therefore approach a problem which is increasing in our time, that of learning and knowledge from the perspective of active participation by students. To achieve these objectives of “learning to learn” we must use adequate cognitive learning strategies, among which we can highlight those oriented toward self-learning, developing metacognitive strategies, and critical thinking.

Metacognition is one of the research areas, which has contributed the most to the formation of the new conceptions of learning and teaching. In this sense, it has advanced within the constructivist conceptions of learning, which have attributed an increasing role to student consciousness and to the regulation which they exercise over their own learning ( Glaser, 1994 ).

Metacognition was initially introduced by John Flavell in the early 1970s. He affirmed that metacognition, on one side, refers to “the knowledge which one has about his own cognitive processes products, or any other matter related with them” and on the other, “to the active supervision and consequent regulation and organization of these processes in relation with the objects or cognitive data upon which they act” ( Flavell, 1976 ; p. 232). Based on this, we can differentiate two components of metacognition: one of a declarative nature, which is metacognitive knowledge, referring to knowledge of the person and the task, and another of a procedural nature, which is metacognitive control or self-regulated learning, which is always directed toward a goal and controlled by the learner.

Different authors have pointed out that metacognition presents these areas of thought or skills, aimed knowledge or toward the regulation of thought and action, mainly proposing a binary organization in which attentional processes are oriented, on occasions, toward an object or subject, and the other hand, toward to interact with objects and/or subjects ( Drigas and Mitsea, 2021 ). However, it is possible to understand metacognition from another approach that establishes more levels of use of metacognitive thinking to promote knowledge, awareness, and intelligence, known as the eight pillars of metacognition model ( Drigas and Mitsea, 2020 ). These pillars allow thought to promote the use of deep knowledge, cognitive processes, self-regulation, functional adaptation to society, pattern recognition and operations, and even meaningful memorization ( Drigas and Mitsea, 2020 ).

In addition to the above, Drigas and Mitsea’s model establishes different levels where metacognition could be used, in a complex sequence from stimuli to transcendental ideas, in which each of the pillars could manifest a different facet of the process metacognitive, thus establishing a dialectical and integrative approach to learning and knowledge, allowing it to be understood as an evolutionary and complex process in stages ( Drigas and Mitsea, 2021 ).

All this clarifies the importance of and need for metacognition, not only in education but also in our modern society, since this need to “teach how to learn” and the capacity to “learn how to learn” in order to achieve autonomous learning and transfer it to any area of our lives will let us face problems more successfully. This becomes a relevant challenge, especially today where it is required to have a broad view regarding reflection and consciousness, and to transcend simplistic and reductionist models that seek to center the problem of knowledge only around the neurobiological or the phenomenological scope ( Sattin et al., 2021 ).

Critical thinking depends largely on these mechanisms functioning well and being conscious of the processes used, since this gives us the opportunity to understand what has not been done well and correct it in the future. Consciousness for critical thinking would imply a continuous process of reuse of thought, in escalations that allow thinking to be oriented both toward the objects of the world and toward the subjective interior, allowing to determine the ideas that give greater security to the person, and in that perspective, the metacognitive process, represents this use of Awareness, also allowing the generation of an identity of knowing being ( Drigas and Mitsea, 2021 ).

We know that thinking critically involves reasoning and deciding to effectively solve a problem or reach goals. However, effective use of these skills requires a certain degree of consciousness and regulation of them. The ARDESOS-DIAPROVE program seeks precisely to foment critical thinking, in part, via metacognition ( Saiz and Rivas, 2011 , 2012 , 2016 ).

However, it is not only centered on developing cognitive components, as this would be an important limitation. Since the 1990s, it has been known that non-cognitive components play a crucial role in developing critical thinking. However, there are few studies focusing on this relation. This intervention therefore considers both dimensions, where metacognitive processes play an essential role by providing evaluation and control mechanisms over the cognitive dimension.

Metacognition and Critical Thinking

Critical Thinking is a concept without a firm consensus, as there have been and still are varying conceptions regarding it. Its nature is so complex that it is hard to synthesize all its aspects in a single definition. While there are numerous conceptions about critical thinking, it is necessary to be precise about which definition we will use. We understand that “ critical thinking is a knowledge-seeking process via reasoning skills to solve problems and make decisions which allows us to more effectively achieve our desired results” ( Saiz and Rivas, 2008 , p. 131). Thinking effectively is desirable in all areas of individual and collective action. Currently, the background of the present field of critical thinking is also based in argumentation. Reasoning is used as the fundamental basis for all activities labeled as thinking. In a way, thinking cannot easily be decoupled from reasoning, at least if our understanding of it is “deriving something from another thing.” Inference or judgment is what we essentially find behind the concept of thinking. The question, though, is whether it can be affirmed that thinking is only reasoning. Some defend this concept ( Johnson, 2008 ), while others believe the opposite, that solving problems and making decisions are activities which also form part of thinking processes ( Halpern, 2003 ; Halpern and Dunn, 2021 , 2022 ). To move forward in this sense, we will return to our previous definition. In that definition, we have specified intellectual activity with a goal intrinsic to all mental processes, namely, seeking knowledge. Achieving our ends depends not only on the intellectual dimension, as we may need our motor or perceptive activities, so it contributes little to affirm that critical thinking allows us to achieve our objectives as we can also achieve them by doing other activities. It is important for us to make an effort to identify the mental processes responsible for thinking and distinguish them from other things.

Normally, we think to solve our problems. This is the second important activity of thought. A problem can be solved by reasoning, but also by planning course of action or selecting the best strategy for the situation. Apart from reasoning, we must therefore also make decisions to resolve difficulties. Choosing is one of the most frequent and important activities which we do. Because of this, we prefer to give it the leading role it deserves in a definition of thinking. Solving problems demands multiple intellectual activities, including reasoning, deciding, planning, etc. The final characteristic goes beyond the mechanisms peculiar to inference. What can be seen at the moment of delineating what it means to think effectively is that concepts are grouped together which go beyond the nuclear ideas of what has to do with inferring or reasoning. The majority of theoreticians in the field ( APA, 1990 ; Ennis, 1996 ; Halpern, 1998 , 2003 ; Paul and Elder, 2001 ; Facione, 2011 ; Halpern and Dunn, 2021 , 2022 ) consider that, in order to carry out this type of thinking effectively, apart from having this skill set, the intervention of other types of components is necessary, such as metacognition and motivation. This is why we consider it necessary to speak about the components of critical thinking, as we can see in Figure 1 :

An external file that holds a picture, illustration, etc.
Object name is fpsyg-13-913219-g001.jpg

Components of critical thinking ( Saiz, 2020 ).

In the nature of thinking, there are two types of components: the cognitive and the non-cognitive. The former include perception, learning, and memory processes. Learning is any knowledge acquisition mechanism, the most important of which is thinking. The latter refer to motivation and interests (attitudes tend to be understood as dispositions, inclinations…something close to motives); with metacognition remaining as a process which shares cognitive and non-cognitive aspects as it incorporates aspects of both judgment (evaluation) and disposition (control/efficiency) about thoughts ( Azevedo, 2020 ; Shekhar and Rahnev, 2021 ). Both the cognitive and non-cognitive components are essential to improve critical thinking, as one component is incomplete without the other, that is, neither cognitive skills nor dispositions on their own suffice to train a person to think critically. In general, relations are bidirectional, although for didactic reasons only unidirectional relations appear in Figure 1 ( Rivas et al., 2017 ). This is because learning is a dynamic process which is subject to all types of influence. For instance, if a student is motivated, they will work more and better—or at least, this is what is hoped for. If they can achieve good test scores as well, it can be supposed that motivation is reinforced, so that they will continue existing behaviors in the same direction that is, working hard and well on their studies. This latter point appears to arise at least because of an adjustment between expectations and reality which the student achieves thanks to metacognition, which allows them to effectively attribute their achievements to their efforts ( Ugartetxea, 2001 ).

Metacognition, which is our interest in this paper, should also have bidirectional relations with critical thinking. Metacognition tends to be understood as the degree of consciousness which we have about our own mental processes and similar to the capacity for self-regulation, that is, planning and organization ( Mayor et al., 1993 ). We observe that these two ideas have very different natures. The former is simpler, being the degree of consciousness which we reach about an internal mechanism or process. The latter is a less precise idea, since everything which has to do with self-regulation is hard to differentiate from a way of understanding motivation, such as the entire tradition of intrinsic motivation and self-determination from Deci, his collaborators, and other authors of this focus (see, e.g., Deci and Ryan, 1985 ; Ryan and Deci, 2000 ). The important thing is to emphasize the executive dimension of metacognition, more than the degree of consciousness, for practical reasons. It can be expected that this dimension has a greater influence on the learning process than that of consciousness, although there is little doubt that we have to establish both as necessary and sufficient conditions. However, the data must speak in this regard. Due to all of this, and as we shall see hereinafter, the intervention designed incorporates both components to improve critical thinking skills.

We can observe, though, that the basic core of critical thinking continues to be topics related to skills, in our case, reasoning, problem-solving, and decision-making. The fact that we incorporate concepts of another nature, such as motivation, in a description of critical thinking is justified because it has been proven that, when speaking about critical thinking, the fact of centering solely on skills does not allow for fully gathering its complexity. The purpose of the schematic in Figure 2 is to provide conceptual clarity to the adjective “critical” in the expression critical thinking . If we understand critical to refer to effective , we should also consider that effectiveness is not, as previously mentioned, solely achieved with skills. They must be joined together with other mechanisms during different moments. Intellectual skills alone cannot achieve the effectiveness assumed within the term “critical.” First, for said skills to get underway, we must want to do so. Motivation therefore comes into play before skills and puts them into operation. For its part, metacognition allows us to take advantage of directing, organizing, and planning our skills and act once they have begun to work. Motivation thus activates our abilities, while metacognition lets them be more effective. The final objective should always be to gain proper knowledge of reality to resolve our problems.

An external file that holds a picture, illustration, etc.
Object name is fpsyg-13-913219-g002.jpg

Purpose of critical thinking ( Saiz, 2020 , p.27).

We consider that the fact of referring to components of critical thinking while differentiating the skills of motivation and metacognition aids with the conceptual clarification we seek. On one side, we specify the skills which we discuss, and on another, we mention which other components are related to, and even overlap with them. We must be conscious of how difficult it is to find “pure” mental processes. Planning a course of action, an essential trait of metacognition, demands reflection, prediction, choice, comparison, and evaluation… And this, evidently, is thinking. The different levels or dimensions of our mental activity must be related and integrated. Our aim is to be able to identify what is substantial in thinking to know what we are able to improve and evaluate.

It is widely known that for our personal and professional functioning, thinking is necessary and useful. When we want to change a situation or gain something, all our mental mechanisms go into motion. We perceive the situation, identify relevant aspects of the problem, analyze all the available information, and appraise everything we analyze. We make judgments about the most relevant matters, decide about the options or pathways for resolution, execute the plan, obtain results, evaluate the results, estimate whether we have achieved our purpose and, according to the level of satisfaction following this estimation, consider our course of action good, or not.

The topic we must pose now is what things are teachable. It is useful to specify that what is acquired is clearly cognitive and some of the non-cognitive, because motivation can be stimulated or promoted, but not taught. The concepts of knowledge and wisdom are its basis. Mental representation and knowledge only become wisdom when we can apply it to reality, when we take it out of our mind and adequately situate it in the world. For our teaching purposes, we only have to take a position about whether knowledge is what makes critical thinking develop, or vice versa. For us, skills must be directly taught, and dominion is secondary. Up to now, we have established the components of critical thinking, but these elements still have to be interrelated properly. What we normally find are skills or components placed side by side or overlapping, but not the ways in which they influence each other. Lipman (2003) may have developed the most complete theory of critical and creative thinking, along Paul and his group, in second place, with their universal thought structures ( Paul and Elder, 2006 ). However, a proposal for the relation between the elements is lacking.

To try to explain the relation between the components of thought, we will use Figure 2 as an aid.

The ultimate goal of critical thinking is change that is, passing from one state of wellbeing into a better state. This change is only the fruit of results, which must be the best. Effectiveness is simple achieving our goals in the best way possible. There are many possible results, but for our ends, there are always some which are better than others. Our position must be for effectiveness, the best response, the best solution. Reaching a goal is resolving or achieving something, and for this, we have mechanisms available which tell us which are the best course of action. Making decisions and solving problems are fundamental skills which are mutually interrelated. Decision strategies come before a solution. Choosing a course of action always comes before its execution, so it is easy to understand that decisions contribute to solutions.

Decisions must not come before reflection, although this often can and does happen. As we have already mentioned, the fundamental skills of critical thinking, in most cases, have been reduced to reasoning, and to a certain degree, this is justified. There is an entire important epistemological current behind this, within which the theory of argumentation makes no distinction, at least syntactically, between argumentation and explanation. However, for us this distinction is essential, especially in practice ( Saiz, 2020 ). We will only center on an essential difference for our purpose. Argumentation may have to do with values and realities, but explanation only has to do with the latter. We can argue about beliefs, convictions, and facts, but we can only explain realities. Faced with an explanation of reality, any argumentation would be secondary. Thus, explanation will always be the central skill in critical thinking.

The change which is sought is always expressed in reality. Problems always are manifested and resolved with actions, and these are always a reality. An argument about realities aids in explaining them. An argument about values upholds a belief or a conviction. However, beliefs always influence behavior; thus, indirectly, the argument winds up being about realities. One may argue, for example, only for or against the death penalty, and reach the conviction that it is good or bad and ultimately take a position for or against allowing it. This is why we say that deciding always comes before resolving; furthermore, resolution always means deciding about something in a particular direction—it always means choosing and taking an option; furthermore, deciding is often only from two possibilities, the better or that which is not better, or which is not as good. Decisions are made based on the best option possible of all those which can be presented. Resolution is a dichotomy. Since our basic end lies within reality, explanation must be constituted as the basic pillar to produce change. Argumentation must therefore be at the service of causality (explanation), and both must be in the service of solid decisions leading us to the best solution or change of situation. We now believe that the relation established in Figure 2 can be better understood. From this relation, we propose that thinking critically means reaching the best explanation for an event, phenomenon, or problem in order to know how to effectively resolve it ( Saiz, 2017 , p.19). This idea, to our judgment, is the best summary of the nature of critical thinking. It clarifies details and makes explicit the components of critical thinking.

Classroom Activities to Develop Metacognition

We will present a set of strategies to promote metacognitive work in the classroom in this section, aimed at improving critical thinking skills. These strategies can be applied both at the university level and the secondary school level; we will thus focus on these two levels, although metacognitive strategies can be worked on from an earlier age ( Jaramillo and Osses, 2012 ; Tamayo-Alzate et al., 2019 ) and some authors have indicated that psychological maturity has a greater impact on effectively achieving metacognition ( Sastre-Riba, 2012 ; García et al., 2016 ).

At the individual level, metacognition can be worked on via applying questions aimed at the relevant tasks which must be undertaken regarding a task (meta-knowledge questions), for example:

  • Do I know how much I know about this subject?
  • Do I have clear instructions and know what action is expected from me?
  • How much time do I have?
  • Am I covering the proper and necessary subjects, or is there anything important left out?
  • How do I know that my work is right?
  • Have I covered every point of the rubric for the work to gain a good grade or a sufficient level?

These reflective questions facilitate supervising knowledge level, resource use, and the final product achieved, so that the decisions taken for said activities are the best and excellent learning results are achieved.

Graphs or decision diagrams can also be used to aid in organizing these questions during the different phases of executing a task (planning, progress, and final evaluation), which is clearly linked with the knowledge and control processes of metacognition ( Mateos, 2001 ). These diagrams are more complex and elaborate strategies than the questions, but are effective when monitoring the steps considered in the activity ( Ossa et al., 2016 ). Decision diagrams begin from a question or task, detailing the principal steps to take, and associating an alternative (YES or NO) to each step, which leads to the next step whenever the decision is affirmative, or to improve or go further into the step taken if the decision is negative.

Finally, we can work on thinking aloud, a strategy which facilitates making the thoughts explicit and conscious, allowing us to monitor their knowledge, decisions, and actions to promote conscious planning, supervision and evaluation ( Ávila et al., 2017 ; Dahik et al., 2019 ). For example:

  • While asking a question, the student thinks aloud: I am having problems with this part of the task, and I may have to ask the teacher to know whether I am right.

Thinking aloud can be done individually or in pairs, allowing for active monitoring of decisions and questions arising from cognitive and procedural work done by the student.

Apart from the preceding strategies, it is also possible to fortify metacognitive development via personal interactions based on dialogue between both the students themselves and between the teacher and individual students. One initial strategy, similar to thinking out loud in pairs, is reflective dialogue between teacher and student, a technique which allows for exchanging deep questions and answers, where the student becomes conscious of their knowledge and practice thanks to dialogical interventions by the teacher ( Urdaneta, 2014 ).

Reflective dialogue can also be done via reflective feedback implemented by the teacher for the students to learn by themselves about the positive and negative aspects of their performance on a task.

Finally, another activity based on dialogue and interaction is related to metacognitive argumentation ( Sánchez-Castaño et al., 2015 ), a strategy which uses argumentative resources to establish a valid argumentative structure to facilitate responding to a question or applying it to a debate. While argumentative analysis is based on logic and the search for solid reasons, these can have higher or lower confidence and reliability as a function of the data which they provide. Thus, if a reflective argumentative process is performed, via questioning reasons or identifying counterarguments, there is more depth and density in the argumentative structure, achieving greater confidence and validity.

We can note that metacognition development strategies are based on reflective capacity, which allow thought to repeatedly review information and decisions to consider, without immediately taking sides or being carried away by superficial or biased ideas or data. Critical thought benefits strongly from applying this reflective process, which guides both data management and cognitive process use. These strategies can also be developed in various formats (written, graphic, oral, individual, and dialogical), providing teachers a wide range of tools to strengthen learning and thinking.

Metacognitive Strategies to Improve Critical Thinking

In this section, we will describe the fundamental metacognitive strategies addressed in our critical thinking skills development program ARDESOS-DIAPROVE.

First, one of the active learning methodologies applied is Problem-Based Learning (PBL). This pedagogical strategy is student-centered and encourages autonomous and participative learning, orienting students toward more active and decisive learning. In PBL each situation must be approached as a problem-solving task, making it necessary to investigate, understand, interpret, reason, decide, and resolve. It is presented as a methodology which facilitates joint knowledge acquisition and skill learning. It is also good for working on daily problems via relevant situations, considerably reducing the distance between learning context and personal/professional life and aiding the connection between theory and practice, which promote the highly desired transference. It favors organization and the capacity to decide about problem-solving, which also improves performance and knowledge about the students’ own learning processes. Because of all this, this methodology aids in reflection and analysis processes, which in turn promotes metacognitive skill development.

The procedure which we carried out in the classroom with all the activities is based on the philosophy of gradual learning control transference ( Mateos, 2001 ). During instruction, the teacher takes on the role of model and guide for students’ cognitive and metacognitive activity, gradually bringing them into participating in an increasing level of competency, and slowly withdrawing support in order to attain control over the students’ learning process. This methodology develops in four phases: (1) explicit instruction, where the teacher directly explains the skills which will be worked on; (2) guided practice, where the teacher acts as a collaborator to guide and aid students in self-regulation; and (3) cooperative practice, where cooperative group work facilitates interaction with a peer group collaborating to resolve the problem. By explaining, elaborating, and justifying their own points of view and alternative solutions, greater consciousness, reflection, and control over their own cognitive processes is promoted. Finally, (4) individual practice is what allows students to place their learning into practice in individual evaluation tasks.

Regarding the tasks, it is important to highlight that the activities must be aimed not only at acquiring declarative knowledge, but also at procedural knowledge. The objective of practical tasks, apart from developing fundamental knowledge, is to develop CT skills among students in both comprehension and expression in order to favor their learning and its transference. The problems used must be common situations, close to our students’ reality. The important thing in our task of teaching critical thinking is its usefulness to our students, which can only be achieved during application since we only know something when we are capable of applying it. We are not interested in students merely developing critical skills; they must also be able to generalize their intellectual skills, for which they must perceive them as useful in order to want to acquire them. Finally, they will have to actively participate to apply them to solving problems. Furthermore, if we study the different ways of reasoning without context, via overly academic problems, their application to the personal sphere becomes impossible, leading them to be considered hardly useful. This makes it important to contextualize skills within everyday problems or situations which help us get students to use them regularly and understand their usefulness.

Reflecting on how one carries things out in practice and analyzing mistakes are ways to encourage success and autonomy in learning. These self-regulation strategies are the properly metacognitive part of our study. The teacher has various resources to increase these strategies, particularly feedback oriented toward task resolution. Similarly, one of the most effective instruments to achieve it is using rubrics, a central tool for our methodology. These guides, used in student performance evaluations, describe the specific characteristics of a task at various performance levels, in order to clarify expectations for students’ work, evaluate their execution, and facilitate feedback. This type of technique also allows students to direct their own activity. We use them with this double goal in mind; on the one hand, they aid students in carrying out tasks, since they help divide the complex tasks they have to do into simpler jobs, and on the other, they help evaluate the task. Rubrics guide students in the skills and knowledge they need to acquire as well as facilitating self-evaluation, thereby favoring responsibility in their learning. Task rubrics are also the guide for evaluation which teachers carry out in classrooms, where they specify, review, and correctly resolve the tasks which students do according to the rubric criteria. Providing complete feedback to students is a crucial aspect for the learning process. Thus, in all sessions time is dedicated to carrying it out. This is what will allow them to move ahead in self-regulated skill learning.

According to what we have seen, there is a wide range of positions when it comes to defining critical thinking. However, there is consensus in the fact that critical thinking involves cognitive, attitudinal, and metacognitive components, which together favor proper performance in critical thinking ( Ennis, 1987 ; Facione, 1990 ). This important relation between metacognition and critical thinking has been widely studied in the literature ( Berardi-Coletta et al., 1995 ; Antonietti et al., 2000 ; Kuhn and Dean, 2004 ; Black, 2005 ; Coutinho et al., 2005 ; Orion and Kali, 2005 ; Schroyens, 2005 ; Akama, 2006 ; Choy and Cheah, 2009 ; Magno, 2010 ; Arslan, 2014 ) although not always in an applied way. Field studies indicate the existence of relations between teaching metacognitive strategies and progress in students’ higher-order thinking processes ( Schraw, 1998 ; Kramarski et al., 2002 ; Van der Stel and Veenman, 2010 ). Metacognition is thus considered one of the most relevant predictors of achieving a complex higher-order thought process.

Along the same lines, different studies show the importance of developing metacognitive skills among students as it is related not only with developing critical thinking, but also with academic achievement and self-regulated learning ( Klimenko and Alvares, 2009 ; Magno, 2010 ; Doganay and Demir, 2011 ; Özsoy, 2011 ). Klimenko and Alvares (2009) indicated that one way for students to acquire necessary tools to encourage autonomous learning is making cognitive and metacognitive strategies explicit and well-used and that teachers’ role is to be mediators and guides. Inspite of this evidence, there is less research about the use of metacognitive strategies in encouraging critical thinking. The principal reason is probably that it is methodologically difficult to gather direct data about active metacognitive processes which are complex by nature. Self-reporting is also still very common in metacognition evaluation, and there are few studies which have included objective measurements aiding in methodological precision for evaluating metacognition.

However, in recent years, greater importance has been assigned to teaching metacognitive skills in the educational system, as they aid students in developing higher-order thinking processes and improving their academic success ( Flavell, 2004 ; Larkin, 2009 ). Because of this, classrooms have seen teaching and learning strategies emphasizing metacognitive knowledge and regulation. Returning to our objective, which is to improve critical thinking via the ARDESOS-DIAPROVE program, we have achieved our goal in an acceptable way ( Saiz and Rivas, 2011 , 2012 , 2016 ).

However, we need to know which specific factors contribute to this improvement. We have covered significant ground through different studies, one of which we present here. In this one, we attempt to find out the role of metacognition in critical thinking. This is the central objective of the study. Our program includes motivational and metacognitive variables. Therefore, we seek to find out whether metacognition improves after this instruction program focused on metacognition. Therefore, our hypothesis is simple: we expect that the lesson will improve our students’ metacognition. The idea is to know whether applying metacognition helps us achieve improved critical thinking and whether after this change metaknowledge itself improves. In other words, improved critical thinking performance will make us think better about thinking processes themselves. If this can be improved, we can expect that in the future it will have a greater influence on critical thinking. The idea is to be able to demonstrate that applying specifically metacognitive techniques, the processes themselves will subsequently improve in quality and therefore contribute better volume and quality to reasoning tasks, decision-making and problem-solving.

Materials and Methods

Participants.

In the present study, we used a sample of 89 students in a first-year psychology course at Public University of the North of Spain. 82% (73) were women, and the other 18% (16) were men. Participants’ median age was 18.93 ( SD 1.744).

Instruments

Critical thinking test.

To measure critical thinking skills, we applied the PENCRISAL test ( Saiz and Rivas, 2008 ; Rivas and Saiz, 2012 ). The PENCRISAL is a battery consisting of 35 production problem situations with an open-answer format, composed of five factors: Deductive Reasoning , Inductive Reasoning , Practical Reasoning , Decision-Making , and Problem-Solving , with seven items per factor. Items for each factor gather the most representative structures of fundamental critical thinking skills.

The items’ format is open, so that the person has to answer a concrete question, adding a justification for the reasons behind their answer. Because of this, there are standardized correction criteria assigning values between 0 and 2 points as a function of answer quality. This test offers us a total score of critical thinking skills and another five scores referring to the five factors. The value range is located between 0 and 72 points as a maximum limit for total test scoring, and between 0 and 14 for each of the five scales. The reliability measures present adequate precision levels according to the scoring procedures, with the lowest Cronbach’s alpha values at 0.632, and the test–retest correlation at 0.786 ( Rivas and Saiz, 2012 ). PENCRISAL administration was done over the Internet via the evaluation platform SelectSurvey.NET V5: http://24.selectsurvey.net/pensamiento-critico/Login.aspx .

Metacognitive Skill Inventory

Metacognitive skill evaluation was done via the metacognitive awareness inventory from Schraw and Dennison (1994) (MAI; Huertas Bustos et al., 2014 ). This questionnaire has 52 Likert scale-type items with five points. The items are distributed in two general dimensions: cognitive knowledge (C) and regulation of cognition (R). This provides ample coverage for the two aforementioned ideas about metaknowledge. There are also eight defined subcategories within each general dimension. For C, these are: declarative knowledge (DK), procedural knowledge (PK), and conditional knowledge (CK). In R, we find: organization (O), monitoring (M), and evaluation (E). This instrument comprehensively, and fairly clearly, brings together essential aspects of metacognition. On one side, there is the level of consciousness, containing types of knowledge—declarative, procedural, and strategic. On the other, it considers everything important in the processes of self-regulation, planning, organization, direction or control (monitoring), adjustment (troubleshooting), and considering the results achieved (evaluation). It provides a very complete vision of everything important in this dimension. Cronbach’s alpha for this instrument is 0.94, showing good internal consistency.

Intervention Program

As previously mentioned, in this study, we applied the third version of the ARDESOS_DIAPROVE program ( Saiz and Rivas, 2016 ; Saiz, 2020 ), with the objective of improving thinking skills. This program is centered on directly teaching the skills which we consider essential to develop critical thinking and for proper performance in our daily affairs. For this, we must use reasoning and good problem-solving and decision-making strategies, with one of the most fundamental parts of our intervention being the use of everyday situations to develop these abilities.

DIAPROVE methodology incorporates three new and essential aspects: developing observation, the combined use of facts and deduction, and effective management of de-confirmation procedures, or discarding hypotheses. These are the foundation of our teaching, which requires specific teaching–learning techniques.

The intervention took place over 16 weeks and is designed to be applied in classrooms over a timeframe of 55–60 h. The program is applied in classes of around 30–35 students divided into groups of four for classwork in collaborative groups, and organized into six activity blocks: (1) nature of critical thinking, (2) problem-solving and effectiveness, (3) explanation and causality, (4) deduction and explanation, (5) argumentation and deduction, and (6) problem-solving and decision-making. These blocks are assembled maintaining homogeneity, facilitating a global integrated skill focus which helps form comprehension and use of the different structures in any situation as well as a greater degree of ability within the domain of each skill.

Our program made an integrated use of problem-based learning (PBL) and cooperative learning (CL) as didactic teaching and learning strategies in the critical thinking program. These methodologies jointly exert a positive influence on the students, allowing them to participate more actively in the learning process, achieve better results in contextualizing content and developing skills and abilities for problem-solving, and improve motivation.

To carry out our methodology in the classrooms, we have designed a teaching system aligned with these directives. Two types of tasks are done: (1) comprehension and (2) production. The materials we used to carry out these activities are the same for all the program blocks. One key element in our aim of teaching how to think critically must be its usefulness to our students, which is only achieved through application. This makes it important to contextualize reasoning types within common situations or problems, aiding students to use them regularly and understand their usefulness. Our intention with the materials we use is to face the problems of transference, usefulness, integrated skills, and how to produce these things. Accordingly, the materials used for the tasks are: (1) common situations and (2) professional/personal problems.

The tasks which the students perform take place over a week. They work in cooperative groups in class, and then review, correct, and clarify together, promoting reflection on their achievements and errors, which fortifies metacognition. Students get the necessary feedback on the work performed which will help them progressively acquire fundamental procedural contents. Our goal here is that students become conscious of their own thought processes in order to improve them. In this way, via the dialogue achieved between teachers and students as well as between the students themselves in their cooperative work, metacognition is developed. For conscious performance of tasks, the students will receive rubrics for each and every task to guide them in their completion.

Application of the ARDESOS-DIAPROVE program was done across a semester in the Psychology Department of the Public University of the North of Spain. One week before teaching began; critical thinking and metacognition evaluations were done. This was also done 1 week after the intervention ended, in order to gather the second measurement for PENCRISAL and MAI. The timelapse between the pre-treatment and post-treatment measurements was 4 months. The intervention was done by instructors with training and good experience in the program.

To test our objective, we used a quasi-experimental pre-post design with repeated measurements.

Statistical Analysis

For statistical analysis, we used the IBM SPSS Statistics 26 statistical packet. The statistical tools and techniques used were: frequency and percentage tables for qualitative variables, exploratory and descriptive analysis of quantitative variables with a goodness of fit test to the normal Gaussian model, habitual descriptive statistics (median, SD, etc.) for numerical variables, and Student’s t -tests for significance of difference.

To begin, a descriptive analysis of the study variables was carried out. Tables 1 , ​ ,2 2 present the summary of descriptions for the scores obtained by students in the sample, as well as the asymmetry and kurtosis coefficients for their distribution.

Description of critical thinking measurement (PENCRISAL).

TOT_PRE, PENCRISAL pre-test; RD_PRE, Deductive reasoning pre-test; RI_PRE, Inductive reasoning pre-test; RP_PRE, Practical reasoning pre-test; TD_PRE, Decision making pre-test; SP_PRE, Problem solving pre-test; TOT_POST, PENCRISAL post-test; RD_ POST, Deductive reasoning post-test; RI_ POST, Inductive reasoning post-test; RP_ POST, Practical reasoning post-test; TD_ POST, Decision making post-test; SP_ POST, Problem solving post-test; Min, minimum, Max, maximum, Asym, asymmetry; and Kurt, kurtosis.

Description of metacognition measurement (MAI).

TOT_MAI_PRE, MAI pre-test; Decla_PRE, Declarative pre-test; Proce_PRE, Procedural pre-test; Condi_PRE, Conditional pre-test; CONO_PRE, Knowledge pre-test; Plani_PRE, Planning pre-test; Orga_PRE, Organization pre-test; Moni_PRE, Monitoring pre-test; Depu_PRE, Troubleshooting pre-test; Eva_PRE, Evaluation pre-test; REGU_PRE, Regulation pre-test; TOT_MAI_POST, MAI post-test; Decla_ POST, Declarative post-test; Proce_ POST, Procedural post-test; Condi_ POST, Conditional post-test; CONO_ POST, Knowledge post-test; Plani_ POST, Planning post-test; Orga_POST, Organization post-test; Moni_ POST, Monitoring post-test; Depu_ POST, Troubleshooting post-test; Eva_ POST, Evaluation post-test; and REGU_ POST, Regulation post-test;

As we see in the description of all study variables, the evidence is that the majority of them adequately fit the normal model, although some present significant deviations which can be explained by sample size.

Next, to verify whether there were significant differences in the metacognition variable based on measurements before and after the intervention, we contrasted medians for samples related with Student’s t -test (see Table 3 ).

Comparison of the METAKNOWLEDGE variable as a function of PRE-POST measurements.

The results show that there are significant differences in the metaknowledge scale total and in most of its dimensions, where all the post medians for both the scale overall and for the three dimensions of the knowledge factor (declarative, procedural, and conditional) are higher than the pre-medians. However, in the cognition regulation dimension, there are only significant differences in the total and in the planning, organization, and monitoring dimensions. The medians are also greater in the post-test than the pre-test. However, the troubleshooting and evaluation dimensions do not differ significantly after intervention.

Finally, for critical thinking skills, the results show significant differences in the scale total and in the five factors regarding the measurement time, where performance medians rise after intervention (see Table 4 ).

Comparison of the CRITICAL THINKING variable as a function of PRE-POST measurements.

These results show how metacognition improves due to CT intervention, as well as how critical thinking also improves with metacognitive intervention and CT skills intervention. Thus, it improves how people think about thinking as well as about the results achieved, since metacognition supports decision-making and final evaluation about proper strategies to solve problems.

Discussion and Conclusions

The general aim of our study was to know whether a critical thinking intervention program can also influence metacognitive processes. We know that our teaching methodology improves cross-sectional skills in argumentation, explanation, decision-making, and problem-solving, but we do not know if this intervention also directly or indirectly influences metacognition. In our study, we sought to shed light on this little-known point. If we bear in mind the centrality of how we think about thinking for our cognitive machinery to function properly and reach the best results possible in the problems we face, it is hard to understand the lack of attention given to this theme in other research. Our study aimed to remedy this deficiency somewhat.

As said in the introduction, metacognition has to do with consciousness, planning, and regulation of our activities. These mechanisms, as understood by many authors, have a blended cognitive and non-cognitive nature, which is a conceptual imprecision; what is known, though, is the enormous influence they exert on fundamental thinking processes. However, there is a large knowledge gap about the factors which make metacognition itself improve. This second research lacuna is what we have partly aimed to shrink here as well with this study. Our guide has been the idea of knowing how to improve metacognition from a teaching initiative and from the improvement of fundamental critical thinking skills.

Our study has shed light in both directions, albeit in a modest way, since its design does not allow us to unequivocally discern some of the results obtained. However, we believe that the data provide relevant information to know more about existing relations between skills and metacognition, something which has seen little contrast. These results allow us to better describe these relations, guiding the design of future studies which can better discern their roles. Our data have shown that this relation is bidirectional, so that metacognition improves thinking skills and vice versa. It remains to establish a sequence of independent factors to avoid this confusion, something which the present study has aided with to be able to design future research in this area.

As the results show, total differences in almost all metaknowledge dimensions are higher after intervention; specifically, we see how in the knowledge factor the declarative, procedural, and conditional dimensions improve in post-measurements. This improvement moves in the direction we predicted. However, the cognitive regulation dimension only shows differences in the total, and in the planning, organization, and regulation dimensions. We can see how the declarative knowledge dimensions are more sensitive than the procedural ones to change, and within the latter, the dimensions over which we have more control are also more sensitive. With troubleshooting and evaluation, no changes are seen after intervention. We may interpret this lack of effects as being due to how everything referring to evaluating results is highly determined by calibration capacity, which is influenced by personality factors not considered in our study. Regarding critical thinking, we found differences in all its dimensions, with higher scores following intervention. We can tentatively state that this improved performance can be influenced not only by interventions, but also by the metacognitive improvement observed, although our study was incapable of separating these two factors, and merely established their relation.

As we know, when people think about thinking they can always increase their critical thinking performance. Being conscious of the mechanisms used in problem-solving and decision-making always contributes to improving their execution. However, we need to go into other topics to identify the specific determinants of these effects. Does performance improve because skills are metacognitively benefited? If so, how? Is it only the levels of consciousness which aid in regulating and planning execution, or do other factors also have to participate? What level of thinking skills can be beneficial for metacognition? At what skill level does this metacognitive change happen? And finally, we know that teaching is always metacognitive to the extent that it helps us know how to proceed with sufficient clarity, but does performance level modify consciousness or regulation level of our action? Do bad results paralyze metacognitive activity while good ones stimulate it? Ultimately, all of these open questions are the future implications which our current study has suggested. We believe them to be exciting and necessary challenges, which must be faced sooner rather than later. Finally, we cannot forget the implications derived from specific metacognitive instruction, as presented at the start of this study. An intervention of this type should also help us partially answer the aforementioned questions, as we cannot obviate what can be modified or changed by direct metacognition instruction.

Data Availability Statement

Ethics statement.

Ethical review and approval was not required for the study on human participants in accordance with the local legislation and institutional requirements. The patients/participants provided their written informed consent to participate in this study.

Author Contributions

SR and CS contributed to the conception and design of the study. SR organized the database, performed the statistical analysis, and wrote the first draft of the manuscript. SR, CS, and CO wrote sections of the manuscript. All authors contributed to the article and approved the submitted version.

This study was partly financed by the Project FONDECYT no. 11220056 ANID-Chile.

Conflict of Interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

  • Akama K. (2006). Relations among self-efficacy, goal setting, and metacognitive experiences in problem solving . Psychol. Rep. 98 , 895–907. doi: 10.2466/pr0.98.3.895-907, PMID: [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Antonietti A., Ignazi S., Perego P. (2000). Metacognitive knowledge about problem solving methods . Br. J. Educ. Psychol. 70 , 1–16. doi: 10.1348/000709900157921, PMID: [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • APA (1990). Critical thinking: A statement of expert consensus for purposes of educational assessment and instruction. Executive Summary “The Delphi Report.”
  • Arslan S. (2014). An investigation of the relationships between metacognition and self-regulation with structural equation . Int. Online J. Educ. Sci. 6 , 603–611. doi: 10.15345/IOJES.2014.03.009 [ CrossRef ] [ Google Scholar ]
  • Ávila M., Bianchetti M., González A. (2017). Uso del método “Think Aloud” en la investigación cualitativa . Pistas Educ. 39 , 26–38. [ Google Scholar ]
  • Azevedo R. (2020). Reflections on the field of metacognition: issues, challenges, and opportunities . Metacogn. Learn. 15 , 91–98. doi: 10.1007/s11409-020-09231-x [ CrossRef ] [ Google Scholar ]
  • Berardi-Coletta B., Buyer L. S., Dominowski R. L., Rellinger E. R. (1995). Metacognition and problem solving: a process-oriented approach . J. Consult. Clin. Psychol. 21 , 205–223. [ Google Scholar ]
  • Black S. (2005). Teaching students to think critically . Educ. Digest 70 , 42–47. [ Google Scholar ]
  • Choy S. C., Cheah P. K. (2009). Teacher perceptions of critical thinking among students and its influence on higher education . Int. J. Teach. Learn. Higher Educ. 20 , 198–206. [ Google Scholar ]
  • Coutinho S., Wiemer-Hastings K., Skowronski J. J., Britt M. A. (2005). Metacognition, need for cognition and use of explanations during ongoing learning and problem solving . Learn. Individ. Differ. 15 , 321–337. doi: 10.1016/j.lindif.2005.06.001 [ CrossRef ] [ Google Scholar ]
  • Dahik S., Cáneppa C., Dahik C., Feijoò K. (2019). Estrategias de Think-Aloud para mejorar la habilidad de lectura en estudiantes en el centro de idiomas en la universidad técnica de Babahoyo . Rev. Magaz. Ciencias 4 , 65–83. doi: 10.5281/zenodo.3239552 [ CrossRef ] [ Google Scholar ]
  • Deci E. L., Ryan R. M. (1985). The general causality orientations scale: self-determination in personality . J. Res. Pers. 19 , 109–134. doi: 10.1016/0092-6566(85)90023-6, PMID: [ CrossRef ] [ Google Scholar ]
  • Doganay A., Demir O. (2011). Comparison of the level of using metacognitive strategies during study between high achieving and low achieving prospective teachers . Educ. Sci. Theor. Pract. 11 , 2036–2043. [ Google Scholar ]
  • Drigas A., Mitsea E. (2020). The 8 pillars of metacognition . Int. J. Emerg. Technol. Learn. 15 , 162–178. doi: 10.3991/ijet.v15i21.14907 [ CrossRef ] [ Google Scholar ]
  • Drigas A., Mitsea E. (2021). 8 pillars X 8 layers model of metacognition: educational strategies, exercises and trainings . Int. J. Online Biomed. Eng. 17 , 115–134. doi: 10.3991/ijoe.v17i08.23563 [ CrossRef ] [ Google Scholar ]
  • Ennis R. H. (1987). “ A taxonomy of critical thinking dispositions and abilities ,” in Teaching Thinking Skills. eds. Baron J. B., Sternberg R. J. (New York: Freeman and Company; ), 9–26. [ Google Scholar ]
  • Ennis R. H. (1996). Critical Thinking. Upper Saddle River, NJ: Prentice-Hall [ Google Scholar ]
  • Facione P. A. (1990). Critical Thinking: A Statement of expert consensus for Purposes of Educational Assessment and Instruction—Executive Summary of the delphi Report. Millbrae: California Academic Press [ Google Scholar ]
  • Facione P. A. (2011). Think Critically. New York: Prentice-Hall. [ Google Scholar ]
  • Flavell J. H. (1976). “ Metacognitive aspects of problem solving ,” in The Nature of Intelligence. ed. Resnik L. B. (Hillsdale, N.J: Erlbaum; ), 231–235. [ Google Scholar ]
  • Flavell J. H. (2004). Theory of the mind development: retrospect and prospect . Merrill-Palmer Q. 50 , 274–290. doi: 10.1353/mpq.2004.0018 [ CrossRef ] [ Google Scholar ]
  • García T., Rodríguez C., González-Castro P., Álvarez-García D., González-Pienda J.-A. (2016). Metacognición y funcionamiento ejecutivo en Educación Primaria [Metacognition and executive functioning in Elementary School] . Ann. Psychol. 32 , 474–483. doi: 10.6018/analesps.32.2.202891 [ CrossRef ] [ Google Scholar ]
  • Glaser R. (1994). “ Learning theory and instruction ,” in International Perspectives on Psychological Science. Vol. 2 . eds. D’Ydewalle G., Eelen P., Bertelson B. (NJ: Erlbaum; ) [ Google Scholar ]
  • Halpern D. (1998). Teaching critical thinking for transfer across domains—dispositions, skills, structure training, and metacognitive monitoring . Am. Psychol. 53 , 449–455. doi: 10.1037/0003-066X.53.4.449, PMID: [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Halpern D. (2003). Halpern Critical Thinking Assessment Using Everyday Situations: Background and Scoring Standards. Claremont, CA: Claremont McKenna College. [ Google Scholar ]
  • Halpern D. F., Dunn D. S. (2021). Critical thinking: A model of intelligence for solving real-world problems . J. Intellig. 9 :22. doi: 10.3390/jintelligence9020022, PMID: [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Halpern D. F., Dunn D. S. (2022). Thought and Knowledge. An Introduction to Critical-Thinking . 6th Edn. New York: Taylor and Francis. [ Google Scholar ]
  • Huertas Bustos A. P., Vesga Bravo G. J., Gilando León M. (2014). Validación del instrumento “Inventario de Habilidades Metacognitivas (MAI)” con estudiantes colombianos . Praxis Saber 5 , 55–74. doi: 10.19053/22160159.3022 [ CrossRef ] [ Google Scholar ]
  • Jaramillo S., Osses S. (2012). Validación de un Instrumento sobre Metacognición para Estudiantes de Segundo Ciclo de Educación General Básica . Estud. Pedag. 38 , 117–131. doi: 10.4067/S0718-07052012000200008 [ CrossRef ] [ Google Scholar ]
  • Johnson R. H. (2008). “Critical thinking, logic and argumentation,” in Paper presented at the Conferencia Internacional: Lógica, Argumentación y Pensamiento Crítico. Santiago de Chile. January 8–11. [ Google Scholar ]
  • Klimenko O., Alvares J. L. (2009). Aprender cómo aprendo: la enseñanza de estrategias metacognitivas . Educ. Educ. 12 , 11–28. [ Google Scholar ]
  • Kramarski B., Mevarceh Z. R., Arami M. (2002). The effect of metacognitive instruction on solving mathematical authentic tasks . Educ. Stud. Math. 49 , 225–250. doi: 10.1023/A:1016282811724 [ CrossRef ] [ Google Scholar ]
  • Kuhn D., Dean D. (2004). Metacognition: a bridge between cognitive psychology and educational practice . Theory Pract. 43 , 268–274. doi: 10.1207/s15430421tip4304_4 [ CrossRef ] [ Google Scholar ]
  • Larkin S. (2009). Metacognition in Young Children. New York, NY: Routledge [ Google Scholar ]
  • Lipman M. (2003). Thinking in Education (2nd Edn.). Cambridge, MA: Cambridge University Press [ Google Scholar ]
  • Magno C. (2010). The role of metacognitive skills in developing critical thinking . Metacogn. Learn. 5 , 137–156. doi: 10.1007/s11409-010-9054-4, PMID: [ CrossRef ] [ Google Scholar ]
  • Mateos M. (2001). Metacognición y Educación. Buenos Aires: Aique [ Google Scholar ]
  • Mayor J., Suengas A., González Marqués J. (1993). Estrategias Metacognitivas. Aprender a Aprendery Aprender a Pensar. Madrid: Síntesis [ Google Scholar ]
  • Orion N., Kali Y. (2005). The effect of an earth-science learning program on students’ scientific thinking skills . J. Geosci. Educ. 53 , 387–394. doi: 10.5408/1089-9995-53.4.387 [ CrossRef ] [ Google Scholar ]
  • Ossa C., Rivas S.F., Saiz C. (2016). Estrategias metacognitivas en el desarrollo del análisis argumentativo En IV Seminário Internacional Cognição, aprendizagem e desempenho. eds. Casanova J., Bisinoto C., Almeida L. (Braga: Livro de atas; ), 30–47. [ Google Scholar ]
  • Özsoy G. (2011). An investigation of the relationship between metacognition and mathematics achievement . Asia Pac. Educ. Rev. 12 , 227–235. doi: 10.1007/s12564-010-9129-6 [ CrossRef ] [ Google Scholar ]
  • Paul R., Elder L. (2001). Critical Thinking Handbook: Basic Theory and Instructional Structures. Dillon Beach, CA: Foundation for Critical Thinking [ Google Scholar ]
  • Paul R., Elder A. D. (2006). Critical Thinking. Learn the Tools the Best Thinkers Use. Upper Saddle River, NJ: Pearson/Prentice Hall [ Google Scholar ]
  • Rivas S. F., Saiz C. (2012). Validación y propiedades psicométricas de la prueba de pensamiento crítico PENCRISAL . Rev. Electrón. Metodol. Aplic. 17 , 18–34. [ Google Scholar ]
  • Rivas S. F., Saiz C., Ossa C. (2017). “ Desarrollo de las estrategias metacognitivas mediante el programa de instrucción en pensamiento crítico ARDESOS .” in II Seminario Internacional de 660 Pensamiento Crítico. Manizales (Colombia). de octubre de 11–13, 2017. [ Google Scholar ]
  • Ryan R. M., Deci E. L. (2000). Intrinsic and extrinsic motivations: classic definitions and new directions . Contemp. Educ. Psychol. 21 , 54–67. doi: 10.1006/ceps.1999.1020, PMID: [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Saiz C. (2017). Pensamiento Crítico y Cambio. Madrid: Pirámide. [ Google Scholar ]
  • Saiz C. (2020). Pensamiento Crítico y Eficacia. 2ª Edn. Madrid: Pirámide. [ Google Scholar ]
  • Saiz C., Rivas S. F. (2008). Evaluación en pensamiento crítico: una propuesta para diferenciar formasde pensar . Ergo. Nueva Época 22-23 , 25–66. [ Google Scholar ]
  • Saiz C., Rivas S. F. (2011). Evaluation of the ARDESOS program: an initiative to improve criticalthinking skills . J. Scholar. Teach. Learn. 11 , 34–51. [ Google Scholar ]
  • Saiz C., Rivas S. F. (2012). Pensamiento crítico y aprendizaje basado en problemas . Rev. Docenc. Univ. 10 , 325–346. doi: 10.4995/redu.2012.6026 [ CrossRef ] [ Google Scholar ]
  • Saiz C., Rivas S. F. (2016). New teaching techniques to improve critical thinking . DIAPROVE Methodol. 40 , 3–36. [ Google Scholar ]
  • Sánchez-Castaño J. A., Castaño-Mejía O. Y., Tamayo-Alzate O. E. (2015). La argumentación metacognitiva en el aula de ciencias . Rev. Latin. Cienc. Soc. 13 , 1153–1168. doi: 10.11600/1692715x.13242110214 [ CrossRef ] [ Google Scholar ]
  • Sastre-Riba S. (2012). Alta capacidad intelectual: perfeccionismo y regulación metacognitiva . Rev. Neurol. 54 , S21–S29. doi: 10.33588/rn.54S01.2012011, PMID: [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Sattin D., Magnani F. G., Bartesaghi L., Caputo M., Fittipaldo A. V., Cacciatore M., et al.. (2021). Theoretical models of consciousness: a scoping review . Brain Sci. 11 :535. doi: 10.3390/brainsci11050535, PMID: [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Schraw G. (1998). Promoting general metacognitive awareness . Instr. Sci. 26 , 113–125. doi: 10.1023/A:1003044231033, PMID: [ CrossRef ] [ Google Scholar ]
  • Schraw G., Dennison R. (1994). Assessing metacognitive awareness . Contemp. Educ. Psychol. 19 , 460–475. doi: 10.1006/ceps.1994.1033, PMID: [ CrossRef ] [ Google Scholar ]
  • Schroyens W. (2005). Knowledge and thought: an introduction to critical thinking . Exp. Psychol. 52 , 163–164. doi: 10.1027/1618-3169.52.2.163, PMID: [ CrossRef ] [ Google Scholar ]
  • Shekhar M., Rahnev D. (2021). Sources of metacognitive inefficiency . Trends Cogn. Sci. 25 , 12–23. doi: 10.1016/j.tics.2020.10.007, PMID: [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Tamayo-Alzate O., Cadavid-Alzate V., Montoya-Londoño D. (2019). Análisis metacognitivo en estudiantes de básica, durante la resolución de dos situaciones experimentales en la clase de Ciencias Naturales . Rev. Colomb. Educ. 76 , 117–141. doi: 10.17227/rce.num76-4188 [ CrossRef ] [ Google Scholar ]
  • Ugartetxea J. (2001). Motivación y metacognición, más que una relación . Relieve 7 :4442. doi: 10.7203/relieve.7.2.4442 [ CrossRef ] [ Google Scholar ]
  • Urdaneta M. (2014). Diálogo para la reflexión: compartiendo la experiencia de aula desde el proyecto pedagógico . Innov. Educ. 16 , 43–49. doi: 10.22458/ie.v16i21.902 [ CrossRef ] [ Google Scholar ]
  • Van der Stel M., Veenman M. V. J. (2010). Development of metacognitive skillfulness: a longitudinal study . Learn. Individ. Differ. 20 , 220–224. doi: 10.1016/j.lindif.2009.11.005 [ CrossRef ] [ Google Scholar ]

A critical issue: assessing the critical thinking skills and dispositions of undergraduate health science students

  • Open access
  • Published: 15 August 2023
  • Volume 2 , article number  21 , ( 2023 )

Cite this article

You have full access to this open access article

the 3 key attitudes necessary for critical thinking are

  • Anthony Dissen   ORCID: orcid.org/0000-0003-0828-387X 1  

2058 Accesses

Explore all metrics

Critical thinking skills and dispositions are significantly important factors that aid in one’s ability to understand and solve complex problems. Within the field of higher education, critical thinking skills and dispositions are valued and encouraged but are not always fully developed at the completion of the undergraduate degree experience. Those students who are studying to enter the healthcare field are particularly in need of strong critical thinking skills and dispositions in order to provide patients and communities with effective, evidence-based care in the midst of an ever-increasingly complex environment. What program of study a student selects, and the unique curriculum design of that program, may impact the development of these skills and dispositions during undergraduate study. This quantitative study sought to explore and understand the critical thinking skills and dispositions of undergraduate students enrolled in a BS in Health Science (BSHS) degree program, and how these skills in particular compared to the national student population. During the Spring 2022 academic semester, 140 senior-level BSHS students were given the opportunity to complete the California Critical Thinking Skills Test and the California Critical Thinking Disposition Inventory. Results show less development in critical thinking skills when compared to the national student population, with Numeracy skills being the most poorly developed, and Truth-Seeking being the most inconsistent disposition possessed by the student participants. The implications of these findings, particularly for faculty who teach students planning to enter the healthcare field, are offered, including recommendations for curricular design and modification.

Similar content being viewed by others

the 3 key attitudes necessary for critical thinking are

Chinese medical students’ disposition for critical thinking: a mixed methods exploration

the 3 key attitudes necessary for critical thinking are

Clear skies ahead: optimizing the learning environment for critical thinking from a qualitative analysis of interviews with expert teachers

A meta-analysis of the effects of non-traditional teaching methods on the critical thinking abilities of nursing students.

Avoid common mistakes on your manuscript.

1 Introduction

Critical thinking skills and dispositions allow students to gather, interpret, and reflect upon how new information and data can be applied to address personal and professional needs and situations [ 1 ]. While there is no one singular definition, critical thinking is often described as an active, attentive, and purposeful method by which one analyzes facts and information to form a judgment or accomplish a specific goal [ 2 ]. This is an important set of skills and attitudes for students in the health sciences to possess, as critical thinking allows one to be comfortable with the possibilities of new perspectives and ideas, which is crucial for healthcare practice. Additionally, critical thinking is necessary for the development of current and future clinical reasoning skills [ 3 ]. This is partly due to the need for students to learn to be appropriately skeptical when reviewing treatment techniques, best practice guidelines, and new research that may impact their means of practice and care delivery [ 4 ]. To be able to work effectively and rationally in the healthcare and medical fields, critical thinking skills and dispositions must be properly developed and supported in educational settings [ 5 ].

The Carnegie Foundation for Teaching and Learning [ 6 ] has proposed four major categories of recommendations for the reform of medical and health science education: Teaching and learning to promote integration, promoting habits of inquiry and improvement, individualizing learning, using standardized assessments, and supporting the progressive development of professional identity. These recommendations parallel the subsequent evolution of education and teaching theories over the past century [ 7 ], namely the dynamic nature of the learning and the teaching processes, and the importance of the teaching environment. Both undergraduate and graduate-level health science educational programs are recognizing that these reforms are needed in order to meet the current and future demands being placed upon healthcare professionals, and that the environment in which learning is taking place is as important as the content being shared. Much of the emphasis behind these proposed reforms is centered around the need for future healthcare professionals to not only know the didactic and intellectual aspects of their work, but to also be able to solve complex problems and to think critically about their work and their identities as healthcare workers.

As such, critical thinking is a fundamental aspect of quality clinical decision-making among a variety of healthcare professions. To be able to think rationally and clearly, especially when encountering problems and uncertainty at work, is a necessary skill to be effective in the kinds of environments and situations that are common in the healthcare and medical fields [ 5 ]. Undergraduate health-focused students who have critical thinking education embedded into their curriculum have shown improvements in their problem-solving skills [ 8 ], which may have particularly important outcomes in promoting patient safety. Health education programs that teach critical thinking have been found to help reduce diagnostic errors, improve overall patient safety, and reduce cognitive those biases that can lead to poorer patient outcomes and professional practice [ 9 ]. This need for critical thinking is not just present in professional practice, but during pre-professional educational experiences as well, where the ability to enhance the capacity for problem-solving and wider reasoning is necessary to perform well academically [ 10 ]. This is especially important considering the significant pressures that are placed upon students during their academic careers at the undergraduate level to perform well academically to secure spots in clinical and graduate programs after completing their baccalaureate degrees.

The consequences of not possessing critical thinking skills in healthcare and medicine can be significant. Healthcare professionals who do not possess a capacity for critical thinking and problem-solving skills have a measurable impact on the health of their patients and communities, specifically poor rates of compliance with health recommendations and treatments, as well as direct harm to the health and wellbeing of those being served [ 11 ]. Given the importance of having a healthcare workforce that can practice critical thinking as part of their professional work, it is necessary to better understand how critical thinking skills and attitudes can be instilled within healthcare professionals, both during their pre-professional education and throughout their professional careers.

By understanding the current level of critical thinking skills and attitudes of health science students before they enter their professional fields of practice, it can be possible to identify those areas of strength, those areas of weakness, and how to make changes as needed within health science education programs to better prepare students for a professional field that demands strong critical thinking skills, attitudes, and applications. In addition, by understanding how skills, attitudes, and overall academic performance relate to one another, health science education programs can be more purposeful in how they advise students, develop curriculum, and track student progress throughout their academic journey.

This study sought to answer the following research questions:

RQ1: What are the critical thinking skills of undergraduate health science students at a four-year, public, comprehensive state university? RQ2: How do the overall critical thinking skills of undergraduate health science students at a four-year, public, comprehensive state university compare to the national population of undergraduate students? RQ3: What are the dispositions towards the importance of critical thinking of undergraduate health science students at a four-year, public, comprehensive state university? RQ4: To what degree is overall academic performance as measured by grade point average (GPA) a reasonable indicator of critical thinking development?

2 Study methods

The theoretical framework for this study was heavily influenced by the work of Dr. Peter Facione, whose seminal work in the field of critical thinking assessment is utilized by educators, employers, and policymakers who recognize the need for students and alumni of institutions of higher education to be able to properly demonstrate these skills and dispositions as a result of their time in higher education [ 12 ]. An additional component to the assessment work developed by Facione is the need for not only developing critical thinking skillsets, but also the development of those dispositions and attitudes, what Facione and colleagues call the critical spirit, that are needed in order to possess the internal drive and motivation to apply critical thinking skills in various aspects of one’s personal, professional, and social spheres of life [ 13 ].

The work done by Facione in the development of this framework has been studied and utilized by other researchers, particularly around assessing the critical thinking skills and disposition of healthcare professionals and health science students. This framework has been utilized by Nair et al. [ 14 ] in the development of their Critical Thinking Self-Assessment Scale, which was built specifically to be utilized by nurses as part of their own critical thinking self-assessment. Facione’s critical thinking assessment work has also been used to evaluate the effectiveness of different educational interventions with regard to their ability to improve critical thinking in pre- and post-exposure to treatment. A 2020 study by Wu et al. [ 15 ] utilized the disposition assessment tool developed using Facione’s work to evaluate the effectiveness of mind mapping exercises to increase critical thinking inclination of students. Additionally, the assessment tools built from this framework have been used to evaluate the potential predictors of critical thinking abilities of undergraduate students, such as taking courses online or transferring courses from another college or university [ 16 ].

2.1 Population and sample selection

The participants for this study were BS in Health Science (BSHS) students enrolled at a four-year, public, comprehensive state university located on the east coast of the United States. All participants were 18 years of age or older, were enrolled in one of five sections of the senior-level BSHS research course that was offered in the Spring 2022 academic semester, and agreed to participate in this study. Two additional sections of the course were offered that did not participate in the data collection efforts of this study. Participants in this study were those students in attendance during the class period that was utilized to administer the critical thinking assessment tools.

Students had declared one of the following concentrations within the BSHS degree: General Concentration, Pre-Occupational Therapy, Pre-Physical Therapy, or Pre-Communication Disorders. Participants were given the opportunity to complete each assessment tool in a voluntary capacity and were not required to complete either or both assessments under any conditions. As the study participants were recruited as part of the senior-level research course of the BS in Health Science degree, all participants were nearing the culmination of their undergraduate career at the time of data collection. No exclusionary criteria were used in selecting study participants beyond their enrollment within the BS in Health Science degree and current enrollment in the senior-level research course. All data collection took place after obtaining all necessary approvals from the Stockton University IRB Committee, including CITI training by the researcher. IRB approval was obtained after submitting all required documentation, proof of CITI training, study procedures, and informed consent documents (Stockton University IRB Approval Number #2021.175). A total of 194 students were enrolled in the senior-level research course during the Spring 2022 semester, with 5 sections of this course agreeing to participate in data collection efforts, who in total represented 140 enrolled students or 72% of the total student population enrolled in the senior-level research course in the Spring 2022 semester.

2.2 Instrumentation

The researcher used the California Critical Thinking Skills Test (CCTST) and the California Critical Thinking Disposition Inventory (CCTDI) for data collection purposes, and administered each assessment to students enrolled in the senior-level research course for the BS in Health Science degree. These tests are owned and administered by Insight Assessment and were developed in part by the work in Critical Thinking Assessment (CTA) theory as described by Peter et al. [ 12 , 13 ]. The CCTST is a 34-item, multiple-choice, non-discipline-specific test that evaluates critical thinking along 8 different subscales: Analysis, Interpretation, Inference, Evaluation, Explanation, Inductive Reasoning, Deductive Reasoning, and Numeracy. It is estimated that the CCTST takes an average of 45 min to complete. Each multiple-choice question item is related to generic situations not unique to any particular domain of work. Scores are developed using a proprietary formula, and range from low or non-manifested, weak development, moderate development, strong development, and superior development [ 17 ].

The CCTDI consists of 75 generic statements with a 6-point Likert-selected response scale that is also non-discipline specific. The CCTDI test evaluates disposition towards critical thinking along 7 different subscales: Truth Seeking, Analyticity, Open-Mindedness, Systematicity, Confidence in Reasoning, Inquisitiveness, and Maturity of Judgement. It is estimated that the CCTDI takes an average of 15–20 min to complete. Scores can range from 5 to 60 for each subscale and indicate a level of disposition ranging from weak disposition development, positive disposition development, or strong disposition development [ 18 ]. Each tool is delivered via an online web-based portal owned and operated by Insight Assessment. Both of these tools were selected due to their previously established validity and reliability in assessing the critical thinking skills and attitudes of study participants [ 13 ]. The CCTST has documented strength in both the content validity of each of the skill domains as well as construct validity. Validity has been demonstrated by correlational studies exploring critical thinking skills with additional measurements such as GPA and GRE scores, as well as for criterion (predictive) validity [ 13 , 19 , 20 ]. The CCTST has also shown strong internal reliability with documented Cronbach’s Alpha coefficients ranging from 0.60 to 0.78 on individual scales, and 0.90 or above for the overall measure [ 17 ]. See Appendix A for the breakdown of the score ranges that pertain to each level of development for the CCTST and the CCTDI.

The CCTDI has also been researched and assessed for its validity and reliability, with the inventory items being found to be valid with an internal consistency reliability score of 0.887 [ 21 ]. This has also been shown with a cross-cultural application of the CCTDI, with high content validity across cultural versions of the inventory with alpha coefficients ranging from 0.81 to 0.97 [ 22 ]. A recent meta-analysis by Orhan explored the reliability of the CCTDI using 98 alpha values across 87 unique studies of the CCTDI. Orhan found the CCTDI to be reliable across samples with an alpha value of 0.83 [ 23 ]. These studies have shown strong consistent validity and reliability for the CCTDI as an instrument for the assessment of the critical thinking dispositions of students.

To assure ongoing validity and reliability for both the CCTST and the CCTDI in this study, both tools were delivered exactly as instructed by Insight Assessment. No variations were made to either instrument, no questions or sections were added, omitted, or changed, and study participants met all requirements for participation as described by the Insight Assessment user’s manual [ 17 , 18 ].

2.3 Data collection and management

All data collection took place during the first 2 weeks of March 2022. Study participants and faculty were informed that participation in the data collection phase of this study was purely voluntary and that there would be no penalty for not participating in the study. All participant information has been kept confidential, and participants were provided with an informed consent form prior to the data collection beginning. Participants were also informed that the information collected for this study would not be shared with members of the public in any identifiable way and that all study findings would be presented as aggregated data. All data collection took place during the traditional meeting time of each confirmed section of the senior-level research course, with two sections meeting via Zoom conference, and three sections meeting face-to-face in a university computer lab.

Distribution and completion of each of the assessments took place via the online portal offered through Insight Assessment. Each class meeting allowed for adequate time for both assessments to be administered in a single class meeting. Data collection took place as an in-class activity for that day’s class meeting, and there was no course penalty for not taking part in the data collection. Should a student have declined to participate in the in-class activity during the day of data collection, they would have been provided with an assigned reading on critical thinking in the healthcare field that would be utilized for in-class discussions after the data collection activity had concluded. No student declined to participate in the study. In an effort to reduce student anxiety, students were assured that all results were purely for the purpose of assessment and that class rankings or comparisons would not be shared. Additionally, there was no additional course credit given for participation, nor were there any extra credit or similar potentially coercive incentives provided for data collection participation. To ensure each student participant had the opportunity to access the online platform, all in-person meetings took place in a university computer lab. For the 2 sections that met with the researcher via Zoom conferencing, all students had access to a laptop or computer with internet access. For these sections, the faculty member teaching the course was present in the Zoom room. It should be noted that since these meetings took place over Zoom, the continuity of the environment in which students were completing the assessment could not be guaranteed when compared to those students completing the assessment in a university computer lab.

2.4 Data analysis

All data collection took place during the first 2 weeks of March 2022, with all data being collected before the beginning of the Spring break period of the term. After all data collection was completed, reports were generated by Insight Assessment to provide results of Overall Critical Thinking Skills, Critical Thinking Skills across each Subscale, Overall Critical Thinking Dispositions, and Critical Thinking Dispositions across each Subscale. The overall critical thinking skill score population means for both the national undergraduate student population and the national health science undergraduate student population were obtained through Insight Assessment to allow for comparison between these two national populations and the study sample.

Descriptive statistics were generated for overall and subscale scores for the CCTST and the CCTDI, and frequency statistics were generated for ethnicity, gender, and declared concentration within the BSHS degree. T-tests for independent samples were conducted for gender for both the CCTST and the CCTDI. Overall student scores for the CCTST were analyzed for comparison to the national population of undergraduate students via one sample t-test. For the demographic variable of Degree Concentration, which includes General Concentration, Pre-Occupational Therapy Concentration, Pre-Physical Therapy Concentration, and Pre-Communication Disorders Concentration, the researcher conducted a one-way analysis of variance. All statistical analysis was conducted using the IBM SPSS software Version 25.

3.1 Research question 1

RQ1 sought to understand the critical thinking skills of undergraduate health science students at a four-year, public, comprehensive state university by utilizing the CCTST offered through Insight Assessment. Of the 140 total students who were invited to participate in this, 130 students completed the CCTST, as 10 students in total did not attend class on the day of data collection. Using the criteria set forward by Insight Assessment, the data results from 5 student participants were removed from the final report of the data, as they completed the CCTST in under 15 min, which would not be considered an adequate amount of time to thoughtfully respond to each question being asked. As a result, a total of 125 students completed the CCTST in full, representing approximately 89% of the potential sample. The mean age was 22 years of age, with 79% indicating female gender identity. See Table 1 for ethnicity findings and Table 2 for the frequency of each concentration identified within the BS in Health Science degree.

The CCTST is designed to assess and measure the critical thinking and numeracy skills that are used in the process of reflective reasoning in order to make an informed judgment about what to do, or what to believe, in a particular situation or setting. The CCTST provides an overall critical thinking score, as well as scores across 8 sub-domains: Analysis, Inference, Evaluation, Induction, Deduction, Interpretation, Explanation, and Numeracy. A brief description of each domain is described in Appendix B .

The CCTST scores are calculated by Insight Assessment via a proprietary formula for both the overall score and the score of each sub-domain. Study sample scores for overall critical thinking ability, as well as across each sub-domain, are shown via descriptive statistics in Table 3 . One-way analysis of variance showed no statistically significant difference ( p  = 0.708) in the Overall Critical Thinking Skills Scores of participants among the different degree concentration options (Pre-Occupational Therapy, Pre-Physical Therapy, Pre-Communication Disorders, and General) within the BS in Health Science students (see Tables 4 , 5 ).

3.2 Research question 2

RQ2 sought to answer was to understand how the overall critical thinking skills of undergraduate health science students at a four-year, public, comprehensive state university compared to the national population of undergraduate students. Aggregate data provided by Insight Assessment shows that the population mean score for overall critical thinking skills of four-year college/university undergraduate students is currently 75.3, which can be compared to the overall critical thinking skills score of 69.96 for the study’s sample. The results of the one-sample t-test showed that the overall critical thinking skills score of the study sample is significantly lower than that of the national four-year college/university undergraduate student population (see Table 6 ).

As Insight Assessment does not collect aggregate data for the sub-domain measurements, comparison between the national four-year college/university undergraduate student population and the study sample for each sub-domain was not possible.

3.3 Research question 3

RQ3 sought to understand the dispositions towards the importance of critical thinking of undergraduate health science students at a four-year, public, comprehensive state university. Of the 140 total students who were invited to participate in this, 130 students completed the CCTDI, as 10 students in total did not attend class on the day of data collection, representing approximately 93% of the potential sample. The mean age was 22 years of age, with 80% indicating female gender identity. See Table 7 for ethnicity findings, and Table 8 for frequency of each concentration identified within the BS in Health Science degree. It is important to note that the sample size is larger for RQ4 (n = 130) than for RQ1, RQ2, and RQ3 (n = 125), as all students who completed the CCTDI did so at or above the minimum amount of time deemed necessary to ensure validity and accuracy of the results.

The CCTDI is designed to assess the critical thinking mindset and attitudes of individuals toward critical thinking. The CCTDI provides scores across 7 subdomains: Truth-Seeking, Open-Mindedness, Inquisitiveness, Analyticity, Systematicity, Confidence in Reasoning, and Maturity of Judgment. A brief description of each domain is described in Appendix C .

Study sample scores for overall critical thinking dispositions, as well as across each sub-domain, are shown via descriptive statistics in Table 9 , with the sub-domain of Inquisitiveness showing the highest mean score of 46.5, and the sub-domain of Truth-Seeking showing the lowest mean score of 35.4. It is important to note that there are no national population means available for comparative purposes, as Insight Assessment does not collect this kind of national mean data for the CCTDI. The reason for this is that there is no correct or incorrect answer for each of the 6-point Likert questions asked in the CCTDI, and there is no ideal mean score for study results to be measured against.

3.4 Research question 4

RQ4 sought to understand to what degree overall academic performance, as measured by grade point average (GPA), is a reasonable indicator of critical thinking development. To help correct for multiple comparisons, a Bonferroni Correction was conducted. An adjusted p-value was computed by dividing a 0.05 level of significance by the number of correlations for both the CCTST and the CCTDI. For the CCTST, the adjusted p-value (0.05/9) was 0.005. For the CCTDI, the adjusted p-value (0.05/8) was 0.006. Tables 10 and 11 shows the correlation matrix between Critical Thinking Skills and GPA, and Critical Thinking Dispositions and GPA, respectfully, that indicated a statistically significant relationship. For both tables, relationships that are significant at the 0.05 level are marked with a single asterisk (*) and those that are significant at the adjusted p-value levels are marked with a double asterisk (**). Pearson correlation shows a statistically significant positive correlation between GPA and overall critical thinking skills (0.235, p  = 0.008), as well as across all critical thinking subscales (Table 10 ), with the subscale of numeracy showing the highest correlation with GPA (0.300, p  = 0.001). Pearson correlation shows a statistically significant positive correlation between GPA and the critical thinking disposition subscale of systematicity only (0.175, p  = 0.047), with no other subscale showing a statistically significant correlation (Table 11 ).

4 Discussion

The aim of this study was to understand the critical thinking skills and dispositions of undergraduate students enrolled in a BS in Health Science degree program at a four-year university. The findings of this study are in agreement with the published research pertaining to critical thinking skills development in undergraduate students as a whole, as some estimates have described that 45% of undergraduate students do not show meaningful improvement in their critical thinking skills upon graduation, with even this number potentially being underestimated [ 24 ]. As this study was not longitudinal in nature, it is not known to what degree critical thinking skills or dispositions did or did not improve over the course of a student’s higher education experience. Rather, this study provides a snapshot of the skills and dispositions found at the culmination of their program of study. Therefore, the findings of this study do not necessarily suggest a failure to develop critical thinking skills and dispositions of this particular Health Science undergraduate program. Instead, it provides insight into the degree to which critical thinking skills and attitudes have been developed upon the conclusion of academic study, with opportunities to evaluate ways in which to further enhance critical thinking skill and disposition development by understanding the current baseline.

Earlier research conducted by Keeley et al. [ 25 ] points to a common resistance of students to engage in critical thinking, which these authors suggest may be due to a generalized resistance to engaging in different forms of learning and studying behaviors than they have previously utilized in their education in an effort to “avoid change, work, and pain.” The authors also suggest that students who do not regularly engage in self-reflection (i.e. why am I resistant to engaging in critical thinking?) are less likely to be aware of their hesitation in the first place.

Another potential reason for this deficiency in critical thinking skill development may be pedagogical in nature. Higher education pedagogy is often content-based and seeks to imbue students and learners with deep knowledge about a series of subjects, whereas a more critical thinking-oriented pedagogy is rooted in teaching students and learners how to think complexly and across a number of different areas [ 26 ]. As a result of a heavily content-based pedagogy, undergraduate students may not be receiving the kind of complex and problem-based learning environment needed to develop a more robust critical thinking skillset. Research by Matthews & Lowe also suggests both pedagogical and environmental reasons as to why students may be resistant to engaging in more critical thinking and critically reflective mindsets [ 27 ]. Particularly, these researchers highlight the need for the development of the critical thinking disposition (the critical spirit described by Facione) in order for students to overcome resistance to both developing and utilizing critical thinking skills in their educational and professional endeavors. Without possession of a strong disposition toward critical thinking, more overt resistance to the utilization of critical thinking may remain.

Participants in this study showed the strongest development in Inference and Induction skills. Inference, the ability to draw logical conclusions based on presented data, is an important subdomain of critical thinking skills. Healthcare practice and research both require the utilization of inferential reasoning in order to appropriately draw conclusions and make recommendations in situations and environments that are not always pristine or ideal [ 28 ]. This allows for the greater development of a “what if?” mindset that can be of significant importance in health-related environments. The similar level of development found within induction is interesting to note, as induction can be seen as a sub-category of inferential reasoning. Clinical reasoning requires the development and application of inductive reasoning in order to make larger generalizations and conclusions based on the individual clinical scenarios or patterns that are being witnessed and observed [ 29 ]. While development in the areas of Inference and Induction was only at a moderate level, as opposed to strong or superior development as described by the CCTST, it is still important to note that these areas are of significant importance when it comes to future work in the healthcare field.

What starts to become more concerning are the areas within critical thinking skillsets that were more weakly developed and demonstrated in this study. Weak development in the area of evaluation is worthy of special attention, as the healthcare field is riddled with dubious claims, misinformation campaigns, and conspiracy theories. Recent research done by Lantian, Bagneux, Delouvée, & Gauvrit provided insight into the link between evaluative and critical thinking abilities and subscribing to conspiratorial beliefs and theories [ 30 ]. Courses that emphasize evaluation skills have been shown to reduce adherence to pseudoscientific beliefs while also building a more skeptical frame of mind when coming across new information or claims [ 31 ].

The skillset with the lowest level of development was numeracy, with weak to no development in this area being shown by the CCTST. This is, in some ways, not surprising, as adults in the United States have been found to perform well below average in numeracy skills when compared to adults in other developed nations according to the Organization for Economic Cooperation and Development [ 32 ]. However, in this present study, it must be noted that not only was numeracy the most poorly developed critical thinking skillset, numeracy mean scores fell within the weak to not developed range. This is a finding of great importance, as numeracy is a required skill within the field of healthcare. Regarding critical thinking as a whole, the study sample’s mean score was 69.96 for overall critical thinking skills, which was statistically significantly lower than the overall critical thinking skills of 4-year college/university undergraduate students’ mean score of 75.3. Utilizing the criteria provided in the CCTST, the study sample mean shows weak to moderate development, whereas the national student population shows moderate development at the higher end of the moderate development range. This shows that not only do the study participants show lower development in their critical thinking skills when compared to the national population, but that the study participants are a full category of development lower.

Results show that the majority of dispositions assessed in the CCTDI showed positive development among the study participants. Open-Mindedness, Inquisitiveness, Analyticity, and Confidence in Reasoning were all found to fall within the positive range of personal development. Higher scores on the CCTDI have been found to be associated with greater problem-solving skills, showing that these affective qualities are important in the overall critical thinking attributes of students [ 33 ]. Open-mindedness and inquisitiveness are especially important dispositions to possess, as they are paramount to supporting the desire to learn and to enhance personal knowledge within students, which has further been associated with better student performance in higher education [ 34 ].

Particularly with students pursuing health-related careers, open-mindedness again has been found to be associated with academic success and graded work in courses [ 35 ]. While these other domains of analyticity and confidence in reasoning are associated with problem-solving overall, they are not as predictive of student success and readiness as open-mindedness and inquisitiveness [ 36 ], although higher dispositions overall are an important aspect of building problem-based learning skills.

What is perhaps most concerning amongst the findings pertaining to this research question is that Truth-Seeking showed the lowest disposition development, with results showing inconsistent to ambivalent demonstration. Truth-seeking is a necessary disposition to possess in order to seek out the best possible evidence and information to understand a situation or issue. As such, truth-seeking behavior has been described as the main predictive dispositional factor of an individual possessing a robust overall critical thinking behavior [ 37 ]. In particular, truth-seeking allows one to question their previously held beliefs or ideas about a topic, which is critical in the healthcare field, as new information and science are always coming forward. This new information often may displace or change previously held theories or practices, and a truth-seeking disposition is required in order to critically evaluate and accept new information that is found to be factually based.

Part of the reason why dispositions and attitudes towards Truth-Seeking may be so hard to foster is the subjective and often abstract nature of what constitutes truth, which is then further compounded by the copious amounts of information that students are tasked with processing when attempting to determine factualness. As described by Arth et al. [ 38 ], “…information is available to people in unrecordable amounts and insurmountable ways.” The sheer amount of information that students are being confronted with is only increasing, and without proper information literacy preparation, and particularly digital information literacy, students may be both unprepared and unmotivated to seek out that information which would point towards the truth. This point is reinforced by Gibbs [ 39 ], who emphasizes the additional consideration of trust in self. Without a level of trust in one’s own ability to both seek out true information and simultaneously recognize false or misleading information, students may not possess the confidence necessary to develop a stronger attitudes towards truth-seeking as a behavior.

Regarding the findings pertaining to correlations between GPA and critical thinking skills and dispositions, academic performance and GPA have been shown to be associated with greater critical thinking skill development [ 40 ]. And while GPA is not the only indicator of skill development, overall academic performance and success may be one way of measuring the potential for critical thinking skillset enhancement. The finding of numeracy being the most positively correlated subscale with GPA is an important one, given the overall poor development of numeracy skill development in this study sample. However, numeracy as a skill that was shown to be poorly developed in this study may be impacted by more than overall GPA and academic development. Within the research seeking to understanding why mathematics and numeracy skills are often poorly developed in American students, negative stereotypes, stigma, and poor sense of self have been identified as significant influences. The psychological impact of negative self-stereotyping can be a double-edged sword, both in terms of instructor biases towards what kind of student tends to be better at mathematics, as well as student self-belief regarding whether or not they are the kind of student who is good at math [ 41 ]. The impact of stereotype threat on mathematics and numeracy achievement has been identified as a potential key factor in the overall lack of mathematics development across student groups and demographics [ 42 ], with female-identifying students in particular being highly vulnerable to these stereotyping images and messages [ 43 ]. Considering the high percentage of female-identifying students within this study, the potential impact of stereotyping and stereotype threat, particularly its role in mathematics and numeracy skill development and utilization, cannot be ignored.

With critical thinking dispositions, the fact that systematicity was the only subscale found to be associated with GPA is in some ways not surprising, as systematicity is the tendency to approach problems in an ordered, disciplined, and systematic way. Those with higher GPAs may naturally be inclined to a more systematic way of approaching their work and studies, which may explain this correlation. However, it should also be noted that no other disposition subscale was found to be correlated with GPA, which brings attention to the fact that GPA and academic grade achievement may not be an indicator of disposition and attitude towards critical thinking. This highlights the limitation of using GPA as a barometer for critical thinking development, as it cannot fully capture or predict how a student will conceptualize and utilize critical thinking in their personal or professional lives.

However, this finding does highlight the phenomenon that students may possess critical thinking skills but not possess the disposition necessary to put these skills into use, which may in part be influenced by the dispositions of the educators who are teaching these students. A recent study by Shin et al. [ 44 ] explored the role of a critical reflection competency program for nurse educators in improving the educators’ dispositions. Participation in a 4-week critical reflection competency program was found to improve the critical thinking dispositions and teaching efficacy of nurse educators, which simultaneously allows for greater opportunity for nursing educators to imbue these dispositions and attitudes within their students. How an educator is projecting their own attitudes towards the importance of critical thinking utilization may have a significant impact on how they are not only designing curriculum and teaching methods, but also in how they are creating a general environment that fosters a curious mind and a stronger disposition towards employing critical thinking skills in work.

An additional influential factor on the development of critical thinking dispositions may be the opportunity for a student to explore and utilize creativity in their classroom. Qiang et al. [ 45 ] found that a student’s critical thinking disposition was positively related to their self-concepts of creativity and scientific creativity in particular. This was further emphasized by Khoshgoftar et al. [ 46 ], who found a direct relationship with critical thinking dispositions and reflective creative capacities. The significance of these findings are two-fold. First, that classroom learning opportunities that emphasize creativity and reflection opportunities may help to further bolster critical thinking dispositions within students, and secondly, that a student’s ability to be reflective and creative may not always be properly captured in GPA scoring. Educators, particularly those working with students in the health sciences, may find benefit in not only improving their own dispositions towards critical thinking, but also find opportunities to properly assign, assess, and capture reflection and creative capacity in their students to further enhance student disposition development.

4.1 Implications for practice

The findings of this study are of great importance, as future healthcare professionals need to possess the critical thinking skills and dispositions necessary to perform their work accurately and safely, especially given a work environment that is ever-increasing in its complexity. As this study was conducted with pre-professional health science students, the ways in which the findings of this study may be applied to the field of health pre-professional education are specific to the development of these skills and dispositions before clinical education and/or encounters with patients or community members begins. This speaks specifically to the general development of cognitive skills and attitudes versus clinical skills and attitudes, which would be developed during their post-baccalaureate education and training.

An important area to note is the correlational relationship that exists between the different subscales of both the CCTST and the CCTDI, particularly those correlations that showed the strongest relationship to one another. Overall critical thinking skill was most strongly correlated with analysis, inference, induction, and deduction skills, which provides insight into ways to focus potential curricular and pedagogical changes that may work to increase overall critical thinking skills within students. Course assignments, projects, educational lessons, and readings that require students to utilize analytical, inferential, and both inductive and deductive skills may be of particular benefit to shaping an overall improvement and strengthening of critical thinking within students. Numeracy skills, which were the most poorly developed, were most positively correlated with explanatory skills. This is an important finding, as strengthening explanatory skills, which refers to a student’s ability to defend and justify a belief or a response to a question, may have a simultaneous benefit of supporting a student’s development in numeracy.

Regarding critical thinking dispositions, while truth-seeking was the most poorly developed attitude, it also showed the strongest correlation with overall critical thinking dispositions. Therefore, in an effort to improve truth-seeking dispositions within students, exposing students to opportunities that will overall strengthen and support their dispositions towards critical thinking may have the added benefit of supporting their desires to seek out the truth. Maturity of judgment also showed a higher correlation with truth-seeking, which again provides helpful insight. As maturity of judgment allows a student to understand and accept that multiple solutions or options may be possible when approaching a question or issue, and that complexity is an inherent aspect of many problems and issues, fostering this disposition within students may again help to support their development within truth-seeking.

In an effort to put these findings into practical use, the first and most immediate practice-based recommendation based on the findings of this study is to evaluate programmatic curriculum and teaching approaches that have been shown to promote critical thinking skill development in higher education settings. Mahmoud & Mohamed [ 47 ] provide several evidence-based recommendations for the enhancement of critical thinking skills and abilities. While a few of these recommendations are described below, readers are encouraged to read the paper by Mahmoud & Mohamed in its entirety, particularly those educators who work with health-oriented students, in order to fully recognize the breadth of curricular and teaching approaches recommended.

Problem-Based Learning A major component of pre-health profession education should be problem-based learning, which is a student-centered approach to the learning process that focuses on solving open-ended problems through collaborative engagement with other learners in a group setting.

Programmatic Orientation Students often do not fully understand the philosophy and core concepts of the programs they are selecting to study. As students are often oriented to their college or university after admittance, so too should they be fully orientated to the program of study they are choosing as their major.

Clinical Scenarios Context-dependent activities ask the learner to bring their life experiences, prior learning, and personal skills into the classroom. In this way, improved recall and application of knowledge have been shown to be enhanced, allowing students to encode information learned in such a way that it can be easily retrieved when they are in a specific scenario.

An additional recommendation is to encourage faculty members of pre-health educational programs to adjust their curriculum and teaching styles, such as the utilization of a flipped classroom model, to promote critical thinking dispositions. This may be particularly helpful in developing the disposition of truth-seeking, which was not only found to be poorly developed in this study but in other studies that have sought to understand the dispositions of students in the healthcare field [ 48 ]. However, as previously shared, resistance to new methods of teaching can influence how effective a flipped-classroom approach can be in fostering critical thinking skills and dispositions. Oudbier, Spaai, Timmermans, & Boerboom highlight how student self-regulation, the motivation of the faulty member, and variation in assessment approaches can all play a significant role in whether a flipped classroom approach will be effective [ 48 ]. To increase the positive possible outcomes of such an approach, Arth et al. [ 38 ] provide valuable insights and recommendations made by professors on how to encourage critical thinking and truth-seeking dispositions within undergraduate students. Selected examples of their recommendations are particularly linked with curricular design and teaching strategies.

Research Information Skills The ability to properly seek out and evaluate information should be incorporated throughout the curriculum in a variety of classes versus localizing these skills in a research-specific course. Specifically, students need to learn the difference between researching information via the scientific method versus simply looking up information.

Belief Bias & Skepticism An important aspect of developing a critically oriented mindset is to understand one’s own biases, and how these personal biases can influence the way in which information is sought out and interpreted. In this way, confirmation bias can be avoided, and a healthy level of skepticism can be maintained.

Discernment of Good vs. Bad Information Avoiding belief bias and maintaining a skeptical mindset also links to the desire to find reliable information and to be able to discern good quality from poor quality information. Given the proliferation of questionable claims that are found through online sources, educators need to be teaching the necessary skills to determine the reliability of the information that is obtained during the research process.

The Constant Pursuit of Truth Although it may initially seem counterintuitive, one of the most important ways to encourage a truth-seeking disposition in undergraduate students is to design a curriculum that reinforces the idea that nothing can ever be known with complete certainty, particularly in the health sciences. Not only because of the abundance of information of questionable validity and reliability, but also due to the fact that information is constantly changing as new research is conducted and new evidence is gathered. As previously shared in the research by Arth et al. [ 38 ], students need to be encouraged to see the pursuit of truth as an ever evolving behavior due to the plethora of new information that is being shared, particularly via digital platforms. This requires students to be comfortable with a lack of finality when it comes to the pursuit of truthful and factual information. Students who are exposed to educational environments that encourage comfortability with the ever-present need to seek out truth through purposefully designed learning experiences, modeling techniques, and reflection time from their faculty have been shown to improve in both their critical thinking skills as well as their attitudes towards seeking out truth [ 49 , 50 ].

It should be noted that this study serves as an internal review and assessment of a single academic program within the field of health science. While this may lead to a reduction in generalizability to other educational program, what this study can contribute is the necessity for higher education programs to engage in this very kind of assessment and evaluation of critical thinking skills and attitudes of their students. Without engaging in an internal assessment and audit of student critical thinking skills and attitudes, educators and curriculum developers will not have the information and data needed to determine whether or not their curricular program, as well as the pedagogical methods being employed by faculty, is leading to a robust development in critical thinking skills and attitudes. These methods are not currently in place in meaningful levels within the current program of study that the students within this study were enrolled in, and it is the hope of this researcher that these methods will be increased in an effort to increase critical thinking skills and dispositions over time.

4.2 Study strengths and weaknesses

As with any scholarly research, there are limitations to the methods of research design and data collection that influence the results of the study itself. First, the collection of data for this study utilized a sample of convenience. This researcher is a faculty member in this BS in Health Science program and therefore was able to focus data collection solely on students with which he had easy and convenient access. Since all students who responded were a part of this single program, it is difficult to be able to fully generalize the results of the CCTST and the CCTDI to the undergraduate health science population as a whole. While this does allow for a more specific analysis of this particular cohort of students, it does introduce limitations into how study findings can be then expanded to additional institutions of higher education.

A second limitation of this study is the lack of ability to compare the critical thinking skills and dispositions of BS in Health Science students to other undergraduate students at the same university who are enrolled in other programs of study. While a comparison to national population means was possible for overall critical thinking scores, it would have been illuminating to be able to compare the mean scores across each subdomain of critical thinking skill as well. Since these data are not collected or stored by Insight Assessment, being able to draw data from other students at the same university would have made this kind of comparison possible. Given the logistical and financial constraints that existed, it would not have been possible to collect data from an adequate number of non-health science students, leaving this kind of subdomain comparison absent from this particular study. It should also be noted that 2 sections of students did complete the assessment over Zoom versus being in an in-person computer lab setting. While there is no evidence to suggest a significant difference in student performance or adherence to assessment guidelines between those completing the assessment online versus those in person, nonetheless it may have played a role in impacting student outcomes.

An additional consideration is the comparison of data from the study sample to the national population of students providing Overall Critical Thinking Skill scores. Since the exact demographic breakdown and program of study breakdown of this national population of students is not known, there is a natural limit to what degree this comparison is helpful. Future research hoping to compare a study sample to another sample or population would benefit from knowing more specific details pertaining to the demographic and educational descriptors in order to extrapolate greater findings.

Lastly, data collection took place amongst a group of senior-level students who had spent the previous 2 years of their undergraduate-level education in the COVID-19 global pandemic environment. The impact of COVID-19, and especially the way in which it significantly impacted the field of higher education and of learning as a whole, is still being assessed and understood. For the purposes of this study, it would not have been possible to control for the ways in which COVID-19 may have temporarily or permanently impacted critical thinking skills and dispositions. As such, the results of this study must be viewed through this lens, as it is possible that the scores for skills and dispositions would have been different in a non-COVID-impacted learning environment.

5 Conclusion

Undergraduate health science students within this study population show low to moderate development of critical thinking skills, with numeracy skills being particularly poorly developed, and grade point average being moderately but significantly associated with critical thinking skill development across all subscales. And while students show positive development across most critical thinking disposition subscales, they also show inconsistent and ambivalent dispositions towards truth-seeking, with grade point average not being a significant indicator of attitudes and dispositions. Health science education programs that hope to enhance and strengthen both critical thinking skill and disposition development may wish to implement evidence-based pedagogical practices to ensure students are prepared for professional practice within the field of health science that require strong critical thinking development.

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

Arnott SR. Evidence beyond the rules: a critical thinking approach to teaching evidence law to undergraduate students. J Scholarsh Teach Learn. 2018. https://doi.org/10.14434/josotl.v18i4.22812 .

Article   Google Scholar  

Hitchcock D. Stanford encyclopedia of philosophy—critical thinking. 2018. https://plato.stanford.edu/entries/critical-thinking . Accessed Jan 15 2023.

Allen DD, Toth-Cohen S. Use of case studies to promote critical thinking in occupational therapy students. J Occup Ther Ed. 2019. https://doi.org/10.26681/jote.2019.030309 .

Morris RJ, Gorham-Rowan MM, Robinson RJ, Scholz K. Assessing and teaching critical thinking in communication science and disorders. Teach Learn Commun Sci Dsord. 2018. https://doi.org/10.30707/TLCSD2.1Morris .

Sharples JM, et al. Critical thinking in healthcare and education. Brit Med J. 2017. https://doi.org/10.1136/bmj.j2234 .

Irby D, Cooke M, O’Brien B. Calls for reform of medical education by the carnegie foundation for the advancement of teaching: 1910 and 2010. Ac Med. 2010. https://doi.org/10.1097/ACM.0b013e3181c88449 .

Mann KV. Theoretical perspective in medical education: past experience and future possibilities. Med Ed. 2011. https://doi.org/10.1111/j.1365-2923.2010.03757.x .

Kanbay Y, Okanlı A. The effect of critical thinking education on nursing students’ problem-solving skills. Contemp Nurs. 2017. https://doi.org/10.1080/10376178.2017.1339567 .

Chacon JA, Janssen H. Teaching critical thinking and problem-solving skills to healthcare professionals. Med Sci Ed. 2021. https://doi.org/10.1007/s40670-020-01128-3 .

Hanley P, Slavin RE, Elliot L. Thinking, doing, talking science. Evaluation report and executive summary: Education endowment foundation. 2015. https://educationendowmentfoundation.org.uk/projects-and-evaluation/projects/thinking-doing-talking-science/ . Accessed Jan 15 2023.

Cummings L. Critical thinking in medicine and health. Fall in Med Health. 2020. https://doi.org/10.1007/978-3-030-28513-5_1 .

Facione NC, Facione PA. Externalizing the critical thinking in clinical judgment. NursOutlook. 1996. https://doi.org/10.1016/S0029-6554(06)80005-9 .

Facione NC, Facione PA, Sanchez C. Critical thinking disposition as a measure of competent clinical judgment: the development of the California critical thinking disposition inventory. J Nurs Ed. 1994. https://doi.org/10.3928/0148-4834-19941001-05 .

Nair GG, Stambler LL. A conceptual framework for developing a critical thinking self-assessment scale. J Nurs Ed. 2013. https://doi.org/10.3928/01484834-20120215-01 .

Wu HZ, Wu QT. Impact of mind mapping on the critical thinking ability of clinical nursing students and teaching application. J Int Med Res. 2020. https://doi.org/10.1177/0300060519893225 .

Terry N, Ervin B. Student performance on the California critical thinking skills test. Acad Ed Lead J. 2012;16:S25.

Google Scholar  

CCTST User Manual and Resource Guide. Insight assessment. Oakland: The California Academic Press; 2021.

CCTDI User Manual and Resource Guide. Insight assessment. Oakland: The California Academic Press; 2021.

Denia A. Association of critical thinking skills with clinical performance in fourth-year optometry students. Optom Ed. 2008;33:103–6.

Paans W, Sermeus W, Niewsg R, van der Schans C. Determinants of the accuracy of nursing diagnoses: Influence of ready knowledge, knowledge sources, disposition toward critical thinking and reasoning skills. J Prof Nurs. 2010. https://doi.org/10.1016/j.profnurs.2009.12.006 .

Redhana I, Sudria IBN. Validity and reliability of critical thinking disposition inventory. Proceedings of the 3rd International Conference on Innovative Research Across Disciplines. 2020. https://doi.org/10.2991/assehr.k.200115.046 .

İskïfglu G. Cross-cultural equivalency of the California critical thinking disposition inventory. Ed Sci Theory Prac. 2013. https://doi.org/10.12738/estp.2014.1.1840 .

Orhan A. California critical thinking disposition inventory: reliability generalization meta-analysis. J Psychoeduc. 2022. https://doi.org/10.1177/07342829211048962 .

Lane D, Oswald FL. Do 45% of college students lack critical thinking skills? Revisiting a central conclusion of academically adrift. Ed Meas Iss Pract. 2016. https://doi.org/10.1111/emip.12120 .

Keeley SM, Shemberg KM, Cowell BS, Zinnbauer BJ. Coping with student resistance to critical thinking. Coll Teach. 1995. https://doi.org/10.1080/87567555.1995.9925537 .

Flores KL, Matkin GS, Burbach ME, Quinn CE, Harding H. Deficient critical thinking skills among college graduates: implications for leadership. Ed Phil Theory. 2012. https://doi.org/10.1111/j.1469-5812.2010.00672.x .

Mathews SR, Lowe K. Classroom environments that foster a disposition for critical thinking. Learn Envir Res. 2011. https://doi.org/10.1007/s10984-011-9082-2 .

Moser A, Puhan MA, Zwahlen M. The role of causal inference in health services research I: tasks in health services research. Int J Pub Health. 2020. https://doi.org/10.1007/s00038-020-01333-2 .

Shin HS. Reasoning processes in clinical reasoning: from the perspective of cognitive psychology. Korean J Med Ed. 2019. https://doi.org/10.3946/kjme.2019.140 .

Lantian A, Bagneux V, Delouvée S, Gauvrit N. Maybe a free thinker but not a critical one: high conspiracy belief is associated with low critical thinking ability. Appl Cog Psych. 2021. https://doi.org/10.1002/acp.3790 .

Wilson JA. Reducing pseudoscientific and paranormal beliefs in university students through a course in science and critical thinking. Sci Ed. 2018. https://doi.org/10.1007/s11191-018-9956-0 .

OECD—Skills matter: additional results from the survey of adult skills—United States. 2019. https://www.oecd.org/skills/piaac/publications/countryspecificmaterial/PIAAC_Country_Note_USA.pdf . Accessed 25 Jan 2023.

Tümkaya S, et al. An investigation of university student’s critical thinking disposition and perceived problem solving skills. Euras J Ed Res. 2009;36:57–74.

Comer RD, Schweiger TA, Shelton P. Impact of students’ strengths, critical thinking skills and disposition on academic success in the first year of a PharmD program. Amer J Pharm Ed. 2019. https://doi.org/10.5688/ajpe6499 .

Ozcan H, Elkoca A. Critical thinking skills of nursing candidates. Int J Car Sci. 2019;12:1600–6.

Pu D, et al. Influence of critical thinking disposition on the learning efficiency of problem-based learning in undergraduate medical students. BMC Med Ed. 2019. https://doi.org/10.1186/s12909-018-1418-5 .

Rahmawati M, Kurniati D, Trapsilasiwi D, Osman S. Students’ truth-seeking behaviour in solving problems with no specified universal set given. Kreano. 2021. https://doi.org/10.15294/kreano.v12i2.32549 .

Arth A, Griffin D, Earnest W. Professors’ perspectives on truth-seeking and new literacy. J Med Lit Ed. 2019. https://doi.org/10.23860/JMLE-2019-11-3-6 .

Gibbs P. Why academics should have a duty of truth telling in an epoch of post-truth? High Ed. 2019. https://doi.org/10.1007/s10734-018-0354-y .

Ghazivakili Z, Norouzi NR, Panahi F, Karimi M, Gholsorkh H, Ahmadi Z. The role of critical thinking skills and learning styles of university students in their academic performance. J Advanc Med Ed Prof. 2014;2:95–102.

Reyna C. Lazy, dumb, or industrious: when stereotypes convey attribution information in the classroom. Educ Psych Rev. 2000. https://doi.org/10.1023/A:1009037101170 .

Appel M, Kronberger N. Stereotypes and the achievement gap: stereotype threat prior to test taking. Educ Psych Rev. 2012. https://doi.org/10.1007/s10648-012-9200-4 .

Chang F, Luo M, Walton G, Aguilar L, Bailenson J. Stereotype threat in virtual learning environments: effects of avatar gender and sexist behavior on women’s math learning outcomes. Cyberpsych Behav Soc Net. 2019. https://doi.org/10.1089/cyber.2019.0106 .

Shin S, Lee I, Kim J, Oh E, Hong E. Effectiveness of a critical reflection competency program for clinical nurse educators: a pilot study. BMC Nurs. 2023. https://doi.org/10.1186/s12912-023-01236-6 .

Qiang R, Han Q, Guo Y, Bai J, Karwowski M. Critical thinking disposition and scientific creativity: the mediating role of creative self-efficacy. J Cret Behav. 2020. https://doi.org/10.1002/jocb.347 .

Khoshgoftar Z, Barkhordari-Sharifabad M. Medical students’ reflective capacity and its role in their critical thinking disposition. BMC Med Ed. 2023. https://doi.org/10.1186/s12909-023-04163-x .

Mahmoud SA, Mohamed HA. Critical thinking disposition among nurses working in public hospitals at port-said governorate. Int J Nurs Sci. 2017. https://doi.org/10.1016/j.ijnss.2017.02.006 .

Oudbier J, Spaai G, Timmermans K, Boerboom T. Enhancing the effectiveness of flipped classroom in health science education: a state-of-the-art review. BMC Med Ed. 2022. https://doi.org/10.1186/s12909-021-03052-5 .

Medina MS, Castleberry AN, Persky AM. Strategies for improving learner metacognition in health professional education. Am J Pharm Ed. 2017. https://doi.org/10.5688/ajpe81478 .

Abiogu GC, et al. Cognitive-behavioral reflective training for improving critical thinking disposition of nursing students. Medicine. 2020. https://doi.org/10.1097/MD.0000000000022429 .

Download references

Author information

Authors and affiliations.

School of Health Sciences, Stockton University, 101 Vera King Farris Dr., Galloway, NJ, 08205, USA

Anthony Dissen

You can also search for this author in PubMed   Google Scholar

Contributions

Author completed all data collection, analysis, table formatting, literature review, and manuscript writing.

Corresponding author

Correspondence to Anthony Dissen .

Ethics declarations

Ethics approval and consent to participate.

The research instruments and research methods for this study were approved by the Stockton University Institutional Review Board. All data collection took place after obtaining all necessary approvals from the Stockton University IRB Committee, including CITI training by the researcher. IRB approval was obtained after submitting all required documentation, proof of CITI training, study procedures, and informed consent documents (Stockton University IRB Approval Number #2021.175). All research activities were carried out following the guidelines set forth by the Stockton University IRB.

Competing interests

The author received no funding as part of this study, nor does he have any Competing interests related to the design or implementation of this study.

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Score ranges for CCTST and CCTDI

1.1 cctst score ranges, 1.2 cctdi score ranges, appendix b: california critical thinking skills test domain descriptions.

Overall critical thinking skills score overall ability and strength of a student to use reflective judgement and reasoning about how to make choices regarding a particular set of actions or how to develop an informed belief or opinion. This predicts capacities for success in educational and professional settings that require reasoned decision making and complex problem-solving.

Analysis score a measurement of overall analytical skill. This score is used to identify reasons, themes, assumptions, and evidence present that all must be considered and utilized when making an argument or offering explanation for phenomena.

Inference score refers to those skills and abilities that allow one to draw conclusions from the evidence, experiences, and observations being presented. In addition, Inference Scores show how one uses their personal values, beliefs, and reasoning skills to draw conclusions.

Evaluation scores the ability of someone to assess the credibility of claims and assertions being made by others, as well as their ability to assess the quality of the reasoning being used by others when an argument is being made or an explanation is being given.

Induction skill score one’s ability to estimate the likely outcomes of certain decisions or choices. Inductive reasoning and decision making is often assessed after reviewing case studies, reflecting upon prior life experiences, performing statistical analyses, participating in simulations, reviewing hypothetical situations, or studying patterns that emerge in a set of events.

Deduction critical thinking skills score the ability to engage in logical decision making that is based on a given set of rules, beliefs, conditions, values, principles, and/or policies.

Interpretation critical thinking skills score the development in the process of discovering and assigning meaning to information or events. Interpretive skills can be applied to verbal information, written text, and graphical and/or pictorial information.

Explanation critical thinking skills score the development in the process of justifying a decision that has been made or a belief that has been stated. Strong skills in this sub-domain rely upon the ability to provide evidence and to explain the methods used to explain the decision that has been made.

Numeracy critical thinking skills score the ability to make judgments and decisions based on quantitative information within a variety of different environments and contexts. This can include description on how quantitative information is gathered, adjusted, manipulated, represented, and explained.

Appendix C: California critical thinking disposition inventory domain descriptions

Truth-seeking score the habit and desire to seek out the best possible understanding of any given situation or issue. Truth-Seeking requires the goal of following the best available evidence to come to an informed conclusion, even if this leads one to question previously held beliefs or ideas.

Open-mindedness score the tendency to give space to others to voice their views, opinions, and beliefs, even when one may not personally agree with what is being shared. Open-Mindedness is a necessary disposition to be able to regard the opinions of others, and to understand the complexities that exist in a pluralistic and intersectional society.

Inquisitiveness score a curiosity at the intellectual level that is motivated by a desire to know and understand. Inquisitiveness is particularly related to an inherent desire to know this information, even if it does not appear to be immediately useful or relevant.

Analyticity Score the tendency to be actively aware of the next stage of actions that occur during an occurrence or event. Analyticity involves anticipating both positive and negative outcomes, and the various choices, plans, and proposals that can be considered at any given time.

Systematicity score the tendency to strive to approach issues or problems in an ordered, disciplined, and systematic way. Systematicity provides one with the desire to approach questions and uncertain situations in a purposeful manner, even when they do not possess a strong background or skill in using a particular approach.

Confidence in reasoning score the tendency and habit to solve problems and make decisions by trusting in reflective thinking and assessment. This relates to not only the confidence in one’s own reasoning process, but also in the reasoning that is utilized by groups and teams.

Maturity of judgment score refers to the habit and desire to be able to make timely decisions when confronted with complex issues and situations. Possessing an attitude that emphasizes Maturity of Judgment allows one to understand and accept that multiple solutions or options may be possible when approaching a question or issue and recognize that black-and-white thinking is not appropriate.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Dissen, A. A critical issue: assessing the critical thinking skills and dispositions of undergraduate health science students. Discov Educ 2 , 21 (2023). https://doi.org/10.1007/s44217-023-00044-z

Download citation

Received : 01 March 2023

Accepted : 02 August 2023

Published : 15 August 2023

DOI : https://doi.org/10.1007/s44217-023-00044-z

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Critical thinking
  • Educational assessment
  • Health science education
  • Undergraduate education
  • Find a journal
  • Publish with us
  • Track your research

SEP logo

  • Table of Contents
  • New in this Archive
  • Chronological
  • Editorial Information
  • About the SEP
  • Editorial Board
  • How to Cite the SEP
  • Special Characters
  • Support the SEP
  • PDFs for SEP Friends
  • Make a Donation
  • SEPIA for Libraries
  • Entry Contents

Bibliography

Academic tools.

  • Friends PDF Preview
  • Author and Citation Info
  • Back to Top

Critical Thinking

Critical thinking is a widely accepted educational goal. Its definition is contested, but the competing definitions can be understood as differing conceptions of the same basic concept: careful thinking directed to a goal. Conceptions differ with respect to the scope of such thinking, the type of goal, the criteria and norms for thinking carefully, and the thinking components on which they focus. Its adoption as an educational goal has been recommended on the basis of respect for students’ autonomy and preparing students for success in life and for democratic citizenship. “Critical thinkers” have the dispositions and abilities that lead them to think critically when appropriate. The abilities can be identified directly; the dispositions indirectly, by considering what factors contribute to or impede exercise of the abilities. Standardized tests have been developed to assess the degree to which a person possesses such dispositions and abilities. Educational intervention has been shown experimentally to improve them, particularly when it includes dialogue, anchored instruction, and mentoring. Controversies have arisen over the generalizability of critical thinking across domains, over alleged bias in critical thinking theories and instruction, and over the relationship of critical thinking to other types of thinking.

2.1 Dewey’s Three Main Examples

2.2 dewey’s other examples, 2.3 further examples, 2.4 non-examples, 3. the definition of critical thinking, 4. its value, 5. the process of thinking critically, 6. components of the process, 7. contributory dispositions and abilities, 8.1 initiating dispositions, 8.2 internal dispositions, 9. critical thinking abilities, 10. required knowledge, 11. educational methods, 12.1 the generalizability of critical thinking, 12.2 bias in critical thinking theory and pedagogy, 12.3 relationship of critical thinking to other types of thinking, other internet resources, related entries.

Use of the term ‘critical thinking’ to describe an educational goal goes back to the American philosopher John Dewey (1910), who more commonly called it ‘reflective thinking’. He defined it as

active, persistent and careful consideration of any belief or supposed form of knowledge in the light of the grounds that support it, and the further conclusions to which it tends. (Dewey 1910: 6; 1933: 9)

and identified a habit of such consideration with a scientific attitude of mind. His lengthy quotations of Francis Bacon, John Locke, and John Stuart Mill indicate that he was not the first person to propose development of a scientific attitude of mind as an educational goal.

In the 1930s, many of the schools that participated in the Eight-Year Study of the Progressive Education Association (Aikin 1942) adopted critical thinking as an educational goal, for whose achievement the study’s Evaluation Staff developed tests (Smith, Tyler, & Evaluation Staff 1942). Glaser (1941) showed experimentally that it was possible to improve the critical thinking of high school students. Bloom’s influential taxonomy of cognitive educational objectives (Bloom et al. 1956) incorporated critical thinking abilities. Ennis (1962) proposed 12 aspects of critical thinking as a basis for research on the teaching and evaluation of critical thinking ability.

Since 1980, an annual international conference in California on critical thinking and educational reform has attracted tens of thousands of educators from all levels of education and from many parts of the world. Also since 1980, the state university system in California has required all undergraduate students to take a critical thinking course. Since 1983, the Association for Informal Logic and Critical Thinking has sponsored sessions in conjunction with the divisional meetings of the American Philosophical Association (APA). In 1987, the APA’s Committee on Pre-College Philosophy commissioned a consensus statement on critical thinking for purposes of educational assessment and instruction (Facione 1990a). Researchers have developed standardized tests of critical thinking abilities and dispositions; for details, see the Supplement on Assessment . Educational jurisdictions around the world now include critical thinking in guidelines for curriculum and assessment. Political and business leaders endorse its importance.

For details on this history, see the Supplement on History .

2. Examples and Non-Examples

Before considering the definition of critical thinking, it will be helpful to have in mind some examples of critical thinking, as well as some examples of kinds of thinking that would apparently not count as critical thinking.

Dewey (1910: 68–71; 1933: 91–94) takes as paradigms of reflective thinking three class papers of students in which they describe their thinking. The examples range from the everyday to the scientific.

Transit : “The other day, when I was down town on 16th Street, a clock caught my eye. I saw that the hands pointed to 12:20. This suggested that I had an engagement at 124th Street, at one o'clock. I reasoned that as it had taken me an hour to come down on a surface car, I should probably be twenty minutes late if I returned the same way. I might save twenty minutes by a subway express. But was there a station near? If not, I might lose more than twenty minutes in looking for one. Then I thought of the elevated, and I saw there was such a line within two blocks. But where was the station? If it were several blocks above or below the street I was on, I should lose time instead of gaining it. My mind went back to the subway express as quicker than the elevated; furthermore, I remembered that it went nearer than the elevated to the part of 124th Street I wished to reach, so that time would be saved at the end of the journey. I concluded in favor of the subway, and reached my destination by one o’clock.” (Dewey 1910: 68-69; 1933: 91-92)

Ferryboat : “Projecting nearly horizontally from the upper deck of the ferryboat on which I daily cross the river is a long white pole, having a gilded ball at its tip. It suggested a flagpole when I first saw it; its color, shape, and gilded ball agreed with this idea, and these reasons seemed to justify me in this belief. But soon difficulties presented themselves. The pole was nearly horizontal, an unusual position for a flagpole; in the next place, there was no pulley, ring, or cord by which to attach a flag; finally, there were elsewhere on the boat two vertical staffs from which flags were occasionally flown. It seemed probable that the pole was not there for flag-flying.

“I then tried to imagine all possible purposes of the pole, and to consider for which of these it was best suited: (a) Possibly it was an ornament. But as all the ferryboats and even the tugboats carried poles, this hypothesis was rejected. (b) Possibly it was the terminal of a wireless telegraph. But the same considerations made this improbable. Besides, the more natural place for such a terminal would be the highest part of the boat, on top of the pilot house. (c) Its purpose might be to point out the direction in which the boat is moving.

“In support of this conclusion, I discovered that the pole was lower than the pilot house, so that the steersman could easily see it. Moreover, the tip was enough higher than the base, so that, from the pilot's position, it must appear to project far out in front of the boat. Morevoer, the pilot being near the front of the boat, he would need some such guide as to its direction. Tugboats would also need poles for such a purpose. This hypothesis was so much more probable than the others that I accepted it. I formed the conclusion that the pole was set up for the purpose of showing the pilot the direction in which the boat pointed, to enable him to steer correctly.” (Dewey 1910: 69-70; 1933: 92-93)

Bubbles : “In washing tumblers in hot soapsuds and placing them mouth downward on a plate, bubbles appeared on the outside of the mouth of the tumblers and then went inside. Why? The presence of bubbles suggests air, which I note must come from inside the tumbler. I see that the soapy water on the plate prevents escape of the air save as it may be caught in bubbles. But why should air leave the tumbler? There was no substance entering to force it out. It must have expanded. It expands by increase of heat, or by decrease of pressure, or both. Could the air have become heated after the tumbler was taken from the hot suds? Clearly not the air that was already entangled in the water. If heated air was the cause, cold air must have entered in transferring the tumblers from the suds to the plate. I test to see if this supposition is true by taking several more tumblers out. Some I shake so as to make sure of entrapping cold air in them. Some I take out holding mouth downward in order to prevent cold air from entering. Bubbles appear on the outside of every one of the former and on none of the latter. I must be right in my inference. Air from the outside must have been expanded by the heat of the tumbler, which explains the appearance of the bubbles on the outside. But why do they then go inside? Cold contracts. The tumbler cooled and also the air inside it. Tension was removed, and hence bubbles appeared inside. To be sure of this, I test by placing a cup of ice on the tumbler while the bubbles are still forming outside. They soon reverse” (Dewey 1910: 70–71; 1933: 93–94).

Dewey (1910, 1933) sprinkles his book with other examples of critical thinking. We will refer to the following.

Weather : A man on a walk notices that it has suddenly become cool, thinks that it is probably going to rain, looks up and sees a dark cloud obscuring the sun, and quickens his steps (1910: 6–10; 1933: 9–13).

Disorder : A man finds his rooms on his return to them in disorder with his belongings thrown about, thinks at first of burglary as an explanation, then thinks of mischievous children as being an alternative explanation, then looks to see whether valuables are missing, and discovers that they are (1910: 82–83; 1933: 166–168).

Typhoid : A physician diagnosing a patient whose conspicuous symptoms suggest typhoid avoids drawing a conclusion until more data are gathered by questioning the patient and by making tests (1910: 85–86; 1933: 170).

Blur : A moving blur catches our eye in the distance, we ask ourselves whether it is a cloud of whirling dust or a tree moving its branches or a man signaling to us, we think of other traits that should be found on each of those possibilities, and we look and see if those traits are found (1910: 102, 108; 1933: 121, 133).

Suction pump : In thinking about the suction pump, the scientist first notes that it will draw water only to a maximum height of 33 feet at sea level and to a lesser maximum height at higher elevations, selects for attention the differing atmospheric pressure at these elevations, sets up experiments in which the air is removed from a vessel containing water (when suction no longer works) and in which the weight of air at various levels is calculated, compares the results of reasoning about the height to which a given weight of air will allow a suction pump to raise water with the observed maximum height at different elevations, and finally assimilates the suction pump to such apparently different phenomena as the siphon and the rising of a balloon (1910: 150–153; 1933: 195–198).

Diamond : A passenger in a car driving in a diamond lane reserved for vehicles with at least one passenger notices that the diamond marks on the pavement are far apart in some places and close together in others. Why? The driver suggests that the reason may be that the diamond marks are not needed where there is a solid double line separating the diamond line from the adjoining lane, but are needed when there is a dotted single line permitting crossing into the diamond lane. Further observation confirms that the diamonds are close together when a dotted line separates the diamond lane from its neighbour, but otherwise far apart.

Rash : A woman suddenly develops a very itchy red rash on her throat and upper chest. She recently noticed a mark on the back of her right hand, but was not sure whether the mark was a rash or a scrape. She lies down in bed and thinks about what might be causing the rash and what to do about it. About two weeks before, she began taking blood pressure medication that contained a sulfa drug, and the pharmacist had warned her, in view of a previous allergic reaction to a medication containing a sulfa drug, to be on the alert for an allergic reaction; however, she had been taking the medication for two weeks with no such effect. The day before, she began using a new cream on her neck and upper chest; against the new cream as the cause was mark on the back of her hand, which had not been exposed to the cream. She began taking probiotics about a month before. She also recently started new eye drops, but she supposed that manufacturers of eye drops would be careful not to include allergy-causing components in the medication. The rash might be a heat rash, since she recently was sweating profusely from her upper body. Since she is about to go away on a short vacation, where she would not have access to her usual physician, she decides to keep taking the probiotics and using the new eye drops but to discontinue the blood pressure medication and to switch back to the old cream for her neck and upper chest. She forms a plan to consult her regular physician on her return about the blood pressure medication.

Candidate : Although Dewey included no examples of thinking directed at appraising the arguments of others, such thinking has come to be considered a kind of critical thinking. We find an example of such thinking in the performance task on the Collegiate Learning Assessment (CLA+), which its sponsoring organization describes as

a performance-based assessment that provides a measure of an institution’s contribution to the development of critical-thinking and written communication skills of its students. (Council for Aid to Education 2017)

A sample task posted on its website requires the test-taker to write a report for public distribution evaluating a fictional candidate’s policy proposals and their supporting arguments, using supplied background documents, with a recommendation on whether to endorse the candidate.

Immediate acceptance of an idea that suggests itself as a solution to a problem (e.g., a possible explanation of an event or phenomenon, an action that seems likely to produce a desired result) is “uncritical thinking, the minimum of reflection” (Dewey 1910: 13). On-going suspension of judgment in the light of doubt about a possible solution is not critical thinking (Dewey 1910: 108). Critique driven by a dogmatically held political or religious ideology is not critical thinking; thus Paulo Freire (1968 [1970]) is using the term (e.g., at 1970: 71, 81, 100, 146) in a more politically freighted sense that includes not only reflection but also revolutionary action against oppression. Derivation of a conclusion from given data using an algorithm is not critical thinking.

What is critical thinking? There are many definitions. Ennis (2016) lists 14 philosophically oriented scholarly definitions and three dictionary definitions. Following Rawls (1971), who distinguished his conception of justice from a utilitarian conception but regarded them as rival conceptions of the same concept, Ennis maintains that the 17 definitions are different conceptions of the same concept. Rawls articulated the shared concept of justice as

a characteristic set of principles for assigning basic rights and duties and for determining… the proper distribution of the benefits and burdens of social cooperation. (Rawls 1971: 5)

Bailin et al. (1999b) claim that, if one considers what sorts of thinking an educator would take not to be critical thinking and what sorts to be critical thinking, one can conclude that educators typically understand critical thinking to have at least three features.

  • It is done for the purpose of making up one’s mind about what to believe or do.
  • The person engaging in the thinking is trying to fulfill standards of adequacy and accuracy appropriate to the thinking.
  • The thinking fulfills the relevant standards to some threshold level.

One could sum up the core concept that involves these three features by saying that critical thinking is careful goal-directed thinking. This core concept seems to apply to all the examples of critical thinking described in the previous section. As for the non-examples, their exclusion depends on construing careful thinking as excluding jumping immediately to conclusions, suspending judgment no matter how strong the evidence, reasoning from an unquestioned ideological or religious perspective, and routinely using an algorithm to answer a question.

If the core of critical thinking is careful goal-directed thinking, conceptions of it can vary according to its presumed scope, its presumed goal, one’s criteria and threshold for being careful, and the thinking component on which one focuses As to its scope, some conceptions (e.g., Dewey 1910, 1933) restrict it to constructive thinking on the basis of one’s own observations and experiments, others (e.g., Ennis 1962; Fisher & Scriven 1997; Johnson 1992) to appraisal of the products of such thinking. Ennis (1991) and Bailin et al. (1999b) take it to cover both construction and appraisal. As to its goal, some conceptions restrict it to forming a judgment (Dewey 1910, 1933; Lipman 1987; Facione 1990a). Others allow for actions as well as beliefs as the end point of a process of critical thinking (Ennis 1991; Bailin et al. 1999b). As to the criteria and threshold for being careful, definitions vary in the term used to indicate that critical thinking satisfies certain norms: “intellectually disciplined” (Scriven & Paul 1987), “reasonable” (Ennis 1991), “skillful” (Lipman 1987), “skilled” (Fisher & Scriven 1997), “careful” (Bailin & Battersby 2009). Some definitions specify these norms, referring variously to “consideration of any belief or supposed form of knowledge in the light of the grounds that support it and the further conclusions to which it tends” (Dewey 1910, 1933); “the methods of logical inquiry and reasoning” (Glaser 1941); “conceptualizing, applying, analyzing, synthesizing, and/or evaluating information gathered from, or generated by, observation, experience, reflection, reasoning, or communication” (Scriven & Paul 1987); the requirement that “it is sensitive to context, relies on criteria, and is self-correcting” (Lipman 1987); “evidential, conceptual, methodological, criteriological, or contextual considerations” (Facione 1990a); and “plus-minus considerations of the product in terms of appropriate standards (or criteria)” (Johnson 1992). Stanovich and Stanovich (2010) propose to ground the concept of critical thinking in the concept of rationality, which they understand as combining epistemic rationality (fitting one’s beliefs to the world) and instrumental rationality (optimizing goal fulfillment); a critical thinker, in their view, is someone with “a propensity to override suboptimal responses from the autonomous mind” (2010: 227). These variant specifications of norms for critical thinking are not necessarily incompatible with one another, and in any case presuppose the core notion of thinking carefully. As to the thinking component singled out, some definitions focus on suspension of judgment during the thinking (Dewey 1910; McPeck 1981), others on inquiry while judgment is suspended (Bailin & Battersby 2009), others on the resulting judgment (Facione 1990a), and still others on the subsequent emotive response (Siegel 1988).

In educational contexts, a definition of critical thinking is a “programmatic definition” (Scheffler 1960: 19). It expresses a practical program for achieving an educational goal. For this purpose, a one-sentence formulaic definition is much less useful than articulation of a critical thinking process, with criteria and standards for the kinds of thinking that the process may involve. The real educational goal is recognition, adoption and implementation by students of those criteria and standards. That adoption and implementation in turn consists in acquiring the knowledge, abilities and dispositions of a critical thinker.

Conceptions of critical thinking generally do not include moral integrity as part of the concept. Dewey, for example, took critical thinking to be the ultimate intellectual goal of education, but distinguished it from the development of social cooperation among school children, which he took to be the central moral goal. Ennis (1996, 2011) added to his previous list of critical thinking dispositions a group of dispositions to care about the dignity and worth of every person, which he described as a “correlative” (1996) disposition without which critical thinking would be less valuable and perhaps harmful. An educational program that aimed at developing critical thinking but not the correlative disposition to care about the dignity and worth of every person, he asserted, “would be deficient and perhaps dangerous” (Ennis 1996: 172).

Dewey thought that education for reflective thinking would be of value to both the individual and society; recognition in educational practice of the kinship to the scientific attitude of children’s native curiosity, fertile imagination and love of experimental inquiry “would make for individual happiness and the reduction of social waste” (Dewey 1910: iii). Schools participating in the Eight-Year Study took development of the habit of reflective thinking and skill in solving problems as a means to leading young people to understand, appreciate and live the democratic way of life characteristic of the United States (Aikin 1942: 17–18, 81). Harvey Siegel (1988: 55–61) has offered four considerations in support of adopting critical thinking as an educational ideal. (1) Respect for persons requires that schools and teachers honour students’ demands for reasons and explanations, deal with students honestly, and recognize the need to confront students’ independent judgment; these requirements concern the manner in which teachers treat students. (2) Education has the task of preparing children to be successful adults, a task that requires development of their self-sufficiency. (3) Education should initiate children into the rational traditions in such fields as history, science and mathematics. (4) Education should prepare children to become democratic citizens, which requires reasoned procedures and critical talents and attitudes. To supplement these considerations, Siegel (1988: 62–90) responds to two objections: the ideology objection that adoption of any educational ideal requires a prior ideological commitment and the indoctrination objection that cultivation of critical thinking cannot escape being a form of indoctrination.

Despite the diversity of our 11 examples, one can recognize a common pattern. Dewey analyzed it as consisting of five phases:

  • suggestions , in which the mind leaps forward to a possible solution;
  • an intellectualization of the difficulty or perplexity into a problem to be solved, a question for which the answer must be sought;
  • the use of one suggestion after another as a leading idea, or hypothesis , to initiate and guide observation and other operations in collection of factual material;
  • the mental elaboration of the idea or supposition as an idea or supposition ( reasoning , in the sense on which reasoning is a part, not the whole, of inference); and
  • testing the hypothesis by overt or imaginative action. (Dewey 1933: 106–107; italics in original)

The process of reflective thinking consisting of these phases would be preceded by a perplexed, troubled or confused situation and followed by a cleared-up, unified, resolved situation (Dewey 1933: 106). The term ‘phases’ replaced the term ‘steps’ (Dewey 1910: 72), thus removing the earlier suggestion of an invariant sequence. Variants of the above analysis appeared in (Dewey 1916: 177) and (Dewey 1938: 101–119).

The variant formulations indicate the difficulty of giving a single logical analysis of such a varied process. The process of critical thinking may have a spiral pattern, with the problem being redefined in the light of obstacles to solving it as originally formulated. For example, the person in Transit might have concluded that getting to the appointment at the scheduled time was impossible and have reformulated the problem as that of rescheduling the appointment for a mutually convenient time. Further, defining a problem does not always follow after or lead immediately to an idea of a suggested solution. Nor should it do so, as Dewey himself recognized in describing the physician in Typhoid as avoiding any strong preference for this or that conclusion before getting further information (Dewey 1910: 85; 1933: 170). People with a hypothesis in mind, even one to which they have a very weak commitment, have a so-called “confirmation bias” (Nickerson 1998): they are likely to pay attention to evidence that confirms the hypothesis and to ignore evidence that counts against it or for some competing hypothesis. Detectives, intelligence agencies, and investigators of airplane accidents are well advised to gather relevant evidence systematically and to postpone even tentative adoption of an explanatory hypothesis until the collected evidence rules out with the appropriate degree of certainty all but one explanation. Dewey’s analysis of the critical thinking process can be faulted as well for requiring acceptance or rejection of a possible solution to a defined problem, with no allowance for deciding in the light of the available evidence to suspend judgment. Further, given the great variety of kinds of problems for which reflection is appropriate, there is likely to be variation in its component events. Perhaps the best way to conceptualize the critical thinking process is as a checklist whose component events can occur in a variety of orders, selectively, and more than once. These component events might include (1) noticing a difficulty, (2) defining the problem, (3) dividing the problem into manageable sub-problems, (4) formulating a variety of possible solutions to the problem or sub-problem, (5) determining what evidence is relevant to deciding among possible solutions to the problem or sub-problem, (6) devising a plan of systematic observation or experiment that will uncover the relevant evidence, (7) carrying out the plan of systematic observation or experimentation, (8) noting the results of the systematic observation or experiment, (9) gathering relevant testimony and information from others, (10) judging the credibility of testimony and information gathered from others, (11) drawing conclusions from gathered evidence and accepted testimony, and (12) accepting a solution that the evidence adequately supports (cf. Hitchcock 2017: 485).

Checklist conceptions of the process of critical thinking are open to the objection that they are too mechanical and procedural to fit the multi-dimensional and emotionally charged issues for which critical thinking is urgently needed (Paul 1984). For such issues, a more dialectical process is advocated, in which competing relevant world views are identified, their implications explored, and some sort of creative synthesis attempted.

If one considers the critical thinking process illustrated by the 11 examples, one can identify distinct kinds of mental acts and mental states that form part of it. To distinguish, label and briefly characterize these components is a useful preliminary to identifying abilities, skills, dispositions, attitudes, habits and the like that contribute causally to thinking critically. Identifying such abilities and habits is in turn a useful preliminary to setting educational goals. Setting the goals is in its turn a useful preliminary to designing strategies for helping learners to achieve the goals and to designing ways of measuring the extent to which learners have done so. Such measures provide both feedback to learners on their achievement and a basis for experimental research on the effectiveness of various strategies for educating people to think critically. Let us begin, then, by distinguishing the kinds of mental acts and mental events that can occur in a critical thinking process.

  • Observing : One notices something in one’s immediate environment (sudden cooling of temperature in Weather , bubbles forming outside a glass and then going inside in Bubbles , a moving blur in the distance in Blur , a rash in Rash ). Or one notes the results of an experiment or systematic observation (valuables missing in Disorder , no suction without air pressure in Suction pump )
  • Feeling : One feels puzzled or uncertain about something (how to get to an appointment on time in Transit , why the diamonds vary in frequency in Diamond ). One wants to resolve this perplexity. One feels satisfaction once one has worked out an answer (to take the subway express in Transit , diamonds closer when needed as a warning in Diamond ).
  • Wondering : One formulates a question to be addressed (why bubbles form outside a tumbler taken from hot water in Bubbles , how suction pumps work in Suction pump , what caused the rash in Rash ).
  • Imagining : One thinks of possible answers (bus or subway or elevated in Transit , flagpole or ornament or wireless communication aid or direction indicator in Ferryboat , allergic reaction or heat rash in Rash ).
  • Inferring : One works out what would be the case if a possible answer were assumed (valuables missing if there has been a burglary in Disorder , earlier start to the rash if it is an allergic reaction to a sulfa drug in Rash ). Or one draws a conclusion once sufficient relevant evidence is gathered (take the subway in Transit , burglary in Disorder , discontinue blood pressure medication and new cream in Rash ).
  • Knowledge : One uses stored knowledge of the subject-matter to generate possible answers or to infer what would be expected on the assumption of a particular answer (knowledge of a city’s public transit system in Transit , of the requirements for a flagpole in Ferryboat , of Boyle’s law in Bubbles , of allergic reactions in Rash ).
  • Experimenting : One designs and carries out an experiment or a systematic observation to find out whether the results deduced from a possible answer will occur (looking at the location of the flagpole in relation to the pilot’s position in Ferryboat , putting an ice cube on top of a tumbler taken from hot water in Bubbles , measuring the height to which a suction pump will draw water at different elevations in Suction pump , noticing the frequency of diamonds when movement to or from a diamond lane is allowed in Diamond ).
  • Consulting : One finds a source of information, gets the information from the source, and makes a judgment on whether to accept it. None of our 11 examples include searching for sources of information. In this respect they are unrepresentative, since most people nowadays have almost instant access to information relevant to answering any question, including many of those illustrated by the examples. However, Candidate includes the activities of extracting information from sources and evaluating its credibility.
  • Identifying and analyzing arguments : One notices an argument and works out its structure and content as a preliminary to evaluating its strength. This activity is central to Candidate . It is an important part of a critical thinking process in which one surveys arguments for various positions on an issue.
  • Judging : One makes a judgment on the basis of accumulated evidence and reasoning, such as the judgment in Ferryboat that the purpose of the pole is to provide direction to the pilot.
  • Deciding : One makes a decision on what to do or on what policy to adopt, as in the decision in Transit to take the subway.

By definition, a person who does something voluntarily is both willing and able to do that thing at that time. Both the willingness and the ability contribute causally to the person’s action, in the sense that the voluntary action would not occur if either (or both) of these were lacking. For example, suppose that one is standing with one’s arms at one’s sides and one voluntarily lifts one’s right arm to an extended horizontal position. One would not do so if one were unable to lift one’s arm, if for example one’s right side was paralyzed as the result of a stroke. Nor would one do so if one were unwilling to lift one’s arm, if for example one were participating in a street demonstration at which a white supremacist was urging the crowd to lift their right arm in a Nazi salute and one were unwilling to express support in this way for the racist Nazi ideology. The same analysis applies to a voluntary mental process of thinking critically. It requires both willingness and ability to think critically, including willingness and ability to perform each of the mental acts that compose the process and to coordinate those acts in a sequence that is directed at resolving the initiating perplexity.

Consider willingness first. We can identify causal contributors to willingness to think critically by considering factors that would cause a person who was able to think critically about an issue nevertheless not to do so (Hamby 2014). For each factor, the opposite condition thus contributes causally to willingness to think critically on a particular occasion. For example, people who habitually jump to conclusions without considering alternatives will not think critically about issues that arise, even if they have the required abilities. The contrary condition of willingness to suspend judgment is thus a causal contributor to thinking critically.

Now consider ability. In contrast to the ability to move one’s arm, which can be completely absent because a stroke has left the arm paralyzed, the ability to think critically is a developed ability, whose absence is not a complete absence of ability to think but absence of ability to think well. We can identify the ability to think well directly, in terms of the norms and standards for good thinking. In general, to be able do well the thinking activities that can be components of a critical thinking process, one needs to know the concepts and principles that characterize their good performance, to recognize in particular cases that the concepts and principles apply, and to apply them. The knowledge, recognition and application may be procedural rather than declarative. It may be domain-specific rather than widely applicable, and in either case may need subject-matter knowledge, sometimes of a deep kind.

Reflections of the sort illustrated by the previous two paragraphs have led scholars to identify the knowledge, abilities and dispositions of a “critical thinker”, i.e., someone who thinks critically whenever it is appropriate to do so. We turn now to these three types of causal contributors to thinking critically. We start with dispositions, since arguably these are the most powerful contributors to being a critical thinker, can be fostered at an early stage of a child’s development, and are susceptible to general improvement (Glaser 1941: 175)

8. Critical Thinking Dispositions

Educational researchers use the term ‘dispositions’ broadly for the habits of mind and attitudes that contribute causally to being a critical thinker. Some writers (e.g., Paul & Elder 2006; Hamby 2014; Bailin & Battersby 2016) propose to use the term ‘virtues’ for this dimension of a critical thinker. The virtues in question, although they are virtues of character, concern the person’s ways of thinking rather than the person’s ways of behaving towards others. They are not moral virtues but intellectual virtues, of the sort articulated by Zagzebski (1996) and discussed by Turri, Alfano, and Greco (2017).

On a realistic conception, thinking dispositions or intellectual virtues are real properties of thinkers. They are general tendencies, propensities, or inclinations to think in particular ways in particular circumstances, and can be genuinely explanatory (Siegel 1999). Sceptics argue that there is no evidence for a specific mental basis for the habits of mind that contribute to thinking critically, and that it is pedagogically misleading to posit such a basis (Bailin et al. 1999a). Whatever their status, critical thinking dispositions need motivation for their initial formation in a child—motivation that may be external or internal. As children develop, the force of habit will gradually become important in sustaining the disposition (Nieto & Valenzuela 2012). Mere force of habit, however, is unlikely to sustain critical thinking dispositions. Critical thinkers must value and enjoy using their knowledge and abilities to think things through for themselves. They must be committed to, and lovers of, inquiry.

A person may have a critical thinking disposition with respect to only some kinds of issues. For example, one could be open-minded about scientific issues but not about religious issues. Similarly, one could be confident in one’s ability to reason about the theological implications of the existence of evil in the world but not in one’s ability to reason about the best design for a guided ballistic missile.

Critical thinking dispositions can usefully be divided into initiating dispositions (those that contribute causally to starting to think critically about an issue) and internal dispositions (those that contribute causally to doing a good job of thinking critically once one has started) (Facione 1990a: 25). The two categories are not mutually exclusive. For example, open-mindedness, in the sense of willingness to consider alternative points of view to one’s own, is both an initiating and an internal disposition.

Using the strategy of considering factors that would block people with the ability to think critically from doing so, we can identify as initiating dispositions for thinking critically attentiveness, a habit of inquiry, self-confidence, courage, open-mindedness, willingness to suspend judgment, trust in reason, wanting evidence for one’s beliefs, and seeking the truth. We consider briefly what each of these dispositions amounts to, in each case citing sources that acknowledge them.

  • Attentiveness : One will not think critically if one fails to recognize an issue that needs to be thought through. For example, the pedestrian in Weather would not have looked up if he had not noticed that the air was suddenly cooler. To be a critical thinker, then, one needs to be habitually attentive to one’s surroundings, noticing not only what one senses but also sources of perplexity in messages received and in one’s own beliefs and attitudes (Facione 1990a: 25; Facione, Facione, & Giancarlo 2001).
  • Habit of inquiry : Inquiry is effortful, and one needs an internal push to engage in it. For example, the student in Bubbles could easily have stopped at idle wondering about the cause of the bubbles rather than reasoning to a hypothesis, then designing and executing an experiment to test it. Thus willingness to think critically needs mental energy and initiative. What can supply that energy? Love of inquiry, or perhaps just a habit of inquiry. Hamby (2015) has argued that willingness to inquire is the central critical thinking virtue, one that encompasses all the others. It is recognized as a critical thinking disposition by Dewey (1910: 29; 1933: 35), Glaser (1941: 5), Ennis (1987: 12; 1991: 8), Facione (1990a: 25), Bailin et al. (1999b: 294), Halpern (1998: 452), and Facione, Facione, & Giancarlo (2001).
  • Self-confidence : Lack of confidence in one’s abilities can block critical thinking. For example, if the woman in Rash lacked confidence in her ability to figure things out for herself, she might just have assumed that the rash on her chest was the allergic reaction to her medication against which the pharmacist had warned her. Thus willingness to think critically requires confidence in one’s ability to inquire (Facione 1990a: 25; Facione, Facione, & Giancarlo 2001).
  • Courage : Fear of thinking for oneself can stop one from doing it. Thus willingness to think critically requires intellectual courage (Paul & Elder 2006: 16).
  • Open-mindedness : A dogmatic attitude will impede thinking critically. For example, a person who adheres rigidly to a “pro-choice” position on the issue of the legal status of induced abortion is likely to be unwilling to consider seriously the issue of when in its development an unborn child acquires a moral right to life. Thus willingness to think critically requires open-mindedness, in the sense of a willingness to examine questions to which one already accepts an answer but which further evidence or reasoning might cause one to answer differently (Dewey 1933; Facione 1990a; Ennis 1991; Bailin et al. 1999b; Halpern 1998, Facione, Facione, & Giancarlo 2001). Paul (1981) emphasizes open-mindedness about alternative world-views, and recommends a dialectical approach to integrating such views as central to what he calls “strong sense” critical thinking.
  • Willingness to suspend judgment : Premature closure on an initial solution will block critical thinking. Thus willingness to think critically requires a willingness to suspend judgment while alternatives are explored (Facione 1990a; Ennis 1991; Halpern 1998).
  • Trust in reason : Since distrust in the processes of reasoned inquiry will dissuade one from engaging in it, trust in them is an initiating critical thinking disposition (Facione 1990a, 25; Bailin et al. 1999b: 294; Facione, Facione, & Giancarlo 2001; Paul & Elder 2006). In reaction to an allegedly exclusive emphasis on reason in critical thinking theory and pedagogy, Thayer-Bacon (2000) argues that intuition, imagination, and emotion have important roles to play in an adequate conception of critical thinking that she calls “constructive thinking”. From her point of view, critical thinking requires trust not only in reason but also in intuition, imagination, and emotion.
  • Seeking the truth : If one does not care about the truth but is content to stick with one’s initial bias on an issue, then one will not think critically about it. Seeking the truth is thus an initiating critical thinking disposition (Bailin et al. 1999b: 294; Facione, Facione, & Giancarlo 2001). A disposition to seek the truth is implicit in more specific critical thinking dispositions, such as trying to be well-informed, considering seriously points of view other than one’s own, looking for alternatives, suspending judgment when the evidence is insufficient, and adopting a position when the evidence supporting it is sufficient.

Some of the initiating dispositions, such as open-mindedness and willingness to suspend judgment, are also internal critical thinking dispositions, in the sense of mental habits or attitudes that contribute causally to doing a good job of critical thinking once one starts the process. But there are many other internal critical thinking dispositions. Some of them are parasitic on one’s conception of good thinking. For example, it is constitutive of good thinking about an issue to formulate the issue clearly and to maintain focus on it. For this purpose, one needs not only the corresponding ability but also the corresponding disposition. Ennis (1991: 8) describes it as the disposition “to determine and maintain focus on the conclusion or question”, Facione (1990a: 25) as “clarity in stating the question or concern”. Other internal dispositions are motivators to continue or adjust the critical thinking process, such as willingness to persist in a complex task and willingness to abandon nonproductive strategies in an attempt to self-correct (Halpern 1998: 452). For a list of identified internal critical thinking dispositions, see the Supplement on Internal Critical Thinking Dispositions .

Some theorists postulate skills, i.e., acquired abilities, as operative in critical thinking. It is not obvious, however, that a good mental act is the exercise of a generic acquired skill. Inferring an expected time of arrival, as in Transit , has some generic components but also uses non-generic subject-matter knowledge. Bailin et al. (1999a) argue against viewing critical thinking skills as generic and discrete, on the ground that skilled performance at a critical thinking task cannot be separated from knowledge of concepts and from domain-specific principles of good thinking. Talk of skills, they concede, is unproblematic if it means merely that a person with critical thinking skills is capable of intelligent performance.

Despite such scepticism, theorists of critical thinking have listed as general contributors to critical thinking what they variously call abilities (Glaser 1941; Ennis 1962, 1991), skills (Facione 1990a; Halpern 1998) or competencies (Fisher & Scriven 1997). Amalgamating these lists would produce a confusing and chaotic cornucopia of more than 50 possible educational objectives, with only partial overlap among them. It makes sense instead to try to understand the reasons for the multiplicity and diversity, and to make a selection according to one’s own reasons for singling out abilities to be developed in a critical thinking curriculum. Two reasons for diversity among lists of critical thinking abilities are the underlying conception of critical thinking and the envisaged educational level. Appraisal-only conceptions, for example, involve a different suite of abilities than constructive-only conceptions. Some lists, such as those in (Glaser 1941), are put forward as educational objectives for secondary school students, whereas others are proposed as objectives for college students (e.g., Facione 1990a).

The abilities described in the remaining paragraphs of this section emerge from reflection on the general abilities needed to do well the thinking activities identified in section 6 as components of the critical thinking process described in section 5 . The derivation of each collection of abilities is accompanied by citation of sources that list such abilities and of standardized tests that claim to test them.

Observational abilities : Careful and accurate observation sometimes requires specialist expertise and practice, as in the case of observing birds and observing accident scenes. However, there are general abilities of noticing what one’s senses are picking up from one’s environment and of being able to articulate clearly and accurately to oneself and others what one has observed. It helps in exercising them to be able to recognize and take into account factors that make one’s observation less trustworthy, such as prior framing of the situation, inadequate time, deficient senses, poor observation conditions, and the like. It helps as well to be skilled at taking steps to make one’s observation more trustworthy, such as moving closer to get a better look, measuring something three times and taking the average, and checking what one thinks one is observing with someone else who is in a good position to observe it. It also helps to be skilled at recognizing respects in which one’s report of one’s observation involves inference rather than direct observation, so that one can then consider whether the inference is justified. These abilities come into play as well when one thinks about whether and with what degree of confidence to accept an observation report, for example in the study of history or in a criminal investigation or in assessing news reports. Observational abilities show up in some lists of critical thinking abilities (Ennis 1962: 90; Facione 1990a: 16; Ennis 1991: 9). There are items testing a person’s ability to judge the credibility of observation reports in the Cornell Critical Thinking Tests, Levels X and Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005). Norris and King (1983, 1985, 1990a, 1990b) is a test of ability to appraise observation reports.

Emotional abilities : The emotions that drive a critical thinking process are perplexity or puzzlement, a wish to resolve it, and satisfaction at achieving the desired resolution. Children experience these emotions at an early age, without being trained to do so. Education that takes critical thinking as a goal needs only to channel these emotions and to make sure not to stifle them. Collaborative critical thinking benefits from ability to recognize one’s own and others’ emotional commitments and reactions.

Questioning abilities : A critical thinking process needs transformation of an inchoate sense of perplexity into a clear question. Formulating a question well requires not building in questionable assumptions, not prejudging the issue, and using language that in context is unambiguous and precise enough (Ennis 1962: 97; 1991: 9).

Imaginative abilities : Thinking directed at finding the correct causal explanation of a general phenomenon or particular event requires an ability to imagine possible explanations. Thinking about what policy or plan of action to adopt requires generation of options and consideration of possible consequences of each option. Domain knowledge is required for such creative activity, but a general ability to imagine alternatives is helpful and can be nurtured so as to become easier, quicker, more extensive, and deeper (Dewey 1910: 34–39; 1933: 40–47). Facione (1990a) and Halpern (1998) include the ability to imagine alternatives as a critical thinking ability.

Inferential abilities : The ability to draw conclusions from given information, and to recognize with what degree of certainty one’s own or others’ conclusions follow, is universally recognized as a general critical thinking ability. All 11 examples in section 2 of this article include inferences, some from hypotheses or options (as in Transit , Ferryboat and Disorder ), others from something observed (as in Weather and Rash ). None of these inferences is formally valid. Rather, they are licensed by general, sometimes qualified substantive rules of inference (Toulmin 1958) that rest on domain knowledge—that a bus trip takes about the same time in each direction, that the terminal of a wireless telegraph would be located on the highest possible place, that sudden cooling is often followed by rain, that an allergic reaction to a sulfa drug generally shows up soon after one starts taking it. It is a matter of controversy to what extent the specialized ability to deduce conclusions from premisses using formal rules of inference is needed for critical thinking. Dewey (1933) locates logical forms in setting out the products of reflection rather than in the process of reflection. Ennis (1981a), on the other hand, maintains that a liberally-educated person should have the following abilities: to translate natural-language statements into statements using the standard logical operators, to use appropriately the language of necessary and sufficient conditions, to deal with argument forms and arguments containing symbols, to determine whether in virtue of an argument’s form its conclusion follows necessarily from its premisses, to reason with logically complex propositions, and to apply the rules and procedures of deductive logic. Inferential abilities are recognized as critical thinking abilities by Glaser (1941: 6), Facione (1990a: 9), Ennis (1991: 9), Fisher & Scriven (1997: 99, 111), and Halpern (1998: 452). Items testing inferential abilities constitute two of the five subtests of the Watson Glaser Critical Thinking Appraisal (Watson & Glaser 1980a, 1980b, 1994), two of the four sections in the Cornell Critical Thinking Test Level X (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005), three of the seven sections in the Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005), 11 of the 34 items on Forms A and B of the California Critical Thinking Skills Test (Facione 1990b, 1992), and a high but variable proportion of the 25 selected-response questions in the Collegiate Learning Assessment (Council for Aid to Education 2017).

Experimenting abilities : Knowing how to design and execute an experiment is important not just in scientific research but also in everyday life, as in Rash . Dewey devoted a whole chapter of his How We Think (1910: 145–156; 1933: 190–202) to the superiority of experimentation over observation in advancing knowledge. Experimenting abilities come into play at one remove in appraising reports of scientific studies. Skill in designing and executing experiments includes the acknowledged abilities to appraise evidence (Glaser 1941: 6), to carry out experiments and to apply appropriate statistical inference techniques (Facione 1990a: 9), to judge inductions to an explanatory hypothesis (Ennis 1991: 9), and to recognize the need for an adequately large sample size (Halpern 1998). The Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005) includes four items (out of 52) on experimental design. The Collegiate Learning Assessment (Council for Aid to Education 2017) makes room for appraisal of study design in both its performance task and its selected-response questions.

Consulting abilities : Skill at consulting sources of information comes into play when one seeks information to help resolve a problem, as in Candidate . Ability to find and appraise information includes ability to gather and marshal pertinent information (Glaser 1941: 6), to judge whether a statement made by an alleged authority is acceptable (Ennis 1962: 84), to plan a search for desired information (Facione 1990a: 9), and to judge the credibility of a source (Ennis 1991: 9). Ability to judge the credibility of statements is tested by 24 items (out of 76) in the Cornell Critical Thinking Test Level X (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005) and by four items (out of 52) in the Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005). The College Learning Assessment’s performance task requires evaluation of whether information in documents is credible or unreliable (Council for Aid to Education 2017).

Argument analysis abilities : The ability to identify and analyze arguments contributes to the process of surveying arguments on an issue in order to form one’s own reasoned judgment, as in Candidate . The ability to detect and analyze arguments is recognized as a critical thinking skill by Facione (1990a: 7–8), Ennis (1991: 9) and Halpern (1998). Five items (out of 34) on the California Critical Thinking Skills Test (Facione 1990b, 1992) test skill at argument analysis. The College Learning Assessment (Council for Aid to Education 2017) incorporates argument analysis in its selected-response tests of critical reading and evaluation and of critiquing an argument.

Judging skills and deciding skills : Skill at judging and deciding is skill at recognizing what judgment or decision the available evidence and argument supports, and with what degree of confidence. It is thus a component of the inferential skills already discussed.

Lists and tests of critical thinking abilities often include two more abilities: identifying assumptions and constructing and evaluating definitions.

In addition to dispositions and abilities, critical thinking needs knowledge: of critical thinking concepts, of critical thinking principles, and of the subject-matter of the thinking.

We can derive a short list of concepts whose understanding contributes to critical thinking from the critical thinking abilities described in the preceding section. Observational abilities require an understanding of the difference between observation and inference. Questioning abilities require an understanding of the concepts of ambiguity and vagueness. Inferential abilities require an understanding of the difference between conclusive and defeasible inference (traditionally, between deduction and induction), as well as of the difference between necessary and sufficient conditions. Experimenting abilities require an understanding of the concepts of hypothesis, null hypothesis, assumption and prediction, as well as of the concept of statistical significance and of its difference from importance. They also require an understanding of the difference between an experiment and an observational study, and in particular of the difference between a randomized controlled trial, a prospective correlational study and a retrospective (case-control) study. Argument analysis abilities require an understanding of the concepts of argument, premiss, assumption, conclusion and counter-consideration. Additional critical thinking concepts are proposed by Bailin et al. (1999b: 293), Fisher & Scriven (1997: 105–106), and Black (2012).

According to Glaser (1941: 25), ability to think critically requires knowledge of the methods of logical inquiry and reasoning. If we review the list of abilities in the preceding section, however, we can see that some of them can be acquired and exercised merely through practice, possibly guided in an educational setting, followed by feedback. Searching intelligently for a causal explanation of some phenomenon or event requires that one consider a full range of possible causal contributors, but it seems more important that one implements this principle in one’s practice than that one is able to articulate it. What is important is “operational knowledge” of the standards and principles of good thinking (Bailin et al. 1999b: 291–293). But the development of such critical thinking abilities as designing an experiment or constructing an operational definition can benefit from learning their underlying theory. Further, explicit knowledge of quirks of human thinking seems useful as a cautionary guide. Human memory is not just fallible about details, as people learn from their own experiences of misremembering, but is so malleable that a detailed, clear and vivid recollection of an event can be a total fabrication (Loftus 2017). People seek or interpret evidence in ways that are partial to their existing beliefs and expectations, often unconscious of their “confirmation bias” (Nickerson 1998). Not only are people subject to this and other cognitive biases (Kahneman 2011), of which they are typically unaware, but it may be counter-productive for one to make oneself aware of them and try consciously to counteract them or to counteract social biases such as racial or sexual stereotypes (Kenyon & Beaulac 2014). It is helpful to be aware of these facts and of the superior effectiveness of blocking the operation of biases—for example, by making an immediate record of one’s observations, refraining from forming a preliminary explanatory hypothesis, blind refereeing, double-blind randomized trials, and blind grading of students’ work.

Critical thinking about an issue requires substantive knowledge of the domain to which the issue belongs. Critical thinking abilities are not a magic elixir that can be applied to any issue whatever by somebody who has no knowledge of the facts relevant to exploring that issue. For example, the student in Bubbles needed to know that gases do not penetrate solid objects like a glass, that air expands when heated, that the volume of an enclosed gas varies directly with its temperature and inversely with its pressure, and that hot objects will spontaneously cool down to the ambient temperature of their surroundings unless kept hot by insulation or a source of heat. Critical thinkers thus need a rich fund of subject-matter knowledge relevant to the variety of situations they encounter. This fact is recognized in the inclusion among critical thinking dispositions of a concern to become and remain generally well informed.

Experimental educational interventions, with control groups, have shown that education can improve critical thinking skills and dispositions, as measured by standardized tests. For information about these tests, see the Supplement on Assessment .

What educational methods are most effective at developing the dispositions, abilities and knowledge of a critical thinker? Abrami et al. (2015) found that in the experimental and quasi-experimental studies that they analyzed dialogue, anchored instruction, and mentoring each increased the effectiveness of the educational intervention, and that they were most effective when combined. They also found that in these studies a combination of separate instruction in critical thinking with subject-matter instruction in which students are encouraged to think critically was more effective than either by itself. However, the difference was not statistically significant; that is, it might have arisen by chance.

Most of these studies lack the longitudinal follow-up required to determine whether the observed differential improvements in critical thinking abilities or dispositions continue over time, for example until high school or college graduation. For details on studies of methods of developing critical thinking skills and dispositions, see the Supplement on Educational Methods .

12. Controversies

Scholars have denied the generalizability of critical thinking abilities across subject domains, have alleged bias in critical thinking theory and pedagogy, and have investigated the relationship of critical thinking to other kinds of thinking.

McPeck (1981) attacked the thinking skills movement of the 1970s, including the critical thinking movement. He argued that there are no general thinking skills, since thinking is always thinking about some subject-matter. It is futile, he claimed, for schools and colleges to teach thinking as if it were a separate subject. Rather, teachers should lead their pupils to become autonomous thinkers by teaching school subjects in a way that brings out their cognitive structure and that encourages and rewards discussion and argument. As some of his critics (e.g., Paul 1985; Siegel 1985) pointed out, McPeck’s central argument needs elaboration, since it has obvious counter-examples in writing and speaking, for which (up to a certain level of complexity) there are teachable general abilities even though they are always about some subject-matter. To make his argument convincing, McPeck needs to explain how thinking differs from writing and speaking in a way that does not permit useful abstraction of its components from the subject-matters with which it deals. He has not done so. Nevertheless, his position that the dispositions and abilities of a critical thinker are best developed in the context of subject-matter instruction is shared by many theorists of critical thinking, including Dewey (1910, 1933), Glaser (1941), Passmore (1980), Weinstein (1990), and Bailin et al. (1999b).

McPeck’s challenge prompted reflection on the extent to which critical thinking is subject-specific. McPeck argued for a strong subject-specificity thesis, according to which it is a conceptual truth that all critical thinking abilities are specific to a subject. (He did not however extend his subject-specificity thesis to critical thinking dispositions. In particular, he took the disposition to suspend judgment in situations of cognitive dissonance to be a general disposition.) Conceptual subject-specificity is subject to obvious counter-examples, such as the general ability to recognize confusion of necessary and sufficient conditions. A more modest thesis, also endorsed by McPeck, is epistemological subject-specificity, according to which the norms of good thinking vary from one field to another. Epistemological subject-specificity clearly holds to a certain extent; for example, the principles in accordance with which one solves a differential equation are quite different from the principles in accordance with which one determines whether a painting is a genuine Picasso. But the thesis suffers, as Ennis (1989) points out, from vagueness of the concept of a field or subject and from the obvious existence of inter-field principles, however broadly the concept of a field is construed. For example, the principles of hypothetico-deductive reasoning hold for all the varied fields in which such reasoning occurs. A third kind of subject-specificity is empirical subject-specificity, according to which as a matter of empirically observable fact a person with the abilities and dispositions of a critical thinker in one area of investigation will not necessarily have them in another area of investigation.

The thesis of empirical subject-specificity raises the general problem of transfer. If critical thinking abilities and dispositions have to be developed independently in each school subject, how are they of any use in dealing with the problems of everyday life and the political and social issues of contemporary society, most of which do not fit into the framework of a traditional school subject? Proponents of empirical subject-specificity tend to argue that transfer is more likely to occur if there is critical thinking instruction in a variety of domains, with explicit attention to dispositions and abilities that cut across domains. But evidence for this claim is scanty. There is a need for well-designed empirical studies that investigate the conditions that make transfer more likely.

It is common ground in debates about the generality or subject-specificity of critical thinking dispositions and abilities that critical thinking about any topic requires background knowledge about the topic. For example, the most sophisticated understanding of the principles of hypothetico-deductive reasoning is of no help unless accompanied by some knowledge of what might be plausible explanations of some phenomenon under investigation.

Critics have objected to bias in the theory, pedagogy and practice of critical thinking. Commentators (e.g., Alston 1995; Ennis 1998) have noted that anyone who takes a position has a bias in the neutral sense of being inclined in one direction rather than others. The critics, however, are objecting to bias in the pejorative sense of an unjustified favoring of certain ways of knowing over others, frequently alleging that the unjustly favoured ways are those of a dominant sex or culture (Bailin 1995). These ways favour:

  • reinforcement of egocentric and sociocentric biases over dialectical engagement with opposing world-views (Paul 1981, 1984; Warren 1998)
  • distancing from the object of inquiry over closeness to it (Martin 1992; Thayer-Bacon 1992)
  • indifference to the situation of others over care for them (Martin 1992)
  • orientation to thought over orientation to action (Martin 1992)
  • being reasonable over caring to understand people’s ideas (Thayer-Bacon 1993)
  • being neutral and objective over being embodied and situated (Thayer-Bacon 1995a)
  • doubting over believing (Thayer-Bacon 1995b)
  • reason over emotion, imagination and intuition (Thayer-Bacon 2000)
  • solitary thinking over collaborative thinking (Thayer-Bacon 2000)
  • written and spoken assignments over other forms of expression (Alston 2001)
  • attention to written and spoken communications over attention to human problems (Alston 2001)
  • winning debates in the public sphere over making and understanding meaning (Alston 2001)

A common thread in this smorgasbord of accusations is dissatisfaction with focusing on the logical analysis and evaluation of reasoning and arguments. While these authors acknowledge that such analysis and evaluation is part of critical thinking and should be part of its conceptualization and pedagogy, they insist that it is only a part. Paul (1981), for example, bemoans the tendency of atomistic teaching of methods of analyzing and evaluating arguments to turn students into more able sophists, adept at finding fault with positions and arguments with which they disagree but even more entrenched in the egocentric and sociocentric biases with which they began. Martin (1992) and Thayer-Bacon (1992) cite with approval the self-reported intimacy with their subject-matter of leading researchers in biology and medicine, an intimacy that conflicts with the distancing allegedly recommended in standard conceptions and pedagogy of critical thinking. Thayer-Bacon (2000) contrasts the embodied and socially embedded learning of her elementary school students in a Montessori school, who used their imagination, intuition and emotions as well as their reason, with conceptions of critical thinking as

thinking that is used to critique arguments, offer justifications, and make judgments about what are the good reasons, or the right answers. (Thayer-Bacon 2000: 127–128)

Alston (2001) reports that her students in a women’s studies class were able to see the flaws in the Cinderella myth that pervades much romantic fiction but in their own romantic relationships still acted as if all failures were the woman’s fault and still accepted the notions of love at first sight and living happily ever after. Students, she writes, should

be able to connect their intellectual critique to a more affective, somatic, and ethical account of making risky choices that have sexist, racist, classist, familial, sexual, or other consequences for themselves and those both near and far… critical thinking that reads arguments, texts, or practices merely on the surface without connections to feeling/desiring/doing or action lacks an ethical depth that should infuse the difference between mere cognitive activity and something we want to call critical thinking. (Alston 2001: 34)

Some critics portray such biases as unfair to women. Thayer-Bacon (1992), for example, has charged modern critical thinking theory with being sexist, on the ground that it separates the self from the object and causes one to lose touch with one’s inner voice, and thus stigmatizes women, who (she asserts) link self to object and listen to their inner voice. Her charge does not imply that women as a group are on average less able than men to analyze and evaluate arguments. Facione (1990c) found no difference by sex in performance on his California Critical Thinking Skills Test. Kuhn (1991: 280–281) found no difference by sex in either the disposition or the competence to engage in argumentative thinking.

The critics propose a variety of remedies for the biases that they allege. In general, they do not propose to eliminate or downplay critical thinking as an educational goal. Rather, they propose to conceptualize critical thinking differently and to change its pedagogy accordingly. Their pedagogical proposals arise logically from their objections. They can be summarized as follows:

  • Focus on argument networks with dialectical exchanges reflecting contesting points of view rather than on atomic arguments, so as to develop “strong sense” critical thinking that transcends egocentric and sociocentric biases (Paul 1981, 1984).
  • Foster closeness to the subject-matter and feeling connected to others in order to inform a humane democracy (Martin 1992).
  • Develop “constructive thinking” as a social activity in a community of physically embodied and socially embedded inquirers with personal voices who value not only reason but also imagination, intuition and emotion (Thayer-Bacon 2000).
  • In developing critical thinking in school subjects, treat as important neither skills nor dispositions but opening worlds of meaning (Alston 2001).
  • Attend to the development of critical thinking dispositions as well as skills, and adopt the “critical pedagogy” practised and advocated by Freire (1968 [1970]) and hooks (1994) (Dalgleish, Girard, & Davies 2017).

A common thread in these proposals is treatment of critical thinking as a social, interactive, personally engaged activity like that of a quilting bee or a barn-raising (Thayer-Bacon 2000) rather than as an individual, solitary, distanced activity symbolized by Rodin’s The Thinker . One can get a vivid description of education with the former type of goal from the writings of bell hooks (1994, 2010). Critical thinking for her is open-minded dialectical exchange across opposing standpoints and from multiple perspectives, a conception similar to Paul’s “strong sense” critical thinking (Paul 1981). She abandons the structure of domination in the traditional classroom. In an introductory course on black women writers, for example, she assigns students to write an autobiographical paragraph about an early racial memory, then to read it aloud as the others listen, thus affirming the uniqueness and value of each voice and creating a communal awareness of the diversity of the group’s experiences (hooks 1994: 84). Her “engaged pedagogy” is thus similar to the “freedom under guidance” implemented in John Dewey’s Laboratory School of Chicago in the late 1890s and early 1900s. It incorporates the dialogue, anchored instruction, and mentoring that Abrami (2015) found to be most effective in improving critical thinking skills and dispositions.

What is the relationship of critical thinking to problem solving, decision-making, higher-order thinking, creative thinking, and other recognized types of thinking? One’s answer to this question obviously depends on how one defines the terms used in the question. If critical thinking is conceived broadly to cover any careful thinking about any topic for any purpose, then problem solving and decision making will be kinds of critical thinking, if they are done carefully. Historically, ‘critical thinking’ and ‘problem solving’ were two names for the same thing. If critical thinking is conceived more narrowly as consisting solely of appraisal of intellectual products, then it will be disjoint with problem solving and decision making, which are constructive.

Bloom’s taxonomy of educational objectives used the phrase “intellectual abilities and skills” for what had been labeled “critical thinking” by some, “reflective thinking” by Dewey and others, and “problem solving” by still others (Bloom et al. 1956: 38). Thus, the so-called “higher-order thinking skills” at the taxonomy’s top levels of analysis, synthesis and evaluation are just critical thinking skills, although they do not come with general criteria for their assessment (Ennis 1981b). The revised version of Bloom’s taxonomy (Anderson et al. 2001) likewise treats critical thinking as cutting across those types of cognitive process that involve more than remembering (Anderson et al. 2001: 269–270). For details, see the Supplement on History .

As to creative thinking, it overlaps with critical thinking (Bailin 1987, 1988). Thinking about the explanation of some phenomenon or event, as in Ferryboat , requires creative imagination in constructing plausible explanatory hypotheses. Likewise, thinking about a policy question, as in Candidate , requires creativity in coming up with options. Conversely, creativity in any field needs to be balanced by critical appraisal of the draft painting or novel or mathematical theory.

  • Abrami, Philip C., Robert M. Bernard, Eugene Borokhovski, David I. Waddington, C. Anne Wade, and Tonje Person, 2015, “Strategies for Teaching Students to Think Critically: A Meta-analysis”, Review of Educational Research , 85(2): 275–314. doi:10.3102/0034654314551063
  • Aikin, Wilford M., 1942, The Story of the Eight-year Study, with Conclusions and Recommendations , Volume I of Adventure in American Education , New York and London: Harper & Brothers. [ Aikin 1942 available online ]
  • Alston, Kal, 1995, “Begging the Question: Is Critical Thinking Biased?”, Educational Theory , 45(2): 225–233. doi:10.1111/j.1741-5446.1995.00225.x
  • –––, 2001, “Re/Thinking Critical Thinking: The Seductions of Everyday Life”, Studies in Philosophy and Education , 20(1): 27–40. doi:10.1023/A:1005247128053
  • American Educational Research Association, 2014, Standards for Educational and Psychological Testing / American Educational Research Association, American Psychological Association, National Council on Measurement in Education , Washington, DC: American Educational Research Association.
  • Anderson, Lorin W., David R. Krathwohl, Peter W. Airiasian, Kathleen A. Cruikshank, Richard E. Mayer, Paul R. Pintrich, James Raths, and Merlin C. Wittrock, 2001, A Taxonomy for Learning, Teaching and Assessing: A Revision of Bloom’s Taxonomy of Educational Objectives , New York: Longman, complete edition.
  • Bailin, Sharon, 1987, “Critical and Creative Thinking”, Informal Logic , 9(1): 23–30. [ Bailin 1987 available online ]
  • –––, 1988, Achieving Extraordinary Ends: An Essay on Creativity , Dordrecht: Kluwer. doi:10.1007/978-94-009-2780-3
  • –––, 1995, “Is Critical Thinking Biased? Clarifications and Implications”, Educational Theory , 45(2): 191–197. doi:10.1111/j.1741-5446.1995.00191.x
  • Bailin, Sharon and Mark Battersby, 2009, “Inquiry: A Dialectical Approach to Teaching Critical Thinking”, in Juho Ritola (ed.), Argument Cultures: Proceedings of OSSA 09 , CD-ROM (pp. 1–10), Windsor, ON: OSSA. [ Bailin & Battersby 2009 available online ]
  • –––, 2016, “Fostering the Virtues of Inquiry”, Topoi , 35(2): 367–374. doi:10.1007/s11245-015-9307-6
  • Bailin, Sharon, Roland Case, Jerrold R. Coombs, and Leroi B. Daniels, 1999a, “Common Misconceptions of Critical Thinking”, Journal of Curriculum Studies , 31(3): 269–283. doi:10.1080/002202799183124
  • –––, 1999b, “Conceptualizing Critical Thinking”, Journal of Curriculum Studies , 31(3): 285–302. doi:10.1080/002202799183133
  • Berman, Alan M., Seth J. Schwartz, William M. Kurtines, and Steven L. Berman, 2001, “The Process of Exploration in Identity Formation: The Role of Style and Competence”, Journal of Adolescence , 24(4): 513–528. doi:10.1006/jado.2001.0386
  • Black, Beth (ed.), 2012, An A to Z of Critical Thinking , London: Continuum International Publishing Group.
  • Bloom, Benjamin Samuel, Max D. Engelhart, Edward J. Furst, Walter H. Hill, and David R. Krathwohl, 1956, Taxonomy of Educational Objectives. Handbook I: Cognitive Domain , New York: David McKay.
  • Casserly, Megan, 2012, “The 10 Skills That Will Get You Hired in 2013”, Forbes , Dec. 10, 2012. Available at https://www.forbes.com/sites/meghancasserly/2012/12/10/the-10-skills-that-will-get-you-a-job-in-2013/#79e7ff4e633d ; accessed 2017 11 06.
  • Center for Assessment & Improvement of Learning, 2017, Critical Thinking Assessment Test , Cookeville, TN: Tennessee Technological University.
  • Cohen, Jacob, 1988, Statistical Power Analysis for the Behavioral Sciences , Hillsdale, NJ: Lawrence Erlbaum Associates, 2nd edition.
  • College Board, 1983, Academic Preparation for College. What Students Need to Know and Be Able to Do , New York: College Entrance Examination Board, ERIC document ED232517.
  • Commission on the Relation of School and College of the Progressive Education Association, 1943, Thirty Schools Tell Their Story , Volume V of Adventure in American Education , New York and London: Harper & Brothers.
  • Council for Aid to Education, 2017, CLA+ Student Guide . Available at http://cae.org/images/uploads/pdf/CLA_Student_Guide_Institution.pdf ; accessed 2017 09 26.
  • Dalgleish, Adam, Patrick Girard, and Maree Davies, 2017, “Critical Thinking, Bias and Feminist Philosophy: Building a Better Framework through Collaboration”, Informal Logic , 37(4): 351–369. [ Dalgleish et al. available online ]
  • Dewey, John, 1910, How We Think , Boston: D.C. Heath. [ Dewey 1910 available online ]
  • –––, 1916, Democracy and Education: An Introduction to the Philosophy of Education , New York: Macmillan.
  • –––, 1933, How We Think: A Restatement of the Relation of Reflective Thinking to the Educative Process , Lexington, MA: D.C. Heath.
  • –––, 1936, “The Theory of the Chicago Experiment”, Appendix II of Mayhew & Edwards 1936: 463–477.
  • –––, 1938, Logic: The Theory of Inquiry , New York: Henry Holt and Company.
  • Dominguez, Caroline (coord.), 2018a, A European Collection of the Critical Thinking Skills and Dispositions Needed in Different Professional Fields for the 21st Century , Vila Real, Portugal: UTAD. Available at http://bit.ly/CRITHINKEDUO1 ; accessed 2018 04 09.
  • ––– (coord.), 2018b, A European Review on Critical Thinking Educational Practices in Higher Education Institutions , Vila Real: UTAD. Available at http://bit.ly/CRITHINKEDUO2 ; accessed 2018 04 14.
  • Dumke, Glenn S., 1980, Chancellor’s Executive Order 338 , Long Beach, CA: California State University, Chancellor’s Office. Available at https://www.calstate.edu/eo/EO-338.pdf ; accessed 2017 11 16.
  • Ennis, Robert H., 1958, “An Appraisal of the Watson-Glaser Critical Thinking Appraisal”, The Journal of Educational Research , 52(4): 155–158. doi:10.1080/00220671.1958.10882558
  • –––, 1962, “A Concept of Critical Thinking: A Proposed Basis for Research on the Teaching and Evaluation of Critical Thinking Ability”, Harvard Educational Review , 32(1): 81–111.
  • –––, 1981a, “A Conception of Deductive Logical Competence”, Teaching Philosophy , 4(3/4): 337–385. doi:10.5840/teachphil198143/429
  • –––, 1981b, “Eight Fallacies in Bloom’s Taxonomy”, in C. J. B. Macmillan (ed.), Philosophy of Education 1980: Proceedings of the Thirty-seventh Annual Meeting of the Philosophy of Education Society , Bloomington, IL: Philosophy of Education Society, pp. 269–273.
  • –––, 1984, “Problems in Testing Informal Logic, Critical Thinking, Reasoning Ability”. Informal Logic , 6(1): 3–9. [ Ennis 1984 available online ]
  • –––, 1987, “A Taxonomy of Critical Thinking Dispositions and Abilities”, in Joan Boykoff Baron and Robert J. Sternberg (eds.), Teaching Thinking Skills: Theory and Practice , New York: W. H. Freeman, pp. 9–26.
  • –––, 1989, “Critical Thinking and Subject Specificity: Clarification and Needed Research”, Educational Researcher , 18(3): 4–10. doi:10.3102/0013189X018003004
  • –––, 1991, “Critical Thinking: A Streamlined Conception”, Teaching Philosophy , 14(1): 5–24. doi:10.5840/teachphil19911412
  • –––, 1996, “Critical Thinking Dispositions: Their Nature and Assessability”, Informal Logic , 18(2–3): 165–182. [ Ennis 1996 available online ]
  • –––, 1998, “Is Critical Thinking Culturally Biased?”, Teaching Philosophy , 21(1): 15–33. doi:10.5840/teachphil19982113
  • –––, 2011, “Critical Thinking: Reflection and Perspective Part I”, Inquiry: Critical Thinking across the Disciplines , 26(1): 4–18. doi:10.5840/inquiryctnews20112613
  • –––, 2013, “Critical Thinking across the Curriculum: The Wisdom CTAC Program”, Inquiry: Critical Thinking across the Disciplines , 28(2): 25–45. doi:10.5840/inquiryct20132828
  • –––, 2016, “Definition: A Three-Dimensional Analysis with Bearing on Key Concepts”, in Patrick Bondy and Laura Benacquista (eds.), Argumentation, Objectivity, and Bias: Proceedings of the 11th International Conference of the Ontario Society for the Study of Argumentation (OSSA), 18–21 May 2016 , Windsor, ON: OSSA, pp. 1–19. Available at http://scholar.uwindsor.ca/ossaarchive/OSSA11/papersandcommentaries/105 ; accessed 2017 12 02.
  • –––, 2018, “Critical Thinking Across the Curriculum: A Vision”, Topoi , 37(1): 165–184. doi:10.1007/s11245-016-9401-4
  • Ennis, Robert H., and Jason Millman, 1971, Manual for Cornell Critical Thinking Test, Level X, and Cornell Critical Thinking Test, Level Z , Urbana, IL: Critical Thinking Project, University of Illinois.
  • Ennis, Robert H., Jason Millman, and Thomas Norbert Tomko, 1985, Cornell Critical Thinking Tests Level X & Level Z: Manual , Pacific Grove, CA: Midwest Publication, 3rd edition.
  • –––, 2005, Cornell Critical Thinking Tests Level X & Level Z: Manual , Seaside, CA: Critical Thinking Company, 5th edition.
  • Ennis, Robert H. and Eric Weir, 1985, The Ennis-Weir Critical Thinking Essay Test: Test, Manual, Criteria, Scoring Sheet: An Instrument for Teaching and Testing , Pacific Grove, CA: Midwest Publications.
  • Facione, Peter A., 1990a, Critical Thinking: A Statement of Expert Consensus for Purposes of Educational Assessment and Instruction , Research Findings and Recommendations Prepared for the Committee on Pre-College Philosophy of the American Philosophical Association, ERIC Document ED315423.
  • –––, 1990b, California Critical Thinking Skills Test, CCTST – Form A , Millbrae, CA: The California Academic Press.
  • –––, 1990c, The California Critical Thinking Skills Test--College Level. Technical Report #3. Gender, Ethnicity, Major, CT Self-Esteem, and the CCTST , ERIC Document ED326584.
  • –––, 1992, California Critical Thinking Skills Test: CCTST – Form B, Millbrae, CA: The California Academic Press.
  • –––, 2000, “The Disposition Toward Critical Thinking: Its Character, Measurement, and Relationship to Critical Thinking Skill”, Informal Logic , 20(1): 61–84. [ Facione 2000 available online ]
  • Facione, Peter A. and Noreen C. Facione, 1992, CCTDI: A Disposition Inventory , Millbrae, CA: The California Academic Press.
  • Facione, Peter A., Noreen C. Facione, and Carol Ann F. Giancarlo, 2001, California Critical Thinking Disposition Inventory: CCTDI: Inventory Manual , Millbrae, CA: The California Academic Press.
  • Facione, Peter A., Carol A. Sánchez, and Noreen C. Facione, 1994, Are College Students Disposed to Think? , Millbrae, CA: The California Academic Press. ERIC Document ED368311.
  • Fisher, Alec, and Michael Scriven, 1997, Critical Thinking: Its Definition and Assessment , Norwich: Centre for Research in Critical Thinking, University of East Anglia.
  • Freire, Paulo, 1968 [1970], Pedagogia do Oprimido . Translated as Pedagogy of the Oppressed , Myra Bergman Ramos (trans.), New York: Continuum, 1970.
  • Glaser, Edward Maynard, 1941, An Experiment in the Development of Critical Thinking , New York: Bureau of Publications, Teachers College, Columbia University.
  • Halpern, Diane F., 1998, “Teaching Critical Thinking for Transfer Across Domains: Disposition, Skills, Structure Training, and Metacognitive Monitoring”, American Psychologist , 53(4): 449–455. doi:10.1037/0003-066X.53.4.449
  • –––, 2016, Manual: Halpern Critical Thinking Assessment , Mödling, Austria: Schuhfried. Available at https://drive.google.com/file/d/0BzUoP_pmwy1gdEpCR05PeW9qUzA/view ; accessed 2017 12 01.
  • Hamby, Benjamin, 2014, The Virtues of Critical Thinkers , Doctoral dissertation, Philosophy, McMaster University. [ Hamby 2014 available online ]
  • –––, 2015, “Willingness to Inquire: The Cardinal Critical Thinking Virtue”, in Martin Davies and Ronald Barnett (eds.), The Palgrave Handbook of Critical Thinking in Higher Education , New York: Palgrave Macmillan, pp. 77–87.
  • Haynes, Ada, Elizabeth Lisic, Kevin Harris, Katie Leming, Kyle Shanks, and Barry Stein, 2015, “Using the Critical Thinking Assessment Test (CAT) as a Model for Designing Within-Course Assessments: Changing How Faculty Assess Student Learning”, Inquiry: Critical Thinking Across the Disciplines , 30(3): 38–48. doi:10.5840/inquiryct201530316
  • Hitchcock, David, 2017, “Critical Thinking as an Educational Ideal”, in his On Reasoning and Argument: Essays in Informal Logic and on Critical Thinking , Dordrecht: Springer, pp. 477–497. doi:10.1007/978-3-319-53562-3_30
  • hooks, bell, 1994, Teaching to Transgress: Education as the Practice of Freedom , New York and London: Routledge.
  • –––, 2010, Teaching Critical Thinking: Practical Wisdom , New York and London: Routledge.
  • Johnson, Ralph H., 1992, “The Problem of Defining Critical Thinking”, in Stephen P, Norris (ed.), The Generalizability of Critical Thinking , New York: Teachers College Press, pp. 38–53.
  • Kahane, Howard, 1971, Logic and Contemporary Rhetoric: The Use of Reason in Everyday Life , Belmont, CA: Wadsworth.
  • Kahneman, Daniel, 2011, Thinking, Fast and Slow , New York: Farrar, Straus and Giroux.
  • Kenyon, Tim, and Guillaume Beaulac, 2014, “Critical Thinking Education and Debasing”, Informal Logic , 34(4): 341–363. [ Kenyon & Beaulac 2014 available online ]
  • Krathwohl, David R., Benjamin S. Bloom, and Bertram B. Masia, 1964, Taxonomy of Educational Objectives, Handbook II: Affective Domain , New York: David McKay.
  • Kuhn, Deanna, 1991, The Skills of Argument , New York: Cambridge University Press. doi:10.1017/CBO9780511571350
  • Lipman, Matthew, 1987, “Critical Thinking–What Can It Be?”, Analytic Teaching , 8(1): 5–12. [ Lipman 1987 available online ]
  • Loftus, Elizabeth F., 2017, “Eavesdropping on Memory”, Annual Review of Psychology , 68: 1–18. doi:10.1146/annurev-psych-010416-044138
  • Martin, Jane Roland, 1992, “Critical Thinking for a Humane World”, in Stephen P. Norris (ed.), The Generalizability of Critical Thinking , New York: Teachers College Press, pp. 163–180.
  • Mayhew, Katherine Camp, and Anna Camp Edwards, 1936, The Dewey School: The Laboratory School of the University of Chicago, 1896–1903 , New York: Appleton-Century. [ Mayhew & Edwards 1936 available online ]
  • McPeck, John E., 1981, Critical Thinking and Education , New York: St. Martin’s Press.
  • Nickerson, Raymond S., 1998, “Confirmation Bias: A Ubiquitous Phenomenon in Many Guises”, Review of General Psychology , 2(2): 175–220. doi:10.1037/1089-2680.2.2.175
  • Nieto, Ana Maria, and Jorge Valenzuela, 2012, “A Study of the Internal Structure of Critical Thinking Dispositions”, Inquiry: Critical Thinking across the Disciplines , 27(1): 31–38. doi:10.5840/inquiryct20122713
  • Norris, Stephen P., 1985, “Controlling for Background Beliefs When Developing Multiple-choice Critical Thinking Tests”, Educational Measurement: Issues and Practice , 7(3): 5–11. doi:10.1111/j.1745-3992.1988.tb00437.x
  • Norris, Stephen P. and Robert H. Ennis, 1989, Evaluating Critical Thinking (The Practitioners’ Guide to Teaching Thinking Series), Pacific Grove, CA: Midwest Publications.
  • Norris, Stephen P. and Ruth Elizabeth King, 1983, Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland.
  • –––, 1984, The Design of a Critical Thinking Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland. ERIC Document ED260083.
  • –––, 1985, Test on Appraising Observations: Manual , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland.
  • –––, 1990a, Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland, 2nd edition.
  • –––, 1990b, Test on Appraising Observations: Manual , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland, 2nd edition.
  • Obama, Barack, 2014, State of the Union Address , January 28, 2014. [ Obama 2014 available online ]
  • OCR [Oxford, Cambridge and RSA Examinations], 2011, AS/A Level GCE: Critical Thinking – H052, H452 , Cambridge: OCR. Information available at http://www.ocr.org.uk/qualifications/as-a-level-gce-critical-thinking-h052-h452/ ; accessed 2017 10 12.
  • OECD [Organization for Economic Cooperation and Development] Centre for Educational Research and Innovation, 2018, Fostering and Assessing Students’ Creative and Critical Thinking Skills in Higher Education , Paris: OECD. Available at http://www.oecd.org/education/ceri/Fostering-and-assessing-students-creative-and-critical-thinking-skills-in-higher-education.pdf ; accessed 2018 04 22.
  • Ontario Ministry of Education, 2013, The Ontario Curriculum Grades 9 to 12: Social Sciences and Humanities . Available at http://www.edu.gov.on.ca/eng/curriculum/secondary/ssciences9to122013.pdf ; accessed 2017 11 16.
  • Passmore, John Arthur, 1980, The Philosophy of Teaching , London: Duckworth.
  • Paul, Richard W., 1981, “Teaching Critical Thinking in the ‘Strong’ Sense: A Focus on Self-Deception, World Views, and a Dialectical Mode of Analysis”, Informal Logic , 4(2): 2–7. [ Paul 1981 available online ]
  • –––, 1984, “Critical Thinking: Fundamental to Education for a Free Society”, Educational Leadership , 42(1): 4–14.
  • –––, 1985, “McPeck’s Mistakes”, Informal Logic , 7(1): 35–43. [ Paul 1985 available online ]
  • Paul, Richard W. and Linda Elder, 2006, The Miniature Guide to Critical Thinking: Concepts and Tools , Dillon Beach, CA: Foundation for Critical Thinking, 4th edition.
  • Payette, Patricia, and Edna Ross, 2016, “Making a Campus-Wide Commitment to Critical Thinking: Insights and Promising Practices Utilizing the Paul-Elder Approach at the University of Louisville”, Inquiry: Critical Thinking Across the Disciplines , 31(1): 98–110. doi:10.5840/inquiryct20163118
  • Possin, Kevin, 2008, “A Field Guide to Critical-Thinking Assessment”, Teaching Philosophy , 31(3): 201–228. doi:10.5840/teachphil200831324
  • –––, 2013a, “Some Problems with the Halpern Critical Thinking Assessment (HCTA) Test”, Inquiry: Critical Thinking across the Disciplines , 28(3): 4–12. doi:10.5840/inquiryct201328313
  • –––, 2013b, “A Serious Flaw in the Collegiate Learning Assessment (CLA) Test”, Informal Logic , 33(3): 390–405. [ Possin 2013b available online ]
  • –––, 2014, “Critique of the Watson-Glaser Critical Thinking Appraisal Test: The More You Know, the Lower Your Score”, Informal Logic , 34(4): 393–416. [ Possin 2014 available online ]
  • Rawls, John, 1971, A Theory of Justice , Cambridge, MA: Harvard University Press.
  • Rousseau, Jean-Jacques, 1762, Émile , Amsterdam: Jean Néaulme.
  • Scheffler, Israel, 1960, The Language of Education , Springfield, IL: Charles C. Thomas.
  • Scriven, Michael, and Richard W. Paul, 1987, Defining Critical Thinking , Draft statement written for the National Council for Excellence in Critical Thinking Instruction. Available at http://www.criticalthinking.org/pages/defining-critical-thinking/766 ; accessed 2017 11 29.
  • Sheffield, Clarence Burton Jr., 2018, “Promoting Critical Thinking in Higher Education: My Experiences as the Inaugural Eugene H. Fram Chair in Applied Critical Thinking at Rochester Institute of Technology”, Topoi , 37(1): 155–163. doi:10.1007/s11245-016-9392-1
  • Siegel, Harvey, 1985, “McPeck, Informal Logic and the Nature of Critical Thinking”, in David Nyberg (ed.), Philosophy of Education 1985: Proceedings of the Forty-First Annual Meeting of the Philosophy of Education Society , Normal, IL: Philosophy of Education Society, pp. 61–72.
  • –––, 1988, Educating Reason: Rationality, Critical Thinking, and Education , New York: Routledge.
  • –––, 1999, “What (Good) Are Thinking Dispositions?”, Educational Theory , 49(2): 207–221. doi:10.1111/j.1741-5446.1999.00207.x
  • Simpson, Elizabeth, 1966–67, “The Classification of Educational Objectives: Psychomotor Domain”, Illinois Teacher of Home Economics , 10(4): 110–144, ERIC document ED0103613. [ Simpson 1966–67 available online ]
  • Skolverket, 2011, Curriculum for the Compulsory School, Preschool Class and the Recreation Centre , Stockholm: Ordförrådet AB. Available at http://malmo.se/download/18.29c3b78a132728ecb52800034181/pdf2687.pdf ; accessed 2017 11 16.
  • Smith, B. Othanel, 1953, “The Improvement of Critical Thinking”, Progressive Education , 30(5): 129–134.
  • Smith, Eugene Randolph, Ralph Winfred Tyler, and the Evaluation Staff, 1942, Appraising and Recording Student Progress , Volume III of Adventure in American Education , New York and London: Harper & Brothers.
  • Splitter, Laurance J., 1987, “Educational Reform through Philosophy for Children”, Thinking: The Journal of Philosophy for Children , 7(2): 32–39. doi:10.5840/thinking1987729
  • Stanovich Keith E., and Paula J. Stanovich, 2010, “A Framework for Critical Thinking, Rational Thinking, and Intelligence”, in David D. Preiss and Robert J. Sternberg (eds), Innovations in Educational Psychology: Perspectives on Learning, Teaching and Human Development , New York: Springer Publishing, pp 195–237.
  • Stanovich Keith E., Richard F. West, and Maggie E. Toplak, 2011, “Intelligence and Rationality”, in Robert J. Sternberg and Scott Barry Kaufman (eds.), Cambridge Handbook of Intelligence , Cambridge: Cambridge University Press, 3rd edition, pp. 784–826. doi:10.1017/CBO9780511977244.040
  • Tankersley, Karen, 2005, Literacy Strategies for Grades 4–12: Reinforcing the Threads of Reading , Alexandria, VA: Association for Supervision and Curriculum Development.
  • Thayer-Bacon, Barbara J., 1992, “Is Modern Critical Thinking Theory Sexist?”, Inquiry: Critical Thinking Across the Disciplines , 10(1): 3–7. doi:10.5840/inquiryctnews199210123
  • –––, 1993, “Caring and Its Relationship to Critical Thinking”, Educational Theory , 43(3): 323–340. doi:10.1111/j.1741-5446.1993.00323.x
  • –––, 1995a, “Constructive Thinking: Personal Voice”, Journal of Thought , 30(1): 55–70.
  • –––, 1995b, “Doubting and Believing: Both are Important for Critical Thinking”, Inquiry: Critical Thinking across the Disciplines , 15(2): 59–66. doi:10.5840/inquiryctnews199515226
  • –––, 2000, Transforming Critical Thinking: Thinking Constructively , New York: Teachers College Press.
  • Toulmin, Stephen Edelston, 1958, The Uses of Argument , Cambridge: Cambridge University Press.
  • Turri, John, Mark Alfano, and John Greco, 2017, “Virtue Epistemology”, in Edward N. Zalta (ed.), The Stanford Encyclopedia of Philosophy (Winter 2017 Edition). URL = < https://plato.stanford.edu/archives/win2017/entries/epistemology-virtue/ >
  • Warren, Karen J. 1988. “Critical Thinking and Feminism”, Informal Logic , 10(1): 31–44. [ Warren 1988 available online ]
  • Watson, Goodwin, and Edward M. Glaser, 1980a, Watson-Glaser Critical Thinking Appraisal, Form A , San Antonio, TX: Psychological Corporation.
  • –––, 1980b, Watson-Glaser Critical Thinking Appraisal: Forms A and B; Manual , San Antonio, TX: Psychological Corporation,
  • –––, 1994, Watson-Glaser Critical Thinking Appraisal, Form B , San Antonio, TX: Psychological Corporation.
  • Weinstein, Mark, 1990, “Towards a Research Agenda for Informal Logic and Critical Thinking”, Informal Logic , 12(3): 121–143. [ Weinstein 1990 available online ]
  • –––, 2013, Logic, Truth and Inquiry , London: College Publications.
  • Zagzebski, Linda Trinkaus, 1996, Virtues of the Mind: An Inquiry into the Nature of Virtue and the Ethical Foundations of Knowledge , Cambridge: Cambridge University Press. doi:10.1017/CBO9781139174763
How to cite this entry . Preview the PDF version of this entry at the Friends of the SEP Society . Look up this entry topic at the Internet Philosophy Ontology Project (InPhO). Enhanced bibliography for this entry at PhilPapers , with links to its database.
  • Association for Informal Logic and Critical Thinking (AILACT)
  • Center for Teaching Thinking (CTT)
  • Critical Thinking Across the European Higher Education Curricula (CRITHINKEDU)
  • Critical Thinking Definition, Instruction, and Assessment: A Rigorous Approach (criticalTHINKING.net)
  • Critical Thinking Research (RAIL)
  • Foundation for Critical Thinking
  • Insight Assessment
  • Partnership for 21st Century Learning (P21)
  • The Critical Thinking Consortium
  • The Nature of Critical Thinking: An Outline of Critical Thinking Dispositions and Abilities , by Robert H. Ennis

abilities | bias, implicit | children, philosophy for | civic education | decision-making capacity | Dewey, John | dispositions | education, philosophy of | epistemology: virtue | logic: informal

Copyright © 2018 by David Hitchcock < hitchckd @ mcmaster . ca >

Support SEP

Mirror sites.

View this site from another server:

  • Info about mirror sites

Stanford Center for the Study of Language and Information

The Stanford Encyclopedia of Philosophy is copyright © 2016 by The Metaphysics Research Lab , Center for the Study of Language and Information (CSLI), Stanford University

Library of Congress Catalog Data: ISSN 1095-5054

Christopher Dwyer Ph.D.

12 Important Dispositions for Critical Thinking

A student-educator negotiated model facilitated through interactive management..

Posted April 5, 2019

Critical thinking (CT) consists of a number of skills and dispositions that, when used appropriately, increases the chances of producing a logical solution to a problem or a valid conclusion to an argument (Dwyer, Hogan, & Stewart, 2012, 2014, 2015). Though the skill aspect of CT is well researched, there is significantly less research focused on the dispositional aspect, which refers to an inclination, tendency or willingness to perform a given thinking skill (Dwyer, 2017; Facione, Facione & Giancarlo, 1997; Ku, 2009; Norris, 1992; Siegel, 1999; Valenzuela, Nieto & Saiz, 2011). Different types of CT dispositions (CTDs) are essential for understanding how we think and how we can make our thinking better, in both academic settings and everyday situations (Siegel, 1999).

In research by my colleagues and I (Dwyer et al., 2016), we investigated how students and educators conceptualize CT using interactive management (Warfield, 1994). The study highlighted the value of consulting with both students and educators in the development of consensus-based models regarding CTDs. While it may be useful for educators to begin with expert definitions of CT, these definitions may be perceived by educators as overly diverse and/or complex, and they may not align with what students or a broader array of educators consider important. Our research identified and structured a range of dispositions, which fit into the following 12 categories, with results revealing that the most influential of CTDs were inquisitiveness, open-mindedness and self-efficacy , whereas the CTDs most enhanced by other dispositions were reflection and resourcefulness.

1. Inquisitiveness refers to an inclination to be curious; desire to fully understand something, discover the answer to a problem and accept that the full answer may not yet be known; and make sure to understand a task and its associated requirements, available options and limits.

2. Open-mindedness refers to an inclination to be cognitively flexible and avoid rigidity in thinking; to tolerate divergent or conflicting views and treat all viewpoints alike, prior to subsequent analysis and evaluation; to detach from one’s own beliefs and consider, seriously, points of view other to one’s own without bias or self-interest; to be open to feedback by accepting positive feedback and to not reject criticism or constructive feedback without thoughtful consideration; to amend existing knowledge in light of new ideas and experiences; and to explore such new, alternative or ‘unusual’ ideas.

3. Self-efficacy refers to the tendency to be confident and trust in one’s own reasoned judgments; to acknowledge one’s sense of self while considering problems and arguments (i.e., knowledge, heuristics , biases, culture and environment); to be confident and believe in one’s ability to receive and internalize resulting feedback positively and constructively; to be self-efficacious in leading others in the rational resolution of problems; and recognize that good reasoning is the key to living a rational life.

4. Attentiveness refers to a willingness to focus and concentrate; to be aware of surroundings, context, consequences and potential obstacles; to have the ‘full picture.'

5. Intrinsic goal orientation refers to being positive, competitive and enthusiastic towards a goal, task, topic of focus and, if not the topic itself, the process of learning new things; to search for answers as a result of internal motivation , rather than an external, extrinsic reward system.

6. Perseverance refers to being resilient and motivated to persist at working through complex tasks and the associated frustration and difficulty inherent in such tasks, without giving up; the motivation to get the job done correctly; the desire to progress.

7. Organization refers to an inclination to be orderly, systematic and diligent with information, resources and time when determining and maintaining focus on the task, conclusion, problem or question, while simultaneously considering the total situation and being able to present the resulting information in a fashion likewise, for purposes of achieving some desired end.

8. Truth-seeking refers to having a desire for knowledge; to seek and offer both reasons and objections in an effort to inform and to be well-informed; a willingness to challenge popular beliefs and social norms by asking questions (of oneself and others); to be honest and objective about pursuing the truth even if the findings do not support one’s self-interest or preconceived beliefs or opinions; and to change one’s mind about an idea as a result of the desire for truth.

9. Creativity refers to a tendency to visualize and generate ideas; and to think differently than usual. Notably, the inclusion of creativity may reflect the importance of inference as a CT skill (i.e., the drawing of a reasonable conclusion) with respect to idea generation, as well as ‘divergence’ (see Dwyer et al. [2016] for more detail), which may more accurately refer to traits associated with open-mindedness (e.g., to amend existing knowledge in light of new ideas and experiences and explore such new, alternative or ‘unusual’ ideas) than to what may be implied as ‘thinking outside the box’ here. These potential caveats are included given that, though creative and critical thinking often get ‘lumped together’ as buzzwords, the two processes have just as many differences as similarities (see Strange Bedfellows: Creativity & Critical Thinking ). CT and creative thinking are very different entities if you treat the latter as something similar to lateral thinking or ‘thinking outside the box’; however, if we conceptualize creative thinking as synthesizing information for the purpose of inferring a logical and feasible conclusion or solution, then it becomes complementary and useful to CT.

10. Skepticism refers to an inclination to challenge ideas; to withhold judgment before engaging all the evidence or when the evidence and reasons are insufficient; to take a position and be able to change position when the evidence and reasons are sufficient; and to look at findings from various perspectives.

the 3 key attitudes necessary for critical thinking are

11. Reflection refers to an inclination to reflect on one’s behaviour, attitudes and opinions, as well as the motivations behind these; to distinguish what is known and what is not, as well as limited knowledge or uncertainty; to approach decision-making with a sense that some problems are necessarily ill-structured, some situations permit more than one plausible conclusion or solution and judgments must often be made based on analysis and evaluation, as well as feasibility, standards, contexts and evidence that preclude certainty.

12. Resourcefulness refers to the willingness to utilize existing internal resources to resolve problems; to search for additional external resources in order to apply analogies and resolve problems; to switch between solution processes and/or knowledge to seek new ways/information to solve a problem; to make the best of the resources available; to adapt and/or improve if something goes wrong; and to think about how and why it went wrong.

Dwyer, C.P. (2017). Critical thinking: Conceptual perspectives and practical guidelines. UK: Cambridge University Press.

Dwyer, C. P., Hogan, M. J., & Stewart, I. (2012). An evaluation of argument mapping as a method of enhancing critical thinking performance in e-learning environments. Metacognition and Learning, 7, 219–244.

Dwyer, C. P., Hogan, M. J., & Stewart, I. (2014). An integrated critical thinking framework for the 21st century. Thinking Skills & Creativity, 12, 43–52.

Dwyer, C. P., Hogan, M. J., & Stewart, I. (2015). The evaluation of argument mapping-infused critical thinking instruction as a method of enhancing reflective judgment performance. Thinking Skills & Creativity, 16, 11–26.

Dwyer, C. P., Harney, O., Hogan, M. J., & Kavanagh, C. (2016). Facilitating a Student-Educator Conceptual Model of Dispositions towards Critical Thinking through Interactive Management. Educational Technology & Research, doi: 10.1007/s11423-016-9460-7.

Facione, P. A., Facione, N. C., & Giancarlo, C. A. (1997). Setting expectations for student learning: New directions for higher education. Millbrae: California Academic Press.

Ku, K. Y. L. (2009). Assessing students’ critical thinking performance: Urging for measurements using multi-response format. Thinking Skills and Creativity, 4(1), 70–76.

Norris, S. P. (Ed.). (1992). The generalizability of critical thinking: Multiple perspectives on an educational ideal. New York: Teachers College Press.

Siegel, H. (1999). What (good) are thinking dispositions? Educational Theory, 49(2), 207–221.

Valenzuela, J., Nieto, A. M., & Saiz, C. (2011). Critical thinking motivational scale: A contribution to the study of relationship between critical thinking and motivation. Journal of Research in Educational Psychology, 9(2), 823–848.

Warfield, J. N. (1994). A science of generic design: Managing complexity through systems design (2nd ed.). Salinas: Intersystems.

Christopher Dwyer Ph.D.

Christopher Dwyer, Ph.D., is a lecturer at the Technological University of the Shannon in Athlone, Ireland.

  • Find a Therapist
  • Find a Treatment Center
  • Find a Psychiatrist
  • Find a Support Group
  • Find Online Therapy
  • United States
  • Brooklyn, NY
  • Chicago, IL
  • Houston, TX
  • Los Angeles, CA
  • New York, NY
  • Portland, OR
  • San Diego, CA
  • San Francisco, CA
  • Seattle, WA
  • Washington, DC
  • Asperger's
  • Bipolar Disorder
  • Chronic Pain
  • Eating Disorders
  • Passive Aggression
  • Personality
  • Goal Setting
  • Positive Psychology
  • Stopping Smoking
  • Low Sexual Desire
  • Relationships
  • Child Development
  • Self Tests NEW
  • Therapy Center
  • Diagnosis Dictionary
  • Types of Therapy

May 2024 magazine cover

At any moment, someone’s aggravating behavior or our own bad luck can set us off on an emotional spiral that threatens to derail our entire day. Here’s how we can face our triggers with less reactivity so that we can get on with our lives.

  • Emotional Intelligence
  • Gaslighting
  • Affective Forecasting
  • Neuroscience

IMAGES

  1. The benefits of critical thinking for students and how to develop it

    the 3 key attitudes necessary for critical thinking are

  2. 6 Main Types of Critical Thinking Skills (With Examples)

    the 3 key attitudes necessary for critical thinking are

  3. Critical Thinking Skills Chart

    the 3 key attitudes necessary for critical thinking are

  4. Critical Thinking Definition, Skills, and Examples

    the 3 key attitudes necessary for critical thinking are

  5. How to Improve Critical Thinking

    the 3 key attitudes necessary for critical thinking are

  6. Guide to improve critical thinking skills

    the 3 key attitudes necessary for critical thinking are

VIDEO

  1. How I Was Wrong About a Post-Religion World

  2. Transform: Horse Riding Status with Attitude #horse #horseriding

  3. Mastering Professional Attitudes For Workplace Success

  4. Toxic Masculinity is BAKED into Christianity #atheism #christianity #christianbelief

  5. The mindset of successful entrepreneurs

  6. ऐसा mindset रखो फिर हमेशा रिश्तो व लाइफ में सब अच्छा होगा

COMMENTS

  1. 3 Core Critical Thinking Skills Every Thinker Should Have

    First, critical thinking is metacognitive—simply, it requires the individual to think about thinking; second, its main components are reflective judgment, dispositions, and skills. Below the ...

  2. What Is Critical Thinking?

    Critical thinking is the ability to effectively analyze information and form a judgment. To think critically, you must be aware of your own biases and assumptions when encountering information, and apply consistent standards when evaluating sources. Critical thinking skills help you to: Identify credible sources. Evaluate and respond to arguments.

  3. What are the Key Dispositions of Good Critical Thinkers?

    Across these three workshops, a total of 32 CT dispositions were identified and organised into 13 categories (see figure 1). Figure 1. Key Dispositions of Good Critical Thinkers. An analysis of ...

  4. 15 Things We Have Learned About Critical Thinking

    To recap, critical thinking (CT) is a metacognitive process, consisting of a number of sub-skills and dispositions, that, when applied through purposeful, self-regulatory, reflective judgment ...

  5. What Are Critical Thinking Skills and Why Are They Important?

    It makes you a well-rounded individual, one who has looked at all of their options and possible solutions before making a choice. According to the University of the People in California, having critical thinking skills is important because they are [ 1 ]: Universal. Crucial for the economy. Essential for improving language and presentation skills.

  6. Critical Thinking

    Critical Thinking. Critical thinking is a widely accepted educational goal. Its definition is contested, but the competing definitions can be understood as differing conceptions of the same basic concept: careful thinking directed to a goal. Conceptions differ with respect to the scope of such thinking, the type of goal, the criteria and norms ...

  7. Critical Thinking

    Critical thinking is the discipline of rigorously and skillfully using information, experience, observation, and reasoning to guide your decisions, actions, and beliefs. You'll need to actively question every step of your thinking process to do it well. Collecting, analyzing and evaluating information is an important skill in life, and a highly ...

  8. Introduction to Critical Thinking

    Critical thinking is the ability to think clearly and rationally about what to do or what to believe. It includes the ability to engage in reflective and independent thinking. Someone with critical thinking skills is able to do the following: Understand the logical connections between ideas. Identify, construct, and evaluate arguments.

  9. Critical thinking

    Critical thinking is the analysis of available facts, evidence, observations, and arguments in order to form a judgement by the application of rational, skeptical, and unbiased analyses and evaluation. The application of critical thinking includes self-directed, self-disciplined, self-monitored, and self-corrective habits of the mind, thus a critical thinker is a person who practices the ...

  10. Bridging critical thinking and transformative learning: The role of

    By continually questioning and doubting the text, students develop some key aspects of critical thinking, such as analytical reasoning skills. Nevertheless, this doubting attitude fails to target skills that are necessary to understand challenging or foreign ideas and can thereby further entrench a reader's biases (Elbow, 1998). Elbow's ...

  11. The Seven Key Steps Of Critical Thinking

    He said, "The ability to think critically, as conceived in this volume, involves three things: 1. An attitude of being disposed to consider in a thoughtful way the problems and subjects that ...

  12. 3 Core Critical Thinking Skills Every Thinker Should Have

    In 1988, a committee of forty-six experts in the field of CT gathered to discuss CT conceptualisations, resulting in the Delphi Report; within which was overwhelmingly agreement (i.e. 95% ...

  13. Paul-Elder Critical Thinking Framework

    The Paul-Elder framework has three components: According to Paul and Elder (1997), there are two essential dimensions of thinking that students need to master in order to learn how to upgrade their thinking. They need to be able to identify the "parts" of their thinking, and they need to be able to assess their use of these parts of thinking.

  14. 9 characteristics of critical thinking

    Being aware of what you see, hear, smell, taste, and touch allows you to fully experience the moment and it develops your ability to observe your surroundings. 6. Open-minded and compassionate. Open-minded and compassionate people are good critical thinkers.

  15. Active Learning Strategies to Promote Critical Thinking

    The development of critical thinking has been the topic of many educational articles recently. Numerous instructional methods exist to promote thought and active learning in the classroom, including case studies, discussion methods, written exercises, questioning techniques, and debates. Three methods—questioning, written exercises, and ...

  16. 3.1: Breaking down critical thinking into categories

    Critical thinking is a set of skills designed to help the thinker analyze, assess and question a given situation or reading. Critical thinking skills push the thinker to reject simplistic conclusions based on human irrationality, false assumptions, prejudices, biases and anecdotal evidence. Critical thinking skills give thinkers confidence that ...

  17. Metacognitive Strategies and Development of Critical Thinking in Higher

    Abstract. More and more often, we hear that higher education should foment critical thinking. The new skills focus for university teaching grants a central role to critical thinking in new study plans; however, using these skills well requires a certain degree of conscientiousness and its regulation. Metacognition therefore plays a crucial role ...

  18. A critical issue: assessing the critical thinking skills and ...

    Critical thinking skills and dispositions are significantly important factors that aid in one's ability to understand and solve complex problems. Within the field of higher education, critical thinking skills and dispositions are valued and encouraged but are not always fully developed at the completion of the undergraduate degree experience. Those students who are studying to enter the ...

  19. 3 Core Critical Thinking Skills Every Thinker Should Have

    First, critical thinking is metacognitive—simply, it requires the individual to think about thinking; second, its main components are reflective judgment, dispositions, and skills. Below the ...

  20. Conversations on Critical Thinking: Can Critical Thinking Find Its Way

    The capacity to successfully, positively engage with the cognitive capacities of critical thinking has become the benchmark of employability for many diverse industries across the globe and is considered critical for the development of informed, decisive global citizenship. Despite this, education systems in several countries have developed policies and practices that limit the opportunities ...

  21. Critical Thinking

    Critical thinking is a widely accepted educational goal. Its definition is contested, but the competing definitions can be understood as differing conceptions of the same basic concept: careful thinking directed to a goal. Conceptions differ with respect to the scope of such thinking, the type of goal, the criteria and norms for thinking ...

  22. 12 Important Dispositions for Critical Thinking

    Critical thinking (CT) consists of a number of skills and dispositions that, when used appropriately, increases the chances of producing a logical solution to a problem or a valid conclusion to an ...