ABLE blog: thoughts, learnings and experiences

  • Productivity
  • Thoughtful learning

Critical thinking models: definition, benefits, and skills

Critical thinking models: definition, benefits, and skills

In the age of memes and misinformation, critical thinking is a must. It's a crucial skill to differentiate between what may be true or false and develop (and explain) reasons for your beliefs.

The hardest part of critical thinking is knowing when to do it. Most of the time, it's easier to accept things as fact rather than to dig deeper to reach a conscious conclusion. This happens for various reasons. The most common being the ease of following the crowd and the fact it would be rather cumbersome to think critically about every single thing in the world!

How then do we know what to think critically about? How do we get the right answers, and how do we know they're correct? This is where a critical thinking model comes in. In this article, we’ll share three critical thinking models, essential critical reasoning skills, and why improving your critical thinking process is a good idea.

What Is Critical Thinking?

"Critical thinking is reasonable and reflective thinking focused on deciding what to believe or do.” This is how renowned professor and author Robert Hugh Ennis defines it. Put another way, the definition of critical thinking is careful consideration and analysis of information to reach a rational conclusion or decision. We practice critical thinking to inform—and own—our beliefs and actions and ensure they truly align with our values and intentions.

That said, critical thinking is not our natural way of thinking . Most of us are never aware of our brain's metacognitive actions, conceptualizations, or synthesis. Instead, we rely on habits, patterns, and competencies from past experiences to understand and interact with the world. While this may save us time and effort, it doesn’t always provide the best results—and often results in fallacies.

What Are Critical Thinking Models?

A critical thinking model provides the structure for practicing this type of thinking. It helps us notice our own thinking biases and allows us to try viewing the world objectively all while providing guidelines for asking the right questions, reaching logical conclusions, and explaining how we did it.

3 Critical Thinking Models That Are Useful in Everyday Life

Critical thinking model: Putting the pieces of a puzzle together

There are thousands of critical thinking models for almost any subject or discipline. Let’s take a look at three models of critical thinking we find useful in everyday life.

Proximate vs. Root Cause

The proximate vs. root cause critical thinking model encourages people to discover the primary cause of an event. A proximate cause is closest to the observed result or immediately responsible for it. In contrast, the root cause is the actual cause of the result. Both are causes of the event, but the root cause is the main cause, while the proximate cause is the immediate next cause.

This mental model forces you to look beyond obvious reasons to determine the core reason for impact. It helps with innovative problem-solving, so instead of relying on “Band-Aid solutions” or improving currently-existing solutions, you uncover the root of the matter and create something altogether new.

Example: You've gained a lot of weight since March 2021. Upon investigation, you may draw the following inferences:

  • Proximate cause: You burn fewer calories than you consume (moving less and eating more due to boredom or food accessibility), thus the weight gain.
  • Root cause: Your habits changed because of the lifestyle change from working at the office to working from home.

When you know the root cause of an issue, you can begin to deal with it to reduce the odds of recurrence. In this case, change your habits to fit the work-from-home lifestyle better. The proximate vs. root cause model improves your critical thinking ability and helps formulate a proper understanding of issues before working on them.

Cognitive Bias

Cognitive bias is a tendency to think in ways that can lead to deviations from rationality and objectivity. We all have cognitive biases. This error in thinking happens because of our tendency to process and interpret information swiftly, which can affect our decision-making and the eventual outcome of a situation.

Example: A soccer player scores a goal. In his mind, that means he's a great player. But if he had missed, he would reason that it was because the grass was wet. In self-serving bias, the tendency is to claim more responsibility for successes than failures. In other words: if there's a success, it's because I did something right. If there's a failure, it's something else's fault, not mine.

When you only pay attention or engage with news sources, stories, and conversations that confirm your worldview, you limit yourself from other perspectives and opinions that may be good for you without realizing it. Being aware of your own cognitive bias allows you to create some distance between how you expect the world to be and become more open to how it actually is on any given day.

The human brain is a powerful machine, but it has its limitations. One of them is neglecting facts and evidence to make sense of the world quickly and easily. This habit of mind may allow us to make faster decisions, but it doesn't serve us optimally. When unchecked, cognitive biases hinder fair-mindedness, inclusion, and impartiality.

Hanlon's Razor

"Never attribute to malice that which is adequately explained by incompetence."

Hanlon's Razor promotes good thinking and teaches us not to assume the worst intentions about people's actions without investigation. It helps regulate our emotions and improve relationships and decision-making. It also helps us develop empathy by giving others the benefit of the doubt and not assuming negative intent with evidence.

Example: You get to work earlier than usual on a Monday morning and notice your things scattered around. This must mean someone used your office! You immediately think a certain coworker did this to annoy you. But when you pause and consider, you realize that a coworker may have used your office during the weekend because it was vacant and they forgot their keys at home.

The stories we tell ourselves about why things happen the way they do are rarely true. It's worth spending some time to objectively view situations and choose a positive narrative that leads to better outcomes in our mental and emotional health and relationships.

critical thinking model

Be the first to try it out!

We're developing ABLE, a powerful tool for building your personal knowledge, capturing information from the web, conducting research, taking notes, and writing content.

Critical Thinking Skills and Their Benefits

critical thinking model

Critical thinking skills are useful for everyone. They help us think coherently and make advancements with our personal and professional goals. Some of the benefits you can gain from critical thinking are:

  • Greater reflective thinking and self-awareness
  • Ability to audit new information
  • Better interpersonal relationships
  • More creative thinking and problem-solving skills
  • Expanded open-mindedness
  • Improved communication and presentation skills
  • Freedom from past experiences and attachments

To gain these types of benefits, it’s important to practice the critical thinking skills listed below.

1. Observation

Observation is the foundation for critical thinking. It’s the ability to notice and predict opportunities, problems, and solutions. Taking the time to observe helps you process information better. Positive habits like meditating, journaling, and active listening will help you improve your observation skills.

2. Analysis

After observing, it's time to analyze the information. Analyzing helps you gain a clearer grasp of the situation at hand. Ask questions that help you get a clearer picture of the subject and get to the root cause or reason. For example, if you’re analyzing a controversial tweet you read, you may ask questions such as:

  • Who wrote this?
  • What is it about?
  • When was it written?
  • Why did they write it? Do they have a hidden agenda?
  • How sound is the premise?
  • What if this tweet was altered to send a misleading message?

These questions help you break your subject into rational bits and consider the relationship between each one and the whole.

3. Inference

Inference is the ability to draw conclusions from the information you've analyzed and other relevant data. It's a higher-level critical thinking skill that helps you reach careful decisions rather than hastily drawn (and likely biased) conclusions.

4. Communication

Once you have a solid foundation for your beliefs, communicating your theory is the next essential part of critical thinking. Share your point of view and get feedback from others to know if it holds up. You can improve your communication skills by participating in thematic forum discussions and sharing your research and insights with others in your community, both online and offline.

5. Problem-solving

Problem-solving is one of the main reasons for critical thinking. The end goal of critical thinking is using your new conclusion to close gaps and solve problems. You start by identifying your viewpoint, analyzing relevant information, and deciding on the right solution for a particular scenario. You can improve your problem-solving skills by self-learning the subject at hand and considering hidden, alternative outcomes.

Tap Into the Power of Critical Thinking

Becoming a critical thinker is challenging but oh-so worth it. It leads to continuous growth in all areas of your life: better relationships, confidence, and problem-solving skills. Critical thinking helps us overcome familiar patterns and ways of thinking, opening us to new perspectives.

To improve your critical thinking, spend time honing the five crucial critical thinking skills: observation, analysis, inference, communication, and problem-solving. Have fun with the process as you pay more attention to your beliefs and experiences and other people's perspectives and experiences as well.

You can use critical thinking models to guide your critical thinking journey, prompting you to realize when to pause and ask questions and when to accept the answers you have and move on. For example, in today’s age of misinformation, you may learn that it’s almost always counterproductive to engage with news and information from unknown sources.

Critical thinking is needed to remove scales from our eyes and improve our knowledge and experience of the world, but it’s also important to know when to turn our attention to focus on a new subject and move on.

Improve your critical thinking with ABLE

Ask better questions and get better answers with ABLEs integrated web search, annotation and note-taking features. Check how ABLE helps you to improve your critical thinking.

We hope you have enjoyed reading this article. Feel free to share, recommend and connect on Twitter: https://twitter.com/meet_able 🙏

Boris

Straight from the ABLE team: how we work and what we build. Thoughts, learnings, notes, experiences and what really matters.

Read more posts by this author

follow me :

Simplifying complexity: How to conquer clarity and brevity

How to organize information: the best methods for lifelong learning.

What is abstract thinking? 10 activities to improve your abstract thinking skills

What is abstract thinking? 10 activities to improve your abstract thinking skills

5 examples of cognitive learning theory (and how you can use them)

5 examples of cognitive learning theory (and how you can use them)

0 results found.

  • Aegis Alpha SA
  • We build in public

Building with passion in

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base
  • Working with sources
  • What Is Critical Thinking? | Definition & Examples

What Is Critical Thinking? | Definition & Examples

Published on May 30, 2022 by Eoghan Ryan . Revised on May 31, 2023.

Critical thinking is the ability to effectively analyze information and form a judgment .

To think critically, you must be aware of your own biases and assumptions when encountering information, and apply consistent standards when evaluating sources .

Critical thinking skills help you to:

  • Identify credible sources
  • Evaluate and respond to arguments
  • Assess alternative viewpoints
  • Test hypotheses against relevant criteria

Table of contents

Why is critical thinking important, critical thinking examples, how to think critically, other interesting articles, frequently asked questions about critical thinking.

Critical thinking is important for making judgments about sources of information and forming your own arguments. It emphasizes a rational, objective, and self-aware approach that can help you to identify credible sources and strengthen your conclusions.

Critical thinking is important in all disciplines and throughout all stages of the research process . The types of evidence used in the sciences and in the humanities may differ, but critical thinking skills are relevant to both.

In academic writing , critical thinking can help you to determine whether a source:

  • Is free from research bias
  • Provides evidence to support its research findings
  • Considers alternative viewpoints

Outside of academia, critical thinking goes hand in hand with information literacy to help you form opinions rationally and engage independently and critically with popular media.

Scribbr Citation Checker New

The AI-powered Citation Checker helps you avoid common mistakes such as:

  • Missing commas and periods
  • Incorrect usage of “et al.”
  • Ampersands (&) in narrative citations
  • Missing reference entries

critical thinking model

Critical thinking can help you to identify reliable sources of information that you can cite in your research paper . It can also guide your own research methods and inform your own arguments.

Outside of academia, critical thinking can help you to be aware of both your own and others’ biases and assumptions.

Academic examples

However, when you compare the findings of the study with other current research, you determine that the results seem improbable. You analyze the paper again, consulting the sources it cites.

You notice that the research was funded by the pharmaceutical company that created the treatment. Because of this, you view its results skeptically and determine that more independent research is necessary to confirm or refute them. Example: Poor critical thinking in an academic context You’re researching a paper on the impact wireless technology has had on developing countries that previously did not have large-scale communications infrastructure. You read an article that seems to confirm your hypothesis: the impact is mainly positive. Rather than evaluating the research methodology, you accept the findings uncritically.

Nonacademic examples

However, you decide to compare this review article with consumer reviews on a different site. You find that these reviews are not as positive. Some customers have had problems installing the alarm, and some have noted that it activates for no apparent reason.

You revisit the original review article. You notice that the words “sponsored content” appear in small print under the article title. Based on this, you conclude that the review is advertising and is therefore not an unbiased source. Example: Poor critical thinking in a nonacademic context You support a candidate in an upcoming election. You visit an online news site affiliated with their political party and read an article that criticizes their opponent. The article claims that the opponent is inexperienced in politics. You accept this without evidence, because it fits your preconceptions about the opponent.

There is no single way to think critically. How you engage with information will depend on the type of source you’re using and the information you need.

However, you can engage with sources in a systematic and critical way by asking certain questions when you encounter information. Like the CRAAP test , these questions focus on the currency , relevance , authority , accuracy , and purpose of a source of information.

When encountering information, ask:

  • Who is the author? Are they an expert in their field?
  • What do they say? Is their argument clear? Can you summarize it?
  • When did they say this? Is the source current?
  • Where is the information published? Is it an academic article? Is it peer-reviewed ?
  • Why did the author publish it? What is their motivation?
  • How do they make their argument? Is it backed up by evidence? Does it rely on opinion, speculation, or appeals to emotion ? Do they address alternative arguments?

Critical thinking also involves being aware of your own biases, not only those of others. When you make an argument or draw your own conclusions, you can ask similar questions about your own writing:

  • Am I only considering evidence that supports my preconceptions?
  • Is my argument expressed clearly and backed up with credible sources?
  • Would I be convinced by this argument coming from someone else?

If you want to know more about ChatGPT, AI tools , citation , and plagiarism , make sure to check out some of our other articles with explanations and examples.

  • ChatGPT vs human editor
  • ChatGPT citations
  • Is ChatGPT trustworthy?
  • Using ChatGPT for your studies
  • What is ChatGPT?
  • Chicago style
  • Paraphrasing

 Plagiarism

  • Types of plagiarism
  • Self-plagiarism
  • Avoiding plagiarism
  • Academic integrity
  • Consequences of plagiarism
  • Common knowledge

The only proofreading tool specialized in correcting academic writing - try for free!

The academic proofreading tool has been trained on 1000s of academic texts and by native English editors. Making it the most accurate and reliable proofreading tool for students.

critical thinking model

Try for free

Critical thinking refers to the ability to evaluate information and to be aware of biases or assumptions, including your own.

Like information literacy , it involves evaluating arguments, identifying and solving problems in an objective and systematic way, and clearly communicating your ideas.

Critical thinking skills include the ability to:

You can assess information and arguments critically by asking certain questions about the source. You can use the CRAAP test , focusing on the currency , relevance , authority , accuracy , and purpose of a source of information.

Ask questions such as:

  • Who is the author? Are they an expert?
  • How do they make their argument? Is it backed up by evidence?

A credible source should pass the CRAAP test  and follow these guidelines:

  • The information should be up to date and current.
  • The author and publication should be a trusted authority on the subject you are researching.
  • The sources the author cited should be easy to find, clear, and unbiased.
  • For a web source, the URL and layout should signify that it is trustworthy.

Information literacy refers to a broad range of skills, including the ability to find, evaluate, and use sources of information effectively.

Being information literate means that you:

  • Know how to find credible sources
  • Use relevant sources to inform your research
  • Understand what constitutes plagiarism
  • Know how to cite your sources correctly

Confirmation bias is the tendency to search, interpret, and recall information in a way that aligns with our pre-existing values, opinions, or beliefs. It refers to the ability to recollect information best when it amplifies what we already believe. Relatedly, we tend to forget information that contradicts our opinions.

Although selective recall is a component of confirmation bias, it should not be confused with recall bias.

On the other hand, recall bias refers to the differences in the ability between study participants to recall past events when self-reporting is used. This difference in accuracy or completeness of recollection is not related to beliefs or opinions. Rather, recall bias relates to other factors, such as the length of the recall period, age, and the characteristics of the disease under investigation.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Ryan, E. (2023, May 31). What Is Critical Thinking? | Definition & Examples. Scribbr. Retrieved April 9, 2024, from https://www.scribbr.com/working-with-sources/critical-thinking/

Is this article helpful?

Eoghan Ryan

Eoghan Ryan

Other students also liked, student guide: information literacy | meaning & examples, what are credible sources & how to spot them | examples, applying the craap test & evaluating sources, unlimited academic ai-proofreading.

✔ Document error-free in 5minutes ✔ Unlimited document corrections ✔ Specialized in correcting academic texts

  • Top Courses
  • Online Degrees
  • Find your New Career
  • Join for Free

What Are Critical Thinking Skills and Why Are They Important?

Learn what critical thinking skills are, why they’re important, and how to develop and apply them in your workplace and everyday life.

[Featured Image]:  Project Manager, approaching  and analyzing the latest project with a team member,

We often use critical thinking skills without even realizing it. When you make a decision, such as which cereal to eat for breakfast, you're using critical thinking to determine the best option for you that day.

Critical thinking is like a muscle that can be exercised and built over time. It is a skill that can help propel your career to new heights. You'll be able to solve workplace issues, use trial and error to troubleshoot ideas, and more.

We'll take you through what it is and some examples so you can begin your journey in mastering this skill.

What is critical thinking?

Critical thinking is the ability to interpret, evaluate, and analyze facts and information that are available, to form a judgment or decide if something is right or wrong.

More than just being curious about the world around you, critical thinkers make connections between logical ideas to see the bigger picture. Building your critical thinking skills means being able to advocate your ideas and opinions, present them in a logical fashion, and make decisions for improvement.

Coursera Plus

Build job-ready skills with a Coursera Plus subscription

  • Get access to 7,000+ learning programs from world-class universities and companies, including Google, Yale, Salesforce, and more
  • Try different courses and find your best fit at no additional cost
  • Earn certificates for learning programs you complete
  • A subscription price of $59/month, cancel anytime

Why is critical thinking important?

Critical thinking is useful in many areas of your life, including your career. It makes you a well-rounded individual, one who has looked at all of their options and possible solutions before making a choice.

According to the University of the People in California, having critical thinking skills is important because they are [ 1 ]:

Crucial for the economy

Essential for improving language and presentation skills

Very helpful in promoting creativity

Important for self-reflection

The basis of science and democracy 

Critical thinking skills are used every day in a myriad of ways and can be applied to situations such as a CEO approaching a group project or a nurse deciding in which order to treat their patients.

Examples of common critical thinking skills

Critical thinking skills differ from individual to individual and are utilized in various ways. Examples of common critical thinking skills include:

Identification of biases: Identifying biases means knowing there are certain people or things that may have an unfair prejudice or influence on the situation at hand. Pointing out these biases helps to remove them from contention when it comes to solving the problem and allows you to see things from a different perspective.

Research: Researching details and facts allows you to be prepared when presenting your information to people. You’ll know exactly what you’re talking about due to the time you’ve spent with the subject material, and you’ll be well-spoken and know what questions to ask to gain more knowledge. When researching, always use credible sources and factual information.

Open-mindedness: Being open-minded when having a conversation or participating in a group activity is crucial to success. Dismissing someone else’s ideas before you’ve heard them will inhibit you from progressing to a solution, and will often create animosity. If you truly want to solve a problem, you need to be willing to hear everyone’s opinions and ideas if you want them to hear yours.

Analysis: Analyzing your research will lead to you having a better understanding of the things you’ve heard and read. As a true critical thinker, you’ll want to seek out the truth and get to the source of issues. It’s important to avoid taking things at face value and always dig deeper.

Problem-solving: Problem-solving is perhaps the most important skill that critical thinkers can possess. The ability to solve issues and bounce back from conflict is what helps you succeed, be a leader, and effect change. One way to properly solve problems is to first recognize there’s a problem that needs solving. By determining the issue at hand, you can then analyze it and come up with several potential solutions.

How to develop critical thinking skills

You can develop critical thinking skills every day if you approach problems in a logical manner. Here are a few ways you can start your path to improvement:

1. Ask questions.

Be inquisitive about everything. Maintain a neutral perspective and develop a natural curiosity, so you can ask questions that develop your understanding of the situation or task at hand. The more details, facts, and information you have, the better informed you are to make decisions.

2. Practice active listening.

Utilize active listening techniques, which are founded in empathy, to really listen to what the other person is saying. Critical thinking, in part, is the cognitive process of reading the situation: the words coming out of their mouth, their body language, their reactions to your own words. Then, you might paraphrase to clarify what they're saying, so both of you agree you're on the same page.

3. Develop your logic and reasoning.

This is perhaps a more abstract task that requires practice and long-term development. However, think of a schoolteacher assessing the classroom to determine how to energize the lesson. There's options such as playing a game, watching a video, or challenging the students with a reward system. Using logic, you might decide that the reward system will take up too much time and is not an immediate fix. A video is not exactly relevant at this time. So, the teacher decides to play a simple word association game.

Scenarios like this happen every day, so next time, you can be more aware of what will work and what won't. Over time, developing your logic and reasoning will strengthen your critical thinking skills.

Learn tips and tricks on how to become a better critical thinker and problem solver through online courses from notable educational institutions on Coursera. Start with Introduction to Logic and Critical Thinking from Duke University or Mindware: Critical Thinking for the Information Age from the University of Michigan.

Article sources

University of the People, “ Why is Critical Thinking Important?: A Survival Guide , https://www.uopeople.edu/blog/why-is-critical-thinking-important/.” Accessed May 18, 2023.

Keep reading

Coursera staff.

Editorial Team

Coursera’s editorial team is comprised of highly experienced professional editors, writers, and fact...

This content has been made available for informational purposes only. Learners are advised to conduct additional research to ensure that courses and other credentials pursued meet their personal, professional, and financial goals.

University of Leeds logo

  • Study and research support
  • Academic skills

Critical thinking

A model for critical thinking.

Critical thinking is an important life skill, and an essential part of university studies. Central to critical thinking is asking meaningful questions.

This three-stage model, adapted from LearnHigher , will help you generate questions to understand, analyse, and evaluate something, such as an information source.

Description

Starting with the description stage, you ask questions such as: What? Where? Why? and Who? These help you establish the background and context.

For example, if you are reading a journal article, you might ask questions such as:

  • Who wrote this?
  • What is it about?
  • When was it written?
  • What is the aim of the article?

If you are thinking through a problem, you might ask:

  • What is this problem about?
  • Who does it involve or affect?
  • When and where is this happening?

These types of questions lead to descriptive answers. Although the ability to describe something is important, to really develop your understanding and critically engage, we need to move beyond these types of questions. This moves you into the analysis stage.

Here you will ask questions such as: How? Why? and What if? These help you to examine methods and processes, reasons and causes, and the alternative options. For example, if you are reading a journal article, you might ask:

  • How was the research conducted?
  • Why are these theories discussed?
  • What are the alternative methods and theories?
  • What are the contributing factors to the problem?
  • How might one factor impact another?
  • What if one factor is removed or altered?

Asking these questions helps you to break something into parts and consider the relationship between each part, and each part to the whole. This process will help you develop more analytical answers and deeper thinking.

Finally, you come to the evaluation stage, where you will ask 'so what?' and 'what next?' questions to make judgments and consider the relevance; implications; significance and value of something.

You may ask questions such as:

  • What do I think about this?
  • How is this relevant to my assignment?
  • How does this compare to other research I have read?

Making such judgments will lead you to reasonable conclusions, solutions, or recommendations.

The way we think is complex. This model is not intended to be used in a strictly linear way, or as a prescriptive set of instructions. You may move back and forth between different segments. For example, you may ask, 'what is this about?', and then move straight to, 'is this relevant to me?'

The model is intended to encourage a critically questioning approach, and can be applied to many learning scenarios at university, such as: interpreting assignment briefs; developing arguments; evaluating sources; analysing data or formulating your own questions to research an answer.

Watch the ‘Thinking Critically at University’ video for an in-depth description of a critical thinking model. View video using Microsoft Stream (link opens in a new window, available for University members only). The rest of our Critical thinking pages will show you how to use this model in practice.

This model has been adapted from LearnHigher under a Creative Commons BY-NC-SA 3.0.

University of Louisville

  • Programs & Services
  • Delphi Center

Ideas to Action (i2a)

  • Paul-Elder Critical Thinking Framework

Critical thinking is that mode of thinking – about any subject, content, or problem — in which the thinker improves the quality of his or her thinking by skillfully taking charge of the structures inherent in thinking and imposing intellectual standards upon them. (Paul and Elder, 2001). The Paul-Elder framework has three components:

  • The elements of thought (reasoning)
  • The  intellectual standards that should be applied to the elements of reasoning
  • The intellectual traits associated with a cultivated critical thinker that result from the consistent and disciplined application of the intellectual standards to the elements of thought

Graphic Representation of Paul-Elder Critical Thinking Framework

According to Paul and Elder (1997), there are two essential dimensions of thinking that students need to master in order to learn how to upgrade their thinking. They need to be able to identify the "parts" of their thinking, and they need to be able to assess their use of these parts of thinking.

Elements of Thought (reasoning)

The "parts" or elements of thinking are as follows:

  • All reasoning has a purpose
  • All reasoning is an attempt to figure something out, to settle some question, to solve some problem
  • All reasoning is based on assumptions
  • All reasoning is done from some point of view
  • All reasoning is based on data, information and evidence
  • All reasoning is expressed through, and shaped by, concepts and ideas
  • All reasoning contains inferences or interpretations by which we draw conclusions and give meaning to data
  • All reasoning leads somewhere or has implications and consequences

Universal Intellectual Standards

The intellectual standards that are to these elements are used to determine the quality of reasoning. Good critical thinking requires having a command of these standards. According to Paul and Elder (1997 ,2006), the ultimate goal is for the standards of reasoning to become infused in all thinking so as to become the guide to better and better reasoning. The intellectual standards include:

Intellectual Traits

Consistent application of the standards of thinking to the elements of thinking result in the development of intellectual traits of:

  • Intellectual Humility
  • Intellectual Courage
  • Intellectual Empathy
  • Intellectual Autonomy
  • Intellectual Integrity
  • Intellectual Perseverance
  • Confidence in Reason
  • Fair-mindedness

Characteristics of a Well-Cultivated Critical Thinker

Habitual utilization of the intellectual traits produce a well-cultivated critical thinker who is able to:

  • Raise vital questions and problems, formulating them clearly and precisely
  • Gather and assess relevant information, using abstract ideas to interpret it effectively
  • Come to well-reasoned conclusions and solutions, testing them against relevant criteria and standards;
  • Think open-mindedly within alternative systems of thought, recognizing and assessing, as need be, their assumptions, implications, and practical consequences; and
  • Communicate effectively with others in figuring out solutions to complex problems

Paul, R. and Elder, L. (2010). The Miniature Guide to Critical Thinking Concepts and Tools. Dillon Beach: Foundation for Critical Thinking Press.

  • SACS & QEP
  • Planning and Implementation
  • What is Critical Thinking?
  • Why Focus on Critical Thinking?
  • Culminating Undergraduate Experience
  • Community Engagement
  • Frequently Asked Questions
  • What is i2a?

Copyright © 2012 - University of Louisville , Delphi Center

SEP home page

  • Table of Contents
  • Random Entry
  • Chronological
  • Editorial Information
  • About the SEP
  • Editorial Board
  • How to Cite the SEP
  • Special Characters
  • Advanced Tools
  • Support the SEP
  • PDFs for SEP Friends
  • Make a Donation
  • SEPIA for Libraries
  • Entry Contents

Bibliography

Academic tools.

  • Friends PDF Preview
  • Author and Citation Info
  • Back to Top

Critical Thinking

Critical thinking is a widely accepted educational goal. Its definition is contested, but the competing definitions can be understood as differing conceptions of the same basic concept: careful thinking directed to a goal. Conceptions differ with respect to the scope of such thinking, the type of goal, the criteria and norms for thinking carefully, and the thinking components on which they focus. Its adoption as an educational goal has been recommended on the basis of respect for students’ autonomy and preparing students for success in life and for democratic citizenship. “Critical thinkers” have the dispositions and abilities that lead them to think critically when appropriate. The abilities can be identified directly; the dispositions indirectly, by considering what factors contribute to or impede exercise of the abilities. Standardized tests have been developed to assess the degree to which a person possesses such dispositions and abilities. Educational intervention has been shown experimentally to improve them, particularly when it includes dialogue, anchored instruction, and mentoring. Controversies have arisen over the generalizability of critical thinking across domains, over alleged bias in critical thinking theories and instruction, and over the relationship of critical thinking to other types of thinking.

2.1 Dewey’s Three Main Examples

2.2 dewey’s other examples, 2.3 further examples, 2.4 non-examples, 3. the definition of critical thinking, 4. its value, 5. the process of thinking critically, 6. components of the process, 7. contributory dispositions and abilities, 8.1 initiating dispositions, 8.2 internal dispositions, 9. critical thinking abilities, 10. required knowledge, 11. educational methods, 12.1 the generalizability of critical thinking, 12.2 bias in critical thinking theory and pedagogy, 12.3 relationship of critical thinking to other types of thinking, other internet resources, related entries.

Use of the term ‘critical thinking’ to describe an educational goal goes back to the American philosopher John Dewey (1910), who more commonly called it ‘reflective thinking’. He defined it as

active, persistent and careful consideration of any belief or supposed form of knowledge in the light of the grounds that support it, and the further conclusions to which it tends. (Dewey 1910: 6; 1933: 9)

and identified a habit of such consideration with a scientific attitude of mind. His lengthy quotations of Francis Bacon, John Locke, and John Stuart Mill indicate that he was not the first person to propose development of a scientific attitude of mind as an educational goal.

In the 1930s, many of the schools that participated in the Eight-Year Study of the Progressive Education Association (Aikin 1942) adopted critical thinking as an educational goal, for whose achievement the study’s Evaluation Staff developed tests (Smith, Tyler, & Evaluation Staff 1942). Glaser (1941) showed experimentally that it was possible to improve the critical thinking of high school students. Bloom’s influential taxonomy of cognitive educational objectives (Bloom et al. 1956) incorporated critical thinking abilities. Ennis (1962) proposed 12 aspects of critical thinking as a basis for research on the teaching and evaluation of critical thinking ability.

Since 1980, an annual international conference in California on critical thinking and educational reform has attracted tens of thousands of educators from all levels of education and from many parts of the world. Also since 1980, the state university system in California has required all undergraduate students to take a critical thinking course. Since 1983, the Association for Informal Logic and Critical Thinking has sponsored sessions in conjunction with the divisional meetings of the American Philosophical Association (APA). In 1987, the APA’s Committee on Pre-College Philosophy commissioned a consensus statement on critical thinking for purposes of educational assessment and instruction (Facione 1990a). Researchers have developed standardized tests of critical thinking abilities and dispositions; for details, see the Supplement on Assessment . Educational jurisdictions around the world now include critical thinking in guidelines for curriculum and assessment.

For details on this history, see the Supplement on History .

2. Examples and Non-Examples

Before considering the definition of critical thinking, it will be helpful to have in mind some examples of critical thinking, as well as some examples of kinds of thinking that would apparently not count as critical thinking.

Dewey (1910: 68–71; 1933: 91–94) takes as paradigms of reflective thinking three class papers of students in which they describe their thinking. The examples range from the everyday to the scientific.

Transit : “The other day, when I was down town on 16th Street, a clock caught my eye. I saw that the hands pointed to 12:20. This suggested that I had an engagement at 124th Street, at one o’clock. I reasoned that as it had taken me an hour to come down on a surface car, I should probably be twenty minutes late if I returned the same way. I might save twenty minutes by a subway express. But was there a station near? If not, I might lose more than twenty minutes in looking for one. Then I thought of the elevated, and I saw there was such a line within two blocks. But where was the station? If it were several blocks above or below the street I was on, I should lose time instead of gaining it. My mind went back to the subway express as quicker than the elevated; furthermore, I remembered that it went nearer than the elevated to the part of 124th Street I wished to reach, so that time would be saved at the end of the journey. I concluded in favor of the subway, and reached my destination by one o’clock.” (Dewey 1910: 68–69; 1933: 91–92)

Ferryboat : “Projecting nearly horizontally from the upper deck of the ferryboat on which I daily cross the river is a long white pole, having a gilded ball at its tip. It suggested a flagpole when I first saw it; its color, shape, and gilded ball agreed with this idea, and these reasons seemed to justify me in this belief. But soon difficulties presented themselves. The pole was nearly horizontal, an unusual position for a flagpole; in the next place, there was no pulley, ring, or cord by which to attach a flag; finally, there were elsewhere on the boat two vertical staffs from which flags were occasionally flown. It seemed probable that the pole was not there for flag-flying.

“I then tried to imagine all possible purposes of the pole, and to consider for which of these it was best suited: (a) Possibly it was an ornament. But as all the ferryboats and even the tugboats carried poles, this hypothesis was rejected. (b) Possibly it was the terminal of a wireless telegraph. But the same considerations made this improbable. Besides, the more natural place for such a terminal would be the highest part of the boat, on top of the pilot house. (c) Its purpose might be to point out the direction in which the boat is moving.

“In support of this conclusion, I discovered that the pole was lower than the pilot house, so that the steersman could easily see it. Moreover, the tip was enough higher than the base, so that, from the pilot’s position, it must appear to project far out in front of the boat. Moreover, the pilot being near the front of the boat, he would need some such guide as to its direction. Tugboats would also need poles for such a purpose. This hypothesis was so much more probable than the others that I accepted it. I formed the conclusion that the pole was set up for the purpose of showing the pilot the direction in which the boat pointed, to enable him to steer correctly.” (Dewey 1910: 69–70; 1933: 92–93)

Bubbles : “In washing tumblers in hot soapsuds and placing them mouth downward on a plate, bubbles appeared on the outside of the mouth of the tumblers and then went inside. Why? The presence of bubbles suggests air, which I note must come from inside the tumbler. I see that the soapy water on the plate prevents escape of the air save as it may be caught in bubbles. But why should air leave the tumbler? There was no substance entering to force it out. It must have expanded. It expands by increase of heat, or by decrease of pressure, or both. Could the air have become heated after the tumbler was taken from the hot suds? Clearly not the air that was already entangled in the water. If heated air was the cause, cold air must have entered in transferring the tumblers from the suds to the plate. I test to see if this supposition is true by taking several more tumblers out. Some I shake so as to make sure of entrapping cold air in them. Some I take out holding mouth downward in order to prevent cold air from entering. Bubbles appear on the outside of every one of the former and on none of the latter. I must be right in my inference. Air from the outside must have been expanded by the heat of the tumbler, which explains the appearance of the bubbles on the outside. But why do they then go inside? Cold contracts. The tumbler cooled and also the air inside it. Tension was removed, and hence bubbles appeared inside. To be sure of this, I test by placing a cup of ice on the tumbler while the bubbles are still forming outside. They soon reverse” (Dewey 1910: 70–71; 1933: 93–94).

Dewey (1910, 1933) sprinkles his book with other examples of critical thinking. We will refer to the following.

Weather : A man on a walk notices that it has suddenly become cool, thinks that it is probably going to rain, looks up and sees a dark cloud obscuring the sun, and quickens his steps (1910: 6–10; 1933: 9–13).

Disorder : A man finds his rooms on his return to them in disorder with his belongings thrown about, thinks at first of burglary as an explanation, then thinks of mischievous children as being an alternative explanation, then looks to see whether valuables are missing, and discovers that they are (1910: 82–83; 1933: 166–168).

Typhoid : A physician diagnosing a patient whose conspicuous symptoms suggest typhoid avoids drawing a conclusion until more data are gathered by questioning the patient and by making tests (1910: 85–86; 1933: 170).

Blur : A moving blur catches our eye in the distance, we ask ourselves whether it is a cloud of whirling dust or a tree moving its branches or a man signaling to us, we think of other traits that should be found on each of those possibilities, and we look and see if those traits are found (1910: 102, 108; 1933: 121, 133).

Suction pump : In thinking about the suction pump, the scientist first notes that it will draw water only to a maximum height of 33 feet at sea level and to a lesser maximum height at higher elevations, selects for attention the differing atmospheric pressure at these elevations, sets up experiments in which the air is removed from a vessel containing water (when suction no longer works) and in which the weight of air at various levels is calculated, compares the results of reasoning about the height to which a given weight of air will allow a suction pump to raise water with the observed maximum height at different elevations, and finally assimilates the suction pump to such apparently different phenomena as the siphon and the rising of a balloon (1910: 150–153; 1933: 195–198).

Diamond : A passenger in a car driving in a diamond lane reserved for vehicles with at least one passenger notices that the diamond marks on the pavement are far apart in some places and close together in others. Why? The driver suggests that the reason may be that the diamond marks are not needed where there is a solid double line separating the diamond lane from the adjoining lane, but are needed when there is a dotted single line permitting crossing into the diamond lane. Further observation confirms that the diamonds are close together when a dotted line separates the diamond lane from its neighbour, but otherwise far apart.

Rash : A woman suddenly develops a very itchy red rash on her throat and upper chest. She recently noticed a mark on the back of her right hand, but was not sure whether the mark was a rash or a scrape. She lies down in bed and thinks about what might be causing the rash and what to do about it. About two weeks before, she began taking blood pressure medication that contained a sulfa drug, and the pharmacist had warned her, in view of a previous allergic reaction to a medication containing a sulfa drug, to be on the alert for an allergic reaction; however, she had been taking the medication for two weeks with no such effect. The day before, she began using a new cream on her neck and upper chest; against the new cream as the cause was mark on the back of her hand, which had not been exposed to the cream. She began taking probiotics about a month before. She also recently started new eye drops, but she supposed that manufacturers of eye drops would be careful not to include allergy-causing components in the medication. The rash might be a heat rash, since she recently was sweating profusely from her upper body. Since she is about to go away on a short vacation, where she would not have access to her usual physician, she decides to keep taking the probiotics and using the new eye drops but to discontinue the blood pressure medication and to switch back to the old cream for her neck and upper chest. She forms a plan to consult her regular physician on her return about the blood pressure medication.

Candidate : Although Dewey included no examples of thinking directed at appraising the arguments of others, such thinking has come to be considered a kind of critical thinking. We find an example of such thinking in the performance task on the Collegiate Learning Assessment (CLA+), which its sponsoring organization describes as

a performance-based assessment that provides a measure of an institution’s contribution to the development of critical-thinking and written communication skills of its students. (Council for Aid to Education 2017)

A sample task posted on its website requires the test-taker to write a report for public distribution evaluating a fictional candidate’s policy proposals and their supporting arguments, using supplied background documents, with a recommendation on whether to endorse the candidate.

Immediate acceptance of an idea that suggests itself as a solution to a problem (e.g., a possible explanation of an event or phenomenon, an action that seems likely to produce a desired result) is “uncritical thinking, the minimum of reflection” (Dewey 1910: 13). On-going suspension of judgment in the light of doubt about a possible solution is not critical thinking (Dewey 1910: 108). Critique driven by a dogmatically held political or religious ideology is not critical thinking; thus Paulo Freire (1968 [1970]) is using the term (e.g., at 1970: 71, 81, 100, 146) in a more politically freighted sense that includes not only reflection but also revolutionary action against oppression. Derivation of a conclusion from given data using an algorithm is not critical thinking.

What is critical thinking? There are many definitions. Ennis (2016) lists 14 philosophically oriented scholarly definitions and three dictionary definitions. Following Rawls (1971), who distinguished his conception of justice from a utilitarian conception but regarded them as rival conceptions of the same concept, Ennis maintains that the 17 definitions are different conceptions of the same concept. Rawls articulated the shared concept of justice as

a characteristic set of principles for assigning basic rights and duties and for determining… the proper distribution of the benefits and burdens of social cooperation. (Rawls 1971: 5)

Bailin et al. (1999b) claim that, if one considers what sorts of thinking an educator would take not to be critical thinking and what sorts to be critical thinking, one can conclude that educators typically understand critical thinking to have at least three features.

  • It is done for the purpose of making up one’s mind about what to believe or do.
  • The person engaging in the thinking is trying to fulfill standards of adequacy and accuracy appropriate to the thinking.
  • The thinking fulfills the relevant standards to some threshold level.

One could sum up the core concept that involves these three features by saying that critical thinking is careful goal-directed thinking. This core concept seems to apply to all the examples of critical thinking described in the previous section. As for the non-examples, their exclusion depends on construing careful thinking as excluding jumping immediately to conclusions, suspending judgment no matter how strong the evidence, reasoning from an unquestioned ideological or religious perspective, and routinely using an algorithm to answer a question.

If the core of critical thinking is careful goal-directed thinking, conceptions of it can vary according to its presumed scope, its presumed goal, one’s criteria and threshold for being careful, and the thinking component on which one focuses. As to its scope, some conceptions (e.g., Dewey 1910, 1933) restrict it to constructive thinking on the basis of one’s own observations and experiments, others (e.g., Ennis 1962; Fisher & Scriven 1997; Johnson 1992) to appraisal of the products of such thinking. Ennis (1991) and Bailin et al. (1999b) take it to cover both construction and appraisal. As to its goal, some conceptions restrict it to forming a judgment (Dewey 1910, 1933; Lipman 1987; Facione 1990a). Others allow for actions as well as beliefs as the end point of a process of critical thinking (Ennis 1991; Bailin et al. 1999b). As to the criteria and threshold for being careful, definitions vary in the term used to indicate that critical thinking satisfies certain norms: “intellectually disciplined” (Scriven & Paul 1987), “reasonable” (Ennis 1991), “skillful” (Lipman 1987), “skilled” (Fisher & Scriven 1997), “careful” (Bailin & Battersby 2009). Some definitions specify these norms, referring variously to “consideration of any belief or supposed form of knowledge in the light of the grounds that support it and the further conclusions to which it tends” (Dewey 1910, 1933); “the methods of logical inquiry and reasoning” (Glaser 1941); “conceptualizing, applying, analyzing, synthesizing, and/or evaluating information gathered from, or generated by, observation, experience, reflection, reasoning, or communication” (Scriven & Paul 1987); the requirement that “it is sensitive to context, relies on criteria, and is self-correcting” (Lipman 1987); “evidential, conceptual, methodological, criteriological, or contextual considerations” (Facione 1990a); and “plus-minus considerations of the product in terms of appropriate standards (or criteria)” (Johnson 1992). Stanovich and Stanovich (2010) propose to ground the concept of critical thinking in the concept of rationality, which they understand as combining epistemic rationality (fitting one’s beliefs to the world) and instrumental rationality (optimizing goal fulfillment); a critical thinker, in their view, is someone with “a propensity to override suboptimal responses from the autonomous mind” (2010: 227). These variant specifications of norms for critical thinking are not necessarily incompatible with one another, and in any case presuppose the core notion of thinking carefully. As to the thinking component singled out, some definitions focus on suspension of judgment during the thinking (Dewey 1910; McPeck 1981), others on inquiry while judgment is suspended (Bailin & Battersby 2009, 2021), others on the resulting judgment (Facione 1990a), and still others on responsiveness to reasons (Siegel 1988). Kuhn (2019) takes critical thinking to be more a dialogic practice of advancing and responding to arguments than an individual ability.

In educational contexts, a definition of critical thinking is a “programmatic definition” (Scheffler 1960: 19). It expresses a practical program for achieving an educational goal. For this purpose, a one-sentence formulaic definition is much less useful than articulation of a critical thinking process, with criteria and standards for the kinds of thinking that the process may involve. The real educational goal is recognition, adoption and implementation by students of those criteria and standards. That adoption and implementation in turn consists in acquiring the knowledge, abilities and dispositions of a critical thinker.

Conceptions of critical thinking generally do not include moral integrity as part of the concept. Dewey, for example, took critical thinking to be the ultimate intellectual goal of education, but distinguished it from the development of social cooperation among school children, which he took to be the central moral goal. Ennis (1996, 2011) added to his previous list of critical thinking dispositions a group of dispositions to care about the dignity and worth of every person, which he described as a “correlative” (1996) disposition without which critical thinking would be less valuable and perhaps harmful. An educational program that aimed at developing critical thinking but not the correlative disposition to care about the dignity and worth of every person, he asserted, “would be deficient and perhaps dangerous” (Ennis 1996: 172).

Dewey thought that education for reflective thinking would be of value to both the individual and society; recognition in educational practice of the kinship to the scientific attitude of children’s native curiosity, fertile imagination and love of experimental inquiry “would make for individual happiness and the reduction of social waste” (Dewey 1910: iii). Schools participating in the Eight-Year Study took development of the habit of reflective thinking and skill in solving problems as a means to leading young people to understand, appreciate and live the democratic way of life characteristic of the United States (Aikin 1942: 17–18, 81). Harvey Siegel (1988: 55–61) has offered four considerations in support of adopting critical thinking as an educational ideal. (1) Respect for persons requires that schools and teachers honour students’ demands for reasons and explanations, deal with students honestly, and recognize the need to confront students’ independent judgment; these requirements concern the manner in which teachers treat students. (2) Education has the task of preparing children to be successful adults, a task that requires development of their self-sufficiency. (3) Education should initiate children into the rational traditions in such fields as history, science and mathematics. (4) Education should prepare children to become democratic citizens, which requires reasoned procedures and critical talents and attitudes. To supplement these considerations, Siegel (1988: 62–90) responds to two objections: the ideology objection that adoption of any educational ideal requires a prior ideological commitment and the indoctrination objection that cultivation of critical thinking cannot escape being a form of indoctrination.

Despite the diversity of our 11 examples, one can recognize a common pattern. Dewey analyzed it as consisting of five phases:

  • suggestions , in which the mind leaps forward to a possible solution;
  • an intellectualization of the difficulty or perplexity into a problem to be solved, a question for which the answer must be sought;
  • the use of one suggestion after another as a leading idea, or hypothesis , to initiate and guide observation and other operations in collection of factual material;
  • the mental elaboration of the idea or supposition as an idea or supposition ( reasoning , in the sense on which reasoning is a part, not the whole, of inference); and
  • testing the hypothesis by overt or imaginative action. (Dewey 1933: 106–107; italics in original)

The process of reflective thinking consisting of these phases would be preceded by a perplexed, troubled or confused situation and followed by a cleared-up, unified, resolved situation (Dewey 1933: 106). The term ‘phases’ replaced the term ‘steps’ (Dewey 1910: 72), thus removing the earlier suggestion of an invariant sequence. Variants of the above analysis appeared in (Dewey 1916: 177) and (Dewey 1938: 101–119).

The variant formulations indicate the difficulty of giving a single logical analysis of such a varied process. The process of critical thinking may have a spiral pattern, with the problem being redefined in the light of obstacles to solving it as originally formulated. For example, the person in Transit might have concluded that getting to the appointment at the scheduled time was impossible and have reformulated the problem as that of rescheduling the appointment for a mutually convenient time. Further, defining a problem does not always follow after or lead immediately to an idea of a suggested solution. Nor should it do so, as Dewey himself recognized in describing the physician in Typhoid as avoiding any strong preference for this or that conclusion before getting further information (Dewey 1910: 85; 1933: 170). People with a hypothesis in mind, even one to which they have a very weak commitment, have a so-called “confirmation bias” (Nickerson 1998): they are likely to pay attention to evidence that confirms the hypothesis and to ignore evidence that counts against it or for some competing hypothesis. Detectives, intelligence agencies, and investigators of airplane accidents are well advised to gather relevant evidence systematically and to postpone even tentative adoption of an explanatory hypothesis until the collected evidence rules out with the appropriate degree of certainty all but one explanation. Dewey’s analysis of the critical thinking process can be faulted as well for requiring acceptance or rejection of a possible solution to a defined problem, with no allowance for deciding in the light of the available evidence to suspend judgment. Further, given the great variety of kinds of problems for which reflection is appropriate, there is likely to be variation in its component events. Perhaps the best way to conceptualize the critical thinking process is as a checklist whose component events can occur in a variety of orders, selectively, and more than once. These component events might include (1) noticing a difficulty, (2) defining the problem, (3) dividing the problem into manageable sub-problems, (4) formulating a variety of possible solutions to the problem or sub-problem, (5) determining what evidence is relevant to deciding among possible solutions to the problem or sub-problem, (6) devising a plan of systematic observation or experiment that will uncover the relevant evidence, (7) carrying out the plan of systematic observation or experimentation, (8) noting the results of the systematic observation or experiment, (9) gathering relevant testimony and information from others, (10) judging the credibility of testimony and information gathered from others, (11) drawing conclusions from gathered evidence and accepted testimony, and (12) accepting a solution that the evidence adequately supports (cf. Hitchcock 2017: 485).

Checklist conceptions of the process of critical thinking are open to the objection that they are too mechanical and procedural to fit the multi-dimensional and emotionally charged issues for which critical thinking is urgently needed (Paul 1984). For such issues, a more dialectical process is advocated, in which competing relevant world views are identified, their implications explored, and some sort of creative synthesis attempted.

If one considers the critical thinking process illustrated by the 11 examples, one can identify distinct kinds of mental acts and mental states that form part of it. To distinguish, label and briefly characterize these components is a useful preliminary to identifying abilities, skills, dispositions, attitudes, habits and the like that contribute causally to thinking critically. Identifying such abilities and habits is in turn a useful preliminary to setting educational goals. Setting the goals is in its turn a useful preliminary to designing strategies for helping learners to achieve the goals and to designing ways of measuring the extent to which learners have done so. Such measures provide both feedback to learners on their achievement and a basis for experimental research on the effectiveness of various strategies for educating people to think critically. Let us begin, then, by distinguishing the kinds of mental acts and mental events that can occur in a critical thinking process.

  • Observing : One notices something in one’s immediate environment (sudden cooling of temperature in Weather , bubbles forming outside a glass and then going inside in Bubbles , a moving blur in the distance in Blur , a rash in Rash ). Or one notes the results of an experiment or systematic observation (valuables missing in Disorder , no suction without air pressure in Suction pump )
  • Feeling : One feels puzzled or uncertain about something (how to get to an appointment on time in Transit , why the diamonds vary in spacing in Diamond ). One wants to resolve this perplexity. One feels satisfaction once one has worked out an answer (to take the subway express in Transit , diamonds closer when needed as a warning in Diamond ).
  • Wondering : One formulates a question to be addressed (why bubbles form outside a tumbler taken from hot water in Bubbles , how suction pumps work in Suction pump , what caused the rash in Rash ).
  • Imagining : One thinks of possible answers (bus or subway or elevated in Transit , flagpole or ornament or wireless communication aid or direction indicator in Ferryboat , allergic reaction or heat rash in Rash ).
  • Inferring : One works out what would be the case if a possible answer were assumed (valuables missing if there has been a burglary in Disorder , earlier start to the rash if it is an allergic reaction to a sulfa drug in Rash ). Or one draws a conclusion once sufficient relevant evidence is gathered (take the subway in Transit , burglary in Disorder , discontinue blood pressure medication and new cream in Rash ).
  • Knowledge : One uses stored knowledge of the subject-matter to generate possible answers or to infer what would be expected on the assumption of a particular answer (knowledge of a city’s public transit system in Transit , of the requirements for a flagpole in Ferryboat , of Boyle’s law in Bubbles , of allergic reactions in Rash ).
  • Experimenting : One designs and carries out an experiment or a systematic observation to find out whether the results deduced from a possible answer will occur (looking at the location of the flagpole in relation to the pilot’s position in Ferryboat , putting an ice cube on top of a tumbler taken from hot water in Bubbles , measuring the height to which a suction pump will draw water at different elevations in Suction pump , noticing the spacing of diamonds when movement to or from a diamond lane is allowed in Diamond ).
  • Consulting : One finds a source of information, gets the information from the source, and makes a judgment on whether to accept it. None of our 11 examples include searching for sources of information. In this respect they are unrepresentative, since most people nowadays have almost instant access to information relevant to answering any question, including many of those illustrated by the examples. However, Candidate includes the activities of extracting information from sources and evaluating its credibility.
  • Identifying and analyzing arguments : One notices an argument and works out its structure and content as a preliminary to evaluating its strength. This activity is central to Candidate . It is an important part of a critical thinking process in which one surveys arguments for various positions on an issue.
  • Judging : One makes a judgment on the basis of accumulated evidence and reasoning, such as the judgment in Ferryboat that the purpose of the pole is to provide direction to the pilot.
  • Deciding : One makes a decision on what to do or on what policy to adopt, as in the decision in Transit to take the subway.

By definition, a person who does something voluntarily is both willing and able to do that thing at that time. Both the willingness and the ability contribute causally to the person’s action, in the sense that the voluntary action would not occur if either (or both) of these were lacking. For example, suppose that one is standing with one’s arms at one’s sides and one voluntarily lifts one’s right arm to an extended horizontal position. One would not do so if one were unable to lift one’s arm, if for example one’s right side was paralyzed as the result of a stroke. Nor would one do so if one were unwilling to lift one’s arm, if for example one were participating in a street demonstration at which a white supremacist was urging the crowd to lift their right arm in a Nazi salute and one were unwilling to express support in this way for the racist Nazi ideology. The same analysis applies to a voluntary mental process of thinking critically. It requires both willingness and ability to think critically, including willingness and ability to perform each of the mental acts that compose the process and to coordinate those acts in a sequence that is directed at resolving the initiating perplexity.

Consider willingness first. We can identify causal contributors to willingness to think critically by considering factors that would cause a person who was able to think critically about an issue nevertheless not to do so (Hamby 2014). For each factor, the opposite condition thus contributes causally to willingness to think critically on a particular occasion. For example, people who habitually jump to conclusions without considering alternatives will not think critically about issues that arise, even if they have the required abilities. The contrary condition of willingness to suspend judgment is thus a causal contributor to thinking critically.

Now consider ability. In contrast to the ability to move one’s arm, which can be completely absent because a stroke has left the arm paralyzed, the ability to think critically is a developed ability, whose absence is not a complete absence of ability to think but absence of ability to think well. We can identify the ability to think well directly, in terms of the norms and standards for good thinking. In general, to be able do well the thinking activities that can be components of a critical thinking process, one needs to know the concepts and principles that characterize their good performance, to recognize in particular cases that the concepts and principles apply, and to apply them. The knowledge, recognition and application may be procedural rather than declarative. It may be domain-specific rather than widely applicable, and in either case may need subject-matter knowledge, sometimes of a deep kind.

Reflections of the sort illustrated by the previous two paragraphs have led scholars to identify the knowledge, abilities and dispositions of a “critical thinker”, i.e., someone who thinks critically whenever it is appropriate to do so. We turn now to these three types of causal contributors to thinking critically. We start with dispositions, since arguably these are the most powerful contributors to being a critical thinker, can be fostered at an early stage of a child’s development, and are susceptible to general improvement (Glaser 1941: 175)

8. Critical Thinking Dispositions

Educational researchers use the term ‘dispositions’ broadly for the habits of mind and attitudes that contribute causally to being a critical thinker. Some writers (e.g., Paul & Elder 2006; Hamby 2014; Bailin & Battersby 2016a) propose to use the term ‘virtues’ for this dimension of a critical thinker. The virtues in question, although they are virtues of character, concern the person’s ways of thinking rather than the person’s ways of behaving towards others. They are not moral virtues but intellectual virtues, of the sort articulated by Zagzebski (1996) and discussed by Turri, Alfano, and Greco (2017).

On a realistic conception, thinking dispositions or intellectual virtues are real properties of thinkers. They are general tendencies, propensities, or inclinations to think in particular ways in particular circumstances, and can be genuinely explanatory (Siegel 1999). Sceptics argue that there is no evidence for a specific mental basis for the habits of mind that contribute to thinking critically, and that it is pedagogically misleading to posit such a basis (Bailin et al. 1999a). Whatever their status, critical thinking dispositions need motivation for their initial formation in a child—motivation that may be external or internal. As children develop, the force of habit will gradually become important in sustaining the disposition (Nieto & Valenzuela 2012). Mere force of habit, however, is unlikely to sustain critical thinking dispositions. Critical thinkers must value and enjoy using their knowledge and abilities to think things through for themselves. They must be committed to, and lovers of, inquiry.

A person may have a critical thinking disposition with respect to only some kinds of issues. For example, one could be open-minded about scientific issues but not about religious issues. Similarly, one could be confident in one’s ability to reason about the theological implications of the existence of evil in the world but not in one’s ability to reason about the best design for a guided ballistic missile.

Facione (1990a: 25) divides “affective dispositions” of critical thinking into approaches to life and living in general and approaches to specific issues, questions or problems. Adapting this distinction, one can usefully divide critical thinking dispositions into initiating dispositions (those that contribute causally to starting to think critically about an issue) and internal dispositions (those that contribute causally to doing a good job of thinking critically once one has started). The two categories are not mutually exclusive. For example, open-mindedness, in the sense of willingness to consider alternative points of view to one’s own, is both an initiating and an internal disposition.

Using the strategy of considering factors that would block people with the ability to think critically from doing so, we can identify as initiating dispositions for thinking critically attentiveness, a habit of inquiry, self-confidence, courage, open-mindedness, willingness to suspend judgment, trust in reason, wanting evidence for one’s beliefs, and seeking the truth. We consider briefly what each of these dispositions amounts to, in each case citing sources that acknowledge them.

  • Attentiveness : One will not think critically if one fails to recognize an issue that needs to be thought through. For example, the pedestrian in Weather would not have looked up if he had not noticed that the air was suddenly cooler. To be a critical thinker, then, one needs to be habitually attentive to one’s surroundings, noticing not only what one senses but also sources of perplexity in messages received and in one’s own beliefs and attitudes (Facione 1990a: 25; Facione, Facione, & Giancarlo 2001).
  • Habit of inquiry : Inquiry is effortful, and one needs an internal push to engage in it. For example, the student in Bubbles could easily have stopped at idle wondering about the cause of the bubbles rather than reasoning to a hypothesis, then designing and executing an experiment to test it. Thus willingness to think critically needs mental energy and initiative. What can supply that energy? Love of inquiry, or perhaps just a habit of inquiry. Hamby (2015) has argued that willingness to inquire is the central critical thinking virtue, one that encompasses all the others. It is recognized as a critical thinking disposition by Dewey (1910: 29; 1933: 35), Glaser (1941: 5), Ennis (1987: 12; 1991: 8), Facione (1990a: 25), Bailin et al. (1999b: 294), Halpern (1998: 452), and Facione, Facione, & Giancarlo (2001).
  • Self-confidence : Lack of confidence in one’s abilities can block critical thinking. For example, if the woman in Rash lacked confidence in her ability to figure things out for herself, she might just have assumed that the rash on her chest was the allergic reaction to her medication against which the pharmacist had warned her. Thus willingness to think critically requires confidence in one’s ability to inquire (Facione 1990a: 25; Facione, Facione, & Giancarlo 2001).
  • Courage : Fear of thinking for oneself can stop one from doing it. Thus willingness to think critically requires intellectual courage (Paul & Elder 2006: 16).
  • Open-mindedness : A dogmatic attitude will impede thinking critically. For example, a person who adheres rigidly to a “pro-choice” position on the issue of the legal status of induced abortion is likely to be unwilling to consider seriously the issue of when in its development an unborn child acquires a moral right to life. Thus willingness to think critically requires open-mindedness, in the sense of a willingness to examine questions to which one already accepts an answer but which further evidence or reasoning might cause one to answer differently (Dewey 1933; Facione 1990a; Ennis 1991; Bailin et al. 1999b; Halpern 1998, Facione, Facione, & Giancarlo 2001). Paul (1981) emphasizes open-mindedness about alternative world-views, and recommends a dialectical approach to integrating such views as central to what he calls “strong sense” critical thinking. In three studies, Haran, Ritov, & Mellers (2013) found that actively open-minded thinking, including “the tendency to weigh new evidence against a favored belief, to spend sufficient time on a problem before giving up, and to consider carefully the opinions of others in forming one’s own”, led study participants to acquire information and thus to make accurate estimations.
  • Willingness to suspend judgment : Premature closure on an initial solution will block critical thinking. Thus willingness to think critically requires a willingness to suspend judgment while alternatives are explored (Facione 1990a; Ennis 1991; Halpern 1998).
  • Trust in reason : Since distrust in the processes of reasoned inquiry will dissuade one from engaging in it, trust in them is an initiating critical thinking disposition (Facione 1990a, 25; Bailin et al. 1999b: 294; Facione, Facione, & Giancarlo 2001; Paul & Elder 2006). In reaction to an allegedly exclusive emphasis on reason in critical thinking theory and pedagogy, Thayer-Bacon (2000) argues that intuition, imagination, and emotion have important roles to play in an adequate conception of critical thinking that she calls “constructive thinking”. From her point of view, critical thinking requires trust not only in reason but also in intuition, imagination, and emotion.
  • Seeking the truth : If one does not care about the truth but is content to stick with one’s initial bias on an issue, then one will not think critically about it. Seeking the truth is thus an initiating critical thinking disposition (Bailin et al. 1999b: 294; Facione, Facione, & Giancarlo 2001). A disposition to seek the truth is implicit in more specific critical thinking dispositions, such as trying to be well-informed, considering seriously points of view other than one’s own, looking for alternatives, suspending judgment when the evidence is insufficient, and adopting a position when the evidence supporting it is sufficient.

Some of the initiating dispositions, such as open-mindedness and willingness to suspend judgment, are also internal critical thinking dispositions, in the sense of mental habits or attitudes that contribute causally to doing a good job of critical thinking once one starts the process. But there are many other internal critical thinking dispositions. Some of them are parasitic on one’s conception of good thinking. For example, it is constitutive of good thinking about an issue to formulate the issue clearly and to maintain focus on it. For this purpose, one needs not only the corresponding ability but also the corresponding disposition. Ennis (1991: 8) describes it as the disposition “to determine and maintain focus on the conclusion or question”, Facione (1990a: 25) as “clarity in stating the question or concern”. Other internal dispositions are motivators to continue or adjust the critical thinking process, such as willingness to persist in a complex task and willingness to abandon nonproductive strategies in an attempt to self-correct (Halpern 1998: 452). For a list of identified internal critical thinking dispositions, see the Supplement on Internal Critical Thinking Dispositions .

Some theorists postulate skills, i.e., acquired abilities, as operative in critical thinking. It is not obvious, however, that a good mental act is the exercise of a generic acquired skill. Inferring an expected time of arrival, as in Transit , has some generic components but also uses non-generic subject-matter knowledge. Bailin et al. (1999a) argue against viewing critical thinking skills as generic and discrete, on the ground that skilled performance at a critical thinking task cannot be separated from knowledge of concepts and from domain-specific principles of good thinking. Talk of skills, they concede, is unproblematic if it means merely that a person with critical thinking skills is capable of intelligent performance.

Despite such scepticism, theorists of critical thinking have listed as general contributors to critical thinking what they variously call abilities (Glaser 1941; Ennis 1962, 1991), skills (Facione 1990a; Halpern 1998) or competencies (Fisher & Scriven 1997). Amalgamating these lists would produce a confusing and chaotic cornucopia of more than 50 possible educational objectives, with only partial overlap among them. It makes sense instead to try to understand the reasons for the multiplicity and diversity, and to make a selection according to one’s own reasons for singling out abilities to be developed in a critical thinking curriculum. Two reasons for diversity among lists of critical thinking abilities are the underlying conception of critical thinking and the envisaged educational level. Appraisal-only conceptions, for example, involve a different suite of abilities than constructive-only conceptions. Some lists, such as those in (Glaser 1941), are put forward as educational objectives for secondary school students, whereas others are proposed as objectives for college students (e.g., Facione 1990a).

The abilities described in the remaining paragraphs of this section emerge from reflection on the general abilities needed to do well the thinking activities identified in section 6 as components of the critical thinking process described in section 5 . The derivation of each collection of abilities is accompanied by citation of sources that list such abilities and of standardized tests that claim to test them.

Observational abilities : Careful and accurate observation sometimes requires specialist expertise and practice, as in the case of observing birds and observing accident scenes. However, there are general abilities of noticing what one’s senses are picking up from one’s environment and of being able to articulate clearly and accurately to oneself and others what one has observed. It helps in exercising them to be able to recognize and take into account factors that make one’s observation less trustworthy, such as prior framing of the situation, inadequate time, deficient senses, poor observation conditions, and the like. It helps as well to be skilled at taking steps to make one’s observation more trustworthy, such as moving closer to get a better look, measuring something three times and taking the average, and checking what one thinks one is observing with someone else who is in a good position to observe it. It also helps to be skilled at recognizing respects in which one’s report of one’s observation involves inference rather than direct observation, so that one can then consider whether the inference is justified. These abilities come into play as well when one thinks about whether and with what degree of confidence to accept an observation report, for example in the study of history or in a criminal investigation or in assessing news reports. Observational abilities show up in some lists of critical thinking abilities (Ennis 1962: 90; Facione 1990a: 16; Ennis 1991: 9). There are items testing a person’s ability to judge the credibility of observation reports in the Cornell Critical Thinking Tests, Levels X and Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005). Norris and King (1983, 1985, 1990a, 1990b) is a test of ability to appraise observation reports.

Emotional abilities : The emotions that drive a critical thinking process are perplexity or puzzlement, a wish to resolve it, and satisfaction at achieving the desired resolution. Children experience these emotions at an early age, without being trained to do so. Education that takes critical thinking as a goal needs only to channel these emotions and to make sure not to stifle them. Collaborative critical thinking benefits from ability to recognize one’s own and others’ emotional commitments and reactions.

Questioning abilities : A critical thinking process needs transformation of an inchoate sense of perplexity into a clear question. Formulating a question well requires not building in questionable assumptions, not prejudging the issue, and using language that in context is unambiguous and precise enough (Ennis 1962: 97; 1991: 9).

Imaginative abilities : Thinking directed at finding the correct causal explanation of a general phenomenon or particular event requires an ability to imagine possible explanations. Thinking about what policy or plan of action to adopt requires generation of options and consideration of possible consequences of each option. Domain knowledge is required for such creative activity, but a general ability to imagine alternatives is helpful and can be nurtured so as to become easier, quicker, more extensive, and deeper (Dewey 1910: 34–39; 1933: 40–47). Facione (1990a) and Halpern (1998) include the ability to imagine alternatives as a critical thinking ability.

Inferential abilities : The ability to draw conclusions from given information, and to recognize with what degree of certainty one’s own or others’ conclusions follow, is universally recognized as a general critical thinking ability. All 11 examples in section 2 of this article include inferences, some from hypotheses or options (as in Transit , Ferryboat and Disorder ), others from something observed (as in Weather and Rash ). None of these inferences is formally valid. Rather, they are licensed by general, sometimes qualified substantive rules of inference (Toulmin 1958) that rest on domain knowledge—that a bus trip takes about the same time in each direction, that the terminal of a wireless telegraph would be located on the highest possible place, that sudden cooling is often followed by rain, that an allergic reaction to a sulfa drug generally shows up soon after one starts taking it. It is a matter of controversy to what extent the specialized ability to deduce conclusions from premisses using formal rules of inference is needed for critical thinking. Dewey (1933) locates logical forms in setting out the products of reflection rather than in the process of reflection. Ennis (1981a), on the other hand, maintains that a liberally-educated person should have the following abilities: to translate natural-language statements into statements using the standard logical operators, to use appropriately the language of necessary and sufficient conditions, to deal with argument forms and arguments containing symbols, to determine whether in virtue of an argument’s form its conclusion follows necessarily from its premisses, to reason with logically complex propositions, and to apply the rules and procedures of deductive logic. Inferential abilities are recognized as critical thinking abilities by Glaser (1941: 6), Facione (1990a: 9), Ennis (1991: 9), Fisher & Scriven (1997: 99, 111), and Halpern (1998: 452). Items testing inferential abilities constitute two of the five subtests of the Watson Glaser Critical Thinking Appraisal (Watson & Glaser 1980a, 1980b, 1994), two of the four sections in the Cornell Critical Thinking Test Level X (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005), three of the seven sections in the Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005), 11 of the 34 items on Forms A and B of the California Critical Thinking Skills Test (Facione 1990b, 1992), and a high but variable proportion of the 25 selected-response questions in the Collegiate Learning Assessment (Council for Aid to Education 2017).

Experimenting abilities : Knowing how to design and execute an experiment is important not just in scientific research but also in everyday life, as in Rash . Dewey devoted a whole chapter of his How We Think (1910: 145–156; 1933: 190–202) to the superiority of experimentation over observation in advancing knowledge. Experimenting abilities come into play at one remove in appraising reports of scientific studies. Skill in designing and executing experiments includes the acknowledged abilities to appraise evidence (Glaser 1941: 6), to carry out experiments and to apply appropriate statistical inference techniques (Facione 1990a: 9), to judge inductions to an explanatory hypothesis (Ennis 1991: 9), and to recognize the need for an adequately large sample size (Halpern 1998). The Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005) includes four items (out of 52) on experimental design. The Collegiate Learning Assessment (Council for Aid to Education 2017) makes room for appraisal of study design in both its performance task and its selected-response questions.

Consulting abilities : Skill at consulting sources of information comes into play when one seeks information to help resolve a problem, as in Candidate . Ability to find and appraise information includes ability to gather and marshal pertinent information (Glaser 1941: 6), to judge whether a statement made by an alleged authority is acceptable (Ennis 1962: 84), to plan a search for desired information (Facione 1990a: 9), and to judge the credibility of a source (Ennis 1991: 9). Ability to judge the credibility of statements is tested by 24 items (out of 76) in the Cornell Critical Thinking Test Level X (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005) and by four items (out of 52) in the Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005). The College Learning Assessment’s performance task requires evaluation of whether information in documents is credible or unreliable (Council for Aid to Education 2017).

Argument analysis abilities : The ability to identify and analyze arguments contributes to the process of surveying arguments on an issue in order to form one’s own reasoned judgment, as in Candidate . The ability to detect and analyze arguments is recognized as a critical thinking skill by Facione (1990a: 7–8), Ennis (1991: 9) and Halpern (1998). Five items (out of 34) on the California Critical Thinking Skills Test (Facione 1990b, 1992) test skill at argument analysis. The College Learning Assessment (Council for Aid to Education 2017) incorporates argument analysis in its selected-response tests of critical reading and evaluation and of critiquing an argument.

Judging skills and deciding skills : Skill at judging and deciding is skill at recognizing what judgment or decision the available evidence and argument supports, and with what degree of confidence. It is thus a component of the inferential skills already discussed.

Lists and tests of critical thinking abilities often include two more abilities: identifying assumptions and constructing and evaluating definitions.

In addition to dispositions and abilities, critical thinking needs knowledge: of critical thinking concepts, of critical thinking principles, and of the subject-matter of the thinking.

We can derive a short list of concepts whose understanding contributes to critical thinking from the critical thinking abilities described in the preceding section. Observational abilities require an understanding of the difference between observation and inference. Questioning abilities require an understanding of the concepts of ambiguity and vagueness. Inferential abilities require an understanding of the difference between conclusive and defeasible inference (traditionally, between deduction and induction), as well as of the difference between necessary and sufficient conditions. Experimenting abilities require an understanding of the concepts of hypothesis, null hypothesis, assumption and prediction, as well as of the concept of statistical significance and of its difference from importance. They also require an understanding of the difference between an experiment and an observational study, and in particular of the difference between a randomized controlled trial, a prospective correlational study and a retrospective (case-control) study. Argument analysis abilities require an understanding of the concepts of argument, premiss, assumption, conclusion and counter-consideration. Additional critical thinking concepts are proposed by Bailin et al. (1999b: 293), Fisher & Scriven (1997: 105–106), Black (2012), and Blair (2021).

According to Glaser (1941: 25), ability to think critically requires knowledge of the methods of logical inquiry and reasoning. If we review the list of abilities in the preceding section, however, we can see that some of them can be acquired and exercised merely through practice, possibly guided in an educational setting, followed by feedback. Searching intelligently for a causal explanation of some phenomenon or event requires that one consider a full range of possible causal contributors, but it seems more important that one implements this principle in one’s practice than that one is able to articulate it. What is important is “operational knowledge” of the standards and principles of good thinking (Bailin et al. 1999b: 291–293). But the development of such critical thinking abilities as designing an experiment or constructing an operational definition can benefit from learning their underlying theory. Further, explicit knowledge of quirks of human thinking seems useful as a cautionary guide. Human memory is not just fallible about details, as people learn from their own experiences of misremembering, but is so malleable that a detailed, clear and vivid recollection of an event can be a total fabrication (Loftus 2017). People seek or interpret evidence in ways that are partial to their existing beliefs and expectations, often unconscious of their “confirmation bias” (Nickerson 1998). Not only are people subject to this and other cognitive biases (Kahneman 2011), of which they are typically unaware, but it may be counter-productive for one to make oneself aware of them and try consciously to counteract them or to counteract social biases such as racial or sexual stereotypes (Kenyon & Beaulac 2014). It is helpful to be aware of these facts and of the superior effectiveness of blocking the operation of biases—for example, by making an immediate record of one’s observations, refraining from forming a preliminary explanatory hypothesis, blind refereeing, double-blind randomized trials, and blind grading of students’ work. It is also helpful to be aware of the prevalence of “noise” (unwanted unsystematic variability of judgments), of how to detect noise (through a noise audit), and of how to reduce noise: make accuracy the goal, think statistically, break a process of arriving at a judgment into independent tasks, resist premature intuitions, in a group get independent judgments first, favour comparative judgments and scales (Kahneman, Sibony, & Sunstein 2021). It is helpful as well to be aware of the concept of “bounded rationality” in decision-making and of the related distinction between “satisficing” and optimizing (Simon 1956; Gigerenzer 2001).

Critical thinking about an issue requires substantive knowledge of the domain to which the issue belongs. Critical thinking abilities are not a magic elixir that can be applied to any issue whatever by somebody who has no knowledge of the facts relevant to exploring that issue. For example, the student in Bubbles needed to know that gases do not penetrate solid objects like a glass, that air expands when heated, that the volume of an enclosed gas varies directly with its temperature and inversely with its pressure, and that hot objects will spontaneously cool down to the ambient temperature of their surroundings unless kept hot by insulation or a source of heat. Critical thinkers thus need a rich fund of subject-matter knowledge relevant to the variety of situations they encounter. This fact is recognized in the inclusion among critical thinking dispositions of a concern to become and remain generally well informed.

Experimental educational interventions, with control groups, have shown that education can improve critical thinking skills and dispositions, as measured by standardized tests. For information about these tests, see the Supplement on Assessment .

What educational methods are most effective at developing the dispositions, abilities and knowledge of a critical thinker? In a comprehensive meta-analysis of experimental and quasi-experimental studies of strategies for teaching students to think critically, Abrami et al. (2015) found that dialogue, anchored instruction, and mentoring each increased the effectiveness of the educational intervention, and that they were most effective when combined. They also found that in these studies a combination of separate instruction in critical thinking with subject-matter instruction in which students are encouraged to think critically was more effective than either by itself. However, the difference was not statistically significant; that is, it might have arisen by chance.

Most of these studies lack the longitudinal follow-up required to determine whether the observed differential improvements in critical thinking abilities or dispositions continue over time, for example until high school or college graduation. For details on studies of methods of developing critical thinking skills and dispositions, see the Supplement on Educational Methods .

12. Controversies

Scholars have denied the generalizability of critical thinking abilities across subject domains, have alleged bias in critical thinking theory and pedagogy, and have investigated the relationship of critical thinking to other kinds of thinking.

McPeck (1981) attacked the thinking skills movement of the 1970s, including the critical thinking movement. He argued that there are no general thinking skills, since thinking is always thinking about some subject-matter. It is futile, he claimed, for schools and colleges to teach thinking as if it were a separate subject. Rather, teachers should lead their pupils to become autonomous thinkers by teaching school subjects in a way that brings out their cognitive structure and that encourages and rewards discussion and argument. As some of his critics (e.g., Paul 1985; Siegel 1985) pointed out, McPeck’s central argument needs elaboration, since it has obvious counter-examples in writing and speaking, for which (up to a certain level of complexity) there are teachable general abilities even though they are always about some subject-matter. To make his argument convincing, McPeck needs to explain how thinking differs from writing and speaking in a way that does not permit useful abstraction of its components from the subject-matters with which it deals. He has not done so. Nevertheless, his position that the dispositions and abilities of a critical thinker are best developed in the context of subject-matter instruction is shared by many theorists of critical thinking, including Dewey (1910, 1933), Glaser (1941), Passmore (1980), Weinstein (1990), Bailin et al. (1999b), and Willingham (2019).

McPeck’s challenge prompted reflection on the extent to which critical thinking is subject-specific. McPeck argued for a strong subject-specificity thesis, according to which it is a conceptual truth that all critical thinking abilities are specific to a subject. (He did not however extend his subject-specificity thesis to critical thinking dispositions. In particular, he took the disposition to suspend judgment in situations of cognitive dissonance to be a general disposition.) Conceptual subject-specificity is subject to obvious counter-examples, such as the general ability to recognize confusion of necessary and sufficient conditions. A more modest thesis, also endorsed by McPeck, is epistemological subject-specificity, according to which the norms of good thinking vary from one field to another. Epistemological subject-specificity clearly holds to a certain extent; for example, the principles in accordance with which one solves a differential equation are quite different from the principles in accordance with which one determines whether a painting is a genuine Picasso. But the thesis suffers, as Ennis (1989) points out, from vagueness of the concept of a field or subject and from the obvious existence of inter-field principles, however broadly the concept of a field is construed. For example, the principles of hypothetico-deductive reasoning hold for all the varied fields in which such reasoning occurs. A third kind of subject-specificity is empirical subject-specificity, according to which as a matter of empirically observable fact a person with the abilities and dispositions of a critical thinker in one area of investigation will not necessarily have them in another area of investigation.

The thesis of empirical subject-specificity raises the general problem of transfer. If critical thinking abilities and dispositions have to be developed independently in each school subject, how are they of any use in dealing with the problems of everyday life and the political and social issues of contemporary society, most of which do not fit into the framework of a traditional school subject? Proponents of empirical subject-specificity tend to argue that transfer is more likely to occur if there is critical thinking instruction in a variety of domains, with explicit attention to dispositions and abilities that cut across domains. But evidence for this claim is scanty. There is a need for well-designed empirical studies that investigate the conditions that make transfer more likely.

It is common ground in debates about the generality or subject-specificity of critical thinking dispositions and abilities that critical thinking about any topic requires background knowledge about the topic. For example, the most sophisticated understanding of the principles of hypothetico-deductive reasoning is of no help unless accompanied by some knowledge of what might be plausible explanations of some phenomenon under investigation.

Critics have objected to bias in the theory, pedagogy and practice of critical thinking. Commentators (e.g., Alston 1995; Ennis 1998) have noted that anyone who takes a position has a bias in the neutral sense of being inclined in one direction rather than others. The critics, however, are objecting to bias in the pejorative sense of an unjustified favoring of certain ways of knowing over others, frequently alleging that the unjustly favoured ways are those of a dominant sex or culture (Bailin 1995). These ways favour:

  • reinforcement of egocentric and sociocentric biases over dialectical engagement with opposing world-views (Paul 1981, 1984; Warren 1998)
  • distancing from the object of inquiry over closeness to it (Martin 1992; Thayer-Bacon 1992)
  • indifference to the situation of others over care for them (Martin 1992)
  • orientation to thought over orientation to action (Martin 1992)
  • being reasonable over caring to understand people’s ideas (Thayer-Bacon 1993)
  • being neutral and objective over being embodied and situated (Thayer-Bacon 1995a)
  • doubting over believing (Thayer-Bacon 1995b)
  • reason over emotion, imagination and intuition (Thayer-Bacon 2000)
  • solitary thinking over collaborative thinking (Thayer-Bacon 2000)
  • written and spoken assignments over other forms of expression (Alston 2001)
  • attention to written and spoken communications over attention to human problems (Alston 2001)
  • winning debates in the public sphere over making and understanding meaning (Alston 2001)

A common thread in this smorgasbord of accusations is dissatisfaction with focusing on the logical analysis and evaluation of reasoning and arguments. While these authors acknowledge that such analysis and evaluation is part of critical thinking and should be part of its conceptualization and pedagogy, they insist that it is only a part. Paul (1981), for example, bemoans the tendency of atomistic teaching of methods of analyzing and evaluating arguments to turn students into more able sophists, adept at finding fault with positions and arguments with which they disagree but even more entrenched in the egocentric and sociocentric biases with which they began. Martin (1992) and Thayer-Bacon (1992) cite with approval the self-reported intimacy with their subject-matter of leading researchers in biology and medicine, an intimacy that conflicts with the distancing allegedly recommended in standard conceptions and pedagogy of critical thinking. Thayer-Bacon (2000) contrasts the embodied and socially embedded learning of her elementary school students in a Montessori school, who used their imagination, intuition and emotions as well as their reason, with conceptions of critical thinking as

thinking that is used to critique arguments, offer justifications, and make judgments about what are the good reasons, or the right answers. (Thayer-Bacon 2000: 127–128)

Alston (2001) reports that her students in a women’s studies class were able to see the flaws in the Cinderella myth that pervades much romantic fiction but in their own romantic relationships still acted as if all failures were the woman’s fault and still accepted the notions of love at first sight and living happily ever after. Students, she writes, should

be able to connect their intellectual critique to a more affective, somatic, and ethical account of making risky choices that have sexist, racist, classist, familial, sexual, or other consequences for themselves and those both near and far… critical thinking that reads arguments, texts, or practices merely on the surface without connections to feeling/desiring/doing or action lacks an ethical depth that should infuse the difference between mere cognitive activity and something we want to call critical thinking. (Alston 2001: 34)

Some critics portray such biases as unfair to women. Thayer-Bacon (1992), for example, has charged modern critical thinking theory with being sexist, on the ground that it separates the self from the object and causes one to lose touch with one’s inner voice, and thus stigmatizes women, who (she asserts) link self to object and listen to their inner voice. Her charge does not imply that women as a group are on average less able than men to analyze and evaluate arguments. Facione (1990c) found no difference by sex in performance on his California Critical Thinking Skills Test. Kuhn (1991: 280–281) found no difference by sex in either the disposition or the competence to engage in argumentative thinking.

The critics propose a variety of remedies for the biases that they allege. In general, they do not propose to eliminate or downplay critical thinking as an educational goal. Rather, they propose to conceptualize critical thinking differently and to change its pedagogy accordingly. Their pedagogical proposals arise logically from their objections. They can be summarized as follows:

  • Focus on argument networks with dialectical exchanges reflecting contesting points of view rather than on atomic arguments, so as to develop “strong sense” critical thinking that transcends egocentric and sociocentric biases (Paul 1981, 1984).
  • Foster closeness to the subject-matter and feeling connected to others in order to inform a humane democracy (Martin 1992).
  • Develop “constructive thinking” as a social activity in a community of physically embodied and socially embedded inquirers with personal voices who value not only reason but also imagination, intuition and emotion (Thayer-Bacon 2000).
  • In developing critical thinking in school subjects, treat as important neither skills nor dispositions but opening worlds of meaning (Alston 2001).
  • Attend to the development of critical thinking dispositions as well as skills, and adopt the “critical pedagogy” practised and advocated by Freire (1968 [1970]) and hooks (1994) (Dalgleish, Girard, & Davies 2017).

A common thread in these proposals is treatment of critical thinking as a social, interactive, personally engaged activity like that of a quilting bee or a barn-raising (Thayer-Bacon 2000) rather than as an individual, solitary, distanced activity symbolized by Rodin’s The Thinker . One can get a vivid description of education with the former type of goal from the writings of bell hooks (1994, 2010). Critical thinking for her is open-minded dialectical exchange across opposing standpoints and from multiple perspectives, a conception similar to Paul’s “strong sense” critical thinking (Paul 1981). She abandons the structure of domination in the traditional classroom. In an introductory course on black women writers, for example, she assigns students to write an autobiographical paragraph about an early racial memory, then to read it aloud as the others listen, thus affirming the uniqueness and value of each voice and creating a communal awareness of the diversity of the group’s experiences (hooks 1994: 84). Her “engaged pedagogy” is thus similar to the “freedom under guidance” implemented in John Dewey’s Laboratory School of Chicago in the late 1890s and early 1900s. It incorporates the dialogue, anchored instruction, and mentoring that Abrami (2015) found to be most effective in improving critical thinking skills and dispositions.

What is the relationship of critical thinking to problem solving, decision-making, higher-order thinking, creative thinking, and other recognized types of thinking? One’s answer to this question obviously depends on how one defines the terms used in the question. If critical thinking is conceived broadly to cover any careful thinking about any topic for any purpose, then problem solving and decision making will be kinds of critical thinking, if they are done carefully. Historically, ‘critical thinking’ and ‘problem solving’ were two names for the same thing. If critical thinking is conceived more narrowly as consisting solely of appraisal of intellectual products, then it will be disjoint with problem solving and decision making, which are constructive.

Bloom’s taxonomy of educational objectives used the phrase “intellectual abilities and skills” for what had been labeled “critical thinking” by some, “reflective thinking” by Dewey and others, and “problem solving” by still others (Bloom et al. 1956: 38). Thus, the so-called “higher-order thinking skills” at the taxonomy’s top levels of analysis, synthesis and evaluation are just critical thinking skills, although they do not come with general criteria for their assessment (Ennis 1981b). The revised version of Bloom’s taxonomy (Anderson et al. 2001) likewise treats critical thinking as cutting across those types of cognitive process that involve more than remembering (Anderson et al. 2001: 269–270). For details, see the Supplement on History .

As to creative thinking, it overlaps with critical thinking (Bailin 1987, 1988). Thinking about the explanation of some phenomenon or event, as in Ferryboat , requires creative imagination in constructing plausible explanatory hypotheses. Likewise, thinking about a policy question, as in Candidate , requires creativity in coming up with options. Conversely, creativity in any field needs to be balanced by critical appraisal of the draft painting or novel or mathematical theory.

  • Abrami, Philip C., Robert M. Bernard, Eugene Borokhovski, David I. Waddington, C. Anne Wade, and Tonje Person, 2015, “Strategies for Teaching Students to Think Critically: A Meta-analysis”, Review of Educational Research , 85(2): 275–314. doi:10.3102/0034654314551063
  • Aikin, Wilford M., 1942, The Story of the Eight-year Study, with Conclusions and Recommendations , Volume I of Adventure in American Education , New York and London: Harper & Brothers. [ Aikin 1942 available online ]
  • Alston, Kal, 1995, “Begging the Question: Is Critical Thinking Biased?”, Educational Theory , 45(2): 225–233. doi:10.1111/j.1741-5446.1995.00225.x
  • –––, 2001, “Re/Thinking Critical Thinking: The Seductions of Everyday Life”, Studies in Philosophy and Education , 20(1): 27–40. doi:10.1023/A:1005247128053
  • American Educational Research Association, 2014, Standards for Educational and Psychological Testing / American Educational Research Association, American Psychological Association, National Council on Measurement in Education , Washington, DC: American Educational Research Association.
  • Anderson, Lorin W., David R. Krathwohl, Peter W. Airiasian, Kathleen A. Cruikshank, Richard E. Mayer, Paul R. Pintrich, James Raths, and Merlin C. Wittrock, 2001, A Taxonomy for Learning, Teaching and Assessing: A Revision of Bloom’s Taxonomy of Educational Objectives , New York: Longman, complete edition.
  • Bailin, Sharon, 1987, “Critical and Creative Thinking”, Informal Logic , 9(1): 23–30. [ Bailin 1987 available online ]
  • –––, 1988, Achieving Extraordinary Ends: An Essay on Creativity , Dordrecht: Kluwer. doi:10.1007/978-94-009-2780-3
  • –––, 1995, “Is Critical Thinking Biased? Clarifications and Implications”, Educational Theory , 45(2): 191–197. doi:10.1111/j.1741-5446.1995.00191.x
  • Bailin, Sharon and Mark Battersby, 2009, “Inquiry: A Dialectical Approach to Teaching Critical Thinking”, in Juho Ritola (ed.), Argument Cultures: Proceedings of OSSA 09 , CD-ROM (pp. 1–10), Windsor, ON: OSSA. [ Bailin & Battersby 2009 available online ]
  • –––, 2016a, “Fostering the Virtues of Inquiry”, Topoi , 35(2): 367–374. doi:10.1007/s11245-015-9307-6
  • –––, 2016b, Reason in the Balance: An Inquiry Approach to Critical Thinking , Indianapolis: Hackett, 2nd edition.
  • –––, 2021, “Inquiry: Teaching for Reasoned Judgment”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 31–46. doi: 10.1163/9789004444591_003
  • Bailin, Sharon, Roland Case, Jerrold R. Coombs, and Leroi B. Daniels, 1999a, “Common Misconceptions of Critical Thinking”, Journal of Curriculum Studies , 31(3): 269–283. doi:10.1080/002202799183124
  • –––, 1999b, “Conceptualizing Critical Thinking”, Journal of Curriculum Studies , 31(3): 285–302. doi:10.1080/002202799183133
  • Blair, J. Anthony, 2021, Studies in Critical Thinking , Windsor, ON: Windsor Studies in Argumentation, 2nd edition. [Available online at https://windsor.scholarsportal.info/omp/index.php/wsia/catalog/book/106]
  • Berman, Alan M., Seth J. Schwartz, William M. Kurtines, and Steven L. Berman, 2001, “The Process of Exploration in Identity Formation: The Role of Style and Competence”, Journal of Adolescence , 24(4): 513–528. doi:10.1006/jado.2001.0386
  • Black, Beth (ed.), 2012, An A to Z of Critical Thinking , London: Continuum International Publishing Group.
  • Bloom, Benjamin Samuel, Max D. Engelhart, Edward J. Furst, Walter H. Hill, and David R. Krathwohl, 1956, Taxonomy of Educational Objectives. Handbook I: Cognitive Domain , New York: David McKay.
  • Boardman, Frank, Nancy M. Cavender, and Howard Kahane, 2018, Logic and Contemporary Rhetoric: The Use of Reason in Everyday Life , Boston: Cengage, 13th edition.
  • Browne, M. Neil and Stuart M. Keeley, 2018, Asking the Right Questions: A Guide to Critical Thinking , Hoboken, NJ: Pearson, 12th edition.
  • Center for Assessment & Improvement of Learning, 2017, Critical Thinking Assessment Test , Cookeville, TN: Tennessee Technological University.
  • Cleghorn, Paul. 2021. “Critical Thinking in the Elementary School: Practical Guidance for Building a Culture of Thinking”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessmen t, Leiden: Brill, pp. 150–167. doi: 10.1163/9789004444591_010
  • Cohen, Jacob, 1988, Statistical Power Analysis for the Behavioral Sciences , Hillsdale, NJ: Lawrence Erlbaum Associates, 2nd edition.
  • College Board, 1983, Academic Preparation for College. What Students Need to Know and Be Able to Do , New York: College Entrance Examination Board, ERIC document ED232517.
  • Commission on the Relation of School and College of the Progressive Education Association, 1943, Thirty Schools Tell Their Story , Volume V of Adventure in American Education , New York and London: Harper & Brothers.
  • Council for Aid to Education, 2017, CLA+ Student Guide . Available at http://cae.org/images/uploads/pdf/CLA_Student_Guide_Institution.pdf ; last accessed 2022 07 16.
  • Dalgleish, Adam, Patrick Girard, and Maree Davies, 2017, “Critical Thinking, Bias and Feminist Philosophy: Building a Better Framework through Collaboration”, Informal Logic , 37(4): 351–369. [ Dalgleish et al. available online ]
  • Dewey, John, 1910, How We Think , Boston: D.C. Heath. [ Dewey 1910 available online ]
  • –––, 1916, Democracy and Education: An Introduction to the Philosophy of Education , New York: Macmillan.
  • –––, 1933, How We Think: A Restatement of the Relation of Reflective Thinking to the Educative Process , Lexington, MA: D.C. Heath.
  • –––, 1936, “The Theory of the Chicago Experiment”, Appendix II of Mayhew & Edwards 1936: 463–477.
  • –––, 1938, Logic: The Theory of Inquiry , New York: Henry Holt and Company.
  • Dominguez, Caroline (coord.), 2018a, A European Collection of the Critical Thinking Skills and Dispositions Needed in Different Professional Fields for the 21st Century , Vila Real, Portugal: UTAD. Available at http://bit.ly/CRITHINKEDUO1 ; last accessed 2022 07 16.
  • ––– (coord.), 2018b, A European Review on Critical Thinking Educational Practices in Higher Education Institutions , Vila Real: UTAD. Available at http://bit.ly/CRITHINKEDUO2 ; last accessed 2022 07 16.
  • ––– (coord.), 2018c, The CRITHINKEDU European Course on Critical Thinking Education for University Teachers: From Conception to Delivery , Vila Real: UTAD. Available at http:/bit.ly/CRITHINKEDU03; last accessed 2022 07 16.
  • Dominguez Caroline and Rita Payan-Carreira (eds.), 2019, Promoting Critical Thinking in European Higher Education Institutions: Towards an Educational Protocol , Vila Real: UTAD. Available at http:/bit.ly/CRITHINKEDU04; last accessed 2022 07 16.
  • Ennis, Robert H., 1958, “An Appraisal of the Watson-Glaser Critical Thinking Appraisal”, The Journal of Educational Research , 52(4): 155–158. doi:10.1080/00220671.1958.10882558
  • –––, 1962, “A Concept of Critical Thinking: A Proposed Basis for Research on the Teaching and Evaluation of Critical Thinking Ability”, Harvard Educational Review , 32(1): 81–111.
  • –––, 1981a, “A Conception of Deductive Logical Competence”, Teaching Philosophy , 4(3/4): 337–385. doi:10.5840/teachphil198143/429
  • –––, 1981b, “Eight Fallacies in Bloom’s Taxonomy”, in C. J. B. Macmillan (ed.), Philosophy of Education 1980: Proceedings of the Thirty-seventh Annual Meeting of the Philosophy of Education Society , Bloomington, IL: Philosophy of Education Society, pp. 269–273.
  • –––, 1984, “Problems in Testing Informal Logic, Critical Thinking, Reasoning Ability”, Informal Logic , 6(1): 3–9. [ Ennis 1984 available online ]
  • –––, 1987, “A Taxonomy of Critical Thinking Dispositions and Abilities”, in Joan Boykoff Baron and Robert J. Sternberg (eds.), Teaching Thinking Skills: Theory and Practice , New York: W. H. Freeman, pp. 9–26.
  • –––, 1989, “Critical Thinking and Subject Specificity: Clarification and Needed Research”, Educational Researcher , 18(3): 4–10. doi:10.3102/0013189X018003004
  • –––, 1991, “Critical Thinking: A Streamlined Conception”, Teaching Philosophy , 14(1): 5–24. doi:10.5840/teachphil19911412
  • –––, 1996, “Critical Thinking Dispositions: Their Nature and Assessability”, Informal Logic , 18(2–3): 165–182. [ Ennis 1996 available online ]
  • –––, 1998, “Is Critical Thinking Culturally Biased?”, Teaching Philosophy , 21(1): 15–33. doi:10.5840/teachphil19982113
  • –––, 2011, “Critical Thinking: Reflection and Perspective Part I”, Inquiry: Critical Thinking across the Disciplines , 26(1): 4–18. doi:10.5840/inquiryctnews20112613
  • –––, 2013, “Critical Thinking across the Curriculum: The Wisdom CTAC Program”, Inquiry: Critical Thinking across the Disciplines , 28(2): 25–45. doi:10.5840/inquiryct20132828
  • –––, 2016, “Definition: A Three-Dimensional Analysis with Bearing on Key Concepts”, in Patrick Bondy and Laura Benacquista (eds.), Argumentation, Objectivity, and Bias: Proceedings of the 11th International Conference of the Ontario Society for the Study of Argumentation (OSSA), 18–21 May 2016 , Windsor, ON: OSSA, pp. 1–19. Available at http://scholar.uwindsor.ca/ossaarchive/OSSA11/papersandcommentaries/105 ; last accessed 2022 07 16.
  • –––, 2018, “Critical Thinking Across the Curriculum: A Vision”, Topoi , 37(1): 165–184. doi:10.1007/s11245-016-9401-4
  • Ennis, Robert H., and Jason Millman, 1971, Manual for Cornell Critical Thinking Test, Level X, and Cornell Critical Thinking Test, Level Z , Urbana, IL: Critical Thinking Project, University of Illinois.
  • Ennis, Robert H., Jason Millman, and Thomas Norbert Tomko, 1985, Cornell Critical Thinking Tests Level X & Level Z: Manual , Pacific Grove, CA: Midwest Publication, 3rd edition.
  • –––, 2005, Cornell Critical Thinking Tests Level X & Level Z: Manual , Seaside, CA: Critical Thinking Company, 5th edition.
  • Ennis, Robert H. and Eric Weir, 1985, The Ennis-Weir Critical Thinking Essay Test: Test, Manual, Criteria, Scoring Sheet: An Instrument for Teaching and Testing , Pacific Grove, CA: Midwest Publications.
  • Facione, Peter A., 1990a, Critical Thinking: A Statement of Expert Consensus for Purposes of Educational Assessment and Instruction , Research Findings and Recommendations Prepared for the Committee on Pre-College Philosophy of the American Philosophical Association, ERIC Document ED315423.
  • –––, 1990b, California Critical Thinking Skills Test, CCTST – Form A , Millbrae, CA: The California Academic Press.
  • –––, 1990c, The California Critical Thinking Skills Test--College Level. Technical Report #3. Gender, Ethnicity, Major, CT Self-Esteem, and the CCTST , ERIC Document ED326584.
  • –––, 1992, California Critical Thinking Skills Test: CCTST – Form B, Millbrae, CA: The California Academic Press.
  • –––, 2000, “The Disposition Toward Critical Thinking: Its Character, Measurement, and Relationship to Critical Thinking Skill”, Informal Logic , 20(1): 61–84. [ Facione 2000 available online ]
  • Facione, Peter A. and Noreen C. Facione, 1992, CCTDI: A Disposition Inventory , Millbrae, CA: The California Academic Press.
  • Facione, Peter A., Noreen C. Facione, and Carol Ann F. Giancarlo, 2001, California Critical Thinking Disposition Inventory: CCTDI: Inventory Manual , Millbrae, CA: The California Academic Press.
  • Facione, Peter A., Carol A. Sánchez, and Noreen C. Facione, 1994, Are College Students Disposed to Think? , Millbrae, CA: The California Academic Press. ERIC Document ED368311.
  • Fisher, Alec, and Michael Scriven, 1997, Critical Thinking: Its Definition and Assessment , Norwich: Centre for Research in Critical Thinking, University of East Anglia.
  • Freire, Paulo, 1968 [1970], Pedagogia do Oprimido . Translated as Pedagogy of the Oppressed , Myra Bergman Ramos (trans.), New York: Continuum, 1970.
  • Gigerenzer, Gerd, 2001, “The Adaptive Toolbox”, in Gerd Gigerenzer and Reinhard Selten (eds.), Bounded Rationality: The Adaptive Toolbox , Cambridge, MA: MIT Press, pp. 37–50.
  • Glaser, Edward Maynard, 1941, An Experiment in the Development of Critical Thinking , New York: Bureau of Publications, Teachers College, Columbia University.
  • Groarke, Leo A. and Christopher W. Tindale, 2012, Good Reasoning Matters! A Constructive Approach to Critical Thinking , Don Mills, ON: Oxford University Press, 5th edition.
  • Halpern, Diane F., 1998, “Teaching Critical Thinking for Transfer Across Domains: Disposition, Skills, Structure Training, and Metacognitive Monitoring”, American Psychologist , 53(4): 449–455. doi:10.1037/0003-066X.53.4.449
  • –––, 2016, Manual: Halpern Critical Thinking Assessment , Mödling, Austria: Schuhfried. Available at https://pdfcoffee.com/hcta-test-manual-pdf-free.html; last accessed 2022 07 16.
  • Hamby, Benjamin, 2014, The Virtues of Critical Thinkers , Doctoral dissertation, Philosophy, McMaster University. [ Hamby 2014 available online ]
  • –––, 2015, “Willingness to Inquire: The Cardinal Critical Thinking Virtue”, in Martin Davies and Ronald Barnett (eds.), The Palgrave Handbook of Critical Thinking in Higher Education , New York: Palgrave Macmillan, pp. 77–87.
  • Haran, Uriel, Ilana Ritov, and Barbara A. Mellers, 2013, “The Role of Actively Open-minded Thinking in Information Acquisition, Accuracy, and Calibration”, Judgment and Decision Making , 8(3): 188–201.
  • Hatcher, Donald and Kevin Possin, 2021, “Commentary: Thinking Critically about Critical Thinking Assessment”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 298–322. doi: 10.1163/9789004444591_017
  • Haynes, Ada, Elizabeth Lisic, Kevin Harris, Katie Leming, Kyle Shanks, and Barry Stein, 2015, “Using the Critical Thinking Assessment Test (CAT) as a Model for Designing Within-Course Assessments: Changing How Faculty Assess Student Learning”, Inquiry: Critical Thinking Across the Disciplines , 30(3): 38–48. doi:10.5840/inquiryct201530316
  • Haynes, Ada and Barry Stein, 2021, “Observations from a Long-Term Effort to Assess and Improve Critical Thinking”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 231–254. doi: 10.1163/9789004444591_014
  • Hiner, Amanda L. 2021. “Equipping Students for Success in College and Beyond: Placing Critical Thinking Instruction at the Heart of a General Education Program”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 188–208. doi: 10.1163/9789004444591_012
  • Hitchcock, David, 2017, “Critical Thinking as an Educational Ideal”, in his On Reasoning and Argument: Essays in Informal Logic and on Critical Thinking , Dordrecht: Springer, pp. 477–497. doi:10.1007/978-3-319-53562-3_30
  • –––, 2021, “Seven Philosophical Implications of Critical Thinking: Themes, Variations, Implications”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 9–30. doi: 10.1163/9789004444591_002
  • hooks, bell, 1994, Teaching to Transgress: Education as the Practice of Freedom , New York and London: Routledge.
  • –––, 2010, Teaching Critical Thinking: Practical Wisdom , New York and London: Routledge.
  • Johnson, Ralph H., 1992, “The Problem of Defining Critical Thinking”, in Stephen P, Norris (ed.), The Generalizability of Critical Thinking , New York: Teachers College Press, pp. 38–53.
  • Kahane, Howard, 1971, Logic and Contemporary Rhetoric: The Use of Reason in Everyday Life , Belmont, CA: Wadsworth.
  • Kahneman, Daniel, 2011, Thinking, Fast and Slow , New York: Farrar, Straus and Giroux.
  • Kahneman, Daniel, Olivier Sibony, & Cass R. Sunstein, 2021, Noise: A Flaw in Human Judgment , New York: Little, Brown Spark.
  • Kenyon, Tim, and Guillaume Beaulac, 2014, “Critical Thinking Education and Debasing”, Informal Logic , 34(4): 341–363. [ Kenyon & Beaulac 2014 available online ]
  • Krathwohl, David R., Benjamin S. Bloom, and Bertram B. Masia, 1964, Taxonomy of Educational Objectives, Handbook II: Affective Domain , New York: David McKay.
  • Kuhn, Deanna, 1991, The Skills of Argument , New York: Cambridge University Press. doi:10.1017/CBO9780511571350
  • –––, 2019, “Critical Thinking as Discourse”, Human Development, 62 (3): 146–164. doi:10.1159/000500171
  • Lipman, Matthew, 1987, “Critical Thinking–What Can It Be?”, Analytic Teaching , 8(1): 5–12. [ Lipman 1987 available online ]
  • –––, 2003, Thinking in Education , Cambridge: Cambridge University Press, 2nd edition.
  • Loftus, Elizabeth F., 2017, “Eavesdropping on Memory”, Annual Review of Psychology , 68: 1–18. doi:10.1146/annurev-psych-010416-044138
  • Makaiau, Amber Strong, 2021, “The Good Thinker’s Tool Kit: How to Engage Critical Thinking and Reasoning in Secondary Education”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 168–187. doi: 10.1163/9789004444591_011
  • Martin, Jane Roland, 1992, “Critical Thinking for a Humane World”, in Stephen P. Norris (ed.), The Generalizability of Critical Thinking , New York: Teachers College Press, pp. 163–180.
  • Mayhew, Katherine Camp, and Anna Camp Edwards, 1936, The Dewey School: The Laboratory School of the University of Chicago, 1896–1903 , New York: Appleton-Century. [ Mayhew & Edwards 1936 available online ]
  • McPeck, John E., 1981, Critical Thinking and Education , New York: St. Martin’s Press.
  • Moore, Brooke Noel and Richard Parker, 2020, Critical Thinking , New York: McGraw-Hill, 13th edition.
  • Nickerson, Raymond S., 1998, “Confirmation Bias: A Ubiquitous Phenomenon in Many Guises”, Review of General Psychology , 2(2): 175–220. doi:10.1037/1089-2680.2.2.175
  • Nieto, Ana Maria, and Jorge Valenzuela, 2012, “A Study of the Internal Structure of Critical Thinking Dispositions”, Inquiry: Critical Thinking across the Disciplines , 27(1): 31–38. doi:10.5840/inquiryct20122713
  • Norris, Stephen P., 1985, “Controlling for Background Beliefs When Developing Multiple-choice Critical Thinking Tests”, Educational Measurement: Issues and Practice , 7(3): 5–11. doi:10.1111/j.1745-3992.1988.tb00437.x
  • Norris, Stephen P. and Robert H. Ennis, 1989, Evaluating Critical Thinking (The Practitioners’ Guide to Teaching Thinking Series), Pacific Grove, CA: Midwest Publications.
  • Norris, Stephen P. and Ruth Elizabeth King, 1983, Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland.
  • –––, 1984, The Design of a Critical Thinking Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland. ERIC Document ED260083.
  • –––, 1985, Test on Appraising Observations: Manual , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland.
  • –––, 1990a, Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland, 2nd edition.
  • –––, 1990b, Test on Appraising Observations: Manual , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland, 2nd edition.
  • OCR [Oxford, Cambridge and RSA Examinations], 2011, AS/A Level GCE: Critical Thinking – H052, H452 , Cambridge: OCR. Past papers available at https://pastpapers.co/ocr/?dir=A-Level/Critical-Thinking-H052-H452; last accessed 2022 07 16.
  • Ontario Ministry of Education, 2013, The Ontario Curriculum Grades 9 to 12: Social Sciences and Humanities . Available at http://www.edu.gov.on.ca/eng/curriculum/secondary/ssciences9to122013.pdf ; last accessed 2022 07 16.
  • Passmore, John Arthur, 1980, The Philosophy of Teaching , London: Duckworth.
  • Paul, Richard W., 1981, “Teaching Critical Thinking in the ‘Strong’ Sense: A Focus on Self-Deception, World Views, and a Dialectical Mode of Analysis”, Informal Logic , 4(2): 2–7. [ Paul 1981 available online ]
  • –––, 1984, “Critical Thinking: Fundamental to Education for a Free Society”, Educational Leadership , 42(1): 4–14.
  • –––, 1985, “McPeck’s Mistakes”, Informal Logic , 7(1): 35–43. [ Paul 1985 available online ]
  • Paul, Richard W. and Linda Elder, 2006, The Miniature Guide to Critical Thinking: Concepts and Tools , Dillon Beach, CA: Foundation for Critical Thinking, 4th edition.
  • Payette, Patricia, and Edna Ross, 2016, “Making a Campus-Wide Commitment to Critical Thinking: Insights and Promising Practices Utilizing the Paul-Elder Approach at the University of Louisville”, Inquiry: Critical Thinking Across the Disciplines , 31(1): 98–110. doi:10.5840/inquiryct20163118
  • Possin, Kevin, 2008, “A Field Guide to Critical-Thinking Assessment”, Teaching Philosophy , 31(3): 201–228. doi:10.5840/teachphil200831324
  • –––, 2013a, “Some Problems with the Halpern Critical Thinking Assessment (HCTA) Test”, Inquiry: Critical Thinking across the Disciplines , 28(3): 4–12. doi:10.5840/inquiryct201328313
  • –––, 2013b, “A Serious Flaw in the Collegiate Learning Assessment (CLA) Test”, Informal Logic , 33(3): 390–405. [ Possin 2013b available online ]
  • –––, 2013c, “A Fatal Flaw in the Collegiate Learning Assessment Test”, Assessment Update , 25 (1): 8–12.
  • –––, 2014, “Critique of the Watson-Glaser Critical Thinking Appraisal Test: The More You Know, the Lower Your Score”, Informal Logic , 34(4): 393–416. [ Possin 2014 available online ]
  • –––, 2020, “CAT Scan: A Critical Review of the Critical-Thinking Assessment Test”, Informal Logic , 40 (3): 489–508. [Available online at https://informallogic.ca/index.php/informal_logic/article/view/6243]
  • Rawls, John, 1971, A Theory of Justice , Cambridge, MA: Harvard University Press.
  • Rear, David, 2019, “One Size Fits All? The Limitations of Standardised Assessment in Critical Thinking”, Assessment & Evaluation in Higher Education , 44(5): 664–675. doi: 10.1080/02602938.2018.1526255
  • Rousseau, Jean-Jacques, 1762, Émile , Amsterdam: Jean Néaulme.
  • Scheffler, Israel, 1960, The Language of Education , Springfield, IL: Charles C. Thomas.
  • Scriven, Michael, and Richard W. Paul, 1987, Defining Critical Thinking , Draft statement written for the National Council for Excellence in Critical Thinking Instruction. Available at http://www.criticalthinking.org/pages/defining-critical-thinking/766 ; last accessed 2022 07 16.
  • Sheffield, Clarence Burton Jr., 2018, “Promoting Critical Thinking in Higher Education: My Experiences as the Inaugural Eugene H. Fram Chair in Applied Critical Thinking at Rochester Institute of Technology”, Topoi , 37(1): 155–163. doi:10.1007/s11245-016-9392-1
  • Siegel, Harvey, 1985, “McPeck, Informal Logic and the Nature of Critical Thinking”, in David Nyberg (ed.), Philosophy of Education 1985: Proceedings of the Forty-First Annual Meeting of the Philosophy of Education Society , Normal, IL: Philosophy of Education Society, pp. 61–72.
  • –––, 1988, Educating Reason: Rationality, Critical Thinking, and Education , New York: Routledge.
  • –––, 1999, “What (Good) Are Thinking Dispositions?”, Educational Theory , 49(2): 207–221. doi:10.1111/j.1741-5446.1999.00207.x
  • Simon, Herbert A., 1956, “Rational Choice and the Structure of the Environment”, Psychological Review , 63(2): 129–138. doi: 10.1037/h0042769
  • Simpson, Elizabeth, 1966–67, “The Classification of Educational Objectives: Psychomotor Domain”, Illinois Teacher of Home Economics , 10(4): 110–144, ERIC document ED0103613. [ Simpson 1966–67 available online ]
  • Skolverket, 2018, Curriculum for the Compulsory School, Preschool Class and School-age Educare , Stockholm: Skolverket, revised 2018. Available at https://www.skolverket.se/download/18.31c292d516e7445866a218f/1576654682907/pdf3984.pdf; last accessed 2022 07 15.
  • Smith, B. Othanel, 1953, “The Improvement of Critical Thinking”, Progressive Education , 30(5): 129–134.
  • Smith, Eugene Randolph, Ralph Winfred Tyler, and the Evaluation Staff, 1942, Appraising and Recording Student Progress , Volume III of Adventure in American Education , New York and London: Harper & Brothers.
  • Splitter, Laurance J., 1987, “Educational Reform through Philosophy for Children”, Thinking: The Journal of Philosophy for Children , 7(2): 32–39. doi:10.5840/thinking1987729
  • Stanovich Keith E., and Paula J. Stanovich, 2010, “A Framework for Critical Thinking, Rational Thinking, and Intelligence”, in David D. Preiss and Robert J. Sternberg (eds), Innovations in Educational Psychology: Perspectives on Learning, Teaching and Human Development , New York: Springer Publishing, pp 195–237.
  • Stanovich Keith E., Richard F. West, and Maggie E. Toplak, 2011, “Intelligence and Rationality”, in Robert J. Sternberg and Scott Barry Kaufman (eds.), Cambridge Handbook of Intelligence , Cambridge: Cambridge University Press, 3rd edition, pp. 784–826. doi:10.1017/CBO9780511977244.040
  • Tankersley, Karen, 2005, Literacy Strategies for Grades 4–12: Reinforcing the Threads of Reading , Alexandria, VA: Association for Supervision and Curriculum Development.
  • Thayer-Bacon, Barbara J., 1992, “Is Modern Critical Thinking Theory Sexist?”, Inquiry: Critical Thinking Across the Disciplines , 10(1): 3–7. doi:10.5840/inquiryctnews199210123
  • –––, 1993, “Caring and Its Relationship to Critical Thinking”, Educational Theory , 43(3): 323–340. doi:10.1111/j.1741-5446.1993.00323.x
  • –––, 1995a, “Constructive Thinking: Personal Voice”, Journal of Thought , 30(1): 55–70.
  • –––, 1995b, “Doubting and Believing: Both are Important for Critical Thinking”, Inquiry: Critical Thinking across the Disciplines , 15(2): 59–66. doi:10.5840/inquiryctnews199515226
  • –––, 2000, Transforming Critical Thinking: Thinking Constructively , New York: Teachers College Press.
  • Toulmin, Stephen Edelston, 1958, The Uses of Argument , Cambridge: Cambridge University Press.
  • Turri, John, Mark Alfano, and John Greco, 2017, “Virtue Epistemology”, in Edward N. Zalta (ed.), The Stanford Encyclopedia of Philosophy (Winter 2017 Edition). URL = < https://plato.stanford.edu/archives/win2017/entries/epistemology-virtue/ >
  • Vincent-Lancrin, Stéphan, Carlos González-Sancho, Mathias Bouckaert, Federico de Luca, Meritxell Fernández-Barrerra, Gwénaël Jacotin, Joaquin Urgel, and Quentin Vidal, 2019, Fostering Students’ Creativity and Critical Thinking: What It Means in School. Educational Research and Innovation , Paris: OECD Publishing.
  • Warren, Karen J. 1988. “Critical Thinking and Feminism”, Informal Logic , 10(1): 31–44. [ Warren 1988 available online ]
  • Watson, Goodwin, and Edward M. Glaser, 1980a, Watson-Glaser Critical Thinking Appraisal, Form A , San Antonio, TX: Psychological Corporation.
  • –––, 1980b, Watson-Glaser Critical Thinking Appraisal: Forms A and B; Manual , San Antonio, TX: Psychological Corporation,
  • –––, 1994, Watson-Glaser Critical Thinking Appraisal, Form B , San Antonio, TX: Psychological Corporation.
  • Weinstein, Mark, 1990, “Towards a Research Agenda for Informal Logic and Critical Thinking”, Informal Logic , 12(3): 121–143. [ Weinstein 1990 available online ]
  • –––, 2013, Logic, Truth and Inquiry , London: College Publications.
  • Willingham, Daniel T., 2019, “How to Teach Critical Thinking”, Education: Future Frontiers , 1: 1–17. [Available online at https://prod65.education.nsw.gov.au/content/dam/main-education/teaching-and-learning/education-for-a-changing-world/media/documents/How-to-teach-critical-thinking-Willingham.pdf.]
  • Zagzebski, Linda Trinkaus, 1996, Virtues of the Mind: An Inquiry into the Nature of Virtue and the Ethical Foundations of Knowledge , Cambridge: Cambridge University Press. doi:10.1017/CBO9781139174763
How to cite this entry . Preview the PDF version of this entry at the Friends of the SEP Society . Look up topics and thinkers related to this entry at the Internet Philosophy Ontology Project (InPhO). Enhanced bibliography for this entry at PhilPapers , with links to its database.
  • Association for Informal Logic and Critical Thinking (AILACT)
  • Critical Thinking Across the European Higher Education Curricula (CRITHINKEDU)
  • Critical Thinking Definition, Instruction, and Assessment: A Rigorous Approach
  • Critical Thinking Research (RAIL)
  • Foundation for Critical Thinking
  • Insight Assessment
  • Partnership for 21st Century Learning (P21)
  • The Critical Thinking Consortium
  • The Nature of Critical Thinking: An Outline of Critical Thinking Dispositions and Abilities , by Robert H. Ennis

abilities | bias, implicit | children, philosophy for | civic education | decision-making capacity | Dewey, John | dispositions | education, philosophy of | epistemology: virtue | logic: informal

Copyright © 2022 by David Hitchcock < hitchckd @ mcmaster . ca >

  • Accessibility

Support SEP

Mirror sites.

View this site from another server:

  • Info about mirror sites

The Stanford Encyclopedia of Philosophy is copyright © 2024 by The Metaphysics Research Lab , Department of Philosophy, Stanford University

Library of Congress Catalog Data: ISSN 1095-5054

critical thinking model

Internet Encyclopedia of Philosophy

Critical thinking.

Critical Thinking is the process of using and assessing reasons to evaluate statements, assumptions, and arguments in ordinary situations. The goal of this process is to help us have good beliefs, where “good” means that our beliefs meet certain goals of thought, such as truth, usefulness, or rationality. Critical thinking is widely regarded as a species of informal logic, although critical thinking makes use of some formal methods. In contrast with formal reasoning processes that are largely restricted to deductive methods—decision theory, logic, statistics—the process of critical thinking allows a wide range of reasoning methods, including formal and informal logic, linguistic analysis, experimental methods of the sciences, historical and textual methods, and philosophical methods, such as Socratic questioning and reasoning by counterexample.

The goals of critical thinking are also more diverse than those of formal reasoning systems. While formal methods focus on deductive validity and truth, critical thinkers may evaluate a statement’s truth, its usefulness, its religious value, its aesthetic value, or its rhetorical value. Because critical thinking arose primarily from the Anglo-American philosophical tradition (also known as “analytic philosophy”), contemporary critical thinking is largely concerned with a statement’s truth. But some thinkers, such as Aristotle (in Rhetoric ), give substantial attention to rhetorical value.

The primary subject matter of critical thinking is the proper use and goals of a range of reasoning methods, how they are applied in a variety of social contexts, and errors in reasoning. This article also discusses the scope and virtues of critical thinking.

Critical thinking should not be confused with Critical Theory. Critical Theory refers to a way of doing philosophy that involves a moral critique of culture. A “critical” theory, in this sense, is a theory that attempts to disprove or discredit a widely held or influential idea or way of thinking in society. Thus, critical race theorists and critical gender theorists offer critiques of traditional views and latent assumptions about race and gender. Critical theorists may use critical thinking methodology, but their subject matter is distinct, and they also may offer critical analyses of critical thinking itself.

Table of Contents

  • Argument and Evaluation
  • Categorical Logic
  • Propositional Logic
  • Modal Logic
  • Predicate Logic
  • Other Formal Systems
  • Generalization
  • Causal Reasoning
  • Formal Fallacies
  • Informal Fallacies
  • Heuristics and Biases
  • The Principle of Charity/Humility
  • The Principle of Caution
  • The Expansiveness of Critical Thinking
  • Productivity and the Limits of Rationality
  • Classical Approaches
  • The Paul/Elder Model
  • Other Approaches
  • References and Further Reading

The process of evaluating a statement traditionally begins with making sure we understand it; that is, a statement must express a clear meaning. A statement is generally regarded as clear if it expresses a proposition , which is the meaning the author of that statement intends to express, including definitions, referents of terms, and indexicals, such as subject, context, and time. There is significant controversy over what sort of “entity” propositions are, whether abstract objects or linguistic constructions or something else entirely. Whatever its metaphysical status, it is used here simply to refer to whatever meaning a speaker intends to convey in a statement.

The difficulty with identifying intended propositions is that we typically speak and think in natural languages (English, Swedish, French), and natural languages can be misleading. For instance, two different sentences in the same natural language may express the same proposition, as in these two English sentences:

Jamie is taller than his father. Jamie’s father is shorter than he.

Further, the same sentence in a natural language can express more than one proposition depending on who utters it at a time:

I am shorter than my father right now.

The pronoun “I” is an indexical; it picks out, or “indexes,” whoever utters the sentence and, therefore, expresses a different proposition for each new speaker who utters it. Similarly, “right now” is a temporal indexical; it indexes the time the sentence is uttered. The proposition it is used to express changes each new time the sentence is uttered and, therefore, may have a different truth value at different times (as, say, the speaker grows taller: “I am now five feet tall” may be true today, but false a year from now). Other indexical terms that can affect the meaning of the sentence include other pronouns (he, she, it) and definite articles (that, the).

Further still, different sentences in different natural languages may express the same proposition . For example, all of the following express the proposition “Snow is white”:

Snow is white. (English)

Der Schnee ist weiss. (German)

La neige est blanche. (French)

La neve é bianca. (Italian)

Finally, statements in natural languages are often vague or ambiguous , either of which can obscure the propositions actually intended by their authors. And even in cases where they are not vague or ambiguous, statements’ truth values sometimes vary from context to context. Consider the following example.

The English statement, “It is heavy,” includes the pronoun “it,” which (when used without contextual clues) is ambiguous because it can index any impersonal subject. If, in this case, “it” refers to the computer on which you are reading this right now, its author intends to express the proposition, “The computer on which you are reading this right now is heavy.” Further, the term “heavy” reflects an unspecified standard of heaviness (again, if contextual clues are absent). Assuming we are talking about the computer, it may be heavy relative to other computer models but not to automobiles. Further still, even if we identify or invoke a standard of heaviness by which to evaluate the appropriateness of its use in this context, there may be no weight at which an object is rightly regarded as heavy according to that standard. (For instance, is an object heavy because it weighs 5.3 pounds but not if it weighs 5.2 pounds? Or is it heavy when it is heavier than a mouse but lighter than an anvil?) This means “heavy” is a vague term. In order to construct a precise statement, vague terms (heavy, cold, tall) must often be replaced with terms expressing an objective standard (pounds, temperature, feet).

Part of the challenge of critical thinking is to clearly identify the propositions (meanings) intended by those making statements so we can effectively reason about them. The rules of language help us identify when a term or statement is ambiguous or vague, but they cannot, by themselves, help us resolve ambiguity or vagueness. In many cases, this requires assessing the context in which the statement is made or asking the author what she intends by the terms. If we cannot discern the meaning from the context and we cannot ask the author, we may stipulate a meaning, but this requires charity, to stipulate a plausible meaning, and humility, to admit when we discover that our stipulation is likely mistaken.

2. Argument and Evaluation

Once we are satisfied that a statement is clear, we can begin evaluating it. A statement can be evaluated according to a variety of standards. Commonly, statements are evaluated for truth, usefulness, or rationality. The most common of these goals is truth, so that is the focus of this article.

The truth of a statement is most commonly evaluated in terms of its relation to other statements and direct experiences. If a statement follows from or can be inferred from other statements that we already have good reasons to believe, then we have a reason to believe that statement. For instance, the statement “The ball is blue” can be derived from “The ball is blue and round.” Similarly, if a statement seems true in light of, or is implied by, an experience, then we have a reason to believe that statement. For instance, the experience of seeing a red car is a reason to believe, “The car is red.” (Whether these reasons are good enough for us to believe is a further question about justification , which is beyond the scope of this article, but see “ Epistemic Justification .”) Any statement we derive in these ways is called a conclusion . Though we regularly form conclusions from other statements and experiences—often without thinking about it—there is still a question of whether these conclusions are true: Did we draw those conclusions well? A common way to evaluate the truth of a statement is to identify those statements and experiences that support our conclusions and organize them into structures called arguments . (See also, “ Argument .”)

An argument is one or more statements (called premises ) intended to support the truth of another statement (the conclusion ). Premises comprise the evidence offered in favor of the truth of a conclusion. It is important to entertain any premises that are intended to support a conclusion, even if the attempt is unsuccessful. Unsuccessful attempts at supporting a proposition constitute bad arguments, but they are still arguments. The support intended for the conclusion may be formal or informal. In a formal, or deductive, argument, an arguer intends to construct an argument such that, if the premises are true, the conclusion must be true. This strong relationship between premises and conclusion is called validity . This relationship between the premises and conclusion is called “formal” because it is determined by the form (that is, the structure) of the argument (see §3). In an informal, or inductive , argument, the conclusion may be false even if the premises are true. In other words, whether an inductive argument is good depends on something more than the form of the argument. Therefore, all inductive arguments are invalid, but this does not mean they are bad arguments. Even if an argument is invalid, its premises can increase the probability that its conclusion is true. So, the form of inductive arguments is evaluated in terms of the strength the premises confer on the conclusion, and stronger inductive arguments are preferred to weaker ones (see §4). (See also, “ Deductive and Inductive Arguments .”)

Psychological states, such as sensations, memories, introspections, and intuitions often constitute evidence for statements. Although these states are not themselves statements, they can be expressed as statements. And when they are, they can be used in and evaluated by arguments. For instance, my seeing a red wall is evidence for me that, “There is a red wall,” but the physiological process of seeing is not a statement. Nevertheless, the experience of seeing a red wall can be expressed as the proposition, “I see a red wall” and can be included in an argument such as the following:

  • I see a red wall in front of me.
  • Therefore, there is a red wall in front of me.

This is an inductive argument, though not a strong one. We do not yet know whether seeing something (under these circumstances) is reliable evidence for the existence of what I am seeing. Perhaps I am “seeing” in a dream, in which case my seeing is not good evidence that there is a wall. For similar reasons, there is also reason to doubt whether I am actually seeing. To be cautious, we might say we seem to see a red wall.

To be good , an argument must meet two conditions: the conclusion must follow from the premises—either validly or with a high degree of likelihood—and the premises must be true. If the premises are true and the conclusion follows validly, the argument is sound . If the premises are true and the premises make the conclusion probable (either objectively or relative to alternative conclusions), the argument is cogent .

Here are two examples:

  • Earth is larger than its moon.
  • Our sun is larger than Earth.
  • Therefore, our sun is larger than Earth’s moon.

In example 1, the premises are true. And since “larger than” is a transitive relation, the structure of the argument guarantees that, if the premises are true, the conclusion must be true. This means the argument is also valid. Since it is both valid and has true premises, this deductive argument is sound.

  Example 2:

  • It is sunny in Montana about 205 days per year.
  • I will be in Montana in February.
  • Hence, it will probably be sunny when I am in Montana.

In example 2, premise 1 is true, and let us assume premise 2 is true. The phrase “almost always” indicates that a majority of days in Montana are sunny, so that, for any day you choose, it will probably be a sunny day. Premise 2 says I am choosing days in February to visit. Together, these premises strongly support (though they do not guarantee) the conclusion that it will be sunny when I am there, and so this inductive argument is cogent.

In some cases, arguments will be missing some important piece, whether a premise or a conclusion. For instance, imagine someone says, “Well, she asked you to go, so you have to go.” The idea that you have to go does not follow logically from the fact that she asked you to go without more information. What is it about her asking you to go that implies you have to go? Arguments missing important information are called enthymemes . A crucial part of critical thinking is identifying missing or assumed information in order to effectively evaluate an argument. In this example, the missing premise might be that, “She is your boss, and you have to do what she asks you to do.” Or it might be that, “She is the woman you are interested in dating, and if you want a real chance at dating her, you must do what she asks.” Before we can evaluate whether her asking implies that you have to go, we need to know this missing bit of information. And without that missing bit of information, we can simply reply, “That conclusion doesn’t follow from that premise.”

The two categories of reasoning associated with soundness and cogency—formal and informal, respectively—are considered, by some, to be the only two types of argument. Others add a third category, called abductive reasoning, according to which one reasons according to the rules of explanation rather than the rules of inference . Those who do not regard abductive reasoning as a third, distinct category typically regard it as a species of informal reasoning. Although abductive reasoning has unique features, here it is treated, for reasons explained in §4d, as a species of informal reasoning, but little hangs on this characterization for the purposes of this article.

3. Formal Reasoning

Although critical thinking is widely regarded as a type of informal reasoning, it nevertheless makes substantial use of formal reasoning strategies. Formal reasoning is deductive , which means an arguer intends to infer or derive a proposition from one or more propositions on the basis of the form or structure exhibited by the premises. Valid argument forms guarantee that particular propositions can be derived from them. Some forms look like they make such guarantees but fail to do so (we identify these as formal fallacies in §5a). If an arguer intends or supposes that a premise or set of premises guarantee a particular conclusion, we may evaluate that argument form as deductive even if the form fails to guarantee the conclusion, and is thus discovered to be invalid.

Before continuing in this section, it is important to note that, while formal reasoning provides a set of strict rules for drawing valid inferences, it cannot help us determine the truth of many of our original premises or our starting assumptions. And in fact, very little critical thinking that occurs in our daily lives (unless you are a philosopher, engineer, computer programmer, or statistician) involves formal reasoning. When we make decisions about whether to board an airplane, whether to move in with our significant others, whether to vote for a particular candidate, whether it is worth it to drive ten miles faster the speed limit even if I am fairly sure I will not get a ticket, whether it is worth it to cheat on a diet, or whether we should take a job overseas, we are reasoning informally. We are reasoning with imperfect information (I do not know much about my flight crew or the airplane’s history), with incomplete information (no one knows what the future is like), and with a number of built-in biases, some conscious (I really like my significant other right now), others unconscious (I have never gotten a ticket before, so I probably will not get one this time). Readers who are more interested in these informal contexts may want to skip to §4.

An argument form is a template that includes variables that can be replaced with sentences. Consider the following form (found within the formal system known as sentential logic ):

  • If p, then q.
  • Therefore, q.

This form was named modus ponens (Latin, “method of putting”) by medieval philosophers. p and q are variables that can be replaced with any proposition, however simple or complex. And as long as the variables are replaced consistently (that is, each instance of p is replaced with the same sentence and the same for q ), the conclusion (line 3), q , follows from these premises. To be more precise, the inference from the premises to the conclusion is valid . “Validity” describes a particular relationship between the premises and the conclusion, namely: in all cases , the conclusion follows necessarily from the premises, or, to use more technical language, the premises logically guarantee an instance of the conclusion.

Notice we have said nothing yet about truth . As critical thinkers, we are interested, primarily, in evaluating the truth of sentences that express propositions, but all we have discussed so far is a type of relationship between premises and conclusion (validity). This formal relationship is analogous to grammar in natural languages and is known in both fields as syntax . A sentence is grammatically correct if its syntax is appropriate for that language (in English, for example, a grammatically correct simple sentence has a subject and a predicate—“He runs.” “Laura is Chairperson.”—and it is grammatically correct regardless of what subject or predicate is used—“Jupiter sings.”—and regardless of whether the terms are meaningful—“Geflorble rowdies.”). Whether a sentence is meaningful, and therefore, whether it can be true or false, depends on its semantics , which refers to the meaning of individual terms (subjects and predicates) and the meaning that emerges from particular orderings of terms. Some terms are meaningless—geflorble; rowdies—and some orderings are meaningless even though their terms are meaningful—“Quadruplicity drinks procrastination,” and “Colorless green ideas sleep furiously.”.

Despite the ways that syntax and semantics come apart, if sentences are meaningful, then syntactic relationships between premises and conclusions allow reasoners to infer truth values for conclusions. Because of this, a more common definition of validity is this: it is not possible for all the premises to be true and the conclusion false . Formal logical systems in which syntax allows us to infer semantic values are called truth-functional or truth-preserving —proper syntax preserves truth throughout inferences.

The point of this is to note that formal reasoning only tells us what is true if we already know our premises are true. It cannot tell us whether our experiences are reliable or whether scientific experiments tell us what they seem to tell us. Logic can be used to help us determine whether a statement is true, but only if we already know some true things. This is why a broad conception of critical thinking is so important: we need many different tools to evaluate whether our beliefs are any good.

Consider, again, the form modus ponens , and replace p with “It is a cat” and q with “It is a mammal”:

  • If it is a cat, then it is a mammal.
  • It is a cat.
  • Therefore, it is a mammal.

In this case, we seem to “see” (in a metaphorical sense of see ) that the premises guarantee the truth of the conclusion. On reflection, it is also clear that the premises might not be true; for instance, if “it” picks out a rock instead of a cat, premise 1 is still true, but premise 2 is false. It is also possible for the conclusion to be true when the premises are false. For instance, if the “it” picks out a dog instead of a cat, the conclusion “It is a mammal” is true. But in that case, the premises do not guarantee that conclusion; they do not constitute a reason to believe the conclusion is true.

Summing up, an argument is valid if its premises logically guarantee an instance of its conclusion (syntactically), or if it is not possible for its premises to be true and its conclusion false (semantically). Logic is truth-preserving but not truth-detecting; we still need evidence that our premises are true to use logic effectively.

            A Brief Technical Point

Some readers might find it worth noting that the semantic definition of validity has two counterintuitive consequences. First, it implies that any argument with a necessarily true conclusion is valid. Notice that the condition is phrased hypothetically: if the premises are true, then the conclusion cannot be false. This condition is met if the conclusion cannot be false:

  • Two added to two equals four.

This is because the hypothetical (or “conditional”) statement would still be true even if the premises were false:

  • If it is blue, then it flies.
  • It is an airplane.

It is true of this argument that if the premises were true, the conclusion would be since the conclusion is true no matter what.

Second, the semantic formulation also implies that any argument with necessarily false premises is valid. The semantic condition for validity is met if the premises cannot be true:

  • Some bachelors are married.
  • Earth’s moon is heavier than Jupiter.

In this case, if the premise were true, the conclusion could not be false (this is because anything follows syntactically from a contradiction), and therefore, the argument is valid. There is nothing particularly problematic about these two consequences. But they highlight unexpected implications of our standard formulations of validity, and they show why there is more to good arguments than validity.

Despite these counterintuitive implications, valid reasoning is essential to thinking critically because it is a truth-preserving strategy: if deductive reasoning is applied to true premises, true conclusions will result.

There are a number of types of formal reasoning, but here we review only some of the most common: categorical logic, propositional logic, modal logic, and predicate logic.

a. Categorical Logic

Categorical logic is formal reasoning about categories or collections of subjects, where subjects refers to anything that can be regarded as a member of a class, whether objects, properties, or events or even a single object, property, or event. Categorical logic employs the quantifiers “all,” “some,” and “none” to refer to the members of categories, and categorical propositions are formulated in four ways:

A claims: All As are Bs (where the capitals “A” and “B” represent categories of subjects).

E claims: No As are Bs.

I claims: Some As are Bs.

O claims: Some As are not Bs.

Categorical syllogisms are syllogisms (two-premised formal arguments) that employ categorical propositions. Here are two examples:

  • All cats are mammals. (A claim) 1. No bachelors are married. (E claim)
  • Some cats are furry. (I claim) 2. All the people in this building are bachelors. (A claim)
  • Therefore, some mammals are furry. (I claim) 3. Thus, no people in this building are married. (E claim)

There are interesting limitations on what categorical logic can do. For instance, if one premise says that, “Some As are not Bs,” may we infer that some As are Bs, in what is known as an “existential assumption”? Aristotle seemed to think so ( De Interpretatione ), but this cannot be decided within the rules of the system. Further, and counterintuitively, it would mean that a proposition such as, “Some bachelors are not married,” is false since it implies that some bachelors are married.

Another limitation on categorical logic is that arguments with more than three categories cannot be easily evaluated for validity. The standard method for evaluating the validity of categorical syllogisms is the Venn diagram (named after John Venn, who introduced it in 1881), which expresses categorical propositions in terms of two overlapping circles and categorical arguments in terms of three overlapping circles, each circle representing a category of subjects.

Venn diagram for claim and Venn diagram for argument

A, B, and C represent categories of objects, properties, or events. The symbol “ ∩ ” comes from mathematical set theory to indicate “intersects with.” “A∩B” means all those As that are also Bs and vice versa. 

Though there are ways of constructing Venn diagrams with more than three categories, determining the validity of these arguments using Venn diagrams is very difficult (and often requires computers). These limitations led to the development of more powerful systems of formal reasoning.

b. Propositional Logic

Propositional, or sentential , logic has advantages and disadvantages relative to categorical logic. It is more powerful than categorical logic in that it is not restricted in the number of terms it can evaluate, and therefore, it is not restricted to the syllogistic form. But it is weaker than categorical logic in that it has no operators for quantifying over subjects, such as “all” or “some.” For those, we must appeal to predicate logic (see §3c below).

Basic propositional logic involves formal reasoning about propositions (as opposed to categories), and its most basic unit of evaluation is the atomic proposition . “Atom” means the smallest indivisible unit of something, and simple English statements (subject + predicate) are atomic wholes because if either part is missing, the word or words cease to be a statement, and therefore ceases to be capable of expressing a proposition. Atomic propositions are simple subject-predicate combinations, for instance, “It is a cat” and “I am a mammal.” Variable letters such as p and q in argument forms are replaced with semantically rich constants, indicated by capital letters, such as A and B . Consider modus ponens again (noting that the atomic propositions are underlined in the English argument):

As you can see from premise 1 of the Semantic Replacement, atomic propositions can be combined into more complex propositions using symbols that represent their logical relationships (such as “If…, then…”). These symbols are called “operators” or “connectives.” The five standard operators in basic propositional logic are:

These operations allow us to identify valid relations among propositions: that is, they allow us to formulate a set of rules by which we can validly infer propositions from and validly replace them with others. These rules of inference (such as modus ponens ; modus tollens ; disjunctive syllogism) and rules of replacement (such as double negation; contraposition; DeMorgan’s Law) comprise the syntax of propositional logic, guaranteeing the validity of the arguments employing them.

Two Rules of Inference:

Two Rules of Replacement:

For more, see “ Propositional Logic .”

c. Modal Logic

Standard propositional logic does not capture every type of proposition we wish to express (recall that it does not allow us to evaluate categorical quantifiers such as “all” or “some”). It also does not allow us to evaluate propositions expressed as possibly true or necessarily true, modifications that are called modal operators or modal quantifiers .

Modal logic refers to a family of formal propositional systems, the most prominent of which includes operators for necessity (□) and possibility (◊) (see §3d below for examples of other modal systems). If a proposition, p , is possibly true, ◊ p , it may or may not be true. If p is necessarily true, □ p , it must be true; it cannot be false. If p is necessarily false, either ~◊ p or □~ p , it must be false; it cannot be true.

There is a variety of modal systems, the weakest of which is called K (after Saul Kripke, who exerted important influence on the development of modal logic), and it involves only two additional rules:

Necessitation Rule:   If  A  is a theorem of  K , then so is □ A .

Distribution Axiom:  □( A ⊃ B ) ⊃ (□ A ⊃□ B ).  [If it is necessarily the case that if A, then B , then if it is necessarily the case that A, it is necessarily the case that B .]

Other systems maintain these rules and add others for increasing strength. For instance, the (S4) modal system includes axiom (4):

(4)  □ A ⊃ □□ A   [If it is necessarily the case that A, then it is necessarily necessary that A.]

An influential and intuitive way of thinking about modal concepts is the idea of “possible worlds” (see Plantinga, 1974; Lewis 1986). A world is just the set of all true propositions. The actual world is the set of all actually true propositions—everything that was true, is true, and (depending on what you believe about the future) will be true. A possible world is a way the actual world might have been. Imagine you wore green underwear today. The actual world might have been different in that way: you might have worn blue underwear. In this interpretation of modal quantifiers, there is a possible world in which you wore blue underwear instead of green underwear. And for every possibility like this, and every combination of those possibilities, there is a distinct possible world.

If a proposition is not possible, then there is no possible world in which that proposition is true. The statement, “That object is red all over and blue all over at the same time” is not true in any possible worlds. Therefore, it is not possible (~◊P), or, in other words, necessarily false (□~P). If a proposition is true in all possible worlds, it is necessarily true. For instance, the proposition, “Two plus two equal four,” is true in all possible worlds, so it is necessarily true (□P) or not possibly false (~◊~P).

All modal systems have a number of controversial implications, and there is not space to review them here. Here we need only note that modal logic is a type of formal reasoning that increases the power of propositional logic to capture more of what we attempt to express in natural languages. (For more, see “ Modal Logic: A Contemporary View .”)

d. Predicate Logic

Predicate logic, in particular, first-order predicate logic, is even more powerful than propositional logic. Whereas propositional logic treats propositions as atomic wholes, predicate logic allows reasoners to identify and refer to subjects of propositions, independently of their predicates. For instance, whereas the proposition, “Susan is witty,” would be replaced with a single upper-case letter, say “S,” in propositional logic, predicate logic would assign the subject “Susan” a lower-case letter, s, and the predicate “is witty” an upper-case letter, W, and the translation (or formula ) would be: Ws.

In addition to distinguishing subjects and predicates, first-order predicate logic allows reasoners to quantify over subjects. The quantifiers in predicate logic are “All…,” which is comparable to “All” quantifier in categorical logic and is sometimes symbolized with an upside-down A: ∀ (though it may not be symbolized at all), and “There is at least one…,” which is comparable to “Some” quantifier in categorical logic and is symbolized with a backward E: ∃. E and O claims are formed by employing the negation operator from propositional logic. In this formal system, the proposition, “Someone is witty,” for example, has the form: There is an x , such that x has the property of being witty, which is symbolized: (∃ x)(Wx). Similarly, the proposition, “Everyone is witty,” has the form: For all x, x has the property of being witty, which is symbolized (∀ x )( Wx ) or, without the ∀: ( x )( Wx ).

Predicate derivations are conducted according to the same rules of inference and replacement as propositional logic with the exception of four rules to accommodate adding and eliminating quantifiers.

Second-order predicate logic extends first-order predicate logic to allow critical thinkers to quantify over and draw inferences about subjects and predicates, including relations among subjects and predicates. In both first- and second-order logic, predicates typically take the form of properties (one-place predicates) or relations (two-place predicates), though there is no upper limit on place numbers. Second-order logic allows us to treat both as falling under quantifiers, such as e verything that is (specifically, that has the property of being) a tea cup and everything that is a bachelor is unmarried .

e. Other Formal Systems

It is worth noting here that the formal reasoning systems we have seen thus far (categorical, propositional, and predicate) all presuppose that truth is bivalent , that is, two-valued. The two values critical thinkers are most often concerned with are true and false , but any bivalent system is subject to the rules of inference and replacement of propositional logic. The most common alternative to truth values is the binary code of 1s and 0s used in computer programming. All logics that presuppose bivalence are called classical logics . In the next section, we see that not all formal systems are bivalent; there are non-classical logics . The existence of non-classical systems raises interesting philosophical questions about the nature of truth and the legitimacy of our basic rules of reasoning, but these questions are too far afield for this context. Many philosophers regard bivalent systems as legitimate for all but the most abstract and purely formal contexts. Included below is a brief description of three of the most common non-classical logics.

Tense logic , or temporal logic, is a formal modal system developed by Arthur Prior (1957, 1967, 1968) to accommodate propositional language about time. For example, in addition to standard propositional operators, tense logic includes four operators for indexing times: P “It has at some time been the case that…”; F “It will at some time be the case that…”; H “It has always been the case that…”; and G “It will always be the case that….”

Many-valued logic , or n -valued logic, is a family of formal logical systems that attempts to accommodate intuitions that suggest some propositions have values in addition to true and false. These are often motivated by intuitions that some propositions have neither of the classic truth values; their truth value is indeterminate (not just undeterminable, but neither true nor false), for example, propositions about the future such as, “There will be a sea battle tomorrow.” If the future does not yet exist, there is no fact about the future, and therefore, nothing for a proposition to express.

Fuzzy logic is a type of many-valued logic developed out of Lotfi Zadeh’s (1965) work on mathematical sets. Fuzzy logic attempts to accommodate intuitions that suggest some propositions have truth value in degrees, that is, some degree of truth between true and false. It is motivated by concerns about vagueness in reality, for example whether a certain color is red or some degree of red, or whether some temperature is hot or some degree of hotness.

Formal reasoning plays an important role in critical thinking, but not very often. There are significant limits to how we might use formal tools in our daily lives. If that is true, how do critical thinkers reason well when formal reasoning cannot help? That brings us to informal reasoning.

4. Informal Reasoning

Informal reasoning is inductive , which means that a proposition is inferred (but not derived) from one or more propositions on the basis of the strength provided by the premises (where “strength” means some degree of likelihood less than certainty or some degree of probability less than 1 but greater than 0; a proposition with 0% probability is necessarily false).

Particular premises grant strength to premises to the degree that they reflect certain relationships or structures in the world . For instance, if a particular type of event, p , is known to cause or indicate another type of event, q , then upon encountering an event of type p , we may infer that an event of type q is likely to occur. We may express this relationship among events propositionally as follows:

  • Events of type p typically cause or indicate events of type q .
  • An event of type p occurred.
  • Therefore, an event of type q probably occurred.

If the structure of the world (for instance, natural laws) makes premise 1 true, then, if premise 2 is true, we can reasonably (though not certainly) infer the conclusion.

Unlike formal reasoning, the adequacy of informal reasoning depends on how well the premises reflect relationships or structures in the world. And since we have not experienced every relationship among objects or events or every structure, we cannot infer with certainty that a particular conclusion follows from a true set of premises about these relationships or structures. We can only infer them to some degree of likelihood by determining to the best of our ability either their objective probability or their probability relative to alternative conclusions.

The objective probability of a conclusion refers to how likely, given the way the world is regardless of whether we know it , that conclusion is to be true. The epistemic probability of a conclusion refers to how likely that conclusion is to be true given what we know about the world , or more precisely, given our evidence for its objective likelihood.

Objective probabilities are determined by facts about the world and they are not truths of logic, so we often need evidence for objective probabilities. For instance, imagine you are about to draw a card from a standard playing deck of 52 cards. Given particular assumptions about the world (that this deck contains 52 cards and that one of them is the Ace of Spades), the objective likelihood that you will draw an Ace of Spades is 1/52. These assumptions allow us to calculate the objective probability of drawing an Ace of Spades regardless of whether we have ever drawn a card before. But these are assumptions about the world that are not guaranteed by logic: we have to actually count the cards, to be sure we count accurately and are not dreaming or hallucinating, and that our memory (once we have finished counting) reliably maintains our conclusions. None of these processes logically guarantees true beliefs. So, if our assumptions are correct, we know the objective probability of actually drawing an Ace of Spades in the real world. But since there is no logical guarantee that our assumptions are right, we are left only with the epistemic probability (the probability based on our evidence) of drawing that card. If our assumptions are right, then the objective probability is the same as our epistemic probability: 1/52. But even if we are right, objective and epistemic probabilities can come apart under some circumstances.

Imagine you draw a card without looking at it and lay it face down. What is the objective probability that that card is an Ace of Spades? The structure of the world has now settled the question, though you do not know the outcome. If it is an Ace of Spades, the objective probability is 1 (100%); it is the Ace of Spades. If it is not the Ace of Spades, the objective probability is 0 (0%); it is not the Ace of Spades. But what is the epistemic probability? Since you do not know any more about the world than you did before you drew the card, the epistemic probability is the same as before you drew it: 1/52.

Since much of the way the world is is hidden from us (like the card laid face down), and since it is not obvious that we perceive reality as it actually is (we do not know whether the actual coins we flip are evenly weighted or whether the actual dice we roll are unbiased), our conclusions about probabilities in the actual world are inevitably epistemic probabilities. We can certainly calculate objective probabilities about abstract objects (for instance, hypothetically fair coins and dice—and these calculations can be evaluated formally using probability theory and statistics), but as soon as we apply these calculations to the real world, we must accommodate the fact that our evidence is incomplete.

There are four well-established categories of informal reasoning: generalization, analogy, causal reasoning, and abduction.

a. Generalization

Generalization is a way of reasoning informally from instances of a type to a conclusion about the type. This commonly takes two forms: reasoning from a sample of a population to the whole population , and reasoning from past instances of an object or event to future instances of that object or event . The latter is sometimes called “enumerative induction” because it involves enumerating past instances of a type in order to draw an inference about a future instance. But this distinction is weak; both forms of generalization use past or current data to infer statements about future instances and whole current populations.

A popular instance of inductive generalization is the opinion poll: a sample of a population of people is polled with respect to some statement or belief. For instance, if we poll 57 sophomores enrolled at a particular college about their experiences of living in dorms, these 57 comprise our sample of the population of sophomores at that particular college. We want to be careful how we define our population given who is part of our sample. Not all college students are like sophomores, so it is not prudent to draw inferences about all college students from these sophomores. Similarly, sophomores at other colleges are not necessarily like sophomores at this college (it could be the difference between a liberal arts college and a research university), so it is prudent not to draw inferences about all sophomores from this sample at a particular college.

Let us say that 90% of the 57 sophomores we polled hate the showers in their dorms. From this information, we might generalize in the following way:

  • We polled 57 sophomores at Plato’s Academy. (the sample)
  • 90% of our sample hates the showers in their dorms. (the polling data)
  • Therefore, probably 90% of all sophomores at Plato’s Academy hate the showers in their dorms. (a generalization from our sample to the whole population of sophomores at Plato’s Academy)

Is this good evidence that 90% of all sophomores at that college hate the showers in their dorms?

A generalization is typically regarded as a good argument if its sample is representative of its population. A sample is representative if it is similar in the relevant respects to its population. A perfectly representative sample would include the whole population: the sample would be identical with the population, and thus, perfectly representative. In that case, no generalization is necessary. But we rarely have the time or resources to evaluate whole populations. And so, a sample is generally regarded as representative if it is large relative to its population and unbiased .

In our example, whether our inference is good depends, in part, on how many sophomores there are. Are there 100, 2,000? If there are only 100, then our sample size seems adequate—we have polled over half the population. Is our sample unbiased? That depends on the composition of the sample. Is it comprised only of women or only of men? If this college is not co-ed, that is not a problem. But if the college is co-ed and we have sampled only women, our sample is biased against men. We have information only about female freshmen dorm experiences, and therefore, we cannot generalize about male freshmen dorm experiences.

How large is large enough? This is a difficult question to answer. A poll of 1% of your high school does not seem large enough to be representative. You should probably gather more data. Yet a poll of 1% of your whole country is practically impossible (you are not likely to ever have enough grant money to conduct that poll). But could a poll of less than 1% be acceptable? This question is not easily answered, even by experts in the field. The simple answer is: the more, the better. The more complicated answer is: it depends on how many other factors you can control for, such as bias and hidden variables (see §4c for more on experimental controls).

Similarly, we might ask what counts as an unbiased sample. An overly simple answer is: the sample is taken randomly, that is, by using a procedure that prevents consciously or unconsciously favoring one segment of the population over another (flipping a coin, drawing lottery balls). But reality is not simple. In political polls, it is important not to use a selection procedure that results in a sample with a larger number of members of one political party than another relative to their distribution in the population, even if the resulting sample is random. For example, the two most prominent parties in the U.S. are the Democratic Party and the Republican Party. If 47% of the U.S. is Republican and 53% is Democrat, an unbiased sample would have approximately 47% Republicans and 53% Democrats. But notice that simply choosing at random may not guarantee that result; it could easily occur, just by choosing randomly, that our sample has 70% Democrats and 30% Republicans (suppose our computer chose, albeit randomly, from a highly Democratic neighborhood). Therefore, we want to control for representativeness in some criteria, such as gender, age, and education. And we explicitly want to avoid controlling for the results we are interested in; if we controlled for particular answers to the questions on our poll, we would not learn anything—we would get all and only the answers we controlled for.

Difficulties determining representativeness suggest that reliable generalizations are not easy to construct. If we generalize on the basis of samples that are too small or if we cannot control for bias, we commit the informal fallacy of hasty generalization (see §5b). In order to generalize well, it seems we need a bit of machinery to guarantee representativeness. In fact, it seems we need an experiment, one of the primary tools in causal reasoning (see §4c below).

Argument from Analogy , also called analogical reasoning , is a way of reasoning informally about events or objects based on their similarities. A classic instance of reasoning by analogy occurs in archaeology, when researchers attempt to determine whether a stone object is an artifact (a human-made item) or simply a rock. By comparing the features of an unknown stone with well-known artifacts, archaeologists can infer whether a particular stone is an artifact. Other examples include identifying animals’ tracks by their similarities with pictures in a guidebook and consumer reports on the reliability of products.

To see how arguments from analogy work in detail, imagine two people who, independently of one another, want to buy a new pickup truck. Each chooses a make and model he or she likes, and let us say they decide on the same truck. They then visit a number of consumer reporting websites to read reports on trucks matching the features of the make and model they chose, for instance, the year it was built, the size of the engine (6 cyl. or 8 cyl.), the type of transmission (2WD or 4WD), the fuel mileage, and the cab size (standard, extended, crew). Now, let us say one of our prospective buyers is interested in safety —he or she wants a tough, safe vehicle that will protect against injuries in case of a crash. The other potential buyer is interested in mechanical reliability —he or she does not want to spend a lot of time and money fixing mechanical problems.

With this in mind, here is how our two buyers might reason analogically about whether to purchase the truck (with some fake report data included):

  • The truck I have in mind was built in 2012, has a 6-cylinder engine, a 2WD transmission, and a king cab.
  • 62 people who bought trucks like this one posted consumer reports and have driven it for more than a year.
  • 88% of those 62 people report that the truck feels very safe.
  • Therefore, the truck I am looking at will likely be very safe.
  • 88% of those 62 people report that the truck has had no mechanical problems.
  • Therefore, the truck I am looking at will likely have no mechanical problems.

Are the features of these analogous vehicles (the ones reported on) sufficiently numerous and relevant for helping our prospective truck buyers decide whether to purchase the truck in question (the one on the lot)? Since we have some idea that the type of engine and transmission in a vehicle contribute to its mechanical reliability, Buyer 2 may have some relevant features on which to draw a reliable analogy. Fuel mileage and cab size are not obviously relevant, but engine specifications seem to be. Are these specifications numerous enough? That depends on whether anything else that we are not aware of contributes to overall reliability. Of course, if the trucks having the features we know also have all other relevant features we do not know (if there are any), then Buyer 2 may still be able to draw a reliable inference from analogy. Of course, we do not currently know this.

Alternatively, Buyer 1 seems to have very few relevant features on which to draw a reliable analogy. The features listed are not obviously related to safety. Are there safety options a buyer may choose but that are not included in the list? For example, can a buyer choose side-curtain airbags, or do such airbags come standard in this model? Does cab size contribute to overall safety? Although there are a number of similarities between the trucks, it is not obvious that we have identified features relevant to safety or whether there are enough of them. Further, reports of “feeling safe” are not equivalent to a truck actually being safe. Better evidence would be crash test data or data from actual accidents involving this truck. This information is not likely to be on a consumer reports website.

A further difficulty is that, in many cases, it is difficult to know whether many similarities are necessary if the similarities are relevant. For instance, if having lots of room for passengers is your primary concern, then any other features are relevant only insofar as they affect cab size. The features that affect cab size may be relatively small.

This example shows that arguments from analogy are difficult to formulate well. Arguments from analogy can be good arguments when critical thinkers identify a sufficient number of features of known objects that are also relevant to the feature inferred to be shared by the object in question. If a rock is shaped like a cutting tool, has marks consistent with shaping and sharpening, and has wear marks consistent with being held in a human hand, it is likely that rock is an artifact. But not all cases are as clear.

It is often difficult to determine whether the features we have identified are sufficiently numerous or relevant to our interests. To determine whether an argument from analogy is good, a person may need to identify a causal relationship between those features and the one in which she is interested (as in the case with a vehicle’s mechanical reliability). This usually takes the form of an experiment, which we explore below (§4c).

Difficulties with constructing reliable generalizations and analogies have led critical thinkers to develop sophisticated methods for controlling for the ways these arguments can go wrong. The most common way to avoid the pitfalls of these arguments is to identify the causal structures in the world that account for or underwrite successful generalizations and analogies. Causal arguments are the primary method of controlling for extraneous causal influences and identifying relevant causes. Their development and complexity warrant regarding them as a distinct form of informal reasoning.

c. Causal Reasoning

Causal arguments attempt to draw causal conclusions (that is, statements that express propositions about causes: x causes y ) from premises about relationships among events or objects. Though it is not always possible to construct a causal argument, when available, they have an advantage over other types of inductive arguments in that they can employ mechanisms (experiments) that reduce the risks involved in generalizations and analogies.

The interest in identifying causal relationships often begins with the desire to explain correlations among events (as pollen levels increase, so do allergy symptoms) or with the desire to replicate an event (building muscle, starting a fire) or to eliminate an event (polio, head trauma in football).

Correlations among events may be positive (where each event increases at roughly the same rate) or negative (where one event decreases in proportion to another’s increase). Correlations suggest a causal relationship among the events correlated.

But we must be careful; correlations are merely suggestive—other forces may be at work. Let us say the y-axis in the charts above represents the number of millionaires in the U.S. and the x-axis represents the amount of money U.S. citizens pay for healthcare each year. Without further analysis, a positive correlation between these two may lead someone to conclude that increasing wealth causes people to be more health conscious and to seek medical treatment more often. A negative correlation may lead someone to conclude that wealth makes people healthier and, therefore, that they need to seek medical care less frequently.

Unfortunately, correlations can occur without any causal structures (mere coincidence) or because of a third, as-yet-unidentified event (a cause common to both events, or “common cause”), or the causal relationship may flow in an unexpected direction (what seems like the cause is really the effect). In order to determine precisely which event (if any) is responsible for the correlation, reasoners must eliminate possible influences on the correlation by “controlling” for possible influences on the relationship (variables).

Critical thinking about causes begins by constructing hypotheses about the origins of particular events. A hypothesis is an explanation or event that would account for the event in question. For example, if the question is how to account for increased acne during adolescence, and we are not aware of the existence of hormones, we might formulate a number of hypotheses about why this happens: during adolescence, people’s diets change (parents no longer dictate their meals), so perhaps some types of food cause acne; during adolescence, people become increasingly anxious about how they appear to others, so perhaps anxiety or stress causes acne; and so on.

After we have formulated a hypothesis, we identify a test implication that will help us determine whether our hypothesis is correct. For instance, if some types of food cause acne, we might choose a particular food, say, chocolate, and say: if chocolate causes acne (hypothesis), then decreasing chocolate will decrease acne (test implication). We then conduct an experiment to see whether our test implication occurs.

Reasoning about our experiment would then look like one of the following arguments:

There are a couple of important things to note about these arguments. First, despite appearances, both are inductive arguments. The one on the left commits the formal fallacy of affirming the consequent, so, at best, the premises confer only some degree of probability on the conclusion. The argument on the right looks to be deductive (on the face of it, it has the valid form modus tollens ), but it would be inappropriate to regard it deductively. This is because we are not evaluating a logical connection between H and TI, we are evaluating a causal connection—TI might be true or false regardless of H (we might have chosen an inappropriate test implication or simply gotten lucky), and therefore, we cannot conclude with certainty that H does not causally influence TI. Therefore, “If…, then…” statements in experiments must be read as causal conditionals and not material conditionals (the term for how we used conditionals above).

Second, experiments can go wrong in many ways, so no single experiment will grant a high degree of probability to its causal conclusion. Experiments may be biased by hidden variables (causes we did not consider or detect, such as age, diet, medical history, or lifestyle), auxiliary assumptions (the theoretical assumptions by which evaluating the results may be faulty), or underdetermination (there may be a number of hypotheses consistent with those results; for example, if it is actually sugar that causes acne, then chocolate bars, ice cream, candy, and sodas would yield the same test results). Because of this, experiments either confirm or disconfirm a hypothesis; that is, they give us some reason (but not a particularly strong reason) to believe our hypothesized causes are or are not the causes of our test implications, and therefore, of our observations (see Quine and Ullian, 1978). Because of this, experiments must be conducted many times, and only after we have a number of confirming or disconfirming results can we draw a strong inductive conclusion. (For more, see “ Confirmation and Induction .”)

Experiments may be formal or informal . In formal experiments, critical thinkers exert explicit control over experimental conditions: experimenters choose participants, include or exclude certain variables, and identify or introduce hypothesized events. Test subjects are selected according to control criteria (criteria that may affect the results and, therefore, that we want to mitigate, such as age, diet, and lifestyle) and divided into control groups (groups where the hypothesized cause is absent) and experimental groups (groups where the hypothesized cause is present, either because it is introduced or selected for).

Subjects are then placed in experimental conditions. For instance, in a randomized study, the control group receives a placebo (an inert medium) whereas the experimental group receives the hypothesized cause—the putative cause is introduced, the groups are observed, and the results are recorded and compared. When a hypothesized cause is dangerous (such as smoking) or its effects potentially irreversible (for instance, post-traumatic stress disorder), the experimental design must be restricted to selecting for the hypothesized cause already present in subjects, for example, in retrospective (backward-looking) and prospective (forward-looking) studies. In all types of formal experiments, subjects are observed under exposure to the test or placebo conditions for a specified time, and results are recorded and compared.

In informal experiments, critical thinkers do not have access to sophisticated equipment or facilities and, therefore, cannot exert explicit control over experimental conditions. They are left to make considered judgments about variables. The most common informal experiments are John Stuart Mill’s five methods of inductive reasoning, called Mill’s Methods, which he first formulated in A System of Logic (1843). Here is a very brief summary of Mill’s five methods:

(1) The Method of Agreement

If all conditions containing the event y also contain x , x is probably the cause of y .

For example:

“I’ve eaten from the same box of cereal every day this week, but all the times I got sick after eating cereal were times when I added strawberries. Therefore, the strawberries must be bad.”

(2) The Method of Difference

If all conditions lacking y also lack x , x is probably the cause of y .

“The organization turned all its tax forms in on time for years, that is, until our comptroller, George, left; after that, we were always late. Only after George left were we late. Therefore, George was probably responsible for getting our tax forms in on time.”

(3) The Joint Method of Agreement and Difference

If all conditions containing event y also contain event x , and all events lacking y also lack x , x is probably the cause of y .

“The conditions at the animal shelter have been pretty regular, except we had a string of about four months last year when the dogs barked all night, every night. But at the beginning of those four months we sheltered a redbone coonhound, and the barking stopped right after a family adopted her. All the times the redbone hound wasn’t present, there was no barking. Only the time she was present was there barking. Therefore, she probably incited all the other dogs to bark.”

(4) The Method of Concomitant Variation

If the frequency of event y increases and decreases as event x increases and decreases, respectively, x is probably the cause of y .

“We can predict the amount of alcohol sales by the rate of unemployment. As unemployment rises, so do alcohol sales. As unemployment drops, so do alcohol sales. Last quarter marked the highest unemployment in three years, and our sales last quarter are the highest they had been in those three years. Therefore, unemployment probably causes people to buy alcohol.”

(5) The Method of Residues

If a number of factors x , y , and z , may be responsible for a set of events A , B , and C , and if we discover reasons for thinking that x is the cause of A and y is the cause of B , then we have reason to believe z is the cause of C .

“The people who come through this medical facility are usually starving and have malaria, and a few have polio. We are particularly interested in treating the polio. Take this patient here: she is emaciated, which is caused by starvation; and she has a fever, which is caused by malaria. But notice that her muscles are deteriorating, and her bones are sore. This suggests she also has polio.”

d. Abduction

Not all inductive reasoning is inferential. In some cases, an explanation is needed before we can even begin drawing inferences. Consider Darwin’s idea of natural selection. Natural selection is not an object, like a blood vessel or a cellular wall, and it is not, strictly speaking, a single event. It cannot be detected in individual organisms or observed in a generation of offspring. Natural selection is an explanation of biodiversity that combines the process of heritable variation and environmental pressures to account for biomorphic change over long periods of time. With this explanation in hand, we can begin to draw some inferences. For instance, we can separate members of a single species of fruit flies, allow them to reproduce for several generations, and then observe whether the offspring of the two groups can reproduce. If we discover they cannot reproduce, this is likely due to certain mutations in their body types that prevent them from procreating. And since this is something we would expect if natural selection were true, we have one piece of confirming evidence for natural selection. But how do we know the explanations we come up with are worth our time?

Coined by C. S. Peirce (1839-1914), abduction , also called retroduction, or inference to the best explanation , refers to a way of reasoning informally that provides guidelines for evaluating explanations. Rather than appealing to types of arguments (generalization, analogy, causation), the value of an explanation depends on the theoretical virtues it exemplifies. A theoretical virtue is a quality that renders an explanation more or less fitting as an account of some event. What constitutes fittingness (or “loveliness,” as Peter Lipton (2004) calls it) is controversial, but many of the virtues are intuitively compelling, and abduction is a widely accepted tool of critical thinking.

The most widely recognized theoretical virtue is probably simplicity , historically associated with William of Ockham (1288-1347) and known as Ockham’s Razor . A legend has it that Ockham was asked whether his arguments for God’s existence prove that only one God exists or whether they allow for the possibility that many gods exist. He supposedly responded, “Do not multiply entities beyond necessity.” Though this claim is not found in his writings, Ockham is now famous for advocating that we restrict our beliefs about what is true to only what is absolutely necessary for explaining what we observe.

In contemporary theoretical use, the virtue of simplicity is invoked to encourage caution in how many mechanisms we introduce to explain an event. For example, if natural selection can explain the origin of biological diversity by itself, there is no need to hypothesize both natural selection and a divine designer. But if natural selection cannot explain the origin of, say, the duck-billed platypus, then some other mechanism must be introduced. Of course, not just any mechanism will do. It would not suffice to say the duck-billed platypus is explained by natural selection plus gremlins. Just why this is the case depends on other theoretical virtues; ideally, the virtues work together to help critical thinkers decide among competing hypotheses to test. Here is a brief sketch of some other theoretical virtues or ideals:

Conservatism – a good explanation does not contradict well-established views in a field.

Independent Testability – a good explanation is successful on different occasions under similar circumstances.

Fecundity – a good explanation leads to results that make even more research possible.

Explanatory Depth – a good explanation provides details of how an event occurs.

Explanatory Breadth – a good explanation also explains other, similar events.

Though abduction is structurally distinct from other inductive arguments, it functions similarly in practice: a good explanation provides a probabilistic reason to believe a proposition. This is why it is included here as a species of inductive reasoning. It might be thought that explanations only function to help critical thinkers formulate hypotheses, and do not, strictly speaking, support propositions. But there are intuitive examples of explanations that support propositions independently of however else they may be used. For example, a critical thinker may argue that material objects exist outside our minds is a better explanation of why we perceive what we do (and therefore, a reason to believe it) than that an evil demon is deceiving me , even if there is no inductive or deductive argument sufficient for believing that the latter is false. (For more, see “ Charles Sanders Peirce: Logic .”)

5. Detecting Poor Reasoning

Our attempts at thinking critically often go wrong, whether we are formulating our own arguments or evaluating the arguments of others. Sometimes it is in our interests for our reasoning to go wrong, such as when we would prefer someone to agree with us than to discover the truth value of a proposition. Other times it is not in our interests; we are genuinely interested in the truth, but we have unwittingly made a mistake in inferring one proposition from others. Whether our errors in reasoning are intentional or unintentional, such errors are called fallacies (from the Latin, fallax, which means “deceptive”). Recognizing and avoiding fallacies helps prevent critical thinkers from forming or maintaining defective beliefs.

Fallacies occur in a number of ways. An argument’s form may seem to us valid when it is not, resulting in a formal fallacy . Alternatively, an argument’s premises may seem to support its conclusion strongly but, due to some subtlety of meaning, do not, resulting in an informal fallacy . Additionally, some of our errors may be due to unconscious reasoning processes that may have been helpful in our evolutionary history, but do not function reliably in higher order reasoning. These unconscious reasoning processes are now widely known as heuristics and biases . Each type is briefly explained below.

a. Formal Fallacies

Formal fallacies occur when the form of an argument is presumed or seems to be valid (whether intentionally or unintentionally) when it is not. Formal fallacies are usually invalid variations of valid argument forms. Consider, for example, the valid argument form modus ponens (this is one of the rules of inference mentioned in §3b):

modus ponens (valid argument form)

In modus ponens , we assume or “affirm” both the conditional and the left half of the conditional (called the antecedent ): (p à q) and p. From these, we can infer that q, the second half or consequent , is true. This a valid argument form: if the premises are true, the conclusion cannot be false.

Sometimes, however, we invert the conclusion and the second premise, affirming that the conditional, (p à q), and the right half of the conditional, q (the consequent), are true, and then inferring that the left half, p (the antecedent), is true. Note in the example below how the conclusion and second premise are switched. Switching them in this way creates a problem.

To get an intuitive sense of why “affirming the consequent” is a problem, consider this simple example:

affirming the consequent

  • It is a mammal.
  • Therefore, it is a cat.(?)

From the fact that something is a mammal, we cannot conclude that it is a cat. It may be a dog or a mouse or a whale. The premises can be true and yet the conclusion can still be false. Therefore, this is not a valid argument form. But since it is an easy mistake to make, it is included in the set of common formal fallacies.

Here is a second example with the rule of inference called modus tollens . Modus tollens involves affirming a conditional, (p à q), and denying that conditional’s consequent: ~q. From these two premises, we can validly infer the denial of the antecedent: ~p. But if we switch the conclusion and the second premise, we get another fallacy, called denying the antecedent .

Technically, all informal reasoning is formally fallacious—all informal arguments are invalid. Nevertheless, since those who offer inductive arguments rarely presume they are valid, we do not regard them as reasoning fallaciously.

b. Informal Fallacies

Informal fallacies occur when the meaning of the terms used in the premises of an argument suggest a conclusion that does not actually follow from them (the conclusion either follows weakly or with no strength at all). Consider an example of the informal fallacy of equivocation , in which a word with two distinct meanings is used in both of its meanings:

  • Any law can be repealed by Congress.
  • Gravity is a law.
  • Therefore, gravity can be repealed by Congress.

In this case, the argument’s premises are true when the word “law” is rightly interpreted, but the conclusion does not follow because the word law has a different referent in premise 1 (political laws) than in premise 2 (a law of nature). This argument equivocates on the meaning of law and is, therefore, fallacious.

Consider, also, the informal fallacy of ad hominem , abusive, when an arguer appeals to a person’s character as a reason to reject her proposition:

“Elizabeth argues that humans do not have souls; they are simply material beings. But Elizabeth is a terrible person and often talks down to children and the elderly. Therefore, she could not be right that humans do not have souls.”

The argument might look like this:

  • Elizabeth is a terrible person and often talks down to children and the elderly.
  • Therefore, Elizabeth is not right that humans do not have souls.

The conclusion does not follow because whether Elizabeth is a terrible person is irrelevant to the truth of the proposition that humans do not have souls. Elizabeth’s argument for this statement is relevant, but her character is not.

Another way to evaluate this fallacy is to note that, as the argument stands, it is an enthymeme (see §2); it is missing a crucial premise, namely: If anyone is a terrible person, that person makes false statements. But this premise is clearly false. There are many ways in which one can be a terrible person, and not all of them imply that someone makes false statements. (In fact, someone could be terrible precisely because they are viciously honest.) Once we fill in the missing premise, we see the argument is not cogent because at least one premise is false.

Importantly, we face a number of informal fallacies on a daily basis, and without the ability to recognize them, their regularity can make them seem legitimate. Here are three others that only scratch the surface:

Appeal to the People: We are often encouraged to believe or do something just because everyone else does. We are encouraged to believe what our political party believes, what the people in our churches or synagogues or mosques believe, what people in our family believe, and so on. We are encouraged to buy things because they are “bestsellers” (lots of people buy them). But the fact that lots of people believe or do something is not, on its own, a reason to believe or do what they do.

Tu Quoque (You, too!): We are often discouraged from pursuing a conclusion or action if our own beliefs or actions are inconsistent with them. For instance, if someone attempts to argue that everyone should stop smoking, but that person smokes, their argument is often given less weight: “Well, you smoke! Why should everyone else quit?” But the fact that someone believes or does something inconsistent with what they advocate does not, by itself, discredit the argument. Hypocrites may have very strong arguments despite their personal inconsistencies.

Base Rate Neglect: It is easy to look at what happens after we do something or enact a policy and conclude that the act or policy caused those effects. Consider a law reducing speed limits from 75 mph to 55 mph in order to reduce highway accidents. And, in fact, in the three years after the reduction, highway accidents dropped 30%! This seems like a direct effect of the reduction. However, this is not the whole story. Imagine you looked back at the three years prior to the law and discovered that accidents had dropped 30% over that time, too. If that happened, it might not actually be the law that caused the reduction in accidents. The law did not change the trend in accident reduction. If we only look at the evidence after the law, we are neglecting the rate at which the event occurred without the law. The base rate of an event is the rate that the event occurs without the potential cause under consideration. To take another example, imagine you start taking cold medicine, and your cold goes away in a week. Did the cold medicine cause your cold to go away? That depends on how long colds normally last and when you took the medicine. In order to determine whether a potential cause had the effect you suspect, do not neglect to compare its putative effects with the effects observed without that cause.

For more on formal and informal fallacies and over 200 different types with examples, see “ Fallacies .”

c. Heuristics and Biases

In the 1960s, psychologists began to suspect there is more to human reasoning than conscious inference. Daniel Kahneman and Amos Tversky confirmed these suspicions with their discoveries that many of the standard assumptions about how humans reason in practice are unjustified. In fact, humans regularly violate these standard assumptions, the most significant for philosophers and economists being that humans are fairly good at calculating the costs and benefits of their behavior; that is, they naturally reason according to the dictates of Expected Utility Theory. Kahneman and Tversky showed that, in practice, reasoning is affected by many non-rational influences, such as the wording used to frame scenarios (framing bias) and information most vividly available to them (the availability heuristic).

Consider the difference in your belief about the likelihood of getting robbed before and after seeing a news report about a recent robbery, or the difference in your belief about whether you will be bitten by a shark the week before and after Discovery Channel’s “Shark Week.” For most of us, we are likely to regard their likelihood as higher after we have seen these things on television than before. Objectively, they are no more or less likely to happen regardless of our seeing them on television, but we perceive they are more likely because their possibility is more vivid to us. These are examples of the availability heuristic.

Since the 1960s, experimental psychologists and economists have conducted extensive research revealing dozens of these unconscious reasoning processes, including ordering bias , the representativeness heuristic , confirmation bias , attentional bias , and the anchoring effect . The field of behavioral economics, made popular by Dan Ariely (2008; 2010; 2012) and Richard Thaler and Cass Sunstein (2009), emerged from and contributes to heuristics and biases research and applies its insights to social and economic behaviors.

Ideally, recognizing and understanding these unconscious, non-rational reasoning processes will help us mitigate their undermining influence on our reasoning abilities (Gigerenzer, 2003). However, it is unclear whether we can simply choose to overcome them or whether we have to construct mechanisms that mitigate their influence (for instance, using double-blind experiments to prevent confirmation bias).

6. The Scope and Virtues of Good Reasoning

Whether the process of critical thinking is productive for reasoners—that is, whether it actually answers the questions they are interested in answering—often depends on a number of linguistic, psychological, and social factors. We encountered some of the linguistic factors in §1. In closing, let us consider some of the psychological and social factors that affect the success of applying the tools of critical thinking.

Not all psychological and social contexts are conducive for effective critical thinking. When reasoners are depressed or sad or otherwise emotionally overwhelmed, critical thinking can often be unproductive or counterproductive. For instance, if someone’s child has just died, it would be unproductive (not to mention cruel) to press the philosophical question of why a good God would permit innocents to suffer or whether the child might possibly have a soul that could persist beyond death. Other instances need not be so extreme to make the same point: your company’s holiday party (where most people would rather remain cordial and superficial) is probably not the most productive context in which to debate the president’s domestic policy or the morality of abortion.

The process of critical thinking is primarily about detecting truth, and truth may not always be of paramount value. In some cases, comfort or usefulness may take precedence over truth. The case of the loss of a child is a case where comfort seems to take precedence over truth. Similarly, consider the case of determining what the speed limit should be on interstate highways. Imagine we are trying to decide whether it is better to allow drivers to travel at 75 mph or to restrict them to 65. To be sure, there may be no fact of the matter as to which is morally better, and there may not be any difference in the rate of interstate deaths between states that set the limit at 65 and those that set it at 75. But given the nature of the law, a decision about which speed limit to set must be made. If there is no relevant difference between setting the limit at 65 and setting it at 75, critical thinking can only tell us that , not which speed limit to set. This shows that, in some cases, concern with truth gives way to practical or preferential concerns (for example, Should I make this decision on the basis of what will make citizens happy? Should I base it on whether I will receive more campaign contributions from the business community?). All of this suggests that critical thinking is most productive in contexts where participants are already interested in truth.

b. The Principle of Charity/Humility

Critical thinking is also most productive when people in the conversation regard themselves as fallible, subject to error, misinformation, and deception. The desire to be “right” has a powerful influence on our reasoning behavior. It is so strong that our minds bias us in favor of the beliefs we already hold even in the face of disconfirming evidence (a phenomenon known as “confirmation bias”). In his famous article, “The Ethics of Belief” (1878), W. K. Clifford notes that, “We feel much happier and more secure when we think we know precisely what to do, no matter what happens, than when we have lost our way and do not know where to turn. … It is the sense of power attached to a sense of knowing that makes men desirous of believing, and afraid of doubting” (2010: 354).

Nevertheless, when we are open to the possibility that we are wrong, that is, if we are humble about our conclusions and we interpret others charitably, we have a better chance at having rational beliefs in two senses. First, if we are genuinely willing to consider evidence that we are wrong—and we demonstrate that humility—then we are more likely to listen to others when they raise arguments against our beliefs. If we are certain we are right, there would be little reason to consider contrary evidence. But if we are willing to hear it, we may discover that we really are wrong and give up faulty beliefs for more reasonable ones.

Second, if we are willing to be charitable to arguments against our beliefs, then if our beliefs are unreasonable, we have an opportunity to see the ways in which they are unreasonable. On the other hand, if our beliefs are reasonable, then we can explain more effectively just how well they stand against the criticism. This is weakly analogous to competition in certain types of sporting events, such as basketball. If you only play teams that are far inferior to your own, you do not know how good your team really is. But if you can beat a well-respected team on fair terms, any confidence you have is justified.

c. The Principle of Caution

In our excitement over good arguments, it is easy to overextend our conclusions, that is, to infer statements that are not really warranted by our evidence. From an argument for a first, uncaused cause of the universe, it is tempting to infer the existence of a sophisticated deity such as that of the Judeo-Christian tradition. From an argument for the compatibilism of the free will necessary for moral responsibility and determinism, it is tempting to infer that we are actually morally responsible for our behaviors. From an argument for negative natural rights, it is tempting to infer that no violation of a natural right is justifiable. Therefore, it is prudent to continually check our conclusions to be sure they do not include more content than our premises allow us to infer.

Of course, the principle of caution must itself be used with caution. If applied too strictly, it may lead reasoners to suspend all belief, and refrain from interacting with one another and their world. This is not, strictly speaking, problematic; ancient skeptics, such as the Pyrrhonians, advocated suspending all judgments except those about appearances in hopes of experiencing tranquility. However, at least some judgments about the long-term benefits and harms seem indispensable even for tranquility, for instance, whether we should retaliate in self-defense against an attacker or whether we should try to help a loved one who is addicted to drugs or alcohol.

d. The Expansiveness of Critical Thinking

The importance of critical thinking cannot be overstated because its relevance extends into every area of life, from politics, to science, to religion, to ethics. Not only does critical thinking help us draw inferences for ourselves, it helps us identify and evaluate the assumptions behind statements, the moral implications of statements, and the ideologies to which some statements commit us. This can be a disquieting and difficult process because it forces us to wrestle with preconceptions that might not be accurate. Nevertheless, if the process is conducted well, it can open new opportunities for dialogue, sometimes called “critical spaces,” that allow people who might otherwise disagree to find beliefs in common from which to engage in a more productive conversation.

It is this possibility of creating critical spaces that allows philosophical approaches like Critical Theory to effectively challenge the way social, political, and philosophical debates are framed. For example, if a discussion about race or gender or sexuality or gender is framed in terms that, because of the origins those terms or the way they have functioned socially, alienate or disproportionately exclude certain members of the population, then critical space is necessary for being able to evaluate that framing so that a more productive dialogue can occur (see Foresman, Fosl, and Watson, 2010, ch. 10 for more on how critical thinking and Critical Theory can be mutually supportive).

e. Productivity and the Limits of Rationality

Despite the fact that critical thinking extends into every area of life, not every important aspect of our lives is easily or productively subjected to the tools of language and logic. Thinkers who are tempted to subject everything to the cold light of reason may discover they miss some of what is deeply enjoyable about living. The psychologist Abraham Maslow writes, “I suppose it is tempting, if the only tool you have is a hammer, to treat everything as if it were a nail” (1966: 16). But it is helpful to remember that language and logic are tools, not the projects themselves. Even formal reasoning systems depend on axioms that are not provable within their own systems (consider Euclidean geometry or Peano arithmetic). We must make some decisions about what beliefs to accept and how to live our lives on the basis of considerations outside of critical thinking.

Borrowing an example from William James (1896), consider the statement, “Religion X is true.” James says that, while some people find this statement interesting, and therefore, worth thinking critically about, others may not be able to consider the truth of the statement. For any particular religious tradition, we might not know enough about it to form a belief one way or the other, and even suspending judgment may be difficult, since it is not obvious what we are suspending judgment about.

If I say to you: ‘Be a theosophist or be a Mohammedan,’ it is probably a dead option, because for you neither hypothesis is likely to be alive. But if I say: ‘Be an agnostic or be a Christian,’ it is otherwise: trained as you are, each hypothesis makes some appeal, however small, to your belief (2010: 357).

Ignoring the circularity in his definition of “dead option,” James’s point seems to be that if you know nothing about a view or what statements it entails, no amount of logic or evidence could help you form a reasonable belief about that position.

We might criticize James at this point because his conclusion seems to imply that we have no duty to investigate dead options, that is, to discover if there is anything worth considering in them. If we are concerned with truth, the simple fact that we are not familiar with a proposition does not mean it is not true or potentially significant for us. But James’s argument is subtler than this criticism suggests. Even if you came to learn about a particularly foreign religious tradition, its tenets may be so contrary to your understanding of the world that you could not entertain them as possible beliefs of yours . For instance, you know perfectly well that, if some events had been different, Hitler would not have existed: his parents might have had no children, or his parents’ parents might have had no children. You know roughly what it would mean for Hitler not to have existed and the sort of events that could have made it true that he did not exist. But how much evidence would it take to convince you that, in fact, Hitler did not exist, that is, that your belief that Hitler did exist is false ? Could there be an argument strong enough? Not obviously. Since all the information we have about Hitler unequivocally points to his existence, any arguments against that belief would have to affect a very broad range of statements; they would have to be strong enough to make us skeptical of large parts of reality.

7. Approaches to Improving Reasoning through Critical Thinking

Recall that the goal of critical thinking is not just to study what makes reasons and statements good, but to help us improve our ability to reason, that is, to improve our ability to form, hold, and discard beliefs according to whether they meet the standards of good thinking. Some ways of approaching this latter goal are more effective than others. While the classical approach focuses on technical reasoning skills, the Paul/Elder model encourages us to think in terms of critical concepts, and irrationality approaches use empirical research on instances of poor reasoning to help us improve reasoning where it is least obvious we need it and where we need it most. Which approach or combination of approaches is most effective depends, as noted above, on the context and limits of critical thinking, but also on scientific evidence of their effectiveness. Those who teach critical thinking, of all people, should be engaged with the evidence relevant to determining which approaches are most effective.

a. Classical Approaches

The classic approach to critical thinking follows roughly the structure of this article: critical thinkers attempt to interpret statements or arguments clearly and charitably, and then they apply the tools of formal and informal logic and science, while carefully attempting to avoid fallacious inferences (see Weston, 2008; Walton, 2008; Watson and Arp, 2015). This approach requires spending extensive time learning and practicing technical reasoning strategies. It presupposes that reasoning is primarily a conscious activity, and that enhancing our skills in these areas will improve our ability to reason well in ordinary situations.

There are at least two concerns about this approach. First, it is highly time intensive relative to its payoff. Learning the terminology of systems like propositional and categorical logic and the names of the fallacies, and practicing applying these tools to hypothetical cases requires significant time and energy. And it is not obvious, given the problems with heuristics and biases, whether this practice alone makes us better reasoners in ordinary contexts. Second, many of the ways we reason poorly are not consciously accessible (recall the heuristics and biases discussion in §5c). Our biases, combined with the heuristics we rely on in ordinary situations, can only be detected in experimental settings, and addressing them requires restructuring the ways in which we engage with evidence (see Thaler and Sunstein, 2009).

b. The Paul/Elder Model

Richard Paul and Linda Elder (Paul and Elder, 2006; Paul, 2012) developed an alternative to the classical approach on the assumption that critical thinking is not something that is limited to academic study or to the discipline of philosophy. On their account, critical thinking is a broad set of conceptual skills and habits aimed at a set of standards that are widely regarded as virtues of thinking: clarity, accuracy, depth, fairness, and others. They define it simply as “the art of analyzing and evaluating thinking with a view to improving it” (2006: 4). Their approach, then, is to focus on the elements of thought and intellectual virtues that help us form beliefs that meet these standards.

The Paul/Elder model is made up of three sets of concepts: elements of thought, intellectual standards, and intellectual traits. In this model, we begin by identifying the features present in every act of thought. They use “thought” to mean critical thought aimed at forming beliefs, not just any act of thinking, musing, wishing, hoping, remembering. According to the model, every act of thought involves:

These comprise the subject matter of critical thinking; that is, they are what we are evaluating when we are thinking critically. We then engage with this subject matter by subjecting them to what Paul and Elder call universal intellectual standards. These are evaluative goals we should be aiming at with our thinking:

While in classical approaches, logic is the predominant means of thinking critically, in the Paul/Elder model, it is put on equal footing with eight other standards. Finally, Paul and Elder argue that it is helpful to approach the critical thinking process with a set of intellectual traits or virtues that dispose us to using elements and standards well.

To remind us that these are virtues of thought relevant to critical thinking, they use “intellectual” to distinguish these traits from their moral counterparts (moral integrity, moral courage, and so on).

The aim is that, as we become familiar with these three sets of concepts and apply them in everyday contexts, we become better at analyzing and evaluating statements and arguments in ordinary situations.

Like the classical approach, this approach presupposes that reasoning is primarily a conscious activity, and that enhancing our skills will improve our reasoning. This means that it still lacks the ability to address the empirical evidence that many of our reasoning errors cannot be consciously detected or corrected. It differs from the classical approach in that it gives the technical tools of logic a much less prominent role and places emphasis on a broader, and perhaps more intuitive, set of conceptual tools. Learning and learning to apply these concepts still requires a great deal of time and energy, though perhaps less than learning formal and informal logic. And these concepts are easy to translate into disciplines outside philosophy. Students of history, psychology, and economics can more easily recognize the relevance of asking questions about an author’s point of view and assumptions than perhaps determining whether the author is making a deductive or inductive argument. The question, then, is whether this approach improves our ability to think better than the classical approach.

c. Other Approaches

A third approach that is becoming popular is to focus on the ways we commonly reason poorly and then attempt to correct them. This can be called the Rationality Approach , and it takes seriously the empirical evidence (§5c) that many of our errors in reasoning are not due to a lack of conscious competence with technical skills or misusing those skills, but are due to subconscious dispositions to ignore or dismiss relevant information or to rely on irrelevant information.

One way to pursue this approach is to focus on beliefs that are statistically rare or “weird.” These include beliefs of fringe groups, such as conspiracy theorists, religious extremists, paranormal psychologists, and proponents of New Age metaphysics (see Gilovich, 1992; Vaughn and Schick, 2010; Coady, 2012). If we recognize the sorts of tendencies that lead to these controversial beliefs, we might be able to recognize and avoid similar tendencies in our own reasoning about less extreme beliefs, such as beliefs about financial investing, how statistics are used to justify business decisions, and beliefs about which public policies to vote for.

Another way to pursue this approach is to focus directly on the research on error, those ordinary beliefs that psychologists and behavioral economists have discovered we reason poorly, and to explore ways of changing how we frame decisions about what to believe (see Nisbett and Ross, 1980; Gilovich, 1992; Ariely, 2008; Kahneman, 2011). For example, in one study, psychologists found that judges issue more convictions just before lunch and the end of the day than in the morning or just after lunch (Danzinger, et al., 2010). Given that dockets do not typically organize cases from less significant crimes to more significant crimes, this evidence suggests that something as irrelevant as hunger can bias judicial decisions. Even though hunger has nothing to do with the truth of a belief, knowing that it can affect how we evaluate a belief can help us avoid that effect. This study might suggest something as simple as that we should avoid being hungry when making important decisions. The more we learn ways in which our brains use irrelevant information, the better we can organize our reasoning to avoid these mistakes. For more on how decisions can be improved by restructuring our decisions, see Thaler and Sunstein, 2009.

A fourth approach is to take more seriously the role that language plays in our reasoning. Arguments involve complex patterns of expression, and we have already seen how vagueness and ambiguity can undermine good reasoning (§1). The pragma-dialectics approach (or pragma-dialectical theory) is the view that the quality of an argument is not solely or even primarily a matter of its logical structure, but is more fundamentally a matter of whether it is a form of reasonable discourse (Van Eemeren and Grootendorst, 1992). The proponents of this view contend that, “The study of argumentation should … be construed as a special branch of linguistic pragmatics in which descriptive and normative perspectives on argumentative discourse are methodically integrated” (Van Eemeren and Grootendorst, 1995: 130).

The pragma-dialectics approach is a highly technical approach that uses insights from speech act theory, H. P. Grice’s philosophy of language, and the study of discourse analysis. Its use, therefore, requires a great deal of background in philosophy and linguistics. It has an advantage over other approaches in that it highlights social and practical dimensions of arguments that other approaches largely ignore. For example, argument is often public ( external ), in that it creates an opportunity for opposition, which influences people’s motives and psychological attitudes toward their arguments. Argument is also social in that it is part of a discourse in which two or more people try to arrive at an agreement. Argument is also functional ; it aims at a resolution that can only be accommodated by addressing all the aspects of disagreement or anticipated disagreement, which can include public and social elements. Argument also has a rhetorical role ( dialectical ) in that it is aimed at actually convincing others, which may have different requirements than simply identifying the conditions under which they should be convinced.

These four approaches are not mutually exclusive. All of them presuppose, for example, the importance of inductive reasoning and scientific evidence. Their distinctions turn largely on which aspects of statements and arguments should take precedence in the critical thinking process and on what information will help us have better beliefs.

8. References and Further Reading

  • Ariely, Dan. 2008. Predictably Irrational: The Hidden Forces that Shape Our Decisions. New York: Harper Perennial.
  • Ariely, Dan. 2010. The Upside of Irrationality. New York: Harper Perennial.
  • Ariely, Dan. 2012. The (Honest) Truth about Dishonesty. New York: Harper Perennial.
  • Aristotle. 2002. Categories and De Interpretatione, J. L. Akrill, editor. Oxford: University of Oxford Press.
  • Clifford, W. K. 2010. “The Ethics of Belief.” In Nils Ch. Rauhut and Robert Bass, eds., Readings on the Ultimate Questions: An Introduction to Philosophy, 3rd ed. Boston: Prentice Hall, 351-356.
  • Chomsky, Noam. 1957/2002. Syntactic Structures. Berlin: Mouton de Gruyter.
  • Coady, David. What To Believe Now: Applying Epistemology to Contemporary Issues. Malden, MA: Wiley-Blackwell, 2012.
  • Danzinger, Shai, Jonathan Levav, and Liora Avnaim-Pesso. 2011. “Extraneous Factors in Judicial Decisions.” Proceedings of the National Academy of Sciences of the United States of America. Vol. 108, No. 17, 6889-6892. doi: 10.1073/pnas.1018033108.
  • Foresman, Galen, Peter Fosl, and Jamie Carlin Watson. 2017. The Critical Thinking Toolkit. Malden, MA: Wiley-Blackwell.
  • Fogelin, Robert J. and Walter Sinnott-Armstrong. 2009. Understanding Arguments: An Introduction to Informal Logic, 8th ed. Belmont, CA: Wadsworth Cengage Learning.
  • Gigerenzer, Gerd. 2003. Calculated Risks: How To Know When Numbers Deceive You. New York: Simon and Schuster.
  • Gigerenzer, Gerd, Peter Todd, and the ABC Research Group. 2000. Simple Heuristics that Make Us Smart. Oxford University Press.
  • Gilovich, Thomas. 1992. How We Know What Isn’t So. New York: Free Press.
  • James, William. “The Will to Believe”, in Nils Ch. Rauhut and Robert Bass, eds., Readings on the Ultimate Questions: An Introduction to Philosophy, 3rd ed. Boston: Prentice Hall, 2010, 356-364.
  • Kahneman, Daniel. 2011. Thinking Fast and Slow. New York: Farrar, Strauss and Giroux.
  • Lewis, David. 1986. On the Plurality of Worlds. Oxford Blackwell.
  • Lipton, Peter. 2004. Inference to the Best Explanation, 2nd ed. London: Routledge.
  • Maslow, Abraham. 1966. The Psychology of Science: A Reconnaissance. New York: Harper & Row.
  • Mill, John Stuart. 2011. A System of Logic, Ratiocinative and Inductive. New York: Cambridge University Press.
  • Nisbett, Richard and Lee Ross. 1980. Human Inference: Strategies and Shortcomings of Social Judgment. Englewood Cliffs, NJ: Prentice Hall.
  • Paul, Richard. 2012. Critical Thinking: What Every Person Needs to Survive in a Rapidly Changing World. Tomales, CA: The Foundation for Critical Thinking.
  • Paul, Richard and Linda Elder. 2006. The Miniature Guide to Critical Thinking Concepts and Tools, 4th ed. Tomales, CA: The Foundation for Critical Thinking.
  • Plantinga, Alvin. 1974. The Nature of Necessity. Oxford Clarendon.
  • Prior, Arthur. 1957. Time and Modality. Oxford, UK: Oxford University Press.
  • Prior, Arthur. 1967. Past, Present and Future. Oxford, UK: Oxford University Press.
  • Prior, Arthur. 1968. Papers on Time and Tense. Oxford, UK: Oxford University Press.
  • Quine, W. V. O. and J. S. Ullian. 1978. The Web of Belief, 2nd ed. McGraw-Hill.
  • Russell, Bertrand. 1940/1996. An Inquiry into Meaning and Truth, 2nd ed. London: Routledge.
  • Thaler, Richard and Cass Sunstein. 2009. Nudge: Improving Decisions about Health, Wealth, and Happiness. New York: Penguin Books.
  • van Eemeren, Frans H. and Rob Grootendorst. 1992. Argumentation, Communication, and Fallacies: A Pragma-Dialectical Perspective. London: Routledge.
  • van Eemeren, Frans H. and Rob Grootendorst. 1995. “The Pragma-Dialectical Approach to Fallacies.” In Hans V. Hansen and Robert C. Pinto, eds. Fallacies: Classical and Contemporary Readings. Penn State University Press, 130-144.
  • Vaughn, Lewis and Theodore Schick. 2010. How To Think About Weird Things: Critical Thinking for a New Age, 6th ed. McGraw-Hill.
  • Walton, Douglas. 2008. Informal Logic: A Pragmatic Approach, 2nd ed. New York: Cambridge University Press.
  • Watson, Jamie Carlin and Robert Arp. 2015. Critical Thinking: An Introduction to Reasoning Well, 2nd ed. London: Bloomsbury Academic.
  • Weston, Anthony. 2008. A Rulebook for Arguments, 4th ed. Indianapolis: Hackett.
  • Zadeh, Lofti. 1965. “Fuzzy Sets and Systems.” In J. Fox, ed., System Theory. Brooklyn, NY: Polytechnic Press, 29-39.

Author Information

Jamie Carlin Watson Email: [email protected] University of Arkansas for Medical Sciences U. S. A.

An encyclopedia of philosophy articles written by professional philosophers.

Warren Berger

A Crash Course in Critical Thinking

What you need to know—and read—about one of the essential skills needed today..

Posted April 8, 2024 | Reviewed by Michelle Quirk

  • In research for "A More Beautiful Question," I did a deep dive into the current crisis in critical thinking.
  • Many people may think of themselves as critical thinkers, but they actually are not.
  • Here is a series of questions you can ask yourself to try to ensure that you are thinking critically.

Conspiracy theories. Inability to distinguish facts from falsehoods. Widespread confusion about who and what to believe.

These are some of the hallmarks of the current crisis in critical thinking—which just might be the issue of our times. Because if people aren’t willing or able to think critically as they choose potential leaders, they’re apt to choose bad ones. And if they can’t judge whether the information they’re receiving is sound, they may follow faulty advice while ignoring recommendations that are science-based and solid (and perhaps life-saving).

Moreover, as a society, if we can’t think critically about the many serious challenges we face, it becomes more difficult to agree on what those challenges are—much less solve them.

On a personal level, critical thinking can enable you to make better everyday decisions. It can help you make sense of an increasingly complex and confusing world.

In the new expanded edition of my book A More Beautiful Question ( AMBQ ), I took a deep dive into critical thinking. Here are a few key things I learned.

First off, before you can get better at critical thinking, you should understand what it is. It’s not just about being a skeptic. When thinking critically, we are thoughtfully reasoning, evaluating, and making decisions based on evidence and logic. And—perhaps most important—while doing this, a critical thinker always strives to be open-minded and fair-minded . That’s not easy: It demands that you constantly question your assumptions and biases and that you always remain open to considering opposing views.

In today’s polarized environment, many people think of themselves as critical thinkers simply because they ask skeptical questions—often directed at, say, certain government policies or ideas espoused by those on the “other side” of the political divide. The problem is, they may not be asking these questions with an open mind or a willingness to fairly consider opposing views.

When people do this, they’re engaging in “weak-sense critical thinking”—a term popularized by the late Richard Paul, a co-founder of The Foundation for Critical Thinking . “Weak-sense critical thinking” means applying the tools and practices of critical thinking—questioning, investigating, evaluating—but with the sole purpose of confirming one’s own bias or serving an agenda.

In AMBQ , I lay out a series of questions you can ask yourself to try to ensure that you’re thinking critically. Here are some of the questions to consider:

  • Why do I believe what I believe?
  • Are my views based on evidence?
  • Have I fairly and thoughtfully considered differing viewpoints?
  • Am I truly open to changing my mind?

Of course, becoming a better critical thinker is not as simple as just asking yourself a few questions. Critical thinking is a habit of mind that must be developed and strengthened over time. In effect, you must train yourself to think in a manner that is more effortful, aware, grounded, and balanced.

For those interested in giving themselves a crash course in critical thinking—something I did myself, as I was working on my book—I thought it might be helpful to share a list of some of the books that have shaped my own thinking on this subject. As a self-interested author, I naturally would suggest that you start with the new 10th-anniversary edition of A More Beautiful Question , but beyond that, here are the top eight critical-thinking books I’d recommend.

The Demon-Haunted World: Science as a Candle in the Dark , by Carl Sagan

This book simply must top the list, because the late scientist and author Carl Sagan continues to be such a bright shining light in the critical thinking universe. Chapter 12 includes the details on Sagan’s famous “baloney detection kit,” a collection of lessons and tips on how to deal with bogus arguments and logical fallacies.

critical thinking model

Clear Thinking: Turning Ordinary Moments Into Extraordinary Results , by Shane Parrish

The creator of the Farnham Street website and host of the “Knowledge Project” podcast explains how to contend with biases and unconscious reactions so you can make better everyday decisions. It contains insights from many of the brilliant thinkers Shane has studied.

Good Thinking: Why Flawed Logic Puts Us All at Risk and How Critical Thinking Can Save the World , by David Robert Grimes

A brilliant, comprehensive 2021 book on critical thinking that, to my mind, hasn’t received nearly enough attention . The scientist Grimes dissects bad thinking, shows why it persists, and offers the tools to defeat it.

Think Again: The Power of Knowing What You Don't Know , by Adam Grant

Intellectual humility—being willing to admit that you might be wrong—is what this book is primarily about. But Adam, the renowned Wharton psychology professor and bestselling author, takes the reader on a mind-opening journey with colorful stories and characters.

Think Like a Detective: A Kid's Guide to Critical Thinking , by David Pakman

The popular YouTuber and podcast host Pakman—normally known for talking politics —has written a terrific primer on critical thinking for children. The illustrated book presents critical thinking as a “superpower” that enables kids to unlock mysteries and dig for truth. (I also recommend Pakman’s second kids’ book called Think Like a Scientist .)

Rationality: What It Is, Why It Seems Scarce, Why It Matters , by Steven Pinker

The Harvard psychology professor Pinker tackles conspiracy theories head-on but also explores concepts involving risk/reward, probability and randomness, and correlation/causation. And if that strikes you as daunting, be assured that Pinker makes it lively and accessible.

How Minds Change: The Surprising Science of Belief, Opinion and Persuasion , by David McRaney

David is a science writer who hosts the popular podcast “You Are Not So Smart” (and his ideas are featured in A More Beautiful Question ). His well-written book looks at ways you can actually get through to people who see the world very differently than you (hint: bludgeoning them with facts definitely won’t work).

A Healthy Democracy's Best Hope: Building the Critical Thinking Habit , by M Neil Browne and Chelsea Kulhanek

Neil Browne, author of the seminal Asking the Right Questions: A Guide to Critical Thinking, has been a pioneer in presenting critical thinking as a question-based approach to making sense of the world around us. His newest book, co-authored with Chelsea Kulhanek, breaks down critical thinking into “11 explosive questions”—including the “priors question” (which challenges us to question assumptions), the “evidence question” (focusing on how to evaluate and weigh evidence), and the “humility question” (which reminds us that a critical thinker must be humble enough to consider the possibility of being wrong).

Warren Berger

Warren Berger is a longtime journalist and author of A More Beautiful Question .

  • Find a Therapist
  • Find a Treatment Center
  • Find a Support Group
  • International
  • New Zealand
  • South Africa
  • Switzerland
  • Asperger's
  • Bipolar Disorder
  • Chronic Pain
  • Eating Disorders
  • Passive Aggression
  • Personality
  • Goal Setting
  • Positive Psychology
  • Stopping Smoking
  • Low Sexual Desire
  • Relationships
  • Child Development
  • Therapy Center NEW
  • Diagnosis Dictionary
  • Types of Therapy

March 2024 magazine cover

Understanding what emotional intelligence looks like and the steps needed to improve it could light a path to a more emotionally adept world.

  • Coronavirus Disease 2019
  • Affective Forecasting
  • Neuroscience

Video Series

critical thinking model

  • Analyze the logic of a problem or issue
  • Analyze the logic of an article, essay, or text
  • Analyze the logic of any book of nonfiction
  • Evaluate an Author’s Reasoning
  • Analyze the logic of a character in a novel
  • Analyze the logic of a profession, subject, or discipline
  • Analyze the logic of a concept or idea
  • Distinguishing Inferences and Assumptions
  • Thinking Through Conflicting Ideas
  • Could you elaborate further?
  • Could you give me an example?
  • Could you illustrate what you mean?
  • How could we check on that?
  • How could we find out if that is true?
  • How could we verify or test that?
  • Could you be more specific?
  • Could you give me more details?
  • Could you be more exact?
  • How does that relate to the problem?
  • How does that bear on the question?
  • How does that help us with the issue?
  • What factors make this a difficult problem?
  • What are some of the complexities of this question?
  • What are some of the difficulties we need to deal with?
  • Do we need to look at this from another perspective?
  • Do we need to consider another point of view?
  • Do we need to look at this in other ways?
  • Does all this make sense together?
  • Does your first paragraph fit in with your last?
  • Does what you say follow from the evidence?
  • Is this the most important problem to consider?
  • Is this the central idea to focus on?
  • Which of these facts are most important?
  • Do I have any vested interest in this issue?
  • Am I sympathetically representing the viewpoints of others?

Everyone thinks; it is our nature to do so. But much of our thinking, left to itself, is biased, distorted, partial, uninformed, or downright prejudiced. If we want to think well, we must understand at least the udiments of thought, the most basic structures out of which all thinking is made. We must learn how to take thinking apart.

All Thinking Is Defined by the Eight Elements That Make It Up. Eight basic structures are present in all thinking: Whenever we think, we think for a purpose within a point of view based on assumptions leading to implications and consequences. We use concepts, ideas and theories to interpret data, facts, and experiences in order to answer questions, solve problems, and resolve issues.

  • generates purposes
  • raises questions
  • uses information
  • utilizes concepts
  • makes inferences
  • makes assumptions
  • generates implications
  • embodies a point of view
  • What is your, my, their purpose in doing________?
  • What is the objective of this assignment (task, job, experiment, policy, strategy, etc.)?
  • Should we question, refine, modify our purpose (goal, objective, etc.)?
  • What is the purpose of this meeting (chapter, relationship, action)?
  • What is your central aim in this line of thought?
  • What is the purpose of education?
  • Why did you say…?
  • Take time to state your purpose clearly.
  • Distinguish your purpose from related purposes.
  • Check periodically to be sure you are still on target.
  • Choose significant and realistic purposes.
  • What is the question I am trying to answer?
  • What important questions are embedded in the issue?
  • Is there a better way to put the question?
  • Is this question clear? Is it complex?
  • I am not sure exactly what question you are asking. Could you explain it?
  • The question in my mind is this: How do you see the question?
  • What kind of question is this? Historical? Scientific? Ethical? Political? Economic? Or…?
  • What would we have to do to settle this question?
  • State the question at issue clearly and precisely.
  • Express the question in several ways to clarify its meaning.
  • Break the question into sub-questions.
  • Distinguish questions that have definitive answers from those that are a matter of opinion or that require multiple viewpoints.
  • What information do I need to answer this question?
  • What data are relevant to this problem?
  • Do we need to gather more information?
  • Is this information relevant to our purpose or goal?
  • On what information are you basing that comment?
  • What experience convinced you of this? Could your experience be distorted?
  • How do we know this information (data, testimony) is accurate?
  • Have we left out any important information that we need to consider?
  • Restrict your claims to those supported by the data you have.
  • Search for information that opposes your position as well as information that supports it.
  • Make sure that all information used is clear, accurate and relevant.
  • Make sure you have gathered sufficient information.
  • What conclusions am I coming to?
  • Is my inference logical?
  • Are there other conclusions I should consider?
  • Does this interpretation make sense?
  • Does our solution necessarily follow from our data?
  • How did you reach that conclusion?
  • What are you basing your reasoning on?
  • Is there an alternative plausible conclusion?
  • Given all the facts what is the best possible conclusion?
  • How shall we interpret these data?
  • Infer only what the evidence implies.
  • Check inferences for their consistency with each other.
  • Identify assumptions underlying your inferences.
  • What idea am I using in my thinking? Is this idea causing problems for me or for others?
  • I think this is a good theory, but could you explain it more fully?
  • What is the main hypothesis you are using in your reasoning?
  • Are you using this term in keeping with established usage?
  • What main distinctions should we draw in reasoning through this problem?
  • What idea is this author using in his or her thinking? Is there a problem with it?
  • Identify key concepts and explain them clearly.
  • Consider alternative concepts or alternative definitions of concepts.
  • Make sure you are using concepts with precision.
  • What am I assuming or taking for granted?
  • Am I assuming something I shouldn’t?
  • What assumption is leading me to this conclusion?
  • What is… (this policy, strategy, explanation) assuming?
  • What exactly do sociologists (historians, mathematicians, etc.) take for granted?
  • What is being presupposed in this theory?
  • What are some important assumptions I make about my roommate, my friends, my parents, my instructors, my country?
  • Clearly identify your assumptions and determine whether they are justifiable.
  • Consider how your assumptions are shaping your point of view.
  • If I decide to do “X”, what things might happen?
  • If I decide not to do “X”, what things might happen?
  • What are you implying when you say that?
  • What is likely to happen if we do this versus that?
  • Are you implying that…?
  • How significant are the implications of this decision?
  • What, if anything, is implied by the fact that a much higher percentage of poor people are in jail than wealthy people?
  • Trace the implications and consequences that follow from your reasoning.
  • Search for negative as well as positive implications.
  • Consider all possible consequences.
  • How am I looking at this situation? Is there another way to look at it that I should consider?
  • What exactly am I focused on? And how am I seeing it?
  • Is my view the only reasonable view? What does my point of view ignore?
  • Have you ever considered the way ____(Japanese, Muslims, South Americans, etc.) view this?
  • Which of these possible viewpoints makes the most sense given the situation?
  • Am I having difficulty looking at this situation from a viewpoint with which I disagree?
  • What is the point of view of the author of this story?
  • Do I study viewpoints that challenge my personal beliefs?
  • Identify your point of view.
  • Seek other points of view and identify their strengths as well as weaknesses.
  • Strive to be fairminded in evaluating all points of view.
  • Blogs @Oregon State University

Teaching With Writing: The WIC Newsletter

Critical thinking: multiple models for teaching and learning (abridged), excerpts from critical thinking: multiple models for teaching and learning.

By  Aubrae Vanderpool and Tracy Ann Robinson

“A great truth wants to be criticized, not idolized.”

The development of critical thinking skills increasingly is being identified not only as an essential component of writing courses but even more broadly, as a desired outcome of an undergraduate education. In this article, adapted from a paper by Aubrae Vanderpool that focuses on critical thinking in first-year writing classes, we take a look at what critical thinking means, offer some strategies and suggestions for incorporating critical thinking pedagogy into subject-matter courses, and comment on assessment issues and strategies.

Critical Thinking Defined…Or Not…

For some critical thinking has a lot to do with understanding one’s own perspective and those of others. Another model [of critical thinking] is dialectic, an idea or work is critiqued in a way that produces a counter-perspective and ultimately leads to a synthesis. For some critical thinking evokes a synthetic or inductive model based on testing evidence and making arguments. The exercise of reflective judgment is also a form of critical thinking.  (“Critical Thinking and Broad Knowledge”)

While widely accepted as an educational imperative, critical thinking, as the above statement (excerpted from meeting notes for a Critical Thinking dialogue group at Western Washington University) indicates, is quite variously conceived and described. . . . Clearly, however, how an institution or department defines this intellectual practice will influence where in the curriculum critical thinking is taught, how it is taught, and, equally importantly, how it is assessed. For those in the process of formulating a working definition, familiarity with the following widely utilized models may serve as a helpful starting point.

Bloom’s Taxonomy

According to Benjamin Bloom’s Taxonomy of Educational Objectives (1956)—a cross-disciplinary model for developing higher-order thinking in students—learning how to think critically involves the mastery of six increasingly complex cognitive skills: knowledge (i.e., possession of specific facts or pieces of information) , comprehension, application, analysis, synthesis, and evaluation . See sidebar for details.

Bloom’s Taxonomy conceives critical thinking mastery as a sequential process, that is, one cannot move to the next cognitive tier without successfully negotiating the previous level.  (“Teaching Critical Thinking”). Thus, some view the taxonomy as “a set of microlevel skills which may be used in critical thinking but do not represent critical thinking” (French and Rhoder 195). Philosopher Richard Paul objects to the taxonomy’s product-oriented conceptualization of thinking as a “one-way hierarchy” as opposed to thinking being a process that involves the recursive use of interrelated skills (French and Rhoder 195).  Nonetheless, Bloom’s Taxonomy has been and continues to be an influential model for those developing critical thinking programs, as its inclusion in the Dartmouth College Composition Center’s critical thinking web page attests (Gocsik).

Knowledge: the remembering (recalling) of appropriate, previously learned terminology/specific facts/ways and means of dealing with specifics (conventions, trends and sequences, classifications and categories, criteria, methodology)/universals and abstractions in a field (principles and generalizations, theories and structures). defines; describes; enumerates; identifies; labels; lists; matches; names; reads; records; reproduces; selects; states; views.

Comprehension: Grasping (understanding) the meaning of informational materials. classifies; cites; converts; describes; discusses; estimates; explains; generalizes; gives examples; makes sense out of; paraphrases; restates (in own words); summarizes; traces; understands.

Application: The use of previously learned information in new and concrete situations to solve problems that have single or best answers. acts; administers; articulates; assesses; charts; collects; computes; constructs; contributes; controls; determines; develops; discovers; establishes; extends; implements; includes; informs; instructs; operationalizes; participates; predicts; prepares; preserves; produces; projects; provides; relates; reports; shows; solves; teaches; transfers; uses; utilizes.

Analysis: The breaking down of informational materials into their component parts, examining (and trying to understand the organizational structure of) such information to develop divergent conclusions by identifying motives or causes, making inferences, and/or finding evidence to support generalizations. breaks down; correlates; diagrams; differentiates; discriminates; distinguishes; focuses; illustrates; infers; limits; outlines; points out; prioritizes; recognizes; separates; subdivides.

Synthesis: Creatively or divergently applying prior knowledge and skills to produce a new or original whole. adapts; anticipates; categorizes; collaborates; combines; communicates; compares; compiles; composes; contrasts; creates; designs; devises; expresses; facilitates; formulates; generates; incorporates; individualizes; initiates; integrates; intervenes; models; modifies; negotiates; plans; progresses; rearranges; reconstructs; reinforces; reorganizes; revises; structures; substitutes; validates.

Evaluation: Judging the value of material based on personal values/opinions, resulting in an end product, with a given purpose, without real right or wrong answers. appraises; compares & contrasts; concludes; criticizes; critiques; decides; defends; interprets; judges; justifies; reframes; supports.

SOURCE: http://faculty.washington.edu/krumme/guides/bloom.html (no longer available)

Beyer’s evaluative thinking model

Barry Beyer, a prominent contemporary thinking skills theorist and teacher, interprets critical thinking as a more specifically evaluative activity than Bloom’s Taxonomy would imply:

Critical thinking is not making decisions or solving problems. It is not the same as reflective thinking, creative thinking, or conceptualizing. Each of these other types of thinking serves a specific purpose. We make decisions in order to choose among alternatives. We solve problems when we encounter an obstacle to a preferred condition. We engage in creative or conceptual thinking to invent or improve things. Critical thinking serves a purpose quite different from these other types of thinking. (Beyer 1995, 8)

For Beyer, the crux of critical thinking is criteria : “ The word critical in critical thinking comes from the Greek word for criterion, kriterion , which means a benchmark for judging” (Beyer 1995, 8-9). Thus, critical (or, to use Beyer’s preferred term, evaluative) thinking provides the means to assess the “accuracy, authenticity, plausibility, or sufficiency of claims” (Beyer 1995, 10).

Beyer asserts that critical thinking involves 10 cognitive operations, which can be employed in any sequence or combination as needed for the thinking task at hand:

  • Distinguishing between verifiable facts and value claims
  • Distinguishing relevant from irrelevant information, claims, or reasons
  • Determining the factual accuracy of a statement
  • Determining the credibility of a source
  • Identifying ambiguous claims or arguments
  • Identifying unstated assumptions
  • Detecting bias
  • Recognizing logical fallacies
  • Recognizing logical inconsistencies in a line of reasoning
  • Determining the strength of an argument or claim (Beyer 1988, 57)

Further, Beyer argues that successful critical thinking requires “complex and often simultaneous interaction” of the following six elements:

o Dispositions. Critical thinkers develop habits of mind that “guide and sustain critical thinking”, including skepticism, fairmindedness, openmindedness, respect for evidence and reasoning, respect for clarity and precision, ability to consider different points of view, and a willingness to alter one’s position when reason and evidence call for such a shift.

o Criteria . Critical thinkers know about and have the ability to construct appropriate benchmarks for judging the issue at hand.

o Argument —defined as “a proposition with its supporting evidence and reasoning.” Critical thinkers are skillful at constructing, identifying, and evaluating the strength of arguments.

o Reasoning —the “cement that holds an argument together.” Critical thinkers determine the strength and validity of a conclusion by examining the soundness of the inductive or deductive process through which the conclusion was reached.

o Point of View. Critical thinkers are aware of their own point of view and capable of examining other points of view in order to better evaluate an issue.

o Procedures for applying criteria and judging. Critical thinkers have a repertoire of strategies appropriate to the subject matter and type of judgment to be made (Beyer 1995, 10-20)

In other words, critical thinkers habitually question the authenticity of anything that confronts them to ascertain exactly the extent to which it is an authentic instance of what it purports to be. In addition, they make judgments based on certain standards or other measures that serve as criteria for plausibility and truthfulness. And they pay special attention to the reasons and reasoning that undergird conclusions and claims.” (Beyer 1995, 22)

Critical thinking as a divergent process

While Beyer depicts critical thinking as a “ con vergent,” narrowing process, others prefer to view it as a di vergent, expanding, exploratory practice (French and Rhoder, 184-85) —a way to open  up new solutions as well as evaluate those that have already been identified.  For example, consider this statement from Peter Taylor of the UMass/Boston Graduate College of Education’s Critical and Creative Thinking Program. (In February, 2001, Taylor led a critical thinking workshop at OSU, sponsored jointly by the College of Liberal Arts’ Center for Excellence in Teaching, Learning, and Research, the Center for Water and Environmental Sustain-ability, and the Office of Academic Affairs; and organized by Anita Helle [English] and Denise Lach [CWest].)

My sense of critical thinking […] depends on inquiry being informed by a strong sense of how things could be otherwise. I want students to see that they understand things better when they have placed established facts, theories, and practices in tension with alternatives . Critical thinking at this level should not depend on students rejecting conventional accounts, but they do have to move through uncertainty. Their knowledge is, at least for a time, destabilized; what has been established cannot be taken for granted.

This view suggests a much closer connection between critical and creative thinking than Beyer, for instance, would subscribe to. However, many of the concerns that underlie the current interest in furthering college students’ critical thinking skills recognize and affirm this connection.

Teaching Considerations and Strategies

. . .  B. Lehman and D. Hayes propose the following strategies for promoting critical thinking in the classroom:

o Help students recognize what they already know about a topic. [For suggestions, see next section.]

o Help students learn to recognize their biases and keep an open mind about the topic. Have students list and share opinions on the subject, but postpone evaluation until more information is gathered.

o Formulate open-ended questions to help students analyze, synthesize, and evaluate the topic.

o Guide students in finding and using diverse sources to explain and support their ideas.

o Have students check the validity of sources and qualifications of authors.

o Help students see there is no single, final authority. By reading several sources on the same topic, students will discover that information is often conflicting and contradictory.

o Help students develop criteria for evaluation. As students learn to support their opinions with logical thinking and comparison of sources, they [develop] critical thinking skills. (Smith 350) . . . .

 The Writing–Critical Thinking Connection

For centuries, the rhetorical assumption about language was that “one first finds knowledge and then puts it into words” (Bizzell, Herzberg, and Reynolds 1)—in other words, thinking always precedes writing or speaking. Today, however, we recognize that “knowledge is actually created by words” (Bizzell, Herzberg, and Reynolds 1) and that writing and thinking are recursive, interdependent processes that promote and enhance one another.

James Sheridan  points out that “the act of generating written discourse is not merely a result of critical thinking but also a stimulus to new thinking and new discoveries” (52). This claim echoes Linda Flower’s assertion that “writing is a generative act—a process of not just ‘expressing’ but ‘making’ meaning” (193-94). The fact is that “when students write, they cannot remain passive players in the learning game” (Gocsik-source no longer available). As Peter Elbow suggests, “writing helps us achieve the perennially difficult task of standing outside our own thinking” (27). Hence, the concept of “writing to learn,” which has become so integral to Writing Across the Curriculum courses and programs.

Using writing to uncover knowledge

As well as using writing to reinforce and integrate new information, writing can be a way of discovering existing knowledge. Many critical thinking experts advocate beginning any new learning unit by identifying what students already know (but often don’t know they know) about the topic.  This strategy promotes critical thinking and active learning by allowing students to “establish a context for new information and share ideas with others” (Smith 350). Two writing strategies that can assist in this discovery process are freewriting and the “write-and-pass” exercise:

Freewriting. Describing freewriting as an activity that “helps students break the writing-is-grammar chain [, which] stultifies the freedom and risk-taking necessary for innovative critical thinking” (53), James Sheridan suggests the process has only two r equirements:

( 1) “You cannot stop writing during the 10-minute exercise.” (2) “You are forbidden to think. [. . .] Write whatever comes into your right (or left) hand. You must keep on writing. Even if you say ‘I don’t know what to write,’ write that. You cannot scratch your head. You cannot gaze pensively at the ceiling. Just write. You are not responsible for what you say; your hand is doing it all. Say anything. Say ‘This is the worst exercise I ever heard of and I can’t believe they’re paying this guy good bucks to have us do it.’ Yell, scream, shout, kick (in written words). Say anything, but keep writing” (52)

With unfocused freewriting, students write about whatever they want. With focused , or directed , freewriting, students are given a topic or question to write on.

Write-and-pass.  Another informal writing assignment that helps students discover what they already know is to ask them to spend a few minutes writing everything they can think of about a given topic or question (for example, “What is critical thinking?”). After several minutes, students pass what they’ve written to the person next to them, and that person reads and expands on the original response. The process is repeated a few more times; generally, with each pass, adding new information becomes more challenging..  The exercise provides a way both for students to focus their thoughts on a particular topic and to benefit from one another’s stores of knowledge.

Assessing Critical Thinking: Current Models

[A]n informed choice of an approach to assessing critical thinking can be made only after faculty have [asked and answered] these questions: What do we think critical thinking is? How do the critical thinking skills, processes, and strategies work together, and what aspects or combinations of them do we wish to assess? What are our students like? What are their motivations [and] environments? What are our assumptions relative to the knowledge and abilities that students need prior to engaging in college-level critical thinking? (Carpenter and Doig 34-35)

Carpenter and Doig’s observation comes from a 1988 review of assessment instruments developed for specific critical thinking courses and programs. Alternatively, the  rubric developed in 2002 by Washington State University’s Critical Thinking Project can be used in subject-matter courses across the curriculum that focus on critical thinking. This rubric includes the following criteria for student writing:

  • Identifies and summarizes the problem/question at issue.
  • Identifies and presents the student’s own perspective and position as it is important to the analysis of the issue.
  • Identifies and considers other salient perspectives and positions that are important to the analysis of the issue.
  • Identifies and assesses the key assumptions.
  • Identifies and assesses the quality of supporting data/evidence and provides additional data/evidence related to the issue.
  • Identifies and considers the influence of the context (e.g. cultural/social, scientific, educational, economic, technological, ethical, political, personal, and so on) on the issue.
  • Identifies and assesses conclusions, implications, and consequences. “Critical Thinking Rubric” no longer available online.

Each item in the rubric includes a description of what would be considered “scant” vs “substantially developed” coverage of that item. The Washington State Critical Thinking Project website is no longer available online.

A Final Note

In this article, we have focused on what Kerry S. Walters describes as the “logicistic” model of critical thinking—that is (according to Walters) “the unwarranted assumption that good thinking is reducible to logical thinking” (1). In Re-Thinking Reason: New Perspectives in Critical Thinking , Walters explores an alternative model being forwarded by an emerging “second-wave” of critical thinking research and pedagogy. Second-wave advocates argue that while “logical skills are essential functions of good thinking, […] so are non-analytic ones such as imagination and intuition, and the good thinker knows how to utilize both types” (2).  This reconception of critical thinking is grounded in current scholarship in the fields of philosophy, psychology, education, feminist theory, and critical pedagogy; Walters’s book serves as an introduction to and dialogue among some of the proponents and practitioners of this alternative. While beyond the scope of this article, the second-wave perspective on critical thinking deserves our serious attention and consideration as well.

This article was previously published in entirety in Teaching with Writing , Winter 2004.

Works Cited (some sources no longer available)

Beyer, Barry K. Critical Thinking. Bloomington, IN: Phi Delta Kappa Educational Foundation, 1995.

________. Developing a Thinking Skills Program. Boston: Allyn and Bacon, 1988.

Bizzell, Patricia, Bruce Hertzberg, and Nedra Reynolds. The Bedford Bibliography for Teachers of Writing. 5th Ed. Boston: Bedford/St. Martin’s, 2000.

Carpenter, C. Blaine, and James C. Doig. “Assessing Critical Thinking Across the Curriculum.” Assessing Student’s Learning 34 (Summer 1988): 33-46.

“Critical Thinking and Broad Knowledge Meeting Notes.” 2 Nov. 2001. Center for Instructional Innovation, Western Washington University. 4 March 2003.  http://pandora.cii.wwu.edu/gened/dialogue/critical_notes_nov.htm Source no longer available.

Elbow, Peter. “Teaching Two Kinds of Thinking by Teaching Writing.” Re-Thinking Reason: New Perspectives in Critical Thinking . Ed. Kerry S. Walters. Albany: SUNY Press, 1994. 25-31.

Flower, Linda. “Taking Thought: The Role of Conscious Processing in the Making of Meaning.” Thinking, Reasoning, and Writing. Ed. Elaine P. Maimon, Barbara F. Nodine, and Finbarr W. O’Connor. NY: Longman, 1989. 185-212.

French, Joyce N. and Carol Rhoder. Teaching Thinking Skills: Theory and Practice. NY: Garland, 1992.

Gocsik, Karen. “Teaching Critical Thinking.: 1997 Dartmouth College Composition Center. Source no longer available.

Scriven, Michael and Richard Paul. “Defining Critical Thinking.” Draft Statement for the National Council for Excellence in Critical Thinking. Foundation for Critical Thinking. 27 Feb. 2003. <http://www.criticalthinking.org/pages/definint-critical-thinking/766>

Sheridan, James J. “Skipping on the Brink of the Abyss: Teaching Thinking Through Writing.” Cr itical Thinking: Educational Imperative. Ed. Cynthia A. Barnes. New Directions for Community Colleges, No. 77. San Francisco: Jossey-Bass, 1992. 51-61.

Smith, Carl B. “Two Approaches to Critical Thinking.” The Reading Teacher 4.4  (Dec. 1990): 350-51.

Stewart, Ruth. “Teaching Critical Thinking in First-Year Composition: Sometimes More Is More.” Teaching English at the Two-Year College 29 (Dec. 2001): 162-171.

Taylor, Peter. “We Know More Than We Are, At First, Prepared To Acknowledge: Journeying to Develop Critical Thinking.” 12 March 2003 <http://www.faculty.umb.edu/pjt/journey.html>

Walters, Kerry S. Re-Thinking Reason: New Perspectives in Critical Thinking. Albany: SUNY Press, 1994.

Print Friendly, PDF & Email

Comments are closed.

Contact Info

Cart

  • SUGGESTED TOPICS
  • The Magazine
  • Newsletters
  • Managing Yourself
  • Managing Teams
  • Work-life Balance
  • The Big Idea
  • Data & Visuals
  • Reading Lists
  • Case Selections
  • HBR Learning
  • Topic Feeds
  • Account Settings
  • Email Preferences

A Short Guide to Building Your Team’s Critical Thinking Skills

  • Matt Plummer

critical thinking model

Critical thinking isn’t an innate skill. It can be learned.

Most employers lack an effective way to objectively assess critical thinking skills and most managers don’t know how to provide specific instruction to team members in need of becoming better thinkers. Instead, most managers employ a sink-or-swim approach, ultimately creating work-arounds to keep those who can’t figure out how to “swim” from making important decisions. But it doesn’t have to be this way. To demystify what critical thinking is and how it is developed, the author’s team turned to three research-backed models: The Halpern Critical Thinking Assessment, Pearson’s RED Critical Thinking Model, and Bloom’s Taxonomy. Using these models, they developed the Critical Thinking Roadmap, a framework that breaks critical thinking down into four measurable phases: the ability to execute, synthesize, recommend, and generate.

With critical thinking ranking among the most in-demand skills for job candidates , you would think that educational institutions would prepare candidates well to be exceptional thinkers, and employers would be adept at developing such skills in existing employees. Unfortunately, both are largely untrue.

critical thinking model

  • Matt Plummer (@mtplummer) is the founder of Zarvana, which offers online programs and coaching services to help working professionals become more productive by developing time-saving habits. Before starting Zarvana, Matt spent six years at Bain & Company spin-out, The Bridgespan Group, a strategy and management consulting firm for nonprofits, foundations, and philanthropists.  

Partner Center

Unlock Your Mind: Explore Critical Thinking Models for Creativity

The power of critical thinking.

In the world of creativity, critical thinking is a powerful tool that can unlock new possibilities and enhance your problem-solving abilities. By understanding and harnessing the power of critical thinking, you can approach challenges with a clear and analytical mindset. Let’s explore what critical thinking is and why it is essential for creativity.

Understanding Critical Thinking

Critical thinking is a cognitive process that involves analyzing, evaluating, and synthesizing information to form reasoned judgments and make informed decisions. It goes beyond simply accepting information at face value and instead encourages deep thinking and active engagement with ideas.

When you engage in critical thinking, you actively question assumptions, evaluate evidence, consider alternative perspectives, and draw logical conclusions. It involves using cognitive processes such as analysis, interpretation, evaluation, inference, explanation, and self-regulation. By employing these cognitive processes, you can gain a deeper understanding of complex issues and make more informed choices.

Why Critical Thinking is Essential for Creativity

Critical thinking plays a vital role in fostering creativity. It allows you to approach problems and challenges from different angles, encouraging you to think beyond the surface level and consider alternative solutions. By questioning assumptions and challenging existing ideas, critical thinking opens up new possibilities and sparks innovation.

When you engage in critical thinking, you develop the ability to see connections between seemingly unrelated concepts and think outside the box. This cognitive flexibility enables you to generate fresh ideas, explore different perspectives, and approach problems with creativity and originality.

Moreover, critical thinking enables you to evaluate the feasibility and effectiveness of your ideas. By critically analyzing your own thoughts and considering potential limitations or drawbacks, you can refine and improve your creative solutions. This process of evaluating and refining ideas is crucial for transforming creative concepts into practical and successful outcomes.

By cultivating critical thinking skills, you can enhance your mental models and cognitive frameworks , enabling you to approach creative endeavors with a structured and analytical mindset. Critical thinking empowers you to challenge assumptions, consider multiple perspectives, and make well-reasoned decisions to achieve your creative goals.

As we delve deeper into critical thinking models and their application to creativity, you will discover how these models can help you problem-solve, generate ideas, and enhance your analytical skills. So, let’s continue our journey of unlocking your mind by exploring different critical thinking models.

Exploring Critical Thinking Models

To unlock your creativity and enhance your problem-solving abilities, it’s important to explore different critical thinking models . These models provide frameworks and strategies that can help you approach challenges from various angles. In this section, we will delve into the RED Model of critical thinking, which consists of three key components: Recognize Assumptions , Evaluate Arguments , and Draw Conclusions .

The RED Model

Recognize assumptions.

Recognizing assumptions is an essential step in critical thinking. Assumptions are the underlying beliefs and ideas that often go unspoken but influence our thoughts and actions. By bringing these assumptions to the forefront, you can assess whether they are valid and relevant to the situation at hand.

To recognize assumptions, you need to question the information you receive and identify any implicit biases or preconceived notions that may be influencing your thinking. By challenging assumptions, you open up new possibilities and broaden your perspective. This allows for more creative and innovative problem-solving.

Evaluate Arguments

Evaluating arguments involves assessing the reasoning and evidence used to support a particular claim or viewpoint. It’s important to critically analyze the logical structure of an argument and the validity of the evidence presented. This helps you determine the strength and weaknesses of the argument and make informed judgments.

To evaluate arguments effectively, you should consider the credibility of the sources, the relevance of the evidence, and the logical coherence of the reasoning. By critically examining arguments, you can identify flaws, gaps in reasoning, and potential biases. This enables you to make more informed decisions and develop well-supported ideas.

Draw Conclusions

Drawing conclusions is the final step in the RED Model. This involves synthesizing information, evaluating the evidence, and arriving at a reasoned judgment or decision. By drawing conclusions, you solidify your understanding of the situation and develop a clear position or course of action.

When drawing conclusions, it’s important to consider the strengths and weaknesses of the arguments, the quality of the evidence, and the impact of any assumptions. This helps you arrive at well-grounded conclusions that are based on critical thinking and analysis.

By applying the RED Model of critical thinking, you can enhance your ability to recognize assumptions, evaluate arguments, and draw informed conclusions. This model provides a structured approach to critical thinking that can be applied to various situations and challenges. To further explore other critical thinking models and their applications, check out our article on cognitive processes .

In the next section, we will explore another valuable critical thinking model: the SCAMPER Model. This model offers a creative approach to problem-solving and idea generation. Stay tuned to uncover the SCAMPER Model and its unique strategies!

The SCAMPER Model

The SCAMPER model is a powerful creative thinking tool that can spark innovative ideas and solutions. Each letter in the acronym represents a different approach to generating new possibilities. Let’s explore each step of the SCAMPER model:

In this step, you consider substituting one element of a problem or idea with something different. Ask yourself, “What can I replace or substitute to create a new perspective?” By substituting elements, you can uncover fresh insights and potential improvements.

The “C” in SCAMPER stands for combine . This step encourages you to consider how different elements or ideas can be merged or combined to form something new. Think about how you can blend concepts or features to create unique solutions or approaches.

Adaptation is about adapting existing ideas, processes, or products to suit a different context or purpose. Ask yourself, “How can I modify or adjust this to fit a different situation?” By adapting, you can find innovative ways to repurpose existing resources or concepts.

The “M” in SCAMPER stands for modify , which involves making changes or alterations to an existing idea or product. Consider how you can tweak or enhance certain aspects to improve performance or functionality. This step encourages you to think critically about the details and refine your ideas.

Put to Another Use

In this step, you explore how you can put an idea or product to another use . Think about alternative applications or contexts where a particular concept or item could be valuable. By considering different uses, you can uncover hidden potential and creative solutions.

To generate fresh ideas, it’s important to consider what you can eliminate . Ask yourself, “What can I remove or reduce to simplify the concept or problem?” By eliminating unnecessary elements or steps, you can streamline processes and uncover more efficient solutions.

The final step of the SCAMPER model is to rearrange elements or components. Consider different ways to organize or arrange the parts of an idea or problem. This step encourages you to think about alternative structures or sequences that may lead to innovative solutions.

By following the steps of the SCAMPER model, you can unlock your creative thinking and generate a wide range of fresh ideas. Remember to be open-minded, challenge assumptions, and explore different perspectives to fully harness the power of this creative thinking tool.

Continue exploring various critical thinking models, such as the RED Model and the Six Thinking Hats Model, to further enhance your creativity and problem-solving skills. Check out our article on critical thinking models for more insights.

The Six Thinking Hats Model

The Six Thinking Hats Model is a powerful tool for critical thinking and decision-making. Developed by Edward de Bono, this model encourages individuals to adopt different perspectives or “hats” to approach a problem or situation. Each hat represents a different mode of thinking and helps explore various aspects of the topic at hand. Let’s take a closer look at each of the hats:

White Hat Thinking

When wearing the White Hat , you focus on gathering and analyzing information. This involves examining the facts, data, and objective details related to the problem or situation. White Hat thinking emphasizes objectivity and rationality by considering what is known and what information is needed to make informed decisions.

Red Hat Thinking

The Red Hat represents emotions and intuition. When wearing this hat, you can freely express your feelings and gut reactions without the need for logical explanations. Red Hat thinking allows for the exploration of personal sentiments, opinions, and hunches, which may provide valuable insights that go beyond logical reasoning.

Black Hat Thinking

The Black Hat signifies critical judgment and caution. This mode of thinking involves analyzing potential risks, weaknesses, and drawbacks associated with ideas or solutions. Black Hat thinking helps identify potential pitfalls and challenges, enabling you to assess the feasibility and effectiveness of different options.

Yellow Hat Thinking

Yellow Hat thinking focuses on optimism, positivity, and benefits. When wearing the Yellow Hat , you explore the potential advantages, benefits, and opportunities presented by ideas or solutions. This mode of thinking encourages you to consider the value and positive outcomes that can arise from different perspectives.

Green Hat Thinking

The Green Hat represents creativity and innovation. This mode of thinking encourages you to explore new ideas, generate alternatives, and think outside the box. Green Hat thinking involves brainstorming, lateral thinking, and embracing unconventional approaches to solve problems or create new possibilities.

Blue Hat Thinking

The Blue Hat represents overall process control and organization. When wearing the Blue Hat, you take on a facilitator role, overseeing the thinking process and managing the different modes of thinking. Blue Hat thinking helps establish the agenda, set goals, and ensure that each thinking hat is utilized effectively. It also helps in summarizing and synthesizing the insights gained from the various modes of thinking.

By utilizing the Six Thinking Hats Model, you can enhance your critical thinking skills and approach problems from multiple angles. Each hat offers a unique perspective, enabling you to consider different factors, emotions, risks, benefits, and innovative ideas. Incorporating this model into your decision-making process can lead to more well-rounded and creative solutions. For more information on critical thinking and decision-making models, check out our article on cognitive processes .

Applying Critical Thinking Models for Creativity

When it comes to fostering creativity, applying critical thinking models can be highly beneficial. These models provide structured approaches to problem-solving, decision-making, and idea generation, enhancing your analytical skills and expanding your creative potential. In this section, we will explore how critical thinking models can be applied in different areas of the creative process.

Problem-Solving and Decision-Making

Critical thinking models play a vital role in problem-solving and decision-making . By employing models such as the RED Model, you can tackle complex problems and make well-informed decisions. The RED Model consists of three steps: Recognize Assumptions , Evaluate Arguments , and Draw Conclusions . By systematically analyzing the information at hand, considering different perspectives, and drawing logical conclusions, you can effectively address challenges and make informed choices.

Idea Generation and Brainstorming

When it comes to idea generation and brainstorming , critical thinking models like the SCAMPER Model can provide valuable guidance. The SCAMPER Model offers a structured approach to stimulate creativity by encouraging you to Substitute , Combine , Adapt , Modify , Put to Another Use , Eliminate , and Rearrange elements. By systematically applying these techniques to existing ideas or concepts, you can generate fresh insights and innovative solutions.

Enhancing Analytical Skills

Critical thinking models also contribute to enhancing your analytical skills . By actively engaging with different models, such as the Six Thinking Hats Model, you can develop a more comprehensive and well-rounded approach to analyzing problems and exploring possibilities. The Six Thinking Hats Model provides a framework for considering different perspectives, such as White Hat Thinking (factual analysis), Red Hat Thinking (emotional and intuitive responses), Black Hat Thinking (critical and cautious evaluation), Yellow Hat Thinking (positive and optimistic viewpoints), Green Hat Thinking (creative and innovative ideas), and Blue Hat Thinking (facilitating and organizing the thinking process). By utilizing these different modes of thinking, you can enhance your analytical skills and approach challenges from various angles.

By applying critical thinking models to different aspects of the creative process, you can unlock your creativity and approach problems and ideas in a more systematic and effective manner. These models provide frameworks and techniques that help you think critically, evaluate information, and generate innovative solutions. Whether you’re problem-solving, making decisions, brainstorming ideas, or enhancing your analytical skills, critical thinking models serve as invaluable tools in cultivating your creative mindset.

Cultivating Critical Thinking Skills

To enhance your critical thinking abilities and unlock your creative potential, it’s important to cultivate certain skills and habits. By practicing reflection and self-analysis , seeking diverse perspectives , and challenging assumptions and biases , you can develop a strong foundation for effective critical thinking.

Practicing Reflection and Self-Analysis

Engaging in regular reflection and self-analysis is a powerful way to enhance your critical thinking skills. Take time to reflect on your thoughts, actions, and decisions. Ask yourself why you think a certain way, what biases you might have, and how your thoughts and beliefs influence your creativity. By developing self-awareness, you can identify areas for improvement and actively work on expanding your thinking. Consider keeping a journal to record your reflections and insights.

Seeking Diverse Perspectives

To broaden your thinking and stimulate creativity, actively seek out diverse perspectives. Engage in conversations with people from different backgrounds, cultures, and areas of expertise. Listen attentively to their viewpoints and consider their reasoning. Exposing yourself to diverse perspectives allows you to challenge your own assumptions and biases, leading to more well-rounded and innovative thinking. Remember to approach these conversations with an open mind and a willingness to learn.

Challenging Assumptions and Biases

Critical thinking involves questioning assumptions and recognizing biases that may affect your thinking process. Challenge your own assumptions by seeking evidence and alternative viewpoints. Be aware of cognitive biases that can cloud your judgment and influence your creativity. By consciously examining your thoughts and biases, you can develop a more objective and unbiased approach to problem-solving and decision-making.

By actively practicing reflection and self-analysis , seeking diverse perspectives , and challenging assumptions and biases , you can enhance your critical thinking skills and unlock your creative potential. These skills are applicable in various aspects of life, from problem-solving and decision-making to idea generation and brainstorming. Embrace the opportunity to continuously develop and refine your critical thinking abilities, as they are essential for unlocking your creative mind.

To dive deeper into cognitive processes and explore various critical thinking models , check out our articles on cognitive processes and decision-making models . These resources will provide you with additional insights and strategies to further enhance your critical thinking capabilities.

Here's How You Build a 6-Figure Business With the 3 Engine Framework

In today's world, it's not enough to simply know how to create a digital product.

You need to know the whole system to make your business flourish.

This is why you build a Full Stack Engine. Not only because you need a system that you can maximize, but also a system that allows you to walk away when you need.

Because while the money is great, freedom is better.

And true freedom arrives when you have all 3 business engines running on their own.

critical thinking model

loading

How it works

For Business

Join Mind Tools

Article • 9 min read

Hurson's Productive Thinking Model

Solving problems creatively.

By the Mind Tools Content Team

critical thinking model

Creativity is incredibly important in problem solving. If you're not creative, you'll struggle to understand the issues surrounding a problem, and you'll find it hard to identify the best solutions. Worse still, you might fail to solve the problem altogether!

So, what's a good way to be more creative in your problem solving, and come up with the best ideas to move forward with? Hurson's Productive Thinking Model could be just the thing to help you. This framework encourages you to use creativity and critical thinking at each stage of the problem-solving process. This means that you get a better understanding of the problems you face, and you come up with better ideas and solutions as a result.

About the Model

The Productive Thinking Model was developed by author and creativity theorist, Tim Hurson, and was published in his 2007 book, " Think Better ." [1]

The model presents a structured framework for solving problems creatively. You can use it on your own or in a group.

The model consists of six steps, as follows:

  • Ask "What is going on?"
  • Ask "What is success?"
  • Ask "What is the question?"
  • Generate answers.
  • Forge the solution.
  • Align resources.

From " Think Better: An Innovator's Guide to Productive Thinking " by Tim Hurson. © 2008. Reproduced with permission from The McGraw-Hill Companies, Inc.

The advantage of this model over other problem-solving approaches (like Simplex or Plan-Do-Check-Act ) is that it encourages you to use creative and critical thinking skills at each stage of the problem-solving process. This means that you can take a well-rounded look at a problem, and come up with better potential solutions.

Let's look at each step in further detail, and explore how you can apply the model.

Step 1: Ask "What Is Going On?"

First, you need to get a good understanding of the problem that you want to deal with. This is often the most involved part of the process.

To do this, explore the following four questions:

What Is the Problem?

First, brainstorm all of the problems and issues that you have – a tool such as CATWOE will help here. As you do this, think about the following questions:

  • What's bugging you? And what annoys your customers?
  • What's out of balance?
  • What could work better? What could you improve?
  • What are your customers or users complaining about?
  • What challenges do you have?
  • What's making you take action?

List as many issues as possible, even if you already have a good idea of what your main problem is. These don't have to be well defined or even justified. All that you're doing is generating a good list of possibilities, so don't worry about being right or wrong.

Then, use an Affinity Diagram to organize the issues that you've identified into common themes, and identify the most important problem or group of problems to deal with. If this isn't obvious, use techniques like Pareto Analysis or Paired Comparison Analysis to decide.

What Is the Impact?

Next, brainstorm how the problem impacts you and your organization, and how it affects other stakeholders such as customers, suppliers and competitors.

Make a list of all of your stakeholders, and identify the positive and negative impact that the problem has on each of them.

To help with this, ask questions such as:

  • Who does this problem affect, directly and indirectly?
  • Why is this problem important to them? What concerns do you have about it?
  • Who'll benefit if you don't deal with the problem? And who'll benefit when you solve it?

Rolestorming is also useful here, as it helps you to look at problems from other people's perspectives.

What Is the Information?

Now, gather information about the problem. What do you know about it? What don't you know? Has someone else tried to fix this or a similar problem before? If so, what happened, and what can you learn? Make sure that you have evidence that the problem really does exist.

This is where it helps to use tools such as Cause and Effect Analysis , Root Cause Analysis , and Interrelationship Diagrams to identify the actual causes of your problem. You'll need to deal with these root causes to solve the problem fully.

What Is the Vision?

Finally in this step, identify your vision for the future once you've solved the problem – what Hurson calls the "target future."

Begin by writing down as many target futures as possible, and then narrow these down to something that's achievable and important to you.

If you're finding this difficult, use starter phrases such as "I wish...," "If only we could...," or "It would be great if...." For example, you might say, "I wish that the majority of our customers were happy with how we process returns," or, "It would be great if we could cut waste by 20 percent."

Step 2: Ask "What Is Success?"

In this step, you're going to develop your target future by defining what success is once you've implemented a solution to your problem.

A good way to do this is to use the "DRIVE" acronym. This stands for:

  • Do – What do you want the solution to do?
  • Restrictions – What must the solution not do?
  • Investment – What resources are available? What are you able to invest in a solution? How much time do you have?
  • Values – What values must this solution respect?
  • Essential outcomes – What defines success? How will you measure this?

Step 3: Ask "What Is the Question?"

The aim in this step is to generate a list of questions that, if answered well, will solve your problem.

To do this, look at all of the information that you gathered in the first two steps. Then brainstorm the questions that you'll need to answer to achieve your target future. Use phrases such as "How can I…?" and "How will we…?" to begin.

For instance, imagine that your target future is to have a bigger departmental budget. One question might be, "How can I get a bigger budget?" Then you could brainstorm related questions, such as, "How can we spend less on routine work, so that we can do more with our existing budget?" or, "How would we operate if we had no budget?"

If you generate a long list of questions, narrow these down to the questions that are most relevant for solving your problem.

Step 4: Generate Answers

In this step, you generate solutions to your problem by coming up with answers to the questions that you developed in the previous step.

Again, brainstorm as many possible solutions as possible, and don't criticize – just concentrate on coming up with lots of ideas. If you're struggling to come up with solutions, techniques like Reverse Brainstorming , Random Input , and Provocation will help to jump-start your creativity.

Step 5: Forge the Solution

You're now going to develop your ideas into a fully formed solution.

First, evaluate the most promising ideas by comparing them with the success criteria that you identified in step 2. Pick the solution that best meets those criteria. ( Decision Matrix Analysis is helpful here.)

Then develop your best idea further. What else could make this idea better? How could you refine the solution to fit your success criteria better?

If you're working on a complex problem or project, don't underestimate the effort needed to develop and refine your solution.

Step 6: Align Resources

In this last step, you identify the people and other resources that you need in order to implement your solution.

For small projects, Action Plans are useful for this. However, if you're implementing a large-scale project, you'll need to use a more formal project management approach .

At this point, you may still decide not to move ahead with your solution. See our article on Go/No-Go Decision-Making for more on this.

Tim Hurson developed the Productive Thinking Model and published it in his 2007 book, "Think Better." The model provides a structured approach for solving problems creatively. You can use it on your own and in a group.

There are six steps in the model:

The advantage of the model is that it encourages you to use creative and critical thinking skills at each step of the problem-solving process. This means that you can take a well-rounded look at a problem, and come up with better solutions.

[1] Hurson, T. (2008) ' Think Better ,' New York: McGraw-Hill.

You've accessed 1 of your 2 free resources.

Get unlimited access

Discover more content

Book Insights

Beyond Measure

James Vincent

The DiSC® Model

Understanding People's Personal Styles

Add comment

Comments (1)

Tim Ferriss

How to recovery your lost Crypto / Omega Crypto Recovery Specialist Hi Everybody, I am Timothy Ferriss from East Hampton, NY. I am an American entrepreneur, investor, author, podcaster, and lifestyle Guru. You can actually recover your lost or stolen crypto through Omega Recovery Specialist team. Lost Cryptocurrency recovery is possible with them because they possess sophisticated tools that are operated by the best cryptocurrency recovery experts in the field of Cryptocurrency Assets Recoveries. Omega Recovery Specialist Intelligence was founded by Cyber Intelligence, Crypto Investigations, Asset Recovery and Offshore Legal Experts. With over 40 years of experience in these fields Reach them via; Website; omegarecoveryspecialist .c om WhatsAp; +1251 (216, 64) 66 Mail; omegaCryptos@consultant. c om

critical thinking model

Team Management

Learn the key aspects of managing a team, from building and developing your team, to working with different types of teams, and troubleshooting common problems.

Sign-up to our newsletter

Subscribing to the Mind Tools newsletter will keep you up-to-date with our latest updates and newest resources.

Subscribe now

Business Skills

Personal Development

Leadership and Management

Member Extras

Most Popular

Newest Releases

Article amtbj63

SWOT Analysis

Article a4wo118

SMART Goals

Mind Tools Store

About Mind Tools Content

Discover something new today

How to stop procrastinating.

Overcoming the Habit of Delaying Important Tasks

What Is Time Management?

Working Smarter to Enhance Productivity

How Emotionally Intelligent Are You?

Boosting Your People Skills

Self-Assessment

What's Your Leadership Style?

Learn About the Strengths and Weaknesses of the Way You Like to Lead

Recommended for you

Communicating change.

Effectively Communicate a Change Process for Maximum Success and Minimum Resistance

How to Guides

Business Operations and Process Management

Strategy Tools

Customer Service

Business Ethics and Values

Handling Information and Data

Project Management

Knowledge Management

Self-Development and Goal Setting

Time Management

Presentation Skills

Learning Skills

Career Skills

Communication Skills

Negotiation, Persuasion and Influence

Working With Others

Difficult Conversations

Creativity Tools

Self-Management

Work-Life Balance

Stress Management and Wellbeing

Coaching and Mentoring

Change Management

Managing Conflict

Delegation and Empowerment

Performance Management

Leadership Skills

Developing Your Team

Talent Management

Problem Solving

Decision Making

Member Podcast

Future Focused Learning

The Most Useful Critical Thinking Mental Models to Know About

Learning how to think critically is not easy; otherwise, everyone would do it. However, it remains one of the most beneficial skills we can impart to our learners. There are many ways to model it as well, as you'll discover below. Today we're celebrating critical thinking mental models provided by Gabriel Weinberg, from his Medium article  Mental Models I Find Repeatedly Useful .

Mental models as we know them are essential tools we use for explaining things. "There are tens of thousands of mental models," Gabriel says. "Every discipline has its own set that you can learn through coursework, mentorship, or first-hand experience." In his post, he summarized the mental models he finds most often useful, and the results are diverse and informative.

Below we've shared a few of his categories of critical thinking mental models that you and your learners may find most interesting. Many you'll recognize and others you'll be exploring for the first time. Regardless, there is much intellectual food for thought and fodder for discussion here.

If you want to discover more about these common critical thinking mental models, read Gabriel's article for more insights.

Common Critical Thinking Mental Models by Category

Hanlon’s Razor  — “Never attribute to malice that which is adequately explained by carelessness.”

Occam’s Razor  — “Among competing hypotheses, the one with the fewest assumptions should be selected.”

Cognitive Biases  — “Tendencies to think in certain ways that can lead to systematic deviations from a standard of rationality or good judgments.”

Arguing from First Principles  — “A first principle is a basic, foundational, self-evident proposition or assumption that cannot be deduced from any other proposition or assumption.”

Proximate vs Root Cause  — “A proximate cause is an event which is closest to, or immediately responsible for causing, some observed result. This exists in contrast to a higher-level ultimate cause (or distal cause) which is usually thought of as the ‘real’ reason something occurred.”

Thought Experiment  — “considers some hypothesis, theory, or principle for the purpose of thinking through its consequences.”

Systems Thinking  — “By taking the overall system as well as its parts into account systems thinking is designed to avoid potentially contributing to further development of unintended consequences.”

Scenario Analysis  — “A process of analyzing possible future events by considering alternative possible outcomes.”

Power-law  — “A functional relationship between two quantities, where a relative change in one quantity results in a proportional relative change in the other quantity, independent of the initial size of those quantities: one quantity varies as a power of another.”

Normal Distribution  — “A very common continuous probability distribution…Physical quantities that are expected to be the sum of many independent processes (such as measurement errors) often have distributions that are nearly normal.”

Sensitivity Analysis  — “The study of how the uncertainty in the output of a mathematical model or system (numerical or otherwise) can be apportioned to different sources of uncertainty in its inputs.”

Cost-benefit Analysis  — “A systematic approach to estimating the strengths and weaknesses of alternatives that satisfy transactions, activities or functional requirements for a business.”

Simulation  — “The imitation of the operation of a real-world process or system over time.”

Pareto Efficiency  — “A state of allocation of resources in which it is impossible to make any one individual better off without making at least one individual worse off…A Pareto improvement is defined to be a change to a different allocation that makes at least one individual better off without making any other individual worse off, given a certain initial allocation of goods among a set of individuals.”

Brainstorming

Lateral Thinking  — “Solving problems through an indirect and creative approach, using reasoning that is not immediately obvious and involving ideas that may not be obtainable by using only traditional step-by-step logic.”

Divergent Thinking vs Convergent Thinking  — “Divergent thinking is a thought process or method used to generate creative ideas by exploring many possible solutions. It is often used in conjunction with its cognitive opposite, convergent thinking, which follows a particular set of logical steps to arrive at one solution, which in some cases is a ‘correct’ solution.”

Crowdsourcing  — “The process of obtaining needed services, ideas, or content by soliciting contributions from a large group of people, especially an online community, rather than from employees or suppliers.”

Paradigm shift  — “a fundamental change in the basic concepts and experimental practices of a scientific discipline.”

Experimenting

Scientific Method  — “Systematic observation, measurement, and experiment, and the formulation, testing, and modification of hypotheses.”

Proxy  — “A variable that is not in itself directly relevant, but that serves in place of an unobservable or immeasurable variable. In order for a variable to be a good proxy, it must have a close correlation, not necessarily linear, with the variable of interest.”

Selection Bias  — “The selection of individuals, groups or data for analysis in such a way that proper randomization is not achieved, thereby ensuring that the sample obtained is not representative of the population intended to be analyzed.”

Response Bias  — “A wide range of cognitive biases that influence the responses of participants away from an accurate or truthful response.”

Observer Effect  — “Changes that the act of observation will make on a phenomenon being observed.”

Survivorship Bias  — “The logical error of concentrating on the people or things that ‘survived’ some process and inadvertently overlooking those that did not because of their lack of visibility.”

Anecdotal  — “Using a personal experience or an isolated example instead of a sound argument or compelling evidence.”

False Cause  — “Presuming that a real or perceived relationship between things means that one is the cause of the other.”

Straw Man  — “Giving the impression of refuting an opponent’s argument, while actually refuting an argument that was not advanced by that opponent.”

Plausible — Thinking that just because something is plausible means that it is true.

Likely — Thinking that just because something is possible means that it is likely.

Appeal to Emotion  — “Manipulating an emotional response in place of a valid or compelling argument.”

Ad Hominem  — “Attacking your opponent’s character or personal traits in an attempt to undermine their argument.”

Slippery Slope  — “Asserting that if we allow A to happen, then Z will eventually happen too, therefore A should not happen.”

Black or White  — “When two alternative states are presented as the only possibilities, when in fact more possibilities exist.”

Bandwagon  — “Appealing to popularity or the fact that many people do something as an attempted form of validation.”

Deliberate Practice  — “How expert one becomes at a skill has more to do with how one practices than with merely performing a skill a large number of times.”

Imposter Syndrome — “High-achieving individuals marked by an inability to internalize their accomplishments and a persistent fear of being exposed as a ‘fraud’.”

Dunning-Kruger Effect  — “Relatively unskilled persons suffer illusory superiority, mistakenly assessing their ability to be much higher than it really is…[and] highly skilled individuals may underestimate their relative competence and may erroneously assume that tasks which are easy for them are also easy for others.”

Spacing Effect  — “The phenomenon whereby learning is greater when studying is spread out over time, as opposed to studying the same amount of time in a single session.”

Productivity

Focus on High-leverage Activities  — “Leverage should be the central, guiding metric that helps you determine where to focus your time.”

Makers vs Manager’s Schedule  — “When you’re operating on the maker’s schedule, meetings are a disaster.”

Murphy’s Law  — “Anything that can go wrong, will.”

Parkinson’s Law  — “Work expands so as to fill the time available for its completion.”

Gate’s Law — “Most people overestimate what they can do in one year and underestimate what they can do in ten years.”

Nature vs Nurture  — “the relative importance of an individual’s innate qualities as compared to an individual’s personal experiences in causing individual differences, especially in behavioral traits.”

Chain Reaction — “A sequence of reactions where a reactive product or by-product causes additional reactions to take place. In a chain reaction, positive feedback leads to a self-amplifying chain of events.”

Filling a Vacuum — A vacuum “is space void of matter.” Filling a vacuum refers to the fact that if a vacuum is put next to something with pressure, it will be quickly filled by the gas producing that pressure.

Emergence  — “Whereby larger entities, patterns, and regularities arise through interactions among smaller or simpler entities that themselves do not exhibit such properties.”

Natural Selection  — “The differential survival and reproduction of individuals due to differences in phenotype. It is a key mechanism of evolution, the change in heritable traits of a population over time.”

Butterfly Effect  — “The concept that small causes can have large effects.”

Sustainability  — “The endurance of systems and processes.”

Peak Oil  — “The point in time when the maximum rate of extraction of petroleum is reached, after which it is expected to enter terminal decline.”

Consequentialism  — “Holding that the consequences of one’s conduct are the ultimate basis for any judgment about the rightness or wrongness of that conduct.”

Distributive Justice vs Procedural Justice  — “Procedural justice concerns the fairness and the transparency of the processes by which decisions are made, and may be contrasted with distributive justice (fairness in the distribution of rights or resources), and retributive justice (fairness in the punishment of wrongs).”

Effective Altruism  — “Encourages individuals to consider all causes and actions, and then act in the way that brings about the greatest positive impact, based on their values.”

Utilitarianism  — “Holding that the best moral action is the one that maximizes utility.”

Agnosticism  — “The view that the truth values of certain claims — especially metaphysical and religious claims such as whether God, the divine, or the supernatural exist — are unknown and perhaps unknowable.”

Veil of Ignorance  — “A method of determining the morality of a certain issue (e.g., slavery) based upon the following thought experiment: parties to the original position know nothing about the particular abilities, tastes, and positions individuals will have within a social order. When such parties are selecting the principles for distribution of rights, positions, and resources in the society in which they will live, the veil of ignorance prevents them from knowing who will receive a given distribution of rights, positions, and resources in that society.”

Filter Bubble  — “In which a website algorithm selectively guesses what information a user would like to see based on information about the user (such as location, past click behavior and search history) and, as a result, users become separated from information that disagrees with their viewpoints, effectively isolating them in their own cultural or ideological bubbles.”

Botnet  — “A number of Internet-connected computers communicating with other similar machines in which components located on networked computers communicate and coordinate their actions by command and control (C&C) or by passing messages to one another.”

Spamming  — “The use of electronic messaging systems to send unsolicited messages (spam), especially advertising, as well as sending messages repeatedly on the same site.”

Content Farm  — “large amounts of textual content which is specifically designed to satisfy algorithms for maximal retrieval by automated search engines.”

Micropayment  — “A financial transaction involving a very small sum of money and usually one that occurs online.”

Godwin’s Law  — “If an online discussion (regardless of topic or scope) goes on long enough, sooner or later someone will compare someone or something to Hitler or Nazism.”

critical thinking model

Author and keynote speaker, Lee works with governments, education systems, international agencies and corporations to help people and organisations connect to their higher purpose. Lee lives in Japan where he studies Zen and the Shakuhachi.

12 Solid Strategies for Teaching Critical Thinking Skills

7 creative writing exercises that are actually enjoyable for learners.

  • Raven's Adaptive
  • Occupational Suite
  • Role Assessments
  • Critical Thinking Quick Tips
  • Which Career For Me Professional
  • Which Career For Me Student
  • Consultancy Services
  • Remote Proctoring

Pearson

  • Test Platform

How to use the RED Model to Develop Critical Thinking Skills

September 26, 2021, 20:00 , 20:00

Understanding how the mind interacts with information is a key facet in helping to develop critical thinking within your organisation.

The RED Model for Developing Critical Thinking

The RED model for developing critical thinking skills is a process recommended by Pearson and TalentLens to help two things:

  • Develop aptitude for critical thinking
  • Improve the standard of critical thinking within your business.

Naturally, this will result in improved critical thinking test scores and pass marks, but it also helps grow your businesses thinking capabilities.

The RED critical thinking model is broken down into three core phases as part of the cognitive thinking process for when we gather and analyse information. Each phase has two core components which are broken down as follows:

Recognise Assumptions (Phase 1 of the RED Model)

Recognising assumptions is all about training the mind to gather information correctly and objectively without asserting immediate assumptions. Analysis of data and judgements come later on in the thinking process and so assumptions mustn’t be made immediately when data is gathered.

Gathering Information - Gathering information accounts for the first part of the recognising assumptions phase of the RED model. When gathered correctly, information is acquired via multiple, unbiased resources that are legitimate and true raw forms of information. In other words, they haven’t been manipulated or misinterpreted throughout the gathering process.

Information Synthesizing - Information synthesizing is how the information that has been gathered can be synthesized together to learn from the information/topic at hand. It is within this part of phase one that objective learning has to be taken into account and any unconscious biases with the information must be raised and worked around/removed.

Evaluate Arguments (Phase 2 of the RED Model)

Evaluating arguments form the overall basis for phase 2 of the RED model for developing critical thinking. The core aspect of this phase of the process is to, without bias, analyse and evaluate arguments in an objective manner that doesn’t hinder the development of the critical thinking process.

Sense Making - Sense making, while based on experience, looks to make sense of the information and arguments gathered, as clearly and objectively as possible. Again, any unconscious bias must be identified during this part of the process to not compromise the judgement. This is essentially a core component of the rationalising of the information process that flows throughout critical thinking.

Analyse and Problem Solving - Instinctively, it is in our nature when seeing a problem to immediately try to resolve it without necessarily understanding it. As part of the critical thinking process, analysing and solving problems should come later on in the process, once all the relevant information is gathered. This allows for better, more actionable and empathetic solutions for the individual and the business.

Drawing Conclusions (Phase 3 of the RED Model)

The final phase of the RED model is concluding. As you’d expect, this is where the judgements and decisions are made off the back of the information gathered and analysed throughout the first two phases of the RED model.

Judgement and Decision Making - Here it’s simple - make a judgement and a decision on how to move forward in an objective, unbiased manner. The key thing here is to remember objectivity but to also temperature check the judgement and decision with another party who can be trusted to also think critically when interpreting information.

critical thinking model

This involves some form of abstraction and understanding/ability to see the bigger picture, thinking beyond the initial information/stage of the thought process we are in. So strategic thinking in itself also requires some form of training and development to have a bigger impact on business growth over time.

Starting to Develop Your Teams Critical Thinking Skills

Once the RED model is interpreted and understood, it can form the basis for a company's critical thinking decisions moving forward.

Developing critical thinking skills can be improved further through the use of critical thinking exercises and general further research into the cognitive process for developing this skill set.

In short, understanding how the mind interacts with information is a key facet to help to develop critical thinking as an asset within your organisation.

To learn more about critical thinking, and the benefit that it could have to your business or organisation please check out our Critical Thinking Hub or Watson Glaser Critical Thinking Assessment . Alternatively, you can contact us if you have any other questions.

  • Critical Thinking

critical thinking model

Bookmark this page

Present at the 44th Annual International Conference on Critical Thinking! See Our Call for Proposals

critical thinking model

Call for Proposals

Present at the 44th annual international conference on critical thinking.

critical thinking model

2024 Events Announced!

Join us online.

critical thinking model

Join the Center for Critical Thinking Community Online!

Free 30-day trial.

critical thinking model

Available Now: Liberating the Mind New Book by Dr. Linda Elder

critical thinking model

The 44th Annual International Conference on Critical Thinking

The 44th Annual International Conference on Critical Thinking takes place July 21 - 26, 2024 and is entirely online with sessions for all backgrounds, experience levels, and time zones. Join us for the world's longest-running critical thinking conference !

critical thinking model

We need your voice! Submit a proposal to present at The 44th Annual International Conference on Critical Thinking . Proposals are due May 19th by midnight PDT.

critical thinking model

Critical Thinking Podcast

Only in the Center for Critical Thinking Community Online ! Join Drs. Linda Elder and Gerald Nosich, international authorities on critical thinking, as they break new ground in the podcast Critical Thinking: Going Deeper .

critical thinking model

Free Webinar: Why a Thriving Democracy Requires Critical Thinking

Join Dr. Linda Elder April 10th at 7:00 p.m. EDT (4:00 p.m. Pacific). This Webinar Q&A will begin to explore how and why critical thinking is essential to flourishing democracies and will discuss some of the intrinsic barriers to cultivating and maintaining democracies.

critical thinking model

Custom Online Intensive Workshops & Short Courses for Your Institution or Business

The Foundation for Critical Thinking offers customized webinars and twelve-week online training programs on critical thinking in a multitude of topics, enabling us to custom-design a learning experience for your institution based on your needs and goals.

critical thinking model

Full-Semester Courses in Critical Thinking

Fall 2024 Registration Open Now! Study under the guidance of a first-generation Paulian Scholar from the comfort of your home or office! Complete coursework on your own time with continual feedback!

I found that I was fitted for nothing so well as for the study of Truth . . . with desire to seek, patience to doubt, fondness to meditate, slowness to assert, readiness to consider, carefulness to dispose and set in order . . . being a man that neither affects what is new nor admires what is old, and that hates every kind of imposture.

~ francis bacon (1605), our mission.

For more than 40 years, our goal has been to promote essential change in education and society by cultivating fairminded critical thinking — thinking which embodies intellectual empathy, intellectual humility, intellectual perseverance, intellectual integrity, and intellectual responsibility.

international translations

critical thinking model

IMAGES

  1. Critical Thinking Skills

    critical thinking model

  2. Critical Thinking

    critical thinking model

  3. PPT

    critical thinking model

  4. 6 Examples of Critical Thinking Skills

    critical thinking model

  5. Critical_Thinking_Skills_Diagram_svg

    critical thinking model

  6. How to promote Critical Thinking Skills

    critical thinking model

VIDEO

  1. Critical Thinking Model Week 7

  2. Understanding (QUEEN Critical Thinking Model)

  3. Blacksheep Thinking Model: Prasert Eamrungroj at TEDxThapaeGate

  4. Model Critical Thinking: Video # 4

  5. Power of Learning Curve with Jim Walters Episode 6

  6. Foundations of Critical Thinking

COMMENTS

  1. Critical Thinking Models: A Comprehensive Guide for Effective Decision

    Learn how to use critical thinking models to enhance your problem-solving and decision-making skills. Explore four models: The RED Model, Bloom's Taxonomy, Paul-Elder Model, and The Halpern Critical Thinking Assessment.

  2. Critical Thinking Models: Definition, Benefits, and Skills

    Learn what critical thinking is, how to practice it, and why it's important for everyday life. Explore three useful models of critical thinking: proximate vs. root cause, cognitive bias, and Hanlon's razor. Discover the benefits of critical thinking skills and how to improve them with ABLE app.

  3. Critical Thinking

    Critical thinking is the discipline of rigorously and skillfully using information, experience, observation, and reasoning to guide your decisions, actions, and beliefs. You'll need to actively question every step of your thinking process to do it well. Collecting, analyzing and evaluating information is an important skill in life, and a highly ...

  4. What Is Critical Thinking?

    Critical thinking is the ability to effectively analyze information and form a judgment. To think critically, you must be aware of your own biases and assumptions when encountering information, and apply consistent standards when evaluating sources. Critical thinking skills help you to: Identify credible sources. Evaluate and respond to arguments.

  5. What Are Critical Thinking Skills and Why Are They Important?

    Learn what critical thinking skills are, why they're important, and how to develop and apply them in your workplace and everyday life. Explore examples of common critical thinking skills, such as identification of biases, research, open-mindedness, analysis, and problem-solving.

  6. A model for critical thinking

    Critical writing. Critical thinking is an important life skill, and an essential part of university studies. Central to critical thinking is asking meaningful questions. This three-stage model, adapted from LearnHigher, will help you generate questions to understand, analyse, and evaluate something, such as an information source.

  7. Paul-Elder Critical Thinking Framework

    A model of critical thinking that explains the elements of thought, the intellectual standards and the intellectual traits. The framework helps students improve their quality of thinking by taking charge of the structures and imposing standards on their reasoning. It also provides a guide to cultivate a well-cultivated critical thinker.

  8. Critical Thinking

    Critical thinking is a widely accepted educational goal. Its definition is contested, but the competing definitions can be understood as differing conceptions of the same basic concept: careful thinking directed to a goal. ... Katie Leming, Kyle Shanks, and Barry Stein, 2015, "Using the Critical Thinking Assessment Test (CAT) as a Model for ...

  9. PDF The Miniature Guide to Critical Thinking: Concepts & Tools

    ConCepts and tools. By Dr. Richard Paul and Dr. Linda Elder. The Foundation for Critical Thinking. www.criticalthinking.org 707-878-9100 [email protected]. Why A Critical Thinking Mini-Guide? This miniature guide focuses on of the essence of critical thinking concepts and tools distilled into pocket size.

  10. Critical Thinking

    Critical Thinking is the process of using and assessing reasons to evaluate statements, assumptions, and arguments in ordinary situations. The goal of this process is to help us have good beliefs, where "good" means that our beliefs meet certain goals of thought, such as truth, usefulness, or rationality. Critical thinking is widely ...

  11. A Crash Course in Critical Thinking

    Neil Browne, author of the seminal Asking the Right Questions: A Guide to Critical Thinking, has been a pioneer in presenting critical thinking as a question-based approach to making sense of the ...

  12. Our Conception of Critical Thinking

    Critical thinking is the art of taking charge of your own mind and improving its quality by skillfully analyzing, assessing, and reconstructing any subject, content, or problem. It presupposes assent to rigorous standards of excellence and mindful command of their use. It involves effective communication and problem-solving abilities, as well as a commitment to overcome egocentrism and sociocentrism.

  13. Wheel of Reason

    This model is based fundamentally in the original work of Dr. Richard Paul, and is an essential component in the Paul- Elder framework for critical thinking™. Refer back to this model frequently to refresh your memory as to the eight elements of reasoning that are present in your thinking whenever you reason through anything.

  14. Defining Critical Thinking

    Critical thinking is, in short, self-directed, self-disciplined, self-monitored, and self-corrective thinking. It presupposes assent to rigorous standards of excellence and mindful command of their use. It entails effective communication and problem solving abilities and a commitment to overcome our native egocentrism and sociocentrism.

  15. How to think effectively: Six stages of critical thinking

    A framework for teaching and improving mental skills necessary for our times, based on the six levels of critical thinkers proposed by psychologists Linda Elder and Richard Paul. The framework explains how to move from unreflective to master thinkers, and what traits and habits are required at each stage.

  16. PDF Critical thinking models

    Learn how to apply critical thinking to academic work using two models: step-by-step and key elements. Find out what questions to ask and how to evaluate different choices and alternatives.

  17. Critical Thinking: Multiple Models for Teaching and Learning (abridged

    Another model [of critical thinking] is dialectic, an idea or work is critiqued in a way that produces a counter-perspective and ultimately leads to a synthesis. For some critical thinking evokes a synthetic or inductive model based on testing evidence and making arguments. The exercise of reflective judgment is also a form of critical thinking.

  18. A Short Guide to Building Your Team's Critical Thinking Skills

    Learn how to assess and improve your team's critical thinking skills using three research-backed models: Halpern, RED, and Bloom. The Critical Thinking Roadmap breaks critical thinking into four phases: execute, synthesize, recommend, and generate.

  19. Unlock Your Mind: Explore Critical Thinking Models for Creativity

    By following the steps of the SCAMPER model, you can unlock your creative thinking and generate a wide range of fresh ideas. Remember to be open-minded, challenge assumptions, and explore different perspectives to fully harness the power of this creative thinking tool. Continue exploring various critical thinking models, such as the RED Model ...

  20. 5 Best Critical Thinking Models for Problem Solving

    The Toulmin model is a rhetorical and analytical critical thinking model that helps you to construct and evaluate arguments. It consists of six components: Claim, Data, Warrant, Backing, Qualifier ...

  21. Hurson's Productive Thinking Model

    The Productive Thinking Model was developed by author and creativity theorist, Tim Hurson, and was published in his 2007 book, " Think Better ." [1] The model presents a structured framework for solving problems creatively. You can use it on your own or in a group. The model consists of six steps, as follows:

  22. The Most Useful Critical Thinking Mental Models to Know About

    Common Critical Thinking Mental Models by Category. Explaining. Hanlon's Razor — "Never attribute to malice that which is adequately explained by carelessness.". Occam's Razor — "Among competing hypotheses, the one with the fewest assumptions should be selected.".

  23. How to use the RED Model to Develop Critical Thinking Skills

    The RED model for developing critical thinking skills is a process recommended by Pearson and TalentLens to help two things: Develop aptitude for critical thinking. Improve the standard of critical thinking within your business. Naturally, this will result in improved critical thinking test scores and pass marks, but it also helps grow your ...

  24. Critical Thinking

    The 44th Annual International Conference on Critical Thinking. takes place July 21 - 26, 2024 and is entirely online with sessions for all backgrounds, experience levels, and time zones. Join us for the world's longest-running critical thinking conference!