• How it works

researchprospect post subheader

Useful Links

How much will your dissertation cost?

Have an expert academic write your dissertation paper!

Dissertation Services

Dissertation Services

Get unlimited topic ideas and a dissertation plan for just £45.00

Order topics and plan

Order topics and plan

Get 1 free topic in your area of study with aim and justification

Yes I want the free topic

Yes I want the free topic

Computer Networking Dissertation Topics

Published by Carmen Troy at January 5th, 2023 , Revised On May 16, 2024

A dissertation is an essential aspect of completing your degree program. Whether you are pursuing your master’s or are enrolled in a PhD program, you will not be awarded a degree without successfully submitting a thesis. To ensure that your thesis is submitted successfully without any hindrances, you should first get your topic and dissertation outline approved by your professor. When approving, supervisors focus on a lot of aspects.

However, relevance, recency, and conciseness play a huge role in accepting or rejecting your topic.

As a computer networking student, you have a variety of networking topics to choose from. With the field evolving with each passing day, you must ensure that your thesis covers recent computer networking topics and explores a relevant problem or issue. To help you choose the right topic for your dissertation, here is a list of recent and relevant computer networking dissertation topics.

List Of Trending Ideas For Your Computer Networking Dissertation

  • Machine learning for proactive network anomaly detection 
  • The role of software-defined-networking (SDN) for network performance and security 
  • Applications and challenges of 6G technologies 
  • How to ensure fairness and efficiency in Multi-Access Edge Computing (MEC)
  • Denial-of-Service (DoS) Attacks in the Age of Distributed Denial-of-Service (DDoS) Attacks
  • Applications and rise of Low-Power Wide Area Networks (LPWANs)
  • Efficient Resource Allocation and Quality-of-Service (QoS) Management
  • Ethical Implications of Artificial Intelligence (AI) in Network Management
  • The best ways to use Blockchain for Tamper-Proof Evidence Collection and Storage
  • Role of Network Operators in Cloud Gaming

Computer Networking Dissertation Topics For Your Research

Topic 1: an evaluation of the network security during machine to machine communication in iot.

Research Aim: The research aims to evaluate the network security issues associated with M2M communication in IoT.

 Objectives:

  • To evaluate the factors affecting the network security of IoT devices.
  • To determine the methods for increasing data integrity in M2M communication against physical tampering and unauthorised monitoring.
  • To evaluate the network security issues associated with M2M communication in IoT and offer suitable recommendations for improvement.

Topic 2: An analysis of the cybersecurity challenges in public clouds and appropriate intrusion detection mechanisms.

Research Aim: The aim of the research is to analyse the cybersecurity challenges in public clouds and the appropriate intrusion detection mechanisms.

Objectives:

  • To analyse the types of cybersecurity threats impacting public clouds.
  • To determine some of the competent intrusion detection techniques that can be used in cloud computing.
  • To investigate the cybersecurity challenges in public clouds and offer mitigating with appropriate intrusion detection techniques.

Topic 3: Investigating the impact of SaaS cloud ERP on the scalability and cost-effectiveness of business.

Research Aim: The research aims to investigate the impact of SaaS cloud ERP on the scalability and cost-effectiveness of business.

  • To analyse the benefits of SaaS ERP over traditional ERP.
  • To evaluate the characteristics of SaaS architecture in cloud computing and determine its varieties.
  • To investigate how SaaS cloud ERP impacts business scalability and cost-effectiveness.

Topic 4: An evaluation of the requirements of cloud repatriation and the challenges associated with it.

Research Aim: The research aims to evaluate the requirements of cloud repatriation in organisations and the associated challenges

  • To analyse the key factors of cloud repatriation.
  • To determine the challenges associated with cloud repatriation from public clouds.
  • To evaluate the need for cloud repatriation in organisations and the associated complexities

Topic 5: An examination of the security mechanisms in decentralised networks and the ways of enhancing system robustness

Research Aim: The research aims to investigate the security mechanisms in decentralised networks and the ways of enhancing system robustness.

  • To analyse the concept of decentralised networks and understand their difference from centralised networks.
  • To analyse the security mechanisms in decentralised networks to determine how it offers visibility and traceability.
  • To investigate the security mechanisms in decentralised networks and how system robustness can be increased for better privacy and security.

Latest Computer Networking Dissertation Topics

Exploring the importance of computer networking in today’s era.

Research Aim: Even though computer networking has been practised for a few years now, its importance has increased immensely over the past two years. A few main reasons include the use of technology by almost every business and the aim to offer customers an easy and convenient shopping experience. The main aim of this research will be to explain the concepts of computer networking, its benefits, and its importance in the current era. The research will also discuss how computer networking has helped businesses and individuals perform their work and benefit from it. The research will then specifically state examples where computer networking has brought positive changes and helped people achieve what they want.

Wireless Networks in Business Settings – An Analysis

Research Aim: Wireless networks are crucial in computer networking. They help build networks seamlessly, and once the networks are set up on a wireless network, it becomes extremely easy for the business to perform its daily activities. This research will investigate all about wireless networks in a business setting. It will first introduce the various wireless networks that can be utilised by a business and will then talk about how these networks help companies build their workflow around them. The study will analyse different wireless networks used by businesses and will conclude how beneficial they are and how they are helping the business.

Understanding Virtual Private Networks – A Deep Analysis of Their Challenges

Research Aim: Private virtual networks (VPN) are extremely common today. These are used by businesses and individuals alike. This research aims to understand how these networks operate and how they help businesses build strong and successful systems and address the challenges of VPNs. A lot of businesses do not adopt virtual private networks due to the challenges that they bring. This research will address these challenges in a way that will help businesses implement VPNs successfully.

A Survey of the Application of Wireless Sensor Networks

Research Aim: Wireless sensor networks are self-configured, infrastructure-less wireless networks to pass data. These networks are now extremely popular amongst businesses because they can solve problems in various application domains and possess the capacity to change the way work is done. This research will investigate where wireless sensor networks are implemented, how they are being used, and how they are performing. The research will also investigate how businesses implement these systems and consider factors when utilising these wireless sensor networks.

Computer Network Security Attacks – Systems and Methods to Respond

Research Aim: With the advent of technology today, computer networks are extremely prone to security attacks. A lot of networks have security systems in place. However, people with nefarious intent find one way to intrude and steal data/information. This research will address major security attacks that have impacted businesses and will aim to address this challenge. Various methods and systems will be highlighted to protect the computer networks. In addition to this, the research will also discuss various methods to respond to attacks and to keep the business network protected.

Preventing a Cyberattack – How Can You Build a Powerful Computer Network?

Research Aim: Cyberattacks are extremely common these days. No matter how powerful your network is, you might be a victim of phishing or hacking. The main aim of this research will be to outline how a powerful computer network can be built. Various methods to build a safe computer network that can keep data and information will be outlined, and the study will also highlight ways to prevent a cyberattack. In addition to this, the research will talk about the steps that should be taken to keep the computer network safe. The research will conclude with the best way and system to build a powerful and safe computer network.

Types of Computer Networks: A Comparison and Analysis

Research Aim: There are different types of computer networks, including LAN, WAN, PAN, MAN, CAN, SAN, etc. This research will discuss all the various types of computer networks to help readers understand how all these networks work. The study will then compare the different types of networks and analyse how each of them is implemented in different settings. The dissertation will also discuss the type of computer networks that businesses should use and how they can use them for their success. The study will then conclude which computer network is the best and how it can benefit when implemented.

Detecting Computer Network Attacks by Signatures and Fast Content Analysis

Research Aim: With technological advancement, today, many computer network attacks can be detected beforehand. While many techniques are utilised for detecting these attacks, the use of signatures and fast content analysis are the most popular ones. This research will explore these techniques in detail and help understand how they can detect a computer network attack and prevent it. The research will present different ways these techniques are utilised to detect an attack and help build powerful and safe computer networks. The research will then conclude how helpful these two techniques are and whether businesses should implement them.

Overview of Wireless Network Technologies and their Role in Healthcare

Research Aim: Wireless network technologies are utilised by several industries. Their uses and benefits have helped businesses resolve many business problems and assisted them in conducting their daily activities without any hindrance. This networking topic will help explore how wireless network technologies work and will talk about their benefits. This research aims to find out how wireless technologies help businesses carry out their daily routine tasks effortlessly. For this research, the focus will be on the healthcare industry. The study will investigate how wireless network technology has helped the healthcare sector and how it has benefited them to perform their daily tasks without much effort.

Setting up a Business Communication System over a Computer Network

Research Aim: Communication is an essential aspect of every business. Employees need to communicate effectively to keep the business going. In the absence of effective communication, businesses suffer a lot as the departments are not synchronised, and the operations are haphazard. This research will explore the different ways through which network technologies help conduct smooth and effective communication within organisations. This research will conclude how wireless networks have helped businesses build effective communication systems within their organisation and how they have benefited from it. It will then conclude how businesses have improved and solved major business problems with the help of these systems.

Free Dissertation Topic

Phone Number

Academic Level Select Academic Level Undergraduate Graduate PHD

Academic Subject

Area of Research

Frequently Asked Questions

How to find computer networking dissertation topics.

To find computer networking dissertation topics:

  • Follow industry news and emerging technologies.
  • Investigate unresolved networking challenges.
  • Review recent research papers.
  • Explore IoT, cybersecurity , and cloud computing.
  • Consider real-world applications.
  • Select a topic aligned with your expertise and career aspirations.

You May Also Like

If you have aimed to write your dissertation about leadership and direly looking for some exceptional leadership research topics, do not worry; we have got your back.

As the field of forensic psychology is still relatively new, there are numerous research issues to address. Investigate how psychology has been used to support certain legal theories.

Waste disposal is an important part of our everyday lives that often goes unnoticed. Proper waste disposal ensures that our environment and public health remain safe and healthy.

USEFUL LINKS

LEARNING RESOURCES

researchprospect-reviews-trust-site

COMPANY DETAILS

Research-Prospect-Writing-Service

  • How It Works

CrowJack

  • Calculators
  • Swot Analysis
  • Pestle Analysis
  • Five Forces Analysis
  • Organizational Structure
  • Copywriting
  • Research Topics
  • Student Resources

CrowJack

Services We Provide

proof-reading

Resources We Provide

blog

Login / Register

login

  • 15 Latest Networking Research Topics for Students

Kiara Miller - Image

Comparative analysis between snort and suricata IDS software(s)

Description of the topic

The main focus of this research is to conduct a comparative analysis between Snort and Suricata software to determine which IDS software can provide better performance. There are various IDS software(s) available that can be used by organizations but it is difficult to identify which one is best (Aldarwbi et al., 2022). Different organizational structures are often facing problems while setting up an IDS system which results in false positives and intrusions. Through this research, it can be identified which IDS software is better and what secure configuration is required to detect intrusions (Waleed et al., 2022).

Research objectives

  • To evaluate Snort and Suricata IDS software(s) to determine the most optimal one.
  • To identify the false positive rate of Snort and Suricata on the networked environment.

Research questions

RQ1: Which IDS software can perform better on the production network in terms of performance, security, scalability and reliability?

RQ2: What different ways can be followed to deal with false positive problems in IDS technology?

Research methodology

The given research objectives and research questions can be addressed using quantitative research methodology where an experimental approach can be followed. For the given topic, both Snort and Suricata IDS systems should be configured and tested against different attacks. Depending on the findings, it can be analyzed which IDS software can perform better in terms of performance and security (Shuai & Li, 2021).

  • Aldarwbi, M.Y., Lashkari, A.H. and Ghorbani, A.A. (2022) “The sound of intrusion: A novel network intrusion detection system,” Computers and Electrical Engineering , 104, p. 108455.
  • Shuai, L. and Li, S. (2021) “Performance optimization of Snort based on DPDK and Hyperscan,” Procedia Computer Science , 183, pp. 837-843.
  • Waleed, A., Jamali, A.F. and Masood, A. (2022) “Which open-source ids? Snort, Suricata or Zeek,” Computer Networks , 213, p. 109116.

Role of honeypots and honey nets in network security

Network Security has become essential nowadays and there is a need for setting up robust mechanisms to maintain confidentiality and integrity (Feng et al., 2023). Due to the number of security mechanisms available, organizations found it hard to finalize and implement them on their network. For example, honey pots and honeynet approaches look almost the same and have the same purpose but work differently. Under this research topic, the configuration of honeynets and honeypots can be done to check which one can perform better security in terms of trapping cyber attackers. The entire implementation can be carried out in the cloud-based instance for improved security and it can be identified which type of honey pot technology must be preferred (Maesschalck et al., 2022).

  • To set up a honey pot system using Open Canary on the virtual instance to protect against cyber attackers.
  • To set up a honeynet system on the virtual instance to assure protection is provided against malicious attackers.
  • To test honeypots and honeynets by executing DDoS attacks to check which can provide better security.

RQ1: Why is there a need for using honeypots over honey pots in a production networked environment?

RQ2: What are the differences between cloud-based and local honey pot systems for endpoint protection?

This research can be carried out using the quantitative method of research. At the initial stage, the implementation of honeypots and honeypots can be done on the virtual instance following different security rules. Once the rules are applied, the testing can be performed using a Kali Linux machine to check whether honey pots were effective or honeynets (Gill et al., 2020).

  • Feng, H. et al. (2023) “Game theory in network security for Digital Twins in industry,” Digital Communications and Networks [Preprint].
  • Gill, K.S., Saxena, S. and Sharma, A. (2020) “GTM-CSEC: A game theoretic model for cloud security based on ids and Honeypot,” Computers & Security , 92, p. 101732
  • Maesschalck, S. et al. (2022) “Don’t get stung, cover your ICS in honey: How do honeypots fit within industrial control system security,” Computers & Security , 114, p. 102598.

How do malware variants are progressively improving?

This research can be based on evaluating how malware variants are progressively improving and what should be its state in the coming future. Malware is able to compromise confidential user’s information assets which is why this research can be based on identifying current and future consequences owing to its improvements (Deng et al., 2023). In this field, there is no research work that has been carried out to identify how malware variants are improving their working and what is expected to see in future. Once the evaluation is done, a clear analysis can also be done on some intelligent preventive measures to deal with dangerous malware variants and prevent any kind of technological exploitation (Tang et al., 2023).

  • To investigate types of malware variants available to learn more about malware's hidden features.
  • To focus on future implications of malware executable programs and how they can be avoided.
  • To discuss intelligent solutions to deal with all malware variants.

RQ1: How do improvements in malware variants impact enterprises?

RQ2: What additional solutions are required to deal with malware variants?

In this research, qualitative analysis can be conducted on malware variants and the main reason behind their increasing severity. The entire research can be completed based on qualitative research methodology to answer defined research questions and objectives. Some real-life case studies should also be integrated into the research which can be supported by the selected topic (Saidia Fasci et al., 2023).

  • Deng, H. et al. (2023) “MCTVD: A malware classification method based on three-channel visualization and deep learning,” Computers & Security , 126, p. 103084.
  • Saidia Fasci, L. et al. (2023) “Disarming visualization-based approaches in malware detection systems,” Computers & Security , 126, p. 103062.
  • Tang, Y. et al. (2023) “BHMDC: A byte and hex n-gram based malware detection and classification method,” Computers & Security , p. 103118.

Implementation of IoT - enabled smart office/home using cisco packet tracer

The Internet of Things has gained much more attention over the past few years which is why each enterprise and individual aims at setting up an IoT network to automate their processes (Barriga et al., 2023). This research can be based on designing and implementing an IoT-enabled smart home/office network using Cisco Packet Tracer software. Logical workspace, all network devices, including IoT devices can be used for preparing a logical network star topology (Elias & Ali, 2014). To achieve automation, the use of different IoT rules can be done to allow devices to work based on defined rules.

  • To set up an IoT network on a logical workspace using Cisco Packet Tracer simulation software.
  • To set up IoT-enabled rules on an IoT registration server to achieve automation (Hou et al., 2023).

RQ: Why is the Cisco packet tracer preferred for network simulation over other network simulators?

At the beginning of this research, a quantitative research methodology can be followed where proper experimental set-up can be done. As a packet tracer is to be used, the star topology can be used to interconnect IoT devices, sensors and other network devices at the home/office. Once a placement is done, the configuration should be done using optimal settings and all IoT devices can be connected to the registration server. This server will have IoT rules which can help in achieving automation by automatically turning off lights and fans when no motion is detected (Baggan et al., 2022).

  • Baggan, V. et al. (2022) “A comprehensive analysis and experimental evaluation of Routing Information Protocol: An Elucidation,” Materials Today: Proceedings , 49, pp. 3040–3045.
  • Barriga, J.A. et al. (2023) “Design, code generation and simulation of IOT environments with mobility devices by using model-driven development: Simulateiot-Mobile,” Pervasive and Mobile Computing , 89, p. 101751.
  • Elias, M.S. and Ali, A.Z. (2014) “Survey on the challenges faced by the lecturers in using packet tracer simulation in computer networking course,” Procedia - Social and Behavioral Sciences , 131, pp. 11–15.
  • Hou, L. et al. (2023) “Block-HRG: Block-based differentially private IOT networks release,” Ad Hoc Networks , 140, p. 103059.

Comparative analysis between AODV, DSDV and DSR routing protocols in WSN networks

For wireless sensor networks (WSN), there is a major need for using WSN routing rather than performing normal routines. As WSN networks are self-configured, there is a need for an optimal routing protocol that can improve network performance in terms of latency, jitter, and packet loss (Luo et al., 2023). There are often various problems faced when WSN networks are set up due to a lack of proper routing protocol selection. As a result of this, severe downtime is faced and all links are not able to communicate with each other easily (Hemanand et al., 2023). In this research topic, the three most widely used WSN routing protocols AODV, DSDV and DSR can be compared based on network performance. To perform analysis, three different scenarios can be created in network simulator 2 (Ns2).

  • To create three different scenarios on ns2 software to simulate a network for 1 to 100 seconds.
  • To analyze which WSN routing is optimal in terms of network performance metrics, including latency, jitter and packet loss.
  • To use CBR and NULL agents for all wireless scenarios to start with simulation purposes.

RQ: How do AODV, DSR and DSDV routing protocols differ from each other in terms of network performance?

This research can be carried out using a quantitative research method. The implementation for the provided research topic can be based on Ns2 simulation software where three different scenarios can be created (AODV, DSDV and DSR). For each scenario, NULL, CSR and UDP agents can be done to start with simulation for almost 1 to 100 seconds. For all transmissions made during the given time, network performance can be checked to determine which routing is best (Mohapatra & Kanungo, 2012).

  • Human and, D. et al. (2023) “Analysis of power optimization and enhanced routing protocols for Wireless Sensor Networks,” Measurement: Sensors , 25, p. 100610. Available at: https://doi.org/10.1016/j.measen.2022.100610.
  • Luo, S., Lai, Y. and Liu, J. (2023) “Selective forwarding attack detection and network recovery mechanism based on cloud-edge cooperation in software-defined wireless sensor network,” Computers & Security , 126, p. 103083. Available at: https://doi.org/10.1016/j.cose.2022.103083.
  • Mohapatra, S. and Kanungo, P. (2012) “Performance analysis of AODV, DSR, OLSR and DSDV routing protocols using NS2 Simulator,” Procedia Engineering , 30, pp. 69–76. Available at: https://doi.org/10.1016/j.proeng.2012.01.835.

Securing wireless network using AAA authentication and WLAN controller

Wireless networks often face intrusion attempts due to insecure protocols and sometimes open SSIDs. As a result of this, man-in-the-middle and eavesdropping attacks become easier which results in the loss of confidential information assets (Sivasankari & Kamalakkannan, 2022). When it comes to managing networks in a large area, there are higher chances for attacks that enable cyber attackers in intercepting ongoing communication sessions. However, there is currently no research conducted where the use of AAA authentication has been done with WLAN controllers to make sure a higher level of protection is provided (Nashwan, 2021). The proposed research topic can be based on securing wireless networks with the help of AAA authentication and WLAN controllers. The use of AAA authentication can be done to set up a login portal for users whilst the WLAN controller can be used for managing all wireless access points connected to the network (Nashwan, 2021).

  • To set up AAA authentication service on the wireless network simulated on Cisco Packet Tracer for proper access control.
  • To set up a WLAN controller on the network to manage all wireless access points effortlessly.
  • To use WPA2-PSK protocol on the network to assure guest users are only able to access wireless networks over a secure protocol.

RQ1: What additional benefits are offered by AAA authentication on the WLAN networks?

RQ2: Why are wireless networks more likely to face network intrusions than wired networks?

This research topic is based on the secure implementation of a wireless LAN network using a Cisco packet tracer. Hence, this research can be carried out using a quantitative research method. The implementation can be carried out using AAA authentication which can assure that access control is applied for wireless logins. On the other hand, a WLAN controller can also be configured which can ensure that all WAPs are managed (ZHANG et al., 2012).

  • Nashwan, S. (2021) “AAA-WSN: Anonymous Access Authentication Scheme for wireless sensor networks in Big Data Environment,” Egyptian Informatics Journal , 22(1), pp. 15–26.
  • Sivasankari, N. and Kamalakkannan, S. (2022) “Detection and prevention of man-in-the-middle attack in IOT network using regression modeling,” Advances in Engineering Software , 169, p. 103126.
  • ZHANG, J. et al. (2012) “AAA authentication for Network mobility,” The Journal of China Universities of Posts and Telecommunications , 19(2), pp. 81-86.

OWASP's approach to secure web applications from web application exploits

The research can revolve around the development of web applications by considering OWASP's top 10 rules. Usually, web applications are deployed by organizations depending on their requirements and these applications are vulnerable to various exploits, including injection, broken authentication and other forgery attacks (Poston, 2020). Identifying every single vulnerability is difficult when reference is not taken and often organizations end up hosting a vulnerable server that leads to privacy issues and compromises confidential information easily. In this research, OWASP's top 10 approaches can be followed to develop a secure web application that can be able to protect against top web application exploits. This approach is based on emphasizing severe and minor vulnerabilities which must be patched for protecting against web application attacks (Deepa & Thilagam, 2016).

  • The first objective can be setting up an insecure web application on the cloud environment which can be exploited with different techniques.
  • The second objective can be to consider all techniques and procedures provided by OWASP's top 10 methodologies.
  • The last objective can be applying all fixes to insecure web applications to make them resistant to OWASP top 10 attacks (Sonmez, 2019).

RQ1: What are the benefits of using OWASP's top 10 approaches to harden web applications in comparison to other security approaches?

The research methodology considered for this research project can be quantitative using an experimental approach. The practical work can be done for the selected topic using AWS or the Azure cloud platform. Simply, a virtual web server can be configured and set up with a secure and insecure web application. Following OWASP's top 10 techniques and procedures, the web application can be secured from possible attacks. In addition, insecure applications can also be exploited and results can be evaluated (Applebaum et al., 2021).

  • Applebaum, S., Gaber, T. and Ahmed, A. (2021) “Signature-based and machine-learning-based web application firewalls: A short survey,” Procedia Computer Science , 189, pp. 359–367. Available at: https://doi.org/10.1016/j.procs.2021.05.105.
  • Deepa, G. and Thilagam, P.S. (2016) “Securing web applications from injection and logic vulnerabilities: Approaches and challenges,” Information and Software Technology , 74, pp. 160–180. Available at: https://doi.org/10.1016/j.infsof.2016.02.005.
  • Poston, H. (2020) “Mapping the owasp top Ten to the blockchain,” Procedia Computer Science , 177, pp. 613-617. Available at: https://doi.org/10.1016/j.procs.2020.10.087.
  • Sonmez, F.Ö. (2019) “Security qualitative metrics for Open Web Application Security Project Compliance,” Procedia Computer Science , 151, pp. 998-1003. Available at: https://doi.org/10.1016/j.procs.2019.04.140.

Importance of configuring RADIUS (AAA) server on the network

User authentication has become significant nowadays as it guarantees that a legitimate user is accessing the network. But a problem is faced when a particular security control is to be identified for authentication and authorization. These controls can be categorized based on mandatory access controls, role-based access control, setting up captive portals and many more. Despite several other security controls, one of the most efficient ones is the RADIUS server (SONG et al., 2008). This server can authenticate users on the network to make sure network resources are accessible to only legal users. This research topic can be based on understanding the importance of RADIUS servers on the network which can also be demonstrated with the help of the Cisco Packet Tracer. A network can be designed and equipped with a RADIUS server to ensure only legal users can access network resources (WANG et al., 2009).

  • To configure RADIUS (AAA) server on the network which can be able to authenticate users who try to access network resources.
  • To simulate a network on a packet tracer simulation software and verify network connectivity.

RQ1: What are other alternatives to RADIUS (AAA) authentication servers for network security?

RQ2: What are the common and similarities between RADIUS and TACACS+ servers?

As a logical network is to be designed and configured, a quantitative research methodology can be followed. In this research coursework, a secure network design can be done using a packet tracer network simulator, including a RADIUS server along with the DMZ area. The configuration for the RADIUS server can be done to allow users to only access network resources by authenticating and authorizing (Nugroho et al., 2022).

  • Nugroho, Y.S. et al. (2022) “Dataset of network simulator related-question posts in stack overflow,” Data in Brief , 41, p. 107942.
  • SONG, M., WANG, L. and SONG, J.-de (2008) “A secure fast handover scheme based on AAA protocol in Mobile IPv6 Networks,” The Journal of China Universities of Posts and Telecommunications , 15, pp. 14-18.
  • WANG, L. et al. (2009) “A novel congestion control model for interworking AAA in heterogeneous networks,” The Journal of China Universities of Posts and Telecommunications , 16, pp. 97-101.

Comparing mod security and pF sense firewall to block illegitimate traffic

Firewalls are primarily used for endpoint security due to their advanced features ranging from blocking to IDS capabilities and many more. It is sometimes challenging to identify which type of firewall is best and due to this reason, agencies end up setting up misconfigured firewalls (Tiwari et al., 2022). This further results in a cyber breach, destroying all business operations. The research can be emphasizing conducting a comparison between the two most widely used firewalls i.e. Mod Security and pF sense. Using a virtualized environment, both firewalls can be configured and tested concerning possible cyber-attacks (Lu & Yang, 2020).

  • To use the local environment to set up Mod security and pF sense firewall with appropriate access control rules.
  • To test both firewalls by executing distributed denial of service attacks from a remote location.
  • To compare which type of firewall can provide improved performance and robust security.

RQ: How do Mod security and pF sense differ from each other in terms of features and performance?

The practical experimentation for both firewalls can be done using a virtualized environment where two different machines can be created. Hence, this research can be carried out using a quantitative research method . The first machine can have Mod security and the second machine can have pF sense configured. A new subnet can be created which can have these two machines. The third machine can be an attacking machine which can be used for testing firewalls. The results obtained can be then evaluated to identify which firewall is best for providing security (Uçtu et al., 2021).

  • Lu, N. and Yang, Y. (2020) “Application of evolutionary algorithm in performance optimization of Embedded Network Firewall,” Microprocessors and Microsystems , 76, p. 103087.
  • Tiwari, A., Papini, S. and Hemamalini, V. (2022) “An enhanced optimization of parallel firewalls filtering rules for scalable high-speed networks,” Materials Today: Proceedings , 62, pp. 4800-4805.
  • Uçtu, G. et al. (2021) “A suggested testbed to evaluate multicast network and threat prevention performance of Next Generation Firewalls,” Future Generation Computer Systems , 124, pp. 56-67.

Conducting a comprehensive investigation on the PETYA malware

The main purpose of this research is to conduct a comprehensive investigation of the PETYA malware variant (McIntosh et al., 2021). PETYA often falls under the category of ransomware attacks which not only corrupt and encrypt files but can compromise confidential information easily. Along with PETYA, there are other variants also which lead to a security outage and organizations are not able to detect these variants due to a lack of proper detection capabilities (Singh & Singh, 2021). In this research, a comprehensive analysis has been done on PETYA malware to identify its working and severity level. Depending upon possible causes of infection of PETYA malware, some proactive techniques can also be discussed (Singh & Singh, 2021). A separation discussion can also be made on other malware variants, their features, and many more.

  • The main objective of this research is to scrutinize the working of PETYA malware because a ransomware attack can impact the micro and macro environment of the organizations severely.
  • The working of PETYA malware along with its source code can be reviewed to identify its structure and encryption type.
  • To list all possible CVE IDs which are exploited by the PETYA malware.

RQ1: How dangerous is PETYA malware in comparison to other ransomware malware?

This research can be based on qualitative research methodology to evaluate the working of PETYA malware from various aspects, the methodology followed and what are its implications. The research can be initiated by evaluating the working of PETYA malware, how it is triggered, what encryption is applied and other factors. A sample source code can also be analyzed to learn more about how cryptography is used with ransomware (Abijah Roseline & Geetha, 2021).

  • Abijah Roseline, S. and Geetha, S. (2021) “A comprehensive survey of tools and techniques mitigating computer and mobile malware attacks,” Computers & Electrical Engineering , 92, p. 107143.
  • McIntosh, T. et al. (2021) “Enforcing situation-aware access control to build malware-resilient file systems,” Future Generation Computer Systems , 115, pp. 568-582.
  • Singh, J. and Singh, J. (2021) “A survey on machine learning-based malware detection in executable files,” Journal of Systems Architecture , 112, p. 101861.

Setting up a Live streaming server on the cloud platform

Nowadays, various organizations require a live streaming server to stream content depending upon their business. However, due to a lack of proper hardware, organizations are likely to face high network congestion, slowness and other problems (Ji et al., 2023). Referring to the recent cases, it has been observed that setting up a streaming server on the local environment is not expected to perform better than a cloud-based streaming server configuration (Martins et al., 2019). This particular research topic can be based on setting up a live streaming server on the AWS or Azure cloud platform to make sure high network bandwidth is provided with decreased latency. The research gap analysis would be conducted to analyze the performance of live streaming servers on local and cloud environments in terms of network performance metrics (Bilal et al., 2018).

  • To set up a live streaming server on the AWS or Azure cloud platform to provide live streaming services.
  • To use load balancers alongside streaming servers to ensure the load is balanced and scalability is achieved.
  • To use Wireshark software to test network performance during live streaming.

RQ1: Why are in-house streaming servers not able to provide improved performance in comparison to cloud-based servers?

RQ2: What additional services are provided by cloud service providers which help in maintaining network performance?

The implementation is expected to carry out on the AWS cloud platform with other AWS services i.e. load balancer, private subnet and many more (Efthymiopoulou et al., 2017). Hence, this research can be carried out using a quantitative research method. The configuration of ec2 instances can be done which can act as a streaming server for streaming media and games. For testing this project, the use of OBS studio can be done which can help in checking whether streaming is enabled or not. For network performance, Wireshark can be used for testing network performance (George et al., 2020).

  • Bilal, KErbad, A. and Hefeeda, M. (2018) “QoE-aware distributed cloud-based live streaming of multi-sourced Multiview Videos,” Journal of Network and Computer Applications , 120, pp. 130-144.
  • Efthymiopoulou, M. et al. (2017) “Robust control in cloud-assisted peer-to-peer live streaming systems,” Pervasive and Mobile Computing , 42, pp. 426-443.
  • George, L.C. et al. (2020) “Usage visualization for the AWS services,” Procedia Computer Science , 176, pp. 3710–3717.
  • Ji, X. et al. (2023) “Adaptive QoS-aware multipath congestion control for live streaming,” Computer Networks , 220, p. 109470.
  • Martins, R. et al. (2019) “Iris: Secure reliable live-streaming with Opportunistic Mobile Edge Cloud offloading,” Future Generation Computer Systems , 101, pp. 272-292.

Significance of using OSINT framework for Network reconnaissance

Network reconnaissance is becoming important day by day when it comes to penetration testing. Almost all white hat hackers are dependent on the OSINT framework to start with network reconnaissance and footprinting when it comes to evaluating organizational infrastructure. On the other hand, cyber attackers are also using this technique to start fetching information about their target. Currently, there is no investigation carried out to identify how effective the OSINT framework is over traditional reconnaissance activities (Liu et al., 2022). This research is focused on using OSINT techniques to analyze victims using different sets of tools like Maltego, email analysis and many other techniques. The analysis can be based on fetching sensitive information about the target which can be used for conducting illegal activities (Abdullah, 2019).

  • To use Maltego software to conduct network reconnaissance on the target by fetching sensitive information.
  • To compare the OSINT framework with other techniques to analyze why it performs well.

RQ1: What is the significance of using the OSINT framework in conducting network reconnaissance?

RQ2: How can the OSINT framework be used by cyber hackers for conducting illegitimate activities?

The OSINT framework is easily accessible on its official website where different search options are given. Hence, this research can be carried out using a quantitative research method. Depending upon the selected target, each option can be selected and tools can be shortlisted for final implementation. Once the tools are shortlisted, they can be used to conduct network reconnaissance (González-Granadillo et al., 2021). For example, Maltego can be used as it is a powerful software to fetch information about the target.

  • Abdullah, S.A. (2019) “Seui-64, bits an IPv6 addressing strategy to mitigate reconnaissance attacks,” Engineering Science and Technology , an International Journal, 22(2), pp. 667–672.
  • Gonzalez-Granadillo, G. et al. (2021) “ETIP: An enriched threat intelligence platform for improving OSINT correlation, analysis, visualization and sharing capabilities,” Journal of Information Security and Applications , 58, p. 102715.
  • Liu, W. et al. (2022) “A hybrid optimization framework for UAV Reconnaissance Mission Planning,” Computers & Industrial Engineering , 173, p. 108653.

Wired and wireless network hardening in cisco packet tracer

At present, network security has become essential and if enterprises are not paying attention to the security infrastructure, there are several chances for cyber breaches. To overcome all these issues, there is a need for setting up secure wired and wireless networks following different techniques such as filtered ports, firewalls, VLANs and other security mechanisms. For the practical part, the use of packet tracer software can be done to design and implement a highly secure network (Sun, 2022).

  • To use packet tracer simulation software to set up secure wired and wireless networks.
  • Use different hardening techniques, including access control rules, port filtering, enabling passwords and many more to assure only authorized users can access the network (Zhang et al., 2012).

RQ: Why is there a need for emphasizing wired and wireless network security?

Following the quantitative approach, the proposed research topic implementation can be performed in Cisco Packet Tracer simulation software. Several devices such as routers, switches, firewalls, wireless access points, hosts and workstations can be configured and interconnected using Cat 6 e cabling. For security, every device can be checked and secure design principles can be followed like access control rules, disabled open ports, passwords, encryption and many more (Smith & Hasan, 2020).

  • Smith, J.D. and Hasan, M. (2020) “Quantitative approaches for the evaluation of Implementation Research Studies,” Psychiatry Research , 283, p. 112521.
  • Sun, J. (2022) “Computer Network Security Technology and prevention strategy analysis,” Procedia Computer Science , 208, pp. 570–576.
  • Zhang, YLiang, R. and Ma, H. (2012) “Teaching innovation in computer network course for undergraduate students with a packet tracer,” IERI Procedia , 2, pp. 504–510.

Different Preemptive ways to resist spear phishing attacks

When it comes to social engineering, phishing attacks are rising and are becoming one of the most common ethical issues as it is one of the easiest ways to trick victims into stealing information. This research topic is based on following different proactive techniques which would help in resisting spear phishing attacks (Xu et al., 2023). This can be achieved by using the Go-Phish filter on the machine which can automatically detect and alert users as soon as the phished URL is detected. It can be performed on the cloud platform where the apache2 server can be configured along with an anti-phishing filter to protect against phishing attacks (Yoo & Cho, 2022).

  • To set up a virtual instance on the cloud platform with an apache2 server and anti-phishing software to detect possible phishing attacks.
  • To research spear phishing and other types of phishing attacks that can be faced by victims (Al-Hamar et al., 2021).

RQ1: Are phishing attacks growing just like other cyber-attacks?

RQ2: How effective are anti-phishing filters in comparison to cyber awareness sessions?

The entire research can be conducted by adhering to quantitative research methodology which helps in justifying all research objectives and questions. The implementation of the anti-phishing filter can be done by creating a virtual instance on the cloud platform which can be configured with an anti-phishing filter. Along with this, some phishing attempts can also be performed to check whether the filter works or not (Siddiqui et al., 2022).

  • Al-Hamar, Y. et al. (2021) “Enterprise credential spear-phishing attack detection,” Computers & Electrical Engineering , 94, p. 107363.
  • Siddiqui, N. et al. (2022) “A comparative analysis of US and Indian laws against phishing attacks,” Materials Today: Proceedings , 49, pp. 3646–3649.
  • Xu, T., Singh, K. and Rajivan, P. (2023) “Personalized persuasion: Quantifying susceptibility to information exploitation in spear-phishing attacks,” Applied Ergonomics , 108, p. 103908.
  • Yoo, J. and Cho, Y. (2022) “ICSA: Intelligent chatbot security assistant using text-CNN and multi-phase real-time defense against SNS phishing attacks,” Expert Systems with Applications , 207, p. 117893.

Evaluating the effectiveness of distributed denial of service attacks

The given research topic is based on evaluating the effectiveness of distributed denial of service attacks on cloud and local environments. Hence, this research can be carried out using a quantitative research method. Cyber attackers find DDoS as one of the most dangerous technological exploitation when it comes to impacting network availability (Krishna Kishore et al., 2023). This research can revolve around scrutinizing the impact of DDoS attacks on the local environment and cloud environment. This can be done by executing DDoS attacks on a simulated environment using hoping or other software(s) to check where it has a higher magnitude (de Neira et al., 2023).

  • To set up a server on the local and cloud environment to target using DDoS attacks for checking which had experienced slowness.
  • To determine types of DDoS attack types, their magnitude and possible mitigation techniques.

RQ: Why do DDoS attacks have dynamic nature and how is it likely to sternly impact victims?

The experimentation for this research can be executed by creating a server on the local and cloud environment. Hence, this research can be carried out using a quantitative research method. These servers can be set up as web servers using apache 2 service. On the other hand, a Kali Linux machine can be configured with DDoS execution software. Each server can be targeted with DDoS attacks to check its effectiveness (Benlloch-Caballero et al., 2023).

  • Benlloch-Caballero, P., Wang, Q. and Alcaraz Calero, J.M. (2023) “Distributed dual-layer autonomous closed loops for self-protection of 5G/6G IOT networks from distributed denial of service attacks,” Computer Networks , 222, p. 109526.
  • de Neira, A.B., Kantarci, B. and Nogueira, M. (2023) “Distributed denial of service attack prediction: Challenges, open issues and opportunities,” Computer Networks , 222, p. 109553.
  • Krishna Kishore, P., Ramamoorthy, S. and Rajavarman, V.N. (2023) “ARTP: Anomaly-based real time prevention of distributed denial of service attacks on the web using machine learning approach,” International Journal of Intelligent Networks , 4, pp. 38–45.

Recommended Readings

Latest Web Development Research Topics

Top Management Research Topics

Newest AI Research Topics

15 Latest Networking Research Topics for Students

Research in every field is becoming more and more essential because of constant developments around the world. Similar is the case in the field of networking. This is the reason; students who are preparing to master the field of networking need to keep their knowledge of the current state of the art in the field up to date.

However, choosing the right research topic often becomes a tough task for students to carry out their research effectively. That being the case, this list contains 15 latest research topics in the field of networking. Whether you are a seasoned researcher or just starting, this list can provide you with ample inspiration and guidance to drive your research forward in the dynamic and evolving field of Networking.

Facebook

Copyright © 2023 CrowJack. All Rights Reserved

computer networking research paper topics

Communications and Networking Research Group

PUBLICATIONS

Journal articles | other papers | conference papers | book chapters | technical reports, journal articles.

134. Vishrant Tripathi, Nick Jones, Eytan Modiano, Fresh-CSMA: A Distributed Protocol for Minimizing Age of Information, IEEE Journal on Communications and Networks, 2024.

133. Bai Liu, Quang Nguyen, Qingkai Liang, Eytan Modiano, Tracking Drift-Plus-Penalty: Utility Maximization for Partially Observable and Controllable Networks, IEEE/ACM Transactions on Networking, 2024.

132. Xinzhe Fu, Eytan Modiano, Optimal Routing to Parallel Servers with Unknown Utilities – Multi-armed Bandit With Queues, IEEE/ACM Transactions on Networking, January 2022.

131. Bai Liu, Qingkai Liang, Eytan Modiano, Tracking MaxWeight: Optimal Control for Partially Observable and Controllable Networks, IEEE/ACM Transactions on Networking, August 2023.

130. Xinzhe Fu, Eytan Modiano, Joint Learning and Control in Stochastic Queueing Networks with unknown Utilities, Proceedings of the ACM on Measurement and Analysis of Computing Systems, 2023.

129. Vishrant Tripathi, Rajat Talak, Eytan Modiano, Information Freshness in Multi-Hop Wireless Networks, IEEE/ACM Transactions on Networking,” April 2023.

128.  Xinzhe Fu, Eytan Modiano, “ Learning-NUM: Network Utility Maximization with Unknown Utility Functions and Queueing Delay ,”  IEEE/ACM Transactions on Networking,” 2022.

127.  Bai Liu, Qiaomin Xie, Eytan Modiano,  “ RL-QN: A Reinforcement Learning Framework for Optimal Control of Queueing Systems ,”  ACM Transactions on Modeling and Performance Evaluation of Computing Systems (TOMPECS), 2022.

126. Xinzhe Fu and E. Modiano,  “ Elastic Job Scheduling with Unknown Utility Functions ,” Performance Evaluation, 2021.

125. Bai Liu and E. Modiano, “ Optimal Control for Networks with Unobservable Malicious Nodes ,”  Performance Evaluation, 2021.

124. Vishrant Tripathi, Rajat Talak, Eytan Modiano, “ Age Optimal Information Gathering and Dissemination on Graphs ,”  Transactions on Mobile Computing, April 2021.

123.  Xinyu Wu, Dan Wu, Eytan Modiano, “ Predicting Failure Cascades in Large Scale Power Systems via the Influence Model Framework, ”  IEEE Transactions on Power Systems, 2021.

122.   Roy D. Yates, Yin Sun, D. Richard Brown III, Sanjit K. Kaul, Eytan Modiano and Sennur Ulukus, “ Age of Information: An Introduction and Survey, ”  Journal on Selected Areas in Communications, February 2021.

121.   Jianan Zhang, Abhishek Sinha, Jaime Llorca, Anonia Tulino, Eytan Modiano, “ Optimal Control of Distributed Computing Networks with Mixed-Cast Traffic Flows ,”  IEEE/ACM Transactions on Networking, 2021.

120.   Thomas Stahlbuhk, Brooke Shrader, Eytan Modiano, “ Learning Algorithms for Minimizing Queue Length Regret ,”  IEEE Transactions on Information Theory, 2021.

119.   Thomas Stahlbuhk, Brooke Shrader, Eytan Modiano, “ Throughput Maximization in Uncooperative Spectrum Sharing Networks ,”  IEEE/ACM IEEE/ACM Transactions on Networking, Vol. 28, No. 6, December 2020.

118.   Thomas Stahlbuhk, Brooke Shrader, Eytan Modiano, “ Learning algorithms for scheduling in wireless networks with unknown channel statistics ,” Ad Hoc Networks, Vol. 85, pp. 131-144, 2019.

117.   Rajat Talak, Eytan Modiano, “ Age-Delay Tradeoffs in Queueing Systems ,”  IEEE Transactions on Information Theory, 2021.

116.   Rajat Talak, Sertac Karaman, Eytan Modiano, “ Improving Age of Information in Wireless Networks with Perfect Channel State Information ,”  IEEE/ACM Transactions on Networking, Vol. 28, No. 4, August 2020.

115.   Igor Kadota and Eytan Modiano, “ Minimizing the Age of Information in Wireless Networks with Stochastic Arrivals ,” IEEE Transactions on Mobile Computing, 2020.

114.   Rajat Talak, Sertac Karaman, Eytan Modiano, “ Optimizing Information Freshness in Wireless Networks under General Interference Constraints ,”  IEEE/ACM transactions on Networking, Vol. 28, No. 1, February 2020.

113.   X. Fu and E. Modiano, “ Fundamental Limits of Volume-based Network DoS Attacks ,” Proceedings of the ACM on Measurement and Analysis of Computing Systems, Vol. 3, No. 3, December 2019. 

112.   Rajat Talak, Sertac Karaman, Eytan Modiano, “ Capacity and Delay Scaling for Broadcast Transmission in Highly Mobile Wireless Networks ,” IEEE Transactions on Mobile Computing, 2019.

111.   Abhishek Sinha and Eytan Modiano, “ Throughput-Optimal Broadcast in Wireless Networks with Point-to-Multipoint Transmissions , IEEE Transactions on Mobile Computing, Vol. 19, No. 9, September 2020.

110.   Yu-Pin Hsu, Eytan Modiano, Lingjie Duan, “ Scheduling Algorithms for Minimizing Age of Information in Wireless Broadcast Networks with Random Arrivals ,”  IEEE Transactions on Mobile Computing, Vol. 19, No. 12, December 2020.

109.   Xiaolin Jiang, Hossein S. Ghadikolaei, Gabor Fodor, Eytan Modiano, Zhibo Pang, Michele Zorzi, Carlo Fischione, “ Low-latency Networking: Where Latency Lurks and How to Tame It ,”  Proceedings of the IEEE, 2019.

108.   Jianan Zhang, Edmund Yeh, Eytan Modiano, “ Robustness of Interdependent Random Geometric Networks ,” IEEE Transactions on Network Science and Engineering, Vol. 6, No. 3, July-September 2019.

107.   Qingkai Liang, Hyang-Won Lee, Eytan Modiano, “ Robust Design of Spectrum-Sharing Networks ,” IEEE Transactions on Mobile Computing, Vol. 18, No. 8, August 2019.

106.   A. Sinha, L. Tassiulas, E. Modiano, “ Throughput-Optimal Broadcast in Wireless Networks with Dynamic Topology ,”  IEEE Transactions on Mobile Computing, Vol. 18, No. 5, May 2019.

105. Igor Kadota, Abhishek Sinha, Eytan Modiano, “ Scheduling Algorithms for Optimizing Age of Information in Wireless Networks With Throughput Constraints ,”  IEEE/ACM Transactions on Networking, August 2019.

104.   Igor Kadota, Abhishek Sinha, Rahul Singh, Elif Uysal-Biyikoglu, Eytan Modjano, “ Scheduling Policies for Minimizing Age of Information in Broadcast Wireless Networks ,” IEEE/ACM Transactions on Networking, Vol. 26, No. 5, October 2018.

103.   Jianan Zhang and Eytan Modiano, “ Connectivity in Interdependent Networks ,”  IEEE/ACM Transactions on Networking, 2018.

102.   Qingkai Liang, Eytan Modiano, “ Minimizing Queue Length Regret Under Adversarial Network Models ,” Proceedings of the ACM on Measurement and Analysis of Computing Systems, Volume 2, Issue 1, April 2018, Article No.: 11, pp 1-32. (same as Sigmetrics 2018).

101.   A. Sinha and E. Modiano, “ Optimal Control for Generalized Network Flow Problems ,”  IEEE/ACM Transactions on Networking, 2018.

100.   Hossein Shokri-Ghadikolaei, Carlo Fischione, Eytan Modiano  “ Interference Model Similarity Index and Its Applications to mmWave Networks ,”  IEEE Transactions on Wireless Communications, 2018.

99.   Matt Johnston, Eytan Modiano, “ Wireless Scheduling with Delayed CSI: When Distributed Outperforms Centralized, ’ IEEE Transactions on Mobile Computing, 2018.

98.   A. Sinha, G. Paschos, E. Modiano, “ Throughput-Optimal Multi-hop Broadcast Algorithms ,” IEEE/ACM Transactions on Networking, 2017.

97.   Nathan Jones, Georgios Paschos, Brooke Shrader, Eytan Modiano, “ An Overlay Architecture for Throughput Optimal Multipath Routing ,” IEEE/ACM Transactions on Networking, 2017.

96.   Greg Kuperman, Eytan Modiano, “ Providing Guaranteed Protection in Multi-Hop Wireless Networks with Interference Constraints ,” IEEE Transactions on Mobile Computing, 2017.

95.   Matt Johnston, Eytan Modiano, Isaac Kesslassy, “ Channel Probing in Opportunistic Communications Systems ,”  IEEE Transactions on Information Theory, November, 2017.

94.   Anurag Rai, Georgios Paschos, Chih-Ping Lee, Eytan Modiano, “ Loop-Free Backpressure Routing Using Link-Reversal Algorithms “, IEEE/ACM Transactions on Networking, October, 2017.

93.   Matt Johnston and Eytan Modiano, “” Controller Placement in Wireless Networks with Delayed CSI ,” IEEE/ACM Transactions on Networking, 2017.

92.   Jianan Zheng, E. Modiano, D. Hay, “ Enhancing Network Robustness via Shielding ,”  IEEE Transactions on Networking, 2017.

91.   M. Markakis, E. Modiano, J.N. Tsitsiklis, “ Delay Analysis of the Max-Weight Policy under Heavy-Tailed Traffic via Fluid Approximations ,” Mathematics of Operations Research, October, 2017.

90.   Qingkai Liang and E. Modiano, “ Survivability in Time-Varying Graphs ,”  IEEE Transactions on Mobile Computing, 2017.

89.   A. Sinha, G. Paschos, C. P. Li, and E. Modiano, “ Throughput-Optimal Multihop Broadcast on Directed Acyclic Wireless Networks ,” IEEE/ACM Transactions on Networking, Vol. 25, No. 1, Feb. 2017.

88.   G. Celik, S. Borst, , P. Whiting , E. Modiano, “ Dynamic Scheduling with Reconfiguration Delays ,”  Queueing Systems, 2016.

87.  G. Paschos, C. P. Li, E. Modiano, K. Choumas, T. Korakis, “ In-network Congestion Control for Multirate Multicast ,”   IEEE/ACM Transactions on Networking,  2016.

86.   H. Seferoglu and E. Modiano, “ TCP-Aware Backpressure Routing and Scheduling ,” IEEE Transactions on Mobile Computing, 2016.

85.   H. Seferoglu and E. Modiano, “ Separation of Routing and Scheduling in Backpressure-Based Wireless Networks ,” IEEE/ACM Transactions on Networking, Vol. 24, No. 3, 2016.

84.   M. Markakis, E. Modiano, J.N. Tsitsiklis, “ Delay Stability of Back-Pressure Policies in the presence of Heavy-Tailed Traffic ,”  IEEE/ACM Transactions on Networking, 2015.

83.   S. Neumayer, E. Modiano,  “ Network Reliability Under Geographically Correlated Line and Disk Failure Models ,” Computer Networks, to appear, 2016.

82.   S. Neumayer, E. Modiano, A. Efrat, “ Geographic Max-Flow and Min-Cut Under a Circular Disk Failure Model ,” Computer Networks, 2015.

81.   Marzieh Parandehgheibi, Hyang-Won Lee, Eytan Modiano, Survivable Path Sets:  A new approach to survivability in multi-layer networks ,”  IEEE Journal on Lightwave Technology, 2015.

80.   G. Kuperman, E. Modiano, A. Narula-Tam, “ Network Protection with Multiple Availability Guarantees ,” Computer Networks, 2015.

79.   G. Kuperman, E. Modiano, A. Narula-Tam, “ Analysis and Algorithms for Partial Protection in Mesh Networks ,” IEEE/OSA Journal of Optical Communications and Networks, 2014.

78.   Krishna Jagannathan, Mihalis Markakis, Eytan Modiano, John Tsitsiklis, “ Throughput Optimal Scheduling over Time-Varying Channels in the presence of Heavy-Tailed Traffic ,” IEEE Transactions on Information Theory, 2014.

77.   Chih-Ping Li and Eytan Modiano, “ Receiver-Based Flow Control for Networks in Overload ,” IEEE/ACM Transactions on Networking, Vol. 23, No. 2, 2015.

76.   Matthew Johnston, Hyang-Won Lee, Eytan Modiano, “ A Robust Optimization Approach to Backup Network Design with Random Failures ,” IEEE/ACM Transactions on Networking, Vol. 23, No. 4, 2015.

75.   Guner Celik and Eytan Modiano, “ Scheduling in Networks with Time-Varying Channels and Reconfiguration Delay ,” IEEE/ACM Transactions on Networking, Vol. 23, No. 1, 2015.

74.   Matt Johnston, H.W. Lee, E. Modiano, “ Robust Network Design for Stochastic Traffic Demands ,” IEEE Journal of Lightwave Technology, 2013.

73.   Mihalis Markakis, Eytan Modiano, John Tsitsiklis, “ Max-Weight Scheduling in Queueing Networks With Heavy-Tailed Traffic, ” IEEE/ACM Transactions on Networking, 2014.

72.   Kayi Lee, Hyang-Won Lee, Eytan Modiano, “ Maximizing Reliability in WDM Networks through Lightpath Routing ,”  IEEE ACM Transactions on Networking, 2014.

71.   Krishna Jaggannathan and Eytan Modiano, “ The Impact of Queue Length Information on Buffer Overflow in Parallel Queues ,”  IEEE transactions on Information Theory, 2013.

70.   Krishna Jagannathan, Ishai Menashe, Gil Zussman, Eytan Modiano, “ Non-cooperative Spectrum Access – The Dedicated vs. Free Spectrum Choice ,” IEEE JSAC, special issue on Economics of Communication Networks & Systems, to appear, 2012.

69.   Guner Celik and Eytan Modiano, “ Dynamic Server Allocation over Time Varying Channels with Switchover Delay ,” IEEE Transactions on Information Theory, to appear, 2012.

68.   Anand Srinivas and Eytan Modiano, “ Joint Node Placement and Assignment for Throughput Optimization in Mobile Backbone Networks ,” IEEE JSAC, special issue on Communications Challenges and Dynamics for Unmanned Autonomous Vehicles, June, 2012.

67.   Guner Celik and Eytan Modiano, “ Controlled Mobility in Stochastic and Dynamic Wireless Networks ,” Queueing Systems, 2012.

66.   Krishna Jagannathan, Shie Mannor, Ishai Menache, Eytan Modiano, “ A State Action Frequency Approach to Throughput Maximization over Uncertain Wireless Channels ,” Internet Mathematics, Vol. 9, Nos. 2–3: 136–160.

65.   Long Le, E. Modiano, N. Shroff, “Optimal Control of Wireless Networks with Finite Buffers ,” IEEE/ACM Transactions on Networking, to appear, 2012.

64.   K. Jagannathan, M. Markakis, E. Modiano, J. Tsitsiklis, “Queue Length Asymptotics for Generalized Max-Weight Scheduling in the presence of Heavy-Tailed Traffic,” IEEE/ACM Transactions on Networking, Vol. 20, No. 4, August 2012.

63.   Kayi Lee, Hyang-Won Lee, Eytan Modiano, “ Reliability in Layered Networks with Random Link Failures, ” IEEE/ACM Transactions on Networking, December 2011.

62.   Krishna Jagannathan, Eytan Modiano, Lizhong Zheng, “ On the Role of Queue Length Information in Network Control ,” IEEE Transactions on Information Theory, September 2011.

61.   Hyang-Won Lee, Long Le, Eytan Modiano, “ Distributed Throughput Maximization in Wireless Networks via Random Power Allocation, ” IEEE Transactions on Mobile Computing, 2011.

60.   Sebastian Neumayer, Gil Zussman, Rueven Cohen, Eytan Modiano, “ Assessing the Vulnerability of the Fiber Infrastructure to Disasters, ” IEEE/ACM Transactions on Networking, December 2011.

59.   Kayi Lee, Eytan Modiano, Hyang-Won Lee, “ Cross Layer Survivability in WDM-based Networks ,” IEEE/ACM Transactions on Networking, August 2011.

58.   Emily Craparo, Jon How, and Eytan Modiano, “Throughput Optimization in Mobile Backbone Networks,” IEEE Transactions on Mobile Computing, April, 2011.

57.   Hyang-Won Lee, Kayi Lee, and Eytan Modiano, “Diverse Routing in Networks with Probabilistic Failures,” IEEE/ACM Transactions on Networking, December, 2010.

56.   Guner Celik, Gil Zussman, Wajahat Khan and Eytan Modiano, “MAC Protocols For Wireless Networks With Multi-packet Reception Cabaility ,” IEEE Transactions on Mobile Computing, February, 2010.

55.   Atilla Eryilmaz, Asuman Ozdaglar, Devavrat Shah, and Eytan Modiano, “Distributed Cross-Layer Algorithms for the Optimal Control of Multi-hop Wireless Networks,” IEEE/ACM Transactions on Networking, April 2010.

54.   Murtaza Zafer and Eytan Modiano, “Minimum Energy Transmission over a Wireless Channel With Deadline and Power Constraints ,” IEEE Transactions on Automatic Control, pp. 2841-2852, December, 2009.

53.   Murtaza Zafer and Eytan Modiano, “A Calculus Approach to Energy-Efficient Data Transmission with Quality of Service Constraints,” IEEE/ACM Transactions on Networking, 2009.

52.   Anand Srinivas, Gil Zussman, and Eytan Modiano, “Construction and Maintenance of Wireless Mobile Backbone Networks,” IEEE/ACM Transactions on Networking, 2009.

51.   Andrew Brzezinski, Gil Zussman, and Eytan Modiano, “Distributed Throughput Maximization in Wireless Mesh Networks Via Pre-Partitioning,” IEEE/ACM Transactions on Networking, December, 2008.

50.   Amir Khandani, Eytan Modiano, Jinane Abounadi, Lizhong Zheng, “Reliability and Route Diversity in Wireless Networks,” IEEE Transactions on Wireless Communications, December, 2008.

49.   Alessandro Tarello, Jun Sun, Murtaza Zafer and Eytan Modiano, “Minimum Energy Transmission Scheduling Subject to Deadline Constraints,” ACM Wireless Networks, October, 2008.

48.   Murtaza Zafer, Eytan Modiano, “Optimal Rate Control for Delay-Constrained Data Transmission over a Wireless Channel,” IEEE Transactions on Information Theory, September, 2008.

47.   Andrew Brzezinski and Eytan Modiano, “Achieving 100% Throughput In Reconfigurable IP/WDM Networks,” IEEE/ACM Transactions on Networking, August, 2008.

46.   Michael Neely, Eytan Modiano and C. Li, “Fairness and Optimal Stochastic Control for Heterogeneous Networks,” IEEE/ACM Transactions on Networking, September, 2008.

45.   Amir Khandani, Jinane Abounadi, Eytan Modiano, Lizhong Zheng, “Cooperative Routing in Static Wireless Networks,” IEEE Transactions on Communications, November 2007.

44.   Murtaza Zafer, Eytan Modiano, “Joint Scheduling of Rate-guaranteed and Best-effort Users over a Wireless Fading Channel,” IEEE Transactions on Wireless Communications, October, 2007.

43.   Krishna Jagannathan, Sem Borst, Phil Whiting and Eytan Modiano, “Scheduling of Multi-Antenna Broadcast Systems with Heterogeneous Users,” IEEE Journal of Selected Areas in Communications, September, 2007.Amir Khandani, Jinane

42.   Anand Ganti, Eytan Modiano, and John Tsitsiklis, “Optimal Transmission Scheduling in Symmetric Communication Models with Intermittent Connectivity, ” IEEE Transactions on Information Theory, March, 2007.

41.   Michael Neely and Eytan Modiano, “Logarithmic Delay for NxN Packet Switches Under Crossbar Constraints,” IEEE/ACM Transactions on Networking, November, 2007.

40.   Jun Sun, Jay Gao, Shervin Shambayati and Eytan Modiano, “Ka-Band Link Optimization with Rate Adaptation for Mars and Lunar Communications,”   International Journal of Satellite Communications and Networks, March, 2007.

39.   Jun Sun and Eytan Modiano, “Fair Allocation of A Wireless Fading Channel: An Auction Approach” Institute for Mathematics and its Applications, Volume 143: Wireless Communications, 2006.

38.   Jun Sun, Eytan Modiano and Lizhong Zhang, “Wireless Channel Allocation Using An Auction Algorithm,” IEEE Journal on Selected Areas in Communications, May, 2006.

37.   Murtaza Zafer and Eytan Modiano, “Blocking Probability and Channel Assignment for Connection Oriented Traffic in Wireless Networks,” IEEE Transactions on Wireless Communications, April, 2006.

36.   Alvin Fu, Eytan Modiano, and John Tsitsiklis, “Optimal Transmission Scheduling over a fading channel with Energy and Deadline Constraints” IEEE Transactions on Wireless Communications, March,2006.

35.   Poompat Saengudomlert, Eytan Modiano and Rober Gallager, “On-line Routing and Wavelength Assignment for Dynamic Traffic in WDM Ring and Torus Networks,” IEEE Transactions on Networking, April, 2006.

34.   Li-Wei Chen, Eytan Modiano and Poompat Saengudomlert, “Uniform vs. Non-Uniform band Switching in WDM Networks,” Computer Networks (special issue on optical networks), January, 2006.

33.   Andrew Brzezinski and Eytan Modiano, “Dynamic Reconfiguration and Routing Algorithms for IP-over-WDM networks with Stochastic Traffic,” IEEE Journal of Lightwave Technology, November, 2005

32.   Randall Berry and Eytan Modiano, “Optimal Transceiver Scheduling in WDM/TDM Networks,” IEEE Journal on Selected Areas in Communications, August, 2005.

31.   Poompat Saengudomlert, Eytan Modiano, and Robert G. Gallager, “Dynamic Wavelength Assignment for WDM All-Optical Tree Networks,” IEEE Transactions on Networking, August, 2005.

30.   Ashwinder Ahluwalia and Eytan Modiano, “On the Complexity and Distributed Construction of Energy Efficient Broadcast Trees in Wireless Ad Hoc Networks,” IEEE Transactions on Wireless Communications, October, 2005.

29.   Michael Neely, Charlie Rohrs and Eytan Modiano, “Equivalent Models for Analysis of Deterministic Service Time Tree Networks,” IEEE Transactions on Information Theory, October, 2005.

28.   Michael Neely and Eytan Modiano, “Capacity and Delay Tradeoffs for Ad Hoc Mobile Networks,” IEEE Transactions on Information Theory, May, 2005.

27.   Li-Wei Chen and Eytan Modiano, “Efficient Routing and Wavelength Assignment for Reconfigurable WDM Networks with Wavelength Converters,” IEEE/ACM Transactions on Networking, February, 2005. Selected as one of the best papers from Infocom 2003 for fast-track publication in IEEE/ACM Transactions on Networking.

26.   Michael Neely and Eytan Modiano, “Convexity in Queues with General Inputs,” IEEE Transactions on Information Theory, May, 2005.

25.   Anand Srinivas and Eytan Modiano, “Finding Minimum Energy Disjoint Paths in Wireless Ad Hoc Networks,” ACM Wireless Networks, November, 2005. Selected to appear in a special issue dedicated to best papers from Mobicom 2003.

24.   Michael Neely, Eytan Modiano and Charlie Rohrs, “Dynamic Power Allocation and Routing for Time-Varying Wireless Networks,” IEEE Journal of Selected Areas in Communication, January, 2005.

23.   Chunmei Liu and Eytan Modiano, “On the performance of additive increase multiplicative decrease (AIMD) protocols in hybrid space-terrestrial networks,” Computer Networks, September, 2004.

22.   Li-Wei Chen and Eytan Modiano, “Dynamic Routing and Wavelength Assignment with Optical Bypass using Ring Embeddings,” Optical Switching and Networking (Elsevier), December, 2004.

21.   Aradhana Narula-Tam, Eytan Modiano and Andrew Brzezinski, “Physical Topology Design for Survivable Routing of Logical Rings in WDM-Based Networks,” IEEE Journal of Selected Areas in Communication, October, 2004.

20.   Randall Berry and Eytan Modiano, “‘The Role of Switching in Reducing the Number of Electronic Ports in WDM Networks,” IEEE Journal of Selected Areas in Communication, October, 2004.

19.   Jun Sun and Eytan Modiano, “Routing Strategies for Maximizing Throughput in LEO Satellite Networks,,” IEEE JSAC, February, 2004.

18.   Jun Sun and Eytan Modiano, “Capacity Provisioning and Failure Recovery for Low Earth Orbit Satellite Networks,” International Journal on Satellite Communications, June, 2003.

17.   Alvin Fu, Eytan Modiano, and John Tsitsiklis, “Optimal Energy Allocation and Admission Control for Communications Satellites,” IEEE Transactions on Networking, June, 2003.

16.   Michael Neely, Eytan Modiano and Charles Rohrs, “Power Allocation and Routing in Multi-Beam Satellites with Time Varying Channels,” IEEE Transactions on Networking, February, 2003.

15.   Eytan Modiano and Aradhana Narula-Tam, “Survivable lightpath routing: a new approach to the design of WDM-based networks,” IEEE Journal of Selected Areas in Communication, May 2002.

14.   Aradhana Narula-Tam, Phil Lin and Eytan Modiano, “Efficient Routing and Wavelength Assignment for Reconfigurable WDM Networks,” IEEE Journal of Selected Areas in Communication, January, 2002.

13.   Brett Schein and Eytan Modiano, “Quantifying the benefits of configurability in circuit-switched WDM ring networks with limited ports per node,” IEEE Journal on Lightwave Technology, June, 2001.

12.   Aradhana Narula-Tam and Eytan Modiano, “Dynamic Load Balancing in WDM Packet Networks with and without Wavelength Constraints,” IEEE Journal of Selected Areas in Communications, October 2000.

11.   Randy Berry and Eytan Modiano, “Reducing Electronic Multiplexing Costs in SONET/WDM Rings with Dynamically Changing Traffic,” IEEE Journal of Selected Areas in Communications, October 2000.

10.   Eytan Modiano and Richard Barry, “A Novel Medium Access Control Protocol for WDM-Based LANs and Access Networks Using a Master-Slave Scheduler,” IEEE Journal on Lightwave Technology, April 2000.

9.   Eytan Modiano and Anthony Ephremides, “Communication Protocols for Secure Distributed Computation of Binary Functions,” Information and Computation, April 2000.

8.   Angela Chiu and Eytan Modiano, “Traffic Grooming Algorithms for Reducing Electronic Multiplexing Costs in WDM Ring Networks,” IEEE Journal on Lightwave Technology, January 2000.

7.   Eytan Modiano, “An Adaptive Algorithm for Optimizing the Packet Size Used in Wireless ARQ Protocols,” Wireless Networks, August 1999.

6.   Eytan Modiano, “Random Algorithms for Scheduling Multicast Traffic in WDM Broadcast-and-Select Networks,” IEEE Transactions on Networking, July, 1999.

5.   Eytan Modiano and Richard Barry, “Architectural Considerations in the Design of WDM-based Optical Access Networks,” Computer Networks, February 1999.

4.   V.W.S. Chan, K. Hall, E. Modiano and K. Rauschenbach, “Architectures and Technologies for High-Speed Optical Data Networks,” IEEE Journal of Lightwave Technology, December 1998.

3.   Eytan Modiano and Anthony Ephremides, “Efficient Algorithms for Performing Packet Broadcasts in a Mesh Network,” IEEE Transactions on Networking, May 1996.

2.   Eytan Modiano, Jeffrey Wieselthier and Anthony Ephremides, “A Simple Analysis of Queueing Delay in a Tree Network of Discrete-Time Queues with Constant Service Times,” IEEE Transactions on Information Theory, February 1996.

1.   Eytan Modiano and Anthony Ephremides, “Communication Complexity of Secure Distributed Computation in the Presence of Noise,” IEEE Transactions on Information Theory, July 1992.

Other Papers

5.  Eytan Modiano, “Satellite Data Networks,” AIAA Journal on Aerospace Computing, Information and Communication, September, 2004.

4.  Eytan Modiano and Phil Lin, “Traffic Grooming in WDM networks,” IEEE Communications Magazine, July, 2001.

3.  Eytan Modiano and Aradhana Narula, “Mechanisms for Providing Optical Bypass in WDM-based Networks,” SPIE Optical Networks, January 2000.

2.  K. Kuznetsov, N. M. Froberg, Eytan Modiano, et. al., “A Next Generation Optical Regional Access Networks,” IEEE Communications Magazine, January, 2000.

1.  Eytan Modiano, “WDM-based Packet Networks,” (Invited Paper) IEEE Communications Magazine, March 1999.

Conference Papers

246. Xinyu Wu, Dan Wu, Eytan Modiano, “ Overload Balancing in Single-Hop Networks With Bounded Buffers ,” IFIP Networking, 2022.

245.  Xinzhe Fu, Eytan Modiano, “ Optimal Routing for Stream Learning Systems ,”  IEEE Infocom, April 2022.

244.  Vishrant Tripathi, Luca Ballotta, Luca Carlone, E. Modiano, “ Computation and Communication Co-Design for Real-Time Monitoring and Control in Multi-Agent Systems ,”  IEEE Wiopt, 2021.

243. Eray Atay, Igor Kadota, E. Modiano, “ Aging Wireless Bandits: Regret Analysis and Order-Optimal Learning Algorithm ,”  IEEE Wiopt 2021.

242. Xinzhe Fu and E. Modiano,  “ Elastic Job Scheduling with Unknown Utility Functions ,” IFIP Performance, Milan, 2021.

241. Bai Liu and E. Modiano, “ Optimal Control for Networks with Unobservable Malicious Nodes ,”  IFIP Performance, Milan, 2021.

240. Bai Liu, Qiaomin Xie,  Eytan Modiano, “ RL-QN:  A Reinforcement Learning Framework for Optimal Control of Queueing Systems ,”  ACM Sigmetrics Workshop on Reinforcement Learning in Networks and Queues (RLNQ), 2021.

239. Xinzhe Fu and E. Modiano,  “ Learning-NUM: Network Utility Maximization with Unknown Utility Functions and Queueing Delay ,  ACM MobiHoc 2021.  

238. Vishrant Tripathi and Eytan Modiano,  “ An Online Learning Approach to Optimizing Time-Varying Costs of AoI ,”  ACM MobiHoc 2021. 

237.   Igor Kadota, Muhammad Shahir Rahman, and Eytan Modiano, “ WiFresh: Age-of-Information from Theory to Implementation ,”  International Conference on Computer Communications and Networks (ICCCN), 2021.

236. Vishrant Tripathi and Eytan Modiano, “ Age Debt: A General Framework For Minimizing Age of Information ,”  IEEE Infocom Workshop on Age-of-Information, 2021.

235. Igor Kadota, Eytan Modiano, “ Age of Information in Random Access Networks with Stochastic Arrivals ,” IEEE Infocom, 2020.

234. Igor Kadota, M. Shahir Rahman, Eytan Modiano, Poster: Age of Information in Wireless Networks: from Theory to Implementation , ACM Mobicom, 2020.

233. Xinyu Wu, Dan Wu, Eytan Modiano, “ An Influence Model Approach to Failure Cascade Prediction in Large Scale Power Systems ,” IEEE American Control Conference, July, 2020.

232. X. Fu and E. Modiano, “ Fundamental Limits of Volume-based Network DoS Attacks ,” Proc. ACM Sigmetrics, Boston, MA, June 2020.

231. Vishrant Tripathi, Eytan Modiano, “ A Whittle Index Approach to Minimizing Functions of Age of Information ,” Allerton Conference on Communication, Control, and Computing, September 2019.

230. Bai Liu, Xiaomin Xie, Eytan Modiano, “ Reinforcement Learning for Optimal Control of Queueing Systems ,” Allerton Conference on Communication, Control, and Computing, September 2019.

229. Rajat Talak, Sertac Karaman, Eytan Modiano, “ A Theory of Uncertainty Variables for State Estimation and Inference ,” Allerton Conference on Communication, Control, and Computing, September 2019.

228. Rajat Talak, Eytan Modiano, “ Age-Delay Tradeoffs in Single Server Systems ,” IEEE International Symposium on Information Theory, Paris, France, July, 2019.

227. Rajat Talak, Sertac Karaman, Eytan Modiano, “ When a Heavy Tailed Service Minimizes Age of Information ,” IEEE International Symposium on Information Theory, Paris, France, July, 2019.

226. Qingkai Liang, Eytan Modiano, “ Optimal Network Control with Adversarial Uncontrollable Nodes ,” ACM MobiHoc, Catania, Italy, June 2019.

225. Igor Kadota, Eytan Modiano, “ Minimizing the Age of Information in Wireless Networks with Stochastic Arrivals ,” ACM MobiHoc, June 2019.

224. Maotong Xu, Jelena Diakonikolas, Suresh Subramaniam, Eytan Modiano, “ A Hierarchical WDM-based Scalable Data Center Network Architecture ,” IEEE International Conference on Communications (ICC), Shanghai, China, June 2019.

223. Maotong Xu, Min Tian, Eytan Modiano, Suresh Subramaniam, “ RHODA Topology Configuration Using Bayesian Optimization

222.   Anurag Rai, Rahul Singh and Eytan Modiano, “ A Distributed Algorithm for Throughput Optimal Routing in Overlay Networks ,”  IFIP Networking 2019, Warsaw, Poland, May 2019.

221.   Qingkai Liang and Eytan Modiano, “ Optimal Network Control in Partially-Controllable Networks ,”  IEEE Infocom, Paris, April 2019.

220.   Xinzhe Fu and Eytan Modiano, “ Network Interdiction Using Adversarial Traffic Flows ,”  IEEE Infocom, Paris, April 2019.

219.   Vishrant Tripathi, Rajat Talak, Eytan Modiano, “ Age Optimal Information Gathering and Dissemination on Graphs ,”  IEEE Infocom, Paris, April 2019.

218.   Jianan Zhang, Hyang-Won Lee, Eytan Modiano, “ On the Robustness of Distributed Computing Networks ,”  DRCN 2019, Coimbra, Portugal, March, 2019.

217.   Hyang-Won Lee, Jianan Zhang and Eytan Modiano, “ Data-driven Localization and Estimation of Disturbance in the Interconnected Power System ,”  IEEE Smartgridcomm, October, 2018.

216.   Jianan Zhang and Eytan Modiano, “ Joint Frequency Regulation and Economic Dispatch Using Limited Communication ,”  IEEE Smartgridcomm, October, 2018.

215.   Rajat Talak, Sertac Karaman, Eytan Modiano, “ Scheduling Policies for Age Minimization in Wireless Networks with Unknown Channel State ,”  IEEE International Symposium on Information Theory, July 2018.

214.   Thomas Stahlbuhk, Brooke Shrader, Eytan Modiano, “ Online Learning Algorithms for Minimizing Queue Length Regret ,”  IEEE International Symposium on Information Theory, July 2018.

213.   Rajat Talak, Sertac Karaman, Eytan Modiano, “ Distributed Scheduling Algorithms for Optimizing Information Freshness in Wireless Networks ,”  IEEE SPAWC, Kalamata, Greece, June, 2018.

212.   Rajat Talak, Sertac Karaman, Eytan Modiano, “ Optimizing Information Freshness in Wireless Networks under General Interference Constraints ,”  ACM MobiHoc 2018, Los Angeles, CA, June 2018.

211.   Thomas Stahlbuhk, Brooke Shrader, Eytan Modiano, “ Learning Algorithms for Scheduling in Wireless Networks with Unknown Channel Statistics ,”  ACM MobiHoc, June 2018.

210.   Khashayar Kamran, Jianan Zhang, Edmund Yeh, Eytan Modiano, “ Robustness of Interdependent Geometric Networks Under Inhomogeneous Failures ,”  Workshop on Spatial Stochastic Models for Wireless Networks (SpaSWiN), Shanghai, China, May 2018.

209.   Rajat Talak, Sertac Karaman, Eytan Modiano, “ Optimizing Age of Information in Wireless Networks with Perfect Channel State Information ,”  Wiopt 2018, Shanghai, China, May 2018.

208.   Abhishek Sinha, Eytan Modiano, “ Network Utility Maximization with Heterogeneous Traffic Flows ,”  Wiopt 2018, Shanghai, China, May 2018.

207.   Qingkai Liang, Eytan Modiano, “ Minimizing Queue Length Regret Under Adversarial Network Models ,”  ACM Sigmetrics, 2018.

206.   Jianan Zhang, Abhishek Sinha, Jaime Llorca, Anonia Tulino, Eytan Modiano, “ Optimal Control of Distributed Computing Networks with Mixed-Cast Traffic Flows ,”  IEEE Infocom, Honolulu, HI, April 2018.

205.   Qingkai Liang, Eytan Modiano, “ Network Utility Maximization in Adversarial Environments ,”  IEEE Infocom, Honolulu, HI, April 2018.

204.   Igor Kadota, Abhishek Sinha, Eytan Modiano, “ Optimizing Age of Information in Wireless Networks with Throughput Constraints ,”  IEEE Infocom, Honolulu, HI, April 2018.

203.   QIngkai Liang, Verina (Fanyu) Que, Eytan Modiano, “ Accelerated Primal-Dual Policy Optimization for Safe Reinforcement Learning ,”  NIPS workshop on “Transparent and interpretable machine learning in safety critical environments,”December 2017.

202.   Rahul Singh, Xueying Guo,Eytan Modiano, “ Risk-Sensitive Optimal Control of Queues ,”  IEEE Conference on Decision and Control (CDC), December 2017.

201.   Rajat Talak, Sertac Karaman, Eytan Modiano, “ Minimizing Age of Information in Multi-Hop Wireless Networks ,”  Allerton Conference on Communication, Control, and Computing, September 2017.

200.   Abhishek Sinha, Eytan Modiano, “ Throughput-Optimal Broadcast in Wireless Networks with Point-to-Multipoint Transmissions ,”  ACM MobiHoc, Madras, India, July 2017.

199.   Rajat Talak, Sertac Karaman, Eytan Modiano, “ Capacity and delay scaling for broadcast transmission in highly mobile wireless networks ,”  ACM MobiHoc, Madras, India, July 2017.

198.5 . Y.-P. Hsu, E. Modiano, and L. Duan, “ Age of Information: Design and Analysis of Optimal Scheduling Algorithms ,”  IEEE International Symposium on Information Theory (ISIT), 2017.

198.   Qingkai Liang and Eytan Modiano, “ Coflow Scheduling in Input-Queued Switches: Optimal Delay Scaling and Algorithms ,”  IEEE Infocom, Atlanta, GA, May 2017.

197.   Jianan Zhang and Eytan Modiano, “ Robust Routing in Interdependent Networks ,”  IEEE Infocom, Atlanta, GA, May 2017.

196.   Abhishek Sinha, Eytan Modiano, “ Optimal Control for Generalized Network Flow Problems ,”  IEEE Infocom, Atlanta, GA, May 2017.

195.   Rajat Talak*, Sertac Karaman, Eytan Modiano, “ Speed Limits in Autonomous Vehicular Networks due to Communication Constraints ,”  IEEE Conference on Decision and Control (CDC), Las Vegas, NV, December 2016.

194.   Marzieh Parandehgheibi*, Konstantin Turitsyn, Eytan Modiano, “ Distributed Frequency Control in Power Grids Under Limited Communication ,”  IEEE Conference on Decision and Control (CDC), Las Vegas, NV, December 2016.

193.   Igor Kadota, Elif Uysal-Biyikoglu, Rahul Singh, Eytan Modiano, “ Minimizing Age of Information in Broadcast Wireless Networks ,”  Allerton Allerton Conference on Communication, Control, and Computing, September 2016.

192.   Jianan Zhang, Edmund Yeh, Eytan Modiano, “ Robustness of Interdependent Random Geometric Networks ,”  Allerton Conference on Communication, Control, and Computing, September 2016.

191.   Abhishek Sinha, Leandros Tassiulas, Eytan Modiano, “ Throughput-Optimal Broadcast in Wireless Networks with Dynamic Topology ,”  ACM MobiHoc’16, Paderborn, Germany, July, 2016. (winner of best paper award)

190.   Abishek Sinha, Georgios Paschos, Eytan Modiano, “ Throughput-Optimal Multi-hop Broadcast Algorithms ,”  ACM MobiHoc’16, Paderborn, Germany, July, 2016.

189.   Thomas Stahlbuhk, Brooke Shrader, Eytan Modiano, “ Throughput Maximization in Uncooperative Spectrum Sharing Networks ,”  IEEE International Symposium on Information Theory, Barcelona, Spain, July 2016.

188.   Thomas Stahlbuhk, Brooke Shrader, Eytan Modiano, “ Topology Control for Wireless Networks with Highly-Directional Antennas ,”  IEEE Wiopt, Tempe, Arizona, May, 2016.

187.   Qingkai Liang, H.W. Lee, Eytan Modiano, “ Robust Design of Spectrum-Sharing Networks ,”  IEEE Wiopt, Tempe, Arizona, May, 2016.

186.   Hossein Shokri-Ghadikolae, Carlo Fischione and Eytan Modiano, “ On the Accuracy of Interference Models in Wireless Communications ,”  IEEE International Conference on Communications (ICC), 2016.

185.   Qingkai Liang and Eytan Modiano, “ Survivability in Time-varying Networks ,”  IEEE Infocom, San Francisco, CA, April 2016.

184.   Kyu S. Kim, Chih-Ping Li, Igor Kadota, Eytan Modiano, “ Optimal Scheduling of Real-Time Traffic in Wireless Networks with Delayed Feedback ,”  Allerton conference on Communication, Control, and Computing, September 2015.

183.   Marzieh Parandehgheibi, Eytan Modiano, “ Modeling the Impact of Communication Loss on the Power Grid Under Emergency Control ,”  IEEE SmartGridComm, Miami, FL, Nov. 2015.

182.   Anurag Rai, Chih-ping Li, Georgios Paschos, Eytan Modiano, “ Loop-Free Backpressure Routing Using Link-Reversal Algorithms ,”  Proceedings of the ACM MobiHoc, July 2015.

181.   Longbo Huang, Eytan Modiano, “ Optimizing Age of Information in a Multiclass Queueing System ,”  Proceedings of IEEE ISIT 2015, Hong Kong, Jun 2015.

180.   M. Johnston, E. Modiano, “ A New Look at Wireless Scheduling with Delayed Information ,”  Proceedings of IEEE ISIT 2015, Hong Kong, June 2015.

179.   M. Johnston, E. Modiano, “ Scheduling over Time Varying Channels with Hidden State Information ,”  Proceedings of IEEE ISIT 2015, Hong Kong, June 2015.

178.   M. Johnston and E. Modiano, “ Controller Placement for Maximum Throughput Under Delayed CSI ,”  IEEE Wiopt, Mombai, India, May 2015.

177.   A. Sinha, G. Paschos, C. P. Li, and E. Modiano, “ Throughput Optimal Broadcast on Directed Acyclic Graphs ,”  IEEE Infocom, Hong Kong, April 2015.

176.   J. Zheng and E. Modiano, “ Enhancing Network Robustness via Shielding ,”  IEEE Design of Reliable Communication Networks, Kansas City, March 2015.

175.   H. W. Lee and E. Modiano, “ Robust Design of Cognitive Radio Networks ,”  Information and Communication Technology Convergence (ICTC), 2014.

174.   Greg Kuperman and Eytan Modiano, “ Disjoint Path Protection in Multi-Hop Wireless Networks with Interference Constraints ,”  IEEE Globecom, Austin, TX, December 2014.

173.   Marzieh Parandehgheibi, Eytan Modiano, David Hay, “ Mitigating Cascading Failures in Interdependent Power Grids and Communication Networks ,”  IEEE Smartgridcomm, Venice, Italy, November 2014.

172.   Georgios Paschos and Eytan Modiano, “ Throughput optimal routing in overlay networks ,”  Allerton conference on Communication, Control, and Computing, September 2014.

171.   Nathan Jones, George Paschos, Brooke Shrader, Eytan Modiano, “ An overlay architecture for Throughput Optimal Multipath Routing ,”  ACM MobiHoc, August 2014.

170.   Matt Johnston, Eytan Modiano, Yuri Polyanskiy, “ Opportunistic Scheduling with Limited Channel State Information: A Rate Distortion Approach ,”  IEEE International Symposium on Information Theory, Honolulu, HI, July 2014.

169.   Chih-Ping Li, Georgios Paschos, Eytan Modiano, Leandros Tassiulas, “ Dynamic Overload Balancing in Server Farms ,”  Networking 2014, Trondheim, Norway, June, 2014.

168.   Hulya Seferonglu and Eytan Modiano, “ TCP-Aware Backpressure Routing and Scheduling ,”  Information Theory and Applications, San Diego, CA, February 2014.

167.   Mihalis Markakis, Eytan Modiano, John Tsitsiklis, “ Delay Stability of Back-Pressure Policies in the presence of Heavy-Tailed Traffic ,”  Information Theory and Applications, San Diego, CA, February 2014.

166.   Kyu Soeb Kim, Chih-ping Li, Eytan Modiano, “ Scheduling Multicast Traffic with Deadlines in Wireless Networks ,”  IEEE Infocom, Toronto, CA, April 2014.

165.   Georgios Paschos, Chih-ping Li, Eytan Modiano, Kostas Choumas, Thanasis Korakis, “ A Demonstration of Multirate Multicast Over an 802.11 Mesh Network ,”  IEEE Infocom, Toronto, CA, April 2014.

164.   Sebastian Neumayer, Eytan Modiano, “ Assessing the Effect of Geographically Correlated Failures on Interconnected Power-Communication Networks ,”  IEEE SmartGridComm, 2013.

163.   Marzieh Parandehgheibi, Eytan Modiano, “ Robustness of Interdependent Networks: The case of communication networks and the power grid ,”  IEEE Globecom, December 2013.

162.   Matt Johnston, Eytan Modiano, “ Optimal Channel Probing in Communication Systems: The Two-Channel Case ,”  IEEE Globecom, December 2013.

161.   Mihalis Markakis, Eytan Modiano, John N. Tsitsiklis, “ Delay Analysis of the Max-Weight Policy under Heavy-Tailed Traffic via Fluid Approximations ,”  Allerton Conference, October 2013.

160.   Matthew Johnston, Isaac Keslassy, Eytan Modiano, “ Channel Probing in Communication Systems: Myopic Policies Are Not Always Optimal ,”  IEEE International Symposium on Information Theory, July 2013.

159.   Krishna P Jagannathan, Libin Jiang, Palthya Lakshma Naik, Eytan Modiano, “ Scheduling Strategies to Mitigate the Impact of Bursty Traffic in Wireless Networks ,”  11th International Symposium on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks Wiopt 2013, Japan, May 2013. (Winner – Best Paper Award).

158.   Hulya Seferoglu and Eytan Modiano, “ Diff-Max: Separation of Routing and Scheduling in Backpressure-Based Wireless Networks ,”  IEEE Infocom, Turin, Italy, April 2013.

157.   Chih-Ping Li, Eytan Modiano, “ Receiver-Based Flow Control for Networks in Overload ,”  IEEE Infocom, Turin, Italy, April 2013.

156.   Nathan Jones, Brooke Shrader, Eytan Modiano, “ Distributed CSMA with Pairwise Coding ,”  IEEE Infocom, Turin, Italy, April 2013.

155.   Greg Kuperman and Eytan Modiano, “ Network Protection with Guaranteed Recovery Times using Recovery Domains ,”  IEEE Infocom, Turin, Italy, April 2013.

154.   Greg Kuperman and Eytan Modiano, “ Providing Protection in Multi-Hop Wireless Networks ,”  IEEE Infocom, Turin, Italy, April 2013.

153.   Greg Kuperman, Eytan Modiano, Aradhana Narula-Tam, “ Network Protection with Multiple Availability Guarantees ,”  IEEE ICC workshop on New Trends in Optical Networks Survivability, June 2012.

152.   Nathaniel Jones, Brooke Shrader, Eytan Modiano, “ Optimal Routing and Scheduling for a Simple Network Coding Scheme ,”  IEEE Infocom, Orlando, Fl, March, 2012.

151.   Mihalis Markakis, Eytan Modiano, John Tsitsiklis, “ Max-Weight Scheduling in Networks with Heavy-Tailed Traffic ,”  IEEE Infocom, Orlando, Fl, March, 2012.

150.   Guner Celik and Eytan Modiano, “ Scheduling in Networks with Time-Varying Channels and Reconfiguration Delay ,”  IEEE Infocom, Orlando, Fl, March, 2012.

149.   Sebastian Neumayer, Alon Efrat, Eytan Modiano, “ Geographic Max-Flow and Min-cut Under a Circular Disk Failure Model ,”  IEEE Infocom (MC), Orlando, Fl, March, 2012.

148.   Marzieh Parandehgheibi, Hyang-Won Lee, and Eytan Modiano, “ Survivable Paths in Multi-Layer Networks ,”  Conference on Information Science and Systems, March, 2012.

147.   Greg Kuperman, Eytan Modiano, and Aradhana Narula-Tam, “ Partial Protection in Networks with Backup Capacity Sharing ,”  Optical Fiber Communications Conference (OFC), Anaheim, CA, March, 2012.

146.   Krishna Jagannathan, Libin Jiang, Eytan Modiano, “ On Scheduling Algorithms Robust to Heavy-Tailed Traffic ,”  Information Theory and Applications (ITA), San Diego, CA, February 2012.

145.   M. Johnston, H.W. Lee, E. Modiano, “ Robust Network Design for Stochastic Traffic Demands ,”  IEEE Globecom, Next Generation Networking Symposium, Houston, TX, December 2011.

144.   S. Neumayer, E. Modiano, “ Network Reliability Under Random Circular Cuts ,”  IEEE Globecom, Optical Networks and Systems Symposium, Houston, TX, December 2011.

143.   H.W. Lee, K. Lee, E. Modiano, “ Maximizing Reliability in WDM Networks through Lightpath Routing ,”  IEEE Globecom, Optical Networks and Systems Symposium, Houston, TX, December 2011.

142.   Guner Celik, Sem Borst, Eytan Modiano, Phil Whiting, “ Variable Frame Based Max-Weight Algorithms for Networks with Switchover Delay ,”  IEEE International Symposium on Information Theory, St. Petersburgh, Russia, August 2011.

141.   Krishna Jaganathan, Ishai Menache, Eytan Modiano, and Gil Zussman, “ Non-cooperative Spectrum Access – The Dedicated vs. Free Spectrum Choice ,”  ACM MOBIHOC’11, May 2011.

140.   Krishna Jagannathan, Shie Mannor, Ishai Menache, Eytan Modiano, “ A State Action Frequency Approach to Throughput Maximization over Uncertain Wireless Channels ,”  IEEE Infocom (Mini-conference), Shanghai, China, April 2011.

139.   Guner Celik, Long B. Le, Eytan Modiano, “ Scheduling in Parallel Queues with Randomly Varying Connectivity and Switchover Delay ,”  IEEE Infocom (Mini-conference), Shanghai, China, April 2011.

138.   Gregory Kuperman, Eytan Modiano, Aradhana Narula-Tam, “ Analysis and Algorithms for Partial Protection in Mesh Networks ,”  IEEE Infocom (Mini-conference), Shanghai, China, April 2011.

137.   Matthew Johnston, Hyang-Won Lee, Eytan Modiano, “ A Robust Optimization Approach to Backup Network Design with Random Failures ,”  IEEE Infocom, Shanghai, China, April 2011.

136.   Krishna Jagannathan, Mihalis Markakis, Eytan Modiano, John Tsitsiklis, “ Queue Length Asymptotics for Generalized Max-Weight Scheduling in the presence of Heavy-Tailed Traffic ,”  IEEE Infocom, Shanghai, China, April 2011.

135.   Guner Celik and Eytan Modiano, “ Dynamic Vehicle Routing for Data Gathering in Wireless Networks ,”  In Proc. IEEE CDC’10, Dec. 2010..***

134.   Long B. Le, Eytan Modiano, Changhee Joo, and Ness B. Shroff, “ Longest-queue-first scheduling under the SINR interference model ,”  ACM MobiHoc, September 2010..***

133.   Krishna Jagannathan, Mihalis Markakis, Eytan Modiano, John Tsitsiklis, “ Throughput Optimal Scheduling in the Presence of Heavy-Tailed Traffic ,”  Allerton Conference on Communication, Control, and Computing, September 2010..**

132.   Delia Ciullo, Guner Celik, Eytan Modiano, “ Minimizing Transmission Energy in Sensor Networks via Trajectory Control ,”  IEEE Wiopt 2010, Avignon, France, June 2010, (10 pages; CD proceedings – page numbers not available).

131.   Sebastian Neumayer and Eytan Modiano, “ Network Reliability with Geographically Correlated Failures ,”  IEEE Infocom 2010, San Diego, CA, March 2010, (9 pages; CD proceedings – page numbers not available).**

130.   Long Le, Eytan Modiano, Ness Shroff, “ Optimal Control of Wireless Networks with Finite Buffers ,”  IEEE Infocom 2010, San Diego, CA, March 2010, (9 pages; CD proceedings – page numbers not available).

129.   Kayi Lee, Hyang-Won Lee, Eytan Modiano, “ Reliability in Layered Network with Random Link Failures ,”  IEEE Infocom 2010, San Diego, CA, March 2010, (9 pages; CD proceedings – page numbers not available).**

128.   Krishna Jagannathan, Eytan Modiano, “ The Impact of Queue length Information on Buffer Overflow in Parallel Queues ,”  Allerton Conference on Communication, Control, and Computing, September 2009, pgs. 1103 -1110 **

127.   Mihalis Markakis, Eytan Modiano, John Tsitsiklis, “ Scheduling Policies for Single-Hop with Heavy-Tailed Traffic ,”  Allerton Conference on Communication, Control, and Computing, September 2009, pgs. 112 – 120..**

126.   Dan Kan, Aradhana Narula-Tam, Eytan Modiano, “ Lightpath Routing and Capacity Assignment for Survivable IP-over-WDM Networks ,”  DRCN 2009, Alexandria, VA October 2009, pgs. 37 -44..**

125.   Mehdi Ansari, Alireza Bayesteh, Eytan Modiano, “ Opportunistic Scheduling in Large Scale Wireless Networks ,”  IEEE International Symposium on Information Theory, Seoul, Korea, June 2009, pgs. 1624 – 1628.

124.   Hyang-Won Lee, Eytan Modiano and Long Bao Le, “ Distributed Throughput Maximization in Wireless Networks via Random Power Allocation ,”  IEEE Wiopt, Seoul, Korea, June 2009. (9 pages; CD proceedings – page numbers not available).

123.   Wajahat Khan, Eytan Modiano, Long Le, “ Autonomous Routing Algorithms for Networks with Wide-Spread Failures ,”  IEEE MILCOM, Boston, MA, October 2009. (6 pages; CD proceedings – page numbers not available).**

122.   Guner Celik and Eytan Modiano, “ Random Access Wireless Networks with Controlled Mobility ,”  IEEE Med-Hoc-Nets, Haifa, Israel, June 2009, pgs. 8 – 14.**

121.   Hyang-Won Lee and Eytan Modiano, “ Diverse Routing in Networks with Probabilistic Failures ,”  IEEE Infocom, April 2009, pgs. 1035 – 1043.

120.   Kayi Lee and Eytan Modiano, “ Cross-layer Survivability in WDM-based Networks ,”  IEEE Infocom, April 2009, pgs. 1017 -1025..**

119.   Krishna Jagannathan, Eytan Modiano, Lizhong Zheng, “ On the Trade-off between Control Rate and Congestion in Single Server Systems ,”  IEEE Infocom, April 2009, pgs. 271 – 279.**

118.   Sebastian Neumayer, Gil Zussman, Rueven Cohen, Eytan Modiano, “ Assessing the Vulnerability of the Fiber Infrastructure to Disasters ,”  IEEE Infocom, April 2009, pgs. 1566 – 1574.**

117.   Long Le, Krishna Jagannathan and Eytan Modiano, “ Delay analysis of max-weight scheduling in wireless ad hoc networks ,”  Conference on Information Science and Systems, Baltimore, MD, March, 2009, pgs. 389 – 394.**

116.   Krishna Jagannathan, Eytan Modiano, Lizhong Zheng, “ Effective Resource Allocation in a Queue: How Much Control is Necessary? ,”  Allerton Conference on Communication, Control, and Computing, September 2008, pgs. 508 – 515.**

115.   Sebastian Neumayer, Gil Zussman, Rueven Cohen, Eytan Modiano, “ Assessing the Impact of Geographically Correlated Network Failures ,”  IEEE MILCOM, November 2008. (6 pages; CD proceedings – page numbers not available).**

114.   Emily Craparo, Jonathan P. How, and Eytan Modiano, “ Simultaneous Placement and Assignment for Exploration in Mobile Backbone Networks ,”  IEEE conference on Decision and Control (CDC), November 2008, pgs. 1696 – 1701 **

113.   Anand Srinivas and Eytan Modiano, “ Joint node placement and assignment for throughput optimization in mobile backbone networks ,”  IEEE INFOCOM’08, pp. 1130 – 1138, Phoenix, AZ, Apr. 2008, pgs. 1130 – 1138.**

112.   Guner Celik, Gil Zussman, Wajahat Khan and Eytan Modiano, “ MAC for Networks with Multipacket Reception Capability and Spatially Distributed Nodes ,”  IEEE INFOCOM’08, Phoenix, AZ, Apr. 2008, pgs. 1436 – 1444.**

111.   Gil Zussman, Andrew Brzezinski, and Eytan Modiano, “ Multihop Local Pooling for Distributed Throughput Maximization in Wireless Networks ,”  IEEE INFOCOM’08, Phoenix, AZ, Apr. 2008, pgs 1139 – 1147.**

110.   Emily Craparo, Jonathan How and Eytan Modiano, “ Optimization of Mobile Backbone Networks: Improved Algorithms and Approximation ,”  IEEE American Control Conference, Seattle, WA, June 2008, pgs. 2016 – 2021.**

109.   Atilla Eryilmaz, Asuman Ozdaglar, Devavrat Shah, Eytan Modiano, “ Imperfect Randomized Algorithms for the Optimal Control of Wireless Networks ,”  Conference on Information Science and Systems, Princeton, NJ, March, 2008, pgs. 932 – 937.

108.   Anand Srinivas and Eytan Modiano, “ Optimal Path Planning for Mobile Backbone Networks ,”  Conference on Information Science and Systems, Princeton, NJ, March, 2008, pgs. 913 – 918.

107.   Kayi Lee and Eytan Modiano, “ Cross-layer Survivability in WDM Networks with Multiple Failures ,”  IEEE Optical Fiber Communications Conference, San Diego, CA February, 2008 (3 pages; CD proceedings – page numbers not available).

106.   Andrew Brzezinski, Gil Zussman and Eytan Modiano, “ Local Pooling Conditions for Joint Routing and Scheduling ,”  Workshop on Information Theory and Applications, pp. 499 – 506, La Jolla, CA, January, 2008, pgs. 499 – 506.

105.   Murtaza Zafer and Eytan Modiano, “ Minimum Energy Transmission over a Wireless Fading Channel with Packet Deadlines ,”  Proceedings of IEEE Conference on Decision and Control (CDC), New Orleans, LA, December, 2007, pgs. 1148 – 1155.**

104.   Atilla Eryilmaz, Asuman Ozdaglar, Eytan Modiano, “ Polynomial Complexity Algorithms for Full Utilization of Multi-hop Wireless Networks ,”  IEEE Infocom, Anchorage, AK, April, 2007, pgs. 499 – 507.

103.   Murtaza Zafer and Eytan Modiano, “ Delay Constrained Energy Efficient Data Transmission over a Wireless Fading Channel ,”  Workshop on Information Theory and Application, University of California, San Diego, CA, February, 2007, pgs. 289 – 298.**

102.   Atilla Eryilmaz, Eytan Modiano, Asuman Ozdaglar, “ Randomized Algorithms for Throughput-Optimality and Fairness in Wireless Networks ,”  Proceedings of IEEE Conference on Decision and Control (CDC), San Diego, CA, December, 2006, pgs. 1936 – 1941.

101.   Anand Srinivas, Gil Zussman, and Eytan Modiano, “ Distributed Mobile Disk Cover – A Building Block for Mobile Backbone Networks ,”  Proc. Allerton Conf. on Communication, Control, and Computing, Allerton, IL, September 2006, (9 pages; CD proceedings – page numbers not available).**

100.   Krishna Jagannathan, Sem Borst, Phil Whiting, Eytan Modiano, “ Scheduling of Multi-Antenna Broadcast Systems with Heterogeneous Users ,”  Allerton Conference on Communication, Control and Computing, Allerton, IL, September 2006, (10 pages; CD proceedings – page numbers not available).**

99.   Andrew Brzezinski, Gil Zussman, and Eytan Modiano, “ Enabling Distributed Throughput Maximization in Wireless Mesh Networks – A Partitioning Approach ,”  Proceedings of ACM MOBICOM’06, Los Angeles, CA, Sep. 2006, (12 pages; CD proceedings – page numbers not available).**

98.   Eytan Modiano, Devavrat Shah, and Gil Zussman, “ Maximizing Throughput in Wireless Networks via Gossiping ,”  Proc. ACM SIGMETRICS / IFIP Performance’06, Saint-Malo, France, June 2006, (12 pages; CD proceedings – page numbers not available). (best paper award)

97.   Anand Srinivas, Gil Zussman, and Eytan Modiano, “ Mobile Backbone Networks – Construction and Maintenance ,”  Proc. ACM MOBIHOC’06, Florence, Italy, May 2006, (12 pages; CD proceedings – page numbers not available).**

96.   Andrew Brzezinski and Eytan Modiano, “ Achieving 100% throughput in reconfigurable optical networks ,”  IEEE INFOCOM 2006 High-Speed Networking Workshop, Barcelona, Spain, April 2006, (5 pages; CD proceedings – page numbers not available).**

95.   Krishna P. Jagannathan, Sem Borst, Phil Whiting, Eytan Modiano, “ Efficient scheduling of multi-user multi-antenna systems ,”  Proceedings of WiOpt 2006, Boston, MA, April 2006, (8 pages; CD proceedings – page numbers not available).**

94.   Andrew Brzezinski and Eytan Modiano, “ Greedy weighted matching for scheduling the input-queued switch ,”  Conference on Information Sciences and Systems (CISS), Princeton, NJ, March 2006, pgs. 1738 – 1743.**

93.   Murtaza Zafer and Eytan Modiano, “ Optimal Adaptive Data Transmission over a Fading Channel with Deadline and Power Constraints ,”  Conference on Information Sciences and Systems (CISS), Princeton, New Jersey, March 2006, pgs. 931 – 937.**

92.   Li-Wei Chen and E. Modiano, “ A Geometric Approach to Capacity Provisioning in WDM Networks with Dynamic Traffic ,”  Conference on Information Science and Systems (CISS), Princeton, NJ, March, 2006, pgs. 1676 – 1683, **

91.   Jun Sun and Eytan Modiano, “ Channel Allocation Using Pricing in Satellite Networks ,”  Conference on Information Science and Systems (CISS), Princeton, NJ, March, 2006, pgs. 182 – 187.**

90.   Jun Sun, Jay Gao, Shervin Shambayatti and Eytan Modiano, “ Ka-Band Link Optimization with Rate Adaptation ,”  IEEE Aerospace Conference, Big Sky, MN, March, 2006. (7 pages; CD proceedings – page numbers not available).

89.   Alessandro Tarello, Eytan Modiano and Jay Gao, “ Energy efficient transmission scheduling over Mars proximity links ,”  IEEE Aerospace Conference, Big Sky, MN, March, 2006. (10 pages; CD proceedings – page numbers not available).

88.   A. Brzezinski and E. Modiano, “ RWA decompositions for optimal throughput in reconfigurable optical networks ,”  INFORMS Telecommunications Conference, Dallas, TX, March 2006 (3 pages; CD proceedings – page numbers not available).**

87.   Li Wei Chen and E. Modiano, “ Geometric Capacity Provisioning for Wavelength Switched WDM Networks ,”  Workshop on Information Theory and Application, University of California, San Diego, CA, February, 2006. (8 pages; CD proceedings – page numbers not available).**

86.   Murtaza Zafer and Eytan Modiano, “ Joint Scheduling of Rate-guaranteed and Best-effort Services over a Wireless Channel ,”  IEEE Conference on Decision and Control, Seville, Spain, December, 2005, pgs. 6022–6027.**

85.   Jun Sun and Eytan Modiano, “ Opportunistic Power Allocation for Fading Channels with Non-cooperative Users and Random Access ,”  IEEE BroadNets – Wireless Networking Symposium, Boston, MA, October, 2005, pgs. 397–405.**

84.   Li Wei Chen and Eytan Modiano, “ Uniform vs. Non-uniform Band Switching in WDM Networks ,”  IEEE BroadNets-Optical Networking Symposium, Boston, MA, October, 2005, pgs. 219– 228.**

83.   Sonia Jain and Eytan Modiano, “ Buffer Management Schemes for Enhanced TCP Performance over Satellite Links ,”  IEEE MILCOM, Atlantic City, NJ, October 2005 (8 pages; CD proceedings – page numbers not available).**

82.   Murtaza Zafer and Eytan Modiano, “ Continuous-time Optimal Rate Control for Delay Constrained Data Transmission ,”  Allerton Conference on Communications, Control and Computing, Allerton, IL, September, 2005 (10 pages; CD proceedings – page numbers not available).**

81.   Alessandro Tarello, Eytan Modiano, Jun Sun, Murtaza Zafer, “ Minimum Energy Transmission Scheduling subject to Deadline Constraints ,”  IEEE Wiopt, Trentino, Italy, April, 2005, pgs. 67–76. (Winner of best student paper award).**

80.   Amir Khandani, Eytan Modiano, Jinane Abounadi, Lizhong Zheng, “ Reliability and Route Diversity in Wireless Networks ,”  Conference on Information Science and System, Baltimore, MD, March, 2005, (8 pages; CD proceedings – page numbers not available).**

79.   Andrew Brzezinski, Iraj Saniee, Indra Widjaja, Eytan Modiano, “ Flow Control and Congestion Management for Distributed Scheduling of Burst Transmissions in Time-Domain Wavelength Interleaved Networks ,”  IEEE/OSA Optical Fiber Conference (OFC), Anaheim, CA, March, 2005, pgs. WC4-1–WC4-3.

78.   Andrew Brzezinski and Eytan Modiano, “ Dynamic Reconfiguration and Routing Algorithms for IP-over-WDM Networks with Stochastic Traffic ,”  IEEE Infocom 2005, Miami, FL, March, 2005, pgs. 6–11.**

77.   Murtaza Zafer and Eytan Modiano, “ A Calculus Approach to Minimum Energy Transmission Policies with Quality of Service Guarantees ,”  IEEE Infocom 2005, Miami, FL, March, 2005, pgs. 548–559.**

76.   Michael Neely and Eytan Modiano, “ Fairness and optimal stochastic control for heterogeneous networks ,”  IEEE Infocom 2005, Miami, FL, March, 2005, pgs. 1723 – 1734.**

75.   Aradhana Narula-Tam, Thomas G. Macdonald, Eytan Modiano, and Leslie Servi, “ A Dynamic Resource Allocation Strategy for Satellite Communications ,”  IEEE MILCOM, Monterey, CA, October, 2004, pgs. 1415 – 1421.

74.   Li-Wei Chen, Poompat Saengudomlert and Eytan Modiano, “ Optimal Waveband Switching in WDM Networks ,”  IEEE International Conference on Communication (ICC), Paris, France, June, 2004, pgs. 1604 – 1608.**

73.   Michael Neely and Eytan Modiano, “ Logarithmic Delay for NxN Packet Switches ,”  IEEE Workshop on High performance Switching and Routing (HPSR 2004), Phoenix, AZ, April, 2004, pgs. 3–9.**

72.   Li-Wei Chen and Eytan Modiano, “ Dynamic Routing and Wavelength Assignment with Optical Bypass using Ring Embeddings ,”  IEEE Workshop on High performance Switching and Routing (HPSR 2004), Phoenix, Az, April, 2004, pgs. 119–125.**

71.   Randall Berry and Eytan Modiano, “ On the Benefits of Tunability in Reducing Electronic Port Counts in WDM/TDM Networks ,”  IEEE Infocom, Hong Kong, March 2004, pgs. 1340–1351.

70.   Andrew Brzezinski and Eytan Modiano, “ A new look at dynamic traffic scheduling in WDM networks with transceiver tuning latency ,”  Informs Telecommunications Conference, Boca Raton, FL, March 2004, pgs. 25–26.**

69.   Chunmei Liu and Eytan Modiano, “ Packet Scheduling with Window Service Constraints ,”  Conference on Information Science and System, Princeton, NJ, March, 2004, pgs. 178–184.**

68.   Jun Sun, Eytan Modiano, and Lizhong Zheng, “ A Novel Auction Algorithm for Fair Allocation of a Wireless Fading Channel ,”  Conference on Information Science and System, Princeton, NJ, March, 2004, pgs. 1377–1383.**

67.   Murtaza Zafer and Eytan Modiano, “ Impact of Interference and Channel Assignment on Blocking Probability in Wireless Networks ,”  Conference on Information Science and System, Princeton, NJ, March, 2004, pgs. 430–436.**

66.   Chunmei Liu and Eytan Modiano, “ An Analysis of TCP over Random Access Satellite Links ,”  IEEE Wireless Communications and Networking Conference (WCNC), Atlanta, GA, February, 2004, pgs. 2033–2040..**

65.   Randall Berry and Eytan Modiano, “ Using tunable optical transceivers for reducing the number of ports in WDM/TDM Networks ,”  IEEE/OSA Optical Fiber Conference (OFC), Los Angeles, CA, February, 2004, pgs. 23–27.

64.   Aradhana Narula-Tam, Eytan Modiano and Andrew Brzezinski, “ Physical Topology Design for Survivable Routiing of Logical Rings in WDM-based Networks ,”  IEEE Globecom, San francisco, CA, December, 2003, pgs. 2552–2557.

63.   Jun Sun, Lizhong Zheng and Eytan Modiano, “ Wireless Channel Allocation Using an Auction Algorithm ,”  Allerton Conference on Communications, Control and Computing, October, 2003, pgs. 1114–1123..**

62.   Amir Khandani, Jinane Abounadi, Eytan Modiano, Lizhong Zhang, “ Cooperative Routing in Wireless Networks ,”  Allerton Conference on Communications, Control and Computing, October, 2003, pgs. 1270–1279.**

61.   Poompat Saengudomlert, Eytan Modiano and Robert Gallager, “ Dynamic Wavelength Assignment for WDM all optical Tree Networks ,”  Allerton Conference on Communications, Control and Computing, October, 2003, 915–924.**

60.   Aradhana Narula-Tam and Eytan Modiano, “ Designing Physical Topologies that Enable Survivable Routing of Logical Rings ,”  IEEE Workshop on Design of Reliable Communication Networks (DRCN), October, 2003, pgs. 379–386.

59.   Anand Srinivas and Eytan Modiano, “ Minimum Energy Disjoint Path Routing in Wireless Ad Hoc Networks ,”  ACM Mobicom, San Diego, Ca, September, 2003, pgs. 122–133.**

58.   Michael Neely and Eytan Modiano, “ Improving Delay in Ad-Hoc Mobile Networks Via Redundant Packet Transfers ,”  Conference on Information Science and System, Baltimore, MD, March, 2003 (6 pages; CD proceedings – page numbers not available).**

57.   Michael Neely, Eytan Modiano and Charles Rohrs, “ Dynamic Power Allocation and Routing for Time Varying Wireless Networks ,”  IEEE Infocom 2003, San Francisco, CA, April, 2003, pgs. 745–755.**

56.   Alvin Fu, Eytan Modiano, and John Tsitsiklis, “ Optimal Energy Allocation for Delay-Constrained Data Transmission over a Time-Varying Channel ,”  IEEE Infocom 2003, San Francisco, CA, April, 2003, pgs. 1095–1105.**

55.   Poompat Saengudomlert, Eytan Modiano and Rober Gallager, “ On-line Routing and Wavelength Assignment for Dynamic Traffic in WDM Ring and Torus Networks ,”  IEEE Infocom 2003, San Francisco, CA, April, 2003, pgs. 1805–1815.**

54.   Li-Wei Chen and Eytan Modiano, “ Efficient Routing and Wavelength Assignment for Reconfigurable WDM Networks with Wavelength Converters ,”  IEEE Infocom 2003, San Francisco, CA, April, 2003, pgs. 1785–1794. Selected as one of the best papers of Infocom 2003 for fast track publication in IEEE/ACM Transactions on Networking.**

53.   Mike Neely, Jun Sun and Eytan Modiano, “ Delay and Complexity Tradeoffs for Dynamic Routing and Power Allocation in a Wireless Network ,”  Allerton Conference on Communication, Control, and Computing, Allerton, Illinois, October, 2002, pgs. 157 –159.**

52.   Anand Ganti, Eytan Modiano and John Tsitsiklis, “ Transmission Scheduling for Multi-Channel Satellite and Wireless Networks ,”  Allerton Conference on Communication, Control, and Computing, Allerton, Illinois, October, 2002, pgs. 1318–1327.**

51.   Poompat Saengudomlert, Eytan Modiano, and Robert G. Gallager, “ Optimal Wavelength Assignment for Uniform All-to-All Traffic in WDM Tree Networks ,”  Allerton Conference on Communication, Control, and Computing, Allerton, Illinois, October, 2002, pgs. 528–537.**

50.   Hungjen Wang, Eytan Modiano and Muriel Medard, “ Partial Path Protection for WDM Networks: End-to-End Recovery Using Local Failure Information ,”  IEEE International Symposium on Computer Communications (ISCC), Taormina, Italy, July 2002, pgs. 719–725.**

49.   Jun Sun and Eytan Modiano, “ Capacity Provisioning and Failure Recovery in Mesh-Torus Networks with Application to Satellite Constellations ,”  IEEE International Symposium on Computer Communications (ISCC), Taormina, Italy, July 2002, pgs. 77–84.**

48.   Alvin Fu, Eytan Modiano, and John Tsitsiklis, “ Optimal Energy Allocation and Admission Control for Communications Satellites ,”  IEEE INFOCOM 2002, New York, June, 2002, pgs. 648–656.**

47.   Michael Neely, Eytan Modiano and Charles Rohrs, “ Power and Server Allocation in a Multi-Beam Satellite with Time Varying Channels ,”  IEEE INFOCOM 2002, New York, June, 2002, pgs. 1451–1460..**

46.   Mike Neely, Eytan Modiano and Charles Rohrs, “ Tradeoffs in Delay Guarantees and Computation Complexity for N x N Packet Switches ,”  Conference on Information Science and Systems, Princeton, NJ, March, 2002, pgs. 136–148.**

45.   Alvin Fu, Eytan Modiano and John Tsitsiklis, “ Transmission Scheduling Over a Fading Channel with Energy and Deadline Constraints ,”  Conference on Information Science and System, Princeton, NJ, March, 2002, pgs. 1018–1023.**

44.   Chunmei Liu and Eytan Modiano, “ On the Interaction of Layered Protocols: The Case of Window Flow Control and ARQ ,”  Conference on Information Science and System, Princeton, NJ, March, 2002, pgs. 118–124.**

43.   Mike Neely, Eytan Modiano and Charles Rohrs, “ Packet Routing over Parallel Time-varying Queues with Application to Satellite and Wireless Networks ,”  Conference on Information Science and System, Princeton, NJ, March, 2002, pgs. 360–366.**

42.   Ahluwalia Ashwinder, Eytan Modiano and Li Shu, “ On the Complexity and Distributed Construction of Energy Efficient Broadcast Trees in Static Ad Hoc Wireless Networks ,”  Conference on Information Science and System, Princeton, NJ, March, 2002, pgs. 807–813.**

41.   Jun Sun and Eytan Modiano, “ Capacity Provisioning and Failure Recovery for Satellite Constellations ,”  Conference on Information Science and System, Princeton, NJ, March, 2002, pgs. 1039–1045.**

40.   Eytan Modiano, Hungjen Wang, and Muriel Medard, “ Partial Path Protection for WDM networks ,”  Informs Telecommunications Conference, Boca Raton, FL, March 2002, pgs. 78–79.**

39.   Poompat Saengudomlert, Eytan H. Modiano, and Robert G. Gallager, “ An On-Line Routing and Wavelength Assignment Algorithm for Dynamic Traffic in a WDM Bidirectional Ring ,”  Joint Conference on Information Sciences (JCIS), Durham, North Carolina, March, 2002, pgs. 1331–1334.**

38.   Randy Berry and Eytan Modiano, “ Switching and Traffic Grooming in WDM Networks ,”  Joint Conference on Information Sciences (JCIS), Durham, North Carolina, March, 2002, pgs. 1340–1343.

37.   Eytan Modiano, Hungjen Wang, and Muriel Medard, “ Using Local Information for WDM Network Protection ,”  Joint Conference on Information Sciences (JCIS), Durham, North Carolina, March, 2002, pgs. 1398–1401.**

36.   Aradhana Narula-Tam and Eytan Modiano, “ Network architectures for supporting survivable WDM rings ,”  IEEE/OSA Optical Fiber Conference (OFC) 2002, Anaheim, CA, March, 2002, pgs. 105–107.

35.   Michael Neely, Eytan Modiano, Charles Rohrs, “ Packet Routing over Parallel Time-Varying Queues with Application to Satellite and Wireless Networks ,”  Allerton Conference on Communication, Control, and Computing, Allerton, Illinois, September, 2001, pgs. 1110-1111.**

34.   Eytan Modiano and Randy Berry, “ The Role of Switching in Reducing Network Port Counts ,”  Allerton Conference on Communication, Control, and Computing, Allerton, Illinois, September, 2001, pgs. 376-385.

33.   Eytan Modiano, “ Resource allocation and congestion control in next generation satellite networks ,”  IEEE Gigabit Networking Workshop (GBN 2001), Anchorage, AK, April 2001, (2 page summary-online proceedings).

32.   Eytan Modiano and Aradhana Narula-Tam, “ Survivable Routing of Logical Topologies in WDM Networks ,”  IEEE Infocom 2001, Anchorage, AK, April 2001, pgs. 348–357.

31.   Michael Neely and Eytan Modiano, “ Convexity and Optimal Load Distribution in Work Conserving */*/1 Queues ,”  IEEE Infocom 2001, Anchorage, AK, April 2001, pgs. 1055–1064.

30.   Eytan Modiano and Randy Berry, “ Using Grooming Cross- Connects to Reduce ADM Costs in Sonet/WDM Ring Networks ,”  IEEE/OSA Optical Fiber Conference (OFC) 2001, Anaheim, CA March 2001, pgs. WL1- WL3.

29.   Eytan Modiano and Aradhana Narula-Tam, “ Designing Survivable Networks Using Effective Rounting and Wavelenght Assignment (RWA) ,”  IEEE/OSA Optical Fiber Conference (OFC) 2001, Anaheim, CA March 2001, pgs. TUG5-1 – TUG5– 3.

28.   Roop Ganguly and Eytan Modiano, “ Distributed Algorithms and Architectures for Optical Flow Switching in WDM networks ,”  IEEE International Symposium on Computer Communications (ISCC 2000), Antibes, France, July 2000, pgs. 134–139.

27.   Aradhana Narula-Tam, Philip J. Lin and Eytan Modiano, “ Wavelength Requirements for Virtual topology Reconfiguration in WDM Ring Networks ,”  IEEE International Conference on Communications (ICC 2000), New Orleans, LA, June 2000, pgs. 1650–1654.

26.   Eytan Modiano, “Optical Flow Switching for the Next Generation Internet,”  IEEE Gigabit Networking Workshop (GBN 2000), Tel-aviv, March 2000 (2 page summary-online proceedings).

25.   Aradhana Narula and Eytan Modiano, “ Dynamic Reconfiguration in WDM Packet Networks with Wavelength Limitations ,”  IEEE/OSA Optical Fiber Conference (OFC) 2000, Baltimore, MD, March, 2000, pgs. 1210–1212.

24.   Brett Schein and Eytan Modiano, “ Quantifying the benefits of configurability in circuit-switched WDM ring networks ,”  IEEE Infocom 2000, Tel Aviv, Israel, April, 2000, pgs.1752–1760..***

23.   Aradhana Narula-Tam and Eytan Modiano, “ Load Balancing Algorithms for WDM-based IP networks ,”  IEEE Infocom 2000, Tel Aviv, Israel, April, 2000, pgs. 1010–1019.

22.   Nan Froberg, M. Kuznetsov, E. Modiano, et. al., “ The NGI ONRAMP test bed: Regional Access WDM technology for the Next Generation Internet ,”  IEEE LEOS ’99, October, 1999, pgs. 230–231.

21.   Randy Berry and Eytan Modiano, “ Minimizing Electronic Multiplexing Costs for Dynamic Traffic in Unidirectional SONET Ring Networks ,”  IEEE International Conference on Communications (ICC ’99), Vancouver, CA, June 1999, pgs. 1724–1730..***

20.   Brett Schein and Eytan Modiano, “Increasing Traffic Capacity in WDM Ring Networks via Topology Reconfiguration,”  Conference on Information Science and Systems, Baltimore, MD, March 1999, pgs. 201 – 206.

19.   Eytan Modiano and Richard Barry, “ Design and Analysis of an Asynchronous WDM Local Area Network Using a Master/Slave Scheduler ,”  IEEE Infocom ’99, New York, NY, March 1999, pgs. 900–907.

18.   Randy Berry and Eytan Modiano, “ Grooming Dynamic Traffic in Unidirectional SONET Ring Networks ,”  IEEE/OSA Optical Fiber Conference (OFC) ’99, San Diego, CA, February 1999, pgs. 71–73.

17.   Angela Chiu and Eytan Modiano, “ Reducing Electronic Multiplexing Costs in Unidirectional SONET/WDM Ring Networks Via Efficient Traffic Grooming ,”  IEEE Globecom ’98, Sydney, Australia, November 1998, pgs. 322–327.

16.   Eytan Modiano, “ Throughput Analysis of Unscheduled Multicast Transmissions in WDM Broadcast-and-Select Networks ,”  IEEE International Symposium on Information Theory, Boston, MA, September 1998, pg. 167.

15.   Eytan Modiano and Angela Chiu, “Traffic Grooming Algorithms for Minimizing Electronic Multiplexing Costs in Unidirectional SONET/WDM Ring Networks,”  Conference on Information Science and Systems, Princeton, NJ, March 1998, 653–658.

14.   Eytan Modiano and Eric Swanson, “ An Architecture for Broadband Internet Services over a WDM-based Optical Access Network ,”  IEEE Gigabit Networking Workshop (GBN ’98), San Francisco, CA, March 1998 (2 page summary-online proceedings).

13.   Eytan Modiano, “ Unscheduled Multicasts in WDM Broadcast-and-Select Networks ,”  IEEE Infocom ’98, San Francisco, CA, March 1998, pgs. 86–93.

12.   Eytan Modiano, Richard Barry and Eric Swanson, “ A Novel Architecture and Medium Access Control (MAC) protocol for WDM Networks ,”  IEEE/OSA Optical Fiber Conference (OFC) ’98, San Jose, CA, February 1998, pgs. 90–91.

11.   Eytan Modiano, “ Scheduling Algorithms for Message Transmission Over a Satellite Broadcast System ,”  IEEE MILCOM 97, Monterey, CA, November 1997, pgs. 628–634.

10.   Eytan Modiano, “ Scheduling Packet Transmissions in A Multi-hop Packet Switched Network Based on Message Length ,”  IEEE International Conference on Computer Communications and Networks (IC3N) Las Vegas, Nevada, September 1997, pgs. 350–357.

9.   Eytan Modiano, “A Simple Algorithm for Optimizing the Packet Size Used in ARQ Protocols Based on Retransmission History,”  Conference on Information Science and Systems, Baltimore, MD, March 1997, pgs. 672–677.

8.   Eytan Modiano, “ A Multi-Channel Random Access Protocol for the CDMA Channel ,”  IEEE PIMRC ’95, Toronto, Canada, September 1995, pgs. 799–803.

7.   Eytan Modiano Jeffrey Wieselthier and Anthony Ephremides, “ A Simple Derivation of Queueing Delay in a Tree Network of Discrete-Time Queues with Deterministic Service Times ,”  IEEE International Symposium on Information Theory, Trondheim, Norway, June 1994, pg. 372.

6.   Eytan Modiano, Jeffrey Wieselthier and Anthony Ephremides, “An Approach for the Analysis of Packet Delay in an Integrated Mobile Radio Network,”  Conference on Information Sciences and Systems, Baltimore, MD, March 1993, pgs. 138-139.

5.   Eytan Modiano and Anthony Ephremides, “ A Method for Delay Analysis of Interacting Queues in Multiple Access Systems ,”  IEEE INFOCOM 1993, San Francisco, CA, March 1993, pgs. 447 – 454.

4.   Eytan Modiano and Anthony Ephremides, “ A Model for the Approximation of Interacting Queues that Arise in Multiple Access Schemes ,”  IEEE International Symposium on Information Theory, San Antonio, TX, January 1993, pg. 324.

3.   Eytan Modiano and Anthony Ephremides, “ Efficient Routing Schemes for Multiple Broadcasts in a Mesh ,”  Conference on Information Sciences and Systems, Princeton, NJ, March 1992, pgs. 929 – 934.

2.   Eytan Modiano and Anthony Ephremides, “ On the Secrecy Complexity of Computing a Binary Function of Non-uniformly Distributed Random Variables ,”  IEEE International Symposium on Information Theory, Budapest, Hungary, June 1991, pg. 213.

1.   Eytan Modiano and Anthony Ephremides, “Communication Complexity of Secure Distributed Computation in the Presence of Noise,”  IEEE International Symposium on Information Theory, San Diego, CA, January 1990, pg. 142.

Book Chapters

  • Hyang-Won Lee, Kayi Lee, Eytan Modiano, “ Cross-Layer Survivability ” in Cross-Layer Design in Optical Networks, Springer, 2013.
  • Li-Wei Chen and Eytan Modiano, “ Geometric Capacity Provisioning for Wavelength-Switched WDM Networks ,” Chapter in Computer Communications and Networks Series: Algorithms for Next Generation Networks, Springer, 2010.
  • Amir Khandani, Eytan Modiano, Lizhong Zhang, Jinane Aboundi, “ Cooperative Routing in Wireless Networks ,” Chapter in Advances in Pervasive Computing and Networking, Kluwer Academic Publishers, 2005.
  • Jian-Qiang Hu and Eytan Modiano, “ Traffic Grooming in WDM Networks ,” Chapter in Emerging Optical Network Technologies, Kluwer Academic Publishers, to appear, 2004.
  • Eytan Modiano, “ WDM Optical Networks ,” Wiley Encyclopedia of Telecommunications (John Proakis, Editor), 2003.
  • Eytan Modiano, “ Optical Access Networks for the Next Generation Internet ,” in Optical WDM Networks: Principles and Practice, Kluwer Academic Prublishers, 2002.
  • Eytan Modiano, Richard Barry and Eric Swanson, “ A Novel Architecture and Medium Access Control protocol for WDM Networks ,” Trends in Optics and Photonics Series (TOPS) volume on Optical Networks and Their Applications, 1998.
  • Eytan Modiano and Kai-Yeung Siu, “Network Flow and Congestion Control,” Wiley Encyclopedia of Electrical and Electronics Engineering, 1999.

Technical Reports

  • Amir Khandani, Eytan Modiano, Jinane Abounadi, Lizhong Zheng, “Reliability and Route Diversity in Wireless Networks, ” MIT LIDS Technical Report number 2634, November, 2004.
  • Anand Srinivas and Eytan Modiano, “Minimum Energy Disjoint Path Routing in Wireless Ad Hoc Networks, ” MIT LIDS Technical Report, P-2559, March, 2003.
  • Eytan Modiano and Aradhana Narula-Tam, “Survivable lightpath routing: a new approach to the design of WDM-based networks, ” LIDS report 2552, October, 2002.
  • Michael Neely, Eytan Modiano and Charles Rohrs, “Packet Routing over Parallel Time-Varying Queues with Application to Satellite and Wireless Networks,” LIDS report 2520, September, 2001.
  • Jun Sun and Eytan Modiano, “Capacity Provisioning and Failure Recovery in Mesh-Torus Networks with Application to Satellite Constellations,” LIDS report 2518, September, 2001.
  • Hungjen Wang, Eytan Modiano and Muriel Medard, “Partial Path Protection for WDM Networks: End-to-End Recovery Using Local Failure Information, ” LIDS report 2517, Sept. 2001.
  • Alvin Fu, Eytan Modiano, and John Tsitsiklis, “Optimal Energy Allocation and Admission Control for Communications Satellites, ” LIDS report 2516, September, 2001.
  • Michael Neely, Eytan Modiano and Charles Rohrs, “Power and Server Allocation in a Multi-Beam Satellite with Time Varying Channels, ” LIDS report 2515, September, 2001.
  • Eytan Modiano, “Scheduling Algorithms for Message Transmission Over the GBS Satellite Broadcast System, ” Lincoln Laboratory Technical Report Number TR-1035, June 1997.
  • Eytan Modiano, “Scheduling Packet Transmissions in A Multi-hop Packet Switched Network Based on Message Length, ” Lincoln Laboratory Technical Report number TR-1036, June, 1997.

CS 243, Fall 2019: Advanced Computer Networks

This is a graduate-level course on computer networks. It provides a comprehensive overview on advanced topics in network protocols and networked systems. The course will cover both classic papers on computer networks and recent research results. It will examine a wide range of topics including routing, congestion control, network architectures, network management, datacenter networks, software-defined networking, and programmable networks, with an emphasis on core networking concepts and principles and their usage in practice. The course will include lectures, in-class presentations, paper discussions, and a research project.

  • Instructor: Minlan Yu (MD 137)
  • Lecture time: MW 1:30pm-2:45pm
  • Location: TBD
  • Office hour: We have unlimited office hours to discuss course projects. Please just email the instructor to schedule the time. We also have walk-in office hour time on Monday 12:30-1:30, MD 137
  • Discussion list: Piazza
  • Recommended prep: system programming at the level of CS 61 or CS 143 or CS 145.
  • Project: 50%
  • Reviews: 30%
  • Class presentation: 20%

Review format

Class presentation, presentation format, project timeline, project proposal presentation, midterm project report, final project presentations, final project report, code submission, evaluation testbed, diversity and inclusion, accommodations for disabilities.

Last updated: 2019-10-16 11:59:11 -0400 [ validate xhtml ]

Topics in Networking Research

  • Conference paper
  • Cite this conference paper

computer networking research paper topics

  • Debasis Mitra 1  

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 4516))

Included in the following conference series:

  • International Teletraffic Congress

1428 Accesses

What are the big movements in networking that researchers should heed? A standout is the global spread of communities of interest (the networking analogue of the flat world) and their need for “dynamic virtual networks” that support rich applications requiring resources from several domains. The imperative for inter-networking, i.e., the enablement of coordinated sharing of resources across multiple domains, is certain. This challenge has many facets, ranging from the organizational, e.g., different, possibly competing, owners to the technical, e.g., different technologies. Yet another key characteristic of the emerging networking environment is that the service provider is required to handle ever-increasing uncertainty in demand, both in volume and time. On the other hand there are new instruments available to handle the challenge. Thus, inter-networking and uncertainty management are important challenges of emerging networking that deserve attention from the research community.

We describe research that touch on both topics. First, we consider a model of data-optical inter-networking, where routes connecting end-points in data domains are concatenation of segments in the data and optical domains. The optical domain in effect acts as a carrier’s carrier for multiple data domains. The challenge to inter-networking stems from the limited view that the data and optical domains have of each other. Coordination has to be enabled through parsimonious and qualitatively restrictive information exchange across domains. Yet the overall optimization objective, which is to maximize end-to-end carried traffic with minimum lightpath provisioning cost, enmeshes data and optical domains. This example of inter-networking also involves two technologies. A mathematical reflection of the latter fact is the integrality of some of the decision variables due to wavelengths being the bandwidth unit in optical transmission. Through an application of Generalized Bender’s Decomposition the problem of optimizing provisioning and routing is decomposed into sub-problems, which are solved by the different domains and the results exchanged in iterations that provably converge to the global optimum.

In turning to uncertainty management we begin by presenting a framework for stochastic traffic management. Traffic demands are uncertain and given by probability distributions. While there are alternative perspectives (and metrics) to resource usage, such as social welfare and network revenue, we adopt the latter, which is aligned with the service provider’s interests. Uncertainty introduces the risk of misallocation of resources. What is the right measure of risk in networking? We examine various definitions of risk, some taken from modern portfolio theory, and suggest a balanced solution. Next we consider the optimization of an objective which is a risk-adjusted measure of network revenue. We obtain conditions under which the optimization problem is an instance of convex programming. Studies of the properties of the solution show that it asymptotically meets the stochastic efficiency criterion. Service providers’ risk mitigation policies are suggested. For instance, by selecting the appropriate mix of long-term contracts and opportunistic servicing of random demand, the service provider can optimize its risk-adjusted revenue. The “efficient frontier”, which is the set of Pareto optimal pairs of mean revenue and revenue risk, is useful to the service provider in selecting its operating point.

Joint work with Qiong Wang and Anwar Walid, Bell Labs, Murray Hill.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save.

  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

computer networking research paper topics

Thoughts on the development of novel network technology

computer networking research paper topics

Communication Networks: Pricing, Congestion Control, Routing, and Scheduling

computer networking research paper topics

Author information

Authors and affiliations.

Bell Labs, Alcatel-Lucent, Murray Hill, NJ 07974, USA

Debasis Mitra

You can also search for this author in PubMed   Google Scholar

Editor information

Rights and permissions.

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper.

Mitra, D. (2007). Topics in Networking Research. In: Mason, L., Drwiega, T., Yan, J. (eds) Managing Traffic Performance in Converged Networks. ITC 2007. Lecture Notes in Computer Science, vol 4516. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72990-7_3

Download citation

DOI : https://doi.org/10.1007/978-3-540-72990-7_3

Publisher Name : Springer, Berlin, Heidelberg

Print ISBN : 978-3-540-72989-1

Online ISBN : 978-3-540-72990-7

eBook Packages : Computer Science Computer Science (R0)

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

IMAGES

  1. Innovative Computer Networking Project Topics [Research Guidance]

    computer networking research paper topics

  2. Top 5 Latest Computer Network Research Topics [Research Guidance]

    computer networking research paper topics

  3. (PDF) An Introduction to Computer Networking: A Survey

    computer networking research paper topics

  4. Important Computer Network Assignment Topics

    computer networking research paper topics

  5. Computer networking Research Paper Example

    computer networking research paper topics

  6. Performance Analysis of Computer Networking Final Year Project

    computer networking research paper topics

VIDEO

  1. ภาษาไทย: Computer Network Lecture 1

  2. Topic 8 (Part 1): Fundamentals of Information Technology-Data Communications and Computer Networks

  3. Science Projects

  4. Computer Networks: basic concepts

  5. Different Network layer design issues in Computer Networks By Jayamma Rodda

  6. Computer Networks Important Questions Anna University

COMMENTS

  1. Computer Networking Dissertation Topics - Research Prospect

    List Of Trending Ideas For Your Computer Networking Dissertation. Machine learning for proactive network anomaly detection. The role of software-defined-networking (SDN) for network performance and security. Applications and challenges of 6G technologies.

  2. 15 Latest Networking Research Topics for Students - Crowjack

    Explore a curated list of 15 research topics covering the networking field with their respective possible methodology, research questions, and objectives.

  3. Advancements and Challenges in Networking Technologies: A ...

    This survey paper provides a comprehensive overview of emerging technologies in networking, focusing on caching in Information-Centric Networking (ICN), context.

  4. (PDF) Computer Networking: A Survey - ResearchGate

    In this article we are presenting the basic definition of computer network, characteristics of transmission media-bounded and unbounded, networking components and a brief review of the ...

  5. Computer Networks | Journal | ScienceDirect.com by Elsevier

    Computer Networks is an international, archival journal providing a publication vehicle for complete coverage of all topics of interest to those involved in the computer communications networking area.

  6. 376104 PDFs | Review articles in COMPUTER NETWORKING

    Explore the latest full-text research PDFs, articles, conference papers, preprints and more on COMPUTER NETWORKING. Find methods information, sources, references or conduct a literature...

  7. PUBLICATIONS – Communications and Networking Research Group

    Li-Wei Chen and Eytan Modiano, “Geometric Capacity Provisioning for Wavelength-Switched WDM Networks,” Chapter in Computer Communications and Networks Series: Algorithms for Next Generation Networks, Springer, 2010.

  8. 290334 PDFs | Review articles in COMPUTER NETWORKS - ResearchGate

    Deals with the various aspects and domain of Computer Networks and Communication, Cloud, and Grid Computing | Explore the latest full-text research PDFs, articles, conference papers,...

  9. CS 243, Fall 2019: Advanced Computer Networks

    It will examine a wide range of topics including routing, congestion control, network architectures, network management, datacenter networks, software-defined networking, and programmable networks, with an emphasis on core networking concepts and principles and their usage in practice.

  10. Topics in Networking Research - SpringerLink

    What are the big movements in networking that researchers should heed? A standout is the global spread of communities of interest (the networking analogue of the flat world) and their need for “dynamic virtual networks” that support rich applications requiring resources from several domains.