JavaScript seems to be disabled in your browser. For the best experience on our site, be sure to turn on Javascript in your browser.

  • Compare ( )
  • Water Wisdom
  • Create an Account

AquaScience Logo

CALL US NOW

(800) 767-8731

Glossary of Water Treatment Terms and Definitions

  • You are here:
  • American Chemical Society
  • Discover Chemistry
  • Science Releases

Recent advancements in water treatment

For immediate release, acs news service weekly presspac: january 19, 2022.

Generating clean, safe water is becoming increasingly difficult. Water sources themselves can be contaminated, but in addition, some purification methods can cause unintended harmful byproducts to form. And not all treatment processes are created equal with regard to their ability to remove impurities or pollutants. Below are some recent papers published in ACS journals that report insights into how well water treatment methods work and the quality of the resulting water. Reporters can request free access to these papers by emailing  newsroom@acs.org .

“Drivers of Disinfection Byproduct Cytotoxicity in U.S. Drinking Water: Should Other DBPs Be Considered for Regulation?” Environmental Science & Technology Dec.15, 2021

In this paper, researchers surveyed both conventional and advanced disinfection processes in the U.S., testing the quality of their drinking waters. Treatment plants with advanced removal technologies, such as activated carbon, formed fewer types and lower levels of harmful disinfection byproducts (known as DBPs) in their water. Based on the prevalence and cytotoxicity of haloacetonitriles and iodoacetic acids within some of the treated waters, the researchers recommend that these two groups be considered when forming future water quality regulations.

“Complete System to Generate Clean Water from a Contaminated Water Body by a Handmade Flower-like Light Absorber” ACS Omega Dec. 9, 2021 As a step toward a low-cost water purification technology, researchers crocheted a coated black yarn into a flower-like pattern. When the flower was placed in dirty or salty water, the water wicked up the yarn. Sunlight caused the water to evaporate, leaving the contaminants in the yarn, and a clean vapor condensed and was collected. People in rural locations could easily make this material for desalination or cleaning polluted water, the researchers say.

“Data Analytics Determines Co-occurrence of Odorants in Raw Water and Evaluates Drinking Water Treatment Removal Strategies” Environmental Science & Technology Dec. 2, 2021

Sometimes drinking water smells foul or “off,” even after treatment. In this first-of-its-kind study, researchers identified the major odorants in raw water. They also report that treatment plants using a combination of ozonation and activated carbon remove more of the odor compounds responsible for the stink compared to a conventional process. However, both methods generated some odorants not originally present in the water.

“Self-Powered Water Flow-Triggered Piezocatalytic Generation of Reactive Oxygen Species for Water Purification in Simulated Water Drainage” ACS ES&T Engineering Nov. 23, 2021

Here, researchers harvested energy from the movement of water to break down chemical contaminants. As microscopic sheets of molybdenum disulfide (MoS2) swirled inside a spiral tube filled with dirty water, the MoS2 particles generated electric charges. The charges reacted with water and created reactive oxygen species, which decomposed pollutant compounds, including benzotriazole and antibiotics. The researchers say these self-powered catalysts are a “green” energy resource for water purification.

The American Chemical Society (ACS) is a nonprofit organization chartered by the U.S. Congress. ACS’ mission is to advance the broader chemistry enterprise and its practitioners for the benefit of Earth and all its people. The Society is a global leader in promoting excellence in science education and providing access to chemistry-related information and research through its multiple research solutions, peer-reviewed journals, scientific conferences, eBooks and weekly news periodical Chemical & Engineering News . ACS journals are among the most cited, most trusted and most read within the scientific literature; however, ACS itself does not conduct chemical research. As a leader in scientific information solutions, its CAS division partners with global innovators to accelerate breakthroughs by curating, connecting and analyzing the world’s scientific knowledge. ACS’ main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive press releases from the American Chemical Society, contact newsroom@acs.org .

Note: ACS does not conduct research, but publishes and publicizes peer-reviewed scientific studies.

Media Contact

ACS Newsroom newsroom@acs.org

Text reading ACS Publications Most Trusted. Most Cited. Most Read

Discover Chemistry  —Menu

  • News Releases
  • ACS in the News

Accept & Close The ACS takes your privacy seriously as it relates to cookies. We use cookies to remember users, better understand ways to serve them, improve our value proposition, and optimize their experience. Learn more about managing your cookies at Cookies Policy .

1155 Sixteenth Street, NW, Washington, DC 20036, USA |  service@acs.org  | 1-800-333-9511 (US and Canada) | 614-447-3776 (outside North America)

  • Terms of Use
  • Accessibility

Copyright © 2024 American Chemical Society

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Published: 22 March 2021

Sustainable implementation of innovative technologies for water purification

  • Bart Van der Bruggen   ORCID: orcid.org/0000-0002-3921-7472 1 , 2  

Nature Reviews Chemistry volume  5 ,  pages 217–218 ( 2021 ) Cite this article

12k Accesses

87 Citations

3 Altmetric

Metrics details

  • Environmental sciences
  • Scientific community

One of the sustainable development goals set by the United Nations General Assembly is to ensure the availability and sustainable management of water and sanitation for all. This requires investment in water purification technologies. World Water Day offers an opportunity to discuss whether such investment will help achieve this laudable goal.

Wastewater and seawater have long been considered as potential sources from which to produce freshwater. Several technologies have been developed over the past few decades aimed at their reuse and recycle, but unfortunately the treatment of both sources may have perfidious effects.

Of the approaches presently available, desalination seems to have the greatest potential, given that seawater is a nearly unlimited resource. However, desalination is an energy-intensive process. The state-of-the-art technology, seawater reverse osmosis (SWRO), has undergone huge improvements over the past five decades: the specific energy consumption of SWRO was reduced from 20 kWh m −3 in 1970 to only 2.5 kWh m −3 in 2010. It has been estimated that a further 0.69–0.79 kWh m −3 might be saved by a smart process integration with intrinsic heat recovery 1 , but desalination of typical seawater (with an average salt concentration of 35 g l −1 ) requires a minimum of 1.07 kWh m −3 , offering only a little room for improvement. This limit is the foundation of the water–energy nexus and prompts further research on renewable energy sources for desalination, which remain scarce. In a case study, Delgado-Torres and co-workers 2 used tidal and solar energy for desalination at a semi-arid location in Broome, Australia. Similar studies focus on desalination driven by wind energy, photovoltaics or solar thermal energy. Although such approaches to water desalination may be viable to supply clean water in small or spatially confined communities — as was demonstrated in the island of Aruba 3 — they offer very little for the water challenges of large cities such as Beijing, Cairo or Cape Town.

water treatment term paper

In a cost–benefit analysis, wastewater recycling is more favourable than seawater desalination, because the former does not require the expensive separation of salts from water. This may seem surprising given that reverse osmosis is the key technology in both cases. The difference is that wastewater recycling would operate at much lower pressure. Such recycling has been practised for more than half a century in Windhoek, Namibia, and is accepted practice in water-scarce places such as Singapore 4 . Southern California is presently implementing a large-scale scheme to use recycled water as a potable source 5 and other countries and locations will surely follow. This trend pushes researchers to develop fouling-resistant, high-flux membranes for reverse osmosis and related membrane processes such as nano- or ultrafiltration. However, new challenges also arise. The production of (polymer) membranes for purification typically requires the use of polar aprotic solvents such as N,N -dimethylformamide (DMF), N,N -dimethylacetamide (DMA), 1,4-dioxane and tetrahydrofuran (THF). These solvents have a considerable environmental impact and significant effort is invested in their replacement with ‘greener’ solvents such as organic carbonates 6 or dimethyl sulfoxide (DMSO) 7 . Another limitation for present membrane technologies lies in the availability, processing and scale-up of materials for their manufacture. For example, two 2006 reports describe how incorporating carbon nanotubes into membranes affords permeabilities one to two orders of magnitude larger than those of conventional membranes. However, scaling up the synthesis of such membranes was not expected to be easy 8 — and, indeed, it has, so far, not happened. Since these reports emerged, there have been numerous studies on mixed-matrix membranes combining other nanostructures with polymeric matrices but, thus far, none has yet been applied on a large scale. Typically, good results are obtained in the laboratory, but the cost of producing the required nanostructures or issues associated with toxicity or leaching of nanoparticles from membranes have proven prohibitive for industrial use. Researchers need to place greater focus on the development of realistic membranes rather than just better membranes.

Closing the water cycle by either desalination or wastewater purification promises to provide virtually unlimited volumes of freshwater: in principle, it would enable an increase in water consumption by a factor equal to the inverse of the recycled fraction. However, we must be cognizant of unintended consequences. Water availability is one of the limiting factors for population growth and greater availability would certainly stimulate population growth. History has shown that humankind naturally makes use of available resources, sometimes with dramatic consequences, as exemplified by the agricultural and industrial revolutions 9 . A historical, sociological and demographic analysis by Harari shows that if water recycling is practised on a large scale, water consumption per capita may remain the same but our population will grow by the inverse of the recycled fraction 9 . This would then automatically lead to new challenges. A disenchanting example is the present SARS-CoV-2 virus: the scale of the outbreak would have been much more contained in a modest, local society without overpopulation. Water technologies may catalyse global growth more than any other technology because water is one of very few commodities that humankind cannot do without. This is of course not the case for industrialized countries, where water is not a limiting factor, but in most parts of the world it is. Harari was criticized for being unfamiliar with technologies, and, while this may be a fair criticism, warnings from other disciplines should not be summarily dismissed by technology developers.

In conclusion, the scope of water technologies may need to be reconsidered. There is no need for a major technological breakthrough in water recycling or desalination. What is really needed is for present technologies to be available to children growing up without access to clean water sources, as stated in the United Nations sustainable development goals . This will require dedicated, embedded actions towards maintaining the demographic status quo while respecting the basic human rights of all. The goals then are a useful tool to monitor progress but must be considered in context because the indicators that are used can result in tunnel vision 10 . Furthermore, lifestyle choices in terms of water — reduce, reuse and recycle — need to be thoroughly considered and be more than just a hollow slogan.

Park, K., Kim, J. B., Yang, D. R. & Hong, S. K. Towards a low-energy seawater reverse osmosis desalination plant: a review and theoretical analysis for future directions. J. Membr. Sci. 595 , 117607 (2020).

Article   CAS   Google Scholar  

Delgado-Torres, A. M., García-Rodríguez, L. & Jiménez del Moral, M. Preliminary assessment of innovative seawater reverse osmosis (SWRO) desalination powered by a hybrid solar photovoltaic (PV) - tidal range energy system. Desalination 477 , 114247 (2020).

Brendel, L. P. M., Shah, V. M., Groll, E. A. & Braun, J. E. A methodology for analyzing renewable energy opportunities for desalination and its application to Aruba. Desalination 493 , 114613 (2020).

Lafforgue, M. & Lenouvel, V. Closing the urban water loop: lessons from Singapore and Windhoek. Environ. Sci. Water Res. Technol. 1 , 622–631 (2015).

Article   Google Scholar  

Chalmers, R. B., Tremblay, M. & Soni, R. A new water source for Southern California: the regional recycled water program. J. AWWA 112 , 6–19 (2020).

Rasool, M. A., Pescarmona, P. P. & Vankelecom, I. F. J. Applicability of organic carbonates as green solvents for membrane preparation. ACS Sustain. Chem. Eng. 7 , 13774–13785 (2019).

Evenepoel, N., Wen, S., Tsehaye, M. T. & Van der Bruggen, B. Potential of DMSO as greener solvent for PES ultra- and nanofiltration membrane preparation. J. Appl. Polym. Sci. 135 , 46494 (2018).

Sholl, D. S. & Johnson, J. K. Making high-flux membranes with carbon nanotubes. Science 312 , 1003–1004 (2006).

Harari, Y. N. Sapiens: A Brief History of Humankind (Harper Collins, 2015).

Weststrate, J., Dijkstra, G., Eshuis, J., Gianoli, A. & Rusca, M. The sustainable development goal on water and sanitation: learning from the millennium development goals. Soc. Indic. Res. 143 , 795–810 (2019).

Download references

Author information

Authors and affiliations.

Department of Chemical Engineering, KU Leuven, Leuven, Belgium

Bart Van der Bruggen

Faculty of Engineering and the Built Environment, Tshwane University of Technology, Pretoria, South Africa

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Bart Van der Bruggen .

Ethics declarations

Competing interests.

The author declares no competing interests.

Additional information

Related links.

United Nations sustainable development goals: https://sdgs.un.org/goals

Rights and permissions

Reprints and permissions

About this article

Cite this article.

Van der Bruggen, B. Sustainable implementation of innovative technologies for water purification. Nat Rev Chem 5 , 217–218 (2021). https://doi.org/10.1038/s41570-021-00264-7

Download citation

Published : 22 March 2021

Issue Date : April 2021

DOI : https://doi.org/10.1038/s41570-021-00264-7

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

This article is cited by

Polymeric membranes with highly homogenized nanopores for ultrafast water purification.

  • Junhui Huang
  • Yanqiu Zhang
  • Huanting Wang

Nature Sustainability (2024)

Benefits and limitations of recycled water systems in the building sector: a review

  • Zhonghao Chen
  • Pow-Seng Yap

Environmental Chemistry Letters (2024)

Polyaniline and Graphene Oxide or Reduced Graphene Oxide-Based Composites for Environmental Remediation Application

  • Shambhuraj A. Kapase
  • Pranoti H. Patil
  • Sushilkumar A. Jadhav

Water Conservation Science and Engineering (2024)

Effect of drying methods on the structure and properties of bacterial nanocellulose/MoS2 hybrid gel membranes and sphere-like particles for enhanced adsorption and photocatalytic applications

  • Leonardo Marchiori
  • Leonardo Souza Santos
  • Sidney José Lima Ribeiro

Journal of Sol-Gel Science and Technology (2024)

Nature-inspired wood-based solar evaporation system for efficient desalination and water purification

Journal of Materials Science (2023)

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

water treatment term paper

Advertisement

Advertisement

Wastewater Treatment and Reuse: a Review of its Applications and Health Implications

  • Open access
  • Published: 10 May 2021
  • Volume 232 , article number  208 , ( 2021 )

Cite this article

You have full access to this open access article

water treatment term paper

  • Kavindra Kumar Kesari   ORCID: orcid.org/0000-0003-3622-9555 1   na1 ,
  • Ramendra Soni 2   na1 ,
  • Qazi Mohammad Sajid Jamal 3 ,
  • Pooja Tripathi 4 ,
  • Jonathan A. Lal 2 ,
  • Niraj Kumar Jha 5 ,
  • Mohammed Haris Siddiqui 6 ,
  • Pradeep Kumar 7 ,
  • Vijay Tripathi 2 &
  • Janne Ruokolainen 1  

66k Accesses

174 Citations

4 Altmetric

Explore all metrics

Water scarcity is one of the major problems in the world and millions of people have no access to freshwater. Untreated wastewater is widely used for agriculture in many countries. This is one of the world-leading serious environmental and public health concerns. Instead of using untreated wastewater, treated wastewater has been found more applicable and ecofriendly option. Moreover, environmental toxicity due to solid waste exposures is also one of the leading health concerns. Therefore, intending to combat the problems associated with the use of untreated wastewater, we propose in this review a multidisciplinary approach to handle wastewater as a potential resource for use in agriculture. We propose a model showing the efficient methods for wastewater treatment and the utilization of solid wastes in fertilizers. The study also points out the associated health concern for farmers, who are working in wastewater-irrigated fields along with the harmful effects of untreated wastewater. The consumption of crop irrigated by wastewater has leading health implications also discussed in this review paper. This review further reveals that our current understanding of the wastewater treatment and use in agriculture with addressing advancements in treatment methods has great future possibilities.

Similar content being viewed by others

water treatment term paper

Wastewater Application in Agriculture-A Review

water treatment term paper

Wastewater Reuse in Peri-Urban Agriculture Ecosystem: Current Scenario, Consequences, and Control Measures

water treatment term paper

Wastewater reclamation and reuse potentials in agriculture: towards environmental sustainability

Explore related subjects.

  • Environmental Chemistry

Avoid common mistakes on your manuscript.

1 Introduction

Rapidly depleting and elevating the level of freshwater demand, though wastewater reclamation or reuse is one of the most important necessities of the current scenario. Total water consumption worldwide for agriculture accounts 92% (Clemmens et al., 2008 ; Hoekstra & Mekonnen, 2012 ; Tanji & Kielen, 2002 ). Out of which about 70% of freshwater is used for irrigation (WRI, 2020 ), which comes from the rivers and underground water sources (Pedrero et al., 2010 ). The statistics shows serious concern for the countries facing water crisis. Shen et al. ( 2014 ) reported that 40% of the global population is situated in heavy water–stressed basins, which represents the water crisis for irrigation. Therefore, wastewater reuse in agriculture is an ideal resource to replace freshwater use in agriculture (Contreras et al., 2017 ). Treated wastewater is generally applied for non-potable purposes, like agriculture, land, irrigation, groundwater recharge, golf course irrigation, vehicle washing, toilet flushes, firefighting, and building construction activities. It can also be used for cooling purposes in thermal power plants (Katsoyiannis et al., 2017 ; Mohsen, 2004 ; Smith, 1995 ; Yang et al., 2017 ). At global level, treated wastewater irrigation supports agricultural yield and the livelihoods of millions of smallholder farmers (Sato et al., 2013 ). Global reuse of treated wastewater for agricultural purposes shows wide variability ranging from 1.5 to 6.6% (Sato et al., 2013 ; Ungureanu et al., 2018 ). More than 10% of the global population consumes agriculture-based products, which are cultivated by wastewater irrigation (WHO, 2006 ). Treated wastewater reuse has experienced very rapid growth and the volumes have been increased ~10 to 29% per year in Europe, the USA, China, and up to 41% in Australia (Aziz & Farissi, 2014 ). China stands out as the leading country in Asia for the reuse of wastewater with an estimated 1.3 M ha area including Vietnam, India, and Pakistan (Zhang & Shen, 2017 ). Presently, it has been estimated that, only 37.6% of the urban wastewater in India is getting treated (Singh et al., 2019 ). By utilizing 90% of reclaimed water, Israel is the largest user of treated wastewater for agriculture land irrigation (Angelakis & Snyder, 2015 ). The detail information related to the utilization of freshwater and treated wastewater is compiled in Table 1 .

Many low-income countries in Africa, Asia, and Latin America use untreated wastewater as a source of irrigation (Jiménez & Asano, 2008 ). On the other hand, middle-income countries, such as Tunisia, Jordan, and Saudi Arabia, use treated wastewater for irrigation (Al-Nakshabandi et al., 1997 ; Balkhair, 2016a ; Balkhair, 2016b ; Qadir et al., 2010 ; Sato et al., 2013 ).

Domestic water and treated wastewater contains various type of nutrients such as phosphorus, nitrogen, potassium, and sulfur, but the major amount of nitrogen and phosphorous available in wastewater can be easily accumulated by the plants, that’s why it is widely used for the irrigation (Drechsel et al., 2010 ; Duncan, 2009 ; Poustie et al., 2020 ; Sengupta et al., 2015 ). The rich availability of nutrients in reclaimed wastewater reduces the use of fertilizers, increases crop productivity, improves soil fertility, and at the same time, it may also decrease the cost of crop production (Chen et al., 2013 a; Jeong et al., 2016 ). The data of high nutritional values in treated wastewater is shown in Fig. 1 .

figure 1

Nutrient concentrations (mg/L) of freshwater/wastewater (Yadav et al., 2002 )

Wastewater reuse for crop irrigation showed several health concerns (Ungureanu et al., 2020 ). Irrigation with the industrial wastewater either directly or mixing with domestic water showed higher risk (Chen et al., 2013). Risk factors are higher due to heavy metal and pathogens contamination because heavy metals are non-biodegradable and have a long biological half-life (Chaoua et al., 2019 ; WHO, 2006 ). It contains several toxic elements, i.e., Cu, Cr, Mn, Fe, Pb, Zn, and Ni (Mahfooz et al., 2020 ). These heavy metals accumulate in topsoil (at a depth of 20 cm) and sourcing through plant roots; they enter the human and animal body through leafy vegetables consumption and inhalation of contaminated soils (Mahmood et al., 2014 ). Therefore, health risk assessment of such wastewater irrigation is important especially in adults (Mehmood et al., 2019 ; Njuguna et al., 2019 ; Xiao et al., 2017 ). For this, an advanced wastewater treatment method should be applied before release of wastewater in the river, agriculture land, and soils. Therefore, this review also proposed an advance wastewater treatment model, which has been tasted partially at laboratory scale by Kesari and Behari ( 2008 ), Kesari et al. ( 2011a , b ), and Kumar et al. ( 2010 ).

For a decade, reuse of wastewater has also become one of the global health concerns linking to public health and the environment (Dang et al., 2019 ; Narain et al., 2020 ). The World Health Organization (WHO) drafted guidelines in 1973 to protect the public health by facilitating the conditions for the use of wastewater and excreta in agriculture and aquaculture (WHO, 1973 ). Later in 2005, the initial guidelines were drafted in the absence of epidemiological studies with minimal risk approach (Carr, 2005 ). Although, Adegoke et al. ( 2018 ) reviewed the epidemiological shreds of evidence and health risks associated with reuse of wastewater for irrigation. Wastewater or graywater reuse has adverse health risks associated with microbial hazards (i.e., infectious pathogens) and chemicals or pharmaceuticals exposures (Adegoke et al., 2016 ; Adegoke et al., 2017 ; Busgang et al., 2018 ; Marcussen et al., 2007 ; Panthi et al., 2019 ). Researchers have reported that the exposure to wastewater may cause infectious (helminth infection) diseases, which are linked to anemia and impaired physical and cognitive development (Amoah et al., 2018 ; Bos et al., 2010 ; Pham-Duc et al., 2014 ; WHO, 2006 ).

Owing to an increasing population and a growing imbalance in the demand and supply of water, the use of wastewater has been expected to increase in the coming years (World Bank, 2010 ). The use of treated wastewater in developed nations follows strict rules and regulations. However, the direct use of untreated wastewater without any sound regulatory policies is evident in developing nations, which leads to serious environmental and public health concerns (Dickin et al., 2016 ). Because of these issues, we present in this review, a brief discussion on the risk associated with the untreated wastewater exposures and advanced methods for its treatment, reuse possibilities of the treated wastewater in agriculture.

2 Environmental Toxicity of Untreated Wastewater

Treated wastewater carries larger applicability such as irrigation, groundwater recharge, toilet flushing, and firefighting. Municipal wastewater treatment plants (WWTPs) are the major collection point for the different toxic elements, pathogenic microorganisms, and heavy metals. It collects wastewater from divergent sources like household sewage, industrial, clinical or hospital wastewater, and urban runoff (Soni et al., 2020 ). Alghobar et al. ( 2014 ) reported that grass and crops irrigated with sewage and treated wastewater are rich in heavy metals in comparison with groundwater (GW) irrigation. Although, heavy metals classified as toxic elements and listed as cadmium, lead, mercury, copper, and iron. An exceeding dose or exposures of these heavy metals could be hazardous for health (Duan et al., 2017 ) and ecological risks (Tytła, 2019 ). The major sources of these heavy metals come from drinking water. This might be due to the release of wastewater into river or through soil contamination reaches to ground water. Table 2 presenting the permissible limits of heavy metals presented in drinking water and its impact on human health after an exceeding the amount in drinking water, along with the route of exposure of heavy metals to human body.

Direct release in river or reuse of wastewater for irrigation purposes may create short-term implications like heavy metal and microbial contamination and pathogenic interaction in soil and crops. It has also long-term influence like soil salinity, which grows with regular use of untreated wastewater (Smith, 1995 ). Improper use of wastewater for irrigation makes it unsafe and environment threatening. Irrigation with several different types of wastewater, i.e., industrial effluents, municipal and agricultural wastewaters, and sewage liquid sludge transfers the heavy metals to the soil, which leads to accumulation in crops due to improper practices. This has been identified as a significant route of heavy metals into aquatic resources (Agoro et al., 2020 ). Hussain et al. ( 2019 ) investigated the concentration of heavy metals (except for Cd) was higher in the soil irrigated with treated wastewater (large-scale sewage treatment plant) than the normal ground water, also reported by Khaskhoussy et al. ( 2015 ).

In other words, irrigation with wastewater mitigates the quality of crops and enhances health risks. Excess amount of copper causes anemia, liver and kidney damage, vomiting, headache, and nausea in children (Bent & Bohm, 1995 ; Madsen et al., 1990 ; Salem et al., 2000 ). A higher concentration of arsenic may lead to bone and kidney cancer (Jarup, 2003 ) and results in osteopenia or osteoporosis (Puzas et al., 2004 ). Cadmium gives rise to musculoskeletal diseases (Fukushima et al., 1970 ), whereas mercury directly affects the nervous system (Azevedo et al., 2014 ).

3 Spread of Antibiotic Resistance

Currently, antibiotics are highly used for human disease treatment; however, uses in poultries, animal husbandries, biochemical industries, and agriculture are common practices these days. Extensive use and/or misuse of antibiotics have given rise to multi-resistant bacteria, which carry multiple resistance genes (Icgen & Yilmaz, 2014 ; Lv et al., 2015 ; Tripathi & Tripathi, 2017 ; Xu et al., 2017 ). These multidrug-resistant bacteria discharged through the sewage network and get collected into the wastewater treatment plants. Therefore, it can be inferred that the WWTPs serve as the hotspot of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs). Though, these antibiotic-resistant bacteria can be disseminated to the different bacterial species through the mobile genetic elements and horizontal gene transfer (Gupta et al., 2018 ). Previous studies indicated that certain pathogens might survive in wastewater, even during and after the treatment processes, including methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE) (Börjesson et al., 2009 ; Caplin et al., 2008 ). The use of treated wastewater in irrigation provides favorable conditions for the growth and persistence of total coliforms and fecal coliforms (Akponikpe et al., 2011 ; Sacks & Bernstein, 2011 ). Furthermore, few studies have also reported the presence of various bacterial pathogens, such as Clostridium , Salmonella , Streptococci , Viruses, Protozoa, and Helminths in crops irrigated with treated wastewater (Carey et al., 2004 ; Mañas et al., 2009 ; Samie et al., 2009 ). Goldstein ( 2013 ) investigated the survival of ARB in secondary treated wastewater and proved that it causes serious health risks to the individuals, who are exposed to reclaimed water. The U.S. Centers for Disease Control and Prevention (CDC) and the World Health Organization (WHO) have already declared the ARBs as the imminent hazard to human health. According to the list published by WHO, regarding the development of new antimicrobial agents, the ESKAPE ( Enterococcus faecium , S. aureus , Klebsiella pneumoniae , Acinetobacter baumannii , Pseudomonas aeruginosa , and Enterobacter species) pathogens were designated to be “priority status” as their occurrence in the food chain is considered as the potential and major threat for the human health (Tacconelli et al., 2018 ).

These ESKAPE pathogens have acquired the multi drug resistance mechanisms against oxazolidinones, lipopeptides, macrolides, fluoroquinolones, tetracyclines, β-lactams, β-lactam–β-lactamase inhibitor combinations, and even those antibiotics that are considered as the last line of defense, including carbapenems and glycopeptides (Giddins et al., 2017 ; Herc et al., 2017 ; Iguchi et al., 2016 ; Naylor et al., 2018 ; Zaman et al., 2017 ), by the means of genetic mutation and mobile genetic elements. These cluster of ESKAPE pathogens are mainly responsible for lethal nosocomial infections (Founou et al., 2017 ; Santajit & Indrawattana, 2016 ).

Due to the wide application of antibiotics in animal husbandry and inefficient capability of wastewater treatment plants, the multidrug-resistant bacteria such as tetracyclines, sulfonamides, β-lactam, aminoglycoside, colistin, and vancomycin in major are disseminated in the receiving water bodies, which ultimately results in the accumulation of ARGs in the irrigated crops (He et al., 2020 ).

4 Toxic Contaminations in Wastewater Impacting Human Health

The release of untreated wastewater into the river may pose serious health implications (König et al., 2017 ; Odigie, 2014 ; Westcot, 1997 ). It has been already discussed about the household and municipal sewage which contains a major amount of organic materials and pathogenic microorganisms and these infectious microorganisms are capable of spreading various diseases like typhoid, dysentery, diarrhea, vomiting, and malabsorption (Jia & Zhang, 2020 ; Numberger et al., 2019 ; Soni et al., 2020 ). Additionally, pharmaceutical industries also play a key role in the regulation and discharge of biologically toxic agents. The untreated wastewater also contains a group of contaminants, which are toxic to humans. These toxic contaminations have been classified into two major groups: (i) chemical contamination and (ii) microbial contamination.

4.1 Chemical Contamination

Mostly, various types of chemical compounds released from industries, tanneries, workshops, irrigated lands, and household wastewaters are responsible for several diseases. These contaminants can be organic materials, hydrocarbons, volatile compounds, pesticides, and heavy metals. Exposure to such contaminants may cause infectious diseases like chronic dermatoses and skin cancer, lung infection, and eye irritation. Most of them are non-biodegradable and intractable. Therefore, they can persist in the water bodies for a very long period and could be easily accumulated in our food chain system. Several pharmaceutical personal care products (PPCPs) and surfactants are available that may contain toxic compounds like nonylphenol, estrone, estradiol, and ethinylestradiol. These compounds are endocrine-disrupting chemicals (Bolong et al., 2009 ), and the existence of these compounds in the human body even in the trace amounts can be highly hazardous. Also, the occurrence of perfluorinated compounds (PFCs) in wastewater, which is toxic in nature, has been significantly reported worldwide (Templeton et al., 2009 ). Furthermore, PFCs cause severe health menaces like pre-eclampsia, birth defects, reduced human fertility (Webster, 2010 ), immunotoxicity (Dewitt et al., 2012 ), neurotoxicity (Lee & Viberg, 2013 ), and carcinogenesis (Bonefeld-Jorgensen et al., 2011 ).

4.2 Microbial Contamination

Researchers have reported serious health risks associated with the microbial contaminants in untreated wastewater. The diverse group of microorganisms causes severe health implications like campylobacteriosis, diarrhea, encephalitis, typhoid, giardiasis, hepatitis A, poliomyelitis, salmonellosis, and gastroenteritis (ISDH, 2009 ; Okoh et al., 2010 ). Few bacterial species like P. aeruginosa , Salmonella typhimurium , Vibrio cholerae , G. intestinales , Legionella spp., E. coli , Shigella sonnei have been reported for the spreading of waterborne diseases, and acute illness in human being (Craun et al., 2006 ; Craun et al., 2010 ). These aforementioned microorganisms may release in the environment from municipal sewage water network, animal husbandries, or hospitals and enter the food chain via public water supply systems.

5 Wastewater Impact on Agriculture

The agriculture sector is well known for the largest user of water, accounting for nearly 70% of global water usage (Winpenny et al., 2010 ). The fact that an estimated 20 million hectares worldwide are irrigated with wastewater suggests a major source for irrigation (Ecosse, 2001 ). However, maximum wastewater that is used for irrigation is untreated (Jiménez & Asano, 2008 ; Scott et al., 2004 ). Mostly in developing countries, partially treated or untreated wastewater is used for irrigation purpose (Scott et al., 2009 ). Untreated wastewater often contains a large range of chemical contaminants from waste sites, chemical wastes from industrial discharges, heavy metals, fertilizers, textile, leather, paper, sewage waste, food processing waste, and pesticides. World Health Organization (WHO) has warned significant health implications due to the direct use of wastewater for irrigation purposes (WHO, 2006 ). These contaminants pose health risks to communities (farmers, agricultural workers, their families, and the consumers of wastewater-irrigated crops) living in the proximity of wastewater sources and areas irrigated with untreated wastewater (Qadir et al., 2010 ). Wastewater also contains a wide variety of organic compounds. Some of them are toxic or cancer-causing and have harmful effects on an embryo (Jarup, 2003 ; Shakir et al., 2016 ). The pathway of untreated wastewater used in irrigation and associated health effects are shown in Fig. 2 .

figure 2

Exposure pathway representing serious health concerns from wastewater-irrigated crops

Alternatively, in developing countries, due to the limited availability of treatment facilities, untreated wastewater is discharged into the existing waterbodies (Qadir et al., 2010 ). The direct use of wastewater in agriculture or irrigation obstructs the growth of natural plants and grasses, which in turn causes the loss of biodiversity. Shuval et al. ( 1985 ) reported one of the earliest evidences connecting to agricultural wastewater reuse with the occurrence of diseases. Application of untreated wastewater in irrigation increases soil salinity, land sealing followed by sodium accumulation, which results in soil erosion. Increased soil salinity and sodium accumulation deteriorates the soil and decreases the soil permeability, which inhibits the nutrients intake of crops from the soil. These causes have been considered the long-term impact of wastewater reuse in agriculture (Halliwell et al., 2001 ). Moreover, wastewater contaminated soils are a major source of intestinal parasites (helminths—nematodes and tapeworms) that are transmitted through the fecal–oral route (Toze, 1997 ). Already known, the helminth infections are linked to blood deficiency and behavioral or cognitive development (Bos et al., 2010 ). One of the major sources of helminth infections around the world is the use of raw or partially treated sewage effluent and sludge for the irrigation of food crops (WHO, 1989 ). Wastewater-irrigated crops contain heavy metal contamination, which originates from mining, foundries, and metal-based industries (Fazeli et al., 1998 ). Exposure to heavy metals including arsenic, cadmium, lead, and mercury in wastewater-irrigated crops is a cause for various health problems. For example, the consumption of high amounts of cadmium causes osteoporosis in humans (Dickin et al., 2016 ). The uptake of heavy metals by the rice crop irrigated with untreated effluent from a paper mill has been reported to cause serious health concerns (Fazeli et al., 1998 ). Irrigating rice paddies with highly contaminated water containing heavy metals leads to the outbreak of Itai-itai disease in Japan (Jarup, 2003 ).

Owing to these widespread health risks, the WHO published the third edition of its guidelines for the safe use of wastewater in irrigating crops (WHO, 2006 ) and made recommendations for threshold contaminant levels in wastewater. The quality of wastewater for agricultural reuse have been classified based on the availability of nutrients, trace elements, microorganisms, and chemicals contamination levels. The level of contamination differs widely depending on the type of source, household sewage, pharmaceutical, chemical, paper, or textile industries effluents. The standard measures of water quality for irrigation are internationally reported (CCREM, 1987 ; FAO, 1985 ; FEPA, 1991 ; US EPA, 2004 , 2012 ; WHO, 2006 ), where the recommended levels of trace elements, metals, COD, BOD, nitrogen, and phosphorus are set at certain limits. Researchers reviewed the status of wastewater reuse for agriculture, based on its standards and guidelines for water quality (Angelakis et al., 1999 ; Brissaud, 2008 ; Kalavrouziotis et al., 2015 ). Based on these recommendations and guidelines, it is evident that greater awareness is required for the treatment of wastewater safely.

6 Wastewater Treatment Techniques

6.1 primary treatment.

This initial step is designed to remove gross, suspended and floating solids from raw wastewater. It includes screening to trap solid objects and sedimentation by gravity to remove suspended solids. This physical solid/liquid separation is a mechanical process, although chemicals can be used sometimes to accelerate the sedimentation process. This phase of the treatment reduces the BOD of the incoming wastewater by 20–30% and the total suspended solids by nearly 50–60%.

6.2 Secondary (Biological) Treatment

This stage helps eliminate the dissolved organic matter that escapes primary treatment. Microbes consume the organic matter as food, and converting it to carbondioxide, water, and energy for their own growth. Additional settling to remove more of the suspended solids then follows the biological process. Nearly 85% of the suspended solids and biological oxygen demand (BOD) can be removed with secondary treatment. This process also removes carbonaceous pollutants that settle down in the secondary settling tank, thus separating the biological sludge from the clear water. This sludge can be fed as a co-substrate with other wastes in a biogas plant to obtain biogas, a mixture of CH 4 and CO 2 . It generates heat and electricity for further energy distribution. The leftover, clear water is then processed for nitrification or denitrification for the removal of carbon and nitrogen. Furthermore, the water is passed through a sedimentation basin for treatment with chlorine. At this stage, the water may still contain several types of microbial, chemical, and metal contaminations. Therefore, to make the water reusable, e.g., for irrigation, it further needs to pass through filtration and then into a disinfection tank. Here, sodium hypochlorite is used to disinfect the wastewater. After this process, the treated water is considered safe to use for irrigation purposes. Solid wastes generated during primary and secondary treatment processes are processed further in the gravity-thickening tank under a continuous supply of air. The solid waste is then passed into a centrifuge dewatering tank and finally to a lime stabilization tank. Treated solid waste is obtained at this stage and it can be processed further for several uses such as landfilling, fertilizers and as a building.

Other than the activated sludge process of wastewater treatment, there are several other methods developed and being used in full-scale reactors such as ponds (aerobic, anaerobic, facultative, and maturation), trickling filters, anaerobic treatments like up-flow anaerobic sludge blanket (UASB) reactors, artificial wetlands, microbial fuel cells, and methanogenic reactors.

UASB reactors are being applied for wastewater treatment from a very long period. Behling et al. ( 1996 ) examined the performance of the UASB reactor without any external heat supply. In their study, the COD loading rate was maintained at 1.21 kg COD/m 3 /day, after 200 days of trial. They achieved an average of 85% of COD removal. Von-Sperling and Chernicharo ( 2005 ) presented a combined model consisted of an Up-flow Anaerobic Sludge Blanket-Activated Sludge reactor (UASB–AS system), using the low strength domestic wastewater with a BOD 5 amounting to 340 mg/l. Outcomes of their experiment have shown a 60% reduction in sludge construction and a 40% reduction in aeration energy consumption. In another experiment, Rizvi et al. ( 2015 ) seeded UASB reactor with cow manure dung to treat domestic wastewater; they observed 81%, 75%, and 76% reduction in COD, TSS, and total sulfate removal, respectively, in their results.

6.3 Tertiary or Advanced Treatment Processes

The tertiary treatment process is employed when specific constituents, substances, or contaminants cannot be completely removed after the secondary treatment process. The tertiary treatment processes, therefore, ensure that nearly 99% of all impurities are removed from wastewater. To make the treated water safe for drinking purposes, water is treated individually or in combination with advanced methods like the US (ultrasonication), UV (ultraviolet light treatment), and O 3 (exposure to ozone). This process helps to remove bacteria and heavy metal contaminations remaining in the treated water. For the purpose, the secondarily treated water is first made to undergo ultrasonication and it is subsequently exposed to UV light and passed through an ozone chamber for the complete removal of contaminations. The possible mechanisms by which cells are rendered inviable during the US include free-radical attack and physical disruption of cell membranes (Phull et al., 1997 ; Scherba et al., 1991 ). The combined treatment of US + UV + O 3 produces free radicals, which are attached to cell membranes of the biological contaminants. Once the cell membrane is sheared, chemical oxidants can enter the cell and attack internal structures. Thus, the US alone or in combination facilitates the deagglomeration of microorganisms and increases the efficiency of other chemical disinfectants (Hua & Thompson, 2000 ; Kesari et al., 2011a , b ; Petrier et al., 1992 ; Phull et al., 1997 ; Scherba et al., 1991 ). A combined treatment method was also considered by Pesoutova et al. ( 2011 ) and reported a very effective method for textile wastewater treatment. The effectiveness of ultrasound application as a pre-treatment step in combination with ultraviolet rays (Blume & Neis, 2004 ; Naddeo et al., 2009 ), or also compared it with various other combinations of both ultrasound and UV radiation with TiO 2 photocatalysis (Paleologou et al., 2007 ), and ozone (Jyoti & Pandit, 2004 ) to optimize wastewater disinfection process.

An important aspect of our wastewater treatment model (Fig. 3 ) is that at each step of the treatment process, we recommend the measurement of the quality of treated water. After ensuring that the proper purification standards are met, the treated water can be made available for irrigation, drinking or other domestic uses.

figure 3

A wastewater treatment schematic highlighting the various methods that result in a progressively improved quality of the wastewater from the source to the intended use of the treated wastewater for irrigation purposes

6.4 Nanotechnology as Tertiary Treatment of Wastewater Converting Drinking Water Alike

Considering the emerging trends of nanotechnology, nanofillers can be used as a viable method for the tertiary treatment of wastewater. Due to the very small pore size, 1–5-nm nanofillers may eliminate the organic–inorganic pollutants, heavy metals, as well as pathogenic microorganisms and pharmaceutically active compounds (PhACs) (Mohammad et al., 2015 ; Vergili, 2013 ). Over the recent years, nanofillers have been largely accepted in the textile industry for the treatment of pulp bleaching pharmaceutical industry, dairy industry, microbial elimination, and removal of heavy metals from wastewater (Abdel-Fatah, 2018 ). Srivastava et al. ( 2004 ) synthesized very efficient and reusable water filters from carbon nanotubes, which exhibited effective elimination of bacterial pathogens ( E. coli and S. aureus ), and Poliovirus sabin-1 from wastewater.

Nanofiltration requires lower operating pressure and lesser energy consumption in comparison of RO and higher rejection of organic compounds compared to UF. Therefore, it can be applied as the tertiary treatment of wastewater (Abdel-Fatah, 2018 ). Apart from nanofilters, there are various kinds of nanoparticles like metal nanoparticles, metal oxide nanoparticles, carbon nanotubes, graphene nanosheets, and polymer-based nanosorbents, which may play a different role in wastewater treatment based on their properties. Kocabas et al. ( 2012 ) analyzed the potential of different metal oxide nanoparticles and observed that nanopowders of TiO 2 , FeO 3 , ZnO 2 , and NiO can exhibit the exceeding amount of removal of arsenate from wastewater. Cadmium contamination in wastewater, which poses a serious health risk, can be overcome by using ZnO nanoparticles (Kumar & Chawla, 2014 ). Latterly, Vélez et al. ( 2016 ) investigated that the 70% removal of mercury from wastewater through iron oxide nanoparticles successfully performed. Sheet et al. ( 2014 ) used graphite oxide nanoparticles for the removal of nickel from wastewater. An exceeding amount of copper causes liver cirrhosis, anemia, liver, and kidney damage, which can be removed by carbon nanotubes, pyromellitic acid dianhydride (PMDA) and phenyl aminomethyl trimethoxysilane (PAMTMS) (Liu et al., 2010 ).

Nanomaterials are efficiently being used for microbial purification from wastewater. Carbon nanotubes (CNTs) are broadly applied for the treatment of wastewater contaminated with E. coli , Salmonella , and a wide range of microorganisms (Akasaka & Watari, 2009 ). In addition, silver nanoparticles reveal very effective results against the microorganisms present in wastewater. Hence, it is extensively being used for microbial elimination from wastewater (Inoue et al., 2002 ). Moreover, CNTs exhibit high binding affinity to bacterial cells and possess magnetic properties (Pan & Xing, 2008 ). Melanta ( 2008 ) confirmed and recommended the applicability of CNTs for the removal of E. coli contamination from wastewater. Mostafaii et al. ( 2017 ) suggested that the ZnO nanoparticles could be the potential antibacterial agent for the removal of total coliform bacteria from municipal wastewater. Apart from the previously mentioned, applicability of the nanotechnology, the related drawbacks and challenges cannot be neglected. Most of the nanoengineered techniques are currently either in research scale or pilot scale performing well (Gehrke et al., 2015 ). Nevertheless, as discussed above, nanotechnology and nanomaterials exhibit exceptional properties for the removal of contaminants and purification of water. Therefore, it can be adapted as the prominent solution for the wastewater treatment (Zekić et al., 2018 ) and further use for drinking purposes.

6.5 Wastewater Treatment by Using Plant Species

Some of the naturally growing plants can be a potential source for wastewater treatment as they remove pollutants and contaminants by utilizing them as a nutrient source (Zimmels et al., 2004 ). Application of plant species in wastewater treatment may be cost-effective, energy-saving, and provides ease of operation. At the same time, it can be used as in situ, where the wastewater is being produced (Vogelmann et al., 2016 ). Nizam et al. ( 2020 ) analyzed the phytoremediation efficiency of five plant species ( Centella asiatica , Ipomoea aquatica , Salvinia molesta , Eichhornia crassipes , and Pistia stratiotes ) and achieved the drastic decrease in the amount of three pollutants viz. total suspended solids (TSS), ammoniacal nitrogen (NH 3 -N), and phosphate levels . All the five species found to be efficient removal of the level of 63.9-98% of NH 3 -N, TSS, and phosphate. Coleman et al. ( 2001 ) examined the physiological effects of domestic wastewater treatment by three common Appalachian plant species: common rush or soft rush ( Juncus effuses L.), gray club-rush ( Scirpus Validus L.), and broadleaf cattail or bulrush ( Typha latifolia L.). They observed in their experiments about 70% of reduction in total suspended solids (TSS) and biochemical oxygen demand (BOD), 50% to 60% of reduction in nitrogen, ammonia, and phosphate levels, and a significant reduction in feacal coliform populations. Whereas, Zamora et al. ( 2019 ) found the removal efficiency of chemical oxygen demand (COD), total solids suspended (TSS), nitrogen as ammonium (N-NH 4 ) and nitrate (N-NO 3 ), and phosphate (P-PO 4 ) up to 20–60% higher using the three ornamental species of plants viz. Canna indica , Cyperus papyrus , and Hedychium coronarium . The list of various plant species applied for the wastewater treatment is shown in Table 3 .

6.6 Wastewater Treatment by Using Microorganisms

There is a diverse group of bacteria like Pseudomonas fluorescens , Pseudomonas putida , and different Bacillus strains, which are capable to use in biological wastewater systems. These bacteria work in the cluster forms as a floc, biofilm, or granule during the wastewater treatment. Furthermore, after the recognition of bacterial exopolysaccharides (EPS) as an efficient adsorption material, it may be applied in a revolutionary manner for the heavy metal elimination (Gupta & Diwan, 2017 ). There are few examples of EPS, which are commercially available, i.e., alginate ( P. aeruginosa , Azotobacter vinelandii ), gellan (Sphingomonas paucimobilis ), hyaluronan ( . aeruginosa , Pasteurella multocida , Streptococci attenuated strains ), xanthan (Xanthomonas campestris ), and galactopol ( Pseudomonas oleovorans ) (Freitas et al., 2009 ; Freitas, Alves, & Reis, 2011a ; Freitas, Alves, Torres, et al., 2011b ). Similarly, Hesnawi et al. ( 2014 ) experimented biodegradation of municipal wastewater using local and commercial bacteria (Sludge Hammer), where they achieved a significant decrease in synthetic wastewater, i.e., 70%, 54%, 52%, 42% for the Sludge Hammer, B. subtilis , B. laterosponus , and P. aeruginosa , respectively. Therefore, based on the above studies, it can be concluded that bioaugmentation of wastewater treatment reactor with selective and mixed strains can ameliorate the treatment. During recent years, microalgae have attracted the attention of researchers as an alternative system, due to their applicability in wastewater treatment. Algae are the unicellular or multicellular photosynthetic microorganism that grows on water surfaces, salt water, or moist soil. They utilize the exceeding amount of nutrients like nitrogen, phosphorus, and carbon for their growth and metabolism process through their anaerobic system. This property of algae also inhibits eutrophication; that is to avoid over-deposit of nutrients in water bodies. During the nutrient digestion process, algae produce oxygen that is constructive for the heterotrophic aerobic bacteria, which may further be utilized to degrade the organic and inorganic pollutants. Kim et al. ( 2014 ) observed a total decrease in the levels of COD (86%), total nitrogen (93%), and total phosphorus (83%) after using algae in the municipal wastewater consortium. Nmaya et al. ( 2017 ) reported the heavy metal removal efficiency of microalga Scenedesmus sp. from contaminated river water in the Melaka River, Malaysia. They observed the effective removal of Zn (97-99%) on the 3 rd and 7 th day of the experiment. The categorized list of microorganisms used for wastewater treatment is presented in Table 4 .

7 The Computational Approach in Wastewater Treatment

7.1 bioinformatics and genome sequencing.

A computational approach is accessible in wastewater treatment. Several tools and techniques are in use such as, sequencing platforms (Hall, 2007 ; Marsh, 2007 ), metagenome sequencing strategies (Schloss & Handelsman, 2005 ; Schmeisser et al., 2007 ; Tringe et al., 2005 ), bioinformatics tools and techniques (Chen & Pachter, 2005 ; Foerstner et al., 2006 ; Raes et al., 2007 ), and the genome analysis of complex microbial communities (Fig. 4 ). Most of the biological database contains microorganisms and taxonomical information. Thus, these can provide extensive details and supports for further utilization in wastewater treatment–related research and development (Siezen & Galardini, 2008 ). Balcom et al. ( 2016 ) explored that the microbial population residing in the plant roots immersed in the wastewater of an ecological WWTP and showed the evidence of the capacity for micro-pollutant biodegradation using whole metagenome sequencing (WMS). Similarly, Kumar et al. ( 2016 ) revealed that bioremediation of highly polluted wastewater from textile dyes by two novel strains were found to highly decolorize Joyfix Red. They were identified as Lysinibacillus sphaericus (KF032717) and Aeromonas hydrophila (KF032718) through 16S rDNA analysis. More recently, Leddy et al. ( 2018 ) reported that research scientists are making strides to advance the safety and application of potable water reuse with metagenomics for water quality analysis. The application of the bio-computational approach has also been implemented in the advancements of wastewater treatment and disease detection.

figure 4

A schematic showing the overall conceptual framework on which depicting the computational approach in wastewater treatment

7.2 Computational Fluid Dynamics in Wastewater Treatment

In recent years, computational fluid dynamics (CFD), a broadly used method, has been applied to biological wastewater treatment. It has exposed the inner flow state that is the hydraulic condition of a biological reactor (Peng et al., 2014 ). CFD is the application of powerful predictive modeling and simulation tools. It may calculate the multiple interactions between all the water quality and process design parameters. CFD modeling tools have already been widely used in other industries, but their application in the water industry is quite recent. CFD modeling has great applications in water and wastewater treatment, where it mechanically works by using hydrodynamic and mass transfer performance of single or two-phase flow reactors (Do-Quang et al., 1998 ). The level of CFD’s capability varies between different process units. It has a high frequency of application in the areas of final sedimentation, activated sludge basin modeling, disinfection, and greater needs in primary sedimentation and anaerobic digestion (Samstag et al., 2016 ). Now, researchers are enhancing the CFD modeling with a developed 3D model of the anoxic zone to evaluate further hydrodynamic performance (Elshaw et al., 2016 ). The overall conceptual framework and the applications of the computational approach in wastewater treatment are presented in Fig. 4 .

7.3 Computational Artificial Intelligence Approach in Wastewater Treatment

Several studies were obtained by researchers to implement computer-based artificial techniques, which provide fast and rapid automated monitoring of water quality tests such as BOD and COD. Recently, Nourani et al. ( 2018 ) explores the possibility of wastewater treatment plant by using three different kinds of artificial intelligence methods, i.e., feedforward neural network (FFNN), adaptive neuro-fuzzy inference system (ANFIS), and support vector machine (SVM). Several measurements were done in terms of effluent to tests BOD, COD, and total nitrogen in the Nicosia wastewater treatment plant (NWWTP) and reported high-performance efficiency of artificial intelligence (Nourani et al., 2018 ).

7.4 Remote sensing and Geographical Information System

Since the implementation of satellite technology, the initiation of new methods and tools became popular nowadays. The futuristic approach of remote sensing and GIS technology plays a crucial role in the identification and locating of the water polluted area through satellite imaginary and spatial data. GIS analysis may provide a quick and reasonable solution to develop atmospheric correction methods. Moreover, it provides a user-friendly environment, which may support complex spatial operations to get the best quality information on water quality parameters through remote sensing (Ramadas & Samantaray, 2018 ).

8 Applications of Treated Wastewater

8.1 scope in crop irrigation.

Several studies have assessed the impact of the reuse of recycled/treated wastewater in major sectors. These are agriculture, landscapes, public parks, golf course irrigation, cooling water for power plants and oil refineries, processing water for mills, plants, toilet flushing, dust control, construction activities, concrete mixing, and artificial lakes (Table 5 ). Although the treated wastewater after secondary treatment is adequate for reuse since the level of heavy metals in the effluent is similar to that in nature (Ayers & Westcot, 1985 ), experimental evidences have been found and evaluated the effects of irrigation with treated wastewater on soil fertility and chemical characteristics, where it has been concluded that secondary treated wastewater can improve soil fertility parameters (Mohammad & Mazahreh, 2003 ). The proposed model (Fig. 3 ) is tested partially previously at a laboratory scale by treating the wastewater (from sewage, sugar, and paper industry) in an ultrasonic bath (Kesari et al., 2011a , b ; Kesari & Behari, 2008 ; Kumar et al., 2010 ). Advancing it with ultraviolet and ozone treatment has modified this in the proposed model. A recent study shows that the treated water passed quality measures suited for crop irrigation (Bhatnagar et al., 2016 ). In Fig. 3 , a model is proposed including all three (UV, US, nanoparticle, and ozone) techniques, which have been tested individually as well as in combination (US and nanoparticle) (Kesari et al., 2011a , b ) to obtain the highest water quality standards acceptable for irrigation and even drinking purposes.

A wastewater-irrigated field is a major source of essential and non-essential metals contaminants such as lead, copper, zinc, boron, cobalt, chromium, arsenic, molybdenum, and manganese. While crops need some of these, the others are non-essential metals, toxic to plants, animals, and humans. Kanwar and Sandha ( 2000 ) reported that heavy metal concentrations in plants grown in wastewater-irrigated soils were significantly higher than in plants grown in the reference soil in their study. Yaqub et al. ( 2012 ) suggest that the use of US is very effective in removing heavy or toxic metals and organic pollutants from industrial wastewater. However, it has been also observed that the metals were removed efficiently, when UV light was combined with ozone (Samarghandi et al., 2007 ). Ozone exposure is a potent method for the removal of metal or toxic compounds from wastewater as also reported earlier (Park et al., 2008 ). Application of US, UV, and O 3 in combination lead to the formation of reactive oxygen species (ROS) that oxidize certain organics, metal ions and kill pathogens. In the process of advanced oxidizing process (AOP) primarily oxidants, electricity, light, catalysts etc. are implied to produce extremely reactive free radicals (such as OH) for the breakdown of organic matters (Oturan & Aaron, 2014 ). Among the other AOPs, ozone oxidization process is more promising and effective for the decomposition of complex organic contaminants (Xu et al., 2020 ). Ozone oxidizes the heavy metal to their higher oxidation state to form metallic oxides or hydroxides in which they generally form limited soluble oxides and gets precipitated, which are easy to be filtered by filtration process. Ozone oxidization found to be efficient for the removal of heavy metals like cadmium, chromium, cobalt, copper, lead, manganese, nickel, and zinc from the water source (Upadhyay & Srivastava, 2005 ). Ultrasonic-treated sludge leads to the disintegration of biological cells and kills bacteria in treated wastewater (Kesari, Kumar, et al., 2011a ; Kesari, Verma, & Behari, 2011b ). This has been found that combined treatment with ultrasound and nanoparticles is more effective (Kesari, Kumar, et al., 2011a ). Ultrasonication has the physical effects of cavitation inactivate and lyse bacteria (Broekman et al., 2010 ). The induced effect of US, US, or ozone may destroy the pathogens and especially during ultrasound irradiation including free-radical attack, hydroxyl radical attack, and physical disruption of cell membranes (Kesari, Kumar, et al., 2011a ; Phull et al., 1997 ; Scherba et al., 1991 ).

8.2 Energy and Economy Management

Municipal wastewater treatment plants play a major role in wastewater sanitation and public health protection. However, domestic wastewater has been considered as a resource or valuable products instead of waste, because it has been playing a significant role in the recovery of energy and resource for the plant-fertilizing nutrients like phosphorus and nitrogen. Use of domestic wastewater is widely accepted for the crop irrigation in agriculture and industrial consumption to avoid the water crisis. It has also been found as a source of energy through the anaerobic conversion of the organic content of wastewater into methane gas. However, most of the wastewater treatment plants are using traditional technology, as anaerobic sludge digestion to treat wastewater, which results in more consumption of energy. Therefore, through these conventional technologies, only a fraction of the energy of wastewater has been captured. In order to solve these issues, the next generation of municipal wastewater treatment plants is approaching total retrieval of the energy potential of water and nutrients, mostly nitrogen and phosphorus. These plants also play an important role in the removal and recovery of emerging pollutants and valuable products of different nature like heavy and radioactive metals, fertilizers hormones, and pharma compounds. Moreover, there are still few possibilities of improvement in wastewater treatment plants to retrieve and reuse of these compounds. There are several methods under development to convert the organic matter into bioenergy such as biohydrogen, biodiesel, bioethanol, and microbial fuel cell. These methods are capable to produce electricity from wastewater but still need an appropriate development. Energy development through wastewater is a great driver to regulate the wastewater energy because it produces 10 times more energy than chemical, thermal, and hydraulic forms. Vermicomposting can be utilized for stabilization of sludge from the wastewater treatment plant. Kesari and Jamal ( 2017 ) have reported the significant, economical, and ecofriendly role of the vermicomposting method for the conversion of solid waste materials into organic fertilizers as presented in Fig. 5 . Solid waste may come from several sources of municipal and industrial sludge, for example, textile industry, paper mill, sugarcane, pulp industry, dairy, and intensively housed livestock. These solid wastes or sewage sludges have been treated successfully by composting and/or vermicomposting (Contreras-Ramos et al., 2005 ; Elvira et al., 1998 ; Fraser-Quick, 2002 ; Ndegwa & Thompson, 2001 ; Sinha et al., 2010 ) Although collection of solid wastes materials from sewage or wastewater and further drying is one of the important concerns, processing of dried municipal sewage sludge (Contreras-Ramos et al., 2005 ) and management (Ayilara et al., 2020 ) for vermicomposting could be possible way of generating organic fertilizers for future research. Vermicomposting of household solid wastes, agriculture wastes, or pulp and sugarcane industry wastes shows greater potential as fertilizer for higher crop yielding (Bhatnagar et al., 2016 ; Kesari & Jamal, 2017 ). The higher amount of solid waste comes from agricultural land and instead of utilizing it, this biomass is processed by burning, which causes severe diseases (Kesari & Jamal, 2017 ). Figure 3 shows the proper utilization of solid waste after removal from wastewater; however, Fig. 5 showing greater possibility in fertilizer conversion which has also been discussed in detail elsewhere (Bhatnagar et al., 2016 ; Nagavallemma et al., 2006 )

figure 5

Energy production through wastewater (reproduced from Bhatnagar et al., 2016 ; Kesari & Jamal, 2017 )

9 Conclusions and future perspectives

In this paper, we have reviewed environmental and public health issues associated with the use of untreated wastewater in agriculture. We have focused on the current state of affairs concerning the wastewater treatment model and computational approach. Given the dire need for holistic approaches for cultivation, we proposed the ideas to tackle the issues related to wastewater treatment and the reuse potential of the treated water. Water resources are under threat because of the growing population. Increasing generation of wastewater (municipal, industrial, and agricultural) in developing countries especially in India and other Asian countries has the potential to serve as an alternative of freshwater resources for reuse in rice agriculture, provide appropriate treatment, and distribution measures are adopted. Wastewater treatment is one of the big challenges for many countries because increasing levels of undesired or unknown pollutants are very harmful to health as well as environment. Therefore, this review explores the ideas based on current and future research. Wastewater treatment includes very traditional methods by following primary, secondary, and tertiary treatment procedures, but the implementation of advanced techniques is always giving us a big possibility of good water quality. In this paper, we have proposed combined methods for the wastewater treatment, where the concept of the proposed model works on the various types of wastewater effluents. The proposed model not only useful for wastewater treatment but also for the utilization of solid wastes as fertilizer. An appropriate method for the treatment of wastewater and further utilization for drinking water is the main futuristic outcome. It is also highly recommendable to follow the standard methods and available guidelines provided WHO. In this paper, the proposed role of the computational model, i.e., artificial intelligence, fluid dynamics, and GIS, in wastewater treatment could be useful in future studies. In this review, health concerns associated with wastewater irrigation for farmers and irrigated crops consumers have been discussed.

The crisis of freshwater is one of the growing concerns in the twenty-first century. Globaly, about 330 km 3 of municipal wastewater is generated annually (Hernández-Sancho et al., 2015 ). This data provides a better understanding of why the reuse of treated wastewater is important to solve the issues of the water crisis. The use of treated wastewater (industrial or municipal wastewater or Seawater) for irrigation has a better future for the fulfillment of water demand. Currently, in developing countries, farmers are using wastewater directly for irrigation, which may cause several health issues for both farmers and consumers (crops or vegetables). Therefore, it is very imperative to implement standard and advanced methods for wastewater treatment. A local assessment of the environmental and health impacts of wastewater irrigation is required because most of the developed and developing countries are not using the proper guidelines. Therefore, it is highly required to establish concrete policies and practices to encourage safe water reuse to take advantage of all its potential benefits in agriculture and for farmers.

Abdel-Fatah, M. A. (2018). Nanofiltration systems and applications in wastewater treatment: Review article. Ain Shams Engineering Journal, 9 , 3077–3092.

Google Scholar  

Adegoke, A. A., Faleye, A. C., Singh, G., & Stenström, T. A. (2016). Antibiotic resistant superbugs: Assessment of the interrelationship of occurrence in clinical settings and environmental niches. Molecules, 22 , E29.

Adegoke, A. A., Stenström, T. A., & Okoh, A. I. (2017). Stenotrophomonas maltophilia as an emerging ubiquitous pathogen: Looking beyond contemporary antibiotic therapy. Frontiers in Microbiology, 8 , 2276.

Adegoke, A. A., Amoah, I. D., Stenström, T. A., Verbyla, M. E., & Mihelcic, J. R. (2018). Epidemiological evidence and health risks associated with agricultural reuse of partially treated and untreated wastewater: A review. Frontiers in Public Health, 6 , 337.

Adewumia, J. R., Ilemobadea, A. A., & Vanzyl, J. E. (2010). Treated wastewater reuse in South Africa: Overview, potential, and challenges. Resources, Conservation and Recycling, 55 , 221–231.

Agoro, M. A., Adeniji, A. O., Adefisoye, M. A., & Okoh, O. O. (2020). Heavy metals in wastewater and sewage sludge from selected municipal treatment plants in Eastern Cape Province, South Africa. Water, 12 , 2746.

CAS   Google Scholar  

Akasaka, T., & Watari, F. (2009). Capture of bacteria by flexible carbon nanotubes. Acta Biomaterialia, 5 , 607–612.

Akponikpe, P., Wima, K., Yakouba, H., & Mermoud, A. (2011). Reuse of domestic wastewater treated in macrophyte ponds to irrigate tomato and eggplants in semi-arid West-Africa: Benefits and risks. Agricultural Water Management, 98 , 834–840.

Alghobar, M. A., Ramachandra, L., & Suresha, S. (2014). Effect of sewage water irrigation on soil properties and evaluation of the accumulation of elements in Grass crop in Mysore city, Karnataka, India. American Journal of Environmental Protection, 3 , 283–291.

Al-Nakshabandi, G. A., Saqqar, M. M., Shatanawi, M. R., Fayyad, M., & Al-Horani, H. (1997). Some environmental problems associated with the use of treated wastewater for irrigation in Jordan. Agricultural Water Management, 34 , 81–94.

Amabilis-Sosa, L. E., Vázquez-López, E., García Rojas, J. L., Roé-Sosa, A., & Moeller-Chávez, G. E. (2018). Efficient bacteria inactivation by ultrasound in municipal wastewater. Environments, 5 , 47.

Amoah, I. D., Adegoke, A. A., & Stenström, T. A. (2018). Soil-transmitted helminth infections associated with wastewater and sludge reuse: A review of current evidence. Tropical Medicine & International Health, 23 (7), 692–703.

Anastasi, A., Spina, F., Prigione, V., Tigini, V., Giansanti, P., & Varese, G. C. (2010). Scale-up of a bioprocess for textile wastewater treatment using Bjerkandera adusta. Bioresource Technology, 101 , 3067–3075.

Angelakis, A., & Snyder, S. (2015). Wastewater treatment and reuse: Past, present, and future. Water, 7 , 87–95.

Angelakis, A. N., Marecos do Monte, M. H. F., Bontoux, L., & Asano, T. (1999). The status of wastewater reuse practice in the Mediterranean basin: Need for guidelines. Water Research, 33 , 2201–2217.

Asaithambi, P., & Matheswaran, M. (2016). Electrochemical treatment of simulated sugar industrial effluent: Optimization and modeling using a response surface methodology. Arabian Journal of Chemistry, 9 , S981–S987.

Ayers, R. S., & Westcot, D. W. (1985). Water quality for agriculture; Food and Agriculture Organization of the United . Nations.

Ayilara, M. S., Olanrewaju, O. S., Babalola, O. O., & Odeyemi, O. (2020). Waste management through composting: Challenges and potentials. Sustainability, 12 , 4456.

Azevedo, B. F., Furieri, L. B., Peçanha, F. M., Wiggers, G. A., Vassallo, P. F., Simões, M. R., et al. (2014). Toxic effects of mercury on the cardiovascular and central nervous systems. Journal of Preventive Medicine and Public Health, 47 , 74–83.

Aziz, F., & Farissi, M. (2014). Reuse of treated wastewater in agriculture: solving water deficit problems in arid areas. Annals of West University of Timişoara Series of Biology, 17 , 95–110.

Balcom, I. N., Driscoll, H., Vincent, J., & Leduc, M. (2016). Metagenomic analysis of an ecological wastewater treatment plant’s microbial communities and their potential to metabolize pharmaceuticals. F1000 Research, 5 , 1881.

Balkhair, K. S. (2016a). Microbial contamination of vegetable crop and soil profile in arid regions under controlled application of domestic wastewater. Saudi Journal of Biological Sciences, 23 (1), S83–S92.

Balkhair, K. S. (2016b). Impact of treated wastewater on soil hydraulic properties and vegetable crop under irrigation with treated wastewater, field study and statistical analysis. Journal of Environmental Biology, 37 (5), 1143–1152.

Balkhair, K. S., & Ashraf, M. A. (2016). Field accumulation risks of heavy metals in soil and vegetable crop irrigated with sewage water in western region of Saudi Arabia. Saudi Journal of Biological Science, 23 , S32–S44.

Behling, E., Diaz, A., Colina, G., Herrera, M., Gutierrez, E., Chacin, E., et al. (1996). Domestic wastewater treatment using a UASB reactor. Bioresource Technology, 61 , 239–245.

Bent, S., & Bohm, K. (1995). Copper induced liver cirrhosis in a 13-month-old boy. Gesundheitswesen (health system in German), 57 , 667–669.

Bhatnagar, A., Kesari, K. K., & Shurpali, N. (2016). Multidisciplinary approaches to handling wastes in sugar industries. Water, Air, & Soil Pollution, 11 , 1–30.

Blume, T., & Neis, U. (2004). Improved wastewater disinfection by ultrasonic pre-treatment. Ultrasonics Sonochemistry, 11 , 333–336.

Bolong, N., Ismail, A. F., Salim, M. R., & Matsuura, T. (2009). A review of the effects of emerging contaminants in wastewater and options for their removal. Desalination, 239 , 229–246.

Bonefeld-Jorgensen, E. C., Long, M., Bossi, R., Ayotte, P., Asmund, G., Kruger, T., et al. (2011). Perfluorinated compounds are related to breast cancer risk in Greenlandic Inuit: A case control study. Environmental Health Perspectives, 10 , 88–95.

Börjesson, S., Melin, S., Matussek, A., & Lindgren, P. E. (2009). A seasonal study of the mecA gene and Staphylococcus aureus including methicillin-resistant S. aureus in a municipal wastewater treatment plant. Water Research, 43 , 925–932.

Bos, R., Carr, R., & Keraita, B. (2010). Assessing and mitigating wastewater-related health risks in low income countries: An introduction. In P. Drechsel, C. A. Scott, L. Raschid-Sally, M. Redwood, & A. Bahri (Eds.), In: Wastewater irrigation and health: Assessing and mitigating risk in low-income countries (pp. 29–47). Earthscan.

Briffa, J., Sinagra, E., & Blundell, R. (2020). Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon, 6 , e04691.

Brissaud, F. (2008). Criteria for water recycling and reuse in the Mediterranean countries. Desalination, 218 , 24–33.

Broekman, S., Pohlmann, O., Beardwood, E. S., & de Meulenaer, E. C. (2010). Ultrasonic treatment for microbiological control of water systems. Ultrasonics Sonochemistry, 17 , 1041–1048.

Brumer, L. (2000). Use of aquatic macrophytes to improve the quality of effluents after chlorination. Ph.D. Dissertation, Technion Israel Institute of Technology, Haifa.

Busgang, A., Friedler, E., Gilboa, Y., & Gross, A. (2018). Quantitative microbial risk analysis for various bacterial exposure scenarios involving greywater reuse for irrigation. Water, 10 , 413.

Caplin, J. L., Hanlon, G. W., & Taylor, H. D. (2008). Presence of vancomycin and ampicillin-resistant Enterococcus faecium of epidemic clonal complex-17 in wastewaters from the south coast of England. Environmental Microbiology, 10 , 885–892.

Carey, C., Lee, H., & Trevors, J. (2004). Biology, persistence and detection of Cryptosporidium parvum and Cryptosporidium homynis oocyst. Water Research, 38 , 818–868.

Carr, R. (2005). WHO guidelines for safe wastewater use-more than just numbers. Irrigation and Drainage, 54 , 103–111.

CCREM. (1987). Canadian Water Quality Guidelines . Prepared by the Task Force on Water Quality Guidelines of the Canadian Council of Resource and Environment Ministers.

Chang, J. S., Chou, C., & Chen, S. Y. (2001). Decolorization of azo dyes with immobilized Pseudomonas luteola. Process Biochemistry, 36 , 757–763.

Chaoua, S., Boussaa, S., Gharmali, A. E., & Boumezzough, A. (2019). Impact of irrigation with wastewater on accumulation of heavy metals in soil and crops in the region of Marrakech in Morocco. Journal of the Saudi Society of Agricultural Sciences, 18, 429–436.

Chen, K., & Pachter, L. (2005). Bioinformatics for whole-genome shotgun sequencing of microbial communities. PLoS Computational Biology, 1 , 106–112.

Chen, W., Lu, S., Pan, N., & Jiao, W. (2013). Impacts of long-term reclaimed water irrigation on soil salinity accumulation in urban green land in Beijing. Water Resources Research, 49 , 7401–7410.

City of Cape Town (CoCT). 2007 Water services Development plan 2007/2008. www.capetown.gov.za/en/Water/WaterservicesDevPlan/Pages/WaterServDevPlan200708.aspx Accessed 12 June 2008.

Clemmens, A. J., Allen, R. G., & Burt, C. M. (2008). Technical concepts related to conservation of irrigation and rainwater in agricultural systems. Water Resources Research, 44 , 1–16.

Coleman, J., Hench, K., Garbutt, K., Sexstone, A., Bissonnette, B., & Skousen, J. (2001). Treatment of domestic wastewater by three plant species in constructed wetlands. Water, Air, and Soil Pollution, 3 , 283–295.

Contreras, J. D., Meza, R., Siebe, C., Rodríguez-Dozal, S., López-Vidal, Y. A., Castillo-Rojas, G., et al. (2017). Health risks from exposure to untreated wastewater used for irrigation in the Mezquital Valley, Mexico: A 25-year update. Water Research, 123 , 834–850.

Contreras-Ramos, S. M., Escamilla-Silva, E. M., & Dendooven, L. (2005). Vermicomposting of biosolids with cow manure and wheat straw. Biological Fertility of Soils, 41 , 190–198.

Craun, M. F., Craun, G. F., Calderon, R. L., & Beach, M. J. (2006). Waterborne outbreaks in the United States. Journal of Water and Health, 4 (suppl 2), 19–30.

Craun, G. F., Brunkard, J. M., Yoder, J. S., Roberts, V. A., Carpenter, J., Wade, T., et al. (2010). Causes of outbreaks associated with drinking water in the United States from 1971 to 2006. Clinical Microbiology Reviews, 23 , 507–528.

Dang, Q., Tan, W., Zhao, X., Li, D., Li, Y., Yang, T., et al. (2019). Linking the response of soil microbial community structure in soils to long-term wastewater irrigation and soil depth. The Science of the total environment, 688, 26–36.

Delgado, A., Anselmo, A. M., & Novais, J. M. (1998). Heavy metal biosorption by dried powdered mycelium of Fusarium Flocci ferum. Water Environmental Research, 70 , 370.

Dewitt, J. C., Peden-Adams, M. M., Keller, J. M., & Germolec, D. R. (2012). Immunotoxicity of perfluorinated compounds: Recent developments. Toxicologic Pathology, 40 , 300–311.

Dickin, S. K., Schuster-Wallace, C. J., Qadir, M., & Pizzacalla, K. (2016). A review of health risks and pathways for exposure to wastewater use in agriculture. Environmental Health Perspectives, 124 , 900–909.

Do-Quang, Z., Cockx, A., Line, A., & Roustan, M. (1998). Computational fluid dynamics applied to water and wastewater treatment facility modeling. Environmental Engineering and Policy, 1 , 137–147.

Drechsel, P., Scott, A., Sally, R., Redwood, M., Bachir, A. (2010). Wastewater Irrigation and Health: Assessing and Mitigating Risk in Low-Income Countries; International Water Management Institute, Ed.; Earthscan: London, UK.

Duan, J. J., Zhao, J. N., Xue, L. H., & Yang, L. Z. (2016). Nutrient removal of a floating plant system receiving low- pollution wastewater: Effects of plant species and influent concentration. IOP Conference Series: Earth and Environmental Science, 41 , 1.

Duan, B., Zhang, W., Zheng, H., Wu, C., Zhang, Q., & Bu, Y. (2017). Comparison of health risk assessments of heavy metals and as in sewage sludge from wastewater treatment plants (WWTPs) for adults and children in the Urban district of Taiyuan, China. International Journal of Environmental Research and Public Health, 14 , 1194.

Duncan, M. (2009). Waste stabilization ponds: Past, present and future. Desalination and Water Treatment, 4 , 85–88.

Ecosse, D. (2001). Alternative techniques in order to meet the shortage of water in the world. Mem DESS Quality and Management of Water, Fac. Science, Amiens 62.

EEA CSI (2018). https://www.eea.europa.eu/themes/water/water-resources/water-use-by-sectors . Accessed 3 Oct 2019.

EPA (Environmental Protection Agency) (2002).National Recommended Water Quality Criteria: 2002. Office of Water, Office of Science and Technology. EPA-822-R-02-047.

Elshaw, A., Hassan, N. M. S., Khan, M. M. K. (2016). CFD modelling and optimisation of a wastewater treatment plant bioreactor—A case study. In Proceedings of the 2016 3rd Asia-Pacific World Congress on Computer science and Engineering (APWC on CSE), 232–239 https://doi.org/10.1109/APWC-on-CSE.2016.046 .

Elvira, C., Sampedro, L., Benitez, E., & Nogales, R. (1998). Vermicomposting of sludges from paper mills and dairy industries with Elsenia anderi. A pilot scale study. Journal of Bioresource Technology, 63 , 205–211.

Falkenberg, T., & Saxena, D. (2018). Impact of wastewater-irrigated urban agriculture on diarrhea incidence in Ahmedabad, India. Indian Journal of Community Medicine, 43 , 102–106.

FAO, (1985) Water Quality for Agriculture. Irrigation and Drainage Paper No. 29, Rev. 1. Food and Agriculture Organization of the United Nations, Rome.

Fazeli, M. S., Khosravan, F., Hossini, M., Sathyanarayan, S., & Satish, P. N. (1998). Enrichment of heavy metals in paddy crops irrigated by paper mill effluents near Nanjangud, Mysore District, Karnataka, India. Environmental Geology, 34 , 297–302.

FEPA. (1991). Proposed National Water Quality Standards . Federal Environmental Protection Agency.

Foerstner, K. U., Von-Mering, C., & Bork, P. (2006). Comparative analysis of environmental sequences: potential and challenges. Philosophical transactions of the Royal Society of London Series B, Biological sciences, 361 , 519–523.

Founou, R. C., Founou, L. L., & Essack, S. Y. (2017). Clinical and economic impact of antibiotic resistance in developing countries: A systematic review and meta-analysis. PLoS One, 12 , e0189621. https://doi.org/10.1371/journal.pone.0189621 .

Article   CAS   Google Scholar  

Fraser-Quick, G. (2002). Vermiculture – A sustainable total waste management solution. What’s New in Waste Management?, 4 , 13–16.

Freitas, F., Alves, V. D., Pais, J., Costa, N., Oliveira, C., & Mafra, L. (2009). Characterization of an extracellular polysaccharide produced by a Pseudomonas strain grown on glycerol. Bioresource Technology, 100 , 859–865.

Freitas, F., Alves, V. D., & Reis, M. A. (2011a). Advances in bacterial exopolysaccharides: From production to biotechnological applications. Trends in Biotechnology, 29 , 388–398.

Freitas, F., Alves, V. D., Torres, C. A., Cruz, M., Sousa, I., & Melo, M. J. (2011b). Fucose-containing exopolysaccharide produced by the newly isolated Enterobacter strain A47 DSM 23139. Carbohydrate Polymers, 83 , 159–165.

Frontistis, Z., Xekoukoulotakis, N. P., Hapeshi, E., Venieri, D., Fatta-Kassinos, D., & Mantzavinos, D. (2011). Fast degradation of estrogen hormones in environmental matrices by photo-Fenton oxidation under simulated solar radiation. Chemical Engineering Journal, 178 (15), 175–182.

Fukushima, M., Ishizaki, A., & Sakamoto, M. (1970). On distribution of heavy metals in rice field soil in the “Itai-itai” disease epidemic district. Japanese Journal of Hygiene, 24 , 526–535.

Gatta, G., Libutti, A., Gagliardi, A., Disciglio, G., Beneduce, L., d’Antuono, M., Rendina, M., & Tarantino, E. (2015a). Effects of treated agro-industrial wastewater irrigation on tomato processing quality. Italian Journal of Agronomy, 10 (2), 97–100.

Gatta, G., Libutti, A., Gagliardi, A., Beneduce, L., Borruso, L., Disciglio, G., & Tarantino, G. (2015b). Treated agro-industrial wastewater irrigation of tomato crop: Effects on qualitative/quantitative characteristics of production and microbiological properties of the soil. Agricultural Water Management, 149 , 33–43.

Gehrke, I., Geiser, A., & Somborn-Schulz, A. (2015). Innovations in nanotechnology for water treatment. Nanotechnology, Science and Applications, 8 , 1–17.

Genchi, G., Sinicropi, M. S., Lauria, G., Carocci, A., & Catalano, A. (2020). The effects of cadmium toxicity. International Journal of Environmental Research and Public Health, 17 , 3782.

Giddins, M. J., Macesic, N., Annavajhala, M. K., Stump, S., Khan, S., McConville, T. H., Mehta, M., Gomez-Simmonds, A., & Uhlemann, A. C. (2017). Successive emergence of ceftazidime-avibactam resistance through distinct genomic adaptations in bla(KPC-2)-harboring Klebsiella pneumoniae sequence type 307 isolates. Antimicrobial Agents and Chemotherapy, 62 , e02101–e02117.

Goel, J., Kadirvelu, K., Rajagopal, C., Kumar, G., & V. (2005). Removal of lead (II) by adsorption using treated granular activated carbon: Batch and column studies. Journal of Hazardous Materials, 125 (1-3), 211–220.

Goldstein, R. E. R. (2013). Antibiotic-resistant bacteria in wastewater and potential human exposure through wastewater reuse. PhD Dissertation, University of Maryland.

Gupta, P., & Diwan, B. (2017). Bacterial Exopolysaccharide mediated heavy metal removal: A review on biosynthesis, mechanism and remediation strategies. Biotechnology Reports, 13 , 58–71.

Gupta, S. K., Shin, H., Han, D., Hur, H. G., & Unno, T. (2018). Metagenomic analysis reveals the prevalence and persistence of antibiotic- and heavy metal-resistance genes in wastewater treatment. Plant Journal of Microbiology, 56 , 408–415.

GWI Global Water Intelligence. (2009). PUB study: Perspectives of water reuse . GWI Publishing.

Hall, N. (2007). Advanced sequencing technologies and their wider impact in microbiology. Journal of Experimental Biology, 210 , 1518–1525.

Halliwell, D. J., Barlow, K. M., & Nash, D. M. (2001). A review of the effects of wastewater sodium on soil physical properties and their implications for irrigation systems. Australian Journal of Soil Research, 39 , 1259–1267.

He, Y., Yuan, Q., Mathieu, J., Stadler, L., Senehi, N., Sun, R., & Alvarez, P. J. J. (2020). Antibiotic resistance genes from livestock waste: Occurrence, dissemination and treatment. npj Clean Water, 3 , 4.

Herc, E. S., Kauffman, C. A., Marini, B. L., Perissinotti, A. J., & Miceli, M. H. (2017). Daptomycin nonsusceptible vancomycin resistant Enterococcus bloodstream infections in patients with hematological malignancies: Risk factors and outcomes. Leukemia & Lymphoma, 58 , 2852–2858.

Hernández-Sancho, F., Lamizana-Diallo, B., Mateo-Sagasta, J., & Qadeer, M. (2015). Economic valuation of wastewater –The cost of action and the cost of no action . United Nations Environment Programme.

Hesnawi, R., Dahmani, K., Al-Swayah, A., Mohamed, S., & Mohammed, S. A. (2014). Biodegradation of municipal wastewater with local and commercial bacteria. Procedia Engineering, 70 , 810–814.

Hoekstra, A. Y., & Mekonnen, M. M. (2012). The water footprint of humanity. Proceedings of the National Academy of Sciences, 109 , 3232–3237.

Hua, I., & Thompson, J. E. (2000). Inactivation of E. coli by sonication at discrete ultrasonic frequencies. Water Research, 34 , 3888–3893.

Hussain, A., Priyadarshi, M., & Dubey, S. (2019). Experimental study on accumulation of heavy metals in vegetables irrigated with treated wastewater. Applied Water Science, 9 , 122.

Icgen, B., & Yilmaz, F. (2014). Co-occurrence of antibiotic and heavy metal resistance in Kizilirmak River isolates. Bulletin of Environmental Contamination and Toxicology, 93 , 735–743.

Iguchi, S., Mizutani, T., Hiramatsu, K., & Kikuchi, K. (2016). Rapid acquisition of linezolid resistance in methicillin-resistant Staphylococcus aureus: Role of hypermutation and homologous recombination. PLoS One, 11 , e0155512.

Indiana State Department of Health, 2009. Diseases Involving Sewage. https://www.in.gov/isdh/22963.htm

Inoue, Y., Hoshino, M., Takahashi, H., Noguchi, T., Murata, T., & Kanzaki, Y. (2002). Bactericidal activity of Ag-zeolite mediated by reactive oxygen species under aerated conditions. Journal of Inorganic Biochemistry, 92 , 37–42.

Jacquez, R. B., Walner, H. Z. (1985). Combining nutrient removal with protein synthesis using a water hyacinth-freshwater prawn polyculture wastewater treatment system. New Mexico Water Resources Research Institute . 92.

Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B. B., & Beeregowda, K. N. (2014). Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary Toxicology, 7 (2), 60–72.

Jarup, L. (2003). Hazards of heavy metal contamination. British Medical Bulletin, 68 , 167–182.

Jeong, H., Kim, H., & Jang, J. (2016). Irrigation water quality standards for indirect wastewater reuse in agriculture: A contribution toward sustainable wastewater reuse in South Korea. Water, 8 , 169.

Jia, S., Zhang, X. (2020). Biological HRPs in wastewater. In High-risk pollutants in wastewater. Eds. Ren, H. and Zhang, X. 41-67.

Jiménez, B., & Asano, T. (2008). Water reclamation and reuse around the world. In B. Jiménez & T. Asano (Eds.), In: Water reuse: An International Survey of Current Practice, Issues and Needs (pp. 3–26). IWA Publishing .

Jindal, A., Kamat, S. (2011). Water recycling and reuse for domestic and industrial sectors. Chemical Engineering World , 52-62.

Jyothi, N.R. (2020). Heavy metal sources and their effects on human health, heavy metals - Their environmental impacts and mitigation. Ed. Nazal, M. 95370.

Jyothi, N.R. and Farook, N.A.M. (2020). Mercury toxicity in public health, Heavy Metal Toxicity in Public Health. 1-12.

Jyoti, K. K., & Pandit, A. B. (2004). Ozone and cavitation for water disinfection. Biochemical Engineering Journal, 38 , 2249–2258.

Kalavrouziotis, I. K., Kokkinos, P., Oron, G., Fatone, F., Bolzonella, D., Vatyliotou, M., et al. (2015). Current status in wastewater treatment, reuse and research in some mediterranean countries. Desalination and Water Treatment, 53 , 2015–2030.

Kanwar, J., & Sandha, M. (2000). Waste water pollution injury to vegetable crops: A review. Agricultural Research Communication Centre, India, 21 , 133–136.

Katsoyiannis, I. A., Gkotsis, P., Castellana, M., Cartechini, F., & Zouboulis, A. I. (2017). Production of demineralized water for use in thermal power stations by advanced treatment of secondary wastewater effluent. Journal of Environmental Management, 1 (190), 132–139.

Kenny, J. F., Barber, N. L., Hutson, S. S., Linsey, K. S., Lovelace, J. K., & Maupin, M. A. (2009). Estimated use of water in the United States in 2005. U.S. Geological Survey Circular, 1344 , 52.

Kesari, K. K., & Behari, J. (2008). Ultrasonic impact on bacterial population in sewage sample. International Journal of Environment and Waste Management, 2 , 233–244.

Kesari, K. K., Jamal, Q. M. S. (2017). Review Processing, properties and applications of agricultural solid waste: Effect of an open burning in environmental toxicology. In: Kesari K. (eds) Perspectives in Environmental Toxicology. Environmental Science and Engineering . Springer, Cham. Chapter 8:161-181.

Kesari, K. K., Kumar, S., Verma, H. N., & Behari, J. (2011a). Influence of ultrasonic treatment in sewage sludge. Hydrology: Current Research, 2 , 115.

Kesari, K. K., Verma, H. N., & Behari, J. (2011b). Physical methods in wastewater treatment. International Journal of Environmental Technology and Management, 14 , 43–66.

Khaskhoussy, K., Kahlaoui, B., Messoudi, N. B., Jozdan, O., Dakheel, A., & Hachicha, M. (2015). Effect of treated wastewater irrigation on heavy metals distribution in a Tunisian soil. Engineering Technology and Applied Science Research, 5 , 805–810.

Kim, S. Y., Kim, J. H., Kim, C. J., & Oh, D. K. (1996). Metal adsorption of the polysaccharide produced from Methylobacterium organophilum. Biotechnology Letters, 18 , 1161–1164.

Kim, B. H., Kang, Z., Ramanan, R., Choi, J. E., Cho, D. H., Oh, H. M., et al. (2014). Nutrient removal and biofuel production in high rate algal pond using real municipal wastewater. Journal of Microbiology and Biotechnology, 24 , 1123–1132.

Kinuthia, G. K., Ngure, V., Beti, D., Lugalia, R., Wangila, A., & Kamau, L. (2020). Levels of heavy metals in wastewater and soil samples from open drainage channels in Nairobi, Kenya: community health implication. Scientific Reports, 10 , 8434 .

Kocabas, Z. O., Aciksoz, B., Yurum, Y. (2012). Binding mechanisms of As(III) on activated carbon/titanium dioxide nanocomposites: a potential method for arsenic removal from water, MRS online proceedings library. Published online by Cambridge University Press 1449.

König, M., Escher, B. I., Neale, P. A., Krauss, M., Hilscherová, K., Novák, J., et al. (2017). Impact of untreated wastewater on a major European river evaluated with a combination of in vitro bioassays and chemical analysis. Environmental Pollution, 220 (Part B), 1220–1230.

Kumar, R., & Chawla, J. (2014). Removal of cadmium ion from water/wastewater by nano-metal oxides. Water Quality Exposure and Health, 5 , 4.

Kumar, M., Kesari, K. K., & Behari, J. (2010). Low frequency ultrasonic irradiation of activated sludge. International Journal of Environment and Pollution, 43 , 52–65.

Kumar, S. S., Shantkriti, S., Muruganandham, T., Murugesh, E., Rane, N., & Govindwar, N. P. (2016). Bioinformatics aided microbial approach for bioremediation of wastewater containing textile dyes. Ecological Informatics, 31 , 112–121.

Kumar, A., Ali, M., Kumar, R., Kumar, M., Sagar, P., Pandey, R. K., et al. (2021). Arsenic exposure in Indo Gangetic plains of Bihar causing increased cancer risk. Scientific Reports, 11 , 2376.

Leddy, M. B., Plumlee, M. H., Kantor, R. S., Nelson, K. L., Miller, S. E., Kennedy, L. C., et al. (2018). High-throughput DNA sequencing to profile microbial water quality of potable reuse. Water online, 1-4.

Lee, I., & Viberg, H. (2013). A single neonatal exposure to perfluorohexane sulfonate (PFHxS) affects the levels of important neuroproteins in the developing mouse brain. Neurotoxicology, 37 , 190–196.

Libutti, A., Gatta, G., Gagliardi, A., Vergine, P., Pollice, A., Beneduce, L., Disciglio, G., & Tarantino, E. (2018). Agro-industrial wastewater reuse for irrigation of a vegetable crop succession under Mediterranean conditions. Agricultural Water Management, 196 , 1–14.

Liu, J., Ma, Y., Xu, T., & Shao, G. (2010). Preparation of zwitterionic hybrid polymer and its application for the removal of heavy metal ions from water. Journal of Hazardous Materials, 178 , 1021–1029.

Lv, L., Yu, X., Xu, Q., & Ye, C. (2015). Induction of bacterial antibiotic resistance by mutagenic halogenated nitrogenous disinfection byproducts. Environmental Pollution, 205 , 291–298.

Madsen, H., Poultsen, L., & Grandjean, P. (1990). Risk of high copper content in drinking water. Ugeskr Laeger (Journal of the Danish Medical Association), 152 (25), 1806–1809.

Mahendran, R., Ramli, N. H., & Abdurrahman, H. N. (2014). Study the effect of using ultrasonic membrane anaerobic system in treating sugarcane waste and methane gas production. International Journal of Research in Engineering and Technology, 3 , 299–303.

Mahfooz, Y., Yasar, A., Guijian, L., Islam, Q. U., Akhtar, A. B. T., Rasheed, R., Irshad, S., & Naeem, U. (2020). Critical risk analysis of metals toxicity in wastewater irrigated soil and crops: a study of a semi-arid developing region. Scientific Reports, 10 , 12845.

Mahmood, A., & Malik, R. N. (2014). Human health risk assessment of heavy metals via consumption of contaminated vegetables collected from different irrigation sources in Lahore. Pakistan, Arabian Journal of Chemistry, 7 (1), 91–99.

Mañas, P., Castro, E., & Heras, J. (2009). Irrigation with treated wastewater: effects on soil, lettuce (Lactuca sativa L.) crop and dynamics of microorganisms. Journal of Environmental Science and Health, 44 , 1261.

Marchal, M., Briandet, R., Koechler, S., Kammerer, B., & Bertin, P. N. (2010). Effect of arsenite on swimming motility delays surface colonization in Herminiimona sarsenicoxydans. Microbiology, 156 , 2336–2342.

Marcussen, H., Holm, P. E., Ha, L. T., & Dalsgaard, A. (2007). Food safety aspects of toxic element accumulation in fish from wastewater-feed ponds in Hanoi, Vietnam . Tropical Medicine & International Health, 12 , 34–39.

Marsh, S. (2007). Pyrosequencing applications. Methods in Molecular Biology, 373 , 15–24.

Meehan, C., Bjourson, A. J., & McMullan, G. (2001). Paeni bacillus azoreducens sp. nov., a synthetic azo dye decolorizing bacterium from industrial wastewater. International Journal of Systematic and Evolutionary Microbiology, 51 , 1681–1685.

Mehmood, A., Mirza, A. S., Choudhary, M. A., Kim, K. H., Raza, W., Raza, N., Lee, S. S., Zhang, M., Lee, J. H., & Sarfraz, M. (2019). Spatial distribution of heavy metals in crops in a wastewater irrigated zone and health risk assessment. Environmental Research, 168 , 382–388.

Melanta, S. (2008). Aquatic bacteria removal using carbon nanotubes. Biological and Agricultural Engineering Undergraduate Thesis . University of Arkansas.

Mohammad, M., & Mazahreh, N. (2003). Changes in soil fertility parameters in response to irrigation of forage crops with secondary treated wastewater. Communications in Soil Science and Plant Analysis, 34 , 181–1294.

Mohammad, A. W., Teow, Y. H., Ang, W. L., Chung, Y. T., Oatley-Radcliffe, D. L., & Hila, N. (2015). Nanofiltration membranes review: Recent advances and future prospects. Desalination, 356 , 226–254.

Mohsen, M. S. (2004). Treatment and reuse of industrial effluents: Case study of a thermal power plant. Desalination, 167 , 75–86.

Mostafaii, G., Chimehi, E., Gilasi, H. R., & Iranshahi, L. (2017). Investigation of zinc oxide nanoparticles effects on removal of total coliform bacteria in activated sludge process effluent of municipal wastewater. Journal of Environmental Science and Technology, 1 , 49–55.

Naddeo, V., Belgiorno, V., Ricco, D., & Kassinos, D. (2009). Degradation of diclofenac by sonolysis, ozonation and their simultaneous application. Ultrasonics Sonochemistry, 16 , 790–794.

Nagavallemma, K. P., Wani, S. P., Lacroix, S., Padmaja, V. V., Vineela, C., Babu, R. M., & Sahrawat, K. L. (2006). Vermicomposting: recycling wastes into valuable organic fertilizer. SAT eJournal, 2 , 1–16.

Narain, D. M., Bartholomeus, R. P., Dekker, S. C., & Van Wezel, A. P. (2020). Natural purification through soils: Risks and opportunities of sewage effluent reuse in sub-surface irrigation. In In: Reviews of Environmental Contamination and Toxicology (Continuation of Residue Reviews) (pp. 1–33). Springer. https://doi.org/10.1007/398_2020_49 .

Naylor, N. R., Atun, R., Zhu, N., Kulasabanathan, K., Silva, S., Chatterjee, A., Knight, G. M., & Robotham, J. V. (2018). Estimating the burden of antimicrobial resistance: a systematic literature review. Antimicrobial Resistance and Infection Control, 7 , 58.

Ndegwa, P. M., & Thompson, S. A. (2001). Integrated composting and vermicomposting in the treatment and bioconversion of biosolids. Bioresource Technology, 76 , 107–112.

Nizam, N. U. M., Hanafiah, M. M., Noor, I. M., & Karim, H. I. A. (2020). Efficiency of five selected aquatic plants in phytoremediation of aquaculture wastewater. Applied Sciences, 10 , 2712.

Njuguna, S. M., Makokha, V. A., Yan, X., Gituru, R. W., Wang, Q., & Wang, J. (2019). Health risk assessment by consumption of vegetables irrigated with reclaimed wastewater: A case study in Thika (Kenya). Journal of Environmental Management, 231 , 576–581.

Nmaya, M. M., Agam, M. A., Matias-Peralta, H. M., Yabagi, J. A., & Kimpa, M. I. (2017). Freshwater green microalga for bioremediation of river melaka heavy metals contamination. Journal of Science and Technology, 9 , 118–123.

Nour, A. H., & Zainal, Z. (2014). Membrane fouling control by ultrasonic membrane anaerobic system (UMAS) to produce methane gas. International Journal of Engineering Science Research Technology, 3 , 487–497.

Nourani, V., Elkiran, G., & Abba, S. I. (2018). Wastewater treatment plant performance analysis using artificial intelligence – An ensemble approach. Water Science and Technology, 78 (10), 2064–2076.

Numberger, D., Ganzert, L., Zoccarato, L., Mühldorfer, K., Sauer, S., & Grossart, H. P. (2019). Characterization of bacterial communities in wastewater with enhanced taxonomic resolution by full-length 16S rRNA sequencing. Scientific Reports, 9 , 9673.

Odigie, J. O. (2014). Harmful effects of wastewater disposal into water bodies: A case review of the Ikpoba river, Benin city, Nigeria. Tropical Freshwater Biology, 23 , 87–101.

Oilgae Guide to Algae-based Wastewater Treatment. (2014). Commonly used algae strains for wastewater treatment. http://www.oilgae.com/blog/2014/01/commonly-used-algae-strains-for-waste-water-treatment.html . Accessed 5 May 2021

Okoh, A. I., Sibanda, T., & Gusha, S. S. (2010). Inadequately treated wastewater as a source of human enteric viruses in the environment. International Journal of Environmental Research and Public Health, 7 , 2620–2637.

Oturan, M. A., & Aaron, J. J. (2014). Advanced oxidation processes in water/wastewater treatment: Principles and applications. A review. Critical Reviews in Environmental Science and Technology, 44 , 2577–2641.

Paleologou, A., Marakas, H., Xekoukoulotakis, N. P., Moya, A., Vergara, Y., Kalogerakis, N., Gikas, P., & Mantzavinos, D. (2007). Disinfection of water and wastewater by TiO2 photocatalysis, sonolysis and UV-C irradiation. Catalysis Today, 129 , 136–142.

Pan, B., & Xing, B. S. (2008). Adsorption mechanisms of organic chemicals on carbon nanotubes. Environmental Science and Technology, 42 , 9005–9013.

Panthi, S., Sapkota, A. R., Raspanti, G., Allard, S. M., Bui, A., Craddock, H. A., Murray, R., et al. (2019). Pharmaceuticals, herbicides, and disinfectants in agricultural water sources. Environmental Research, 174 , 1–8.

Park, K. Y., Maeng, S. K., Song, K. G., & Ahn, K. H. (2008). Ozone treatment of wastewater sludge for reduction and stabilization. Journal Environmental Science Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 43 , 1546–1550.

Pedrero, F., Kalavrouziotis, I., Alarcón, J. J., Koukoulakis, P., & Asano, T. (2010). Use of treated municipal wastewater in irrigated agriculture. Review of some practices in Spain and Greece. Agricultural Water Management, 97 , 1233–1241.

Peng, S. M., Chen, Y. D., Guo, W. Q., Yang, S. S., Wu, Q. L., Luo, H. C., & Ren, N. Q. (2014). The Application of computational fluid dynamics (CFD) in wastewater biological treatment field. Applied Mechanics and Materials, 507 , 711–715.

Pesoutova, R., Hlavinek, P., & Matysikova, J. (2011). Use of advanced oxidation processes for textile wastewater treatment- A review. Food and Environmental Safety, 10 , 59–65.

Petrier, C., Jeunet, A., Luche, J. L., & Reverdy, G. (1992). Unexpected frequency effects on the rate of oxidative processes induced by ultrasound. Journal of the American Chemical Society, 25 , 148–3150.

Pham-Duc, P., Nguyen-Viet, H., Hattendorf, J., et al. (2014). Diarrhoeal diseases among adult population in an agricultural community Hanam province, Vietnam, with high wastewater and excreta reuse. BMC Public Health, 14 , 978.

Phull, S. S., Newman, A. P., Lorimer, J. P., Pollet, T. J., & Mason, T. J. (1997). The development and evaluation of ultrasound in the biocidal treatment of water. Ultrasonics Sonochemistry, 4 , 157–164.

Poustie, A., Yang, Y., Verburg, P., Pagilla, K., & Hanigan, D. (2020). Reclaimed wastewater as a viable water source for agricultural irrigation: A review of food crop growth inhibition and promotion in the context of environmental change. Science of the Total Environment, 739 , 139756.

Punshon, T., Jackson, B. P., Meharg, A. A., Warczack, T., Scheckel, K., & Guerinot, M. L. (2017). Understanding arsenic dynamics in agronomic systems to predict and prevent uptake by crop plants. Science of the Total Environment, 581–582 , 209–220.

Puzas, J. E., Campbell, J., O’Keefe, R. J., & Rosier, R. N. (2004). Lead toxicity in the skeleton and its role in osteoporosis. In Nutrition and Bone Health (pp. 373–376). Humana Press.

Qadir, M., Wichelns, D., Raschid-Sally, L., McCornick, P. G., Drechsel, P., Bahri, A., et al. (2010). The challenges of wastewater irrigation in developing countries. Agricultural Water Management, 97 , 561–568.

Raes, J., Foerstner, K. U., & Bork, P. (2007). Get the most out of your metagenome: Computational analysis of environmental sequence data. Current Opinion in Microbiology, 10 , 490–498.

Ramadas, M., & Samantaray, A. K. (2018). Applications of remote sensing and GIS in water quality monitoring and remediation: A state-of-the-art review. In S. Bhattacharya, A. Gupta, A. Gupta, & A. Pandey (Eds.), Water remediation. Energy, Environment, and Sustainability . Springer.

Rizvi, H., Ahmad, N., Abbas, F., Bukhari, I. H., Yasar, A., Ali, S., Yasmeen, T., & Riaz, M. (2015). Start-up of UASB reactors treating municipal wastewater and effect of temperature/sludge age and hydraulic retention time (HRT) on its performance. Arabian Journal of Chemistry, 8 , 780–786.

Russ, R., Rau, J., & Stolz, A. (2000). The function of cytoplasmic flavin reductases in the reduction of azodyes by bacteria. Applied and Environmental Microbiology, 66 , 1429–1434.

Sacks, M., & Bernstein, N. (2011). Utilization of reclaimed wastewater for irrigation of field-grown melons by surface and subsurface drip irrigation. Israel Journal of Plant Sciences, 59 , 159–169.

Sağ, Y. (2001). Biosorption of heavy metals by fungal biomass and modeling of fungal biosorption: A review. Separation and Purification Reviews, 30 , 1–48.

Salem, H. M., Eweida, E. A., & Farag, A. (2000). Heavy metals in drinking water and their environmental impact on human health (pp. 542–556). ICEHM .

Samarghandi, M. R., Nouri, J., Mesdaghinia, A. R., Mahvi, A. H., Nasseri, S., & Vaezi, F. (2007). Efficiency removal of phenol, lead and cadmium by means of UV/TiO2/H2O2 processes. International journal of Environmental Science and Technology, 4 , 19–25.

Samie, A., Obi, L., Igumbor, O., & Momba, B. (2009). Focus on 14 sewage treatment plants in the Mpumalanga province, South Africa in order to gauge the efficiency of wastewater treatment. African Journal of Microbiology Research, 8 , 3276–3285.

Samstag, R. W., Ducoste, J. J., Griborio, A., Nopens, I., Batstone, D. J., Wicks, J., & Laurent, J. (2016). CFD for wastewater treatment: An overview. Water Science and Technology, 74 , 549–563.

Santajit, S., & Indrawattana, N. (2016). Mechanisms of antimicrobial resistance in ESKAPE pathogens. BioMed Research International, 2016 , 2475067.

Sato, T., Qadir, M., Yamamoto, S., Endo, T., & Zahoor, A. (2013). Global, regional, and country level need for data on wastewater generation, treatment, and use. Agricultural Water Management, 130 , 1–13.

Scherba, G., Weigel, R. M., & Obrien, W. D. (1991). Quantitative assessment of the germicidal efficacy of ultrasonic energy. Applied and Environmental Microbiology, 57 , 2079–2084.

Schloss, P. D., & Handelsman, J. (2005). Metagenomics for studying unculturable microorganisms: Cutting the Gordian knot. Genome Biology, 6 , 229.

Schmeisser, C., Steele, H., & Streit, W. R. (2007). Metagenomics, biotechnology with non-culturable microbes. Applied Microbiology and Biotechnology, 75 , 955–962.

Scott, C. A., Faruqui, N. I., & Raschid-Sally, L. (2004). Wastewater use in irrigated agriculture: Management challenges in developing countries. In C. A. Scott, N. I. Faruqui, & L. Raschid-Sally (Eds.), Wastewater use in irrigated agriculture: Confronting the livelihood and environmental realities (pp. 1–10). CABI Publishing.

Scott, C. A., Drechsel, P., Raschid-Sally, L., Bahri, A., Mara, D., Redwood, M., et al. (2009). Wastewater irrigation and health: Challenges and Outlook for mitigating risks in low-income countries. In P. Drechsel, C. A. Scott, L. Raschid-Sally, M. Redwood, & A. Bahri (Eds.), In: Wastewater irrigation and health: Assessing and mitigating risk in low-income countries (pp. 381–394). Earthscan .

Sengupta, S., Nawaz, T., & Beaudry, J. (2015). Nitrogen and phosphorus recovery from wastewater. Current Pollution Reports, 1 , 155–166.

Shakir, R., Davis, S., Norrving, B., Grisold, W., Carroll, W. M., Feigin, V., & Hachinski, V. (2016). Revising the ICD: Stroke is a brain disease. Lancet, 19 , 2475–2476.

Sharma, N. K., Bhardwaj, S., Srivastava, P. K., Thanki, Y. J., Gadhia, P. K., & Gadhia, M. (2012). Soil chemical changes resulting from irrigating with petrochemical effluents. International journal of Environmental Science and Technology, 9 , 361–370.

Sheet, I., Kabbani, A., & Holail, H. (2014). Removal of heavy metals using nanostructured graphite oxide, silica nanoparticles and silica/ graphite oxide composite. Energy Procedia, 50 , 130–138.

Shen, Y., Oki, T., Kanae, S., Hanasaki, N., Utsumi, N., & Kiguchi, M. (2014). Projection of future world water resources under SRES scenarios: An integrated assessment. Hydrological Sciences Journal, 59 , 1775–1793.

Shuval, H. I., Yekutiel, P., & Fattal, B. (1985). Epidemiological evidence for helminth and cholera transmission by vegetables irrigated with wastewater. Jerusalem - Case study. Water Science and Technology, 17 , 433–442.

Siezen, R. J., & Galardini, M. (2008). Genomics of biological wastewater treatment. Microbial Biotechnology, 1 , 333–340.

Singh, A., Sawant, M., Kamble, S. J., Herlekar, M., Starkl, M., Aymerich, E., et al. (2019). Performance evaluation of a decentralized wastewater treatment system in India. Environmental Science and Pollution, 26 , 21172–21188.

Sinha, R. K., Herat, S., Bharambe, G., & Brahambhatt, A. (2010). Vermistabilization of sewage sludge (biosolids) by earthworms: Converting a potential biohazard destined for land disposal into a pathogen free, nutritive and safe biofertilizer for farms. Waste Management and Research, 28 , 872–881.

Smith, R. G. (1995). Water reclamation and reuse. Water Environment Research, 67 , 488–495.

Soni, R., Pal, A. K., Tripathi, P., Lal, J. A., Kesari, K., & Tripathi, V. (2020). An overview of nanoscale materials on the removal of wastewater contaminants. Applied Water Science, 10 , 189.

Spina, F., Anastasi, A., Prigione, V., Tigini, V., & Varese, G. C. (2012). Biological treatment of industrial wastewaters: A fungal approach. Chemical Engineering Transactions, 27 , 175–180.

Srivastava, A., Srivastava, O. N., Talapatra, S., Vajtai, R., & Ajayan, P. M. (2004). Carbon nanotube filters. Nature Materials, 3 , 610–614.

SWRCB (2011) Order No. R3-2011-0222: waste discharge requirements NPDES general permit for discharges of highly treated groundwater to surface waters, NPDES NO. CAG993002, California State Water Quality Control Board.

Tacconelli, E., Carrara, E., Savoldi, A., Harbarth, S., Mendelson, M., Monnet, D. L., et al. (2018). Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. The Lancet Infectious Diseases, 18 , 318–327.

Tanji, K. K., & Kielen, N. C. (2002). Agricultural drainage water management in arid and semi-arid areas. In FAO Irrigation and Drainage Paper (p. 61). Food and Agriculture Organization.

Taylor, A. A., Tsuji, J. S., Garry, M. R., McArdle, M. E., Goodfellow Jr., W. L., Adams, W. J., et al. (2020). Critical review of exposure and effects: Implications for setting regulatory health criteria for ingested copper. Environmental Management, 65 , 131–159.

Templeton, M. R., Graham, N., & Voulvoulis, N. (2009). Emerging chemical contaminants in water and wastewater. Philosophical Transactions of the Royal Society A, 367 , 3873–3875.

Toze, S. (1997). Microbial pathogens in wastewater. CSIRO Land and Water Technical report 1/97.

Tringe, S. G., Von-Merling, C., Kobayashi, A., Salamov, A. A., Chen, K., & Chang, H. W. (2005). Comparative metagenomics of microbial communities. Science, 308 , 554–557.

Tripathi, V., Tripathi, P. (2017). Antibiotic resistance genes: An emerging environmental pollutant. K.K. Kesari (ed.), Perspectives in Environmental Toxicology , 183-201.

Tsagarakis, K. P., Tsoumanis, P., Chartzoulakis, K., & Angelakis, A. N. (2001). Water resources status including wastewater treatment and reuse in Greece. Water International, 26 , 252–258.

Tytła, M. (2019). Assessment of heavy metal pollution and potential ecological risk in sewage sludge from municipal wastewater treatment plant located in the most industrialized region in Poland—Case study. International Journal of Environmental Research and Public Health, 16 , 2430.

Ungureanu, N., Vlăduț, V., Dincă, M., Zăbavă, B. Ș. (2018). Reuse of wastewater for irrigation, a sustainable practice in arid and semi-arid regions. In Proceedings of the 7th International Conference on Thermal Equipment, Renewable Energy and Rural Development (TE-RE-RD), Drobeta-Turnu Severin, Romania, 31 May–2 June. pp. 379–384.

Ungureanu, N., Vlăduț, V., & Voicu, G. (2020). Water Scarcity and wastewater reuse in crop irrigation. Sustainability, 12 (21), 9055.

Upadhyay, K., & Srivastava, J. K. (2005). Application of ozone in the treatment of industrial and municipal wastewater. Journal of Industrial Pollution Control, 21 , 235–245.

US EPA. (2004). Guidelines for Water Reuse 625/R-04/108 . Environmental Protection Agency.

US EPA. (2012). Guidelines for Water Reuse 600/R-12/618 . Environmental Protection Agency.

Vélez, E., Campillo, G. E., Morales, G., Hincapié, C., Osorio, J., Arnache, O., et al. (2016). Mercury removal in wastewater by iron oxide nanoparticles. Journal of Physics: Conference Series, 687 , 012050.

Vergili, I. (2013). Application of nanofiltration for the removal of carbamazepine, diclofenac and ibuprofen from drinking water sources. Journal of Environmental Management, 127 , 177–187.

Vogelmann, E. S., Awe, G. O., & Prevedello, J. (2016). Selection of plant species used in wastewater treatment. In Wastewater treatment and reuse for metropolitan regions and small cities in developing countries (pp. 1–10). Publisher.

Volesky, B. (1994). Advances in biosorption of metals: Selection of biomass types. FEMS Microbiology Reviews (Amsterdam), 14 , 291–302.

Von-Sperling, M., & Chernicharo, C. A. L. (2005). Biological Wastewater treatment in warm climate regions (1st ed.p. 810). IWA Publishing.

Wani, A. L., Ara, A., & Usmani, J. A. (2015). Lead toxicity: a review. Interdisciplinary Toxicology, 8 , 55–64.

Webster, G. M. (2010). Chemicals, Health and Pregnancy Study (CHirP). Vancouver, BC: University of British Columbia, Centre for Health and Environment Research (CHER) and School for Occupational and Environmental Hygiene (SOEH). http://www.ncceh.ca/sites/default/files/Health_effects_PFCs_Oct_2010.pdf . Accessed Sept 2019.

Westcot, D. W. (1997). Quality control of wastewater for irrigated crop production. In In Chapter 2 - Health risks associated with wastewater use FAO Water Report (10th ed., p. 86).

WHO (1973) WHO meeting of experts on the reuse of effluents: Methods of wastewater treatment and health safeguards & World Health Organization. Reuse of effluents: Methods of wastewater treatment and health safeguards, report of a WHO meeting of experts [meeting held in Geneva from 30 November to 6 December 1971].

WHO. (1989) Health guidelines for the use of wastewater in agriculture and aquaculture. Technical Report Series No. 74. World Health Organization, Geneva.

WHO (2003).Copper in drinking-water. Background document for preparation of WHO Guidelines for drinking-water quality. Geneva, World Health Organization (WHO/SDE/WSH/03.04/88).

WHO-World Health Organization. (2006). Guidelines for the Safe Use of Wastewater, Excreta and Greywater . In Wastewater Use in Agriculture (2nd ed.). WHO-World Health Organization.

Winpenny, J., Heinz, I., Koo-Oshima, S., Salgot, M., Collado, J., Hernandex, F., et al. (2010). The Wealth of waste: The economics of wastewater use in agriculture. In Food and Agriculture Organization of the United Nations (p. 35). FAO Water Reports .

World Bank. (2010). Improving wastewater use in agriculture: An emerging priority (p. 169). A report of the Water Partnership Program.

World Resources Institute (WRI), (2020) Aqueduct country rankings. Available online: https://www.wri.org/applications/aqueduct/country-rankings/ Accessed 3 Sept 2020.

Xiao, R., Wang, S., Li, R., Wang, J. J., & Zhang, Z. (2017). Ecotoxicology and environmental safety soil heavy metal contamination and health risks associated with artisanal gold mining in Tongguan, Shaanxi, China. Ecotoxicology and Environmental Safety, 141 , 17–24.

Xu, Y. B., Hou, M., Li, Y. F., Huang, L., Ruan, J. J., Zheng, L., et al. (2017). Distribution of tetracycline resistance genes and AmpC β-lactamase genes in representative non-urban sewage plants and correlations with treatment processes and heavy metals. Chemosphere, 170 , 274–281.

Xu, S., Yan, N., Cui, M., & Liu, H. (2020). Decomplexation of Cu(II)/Ni(II)-EDTA by ozone-oxidation process. Environmental Science and Pollution Research, 27 , 812–822.

Yadav, R. K., Goyal, B., Sharma, R. K., Dubey, S. K., & Minhas, P. S. (2002). Post-irrigation impact of domestic sewage effluent on composition of soils, crops and ground water—A case study. Environment International, 28 , 481–486.

Yang, J., Jia, R., Gao, Y., Wang, W., & Cao, P. (2017). The reliability evaluation of reclaimed water reused in power plant project. IOP Conference Series: Earth and Environmental Science, 100 , 012189.

Yaqub, A., Ajab, H., Isa, M. H., Jusoh, H., Junaid, M., & Farooq, R. (2012). Effect of ultrasound and electrode material on electrochemical treatment of industrial wastewater. Journal of New Materials for Electrochemical Systems, 15 , 289–292.

Yuen, H. W., & Becker, W. (2020). Iron toxicity. [Updated 2020 Jun 30]. In: StatPearls [Internet]. StatPearls Publishing; Available from: https://www.ncbi.nlm.nih.gov/books/NBK459224/ .

Zahmatkesh, M., Spanjers, H., Jules, B., & Lier, V. (2018). A novel approach for application of white rot fungi in wastewater treatment under non-sterile conditions: Immobilization of fungi on sorghum. Environmental Technology, 39 (16), 2030–2040.

Zaman, S. B., Hussain, M. A., Nye, R., Mehta, V., Mamun, K. T., & Hossain, N. (2017). A review on antibiotic resistance: Alarm bells are ringing. Cureus, 9 , e1403.

Zamora, S., Marín-Muñíz, J. L., Nakase-Rodríguez, C., Fernández-Lambert, G., & Sandoval, L. (2019). Wastewater treatment by constructed wetland eco-technology: Influence of mineral and plastic materials as filter media and tropical ornamental plants. Water, 11 , 2344.

Zekić, E., Vuković, Z., & Halkijević, I. (2018). Application of nanotechnology in wastewater treatment. GRAĐEVINAR, 70 , 315–323.

Zhang, H., & Reynolds, M. (2019). Cadmium exposure in living organisms: A short review. Science of the Total Environment, 678 , 761–767.

Zhang, Y., & Shen, Y. (2017). Wastewater irrigation: Past, present, and future. Wastewater treatment: Aims and challenges. Water, 6 (3), e1234. https://doi.org/10.1002/wat2.1234 .

Article   Google Scholar  

Zhou, X., & Wang, G. (2010). Nutrient concentration variations during Oenantheja vanica growth and decay in the ecological floating bed system. Journal of Environmental Sciences (China), 22 , 1710–1717.

Zhu, L., Li, Z., & Ketola, T. (2011). Biomass accumulations and nutrient uptake of plants cultivated on artificial floating beds in China’s rural area. Ecological Engineering, 37 , 1460–1466.

Zimmels, Y., Kirzhner, F., & Roitman, S. (2004). Use of naturally growing aquatic plants for wastewater purification. Water Environmental Research, 76 , 220.

Download references

Acknowledgements

All the authors are highly grateful to the authority of the respective departments and institutions for their support in doing this research. The author VT would like to thank Science & Engineering Research Board, New Delhi, India (Grant #ECR/2017/001809). The Author RS is thankful to the University Grants Commission for the National Fellowship (201819-NFO-2018-19-OBC-UTT-78476).

Open access funding provided by Aalto University.

Author information

Kavindra Kumar Kesari and Ramendra Soni contributed equally to this work.

Authors and Affiliations

Department of Applied Physics, Aalto University, Espoo, Finland

Kavindra Kumar Kesari & Janne Ruokolainen

Department of Molecular and Cellular Engineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Naini, Allahabad, India

Ramendra Soni, Jonathan A. Lal & Vijay Tripathi

Department of Health Informatics, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah, Saudi Arabia

Qazi Mohammad Sajid Jamal

Department of Computational Biology and Bioinformatics, Sam Higginbottom University of Agriculture, Technology and Sciences, Naini, Allahabad, India

Pooja Tripathi

Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, UP, India

Niraj Kumar Jha

Department of Bioengineering, Faculty of Engineering, Integral University, Lucknow, India

Mohammed Haris Siddiqui

Department of Forestry, NERIST, Nirjuli, Arunachal Pradesh, India

Pradeep Kumar

You can also search for this author in PubMed   Google Scholar

Corresponding authors

Correspondence to Kavindra Kumar Kesari , Mohammed Haris Siddiqui or Vijay Tripathi .

Ethics declarations

Conflict of interest.

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Kesari, K.K., Soni, R., Jamal, Q.M.S. et al. Wastewater Treatment and Reuse: a Review of its Applications and Health Implications. Water Air Soil Pollut 232 , 208 (2021). https://doi.org/10.1007/s11270-021-05154-8

Download citation

Received : 12 January 2020

Accepted : 25 April 2021

Published : 10 May 2021

DOI : https://doi.org/10.1007/s11270-021-05154-8

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Bio-computation
  • Environmental pollution
  • Human health
  • Sustainable agriculture
  • Find a journal
  • Publish with us
  • Track your research

Information

  • Author Services

Initiatives

You are accessing a machine-readable page. In order to be human-readable, please install an RSS reader.

All articles published by MDPI are made immediately available worldwide under an open access license. No special permission is required to reuse all or part of the article published by MDPI, including figures and tables. For articles published under an open access Creative Common CC BY license, any part of the article may be reused without permission provided that the original article is clearly cited. For more information, please refer to https://www.mdpi.com/openaccess .

Feature papers represent the most advanced research with significant potential for high impact in the field. A Feature Paper should be a substantial original Article that involves several techniques or approaches, provides an outlook for future research directions and describes possible research applications.

Feature papers are submitted upon individual invitation or recommendation by the scientific editors and must receive positive feedback from the reviewers.

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Original Submission Date Received: .

  • Active Journals
  • Find a Journal
  • Proceedings Series
  • For Authors
  • For Reviewers
  • For Editors
  • For Librarians
  • For Publishers
  • For Societies
  • For Conference Organizers
  • Open Access Policy
  • Institutional Open Access Program
  • Special Issues Guidelines
  • Editorial Process
  • Research and Publication Ethics
  • Article Processing Charges
  • Testimonials
  • Preprints.org
  • SciProfiles
  • Encyclopedia

water-logo

Article Menu

  • Subscribe SciFeed
  • Recommended Articles
  • Google Scholar
  • on Google Scholar
  • Table of Contents

Find support for a specific problem in the support section of our website.

Please let us know what you think of our products and services.

Visit our dedicated information section to learn more about MDPI.

JSmol Viewer

Filtration process and alternative filter media material in water treatment.

water treatment term paper

1. Introduction

2. filtration for water treatment, 2.1. filtration process.

  • Straining . It is not desirable as collected particles clog the upper part of the bed (blinding), preventing an efficient use of the filter [ 12 ].
  • Sedimentation . This is favoured when the density of the suspended material is greater than that of water. The particle will deviate from the streamline because of gravity and it will impact the medium surface [ 12 , 20 ]. This depends upon particle density and temperature [ 16 ], the diameter of the particle and more generally on the ratio between the settling velocity of the particle and the velocity of the fluid approaching the media [ 12 ]. Larger particles and lower filtration velocities will lead to higher collection efficiency for this mechanism [ 9 ].
  • Interception . This occurs when a particle is transiting within a distance equal to its radius from the surface of the grain. The contact between the particle and the grain can result in attachment (12). The mechanism is very similar to straining, but smaller particles are involved [ 6 , 12 , 21 ]; it depends on the ratio of the particle diameter to the media diameter [ 12 ]. Its efficiency increases with increasing particle size and decreasing collector size [ 9 ].
  • Diffusion . This is due to the thermal energy of the fluid, which is transferred to the particles. This causes them to drift from the streamlines to impact the surface of the grain or on other particles [ 9 ]. As mentioned previously, diffusion is efficient for sizes below 1 µm because viscous drag is not restricting the particles; the lower the particle size, the more significant the mechanism [ 12 ].
  • Ives [ 12 ] adds inertia . The streamlines tend to diverge from the grains when approaching them, but particles with sufficient inertia might proceed unchanged and impact on the grains. It is, however, negligible for water filtration because of small mass and density differences [ 12 , 22 ].
  • Furthermore, every particle is subjected to hydrodynamic action , caused by the velocity gradients within pore openings. As it experiences higher velocities on one side, the particle tends to rotate and create an additional spherical field, which causes the particle to move across the flow field. Because of deformable non-spherical shapes and non-ideal flow conditions, the results are non-predictable random paths, leading to movement across the streamlines and collision with the grains [ 12 , 23 ]. This is usually negligible; however, it appears to be more effective for lower particle–grain size ratios [ 11 ].

2.2. Filtration Operating Setup

2.3. process performance monitoring and filter backwash, 3. development and testing of new filtration media, 3.1. expanded aluminosilicate–filtralite, 3.2. glass-based media, 3.3. polypropylene fibre, 3.4. sand with granular activated carbon, 4. conclusions and future work recommendation, supplementary materials, author contributions, acknowledgments, conflicts of interest.

  • Binnie, C.; Kimber, M. Basic Water Treatment , 5th ed.; ICE Publishing: London, UK, 2013. [ Google Scholar ]
  • LeChevallier, M.W.; Au, K.K. Water Treatment and Pathogen Control—Process Efficiency in Achieving Safe Drinking Water ; WHO Drinking Water Quality Series; IWA Publishing: London, UK, 2004. [ Google Scholar ]
  • Ritson, J.P.; Graham, N.J.D.; Templeton, M.R.; Clark, J.M.; Gough, R.; Freeman, C. The impact of climate change on the treatability of dissolved organic matter (DOM) in upland water supplies: A UK perspective. Sci. Total Environ. 2014 , 473–474 , 714–730. [ Google Scholar ] [ CrossRef ] [ PubMed ] [ Green Version ]
  • Cheremisinoff, N.P. Handbook of Water and Wastewater Treatment Technologies ; Butterworth-Heinemann: Oxford, UK, 2002. [ Google Scholar ]
  • Ratnayaka, D.D.; Brandt, M.J.; Johnson, K.M. Twort’s Water Supply , 6th ed.; Butterworth-Heinemann: Oxford, MA, USA, 2009. [ Google Scholar ]
  • Tebbutt, T.H.Y. Principles of Water Quality Control , 5th ed.; Butterworth-Heinemann: Oxford, UK, 1998. [ Google Scholar ]
  • McGivney, W.; Kawamura, S. Cost Estimating Manual for Water Treatment Facilities ; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2008. [ Google Scholar ]
  • Gray, N.F. Water Technology , 3rd ed.; IWA Publishing: London, UK, 2010. [ Google Scholar ]
  • O’Melia, C.R. Particles, Pretreatment and Performance in water filtration. J. Environ. Eng. 1985 , 111 , 874–890. [ Google Scholar ] [ CrossRef ]
  • Jegatheesan, V.; Vigneswaran, S. Deep Bed Filtration: Mathematical Models and Observations. Crit. Rev. Environ. Sci. Technol. 2005 , 35 , 515–569. [ Google Scholar ] [ CrossRef ]
  • Ison, C.R.; Ives, K.J. Removal mechanisms in deep bed filtration. Chem. Eng. Sci. 1969 , 24 , 717–729. [ Google Scholar ] [ CrossRef ]
  • Ives, K.J. Rapid Filtration. Water Res. 1970 , 4 , 201–223. [ Google Scholar ] [ CrossRef ]
  • Zamani, A.; Maini, B. Flow of dispersed particles through porous media—Deep bed filtration. J. Pet. Sci. Eng. 2009 , 69 , 71–88. [ Google Scholar ] [ CrossRef ]
  • Cleasby, J.L.; Logsdon, G.S. Granular bed and precoat filtration. In Water Quality and Treatment: A Handbook of Community Water Supplies ; Letterman, R.D., Ed.; McGraw-Hill: New York, NY, USA, 1999. [ Google Scholar ]
  • Rajagopolan, R.; Tien, C. Single collector analysis of collection mechanisms in water filtration. Can. J. Chem. Eng. 1977 , 55 , 246–255. [ Google Scholar ] [ CrossRef ]
  • Amirtharajah, M. Some theoretical and conceptual views of filtration. J. Am. Water Works Assoc. 1988 , 80 , 36–46. [ Google Scholar ] [ CrossRef ]
  • O’Melia, C.R.; Ali, W. The role of retained particles in deep bed filtration. Prog. Water Technol. 1978 , 10 , 167–182. [ Google Scholar ]
  • Han, S.; Fitzpatrick, C.; Wetherill, A. Mathematical modelling of particle removal and head loss in rapid gravity filtration. Sep. Sci. Technol. 2008 , 43 , 1798–1812. [ Google Scholar ] [ CrossRef ]
  • Hess, A.; Logsdon, G.S.; Chipps, M.J.; Rachwal, A.J. Filter Maintenance and Operations Guidance Manual ; AWWA Research Foundation and American Water Works Association: Denver, CO, USA, 2002. [ Google Scholar ]
  • Yao, K.-M.; Habibian, M.T.; O’Melia, C.R. Water and waste water filtration. Concepts and applications. Environ. Sci. Technol. 1971 , 5 , 1105–1112. [ Google Scholar ] [ CrossRef ]
  • Stevenson, D.G. Flow and filtration through granular media—The effect of grain and particle size dispersion. Water Resour. 1997 , 31 , 310–322. [ Google Scholar ] [ CrossRef ]
  • Ives, K.J. Filtration of Clay Suspensions through Sand. Clay Miner. 1987 , 22 , 49–61. [ Google Scholar ] [ CrossRef ]
  • Ives, K.J. Capture mechanisms in filtration. In The Scientific Basis of Filtration ; Noordhoff: Leyden, The Netherlands, 1975. [ Google Scholar ]
  • Castro, K.; Ahmed, R. Filtration. In Operational Control of Coagulation and Filtration Processes—Manual of Water Supply Practices, M37 , 3rd ed.; American Water Works Association (AWWA): Denve, CO, USA, 2011. [ Google Scholar ]
  • Kim, J.; Tobiason, J. Particles in filter effluent: The roles of deposition and detachment. Environ. Sci. Technol. 2004 , 38 , 6132–6138. [ Google Scholar ] [ CrossRef ]
  • Bai, R.; Tien, C. Particle detachment in deep bed filtration. J. Colloid Interface Sci. 1997 , 186 , 307–317. [ Google Scholar ] [ CrossRef ]
  • Zouboulis, A.; Traskas, G.; Samaras, P. Comparison of single and dual media filtration in a full-scale drinking water treatment plant. Desalination 2007 , 213 , 334–342. [ Google Scholar ] [ CrossRef ]
  • Asano, T.; Burton, F.; Leverenz, H. Removal of Residual Particulate Matter. In Water Reuse: Issues, Technologies and Application ; McGraw-Hill: New York, NY, USA, 2007. [ Google Scholar ]
  • Voutchkov, N. Considerations for selection of seawater filtration pretreatment system. Desalination 2010 , 261 , 354–364. [ Google Scholar ] [ CrossRef ]
  • Logsdon, G.S.; Horsley, M.B.; Freeman, S.D.N.; Neemann, J.J.; Budd, G.C. Filtration processes—A distinguished history and a promising future. J. Am. Water Works Assoc. 2006 , 98 , 150–162. [ Google Scholar ] [ CrossRef ]
  • Collins, M.R.; Eighmy, T.T.; Fenstermacher, J.M.; Spanos, S.K. Using granular media amendments to enhance NOM removal. J. Am. Water Works Assoc. 1996 , 88 , 48–61. [ Google Scholar ] [ CrossRef ]
  • Twort, A.C.; Ratnayaka, D.D.; Brandt, M.J. Water Supply , 3rd ed.; Butterworth-Heinemann: Oxford, MA, USA, 2000. [ Google Scholar ]
  • Fitzpatrick, C. Media properties and their effect on filter performance and backwashing. Water Sci. Technol. 1998 , 38 , 105–111. [ Google Scholar ] [ CrossRef ]
  • Stevenson, D.G. The specification of filtering materials for rapid-gravity filtration. J. Inst. Water Environ. Manag. 1994 , 8 , 527–533. [ Google Scholar ] [ CrossRef ]
  • Stevenson, D.G. Process conditions for the backwashing of filters with simultaneous air and water. Water Res. 1995 , 29 , 2594–2597. [ Google Scholar ] [ CrossRef ]
  • Morgeli, B.; Ives, K.J. New media for effluent filtration. Water Res. 1979 , 13 , 1001–1007. [ Google Scholar ] [ CrossRef ]
  • Ives, K.J. Specification for granular filter media. Effl. Water Treat. J. 1975 , 15 , 296–305. [ Google Scholar ]
  • Humby, M.S.; Fitzpatrick, C.S.B. Attrition of granular filter media during backwashing with combined air and water. Water Res. 1996 , 30 , 291–294. [ Google Scholar ] [ CrossRef ]
  • Slavik, I.; Jehmlich, A.; Uhl, W. Impact of backwashing procedures on deep bed filtration productivity in drinking water treatment. Water Res. 2013 , 47 , 6348–6357. [ Google Scholar ] [ CrossRef ]
  • Farizoglu, B.; Nuhoglu, A.; Yildiz, E.; Keskinler, B. The performance of pumice as a filter bed material under rapid filtration conditions. Filtr. Sep. 2003 , 40 , 41–47. [ Google Scholar ] [ CrossRef ]
  • Suthaker, S.; Smith, D.W.; Stanley, S.J. Evaluation of filter media for upgrading existing filter performance. Environ. Technol. 1995 , 16 , 625–643. [ Google Scholar ] [ CrossRef ]
  • Kitis, M.; Kaplan, S.; Karakaya, E. Adsorption of natural organic matter from waters by iron coated pumice. Chemosphere 2007 , 66 , 130–138. [ Google Scholar ] [ CrossRef ]
  • Ndi, K.; Dihang, D.; Aimar, P.; Kayem, G.J. Retention of bentonite in granular natural pozzolan: Implications for water filtration. Sep. Sci. Technol. 2008 , 43 , 1621–1631. [ Google Scholar ] [ CrossRef ]
  • Drinking Water Inspectorate. List of Approved Products for Use in Public Water Supply in the United Kingdom ; Drinking Water Inspectorate: London, UK, 2016.
  • Mitrouli, S.T.; Yiantsios, S.G.; Karabelas, A.J. Pretreatment for desalination of seawater from an open intake by dual-media filtration: Pilot testing and comparison of two different media. Desalination 2008 , 222 , 24–37. [ Google Scholar ] [ CrossRef ]
  • Mitrouli, S.T.; Karabelas, A.J.; Yiantsios, S.G.; Kjølseth, P.A. New granular materials for dual-media filtration of seawater: Pilot testing. Sep. Purif. Technol. 2009 , 65 , 147–155. [ Google Scholar ] [ CrossRef ]
  • Saltnes, T.; Elkebrokk, B.; Odegaard, H. Contact filtration of humic waters: Performance of an expanded clay aggregate filter (Filtralite) compared to a dual anthracite/sand filter. Water Sci. Technol. Water Supply 2002 , 2 , 17–23. [ Google Scholar ] [ CrossRef ]
  • Mikol, A.; Fitzpatrick, C.; Chipps, M.J.; Steele, M.E. Novel dual media combination for drinking water treatment. Water Sci. Technol. Water Supply 2007 , 7 , 131–139. [ Google Scholar ] [ CrossRef ]
  • Davies, P. Alternative Filter Media in Rapid Gravity Filtration of Potable Water. Ph.D. Thesis, Loughborough University, Loughborough, UK, 2011. [ Google Scholar ]
  • Davies, P.; Wheatley, A.D. Pilot plant study of alternative filter media for rapid gravity filtration. Water Sci. Technol. 2012 , 66 , 2779–2784. [ Google Scholar ] [ CrossRef ]
  • Eikebrokk, B.; Saltnes, T. Removal of natural organic matter (NOM) using different coagulants and lightweight expanded clay aggregate filters. Water Sci. Technol. Water Supply 2001 , 1 , 131–140. [ Google Scholar ] [ CrossRef ]
  • Lavender, P. Filter media: Treating chemical wastewaters. Filtr. Sep. 2008 , 45 , 16–18. [ Google Scholar ] [ CrossRef ]
  • Gill, L.W.; Veale, P.L.; Murray, M. Recycled glass compared to sand as a media in polishing filters for on-site wastewater treatment. Water Pract. Technol. 2011 , 6 , wpt2011058. [ Google Scholar ] [ CrossRef ]
  • Korkosz, A.; Malakowska, A.; Hänel, A.; Niewiadomski, M.; Jan, H. Cullet as filter medium for swimming pool water treatment. Physicochem. Probl. Miner. Process. 2012 , 48 , 295–301. [ Google Scholar ]
  • Jonsson, J.; Watts, M. Glass Media Report ; Water Res. Centre: Swindon, UK, 2011. [ Google Scholar ]
  • Water Development Services. Full Scale Operational Trials Involving the Use of Recycled Glass in Selected Markets (WRAP) ; The Waste & Resources Action Programme: Banbury, UK, 2005. [ Google Scholar ]
  • Soyer, E.; Akgiray, Ö.; Eldem, N.Ö.; Saatçi, A.M. On the use of crushed recycled glass instead of silica sand in dual-media filters. Clean Soil Air Water 2013 , 41 , 325–332. [ Google Scholar ] [ CrossRef ]
  • Soyer, E.; Akgiray, Ö.; Eldem, N.Ö.; Saatçi, A.M. Crushed recycled glass as a filter medium and comparison with silica sand. Clean Soil Air Water 2010 , 38 , 927–935. [ Google Scholar ] [ CrossRef ]
  • Rutledge, S.O.; Gagnon, G.A. Comparing crushed recycled glass to silica sand for dual media filtration. J. Environ. Eng. Sci. 2002 , 1 , 349–358. [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • Evans, G.; Dennis, P.; Cousins, M.; Campbell, R. Use of recycled crushed glass as a filtration medium in municipal potable water treatment plants. Water Sci. Technol. Water Supply 2002 , 2 , 9–16. [ Google Scholar ] [ CrossRef ]
  • Cescon, A.; Jiang, J.-Q.; Haffey, M.; Moore, G.; Callaghan, K. Assessment of recycled glass and expanded clay in a dual media configuration for drinking water treatment. Sep. Sci. Technol. 2016 , 51 , 2455–2464. [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • Coffey, B.M.; Krasner, S.W.; Sclimenti, M.J.; Hacker, P.A.; Gramith, J.T. A comparison of biologically active filters for the removal of ozone by-products, turbidity, and particles. In Proceedings of the Water Quality Technology Conference, New Orleans, LA, USA, 12–16 November 1995. [ Google Scholar ]
  • Droste, R.L. Theory and Practice of Water and Wastewater Treatment ; John Wiley and Sons, Inc.: New York, NY, USA, 1997. [ Google Scholar ]
  • Piccirillo, J.B.; Letterman, R.D. Examination of Pulverized Waste Recycled Glass as Filter Media in Slow Sand Filtration ; Final Report, PB-98-158959/XAB; TRN: 82432439; U.S. Department of Energy Office of Scientific and Technical Information: Washington, DC, USA, 1997.
  • Morita, A.K.M.; Reali, M.A.P. Fiber filter built with polypropylene fibers applied to water clarification. Water Supply 2019 , 19 , 1036–1043. [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • Kim, J.; Kang, B. DBPs removal in GAC filter-adsorber. Water Res. 2008 , 42 , 145–152. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Tan, W.; Wang, T.; Wang, Y.; Sun, S.; Yu, C. Experimental study on GAC-sand filter for advanced treatment in drinking water. Adv. Mater. Res. 2013 , 726–731 , 3044–3047. [ Google Scholar ] [ CrossRef ]
  • Fuentes-López, L.; Amézquita-Marroquín, C.; Barba-Ho, L.E.; Cruz-Vélez, C.H.; Torres-Lozada, P.J. Application of double filtration with activated carbon for the removal of phenols in drinking water treatment processes. Water Supply Res. Technol. AQUA 2018 , 67 , 227–235. [ Google Scholar ] [ CrossRef ]

Click here to enlarge figure

Flow Rate (m/h)/Type of Test WaterBed Depth (cm) Filter 1Size Ranges (mm) Filter 1Bed Depth (cm) Filter 2Size Ranges (mm) Filter 2Reference
5, 10, 15/Raw seawaterAnthracite: 701.2–2.5Filtralite MC: 701.5–2.5[ ]
Sand: 500.8–1.25Sand: 500.8–1.25
5, 10, 15/Raw seawaterAnthracite: 701.2–2.5Filtralite NC: 701.5–2.5[ ]
Sand: 500.8–1.25Filtralite HC: 500.8–1.6
/Tap water with added humic concentrate and/or bentonite clayAnthracite: 600.8–1.6Filtralite NC: 481.5–2.5[ ]
Sand: 350.4–0.8Filtralite HC: 470.8–1.6
10/Raw waterAnthracite: 501.7–2.5Filtralite NC: 501.5–2.5[ ]
Sand: 500.6–1.18Filtralite HC: 500.8–1.6
8.6, 11.1, 13.6/Clarified waterSand: 600.59 (d )Filtralite: 600.77 (d )[ , ]
5–12/Tap water with added humic concentrateAnthracite: 600.8–1.6Filtralite NC: 600.8–1.6[ ]
Sand: 350.4–0.8Sand: 350.4–0.8
Type of Configuration/Type of Test WaterCoagulantBed Depth (cm)Flow Rate (m/h)Effective Size Glass (d , mm)Effective Size Sand (d , mm)Uniformity Coefficient Glass (UC)Uniformity Coefficient Sand (UC)Ref
Dual media/Raw waterPAClAnthracite: 60
Sand or Glass: 40
Garnet: 6
50.590.331.581.82[ ]
Single media/Raw waterAlum (plus additional filter aid)Sand or Glass: 90
Gravel: 10
7.5, 10, 12.50.980.971.311.27[ ]
Single media/Raw waterAlum or
Ferric Chloride
Sand or Glass: 104 11.50.770.791.411.33[ ]
Dual media/Raw waterAlum or
Ferric Chloride
Anthracite: 41.5
Sand or Glass: 62.5
11.50.770.791.411.33[ ]
Single media/Raw waterFerric sulphateSand or Glass: 600–9 0.760.591.211.27[ ]
Single media/Tap water with added kaolin clayNo coagulationSand or Glass: 60
Gravel: 41
8.6, 11.1, 13.50.760.591.211.27[ ]
Single media/Raw waterPAClGlass: 8060.560.581.28/[ ]
ConfigurationVegetable Activated Carbon (VAC) (%)Mineral Activated Carbon (MAC) (%)Sand (%)
C1100--
C2-100-
C3--100
C450-50
C5-5050
MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

Cescon, A.; Jiang, J.-Q. Filtration Process and Alternative Filter Media Material in Water Treatment. Water 2020 , 12 , 3377. https://doi.org/10.3390/w12123377

Cescon A, Jiang J-Q. Filtration Process and Alternative Filter Media Material in Water Treatment. Water . 2020; 12(12):3377. https://doi.org/10.3390/w12123377

Cescon, Anna, and Jia-Qian Jiang. 2020. "Filtration Process and Alternative Filter Media Material in Water Treatment" Water 12, no. 12: 3377. https://doi.org/10.3390/w12123377

Article Metrics

Article access statistics, supplementary material.

ZIP-Document (ZIP, 232 KiB)

Further Information

Mdpi initiatives, follow mdpi.

MDPI

Subscribe to receive issue release notifications and newsletters from MDPI journals

U.S. flag

Official websites use .gov

A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS

A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Water Treatment

How Water Treatment Plants Make Water Safe

Public drinking water systems use different water treatment methods to provide safe drinking water for their communities. Public water systems often use a series of water treatment steps that include coagulation, flocculation, sedimentation, filtration, and disinfection.

Graphic showing common water treatment steps

Water treatment steps

Coagulation.

Coagulation is often the first step in water treatment. During coagulation, chemicals with a positive charge are added to the water. The positive charge neutralizes the negative charge of dirt and other dissolved particles in the water. When this occurs, the particles bind with the chemicals to form slightly larger particles. Common chemicals used in this step include specific types of salts, aluminum, or iron.

Flocculation

Flocculation follows the coagulation step. Flocculation is the gentle mixing of the water to form larger, heavier particles called flocs. Often, water treatment plants will add additional chemicals during this step to help the flocs form.

Sedimentation

Sedimentation is one of the steps water treatment plants use to separate out solids from the water. During sedimentation, flocs settle to the bottom of the water because they are heavier than water.

Once the flocs have settled to the bottom of the water, the clear water on top is filtered to separate additional solids from the water. During filtration, the clear water passes through filters that have different pore sizes and are made of different materials (such as sand, gravel, and charcoal). These filters remove dissolved particles and germs, such as dust, chemicals, parasites, bacteria, and viruses. Activated carbon filters also remove any bad odors.

Water treatment plants can use a process called ultrafiltration in addition to or instead of traditional filtration. During ultrafiltration, the water goes through a filter membrane with very small pores. This filter only lets through water and other small molecules (such as salts and tiny, charged molecules).

Reverse osmosis is another filtration method that removes additional particles from water. Water treatment plants often use reverse osmosis when treating recycled water (also called reused water) or salt water for drinking.

Disinfection

After the water has been filtered, water treatment plants may add one or more chemical disinfectants (such as chlorine, chloramine, or chlorine dioxide ) to kill any remaining parasites, bacteria, or viruses. To help keep water safe as it travels to homes and businesses, water treatment plants will make sure the water has low levels of the chemical disinfectant when it leaves the treatment plant. This remaining disinfectant kills germs living in the pipes  between the water treatment plant and your tap.

In addition to or instead of adding chlorine, chloramine, or chlorine dioxide, water treatment plants can also disinfect water using ultraviolet (UV) light [PDF – 7 pages] or ozone [PDF – 7 pages] . UV light and ozone work well to disinfect water in the treatment plant, but these disinfection methods do not continue killing germs as water travels through the pipes between the treatment plant and your tap.

Water treatment plants also commonly adjust water pH and add fluoride after the disinfection step. Adjusting the pH improves taste, reduces corrosion (breakdown) of pipes, and ensures chemical disinfectants continue killing germs as the water travels through pipes. Drinking water with the right amount of fluoride  keeps teeth strong and reduces cavities.

Surface water collects on the ground or in a stream, river, lake, reservoir, or ocean.

Ground water is located below the surface of the earth in spaces between rock and soil.

Water treatment differs by community

Water may be treated differently in different communities depending on the quality of the source water that enters the treatment plant. The water that enters the treatment plant is most often either surface water or ground water . Surface water typically requires more treatment and filtration than ground water because lakes, rivers, and streams contain more sediment (sand, clay, silt, and other soil particles), germs, chemicals, and toxins than ground water.

Some water supplies may contain radionuclides (small radioactive particles), specific chemicals (such as nitrates ), or toxins (such as those made by cyanobacteria ). Specialized methods to control or remove these contaminants can also be part of water treatment. To learn more, visit EPA’s Ground Water and Drinking Water site .

  • Water Disinfection with Chlorine and Chloramine
  • Well Treatment
  • Community Water Fluoridation
  • A Guide to Drinking Water Treatment Technologies for Household Use
  • EPA: Drinking Water Distribution Systems
  • EPA: Drinking Water Regulations
  • EPA: Drinking Water Contaminants

Accessibility Links

  • Skip to content
  • Skip to search IOPscience
  • Skip to Journals list
  • Accessibility help

Purpose-led Publishing is a coalition of three not-for-profit publishers in the field of physical sciences: AIP Publishing, the American Physical Society and IOP Publishing.

Together, as publishers that will always put purpose above profit, we have defined a set of industry standards that underpin high-quality, ethical scholarly communications.

We are proudly declaring that science is our only shareholder.

Water treatment process using conventional and advanced methods: A comparative study of Malaysia and selected countries

N H Pakharuddin 1 , M N Fazly 1 , S H Ahmad Sukari 1 , K Tho 1 and W F H Zamri 1,2

Published under licence by IOP Publishing Ltd IOP Conference Series: Earth and Environmental Science , Volume 880 , 4th International Conference on Science and Technology Applications in Climate Change 1 July, National University of Malaysia, Selangor, Malaysia (Virtual) Citation N H Pakharuddin et al 2021 IOP Conf. Ser.: Earth Environ. Sci. 880 012017 DOI 10.1088/1755-1315/880/1/012017

Article metrics

5441 Total downloads

Share this article

Author e-mails.

[email protected]

[email protected]

Author affiliations

1 Department of Mechanical and Manufacturing Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

2 Institute of IR 4.0 (IIR4.0), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

Buy this article in print

Water treatment is the process of removing all those substances, whether biological, chemical, or physical, that are potentially harmful to the water supply for human and domestic use. This treatment helps to produce water that is safe, palatable, clear, colorless, and odorless. The basic steps of water treatment include coagulation, precipitation, filtration, and disinfection. Water treatment before supplying water to consumers is essential to improve water quality to create a sustainable life. Water treatment can eliminate potential or certain harmful substances in the water to prevent the consumption of contaminated water sources that can cause potential health problems. Therefore, it is important to establish a water treatment facility with sufficient capacity to remove pollutants according to standards before being supplied to consumers. In this study, the focus of the discussion is on the use of river water as a source of water for consumers in Japan, Australia, Canada, and Malaysia after a water treatment process. This paper reviews the recent progresses of water treatment process using both conventional and advanced methods. A brief discussion on the water quality index of each country's rivers is presented. Several potential applications of Industrial Revolution 4.0 technology in the water treatment process are discussed. Adoption of the industrial revolution of technology in water treatment may provide many benefits to this field and excavate more potential improvement. This paper will deliver a scientific and technical overview and useful information to scientists, engineers, and stakeholders who work in this field.

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence . Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Water Technology

  • White Papers
  • Industry News
  • Global Thought Leaders
  • Process Water

Water Reuse

  • Produced Water
  • Technology Guide

Water Treatment in the Pulp and Paper Industry

Pulp Sustainability Chart

By Jeff Gunderson, Industrial WaterWorld Correspondent

The pulp and paper (P&P) industry is one of the heaviest users of water within the U.S. industrial economy, requiring 54 cubic meters on average of water per metric ton of finished product. With water used in nearly every step of the manufacturing processes, P&P mills produce large volumes of wastewater and residual sludge waste, presenting a number of issues in relation to wastewater treatment, discharge, and sludge disposal. However, increasingly advanced treatment technologies, including innovative strategies geared towards water reuse and resource recovery, present viable solutions for P&P manufacturers in terms of wastewater and solid waste management.

Contaminants inherent to P&P waste streams include effluent solids, sediments, absorbable organic halides (AOX), chlorinated organic compounds, and chemical oxygen demand (COD) and biological oxygen demand (BOD) contaminants. Table 1 lists potential water pollutants associated with various P&P operational processes.

According to industry experts, approximately 85% of the water used in the P&P industry is used as process water, resulting in relatively large quantities of contaminated water and necessitating the use of onsite wastewater treatment solutions. Treatment options include primary treatment such as clarification to remove solids and particulate matter, and secondary biological treatment processes for removing biodegradable organic matter and decreasing the effluent toxicity.

Additionally, tertiary treatment technologies such as membrane filtration, UV disinfection, ion exchange, and granular activated carbon can also be employed to further treat effluent water to higher qualities.

Growing water scarcity and heightened awareness associated with water conservation are prompting more industrial manufacturers to explore water recycling within facilities - a strategy which also reduces wastewater effluent volumes.

Water recycling is an attractive proposition for industries such as P&P that withdraw large volumes of water or have highly polluted waste streams and are subject to increasing charges for disposal, according to a market report by independent research and advisory firm Lux Research, which evaluated water usage and industrial water treatment across six of the top water users among manufacturing industries.

In Demystifying the Industrial Water Market, Lux Research found that recycling of water within the P&P industry is an increasingly common solution because it allows facilities to reuse water and also recover excess pulp fibers that have escaped in the wastewater, providing the industry with a high economic incentive to recycle its waste streams.

"Membrane technologies such as microfiltration, ultrafiltration, and nanofiltration are the most effective strategies for treating water to a level where it can be utilized in the beginning of a process," said Brent Giles, a senior analyst at Lux Research.

"Additionally, employing a careful choice of the chemicals added to treatment water also makes recycling easier," he added. "Using ozone instead of chlorine, for instance, eliminates long-term residual and makes the wastewater less caustic to the membranes."

Bernhard Doll, vice president of industrial water marketing at Pall, said the drivers for water reuse - and also water treatment plant upgrades - in the P&P industry include tighter water quality requirements, rising wastewater discharge costs, and increasing limitations on water withdrawal rights.

"These factors, along with corporate responsibility initiatives to reduce water usage, are motivating P&P plant operators to switch from conventional water treatment to membrane systems. In addition, water recycling is becoming more and more of a priority," he said.

Thermal Evaporators

Indeed, many of the progressive initiatives in the P&P industry in regards to water treatment and reuse have been a direct result of the growing importance in corporate and environmental responsibility, said Eric Meliton, an environmental technologies industry analyst with Frost & Sullivan.

"Just as with water usage, many of the changes that the industry has made on the treatment side have been in response to social and environmental stewardship initiatives," he said. "The P&P sector tends to be slow moving, but initiatives towards improving wastewater treatment metrics have shown to be very influential and can be an important driver toward evoking change across the industry."

While tertiary treatment of final effluent for reuse may have limited economic and technical feasibility for most P&P mills, many facilities have taken advantage of the opportunity to recycle individual process streams and reuse water that would otherwise be discharged to the wastewater treatment system, said Rich Garber, director of environment with Boise Inc.

"The paper industry has made great improvements in treating process water streams and recapturing residual pulp fibers, calcium carbonate, and water volume," he said. "For example, paper mills can treat paper machine 'whitewater' and recycle it back to the bleach plant for use as shower water and pulp dilution water. In addition to reducing discharge volumes, 'whitewater' recycling also helps lower energy use as this water contains valuable thermal energy, displacing steam needed to heat the process water."

Clean process condensate streams can also be reused in the pulping and recovery areas, Garber added, and P&P mills are employing heat recovery projects that extract heat from condensate streams in order to pre-heat process chemicals that are then used in the bleaching process.

Water recovery and reuse opportunities on the pulping side of the industry include specially-designed evaporative thermal processes that deal with black liquor waste. Mills can implement "condensate segregation processes that work by evaporating water out of concentrated black liquor from the pulping cycle, allowing for very pure water recovery and maximum reuse in the plant," said Kent Drone, director of processes engineering with HPD, a division of the Veolia Water Solutions and Technologies family of companies.

"A significant amount of water is used in the pulping process, and moving forward water reuse is anticipated to become increasingly more vital in this industry segment," Drone said. "As U.S. pulp mills continue to evolve, we anticipate more implementation of evaporator condensate purification and re-use processes for helping to lower water intake volumes and reduce loads on effluent treatment."

1205iww 18

Sludge Management

As is the case with other industrial manufacturing processes, including wastewater treatment operations on the municipal side, residual sludge management presents a number of challenges to the P&P industry and represents a significant portion of a facility's total wastewater treatment costs.

Composed mainly of boiler and furnace ash, scrubber sludge, lime mud, wood processing residuals, and various effluent solids, sludge is the largest volume waste stream generated by the industry, making sludge handling a very important issue, according to Meliton.

"Many of the conventional, or 'old school' P&P manufacturers continue to employ traditional sludge management techniques that have been in place for many years and generally include sludge disposal methods such as incineration or land-filling," Meliton said. "But at the same time, it's important to realize that P&P sludge, with further treatment, has the potential to qualify as a biosolid, which can be used for a number of innovative solutions."

P&P mills can implement advanced technologies that convert waste sludge into fertilizer and biogas, offering a beneficial use of a waste stream and significantly reducing a facility's waste disposal burden.

"Manufacturers that are already meeting compliance requirements can elect to continue to pay the tipping fees and disposal costs associated with sludge waste disposal or they can make the necessary capital investments towards waste to energy applications that generate renewable energy and create fertilizer, offering a revenue incentive," Meliton said. "The decision is mainly based on whether or not the technology justifies the capital expenses in terms of a potential return on investment."

Some mills employing an alkaline-based manufacturing process can pursue beneficial use projects specifically because of the calcium carbonate present in their wastewater residuals, Garber said.

"Many paper mill wastewater residuals will have a high agricultural lime value. Depending on the region, the land type, and if the soils are particularly acidic, residuals with high lime content can be effective as a land application product," he said.

Anaerobic Digester Processes

While cogeneration of biogas from wastewater anaerobic digester processes for generating electricity and steam is an economical, long-term solution that is increasingly being pursued in the municipal sector, this approach has been relatively slow to gain traction in the P&P industry, mainly because of the high capital costs associated with implementation.

"Anaerobic digester processes are rarely used in the P&P industry," Garber said. "More frequently, energy recovery initiatives are based on taking dewatered solids produced from primary or secondary clarification and burning the material in wood-fired boilers for the production of steam, which powers most P&P mill processes."

Moreover, if a pulp or paper mill does use anaerobic digestion, the process will most likely not be used to digest sludge, Garber added.

"As an example, Boise Inc. has an anaerobic system in the Jackson, Alabama, mill that is used to treat segregated condensates from the pulping and evaporation processes which contain sulfur and odorous compounds," he said. "The condensates are treated in the anaerobic process for biogas generation, which is used for energy recovery."

Water Quality Discharge Regulations

As with the municipal wastewater treatment sector and other industrial manufacturing industries, tougher water quality regulations related to effluent discharge is an increasingly challenging water treatment issue for the P&P industry.

In several U.S. regions and particularly the southeast, tighter nutrient criteria limits could be very difficult for municipal and industrial discharges to meet, P&P included, Garber said.

"Another emerging regulatory issue includes human health toxic standards, which could further drive more stringent water quality standards," he added.

Every year the EPA conducts a review of all industrial sectors with established effluent guidelines, including the P&P sector, to determine whether to revise those guidelines, Garber said.

"The review is based primarily on the relative toxicity of the sector's discharges. If a more detailed review is determined to be appropriate, EPA will consider technically and economically available treatment technologies, as well as other factors. EPA decided not to revise the effluent guidelines for the industry after a detailed review was undertaken several years ago."

In some specific locales, tighter water quality regulations have already forced P&P manufacturers to adopt new technologies for treating effluent water to higher standards. In Spokane, WA, for example, more stringent phosphorus discharge regulations as part of a total maximum daily load (TMDL) limit for the Spokane River spurred Inland Empire Paper Company (IEP) to explore technological strategies that could be implemented for increasing the mill's wastewater treatment performance in order to meet the new requirements.

As part these efforts, IEP performed pilot scale testing on 10 state-of-the-art phosphorus reduction technologies including a 1.0 MGD advanced treatment system that the company commissioned for low-level phosphorus removal from its effluent. Upon optimization, according to IEP, the polished effluent will be used as reclaimed water within the mill.

Further technological initiatives pursued by IEP include the addition of three moving bed biofilm reactor's (MBBRs) for meeting more stringent permit limitations, as well as a project that involved testing the first biological advanced treatment system for nutrient removal using algae. According to the IEP, this latter technology is showing great promise and will likely be the proving ground for larger scale applications.

On the Horizon

Newer instrumentation technologies coming into the market could have positive ramifications for P&P mills in terms of wastewater treatment, Giles said.

"Sensor-based instruments, like technologies that measure the amount of volatile fatty acids in the wastewater, can help optimize the treatment processes for more efficiency," Giles said. "Instrumentation could also be effective if it is used towards streamlining chemical additions in the manufacturing processes - adding only what is required and nothing more. This would indirectly help the industry by simplifying the wastewater stream, making it easier to treat."

According to Doll, continued pressure within the paper industry to improve water savings is opening doors for the implementation of combined membrane processes that include pressure-driven, hollow-fiber microfiltration followed by nanofiltration or reverse osmosis systems installed downstream of softened and biologically pretreated wastewaters.

"Conventional treatment technologies for raw water will be replaced by advanced membrane systems that minimize water loss and deliver consistently high quality water that is free from iron, manganese, colloids, and bacteria, regardless of source water variation," Doll said. "Applied to paper mill effluent, these reliable systems reduce wastewater disposal costs, and accordingly, raw water requirements."

More Industrial WaterWorld Articles Past IWW Issues

Continue Reading

water treatment term paper

Treating Pulp & Paper Water and Wastewater – A North American Perspective

water treatment term paper

Controlling scale deposit in pulp, paper industry

Sponsored recommendations.

water treatment term paper

NFPA 70B a Step-by-Step Guide to Compliance

water treatment term paper

How digital twins drive more environmentally conscious medium- and low-voltage equipment design

water treatment term paper

MV equipment sustainability depends on environmentally conscious design values

water treatment term paper

Social Distancing from your electrical equipment?

Latest in home.

aquacycl_thumb

Discussing on-site industrial water treatment with Aquacycl's Orianna Bretschger

wt_word_play_cover

Water Tech Weekly Word Play!

water treatment term paper

‘Head’ and ‘pressure’ in pumps

water treatment term paper

3 companies utilizing water reuse in their operations

water treatment term paper

Troubleshooting a bladder pressure tank

water treatment term paper

Unlocking the power of corporate sustainability and active energy management

water treatment term paper

The Digital Solution: How Digitization is Driving Global Water Sustainability Goals

Veolia Water Technologies - North America

  • Veolia Water Technologies
  • Group Overview
  • Corporate Responsibility
  • Investor Relations
  • In North America
  • Find our offices
  • Ecological Transformation
  • Climate Change
  • Treating Pollution
  • Our Commitment to the Planet
  • Ethics & Compliance
  • Your Career
  • Current opportunities
  • Deutschland
  • Latin America
  • Middle-East
  • North America
  • South East Asia
  • United Kingdom
  • AnoxKaldnes
  • MPP Systems
  • Publications
  • News & Events

Applications

  • Municipal Market
  • Chemical Processing
  • Food & Beverage
  • Pharmaceuticals & Cosmetics
  • Lithium Processing
  • Oil & Gas
  • Other Markets

Pulp & Paper Industry

Water is vital to the production process at pulp and paper facilities.  veolia water technologies understands the issues related to water and wastewater management and has experience in helping manufacturers achieve their goals in:.

  • Regulatory Compliance 
  • Operational Efficiency
  • Increased Resource Recovery
  • Risk Mitigation
  • Corporate Sustainability Initiatives

Veolia is a Creative and Trusted Solutions Provider for the Pulp & Paper Industry

Veolia Water Technologies is trusted by leading Pulp and Paper companies since the 1960s, and has successfully completed hundreds of water, wastewater, liquor and chemical recovery projects.

Veolia provides its clients an integrated approach to water and resource management using innovative technologies, equipment, chemistry, and services. Our customer-focused culture combined with comprehensive capabilities make Veolia the preferred partner for all water, wastewater, evaporation, and crystallization projects.

Extensive Pulp & Paper Capabilities

  • Biological Wastewater
  • Clarification/Softening
  • Evaporation & Crystallization
  • Ion Exchange
  • Membrane Systems
  • Nutrient Removal
  • Odor Management
  • Process Water
  • Remediation
  • Reuse & Reclaim
  • Sludge/Biosolids
  • Utility Water Treatments
  • Industrial Wastewater Treatment
  • Water Treatment Chemicals
  • ZLD Solutions
  • Aftermarket & Spare Parts 
  • Automation & Control Systems
  • Chemical Services
  • Digital Water Services
  • Lab Services
  • Mobile Water Services
  • Operational Services
  • Pilot Testing
  • Service Deionization
  • Water Audits

Influent (Raw) Water Treatment Regardless of the source of the intake water, Veolia technologies ensure there is a consistent supply of water to the facility.   

Utility Water Pulp and paper manufacturers rely upon their utility operations to provide steam and cooling water to support production.  Veolia’s equipment and chemical technologies effectively produce the type of water your utilities need to ensure reliable steam quality, heat exchange efficiency and environmental compliance.

Wastewater Veolia is experienced in helping clients reduce their financial exposure and comply with discharge requirements and stringent environmental regulations. 

Water Footprint Reduction To reduce a facility's water footprint, Veolia offers a wide-variety of water reuse technologies. From debarking wash water to wastewater reuse, Veolia helps companies optimize the use of water in their facility.

Mobile Water Treatment Veolia Water Technologies provides mobile water and wastewater treatment solutions to cover emergency, temporary or long-term water treatment needs. 

On-Demand Webinar

On Demand Webinar - Recycled Pulp and Paper

Advanced Water Reuse, Fiber Recovery, and Wastewater Treatment Strategies for Recycled Pulp & Paper Mills

Water usage, process efficiency, and carbon footprint reduction are key focuses for many recycled pulp and paper facilities. New technologies, processes, and strategies within the water and wastewater loops can help boost a facility’s sustainability while also improving operational efficiency.

This on-demand webinar is geared to discuss the latest technologies and water management strategies designed to reduce water footprint, increase fiber recovery, and treat wastewater prior to discharge.

Liquor Concentration and Chemical Recovery Capabilities using HPD® Evaporation and Crystallization Technologies

Black Liquor Concentration  The thermal treatment of black liquor through evaporation achieves higher solids content and lower loads to the recovery boiler leading to the optimization of combined heat and power production. When integrated within the chemical recovery cycle, this technology promotes higher operational efficiencies while enabling the reuse of high-quality condensate.

Precipitator Ash Treatment With the closing of process loops, chloride and potassium accumulate in the recovery cycle and result in scaling and corrosion in the boiler. Using highly-selective crystallization technologies, these non-process elements (NPEs) are removed while sodium is recovered to maximize soda chemical savings.

Case Study - Leading Container Board Manufacturer

water treatment term paper

Technology: HPD® Black Liquor Evaporation & Chloride Removal System

Location: Virginia (USA) An existing containerboard manufacturing facility needed to replace the existing three evaporator trains at the facility.  The project scope included construction of a six-effect, HPD® falling film evaporator train that produces 74% product solids at an evaporation rate of 897k lbs/hr (407 t/h). Veolia also installed a CRP (Chloride Removal Process) System to successfully process precipitator slurry to protect downstream utility equipment from scaling.

water treatment term paper

HPD® Black Liquor Evaporation & Recovery Systems

Highly efficient evaporation system designed to concentrate solids, optimize recovery boiler performance, and create a high quality distillate for water reuse

water treatment term paper

ECRP™ Enhanced Chloride Removal Process System

ECRP™ maximizes potassium recovery and repurposes a renewable by-product into high-purity potassium sulfate (SOP), a specialty fertilizer produced to feed high-value crops

water treatment term paper

CRP™ Chloride Removal Process System

Precipitator ash treatment process that removes chloride and potassium, recovers sodium, and protects utility equipment

water treatment term paper

Biothane® High-Rate Anaerobic Treatment System

Anaerobic granular wastewater treatment process designed to effectively remove COD/BOD, while simultaneously generating green energy as a by-product

water treatment term paper

AnoxKaldnes™ MBBR (Moving Bed Biofilm Reactor)

High-performance aerobic wastewater treatment technology engineered to effectively remove BOD/COD and nitrogen

water treatment term paper

AnoxKaldnes™ BAS (Before Activated Sludge)

Specialized MBBR (Moving Bed Biofilm Reactor) process that removes easily biodegradable COD and protects the activated sludge system from peak loads and improved sludge settling

water treatment term paper

Specialized biological process to treat wastewater streams that have high concentrations of ammonia

water treatment term paper

Actiflo® High-Rate Clarifier

Small-footprint technology in which water is flocculated with microsand and polymer to increase settling velocity for the removal of more than 99% of TSS

water treatment term paper

Hydrotech Drumfilters & Discfilters

Filtration technology that uses woven media panels to remove suspended solids greater than 10 microns

water treatment term paper

Multiflo® High-Rate Softener

Proprietary softening process that incorporates chemical precipitation with sludge thickening to produce an effluent with low concentrations of scale-formers and a highly concentrated sludge that can be easily dewatered

water treatment term paper

Whittier™  Filtration - Ion Exchange Systems

Flexible and automated water treatment systems used to soften, dealkalize, deionize, or demineralize water for utility or process applications

water treatment term paper

IDRAFLOT® Dissolved Air Flotation (DAF)

An innovative and effective technology for pre-treatment or tertiary treatment that effectively separates fibers and suspended solids

water treatment term paper

Efficient equipment designed to remove particles, odors, and organics to improve intake water quality for use in utilities and manufacturing

water treatment term paper

SIRION TM  Reverse Osmosis (RO) Systems

Advanced membrane based water filtration systems engineered to create a high-quality permeate for water reuse applications

Featured Resources

Webinars available on-demand.

  • Advanced Water Reuse, Fiber Recovery, and Wastewater
  • The Inflation Reduction Act - Financial Benefits & Timelines for Anaerobic + Biogas Projects with Baker Tilly
  • Enhanced Anaerobic Wastewater Treatment at Recycled Paper Mills
  • Enhancing and Expanding Wastewater Treatment at Pulp & Paper Mills
  • Optimizing Kraft Pulping and Recovery Cycle Operations

Pulp & Paper Articles and Publications

  • Biogas, Anaerobic Digestion, and the Inflation Reduction Act
  • Enhancing and Expanding Wastewater Treatment at Pulp & Paper Facilities (Article)
  • Veolia Water Technologies - Pulp & Paper Capabilities Brochure (PDF)

Our Pulp & Paper Capabilities, Case Studies, and Technologies

Pulp and Paper Background

Meet Our Team

Brian McGovern

Brian McGovern

Industrial Business Development Manager

Richmond, VA

water treatment term paper

Director of Business Development

Los Angeles, California

water treatment term paper

Dave Oliphant

VP of Business Development - Heavy Industry

water treatment term paper

Scott Silverstein

Sales Manager, HPD® Evaporation and Crystallization

United States

More services for our pulp and paper clients

water treatment term paper

Pulpandpaper-Technology

Please fill the all required fields....!!

Latest Innovations Driving Water Treatment in Paper Mills

Driving Water Treatment in Paper Mills

Water plays a crucial role in the paper manufacturing process, serving as a medium for pulp production, bleaching, and various stages of papermaking. However, this reliance on water also poses environmental challenges, particularly regarding wastewater treatment and discharge. In recent years, paper mills have been embracing innovative technologies to enhance water treatment processes, improve efficiency, and reduce environmental impact. This article delves into the latest innovations driving water treatment in paper mills, highlighting key advancements, benefits, and future trends.

Advanced Filtration Systems

One of the significant advancements in water treatment for paper mills is the adoption of advanced filtration systems. Traditional methods often involve multiple stages of filtration, chemical treatments, and settling processes to remove impurities from wastewater. However, modern filtration technologies, such as membrane filtration and ultrafiltration, offer more efficient and sustainable solutions.

Membrane filtration systems utilize semi-permeable membranes to separate solids, dissolved substances, and microorganisms from water. This technology allows for finer filtration, producing cleaner effluent that meets stringent regulatory standards. Ultrafiltration, a subtype of membrane filtration, is particularly effective in removing suspended solids and colloidal particles, improving water clarity and quality.

Biological Treatment Processes

Another key innovation in water treatment for paper mills is the integration of biological treatment processes. Biological treatment involves the use of microorganisms to degrade organic compounds present in wastewater. Aerobic and anaerobic bioreactors are commonly used to facilitate biological degradation, breaking down pollutants into simpler, environmentally benign substances.

Aerobic bioreactors rely on oxygen to support microbial activity, promoting the oxidation of organic matter. This process reduces biochemical oxygen demand (BOD) and enhances the overall biodegradability of wastewater. On the other hand, anaerobic bioreactors operate in oxygen-free conditions, facilitating the conversion of organic compounds into methane and carbon dioxide. Anaerobic digestion not only treats wastewater but also generates biogas, a renewable energy source.

Advanced Oxidation Processes

Advanced oxidation processes (AOPs) have emerged as powerful tools in water treatment for paper mills, especially for addressing recalcitrant pollutants and color removal. AOPs involve the generation of highly reactive hydroxyl radicals, which oxidize organic contaminants into less harmful byproducts.

Common AOPs include ozonation, UV photolysis, and Fenton's reagent (hydrogen peroxide with iron catalyst).

Ozonation is particularly effective in breaking down complex organic molecules and improving biodegradability. UV photolysis harnesses ultraviolet light to generate hydroxyl radicals, targeting specific pollutants with high precision. Fenton's reagent, a chemical oxidation process, can degrade a wide range of organic compounds, including dyes and lignin derivatives commonly found in paper mill wastewater.

Green Chemistry Approaches

In line with sustainable practices, paper mills are increasingly adopting green chemistry approaches to water treatment. Green chemistry focuses on the design of environmentally friendly processes and products, minimizing waste generation and resource consumption. In the context of water treatment, green chemistry principles emphasize the use of biodegradable chemicals, renewable energy sources, and process optimization.

For example, green flocculants derived from natural polymers, such as chitosan and starch-based compounds, are replacing conventional synthetic flocculants in sedimentation processes. These bio-based flocculants are effective in aggregating suspended solids and improving solid-liquid separation efficiency. Additionally, renewable energy sources like solar and biomass energy are being integrated into water treatment systems to reduce carbon footprint and operational costs.

Real-time Monitoring and Control

Advancements in sensor technology and data analytics have revolutionized water treatment management in paper mills. Real-time monitoring systems allow operators to track key water quality parameters, such as pH, turbidity, chemical oxygen demand (COD), and nutrient levels, continuously. This data-driven approach enables proactive decision-making, early detection of anomalies, and optimization of treatment processes.

Automation and control systems play a crucial role in maintaining optimal performance and efficiency. Integrated control platforms can adjust treatment parameters, dosing rates, and equipment operations based on real-time data feedback. Furthermore, predictive analytics and machine learning algorithms are being deployed to forecast process outcomes, identify optimization opportunities, and minimize downtime.

Closed-loop Water Circuits

To reduce freshwater consumption and minimize wastewater discharge, paper mills are increasingly implementing closed-loop water circuits. Closed-loop systems recirculate treated water within the manufacturing process, reducing the demand for freshwater intake and mitigating environmental impact. Closed-loop systems are designed to maximize water reuse, employing advanced treatment technologies to maintain water quality and prevent contamination buildup.

By closing the water loop, paper mills not only conserve valuable freshwater resources but also reduce wastewater volume and associated treatment costs. However, effective implementation requires robust monitoring, maintenance, and periodic system audits to ensure water quality standards are met consistently.

Nanotechnology Applications

Nanotechnology has opened new avenues for water treatment innovation in paper mills, offering precise and efficient removal of contaminants at the nanoscale level. Nanomaterials, such as nanoparticles and nanocomposites, exhibit unique physicochemical properties that enhance adsorption, catalysis, and membrane performance.

Nano-enabled water treatment solutions include nanofiltration membranes for selective ion removal, photocatalytic nanoparticles for pollutant degradation, and nanocomposite adsorbents for heavy metal removal. These nanotechnologies improve treatment efficiency, reduce chemical consumption, and enable targeted removal of specific pollutants, contributing to sustainable water management practices.

Integration of IoT and AI

The integration of Internet of Things (IoT) devices and artificial intelligence (AI) algorithms is driving predictive maintenance, energy optimization, and operational efficiency in water treatment systems for paper mills. IoT sensors collect real-time data on equipment performance, water quality parameters, and environmental conditions, enabling remote monitoring and predictive analytics.

AI algorithms process large datasets to identify patterns, anomalies, and optimization opportunities. Machine learning models can predict equipment failures, optimize chemical dosing, and recommend process adjustments for optimal performance. This data-driven approach enhances reliability, reduces downtime, and supports continuous improvement initiatives in water treatment operations.

Future Trends and Outlook

Looking ahead, the water treatment landscape in paper mills is poised for further innovation and sustainability-driven solutions. Future trends include the development of advanced biodegradable polymers for flocculation, the integration of decentralized treatment systems for resilience and resource efficiency, and the exploration of emerging technologies like electrocoagulation and forward osmosis.

Moreover, collaboration across industry sectors, research institutions, and regulatory bodies will foster knowledge sharing, technology transfer, and best practices in water treatment. Sustainable water management practices, coupled with technological advancements, will play a pivotal role in ensuring the long-term environmental viability and operational excellence of paper mills worldwide.

The latest innovations driving water treatment in paper mills reflect a shift towards sustainable practices, technological integration, and regulatory compliance. Advanced filtration systems, biological treatment processes, AOPs, green chemistry approaches, real-time monitoring, closed-loop water circuits, nanotechnology applications, and IoT-enabled solutions are transforming water treatment operations, enhancing efficiency, and reducing environmental footprint.

As paper mills continue to embrace innovation and collaboration, the future of water treatment holds promise for increased resource efficiency, minimized environmental impact, and sustainable growth in the paper manufacturing industry. By leveraging cutting-edge technologies and best practices, paper mills can achieve operational excellence while safeguarding water resources for future generations.

Quick Links

Icon

Related Articles

Chemical Recovery in Pulp and Paper Industry

Chemical Recovery

Leadership of Canadian Pulp & Paper Industry.

Leadership of Canadian

Energy Reduction in Pulp and Paper Industry

Energy Reduction

image

About: Devid - Head of Sales

Cras sit amet nibh libero, in gravida nulla. Nulla vel metus scelerisque ante sollicitudin. Cras purus odio, vestibulum in vulputate at, tempus viverra turpis. Fusce condimentum nunc ac nisi vulputate fringilla. Donec lacinia congue felis in faucibus.

water treatment term paper

Top Viewed Articles

Publish your article.

Thank you for your interest in publishing article with Packaging-Labelling. Our client success team member will get in touch with you shortly to take this ahead.

you're here, check out our informative and insightful article. Happy Surfing!

Client Success Team (CRM),

pulpandpaper-technology

IMAGES

  1. (PDF) Effluents and Waste Water Treatment by Physical, Chemical and

    water treatment term paper

  2. (PDF) A Report " Water treatment plant visit " Civil Engineering

    water treatment term paper

  3. Research papers on water treatment

    water treatment term paper

  4. Waste Water Treatment (TERM PAPER)

    water treatment term paper

  5. Summaries Water Treatment

    water treatment term paper

  6. Waste water treatment

    water treatment term paper

COMMENTS

  1. Glossary of Water Treatment Terms and Definitions

    Unable to understand various water treatment terms and definitions? Read A-Z glossary from Aqua Science to know words used in most water filtration systems. ... An acid is the opposite of an alkali, has a pH rating lower than 7.0, will turn litmus paper red, and has a sour taste. ... The term is also applied to matter derived from minerals ...

  2. (PDF) Recent Advances in Water and Wastewater Treatment ...

    The requirement for drinking water as a vital provision and service for human life is rapidly increasing (Mekonnen and Hoekstra 2016; Hering et al. 2016) owing to the increased rate of population ...

  3. Fundamentals and applications in water treatment

    In a News & Views in June 2023 4 we highlighted a paper studying the fundamental aspects of water transport in reverse osmosis membranes 5. Among the papers we published, a clear example is the ...

  4. Recent advancements in water treatment

    Dec.15, 2021. In this paper, researchers surveyed both conventional and advanced disinfection processes in the U.S., testing the quality of their drinking waters. Treatment plants with advanced removal technologies, such as activated carbon, formed fewer types and lower levels of harmful disinfection byproducts (known as DBPs) in their water.

  5. Water

    This comprehensive review focuses on treatment technologies for produced water, with a particular emphasis on membrane-based systems. These systems offer significant advantages, including high contaminant removal efficiencies, compact design, and the potential for resource recovery. The review emphasizes the application of these technologies, their performance in meeting regulatory standards ...

  6. Current Water Treatment Technologies: An Introduction

    Water is the most fundamental substance for all life on earth and a precious resource for human civilization. A growing number of contaminants are entering the water bodies in both developing and industrialized countries [1,2,3].The continuous increase in water pollution by various organic and/or inorganic contaminants has become a common problem all over the world [4,5,6,7,8].

  7. Sustainable implementation of innovative technologies for water

    One of the sustainable development goals set by the United Nations General Assembly is to ensure the availability and sustainable management of water and sanitation for all. This requires ...

  8. Water

    This SI discusses state-of-the-art wastewater and water treatment technologies that could be used to develop a sustainable treatment method in the future. On this topic, studies have focused on measurements, modeling, and experiments under laboratory and field conditions. 2. Summary of the SI.

  9. Predicting and classifying water quality, treatment, and usage: a

    Water quality evaluation and efficient treatment methods play a crucial function in the efficient and sustainable use of water resources. With increasing water demands and concerns about water scarcity and contamination, there is a growing need to predict water quality and identify appropriate treatment methods. In this review paper, we provide a comprehensive overview of the status quo of ...

  10. Wastewater Treatment and Reuse: a Review of its Applications ...

    Water scarcity is one of the major problems in the world and millions of people have no access to freshwater. Untreated wastewater is widely used for agriculture in many countries. This is one of the world-leading serious environmental and public health concerns. Instead of using untreated wastewater, treated wastewater has been found more applicable and ecofriendly option. Moreover ...

  11. Filtration Process and Alternative Filter Media Material in Water Treatment

    In drinking water treatment, filtration plays an important role in the multi-barrier approach employed for the removal of pathogens. The presence of suspended solids and other particulate matter in water increases the resistance of most microbes to disinfection. Therefore, high performance in the removal of particles achieved by granular filtration can increase the disinfection efficiency ...

  12. (PDF) Water treatment process using conventional and ...

    In this study, the focus of the discussion is on the use of river water as a source of water for consumers in Japan, Australia, Canada, and Malaysia after a water treatment process. This paper ...

  13. Water Treatment

    Water treatment differs by community. Water may be treated differently in different communities depending on the quality of the source water that enters the treatment plant. The water that enters the treatment plant is most often either surface water or ground water.Surface water typically requires more treatment and filtration than ground water because lakes, rivers, and streams contain more ...

  14. Membrane-based water and wastewater treatment technologies: Issues

    Clean water scarcity has threatened the human health, and sustainability of the environment and ecosystems (Gleick and Cooley, 2021; Zhao et al., 2021).Recent studies showed that around four billion people forming two-thirds of the global population live under aggressive water scarcity conditions for at least one month of the year (Mekonnen and Hoekstra, 2016).

  15. (PDF) An Introduction to Water Quality Analysis

    Desalination and Water Treatment, 85, 147-153 [9] ... Conference Paper. Nov 2023; I Putu Eka Widya Pratama ... In this present study seasonal water quality of River Henwal was conducted in term of ...

  16. Water treatment process using conventional and advanced ...

    This paper reviews the recent progresses of water treatment process using both conventional and advanced methods. A brief discussion on the water quality index of each country's rivers is presented. Several potential applications of Industrial Revolution 4.0 technology in the water treatment process are discussed.

  17. Algae-based water treatment: A promising and sustainable approach

    This SI of Journal of Water Process Engineering comprises 15 communications, elucidating the topics related to algae-based heavy metal pollution treatment, algae-based wastewater treatment, algae harvesting and bloom-forming cyanobacteria control, which are discussed in this editorial. 2. Algae-based heavy metal pollution treatment

  18. Effect of Fluctuated Water Pressure Flushing Treatment on the

    (3) Fluctuated water pressure flushing treatment acts on the sediment in the stagnant area of the flow channel, enabling it to return to the mainstream zone quickly and discharge from the body. Moreover, it promotes the discharge of sand particles and sensitive sediment (30-38 μm, 75-100 μm) and significantly reduces blocked sediment's ...

  19. Water Treatment Term Paper

    Water Treatment Term Paper - Free download as PDF File (.pdf), Text File (.txt) or read online for free. The document discusses writing a term paper on water treatment and how the website HelpWriting.net can assist. It notes that writing such a paper is challenging as it requires extensive research on the complex topic of water treatment as well as critical thinking skills.

  20. Water Treatment in the Pulp and Paper Industry

    The pulp and paper (P&P) industry is one of the heaviest users of water within the U.S. industrial economy, requiring 54 cubic meters on average of water per metric ton of finished product. With water used in nearly every step of the manufacturing processes, P&P mills produce large volumes of wastewater and residual sludge waste, presenting a ...

  21. (PDF) Wastewater Treatment: An Overview

    The water treatment technologies used in dye removal are classified into two types: physicochemical and biological treatment processes [1,5,6,35]. ... This paper discusses the toxic effects of azo ...

  22. Water treatment for the pulp and paper industry

    Veolia is a Creative and Trusted Solutions Provider for the Pulp & Paper Industry. Veolia Water Technologies is trusted by leading Pulp and Paper companies since the 1960s, and has successfully completed hundreds of water, wastewater, liquor and chemical recovery projects. Veolia provides its clients an integrated approach to water and resource ...

  23. Latest Innovations Driving Water Treatment in Paper Mills

    Another key innovation in water treatment for paper mills is the integration of biological treatment processes. Biological treatment involves the use of microorganisms to degrade organic compounds present in wastewater. ... coupled with technological advancements, will play a pivotal role in ensuring the long-term environmental viability and ...

  24. $44 million water treatment plant expansion begins in Weirton

    WERITON, W.Va. (WTRF) — A massive expansion will soon be underway that will double the size of the Water Treatment Plant in Weirton. A 24-month construction phase is officially underway at the Water Treatment Plant in Weirton to expand the plant and improve the quality of water. The city held a groundbreaking on Tuesday for the $44 million ...

  25. Treatment of Wastewater for Agricultural Applications in Regions of

    This paper analyses the latest techniques for treating wastewater to make it suitable for agricultural applications in regions where irrigation water is scarce. Micro-filtration (MF) techniques ...

  26. Leakesville water treatment plants undergoing 'thorough rejuvenation

    LEAKESVILLE, Miss. (WKRG) — "Repainted, refreshed and readied." Those are the three words the City of Leakesville used to describe its water treatment plants in a Facebook post. (Photo …