logo

  • SAT BootCamp
  • SAT MasterClass
  • SAT Private Tutoring
  • SAT Proctored Practice Test
  • ACT Private Tutoring
  • Academic Subjects
  • College Essay Workshop
  • Academic Writing Workshop
  • AP English FRQ BootCamp
  • 1:1 College Essay Help
  • Online Instruction
  • Free Resources

Hardest SAT Math Problems (updated for Digital SAT)

Bonus Material: The Hardest SAT Math Problems Quiz

Aiming for a really great score on the SAT? Wondering if your math skills are up to the challenge of the hardest problems?

If you want to be able to get a perfect score, you have to be able to solve the hardest SAT math problems.

We used our extensive test-prep experience to find the questions that many students miss. The examples below are real problems from past official SATs. 

Give each of these 16 hard math problems a try, then read our step-by-step explanations to see if you’re solving them correctly.

If you’re thinking about getting SAT tutoring to help you tackle problems like these on the real SAT, be sure to check out our list of the 15 best SAT Tutoring Services

Then, download this quiz with 20 more of the hardest real SAT problems ever to see if you’re on track for a perfect score! 

Download our quiz with 20 of the hardest SAT Math problems

Bonus Material: 20 of the All-Time Hardest SAT Math Problems

Math on the SAT

Math accounts for half of your Total SAT Score, regardless of whether you’re taking the old paper SAT or the new Digital SAT.

On the traditional, paper SAT (which will be phased out in early 2024), the Math section comprises section 3, which contains 20 questions, is 25 minutes long and does not allow you to use a calculator; and section 4, which contains 38 questions, is 55 minutes long and does allow a calculator.

On the upcoming digital SAT (which will come into place in spring of 2024), the format is considerably different. You’ll be given two 35-minute “modules” with 22 questions in each, with the difficulty level of the second one depending on your performance on the first one. In other words, if you do really poorly on the first set of 22 questions, the second set will be easier–but your overall math score will be negatively affected. You can use your calculator on both.

Every SAT covers the following math material:

Heart of Algebra: 33% of test . Linear equations and inequalities and their graphs and systems.

Problem Solving and Data Analysis: 29% of test . Ratios, proportions, percentages, and units; analyzing graphical data, probabilities, and statistics.

Passport to Advanced Math: 28% of test . Identifying and creating equivalent expressions; quadratic and nonlinear equations/functions and their graphs.

Additional Topics in Math: 10% of test . A wide variety of topics, including geometry, trigonometry, radians and the unit circle, and complex numbers.

sample SAT math grid-in problems

On the old SAT , open-ended questions came at the end of each Math section. Many students find them harder because you can’t guess or work backwards from multiple-choice options.

However, what many students don’t know is that the first 1–3 of these grid-in questions will actually be easier than the last few multiple-choice questions. 

That’s because the math questions on the SAT get increasingly difficult over the course of each section, but the difficulty level starts over again with the grid-in questions.

The savvy student will know this and skip the harder multiple-choice questions to go answer the easier grid-in questions first. Of course, if you’re aiming for a perfect score, (on most tests) you’ll have to answer every question correctly . 

But on the new Digital SAT, these open-ended questions will pop up at different points throughout both modules. You may see them in the beginning, the middle, or the end: there’s no set place for these to appear. Nor is there a set difficulty: generally, we’ve seen these questions be slightly on the easier side, but this varies significantly from test to test.

Because there’s obviously no bubble sheet on the digital SAT, you’ll simply type your answer into the text box. Be sure to look for instructions in the question about how they want the answer formatted!

To work with us for one-on-one tutoring or for our group SAT classes, schedule a free consultation with our team .

Why these problems are essential if you’re aiming at a top school

A perfect score on the SAT Math is 800. The only way to get this score is to answer every question correctly . 

In order to score a 750, you can only miss 2 or 3 questions across both math sections .

A 750 Math SAT may sound like a very high score—and it is! It’s a very high score.

MIT campus

But at the very best schools in the US, three quarters of the students scored a 750 Math or better.

In fact, at the Ivy League and other top schools, at least a quarter of the students had a perfect score!

The average math scores are even higher at the top engineering schools. Three quarters of the students at CalTech had a 790 or 800, and three quarters of the students at MIT had at least a 780.

US schools with the highest SAT math scores

In order to be a competitive applicant to these schools, your SAT Math score should be within the “middle 50%” of the students at that school—in other words, more or less an average score for that school.

So if you’re aiming at an Ivy or one of the other top schools, you can only miss 2 or 3 questions out of the 58 math questions on the whole SAT.

If that’s your goal, make sure that you understand the problems explained below, and then try our quiz of 20 more real SAT questions that rank among the hardest questions ever.

SAT Problem #1

very hard problem solving questions

At first glance, this looks like a geometry question, since it talks about planes and lines and points . But this is actually an algebra question, dressed up with some geometric trappings. 

The key is to realize: 

1) We don’t need to solve for p and r individually. We just need to solve for (r/p) . 

2) The points themselves (p,r) and (2p, 5r) represent X and Y values on the line itself. (For example if p = 2 and r = 3 then that’s the same thing as an x-coordinate of 2 and a y-coordinate of 3.)

So let’s take a look at it. 

First, let’s plug in the p and r points for the x and y values to see what equations we end up with. 

y = x + b becomes r = p + b

y = 2x + b becomes 5r = 2(2p) + b or 5r = 4p + b

At this point we might get a little anxious because we have three variables. 

But we have to remember we don’t need to get the value of the individual letters, just the value of the relationship between r and p. 

That’s where b actually becomes helpful. Because we can now set both equations equal to b , plug in, and then see if we can manipulate the r and p to get them to express the same relationship we want. 

student practicing SAT math questions

So, first set both equations equal to b to get: 

b = r – p

b = 5r – 4p

And since, obviously b = b … 

r – p = 5r – 4p

Let’s now use some basic algebra to put the like variables together, so:

Now we’re nearly home. All we have to do is manipulate the problem so r/p .

So, divide both sides by  3p :

4r / 3p = 1

Then multiply both sides by 3: 

And finally divide by 4, which gives us: 

CHOICE B  

Download the Hard SAT Math Problems quiz

SAT Problem #2

very hard problem solving questions

This is a question that can cause all sorts of problems if you forget your exponent rules—but it’s otherwise very straightforward. 

So let’s go over a few of those rules, just to get comfortable . . . and notice a pattern. I’ve included three below:

key exponent rules

Two things to pay attention to:

First, when we divide variables with exponents, we keep the base and subtract the exponent. When we multiply variables with exponents, we keep the base and add the exponents. When we take a variable with an exponent to an additional power, we multiply the exponents. 

Second, in order to use the first two of these rules, the two numbers must have the same base . 

There is a base x on both the top and bottom of that fraction or the left and right side of that multiplication sign. 

So how does that help us here? 

Let’s forget the first half of the problem and look at the second:

solving the SAT math problem

We might look back at these exponent rules and throw our hands up—the top and bottom parts of this fraction don’t have the same base, so what am I supposed to do here? 

Except… 

8 and 2 actually DO have the same base. Base 2. 

Isn’t 2^3 equal to 8? 

So if we re-write the problem, plugging in 2^3 for 8, and thinking about that third exponent rule I gave you above, the equation will look like this: 

solving the SAT math problem

Now let’s go back to our exponent rules once more, and look at the first one. 

Because that tells us that… 

solving the SAT math problem

Well, hold on a second! 

We know the value of 3x – y . 

The problem tells us it’s 12.  

So we just plug in and get our answer… 

solving the SAT math problem

Which is CHOICE A. 

studying for the SAT Math test

Keep up the practice! If you’d like help honing your skills, reach out to us for a free test prep consultation. All of our tutors are top 1% scorers who attended top-tier schools like Harvard and Princeton. That makes them uniquely qualified to help high-scoring students improve.

SAT Problem #3

very hard problem solving questions

A question like this confuses a lot of students because they either forget how minimums and maximums work or find it hard to keep track of which numbers they are plugging in and where. 

In order to solve it, it’s helpful to think of a function as a machine . We enter an input into the machine (an x value)—it acts on it—and then it gives us an output (a y value). 

Let’s also remember that when we’re talking about minimum and maximums we’re talking about the y value when the function is at its highest and lowest point . 

With these two facts in mind, the problem is going to be much simpler, so let’s take it on in parts…

Since the question is asking us for g(k) and k represents the maximum value of f , it’s going to be helpful to first… 

Find k .  

So what is the maximum value of f , the graphed function? Well, the maximum value (as we realized earlier) is the y value when the function is at its highest. 

Looking at the graph, it looks the function is at highest when x = 4 , and more importantly, when 

Therefore, k = 3 .

student practicing SAT math problems on an iPad

Now let’s consider our functions as machines. 

When the problem asks us for g(k) , it’s telling us that k is going to act as the input (the x value for the function). So g(k) , the value after the machine acts upon the function, is going to be the output , or the y value . 

So, g(k) is the same as g(x) , except we’re plugging in our value of k , which is 3, for our x value. 

The rest is very simple. 

We go to the table and find where x = 3 , then move our finger across to see the output for that value, which is 6.

CHOICE B. 

Test your SAT math knowledge with our quiz

SAT Problem #4

very hard problem solving questions

A version of this question has appeared on the SAT multiple times in recent years, and it often stumps students!

Here we have something that resembles a rotated version of the logo from Star Trek, and we’re asked to find the value of a degree inside the circle, between two points of the pointed figure.

We’re given a point that represents the center of the circle, along with two degree measurements inside the triangle-like figure. 

Generally, when we’re given a figure that looks unfamiliar to us—like the figure inside the circle— it can be extremely helpful to find a way to fix it (or cut it up) so that it’s made up of parts of shapes that are more familiar . 

So looking inside this circle, how might we “fix” this figure so that it becomes a little friendlier. 

solving this hard SAT geometry problem

Well, if we draw a line to the center of the circle ( P ) from the edge of the circle ( A ), then this unfamiliar figure suddenly becomes two triangles. 

And with triangles, unlike the figure we were originally given, we can apply some rules . 

Rules, for example, that dictate opposite sides of the triangle that have the same length will have the same opposite angles. 

And if we look at our drawing we see that two sides of our triangle are the same length because they’re both the radius …

And so we also know that the opposite angles of those sides will be the same… 

And we’ve been given one of those angles! 

Therefore, angles ⦣ABP and ⦣PAB will be the same—both 20 degrees. Let’s fill that in. 

solving this hard SAT geometry problem

Now again—because we have a triangle—we can apply another rule as well. 

We know that degrees of a triangle will add up to 180 degrees. 

So if we know one of the inner degrees of the triangle is 20, and the other is 20—the remaining angle has to be 140 degrees. (Because 180 – 40 = 140. )

We have two of these triangles, so we know the larger inner angles of both add up to 280. 

solving this hard SAT geometry problem

Because a circle is 360 degrees, the number of degrees “left over” when 280 is subtracted from 360 is 80. 

So X equals 80. 

student solving math problem

There is actually a second clever way to solve this problem, involving arc measures. Can you spot it? (If not, don’t worry! Ask us how we did it here .)

SAT Problem #5

very hard problem solving questions

Here we have a problem that looks quite complicated—and one I find students often waste a lot of time on. They either try to plug in answers and work backwards… 

…or they waste time trying to combine the two terms on the right side of the equation and simplifying. 

It turns out the easiest way to solve this problem is by polynomial division , because we’ve already been given the answer! It’s the right-hand side of the equation: (-8x – 3) – (53 / (ax – 2)) .

That means that this is our answer to when (24x^2 + 25x – 47) is divided by ax – 2 .

So how does that help us get a value for a ? 

Well, let’s set this up as a polynomial division problem.

We’d write it as follows: 

solving the SAT math problem

(I’m not putting the second half of the right side of the equation on top because that’s going to be our remainder.) 

So now we have a simple question. What number divided into 24 , gives me -8 ? 

Well, that’s easy. It’s -3 , right? 

Because -3 * -8 gives me 24 . 

So a equals -3 ,   CHOICE B .

Now, you could spend time plugging in -3 for a and dividing through the rest of the problem to make sure your answer matches the one on the exam—but generally on a timed test you really shouldn’t do more work than necessary. 

In fact, by setting this up as a polynomial division problem, we’ve saved time precisely because we don’t have to complete all the work . . . just enough to get us our answer. 

Try the quiz

SAT Problem #6

very hard problem solving questions

Because the SAT is a timed test, “difficult” includes not only questions that are hard to solve, but also those that—if a few wrong decisions are made—take a long time to solve. 

Sure, you may get the right answer, but those extra seconds or minutes wasted will inevitably cost you on other questions later on the exam.

Generally speaking, you should be able to answer each question in about a minute. If you spend more than 60 seconds on a single question, you should put down your best guess and move on (and hope that you have extra time at the end to return to this question).

To that end, let’s look at this question. You’re asked to find the value of 3x – 2 , and you’re given this equation:

(⅔)(9x – 6) – 4 = (9x – 6)

Many students will immediately think: “This is totally straightforward: Solve for x and plug it back into the equation.” 

They’ll distribute the ⅔ and end up with something like this: 

6x – 4 – 4 = 9x – 6

and then go through all the algebra from there, to get… 3x = -2 . 

These students will then find that x = (-⅔) . 

A few unlucky students will then forget that they have to plug in, and they’ll choose the trap answer C. 

The lucky ones will plug the (-⅔) back into 3x – 2 and get the correct answer, -4 , A . 

However, it turns out there is actually a much quicker way to solve this problem! 

We can solve it without ever having to plug into a second equation. 

If we simply subtract (⅔)(9x-6) from both sides, we end up with… 

-4 = (⅓)(9x-6) . 

We can realize that (⅓) of 9x-6 is the same as 3x-2 . 

And, what do you know… 

-4 = 3x – 2 . 

student practicing SAT math questions

Ready to try some of these problems on your own? Try our quiz with 20 more of the hardest real SAT problems ever to see if you could get a perfect score on the SAT Math!

SAT Problem #7

very hard problem solving questions

This is a question you could muscle through, but it’s going to be a lot easier if we find a few shortcuts and work from there. Remember, a hard question isn’t necessarily difficult because of the conceptual and mathematical effort it asks from you but also because of the time it might require.

So how do we save ourselves some time? 

First, let’s notice that in the answer choices none of these numbers repeat . There are eight distinct numbers in the answer choices. Therefore, if we were pressed for time we only really have to find one of the values of c , choose the corresponding answer choice, and then move on. 

Second, let’s look at the other piece of information this problem gives us besides the quadratic. 

It tell us that a + b = 8.

This should be especially helpful because we know from FOIL (and what the rest of the problem gives us) that a * b = 15 , because abx^2 is going to be equal to 15x^2. 

Because a + b = 8 and ab = 15 , we know that the values of a and b are going to be 3 and 5. 

(We don’t know which one is which, and that’s precisely why this problem has two possible values for c .)

At this point we’ve done most of the “hard” work to save time in this problem, and it hasn’t even been particularly hard!

Now all we have to do is assign one of 3 or 5 to a , assign the other to b , FOIL out the problem, and pick whichever choice corresponds to one of the values of c . 

Let’s say a = 3 and b = 5 .

It will work like this: 

(3x + 2)(5x + 7) = 15x^2 + 21x + 10x + 14 .

Which simplifies to… 

15x^2 + 31x + 14 .

Which means c = 31 .

31 only appears once in our answer choices, so the answer must be CHOICE D.  

SAT Problem #8

very hard problem solving questions

When you’re faced with one of these more difficult system-of-equations problems—specifically the ones that ask you for no solutions or infinite solutions —it’s going to be much, much easier to think about the problems geometrically. 

In other words, as two line equations. 

So what does it mean for two lines to have no solutions ?

Well, for two lines to have no solutions, they’d have to never intersect , correct? 

(Just like if one of these problems asks you about two lines with infinite solutions , they’re saying that the lines are the same . They’re laid on top of each other. )

In other words, they’d have to be… parallel lines . 

And parallel lines have the same… slope! 

So this question is asking you to find the correct value for the variable that gives these lines the equivalent slope . 

Obviously, the first step is to put both of these equations in slope-intercept form. We’d end up with:

y = (-a/2)x + 2

Now the rest is very simple. All we need is a value of a that makes the slopes equal, so that it solves the equation (-a/2) = 3 .

With some basic algebra, we end up with -a = 6 . This is the same as a = -6 .

So the answer is CHOICE A, -6. 

student practicing hard SAT math questions

Are these problems feeling super hard for you? Want to work on more similar problems? Check out our one-on-one tutoring with Ivy-League instructors. A great experienced tutor can help you focus on the concepts that are the hardest for you until you understand them thoroughly.

SAT Problem 9

very hard problem solving questions

This is another type of problem that students often have conceptual difficulty with, causing them to waste much more time than they should. 

(Remember, basically every problem in the SAT math section is designed to be solved in a minute and half or less. If you’re taking three or four minutes on a math problem, you’ve probably made a mistake!)

Some students will see that (u-t) is defined but not u or t individually, so they’ll try either solving for u in terms of t (or vice versa), or they’ll try squaring (u-t) to get a solution. (Which is closer to the correct way to solve the problem, but still incorrect). 

Instead, to solve this problem we need to remember the difference of squares . 

Remember, that the difference of squares states the following… 

(x+y)(x-y) = x^2 – xy + xy – y^2 .

Which means… 

(x+y)(x-y) = x^2 – y^2 .

And doesn’t that look awfully familiar to… u^2 – t^2 ?

In fact, we can now replace  u^2 – t^2 with (u + t)(u – t) .

So the whole problem would now read: (u + t)(u – t)(u – t) . Since we know the value of (u + t) and (u – t) , this would simply be the same as (2)(5)(2) .

Which equals our answer… 

Ready to see how you’re doing? Download the quiz

SAT Problem #10

very hard problem solving questions

What makes this question confusing is that students often get thrown off by the repetition of the (⅓). 

They forget that when the ⅓ gets factored out of the parenthesis like that, it means it’s going to apply to the whole equation: both the  x^2 AND the -2 . 

Once we remember that, we can solve this problem by difference of squares . This will save us the time of having to brute force the answer choices and FOIL each one through for the different values of k. 

We’ll simply square k and subtract it from the  x^2 for each choice. 

That will give us the following four choices: 

(⅓)(x^2  – 4)

(⅓)(x^2 – 36)

(⅓)(x^2 – 2)

(⅓) (x^2 – 6)

A student might rush to choose the third answer choice, since it appears to look like the expression at the beginning of the problem, but remember what I told you at the beginning: 

We’re going to apply that ⅓ to both the x^2 AND the k ! 

If we multiply that ⅓ through, the choices suddenly look like this…  

(⅓)(x^2) – (4/3)

(⅓)(x^2) –  (12)

(⅓)(x^2) – (⅔)

(⅓)(x^2) – (2)

. . . and so the correct answer is actually the fourth choice, CHOICE D . 

studying for the SAT Math test

Ready to try more hard problems on your own? Download our free quiz to try 20 more of the hardest ever (real) SAT problems.

SAT Problem #11

very hard problem solving questions

There are not many problems on the SAT that involve knowing the equation for a circle—in fact, circle equation problems don’t show up on every test—but that’s precisely why students often find a problem like this more difficult. 

First, let’s do a quick refresher on what the numbers in the equation of a circle mean. 

Any equation for a circle is going to be in this form: 

(x – h)^2 + (y – k)^2 = r^2

Where h and k represent the coordinates of the center and r is the radius. 

Let’s apply that to our problem here… 

(x + 3)^2 + (y – 1)^2 = 25.

Remember: because in the form of the circle equation the numbers inside the parenthesis are subtracted from x and y , when they appear inside the parenthesis as positives , that indicates the coordinate point will be negative. 

Therefore the center of this circle is at point (-3, 1) .

Because the radius is expressed as r^2 , then the 25 indicates the radius will be 5 . 

So we have a circle centered on the point (-3,1) and with a radius of 5 . 

So… now what? 

How do we figure out which of these points is not inside the circle? 

First, let’s draw the circle itself and look at it. On the SAT itself, you won’t have graph paper, so just draw a rough sketch!

graph of the circle equation

Of course if we’re truly flummoxed we could graph the points, eliminate what we can . . . and guess. 

But that’s not ideal, obviously! 

Instead, let’s think about what the radius means. 

The radius demarcates the boundaries of the circle from the center. 

In other words, any points with a distance less-than-the-radius away from the center will lie within the circle. 

And any points more-than-the-radius distance from the center will lie outside of it. 

(Any points exactly-the-radius distance from the center will lie on the circle itself.) 

So all we have to do is find the point that is more than 5 units away from our center, and that will be our answer. 

To do this requires the distance formula. 

Remember, the distance formula is

distance formula

A quick note: if you ever forget the distance formula, simply plot the two points on a graph, make a triangle with the distance between the two points and the hypotenuse, and use the Pythagorean Theorem to find the length of the hypotenuse, like this: 

distance formula graph

Going back to our problem, let’s plug each of the points in along with our radius to the equation. (I’ll include the second point here, although since that’s our center we need not actually bother with it when we’re going through the problem.) We end up with: 

√(-3 – (-7))^2 +(1-(3))^2) = √20

√(-3 – (-3))^2 +(1-(1))^2) = √0

√(-3 – (0))^2 +(1-(0))^2) = √10

√(-3 – (3))^2 +(1-(2))^2) = √37

Only the square root of 37—choice D—is an answer that is larger than five. 

So that’s our correct choice, D . 

Want more hand-picked problems? Get the quiz

SAT Problem #12

very hard problem solving questions

More circles! Let’s recall how the equation for a circle looked. It’s… 

(x – h)^2 + (y – k)^2 = r^2 

What the problem gives us, unfortunately, does not resemble that equation… 

…so our goal is to get the equation in the problem to look like a normal equation for a circle. 

Once we do this, we’ll just have to take the square root of whatever is on the right side of the equation, and that will give us our answer.

But how? 

We need to do something called completing the square . 

For the SAT, this concept is slightly obscure—it’s one you may see only once (or not at all) on a given exam. It makes the question a bit more difficult. 

Completing the square is normally a process reserved for solving a quadratic equation, but if you look closely at the way this problem is set up – 

2x^2 – 6x + 2y^2 + 2y = 45

we see that what we really have here are two quadratic equations, so we just have to complete the square twice. 

First we have to get rid of the coefficient in front of the x and y squared, so we have to divide through by 2 . 

This gives us  x^2 – 3x + y^2 + y = 22.5 .

Now we’re reading to complete the square!

Let’s deal with the x terms first. We have to think of what number, if we had it here in the equation, would allow us to factor x^2 – 3x into something of the form (x – z)^2 , where z is a constant. If we think about it, we realize that z has to be half of b . In this case, that means half of -3 , so -1.5 .

When we pop that into our setup, we get (x – 1.5)^2 . If we FOIL this out, however, we see that we get x^2 – 3x + 2.25 .

So it turns out that in order to be able to rewrite our expression in the form we want, we need to add 2.25 to our equation. As always in algebra, we do the same thing to both sides, so now we have:

x^2 – 3x + 2.25 + y^2 + y = 22.5 + 2.25.

Now we do the same thing for the y terms! Again, we need to add something to the equation so that we could rewrite the y part of the expression in the form (y – z)^2 . To get this number, we take half of the b term and square it: 1 divided by 2 , then squared, so 0.5^2 or 0.25.

Again, we have to add this number to both sides of the equation. Now we’ve got:

x^2 – 3x + 2.25 + y^2 + y + 0.25 = 22.5 + 2.25 + 0.25.

We can factor and rewrite this like:

( x – 1.5)^2 + (y + 0.5)^2 = 25.

Alright, now this is finally in the right format for the equation for a circle!

The final step is to use this equation to find the radius.

We know that the equation for a circle is (x – h)^2 + (y – k)^2 = r^2  . Fortunately this works out really nicely, since 25 is just 5^2. The radius must be 5, CHOICE A .

students studying SAT math concepts

We’ve tutored thousands of students and used that experience to assemble a list of 20 more problems that students frequently miss. Can you answer them correctly? Download the quiz now to find out!

SAT Problem #13

very hard problem solving questions

This question involves a number of moving parts and thus can be a little overwhelming for students to follow. 

It asks us to find, based on the rotation of the first gear, the rotation of the third. 

I find many students trip up on this problem by making two errors that are simple to fix, but relatively common. They fail to take the problem step by step… and they fail to write down their work as they track through the material. 

With that in mind, let’s work through the problem. 

Because gears A and C do not connect directly, but instead through gear B, we should first try to figure out the rotational relationship between A and B (at 100 rpm) before applying that to B and C. 

Because B is larger than A (and has more gears), A is going to rotate fully multiple times before B rotates once. 

How many times? Here it’s helpful to consider a ratio. 

A has 20 gears. 

B has 60 gears. 

So A is going to have to rotate three times before B rotates once . (20 goes into 60 three times.) 

Therefore, the ratio of rotation between A and B is 3 : 1 . 

Let’s write that down and then apply the same method to figure out the ratio between B and C. 

C has 10 gears. 

Here B only has to rotate a sixth of its distance for C to rotate once, so the ratio of rotation between B and C is 1 : 6 .

Now we take the number of RPMs the problem gives us, start with the gear on the left and multiply through with our ratios. 

So if Gear A rotates 100 times RPMS per minute, Gear B will rotate a third of that distance… 

So we divide 100 by 3. 

Because we know Gear C rotates six times as fast as Gear B, we then take our answer and multiply it by 6. 

So we get (100)(⅓)(6) . 

Which gives us 200 rpm. 

CHOICE C. 

SAT Problem #14

very hard problem solving questions

This question appears complicated—and students often get tripped up trying to either plug in numbers (which can be time consuming) or by searching for an equation that explains the relationship between the surface area and perimeter of the cube itself. 

This is especially tempting because while the question gives us the equation for the entire surface area of the cube, it only asks for the perimeter of one of the cube’s faces. 

However… 

If we think about the properties of a cube, this question actually becomes quite simple. 

First, let’s draw a cube.  

drawing of a cube

Again, the equation the problem gives us is for the entire surface area of the cube: 6(a/4)^2 .

But when we look at the cube, we may notice that it has, in fact, six faces. 

Therefore, each face would have one sixth of the surface area of the entire cube. 

So by dividing the equation by six, we get the surface area for one face of the cube, which is: 

But the question asks for the perimeter of one face of the cube. 

Let’s examine the drawing of the cube one more time. 

What shape is each cube face? It’s a square. 

And because each side of a square (let’s call each side x ) is equal to the other, the area of the square is going to be x^2, or the length of the side times itself. 

Well, wait a moment… 

If we go back to our equation for the surface area of ONE face of the cube, (a/4)^2 , we might notice that it’s in the same form as the equation for area of the square, except instead of x being squared, it’s (a/4) . 

And if we replace the x with (a/4) , we find that each side of the square is equivalent to (a/4) . 

Which makes finding the perimeter of this square quite simple, because it has four sides. 

So we merely add the four sides together: 

(a/4) + (a/4) + (a/4) + (a/4) . . .

which equals a . 

Which in this case is CHOICE B . 

student practicing SAT math questions

Want more practice? We collected 20 more of the hardest SAT math problems. Download the quiz and take it with a 25-minute timer to mimic the real test!

SAT Problem #15

very hard problem solving questions

We have a lot of variables in this question, so it’s easiest to try to incorporate the extra piece of information we’re given, b = c – (½) , as best we can and then try to simplify the problem and solve from there. 

So how can we do that? 

The problem tells us b = c – (½) , which can also be expressed as b – c = -(½) .

(Once we put the b and c together on one side, it becomes easier to replace them together with a number). 

So what’s the best way to manipulate these two equations so that we’ll have b – c , which we can then replace with the (-½) and be left with x and y ? 

Because let’s remember that the problem does not ask us to solve for x and y individually. 

Just their relationship. 

So once we’re left with x and y as our only two variables, we should be able to make good progress. 

Anyhow, looking back over these two equations it seems the easiest way to be left with b – c is to… 

…subtract the bottom equation from the top one. 

When we do so, we’re left with the following: 

(3x – 3y) + (b – c) = (5x – 5y) + (-7 – (-7))

We replace b – c with -½  

And then combine like terms to get… 

(-½) = (5x – 3x) – (5y + 3y)

(-½) = 2x – 2y

Divide through by 2 … 

-¼ = x – y

Or x = y – (¼)

So our an answer is x = y – ¼ , CHOICE A .

Download 20 more of the hardest problems ever

SAT Problem #16

very hard problem solving questions

There are a few ways to solve this problem. The easiest one is simply to know the “remainder theorem.”

I don’t want to get too sidetracked with details, but remainder theorem states that when polynomial g(x) is divided by (x – a) , the remainder is g(a) .

In other words, when p(x) is divided by  (x-3) here, the remainder would be p(3) , which, according to the information we’re given, is -2 . 

That leads to CHOICE D . 

But what if, like many students, you don’t know the remainder theorem? (It’s pretty obscure and there’s a good chance you won’t see a problem about it on the entire exam.) 

Let’s look at an alternative way to solve the problem. 

If p(3) equals -2 , let’s imagine a function where that might be the case. 

We could do as simple one, like y = 3x – 11 , or a more complex one, like y = x^2 + 3x – 20 .

Either way, if I plug 3 into either of these functions for x , I get -2 as a y value. 

I should also notice immediately that (x – 5) , (x – 2) , and (x + 2) are not factors of either of them.

Clearly choices A, B, and C are not things that must be true. 

This also, by process of elimination, leads to CHOICE D. 

But just to check, let’s divide x – 3 into one of these functions – say 3x – 11 – and see what happens: 

The x goes into 3x three times – and three times (x-3) equals 3x – 9 .

solving the hard SAT math problem

When I subtract 3x – 9 from 3x – 11 , I get -2 , which is my remainder. 

Which points us, again, to CHOICE D .

Test your knowledge with 20 more problems

If these problems feel really hard, don’t panic—you can still do well on the SAT without answering every question correctly. 

The average SAT Math score for US students in 2022 was 52 8, and you have to answer about 32 out of 58 math questions correctly to get this score. That’s only a little over half of the questions!

Harvard campus

However, if you want a high score—or a perfect score—you’ll have to be able to answer tough questions like these. You’ll need a very high score to be a competitive applicant for Harvard, Stanford, MIT, or other highly competitive schools.

The good news is that it’s very possible to raise your math score! 

In fact, it’s typically easier to improve your SAT Math score than your Reading & Writing score. Good preparation (on your own or with a tutor ) will fill in the knowledge gaps for any concepts that might be shaky and then practice the most common problem types until they feel easy.

We’ve worked with students who were able to see a 200-point increase on the Math section alone, through lots of hard work and practice.

To see how your math skills stack up against the toughest parts of the SAT, download our quiz with 20 more of the hardest SAT math questions, taken from real tests administered in recent years.

Once you know where you stand, keep up the practice!

If you’re interested in customized one-on-one tutoring support from an expert SAT tutor who can help you understand these tough problems, schedule a free consultation with Jessica or one of our founders . Our Ivy-League tutors are top scorers themselves who can help you with these more advanced concepts and strategies.

Bonus Material: Quiz: 20 of the All-Time Hardest SAT Math Problems

very hard problem solving questions

Emily graduated  summa cum laude  from Princeton University and holds an MA from the University of Notre Dame. She was a National Merit Scholar and has won numerous academic prizes and fellowships. A veteran of the publishing industry, she has helped professors at Harvard, Yale, and Princeton revise their books and articles. Over the last decade, Emily has successfully mentored hundreds of students in all aspects of the college admissions process, including the SAT, ACT, and college application essay. 

CHECK OUT THESE RELATED POSTS

competition

Princeton Review vs Kaplan: Which SAT Prep Service is Better?

April 25, 2024

Princeton Review and Kaplan are two of the biggest test prep services, but which one is better? Detailed review of pricing, course materials, instructor qualifications, and customer service. Choose the best SAT prep to help you raise your score…

very hard problem solving questions

Kaplan ACT Prep Review: Rating All of Kaplan’s ACT Prep Options

Comprehensive review of Kaplan's ACT prep services: pricing, instructor qualifications, online platform, customer service, and educational quality.

Kaplan SAT Prep Review: Rating All of Kaplan’s SAT Prep Options

Comprehensive review of Kaplan's SAT prep services: pricing, instructor qualifications, online platform, customer service, and educational quality.

very hard problem solving questions

15 Best Online Writing Tutoring Services for 2024 (50 Tutoring Services Reviewed)

A list of the 15 best online writing tutoring services, reviewed and ranked. Compare prices & writing tutor qualifications. Best overall: PrepMaven’s writing tutoring ($66–349/hr). Best on a budget: Wyzant ($20–600/hr). Best…

competition

Wyzant vs. Varsity Tutors: Which Tutoring Service is Better?

In this Wyzant vs. Varsity Tutors face-off, we pit two of the biggest tutoring companies against each other to see which is the best. From tutor qualifications to price, subjects, guarantees, and other features, discover which is the best tutoring platform.

pencil for taking the SAT

12 Best SAT Prep Courses for 2024 (32 Courses Reviewed)

Considering an online course to help you prepare for the SAT? A list of the 12 best online SAT prep courses, reviewed and ranked. Compare prices, class sizes, & instructor qualifications. Best self-guided: Khan Academy ($0). Best overall: PrepMaven’s SAT MasterClass ($995). Best on a budget: Magoosh’s Guided Live Class ($399).

very hard problem solving questions

PrepScholar Review: Rating All of PrepScholar’s SAT and ACT Prep Options

Comprehensive review of PrepScholar's SAT and ACT prep services: pricing, instructor qualifications, online platform, customer service, and educational quality.

very hard problem solving questions

15 Best ACT Tutoring Services for 2024 (75 Tutoring Services Reviewed)

April 18, 2024

A list of the 15 best online ACT tutoring services, reviewed and ranked. Compare prices & instructor qualifications. Best overall: PrepMaven’s SAT tutoring ($79–349/hr). Best on a budget: Wyzant ($20–600/hr). Best…

very hard problem solving questions

How to Transfer Colleges

April 11, 2024

The college transfer process is different from what you went through in high school to get into college. We’ll walk you through important steps in your application …

very hard problem solving questions

Varsity Tutors Review

Comprehensive review of Varsity Tutors: pricing, instructor qualifications, online platform, customer service, and educational quality.

Privacy Preference Center

Privacy preferences.

  • Top Questions

Convert the following readings of pressureto kPa absolute, assuming that the barometer reads 760mm Hg:...

Show that an element and its inverse have the same order in any group.

A cubic block of wood, 10.0 cm on each side, floats at the interface between...

An ice cube tray of negligible mass contains 0.315 kg of water at17.7∘. How much...

An open tank has a vertical partition and on one side contains gasoline with a...

A 100g cube of ice at 0C is dropped into 1.0kg of water thatwas originally...

Complete the equation of the line through (2, 1) and (5, -8). Use exact numbers.

Write a function based on the given parent function and transformations in the given order....

How many solutions does the equationx1+x2+x3=13have wherex1,x2,andx3are non negative integers less than 6.

Determine whether f : Z×Z→Z is onto if a) f(m,n)=2m−nb) b) f(m,n)=m2−n2 c) f(m,n)=m+n+1 d)...

The base of S is an elliptical region with boundary curve 9x2+4y2=36. Cross-sections perpendicular to...

Create a graph of y=2x−6. Construct a graph corresponding to the linear equation y=2x−6.

Use the graphs of f and g to graph h(x) = (f + g)(x). (Graph...

find expressions for the quadratic functions whose graphs are shown. f(x)=? g(x)=?

Find the volume V of the described solid S. A cap of a sphere with...

Find a counterexample to show that each statement is false. The sum of any three...

Read the numbers and decide what the next number should be. 5 15 6 18...

In how many different orders can five runners finish a race if no ties are...

A farmer plants corn and wheat on a 180 acre farm. He wants to plant...

Find the distance between (0, 0) and (-3, 4) pair of points. If needed, show...

Whether each of these functions is a bijection from R to R.a)f(x)=−3x+4b)f(x)=−3x2+7c)f(x)=x+1x+2d)f(x)=x5+1

Find two numbers whose difference is 100 and whose product is a minimum.

Find an expression for the function whose graph is the given curve. The line segment...

Prove or disprove that if a and b are rational numbers, then ab is also...

How to find a rational number halfway between any two rational numbers given infraction form...

Fill in the blank with a number to make the expression a perfect square x2−6x+?

Look at this table: x y 1–2 2–4 3–8 4–16 5–32 Write a linear (y=mx+b),...

Part a: Assume that the height of your cylinder is 8 inches. Think of A...

The graph of a function f is shown. Which graph is an antiderivative of f?

A rectangle has area 16m2 . Express the perimeter of the rectangle as a function...

Find the equation of the quadratic function f whose graph is shown below. (5, −2)

Use the discriminant, b2−4ac, to determine the number of solutions of the following quadratic equation....

How many solutions does the equation ||2x-3|-m|=m have if m>0?

If a system of linear equations has infinitely many solutions, then the system is called...

A bacteria population is growing exponentially with a growth factor of 16 each hour.By what...

A system of linear equations with more equations than unknowns is sometimes called an overdetermined...

Express the distance between the numbers 2 and 17 using absolute value. Then find the...

Find the Laplace transform of f(t)=(sin⁡t–cos⁡t)2

Express the interval in terms of an inequality involving absolute value. (0,4)

A function is a ratio of quadratic functions and has a vertical asymptote x =4...

how do you graph y > -2

Find the weighted average of a data set where 10 has a weight of 5,...

The population of California was 29.76 million in 1990 and 33.87 million in 2000. Assume...

The population of a region is growing exponentially. There were 10 million people in 1980...

Two cables BG and BH are attached to the frame ACD as shown.Knowing that the...

A bird flies in the xy-plane with a position vector given by r→=(αt−βt3)i^+γt2j^, with α=2.4...

A movie stuntman (mass 80.0kg) stands on a window ledge 5.0 mabove the floor. Grabbing...

Solve the following linear congruence, 25x≡15(bmod29)

For the equation, a. Write the value or values of the variable that make a...

Which of the following statements is/are correct about logistic regression? (There may be more than...

Compute 4.659×104−2.14×104. Round the answer appropriately. Express your answer as an integer using the proper...

Find the 52nd term of the arithmetic sequence -24,-7, 10

Find the 97th term of the arithmetic sequence 17, 26, 35,

An equation that expresses a relationship between two or more variables, such as H=910(220−a), is...

The football field is rectangular. a. Write a polynomial that represents the area of the...

The equation 1.5r+15=2.25r represents the number r of movies you must rent to spend the...

While standing on a ladder, you drop a paintbrush. The function represents the height y...

When does data modeling use the idea of a weak entity? Give definitions for the...

Write an equation of the line passing through (-2, 5) and parallel to the line...

Find a polar equation for the curve represented by the given Cartesian equation. y =...

Find c such that fave=f(c)

List five integers that are congruent to 4 modulo 12.

A rectangular package to be sent by a postal service can have a maximum combined...

A juggler throws a bowling pin straight up with an initial speed of 8.20 m/s....

The One-to-One Property of natural logarithms states that if ln x = ln y, then...

Find an equation of a parabola that has curvature 4 at the origin.

Find a parametric representation of the solution set of the linear equation. 3x − 1/2y...

Find the product of the complex number and its conjugate. 2-3i

Find the prime factorization of 10!.

Find a polynomial f(x) of degree 5 that has the following zeros. -3, -7, 5...

True or False. The domain of every rational function is the set of all real...

What would be the most efficient step to suggest to a student attempting to complete...

Write a polynomial, P(x), in factored form given the following requirements. Degree: 4 Leading coefficient...

Give a geometric description of the set of points in space whose coordinates satisfy the...

Use the Cauchy-Riemann equations to show that f(z)=z― is not analytic.

Find the local maximum and minimum values and saddle points of the function. If you...

a) Evaluate the polynomial y=x3−7x2+8x−0.35 at x=1.37 . Use 3-digit arithmetic with chopping. Evaluate the...

The limit represents f'(c) for a function f and a number c. Find f and...

A man 6 feet tall walks at a rate of 5 feet per second away...

Find the Maclaurin series for the function f(x)=cos⁡4x. Use the table of power series for...

Suppose that a population develops according to the logistic equation dPdt=0.05P−0.0005P2 where t is measured...

Find transient terms in this general solution to a differential equation, if there are any...

Find the lengths of the sides of the triangle PQR. Is it a right triangle?...

Use vectors to decide whether the triangle with vertices P(1, -3, -2), Q(2, 0, -4),...

Find a path that traces the circle in the plane y=5 with radius r=2 and...

a. Find an upper bound for the remainder in terms of n.b. Find how many...

Find two unit vectors orthogonal to both j−k and i+j.

Obtain the Differential equations: parabolas with vertex and focus on the x-axis.

The amount of time, in minutes, for an airplane to obtain clearance for take off...

Use the row of numbers shown below to generate 12 random numbers between 01 and...

Here’s an interesting challenge you can give to a friend. Hold a $1 (or larger!)...

A random sample of 1200 U.S. college students was asked, "What is your perception of...

The two intervals (114.4, 115.6) and (114.1, 115.9) are confidence intervals (The same sample data...

How many different 10 letter words (real or imaginary) can be formed from the following...

Assume that σ is unknown, the lower 100(1−α)% confidence bound on μ is: a) μ≤x―+tα,n−1sn...

A simple random sample of 60 items resulted in a sample mean of 80. The...

Decresing the sample size, while holding the confidence level and the variance the same, will...

A privately owned liquor store operates both a drive-n facility and a walk-in facility. On...

Show that the equation represents a sphere, and find its center and radius. x2+y2+z2+8x−6y+2z+17=0

Describe in words the region of R3 represented by the equation(s) or inequality. x=5

Suppose that the height, in inches, of a 25-year-old man is a normal random variable...

Find the value and interest earned if $8906.54 is invested for 9 years at %...

Which of the following statements about the sampling distribution of the sample mean is incorrect?...

The random variable x stands for the number of girls in a family of four...

The product of the ages, in years, of three (3) teenagers os 4590. None of...

A simple random sample size of 100 is selected from a population with p=0.40 What...

Which of the following statistics are unbiased estimators of population parameters? Choose the correct answer...

The probability distribution of the random variable X represents the number of hits a baseball...

Let X be a random variable with probability density function.f(x)={c(1−x2)−1<x<10otherwise(a) What is the value of...

A survey of 4826 randomly selected young adults (aged 19 to 25) asked, "What do...

The monthly worldwide average number of airplane crashes of commercial airlines is 2.2. What is...

Given that z is a standard normal random variable, compute the following probabilities.a.P(z≤−1.0)b.P(z≥−1)c.P(z≥−1.5)d.P(−2.5≤z)e.P(−3<z≤0)

Given a standard normal distribution, find the area under the curve that lies(a) to the...

Chi-square tests are best used for which type of dependent variable? nominal, ordinal ordinal interval...

True or False 1.The goal of descriptive statistics is to simplify, summarize, and organize data....

What is the difference between probability distribution and sampling distribution?

A weather forecaster predicts that the temperature in Antarctica will decrease 8∘F each hour for...

The tallest person who ever lived was approximately 8 feet 11 inches tall. a) Write...

An in-ground pond has the shape of a rectangular prism. The pond has a depth...

The average zinc concentration recovered from a sample of measurements taken in 36 different locations...

Why is it important that a sample be random and representative when conducting hypothesis testing?...

Which of the following is true about the sampling distribution of means? A. Shape of...

Give an example of a commutative ring without zero-divisors that is not an integral domain.

List all zero-divisors in Z20. Can you see relationship between the zero-divisors of Z20 and...

Find the integer a such that a≡−15(mod27) and −26≤a≤0

Explain why the function is discontinuous at the given number a. Sketch the graph of...

Two runners start a race at the same time and finish in a tie. Prove...

Which of the following graphs represent functions that have inverse functions?

find the Laplace transform of f (t). f(t)=tsin⁡3t

Find Laplace transforms of sin⁡h3t cos22t

find the Laplace transform of f (t). f(t)=t2cos⁡2t

The Laplace transform of the product of two functions is the product of the Laplace...

The Laplace transform of u(t−2) is (a) 1s+2 (b) 1s−2 (c) e2ss(d)e−2ss

Find the Laplace Transform of the function f(t)=eat

Explain First Shift Theorem & its properties?

Solve f(t)=etcos⁡t

Find Laplace transform of the given function te−4tsin⁡3t

Reduce to first order and solve:x2y″−5xy′+9y=0 y1=x3

(D3−14D+8)y=0

A thermometer is taken from an inside room to the outside ,where the air temperature...

Find that solution of y′=2(2x−y) which passes through the point (0, 1).

Radium decomposes at a rate proportional to the amount present. In 100 years, 100 mg...

Let A, B, and C be sets. Show that (A−B)−C=(A−C)−(B−C)

Suppose that A is the set of sophomores at your school and B is the...

In how many ways can a 10-question true-false exam be answered? (Assume that no questions...

Is 2∈{2}?

How many elements are in the set { 2,2,2,2 } ?

How many elements are in the set { 0, { { 0 } }?

Draw the Hasse diagram representing the partial ordering {(a, b) | a divides b} on...

Flux through a Cube (Eigure 1) A cube has one corner at the origin and...

A well-insulated rigid tank contains 3 kg of saturated liquid-vapor mixture of water at 200...

A water pump that consumes 2 kW of electric power when operating is claimed to...

A hollow, conducting sphere with an outer radius of 0.250 m and an inner radius...

In a truck-loading station at a post office, a small 0.200-kg package is released from...

The magnetic fieldB→in acertain region is 0.128 ,and its direction is that of the z-axis...

A marble moves along the x-axis. The potential-energy functionis shown in Fig. 1a) At which...

A proton is released in a uniform electric field, and it experiences an electric force...

A potters wheel having a radius of 0.50 m and a moment of inertia of12kg⋅m2is...

Two spherical objects are separated by a distance of 1.80×10−3m. The objects are initially electrically...

An airplane pilot sets a compass course due west and maintainsan airspeed of 220 km/h....

Resolve the force F2 into components acting along the u and v axes and determine...

A conducting sphere of radius 0.01m has a charge of1.0×10−9Cdeposited on it. The magnitude of...

Starting with an initial speed of 5.00 m/s at a height of 0.300 m, a...

In the figure a worker lifts a weightωby pulling down on a rope with a...

A stream of water strikes a stationary turbine bladehorizontally, as the drawing illustrates. The incident...

Until he was in his seventies, Henri LaMothe excited audiences by belly-flopping from a height...

A radar station, located at the origin of xz plane, as shown in the figure...

Two snowcats tow a housing unit to a new location at McMurdo Base, Antarctica, as...

You are on the roof of the physics building, 46.0 m above the ground. Your...

A block is on a frictionless table, on earth. The block accelerates at5.3ms2when a 10...

A 0.450 kg ice puck, moving east with a speed of3.00mshas a head in collision...

A uniform plank of length 2.00 m and mass 30.0 kg is supported by three...

An adventurous archaeologist crosses between two rock cliffs by slowly going hand-over-hand along a rope...

A ski tow operates on a 15.0 degrees slope of lenth 300m. The rope moves...

Two blocks with masses 4.00 kg and 8.00 kg are connected by string and slide...

From her bedroom window a girl drops a water-filled balloon to the ground 6.0 m...

A 730-N man stands in the middle of a frozen pond of radius 5.0 m....

A 5.00 kg package slides 1.50 m down a long ramp that is inclined at12.0∘below...

Ropes 3m and 5m in length are fastened to a holiday decoration that is suspended...

A skier of mass 70 kg is pulled up a slope by a motor driven...

A 1.0 kg ball and a 2.0 kg ball are connected by a 1.0-m-long rigid,...

A sled with rider having a combined mass of 120 kg travels over the perfectly...

A 7.00- kg bowling ball moves at 3.00 m/s. How fast must a 2.45- g...

Two point chargesq1=+2.40nC andq2=−6.50nC are 0.100 m apart. Point A is midway between them and...

A block of mass m slides on a horizontal frictionless table with an initial speed...

A space traveler weights 540 N on earth. what will the traveler weigh on another...

A block of mass m=2.20 kg slides down a 30 degree incline which is 3.60...

A weatherman carried an aneroid barometer from the groundfloor to his office atop a tower....

If a negative charge is initially at rest in an electric field, will it move...

A coin with a diameter of 2.40cm is dropped on edge on to a horizontal...

An atomic nucleus initially moving at 420 m/s emits an alpha particle in the direction...

An 80.0-kg skydiver jumps out of a balloon at an altitude of1000 m and opens...

A 0.145 kg baseball pitched at 39.0 m/s is hit on a horizontal line drive...

A 1000 kg safe is 2.0 m above a heavy-duty spring when the rope holding...

A 500 g ball swings in a vertical circle at the end of a1.5-m-long string....

A rifle with a weight of 30 N fires a 5.0 g bullet with a...

The tires of a car make 65 revolutions as the car reduces its speed uniformly...

A 2.0- kg piece of wood slides on the surface. The curved sides are perfectly...

A 292 kg motorcycle is accelerating up along a ramp that is inclined 30.0° above...

A projectile is shot from the edge of a cliff 125 m above ground level...

A lunch tray is being held in one hand, as the drawing illustrates. The mass...

The initial velocity of a car, vi, is 45 km/h in the positivex direction. The...

An Alaskan rescue plane drops a package of emergency rations to a stranded party of...

Raindrops make an angle theta with the vertical when viewed through a moving train window....

A 0.50 kg ball that is tied to the end of a 1.1 m light...

If the coefficient of static friction between your coffeecup and the horizontal dashboard of your...

A car is initially going 50 ft/sec brakes at a constant rate (constant negative acceleration),...

A swimmer is capable of swimming 0.45m/s in still water (a) If sheaim her body...

A block is hung by a string from inside the roof of avan. When the...

A race driver has made a pit stop to refuel. Afterrefueling, he leaves the pit...

A relief airplane is delivering a food package to a group of people stranded on...

The eye of a hurricane passes over Grand Bahama Island. It is moving in a...

An extreme skier, starting from rest, coasts down a mountainthat makes an angle25.0∘with the horizontal....

Four point charges form a square with sides of length d, as shown in the...

In a scene in an action movie, a stuntman jumps from the top of one...

The spring in the figure (a) is compressed by length delta x . It launches...

An airplane propeller is 2.08 m in length (from tip to tip) and has a...

A helicopter carrying dr. evil takes off with a constant upward acceleration of5.0ms2. Secret agent...

A 15.0 kg block is dragged over a rough, horizontal surface by a70.0 N force...

A box is sliding with a speed of 4.50 m/s on a horizontal surface when,...

3.19 Win the Prize. In a carnival booth, you can win a stuffed giraffe if...

A car is stopped at a traffic light. It then travels along a straight road...

a. When the displacement of a mass on a spring is12A, what fraction of the...

At a certain location, wind is blowing steadily at 10 m/s. Determine the mechanical energy...

A jet plane lands with a speed of 100 m/s and can accelerate at a...

In getting ready to slam-dunk the ball, a basketball player starts from rest and sprints...

An antelope moving with constant acceleration covers the distance between two points 70.0 m apart...

A bicycle with 0.80-m-diameter tires is coasting on a level road at 5.6 m/s. A...

The rope and pulley have negligible mass, and the pulley is frictionless. The coefficient of...

A proton with an initial speed of 800,000 m/s is brought to rest by an...

The volume of a cube is increasing at the rate of 1200 cm supmin at...

An airplane starting from airport A flies 300 km east, then 350 km at 30...

To prove: In the following figure, triangles ABC and ADC are congruent. Given: Figure is...

Conduct a formal proof to prove that the diagonals of an isosceles trapezoid are congruent....

The distance between the centers of two circles C1 and C2 is equal to 10...

Segment BC is Tangent to Circle A at Point B. What is the length of...

Find an equation for the surface obtained by rotating the parabola y=x2 about the y-axis.

Find the area of the parallelogram with vertices A(-3, 0), B(-1 , 3), C(5, 2),...

If the atomic radius of lead is 0.175 nm, find the volume of its unit...

At one point in a pipeline the water’s speed is 3.00 m/s and the gauge...

Find the volume of the solid in the first octant bounded by the coordinate planes,...

A paper cup has the shape of a cone with height 10 cm and radius...

A light wave has a 670 nm wavelength in air. Its wavelength in a transparent...

An airplane pilot wishes to fly due west. A wind of 80.0 km/h (about 50...

Find the equation of the sphere centered at (-9, 3, 9) with radius 5. Give...

Determine whether the congruence is true or false. 5≡8 mod 3

Find all whole number solutions of the congruence equation. (2x+1)≡5 mod 4

Determine whether the congruence is true or false. 100≡20 mod 8

I want example of an undefined term and a defined term in geometry and explaining...

Two fair dice are rolled. Let X equal the product of the 2dice. Compute P{X=i}...

Suppose that two defective refrigerators have been included in a shipment of six refrigerators. The...

Based on the Normal model N(100, 16) describing IQ scores, what percent of peoples

The probability density function of the net weight in pounds of a packaged chemical herbicide...

Let X represent the difference between the number of heads and the number of tails...

An urn contains 3 red and 7 black balls. Players A and B withdraw balls...

80% A poll is given, showing are in favor of a new building project. 8...

The probability that the San Jose Sharks will win any given game is 0.3694 based...

Find the value of P(X=7) if X is a binomial random variable with n=8 and...

Find the value of P(X=8) if X is a binomial random variable with n=12 and...

On a 8 question multiple-choice test, where each question has 2 answers, what would be...

If you toss a fair coin 11 times, what is the probability of getting all...

A coffee connoisseur claims that he can distinguish between a cup of instant coffee and...

Two firms V and W consider bidding on a road-building job, which may or may...

Two cards are drawn without replacement from an ordinary deck, find the probability that the...

In August 2012, tropical storm Isaac formed in the Caribbean and was headed for the...

A local bank reviewed its credit card policy with the intention of recalling some of...

The accompanying table gives information on the type of coffee selected by someone purchasing a...

A batch of 500 containers for frozen orange juice contains 5 that are defective. Two...

The probability that an automobile being filled with gasoline also needs an oil change is...

Let the random variable X follow a normal distribution with μ=80 and σ2=100. a. Find...

A card is drawn randomly from a standard 52-card deck. Find the probability of the...

The next number in the series 38, 36, 30, 28, 22 is ?

What is the coefficient of x8y9 in the expansion of (3x+2y)17?

A boat on the ocean is 4 mi from the nearest point on a straight...

How many different ways can you make change for a quarter? (Different arrangements of the...

Seven balls are randomly withdrawn from an urn that contains 12 red, 16 blue, and...

Approximately 80,000 marriages took place in the state of New York last year. Estimate the...

The probability that a student passes the Probability and Statistics exam is 0.7. (i)Find the...

Customers at a gas station pay with a credit card (A), debit card (B), or...

It is conjectured that an impurity exists in 30% of all drinking wells in a...

Assume that the duration of human pregnancies can be described by a Normal model with...

According to a renowned expert, heavy smokers make up 70% of lung cancer patients. If...

Two cards are drawn successively and without replacement from an ordinary deck of playing cards...

Suppose that vehicles taking a particular freeway exit can turn right (R), turn left (L),...

A bag contains 6 red, 4 blue and 8 green marbles. How many marbles of...

A normal distribution has a mean of 50 and a standard deviation of 4. Please...

Seven women and nine men are on the faculty in the mathematics department at a...

An automatic machine in a manufacturing process is operating properly if the lengths of an...

Three cards are drawn without replacement from the 12 face cards (jacks, queens, and kings)...

Among 157 African-American men, the mean systolic blood pressure was 146 mm Hg with a...

A TIRE MANUFACTURER WANTS TO DETERMINE THE INNER DIAMETER OF A CERTAIN GRADE OF TIRE....

Differentiate the three measures of central tendency: ungrouped data.

Find the mean of the following data: 12,10,15,10,16,12,10,15,15,13

A wallet containing four P100 bills, two P200 bills, three P500 bills, and one P1,000...

The number of hours per week that the television is turned on is determined for...

Data was collected for 259 randomly selected 10 minute intervals. For each ten-minute interval, the...

Sixty-five randomly selected car salespersons were asked the number of cars they generally sell in...

A normal distribution has a mean of 80 and a standard deviation of 14. Determine...

True or false: a. All normal distributions are symmetrical b. All normal distributions have a...

Would you expect distributions of these variables to be uniform, unimodal, or bimodal? Symmetric or...

Annual sales, in millions of dollars, for 21 pharmaceutical companies follow. 8408 1374 1872 8879...

The velocity function (in meters per second) is given for a particle moving along a...

Find the area of the parallelogram with vertices A(-3,0) , B(-1,6) , C(8,5) and D(6,-1)

What is the area of the parallelogram with vertices A(-3, 0), B(-1, 5), C(7, 4),...

The integral represents the volume of a solid. Describe the solid. π∫01(y4−y8)dy a) The integral...

Two components of a minicomputer have the following joint pdf for their useful lifetimes X...

Use the table of values of f(x,y) to estimate the values of fx(3,2), fx(3,2.2), and...

Calculate net price factor and net price. Dollars list price −435.20$ Trade discount rate −26%,15%,5%.

Represent the line segment from P to Q by a vector-valued function and by a...

(x2+2xy−4y2)dx−(x2−8xy−4y2)dy=0

If f is continuous and integral 0 to 9 f(x)dx=4, find integral 0 to 3...

Find the parametric equation of the line through a parallel to ba=[3−4],b=[−78]

Find the velocity and position vectors of a particle that has the given acceleration and...

If we know that the f is continuous and integral 0 to 4f(x)dx=10, compute the...

Integration of (y⋅tan⁡xy)

For the matrix A below, find a nonzero vector in the null space of A...

Find a nonzero vector orthogonal to the plane through the points P, Q, and R....

Suppose that the augmented matrix for a system of linear equations has been reduced by...

Find two unit vectors orthogonal to both (3 , 2, 1) and (- 1, 1,...

What is the area of the parallelogram whose vertices are listed? (0,0), (5,2), (6,4), (11,6)

Using T defined by T(x)=Ax, find a vector x whose image under T is b,...

Use the definition of Ax to write the matrix equation as a vector equation, or...

We need to find the volume of the parallelepiped with only one vertex at the...

List five vectors in Span {v1,v2}. For each vector, show the weights on v1 and...

(1) find the projection of u onto v and (2) find the vector component of...

Find the area of the parallelogram determined by the given vectors u and v. u...

(a) Find the point at which the given lines intersect. r = 2,...

(a) find the transition matrix from B toB′,(b) find the transition matrix fromB′to B,(c) verify...

A box contains 5 red and 5 blue marbles. Two marbles are withdrawn randomly. If...

Given the following vector X, find anon zero square marix A such that AX=0; You...

Construct a matrix whose column space contains (1, 1, 5) and (0, 3.1) and whose...

At what point on the paraboloid y=x2+z2 is the tangent plane parallel to the plane...

Label the following statements as being true or false. (a) If V is a vector...

Find the Euclidean distance between u and v and the cosine of the angle between...

Write an equation of the line that passes through (3, 1) and (0, 10)

There are 100 two-bedroom apartments in the apartment building Lynbrook West.. The montly profit (in...

State and prove the linearity property of the Laplace transform by using the definition of...

The analysis of shafts for a compressor is summarized by conformance to specifications. Suppose that...

The Munchies Cereal Company combines a number of components to create a cereal. Oats and...

Movement of a Pendulum A pendulum swings through an angle of 20∘ each second. If...

If sin⁡x+sin⁡y=aandcos⁡x+cos⁡y=b then find tan⁡(x−y2)

Find the values of x such that the angle between the vectors (2, 1, -1),...

Find the dimensions of the isosceles triangle of largest area that can be inscribed in...

Suppose that you are headed toward a plateau 50 meters high. If the angle of...

Airline passengers arrive randomly and independently at the passenger-screening facility at a major international airport....

Find an equation of the plane. The plane through the points (2, 1, 2), (3,...

Match each of the trigonometric expressions below with the equivalent non-trigonometric function from the following...

two small spheres spaced 20.0cm apart have equal charges. How many extra electrons must be...

The base of a pyramid covers an area of 13.0 acres (1 acre =43,560 ft2)...

Find out these functions' domain and range. To find the domain in each scenario, identify...

Your bank account pays an interest rate of 8 percent. You are considering buying a...

Whether f is a function from Z to R ifa)f(n)=±n.b)f(n)=n2+1.c)f(n)=1n2−4.

The probability density function of X, the lifetime of a certain type of electronic device...

A sandbag is released by a balloon that is rising vertically at a speed of...

A proton is located in a uniform electric field of2.75×103NCFind:a) the magnitude of the electric...

A rectangular plot of farmland are finite on one facet by a watercourse and on...

A solenoid is designed to produce a magnetic field of 0.0270 T at its center....

I want to find the volume of the solid enclosed by the paraboloidz=2+x2+(y−2)2and the planesz=1,x=−1y=0,andy=4

Let W be the subspace spanned by the u’s, and write y as the sum...

Can u find the point on the planex+2y+3z=13that is closest to the point (1,1,1). You...

A spring of negligible mass stretches 3.00 cm from its relaxed length when a force...

A force of 250 Newtons is applied to a hydraulic jack piston that is 0.01...

Three identical blocks connected by ideal strings are being pulled along a horizontal frictionless surface...

A credit card contains 16 digits between 0 and 9. However, only 100 million numbers...

Every real number is also a complex number? True of false?

Let F be a fixed 3x2 matrix, and let H be the set of all...

Find a vector a with representation given by the directed line segment AB. Draw AB...

Find A such that the given set is Col A. {[2s+3tr+s−2t4r+s3r−s−t]:r,s,t real}

Find the vector that has the same direction as (6, 2, -3) but is four...

For the matrices (a) find k such that Nul A is a subspace of Rk,...

How many subsets with an odd number of elements does a set with 10 elements...

In how many ways can a set of five letters be selected from the English...

Suppose that f(x) = x/8 for 3 < x < 5. Determine the following probabilities:...

Describe all solutions of Ax=0 in parametric vector form, where A is row equivalent to...

Find two vectors parallel to v of the given length. v=PQ→ with P(1,7,1) and Q(0,2,5);...

A dog in an open field runs 12.0 m east and then 28.0 m in...

Can two events with nonzero probabilities be both independent and mutually exclusive? Explain your reasoning.

Use the Intermediate Value Theorem to show that there is a root of the given...

In a fuel economy study, each of 3 race cars is tested using 5 different...

A company has 34 salespeople. A board member at the company asks for a list...

A dresser drawer contains one pair of socks with each of the following colors: blue,...

A restaurant offers a $12 dinner special with seven appetizer options, 12 choices for an...

A professor writes 40 discrete mathematics true/false questions. Of the statements in these questions, 17...

Suppose E(X)=5 and E[X(X–1)]=27.5, find ∈(x2) and the variance.

A Major League baseball diamond has four bases forming a square whose sides measure 90...

Express f(x)=4x3+6x2+7x+2 in term of Legendre Polynomials.

Find a basis for the space of 2×2 diagonal matrices. Basis ={[],[]}

Which of the following expressions are meaningful? Which are meaningless? Explain. a) (a⋅b)⋅c (a⋅b)⋅c has...

Vectors V1 and V2 are different vectors with lengths V1 and V2 respectively. Find the...

Find an equation for the plane containing the two (parallel) lines v1=(0,1,−2)+t(2,3,−1) and v2=(2,−1,0)+t(2,3,−1).

Find, correct to the nearest degree, the three angles of the triangle with the given...

Find the vector, not with determinants, but by using properties of cross products. (i+j)×(i−j)

Find the curve’s unit tangent vector. Also, find the length of the indicated portion of...

Construct a 4×3 matrix with rank 1

Find x such that the matrix is equal to its inverse.A=[7x−8−7]

Find a polynomial with integer coefficients that satisfies the given conditions. Q has degree 3...

Write in words how to read each of the following out loud.a.{x∈R′∣0<x<1}b.{x∈R∣x≤0orx⇒1}c.{n∈Z∣nisafactorof6}d.{n∈Z⋅∣nisafactorof6}

Pets Plus and Pet Planet are having a sale on the same aquarium. At Pets...

Find the average value of F(x, y, z) over the given region. F(x,y,z)=x2+9 over the...

Find the trace of the plane in the given coordinate plane. 3x−9y+4z=5,yz

Determine the level of measurement of the variable. Favorite color Choose the correct level of...

How wide is the chasm between what men and women earn in the workplace? According...

Write an algebraic expression for: 6 more than a number c.

Please, can u convert 3.16 (6 repeating) to a fraction.

Evaluate the expression. P(8, 3)

In a poker hand consisting of 5 cards, find the probability of holding 3 aces.

Give an expression that generates all angles coterminal with each angle. Let n represent any...

An ideal Otto cycle has a compression ratio of 10.5, takes in air at 90...

A piece of wire 10 m long is cut into two pieces. One piece is...

Put the following equation of a line into slope intercept form, simplifying all fractions 3x+3y=24

Find the point on the hyperbola xy = 8 that is closest to the point...

Water is pumped from a lower reservoir to a higher reservoir by a pump that...

A piston–cylinder device initially contains 0.07m3 of nitrogen gas at 130 kPa and 180∘. The...

Write an algebraic expression for each word phrase. 4 more than p

A club has 25 members. a) How many ways are there to choose four members...

For each of the sets below, determine whether {2} is an element of that set....

Which expression has both 8 and n as factors?

If repetitions are not permitted (a) how many 3 digit number can be formed from...

To determine the sum of all multiples of 3 between 1 and 1000

On average, there are 3 accidents per month at one intersection. We need to find...

One number is 2 more than 3 times another. Their sum is 22. Find the...

The PMF for a flash drive with X (GB) of memory that was purchased is...

An airplane needs to reach a velocity of 203.0 km/h to takeoff. On a 2000...

A racquetball strikes a wall with a speed of 30 m/s and rebounds with a...

Assuming that the random variable x has a cumulative distribution function,F(x)={0,x<00.25x,0≤x<51,5≤xDetermine the following:a)p(x<2.8)b)p(x>1.5)c)p(x<−z)d)p(x>b)

At t = 0 a grinding wheel has an angular velocity of 24.0 rad/s. It...

How many 3/4's are in 1?

You’re driving down the highway late one night at 20 m/s when a deer steps...

Table salt contains 39.33 g of sodium per 100 g of salt. The U.S. Food...

The constant-pressure heat capacity of a sample of a perfect gas was found to vary...

Coffee is draining from a conical filter into a cylindrical coffepot at the rate of...

Cart is driven by a large propeller or fan, which can accelerate or decelerate the...

A vending machine dispenses coffee into an eight-ounce cup. The amounts of coffee dispensed into...

On an essentially frictionless, horizontal ice rink, a skater moving at 3.0 m/s encounters a...

The gage pressure in a liquid at a depth of 3 m is read to...

Consider a cylindrical specimen of a steel alloy 8.5 mm (0.33 in.) in diameter and...

Calculate the total kinetic energy, in Btu, of an object with a mass of 10...

A 0.500-kg mass on a spring has velocity as a function of time given by...

An Australian emu is running due north in a straight line at a speed of...

Another pitfall cited is expecting to improve the overall performance of a computer by improving...

You throw a glob of putty straight up toward the ceiling, which is 3.60 m...

A 0.150-kg frame, when suspended from a coil spring, stretches the spring 0.070 m. A...

A batch of 140 semiconductor chips is inspected by choosing a sample of 5 chips....

A rock climber stands on top of a 50-m-high cliff overhanging a pool of water....

A tank whose bottom is a mirror is filled with water to a depth of...

Two sites are being considered for wind power generation. In the first site, the wind...

0.250 kilogram of water at75.0∘Care contained in a tiny, inert beaker. How much ice, at...

Two boats start together and race across a 60-km-wide lake and back. Boat A goes...

A roller coaster moves 200 ft horizontally and the rises 135 ft at an angle...

A tow truck drags a stalled car along a road. The chain makes an angle...

Consider the curve created by2x2+3y2–4xy=36(a) Show thatdydx=2y−2x3y−2x(b) Calculate the slope of the line perpendicular to...

The current entering the positive terminal of a device is i(t)=6e−2t mA and the voltage...

The fastest measured pitched baseball left the pitcher’s hand at a speed of 45.0 m/s....

Calculate the total potential energy, in Btu, of an object that is 20 ft below...

A chemist in an imaginary universe, where electrons have a different charge than they do...

When jumping, a flea reaches a takeoff speed of 1.0 m/s over a distance of...

Determine the energy required to accelerate a 1300-kg car from 10 to 60 km/h on...

The deepest point in the ocean is 11 km below sea level, deeper than MT....

A golfer imparts a speed of 30.3 m/s to a ball, and it travels the...

Calculate the frequency of each of the following wavelengths of electromagnetic radiation. A) 632.8 nm...

Prove that there is a positive integer that equals the sum of the positive integers...

A hurricane wind blows across a 6.00 m×15.0 m flat roof at a speed of...

If an electron and a proton are expelled at the same time,2.0×10−10mapart (a typical atomic...

The speed of sound in air at 20 C is 344 m/s. (a) What is...

Which of the following functions f has a removable discontinuity at a? If the discontinuity...

A uniform steel bar swings from a pivot at one end with a period of...

A wind farm generator uses a two-bladed propellermounted on a pylon at a height of...

A copper calorimeter can with mass 0.100 kg contains 0.160 kgof water and 0.018 kg...

Jones figures that the total number of thousands of miles that a used auto can...

Assign a binary code in some orderly manner to the 52 playingcards. Use the minimum...

A copper pot with mass 0.500 kg contains 0.170 kg of water ata temperature of...

Ea for a certain biological reaction is 50 kJ/mol, by what factor ( how many...

When a person stands on tiptoe (a strenuous position), the position of the foot is...

A solution was prepared by dissolving 1210 mg of K3Fe(CN)6 (329.2 g/mol) in sufficient waterto...

A 58-kg skier is going down a slope oriented 35 degree abovethe horizontal. The area...

The mechanics at lincoln automotive are reboring a 6-in deepcylinder to fit a new piston....

A 0.48 kg piece of wood floats in water but is found to sinkin alcohol...

A 50-g ice cube at 0oC is heated until 45-g hasbecome water at 100oC and...

A solution containing 6.23 ppm of KMnO4 had a transmittance of 0.195 in a 1.00-cm...

A black body at 7500K consists of an opening of diameter 0.0500mm, looking into an...

A new absolute temperature scale is proposed. On thisscale the ice point of water is...

A 65.0 mm focal length converging lens is 78.0 mm away from a sharp image....

A crate of fruit with mass 35.0 kg and specific heat capacity 3650 J/Kg ....

A freezer has a thermal efficiency of 2.40. Thefreezer is to convert 1.80 kg of...

A horizontal force of 210N is exerted on a 2.0 kg discus as it rotates...

Lead has a specific heat of 0.030 cal/gC. In an insulated container, 300 grams of...

A parachutist relies on air resistance mainly on her parachute to decrease her downward velocity....

The distance between a carbon atom (m=12 u) and an oxygen atom (m + 16...

A car heading north collides at an intersection with a truckheading east. If they lock...

Water stands at a depth H in a large, open tank whose sidewalls are vertical....

The heaviest invertebrate is the giant squid, which is estimated to have a weight of...

Which of the following is a correct comment? */ Comments */ ** Comment ** /*...

The concentrated sulfuric acid we use in the laboratory is 98% H2SO4 by mass. Calculate...

Consider the reaction N2(g)+3H2(g)→2NH3(g) suppose that a particular moment during the reaction molecular hydrogen on...

use Green’s Theorem to find the counterclockwise circulation and outward flux for the field F...

  • High School Questions
  • College Questions
  • Math Solver
  • Top Questions 2
  • Term of Service
  • Payment Policy

Connect with us

Get Plainmath App

  • Google Play

Plainmath Logo

E-mail us: [email protected]

Our Service is useful for:

Plainmath is a platform aimed to help users to understand how to solve math problems by providing accumulated knowledge on different topics and accessible examples.

2023 Plainmath. All rights reserved

logo white

  • Mathematicians
  • Math Lessons
  • Square Roots
  • Math Calculators

Hard Algebra Questions – Challenging Problems and Step-by-Step Solutions

JUMP TO TOPIC

Understanding the Fundamentals of Algebra

Solving algebraic operations, linear equations and their graphs, solving quadratic equations, systems of equations, applications of algebra.

Hard Algebra Questions Challenging Problems and Step-by-Step Solutions

Algebra is a fundamental branch of mathematics that deals with symbols and the rules for manipulating these symbols . In its most basic form, it is about finding the unknowns or the variables within equations.

As a student progresses, the questions in algebra can evolve from simple linear equations to more complex problems involving multiple steps, functions, or advanced concepts. Advanced algebra questions often probe one’s understanding of concepts like polynomial functions, rational expressions, exponents, and logarithms.

Navigating the web for reliable and challenging algebra problems and solutions I’ve found to be quite a task, but essential for anyone looking to master the subject. Websites and apps aimed at providing mathematics resources offer a range of problems, from basic to complex, helping learners tackle various topics effectively.

Engaging with these platforms allows for practice and reinforcement of algebraic concepts, which is crucial for solidifying one’s understanding and proficiency in mathematics.

I have to admit, that algebra can sometimes seem like a puzzle with a missing piece. But it’s that moment of clarity when the pieces fall into place that makes solving algebra questions incredibly rewarding. Stick around as we explore some hard algebra questions along with their solutions – the satisfaction of cracking them is just around the corner.

Algebra can seem challenging, but by grasping some key concepts, I can work through even the tough problems.

Illustration of Understanding the Fundamentals of Algebra

The backbone of algebra is the equation, which is a statement that two expressions are equal, often containing an unknown quantity, usually represented by a letter like ( x ) or ( y ).

For instance, in the equation ( x + 3 = 7 ), my goal is to find the value of ( x ) that makes this statement true. To do this, I simplify the equation to find ( x ). Simplification might involve combining like terms or using inverse operations. So, in this case, I subtract 3 from both sides to isolate ( x ), yielding ( x = 4 ).

Inequalities are like equations, but instead of equality, they express a relation where one value is larger or smaller than another. This can be represented by symbols such as “>,” “<,” “≤,” or “≥.” For example, if I have ( x – 5 > 10 ), I’m looking for all values of ( x ) that make this inequality true.

Solving this, I add 5 to both sides to get ( x > 15 ).

Here’s a simple way to visualize the process of solving an inequality :

Remember, if I multiply or divide both sides of an inequality by a negative number, the direction of the inequality sign flips. So, if I had ( -2x < 8 ), by dividing both sides by -2, it becomes ( x > -4 ).

Understanding the foundation allows me to simplify and solve equations and inequalities, providing the confidence to tackle more complex algebraic questions.

When I approach algebraic operations, I prioritize understanding the core concepts—exponents, factoring, complex numbers, and simplification.

Illustration of Solving Algebraic Operations

These elements are the building blocks to solving more intricate algebra problems.

For exponents , remember that the base raised to the power of an exponent reflects how many times the base is multiplied by itself. For instance, $3^4$ means $3 \times 3 \times 3 \times 3$. When dealing with exponents, it’s essential to be familiar with the laws of exponents for simplification purposes.

Next is factoring . I look for the greatest common factor (GCF) or use techniques like the difference of squares, and the quadratic formula for trinomials. For example, factoring $x^2 – 9$ would yield $(x + 3)(x – 3)$ because it is the difference of squares.

When it comes to complex numbers , which are in the form $a + bi$, where $i$ is the imaginary unit $(i^2 = -1)$, I remember that these numbers can be added, subtracted, and multiplied just like real numbers, with special attention to the property of $i$.

Finally, simplification is a matter of combining like terms and using the distributive property where necessary. For instance, to simplify the expression $2(x + 3) + x$, I first distribute the $2$ to get $2x + 6 + x$ and combine like terms to get $3x + 6$.

By mastering these components, I set a strong foundation for tackling hard algebra questions effectively.

Solving Advanced Algebraic Equations

Advanced algebra often serves as the foundation for calculus, statistics, and even programming. Let’s take a look at some of the core types of equations and how to approach them, including linear, quadratic, and systems of equations.

I’ll start by discussing linear equations , characterized by their straight-line graphs. A basic form of a linear equation is the slope-intercept form, expressed as ( y = mx + b ), where ( m ) is the slope and ( b ) is the y-intercept. Converting to standard form , ( Ax + By = C ), may be necessary for some applications. To graph these equations, I find two points by plugging in values for ( x ) and then plotting those points. Connecting these will give me a straight line.

Moving on to quadratic equations , these are typically presented in the general form ( a$x^2$ + bx + c = 0 ). These equations form parabolas when graphed.

I can solve quadratic equations using methods such as factoring, completing the square, or using the quadratic formula, ( x = $\frac{-b \pm \sqrt{b^2 – 4ac}}{2a}$ ). Each method has its own use cases; for example, factoring is efficient when the equation easily decomposes into binomials.

Lastly, I’ll tackle systems of equations , where I have to find the solution set of two or more equations. When solving linear systems , I can use methods such as substitution, elimination, or graphing.

Substitution involves solving one equation for a variable and then substituting that expression into the other equation, while elimination adds or subtracts equations to eliminate a variable. Graphing requires drawing lines of each equation to find their point of intersection.

These are standard approaches that I often use to find the solutions to various types of algebraic equations.

Algebra has countless applications in the real world, and one of the most practical applications is in calculating areas and perimeters of geometric shapes. Let me guide you through some examples:

Area of a Rectangle : To find the area of a rectangle, I use the formula:

$$ A = l \times w $$

where ( A ) represents the area, ( l ) is the length, and ( w ) is the width.

Perimeter of a Rectangle : Similarly, finding the perimeter is just as straightforward with the equation:

$$ P = 2(l + w) $$

where ( P ) stands for the perimeter.

Area of a Circle : When I look at circles, the area is found using:

$$ A = \pi r^2 $$

Here, ( A ) is the area and ( r ) is the radius of the circle.

Circumference of a Circle: And for the circumference, which is the perimeter of a circle, the formula is:

$$ C = 2\pi r $$

where ( C ) is the circumference.

Understanding these formulas allows me to solve real-life problems, such as calculating the amount of paint needed to cover a wall or the fencing required for a circular garden.

With the help of algebra, I can create equations from word problems and solve them; the results help me make informed decisions and solve practical problems efficiently.

In our exploration of challenging algebra questions , I’ve presented a range of problems that test our understanding and application of algebraic concepts. From the intricacies of trigonometric equations to the puzzles of algebraic word problems, the journey through these issues illuminates the beauty of mathematics.

I sincerely hope that the solutions and strategies discussed have helped shed light on the complexity and elegance of algebra. Remember, practicing these tough problems not only sharpens your skills but also prepares you for more advanced mathematical challenges.

Whether you’re preparing for exams or simply indulging in the joy of problem-solving, the resilience and adaptability gained here are invaluable.

Algebra does not always yield its secrets easily, but patience and persistence in working through these tough problems can be immensely rewarding. Keep this momentum going, continue nurturing your mathematical curiosity, and let your confidence grow with each equation you solve.

  • Pre Calculus
  • Probability
  • Sets & Set Theory
  • Trigonometry

PrepScholar

Choose Your Test

Sat / act prep online guides and tips, the hardest act math question types.

Feature_chess-1

You’ve studied and now you’re geared up for the ACT math section (whoo!). But are you ready to take on the most challenging math questions the ACT has to offer?

If you're up for the challenge, preparation starts by understanding the toughest question types you'll face on the ACT . So if you’ve got your heart set on that perfect score (or you’re just really curious to see what the most difficult questions will be), then this is the guide for you.

We’ve put together what we believe to be the most most difficult math question types the ACT has given to students in the past 10 years, complete with strategies and answer explanations for each . These are all real ACT math questions, so understanding and studying them is one of the best ways to improve your current ACT score and knock it out of the park on test day.

Let's dive in!

Brief Overview of the ACT Math Section

Like all topic sections on the ACT, the ACT math section is one complete section that you will take all at once. It will always be the second section on the test and you will have 60 minutes to completed 60 questions .

The ACT arranges its questions in order of ascending difficulty. As a general rule of thumb, questions 1-20 will be considered “easy,” questions 21-40 will be considered “medium-difficulty,” and questions 41-60 will be considered “difficult.”

The way the ACT classifies “easy” and “difficult” is by how long it takes the average student to solve a problem as well as the percentage of students who answer the question correctly. The faster and more accurately the average student solves a problem, the “easier” it is. The longer it takes to solve a problem and the fewer people who answer it correctly, the more “difficult” the problem.

(Note: we put the words “easy” and “difficult” in quotes for a reason—everyone has different areas of math strength and weakness, so not everyone will consider an “easy” question easy or a “difficult” question difficult. These categories are averaged across many students for a reason and not every student will fit into this exact mold.)

All that being said, with very few exceptions, the most difficult ACT math problems will be clustered in the far end of the test. Besides just their placement on the test, these questions share a few other commonalities. We'll take a look at example questions and how to solve them and at what these types of questions have in common, in just a moment.

But First: Should You Be Focusing on the Hardest Math Questions Right Now?

If you’re just getting started in your study prep, definitely stop and make some time to take a full practice test to gauge your current score level and percentile. The absolute best way to assess your current level is to simply take the ACT as if it were real , keeping strict timing and working straight through (we know—not the most thrilling way to spend four hours, but it will help tremendously in the long run). So print off one of the free ACT practice tests available online and then sit down to take it all at once.

Once you’ve got a good idea of your current level and percentile ranking, you can set milestones and goals for your ultimate ACT score. If you’re currently scoring in the 0-16 or 17-24 range , your best best is to first check out our guides on using the key math strategies of plugging in numbers and plugging in answers to help get your score up to where you want it to. Only once you've practiced and successfully improved your scores on questions 1-40 should you start in trying to tackle the most difficult math problems on the test.

If, however, you are already scoring a 25 or above and want to test your mettle for the real ACT, then definitely proceed to the rest of this guide . If you’re aiming for perfect (or close to) , then you’ll need to know what the most difficult ACT math questions look like and how to solve them. And luckily, that’s exactly what we’re here for.

body_green_light

Hardest Types of ACT Math Questions

Now that you're positive that you should be trying out these difficult math questions, let’s get right to it! We've broken hard ACT questions into sections based on type. Additionally, the answers to these questions are in a separate section below, so you can go through them all at once without getting spoiled.

Type #1: Graph Interpretation

Knowing how to read and interpret graphs can be tricky, especially since that information can also require you to use other math skills, like finding points on a line or calculating angles.

To unpack a graph question, first ask yourself—what is the prompt actually asking me to do? Figuring out the core mathematical concept behind the graphed information will make it easier to answer the question.

Check out the two graph interpretation questions below. Notice that both are asking you to interpret the graph data by using other mathematical concepts! With that in mind, try solving them on your own to get practice solving these tough questions. (Remember: we've included the answers below!)

Graph Interpretation Questions

QUESTION #1:

In the figure below, line $q$ in the standard $(x,y)$ coordinate plane has equation $-2x+y=1$ and intersects line $r$, which is distinct from line $q$, at a point on the $x$-axis. The angles $∠a$ and $∠b$ formed by these lines and the $x$-axis are congruent. What is the slope of line $r$?

body-graph-1-1

G. $-{1}/2$

K. Cannot be determined

First, turn our given equation for line q into proper slope-intercept form .

Now, we are told that the angles the lines form are congruent. This means that the slopes of the lines will be opposites of one another [Note: perpendicular lines have opposite reciprocal slopes, so do NOT get these concepts confused!].

Since we have already established that the slope of line $q$ is 2, line $r$ must have a slope of -2.

Our final answer is F , -2

QUESTION #2:

The graph of the equation $h=-at^2 + bt + c$, which describes how the height, $h$, of a hit baseball changes over time, $t$, is shown below.

body-graph-2

If you alter only this equation's $c$ term, which gives the height at time $t=0$, the alteration has an effect on which of the following?

I. The $h$-intercept II. The maximum value of $h$ III. The $t$-intercept

H. III only

J. I and III only

K. I, II, and III

The equation we are given ($−at^2+bt+c$) is a parabola and we are told to describe what happens when we change $c$ (the $y$-intercept).

From what we know about functions and function translations , we know that changing the value of $c$ will shift the entire parabola upwards or downwards, which will change not only the $y$-intercept (in this case called the "$h$-intercept"), but also the maximum height of the parabola as well as its $x$-intercept (in this case called the $t$-intercept). You can see this in action when we raise the value of the $y$-intercept of our parabola.

body-question-2-graphs

Options I, II, and III are all correct.

Our final answer is K, I, II, and III

Type #2: Trigonometry Questions

Trigonometry questions are tough for a number of reasons. First, they require you to memorize formulas and values in order to properly interpret questions. There's also a lot of conversion involved: you have to know how (and when!) to convert radians to degrees and visa versa.

And don't forget functions! Trigonometry uses non-linear functions, which is tough because its graph isn't a line or part of a line. Because trigonometry combines so many advanced math concepts, they can trip you up.

Test your trig skills on the advanced questions below. Try to work the, without peeking at the answers!

Trigonometry Questions

The equations of the two graphs shown below are $y_1(t) = a_1\sin (b_1t)$ and $y_2(t)=a_2\cos(b_2t)$, where the constants $b_1$ and $b_2$ are both positive real numbers.

body-graph-3

Which of the following statements is true of the constants $a_1$ and $a_2$?

A. $0 < a_1 < a_2$

B. $0 < a_2 < a_1$

C. $a_1 < 0 < a_2$

D. $a_1 < a_2 < 0$

E. $a_2 < a_1 < 0$

The position of the a values (in front of the sine and cosine) means that they determine the amplitude (height) of the graphs. The larger the a value, the taller the amplitude.

Since each graph has a height larger than 0, we can eliminate answer choices C, D, and E.

Because $y_1$ is taller than $y_2$, it means that $y_1$ will have the larger amplitude. The $y_1$ graph has an amplitude of $a_1$ and the $y_2$ graph has an amplitude of $a_2$, which means that $a_1$ will be larger than $a_2$.

Our final answer is B , $0 < a_2 < a_1$.

For x such that $0 < x <π/2$, the expression ${√{1 – \cos^2 x}/{\sin x} + {√{1 – \sin^2 x}/{\cos x}$ is equivalent to:

J. $-\tan{x}$

K. $\sin{2x}$

If you remember your trigonometry shortcuts , you know that $1−{\cos^2}x+{\cos^2}x=1$. This means, then, that ${\sin^2}x=1−{\cos^2}x$ (and that ${\cos^2}x=1−{\sin^2}x$).

So we can replace our $1−{\cos^2}x$ in our first numerator with ${\sin^2}x$. We can also replace our $1−{\sin^2}x$ in our second numerator with ${\cos^2}x$. Now our expression will look like this:

${√{\sin^2 x}/{\sin x}+{√{\cos^2 x}/{\cos x }$

We also know that the square root of a value squared will cancel out to be the original value alone (for example,$√{2^2}=2$), so our expression will end up as:

$={\sin{x}}/{\sin{x}}+{\cos{x}}/{\cos{x}}$

Or, in other words:

Our final answer is H , 2.

Type #3: Logarithms

Logarithms can be hard because they require you to differentiate between exponential and logarithmic questions and understand logarithmic notation. If you can't read the question, you can't answer it, after all!

You'll also need to understand exponents to work with logarithms since the two concepts are intertwined. Working through the following equation can help you learn how to manage these tough problems.

Logarithm Questions

What is the real value of $x$ in the equation $\log_2{24} – \log_2{3} = \log_5{x}$?

ANSWER #1: If you’ve brushed up on your log basics, you know that $\log_b(m/n)=\log_b(m)−\log_b(n)$. This means that we can work this backwards and convert our first expression into:

$\log_2(24)-\log_2(3)=\log_2(24/3)$

$=\log_2(8)$

We also know that a log is essentially asking: "To what power does the base need to raised in order to achieve this certain value?" In this particular case, we are asking: "To which power must 2 be raised to equal 8?" The answer to this question is 3, since $(2^3=8)$, so $\log_2(8)=3$

Now this expression is equal to $\log_5(x)$, which means that we must also raise our 5 to the power of 3 in order to achieve $x$. So:

$3=\log_5(x)$

Our final answer is J , 125.

Type #4: Functions

Functions are one of those question types that are tough for some students but easier for others. That's because as functions get more complex, so does finding the correct answer. If you understand how functions work, you can break down more complex problems into simpler steps.;

Try your hand at the hard function question below to test your knowledge.

Function Questions

The functions $y = \sin x \and y = \sin(x + a) + b$, for constants $a$ and $b$, are graphed in the standard $(x,y)$ coordinate plane below. The functions have the same maximum value. One of the following statements about the values of $a$ and $b$ is true. Which statement is it?

body-graph-4

A. $a < 0$ and $b = 0$

B. $a < 0$ and $b > 0$

C. $a = 0$ and $b > 0$

D. $a > 0$ and $b< 0$

E. $a > 0$ and $b> 0$

The only difference between our function graphs is a horizontal shift , which means that our b value (which would determine the vertical shift of a sine graph) must be 0.

Just by using this information, we can eliminate every answer choice but A, as that is the only answer with $b=0$. For expediency's sake, we can stop here.

Our final answer is A , $a<0$ and $b=0$

Advanced ACT Math note : An important word in ACT Math questions is "must," as in "something must be true." If a question doesn't have this word, then the answer only has to be true for a particular instance (that is, it could be true.)

In this case, the majority of the time, for a graph to shift horizontally to the left requires $a>0$. However, because $\sin(x)$ is a periodic graph, $\sin(x+a)$ would shift horizontally to the left if $a=-π/2$, which means that for at least one value of the constant $a$ where $a<0$, answer A is true. In contrast, there are no circumstances under which the graphs could have the same maximum value (as stated in the question text) but have the constant $b≠0$.

As we state above, though, on the real ACT, once you reach the conclusion that $b=0$ and note that only one answer choice has that as part of it, you should stop there. Don't get distracted into wasting more time on this question by the bait of $a<0$!

body_finish-1

Whoo! You made it to the finish line—go you!

What Do the Hardest ACT Math Questions Have in Common?

Now, lastly, before we get to the questions themselves, it is important to understand what makes these hard questions “hard.” By doing so, you will be able to both understand and solve similar questions when you see them on test day, as well as have a better strategy for identifying and correcting your previous ACT math errors.

In this section, we will look at what these questions have in common and give examples for each type. In the next section, we will give you all 21 of the most difficult questions as well as answer explanations for each question, including the ones we use as examples here.

Some of the reasons why the hardest math questions are the hardest math questions are because the questions do the following:

#1: Test Several Mathematical Concepts at Once

EXAMPLE QUESTION:

Consider the functions $f(x) = √{x}$ and $g(x) = 7x + b$. In the standard $(x,y)$ coordinate plane, $y = f(g(x))$ passes through $(4,6)$. What is the value of $b$?

E. $4 – {7√6}$

As you can see, this question deals with a combination of functions and coordinate geometry points.

#2: Require Multiple Steps

Many of the most difficult ACT Math questions primarily test just one basic mathematical concept. What makes them difficult is that you have to work through multiple steps in order to solve the problem. (Remember: the more steps you need to take, the easier it is to mess up somewhere along the line!)

An integer from 100 through 999, inclusive, is to be chosen at random. What is the probability that the number chosen will have 0 as at least 1 digit?

A. $19/900$

B. $81/900$

C. $90/900$

D. $171/900$

E. $271/{1{,}000}$

Though it may sound like a simple probability question, you must run through a long list of numbers with 0 as a digit. This leaves room for calculation errors along the way.

#3: Use Concepts You're Less Familiar With

Another reason the questions we picked are so difficult for many students is that they focus on subjects you likely have limited familiarity with. For example, many students are less familiar with algebraic and/or trigonometric functions than they are with fractions and percentages, so most function questions are considered “high difficulty” problems.

The functions $y =$ sin$x$ and $y =$ sin$(x + a) + b$, for constants $a$ and $b$, are graphed in the standard $(x,y)$ coordinate plane below. The functions have the same maximum value. One of the following statements about the values of $a$ and $b$ is true. Which statement is it?

body-graph-5

D. $a > 0$ and $b < 0$

E. $a > 0$ and $b > 0$

Many students get intimidated with function problems because they lack familiarity with these types of questions.

#4: Give You Convoluted or Wordy Scenarios to Work Through

Some of the most difficult ACT questions are not so much mathematically difficult as they are simply tough to decode. Especially as you near the end of the math section, it can be easy to get tired and misread or misunderstand exactly what the question is even asking you to find.

In the complex plane, the horizontal axis is called the real axis and the vertical axis is called the imaginary axis. The complex number $a + bi$ graphed in the complex plane is comparable to the point $(a,b)$ graphed in the standard $(x,y)$ coordinate plane.

The modulus of the complex number $a + bi$ is given by ${√{a^2+b^2}$ . Which of the complex numbers $z_1$ , $z_2$ , $z_3$ , $z_4$ , and $z_5$ below has the greatest modulus?

body-graph-6

This question presents students with a completely foreign mathematical concept and can eat up the limited available time.

#5: Appear Deceptively Easy

Remember—if a question is located at the very end of the math section, it means that a lot of students will likely make mistakes on it. Look out for these questions, which may give a false appearance of being easy in order to lure you into falling for bait answers. Be careful!

Which of the following number line graphs shows the solution set to the inequality $|x–5|<1$ ?

body-graph-7

This question may seem easy, but, because of how it is presented, many students will fall for one of the bait answers.

#6: Involve Multiple Variables or Hypotheticals

The more difficult ACT Math questions tend to use many different variables—both in the question and in the answer choices—or present hypotheticals. (Note: The best way to solve these types of questions—questions that use multiple integers in both the problem and in the answer choices—is to use the strategy of plugging in numbers .)

If $x$ and $y$ are real numbers such that $x > 1$ and $y < -1$, then which of the following inequalities must be true?

A. ${x/y} > 1$

B. ${|x|^2} > |y|$

C. ${x/3} – 5 > {y/3} – 5$

D. ${x^2} + 1 > {y^2} + 1$

E. ${x^{-2}} > {y^{-2}}$

Working with hypothetical scenarios and variables is almost always more challenging than working with numbers.

body_bakery

The Take-Aways

Taking the ACT is a long journey; the more you get acclimated to it ahead of time, the better you'll feel on test day. And knowing how to handle the hardest questions the test-makers have ever given will make taking your ACT seem a lot less daunting.

If you felt that these questions were easy , make sure not underestimate the effect of adrenaline and fatigue on your ability to solve your math problems. As you study, try to follow the timing guidelines (an average of one minute per ACT math question) and try to take full tests whenever possible. This is the best way to recreate the actual testing environment so that you can prepare for the real deal.

If you felt these questions were challenging , be sure to strengthen your math knowledge by checking out our individual math topic guides for the ACT . There, you'll see more detailed explanations of the topics in question as well as more detailed answer breakdowns.

What’s Next?

Felt that these questions were harder than you were expecting? Take a look at all the topics covered on the ACT math section and then note which sections you had particular difficulty in. Next, take a look at our individual math guides to help you strengthen any of those weak areas.

Running out of time on the ACT math section? Our guide to helping you beat the clock will help you finish those math questions on time.

Aiming for a perfect score? Check out our guide on how to get a perfect 36 on the ACT math section , written by a perfect-scorer.

Want to improve your ACT score by 4 points?

Check out our best-in-class online ACT prep classes . We guarantee your money back if you don't improve your ACT score by 4 points or more.

Our classes are entirely online, and they're taught by ACT experts . If you liked this article, you'll love our classes. Along with expert-led classes, you'll get personalized homework with thousands of practice problems organized by individual skills so you learn most effectively. We'll also give you a step-by-step, custom program to follow so you'll never be confused about what to study next.

Try it risk-free today:

Get 4 More Points on Your ACT, GUARANTEED

Courtney scored in the 99th percentile on the SAT in high school and went on to graduate from Stanford University with a degree in Cultural and Social Anthropology. She is passionate about bringing education and the tools to succeed to students from all backgrounds and walks of life, as she believes open education is one of the great societal equalizers. She has years of tutoring experience and writes creative works in her free time.

Student and Parent Forum

Our new student and parent forum, at ExpertHub.PrepScholar.com , allow you to interact with your peers and the PrepScholar staff. See how other students and parents are navigating high school, college, and the college admissions process. Ask questions; get answers.

Join the Conversation

Ask a Question Below

Have any questions about this article or other topics? Ask below and we'll reply!

Improve With Our Famous Guides

  • For All Students

The 5 Strategies You Must Be Using to Improve 160+ SAT Points

How to Get a Perfect 1600, by a Perfect Scorer

Series: How to Get 800 on Each SAT Section:

Score 800 on SAT Math

Score 800 on SAT Reading

Score 800 on SAT Writing

Series: How to Get to 600 on Each SAT Section:

Score 600 on SAT Math

Score 600 on SAT Reading

Score 600 on SAT Writing

Free Complete Official SAT Practice Tests

What SAT Target Score Should You Be Aiming For?

15 Strategies to Improve Your SAT Essay

The 5 Strategies You Must Be Using to Improve 4+ ACT Points

How to Get a Perfect 36 ACT, by a Perfect Scorer

Series: How to Get 36 on Each ACT Section:

36 on ACT English

36 on ACT Math

36 on ACT Reading

36 on ACT Science

Series: How to Get to 24 on Each ACT Section:

24 on ACT English

24 on ACT Math

24 on ACT Reading

24 on ACT Science

What ACT target score should you be aiming for?

ACT Vocabulary You Must Know

ACT Writing: 15 Tips to Raise Your Essay Score

How to Get Into Harvard and the Ivy League

How to Get a Perfect 4.0 GPA

How to Write an Amazing College Essay

What Exactly Are Colleges Looking For?

Is the ACT easier than the SAT? A Comprehensive Guide

Should you retake your SAT or ACT?

When should you take the SAT or ACT?

Stay Informed

very hard problem solving questions

Get the latest articles and test prep tips!

Looking for Graduate School Test Prep?

Check out our top-rated graduate blogs here:

GRE Online Prep Blog

GMAT Online Prep Blog

TOEFL Online Prep Blog

Holly R. "I am absolutely overjoyed and cannot thank you enough for helping me!”

10 Hard Math Problems That Continue to Stump Even the Brightest Minds

Maybe you’ll have better luck.

thinking emoji with math equations on a chalkboard in the background

For now, you can take a crack at the hardest math problems known to man, woman, and machine. For more puzzles and brainteasers, check out Puzzmo . ✅ More from Popular Mechanics :

  • To Create His Geometric Artwork, M.C. Escher Had to Learn Math the Hard Way
  • Fourier Transforms: The Math That Made Color TV Possible
  • The Game of Trees is a Mad Math Theory That Is Impossible to Prove

The Collatz Conjecture

hardest math problems

In September 2019, news broke regarding progress on this 82-year-old question, thanks to prolific mathematician Terence Tao. And while the story of Tao’s breakthrough is promising, the problem isn’t fully solved yet.

A refresher on the Collatz Conjecture : It’s all about that function f(n), shown above, which takes even numbers and cuts them in half, while odd numbers get tripled and then added to 1. Take any natural number, apply f, then apply f again and again. You eventually land on 1, for every number we’ve ever checked. The Conjecture is that this is true for all natural numbers (positive integers from 1 through infinity).

✅ Down the Rabbit Hole: The Math That Helps the James Webb Space Telescope Sit Steady in Space

Tao’s recent work is a near-solution to the Collatz Conjecture in some subtle ways. But he most likely can’t adapt his methods to yield a complete solution to the problem, as Tao subsequently explained. So, we might be working on it for decades longer.

The Conjecture lives in the math discipline known as Dynamical Systems , or the study of situations that change over time in semi-predictable ways. It looks like a simple, innocuous question, but that’s what makes it special. Why is such a basic question so hard to answer? It serves as a benchmark for our understanding; once we solve it, then we can proceed onto much more complicated matters.

The study of dynamical systems could become more robust than anyone today could imagine. But we’ll need to solve the Collatz Conjecture for the subject to flourish.

Goldbach’s Conjecture

hardest math problems

One of the greatest unsolved mysteries in math is also very easy to write. Goldbach’s Conjecture is, “Every even number (greater than two) is the sum of two primes.” You check this in your head for small numbers: 18 is 13+5, and 42 is 23+19. Computers have checked the Conjecture for numbers up to some magnitude. But we need proof for all natural numbers.

Goldbach’s Conjecture precipitated from letters in 1742 between German mathematician Christian Goldbach and legendary Swiss mathematician Leonhard Euler , considered one of the greatest in math history. As Euler put it, “I regard [it] as a completely certain theorem, although I cannot prove it.”

✅ Dive In: The Math Behind Our Current Theory of Human Color Perception Is Wrong

Euler may have sensed what makes this problem counterintuitively hard to solve. When you look at larger numbers, they have more ways of being written as sums of primes, not less. Like how 3+5 is the only way to break 8 into two primes, but 42 can broken into 5+37, 11+31, 13+29, and 19+23. So it feels like Goldbach’s Conjecture is an understatement for very large numbers.

Still, a proof of the conjecture for all numbers eludes mathematicians to this day. It stands as one of the oldest open questions in all of math.

The Twin Prime Conjecture

hardest math problems

Together with Goldbach’s, the Twin Prime Conjecture is the most famous in Number Theory—or the study of natural numbers and their properties, frequently involving prime numbers. Since you've known these numbers since grade school, stating the conjectures is easy.

When two primes have a difference of 2, they’re called twin primes. So 11 and 13 are twin primes, as are 599 and 601. Now, it's a Day 1 Number Theory fact that there are infinitely many prime numbers. So, are there infinitely many twin primes? The Twin Prime Conjecture says yes.

Let’s go a bit deeper. The first in a pair of twin primes is, with one exception, always 1 less than a multiple of 6. And so the second twin prime is always 1 more than a multiple of 6. You can understand why, if you’re ready to follow a bit of heady Number Theory.

✅ Keep Learning: If We Draw Graphs Like This, We Can Change Computers Forever

All primes after 2 are odd. Even numbers are always 0, 2, or 4 more than a multiple of 6, while odd numbers are always 1, 3, or 5 more than a multiple of 6. Well, one of those three possibilities for odd numbers causes an issue. If a number is 3 more than a multiple of 6, then it has a factor of 3. Having a factor of 3 means a number isn’t prime (with the sole exception of 3 itself). And that's why every third odd number can't be prime.

How’s your head after that paragraph? Now imagine the headaches of everyone who has tried to solve this problem in the last 170 years.

The good news is that we’ve made some promising progress in the last decade. Mathematicians have managed to tackle closer and closer versions of the Twin Prime Conjecture. This was their idea: Trouble proving there are infinitely many primes with a difference of 2? How about proving there are infinitely many primes with a difference of 70,000,000? That was cleverly proven in 2013 by Yitang Zhang at the University of New Hampshire.

For the last six years, mathematicians have been improving that number in Zhang’s proof, from millions down to hundreds. Taking it down all the way to 2 will be the solution to the Twin Prime Conjecture. The closest we’ve come —given some subtle technical assumptions—is 6. Time will tell if the last step from 6 to 2 is right around the corner, or if that last part will challenge mathematicians for decades longer.

The Riemann Hypothesis

hardest math problems

Today’s mathematicians would probably agree that the Riemann Hypothesis is the most significant open problem in all of math. It’s one of the seven Millennium Prize Problems , with $1 million reward for its solution. It has implications deep into various branches of math, but it’s also simple enough that we can explain the basic idea right here.

There is a function, called the Riemann zeta function, written in the image above.

For each s, this function gives an infinite sum, which takes some basic calculus to approach for even the simplest values of s. For example, if s=2, then 𝜁(s) is the well-known series 1 + 1/4 + 1/9 + 1/16 + …, which strangely adds up to exactly 𝜋²/6. When s is a complex number—one that looks like a+b𝑖, using the imaginary number 𝑖—finding 𝜁(s) gets tricky.

So tricky, in fact, that it’s become the ultimate math question. Specifically, the Riemann Hypothesis is about when 𝜁(s)=0; the official statement is, “Every nontrivial zero of the Riemann zeta function has real part 1/2.” On the plane of complex numbers, this means the function has a certain behavior along a special vertical line. The hypothesis is that the behavior continues along that line infinitely.

✅ Stay Curious: How to Paint a Room Using Math

The Hypothesis and the zeta function come from German mathematician Bernhard Riemann, who described them in 1859. Riemann developed them while studying prime numbers and their distribution. Our understanding of prime numbers has flourished in the 160 years since, and Riemann would never have imagined the power of supercomputers. But lacking a solution to the Riemann Hypothesis is a major setback.

If the Riemann Hypothesis were solved tomorrow, it would unlock an avalanche of further progress. It would be huge news throughout the subjects of Number Theory and Analysis. Until then, the Riemann Hypothesis remains one of the largest dams to the river of math research.

The Birch and Swinnerton-Dyer Conjecture

hardest math problems

The Birch and Swinnerton-Dyer Conjecture is another of the six unsolved Millennium Prize Problems, and it’s the only other one we can remotely describe in plain English. This Conjecture involves the math topic known as Elliptic Curves.

When we recently wrote about the toughest math problems that have been solved , we mentioned one of the greatest achievements in 20th-century math: the solution to Fermat’s Last Theorem. Sir Andrew Wiles solved it using Elliptic Curves. So, you could call this a very powerful new branch of math.

✅ The Latest: Mathematicians Discovered Something Mind-Blowing About the Number 15

In a nutshell, an elliptic curve is a special kind of function. They take the unthreatening-looking form y²=x³+ax+b. It turns out functions like this have certain properties that cast insight into math topics like Algebra and Number Theory.

British mathematicians Bryan Birch and Peter Swinnerton-Dyer developed their conjecture in the 1960s. Its exact statement is very technical, and has evolved over the years. One of the main stewards of this evolution has been none other than Wiles. To see its current status and complexity, check out this famous update by Wells in 2006.

The Kissing Number Problem

hardest math problems

A broad category of problems in math are called the Sphere Packing Problems. They range from pure math to practical applications, generally putting math terminology to the idea of stacking many spheres in a given space, like fruit at the grocery store. Some questions in this study have full solutions, while some simple ones leave us stumped, like the Kissing Number Problem.

When a bunch of spheres are packed in some region, each sphere has a Kissing Number, which is the number of other spheres it’s touching; if you’re touching 6 neighboring spheres, then your kissing number is 6. Nothing tricky. A packed bunch of spheres will have an average kissing number, which helps mathematically describe the situation. But a basic question about the kissing number stands unanswered.

✅ Miracles Happen: Mathematicians Finally Make a Breakthrough on the Ramsey Number

First, a note on dimensions. Dimensions have a specific meaning in math: they’re independent coordinate axes. The x-axis and y-axis show the two dimensions of a coordinate plane. When a character in a sci-fi show says they’re going to a different dimension, that doesn’t make mathematical sense. You can’t go to the x-axis.

A 1-dimensional thing is a line, and 2-dimensional thing is a plane. For these low numbers, mathematicians have proven the maximum possible kissing number for spheres of that many dimensions. It’s 2 when you’re on a 1-D line—one sphere to your left and the other to your right. There’s proof of an exact number for 3 dimensions, although that took until the 1950s.

Beyond 3 dimensions, the Kissing Problem is mostly unsolved. Mathematicians have slowly whittled the possibilities to fairly narrow ranges for up to 24 dimensions, with a few exactly known, as you can see on this chart . For larger numbers, or a general form, the problem is wide open. There are several hurdles to a full solution, including computational limitations. So expect incremental progress on this problem for years to come.

The Unknotting Problem

hardest math problems

The simplest version of the Unknotting Problem has been solved, so there’s already some success with this story. Solving the full version of the problem will be an even bigger triumph.

You probably haven’t heard of the math subject Knot Theory . It ’s taught in virtually no high schools, and few colleges. The idea is to try and apply formal math ideas, like proofs, to knots, like … well, what you tie your shoes with.

For example, you might know how to tie a “square knot” and a “granny knot.” They have the same steps except that one twist is reversed from the square knot to the granny knot. But can you prove that those knots are different? Well, knot theorists can.

✅ Up Next: The Amazing Math Inside the Rubik’s Cube

Knot theorists’ holy grail problem was an algorithm to identify if some tangled mess is truly knotted, or if it can be disentangled to nothing. The cool news is that this has been accomplished! Several computer algorithms for this have been written in the last 20 years, and some of them even animate the process .

But the Unknotting Problem remains computational. In technical terms, it’s known that the Unknotting Problem is in NP, while we don ’ t know if it’s in P. That roughly means that we know our algorithms are capable of unknotting knots of any complexity, but that as they get more complicated, it starts to take an impossibly long time. For now.

If someone comes up with an algorithm that can unknot any knot in what’s called polynomial time, that will put the Unknotting Problem fully to rest. On the flip side, someone could prove that isn’t possible, and that the Unknotting Problem’s computational intensity is unavoidably profound. Eventually, we’ll find out.

The Large Cardinal Project

hardest math problems

If you’ve never heard of Large Cardinals , get ready to learn. In the late 19th century, a German mathematician named Georg Cantor figured out that infinity comes in different sizes. Some infinite sets truly have more elements than others in a deep mathematical way, and Cantor proved it.

There is the first infinite size, the smallest infinity , which gets denoted ℵ₀. That’s a Hebrew letter aleph; it reads as “aleph-zero.” It’s the size of the set of natural numbers, so that gets written |ℕ|=ℵ₀.

Next, some common sets are larger than size ℵ₀. The major example Cantor proved is that the set of real numbers is bigger, written |ℝ|>ℵ₀. But the reals aren’t that big; we’re just getting started on the infinite sizes.

✅ More Mind-Blowing Stuff: Mathematicians Discovered a New 13-Sided Shape That Can Do Remarkable Things

For the really big stuff, mathematicians keep discovering larger and larger sizes, or what we call Large Cardinals. It’s a process of pure math that goes like this: Someone says, “I thought of a definition for a cardinal, and I can prove this cardinal is bigger than all the known cardinals.” Then, if their proof is good, that’s the new largest known cardinal. Until someone else comes up with a larger one.

Throughout the 20th century, the frontier of known large cardinals was steadily pushed forward. There’s now even a beautiful wiki of known large cardinals , named in honor of Cantor. So, will this ever end? The answer is broadly yes, although it gets very complicated.

In some senses, the top of the large cardinal hierarchy is in sight. Some theorems have been proven, which impose a sort of ceiling on the possibilities for large cardinals. But many open questions remain, and new cardinals have been nailed down as recently as 2019. It’s very possible we will be discovering more for decades to come. Hopefully we’ll eventually have a comprehensive list of all large cardinals.

What’s the Deal with 𝜋+e?

hardest math problems

Given everything we know about two of math’s most famous constants, 𝜋 and e , it’s a bit surprising how lost we are when they’re added together.

This mystery is all about algebraic real numbers . The definition: A real number is algebraic if it’s the root of some polynomial with integer coefficients. For example, x²-6 is a polynomial with integer coefficients, since 1 and -6 are integers. The roots of x²-6=0 are x=√6 and x=-√6, so that means √6 and -√6 are algebraic numbers.

✅ Try It Yourself: Can You Solve This Viral Brain Teaser From TikTok?

All rational numbers, and roots of rational numbers, are algebraic. So it might feel like “most” real numbers are algebraic. Turns out, it’s actually the opposite. The antonym to algebraic is transcendental, and it turns out almost all real numbers are transcendental—for certain mathematical meanings of “almost all.” So who’s algebraic , and who’s transcendental?

The real number 𝜋 goes back to ancient math, while the number e has been around since the 17th century. You’ve probably heard of both, and you’d think we know the answer to every basic question to be asked about them, right?

Well, we do know that both 𝜋 and e are transcendental. But somehow it’s unknown whether 𝜋+e is algebraic or transcendental. Similarly, we don’t know about 𝜋e, 𝜋/e, and other simple combinations of them. So there are incredibly basic questions about numbers we’ve known for millennia that still remain mysterious.

Is 𝛾 Rational?

hardest math problems

Here’s another problem that’s very easy to write, but hard to solve. All you need to recall is the definition of rational numbers.

Rational numbers can be written in the form p/q, where p and q are integers. So, 42 and -11/3 are rational, while 𝜋 and √2 are not. It’s a very basic property, so you’d think we can easily tell when a number is rational or not, right?

Meet the Euler-Mascheroni constant 𝛾, which is a lowercase Greek gamma. It’s a real number, approximately 0.5772, with a closed form that’s not terribly ugly; it looks like the image above.

✅ One More Thing: Teens Have Proven the Pythagorean Theorem With Trigonometry. That Should Be Impossible

The sleek way of putting words to those symbols is “gamma is the limit of the difference of the harmonic series and the natural log.” So, it’s a combination of two very well-understood mathematical objects. It has other neat closed forms, and appears in hundreds of formulas.

But somehow, we don’t even know if 𝛾 is rational. We’ve calculated it to half a trillion digits, yet nobody can prove if it’s rational or not. The popular prediction is that 𝛾 is irrational. Along with our previous example 𝜋+e, we have another question of a simple property for a well-known number, and we can’t even answer it.

Headshot of Dave Linkletter

Dave Linkletter is a Ph.D. candidate in Pure Mathematics at the University of Nevada, Las Vegas. His research is in Large Cardinal Set Theory. He also teaches undergrad classes, and enjoys breaking down popular math topics for wide audiences.

preview for Popular Mechanics All Sections

.css-cuqpxl:before{padding-right:0.3125rem;content:'//';display:inline;} Pop Mech Pro .css-xtujxj:before{padding-left:0.3125rem;content:'//';display:inline;}

retired us army brig gen andrew hilmes shares his stories about staff sgt stevon booker during the m10 booker dedication ceremony at aberdeen proving ground, in aberdeen, md, april 18, 2024 the m10 booker combat vehicle delivers overwhelming precision firepower to the infantry brigade, allowing it to maintain momentum and freedom of action against enemy forces as part of the dedication of the m10 booker combat vehicle in their name, us army pvt robert d booker, a medal of honor recipient, and infantryman, assigned to the 133rd infantry regiment, 34th infantry division, during world war ii, and staff sgt booker, a distinguished service cross recipient, and tank crewman, assigned to alpha company, 1st battalion, 64th armor regiment, 3rd infantry division, in support of operation iraqi freedom, were recognized and honored for their ultimate sacrifice, heroism and commitment to service and country, represented by family members during the ceremony us army photo by christopher kaufmann

Underwater UFO is a Threat, Says Ex-Navy Officer

car keys and key ring

DIY Car Key Programming: Why Pay the Dealer?

using induction to heat a frozen nut

Use Induction Heat to Break Free Rusted Bolts

front brake pads being replaced

How to Replace Your Car’s Brakes

a jet on the runway

The Air Force is Resurrecting a B-1 Bomber

harry houdini with locked chains around wrists

Who Killed Harry Houdini?

airplane f 35 lightning stealth jet fighter

A New Hypersonic Missile Will Give the F-35 Fangs

a boeing unmanned mq 25

The Navy’s New Drone Could Turn into a Ship-Killer

documents from stargate project

The CIA’s Secret Plan to Turn Psychics Into Spies

the iceberg that sank the white star line's olympic class rms titanic

Is This the Real Iceberg That Sank the Titanic?

missiles seen in skies above gaza

A Barrage of Missiles Met Resistance Over Israel

  • Graph Theory

Problem solving

There are N problems numbered 1..N which you need to complete. You've arranged the problems in increasing difficulty order, and the i th problem has estimated difficulty level i . You have also assigned a rating vi to each problem. Problems with similar vi values are similar in nature. On each day, you will choose a subset of the problems and solve them. You've decided that each subsequent problem solved on the day should be tougher than the previous problem you solved on that day. Also, to make it less boring, consecutive problems you solve should differ in their vi rating by at least K. What is the least number of days in which you can solve all problems?

Input Format

The first line contains the number of test cases T. T test cases follow. Each case contains an integer N and K on the first line, followed by integers v1,...,vn on the second line.

Constraints

1 <= T <= 100 1 <= N <= 300 1 <= vi <= 1000 1 <= K <= 1000

Output Format

Output T lines, one for each test case, containing the minimum number of days in which all problems can be solved.

Sample Input

Sample Output

Explanation

For the first example, you can solve the problems with rating 5 and 7 on the first day and the problem with rating 4 on the next day. Note that the problems with rating 5 and 4 cannot be completed consecutively because the ratings should differ by at least K (which is 2). Also, the problems cannot be completed in order 5,7,4 in one day because the problems solved on a day should be in increasing difficulty level.

For the second example, all problems can be solved on the same day.

Cookie support is required to access HackerRank

Seems like cookies are disabled on this browser, please enable them to open this website

Hard Maths Quiz Questions With Answers

Settings

Are you prepared to take on the ultimate mathematical challenge? Look no further – our "Hard Maths Quiz" is designed to push your mathematical prowess to the limit! Whether you're a math enthusiast seeking a cerebral workout or a student gearing up for a challenging exam, this quiz will put your mathematical skills to the test. Our carefully curated set of difficult math quiz questions with answers covers a wide range of mathematical concepts, from advanced algebra to intricate calculus and mind-bending geometry. You'll encounter problems that require creative problem-solving and a deep understanding of mathematical principles. Why tackle the Read more hardest math quiz? Because it's an excellent way to sharpen your critical thinking and problem-solving abilities. Plus, it's a fun and engaging way to challenge yourself and see just how far your math skills can take you. So, are you ready to embark on this mathematical journey? Take the "Hard Maths Quiz" now and prove that you've got what it takes to conquer the most challenging math problems. Remember, it's not about the destination; it's about the mathematical journey itself!

Hard Maths Questions and Answers

What is 6372+5849.

Rate this question:

If there are 23 boys and 21 girls in class A, Class B has 21 boys and 22 girls. How many girls and boys are there in Class A and B combined?

73 boys and 70 girls

35 boys and 37 girls

44 boys and 43 girls

50 boys and 47 girls

40 boys and 42 girls

Your mom is in the market. She bought 22kg of fish and 24kg of chicken. You ate 4kg of chicken and 12kg of fish. How many kg was left of the 2 foods combined?

What if you divide 352 by 12, what if you divide 70 by 69, what if you divide 20 by  0.5, what if you multiply 45.5 by 2, what if you add 7778.1 into 0.0001, you are the baker. you have 253 loaves of bread and 152 donuts. you are making 13 more loaves of bread and 4 donuts, while a boy bought 7 donuts and 17 loaves of bread. how many loaves of bread and donuts do you still have, you have $30.00; you bought a flower that cost $4.50 and sold it to a lady. she gave you $1.20. then you went to the donut store and bought 3 pieces of donuts that cost $12.45. how much money do you still have.

I don't want to waste my money.

Quiz Review Timeline +

Our quizzes are rigorously reviewed, monitored and continuously updated by our expert board to maintain accuracy, relevance, and timeliness.

  • Current Version
  • Feb 27, 2024 Quiz Edited by ProProfs Editorial Team Expert Reviewed by Janaisa Harris
  • Sep 19, 2009 Quiz Created by Tjpogi12345

Related Topics

Recent Quizzes

Featured Quizzes

Popular Topics

  • Cartography Quizzes
  • Civics Quizzes
  • Economics Quizzes
  • El112 Quizzes
  • English Quizzes
  • Geography Quizzes
  • History Quizzes
  • Humanities Quizzes
  • Law Quizzes
  • Linguistics Quizzes
  • Logic Quizzes
  • Philosophy Quizzes
  • Political Science Quizzes
  • Politics Quizzes
  • Science Quizzes
  • Social Science Quizzes
  • Sociology Quizzes

Back to Top

Related Quizzes

Wait! Here's an interesting quiz for you.

Mastery-Aligned Maths Tutoring

“The best thing has been the increase in confidence and tutors being there to deal with any misunderstandings straight away."

FREE daily maths challenges

A new KS2 maths challenge every day. Perfect as lesson starters - no prep required!

FREE daily maths challenges

25 Fun Maths Problems For KS2 And KS3 (From Easy To Very Hard!)

Fun maths problems are one of the things mathematicians love about the subject; they provide an opportunity to apply mathematical knowledge, logic and problem solving skills all at once.  In this article, we’ve compiled 25 fun maths problems, each covering various topics and question types. They’re aimed at students in KS2 & KS3. We’ve categorised them as:

Maths word problems

Maths puzzles, fraction problems, multiplication and division problems, geometry problems, problem solving questions, maths puzzles are everywhere, how should teachers use these maths problems.

Teachers could make use of these maths problem solving questions in a number of ways, such as:

  • embed into a relevant maths topic’s teaching.
  • settling tasks at the beginning of lessons.
  • break up or extend a maths worksheet.
  • keep students thinking mathematically after the main lesson has finished.

Some are based on real life or historical maths problems, and some include ‘bonus’ maths questions to help to extend the problem solving fun! As you read through these problems, think about how you could adjust them to be relevant to your students or to practise different skills. 

These maths problems can also be used as introductory puzzles for maths games such as those introduced at the following links:

  • KS2 maths games
  • KS3 maths games

Need more support teaching reasoning, problem solving and planning for depth ? Read here for free CPD for you and your team of teachers.

1. Home on time – easy

Type: Time, Number, Addition

A cinema screening starts at 14:35. The movie lasts for 2 hours, 32 minutes after 23 minutes of adverts. It took 20 minutes to get to the cinema. What time should you tell your family that you’ll be home?

Answer: 17:50

2. A nugget of truth – mixed

Type: Times Tables, Multiplication, Multiples, Factors, Problem Solving 

Chicken nuggets come in boxes of 6, 9 or 20, so you can’t order 7 chicken nuggets. How many other impossible quantities can you find (not including fractions or decimals)?

Answer: 1, 2, 3, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 19, 22, 23, 25, 28, 31, 34, 37, or 43

There is actually a theorem which can be used to prove that every integer quantity greater than 43 can be ordered.

3. A pet problem – mixed

Type: Number, Problem Solving, Forming and Solving Equations, Simultaneous Equations, Algebra

Eight of my pets aren’t dogs, five aren’t rabbits, and seven aren’t cats. How many pets do I have?

Answer: 10 pets (5 rabbits, 3 cats, 2 dogs)

4. The price of things – mixed

Type: lateral thinking problem

A mouse costs £10, a bee costs £15, and a spider costs £20. How much does a duck cost? Answer: £5 (£2.50 per leg)

Looking for more word problems, solutions and explanations? Read our article on word problems for primary school.

25 Fun Maths Problems - Printable

25 Fun Maths Problems - Printable

Download a printable version of these fun maths problems together with answers and mark scheme.

5. A dicey maths challenge – easy

Type: Place value, number, addition, problem solving

Roll three dice to generate three place value digits. What’s the biggest number you can make out of these digits? What’s the smallest number you can make?

Add these two numbers together. What do you get?

Answer: In most cases, 1,089.

Bonus: Who got a different result? Why?

6. PIN problem solving – mixed

Type: Logic, problem solving, reasoning

I’ve forgotten my PIN. Six incorrect attempts locks my account: I’ve used five! Two digits are displayed after each unsuccessful attempt: “2, 0” means 2 digits from that guess are in the PIN, but 0 are in the right place.

What should my sixth attempt be?

codebreakers maths problem

Answer: 6347

7. So many birds – mixed

Type: Triangular Numbers, Sequences, Number, Problem Solving

On the first day of Christmas my true love gave me one gift. On the second day they gave me another pair of gifts plus a copy of what they gave me on day one. On day 3, they gave me three new gifts, plus another copy of everything they’d already given me. If they keep this up, how many gifts will I have after twelve days?

Answer: 364

Bonus: This could be calculated as 1 + (1 + 2) + (1 + 2 + 3) + … but is there an easier way? What percentage of my gifts do I receive on each day?

8. I 8 sum maths questions – mixed

Type: Number, Place Value, Addition, Problem Solving, Reasoning

Using only addition and the digit 8, can you make 1,000? You can put 8s together to make 88, for example.

Answer: 888 + 88 + 8 + 8 + 8 = 1,000 Bonus: Which other digits allow you to get 1,000 in this way?

9. Quizzical – easy

Type: Fractions, Adding Fractions, Equivalent Fractions, Fractions to Percentages

4 friends entered a maths quiz. One answered \frac{1}{5} of the maths questions, one answered \frac{1}{10} , one answered \frac{1}{4} , and the other answered \frac{4}{25} . What percentage of the questions did they answer altogether?

Answer: 71%

10. Ancient problem solving – mixed

Type: Fractions, Reasoning, Problem Solving

Ancient Egyptians only used unit fractions (like \frac{1}{2} , \frac{1}{3} or \frac{1}{4} ). For \frac{2}{3} , they’d write \frac{1}{3} + \frac{1}{3} . How might they write \frac{5}{8} ?

Answer: \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} is correct. So is \frac{1}{2} + \frac{1}{8} .

Bonus: Which solution is better? Why? Can you find any more? What if subtractions are allowed?

Learn more about unit fractions here

11. everybody wants a pizza the action – hard.

An infinite number of mathematicians buy pizza. The first wants \frac{1}{2} pizza. The second wants \frac{1}{4} pizza. The third & fourth want \frac{1}{8} and \frac{1}{16} each, and so on. How many pizzas should they order?

Answer: 1 Each successive mathematician wants a slice that is exactly half of what is left:

circle divided by fractions

12. Shade it black – hard

Type: Fractions, Reasoning, Problem Solving What fraction of this image is shaded black?

square divided into smaller squares

Answer: \frac{1}{3}

Look at the L-shaped part made up of two white and one black squares: \frac{1}{3} of this part is shaded. Zoom in on the top-right quarter of the image, which looks exactly the same as the whole image, and use the same reasoning to find what fraction of its L-shaped portion is shaded. Imagine zooming in to do the same thing again and again…

13. Giving is receiving – easy

Type: Number, Reasoning, Problem Solving

5 people give each other a present. How many presents are given altogether?

14. Sharing is caring – mixed

I have 20 sweets. If I share them equally with my friends, there are 2 left over. If one more person joins us, there are 6 sweets left. How many friends am I with?

Answer: 6 people altogether (so 5 friends!)

15. Times tables secrets – mixed

Type: Area, 2D Shape, Rectangles

Here are 77 letters:

BYHRCGNGNEOEAAHGHGCURPUTSTSASHHSBOBOREOPEEMEMEELATPEPEFADPHLTLTUT IEEOHOHLENRYTITIIAGBMTNTNFCGEIIGIG

How many different rectangular grids could you arrange all 77 letters into?

Answer: Four: 1⨉77, 77⨉1, 11⨉7 & 7⨉11. If the letters are arranged into one of these, a message appears, reading down each column starting from the top left.

Bonus: Can you find any more integers with the same number of factors as 77? What do you notice about these factors (think about prime numbers)? Can you use this system to hide your own messages?

16. Laugh it up – hard

Type: Multiples, Lowest Common Multiple, Times Tables, Division, Time

One friend jumps every \frac{1}{3} of a minute. Another jumps every 31 seconds. When will they jump together? Answer: After 620 seconds

Third Space Learning's online one to one tuition slide on multiplication and division

17. Pictures of matchstick triangles – easy

Type: 2D Shapes, Equilateral Triangles, Problem Solving, Reasoning

Look at the matchsticks arranged below. How many equilateral triangles are there?

match sticks arranged in triangles

Answer: 13 (9 small, 3 medium, 1 large)

Bonus: What if the biggest triangle only had two matchsticks on each side? What if it had four?

18. Dissecting squares – mixed

Type: Reasoning, Problem Solving

What’s the smallest number of straight lines you could draw on this grid such that each square has a line going through it?

3x3 square

19. Make it right – mixed

Type: Pythagoras’ theorem

This triangle does not agree with Pythagoras’ theorem. 

Adding, subtracting, multiplying or dividing each of the side lengths by the same integer can fix it. What is the integer?

right angled triangle

Answer: 3 

8 – 3 = 5

The new side lengths are 3, 4 and 5 and  32 + 42 = 52.

20. A most regular maths question – hard

Type: Polygons, 2D Shapes, tessellation, reasoning, problem-solving, patterns

What is the regular polygon with the largest number of sides that will self-tessellate?

Answer: Hexagon.

Regular polygons tessellate if one interior angle is a factor of 360°. The interior angle of a hexagon is 120°. This is the largest factor less than 180°.

21. Pleased to meet you – easy

Type: Number Problem, Reasoning, Problem-Solving

5 people meet; each shakes everyone else’s hand once. How many handshakes take place?

Person A shakes 4 people’s hands. Person B has already shaken Person A’s hand, so only needs to shake 3 more, and so on.

Bonus: How many handshakes would there be if you did this with your class?

22. All relative – easy

Type: Number, Reasoning, Problem-Solving

When I was twelve my brother was half my age. I’m 40 now, so how old is he?

23. It’s about time – mixed

Type: Time, Reasoning, Problem-Solving

When is “8 + 10 = 6” true?

Answer: When you’re telling the time (8am + 10 hours = 6pm)

24. More than a match – mixed

Type: Reasoning, Problem-Solving, Roman Numerals, Numerical Notation

Here are three matches:

three matches

How can you add two more matches, but get eight? Answer: Put the extra two matches in a V shape to make 8 in Roman Numerals:

5 matches with two organised in v shape

25. Leonhard’s graph – hard

Type: Reasoning, Problem-Solving, Logic

Leonhard’s town has seven bridges as shown below. Can you find a route around the town that crosses every bridge exactly once?

river, islands and seven bridges

Answer: No!

This is a classic real life historical maths problem solved by mathematician Leonhard Euler (rhymes with “boiler”). The city was Konigsberg in Prussia (now Kaliningrad, Russia). Not being able to find a solution is different to proving that there aren’t any! Euler managed to do this in 1736, practically inventing graph theory in the process.

Many of these 25 maths problems are rooted in real life, from everyday occurrences to historical events. Others are just questions that might arise if you say “what if…?”. The point is that although there are many lists of such problem solving maths questions that you can make use of, with a little bit of experience and inspiration you could create your own on almost any topic – and so could your students. 

For a kick-starter on creating your own maths problems, read our article on KS3 maths problem solving .

Looking for additional support and resources at KS3? You are welcome to download any of the secondary maths resources from Third Space Learning’s resource library for free. There is a section devoted to GCSE maths revision with plenty of maths worksheets and GCSE maths questions . There are also maths tests for KS3, including a Year 7 maths test , a Year 8 maths test and a Year 9 maths test Other valuable maths practice and ideas particularly around reasoning and problem solving at secondary can be found in our KS3 and KS4 maths blog articles. Try these fun maths problems for KS2 and KS3, SSDD problems , KS3 maths games and 30 problem solving maths questions . For children who need more support, our maths intervention programmes for KS3 achieve outstanding results through a personalised one to one tuition approach.

DO YOU HAVE STUDENTS WHO NEED MORE SUPPORT IN MATHS?

Every week Third Space Learning’s specialist online maths tutors support thousands of students across hundreds of schools with weekly online 1 to 1 maths lessons designed to plug gaps and boost progress.

Since 2013 these personalised one to 1 lessons have helped over 150,000 primary and secondary students become more confident, able mathematicians.

Learn how the programmes are aligned to maths mastery teaching or request a personalised quote for your school to speak to us about your school’s needs and how we can help.

Related articles

Maths Problem Solving: Engaging Your Students And Strengthening Their Mathematical Skills

Maths Problem Solving: Engaging Your Students And Strengthening Their Mathematical Skills

Free Year 7 Maths Test With Answers And Mark Scheme: Mixed Topic Questions

Free Year 7 Maths Test With Answers And Mark Scheme: Mixed Topic Questions

What Is A Number Square? Explained For Primary School Teachers, Parents & Pupils

What Is A Number Square? Explained For Primary School Teachers, Parents & Pupils

What Is Numicon? Explained For Primary School Teachers, Parents And Pupils

What Is Numicon? Explained For Primary School Teachers, Parents And Pupils

FREE Guide to Maths Mastery

All you need to know to successfully implement a mastery approach to mathematics in your primary school, at whatever stage of your journey.

Ideal for running staff meetings on mastery or sense checking your own approach to mastery.

Privacy Overview

  • Share full article

For more audio journalism and storytelling, download New York Times Audio , a new iOS app available for news subscribers.

The Daily logo

  • April 25, 2024   •   40:33 The Crackdown on Student Protesters
  • April 24, 2024   •   32:18 Is $60 Billion Enough to Save Ukraine?
  • April 23, 2024   •   30:30 A Salacious Conspiracy or Just 34 Pieces of Paper?
  • April 22, 2024   •   24:30 The Evolving Danger of the New Bird Flu
  • April 19, 2024   •   30:42 The Supreme Court Takes Up Homelessness
  • April 18, 2024   •   30:07 The Opening Days of Trump’s First Criminal Trial
  • April 17, 2024   •   24:52 Are ‘Forever Chemicals’ a Forever Problem?
  • April 16, 2024   •   29:29 A.I.’s Original Sin
  • April 15, 2024   •   24:07 Iran’s Unprecedented Attack on Israel
  • April 14, 2024   •   46:17 The Sunday Read: ‘What I Saw Working at The National Enquirer During Donald Trump’s Rise’
  • April 12, 2024   •   34:23 How One Family Lost $900,000 in a Timeshare Scam
  • April 11, 2024   •   28:39 The Staggering Success of Trump’s Trial Delay Tactics

The Crackdown on Student Protesters

Columbia university is at the center of a growing showdown over the war in gaza and the limits of free speech..

Hosted by Michael Barbaro

Featuring Nicholas Fandos

Produced by Sydney Harper ,  Asthaa Chaturvedi ,  Olivia Natt ,  Nina Feldman and Summer Thomad

With Michael Simon Johnson

Edited by Devon Taylor and Lisa Chow

Original music by Marion Lozano and Dan Powell

Engineered by Chris Wood

Listen and follow The Daily Apple Podcasts | Spotify | Amazon Music

Columbia University has become the epicenter of a growing showdown between student protesters, college administrators and Congress over the war in Gaza and the limits of free speech.

Nicholas Fandos, who covers New York politics and government for The Times, walks us through the intense week at the university. And Isabella Ramírez, the editor in chief of Columbia’s undergraduate newspaper, explains what it has all looked like to a student on campus.

On today’s episode

Nicholas Fandos , who covers New York politics and government for The New York Times

Isabella Ramírez , editor in chief of The Columbia Daily Spectator

A university building during the early morning hours. Tents are set up on the front lawn. Banners are displayed on the hedges.

Background reading

Inside the week that shook Columbia University .

The protests at the university continued after more than 100 arrests.

There are a lot of ways to listen to The Daily. Here’s how.

We aim to make transcripts available the next workday after an episode’s publication. You can find them at the top of the page.

Research help by Susan Lee .

The Daily is made by Rachel Quester, Lynsea Garrison, Clare Toeniskoetter, Paige Cowett, Michael Simon Johnson, Brad Fisher, Chris Wood, Jessica Cheung, Stella Tan, Alexandra Leigh Young, Lisa Chow, Eric Krupke, Marc Georges, Luke Vander Ploeg, M.J. Davis Lin, Dan Powell, Sydney Harper, Mike Benoist, Liz O. Baylen, Asthaa Chaturvedi, Rachelle Bonja, Diana Nguyen, Marion Lozano, Corey Schreppel, Rob Szypko, Elisheba Ittoop, Mooj Zadie, Patricia Willens, Rowan Niemisto, Jody Becker, Rikki Novetsky, John Ketchum, Nina Feldman, Will Reid, Carlos Prieto, Ben Calhoun, Susan Lee, Lexie Diao, Mary Wilson, Alex Stern, Dan Farrell, Sophia Lanman, Shannon Lin, Diane Wong, Devon Taylor, Alyssa Moxley, Summer Thomad, Olivia Natt, Daniel Ramirez and Brendan Klinkenberg.

Our theme music is by Jim Brunberg and Ben Landsverk of Wonderly. Special thanks to Sam Dolnick, Paula Szuchman, Lisa Tobin, Larissa Anderson, Julia Simon, Sofia Milan, Mahima Chablani, Elizabeth Davis-Moorer, Jeffrey Miranda, Renan Borelli, Maddy Masiello, Isabella Anderson and Nina Lassam.

Nicholas Fandos is a Times reporter covering New York politics and government. More about Nicholas Fandos

Advertisement

IMAGES

  1. How to Solve Hard Algebra Problems Quickly 1

    very hard problem solving questions

  2. 5 Problem Solving Strategies Bulletin Board (Free Download)

    very hard problem solving questions

  3. 10 Problem Solving Skills Examples: How To Improve

    very hard problem solving questions

  4. Introduction to Problem Solving Skills

    very hard problem solving questions

  5. 6 Tools to Help You Solve Difficult Math Problems

    very hard problem solving questions

  6. How to Solve Difficult Algebra Problems Quickly in a few Steps 3

    very hard problem solving questions

VIDEO

  1. Solving Hard Questions Chapter 3 Lesson 1

  2. Can You Solve One Of The Hardest Math Problems To Exist?

  3. Solving HARD Math Problems

  4. General Knowledge Quiz

  5. Top 10 Hardest Puzzles in Video Games

  6. 5 Most Difficult & Toughest Maths Questions/Problems Asked in JEE Main 2022 Exam

COMMENTS

  1. The 15 Hardest SAT Math Questions Ever

    B) x − 2 is a factor of p ( x). C) x + 2 is a factor of p ( x). D) The remainder when p ( x) is divided by x − 3 is − 2. ANSWER EXPLANATION: If the polynomial p ( x) is divided by a polynomial of the form x + k (which accounts for all of the possible answer choices in this question), the result can be written as.

  2. Hardest GCSE Maths Questions

    The question then finishes off by finding the midpoint; an essential coordinate geometry skill. You can view the full details of the solution in Q2 of our Very Hard Coordinate Geometry topic question pack. Edexcel, June 2019: 3H Q22. This is a fantastic example of a higher-level problem solving question.

  3. 25 Logic Puzzles (with Answers) for Adults

    9. Logic Puzzle: There are three people (Alex, Ben and Cody), one of whom is a knight, one a knave, and one a spy. The knight always tells the truth, the knave always lies, and the spy can either ...

  4. Hardest SAT Math Problems (updated for Digital SAT)

    SAT Problem #1. Test #8, section 4. At first glance, this looks like a geometry question, since it talks about planes and lines and points. But this is actually an algebra question, dressed up with some geometric trappings. The key is to realize: 1) We don't need to solve for p and r individually.

  5. Hard Math Problems That'll Make Your Head Spin

    Answer: - , + , ÷. Here is the correct equation: 21 - 3 + 18 ÷ 6 = 6. Twenty-one minus 3 is 18, then add 18 to that to get 36. Then divide that by 6 to get the correct answer, 6! If you ...

  6. Top Math Questions

    Find the area of the parallelogram determined by the given vectors u and v. u... (a) Find the point at which the given lines intersect. r = 2,... (a) find the transition matrix from B toB′, (b) find the transition matrix fromB′to B, (c) verify... A box contains 5 red and 5 blue marbles.

  7. Quadratic Equations: Very Difficult Problems with Solutions

    Problem 6 sent by Κυριάκος There is a two-digit number whose digits are the same, and has got the following property: When squared, it produces a four-digit number, whose first two digits are the same and equal to the original's minus one, and whose last two digits are the same and equal to the half of the original's.

  8. The 10 Hardest Math Problems That Were Ever Solved

    In 2019, mathematicians finally solved one of the hardest math problems —one that had stumped them for decades. It's called a Diophantine Equation, and it's sometimes known as the "summing ...

  9. Hard Algebra Questions

    Steps. Example. Write down the inequality. ( x - 5 > 10 ) Perform the same operation on both sides. ( x - 5 + 5 > 10 + 5 ) Simplify to find the solution. ( x > 15 ) Remember, if I multiply or divide both sides of an inequality by a negative number, the direction of the inequality sign flips.

  10. How to Work Through Hard Math Problems

    The Case for Doing Hard Things . We ask hard questions because so many of the problems worth solving in life are hard. If they were easy, someone else would have solved them before you got to them. This is why college classes at top-tier universities have tests on which nearly no one clears 70%, much less gets a perfect score.

  11. Logarithmic Equations: Very Difficult Problems with Solutions

    Logarithmic Equations: Very Difficult Problems with Solutions. Problem 1. Find the root of the equation \displaystyle 2+lg\sqrt {1+x}+3lg\sqrt {1-x}=lg\sqrt {1-x^2} 2+lg 1 +x +3lg 1−x = lg 1−x2. \displaystyle \frac {9} {100} 1009. \displaystyle \frac {99} {100} 10099. \displaystyle \frac {9} {10} 109. \displaystyle \frac {1} {9} 91.

  12. The Hardest ACT Math Question Types

    Trigonometry Questions. QUESTION #1: The equations of the two graphs shown below are y 1 ( t) = a 1 sin ( b 1 t) and y 2 ( t) = a 2 cos ( b 2 t), where the constants b 1 and b 2 are both positive real numbers. Which of the following statements is true of the constants a 1 and a 2? A. 0 < a 1 < a 2. B. 0 < a 2 < a 1.

  13. 20 Hard Riddles for Adults: Best Brain Teasers for Adults

    Jaya sees Julian has 20 on his forehead, and Levi has 30 on his. She thinks for a moment and then says, "I don't know what my number is.". Julian pipes in, "I also don't know my number ...

  14. Order of Operations Practice Problems

    Part 1: Order of Operations problems involving addition, subtraction, multiplication, and division. Problem 1: Simplify the numerical expression below. Answer. Problem 2: Simplify the numerical expression below. Answer. Problem 3: Simplify the numerical expression below. Answer.

  15. Linear(Simple) Equations: Very Difficult Problems with Solutions

    Linear (Simple) Equations: Very Difficult Problems with Solutions. Problem 1. A number is equal to 7 times itself minus 18. Which is the number? Problem 2. A number is equal to 4 times this number less 75.

  16. 10 Hard Math Problems That May Never Be Solved

    One of the greatest unsolved mysteries in math is also very easy to write. Goldbach's Conjecture is, "Every even number (greater than two) is the sum of two primes.". You check this in your ...

  17. Problem solving

    Problem solving. There are N problems numbered 1..N which you need to complete. You've arranged the problems in increasing difficulty order, and the i th problem has estimated difficulty level i. You have also assigned a rating vi to each problem. Problems with similar vi values are similar in nature. On each day, you will choose a subset of ...

  18. Hard maths quiz questions with answers

    The answer is 7778.1001 because when you add 7778.1 to 0.0001, the sum is 7778.1001. Rate this question: 18 0. 9. You are the baker. You have 253 loaves of bread and 152 donuts. You are making 13 more loaves of bread and 4 donuts, while a boy bought 7 donuts and 17 loaves of bread.

  19. Arithmetic Progressions: Very Difficult Problems with Solutions

    Problem 1. Let \displaystyle {a_n} an be a finite arithmetic progression and k be a natural number. \displaystyle a_1=r < 0 a1 = r < 0 and \displaystyle a_k=0 ak = 0. Find \displaystyle S_ {2k-1} S 2k−1 (the sum of the first 2k-1 elements of the progression). Problem 2. Solve the equation.

  20. 35 SATs Maths Questions Year 6 SATs Reasoning Practice

    Reasoning Question 31. Answer: 3/5, 3/4, 6/5. This question throws a stick in the wheels by including an improper fraction, but this is hardly unusual. These sorts of questions are just the place to find other 'curveballs' such as equivalent fractions, mixed numbers and decimals and fractions combined.

  21. 20 Tricky But Fun Grade-School Math Questions

    Answer: 1. Start by solving the division part of the equation. In order to do that, in case you forgot, you have to flip the fraction and switch from division to multiplication, thus getting 3 x 3 = 9. Now you have 9 - 9 + 1, and from there you can simply work from left to right and get your final answer: 1. 11.

  22. 25 Fun Maths Problems For KS2 & KS3 (From Easy to Very Hard!)

    Type: Reasoning, Problem-Solving, Roman Numerals, Numerical Notation. Here are three matches: How can you add two more matches, but get eight? Answer: Put the extra two matches in a V shape to make 8 in Roman Numerals: 25. Leonhard's graph - hard. Type: Reasoning, Problem-Solving, Logic. Leonhard's town has seven bridges as shown below.

  23. Trigonometry Problems: Very Difficult Problems with Solutions

    Problem 2 sent by Amartya Bhattacharya Find the maximum value of 5cosA + 12sinA + 12 Solution: 5cosA +12sinA + 12 = 13(5/13 cosA +12/13sinA) + 12 Now, for any values of B we can get sinB = 5/13 and we can replace cosB = 12/13.

  24. The Crackdown on Student Protesters

    The Crackdown on Student Protesters. Columbia University is at the center of a growing showdown over the war in Gaza and the limits of free speech. April 25, 2024, 6:00 a.m. ET. Share full article ...