National Academies Press: OpenBook

Information Technology and the Conduct of Research: The User's View (1989)

Chapter: the use of information technology in research.

Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

The Use of ~formadon Technology in Research n this chapter we examine the effect of information technology on the conduct of research. New technologies offer new opportunities, although pervasive use of computers in research has not come about without problems. Some of these problems are technological, some financial. Underlying many of them are complex institutional and behavioral constraints. Nearly five decades ago, the first programmable, electronic, digital computer was switched on. That day science acquired a tool that at first simply facilitated research, then began to change the way research was done. Today these changes continue, and now amount to a revolution. Electronic digital computers at first simply replaced earlier technologies. Researchers used computers to do arithmetic calculations previously done with paper and pencil, slide rules, abacuses, or roomfuls of people running mechan- ical calculators. Benefits offered by the earliest computers were more quantitative than qualitative; bigger computations could be done faster, with greater reliabil- ity, and perhaps more cheaply. But computers were large, expensive, required technically expert operators and programmers, and consequently were accessi- ble only to a relatively small fraction of scientists and engineers. One human generation and several computer generations later, with the advent of the integrated circuit (the semiconductor "chip"), computational speed increased by a factor of 1 trillion, computational cost decreased by a factor of 10 million, and the smallest useful calculator went from the size of a typewriter to the size of a wristwatch. At present, personal computers selling for a few thousand dollars can put significant computing power on the desk of every scientist. Meanwhile, advances in the software through which people interact with and instruct computers have made computers potentially accessible to people with no specific training in computation. More recently, computer technology has joined telecommunications technology to create a new entity, 11

12 INFORMATION TECHNOLOGY AND THE CONDUCT OF RESEARCH Bodices supplement or expand points in the text: the first two below deal with specific disciplines. "information technology." Information technology has done much to remove from the researcher the constraints of speed, cost, and distance. On the whole, information technology has led to improvements in research. New avenues for scientific exploration have opened. The amount of data that can be analyzed has expanded, as has the complexity of analyses. And researchers can collaborate more widely and efficiently. Different scientific disciplines use information technology differently. Uses vain according to the phenomena the discipline studies and the rate at which the discipline obtains information. In such disciplines as high energy physics, neurobiology, chemistry, or materials science, experiments generate millions of observations per second, and these must be screened and recorded as they happen. For these disciplines, computers that can handle large amounts of information quickly are essential and have made possible research that was previously impractical. Other disciplines, such as economics, psychology, or public health, gather data on events that accumulate slowly over relatively long periods of time. These disciplines also need computers with large capacities, but do not need the capability to react in "real time." Most disciplines use informa- tion technology in ways that fall somewhere in the range between these two extremes. HIGH ENERGY PHYSICS: SCIENCE DRIVES THE LEADING EDGE OF INFORMATION TECHNOLOGY An example helps to illustrate the direction in which many disciplines are moving: high energy physics could not be done without information technology, and offers an ex- treme example of the trends for computing and communication needs in many scientific disciplines. Most high energy physicists work on the same set of questions: what is the behavior of the most elementary particles, and what is the nature of the fundamental forces be- tween them? Their experiments are con- ducted in machines called accelerators, de- vices that produce beams of protons, elec- trons, or other particles that are accelerated to high speeds and huge energies. There are two types of accelerators: those in which two beams of particles are made to collide with each other (colliders), and those in which a beam hits stationary targets. Physicists then reconstruct the collision to find new phe nomena. Remarkable results have emerged from high energy physics experiments conducted over the past two decades. For instance, a Nobel prize-winning experiment carried out at the proton-antiproton collider at the Euro- pean Center for Nuclear Research (CERN) in Switzerland, discovered two new particles known as the W and the Z. Their existence had been predicted by a theory claiming that the weak and electromagnetic forces, seem- ingly unrelated at low energy levels, were in fact manifestations of a single force, called the electroweak interaction, which would ap- pear at sufficiently high energies. This discov- ery is a significant step toward the descrip- tion of all known interactions-gravity, elec- tromagnetism, and the strong (nuclear) and weak (radioactive decay) forcers manifes- tations of a single unifying force. The process by which some tens of these

13 The Panel recognizes the diversity in research methods, and differences in needs for information technology. But the needs of researchers show sufficient commonalities across research fields to make a search for common solutions worthwhile. THE CONDUCT OF RESEARCH The everyday work of a researcher involves such activities as writing proposals, developing theoretical models, designing experiments and collecting data, ana- lyzing data, communicating with colleagues, studying research literature, rev~ew- ing colleagues' work, and writing articles. Information technology has had important effects on all these activities, and more change is in the offing. To illustrate these effects, we examine three particular aspects of research: data collection and analysis, communications and collaboration, and information storage and retrieval. In each area, we discuss how researchers currently use information technology and what difficulties they encounter. In a final part of this section, we discuss new technological opportunities and their implications for the conduct of research. new W and Z particles were isolated from millions of collision events in the CERN accel- erator offers a striking illustration of the dependence of high energy physics on the most advanced aspects of information tech- nology. Three steps are involved. First, data are acquired in real time as the experiment progresses; second, the data obtained are transformed into flight paths, from which the particles making the paths are identified; and third, the event itself is reconstructed, and those few events exhibiting the very special characteristics of the new phenomenon are identified. In each of these steps computers are vital: to trigger the identification of inter- esting events; to establish particle tracks from the data; and to carry out analysis and interpretation. In the future, high energy physicists will demand more from information technology than it can now deliver. Proposed new parti- cle accelerators, such as the Superconduct- ing Super Collider (SSC), are expected to pro duce several million collisions every second, of which only one or two collisions a second can be recorded. Selecting this tiny fraction of the produced events in a manner that does not throw away other interesting data is a tremendous challenge. It is hoped that "farms" of dedicated microprocessors might be able to examine tens of thousands of collision events per second, so that sophisti- cated selection mechanisms can screen all collisions and select the veIy few that are to be recorded. The computer programs that need to be developed for these tasks are of unprecedented size and complexity, and will challenge the capabilities of both the physi- cists programming them and the information technology software support available to the programmers. Even the small fraction of recorded events will result in some ten million collisions to be analyzed in a year. Processing one year's worth of saved data from the SSC would take a modern mid-sized computer 500 years; THE USE OF INFORMATION TECHNOLOGY IN RESEARCH

14 INFORMATION DATA COLLECTION AND ANALYSIS TECHNOLOGY AND THE CONDUCT Current Use Collecting and analyzing data with computers are among the OF RESEARCH most widespread uses of information technology in research. Computer hard ware for these purposes comes in all sizes, ranging from personal computers to microprocessors dedicated to specific instrumentational tasks, large mainframe computers sensing a university campus or research facility, and supercomputers. Computer software ranges from general-pu~pose programs that compute nu meric functions or conduct statistical analyses to specialized applications of all sorts. The Panel has identified five trends in the use of information technology in data collection and analysis: · Increased use of computers for research. This trend coincides with large and continued increases in the speed and power of computers and corresponding declines in their costs. · Dramatic increases in the amount of information researchers can store and analyze. For example, researchers can now process and manipulate observations in a database consisting of 18 years x 3,400 individuals x 1,000 variables per individual for each year, create sets of relationships among these observations, obviously, a faster processing rate is re- quired. Although no computer currently on the market would handle this load in reason- able time, existing plans suggest that, by the time it is needed, some combination of dedi- cated microprocessors and large mainframe systems will be available. High energy physicists are also highly de- pendent on networks. Accelerators are lo- cated in only seven main laboratories in the United States, Switzerland, West Germany, the Soviet Union, and Japan; the physicists who use them are located in many hundreds of universities and institutions scattered around the world. Almost every high energy experiment, large or small, is a result of international collaboration: for instance, one detector installed around one of the collision points of the accelerator at the Fermi Na- tional Laboratory is run by a collaboration of four foreign and thirteen U.S. institutions, involving some 200 physicists. Physicists at several institutions designed different parts of the detector; since the detector has to work as an integrated apparatus, the physicists had to coordinate their work closely. Different physicists are also interested in different as- pects of the experiment, and subsequent analysis of the data depends crucially on adequate networking. Future networking needs for high energy physics involve very high transmission speeds (as high as 10 megabits per second) between laboratories, with provision for ex- change of collision event files, graphics, and video conferencing. Present long distance communication links are limited to lower transmission speeds (typically, 56 kilobits per second); each university physics group could use a 1.5 megabit per second line for its own research needs. The provision of these facil- ities would be of enormous benefit to univer- sity-based physicists and students who can- not travel frequently to accelerator sites.

15 and then subject the data to complex statistical analyses, all at a cost of less than $100. Two decades ago, that kind of analysis could not have been conducted, and a much simpler analysis would have cost at least ten times as much. · The creation of new families of instruments in which computer control and data processing are at the core of observation. For example, in new telescopes, image-matching programs on specialized computers align small mirrors to produce the equivalent light-gathering power of much larger telescopes with a single mirror. For instruments such as radio-telescope interferometers, the computer integrates data from instruments that are miles apart. For computer- assisted tomographic scanners, the computer integrates and converts masses of data into three-dimensional images of the body. · Increased communication among researchers, resulting from the prolifera- tion of computer networks dedicated to research, from a handful in the early 1970s to over 100 nationwide at present. Different networks connect different communities. Biologists, high energy physicists, magnetic fusion physicists, and computer scientists each have their own network; oceanographers, space scien- tists, and meteorologists are also linked together. Networks also connect re- searchers with one another regionally; an example is NYSERNET, the New York State Education and Research Network. Researchers with defense agency con- tracts are linked with one network, as are scientists working under contract to the National Aeronautics and Space Administration (NASA). Such networks allow data collection and analysis to be done remotely, and data to be shared among colleagues. · Increasing availability of software "packages" for standard research activities. Robust, standardized software packages allow researchers to do statistical analyses of their data, compute complex mathematical functions, simplify mathematical expressions, maintain large databases, and design everything from circuits to factories. Many of these packages are commercial products, with high-quality documentation, service, and periodic updates. Others are freely shared software of use to a specialized community without the costs or benefits of commercial software. One example illustrating several of the above trends is a system that geophys- icists have set up to predict earthquakes more accurately. Networks of seismo- graphs cover the western United States. One such network in northern California is called CALNET. Information from the 264 seismographs in CALNET goes to a special-purpose computer called the real-time picker. The software on the real-time picker looks at data as they come in and identifies exceptional events: patterns that indicate a coming earthquake. Then it notifies scientists of the events by telephone and sends graphics displays of locations and magnitudes, all within minutes. Difficulties Encountered The difficulties that researchers encounter using information technology to collect and analyze data vary in importance depend- ing on the particular discipline. THE USE OF INFORMATION TECHNOLOGY IN RESEARCH

16 INFORMATION One difficulty is uneven access to computing resources. Information technol TECHNOLOGY AD of iS not equally accessible to ail researchers who could benefit from its use, THE CONDUCT even though broadening access is a continuing focus of institutions and Finding OF RESEARCH agencies. To take an example from the field of statistics: according to a 1986 report on the Workshop on the Use of Computers in Statistical Research, sponsored by The Institute for Mathematical Statistics, "...the quality and quantity of computational resources available to researchers today varies dra matically from department to department . . . Perceived needs appear to vary just as dramatically.... tWhile] departments that already have significant computer hardware feel a strong need for operating support, . . . departments that do not have their own computational resources feel an equally strong need for hard ware." (Eddy, 1986, p. iii.) Exclusion from resources happens for a variety of reasons, all reducible in the end to financial constraints. Not all academic or research institutions have links to networks; in addition, access to networks can be expensive, so not everyone who wants it can afford it. In some cases, since access to networks often mediates access to resources such as supercomputers, exclusion from networks can mean exclusion from advanced computing. See box on software, One of the most frustrating difficulties for researchers is finding the right page 18. software. Software that is commercially available is often unsuited to the specialized needs of the researcher. In those fields in which industry has an interest, however, commercial software is being developed in response to a perceived market. Software could be custom designed for the researcher, but relatively few researchers pay directly for software development, partly because research grants often cannot be used to support it. Consequently, most research RESEARCH MATHEMATICS AND COMPUTATION Computation and theory in mathematics are symbiotic processes. Machine computing power has matured to the point where math- ematical problems too complicated to be understood analytically can be computed and observed. Phenomena have been observed for the first time that have initiated entirely new theoretical investigations. The theory of the chaotic behavior of dynamic systems de- pends fundamentally on numerical simula- tions; the concept of a "strange attractor" was formulated to understand the results of a series of numerical computations. Recent advances in the theory of knots have relied on algebraic computations carried out on com- puters. These advances can be directly ap- plied to such important topics as understand- ing the folding of DNA molecules. In the field of geometry, numerical simulation has been used recently to discover new surfaces whose analytic form was too difficult to analyze directly. The simulations were understood by the use of computer graphics, and led to the explicit construction of infinite families of new examples. The modern computer is the first labora- tory instrument in the history of mathemat- ics. Not only is it being used increasingly for research in pure mathematics, but, equally important, the prevalence of scientific com- puting in other fields has provided the me

17 ers, although they are not often skilled software creators, develop their own software with the help of graduate students. The result meets researchers' minimum needs but typically lacks documentation and is designed for one purpose only. Such software is not Filly understood by any one person, making it difficult to maintain or transport to other computing environments. This means that the software often cannot be used for related projects, and the scientific community wastes time, effort, and money duplicating one another's efforts. In sections to follow we examine how this problem is being addressed by profes- sional associations, nonprofit groups, and corporations. Some disciplines are limited by available computer power because computers needed are not on the market. Some contemplated calculations in theoretical physics, quantum chemistry, or molecular dynamics, for example, could use computers with much greater capacity than any even on the drawing boards. In other cases, data gathering is limited by the hardware presently available. Most commercial computers are not designed to accommodate hardware and pro- grams that select out interesting information from observational data, and scientists who want such computers must build them. Another difficulty researchers encounter is in transmitting data over networks at high speed. For researchers such as global geophysicists who use data collected by satellite, a large enough volume of information can be sent in a short enough time, but transmission is unreliable. Researchers often encounter delays and incur extra costs to compensate for "noise" on high-speed networks. Technological solutions such as optical fiber and error-correcting coding are currently expensive to install and implement and are often unavailable in certain geographic regions or for certain applications. dium for communication between the math- ematician and the physical scientist. Here modern graphics plays a critical role. This interaction is particularly strong in materials science, where the behavior of liquid crystals and the shapes of complex polymers are being understood through a combination of theoretical and computational advances. In spite of all this, mathematics has been one of the last scientific disciplines to be computerized. More than other fields, it lacks instrumentation and training. This prevents the mathematician from using modern com- puting hardware and techniques in attacking research problems, and at the same time isolates him/her from productive communi- cation with scientific colleagues. Of course, mathematics is an important part of the foundation and intellectual basis of most of the methods that underlie all scientific use of computational machinery. To use today's high-speed computing ma- chines, new techniques have been devised. The need for new techniques is providing a serious challenge to the applied mathemati- cian, and has placed new and difficult prob- lems on the desk of the theorist; algorithms themselves have become an object of serious investigation. Their refinement and improve- ment have become at least as important to the speed and utility of high-speed comput- ing as the improvement of hardware. THE USE OF INFORMATION TECHNOLOGY IN RESEARCH

18 IN1?OElMATION COMMUNICATION AND COLI^BORATION AMONG RESEARCHERS TECHNOLOGY AND THE CONDUCT Current Use Researchers cannot work vv~thout access to collaborators, to OF RESEARCH instruments, to information sources and, sometimes, to distant computers. Computers and communication networks are increasingly necessary for that access. Three technologies are concerned with communications and collabora tion: word processing, electronic mail, and networks. Word processing and electronic mail are arguably the most pervasive of all the routine uses of computers in research communication. Electronic mail sending text from one computer user to another over the networks is replacing written See box on document and telephone communication among many communities of scientists, and is processing, page 19. changing the ways in which these communities are defined. Large, collaborative projects, such as oceanographic voyages, use electronic mail to organize and schedule experiments, coordinate equipment arrivals, and handle other logistical IF KITCHEN APPLIANCES WERE LIKE SOFTWARE If kitchen appliances were like programs, they would all look alike sitting on the counter. They would all be gray, featureless boxes, into which one places the food to be processed. The door to the box, like the box itself, is completely opaque. On the outside of each box is a general description of what the box does. For in- stance, one box might say: "Makes anything a meal"; another: "Cooks perfectly every time"; another: "Never more than 100 calories a serving." You can never be exactly sure what happens to food when it is placed in these boxes. They don't work with the door open, and the 200-page user's manual doesn't give any details. Working in a kitchen would be a matter of becoming familiar with the idiosyncrasies of a small number of these boxes and then laying to get done what you really want done using them. For instance, if you want a fried- egg sandwich, you might try the "Makes any- thing a meal" box, since a sandwich is a sort of meal. But because you know from past experience that this box leaves everything coated with grease, you use the "Never more than 100 calories" box to postprocess the output. And so on. The result is never what you really want, but it is all you can do. You aren't allowed to look inside the boxes to help you do what you really want to do. Each box is sealed in epoxy. No one can break the seal. If the box seems not to be working right, there is nothing you can do. Even calling the manufacturer is no help, because the box is not under warranty to be fit for any particular purpose. The manufacturers do have help lines, but not for help with broken boxe~rather to help you figure out how to use functioning boxes. But don't try to ask how your box works. The help-line people don't know, or if they do, they won't tell you. Several times a year you get a letter from the manufacturer telling you to ship them your old box and they will send you a new one. If you do so, you find yourself with a shinier box, which does whatever it did before a little faster, or perhaps it does a little more but since you were never sure what it did before, you cannot be sure it's better now. SOURCE: Mark Weiser, 1987. "Source Code," IEEE Com puter, Z0(~): 6~73.

19 details. With the advent of electronic publishing tools that help lay out and integrate text, graphics, and pictures, mail systems that allow interchange of complex documents will become essential. Networks range in size from small networks that connect users in a certain geographic area, to national and international networks. Scientists at different sites increasingly use networks for conversations by electronic mail and for repeated exchanges of text and data files. The Panel has identified two major trends in the way information technology is changing collaboration and communication in scientific research: · Information can be shared more and more quickly. For example, one of the first actions of the federal government after the discovery of the new high- temperature superconductors was to fund, through the Department of Energy's Ames Laboratory, the creation of a superconductivity information exchange. The laboratory publishes a biweekly newsletter on advances in high-temperature superconductivity research, available in both paper and electronic forms; the electronic version is sent out to some 250 researchers. · Researchers are making new collaborative arrangements. The technology of networks provides increased convenience and faster turnaround times often several completed message exchanges in one day. For shorter messages, special software allows real-time exchanges. DOCUMENT PROCESSING [An] area of significant change is document processing. This began in the 1960s with a few simple programs that would format typed text. In the context of UNIX* in the 1970s, these ideas led to a new generation of document processing programs and lan are constructing systems, such as the POST SCRIPT protocols, embodying these ideas. The NSF-sponsored EXPRES project, at the University of Michigan and Carnegie Mellon University, illustrates a serious effort to de velop a standard method of exchanging full scientific documents by network. Low-cost laser printers now make advanced document guages, such as SCRIBE and the UNIX-based preparation and printing facilities available to tools troths, eqn, tbl, and pie. The quintessence many people with workstations and personal of these ideas are Knuth's TeX and computers. It is now possible for everyone to METAEiONT systems, which have begun to submit high-quality, camera-ready copy di revolutionize the world's printing industry. rectly to publishers, thus speeding the publi In workstations, these ideas have produced cation of new results; however, it is no longer WYSIWYG (w~zzy-wig, or "what you see true Mat a well-formatted document can be iswhatyouget")systemsthatdisplayformat- trusted to have undergone a careful review ted text exactly as it will appear in print. and editing before being printed. International standards organizations are considering languages for describing docu ments, and some software manufacturers SOURCE: Peter J. Denning, 1987, Position Paper: Informa tion Technology in Computing. THE USE OF INFORMATION TECHNOLOGY IN RESEARCH See box on collaboration, page 20.

20 INFORMATION AS Lederberg noted a decade ago (Lederberg, 1978), digital communication TECHNOLOGY AND allows scientists to define collegial relationships along the lines of specialized THE CONDUCT interests rather than spatial location. This is immensely beneficial to science as OF RESEARCH a whole, but causes some consternation among administrators who find more loyal to disciplines than to institutions. Technologies in the process of development show the networks' remarkable potential. Multimedia mail allows researchers to send a combination of still images, video, sound, and text. Teleconferencing provides simultaneous elec tronic links among several groups. Electronic chalkboards allow researchers to draw on their chalkboard and have the drawing appear on their computer and on the computers of collaborators across the country. Directory services, or "namese~vers," supply directories of the names and network addresses of users, processes, and resources on a given network or on a series of connected networks. Program distribution services include the supply of mathematical software to subscribers. A spectacular new technology is represented in the Metal Oxide Semiconductor Implementation System (MOSIS), a service that contracts for the manufacture of very large-scale integrated (VLSI) chips from circuit diagrams pictured on a subscriber's screen. Fabrication time is often less than 30 days. In one notable example, the researchers designing a radiotelescope in Australia designed custom chips for controlling the telescope. MOSIS returned the chips in a matter of days; the normal manufacturing process would have taken months and would have delayed the development of the instrument considerably. NEW FORMS OF COLLABORATION THROUGH THE NETWORKS The development of COMMON LISP (a pro ~arnming language) would most probably not have been possible without the electronic message system provided by ARPANET, the Department of Defense's Advanced Research Projects Agency network. Design decisions were made on several hundred distinct points, for the most part by consensus, and by simple majority vote when necessary. Ex cept for two one-day face-to-face meetings, all of the language design and discussion was done through the ARPANET message system, which permitted effortless dissemination of messages to dozens of people, and several interchanges per day. The message system also provided auto- matic archiving of the entire discussion, which has proved invaluable in preparation of this reference manual. Over the course of thirty months, approximately 3000 messages were sent (an average of three per day), ranging in length from one line to twenty pages... It would have been substantially more difficult to have conducted this discus- sion by any other means, and would have required much more time. SOURCE: Guy Steele, 1984. COMMON LISP: The Lan guage. Bedford, MA: Digital Press, pp. xi-xii. Reprinted with permission. Copyright Digital Press/Digital Equip- ment Corporation.

21 To share complex information (such as satellite images) over the networks, researchers will need to be able to send entire pictures in a few seconds. One technique that is likely to receive more attention in the future is data compres- sion, which removes redundant information and converts data and images to more compact forms that require less time to transmit. Among the most important of potential applications of information technology is the emergence of a truly national research network-that is, a set of connec- tions, or gateways, between networks to which every researcher has access. The National Science Foundation has announced its intention to serve as a lead agency in the development of such a network, beginning with a backbone, called NSFNET, that links the NSF-supported supercomputing centers, and widening to include other existing networks. Widespread access to networks will also offer much more than just commu- nications links. They can become what the network serving the molecular biology community aims to be: a full-fledged information system. Difficulties Encountered The principal difficulty with communicating across research communities via electronic mail and file transfer technologies is incompatibility. The networks were formed independently, evolved over many years, and are now numerous. Consequently, networks use different protocols, that is, different conventions for packaging data or text for transmission, for locating an appropriate route from sender to receiver over the physical network, and for signaling the start and stop of a message. For example, a physicist on the High Energy Physics network (HEPNET) trying to send data to a physicist on one of the regional networks would first have to ask "What network are you on?"; "How do I address you?"; and "What form do you want the information in?" In the gateway between two networks, the protocols of the first network must be removed from the message and the protocols for the second added. Under heavy traffic loads, the gateways can become bottlenecks. As a result, navigating from one network to a researcher on another is time-consuming, tiresome, and often unreliable; navigating over two networks to a researcher on a third is prohibitively complex. Text can frequently be moved from one word processing system to another only with significant loss of formatting information including the control of spacing, underlining, margins, or indentations. Graphics can only rarely be included with text. Such issues of compatibility may delay the expansion of electronic publishing as well as electronic proposal submission and review the goals of the National Science Foundation's EXPRES project. The issues are summarized succinctly by Denning: "Most word processors are inadequate for scientific needs: they cannot handle graphs, illustrations, math- ematics and layout, and myriad file formats make exchange extremely difficult. With so many experts and so much competition in the market, it is hard to win agreement on standards. There is virtually no electronic support for the remain- der of the process of scientific publication submission, review, publication, and THE USE OF INFORMATION TECHNOLOGY IN RESEARCH

22 INFORMATION distribution. These issues can be expected to be resolved over the next fewyears, TECHNOLOGY AND as document interchange formats are adopted by standards organizations and THE CONDUCT incorporated into software revisions and equipment upgrades. However, the OF RESEARCH transition process will not be painless" (Denning, 1987, pp. 2~27). In addition, some networks limit use under certain circumstances; for in stance, one network bars communication among researchers at industrial laboratories. The fear is that corporations would use a research network for commercial profit or even for sales or marketing. The Panel believes such fear is misplaced and that networks should be open for all research communication. Bodices on pages 22-27 On the whole, the management of the networks is anarchic. Networks operate examine network use not as though they were a service vital to the health of the nation's research alternatives. community but as small fiefdoms, each with strong disciplinary direction, with little incentive to collaborate. The National Science Foundation has taken an early leadership role, with such initiatives as NSFNET, which addresses many of the current networking problems, and the EXPRES project, which establishes stan- dards for the electronic exchange of complex documents. Such efforts to provide integration and leadership are vital to increased research productivity. FROM A NETWORK TO AN INFORMATION RESOURCE PROTOTYPE: BIONET BIONET is a nonprofit resource for molec- ular biology computing that provides access to software, recent versions of databases rel- evant to molecular biology, and electronic communications facilities. Work is in prog- ress to expand BIONET as a logical network reaching molecular biologists throughout the research community worldwide. Many exist- ing physical networks are in use by molecu- lar biologists, and it is BIONET's aim to utilize them all. BIONET is working on plans to provide molecular biologists with access to one or more supercomputers or parallel processing resources. Special programs will be developed to provide molecular biologists with an easy interface to submit supercom- puter jobs. Especially active are the METHODS-AND- REAGENTS bulletin board (for requesting in- formation on lab protocols and/or experi mental reagents) and the RESEARCH-NEWS bulletin board, which has become a forum for posting interesting scientific develop- ments and also a place where scientists can introduce their labs and research interests to the rest of the electronic community. Bulletin boards have been instituted for the GenBank and EMBL nucleic acid sequence databases. Copies of messages on these bulletin boards are forwarded to the database staff members for their attention. These bulletin boards serve as a medium for discussing issues re- lating to the databases and as a place where users of the databases can obtain assistance. Along these same lines BIONET has developed the GENPUB program that facilitates submis- sion of sequence data and author-entered annotations in computer-readable form di- rectly to GenBank and EMBL via the elec- tronic mail network. The journals CELL and CABIOS have estab- lished accounts on BIONET and the Journal of Biological Chemistry and several others

23 INFORMATION STORAGE AND RETRIEVAL Current Uses How information is stored determines how accessible it is. Scientific texts are generally stored in print (in the jargon, in hard copy) and are accessible through the indices and catalogs of a library. Some texts, along with programs and data, however, are stored electronically on disks or magnetic tapes to be run in computers-and are generally more easily accessible. In addition, collections of data, known as databases, are sometimes stored in a central location. In general, electronic storage of information holds enormous advantages: it can be stored economically, found quickly without going to another location, and moved easily. One kind of database holds factual scientific data. The Chemical Abstracts Service, for example, has a library of the molecular structures of all chemical substances reported in the literature since 1961. GenBank is a library of known genetic sequences. Both the National Aeronautics and Space Administration and the National Oceanic and Atmospheric Administration have thousands of tapes holding data on space and the earth and atmosphere. will also soon be on board. Several journals have indicated an interest in publishing re- search abstracts on BIONET in advance of hardcopy articles. Annotated examples of program usage have been included into the HELP ME system. The examples, formatted to be suitable for print- ing out as a manual, cover the major uses of the BIONET software for data entry, gel man- agement, sequence, structure and restriction site analysis, cloning simulations, database searches, and sequence similarities and align- ments. A manual of standard molecular biol- ogy lab protocols has also been added to HELP ME for users to reference. One of BIONET's major goals is to serve as a focus for the development and sharing of new software tools. Towards achieving this goal, BIONET has made available to the com- munity a wide variety of important computer programs donated by a number of software developers. A collaborative effort has oc- curred between the BIONET staff and the software authors to expand the usefulness of important software by making it compatible with a number of hardware and user com- munity constraints. BIONET provides an increasing number of databases online: lists of restriction enzymes; a bank of common cloning vector restriction maps and complete vector sequences; a da- tabase of regular expressions derived from published consensus sequences; the search- able full text of a recent revision of "Genetic Variations of Drosophila melanogaster" by Dan L. Lindsley and E.H. Grell (the Drosophila "Red Books. Some of these can be used as input to search programs. BIONET invites curators of genetic and physical genome maps to use this resource for the collection, maintenance, and distribution of Weir data- bases. SOURCE: Roode et al., 1988. "New Developments at BlO- NET," Nucleic Acids Research, 16(5):1857-1859. THE USE OF INFORMATION TECHNOLOGY IN RESEARCH

24 INFORMATION A second kind of database, a reference database, stores information on the TECHNOLOGY AND literature of the sciences. For example, Chemical Abstracts Selvice has abstracted THE CONDUCT all articles published in journals of chemistry since 1970 and makes the abstracts OF RESEARCH available electronically. The National Lib racy of Medicine operates services that index, abstract, and search the literature database (known as MEDLARS). In addition, it distributes copies of the database for use on local computers and has developed a communications package, called GRATEFUL MED, that simplifies searching the major MEDLARS files over six million records through 1987. In addition to biomedicine and clinical medicine, the National Lib raIy of Medicine partially covers the literature of the disciplines of population control, bioethics, nursing, health administration, and chemistry. One of its most important databases, for instance, is TOXLINE, which references the chemical analysis of toxins. Information search services have grown up around these and other databases, including a number of commercial ones, and now constitute a substantial industry. A database, taken together with the procedures for indexing, cataloging, and searching it, makes up an information management system. Some potentials of information management systems have been predicted for years, beginning with BIRTH OF A NETWORK: A HISTORY OF BITNET (EXCERPTED) BITNET (Because It's Time NETwork) began as a single leased telephone line between the computer centers of The City University of New York (CUNY) and Yale University. It has developed into an international network of computer systems at over 800 institutions worldwide. Because membership is not re stricted by disciplinary specialty or funding ability, BITNET plays a unique role in foster ing the use of computer networking for scholarly and administrative communication both nationally and internationally. In 1981, CUNY and Yale had been using internal telecommunications networks to link computers of their own. The New York/ New Haven link allowed the same exchanges to take place between two universities. The founders of BITNET Ira Fuchs, then a CUNY vice chancellor, and Greydon Freeman, the director of the Yale Computing Center real ized that the fledgling network could be used to share a wide range of data. Furthermore, the ease and power of electronic mail showed new potential for cooperative work among scholars; collective projects could now be undertaken that would have been difficult or impossible if conducted by postal mail or by phone. Fuchs and Freeman approached the direc- tors of other academic computer centers with major IBM installations to invite them to become members of the new network. The plan of shared resources that BITNET offered included two proposals: a) that each institu- tion pay for its own communications link to the network; and b) that each provide facili- ties for at least one new member to connect. Software was used to create a store-and- forward chain of computers in which files, messages, and commands are passed on without charge from site to site to their final destination. BITNET became a transcontinen- tal network in 1982 when the University of California at Berkeley leased its own line to CUNY. Berkeley agreed to allow other Califor

25 Vannevar Bush's MEMEX (Bush, 19451. The box on pages 2029 illustrates a current working information management system that links texts and databases in genetics and medicine. Difficulties Encountered For all disciplines, both factual and reference databases promise to be significant sources of knowledge for basic research. But to keep this promise, a Pandora's box of problems will have to be solved. Difficulties encountered with factual databases, stated succinctly, are: the researcher cannot get access to data; if he can, he cannot read them; if he can read them, he does not know how good they are; and if he finds them good, he cannot merge them with other data. Researchers have difficulty getting access to data stored by other researchers. Such access permits reanalysis and replication, both essential elements of the scientific process. At present, with a few excep- tions, data storage is largely an individual researcher's concern, in line with the tradition that researchers have first rights to their data. The result has been a proliferation of idiosyncratic methods for storing, organizing, and indexing data, with one researcher's data essentially inaccessible to all other researchers. nia institutions to link to the network through its line, in return for some expense sharing. In 1984, IBM agreed to support CUNY and EDUCOM (a nonprofit consortium of col- leges, universities, and other institutions founded in 1964 to facilitate the use and management of information technology) in organizing a centralized source of informa- tion and services to accommodate the grow- ing number of BITNET users. EDUCOM set up a Network Information Center (BITNIC), whose ongoing functions include the han- dling of registration of new members; at the same time, CUNY established a Development and Operations Center (BITDOC), which de- velops tools for the network. BITNET's success (it is now in all fifty states) led to the formation of a worldwide network of computers using the same net- working software: in Europe and the Middle East (EARN, the European Academic Re- search Network), Canada (NetNorth), Japan, Mexico, Chile, and Singapore (all of which are members of BITNET). There is also active interest from other countries in the Far East, Australia and New Zealand, and South Amer- ica. Although political and funding consider- ations have forced their administrative segre- gation, BITNET, EARN, and NetNorth form one topologically interconnected network. Success has also meant some further structuring of what had once been essentially a buddy system. BITNET is now governed by a board of trustees elected by and from its membership. The members of the board each participate in various policy-making committees focusing on network usage, fi- nance and administration, BITNIC services and activities, and technical issues. What be- gan as a simple device for intercampus shar- ing is simple no longer. SOURCE: Holland Cotter, ~988. Birth of a network: A history of BITNET. CUNY/University Computer Center Communications, 14:~-10. THE USE OF INFORMATION TECHNOLOGY IN RESEARCH

26 INFORMATION Even if a researcher gets access to a colleague's data, he may not be able to read TECHNOLOGY AND them. The formats with which data are written on magnetic tape-like the THE CONDUCT formats used in word processing systems-vary from researcher to researcher, OF RESEARCH even within disciplines. The same formatting problems prohibit the researcher from merging someone else's data into his own database. In order either to read or to merge another's data, considerable effort must be dedicated to converting tape formats. Finally, when a researcher gets access to and reads another's database, he often has no notion of the quality of the data it contains. A number of proposals (see Branscomb, 1983, National Research Council, 1978) have been made for the creation of what are called evaluated databases, in which data have been verified by independent assessment. In fields such as organizational science or public health, the costs of collecting and storing data are so large that researchers often have to depend on case studies of organizations or communities to test hypotheses. Researchers in these fields have proposed combining data from many surveys into databases of national scope. If differences in research protocols and database formats can be resolved, such national databases can increase the quality and effectiveness of research. THE STUDY PANEL'S EXPERIENCE WITH ITS OWN ELECTRONIC MAIL IS INSTRUCTIVE. Most of the members of the Panel use electronic mail in their professional work; some use it extensively, exchanging as many as seventy messages in one day. At their first meeting, Panel members and staff decided it would be useful to establish electronic com- munication links for the Panel. Using a net- work to which he had access, one of the Panel members devised a distribution-list scheme for the Panel. He designed a system that would allow Panel members to exchange messages or documents easily by naming a common group "address." This group ad- dress would connect everyone by name from their own network. Panel members would not have to remember special codes or routes to other networks, but could use their own familiar network. Also, messages could be sent to one, several, or all of the Panel mem bers at once. Between December 1986 and March 1988, nearly 2,000 messages went out using the Panel's special electronic group address. In line with what has been found in systematic research on electronic mail by ad hoc task groups (Finholt, Sproull and Kiesler, 1987), most of the messages went from study staff managing the project to Panel members. Epically, staff used electronic mail to per- form coordinating and attentional functions, e.g., to structure meetings, to ask Panel members for information or to perform writ- ing tasks, and to provide members with prog- ress reports. In addition, some Panel mem- bers sent mail through other network chan- nels to each other; for instance, two Panel members exchanged electronic mail about computers in the oceanographic community through BITNET, ARPANET, and OMNET. Although previous research and our own

27 The primary difficulty encountered with reference databases is in conducting searches. Most information searches at present are incomplete, cumbersome, inefficient, expensive, and executable only by specialists. Searches are incomplete because databases themselves are incomplete-updating a database is difficult and expensive- and because information is stored in more than one database. Searches are cumbersome and inefficient because different databases are orga- nized according to different principles and cannot readily be searched except by commands specific to each database. Searches are expensive because access is expensive (as much as $300 per hour), because network linkages to the databases impose substantial surcharges, and because the inefficiency of the systems means that searches may have to be repeated. A difficulty common to both scientific and reference databases is a pressing need for new and more compact forms of data storage. Disciplines such as oceanography, meteorology, space sciences, and high energy physics have already gathered so much data that more efficient means of storage are essential; and others are following close behind. One solution seems to lie in optical disk storage, for which various alternative technologies are under development. Currently, these new techniques lack commonly accepted standards. informal observations agree in suggesting that the electronic group mail scheme helped the Panel to work more efficiently, the system was used much less extensively than had been originally envisioned. For example, when delivery of report drafts was crucial, the staff relied on overnight postal mail. Net- work service inadequacies and technical problems are partly to blame; for example, it took months before messages could be sent predictably and reliably to every Panel mem- ber. Because the networks do not facilitate access to service support (comparable to tele- phone system operators, for example), Panel members had to rely on their own resources to remedy any system inefficiencies. For ex- ample, changes to electronic mail addresses in the system could not be made after a few months, so that new addresses had to be added to individual messages. Such technical problems, though by no means insurmountable, were annoying. Anal ysis of a sample of messages received by Panel staff indicates that approximately 10 percent contained some complaint about de- lays, losses of material in transmission, or unavailability of the group mail system. Of- ten, documents were difficult to read because document formatting codes embedded in the document files were removed prior to trans- mission. A message legible on one system might be filled with unintelligible characters when received on another. At considerable difficulty, some Panel members converted messages received electronically to formats they could read using their text editors. Then they would type in their own revisions, which once again would have to be converted to plain formats to be sent back through the networks. This experience suggests that much needs to be done to make internetwork communication by groups more efficient and easier to use. THE USE OF INFORMATION TECHNOLOGY IN RESEARCH

28 INFORMATION Another difficulty is that stored data gradually become useless, either because TECHNOLOGY AND the storage media decay or the storage technology itself becomes obsolete. Data THE CONDUCT stored on variant forms of punched cards, on paper tape, or on certain magnetic OF RESEARCH tape formats may be lost due to the lack of reading devices for such media. Even if the devices still exist, some data stored on magnetic tapes will be lost as the See box on satellite- tapes age, unless tapes are copied periodically. Needless to say, such preserva derived data, page 30. lion activities often receive low priority. An important archival activity that also receives a low poorly is the conversion of primary and reference data from pre-computer days into machine readable form. In this regard, the efforts of the Chemical Abstract Service to extend their chemical substance and reference databases are praiseworthy. Another difficulty in storing information is private ownership. By tradition, researchers hold their data privately. In general, they neither submit their data to central archives nor make their data available via computer. Increasingly, however, in disciplines like meteorology and the biomedical sciences, submis sion of primary data to data banks has become accepted as a duty. In the field of economics, the National Science Foundation now requires that data collected with the support of the Economics Program be archived in machine readable HOW A LIBRARY USES COMPUTERS TO ADVANCE PRODUCTIVITY IN SCIENCE In 1985 the William H. Welch Medical Li- brary of the Johns Hopkins University began a unique collaboration with Dr. Victor A. McKusick, the Johns Hopkins University Press, and the National Library of Medicine to develop and maintain an online version of McKusick's book Mendelian Inheritance in Man (known as OMIM, for Online Mendelian Inheritance in Man). While the book contains 3,900 phenotypes (a specific disorder or sub- stance linked to a genetic disease) and up- dates are issued approximately every five years, OMIM currently describes more than 4,300 phenotypes and is updated every week. A gene map is available, keyed to the pheno- type descriptions. Any registered user worldwide can dial up OMIM and search its contents through a simple three-step process: 1) state the search in simple English (e.g., relationship between Duchenne muscular dystrophy and growth deficiency hormone); 2) examine the list of documents, which are presented in ranked order of relevance; and 3) select one or more documents to read in detail. Having selected a document, the searcher can determine through a single keystroke whether the phe- notype has been mapped to a specific chro- mosome. OMIM entries are also searchable in a related file, the Human Gene Mapping Library (HGML) at Yale University. By mid- 1988, researchers will be able to use the same access code to enter and search three related databases: HGML in New Haven, the Jackson Laboratory Mouse Map in Bar Harbor, and OMIM in Baltimore. OMIM is more than an electronic text. It is a dynamic database with many applications. Searching the knowledge base is only one of its uses. It can be used as a working tool. For example, at the last biennial international Human Gene Mapping conference in Paris (September 1987) the results of the commit- tees' deliberations were used to update and regenerate the database each evening. Every

29 form, and that any professional article citing program support be accompanied by a fully documented disk describing the underlying data. In the social sciences, a 1985 report of the National Research Council's Committee on National Statistics recommended both that "sharing data should be a regular practice" and that a "comprehensive reference service for computer-readable social science data should be developed." (Fienberg, Martin, and Straf, 1985.) In addition, peer review of articles and proposals has been constrained by the difficulty of gaining access to the data used for analysis. If writers were required to make their primary data available, reviewers could repeat at least part of the analyses reported. Such review would be more stringent, would demand more effort from reviewers, and raises a number of operational questions that need careful consideration; but it would arguably lead to more careful checking of published results. Underlying the difficulties in information storage and retrieval are problems in the institutional management of resources. Who is to manage, maintain, and update information services? Who is to create and enforce standards? At present the research community has three alternative answers: the federal government, which manages such resources as MEDLINE and the GenBank; professional morning, the conferees had fresh files to consult. This information was available worldwide at the same time. In the future, these conferences can take place electroni- cally as frequently as desired by the scientific community. OMIM is a node in an emerging network of biotechnology databases, data banks, tissue repositories, and electronic journals. In a few years, it may be possible to enter any of these files from any one of the related files. Through this kind of linkage, OMIM may serve as a bridge between the molecular ge neticists and the clinical geneticists. Cur- rently, these databases are primarily text or numerical files. As technology improves and becomes ubiquitous, and as network band- width expands, databases will routinely in- clude visual images and complex graphics. It may also be possible to jump from one point within a file to relevant and related points deep within other files. OMIM and its future manifestations result from collaborative efforts and support from diverse groups. Dr. Victor A. McKusick is the scientific expert responsible for the knowl- edge base; his editorial staff adds new mate- rial and updates the database. The National LibraIy of Medicine developed OMIM as part of its Online Reference Works program. The Welch Medical Library provides the comput- ers, network gateways, database maintenance and management, and user support. finally, the Howard Hughes Medical Institute provides partial support for access, maintenance, and future development of the system. The Welch Library must work closely with both the author and the users to represent research knowledge in ways that best suit the users' purposes. It must be able to respond quickly to the changing needs of the author and the users. It is in a unique position to study and engineer a new kind of knowledge utility. The OMIM effort is part of a project to develop a range of online texts and databases in genetics and internal medicine, carried out in the Library's Laboratory for Applied Re- search in Academic Information. THE USE OF INFORMATION TECHNOLOGY IN RESEARCH

30 INFORMATION societies, such as the American Chemical Society, which manages the Chemical TECHNOLOGY AND Abstracts Se~v~ce, and the American Psychological Association, which manages THE CONDUCT Psychological Abstracts; and private for-profit enter ses such as the Institute for OF RESEARCH Scientific Information. NEW OPPORTUNITIES: APPROACHING THE REVOLUTION ASYMPI OTICALLY The information technologies and institutions of the past that revolutionized scholarly communication writing, the mails, the library, the printed book, the encyclopedia, the scientific societies, the telephone-made information more accessible, durable, or portable. The advent of digital information technology and management Continues the revolution, suggesting a vision, still somewhat HANDLING SATELLITE-DERIVED OBSERVATIONAL DATA At present both the National Aeronautics and Space Administration (NASA) and the Na- tional Oceanic and Atmospheric Administra- tion (NOAA) operate earth-orbiting satellites and collect data from them. Both NOAA and NASA store large volumes of primary data from the satellites on digital tape. Both have faced problems, although each organization's problems are different. NOAA, until 1985, had a system that, for purposes of satellite oper- ations, stored environmental satellite data on a Terabit Memory System (TBM). The TBM technology was used from 1978 to 1985, at which time it became obsolete; the more than 1,000 tapes of data collected have been reduced by about 40 percent in transforming most of the useful materials to standard dig- ital tape for storage. NASA has used standard digital tape and disk storage technologies and, since ceding the LAND SAT satellites, has re- corded and saved data from its research earth-observing satellites as needed. Both NASA and NOAA face real problems in making data accessible for scientific analysis. NASA has expended time, effort, and money building a number of satellite data distribu- tion systems that provide digital data archives and a catalog of satellite data holdings, as well as images and graphical analyses produced from satellite data. For example, NASA's Na- tional Space Science Data Center received and filled some 2,500 requests for tapes, films, and prints in the first half of fiscal 1988, and also provided network access to specific databases. NOAA has been largely unable to get financial support for its proposed satellite data management systems. Selection of needed information from among the data available remains a problem. Some pilot sys- tems under development at both agencies succeed in leading the user through a catalog, but fail to contain much valuable new infor- mation and data. Both agencies continue to hold great amounts of environmental satellite data in their permanent archives that are difficult to access, expensive to acquire, and as a result are ignored by many researchers who could benefit from their use. Much re- mains to be done to improve access to im- portant satellite-derived data.

31 incoherent, of new ways of finding, understanding, storing, and communicating information. Some technologies involved in the revolution are · Simulations of natural (or hypothesized) phenomena; · Visualization of phenomena through graphical displays of data; and · Emerging use of knowledge-based systems as "intelligent assistants" in managing and interpreting data. Simulations allow examination of hypotheses that may be untestable under normal conditions. Plasma physicists simulate ways of holding and heating a hot, turbulent plasma until it reaches the temperatures necessary for fission. Cosmol- ogists simulate the growth of galaxies and clusters of galaxies in an infant universe. Engineers simulate the growth of fractures in a metal airplane wing or nuclear reactor. Chemists' simulations may someday be sophisticated enough to screen out unproductive experiments in advance. Drug companies are consid- ering the use of simulations to design drugs for a particular function, for example, a non-addictive drug that also kills pain. In general, simulations extend research- ers' ability to model a system and test the model developed. Visualization techniques turn the results of numerical computations into images. The remarkable ability of the human brain to recognize patterns in pictures allows faster understanding of results in solutions to complex problems, as well as faster ways of interacting with computer systems and models. For USES OF SIMULATION IN ECONOMETRICS Simulation techniques take estimated rela- tionships or numerical models that appear to be consistent with observations of actual be- havior and apply them to problems of pre- dicting the changes induced by time, or of measuring the relationships among sets of economic variables. For example, simulation models have been utilized to study the effects of oil price changes on the rate of inflation, proposed policies regarding labor law, and future interest rates. In addition, exchanges among groups of agents in an economy have been used in dynamic input-output analysis to make inferences about the feasible or likely future course of economic growth in the entire economy or within specific indus- tries or regions. There is a growing interest in investigating the properties of models that represent the workings of firms, markets, and whole econ- omies as nonlinear adaptive systems. Re- cently this has begun to expand the reliance placed by essentially theoretical researchers upon extensive applications of numerical simulation methods. Finally, in both exten- sions of the line of inquiry just noted and in other contexts, direct simulation of stochastic processes via Monte Carlo techniques can be used by economists to gain insights into the properties of stochastic systems that resist deductive techniques due to their (current) analytic intractability. SOURCE: Paul A. David and W. Edward Steinmuller, 1987. Position paper: "The Impact of Information Technology Upon Economic Science," p. 21. THE USE OF INFORMATION TECHNOLOGY IN RESEARCH See box on simulation, below. See box on visualization, pages 32-33.

32 INFORMATION instance, while small molecules have a few dozen atoms and are easy to visualize, TECHNOLOGY AND large molecules, like proteins, have tens of thousands of atoms. A useful physical THE CONDUCT model of the structure of a protein might stand six feet high and cost several OF RESEARCH thousand dollars. Moreover a researcher could not slice a physical model to see how it looks inside; with visualization techniques, he could. Visualization is the single advanced technology most widely mentioned by Panel members and position paper writers. (For a critical analysis of opportunities in visual imaging, see McCormick, DeFanti, and Brown, 1987.) Intelligent assistants can serve as interfaces between the researcher and the computer. Just as computers increase our power to collect, store, filter, and retrieve data, they can also help us reason about the data. Over the last three decades, computer scientists have been developing methods for symbolic infor mation processing or artificial intelligence. While these programs are not fully intelligent in the sense that humans are, they allow computers to solve problems that are not reducible to equations. Artificial intelligence programs have been written for many scientific tasks. These tasks are not expressible in terms of numerical operations alone, and, thus, require symbolic computation. The programs fall into a general class, called expert systems, because they are programmed to reach decisions in much the same way as experts do. Expert systems have been successfully applied to industrial areas such as manufacturing and banking. To date, only a few prototype systems have been written for scientific research. Prototypes include programs that assist in chemical synthesis planning, in planning experiments in molecular genetics, in interpreting mass spectra of organic molecules, in trou VISUALIZATION IN SCIENTIFIC COMPUTING Scientists need an alternative to numbers. A technical reality today and a cognitive im perative tomorrow are the use of images. The ability of scientists to visualize complex com putations and simulations is absolutely es sential to ensure the integrity of analyses, to provoke insights, and to communicate those insights with others. Several visually oriented computer-based technologies already exist today. Some have been exploited by the private sector, and off-the-shelf hardware and software can be purchased; others require new develop ments; and still others open up new research areas. Visualization technology, well inte grated into today's workstation, has found practical application in such areas as product design, electronic publishing, media produc- tion and manufacturing automation. Man- agement has found that visualization tools make their companies more productive, more competitive, and more professional. So far, however, scientists and academics have been largely untouched by this revolu- tion in computing. Secretaries who prepare manuscripts for scientists have better inter- active control and visual feedback with their word processors than scientists have over large computing resources that cost several thousand times as much. Traditionally, scientific problems that re- quired large-scale computing resources needed all the available computational power

33 bleshooting particle beam lines for high energy physicists, and in automated theory formulation in chemistry, physics, and astronomy. The methods needed to assist with complex reasoning tasks are themselves the subject of considerable research in such fields as computer science, cognitive science, and linguistics. Research in these fields, in turn, is producing tools that facilitate research in other disciplines. As these methods are used more widely in the future, some experts predict the conduct of research will change dramatically. Intelligent assistants, in the form of software, can carry out complex planning and interpretation tasks as instructed, leaving humans free to spend time on other tasks. fallen these reasoning programs are coupled to systems with data-gathering capabilities, much of the drudgery associated with research planning, data collection, and analysis can be reduced. Research laboratories and the conduct of research will become even more productive. Men every researcher has intelligent assistants at his/her disposal and when the functions of these assistants are interlinked, science will expand the frontiers of knowledge even more rapidly than it now does. Future technologies will provide other forms of research support. Programs that recognize and follow natural-language commands, like "Give me the data from this file," can simplify interaction between the researcher and computer systems. Spoken-language recognition offers the advantage of hands-free inter- action. Speech production, in which computers generate connected sentences in response to instructions, will, according to one author, lead to a revolutionary expansion in the use of computers in business and office environments (Koening, 1987). A variety of manipulative interfaces of different kinds are under active to perform the analyses or simulations. The ability to visualize results or guide the calcu- lations themselves requires substantially more computing power. Electronic media, such as videotapes, laser disks, optical disks, and floppy disks, are now necessary for the publication and dissemina- tion of mathematical models, processing al- gorithms, computer programs, experimental data, and scientific simulations. The reviewer and the reader will need to test models, evaluate algorithms, and execute programs themselves, interactively, without an author's assistance. Scientific publication needs to be extended to make use of visualization-com- patible media. Reading and writing were only democra- tized in the past 100 years and are the ac cepted communication tools for scientists and engineers today. A new communication tool, visualization, in time will also be democ- ratized and embraced by the great research- ers of the future. The introduction of visualization technol- ogy will profoundly transform the way sci- ence is communicated and will facilitate the commission of large-scale engineering pro- jects. ~sualizabon and science go hand in hand as parkers. No one ever expected Gutenberg to be Shakespeare as well. Perhaps we will not have to wait 150 years this time for the ge- niuses to catch up to me technology. SOURCE: B. H. McCormick, T. A. DeFanti, and M. D. Brown, 1987. Visualization in Scientific Computing (NSF Report). Computer Graphics 21(6). ACM SIGGRAPH: New York, Association for Computing Machinery. THE USE OF INFORMATION TECHNOLOGY IN RESEARCH

34 INFORMATION exploration (Foley, 1987). For example, the "data glove" is a glove on a computer TECHNOLOGY AND screen that is an image of a specially-engineered glove on a researcher's hand. THE CONDUCT The data glove follows the motions of the researcher's hand, permitting a OF RESEARCH researcher, for instance, to manipulate a molecule directly on screen. When the data glove is coupled with feedback devices in the researcher's glove, a researcher can "feel" the fit between two molecular structure surfaces. The Panel believes that the mature and emerging information technologies, taken together, suggest a vision of new approaches to scientific and engineering research. The vision focuses on an open infrastructure for research support and communication among researchers, along with the services for maintaining this See bodices on pages 35~1. infrastructure. Below are several examples of parts of the vision and of forms the vision could take. We discuss further steps in the report's final section on recommendations. INSTITUTIONAL AND BEHAVIORAL IMPEDIMENTS TO THE USE OF INFORMATION TECHNOLOGY IN RESEARCH Underlying many of the difficulties we have discussed in the use of information technology in research are institutional and behavioral impediments. We have identified six such impediments that seem to affect research in most or all disciplines: MOLECULAR GRAPHICS The use of interactive computer graphics to gain insight into chemical complexity be- gan in 1964. Interactive graphics is now an integral part of academic and industrial re- search on molecular structures and interac- tions, and the methodology is being success- fully combined with supercomputers to model complex systems such as proteins and DNA. Techniques range from simple black- and-white bit-mapped representations of small molecules for substructure searches and synthetic analyses to the most sophisti- cated 3D color stereographic displays re- quired for advanced work in genetic engi- neering and drug design. The attitude of the research and develop- ment community toward molecular model- ing has changed. What used to be viewed as a sophisticated and expensive way to make pretty pictures for publication is now seen as a valuable tool for the analysis and design of experiments. Molecular graphics comple- ments crystallography, sequencing, chroma- tography, mass spectrometIy, magnetic res- onance, and the other tools of the experimen- talist, and is an experimental tool in its own right. The pharmaceutical industry, espe- cially in the new and flourishing fields of genetic and protein engineering, is increas- ingly using molecular modeling to design modifications to known drugs and to propose new therapeutic agents. SOURCE: B. H. McCormick, T. A. DeFanti, and M. D. Brown, 1987. Visualization in Scientific Computing (NSF Report). computer Graphics 21(6). ACM SIGGRAPH: New York, Association for Computing MachineIy.

35 (1) Issues of costs and cost sharing; (2) The problem of standards; (3) Legal and ethical constraints; (4) Gaps in training and education; (5) Risks of organizational change; and (6) Most fundamental, the absence of an infrastructure for the use of informa- tion technology. Issues of Costs and Cost Sharing Many forces drive developments in information technology and its application to research. The result of these developments is constantly increasing requirements for higher performance computer and communications equipment, making current equipment obsolete. Universities and other research organizations are spending increasing fractions of their budgets on information technology to maintain competitive research facilities and to support computer-related instruction. At a number of private research universities, for example, tuition has increased faster than inflation for a number of years, in part to cover some of these costs. It is unrealistic to rely on such funding sources to cover further cost increases that will be required to build local network infrastructures. A related issue is who will pay for the costs of research computing support. Historically, such costs have been partially recovered by bundling them into charges for use of time-shared mainframe computers. As usage has moved from campus mainframes to other options (ranging from supercomputer centers to workstations and personal computers), this source of revenue has been lost, while the needs for administrative staff and sunnort personnel for consulting, RESEARCH ON INTEGRATED INFORMATION SYSTEMS Nearly a decade ago the Association of American Medical Colleges (AAMC) recog- nized the strategic importance of informa- tion technology to the conduct of biomedical research. In response to a study released by the AAMC in 1982, the National Library of Medicine has supported eleven institutions in efforts to develop strategic plans and proto- types of an Integrated Academic Information Management System (L\IMS). The objective of L\IMS is to develop the institutional informa- tion infrastructure that permits individuals to access information they need for their clinical or research work from any computer terminal, ~ ~, wherever and whenever it is needed, pull that information into a local environment, and read, modify, transform it, or otherwise use it for many different purposes. Several pilot prototype models have emerged. The Baylor Medical College is devel- oping a "virtual notebook," a set of tools for researchers to collect, manipulate, and store data. Georgetown Medical Center has a model called BIOSYNTHESIS that automatically routes a user's query from one database to another. The knowledge sector development of a comprehensive patient management clinical decision support system called HELP is the LAIMS project focus at the University of Utah; and Johns Hopkins University is devel- oping a knowledge workstation. THE USE OF INFORMATION TECHNOLOGY IN RESEARCH

36 INFORMATION training, and documentation have continued. Efforts to move research support TECHNOLOGY AND into indirect cost categories have not succeeded as many research institutions THE CONDUCT and universities face caps on indirect cost rates and have no room to accommo OF RESEARCH date new costs. Advances in communications and computing generate new services that require subsidy during the first years of their existence if they are to be successfully tested. This is particularly true of network-related services. Building services into a national network for research will require significant federal, state, and institutional subsidy, which cannot be recovered from user service charges until large-scale connectivity has been achieved and services are mature. Sources for these subsidies must be determined. Methods used for cost recovery can have significant impacts on usage. Two alternatives are to charge users for access to services or to charge users for the amount of service used. Networks such as BITNET have grown substantially in connectivity and use because they have fixed annual institutional charges for membership and connection, but charge no fees for use. Use-insensitive charge methods (often referred to as the library model) are attractive to institutions because costs can be treated as infrastructure costs and are predictable. Charges A REASONABLE MODEL Although the Panel is unaware of anvthin~ precisely like the vision it holds for sharing information, proposals for the newly estab- systems; fished National Center for Biotechnology In formation (NCBI) at the National Library of Medicine may come close. The NCBI pro poses to facilitate easy and effective access to a comprehensive array of information sources that support the molecular biology research community. Many, but not all, of these sources are electronic. They encompass raw data, text, bibliographic information, and graphic rep resentations. Ownership and responsibility for development and maintenance of these sources range from individual researchers to departmental groups, institutes, professional organizations, and federal agencies. Each was designed to serve specific needs and audiences, created in many different hard ware configurations and software applica tions. Consequently, NCBI's mission requires experts in both information technologies and biotechnologies. NCBI staff must · Provide directories to knowledge sources; · Create useful network gateways between · Assist users in using databases effec- tively; · Reduce incompatibilities in retrieval ap- proaches, vocabulary, nomenclature and data structures; · Promote standards for representing in- forrnation that will reduce redundancy and detect inconsistencies or errors; · Provide useful tools for manipulating and displaying data; and · Identify new analytic and descriptive services and systems. Some computing-intensive universities (e.g., Carnegie Mellon University and Brown University) and medical centers (e.g., Johns Hopkins University, the University of Utah, Baylor University, and Duke University) are also attempting to develop instances of the · - vlslon.

37 for amount of use, in contrast, can inhibit usage; a major inhibitor to use of commercial databases for information searches, for instance, is the unpredict- ability of user charges for time spent searching the databases. During the development of network services, it seems desirable to recover costs through fixed access charges wherever possible. The Problem of Standards The development of standards for interconnec- tion makes it possible for every telephone in the world to communicate with every other telephone. The absence of commonly held and implemented standards that would allow computers to communicate with every other com- puter and to access information in an intuitive and consistent way is a major impediment to scholarly communication, to the sharing of information re- sources, and to research productivity. Standards for computer communication are being developed by many groups. The pace of these efforts is painfully slow, however, and the process is intensely political. The technologies are developing faster than our ability to define standards that can make effective use of them. Further, standards that are developed prematurely can inhibit technological progress; standards developed by one group (for example, an equipment vendor) in isolation create islands of users with whom effective communication is difficult or impossible. Development of standards not only improves efficiency but also reduces costs. Open interconnection standards permit competition among vendors, which leads to lowered costs and improved capabilities. Proprietary standards restrict competition and lead to increased costs. Federal government procurement rules have been major sources of pressure on vendors to support open standards. Current mechanisms for reaching agreement on standards need examination and significant improvement. Such examination needs input from user groups, which will have to exert pressure on standards bodies and on the vendors who are major players in the standard-setting process. Legal and Ethical Constraints The primary legal and ethical constraints to wider use of information technology are issues of the confidentiality of, and access to, data. The following discussion will only illustrate these issues; we believe they are too important and too specialized to be adequately addressed in a document as general as this one. In the report's final section, we recommend the establishment of a body that will study and advise on these issues. Information technology has made possible large-scale research using data on human subjects. For the first time, researchers can merge data collected by national surveys with data collected in medical, insurance, or tax records. For instance, in public health research, long-term studies of workers exposed to specific hazards can be carried out by linking health insurance data on costs with Internal Revenue data on subsequent earnings, Social Security data on disability payments, and mortality data, including date and cause of death (Steinwachs, 1987, Position Paper: Information Technology and the Conduct of Public Health THE USE OF INFORMATION TECHNOLOGY IN RESEARCH

38 INFORMATION Research). The scientific potential of such data mergers is enormous; the actual TECHNOLOGY AND use of mergers is small, primarily because of concerns about privacy and THE CONDUCT confidentiality. OF RESEARCH The right to confidentiality of personal information is held strongly in our society. Concerns about the conflict between researchers' needs and citizens' rights have been extensively explored by a number of scientific working groups, under the auspices of both governmental agencies (such as the Census Bureau) and private groups (for example, the National Academy of Sciences). As more information about individuals is collected and cross-linked, fears are raised that determined and technically sophisticated computer experts will be able to identity specific individuals, thus breaching promises of confidentiality and privacy of information. The Census Bureau, in particular, fears that publicity surrounding such breaches of confidentiality will undermine public confidence and inhibit cooperation with the decennial censuses. Although there have been discussions and legislative proposals for outright restrictions on mergers of government survey or census data, a reasonable alternative seems to be to impose severe penalties on researchers who breach confidentiality by making use of information on specific individuals. The issue here, as elsewhere in public policy problems, is the balance of benefits against costs. Does better research balance the risk of compromising perceived funda mental rights to privacy? This is a topic that will need to be debated among both researchers and concerned constituencies in the general public. A related issue is that of acceptable levels of informed consent for human subjects. At present, consent is usually obtained from each respondent to a survey; it is described as informed because the respondent understands what will be done with responses usually, that they will be used only for some specific research project. Data-collecting organizations protect the confidenti THE FAR SIDE OF THE DREAM: THE LIBRARY OF THE FUTURE "Can you imagine that they used to have libraries where the books didn't talk to each other?" [Marvin Minsky, MIT] The libraries of today are warehouses for passive objects. The books and journals sit on shelves, waiting for us to use our intelligence to find them, read them, interpret them, and cause them finally to divulge their stored knowledge. "Electronic" libraries of today are no better. Their pages are pages of data files, but the electronic page images are equally passive. Now imagine the library as an active, intel- ligent "knowledge server." It stores the knowledge of the disciplines in complex knowledge structures (perhaps in a formal- ism yet to be invented). It can reason with this knowledge to satisfy the needs of its users. The needs are expressed naturally, with fluid discourse. The system can, of course, retrieve and exhibit (the electronic textbook). It can collect relevant information; it can summa- rize; it can pursue relationships. It acts as a consultant on specific prob- lems, offering advice on particular solutions, justifying those solutions with citations or with a fabric of general reasoning. If the user

39 ality of the information obtained from respondents, but guarantee only that information about specific individuals will not be released in such a way that they can be identified. The extent to which informed consent can be given to unknown future uses of survey data, in particular to their merger with other data sources, is of great concern to survey researchers. Controlling the eventual uses of merged, widely distributed data sets would be difficult. Another concern that needs to be addressed is one of responsibility in computer-supported decision making. Scientists, engineers, and clinicians more and more frequently will use complex software to help analyze and interpret their data. Who then is morally and legally responsible for the correctness of their interpretations, and of actions based on them? Experiments involving dangerous materials or human lives may soon be controlled by computers, just as many commercial aircraft landings are at present. Computers may be capable of faster or more precise determinations in some situations than humans. But software designers lack strong guidelines on assignment of responsibility in case of malfunction or unforeseen disaster, and lack the expertise to guarantee against malfunctions or disasters. With complex software overlaid on complex hardware, it is impossible to prove beyond a doubt in all circumstances that both hardware and software are performing precisely as they were specified to perform. Gaps in Training and Education The training and education necessary for using information technology are lacking. Two decades ago many researchers dealt with computers only indirectly through computer programmers who worked in data processing centers. The development of information technology has brought computing into the researcher's laboratory and office. As a result, the level of computing competence expected of researchers, their support staff, and their students has increased manyfold. can suggest a solution or a hypothesis it can check this, even suggest extensions. Or it can critique the user viewpoint, with a detailed rationale of its agreement or disagreement. . . . The user of the Library of the Future need not be a person. It may be another knowledge system that is, any intelligent agent with a need for knowledge. Such a Library will be a network of knowledge sys- tems, in which people and machines collab- orate. Publishing is an activity transformed. Au- thors may bypass text, adding their incre- ment to human knowledge directly to the knowledge structures. Since the thread of responsibility must be maintained, and since there may be disagreement as knowledge grows, the contributions are authored (inci- dentally allowing for the computation of roy- alties for access and use). Knowledge base maintenance ("updating") itself becomes a vigorous part of the new publishing industry. SOURCE: Edward A. Feigenbaum, 1986. Autoknowledge: From file servers to knowledge servers. In: Med~info 86. R. Salarnon, B. Blum, and M. Jorgensen, eds. New York: Elsevier Science Publishers B.V. (North-Holland). THE USE OF INFORMATION TECHNOLOGY IN RESEARCH

40 INFORMATION Computers are changing what students need to learn. Undergraduate students TECHNOLOGY AND of chemistry, for example, need more than the standard courses in organic, THE CONDUCT inorganic, analytic, and physical chemistry; in the view of many practicing OF RESEARCH chemists, they should also have courses in calculus, differential equations, linear algebra, and computer simulation techniques, and through formal courses or practical research experience, should be competent in mathematical reasoning, electronics, computer programming, numerical methods, statistical analysis, and the workings of information management systems (Counts, 1987, Position Paper: The Impact of Information Technologies on the Productivity of Chemistry). Neither students nor researchers can obtain adequate training and education through one-time training courses. Because the numbers of new tools are multiplying, researchers need ways to continuously learn about, evaluate, and, if necessary, adopt these new tools. Using commercial programs and tutorial systems only partly alleviates the problem because the technologies often change faster than such supports can accommodate to the changes. Instructors in the uses of information technologies within the disciplines are rare. Senior research ers are especially hard hit. The Panel took no formal survey, but informal discussions suggest that most senior researchers have had exposure to no more than a one-semester programming course and have few of the skills needed to evaluate and use the available technology. For all researchers, learning advanced computing means taking a risk. They must interrupt their work and pay attention to something new and temporarily unproductive. They must become novices, often where sources of appropriate instruction and help are unclear or inaccessible. The investment of time and level of frustration are likely to be high. Understandably, many researchers cannot find the time and the confidence to learn technical computing; some justify their DOCUMENTS AS LINKED PIECES: HYPERTEXT The vision of computing technology revo lutionizing how we store and access knowl edge is as old as the computing age. In 1945 Vannevar Bush proposed MEMEX, an electro optical-mechanical information retrieval sys tem that could create links between arbitrary chunks of information and allow the user to follow the links in any desired manner. In the early 1960s, Ted Nelson introduced "hyper text," a fonn of Consequential writing: a text branches and allows choices to the reader, best read at an interactive screen. In 1968, Doug Englebart demonstrated a simple hy pertext system for hierarchically-structured documents-that is, a list of sections, each of which decomposes into a list of subsections, each of which decomposes into a list of paragraphs, and so on to which annotations could be added during a multiple-workstation conference. Today hypertext refers to infor- mation storage in which documents are pre- served as networks of linked pieces rather than as a single linear string of characters; readers can add links and follow links at will. Nelson's XANADU system is perhaps the most ambitious hypertext system proposed. XANAI)U would make all the world's knowl- edge accessible in a global distributed data- base to which anyone can add information,

41 choices with negative attitudes, for example: "I get enough communications as it is; I don't need a computer network," or "If I put my data on the computer, others will steal it," or "We are doing fine as things are; why change at this point?" Given these natural but negative attitudes, organizations are sometimes slow in responding to demands for new information technologies. Some research orga- nizations view these attitudes as unchangeable and wait to introduce advanced computing until existing researchers move or retire. Others are actively replacing personnel or creating new departments for computational researchers. Still others are attempting to change attitudes by giving researchers the necessary time and support systems. While we have no data on changes in productivity, there is some evidence that in organizations following the latter course, existing researchers at all ranks can achieve as high computing competence as new personnel (Kiesler and Sproull, 1987). Because people are now being introduced to computing skills at earlier stages of schooling, the lag in computer expertise is disappearing. Over time, alterna- tives to personal expertise in the form of user-friendly software or individual assistance from specialists will also develop. plunks of Organizational Change Changing an organization to make way for advanced information technology and its attendant benefits entails real risks. Administrators and research managers are often reluctant to incur the costs fi- nancial, organizational, behavioral-of new technology. In some cases, adminis- trators and research managers relegate computer resources-hardware, soft- ware, and people-based support services- to a lower priority than the procure- ment and maintenance of experimental equipment. The result can be a long-term suppression of the development and use of the tools of information technology. and in which anyone can browse or search for information. A document is a set of one or more linked nodes of text, plus links to nodes already in the global database; a document may be mostly links, constructed out of pieces already in the database. Users pay a fee proportional to the number of characters they have stored. Anyone accessing an item in the global database pays an access charge, a portion of which is returned to the owner as a royalty. Individuals can store private docu- ments mat cannot have public links pointing to them and can attach annotations to public documents that become available to everyone reading those documents. Documents can be composed of different parts including text, graphics, voice, and video. INTERMEDL\, a hypertext system with some of these proper- ties, has been implemented at Brown Univer- sibr and has been used to organize informa- tion in a humanities course for presentation to students. Small-scale hypertext systems, such as Apple's Hypercards for the Macin- tosh, are available on personal computers; their promoters claim these systems will change information retrieval as radically as spreadsheets changed accounting a few years ago. SOURCE: Peter and Dorothy Denning, personal commu nication, 1987. THE USE OF INFORMATION TECHNOLOGY IN RESEARCH See box on electronic laboratory notebook, page 42.

42 INFORM`\TION In other cases, administrators are misled into underestimating the time and TECHNOLOGY AND resources required to deploy new information technology. Efforts to develop TElE CONDUCT effective networks have been insufficiently supported by government planners OF RESEARCH and research institution administrators, who have been led to assume that technology and services to provide network access are easily put in place. Some administrators have promoted change, but without adequate planning for the resources or infrastructure needed to support users. Problems such as these are exacerbated by overly optimistic advice given the administrators by technological enthusiasts. This particular impediment probably cannot be overcome. It can, however, be alleviated by establishing collaborative arrangements to develop plans for and share the costs of change. EDUCOM, for example, is a consortium of research universities with large computing resources that promotes long-range planning and sharing of resources and experiences. Absence of Infrastructure Most fundamental of all the institutional and behavioral impediments to the use of information technology is the absence of an infrastructure that supports that use. Just as use of a large collection of books is made possible by a building and shelves in which to put them, a cataloguing system, borrowing policies, and reference librarians to assist users, so the use of a collection of computers and computer networks is supported by the existence LEGAL CONSTRAINTS TO AN ELECTRONIC VERSION OF A LABORATORY NOTEBOOK Today, the paper laboratory notebook is the only legally supportable document for patent applications and other regulatory pro cedures connected with research. Some or ganizations, however, routinely distribute electronic versions of laboratory notebook information to managers and other profes sionals who would otherwise have to visit the research site physically or request photo copies. The benefits of legal electronic note books are speculative but attested to by those using them informally (Liscouski, 1987~. First, they would help give researchers access to information or expertise that is otherwise lost because people have moved or reside in dif ferent departments. Second, they would al low research managers and researchers to observe and compare changes in results over time. Third, they would eliminate or make easier the assembly of paper versions of doc- uments needed for government agencies. The barrier to an electronic notebook is social its lack of acceptance as a legal document. Such acceptance could take place if legal conditions for an electronic system storage, format, security were delineated. However, researchers, scientific associations, and gov- ernment agencies have failed to develop such guidelines. This failure is probably connected to the traditions of privacy in laboratory note- books, to the inability to forecast how an electronic system would stand up in court, (and related to that, the risk and unacceptable cost to any single institution of developing a system), and to the uncertainty of the ulti- mate benefits on some widely accepted index of research effectiveness. Whatever the rea- sons, the end result is that a complete and accepted electronic notebook remains unde- veloped.

43 of institutions, services, policies, and experts in short, by an infrastructure. On the whole, information technology is inadequately supported by current infra- structures. An infrastructure that supports information technology applications to re- search should provide · Access to experts who can help; · Ways of supporting and rewarding these experts; · Tools for developing software, and a market in which the tools are evaluated against one another and disseminated; · Communication links among researchers, experts, and the market; and · Analogs to the library, places where researchers can store and retrieve information. Several different kinds of experts in information technology help researchers. Some are specialists in research computing. Some are programmers who develop and maintain software specific to research. Others are specialists who carry out searches. Still others are "gatekeepers," who help with choices of software and hardware. Gatekeepers are members of an informal network of helpers centered around advocates and specialists, experts in both a discipline and in inflation technology who become known by reputation. Overdependence on gatekeepers creates other problems: as with any informal service, some advice received may be narrowly focused or simply wrong and the number of persons wanting free information often becomes larger than the number of persons able to provide it. As a result, the gatekeepers may become overloaded and eventually retreat from their gatekeeping roles. To hold on to expert help of all types, research and funding institutions must find ways of supporting and rewarding it. While institutions and disciplines have evolved ways of rewarding researchers publication in refereed journals, promo- tion, tenure no such systems yet reward expert help. Another aspect of the needed infrastructure is some formal provision for developing and disseminating software for specific research applications. Tools for constructing reliable, efficient, customized, and well-documented software are not used in support of scientific research. Computer science, as a supporting discipline, needs to facilitate rapid delivery of finished software, and easy extension and revision of existing software. The Department of Defense has recently pioneered the creation of a Software Engineering Institute at Carnegie Mellon University. Efforts to create tool building and research resources for nondefense software are worth encouraging. Development and dissemination of scientific software could be speeded in many cases by adoption of emerging commercial standards. These standards are supported by many vendors for a variety of computing environments. The temptation to narrowly match software to specific applications should be resisted in favor of standard approaches. THE USE OF INFORMATION TECHNOLOGY IN RESEARCH

44 INFORMATION Software, once developed, needs to be evaluated and disseminated. The TECHNOLOGY AND research establishment now evaluates research Information principally through THE CONDUCT peer review of funding proposals and manuscripts submitted for publication. OF RESEARCH SoDw~ needs to be dent with in a simper manner. EDUCOM has recently announced its support of a peer-review process for certain kinds of academic software. Other prototypes of systems for evaluating and disseminating software already exist (see boxes on BIONET and on IBM's software market). These See software market, box prototypes couple an electronic "market," through which software can be disseminated, with a conferencing capability that allows anyone with access to contribute to the evaluation of the market wares. The system provides an extremely important feature: those contributors who are most successful in the open market can automatically be identified and given credit in much the same way as authors of books and research papers now are. The infrastructure for information technology also depends on communica- tion links. The Panel believes that one of the most important services that computer networks can provide is the link between users and expert help. Existing links often take the form of electronic bulletin boards on various networks; other mechanisms also exist. Until more formal mechanisms come about, open communication with pioneers, advocates, and enthusiasts is one of AN EXA1MPLE OF A SOFTWARE MARKET INFRASTRUCTURE: IBM RESEARCH IBM's internal computer network connects over 2,000 individual computers worldwide, providing IBM's researchers, developers, and other employees with communications facil- ities such as electronic mail, file transfers, and access to remote computers. In recent years, software repositories and online con- ferencing facilities have grown and flour- ished, and become one of the primary uses of the network. With a single command, any IBMer has access to some 3,000 software packages, developed by other IBMers around the world and made available through the network. Many of these packages are com- puter utilities and programming tools, but others are tools for research. They include statistical and graphics applications, simula- tion systems, end AI and expert system shells, as well as many everyday utilities to make general use of the computer simpler. The high level of interconnection offered by the network and the centralization of informa- tion offered by the repositories allows scien- tists with a particular need to see if software to satisfy that need is available, to obtain it if it is, and to develop it if it is not, with confidence that they are not duplicating the efforts of some colleague. The online conferences (public special- purpose electronic bulletin boards), which are as widespread and accessible as the soft- ware repositories, allow users of the software (and of commercial and other software) to exchange experiences, questions, and prob- lems. These conferences provide a form of peer review for the software developer. For internally developed software, they provide a fast and convenient channel between the soft- ware author and the users; authors with an interest in improving their programs have instant access to user suggestions and to

the best ways to allow new technologies to be disseminated and evaluated by research communities. A final piece of infrastructure largely missing is housing and support for the storing and sharing of information. Such a function could be performed by disciplinary groups or, more generally, at the university level. Many university libraries have a professional core staff whose members hold faculty rank and function not only as librarians but also as researchers and teachers. Some university computer centers operate similarly. National laboratories, like astro- nomical observatories and accelerator facilities, have a core staff of astronomers or physicists whose main task is to serve outside users while also maintaining their own research programs. The existence of such a professional staff involved in the storage and retrieval of information for a discipline would provide a means of recognizing, rewarding, and providing status to these people. In some cases, a university might wish to consider integrating its information science department with its computer center and its library. eager testers. Users with a special need or a hard question have equally fast access to the author for enhancements or answers. The conferences also allow users with common interests to exchange other sorts of information in the traditional bulletin board style. AI researchers debate the usefulness of the concept of intentionality or discuss how software engineering methodologies apply to expert systems development; computer graphics and vision workers talk about the number of bits required to present a satisfac- to~y image to the human eye. Over 100 individual conferences support thou- sands of separate discussions about computer ~ and software and visual all other an peck of IBM's under. The sol repos itories provide a "reviewed" set of tools and appli- cations for a broad population on a wide spec- trum of problems. The organization that originally sets up a repository or a conference generally provides user support for it (answering "how to do it" questions), and installation and maintenance of local services is usually handled either by an onsite group that has an interest in the specialty served by the facility, or on a more formal basis by the local Information Sys- tems department. The benefits of these repositories and con- ferences are at least as widely distributed and probably even harder to quantify, but the success of these software libraries and online conferences within IBM should serve as an encouraging sign for others with the same sorts of needs. A market can be made to suc- ceed, provided that high levels of stan~iza- tion and compatibility in both hardware and software can be achieved. Such levels of in- teroperability have, so far, been easier to achieve at commercial institutions such as IBM Research than at research universities. such as IBM Research than at research universities. 45 THE USE OF INFORMATION TECHNOLOGY IN RESEARCH

Computers and telecommunications have revolutionized the processes of scientific research. How is this information technology being applied and what difficulties do scientists face in using information technology? How can these difficulties be overcome?

Information Technology and the Conduct of Research answers these questions and presents a variety of helpful examples. The recommendations address the problems scientists experience in trying to gain the most benefit from information technology in scientific, engineering, and clinical research.

READ FREE ONLINE

Welcome to OpenBook!

You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

Do you want to take a quick tour of the OpenBook's features?

Show this book's table of contents , where you can jump to any chapter by name.

...or use these buttons to go back to the previous chapter or skip to the next one.

Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

To search the entire text of this book, type in your search term here and press Enter .

Share a link to this book page on your preferred social network or via email.

View our suggested citation for this chapter.

Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

Get Email Updates

Do you enjoy reading reports from the Academies online for free ? Sign up for email notifications and we'll let you know about new publications in your areas of interest when they're released.

Advertisement

Advertisement

ICT Use in Doctoral Research

  • Published: 08 July 2021
  • Volume 57 , pages 253–267, ( 2022 )

Cite this article

use of ict in research pdf

  • Kwong Nui Sim 1  

194 Accesses

1 Altmetric

Explore all metrics

Information and Communication Technology (ICT) use in academic practice has progressed rapidly in the last decade. Nevertheless, it’s use has been taken-for-granted and/or overlooked in academic practice, especially in doctoral research. This pilot study was carried out in 2017, with the aim to examine PhD supervisors’ and PhD students’ assumptions about ICT use and their daily ICT practice in their doctoral supervision/research at a school which only offers graduate programme in a New Zealand university. Data were gathered through participative drawings in which three volunteering PhD supervisors and students reflected on their ICT use in their research. In addition, individual discussions were held, exposing their perspectives of ICT use in this domain for a duration of 12 weeks. A thematic analysis, focused on participants’ perceptions of their ICT use in doctoral research, was conducted. Findings suggest that participants required greater support to enhance their ICT use which was associated with low “e-literacy”. It is evident that the roles of ICT in higher education need to be re-investigated, particularly to support efficient and effective ICT use for doctoral research. The study advocates for a shift to a new understanding of doctoral study schema in higher education by evolving a mutual understanding of ICT use among institutions, PhD supervisors, and PhD students in the doctoral research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Russian Federation)

Instant access to the full article PDF.

Rent this article via DeepDyve

Institutional subscriptions

use of ict in research pdf

Similar content being viewed by others

use of ict in research pdf

Enhancing the roles of information and communication technologies in doctoral research processes

use of ict in research pdf

Instructors’ educational ICT use in higher education in developing countries: evidence from three Ethiopian Universities

use of ict in research pdf

Building capacity for information and communication technology use in global health research and training in China: a qualitative study among Chinese health sciences faculty members

Blignaut, A. S., & Els, C. J. (2010). Comperacy assessment of postgraduate students’ readiness for higher education. The Internet and Higher Education, 13 (3), 101–107. https://doi.org/10.1016/j.iheduc.2010.02.007

Article   Google Scholar  

de Beer, M., & Mason, R. B. (2009). Using a blended approach to facilitate postgraduate supervision. Innovations in Education and Teaching International, 46 (2), 213–226. https://doi.org/10.1080/14703290902843984

Devecchi, C. (2019). Working with PhD students to build their transferability and researcher skills in the FEASST@8 and SuCCEED@8 projects. New Directions for Adult & Continuing Education, 2019 (163), 133–145. https://doi.org/10.1002/ace.20347

Dowling, R., & Wilson, M. (2017). Digital doctorates? An exploratory study of PhD candidates’ use of online tools. Innovations in Education and Teaching International, 54 (1), 76–86. https://doi.org/10.1080/14703297.2015.1058720

Griffiths, J. R., & Brophy, P. (2005). Student searching behavior and the web: Use of academic resources and Google. Library Trends, 53 (4), 539–554.

Google Scholar  

Henderson, M., Selwyn, N., & Aston, R. (2017). What works and why? Student perceptions of “useful” digital technology in university teaching and learning. Studies in Higher Education, 42 (8), 1567–1579.

Inskip, C., & Donaldson, S. (2018). On the move: transitioning information skills into the workplace. Society for Research into Higher Education (SRHE) Webinar Series

Jackson, M. (2005). The impact of ICT on the development of information literacy by students in further education. Journal of eLiteracy, 2 , 15–26.

Kang, S. P., Svihla, V., Law, V., & Grassberger, R. (2016). Human performance technology blooms in the high desert. Performance Improvement, 55 (3), 24–34. https://doi.org/10.1002/pfi.21562

Lawlor, B., & Donnelly, R. (2010). Using podcasts to support communication skills development: A case study for content format preferences among postgraduate research students. Computers & Education, 54 (4), 962–971.

Lepp, L., Remmik, M., Karm, M., & Leijen, A. (2013). Supervisors’ conceptions of doctoral studies. Trames, 17 (4), 401–415.

Maor, D., & Currie, J. K. (2017). The use of technology in postgraduate supervision pedagogy in two Australian universities. International Journal of Educational Technology in Higher Education, 14 (1), 1–15.

Maor, D., Ensor, J. D., & Fraser, B. J. (2016). Doctoral supervision in virtual spaces: A review of research of web-based tools to develop collaborative supervision. Higher Education Research and Development, 35 (1), 172–188.

Mayring, P. (2000). Qualitative content analysis [28 paragraphs]. Forum: Qualitative social research , 1(2), Art. 20 Retrieved from http://nbn-resolving.de/urn:nbn:de:0114-fqs0002204

McCarthy, J. (2012). International design collaboration and mentoring for tertiary students through Facebook. Australasian Journal of Educational Technology, 28 (5), 755–775.

McKavanagh, C., Bryant, K., Finger, G., & Middleton, H. (2004). Information and communication technologies and higher degree research supervision. In Transforming Knowledge into Wisdom Holistic Approaches to Teaching and Learning. Proceedings of the 27th HERDSA Annual Conference. Miri, Sarawak. Milperra, Australia: HERDSA

Nasiri, F., & Mafakheri, F. (2015). Postgraduate research supervision at a Ddstance: A review of challenges and strategies. Studies in Higher Education, 40 (10), 1962–1969.

Oliver, M. (2011). Technological determinism in educational technology research: Some alternative ways of thinking about the relationship between learning and technology. Journal of Computer Assisted Learning, 27 (5), 373–384.

Onilude, O. O., & Apampa, O. R. (2010). Effects of information and communication technology on research and development activities: The FIIRO Experience. Retrieved June, 2013, from http://www.webpages.uidaho.edu/~mbolin/onilude-apampa.htm

Orellana, M. L., Darder, A., Pérez, A., & Salinas, J. (2016). Improving doctoral success by matching PhD students with supervisors. International Journal of Doctoral Studies, 11 , 87–103.

Petre, M. (2010). What works for you? Digital technologies for doctoral dialogues. ACM Inroads, 1 (4), 20–21.

Petre, M., Minocha, S., & Barroca, L. (2014). Digital technologies for doctoral dialogues at a distance. Paper presented at the Frontiers in Education Conference, Madrid

Silverman, D. (2001). Interpreting qualitative data (2nd ed.). . Sage.

Sim, K. N. (2016). An investigation into the way PhD students utilise ICT to support their doctoral research process (Doctor of Philosophy) . University of Otago.

Snowden, A. (2014). Against intimacy: Focusing on the task in hand in PhD supervision. British Journal of Nursing, 23 (21), 1126–1132.

Stein, S. J., & Sim, K. N. (2020). Enhancing the roles of information and communication technologies in doctoral research processes. International Journal of Educational Technology in Higher Education, 17 , 34. https://doi.org/10.1186/s41239-020-00212-3

Sultan, N. (2010). Cloud computing for education: A new dawn? International Journal of Information Management, 30 (2), 109–116.

Sussex, R. (2008). Technological options in supervising remote research students. Higher Education, 55 (1), 121–137.

Sutton, A. M., & Jacoby, J. (2008). A comparative study of book and journal use in four social science disciplines. Behavioral & Social Sciences Librarian, 27 (1), 1–33.

Thomas, D. R. (2006). A general inductive approach for analyzing qualitative evaluation data. American Journal of Evaluation, 27 (2), 237–246.

Wetton, N. M., & McWhirter, J. (1998). Images and curriculum development in health education. In J. Prosser (Ed.), Image-based research: A sourcebook for qualitative researcher (pp. 263–283). Falmer Press.

Zhou, E., & Okahana, H. (2019). The role of department supports on doctoral completion and time-to-degree. Journal of College Student Retention: Research, Theory & Practice, 20 (4), 511–529. https://doi.org/10.1177/1521025116682036

Download references

Acknowledgements

Different part of this study have been presented at the following: Sim, K. N., & Stein, S. (2019, November). Is ICT use in higher education transforming lives and societies? Paper presented at the World Conference on Online Learning, Dublin, Ireland. Sim, K. N. & Stein, S. (2019, July). ICT: Challenge, change or opportunity in doctoral research processes? Paper presented at the Higher Education Research and Development Society of Australasia (HERDSA) Conference, Auckland, New Zealand. Sim, K. N. (2018, April). ICT use in the doctoral research process: Whose call? Paper presented at the 2018 Quality in Postgraduate Research Conference, National Wine Centre, Adelaide, Australia. Sim, K. N. (2017, October). The role of ICT in 21st Century doctoral supervision/study. Paper presented at the E-Learn Conference, Vancouver, Canada.

Author information

Authors and affiliations.

Auckland University of Technology, Auckland, New Zealand

Kwong Nui Sim

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Kwong Nui Sim .

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Sim, K.N. ICT Use in Doctoral Research. NZ J Educ Stud 57 , 253–267 (2022). https://doi.org/10.1007/s40841-021-00208-1

Download citation

Received : 20 January 2021

Accepted : 20 May 2021

Published : 08 July 2021

Issue Date : June 2022

DOI : https://doi.org/10.1007/s40841-021-00208-1

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Doctoral studies
  • ICT use in higher education
  • Participative drawings
  • Find a journal
  • Publish with us
  • Track your research
  • Research article
  • Open access
  • Published: 10 September 2020

Enhancing the roles of information and communication technologies in doctoral research processes

  • Sarah J. Stein   ORCID: orcid.org/0000-0003-0024-1675 1 &
  • Kwong Nui Sim 2  

International Journal of Educational Technology in Higher Education volume  17 , Article number:  34 ( 2020 ) Cite this article

14k Accesses

5 Citations

3 Altmetric

Metrics details

While information and communication technologies (ICT) are prominent in educational practices at most levels of formal learning, there is relatively little known about the skills and understandings that underlie their effective and efficient use in research higher degree settings. This project aimed to identify doctoral supervisors’ and students’ perceptions of their roles in using ICT. Data were gathered through participative drawing and individual discussion sessions. Participants included 11 students and two supervisors from two New Zealand universities. Focus of the thematic analysis was on the views expressed by students about their ideas, practices and beliefs, in relation to their drawings. The major finding was that individuals hold assumptions and expectations about ICT and their use; they make judgements and take action based on those expectations and assumptions. Knowing about ICT and knowing about research processes separately form only part of the work of doctoral study. Just as supervision cannot be considered independently of the research project and the student involved, ICT skills and the use of ICT cannot be considered in the absence of the people and the project. What is more important in terms of facilitating the doctoral research process is students getting their “flow” right. This indicates a need to provide explicit support to enable students to embed ICT within their own research processes.

Background/context

Information and communication technologies (ICT) can bring either joy or challenge to well-versed academic practices, and either create barriers to learning and development or be the answer to needs. While some grasp and pursue opportunities to make use of various ICT for study, research and teaching, others struggle. Despite documented and anecdotal positive urges to adopt ICT to increase and improve efficiency and effectiveness, staff and students struggle experience ICT as needless and difficult-to-use interruptions. There is often little need seen to change practices by introducing ICT into ways of working. Exploring these views and experiences was the focus of this project. Being empathetic to views such as those expressed by Castañeda and Selwyn ( 2018 ), we did not approach this investigation from a position that assumes that ICT are natural and needed solutions to problems related to improving and facilitating effective learning, teaching and research. Rather, we took a more neutral stance, wishing to explore the experiences of those involved, namely, students and staff, through discussion with them about their ICT practices and views, and with a specific focus on doctoral study and supervision.

Doctoral supervision and the role, place and nature of the doctorate are receiving increasing attention in higher education research literature. A wide range of topics have been covered from, for example, the importance and types of support for students throughout candidature (e.g., Zhou & Okahana, 2019 ); to the teaching and supervision aspects of doctoral supervision (e.g., Åkerlind & McAlpine, 2017 ; Cotterall, 2011 ; Lee, 2008 ).

With advancements in, accessibility to, and development of, ICT within education settings has come a plethora of research into online and blended learning. These studies often highlight the capacity of ICT for facilitating teaching, learning and administrative activity within educational institutions and systems (e.g., Marshall & Shepherd, 2016 ). They cover numerous areas of importance from theoretical, practical, and philosophical angles and include the perspectives and needs of learners, educators and institutions (e.g., Nichols, Anderson, Campbell, & Thompson, 2014 ).

There are also studies on student use of ICT, though not necessarily doctoral students, and these cover a wide range of topics including specific ICT skills (e.g., Stensaker, Maassen, Borgan, Oftebro, & Karseth, 2007 ). Where postgraduate research students are concerned, some studies on ICT skill development and support provide some insights about students (e.g., Dowling & Wilson, 2017 ), and institutional ICT systems (Aghaee et al., 2016 ).

Notable about the many of these studies cited above is the use of self-reporting tools as mechanisms for gathering data about student use and views about ICT. While self-reports are valuable ways to collect such data about self-efficacy, they do have limits. In online learning environments, the role of self-efficacy, for example, is still being contested. It has been argued that learners from a variety of disciplines and learning settings will tend to overestimate claims about their performance and/or knowledge and skills (e.g., Mahmood, 2016 ).

All these studies help to ‘map the territory’ of ICT, their use at individual and institutional levels and related practices. Much advice and guidance can be gleaned from the literature as well, although relatively little for the specific integration of ICT within the doctoral research and supervision environment. Based on the literature that is available though, all indications are that (doctoral) students adopt educational practices incorporating limited ICT use, even though the use of ICT has grown enormously in the last 10 to 20 years. With the current interest in ensuring success of students and completion of doctoral degrees being closely related to high quality supervision, there is a need to improve supervision practices and within that, advance understandings about how to support students in their use of ICT for their doctoral research.

This project

This project aimed to explore doctoral student and supervisor views and use of ICT within the doctoral process. The intention was to bring to light perceptions that could give clues as to how to make practical modifications to the content and scope of professional development support for supervisors and students, in order to help them to make best use of ICT. In addition, consideration was given to the way data would be collected to ensure that more than just the self-reported perspectives of the participants were included.

An interpretivist research approach (Erickson, 2012 ) framed this study to support a focus on understanding the world from the perspectives of those who live it. Thus, the approach was well-suited to exploring perceptions about the use of ICT in our context.

Thus, this study did not commence with any hypotheses related to the influence of ICT in doctoral research in mind. Instead, as the interpretive frame of the research implies, this study investigated ways in which participants expressed their experiences of engaging and integrating ICT in support of their doctoral research processes. The data tapped into the participants’ (PhD students and doctoral supervisors) perspectives, as they expressed them. The research approach thus defined and shaped all aspects of the data gathering, analyses and presentation. In this way, alignment was ensured among the ontological, epistemological and practical implementation of the research project.

The study took place in two New Zealand universities where participants were either employees or students. Both universities are research-intensive, with histories of producing high-level research across many disciplines. Both institutions have clear and well-formulated policies and practices governing doctoral study - PhD and professional doctorate - and these include supporting that study through supervision. A specialised unit in each institution manages the administration of the doctoral degree. Couching “supervision” as essentially a (specialised) teaching activity, each unit also provides or coordinates professional development for staff in the art of supervision, and for students in the skills and processes of undertaking doctoral degree study.

Participants

Participants included doctoral students and supervisors from the two universities. As a result of an invitation to all students and supervisors, in total, 11 students and two supervisors responded. The students were PhD students at varying levels of completion. There was a mix of part time and full-time students from a variety of discipline backgrounds including health sciences, sciences, commerce and humanities. The supervisors were experienced and were from humanities and sciences.

Data sources

Data were collected using a 3-tier participative drawing process (Wetton & McWhirter, 1998 ). This strategy involved a series of two or three interview/discussions, along with participant-made drawings, which formed the focus of the interview/discussions.

This strategy generated two sources of data - interview transcripts and participant drawings – and involved the following (3-tier) phases:

Initial semi-structured interview/discussion to ascertain information about participants’ backgrounds and other details they saw relevant to share. In addition, they were asked about their use of ICT generally as well as within the doctoral process. It was a chance for the researchers to gain some understanding of participants’ views and practices in relation to ICT and their doctoral/supervision journeys.

Participant drawing . The participants were asked to make a drawing in their own time and before the second interview/discussion. Guidelines for the drawing suggested that they think of a way to illustrate their research process first, then to add onto the drawing any ICT (such as devices, websites, programmes, applications) that they make use of in the process.

Follow-up interview/discussion . During this phase, each participant was asked to explain the drawing’s features and how it made sense in terms of the project he or she was undertaking. This included discussion about how their supervision was working, how they worked with supervisors, and how the ICT they had included in the drawing worked within the process. They were also asked about elements that were not in the drawing, for example, certain ICT or activities that might have appeared in a typical account of a doctoral research process but were not included.

All interview/discussions were audio recorded and transcriptions of the recordings were returned to the participants for checking. The drawings were scanned and stored electronically.

In line with the interpretive approach that framed and governed our study, the data were analysed shortly after being gathered. Analysis of the data contributed to the development of ideas about participants’ perceptions, and these were refined progressively across the instances that researchers met with participants. Perceptions were thus checked, rechecked and refined against each data set.

This iterative and inductive approach (Thomas, 2006 ) involved thematic analysis (Silverman, 2001 ) and the capture of major and common ideas (Mayring, 2000 ) expressed by participants about how ICT are perceived and used in doctoral research processes. This approach helped to operationalise a process of co-construction between researchers and participants. Through checking, rechecking, refining and confirming, the researchers were able to articulate their understanding of participant perceptions that matched participants’ expressed thoughts.

The outcome of the analysis process was four assertions concerning ways the students perceived and understood ICT within doctoral study. Because there were only two supervisor participants, the data from the supervisors served to support the assertions we were more confidently able to make about student perceptions.

Research approach, quality assurance conditions and context

Despite the (what might be argued, small) number of volunteer participants who showed interest in, and committed themselves to, this study (i.e., no drop-outs or selection being made from a pool), it is worth noting that the researchers worked with each participant over an extended period of time (prolonged engagement), focused on investigating and gathering identifiable, as well as documentable, aspects of the participants’ ICT understandings and practices (persistent observation), and employed analysis techniques that incorporated peer debriefing, member checking, and fair presentation of assertions (Guba & Lincoln, 1989 ).

The aim was to unlock and identify views of reality held by the participants. The empirical evidence was used to help develop commentary and critique of the phenomenon which was the focus of the study (i.e., ICT use), including what the phenomenon is and how it occurs/is enacted/revealed in a particular context (viz., in doctoral research). This was, therefore, a different kind of study from one that might commence with a hypothesis, which would be concerned more with objectivity, explanation and testable propositions. In short, the methods employed in the current study fitted the intention to solve a “puzzle” about a phenomenon in relation to a particular context.

As this study involved human participants, ethical approval was gained through the institutional processes. This approval (University of Otago Human Ethics Committee reference number D17/414 and Victoria University of Wellington, Ethics Committee reference number 0000023415) enabled data collection methods described in the previous section to be carried out for any doctoral students and supervisors who volunteered to participate in this study. Ethical consent, use and care of the data as well as the ethical treatment of students and staff as participants were integral to the research design, planning and implementation of the whole study.

Findings and discussion

The four assertions are now presented. Each assertion is described and quotations from the interview/discussions along with examples of drawings from the student participants are used to illustrate aspects of each assertion.

Assertion 1: ICT are impartial tools; it does not matter how ICT are used, because the endpoint, that is, thesis completion, is the justification. ICT and people are separate and separated entities.

Students talked about how they worked on their thesis document and on the process of the study they were undertaking. Comments focused on various ICT being used and often on skills needed in order to use them. Some students expressed the view that ICT were tools, separate from the project and the person involved, to be used to achieve an endpoint. For example,

So long as it's formatted – it shouldn't matter - that's their [editors’] responsibility, not mine.
There’s probably a bit more about Zoom [web conferencing application] I could learn but again for me unless it’s a problem, I’m not going to go looking for it… not just for the sake of it at the moment.

Motivation to achieve an outcome was a focus of comments that support this assertion. For many participants, the aim to complete the study and write a thesis was, naturally, a large driver for how they were managing their study. Time was precious, and they would do what they had to do to reach their goal. To be motivated to learn about a new ICT, there needed to be a purpose that sharply focussed on achieving that end.

If the technologies are suddenly not available] I’m happy to sit down with a typewriter and learn it… If I’m not driven, I won’t bother.

This focus is illustrated in Fig.  1 . The drawing shows clearly identified components that make up major elements within the stages of producing the research for the thesis. ICT are listed in relation to those components.

figure 1

ICT and people are separate and separated entities

Supervisors too, tended to focus on thesis production rather than on the process of producing a thesis that includes the use of ICT (i.e., as opposed to their very clear and explicit focus on the research process). An example illustrating this is:

Generally, people think the standard of the people getting or earning a PhD is that this person should be an independent researcher. [But no] After all, we only examine a particular thesis [and] there are lots of inputs from supports and supervision from supervisors.

In summary, this assertion focusses strongly on the experience of doctoral study being about getting the project done within a research journey that gives minimal regard to the affordances of ICT. ICT are framed as necessary but also fraught, especially due to the effort and time that draw attention away from the primary goal.

Assertion 2: ICT are tools or mechanisms that prompt active thought on practices with respect to planning and managing thesis writing and project execution. ICT and individuals work alongside each other.

Views that expressed notions of there being a close interactive relationship between students and ICT came through in several of the discussions with the participants. The focus on achieving goals and endpoints was strong, but the expression of how to achieve those goals, capitalising upon the affordances that ICT present, was different from the way views were expressed in relation to Assertion 1.

On a simple level, this student describes the checking he did when weighing up the merits of a piece of software to meet his needs.

I normally do a trial version… have a play with it. And if I think they are useful then I might try it on a project. And if then I feel it’s definitely worth investing… then I’ll go buy it.

Others simply liked to explore, to see whether there was potential in any ICT they encountered, as in,

Sometimes I just like playing with stuff to see what they can do and then if they tick my boxes then I keep them and if they don't, I move on. So it's more kind of ‘search and discover’ than kind of looking for something, you know.

Describing a deeper level of activity, a degree of critique and active reflection were indicated by another student when he said,

…we tried an electronic version of putting together a programme for a New Zealand conference and I was surprised how long it took us. Whereas in the past I’ve worked with [colleagues] and we’ve just moved pieces of paper around on the floor for abstracts and we were done really quickly.

These sentiments are well-captured in Fig.  2 . Here, the focus is on experimenting with ICT rather than the research process. The process of working things out to suit the individual is foregrounded.

figure 2

ICT and individuals work alongside each other

Whereas Assertion 1-type expressions presented effort in a generally negative light, Assertion 2-type expressions couched effort as an assumed part of learning something new. There was a sense expressed in comments that there will be a way to manage the “problem” to be solved, which then generated the necessary motivation to engage effort. For example,

You just know what you know when you start off; when you're unsure about what you need to do. There's a bit of a barrier in front of you. It feels a bit intimidating and overwhelming, and then you get into it and it just works. And you just kind of put all the pieces together and get something out at the end.

There was a sense that supervisors’ perspectives of ICT might support this assertion too. For instance,

[ICT are] integral to everything now – there's no such thing as doing it without [them] anymore – these are the tools with which we do all the things we do.

In summary, this assertion captures the views of students who engage actively in making decisions about which, how and why they incorporate ICT into doctoral research practices.

Assertion 3: Knowing about ICT is only part of the thinking; what is more important is getting the “flow” right. ICT and the individual are in a complementary partnership.

Perhaps prompted by the nature of the drawing task, which was to illustrate how ICT fitted within the whole process of doctoral study, several students described the challenges to bringing everything together into one process made up of many parts, sections and subsections. One participant focussed on her “workflow” in order to manage the multiple documents, tasks and schedule involved in her doctoral research journey.

What systems do I use, what's my workflow? So, I actually spent some weeks looking at … ideas from other PhD students about their workflows and how they manage it.

Similar to Assertion 2-type comments, ‘getting one’s flow right’ involved exploration and an amount of reflective decision-making. For example,

So I did a play around with that [ICT] and found it was quite useful … So I’m trying to be quite disciplined about when I’ve got a document, entering it at the time, reading an article, throw in heaps of tags rather than not …And I simply keep a note, cross referencing to the actual articles. I like to have the articles and for some key ones I like to make a note. So, if it’s a seminal paper that I know I’ll be referring back to.

Thus, students talked about how hard they worked to set up routines and processes to enable them to manage time and their research projects. As in the above excerpts, they referred to categorising documents, searching for resources, undertaking analysis, managing data, and producing the thesis itself.

In working out one’s system or flow, this student highlighted the need to know about the affordances of ICT and how others had made use of them.

…you do need to know a bit about each of the individual … capabilities of the different systems to know what's even possible… but alongside that you're kind of reading other people's ideas of how they did it, and you think that bit might work for me oh, but that bit won't… so then you can kind of mix and match a bit.

The drawing in Fig.  3 highlights the “flow”. Absent of all words, this illustration draws attention to the movement of ideas, thoughts, processes and actions, from a number of different points but all ultimately converging or contributing to the one path.

figure 3

ICT and the individual are in a complementary partnership

There was a hint that at least one of the supervisors saw the need for a workflow in this same vein: “So long as [the students are] happy with what they’re using – they should use ‘a’ system,”

In summary, this assertion highlights that what is important with respect to ICT and the doctoral process is how it all comes together within one’s flow. That flow incorporates active effort on the part of the individual in finding ICT and practices that suit the individual’s approaches as well as their project demands.

Assertion 4: ICT are not neutral; there is a two-way interaction between technologies as artefacts and the use of them to achieve ends. ICT and the person are intricately linked through multiple active, practical, goal-oriented connections.

This assertion draws attention to the nature of technology as a phenomenon; that technology is not an impartial tool that has no influence on the way humans act and react. This assertion presents ICT as an artefact of technological design activity; as a source of improving efforts to achieve an endpoint; but also as an influencer and even determiner of the thinking and practices of the person interacting with the ICT (e.g., Baird, 2002 ).

On what could be argued a superficial level, this student noted some active connection between the person and the software application, beyond simple use, when he commented:

I think it goes both ways, the product has to be intuitive and you’ve got to have a little bit of inclination to try out different things.

Others went beyond the superficial to describe more in-depth relationships between themselves and the ICT they were using. When discussing her use of software to help her manage her project and her time, this student talked about how the ICT she was using supported and enhanced her thinking.

Using the application] really changed the way I started to think about [my research]. I started to be less worried about the big overwhelming long term stuff that was out there and just think, okay, this week, what am I going to do this week, how am I going to be really efficient and targeted, and I think that really helped me.

Following is another example of how ICT helped solve a problem while simultaneously having an influence on behaviour; in this instance with organising notes, ideas and documents.

“… and it's the same with my note-taking because [the programme] that I use has a similar sort of functionality that it can search text that you've written but also search notes and PDF docs and those kind of things, so it means that when you've had a random thought and put it somewhere you can find it again. Which is huge for me, so I guess that … the power of the search engine is probably the thing that drove me to become paperless, so it helps me to organize myself much better. … filing paper is a skill that I have not mastered whereas filing digital stuff is not as important because you can always just find it again.

Figure  4 illustrates this intricately intertwined interactivity among person, purpose, project, ICT and outcomes.

figure 4

ICT and the person are intricately linked through multiple active, practical, goal-oriented connections

While we did not find strong evidence for supervisors’ thoughts about this integrated and embedded notion of ICT, one supervisor did note “I could probably build them into my system, but I just never have”.

In summary, Assertion 4 highlights the integral role that ICT can be perceived to play in doctoral research processes. This is more than the working-alongside connection illustrated by Assertion 2 and the complementary partnership characterised by Assertion 3.

Assertions 1 and 2 highlight that individuals hold assumptions about, and have expectations of, ICT use; and those expectations and assumptions influence and determine their judgements about ICT and their use of ICT. The assertions point to connections between perceptions and practices. Assertion 1 describes a perception that ICT are separate from the person and the task-at-hand, while Assertion 2 presents a perception in which the person and the ICT are working alongside each other in harmony or at least in a loose partnership. Both assertions focus on endpoints, but the endpoints vary according to the perception of where ICT fit into the journey towards their achievement. For Assertion 1-type expressions, there is one major endpoint. For Assertion 2-type expressions, there are multiple, shorter-term endpoints that build towards achieving the major goal of completing the thesis.

Building on Assertions 1 and 2 are Assertions 3 and 4, which highlight what may be argued as more complex levels of perceiving and working with ICT. Both assertions give some focus to inter-connections, where people and ICT partner or collaborate. Assertion 3 depICT a perception that is about complementarity; where ICT affordances are seen as worthwhile when they support and enhance the work of the individual in ways that make sense to that individual. Assertion 4 builds on Assertion 3 by bringing to light the relationship in which the person alters and changes thinking or practices because of the influence that ICT affordances can have. No evidence was found to support a possible additional claim that as well as ICT causing individuals to alter and modify thinking and behaviours due to their existence, ICT, in turn, are perceived to be able to alter their ways of responding to the people who use them. This is not out of the realms of possibility of course, with ICT increasingly being designed and built to be able to respond to users’ needs.

It is also worth mentioning that the ‘types’ of ICT and the extent of their use by the participants was not the focus of this study. However, the findings suggested that the participants’ ICT use, regardless of their PhD phase and broad discipline background, might have reflected their inability to realise the advantages of learning how to use current ICT-related devices, tools, and applications to enhance the process of undertaking their doctoral research. The evidence that emerged in this study indicated that participants’ perspectives of ICT determined their adoption practices in general (i.e., as illustrated through the four assertions). The boarder higher education context including the specific institution and supervisors, might have neglected the explicit support of PhD students’ ICT capability development in this process.

In addition, while there is no similar study being found thus far, the insights gained from this study are actually similar to the findings in the research studies into the role of ICT in undergraduate education (Butson & Sim, 2013 ; Sim & Butson, 2013 , 2014 ). Results in those studies, demonstrated students’ low levels of ICT use, may be an indication that digital devices and digital tools do not play a significant role in daily study practices. Researchers such as Esposito, Sangrà & Maina ( 2013 ) also show that the PhD students’ learning to become researchers in the digital age is much more complex than is often suggested (e.g., the skills of Prenksy ( 2001 ) “digital natives”). Becoming a researcher involves developing a complex set of knowledge, intellectual abilities, techniques and professional standards. The Researcher Development Framework (Careers Research and Advisory Centre (CRAC), 2010 ) illustrates one useful attempt at mapping out that complexity. It could be that both students’ and supervisors’ adoption of ICT for academic purposes has been overshadowed or taken for granted as a consequence of their advanced academic level.

Implications

The four assertions can be used to provide some guidance to those supporting and participating in doctoral research processes. Students and supervisors do possess a vast array of skills, knowledge and abilities. They have a variety of experiences as well as varying reasons and levels of motivation. Their skills and capacity to make use of ICT to support their roles in the research process vary as well. The assertions that have emerged from this study will inform the planning for support activities to enhance supervisors’ and students’ professional development, whatever their background and needs.

Depending on the perceptions held about ICT and the relationship between ICT and the person in the context of the task and its goals (i.e., the doctoral study) within the doctoral research process as depicted in the four assertions, ICT tend to be seen as a challenge, a change or an opportunity. In the context of ICT use, doctoral students and supervisors may:

assume that if they do not already know how to use something it is not worth learning or exploring as that learning brings with it risk to quality, efficiency and effectiveness of the doctoral research process; and/or.

assume that students will work out the place that ICT play within the research process for themselves.

The findings of this study suggest the need to.

challenge existing ICT knowledge and skill, and to support acceptance of the need to change practices;

teach technological thinking, to enable choice and decision making about ICT;

embed ICT into practices in meaningful ways to suit individual and project needs;

highlight (explicit) responsibilities about thinking and planning skills with respect to making the best use of ICT, to ensure efficiency and effectiveness;

realise that the research process is as much about how it happens as what happens;

recast assumptions about the doctoral research process to embed ICT within it;

reflect on the meaning of effectiveness and efficiency in the context of doctoral research; and the effects of ICT in supporting and facilitating them;

understand that there is a link among ICT thinking and practice: using ICT can enhance or raise ideas that were never thought of before.

This study explored perceptions of doctoral supervisors and students of the role and place of ICT in supervision and study. It generated four assertions characterising those perceptions the relationships among people, ICT and the task-at-hand, that is, the supervised research process. As Castañeda and Selwyn ( 2018 ) argue, it is important that we have an active commitment to ‘think otherwise’ about how ICT might be better implemented across higher education settings” (p. 8). We should not assume that ICT are not important enough to let them fade into the background as they become normalised, without questioning the interrelationships that are happening between the person and the ICT. In the doctoral research setting, as one example of a higher education context, ICT do have a role to play. They cannot and should not be ignored. But seeing ICT in relationship to the person and to the setting is essential.

This project has provided insights into the doctoral students and supervisors’ perceptions of the roles played by ICT during doctoral research process. There are complex human factors, including assumptions, attitudes and conceptions about academic practices, influencing and determining perspectives as well as how ICT are incorporated into doctoral research process, behaviours and practices. Just as Kandiko and Kinchin ( 2012 ) argue that supervision cannot be looked at in the absence of the research work in which it occurs, we argue that doctoral students’ understanding and use of ICT cannot be considered independently of their research work; and that work includes relationships with their project, their supervisors, within the context of the institution, and with the ICT they do and could engage with.

Directly associated with the outcomes of this study, future studies and further exploration could focus on:

ICT use by larger and more diverse groups of doctoral students from a range of fields within discipline areas at institutions outside New Zealand;

building on the findings in order to determine how intensity of ICT use might change for students across the course of their candidature, and in relation to the nature of their research projects;

the role of supervisors, academic departments, and institutions in supporting and enhancing students’ practices and beliefs about ICT in research processes;

the ways in which supervisors engage ICT in their daily academic practices, with a view to exploring how, or if, their ICT use is an influence on PhD students’ beliefs and behaviours in using ICT.

Studying ICT in these directions could offer fresh perspectives and opportunities to think differently and reveal an active way of understanding the role of ICT in doctoral education.

Availability of data and materials

These are not available for open access as their access is bound by the ethical agreement approved by the two institutions and made with the participants in the study.

Aghaee, N., Jobe, W. B., Karunaratne, T., Smedberg, Å., Hansson, H., & Tee, M. (2016). Interaction gaps in PhD education and ICT as a way forward: Results from a study in Sweden. International Review of Research in Open and Distance Learning , 17 (3) Retrieved from https://search.proquest.com/docview/1805463156?accountid=14700 .

Åkerlind, G., & McAlpine, L. (2017). Supervising doctoral students: Variation in purpose and pedagogy. Studies in Higher Education , 42 (9), 1686–1698. https://doi.org/10.1080/03075079.2015.1118031 .

Article   Google Scholar  

Baird, D. (2002). Thing knowledge: Function and truth. Techné: Research in Philosophy and Technology , 6 (2), 96–105. https://scholar.lib.vt.edu/ejournals/SPT/v6n2/ .

MathSciNet   Google Scholar  

Butson, R., & Sim, K. N. (2013). The role of personal computers in undergraduate education. International Journal of Digital Literacy and Digital Competence , 4 (3), 1–9. https://doi.org/10.4018/ijdldc.201307010 .

Careers Research and Advisory Centre (CRAC) (2010). Researcher development framework , (pp. 1–22) Retrieved from https://www.vitae.ac.uk/vitae-publications/rdf- related/researcher-development-framework-rdf-vitae.pdf .

Castañeda, L., & Selwyn, N. (2018). More than tools? Making sense of the ongoing digitizations of higher education. International Journal of Educational Technology in Higher Education , 15 (22), 1–10. https://doi.org/10.1186/s41239-018-0109-y .

Cotterall, S. (2011). Doctoral students writing: Where's the pedagogy? Teaching in Higher Education , 16 (4), 413–425. https://doi.org/10.1080/13562517.2011.560381 .

Dowling, R., & Wilson, M. (2017). Digital doctorates? An exploratory study of PhD candidates’ use of online tools. Innovations in Education and Teaching International , 54 (1), 76–86. https://doi.org/10.1080/14703297.2015.1058720 .

Erickson F. (2012). Qualitative research methods for science education. In Fraser, B., Tobin, K., & McRobbie, C. J. (Eds.), Second international handbook of science education . (Springer International Handbooks of Education, Vol. 2, pp. 1451–69). Dordrecht: Springer. https://doi.org/10.1007/978-1-4020-9041-7_93 .

Google Scholar  

Esposito, A., Sangrà, A., & Maina, M. (2013). How Italian PhD students reap the benefits of instiutional resources and digital services in the open web. Proceedings of the International technology, education and development (INTED) conference , pp. 6490-6500. Valencia: Spain. ISBN: 978-84-616-2661-8.

Guba, E. G., & Lincoln, Y. S. (1989). Fourth generation evaluation . Newbury Park: Sage.

Kandiko, C. B., & Kinchin, I. M. (2012). What is a doctorate? A concept-mapped analysis of process versus product in the supervision of lab-based PhDs. Educational Research , 54 (1), 3–16. https://doi.org/10.1080/00131881.2012.658196 .

Lee, A. (2008). How are doctoral students supervised? Concepts of doctoral research supervision. Studies in Higher Education , 33 (3), 267–281. https://doi.org/10.1080/03075070802049202 .

Mahmood, K. (2016). Do people overestimate their information literacy skills? A systematic review of empirical evidence on the Dunning-Kruger effect. Communications in Information Literacy , 10 (2), 199–212. https://doi.org/10.15760/comminfolit.2016.10.2.24 .

Marshall, S., & Shepherd, D. (2016). E-learning in tertiary education. Highlights from Ako Aotearoa projects . Wellington: Ako Aotearoa https://akoaotearoa.ac.nz/download/ng/file/group-4/e-learning-in-tertiary-education-highlights-from-ako-aotearoa-research.pdf .

Mayring, P. (2000). Qualitative content analysis. Forum: Qualitative Social Research , 1 (2) Retrieved from https://search.proquest.com/docview/867646667?accountid=14700 .

Nichols, M., Anderson, B., Campbell, M., & Thompson, J. (2014). An online orientation to open, flexible and distance learning Ako Aotearoa and the distance education Association of New Zealand (DEANZ). https://ako.ac.nz/knowledge-centre/an-online-orientation-to-open-flexible-and-distance-learning/ .

Prenksy, M. (2001). Digital natives, digital immigrants, part II. Do they really think differently? On the . Horizon , 9 (6), 1–6.

Silverman, D. (2001). Interpreting qualitative data. 2nd Ed. London: Sage.

Sim, K. N., & Butson, R. (2013). Do undergraduates use their personal computers to support learning? Procedia - Social and Behavioral Sciences , 103 , 330–339. https://doi.org/10.1016/j.sbspro.2013.10.341 .

Sim, K. N., & Butson, R. (2014). To what degree are undergraduate students using their personal computers to support their daily study practices? IAFOR Journal of Education , 2 (1), 158–171 Retrieved from http://search.ebscohost.com/login.aspx?direct=true&db=eric&AN=EJ1080348&site=ehost-live .

Stensaker, B., Maassen, P., Borgan, M., Oftebro, M., & Karseth, B. (2007). Use, updating and integration of ICT in higher education: Linking purpose, people and pedagogy. Higher Education , 54 , 417–433. https://doi.org/10.1007/s10734-006-9004-x .

Thomas, D. R. (2006). A general inductive approach for analyzing qualitative evaluation data. American Journal of Evaluation , 27 (2), 237–246. https://doi.org/10.1177/1098214005283748 .

Wetton, N. M., & McWhirter, J. (1998). Images and curriculum development in health education. In J. Prosser (Ed.), Image-based research: A sourcebook for qualitative researcher , (pp. 263–283). London: Falmer Press.

Zhou, E., & Okahana, H. (2019). The role of department supports on doctoral completion and time-to-degree. Journal of College Student Retention: Research, Theory & Practice , 20 (4), 511–529. https://doi.org/10.1177/1521025116682036 .

Download references

Acknowledgements

We thank the students and supervisors who shared their reflections and willingly engaged with us in this project.

We acknowledge the support of Ako Aotearoa, The National Centre for Tertiary Teaching Excellence, New Zealand through its Regional Hub Project Fund (RHPF), and the support of our institutions, University of Otago and Victoria University of Wellington.

Author information

Authors and affiliations.

Distance Learning, University of Otago, Dunedin, New Zealand

Sarah J. Stein

Centre for Academic Development, Victoria University of Wellington, Wellington, New Zealand

Kwong Nui Sim

You can also search for this author in PubMed   Google Scholar

Contributions

The authors are responsible for the entire project that is reported in this paper. The writing of the manuscript was led by the first author in collaboration with the second author. The authors read and approved the final manuscript.

Corresponding author

Correspondence to Sarah J. Stein .

Ethics declarations

Competing interests.

The authors declare no competing interests.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

Stein, S.J., Sim, K.N. Enhancing the roles of information and communication technologies in doctoral research processes. Int J Educ Technol High Educ 17 , 34 (2020). https://doi.org/10.1186/s41239-020-00212-3

Download citation

Received : 02 February 2020

Accepted : 05 May 2020

Published : 10 September 2020

DOI : https://doi.org/10.1186/s41239-020-00212-3

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Doctoral research and supervision
  • Information and communication technologies
  • Participative drawing

use of ict in research pdf

6 Ways Schools Are Managing Students’ Cellphone Use

use of ict in research pdf

  • Share article

A flurry of school districts across the country are tightening cellphone restrictions, because they believe students’ misuse of the devices has negatively affected their behavior and ability to learn.

In 2015, 66 percent of schools in the United States prohibited non-academic use of cellphones during school hours, according to the National Center for Education Statistics . By 2020, that percentage had jumped to 77 percent.

Many educators blame students’ cellphone use for being the top distraction in schools and classrooms . The constant use of the devices has also been linked to students’ worsening mental health .

The issue has caught the attention of federal and state policymakers, too. Some states—such as California, Florida, Indiana, and Tennessee—have passed laws allowing schools to restrict cellphone use. A handful of other states are considering passing similar laws. Congressional lawmakers have also introduced legislation that would require a federal study on the effects of cellphone use on students’ mental health and academic performance.

Liz Kolb, a clinical professor of education technologies and teacher education at the University of Michigan, said it’s unlikely that all 50 states will pass laws restricting students’ cellphone use, “but we’re seeing a lot more [movement] at the individual school level, where they’re trying to figure out policies that make sense [for their communities].”

At the district level, these restrictions vary widely. Some districts restrict student cellphone use anywhere and any time during the school day. Some allow use of the devices during lunch and in the hallways. And others haven’t placed any restrictions at all, often because of parent and student pushback.

Even in districts where there’s a ban, “there’s a lot of nuance” in how schools are addressing it, Kolb said. “In order for a full school ban to be effective, you really have to have strong leadership supporting the staff in enforcing it.”

Some of those nuances include exceptions for students who have a documented need to have their digital devices for health reasons, such as checking blood glucose levels if a student has diabetes. Teachers also have the flexibility to allow students to use their cellphones in class if they are needed for instructional purposes.

Here are six different policy approaches districts are putting in place to address concerns about student cellphone use:

1. Cellphones are restricted for all students, regardless of grade level

In Florida’s Orange County district , all students are prohibited from using their cellphones and other wireless communication devices, such as smartwatches, during school hours—meaning from the first bell to the dismissal bell, these devices must be silenced and put away in their bags. If a student is caught using a phone during the school day, the device will be confiscated and returned to the student at the end of the day. Depending on the circumstances of the violation, a student could also get detention or be suspended.

Flint schools in Michigan also prohibit all students, regardless of grade level, from using cellphones or other personal electronic devices. If a student is caught using a phone, it will be confiscated and returned to the student’s parent or caretaker.

Some districts provide technological solutions, such as pouches, to lock and store students’ phones during the school day. In other districts, educators have found creative ways to separate students from their phones, such as using over-the-door shoe holders where students place their phones during class.

2. Cellphones restricted only for elementary students, more flexible for middle and high school students

While restrictions on the use of cellphones and other two-way communication devices exist for all students in the Wauwatosa district in Wisconsin , there are more flexible rules for middle and high school students. Cellphones are prohibited all day for elementary students, but middle and high school students can use their phones before and after school, between class periods, during lunch, and in free periods. Teachers and principals have discretion for imposing consequences for misuse.

Close up of elementary or middle school white girl using a mobile phone in the classroom.

3. Cellphones are prohibited for elementary and middle school students, but more flexible for high school students

Elementary and middle school students in Virginia’s Rockingham district are prohibited from using personal electronic devices during the school day, while high school students may use their devices during lunch, study hall, advisory periods if permitted by a teacher and principal, and in between classes.

4. Cellphones are restricted only in classrooms, locker rooms, and bathrooms

Other districts, such as Richmond schools in Wisconsin, have restrictions on cellphone use only in certain areas of schools, such as classrooms, locker rooms, and bathrooms—to prevent bullying or sharing of inappropriate images, according to some district policies.

5. Cellphones restricted only in classrooms

Some restrictions are centered around classroom time only and allow students to use their phones outside of the classroom. In the Brush school district in Colorado , for instance, students aren’t allowed to have their phones out during instructional hours but can use them any other time. If a student is caught with a phone when they’re not allowed to have it, parents can either come to school to collect the phone or they can let the school keep the phone until the end of the day.

Students' cell phones are collected by school administration before the start of spring break at California City Middle School in California City, Calif., on March 11, 2022.

6. Cellphone restrictions are left up to each school

There are also districts, such as Meriden in Connecticut and Minnetonka in Minnesota, that don’t have districtwide restrictions, but instead have guidelines that schools can choose to follow.

For instance, in Meriden, the guidelines recommend elementary students keep their phones in their bags the whole school day; middle school students keep their phones in their lockers but can use them during lunch; and to let high school students have access to their phones all day but they must be turned off and out of sight during class time.

Other districts, such as Pawtucket in Rhode Island , allow principals or teachers to implement their own school or classroom rules around cellphones, as long as there’s a clear plan for allowing students to use them in case of emergencies.

Sign Up for The Savvy Principal

Edweek top school jobs.

School counselor facilitates a group discussion

Sign Up & Sign In

module image 9

IMAGES

  1. A presentation on Applications of ICT in Research.pptx

    use of ict in research pdf

  2. (PDF) The Use of ICT in a Local Government Unit

    use of ict in research pdf

  3. (PDF) ICT IN EDUCATIONAL MANAGEMENT

    use of ict in research pdf

  4. (PDF) Application Of Ict In Research

    use of ict in research pdf

  5. (PDF) Assessing the Effects of ICT on Learning Outcomes

    use of ict in research pdf

  6. ICT in Education and Research Methods

    use of ict in research pdf

VIDEO

  1. Micro-Teaching

  2. Module 3 Lesson 2: Select and Use ICT Tools for Teaching and Learning

  3. ICT lab how to operate complete detail 2021/ICT lab/ CAL center setup

  4. ஆராய்ச்சியில் ICT பயன்பாடு/APPLICATION OF ICT in RESEARCH/@jesueasy

  5. Use these ICT Concepts and Avoid the Others

  6. How To Use ICT's 2022 Model When Trading

COMMENTS

  1. (PDF) Application Of Ict In Research

    ICT tools are mainly used by researchers for its ability to ease knowledge-gathering process and to enhance resource-development. Application of ICT changes user to user that how different ...

  2. PDF The impact of ICT on learning: A review of research

    636 The impact of ICT on learning: A review of research research in this field has been more consistent and well documented. Two periods of research have been suggested in this review. (a) Research findings and their implications from 1960s to 1980s; (b) Research findings and their implications from1990s to 2000s, and future research.

  3. The Use of Information Technology in Research

    The Use of ~formadon Technology in Research n this chapter we examine the effect of information technology on the conduct of research. New technologies offer new opportunities, although pervasive use of computers in research has not come about without problems. Some of these problems are technological, some financial.

  4. Probing the Role of Information and Communication Technology (ICT) in

    Fisher et al. aimed at teachers, it provides useful information on the use of ICT tools for research purposes in the context of education. Fricker provides an overview of different online research methods, including the use of ICT tools for data collection and analysis. Due to limited empirical data on the necessary ICT tools for achieving ...

  5. ICT Use in Doctoral Research

    The use of Information and Communication Technology (ICT) has grown enormously in the last decade with computers and smart devices becoming indispensable in tertiary students' study practice (Sim, 2016).There is, however, limited documented research about the ways PhD students use ICT in their research practice, as well as how PhD supervisors support the students in the use of ICT during ...

  6. PDF Role of Information and Communication Technology (Ict) in Research and

    of new opportunities to use ICT as research tool and apply new research approaches (Kudishora, 2009). ICT is the driving force in all fields and areas of research and development, to drill further, let us look at two key items - Research and development. Researchers in the past went through a lot in trying to carry out their works through ...

  7. Enhancing the roles of information and communication ...

    While information and communication technologies (ICT) are prominent in educational practices at most levels of formal learning, there is relatively little known about the skills and understandings that underlie their effective and efficient use in research higher degree settings. This project aimed to identify doctoral supervisors' and students' perceptions of their roles in using ICT.

  8. Qualitative Research on Information and Communication Technology

    The methods provided by qualitative research provide the necessary analytical tools and theoretical frameworks to explore these emerging issues. This entry begins with an overview of three current areas of qualitative research on ICT and is then followed by a discussion of the methodological challenges of ICT research.

  9. PDF Application of ICT tools in Research

    facto research which have nocontrolover thevariables, thatreportwhat has happenedor what is happening. Analytical Research: The researcher use already available information and facts, and analyse these information tomake critical evaluation. Applied Research: It refer scientific study and research that seek and to solve the practical problems, and

  10. PDF ICT in Education: A Critical Literature Review and Its Implications

    ABSTRACT. This review summarizes the relevant research on the use of information and communication technology (ICT) in education. Specifically, it reviews studies that have touched upon the merits of ICT integration in schools, barriers or challenges encountered in the use of ICT, factors influencing successful ICT integration, in-service and ...

  11. PDF Technology Integration: a Research-based Professional Development

    This research-based thesis project explains the governmental acts and policies, investors, and other stakeholders who have worked to promote, question, and explore the use of information and communication technologies (ICT) in the classroom. Research suggests that best-practice ICT integration requires using ICT alongside constructivist pedagogy.

  12. Action Research and ICT Implementation

    This article looks back at an action research study which investigated the implementation of information and communication technology (ICT) in a leading-edge school (Schofield, 1990) in Norway during the period 1999 to 2003. The case study (Krumsvik, 2005a, b, 2006) was part of a Norwegian ICT project called PILOT (Project of Innovation ...

  13. PDF Guide to Measuring Information and Communication Technologies (Ict) in

    developing indicators on information and communication technologies (ICT) use in education. In February 2009, the UIS submitted an initial core set of ICT in education indicators to the 40th session of the United Nations Statistical Commission. This manual presents a more comprehensive set of internationally comparable indicators on the

  14. PDF Teaching and Learning with Technology: Effectiveness of ICT ...

    International Journal of Research in Education and Science (IJRES), 1(2), 175-191. This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden.

  15. Going global: The use of ICT networks in research and development

    Access to specialist equipment, facilities and staff is now possible in many instances via the use of ICT [17]. In addition, it allows research and technical labo- ratories, which for technical and operational rea- sons were operated on an isolated, "stand-alone" basis, to become more integrated with the firm's other research facilities [37].

  16. PDF The Impact of Digital Technology on Learning: A Summary for the ...

    An association between high ICT use and higher pupil attainment in primary schools was also reported in an earlier Teacher Training Agency study (Moseley et al. 1999, p 82) though the interpretation by the research team was that more effective teachers (and more effective schools) tended to use more innovative approaches, or chose to use the ICT

  17. PDF A review of empirical research on ICT applications in teacher ...

    Information and communications technology (ICT) has been widely used in educational practice in recent years, which is also reflected in the education policies encouraging the use of ICT in education and teacher professional development (TPD). For example, based on the 2016 National Education Technology Plan of the United States, the Future Ready

  18. 6 Ways Schools Are Managing Students' Cellphone Use

    A cellphone sits on a student's desk during a 9th grade honors English class at Bel Air High School in Bel Air, Md., on Jan. 25, 2024. The policies that districts and schools use to manage the use ...

  19. PDF EXECUTIVE SUMMARY OF THE REPORT TO THE PRESIDENT Supercharging Research

    The use of AI for science and technology research is accelerating across the globerapidly and therefore demands our commitment to U.S. leadership in the applications of this powerful new tool.

  20. PDF ICT STRATEGIES AND TOOLS FOR THE IMPROVEMENT OF INSTRUCTIONAL ...

    more and more school contexts incorporate the use of ICT, and this needs a new supervision model to guide, advice, and monitor the teaching-learning mediated by ICT. Thus, educational supervision of 2.0 learning processes needs new ways of addressing the techniques of educational supervision and monitoring of Web 2.0 in schools.