• Graphics and multimedia
  • Language Features
  • Unix/Linux programming
  • Source Code
  • Standard Library
  • Tips and Tricks
  • Tools and Libraries
  • Windows API
  • Copy constructors, assignment operators,

Copy constructors, assignment operators, and exception safe assignment

*

Copy assignment operator

A copy assignment operator of class T is a non-template non-static member function with the name operator = that takes exactly one parameter of type T , T & , const T & , volatile T & , or const volatile T & . A type with a public copy assignment operator is CopyAssignable .

[ edit ] Syntax

[ edit ] explanation.

  • Typical declaration of a copy assignment operator when copy-and-swap idiom can be used
  • Typical declaration of a copy assignment operator when copy-and-swap idiom cannot be used
  • Forcing a copy assignment operator to be generated by the compiler
  • Avoiding implicit copy assignment

The copy assignment operator is called whenever selected by overload resolution , e.g. when an object appears on the left side of an assignment expression.

[ edit ] Implicitly-declared copy assignment operator

If no user-defined copy assignment operators are provided for a class type ( struct , class , or union ), the compiler will always declare one as an inline public member of the class. This implicitly-declared copy assignment operator has the form T & T :: operator = ( const T & ) if all of the following is true:

  • each direct base B of T has a copy assignment operator whose parameters are B or const B& or const volatile B &
  • each non-static data member M of T of class type or array of class type has a copy assignment operator whose parameters are M or const M& or const volatile M &

Otherwise the implicitly-declared copy assignment operator is declared as T & T :: operator = ( T & ) . (Note that due to these rules, the implicitly-declared copy assignment operator cannot bind to a volatile lvalue argument)

A class can have multiple copy assignment operators, e.g. both T & T :: operator = ( const T & ) and T & T :: operator = ( T ) . If some user-defined copy assignment operators are present, the user may still force the generation of the implicitly declared copy assignment operator with the keyword default .

Because the copy assignment operator is always declared for any class, the base class assignment operator is always hidden. If a using-declaration is used to bring in the assignment operator from the base class, and its argument type could be the same as the argument type of the implicit assignment operator of the derived class, the using-declaration is also hidden by the implicit declaration.

[ edit ] Deleted implicitly-declared copy assignment operator

The implicitly-declared or defaulted copy assignment operator for class T is defined as deleted in any of the following is true:

  • T has a non-static data member that is const
  • T has a non-static data member of a reference type.
  • T has a non-static data member that cannot be copy-assigned (has deleted, inaccessible, or ambiguous copy assignment operator)
  • T has direct or virtual base class that cannot be copy-assigned (has deleted, inaccessible, or ambiguous move assignment operator)
  • T has a user-declared move constructor
  • T has a user-declared move assignment operator

[ edit ] Trivial copy assignment operator

The implicitly-declared copy assignment operator for class T is trivial if all of the following is true:

  • T has no virtual member functions
  • T has no virtual base classes
  • The copy assignment operator selected for every direct base of T is trivial
  • The copy assignment operator selected for every non-static class type (or array of class type) memeber of T is trivial

A trivial copy assignment operator makes a copy of the object representation as if by std:: memmove . All data types compatible with the C language (POD types) are trivially copy-assignable.

[ edit ] Implicitly-defined copy assignment operator

If the implicitly-declared copy assignment operator is not deleted or trivial, it is defined (that is, a function body is generated and compiled) by the compiler. For union types, the implicitly-defined copy assignment copies the object representation (as by std:: memmove ). For non-union class types ( class and struct ), the operator performs member-wise copy assignment of the object's bases and non-static members, in their initialization order, using, using built-in assignment for the scalars and copy assignment operator for class types.

The generation of the implicitly-defined copy assignment operator is deprecated (since C++11) if T has a user-declared destructor or user-declared copy constructor.

[ edit ] Notes

If both copy and move assignment operators are provided, overload resolution selects the move assignment if the argument is an rvalue (either prvalue such as a nameless temporary or xvalue such as the result of std:: move ), and selects the copy assignment if the argument is lvalue (named object or a function/operator returning lvalue reference). If only the copy assignment is provided, all argument categories select it (as long as it takes its argument by value or as reference to const, since rvalues can bind to const references), which makes copy assignment the fallback for move assignment, when move is unavailable.

[ edit ] Copy and swap

Copy assignment operator can be expressed in terms of copy constructor, destructor, and the swap() member function, if one is provided:

T & T :: operator = ( T arg ) { // copy/move constructor is called to construct arg     swap ( arg ) ;     // resources exchanged between *this and arg     return * this ; }   // destructor is called to release the resources formerly held by *this

For non-throwing swap(), this form provides strong exception guarantee . For rvalue arguments, this form automatically invokes the move constructor, and is sometimes referred to as "unifying assignment operator" (as in, both copy and move).

[ edit ] Example

CProgramming Tutorial

  • C Programming Tutorial
  • C - Overview
  • C - Features
  • C - History
  • C - Environment Setup
  • C - Program Structure
  • C - Hello World
  • C - Compilation Process
  • C - Comments
  • C - Keywords
  • C - Identifiers
  • C - User Input
  • C - Basic Syntax
  • C - Data Types
  • C - Variables
  • C - Integer Promotions
  • C - Type Conversion
  • C - Constants
  • C - Literals
  • C - Escape sequences
  • C - Format Specifiers
  • C - Storage Classes
  • C - Operators
  • C - Decision Making
  • C - if statement
  • C - if...else statement
  • C - nested if statements
  • C - switch statement
  • C - nested switch statements
  • C - While loop
  • C - For loop
  • C - Do...while loop
  • C - Nested loop
  • C - Infinite loop
  • C - Break Statement
  • C - Continue Statement
  • C - goto Statement
  • C - Functions
  • C - Main Functions
  • C - Return Statement
  • C - Recursion
  • C - Scope Rules
  • C - Properties of Array
  • C - Multi-Dimensional Arrays
  • C - Passing Arrays to Function
  • C - Return Array from Function
  • C - Variable Length Arrays
  • C - Pointers
  • C - Pointer Arithmetics
  • C - Passing Pointers to Functions
  • C - Strings
  • C - Array of Strings
  • C - Structures
  • C - Structures and Functions
  • C - Arrays of Structures
  • C - Pointers to Structures
  • C - Self-Referential Structures
  • C - Nested Structures
  • C - Bit Fields
  • C - Typedef
  • C - Input & Output
  • C - File I/O
  • C - Preprocessors
  • C - Header Files
  • C - Type Casting
  • C - Error Handling
  • C - Variable Arguments
  • C - Memory Management
  • C - Command Line Arguments
  • C Programming Resources
  • C - Questions & Answers
  • C - Quick Guide
  • C - Useful Resources
  • C - Discussion
  • Selected Reading
  • UPSC IAS Exams Notes
  • Developer's Best Practices
  • Questions and Answers
  • Effective Resume Writing
  • HR Interview Questions
  • Computer Glossary

Assignment Operators in C

In C, the assignment operator stores a certain value in an already declared variable. A variable in C can be assigned the value in the form of a literal, another variable or an expression. The value to be assigned forms the right hand operand, whereas the variable to be assigned should be the operand to the left of = symbol, which is defined as a simple assignment operator in C. In addition, C has several augmented assignment operators.

The following table lists the assignment operators supported by the C language −

Simple assignment operator (=)

The = operator is the most frequently used operator in C. As per ANSI C standard, all the variables must be declared in the beginning. Variable declaration after the first processing statement is not allowed. You can declare a variable to be assigned a value later in the code, or you can initialize it at the time of declaration.

You can use a literal, another variable or an expression in the assignment statement.

Once a variable of a certain type is declared, it cannot be assigned a value of any other type. In such a case the C compiler reports a type mismatch error.

In C, the expressions that refer to a memory location are called "lvalue" expressions. A lvalue may appear as either the left-hand or right-hand side of an assignment.

On the other hand, the term rvalue refers to a data value that is stored at some address in memory. A rvalue is an expression that cannot have a value assigned to it which means an rvalue may appear on the right-hand side but not on the left-hand side of an assignment.

Variables are lvalues and so they may appear on the left-hand side of an assignment. Numeric literals are rvalues and so they may not be assigned and cannot appear on the left-hand side. Take a look at the following valid and invalid statements −

Augmented assignment operators

In addition to the = operator, C allows you to combine arithmetic and bitwise operators with the = symbol to form augmented or compound assignment operator. The augmented operators offer a convenient shortcut for combining arithmetic or bitwise operation with assignment.

For example, the expression a+=b has the same effect of performing a+b first and then assigning the result back to the variable a.

Similarly, the expression a<<=b has the same effect of performing a<<b first and then assigning the result back to the variable a.

Here is a C program that demonstrates the use of assignment operators in C:

When you compile and execute the above program, it produces the following result −

Learn C++

21.12 — Overloading the assignment operator

The copy assignment operator (operator=) is used to copy values from one object to another already existing object .

Related content

As of C++11, C++ also supports “Move assignment”. We discuss move assignment in lesson 22.3 -- Move constructors and move assignment .

Copy assignment vs Copy constructor

The purpose of the copy constructor and the copy assignment operator are almost equivalent -- both copy one object to another. However, the copy constructor initializes new objects, whereas the assignment operator replaces the contents of existing objects.

The difference between the copy constructor and the copy assignment operator causes a lot of confusion for new programmers, but it’s really not all that difficult. Summarizing:

  • If a new object has to be created before the copying can occur, the copy constructor is used (note: this includes passing or returning objects by value).
  • If a new object does not have to be created before the copying can occur, the assignment operator is used.

Overloading the assignment operator

Overloading the copy assignment operator (operator=) is fairly straightforward, with one specific caveat that we’ll get to. The copy assignment operator must be overloaded as a member function.

This prints:

This should all be pretty straightforward by now. Our overloaded operator= returns *this, so that we can chain multiple assignments together:

Issues due to self-assignment

Here’s where things start to get a little more interesting. C++ allows self-assignment:

This will call f1.operator=(f1), and under the simplistic implementation above, all of the members will be assigned to themselves. In this particular example, the self-assignment causes each member to be assigned to itself, which has no overall impact, other than wasting time. In most cases, a self-assignment doesn’t need to do anything at all!

However, in cases where an assignment operator needs to dynamically assign memory, self-assignment can actually be dangerous:

First, run the program as it is. You’ll see that the program prints “Alex” as it should.

Now run the following program:

You’ll probably get garbage output. What happened?

Consider what happens in the overloaded operator= when the implicit object AND the passed in parameter (str) are both variable alex. In this case, m_data is the same as str.m_data. The first thing that happens is that the function checks to see if the implicit object already has a string. If so, it needs to delete it, so we don’t end up with a memory leak. In this case, m_data is allocated, so the function deletes m_data. But because str is the same as *this, the string that we wanted to copy has been deleted and m_data (and str.m_data) are dangling.

Later on, we allocate new memory to m_data (and str.m_data). So when we subsequently copy the data from str.m_data into m_data, we’re copying garbage, because str.m_data was never initialized.

Detecting and handling self-assignment

Fortunately, we can detect when self-assignment occurs. Here’s an updated implementation of our overloaded operator= for the MyString class:

By checking if the address of our implicit object is the same as the address of the object being passed in as a parameter, we can have our assignment operator just return immediately without doing any other work.

Because this is just a pointer comparison, it should be fast, and does not require operator== to be overloaded.

When not to handle self-assignment

Typically the self-assignment check is skipped for copy constructors. Because the object being copy constructed is newly created, the only case where the newly created object can be equal to the object being copied is when you try to initialize a newly defined object with itself:

In such cases, your compiler should warn you that c is an uninitialized variable.

Second, the self-assignment check may be omitted in classes that can naturally handle self-assignment. Consider this Fraction class assignment operator that has a self-assignment guard:

If the self-assignment guard did not exist, this function would still operate correctly during a self-assignment (because all of the operations done by the function can handle self-assignment properly).

Because self-assignment is a rare event, some prominent C++ gurus recommend omitting the self-assignment guard even in classes that would benefit from it. We do not recommend this, as we believe it’s a better practice to code defensively and then selectively optimize later.

The copy and swap idiom

A better way to handle self-assignment issues is via what’s called the copy and swap idiom. There’s a great writeup of how this idiom works on Stack Overflow .

The implicit copy assignment operator

Unlike other operators, the compiler will provide an implicit public copy assignment operator for your class if you do not provide a user-defined one. This assignment operator does memberwise assignment (which is essentially the same as the memberwise initialization that default copy constructors do).

Just like other constructors and operators, you can prevent assignments from being made by making your copy assignment operator private or using the delete keyword:

Note that if your class has const members, the compiler will instead define the implicit operator= as deleted. This is because const members can’t be assigned, so the compiler will assume your class should not be assignable.

If you want a class with const members to be assignable (for all members that aren’t const), you will need to explicitly overload operator= and manually assign each non-const member.

guest

This browser is no longer supported.

Upgrade to Microsoft Edge to take advantage of the latest features, security updates, and technical support.

Copy constructors and copy assignment operators (C++)

  • 8 contributors

Starting in C++11, two kinds of assignment are supported in the language: copy assignment and move assignment . In this article "assignment" means copy assignment unless explicitly stated otherwise. For information about move assignment, see Move Constructors and Move Assignment Operators (C++) .

Both the assignment operation and the initialization operation cause objects to be copied.

Assignment : When one object's value is assigned to another object, the first object is copied to the second object. So, this code copies the value of b into a :

Initialization : Initialization occurs when you declare a new object, when you pass function arguments by value, or when you return by value from a function.

You can define the semantics of "copy" for objects of class type. For example, consider this code:

The preceding code could mean "copy the contents of FILE1.DAT to FILE2.DAT" or it could mean "ignore FILE2.DAT and make b a second handle to FILE1.DAT." You must attach appropriate copying semantics to each class, as follows:

Use an assignment operator operator= that returns a reference to the class type and takes one parameter that's passed by const reference—for example ClassName& operator=(const ClassName& x); .

Use the copy constructor.

If you don't declare a copy constructor, the compiler generates a member-wise copy constructor for you. Similarly, if you don't declare a copy assignment operator, the compiler generates a member-wise copy assignment operator for you. Declaring a copy constructor doesn't suppress the compiler-generated copy assignment operator, and vice-versa. If you implement either one, we recommend that you implement the other one, too. When you implement both, the meaning of the code is clear.

The copy constructor takes an argument of type ClassName& , where ClassName is the name of the class. For example:

Make the type of the copy constructor's argument const ClassName& whenever possible. This prevents the copy constructor from accidentally changing the copied object. It also lets you copy from const objects.

Compiler generated copy constructors

Compiler-generated copy constructors, like user-defined copy constructors, have a single argument of type "reference to class-name ." An exception is when all base classes and member classes have copy constructors declared as taking a single argument of type const class-name & . In such a case, the compiler-generated copy constructor's argument is also const .

When the argument type to the copy constructor isn't const , initialization by copying a const object generates an error. The reverse isn't true: If the argument is const , you can initialize by copying an object that's not const .

Compiler-generated assignment operators follow the same pattern for const . They take a single argument of type ClassName& unless the assignment operators in all base and member classes take arguments of type const ClassName& . In this case, the generated assignment operator for the class takes a const argument.

When virtual base classes are initialized by copy constructors, whether compiler-generated or user-defined, they're initialized only once: at the point when they are constructed.

The implications are similar to the copy constructor. When the argument type isn't const , assignment from a const object generates an error. The reverse isn't true: If a const value is assigned to a value that's not const , the assignment succeeds.

For more information about overloaded assignment operators, see Assignment .

Was this page helpful?

Coming soon: Throughout 2024 we will be phasing out GitHub Issues as the feedback mechanism for content and replacing it with a new feedback system. For more information see: https://aka.ms/ContentUserFeedback .

Submit and view feedback for

Additional resources

Copy assignment operator

A copy assignment operator of class T is a non-template non-static member function with the name operator = that takes exactly one parameter of type T , T & , const T & , volatile T & , or const volatile T & . A type with a public copy assignment operator is CopyAssignable .

[ edit ] Syntax

[ edit ] explanation.

  • Typical declaration of a copy assignment operator when copy-and-swap idiom can be used
  • Typical declaration of a copy assignment operator when copy-and-swap idiom cannot be used
  • Forcing a copy assignment operator to be generated by the compiler
  • Avoiding implicit copy assignment

The copy assignment operator is called whenever selected by overload resolution , e.g. when an object appears on the left side of an assignment expression.

[ edit ] Implicitly-declared copy assignment operator

If no user-defined copy assignment operators are provided for a class type ( struct , class , or union ), the compiler will always declare one as an inline public member of the class. This implicitly-declared copy assignment operator has the form T & T :: operator = ( const T & ) if all of the following is true:

  • each direct base B of T has a copy assignment operator whose parameters are B or const B& or const volatile B &
  • each non-static data member M of T of class type or array of class type has a copy assignment operator whose parameters are M or const M& or const volatile M &

Otherwise the implicitly-declared copy assignment operator is declared as T & T :: operator = ( T & ) . (Note that due to these rules, the implicitly-declared copy assignment operator cannot bind to a volatile lvalue argument)

A class can have multiple copy assignment operators, e.g. both T & T :: operator = ( const T & ) and T & T :: operator = ( T ) . If some user-defined copy assignment operators are present, the user may still force the generation of the implicitly declared copy assignment operator with the keyword default . (since C++11)

Because the copy assignment operator is always declared for any class, the base class assignment operator is always hidden. If a using-declaration is used to bring in the assignment operator from the base class, and its argument type could be the same as the argument type of the implicit assignment operator of the derived class, the using-declaration is also hidden by the implicit declaration.

[ edit ] Deleted implicitly-declared copy assignment operator

The implicitly-declared or defaulted copy assignment operator for class T is defined as deleted in any of the following is true:

  • T has a non-static data member that is const
  • T has a non-static data member of a reference type.
  • T has a non-static data member that cannot be copy-assigned (has deleted, inaccessible, or ambiguous copy assignment operator)
  • T has direct or virtual base class that cannot be copy-assigned (has deleted, inaccessible, or ambiguous move assignment operator)
  • T has a user-declared move constructor
  • T has a user-declared move assignment operator

[ edit ] Trivial copy assignment operator

The copy assignment operator for class T is trivial if all of the following is true:

  • The operator is not user-provided (meaning, it is implicitly-defined or defaulted), and if it is defaulted, its signature is the same as implicitly-defined
  • T has no virtual member functions
  • T has no virtual base classes
  • The copy assignment operator selected for every direct base of T is trivial
  • The copy assignment operator selected for every non-static class type (or array of class type) memeber of T is trivial

A trivial copy assignment operator makes a copy of the object representation as if by std::memmove . All data types compatible with the C language (POD types) are trivially copy-assignable.

[ edit ] Implicitly-defined copy assignment operator

If the implicitly-declared copy assignment operator is not deleted or trivial, it is defined (that is, a function body is generated and compiled) by the compiler. For union types, the implicitly-defined copy assignment copies the object representation (as by std::memmove ). For non-union class types ( class and struct ), the operator performs member-wise copy assignment of the object's bases and non-static members, in their initialization order, using, using built-in assignment for the scalars and copy assignment operator for class types.

The generation of the implicitly-defined copy assignment operator is deprecated (since C++11) if T has a user-declared destructor or user-declared copy constructor.

[ edit ] Notes

If both copy and move assignment operators are provided, overload resolution selects the move assignment if the argument is an rvalue (either prvalue such as a nameless temporary or xvalue such as the result of std::move ), and selects the copy assignment if the argument is lvalue (named object or a function/operator returning lvalue reference). If only the copy assignment is provided, all argument categories select it (as long as it takes its argument by value or as reference to const, since rvalues can bind to const references), which makes copy assignment the fallback for move assignment, when move is unavailable.

[ edit ] Copy and swap

Copy assignment operator can be expressed in terms of copy constructor, destructor, and the swap() member function, if one is provided:

T & T :: operator = ( T arg ) { // copy/move constructor is called to construct arg     swap ( arg ) ;     // resources exchanged between *this and arg     return * this ; }   // destructor is called to release the resources formerly held by *this

For non-throwing swap(), this form provides strong exception guarantee . For rvalue arguments, this form automatically invokes the move constructor, and is sometimes referred to as "unifying assignment operator" (as in, both copy and move).

[ edit ] Example

cppreference.com

Operator overloading.

Customizes the C++ operators for operands of user-defined types.

[ edit ] Syntax

Overloaded operators are functions with special function names:

[ edit ] Overloaded operators

When an operator appears in an expression , and at least one of its operands has a class type or an enumeration type , then overload resolution is used to determine the user-defined function to be called among all the functions whose signatures match the following:

Note: for overloading co_await , (since C++20) user-defined conversion functions , user-defined literals , allocation and deallocation see their respective articles.

Overloaded operators (but not the built-in operators) can be called using function notation:

[ edit ] Restrictions

  • The operators :: (scope resolution), . (member access), .* (member access through pointer to member), and ?: (ternary conditional) cannot be overloaded.
  • New operators such as ** , <> , or &| cannot be created.
  • It is not possible to change the precedence, grouping, or number of operands of operators.
  • The overload of operator -> must either return a raw pointer, or return an object (by reference or by value) for which operator -> is in turn overloaded.
  • The overloads of operators && and || lose short-circuit evaluation.

[ edit ] Canonical implementations

Besides the restrictions above, the language puts no other constraints on what the overloaded operators do, or on the return type (it does not participate in overload resolution), but in general, overloaded operators are expected to behave as similar as possible to the built-in operators: operator + is expected to add, rather than multiply its arguments, operator = is expected to assign, etc. The related operators are expected to behave similarly ( operator + and operator + = do the same addition-like operation). The return types are limited by the expressions in which the operator is expected to be used: for example, assignment operators return by reference to make it possible to write a = b = c = d , because the built-in operators allow that.

Commonly overloaded operators have the following typical, canonical forms: [1]

[ edit ] Assignment operator

The assignment operator ( operator = ) has special properties: see copy assignment and move assignment for details.

The canonical copy-assignment operator is expected to be safe on self-assignment , and to return the lhs by reference:

In those situations where copy assignment cannot benefit from resource reuse (it does not manage a heap-allocated array and does not have a (possibly transitive) member that does, such as a member std::vector or std::string ), there is a popular convenient shorthand: the copy-and-swap assignment operator, which takes its parameter by value (thus working as both copy- and move-assignment depending on the value category of the argument), swaps with the parameter, and lets the destructor clean it up.

This form automatically provides strong exception guarantee , but prohibits resource reuse.

[ edit ] Stream extraction and insertion

The overloads of operator>> and operator<< that take a std:: istream & or std:: ostream & as the left hand argument are known as insertion and extraction operators. Since they take the user-defined type as the right argument ( b in a @ b ), they must be implemented as non-members.

These operators are sometimes implemented as friend functions .

[ edit ] Function call operator

When a user-defined class overloads the function call operator, operator ( ) , it becomes a FunctionObject type.

An object of such a type can be used in a function call expression:

Many standard algorithms, from std:: sort to std:: accumulate accept FunctionObject s to customize behavior. There are no particularly notable canonical forms of operator ( ) , but to illustrate the usage:

[ edit ] Increment and decrement

When the postfix increment or decrement operator appears in an expression, the corresponding user-defined function ( operator ++ or operator -- ) is called with an integer argument 0 . Typically, it is implemented as T operator ++ ( int ) or T operator -- ( int ) , where the argument is ignored. The postfix increment and decrement operators are usually implemented in terms of the prefix versions:

Although the canonical implementations of the prefix increment and decrement operators return by reference, as with any operator overload, the return type is user-defined; for example the overloads of these operators for std::atomic return by value.

[ edit ] Binary arithmetic operators

Binary operators are typically implemented as non-members to maintain symmetry (for example, when adding a complex number and an integer, if operator+ is a member function of the complex type, then only complex + integer would compile, and not integer + complex ). Since for every binary arithmetic operator there exists a corresponding compound assignment operator, canonical forms of binary operators are implemented in terms of their compound assignments:

[ edit ] Comparison operators

Standard algorithms such as std:: sort and containers such as std:: set expect operator < to be defined, by default, for the user-provided types, and expect it to implement strict weak ordering (thus satisfying the Compare requirements). An idiomatic way to implement strict weak ordering for a structure is to use lexicographical comparison provided by std::tie :

Typically, once operator < is provided, the other relational operators are implemented in terms of operator < .

Likewise, the inequality operator is typically implemented in terms of operator == :

When three-way comparison (such as std::memcmp or std::string::compare ) is provided, all six two-way comparison operators may be expressed through that:

[ edit ] Array subscript operator

User-defined classes that provide array-like access that allows both reading and writing typically define two overloads for operator [ ] : const and non-const variants:

If the value type is known to be a scalar type, the const variant should return by value.

Where direct access to the elements of the container is not wanted or not possible or distinguishing between lvalue c [ i ] = v ; and rvalue v = c [ i ] ; usage, operator [ ] may return a proxy. See for example std::bitset::operator[] .

[ edit ] Bitwise arithmetic operators

User-defined classes and enumerations that implement the requirements of BitmaskType are required to overload the bitwise arithmetic operators operator & , operator | , operator ^ , operator~ , operator & = , operator | = , and operator ^ = , and may optionally overload the shift operators operator << operator >> , operator >>= , and operator <<= . The canonical implementations usually follow the pattern for binary arithmetic operators described above.

[ edit ] Boolean negation operator

[ edit ] rarely overloaded operators.

The following operators are rarely overloaded:

  • The address-of operator, operator & . If the unary & is applied to an lvalue of incomplete type and the complete type declares an overloaded operator & , it is unspecified whether the operator has the built-in meaning or the operator function is called. Because this operator may be overloaded, generic libraries use std::addressof to obtain addresses of objects of user-defined types. The best known example of a canonical overloaded operator& is the Microsoft class CComPtrBase . An example of this operator's use in EDSL can be found in boost.spirit .
  • The boolean logic operators, operator && and operator || . Unlike the built-in versions, the overloads cannot implement short-circuit evaluation. Also unlike the built-in versions, they do not sequence their left operand before the right one. (until C++17) In the standard library, these operators are only overloaded for std::valarray .
  • The comma operator, operator, . Unlike the built-in version, the overloads do not sequence their left operand before the right one. (until C++17) Because this operator may be overloaded, generic libraries use expressions such as a, void ( ) ,b instead of a,b to sequence execution of expressions of user-defined types. The boost library uses operator, in boost.assign , boost.spirit , and other libraries. The database access library SOCI also overloads operator, .
  • The member access through pointer to member operator - > * . There are no specific downsides to overloading this operator, but it is rarely used in practice. It was suggested that it could be part of a smart pointer interface , and in fact is used in that capacity by actors in boost.phoenix . It is more common in EDSLs such as cpp.react .

[ edit ] Notes

[ edit ] example, [ edit ] defect reports.

The following behavior-changing defect reports were applied retroactively to previously published C++ standards.

[ edit ] See also

  • Operator precedence
  • Alternative operator syntax
  • Argument-dependent lookup

[ edit ] External links

  • Recent changes
  • Offline version
  • What links here
  • Related changes
  • Upload file
  • Special pages
  • Printable version
  • Permanent link
  • Page information
  • In other languages
  • This page was last modified on 30 April 2024, at 17:49.
  • This page has been accessed 5,462,902 times.
  • Privacy policy
  • About cppreference.com
  • Disclaimers

Powered by MediaWiki

  • C++ Data Types
  • C++ Input/Output
  • C++ Pointers
  • C++ Interview Questions
  • C++ Programs
  • C++ Cheatsheet
  • C++ Projects
  • C++ Exception Handling
  • C++ Memory Management

Assignment Operators In C++

  • Move Assignment Operator in C++ 11
  • JavaScript Assignment Operators
  • Assignment Operators in Programming
  • Is assignment operator inherited?
  • Solidity - Assignment Operators
  • Augmented Assignment Operators in Python
  • bitset operator[] in C++ STL
  • C++ Assignment Operator Overloading
  • Self assignment check in assignment operator
  • Copy Constructor vs Assignment Operator in C++
  • Operators in C++
  • C++ Arithmetic Operators
  • Bitwise Operators in C++
  • Casting Operators in C++
  • How to Create Custom Assignment Operator in C++?
  • Default Assignment Operator and References in C++
  • How to Implement Move Assignment Operator in C++?
  • vector :: assign() in C++ STL
  • Operators in LISP
  • Assignment Operators in C
  • Assignment Operators in Python
  • Compound assignment operators in Java
  • Arithmetic Operators in C
  • Operators in C
  • Basic Operators in Java
  • Null-Coalescing Assignment Operator in C# 8.0
  • JavaScript Logical OR assignment (||=) Operator
  • Java Assignment Operators with Examples
  • Parallel Assignment in Ruby

In C++, the assignment operator forms the backbone of many algorithms and computational processes by performing a simple operation like assigning a value to a variable. It is denoted by equal sign ( = ) and provides one of the most basic operations in any programming language that is used to assign some value to the variables in C++ or in other words, it is used to store some kind of information.

The right-hand side value will be assigned to the variable on the left-hand side. The variable and the value should be of the same data type.

The value can be a literal or another variable of the same data type.

Compound Assignment Operators

In C++, the assignment operator can be combined into a single operator with some other operators to perform a combination of two operations in one single statement. These operators are called Compound Assignment Operators. There are 10 compound assignment operators in C++:

  • Addition Assignment Operator ( += )
  • Subtraction Assignment Operator ( -= )
  • Multiplication Assignment Operator ( *= )
  • Division Assignment Operator ( /= )
  • Modulus Assignment Operator ( %= )
  • Bitwise AND Assignment Operator ( &= )
  • Bitwise OR Assignment Operator ( |= )
  • Bitwise XOR Assignment Operator ( ^= )
  • Left Shift Assignment Operator ( <<= )
  • Right Shift Assignment Operator ( >>= )

Lets see each of them in detail.

1. Addition Assignment Operator (+=)

In C++, the addition assignment operator (+=) combines the addition operation with the variable assignment allowing you to increment the value of variable by a specified expression in a concise and efficient way.

This above expression is equivalent to the expression:

2. Subtraction Assignment Operator (-=)

The subtraction assignment operator (-=) in C++ enables you to update the value of the variable by subtracting another value from it. This operator is especially useful when you need to perform subtraction and store the result back in the same variable.

3. Multiplication Assignment Operator (*=)

In C++, the multiplication assignment operator (*=) is used to update the value of the variable by multiplying it with another value.

4. Division Assignment Operator (/=)

The division assignment operator divides the variable on the left by the value on the right and assigns the result to the variable on the left.

5. Modulus Assignment Operator (%=)

The modulus assignment operator calculates the remainder when the variable on the left is divided by the value or variable on the right and assigns the result to the variable on the left.

6. Bitwise AND Assignment Operator (&=)

This operator performs a bitwise AND between the variable on the left and the value on the right and assigns the result to the variable on the left.

7. Bitwise OR Assignment Operator (|=)

The bitwise OR assignment operator performs a bitwise OR between the variable on the left and the value or variable on the right and assigns the result to the variable on the left.

8. Bitwise XOR Assignment Operator (^=)

The bitwise XOR assignment operator performs a bitwise XOR between the variable on the left and the value or variable on the right and assigns the result to the variable on the left.

9. Left Shift Assignment Operator (<<=)

The left shift assignment operator shifts the bits of the variable on the left to left by the number of positions specified on the right and assigns the result to the variable on the left.

10. Right Shift Assignment Operator (>>=)

The right shift assignment operator shifts the bits of the variable on the left to the right by a number of positions specified on the right and assigns the result to the variable on the left.

Also, it is important to note that all of the above operators can be overloaded for custom operations with user-defined data types to perform the operations we want.

Please Login to comment...

Similar reads.

  • Geeks Premier League 2023
  • Geeks Premier League

advertisewithusBannerImg

Improve your Coding Skills with Practice

 alt=

What kind of Experience do you want to share?

IMAGES

  1. Assignment Operators in C

    assignment operator for class c

  2. Assignment Operators in C

    assignment operator for class c

  3. Assignment Operators in C Detailed Explanation

    assignment operator for class c

  4. C# Assignment Operator

    assignment operator for class c

  5. Assignment Operators in C++

    assignment operator for class c

  6. Assignment operators in C++ programming

    assignment operator for class c

VIDEO

  1. Operators in C language

  2. Op OPERATOR CLASS

  3. What is Assignment operator |Class 11 computer science cbse|Tamil||Python|

  4. assignment operators in c language

  5. Augmented assignment operators in C

  6. C++ Assignment Operators Practice coding

COMMENTS

  1. c++

    ClassName = Other.ClassName; return *this; } This is the general convention used when overloading operator=. The return statement allows chaining of assignments (like a = b = c) and passing the parameter by const reference avoids copying Other on its way into the function call. edited Dec 22, 2010 at 13:54.

  2. Assignment Operators in C

    Different types of assignment operators are shown below: 1. "=": This is the simplest assignment operator. This operator is used to assign the value on the right to the variable on the left. Example: a = 10; b = 20; ch = 'y'; 2. "+=": This operator is combination of '+' and '=' operators. This operator first adds the current ...

  3. Assignment operators

    for assignments to class type objects, the right operand could be an initializer list only when the assignment is defined by a user-defined assignment operator. removed user-defined assignment constraint. CWG 1538. C++11. E1 ={E2} was equivalent to E1 = T(E2) ( T is the type of E1 ), this introduced a C-style cast. it is equivalent to E1 = T{E2}

  4. Copy constructors, assignment operators,

    What is an assignment operator? The assignment operator for a class is what allows you to use = to assign one instance to another. For example: 1 2: MyClass c1, c2; c1 = c2; // assigns c2 to c1 : There are actually several different signatures that an assignment operator can have:

  5. Copy assignment operator

    the copy assignment operator selected for every direct base of T is trivial; the copy assignment operator selected for every non-static class type (or array of class type) member of T is trivial. A trivial copy assignment operator makes a copy of the object representation as if by std::memmove. All data types compatible with the C language (POD ...

  6. Assignment operators

    Assignment performs implicit conversion from the value of rhs to the type of lhs and then replaces the value in the object designated by lhs with the converted value of rhs . Assignment also returns the same value as what was stored in lhs (so that expressions such as a = b = c are possible). The value category of the assignment operator is non ...

  7. C Assignment Operators

    The assignment operators in C can both transform and assign values in a single operation. C provides the following assignment operators: | =. In assignment, the type of the right-hand value is converted to the type of the left-hand value, and the value is stored in the left operand after the assignment has taken place.

  8. Assignment operator (C++)

    In the C++ programming language, the assignment operator, =, is the operator used for assignment.Like most other operators in C++, it can be overloaded.. The copy assignment operator, often just called the "assignment operator", is a special case of assignment operator where the source (right-hand side) and destination (left-hand side) are of the same class type.

  9. Assignment Operators in Programming

    Assignment operators are used in programming to assign values to variables. We use an assignment operator to store and update data within a program. They enable programmers to store data in variables and manipulate that data. The most common assignment operator is the equals sign (=), which assigns the value on the right side of the operator to ...

  10. Copy assignment operator

    The copy assignment operator selected for every non-static class type (or array of class type) memeber of T is trivial. A trivial copy assignment operator makes a copy of the object representation as if by std::memmove. All data types compatible with the C language (POD types) are trivially copy-assignable.

  11. Assignment Operators in C

    Simple assignment operator. Assigns values from right side operands to left side operand. C = A + B will assign the value of A + B to C. +=. Add AND assignment operator. It adds the right operand to the left operand and assign the result to the left operand. C += A is equivalent to C = C + A. -=.

  12. 21.12

    The implicit copy assignment operator. Unlike other operators, the compiler will provide an implicit public copy assignment operator for your class if you do not provide a user-defined one. This assignment operator does memberwise assignment (which is essentially the same as the memberwise initialization that default copy constructors do).

  13. Copy constructors and copy assignment operators (C++)

    Use an assignment operator operator= that returns a reference to the class type and takes one parameter that's passed by const reference—for example ClassName& operator=(const ClassName& x);. Use the copy constructor. If you don't declare a copy constructor, the compiler generates a member-wise copy constructor for you.

  14. Copy assignment operator

    Implicitly-declared copy assignment operator. If no user-defined copy assignment operators are provided for a class type (struct, class, or union), the compiler will always declare one as an inline public member of the class. This implicitly-declared copy assignment operator has the form T & T:: operator = (const T &) if all of the following is ...

  15. operator overloading

    In those situations where copy assignment cannot benefit from resource reuse (it does not manage a heap-allocated array and does not have a (possibly transitive) member that does, such as a member std::vector or std::string), there is a popular convenient shorthand: the copy-and-swap assignment operator, which takes its parameter by value (thus working as both copy- and move-assignment ...

  16. C++ Assignment Operator Overloading

    The assignment operator,"=", is the operator used for Assignment. It copies the right value into the left value. Assignment Operators are predefined to operate only on built-in Data types. Assignment operator overloading is binary operator overloading. Overloading assignment operator in C++ copies all values of one object to another object.

  17. Sub-classes, assignment operator overloading?

    Because a copy/move assignment operator is implicitly declared for a class if not declared by the user, a base class copy/move assignment operator is always hidden by the corresponding assignment operator of a derived class (13.5.3). A using-declaration (7.3.3) that brings in from a base class an assignment operator with a parameter type that ...

  18. Assignment Operators In C++

    In C++, the addition assignment operator (+=) combines the addition operation with the variable assignment allowing you to increment the value of variable by a specified expression in a concise and efficient way. Syntax. variable += value; This above expression is equivalent to the expression: variable = variable + value; Example.

  19. Creating an assignment (=) operator for class in C++

    The standard way to implement an assignment operator is copy-and-swap. This has the advantages of being the most simple way to make an assignment operator that is correct in the face of exceptions and self-assignment. It also defines the assignment operation in terms of the copy-constructor, thus reducing the number of places where your code ...

  20. c++

    4. Correct me if I'm wrong: I understand that when having a class with members that are pointers, a copy of a class object will result in that the pointers representing the same memory address. This can result in changes done to one class object to affect all copies of this object. A solution to this can be to overload the = operator.

  21. C++ class assignment operator

    Oct 16, 2014 at 0:22. Additionally: both of these assignment operators is invalid, undefined behavior. Comparing a pair of raw pointers to class instances is defined only if both class instances are members of the same array/vector. On nearly all C++ implementations, any pointer comparison of this type will produce the expected results, however ...

  22. How to call operator= or destructor of superclass?

    I wonder if this is the correct way to implement operator= and destructors for B and C. Is there any way to call A's operator= or destructor in B or C, so I don't write assignment for all members again and again. A is base class with a heap variable; B is a class derived from A, with additional 'int b' C is a class derived from A, with ...