- Thesis Action Plan New
- Academic Project Planner
Literature Navigator
Thesis dialogue blueprint, writing wizard's template, research proposal compass.
- See Success Stories
- Access Free Resources
- Why we are different
- All Products
- Coming Soon
What Makes a Good Hypothesis? Key Elements and Examples
A well-crafted hypothesis is the cornerstone of effective scientific research. It serves as a tentative explanation or prediction that guides the direction of study and experimental design. Understanding what makes a good hypothesis is essential for students, researchers, and anyone involved in scientific inquiry. This article delves into the key elements of a good hypothesis, its types, formulation steps, common pitfalls, and examples across various fields.
Key Takeaways
- A good hypothesis should be clear, precise, and testable, providing a focused direction for research.
- Distinguishing between a hypothesis and a research question is crucial for proper scientific investigation.
- Testability and falsifiability are fundamental characteristics of a robust hypothesis, ensuring it can be empirically examined.
- Formulating a hypothesis involves identifying variables, crafting if-then statements, and ensuring specificity and measurability.
- Avoiding common pitfalls such as ambiguity, overly broad statements, and double-barreled hypotheses enhances the quality and reliability of research.
Defining a Hypothesis: The Foundation of Scientific Inquiry
A hypothesis is a tentative, declarative statement about the relationship between two or more variables that can be observed empirically. It serves as a scientific guess about these relationships, grounded in intuition, theories, or relevant facts from previous observations, research, or experience. Hypotheses offer explanations for certain phenomena and guide the collection and analysis of research data. Implicit in hypothesis formulation is the notion that these statements must be tested, guiding the discovery of new knowledge.
Characteristics of a Good Hypothesis
A well-crafted hypothesis is essential for any scientific inquiry. It serves as a foundation for your research and guides your experimental design. Here are the key characteristics that define a good hypothesis:
Types of Hypotheses in Research
Understanding the different types of hypotheses is crucial for targeted research . Each type serves a unique purpose and is formulated based on the specific research question at hand.
Steps to Formulate a Strong Hypothesis
Formulating a strong hypothesis is a critical step in the research process. It involves several key stages that ensure your hypothesis is clear, testable, and grounded in existing knowledge. Here are the essential steps to follow:
Identifying Variables and Relationships
Begin by identifying the key variables in your study. These include the independent variable, which you will manipulate, and the dependent variable, which you will measure. Understanding the relationship between these variables is crucial. Research always starts with a question , but one that takes into account what is already known.
Crafting If-Then Statements
A well-formulated hypothesis often takes the form of an if-then statement. This structure clearly defines the expected relationship between the variables. For example, "If the amount of sunlight increases, then the growth rate of the plant will increase." This format helps in making your hypothesis specific and testable.
Ensuring Measurability and Specificity
Your hypothesis should be specific enough to be measurable. Avoid vague terms and ensure that the variables can be quantified. This specificity enhances the testability of your hypothesis, making it easier to design experiments and analyze data. Clear, testable, and grounded hypotheses enhance research credibility and reliability.
Common Pitfalls to Avoid When Writing Hypotheses
Avoiding ambiguity and vagueness.
A hypothesis should be clear and specific. Ambiguity can lead to confusion and misinterpretation, which can undermine the entire research process. Ensure your hypothesis is straightforward and leaves no room for multiple interpretations. This clarity is crucial for demystifying research and understanding the difference between a problem and a hypothesis .
Steering Clear of Double-Barreled Hypotheses
A double-barreled hypothesis addresses two issues simultaneously, which can complicate the testing process. Instead, focus on one relationship or variable at a time. This approach not only simplifies your research but also enhances the precision of your findings.
Ensuring Hypotheses are Not Overly Broad
An overly broad hypothesis can be difficult to test and may lack the specificity needed for meaningful results. Narrow down your hypothesis to a manageable scope. This focus is essential for effective study design and impactful contributions to knowledge. By doing so, you can better apply key stats in experimental research, emphasizing hypothesis testing, significance, and practical implications in drawing conclusions from data .
Examples of Effective Hypotheses
Hypotheses in natural sciences.
In the natural sciences, hypotheses often predict relationships between variables in a clear and testable manner. For instance, a hypothesis might state, " Plants grow better with bottled water than tap water ." This hypothesis is specific and can be tested through controlled experiments, making it a strong example of an effective hypothesis.
Hypotheses in Social Sciences
Social science hypotheses frequently address human behavior and societal trends. An example could be, "Reducing prices will make customers happy." This hypothesis is grounded in existing knowledge about consumer behavior and can be tested through surveys or market analysis.
Hypotheses in Applied Research
Applied research hypotheses are designed to solve practical problems. For example, "Fixing the hard-to-use comment form will increase user engagement" is a hypothesis that is both relevant and specific to a particular issue. It can be tested by implementing changes and observing the outcomes, ensuring that the hypothesis is both observable and testable.
Testing and Refining Hypotheses
Designing experiments to test hypotheses.
To effectively test your hypothesis, you must design a robust experiment. This involves identifying the independent and dependent variables and ensuring that you have control over the independent variable. A well-designed experiment will allow you to isolate the effects of the independent variable on the dependent variable, thereby providing clear insights into the validity of your hypothesis. Remember, the essential function of the hypothesis in scientific inquiry is to guide the collection of research data and the subsequent discovery of new knowledge.
Analyzing Data and Drawing Conclusions
Once your experiment is complete, the next step is to analyze the collected data. This involves statistical analysis to determine whether the results support or refute your hypothesis. Pay close attention to statistical significance and p-values , as these will help you understand the reliability of your findings. If your data contradicts your hypothesis, consider revisiting your research design and evaluating alternative explanations.
Revising Hypotheses Based on Findings
Scientific inquiry is an iterative process. If your initial hypothesis is not supported by the data, don't be discouraged. Instead, refine your hypothesis based on the new insights gained from your experiment. This may involve adjusting your variables, refining your research question, or implementing additional controls. By continuously refining your hypothesis, you contribute to the advancement of knowledge and improve the robustness of your research.
Testing and refining hypotheses is a crucial step in any research journey. It allows you to validate your ideas and ensure that your thesis stands on solid ground. If you're struggling with this process, our step-by-step Thesis Action Plan can guide you through each stage, making it easier and more manageable. Don't let uncertainty hold you back. Visit our website to learn more and claim your special offer now !
In conclusion, a well-crafted hypothesis is the cornerstone of any scientific inquiry. It serves as a guiding framework that directs the research process, ensuring that the study remains focused and relevant. The key elements of a good hypothesis include clarity, testability, and a clear cause-and-effect relationship. By adhering to these principles, researchers can formulate hypotheses that are not only robust but also capable of withstanding rigorous scientific scrutiny. As demonstrated through various examples, a good hypothesis not only predicts an outcome but also provides a clear pathway for testing and validation. Therefore, mastering the art of hypothesis formulation is essential for any researcher aiming to contribute meaningful and impactful findings to their field.
Frequently Asked Questions
What is a hypothesis in scientific research.
A hypothesis is a proposed explanation for a phenomenon, serving as a starting point for further investigation. It is a statement that can be tested through experiments and observations.
How does a hypothesis differ from a research question?
A hypothesis is a specific, testable prediction about what you expect to happen in your study. A research question, on the other hand, is a broad question that guides your research but does not predict the outcome.
What are the key characteristics of a good hypothesis?
A good hypothesis should be clear and precise, testable and falsifiable, and grounded in existing knowledge. It should also include variables that can be measured and analyzed.
What are null and alternative hypotheses?
The null hypothesis states that there is no effect or no relationship between variables, while the alternative hypothesis states that there is an effect or a relationship. These hypotheses are tested to determine which one is supported by the data.
Why is it important for a hypothesis to be testable and falsifiable?
A hypothesis must be testable and falsifiable to allow for empirical investigation. This means that it should be possible to design an experiment that can either support or refute the hypothesis.
Can you provide an example of a good hypothesis in social sciences?
Sure! An example of a good hypothesis in social sciences could be: "If students participate in group study sessions, then their academic performance will improve compared to those who study alone." This hypothesis is specific, testable, and based on existing knowledge.
Discovering Statistics Using IBM SPSS Statistics: A Fun and Informative Guide
Unlocking the Power of Data: A Review of 'Essentials of Modern Business Statistics with Microsoft Excel'
Discovering Statistics Using SAS: A Comprehensive Review
Why AI is the Key to Unlocking Your Full Research Potential
Master’s Thesis Research Overload? How to Find the Best Sources—Fast
Abstract vs. Introduction: Which One Sets the Tone for Your Thesis?
Thesis Action Plan
- Rebels Blog
- Blog Articles
- Affiliate Program
- Terms and Conditions
- Payment and Shipping Terms
- Privacy Policy
- Return Policy
© 2024 Research Rebels, All rights reserved.
Your cart is currently empty.
Understanding Experimental Hypotheses in Psychology
Have you ever wondered what an experimental hypothesis is and why it is crucial in psychology research? In this article, we will explore the components of an experimental hypothesis, the different types, and how it is formulated. We will also discuss the role of an experimental hypothesis in research design and how it is tested. By the end, you will have a clear understanding of the importance of experimental hypotheses and the possible outcomes they can lead to.
- 1 What Is an Experimental Hypothesis?
- 2 Why Is an Experimental Hypothesis Important in Psychology?
- 3.1 Independent Variable
- 3.2 Dependent Variable
- 3.3 Control Variables
- 4.1 Directional Hypothesis
- 4.2 Non-directional Hypothesis
- 4.3 Null Hypothesis
- 5.1 Review of Literature
- 5.2 Identifying Variables
- 5.3 Making Predictions
- 6 What Is the Role of an Experimental Hypothesis in Research Design?
- 7.1 Choosing a Research Design
- 7.2 Collecting Data
- 7.3 Analyzing Data
- 8 What Are the Possible Outcomes of an Experimental Hypothesis?
- 9.1 What is an experimental hypothesis in psychology?
- 9.2 How is an experimental hypothesis different from a research question?
- 9.3 What are the characteristics of a good experimental hypothesis?
- 9.4 Can an experimental hypothesis be proven to be true?
- 9.5 Why is it important to have a well-formed experimental hypothesis?
- 9.6 Can an experimental hypothesis change during the course of a study?
What Is an Experimental Hypothesis?
An experimental hypothesis in psychology is a statement that proposes a relationship between variables and is essential for guiding empirical research and testing theories.
It serves as the foundation of scientific investigations, providing a clear direction for researchers to validate or refute concepts through systematic experimentation. By formulating specific predictions about the expected outcomes of an experiment, the hypothesis establishes the framework for data collection and analysis. It helps researchers in shaping their experimental design to ensure the validity and reliability of their findings. In the field of psychology, experimental hypotheses play a crucial role in unraveling complex human behaviors and mental processes, offering insights into the underlying mechanisms driving various psychological phenomena.
Why Is an Experimental Hypothesis Important in Psychology?
Understanding the importance of an experimental hypothesis in psychology is crucial as it serves as the foundation for empirical research, theory testing, and deriving logical conclusions based on observable behavior and phenomena.
An experimental hypothesis plays a key role in guiding the research process by outlining the specific relationship or effect that researchers aim to investigate. By formulating a clear hypothesis, researchers establish a framework for their studies, enabling them to design experiments, collect data, and analyze results effectively.
Hypotheses in psychology contribute to the development and refinement of theories by providing researchers with a means to test and validate their conceptual ideas through systematic investigation. This systematic approach not only adds credibility to psychological theories but also fosters a continuous cycle of theory development and refinement based on empirical evidence.
What Are the Components of an Experimental Hypothesis?
The components of an experimental hypothesis include the independent variable, dependent variable, and control variables, each defined by operational definitions to ensure clarity and replicability in research.
An independent variable is the factor that is manipulated or changed by the researcher to observe its effect on the dependent variable. The operational definition of the independent variable specifies how it will be measured or manipulated in the study, ensuring consistency and objectivity.
On the other hand, the dependent variable is what is being measured or observed in response to the changes in the independent variable, providing the data for analysis and drawing conclusions.
Control variables are the factors kept constant to prevent their influence on the relationship between the independent and dependent variables, maintaining the integrity of the experiment. By establishing controlled conditions, researchers can minimize external influences and confidently attribute any observed changes to the manipulated independent variable.
Independent Variable
The independent variable in an experimental hypothesis is the factor that researchers manipulate to observe its effect on the dependent variable, aiming to establish causal relationships between variables.
By deliberately changing or controlling the independent variable, researchers can assess how this alteration impacts the dependent variable, which is the outcome or response that is measured. This process of manipulating the independent variable and observing its influence allows researchers to draw conclusions about the causal relationship between the two variables. It is essential in experimental research as it helps determine whether changes in the independent variable directly lead to changes in the dependent variable, thus contributing to the understanding of cause and effect in scientific investigations.
Dependent Variable
The dependent variable in an experimental hypothesis is the outcome or behavior that is measured to assess the impact of changes in the independent variable, helping researchers understand the effects of manipulations.
Dependent variables play a crucial role in scientific investigations as they provide a reliable measure of how alterations in the independent factor influence the subjects under study. By analyzing the responses exhibited by the dependent variable, researchers can draw conclusions about the causal relationships present within the experimental setup. Quantifying and evaluating these behavioral or outcome-based changes allows for a systematic evaluation of the variables at play in the research design.
Control Variables
Control variables in an experimental hypothesis are factors that are kept constant throughout the study to isolate the effects of the independent variable, ensuring reliability, replicability, and accurate conclusions.
By maintaining these control variables constant, researchers can minimize the impact of extraneous variables, thus reducing the likelihood of confounding factors that could skew the results. This meticulous attention to detail not only enhances the internal validity of the study but also facilitates the process of replication by providing a clear framework for others to follow. Through the careful manipulation of these variables, scientists can establish a causal relationship between the independent and dependent variables, strengthening the overall robustness and generalizability of the findings.
What Are the Types of Experimental Hypotheses?
Experimental hypotheses can be categorized into directional hypotheses that predict specific outcomes, non-directional hypotheses that suggest a relationship without specifying direction, and null hypotheses that propose no effect between variables.
Directional hypotheses are characterized by their clear predictions of the expected relationship between variables. For example, a directional hypothesis could state that ‘increased sunlight exposure will lead to higher plant growth.’ On the other hand, non-directional hypotheses indicate a relationship between variables without specifying the nature of the relationship. An example of a non-directional hypothesis could be ‘there is a correlation between coffee consumption and alertness.’ Null hypotheses, in contrast, assert that there is no significant effect or relationship between the variables under study. For instance, a null hypothesis could be ‘there is no difference in test scores between students who study in silence and those who listen to music while studying.’
Directional Hypothesis
A directional hypothesis in experimental research predicts the direction of the relationship between variables, indicating an expected outcome based on prior knowledge or theory.
By formulating a directional hypothesis, researchers make a clear statement about the relationship they expect to find in their study. This hypothesis serves as a roadmap, guiding the research process by defining the specific outcome the study aims to confirm or refute. It helps focus the study’s objectives, methodology, and data analysis. A directional hypothesis plays a crucial role in guiding the interpretation of results, enabling researchers to draw meaningful conclusions based on whether the expected outcome was supported or not.
Non-directional Hypothesis
A non-directional hypothesis in experimental studies suggests a relationship between variables without specifying the nature or direction of that relationship, allowing for exploratory research and open-ended conclusions.
By omitting the direction of the relationship between variables, a non-directional hypothesis encourages researchers to keep an open mind during the investigation process. This type of hypothesis is particularly useful when exploring new or complex phenomena where the exact nature of the relationship is not yet well understood. It allows for flexibility in data interpretation, enabling the researcher to consider various possibilities without being constrained by predefined expectations.
Null Hypothesis
The null hypothesis states that there is no significant effect or relationship between variables, serving as a benchmark for comparison in statistical testing and hypothesis evaluation.
When researchers design a study, they set up the null hypothesis to represent the default position that there is no difference or effect. By establishing this baseline, researchers can then test whether the results obtained significantly deviate from what would be expected by chance alone. This process allows for the rejection or acceptance of the null hypothesis, which in turn guides the interpretation of research findings and conclusions drawn from the study.
How Is an Experimental Hypothesis Formulated?
Formulating an experimental hypothesis involves conducting a thorough review of literature, identifying relevant variables, and making predictions about the expected outcomes based on existing knowledge.
This initial phase of the scientific process is crucial for setting the groundwork for an experiment that aims to test a specific hypothesis. By looking into existing research and theories in the field, researchers can establish a solid foundation for their own study. This literature review helps in understanding the current state of knowledge, gaps in research, and potential areas for exploration.
Identifying the key variables that play a role in the phenomenon under investigation is another critical step. These variables are the factors that are manipulated, controlled, or measured during the experiment to assess their impact on the outcome.
Review of Literature
A literature review is crucial in formulating an experimental hypothesis as it provides insights, background information, and context for developing research questions and identifying variables.
By looking into existing studies and scholarly articles, researchers can gain a comprehensive understanding of the topic under investigation. This, in turn, aids in formulating specific research questions that address gaps in knowledge and help in the selection of appropriate variables. The literature review is like the foundation upon which a solid research hypothesis is built, ensuring that the study’s objectives are clear, relevant, and based on a thorough examination of previous literature.
Identifying Variables
Identifying variables is a critical step in experimental hypothesis formulation as it helps establish causal relationships, determine research focus, and define the scope of the study.
When identifying variables, researchers carefully select factors that they believe can affect the outcome of the study. These variables can be independent, dependent, or controlled, with each playing a unique role in the research design. The selection process involves considering past literature, theoretical frameworks, and the overall research question to ensure that the chosen variables align with the study objectives.
Variables serve as the building blocks of hypotheses, representing the key components that drive the intended outcomes and allow researchers to test specific relationships or effects. Understanding the significance of variables in hypothesis development is crucial for advancing scientific inquiry and making informed conclusions based on empirical data.
Making Predictions
Making predictions about expected outcomes is an essential aspect of formulating an experimental hypothesis, guiding research design, data collection, and analysis methods.
By generating hypotheses with clear predictions, researchers establish a roadmap for their studies, setting parameters for investigation and providing a focus for data collection. Predictions help ensure that experiments are structured to test specific hypotheses rigorously, allowing researchers to draw reliable conclusions from the data. They serve as a compass in the research journey, guiding the selection of variables, controls, and statistical analyses to uncover meaningful insights. Accurate predictions enhance the reproducibility and credibility of scientific findings, contributing to the overall advancement of knowledge in various fields.
What Is the Role of an Experimental Hypothesis in Research Design?
An experimental hypothesis plays a pivotal role in research design by providing a framework for conducting empirical studies, selecting variables, and establishing the basis for drawing conclusions.
When crafting an experimental hypothesis, researchers embark on a journey to explore the underlying relationships between variables, with the aim of testing specific predictions and hypotheses. This process involves careful consideration of the research question, the variables involved, and the anticipated outcomes. By outlining the expected cause-and-effect relationships, researchers set the stage for the rest of the study, guiding the selection of appropriate methodologies and data collection techniques to ensure a rigorous investigation.
How Is an Experimental Hypothesis Tested?
Testing an experimental hypothesis involves choosing an appropriate research design, collecting relevant data, and analyzing the results to evaluate the hypothesis’s validity and draw meaningful conclusions.
When selecting a research design, researchers must determine whether to conduct an observational study, an experiment, a survey, or a combination of these methods.
Data collection methods can vary widely, from direct observations and interviews to using existing datasets or conducting experiments in controlled environments.
Once the data is gathered, meticulous data analysis is imperative to uncover patterns, relationships, and trends that can provide insights into the hypothesis being tested.
The significance of data analysis cannot be overstated, as it is the stage where researchers can validate or refute their initial assumptions by interpreting the collected information objectively. For a better understanding of experimental hypotheses in psychology, visit Understanding Experimental Hypotheses in Psychology .
Choosing a Research Design
Selecting a research design is a crucial step in testing an experimental hypothesis as it determines the structure, methodology, and controls necessary to establish causal relationships between variables.
By choosing the appropriate research design, researchers can ensure that their study is set up in a way that allows them to draw valid conclusions about the effects of the independent variable on the dependent variable. A well-chosen research design helps in reducing biases, controlling extraneous variables, and establishing a clear cause-and-effect relationship, which is essential for supporting or refuting the hypothesis being tested. The research design also impacts the validity of the results obtained, influencing the generalizability and reliability of the findings.
Collecting Data
Collecting data in experimental research involves gathering information from participants, observing behavior, and recording outcomes to analyze the effects of the independent variable on the dependent variable.
Participant involvement plays a crucial role in providing researchers with the necessary data to draw meaningful conclusions. Through carefully designed experiments, researchers can assess how changes in the independent variable influence the dependent variable.
This process often includes meticulous behavioral observations to capture real-time responses and interactions. Subsequently, recording these observations is essential for accurate data analysis and interpretation. Researchers must ensure systematic and thorough documentation of outcomes to maintain the integrity and validity of the study results. The accuracy and reliability of the collected data are paramount in deriving valid conclusions about the research hypothesis.
Analyzing Data
Analyzing data from experimental studies is essential for evaluating the results, assessing the impact of variables, and determining the significance of the experimental hypothesis in relation to the observed outcomes.
Data analysis plays a crucial role in the scientific method, providing a systematic approach to uncover patterns, trends, and relationships within the collected data. By utilizing statistical tools such as regression analysis, ANOVA, and t-tests , researchers can quantitatively measure the strength of the evidence supporting or refuting the experimental hypothesis. This process not only aids in result interpretation but also guides researchers in drawing meaningful conclusions and determining the validity of their hypotheses.
What Are the Possible Outcomes of an Experimental Hypothesis?
Experimental hypotheses can lead to various outcomes, including supporting or refuting theories, deriving conclusions based on data analysis, and contributing to the understanding of phenomena through controlled experimentation.
When experimental hypotheses are tested and results are analyzed, researchers can gain valuable insights into the mechanisms underlying certain behaviors or phenomena. By generating empirical evidence, these hypotheses help shape scientific theories and expand the boundaries of knowledge in different fields. Successful experiments can lead to the formulation of new questions and avenues for further exploration, sparking curiosity and advancement in research. The impact of experimental hypotheses extends far beyond individual studies, influencing the broader scientific community and shaping future investigations.
Frequently Asked Questions
What is an experimental hypothesis in psychology.
An experimental hypothesis in psychology is a statement that predicts the relationship between two or more variables in an experiment. It is the specific question or assertion that the researcher is testing in their study.
How is an experimental hypothesis different from a research question?
While an experimental hypothesis is a specific and testable statement, a research question is a broader and more general inquiry about a topic. An experimental hypothesis is used to guide the design and analysis of an experiment, while a research question can guide the overall research process.
What are the characteristics of a good experimental hypothesis?
A good experimental hypothesis is based on previous research and theory, is specific and testable, and includes clear and measurable variables. It should also be falsifiable, meaning that it can be proven false through the results of the experiment.
Can an experimental hypothesis be proven to be true?
No, an experimental hypothesis cannot be proven to be true. It can only be supported or rejected by the results of the experiment. This is because there may be other factors or variables that were not accounted for in the experiment that could affect the outcome.
Why is it important to have a well-formed experimental hypothesis?
A well-formed experimental hypothesis helps guide the design and analysis of an experiment, making the research process more systematic and organized. It also allows for clear communication of the purpose and expected outcomes of the study to other researchers and the general public.
Can an experimental hypothesis change during the course of a study?
Yes, an experimental hypothesis can change during the course of a study if new information or unexpected results are discovered. This is a normal part of the scientific process and can lead to new and important findings. However, any changes to the experimental hypothesis should be clearly stated and justified.
Ethan Clarke holds a Master’s in Organizational Psychology and has spent years consulting for Fortune 500 companies. His expertise in workplace behavior and employee well-being has led to significant organizational changes and improved company cultures. Ethan is passionate about applying psychological principles to enhance productivity and job satisfaction. Through his writing, he aims to bridge the gap between academic research and practical application in the workplace, providing readers with actionable insights for professional growth and organizational development.
Similar Posts
Common Characteristics of Science Shared by Psychology
The article was last updated by Nicholas Reed on February 6, 2024. Curious about the relationship between psychology and science? In this article, we explore…
Understanding Research Design in Psychology: Methods and Importance
The article was last updated by Dr. Naomi Kessler on February 9, 2024. Research design plays a crucial role in the field of psychology, shaping…
Understanding Confabulation in Psychology
The article was last updated by Dr. Henry Foster on February 6, 2024. Confabulation is a fascinating phenomenon in the field of psychology that involves…
Understanding Statistical Validity in Psychological Research
The article was last updated by Samantha Choi on February 4, 2024. Statistical validity is a crucial aspect of psychological research, ensuring that the results…
Understanding Frequency Claims in Psychology: A Comprehensive Guide
The article was last updated by Samantha Choi on February 6, 2024. Have you ever wondered what frequency claims in psychology are and why they…
Understanding the Design of Studies in Psychology
The article was last updated by Vanessa Patel on February 4, 2024. Research in psychology often involves various types of study designs to investigate different…
Have a language expert improve your writing
Run a free plagiarism check in 10 minutes, automatically generate references for free.
- Knowledge Base
- Methodology
- A Quick Guide to Experimental Design | 5 Steps & Examples
A Quick Guide to Experimental Design | 5 Steps & Examples
Published on 11 April 2022 by Rebecca Bevans . Revised on 5 December 2022.
Experiments are used to study causal relationships . You manipulate one or more independent variables and measure their effect on one or more dependent variables.
Experimental design means creating a set of procedures to systematically test a hypothesis . A good experimental design requires a strong understanding of the system you are studying.
There are five key steps in designing an experiment:
- Consider your variables and how they are related
- Write a specific, testable hypothesis
- Design experimental treatments to manipulate your independent variable
- Assign subjects to groups, either between-subjects or within-subjects
- Plan how you will measure your dependent variable
For valid conclusions, you also need to select a representative sample and control any extraneous variables that might influence your results. If if random assignment of participants to control and treatment groups is impossible, unethical, or highly difficult, consider an observational study instead.
Table of contents
Step 1: define your variables, step 2: write your hypothesis, step 3: design your experimental treatments, step 4: assign your subjects to treatment groups, step 5: measure your dependent variable, frequently asked questions about experimental design.
You should begin with a specific research question . We will work with two research question examples, one from health sciences and one from ecology:
To translate your research question into an experimental hypothesis, you need to define the main variables and make predictions about how they are related.
Start by simply listing the independent and dependent variables .
Then you need to think about possible extraneous and confounding variables and consider how you might control them in your experiment.
Finally, you can put these variables together into a diagram. Use arrows to show the possible relationships between variables and include signs to show the expected direction of the relationships.
Here we predict that increasing temperature will increase soil respiration and decrease soil moisture, while decreasing soil moisture will lead to decreased soil respiration.
Prevent plagiarism, run a free check.
Now that you have a strong conceptual understanding of the system you are studying, you should be able to write a specific, testable hypothesis that addresses your research question.
The next steps will describe how to design a controlled experiment . In a controlled experiment, you must be able to:
- Systematically and precisely manipulate the independent variable(s).
- Precisely measure the dependent variable(s).
- Control any potential confounding variables.
If your study system doesn’t match these criteria, there are other types of research you can use to answer your research question.
How you manipulate the independent variable can affect the experiment’s external validity – that is, the extent to which the results can be generalised and applied to the broader world.
First, you may need to decide how widely to vary your independent variable.
- just slightly above the natural range for your study region.
- over a wider range of temperatures to mimic future warming.
- over an extreme range that is beyond any possible natural variation.
Second, you may need to choose how finely to vary your independent variable. Sometimes this choice is made for you by your experimental system, but often you will need to decide, and this will affect how much you can infer from your results.
- a categorical variable : either as binary (yes/no) or as levels of a factor (no phone use, low phone use, high phone use).
- a continuous variable (minutes of phone use measured every night).
How you apply your experimental treatments to your test subjects is crucial for obtaining valid and reliable results.
First, you need to consider the study size : how many individuals will be included in the experiment? In general, the more subjects you include, the greater your experiment’s statistical power , which determines how much confidence you can have in your results.
Then you need to randomly assign your subjects to treatment groups . Each group receives a different level of the treatment (e.g. no phone use, low phone use, high phone use).
You should also include a control group , which receives no treatment. The control group tells us what would have happened to your test subjects without any experimental intervention.
When assigning your subjects to groups, there are two main choices you need to make:
- A completely randomised design vs a randomised block design .
- A between-subjects design vs a within-subjects design .
Randomisation
An experiment can be completely randomised or randomised within blocks (aka strata):
- In a completely randomised design , every subject is assigned to a treatment group at random.
- In a randomised block design (aka stratified random design), subjects are first grouped according to a characteristic they share, and then randomly assigned to treatments within those groups.
Sometimes randomisation isn’t practical or ethical , so researchers create partially-random or even non-random designs. An experimental design where treatments aren’t randomly assigned is called a quasi-experimental design .
Between-subjects vs within-subjects
In a between-subjects design (also known as an independent measures design or classic ANOVA design), individuals receive only one of the possible levels of an experimental treatment.
In medical or social research, you might also use matched pairs within your between-subjects design to make sure that each treatment group contains the same variety of test subjects in the same proportions.
In a within-subjects design (also known as a repeated measures design), every individual receives each of the experimental treatments consecutively, and their responses to each treatment are measured.
Within-subjects or repeated measures can also refer to an experimental design where an effect emerges over time, and individual responses are measured over time in order to measure this effect as it emerges.
Counterbalancing (randomising or reversing the order of treatments among subjects) is often used in within-subjects designs to ensure that the order of treatment application doesn’t influence the results of the experiment.
Finally, you need to decide how you’ll collect data on your dependent variable outcomes. You should aim for reliable and valid measurements that minimise bias or error.
Some variables, like temperature, can be objectively measured with scientific instruments. Others may need to be operationalised to turn them into measurable observations.
- Ask participants to record what time they go to sleep and get up each day.
- Ask participants to wear a sleep tracker.
How precisely you measure your dependent variable also affects the kinds of statistical analysis you can use on your data.
Experiments are always context-dependent, and a good experimental design will take into account all of the unique considerations of your study system to produce information that is both valid and relevant to your research question.
Experimental designs are a set of procedures that you plan in order to examine the relationship between variables that interest you.
To design a successful experiment, first identify:
- A testable hypothesis
- One or more independent variables that you will manipulate
- One or more dependent variables that you will measure
When designing the experiment, first decide:
- How your variable(s) will be manipulated
- How you will control for any potential confounding or lurking variables
- How many subjects you will include
- How you will assign treatments to your subjects
The key difference between observational studies and experiments is that, done correctly, an observational study will never influence the responses or behaviours of participants. Experimental designs will have a treatment condition applied to at least a portion of participants.
A confounding variable , also called a confounder or confounding factor, is a third variable in a study examining a potential cause-and-effect relationship.
A confounding variable is related to both the supposed cause and the supposed effect of the study. It can be difficult to separate the true effect of the independent variable from the effect of the confounding variable.
In your research design , it’s important to identify potential confounding variables and plan how you will reduce their impact.
In a between-subjects design , every participant experiences only one condition, and researchers assess group differences between participants in various conditions.
In a within-subjects design , each participant experiences all conditions, and researchers test the same participants repeatedly for differences between conditions.
The word ‘between’ means that you’re comparing different conditions between groups, while the word ‘within’ means you’re comparing different conditions within the same group.
Cite this Scribbr article
If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.
Bevans, R. (2022, December 05). A Quick Guide to Experimental Design | 5 Steps & Examples. Scribbr. Retrieved 21 October 2024, from https://www.scribbr.co.uk/research-methods/guide-to-experimental-design/
Is this article helpful?
Rebecca Bevans
- Science, Tech, Math ›
- Chemistry ›
- Scientific Method ›
What Are the Elements of a Good Hypothesis?
Hero Images/Getty Images
- Scientific Method
- Chemical Laws
- Periodic Table
- Projects & Experiments
- Biochemistry
- Physical Chemistry
- Medical Chemistry
- Chemistry In Everyday Life
- Famous Chemists
- Activities for Kids
- Abbreviations & Acronyms
- Weather & Climate
- Ph.D., Biomedical Sciences, University of Tennessee at Knoxville
- B.A., Physics and Mathematics, Hastings College
A hypothesis is an educated guess or prediction of what will happen. In science, a hypothesis proposes a relationship between factors called variables. A good hypothesis relates an independent variable and a dependent variable. The effect on the dependent variable depends on or is determined by what happens when you change the independent variable . While you could consider any prediction of an outcome to be a type of hypothesis, a good hypothesis is one you can test using the scientific method. In other words, you want to propose a hypothesis to use as the basis for an experiment.
Cause and Effect or 'If, Then' Relationships
A good experimental hypothesis can be written as an if, then statement to establish cause and effect on the variables. If you make a change to the independent variable, then the dependent variable will respond. Here's an example of a hypothesis:
If you increase the duration of light, (then) corn plants will grow more each day.
The hypothesis establishes two variables, length of light exposure, and the rate of plant growth. An experiment could be designed to test whether the rate of growth depends on the duration of light. The duration of light is the independent variable, which you can control in an experiment . The rate of plant growth is the dependent variable, which you can measure and record as data in an experiment.
Key Points of Hypothesis
When you have an idea for a hypothesis, it may help to write it out in several different ways. Review your choices and select a hypothesis that accurately describes what you are testing.
- Does the hypothesis relate an independent and dependent variable? Can you identify the variables?
- Can you test the hypothesis? In other words, could you design an experiment that would allow you to establish or disprove a relationship between the variables?
- Would your experiment be safe and ethical?
- Is there a simpler or more precise way to state the hypothesis? If so, rewrite it.
What If the Hypothesis Is Incorrect?
It's not wrong or bad if the hypothesis is not supported or is incorrect. Actually, this outcome may tell you more about a relationship between the variables than if the hypothesis is supported. You may intentionally write your hypothesis as a null hypothesis or no-difference hypothesis to establish a relationship between the variables.
For example, the hypothesis:
The rate of corn plant growth does not depend on the duration of light.
This can be tested by exposing corn plants to different length "days" and measuring the rate of plant growth. A statistical test can be applied to measure how well the data support the hypothesis. If the hypothesis is not supported, then you have evidence of a relationship between the variables. It's easier to establish cause and effect by testing whether "no effect" is found. Alternatively, if the null hypothesis is supported, then you have shown the variables are not related. Either way, your experiment is a success.
Need more examples of how to write a hypothesis ? Here you go:
- If you turn out all the lights, you will fall asleep faster. (Think: How would you test it?)
- If you drop different objects, they will fall at the same rate.
- If you eat only fast food, then you will gain weight.
- If you use cruise control, then your car will get better gas mileage.
- If you apply a top coat, then your manicure will last longer.
- If you turn the lights on and off rapidly, then the bulb will burn out faster.
- What Is a Testable Hypothesis?
- What Is a Hypothesis? (Science)
- What Are Examples of a Hypothesis?
- Scientific Hypothesis Examples
- Six Steps of the Scientific Method
- Scientific Method Flow Chart
- Null Hypothesis Examples
- Understanding Simple vs Controlled Experiments
- Scientific Method Vocabulary Terms
- Scientific Variable
- What Is an Experimental Constant?
- What Is a Controlled Experiment?
- What Is the Difference Between a Control Variable and Control Group?
- DRY MIX Experiment Variables Acronym
- Random Error vs. Systematic Error
- The Role of a Controlled Variable in an Experiment
Experimental Method In Psychology
Saul McLeod, PhD
Editor-in-Chief for Simply Psychology
BSc (Hons) Psychology, MRes, PhD, University of Manchester
Saul McLeod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.
Learn about our Editorial Process
Olivia Guy-Evans, MSc
Associate Editor for Simply Psychology
BSc (Hons) Psychology, MSc Psychology of Education
Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.
On This Page:
The experimental method involves the manipulation of variables to establish cause-and-effect relationships. The key features are controlled methods and the random allocation of participants into controlled and experimental groups .
What is an Experiment?
An experiment is an investigation in which a hypothesis is scientifically tested. An independent variable (the cause) is manipulated in an experiment, and the dependent variable (the effect) is measured; any extraneous variables are controlled.
An advantage is that experiments should be objective. The researcher’s views and opinions should not affect a study’s results. This is good as it makes the data more valid and less biased.
There are three types of experiments you need to know:
1. Lab Experiment
A laboratory experiment in psychology is a research method in which the experimenter manipulates one or more independent variables and measures the effects on the dependent variable under controlled conditions.
A laboratory experiment is conducted under highly controlled conditions (not necessarily a laboratory) where accurate measurements are possible.
The researcher uses a standardized procedure to determine where the experiment will take place, at what time, with which participants, and in what circumstances.
Participants are randomly allocated to each independent variable group.
Examples are Milgram’s experiment on obedience and Loftus and Palmer’s car crash study .
- Strength : It is easier to replicate (i.e., copy) a laboratory experiment. This is because a standardized procedure is used.
- Strength : They allow for precise control of extraneous and independent variables. This allows a cause-and-effect relationship to be established.
- Limitation : The artificiality of the setting may produce unnatural behavior that does not reflect real life, i.e., low ecological validity. This means it would not be possible to generalize the findings to a real-life setting.
- Limitation : Demand characteristics or experimenter effects may bias the results and become confounding variables .
2. Field Experiment
A field experiment is a research method in psychology that takes place in a natural, real-world setting. It is similar to a laboratory experiment in that the experimenter manipulates one or more independent variables and measures the effects on the dependent variable.
However, in a field experiment, the participants are unaware they are being studied, and the experimenter has less control over the extraneous variables .
Field experiments are often used to study social phenomena, such as altruism, obedience, and persuasion. They are also used to test the effectiveness of interventions in real-world settings, such as educational programs and public health campaigns.
An example is Holfing’s hospital study on obedience .
- Strength : behavior in a field experiment is more likely to reflect real life because of its natural setting, i.e., higher ecological validity than a lab experiment.
- Strength : Demand characteristics are less likely to affect the results, as participants may not know they are being studied. This occurs when the study is covert.
- Limitation : There is less control over extraneous variables that might bias the results. This makes it difficult for another researcher to replicate the study in exactly the same way.
3. Natural Experiment
A natural experiment in psychology is a research method in which the experimenter observes the effects of a naturally occurring event or situation on the dependent variable without manipulating any variables.
Natural experiments are conducted in the day (i.e., real life) environment of the participants, but here, the experimenter has no control over the independent variable as it occurs naturally in real life.
Natural experiments are often used to study psychological phenomena that would be difficult or unethical to study in a laboratory setting, such as the effects of natural disasters, policy changes, or social movements.
For example, Hodges and Tizard’s attachment research (1989) compared the long-term development of children who have been adopted, fostered, or returned to their mothers with a control group of children who had spent all their lives in their biological families.
Here is a fictional example of a natural experiment in psychology:
Researchers might compare academic achievement rates among students born before and after a major policy change that increased funding for education.
In this case, the independent variable is the timing of the policy change, and the dependent variable is academic achievement. The researchers would not be able to manipulate the independent variable, but they could observe its effects on the dependent variable.
- Strength : behavior in a natural experiment is more likely to reflect real life because of its natural setting, i.e., very high ecological validity.
- Strength : Demand characteristics are less likely to affect the results, as participants may not know they are being studied.
- Strength : It can be used in situations in which it would be ethically unacceptable to manipulate the independent variable, e.g., researching stress .
- Limitation : They may be more expensive and time-consuming than lab experiments.
- Limitation : There is no control over extraneous variables that might bias the results. This makes it difficult for another researcher to replicate the study in exactly the same way.
Key Terminology
Ecological validity.
The degree to which an investigation represents real-life experiences.
Experimenter effects
These are the ways that the experimenter can accidentally influence the participant through their appearance or behavior.
Demand characteristics
The clues in an experiment lead the participants to think they know what the researcher is looking for (e.g., the experimenter’s body language).
Independent variable (IV)
The variable the experimenter manipulates (i.e., changes) is assumed to have a direct effect on the dependent variable.
Dependent variable (DV)
Variable the experimenter measures. This is the outcome (i.e., the result) of a study.
Extraneous variables (EV)
All variables which are not independent variables but could affect the results (DV) of the experiment. EVs should be controlled where possible.
Confounding variables
Variable(s) that have affected the results (DV), apart from the IV. A confounding variable could be an extraneous variable that has not been controlled.
Random Allocation
Randomly allocating participants to independent variable conditions means that all participants should have an equal chance of participating in each condition.
The principle of random allocation is to avoid bias in how the experiment is carried out and limit the effects of participant variables.
Order effects
Changes in participants’ performance due to their repeating the same or similar test more than once. Examples of order effects include:
(i) practice effect: an improvement in performance on a task due to repetition, for example, because of familiarity with the task;
(ii) fatigue effect: a decrease in performance of a task due to repetition, for example, because of boredom or tiredness.
- Bipolar Disorder
- Therapy Center
- When To See a Therapist
- Types of Therapy
- Best Online Therapy
- Best Couples Therapy
- Managing Stress
- Sleep and Dreaming
- Understanding Emotions
- Self-Improvement
- Healthy Relationships
- Student Resources
- Personality Types
- Guided Meditations
- Verywell Mind Insights
- 2024 Verywell Mind 25
- Mental Health in the Classroom
- Editorial Process
- Meet Our Review Board
- Crisis Support
How the Experimental Method Works in Psychology
Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."
Amanda Tust is an editor, fact-checker, and writer with a Master of Science in Journalism from Northwestern University's Medill School of Journalism.
sturti/Getty Images
The Experimental Process
Types of experiments, potential pitfalls of the experimental method.
The experimental method is a type of research procedure that involves manipulating variables to determine if there is a cause-and-effect relationship. The results obtained through the experimental method are useful but do not prove with 100% certainty that a singular cause always creates a specific effect. Instead, they show the probability that a cause will or will not lead to a particular effect.
At a Glance
While there are many different research techniques available, the experimental method allows researchers to look at cause-and-effect relationships. Using the experimental method, researchers randomly assign participants to a control or experimental group and manipulate levels of an independent variable. If changes in the independent variable lead to changes in the dependent variable, it indicates there is likely a causal relationship between them.
What Is the Experimental Method in Psychology?
The experimental method involves manipulating one variable to determine if this causes changes in another variable. This method relies on controlled research methods and random assignment of study subjects to test a hypothesis.
For example, researchers may want to learn how different visual patterns may impact our perception. Or they might wonder whether certain actions can improve memory . Experiments are conducted on many behavioral topics, including:
The scientific method forms the basis of the experimental method. This is a process used to determine the relationship between two variables—in this case, to explain human behavior .
Positivism is also important in the experimental method. It refers to factual knowledge that is obtained through observation, which is considered to be trustworthy.
When using the experimental method, researchers first identify and define key variables. Then they formulate a hypothesis, manipulate the variables, and collect data on the results. Unrelated or irrelevant variables are carefully controlled to minimize the potential impact on the experiment outcome.
History of the Experimental Method
The idea of using experiments to better understand human psychology began toward the end of the nineteenth century. Wilhelm Wundt established the first formal laboratory in 1879.
Wundt is often called the father of experimental psychology. He believed that experiments could help explain how psychology works, and used this approach to study consciousness .
Wundt coined the term "physiological psychology." This is a hybrid of physiology and psychology, or how the body affects the brain.
Other early contributors to the development and evolution of experimental psychology as we know it today include:
- Gustav Fechner (1801-1887), who helped develop procedures for measuring sensations according to the size of the stimulus
- Hermann von Helmholtz (1821-1894), who analyzed philosophical assumptions through research in an attempt to arrive at scientific conclusions
- Franz Brentano (1838-1917), who called for a combination of first-person and third-person research methods when studying psychology
- Georg Elias Müller (1850-1934), who performed an early experiment on attitude which involved the sensory discrimination of weights and revealed how anticipation can affect this discrimination
Key Terms to Know
To understand how the experimental method works, it is important to know some key terms.
Dependent Variable
The dependent variable is the effect that the experimenter is measuring. If a researcher was investigating how sleep influences test scores, for example, the test scores would be the dependent variable.
Independent Variable
The independent variable is the variable that the experimenter manipulates. In the previous example, the amount of sleep an individual gets would be the independent variable.
A hypothesis is a tentative statement or a guess about the possible relationship between two or more variables. In looking at how sleep influences test scores, the researcher might hypothesize that people who get more sleep will perform better on a math test the following day. The purpose of the experiment, then, is to either support or reject this hypothesis.
Operational definitions are necessary when performing an experiment. When we say that something is an independent or dependent variable, we must have a very clear and specific definition of the meaning and scope of that variable.
Extraneous Variables
Extraneous variables are other variables that may also affect the outcome of an experiment. Types of extraneous variables include participant variables, situational variables, demand characteristics, and experimenter effects. In some cases, researchers can take steps to control for extraneous variables.
Demand Characteristics
Demand characteristics are subtle hints that indicate what an experimenter is hoping to find in a psychology experiment. This can sometimes cause participants to alter their behavior, which can affect the results of the experiment.
Intervening Variables
Intervening variables are factors that can affect the relationship between two other variables.
Confounding Variables
Confounding variables are variables that can affect the dependent variable, but that experimenters cannot control for. Confounding variables can make it difficult to determine if the effect was due to changes in the independent variable or if the confounding variable may have played a role.
Psychologists, like other scientists, use the scientific method when conducting an experiment. The scientific method is a set of procedures and principles that guide how scientists develop research questions, collect data, and come to conclusions.
The five basic steps of the experimental process are:
- Identifying a problem to study
- Devising the research protocol
- Conducting the experiment
- Analyzing the data collected
- Sharing the findings (usually in writing or via presentation)
Most psychology students are expected to use the experimental method at some point in their academic careers. Learning how to conduct an experiment is important to understanding how psychologists prove and disprove theories in this field.
There are a few different types of experiments that researchers might use when studying psychology. Each has pros and cons depending on the participants being studied, the hypothesis, and the resources available to conduct the research.
Lab Experiments
Lab experiments are common in psychology because they allow experimenters more control over the variables. These experiments can also be easier for other researchers to replicate. The drawback of this research type is that what takes place in a lab is not always what takes place in the real world.
Field Experiments
Sometimes researchers opt to conduct their experiments in the field. For example, a social psychologist interested in researching prosocial behavior might have a person pretend to faint and observe how long it takes onlookers to respond.
This type of experiment can be a great way to see behavioral responses in realistic settings. But it is more difficult for researchers to control the many variables existing in these settings that could potentially influence the experiment's results.
Quasi-Experiments
While lab experiments are known as true experiments, researchers can also utilize a quasi-experiment. Quasi-experiments are often referred to as natural experiments because the researchers do not have true control over the independent variable.
A researcher looking at personality differences and birth order, for example, is not able to manipulate the independent variable in the situation (personality traits). Participants also cannot be randomly assigned because they naturally fall into pre-existing groups based on their birth order.
So why would a researcher use a quasi-experiment? This is a good choice in situations where scientists are interested in studying phenomena in natural, real-world settings. It's also beneficial if there are limits on research funds or time.
Field experiments can be either quasi-experiments or true experiments.
Examples of the Experimental Method in Use
The experimental method can provide insight into human thoughts and behaviors, Researchers use experiments to study many aspects of psychology.
A 2019 study investigated whether splitting attention between electronic devices and classroom lectures had an effect on college students' learning abilities. It found that dividing attention between these two mediums did not affect lecture comprehension. However, it did impact long-term retention of the lecture information, which affected students' exam performance.
An experiment used participants' eye movements and electroencephalogram (EEG) data to better understand cognitive processing differences between experts and novices. It found that experts had higher power in their theta brain waves than novices, suggesting that they also had a higher cognitive load.
A study looked at whether chatting online with a computer via a chatbot changed the positive effects of emotional disclosure often received when talking with an actual human. It found that the effects were the same in both cases.
One experimental study evaluated whether exercise timing impacts information recall. It found that engaging in exercise prior to performing a memory task helped improve participants' short-term memory abilities.
Sometimes researchers use the experimental method to get a bigger-picture view of psychological behaviors and impacts. For example, one 2018 study examined several lab experiments to learn more about the impact of various environmental factors on building occupant perceptions.
A 2020 study set out to determine the role that sensation-seeking plays in political violence. This research found that sensation-seeking individuals have a higher propensity for engaging in political violence. It also found that providing access to a more peaceful, yet still exciting political group helps reduce this effect.
While the experimental method can be a valuable tool for learning more about psychology and its impacts, it also comes with a few pitfalls.
Experiments may produce artificial results, which are difficult to apply to real-world situations. Similarly, researcher bias can impact the data collected. Results may not be able to be reproduced, meaning the results have low reliability .
Since humans are unpredictable and their behavior can be subjective, it can be hard to measure responses in an experiment. In addition, political pressure may alter the results. The subjects may not be a good representation of the population, or groups used may not be comparable.
And finally, since researchers are human too, results may be degraded due to human error.
What This Means For You
Every psychological research method has its pros and cons. The experimental method can help establish cause and effect, and it's also beneficial when research funds are limited or time is of the essence.
At the same time, it's essential to be aware of this method's pitfalls, such as how biases can affect the results or the potential for low reliability. Keeping these in mind can help you review and assess research studies more accurately, giving you a better idea of whether the results can be trusted or have limitations.
Colorado State University. Experimental and quasi-experimental research .
American Psychological Association. Experimental psychology studies human and animals .
Mayrhofer R, Kuhbandner C, Lindner C. The practice of experimental psychology: An inevitably postmodern endeavor . Front Psychol . 2021;11:612805. doi:10.3389/fpsyg.2020.612805
Mandler G. A History of Modern Experimental Psychology .
Stanford University. Wilhelm Maximilian Wundt . Stanford Encyclopedia of Philosophy.
Britannica. Gustav Fechner .
Britannica. Hermann von Helmholtz .
Meyer A, Hackert B, Weger U. Franz Brentano and the beginning of experimental psychology: implications for the study of psychological phenomena today . Psychol Res . 2018;82:245-254. doi:10.1007/s00426-016-0825-7
Britannica. Georg Elias Müller .
McCambridge J, de Bruin M, Witton J. The effects of demand characteristics on research participant behaviours in non-laboratory settings: A systematic review . PLoS ONE . 2012;7(6):e39116. doi:10.1371/journal.pone.0039116
Laboratory experiments . In: The Sage Encyclopedia of Communication Research Methods. Allen M, ed. SAGE Publications, Inc. doi:10.4135/9781483381411.n287
Schweizer M, Braun B, Milstone A. Research methods in healthcare epidemiology and antimicrobial stewardship — quasi-experimental designs . Infect Control Hosp Epidemiol . 2016;37(10):1135-1140. doi:10.1017/ice.2016.117
Glass A, Kang M. Dividing attention in the classroom reduces exam performance . Educ Psychol . 2019;39(3):395-408. doi:10.1080/01443410.2018.1489046
Keskin M, Ooms K, Dogru AO, De Maeyer P. Exploring the cognitive load of expert and novice map users using EEG and eye tracking . ISPRS Int J Geo-Inf . 2020;9(7):429. doi:10.3390.ijgi9070429
Ho A, Hancock J, Miner A. Psychological, relational, and emotional effects of self-disclosure after conversations with a chatbot . J Commun . 2018;68(4):712-733. doi:10.1093/joc/jqy026
Haynes IV J, Frith E, Sng E, Loprinzi P. Experimental effects of acute exercise on episodic memory function: Considerations for the timing of exercise . Psychol Rep . 2018;122(5):1744-1754. doi:10.1177/0033294118786688
Torresin S, Pernigotto G, Cappelletti F, Gasparella A. Combined effects of environmental factors on human perception and objective performance: A review of experimental laboratory works . Indoor Air . 2018;28(4):525-538. doi:10.1111/ina.12457
Schumpe BM, Belanger JJ, Moyano M, Nisa CF. The role of sensation seeking in political violence: An extension of the significance quest theory . J Personal Social Psychol . 2020;118(4):743-761. doi:10.1037/pspp0000223
By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."
- Scientific Methods
What is Hypothesis?
We have heard of many hypotheses which have led to great inventions in science. Assumptions that are made on the basis of some evidence are known as hypotheses. In this article, let us learn in detail about the hypothesis and the type of hypothesis with examples.
A hypothesis is an assumption that is made based on some evidence. This is the initial point of any investigation that translates the research questions into predictions. It includes components like variables, population and the relation between the variables. A research hypothesis is a hypothesis that is used to test the relationship between two or more variables.
Characteristics of Hypothesis
Following are the characteristics of the hypothesis:
- The hypothesis should be clear and precise to consider it to be reliable.
- If the hypothesis is a relational hypothesis, then it should be stating the relationship between variables.
- The hypothesis must be specific and should have scope for conducting more tests.
- The way of explanation of the hypothesis must be very simple and it should also be understood that the simplicity of the hypothesis is not related to its significance.
Sources of Hypothesis
Following are the sources of hypothesis:
- The resemblance between the phenomenon.
- Observations from past studies, present-day experiences and from the competitors.
- Scientific theories.
- General patterns that influence the thinking process of people.
Types of Hypothesis
There are six forms of hypothesis and they are:
- Simple hypothesis
- Complex hypothesis
- Directional hypothesis
- Non-directional hypothesis
- Null hypothesis
- Associative and casual hypothesis
Simple Hypothesis
It shows a relationship between one dependent variable and a single independent variable. For example – If you eat more vegetables, you will lose weight faster. Here, eating more vegetables is an independent variable, while losing weight is the dependent variable.
Complex Hypothesis
It shows the relationship between two or more dependent variables and two or more independent variables. Eating more vegetables and fruits leads to weight loss, glowing skin, and reduces the risk of many diseases such as heart disease.
Directional Hypothesis
It shows how a researcher is intellectual and committed to a particular outcome. The relationship between the variables can also predict its nature. For example- children aged four years eating proper food over a five-year period are having higher IQ levels than children not having a proper meal. This shows the effect and direction of the effect.
Non-directional Hypothesis
It is used when there is no theory involved. It is a statement that a relationship exists between two variables, without predicting the exact nature (direction) of the relationship.
Null Hypothesis
It provides a statement which is contrary to the hypothesis. It’s a negative statement, and there is no relationship between independent and dependent variables. The symbol is denoted by “H O ”.
Associative and Causal Hypothesis
Associative hypothesis occurs when there is a change in one variable resulting in a change in the other variable. Whereas, the causal hypothesis proposes a cause and effect interaction between two or more variables.
Examples of Hypothesis
Following are the examples of hypotheses based on their types:
- Consumption of sugary drinks every day leads to obesity is an example of a simple hypothesis.
- All lilies have the same number of petals is an example of a null hypothesis.
- If a person gets 7 hours of sleep, then he will feel less fatigue than if he sleeps less. It is an example of a directional hypothesis.
Functions of Hypothesis
Following are the functions performed by the hypothesis:
- Hypothesis helps in making an observation and experiments possible.
- It becomes the start point for the investigation.
- Hypothesis helps in verifying the observations.
- It helps in directing the inquiries in the right direction.
How will Hypothesis help in the Scientific Method?
Researchers use hypotheses to put down their thoughts directing how the experiment would take place. Following are the steps that are involved in the scientific method:
- Formation of question
- Doing background research
- Creation of hypothesis
- Designing an experiment
- Collection of data
- Result analysis
- Summarizing the experiment
- Communicating the results
Frequently Asked Questions – FAQs
What is hypothesis.
A hypothesis is an assumption made based on some evidence.
Give an example of simple hypothesis?
What are the types of hypothesis.
Types of hypothesis are:
- Associative and Casual hypothesis
State true or false: Hypothesis is the initial point of any investigation that translates the research questions into a prediction.
Define complex hypothesis..
A complex hypothesis shows the relationship between two or more dependent variables and two or more independent variables.
Put your understanding of this concept to test by answering a few MCQs. Click ‘Start Quiz’ to begin!
Select the correct answer and click on the “Finish” button Check your score and answers at the end of the quiz
Visit BYJU’S for all Physics related queries and study materials
Your result is as below
Request OTP on Voice Call
Leave a Comment Cancel reply
Your Mobile number and Email id will not be published. Required fields are marked *
Post My Comment
Register with BYJU'S & Download Free PDFs
Register with byju's & watch live videos.
- Privacy Policy
Home » Experimental Design – Types, Methods, Guide
Experimental Design – Types, Methods, Guide
Table of Contents
Experimental Design
Experimental design is a process of planning and conducting scientific experiments to investigate a hypothesis or research question. It involves carefully designing an experiment that can test the hypothesis, and controlling for other variables that may influence the results.
Experimental design typically includes identifying the variables that will be manipulated or measured, defining the sample or population to be studied, selecting an appropriate method of sampling, choosing a method for data collection and analysis, and determining the appropriate statistical tests to use.
Types of Experimental Design
Here are the different types of experimental design:
Completely Randomized Design
In this design, participants are randomly assigned to one of two or more groups, and each group is exposed to a different treatment or condition.
Randomized Block Design
This design involves dividing participants into blocks based on a specific characteristic, such as age or gender, and then randomly assigning participants within each block to one of two or more treatment groups.
Factorial Design
In a factorial design, participants are randomly assigned to one of several groups, each of which receives a different combination of two or more independent variables.
Repeated Measures Design
In this design, each participant is exposed to all of the different treatments or conditions, either in a random order or in a predetermined order.
Crossover Design
This design involves randomly assigning participants to one of two or more treatment groups, with each group receiving one treatment during the first phase of the study and then switching to a different treatment during the second phase.
Split-plot Design
In this design, the researcher manipulates one or more variables at different levels and uses a randomized block design to control for other variables.
Nested Design
This design involves grouping participants within larger units, such as schools or households, and then randomly assigning these units to different treatment groups.
Laboratory Experiment
Laboratory experiments are conducted under controlled conditions, which allows for greater precision and accuracy. However, because laboratory conditions are not always representative of real-world conditions, the results of these experiments may not be generalizable to the population at large.
Field Experiment
Field experiments are conducted in naturalistic settings and allow for more realistic observations. However, because field experiments are not as controlled as laboratory experiments, they may be subject to more sources of error.
Experimental Design Methods
Experimental design methods refer to the techniques and procedures used to design and conduct experiments in scientific research. Here are some common experimental design methods:
Randomization
This involves randomly assigning participants to different groups or treatments to ensure that any observed differences between groups are due to the treatment and not to other factors.
Control Group
The use of a control group is an important experimental design method that involves having a group of participants that do not receive the treatment or intervention being studied. The control group is used as a baseline to compare the effects of the treatment group.
Blinding involves keeping participants, researchers, or both unaware of which treatment group participants are in, in order to reduce the risk of bias in the results.
Counterbalancing
This involves systematically varying the order in which participants receive treatments or interventions in order to control for order effects.
Replication
Replication involves conducting the same experiment with different samples or under different conditions to increase the reliability and validity of the results.
This experimental design method involves manipulating multiple independent variables simultaneously to investigate their combined effects on the dependent variable.
This involves dividing participants into subgroups or blocks based on specific characteristics, such as age or gender, in order to reduce the risk of confounding variables.
Data Collection Method
Experimental design data collection methods are techniques and procedures used to collect data in experimental research. Here are some common experimental design data collection methods:
Direct Observation
This method involves observing and recording the behavior or phenomenon of interest in real time. It may involve the use of structured or unstructured observation, and may be conducted in a laboratory or naturalistic setting.
Self-report Measures
Self-report measures involve asking participants to report their thoughts, feelings, or behaviors using questionnaires, surveys, or interviews. These measures may be administered in person or online.
Behavioral Measures
Behavioral measures involve measuring participants’ behavior directly, such as through reaction time tasks or performance tests. These measures may be administered using specialized equipment or software.
Physiological Measures
Physiological measures involve measuring participants’ physiological responses, such as heart rate, blood pressure, or brain activity, using specialized equipment. These measures may be invasive or non-invasive, and may be administered in a laboratory or clinical setting.
Archival Data
Archival data involves using existing records or data, such as medical records, administrative records, or historical documents, as a source of information. These data may be collected from public or private sources.
Computerized Measures
Computerized measures involve using software or computer programs to collect data on participants’ behavior or responses. These measures may include reaction time tasks, cognitive tests, or other types of computer-based assessments.
Video Recording
Video recording involves recording participants’ behavior or interactions using cameras or other recording equipment. This method can be used to capture detailed information about participants’ behavior or to analyze social interactions.
Data Analysis Method
Experimental design data analysis methods refer to the statistical techniques and procedures used to analyze data collected in experimental research. Here are some common experimental design data analysis methods:
Descriptive Statistics
Descriptive statistics are used to summarize and describe the data collected in the study. This includes measures such as mean, median, mode, range, and standard deviation.
Inferential Statistics
Inferential statistics are used to make inferences or generalizations about a larger population based on the data collected in the study. This includes hypothesis testing and estimation.
Analysis of Variance (ANOVA)
ANOVA is a statistical technique used to compare means across two or more groups in order to determine whether there are significant differences between the groups. There are several types of ANOVA, including one-way ANOVA, two-way ANOVA, and repeated measures ANOVA.
Regression Analysis
Regression analysis is used to model the relationship between two or more variables in order to determine the strength and direction of the relationship. There are several types of regression analysis, including linear regression, logistic regression, and multiple regression.
Factor Analysis
Factor analysis is used to identify underlying factors or dimensions in a set of variables. This can be used to reduce the complexity of the data and identify patterns in the data.
Structural Equation Modeling (SEM)
SEM is a statistical technique used to model complex relationships between variables. It can be used to test complex theories and models of causality.
Cluster Analysis
Cluster analysis is used to group similar cases or observations together based on similarities or differences in their characteristics.
Time Series Analysis
Time series analysis is used to analyze data collected over time in order to identify trends, patterns, or changes in the data.
Multilevel Modeling
Multilevel modeling is used to analyze data that is nested within multiple levels, such as students nested within schools or employees nested within companies.
Applications of Experimental Design
Experimental design is a versatile research methodology that can be applied in many fields. Here are some applications of experimental design:
- Medical Research: Experimental design is commonly used to test new treatments or medications for various medical conditions. This includes clinical trials to evaluate the safety and effectiveness of new drugs or medical devices.
- Agriculture : Experimental design is used to test new crop varieties, fertilizers, and other agricultural practices. This includes randomized field trials to evaluate the effects of different treatments on crop yield, quality, and pest resistance.
- Environmental science: Experimental design is used to study the effects of environmental factors, such as pollution or climate change, on ecosystems and wildlife. This includes controlled experiments to study the effects of pollutants on plant growth or animal behavior.
- Psychology : Experimental design is used to study human behavior and cognitive processes. This includes experiments to test the effects of different interventions, such as therapy or medication, on mental health outcomes.
- Engineering : Experimental design is used to test new materials, designs, and manufacturing processes in engineering applications. This includes laboratory experiments to test the strength and durability of new materials, or field experiments to test the performance of new technologies.
- Education : Experimental design is used to evaluate the effectiveness of teaching methods, educational interventions, and programs. This includes randomized controlled trials to compare different teaching methods or evaluate the impact of educational programs on student outcomes.
- Marketing : Experimental design is used to test the effectiveness of marketing campaigns, pricing strategies, and product designs. This includes experiments to test the impact of different marketing messages or pricing schemes on consumer behavior.
Examples of Experimental Design
Here are some examples of experimental design in different fields:
- Example in Medical research : A study that investigates the effectiveness of a new drug treatment for a particular condition. Patients are randomly assigned to either a treatment group or a control group, with the treatment group receiving the new drug and the control group receiving a placebo. The outcomes, such as improvement in symptoms or side effects, are measured and compared between the two groups.
- Example in Education research: A study that examines the impact of a new teaching method on student learning outcomes. Students are randomly assigned to either a group that receives the new teaching method or a group that receives the traditional teaching method. Student achievement is measured before and after the intervention, and the results are compared between the two groups.
- Example in Environmental science: A study that tests the effectiveness of a new method for reducing pollution in a river. Two sections of the river are selected, with one section treated with the new method and the other section left untreated. The water quality is measured before and after the intervention, and the results are compared between the two sections.
- Example in Marketing research: A study that investigates the impact of a new advertising campaign on consumer behavior. Participants are randomly assigned to either a group that is exposed to the new campaign or a group that is not. Their behavior, such as purchasing or product awareness, is measured and compared between the two groups.
- Example in Social psychology: A study that examines the effect of a new social intervention on reducing prejudice towards a marginalized group. Participants are randomly assigned to either a group that receives the intervention or a control group that does not. Their attitudes and behavior towards the marginalized group are measured before and after the intervention, and the results are compared between the two groups.
When to use Experimental Research Design
Experimental research design should be used when a researcher wants to establish a cause-and-effect relationship between variables. It is particularly useful when studying the impact of an intervention or treatment on a particular outcome.
Here are some situations where experimental research design may be appropriate:
- When studying the effects of a new drug or medical treatment: Experimental research design is commonly used in medical research to test the effectiveness and safety of new drugs or medical treatments. By randomly assigning patients to treatment and control groups, researchers can determine whether the treatment is effective in improving health outcomes.
- When evaluating the effectiveness of an educational intervention: An experimental research design can be used to evaluate the impact of a new teaching method or educational program on student learning outcomes. By randomly assigning students to treatment and control groups, researchers can determine whether the intervention is effective in improving academic performance.
- When testing the effectiveness of a marketing campaign: An experimental research design can be used to test the effectiveness of different marketing messages or strategies. By randomly assigning participants to treatment and control groups, researchers can determine whether the marketing campaign is effective in changing consumer behavior.
- When studying the effects of an environmental intervention: Experimental research design can be used to study the impact of environmental interventions, such as pollution reduction programs or conservation efforts. By randomly assigning locations or areas to treatment and control groups, researchers can determine whether the intervention is effective in improving environmental outcomes.
- When testing the effects of a new technology: An experimental research design can be used to test the effectiveness and safety of new technologies or engineering designs. By randomly assigning participants or locations to treatment and control groups, researchers can determine whether the new technology is effective in achieving its intended purpose.
How to Conduct Experimental Research
Here are the steps to conduct Experimental Research:
- Identify a Research Question : Start by identifying a research question that you want to answer through the experiment. The question should be clear, specific, and testable.
- Develop a Hypothesis: Based on your research question, develop a hypothesis that predicts the relationship between the independent and dependent variables. The hypothesis should be clear and testable.
- Design the Experiment : Determine the type of experimental design you will use, such as a between-subjects design or a within-subjects design. Also, decide on the experimental conditions, such as the number of independent variables, the levels of the independent variable, and the dependent variable to be measured.
- Select Participants: Select the participants who will take part in the experiment. They should be representative of the population you are interested in studying.
- Randomly Assign Participants to Groups: If you are using a between-subjects design, randomly assign participants to groups to control for individual differences.
- Conduct the Experiment : Conduct the experiment by manipulating the independent variable(s) and measuring the dependent variable(s) across the different conditions.
- Analyze the Data: Analyze the data using appropriate statistical methods to determine if there is a significant effect of the independent variable(s) on the dependent variable(s).
- Draw Conclusions: Based on the data analysis, draw conclusions about the relationship between the independent and dependent variables. If the results support the hypothesis, then it is accepted. If the results do not support the hypothesis, then it is rejected.
- Communicate the Results: Finally, communicate the results of the experiment through a research report or presentation. Include the purpose of the study, the methods used, the results obtained, and the conclusions drawn.
Purpose of Experimental Design
The purpose of experimental design is to control and manipulate one or more independent variables to determine their effect on a dependent variable. Experimental design allows researchers to systematically investigate causal relationships between variables, and to establish cause-and-effect relationships between the independent and dependent variables. Through experimental design, researchers can test hypotheses and make inferences about the population from which the sample was drawn.
Experimental design provides a structured approach to designing and conducting experiments, ensuring that the results are reliable and valid. By carefully controlling for extraneous variables that may affect the outcome of the study, experimental design allows researchers to isolate the effect of the independent variable(s) on the dependent variable(s), and to minimize the influence of other factors that may confound the results.
Experimental design also allows researchers to generalize their findings to the larger population from which the sample was drawn. By randomly selecting participants and using statistical techniques to analyze the data, researchers can make inferences about the larger population with a high degree of confidence.
Overall, the purpose of experimental design is to provide a rigorous, systematic, and scientific method for testing hypotheses and establishing cause-and-effect relationships between variables. Experimental design is a powerful tool for advancing scientific knowledge and informing evidence-based practice in various fields, including psychology, biology, medicine, engineering, and social sciences.
Advantages of Experimental Design
Experimental design offers several advantages in research. Here are some of the main advantages:
- Control over extraneous variables: Experimental design allows researchers to control for extraneous variables that may affect the outcome of the study. By manipulating the independent variable and holding all other variables constant, researchers can isolate the effect of the independent variable on the dependent variable.
- Establishing causality: Experimental design allows researchers to establish causality by manipulating the independent variable and observing its effect on the dependent variable. This allows researchers to determine whether changes in the independent variable cause changes in the dependent variable.
- Replication : Experimental design allows researchers to replicate their experiments to ensure that the findings are consistent and reliable. Replication is important for establishing the validity and generalizability of the findings.
- Random assignment: Experimental design often involves randomly assigning participants to conditions. This helps to ensure that individual differences between participants are evenly distributed across conditions, which increases the internal validity of the study.
- Precision : Experimental design allows researchers to measure variables with precision, which can increase the accuracy and reliability of the data.
- Generalizability : If the study is well-designed, experimental design can increase the generalizability of the findings. By controlling for extraneous variables and using random assignment, researchers can increase the likelihood that the findings will apply to other populations and contexts.
Limitations of Experimental Design
Experimental design has some limitations that researchers should be aware of. Here are some of the main limitations:
- Artificiality : Experimental design often involves creating artificial situations that may not reflect real-world situations. This can limit the external validity of the findings, or the extent to which the findings can be generalized to real-world settings.
- Ethical concerns: Some experimental designs may raise ethical concerns, particularly if they involve manipulating variables that could cause harm to participants or if they involve deception.
- Participant bias : Participants in experimental studies may modify their behavior in response to the experiment, which can lead to participant bias.
- Limited generalizability: The conditions of the experiment may not reflect the complexities of real-world situations. As a result, the findings may not be applicable to all populations and contexts.
- Cost and time : Experimental design can be expensive and time-consuming, particularly if the experiment requires specialized equipment or if the sample size is large.
- Researcher bias : Researchers may unintentionally bias the results of the experiment if they have expectations or preferences for certain outcomes.
- Lack of feasibility : Experimental design may not be feasible in some cases, particularly if the research question involves variables that cannot be manipulated or controlled.
About the author
Muhammad Hassan
Researcher, Academic Writer, Web developer
You may also like
Triangulation in Research – Types, Methods and...
Explanatory Research – Types, Methods, Guide
Textual Analysis – Types, Examples and Guide
Mixed Methods Research – Types & Analysis
Phenomenology – Methods, Examples and Guide
Questionnaire – Definition, Types, and Examples
How to Develop a Good Research Hypothesis
The story of a research study begins by asking a question. Researchers all around the globe are asking curious questions and formulating research hypothesis. However, whether the research study provides an effective conclusion depends on how well one develops a good research hypothesis. Research hypothesis examples could help researchers get an idea as to how to write a good research hypothesis.
This blog will help you understand what is a research hypothesis, its characteristics and, how to formulate a research hypothesis
Table of Contents
What is Hypothesis?
Hypothesis is an assumption or an idea proposed for the sake of argument so that it can be tested. It is a precise, testable statement of what the researchers predict will be outcome of the study. Hypothesis usually involves proposing a relationship between two variables: the independent variable (what the researchers change) and the dependent variable (what the research measures).
What is a Research Hypothesis?
Research hypothesis is a statement that introduces a research question and proposes an expected result. It is an integral part of the scientific method that forms the basis of scientific experiments. Therefore, you need to be careful and thorough when building your research hypothesis. A minor flaw in the construction of your hypothesis could have an adverse effect on your experiment. In research, there is a convention that the hypothesis is written in two forms, the null hypothesis, and the alternative hypothesis (called the experimental hypothesis when the method of investigation is an experiment).
Characteristics of a Good Research Hypothesis
As the hypothesis is specific, there is a testable prediction about what you expect to happen in a study. You may consider drawing hypothesis from previously published research based on the theory.
A good research hypothesis involves more effort than just a guess. In particular, your hypothesis may begin with a question that could be further explored through background research.
To help you formulate a promising research hypothesis, you should ask yourself the following questions:
- Is the language clear and focused?
- What is the relationship between your hypothesis and your research topic?
- Is your hypothesis testable? If yes, then how?
- What are the possible explanations that you might want to explore?
- Does your hypothesis include both an independent and dependent variable?
- Can you manipulate your variables without hampering the ethical standards?
- Does your research predict the relationship and outcome?
- Is your research simple and concise (avoids wordiness)?
- Is it clear with no ambiguity or assumptions about the readers’ knowledge
- Is your research observable and testable results?
- Is it relevant and specific to the research question or problem?
The questions listed above can be used as a checklist to make sure your hypothesis is based on a solid foundation. Furthermore, it can help you identify weaknesses in your hypothesis and revise it if necessary.
Source: Educational Hub
How to formulate a research hypothesis.
A testable hypothesis is not a simple statement. It is rather an intricate statement that needs to offer a clear introduction to a scientific experiment, its intentions, and the possible outcomes. However, there are some important things to consider when building a compelling hypothesis.
1. State the problem that you are trying to solve.
Make sure that the hypothesis clearly defines the topic and the focus of the experiment.
2. Try to write the hypothesis as an if-then statement.
Follow this template: If a specific action is taken, then a certain outcome is expected.
3. Define the variables
Independent variables are the ones that are manipulated, controlled, or changed. Independent variables are isolated from other factors of the study.
Dependent variables , as the name suggests are dependent on other factors of the study. They are influenced by the change in independent variable.
4. Scrutinize the hypothesis
Evaluate assumptions, predictions, and evidence rigorously to refine your understanding.
Types of Research Hypothesis
The types of research hypothesis are stated below:
1. Simple Hypothesis
It predicts the relationship between a single dependent variable and a single independent variable.
2. Complex Hypothesis
It predicts the relationship between two or more independent and dependent variables.
3. Directional Hypothesis
It specifies the expected direction to be followed to determine the relationship between variables and is derived from theory. Furthermore, it implies the researcher’s intellectual commitment to a particular outcome.
4. Non-directional Hypothesis
It does not predict the exact direction or nature of the relationship between the two variables. The non-directional hypothesis is used when there is no theory involved or when findings contradict previous research.
5. Associative and Causal Hypothesis
The associative hypothesis defines interdependency between variables. A change in one variable results in the change of the other variable. On the other hand, the causal hypothesis proposes an effect on the dependent due to manipulation of the independent variable.
6. Null Hypothesis
Null hypothesis states a negative statement to support the researcher’s findings that there is no relationship between two variables. There will be no changes in the dependent variable due the manipulation of the independent variable. Furthermore, it states results are due to chance and are not significant in terms of supporting the idea being investigated.
7. Alternative Hypothesis
It states that there is a relationship between the two variables of the study and that the results are significant to the research topic. An experimental hypothesis predicts what changes will take place in the dependent variable when the independent variable is manipulated. Also, it states that the results are not due to chance and that they are significant in terms of supporting the theory being investigated.
Research Hypothesis Examples of Independent and Dependent Variables
Research Hypothesis Example 1 The greater number of coal plants in a region (independent variable) increases water pollution (dependent variable). If you change the independent variable (building more coal factories), it will change the dependent variable (amount of water pollution).
Research Hypothesis Example 2 What is the effect of diet or regular soda (independent variable) on blood sugar levels (dependent variable)? If you change the independent variable (the type of soda you consume), it will change the dependent variable (blood sugar levels)
You should not ignore the importance of the above steps. The validity of your experiment and its results rely on a robust testable hypothesis. Developing a strong testable hypothesis has few advantages, it compels us to think intensely and specifically about the outcomes of a study. Consequently, it enables us to understand the implication of the question and the different variables involved in the study. Furthermore, it helps us to make precise predictions based on prior research. Hence, forming a hypothesis would be of great value to the research. Here are some good examples of testable hypotheses.
More importantly, you need to build a robust testable research hypothesis for your scientific experiments. A testable hypothesis is a hypothesis that can be proved or disproved as a result of experimentation.
Importance of a Testable Hypothesis
To devise and perform an experiment using scientific method, you need to make sure that your hypothesis is testable. To be considered testable, some essential criteria must be met:
- There must be a possibility to prove that the hypothesis is true.
- There must be a possibility to prove that the hypothesis is false.
- The results of the hypothesis must be reproducible.
Without these criteria, the hypothesis and the results will be vague. As a result, the experiment will not prove or disprove anything significant.
What are your experiences with building hypotheses for scientific experiments? What challenges did you face? How did you overcome these challenges? Please share your thoughts with us in the comments section.
Frequently Asked Questions
The steps to write a research hypothesis are: 1. Stating the problem: Ensure that the hypothesis defines the research problem 2. Writing a hypothesis as an 'if-then' statement: Include the action and the expected outcome of your study by following a ‘if-then’ structure. 3. Defining the variables: Define the variables as Dependent or Independent based on their dependency to other factors. 4. Scrutinizing the hypothesis: Identify the type of your hypothesis
Hypothesis testing is a statistical tool which is used to make inferences about a population data to draw conclusions for a particular hypothesis.
Hypothesis in statistics is a formal statement about the nature of a population within a structured framework of a statistical model. It is used to test an existing hypothesis by studying a population.
Research hypothesis is a statement that introduces a research question and proposes an expected result. It forms the basis of scientific experiments.
The different types of hypothesis in research are: • Null hypothesis: Null hypothesis is a negative statement to support the researcher’s findings that there is no relationship between two variables. • Alternate hypothesis: Alternate hypothesis predicts the relationship between the two variables of the study. • Directional hypothesis: Directional hypothesis specifies the expected direction to be followed to determine the relationship between variables. • Non-directional hypothesis: Non-directional hypothesis does not predict the exact direction or nature of the relationship between the two variables. • Simple hypothesis: Simple hypothesis predicts the relationship between a single dependent variable and a single independent variable. • Complex hypothesis: Complex hypothesis predicts the relationship between two or more independent and dependent variables. • Associative and casual hypothesis: Associative and casual hypothesis predicts the relationship between two or more independent and dependent variables. • Empirical hypothesis: Empirical hypothesis can be tested via experiments and observation. • Statistical hypothesis: A statistical hypothesis utilizes statistical models to draw conclusions about broader populations.
Wow! You really simplified your explanation that even dummies would find it easy to comprehend. Thank you so much.
Thanks a lot for your valuable guidance.
I enjoy reading the post. Hypotheses are actually an intrinsic part in a study. It bridges the research question and the methodology of the study.
Useful piece!
This is awesome.Wow.
It very interesting to read the topic, can you guide me any specific example of hypothesis process establish throw the Demand and supply of the specific product in market
Nicely explained
It is really a useful for me Kindly give some examples of hypothesis
It was a well explained content ,can you please give me an example with the null and alternative hypothesis illustrated
clear and concise. thanks.
So Good so Amazing
Good to learn
Thanks a lot for explaining to my level of understanding
Explained well and in simple terms. Quick read! Thank you
It awesome. It has really positioned me in my research project
Brief and easily digested
Very valuable resource and well done.
Rate this article Cancel Reply
Your email address will not be published.
Enago Academy's Most Popular Articles
- Reporting Research
Choosing the Right Analytical Approach: Thematic analysis vs. content analysis for data interpretation
In research, choosing the right approach to understand data is crucial for deriving meaningful insights.…
Comparing Cross Sectional and Longitudinal Studies: 5 steps for choosing the right approach
The process of choosing the right research design can put ourselves at the crossroads of…
- Industry News
COPE Forum Discussion Highlights Challenges and Urges Clarity in Institutional Authorship Standards
The COPE forum discussion held in December 2023 initiated with a fundamental question — is…
- Career Corner
Unlocking the Power of Networking in Academic Conferences
Embarking on your first academic conference experience? Fear not, we got you covered! Academic conferences…
Research Recommendations – Guiding policy-makers for evidence-based decision making
Research recommendations play a crucial role in guiding scholars and researchers toward fruitful avenues of…
Choosing the Right Analytical Approach: Thematic analysis vs. content analysis for…
Comparing Cross Sectional and Longitudinal Studies: 5 steps for choosing the right…
How to Design Effective Research Questionnaires for Robust Findings
Sign-up to read more
Subscribe for free to get unrestricted access to all our resources on research writing and academic publishing including:
- 2000+ blog articles
- 50+ Webinars
- 10+ Expert podcasts
- 50+ Infographics
- 10+ Checklists
- Research Guides
We hate spam too. We promise to protect your privacy and never spam you.
- Publishing Research
- AI in Academia
- Promoting Research
- Diversity and Inclusion
- Infographics
- Expert Video Library
- Other Resources
- Enago Learn
- Upcoming & On-Demand Webinars
- Open Access Week 2024
- Peer Review Week 2024
- Conference Videos
- Enago Report
- Journal Finder
- Enago Plagiarism & AI Grammar Check
- Editing Services
- Publication Support Services
- Research Impact
- Translation Services
- Publication solutions
- AI-Based Solutions
- Thought Leadership
- Call for Articles
- Call for Speakers
- Author Training
- Edit Profile
I am looking for Editing/ Proofreading services for my manuscript Tentative date of next journal submission:
What factors would influence the future of open access (OA) publishing?
What is Hypothesis? Definition, Meaning, Characteristics, Sources
- Post last modified: 10 January 2022
- Reading time: 18 mins read
- Post category: Research Methodology
- What is Hypothesis?
Hypothesis is a prediction of the outcome of a study. Hypotheses are drawn from theories and research questions or from direct observations. In fact, a research problem can be formulated as a hypothesis. To test the hypothesis we need to formulate it in terms that can actually be analysed with statistical tools.
As an example, if we want to explore whether using a specific teaching method at school will result in better school marks (research question), the hypothesis could be that the mean school marks of students being taught with that specific teaching method will be higher than of those being taught using other methods.
In this example, we stated a hypothesis about the expected differences between groups. Other hypotheses may refer to correlations between variables.
Table of Content
- 1 What is Hypothesis?
- 2 Hypothesis Definition
- 3 Meaning of Hypothesis
- 4.1 Conceptual Clarity
- 4.2 Need of empirical referents
- 4.3 Hypothesis should be specific
- 4.4 Hypothesis should be within the ambit of the available research techniques
- 4.5 Hypothesis should be consistent with the theory
- 4.6 Hypothesis should be concerned with observable facts and empirical events
- 4.7 Hypothesis should be simple
- 5.1 Observation
- 5.2 Analogies
- 5.4 State of Knowledge
- 5.5 Culture
- 5.6 Continuity of Research
- 6.1 Null Hypothesis
- 6.2 Alternative Hypothesis
Thus, to formulate a hypothesis, we need to refer to the descriptive statistics (such as the mean final marks), and specify a set of conditions about these statistics (such as a difference between the means, or in a different example, a positive or negative correlation). The hypothesis we formulate applies to the population of interest.
The null hypothesis makes a statement that no difference exists (see Pyrczak, 1995, pp. 75-84).
Hypothesis Definition
A hypothesis is ‘a guess or supposition as to the existence of some fact or law which will serve to explain a connection of facts already known to exist.’ – J. E. Creighton & H. R. Smart
Hypothesis is ‘a proposition not known to be definitely true or false, examined for the sake of determining the consequences which would follow from its truth.’ – Max Black
Hypothesis is ‘a proposition which can be put to a test to determine validity and is useful for further research.’ – W. J. Goode and P. K. Hatt
A hypothesis is a proposition, condition or principle which is assumed, perhaps without belief, in order to draw out its logical consequences and by this method to test its accord with facts which are known or may be determined. – Webster’s New International Dictionary of the English Language (1956)
Meaning of Hypothesis
From the above mentioned definitions of hypothesis, its meaning can be explained in the following ways.
- At the primary level, a hypothesis is the possible and probable explanation of the sequence of happenings or data.
- Sometimes, hypothesis may emerge from an imagination, common sense or a sudden event.
- Hypothesis can be a probable answer to the research problem undertaken for study. 4. Hypothesis may not always be true. It can get disproven. In other words, hypothesis need not always be a true proposition.
- Hypothesis, in a sense, is an attempt to present the interrelations that exist in the available data or information.
- Hypothesis is not an individual opinion or community thought. Instead, it is a philosophical means which is to be used for research purpose. Hypothesis is not to be considered as the ultimate objective; rather it is to be taken as the means of explaining scientifically the prevailing situation.
The concept of hypothesis can further be explained with the help of some examples. Lord Keynes, in his theory of national income determination, made a hypothesis about the consumption function. He stated that the consumption expenditure of an individual or an economy as a whole is dependent on the level of income and changes in a certain proportion.
Later, this proposition was proved in the statistical research carried out by Prof. Simon Kuznets. Matthus, while studying the population, formulated a hypothesis that population increases faster than the supply of food grains. Population studies of several countries revealed that this hypothesis is true.
Validation of the Malthus’ hypothesis turned it into a theory and when it was tested in many other countries it became the famous Malthus’ Law of Population. It thus emerges that when a hypothesis is tested and proven, it becomes a theory. The theory, when found true in different times and at different places, becomes the law. Having understood the concept of hypothesis, few hypotheses can be formulated in the areas of commerce and economics.
- Population growth moderates with the rise in per capita income.
- Sales growth is positively linked with the availability of credit.
- Commerce education increases the employability of the graduate students.
- High rates of direct taxes prompt people to evade taxes.
- Good working conditions improve the productivity of employees.
- Advertising is the most effecting way of promoting sales than any other scheme.
- Higher Debt-Equity Ratio increases the probability of insolvency.
- Economic reforms in India have made the public sector banks more efficient and competent.
- Foreign direct investment in India has moved in those sectors which offer higher rate of profit.
- There is no significant association between credit rating and investment of fund.
Characteristics of Hypothesis
Not all the hypotheses are good and useful from the point of view of research. It is only a few hypotheses satisfying certain criteria that are good, useful and directive in the research work undertaken. The characteristics of such a useful hypothesis can be listed as below:
Conceptual Clarity
Need of empirical referents, hypothesis should be specific, hypothesis should be within the ambit of the available research techniques, hypothesis should be consistent with the theory, hypothesis should be concerned with observable facts and empirical events, hypothesis should be simple.
The concepts used while framing hypothesis should be crystal clear and unambiguous. Such concepts must be clearly defined so that they become lucid and acceptable to everyone. How are the newly developed concepts interrelated and how are they linked with the old one is to be very clear so that the hypothesis framed on their basis also carries the same clarity.
A hypothesis embodying unclear and ambiguous concepts can to a great extent undermine the successful completion of the research work.
A hypothesis can be useful in the research work undertaken only when it has links with some empirical referents. Hypothesis based on moral values and ideals are useless as they cannot be tested. Similarly, hypothesis containing opinions as good and bad or expectation with respect to something are not testable and therefore useless.
For example, ‘current account deficit can be lowered if people change their attitude towards gold’ is a hypothesis encompassing expectation. In case of such a hypothesis, the attitude towards gold is something which cannot clearly be described and therefore a hypothesis which embodies such an unclean thing cannot be tested and proved or disproved. In short, the hypothesis should be linked with some testable referents.
For the successful conduction of research, it is necessary that the hypothesis is specific and presented in a precise manner. Hypothesis which is general, too ambitious and grandiose in scope is not to be made as such hypothesis cannot be easily put to test. A hypothesis is to be based on such concepts which are precise and empirical in nature. A hypothesis should give a clear idea about the indicators which are to be used.
For example, a hypothesis that economic power is increasingly getting concentrated in a few hands in India should enable us to define the concept of economic power. It should be explicated in terms of measurable indicator like income, wealth, etc. Such specificity in the formulation of a hypothesis ensures that the research is practicable and significant.
While framing the hypothesis, the researcher should be aware of the available research techniques and should see that the hypothesis framed is testable on the basis of them. In other words, a hypothesis should be researchable and for this it is important that a due thought has been given to the methods and techniques which can be used to measure the concepts and variables embodied in the hypothesis.
It does not however mean that hypotheses which are not testable with the available techniques of research are not to be made. If the problem is too significant and therefore the hypothesis framed becomes too ambitious and complex, it’s testing becomes possible with the development of new research techniques or the hypothesis itself leads to the development of new research techniques.
A hypothesis must be related to the existing theory or should have a theoretical orientation. The growth of knowledge takes place in the sequence of facts, hypothesis, theory and law or principles. It means the hypothesis should have a correspondence with the existing facts and theory.
If the hypothesis is related to some theory, the research work will enable us to support, modify or refute the existing theory. Theoretical orientation of the hypothesis ensures that it becomes scientifically useful. According to Prof. Goode and Prof. Hatt, research work can contribute to the existing knowledge only when the hypothesis is related with some theory.
This enables us to explain the observed facts and situations and also verify the framed hypothesis. In the words of Prof. Cohen and Prof. Nagel, “hypothesis must be formulated in such a manner that deduction can be made from it and that consequently a decision can be reached as to whether it does or does not explain the facts considered.”
If the research work based on a hypothesis is to be successful, it is necessary that the later is as simple and easy as possible. An ambition of finding out something new may lead the researcher to frame an unrealistic and unclear hypothesis. Such a temptation is to be avoided. Framing a simple, easy and testable hypothesis requires that the researcher is well acquainted with the related concepts.
Sources of Hypothesis
Hypotheses can be derived from various sources. Some of the sources is given below:
Observation
State of knowledge, continuity of research.
Hypotheses can be derived from observation from the observation of price behavior in a market. For example the relationship between the price and demand for an article is hypothesized.
Analogies are another source of useful hypotheses. Julian Huxley has pointed out that casual observations in nature or in the framework of another science may be a fertile source of hypotheses. For example, the hypotheses that similar human types or activities may be found in similar geophysical regions come from plant ecology.
This is one of the main sources of hypotheses. It gives direction to research by stating what is known logical deduction from theory lead to new hypotheses. For example, profit / wealth maximization is considered as the goal of private enterprises. From this assumption various hypotheses are derived’.
An important source of hypotheses is the state of knowledge in any particular science where formal theories exist hypotheses can be deduced. If the hypotheses are rejected theories are scarce hypotheses are generated from conception frameworks.
Another source of hypotheses is the culture on which the researcher was nurtured. Western culture has induced the emergence of sociology as an academic discipline over the past decade, a large part of the hypotheses on American society examined by researchers were connected with violence. This interest is related to the considerable increase in the level of violence in America.
The continuity of research in a field itself constitutes an important source of hypotheses. The rejection of some hypotheses leads to the formulation of new ones capable of explaining dependent variables in subsequent research on the same subject.
Null and Alternative Hypothesis
Null hypothesis.
The hypothesis that are proposed with the intent of receiving a rejection for them are called Null Hypothesis . This requires that we hypothesize the opposite of what is desired to be proved. For example, if we want to show that sales and advertisement expenditure are related, we formulate the null hypothesis that they are not related.
Similarly, if we want to conclude that the new sales training programme is effective, we formulate the null hypothesis that the new training programme is not effective, and if we want to prove that the average wages of skilled workers in town 1 is greater than that of town 2, we formulate the null hypotheses that there is no difference in the average wages of the skilled workers in both the towns.
Since we hypothesize that sales and advertisement are not related, new training programme is not effective and the average wages of skilled workers in both the towns are equal, we call such hypotheses null hypotheses and denote them as H 0 .
Alternative Hypothesis
Rejection of null hypotheses leads to the acceptance of alternative hypothesis . The rejection of null hypothesis indicates that the relationship between variables (e.g., sales and advertisement expenditure) or the difference between means (e.g., wages of skilled workers in town 1 and town 2) or the difference between proportions have statistical significance and the acceptance of the null hypotheses indicates that these differences are due to chance.
As already mentioned, the alternative hypotheses specify that values/relation which the researcher believes hold true. The alternative hypotheses can cover a whole range of values rather than a single point. The alternative hypotheses are denoted by H 1 .
Business Ethics
( Click on Topic to Read )
- What is Ethics?
- What is Business Ethics?
- Values, Norms, Beliefs and Standards in Business Ethics
- Indian Ethos in Management
- Ethical Issues in Marketing
- Ethical Issues in HRM
- Ethical Issues in IT
- Ethical Issues in Production and Operations Management
- Ethical Issues in Finance and Accounting
- What is Corporate Governance?
- What is Ownership Concentration?
- What is Ownership Composition?
- Types of Companies in India
- Internal Corporate Governance
- External Corporate Governance
- Corporate Governance in India
- What is Enterprise Risk Management (ERM)?
- What is Assessment of Risk?
- What is Risk Register?
- Risk Management Committee
Corporate social responsibility (CSR)
- Theories of CSR
- Arguments Against CSR
- Business Case for CSR
- Importance of CSR in India
- Drivers of Corporate Social Responsibility
- Developing a CSR Strategy
- Implement CSR Commitments
- CSR Marketplace
- CSR at Workplace
- Environmental CSR
- CSR with Communities and in Supply Chain
- Community Interventions
- CSR Monitoring
- CSR Reporting
- Voluntary Codes in CSR
- What is Corporate Ethics?
Lean Six Sigma
- What is Six Sigma?
- What is Lean Six Sigma?
- Value and Waste in Lean Six Sigma
- Six Sigma Team
- MAIC Six Sigma
- Six Sigma in Supply Chains
- What is Binomial, Poisson, Normal Distribution?
- What is Sigma Level?
- What is DMAIC in Six Sigma?
- What is DMADV in Six Sigma?
- Six Sigma Project Charter
- Project Decomposition in Six Sigma
- Critical to Quality (CTQ) Six Sigma
- Process Mapping Six Sigma
- Flowchart and SIPOC
- Gage Repeatability and Reproducibility
- Statistical Diagram
- Lean Techniques for Optimisation Flow
- Failure Modes and Effects Analysis (FMEA)
- What is Process Audits?
- Six Sigma Implementation at Ford
- IBM Uses Six Sigma to Drive Behaviour Change
- Research Methodology
- What is Research?
- Sampling Method
- Research Methods
- Data Collection in Research
Methods of Collecting Data
Application of business research, levels of measurement.
- What is Sampling?
- Hypothesis Testing
- Research Report
- What is Management?
- Planning in Management
- Decision Making in Management
- What is Controlling?
- What is Coordination?
- What is Staffing?
- Organization Structure
- What is Departmentation?
- Span of Control
- What is Authority?
- Centralization vs Decentralization
- Organizing in Management
- Schools of Management Thought
- Classical Management Approach
- Is Management an Art or Science?
- Who is a Manager?
Operations Research
- What is Operations Research?
- Operation Research Models
- Linear Programming
- Linear Programming Graphic Solution
- Linear Programming Simplex Method
- Linear Programming Artificial Variable Technique
- Duality in Linear Programming
- Transportation Problem Initial Basic Feasible Solution
- Transportation Problem Finding Optimal Solution
- Project Network Analysis with Critical Path Method
- Project Network Analysis Methods
- Project Evaluation and Review Technique (PERT)
- Simulation in Operation Research
- Replacement Models in Operation Research
Operation Management
- What is Strategy?
- What is Operations Strategy?
- Operations Competitive Dimensions
- Operations Strategy Formulation Process
- What is Strategic Fit?
- Strategic Design Process
- Focused Operations Strategy
- Corporate Level Strategy
- Expansion Strategies
- Stability Strategies
- Retrenchment Strategies
- Competitive Advantage
- Strategic Choice and Strategic Alternatives
- What is Production Process?
- What is Process Technology?
- What is Process Improvement?
- Strategic Capacity Management
- Production and Logistics Strategy
- Taxonomy of Supply Chain Strategies
- Factors Considered in Supply Chain Planning
- Operational and Strategic Issues in Global Logistics
- Logistics Outsourcing Strategy
- What is Supply Chain Mapping?
- Supply Chain Process Restructuring
- Points of Differentiation
- Re-engineering Improvement in SCM
- What is Supply Chain Drivers?
- Supply Chain Operations Reference (SCOR) Model
- Customer Service and Cost Trade Off
- Internal and External Performance Measures
- Linking Supply Chain and Business Performance
- Netflix’s Niche Focused Strategy
- Disney and Pixar Merger
- Process Planning at Mcdonald’s
Service Operations Management
- What is Service?
- What is Service Operations Management?
- What is Service Design?
- Service Design Process
- Service Delivery
- What is Service Quality?
- Gap Model of Service Quality
- Juran Trilogy
- Service Performance Measurement
- Service Decoupling
- IT Service Operation
- Service Operations Management in Different Sector
Procurement Management
- What is Procurement Management?
- Procurement Negotiation
- Types of Requisition
- RFX in Procurement
- What is Purchasing Cycle?
- Vendor Managed Inventory
- Internal Conflict During Purchasing Operation
- Spend Analysis in Procurement
- Sourcing in Procurement
- Supplier Evaluation and Selection in Procurement
- Blacklisting of Suppliers in Procurement
- Total Cost of Ownership in Procurement
- Incoterms in Procurement
- Documents Used in International Procurement
- Transportation and Logistics Strategy
- What is Capital Equipment?
- Procurement Process of Capital Equipment
- Acquisition of Technology in Procurement
- What is E-Procurement?
- E-marketplace and Online Catalogues
- Fixed Price and Cost Reimbursement Contracts
- Contract Cancellation in Procurement
- Ethics in Procurement
- Legal Aspects of Procurement
- Global Sourcing in Procurement
- Intermediaries and Countertrade in Procurement
Strategic Management
- What is Strategic Management?
- What is Value Chain Analysis?
- Mission Statement
- Business Level Strategy
- What is SWOT Analysis?
- What is Competitive Advantage?
- What is Vision?
- What is Ansoff Matrix?
- Prahalad and Gary Hammel
- Strategic Management In Global Environment
- Competitor Analysis Framework
- Competitive Rivalry Analysis
- Competitive Dynamics
- What is Competitive Rivalry?
- Five Competitive Forces That Shape Strategy
- What is PESTLE Analysis?
- Fragmentation and Consolidation Of Industries
- What is Technology Life Cycle?
- What is Diversification Strategy?
- What is Corporate Restructuring Strategy?
- Resources and Capabilities of Organization
- Role of Leaders In Functional-Level Strategic Management
- Functional Structure In Functional Level Strategy Formulation
- Information And Control System
- What is Strategy Gap Analysis?
- Issues In Strategy Implementation
- Matrix Organizational Structure
- What is Strategic Management Process?
Supply Chain
- What is Supply Chain Management?
- Supply Chain Planning and Measuring Strategy Performance
- What is Warehousing?
- What is Packaging?
- What is Inventory Management?
- What is Material Handling?
- What is Order Picking?
- Receiving and Dispatch, Processes
- What is Warehouse Design?
- What is Warehousing Costs?
You Might Also Like
What is sample size determination, formula, determining,, what is parametric tests types: z-test, t-test, f-test, what is research types, purpose, characteristics, process, types of hypotheses, data analysis in research, primary data and secondary data, what is research design features, components, sampling process and characteristics of good sample design, types of charts used in data analysis, leave a reply cancel reply.
You must be logged in to post a comment.
World's Best Online Courses at One Place
We’ve spent the time in finding, so you can spend your time in learning
Digital Marketing
Personal growth.
IMAGES
VIDEO
COMMENTS
A research hypothesis is a testable prediction about the results of a study, connecting theory to data and guiding the research process. Learn about different types of hypotheses, such as alternative, null, directional, and nondirectional, and how to write and test them.
Ask the Chatbot a Question Ask the Chatbot a Question scientific hypothesis, an idea that proposes a tentative explanation about a phenomenon or a narrow set of phenomena observed in the natural world.The two primary features of a scientific hypothesis are falsifiability and testability, which are reflected in an "If…then" statement summarizing the idea and in the ability to be supported ...
Learn how to design an experiment to study causal relationships between variables. Follow five steps: define variables, write hypothesis, design treatments, assign subjects, measure dependent variable.
A good hypothesis is clear, precise, and testable, providing a focused direction for research. Learn the characteristics, types, steps, and pitfalls of a good hypothesis, and see examples across various fields.
A hypothesis is a testable prediction about the relationship between two or more variables in a study. Learn how to formulate a good hypothesis, the types of hypotheses, and the elements of a good hypothesis.
A well-formed experimental hypothesis helps guide the design and analysis of an experiment, making the research process more systematic and organized. It also allows for clear communication of the purpose and expected outcomes of the study to other researchers and the general public. Can an experimental hypothesis change during the course of a ...
6. Write a null hypothesis. If your research involves statistical hypothesis testing, you will also have to write a null hypothesis. The null hypothesis is the default position that there is no association between the variables. The null hypothesis is written as H 0, while the alternative hypothesis is H 1 or H a.
Learn what an experimental hypothesis is, why it is important for controlled experiments, and how to write one. See examples of hypotheses in different scientific fields and how they are tested.
Learn how to design an experiment to test a hypothesis and validate a model. Follow five steps: define variables, write hypothesis, design treatments, assign subjects, measure dependent variable.
For example, a hypothesis might be that a new product will sell well in a particular market, and this hypothesis can be tested through market research. Characteristics of Hypothesis. Here are some common characteristics of a hypothesis: Testable: A hypothesis must be able to be tested through observation or experimentation. This means that it ...
A hypothesis is an educated guess or prediction of what will happen. In science, a hypothesis proposes a relationship between factors called variables. A good hypothesis relates an independent variable and a dependent variable. ... A good experimental hypothesis can be written as an if, then statement to establish cause and effect on the ...
An experiment is an investigation in which a hypothesis is scientifically tested by manipulating an independent variable and measuring a dependent variable. Learn about the types, strengths, limitations, and key terminology of experiments in psychology.
The experimental method is a type of research procedure that involves manipulating variables to determine if there is a cause-and-effect relationship. The results obtained through the experimental method are useful but do not prove with 100% certainty that a singular cause always creates a specific effect.
Experimental designs are detailed plans for collecting data to identify causal relationships. Learn about the design of experiments. ... Null hypothesis: The jumping exercise intervention does not affect bone density. ... When they pick a subject with a set of characteristics, they try to locate another participant with similar attributes to ...
A hypothesis is an assumption based on some evidence that predicts the relationship between variables. Learn about the characteristics, sources, types and functions of hypothesis with examples and quiz.
Learn how to plan and conduct scientific experiments to test hypotheses or research questions. Explore different types of experimental design, methods, data collection and analysis techniques, and examples.
A research hypothesis is a testable statement that predicts the outcome of a study based on a relationship between variables. Learn the characteristics, types, and examples of a good research hypothesis and how to formulate one.
Learn what is hypothesis, a prediction of the outcome of a study based on theories, research questions or observations. Find out the characteristics, sources and types of hypotheses, such as null and alternative hypotheses.