Royal Society of Chemistry

2019 Best Papers published in the Environmental Science journals of the Royal Society of Chemistry

ORCID logo

In 2019, the Royal Society of Chemistry published 180, 196 and 293 papers in Environmental Science: Processes & Impacts , Environmental Science: Water Research & Technology , and Environmental Science: Nano , respectively. These papers covered a wide range of topics in environmental science, from biogeochemical cycling to water reuse to nanomaterial toxicity. And, yes, we also published papers on the topic of the environmental fate, behavior, and inactivation of viruses. 1–10 We are extremely grateful that so many authors have chosen our journals as outlets for publishing their research and are equally delighted at the high quality of the papers that we have had the privilege to publish.

Our Associate Editors, Editorial Boards, and Advisory Boards were enlisted to nominate and select the best papers from 2019. From this list, the three Editors-in-Chief selected an overall best paper from the entire Environmental Science portfolio. It is our pleasure to present the winners of the Best Papers in 2019 to you, our readers.

Overall Best Paper

In this paper, Johansson et al. examine sea spray aerosol as a potential transport vehicle for perfluoroalkyl carboxylic and sulfonic acids. The surfactant properties of these compounds are well known and, in fact, key to many of the technical applications for which they are used. The fact that these compounds are enriched at the air–water interface makes enrichment in sea spray aerosols seem reasonable. Johansson et al. systematically tested various perfluoroalkyl acids enrichment in aerosols under conditions relevant to sea spray formation, finding that longer chain lengths lead to higher aerosol enrichment factors. They augmented their experimental work with a global model, which further bolstered the conclusion that global transport of perfluoroalkyl acids by sea spray aerosol is and will continue to be an important process in determining the global distribution of these compounds.

Journal Best Papers

Environmental Science: Processes & Impacts

First Runner-up Best Paper: Yamakawa, Takami, Takeda, Kato, Kajii, Emerging investigator series: investigation of mercury emission sources using Hg isotopic compositions of atmospheric mercury at the Cape Hedo Atmosphere and Aerosol Monitoring Station (CHAAMS), Japan , Environ. Sci.: Processes Impacts , 2019, 21 , 809–818, DOI: 10.1039/C8EM00590G .

Second Runner-up Best Paper: Avery, Waring, DeCarlo, Seasonal variation in aerosol composition and concentration upon transport from the outdoor to indoor environment , Environ. Sci.: Processes Impacts , 2019, 21 , 528–547, DOI: 10.1039/C8EM00471D .

Best Review Article: Cousins, Ng, Wang, Scheringer, Why is high persistence alone a major cause of concern? Environ. Sci.: Processes Impacts , 2019, 21 , 781–792, DOI: 10.1039/C8EM00515J .

Environmental Science: Water Research & Technology

First Runner-up Best Paper: Yang, Lin, Tse, Dong, Yu, Hoffmann, Membrane-separated electrochemical latrine wastewater treatment , Environ. Sci.: Water Res. Technol. , 2019, 5 , 51–59, DOI: 10.1039/C8EW00698A .

Second Runner-up Best Paper: Genter, Marks, Clair-Caliot, Mugume, Johnston, Bain, Julian, Evaluation of the novel substrate RUG™ for the detection of Escherichia coli in water from temperate (Zurich, Switzerland) and tropical (Bushenyi, Uganda) field sites , Environ. Sci.: Water Res. Technol. , 2019, 5 , 1082–1091, DOI: 10.1039/C9EW00138G .

Best Review Article: Okoffo, O’Brien, O’Brien, Tscharke, Thomas, Wastewater treatment plants as a source of plastics in the environment: a review of occurrence, methods for identification, quantification and fate , Environ. Sci.: Water Res. Technol. , 2019, 5 , 1908–1931, DOI: 10.1039/C9EW00428A .

Environmental Science: Nano

First Runner-up Best Paper: Janković, Plata, Engineered nanomaterials in the context of global element cycles , Environ. Sci.: Nano , 2019, 6 , 2697–2711, DOI: 10.1039/C9EN00322C .

Second Runner-up Best Paper: González-Pleiter, Tamayo-Belda, Pulido-Reyes, Amariei, Leganés, Rosal, Fernández-Piñas, Secondary nanoplastics released from a biodegradable microplastic severely impact freshwater environments , Environ. Sci.: Nano , 2019, 6 , 1382–1392, DOI: 10.1039/C8EN01427B .

Best Review Article: Lv, Christie, Zhang, Uptake, translocation, and transformation of metal-based nanoparticles in plants: recent advances and methodological challenges , Environ. Sci.: Nano , 2019, 6 , 41–59, DOI: 10.1039/C8EN00645H .

Congratulations to the authors of these papers and a hearty thanks to all of our authors. As one can clearly see from the papers listed above, environmental science is a global effort and we are thrilled to have contributions from around the world. In these challenging times, we are proud to publish research that is not only great science, but also relevant to the health of the environment and the public. Finally, we also wish to extend our thanks to our community of editors, reviewers, and readers. We look forward to another outstanding year of Environmental Science , reading the work generated not just from our offices at home, but also from back in our laboratories and the field.

Kris McNeill, Editor-in-Chief

Paige Novak, Editor-in-Chief

Peter Vikesland, Editor-in-Chief

  • A. B Boehm, Risk-based water quality thresholds for coliphages in surface waters: effect of temperature and contamination aging, Environ. Sci.: Processes Impacts , 2019, 21 , 2031–2041,   10.1039/C9EM00376B .
  • L. Cai, C. Liu, G. Fan, C Liu and X. Sun, Preventing viral disease by ZnONPs through directly deactivating TMV and activating plant immunity in Nicotiana benthamiana , Environ. Sci.: Nano , 2019, 6 , 3653–3669,   10.1039/C9EN00850K .
  • L. W. Gassie, J. D. Englehardt, N. E. Brinkman, J. Garland and M. K. Perera, Ozone-UV net-zero water wash station for remote emergency response healthcare units: design, operation, and results, Environ. Sci.: Water Res. Technol. , 2019, 5 , 1971–1984,   10.1039/C9EW00126C .
  • L. M. Hornstra, T. Rodrigues da Silva, B. Blankert, L. Heijnen, E. Beerendonk, E. R. Cornelissen and G. Medema, Monitoring the integrity of reverse osmosis membranes using novel indigenous freshwater viruses and bacteriophages, Environ. Sci.: Water Res. Technol. , 2019, 5 , 1535–1544,   10.1039/C9EW00318E .
  • A. H. Hassaballah, J. Nyitrai, C. H. Hart, N. Dai and L. M. Sassoubre, A pilot-scale study of peracetic acid and ultraviolet light for wastewater disinfection, Environ. Sci.: Water Res. Technol. , 2019, 5 , 1453–1463,   10.1039/C9EW00341J .
  • W. Khan, J.-Y. Nam, H. Woo, H. Ryu, S. Kim, S. K. Maeng and H.-C. Kim, A proof of concept study for wastewater reuse using bioelectrochemical processes combined with complementary post-treatment technologies, Environ. Sci.: Water Res. Technol. , 2019, 5 , 1489–1498,   10.1039/C9EW00358D .
  • J. Heffron, B. McDermid and B. K. Mayer, Bacteriophage inactivation as a function of ferrous iron oxidation, Environ. Sci.: Water Res. Technol. , 2019, 5 , 1309–1317,   10.1039/C9EW00190E .
  • S. Torii, T. Hashimoto, A. T. Do, H. Furumai and H. Katayama, Impact of repeated pressurization on virus removal by reverse osmosis membranes for household water treatment, Environ. Sci.: Water Res. Technol. , 2019, 5 , 910–919,   10.1039/C8EW00944A .
  • J. Miao, H.-J. Jiang, Z.-W. Yang, D.-y. Shi, D. Yang, Z.-Q. Shen, J. Yin, Z.-G. Qiu, H.-R. Wang, J.-W. Li and M. Jin, Assessment of an electropositive granule media filter for concentrating viruses from large volumes of coastal water, Environ. Sci.: Water Res. Technol. , 2019, 5 , 325–333,   10.1039/C8EW00699G .
  • K. L. Nelson, A. B. Boehm, R. J. Davies-Colley, M. C. Dodd, T. Kohn, K. G. Linden, Y. Liu, P. A. Maraccini, K. McNeill, W. A. Mitch, T. H. Nguyen, K. M. Parker, R. A. Rodriguez, L. M. Sassoubre, A. I. Silverman, K. R. Wigginton and R. G. Zepp, Sunlight mediated inactivation of health relevant microorganisms in water: a review of mechanisms and modeling approaches, Environ. Sci.: Processes Impacts , 2018, 20 , 1089–1122,   10.1039/C8EM00047F .

REVIEW article

Environmental and health impacts of air pollution: a review.

\nIoannis Manisalidis,
&#x;

  • 1 Delphis S.A., Kifisia, Greece
  • 2 Laboratory of Hygiene and Environmental Protection, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
  • 3 Centre Hospitalier Universitaire Vaudois (CHUV), Service de Médicine Interne, Lausanne, Switzerland
  • 4 School of Social and Political Sciences, University of Glasgow, Glasgow, United Kingdom

One of our era's greatest scourges is air pollution, on account not only of its impact on climate change but also its impact on public and individual health due to increasing morbidity and mortality. There are many pollutants that are major factors in disease in humans. Among them, Particulate Matter (PM), particles of variable but very small diameter, penetrate the respiratory system via inhalation, causing respiratory and cardiovascular diseases, reproductive and central nervous system dysfunctions, and cancer. Despite the fact that ozone in the stratosphere plays a protective role against ultraviolet irradiation, it is harmful when in high concentration at ground level, also affecting the respiratory and cardiovascular system. Furthermore, nitrogen oxide, sulfur dioxide, Volatile Organic Compounds (VOCs), dioxins, and polycyclic aromatic hydrocarbons (PAHs) are all considered air pollutants that are harmful to humans. Carbon monoxide can even provoke direct poisoning when breathed in at high levels. Heavy metals such as lead, when absorbed into the human body, can lead to direct poisoning or chronic intoxication, depending on exposure. Diseases occurring from the aforementioned substances include principally respiratory problems such as Chronic Obstructive Pulmonary Disease (COPD), asthma, bronchiolitis, and also lung cancer, cardiovascular events, central nervous system dysfunctions, and cutaneous diseases. Last but not least, climate change resulting from environmental pollution affects the geographical distribution of many infectious diseases, as do natural disasters. The only way to tackle this problem is through public awareness coupled with a multidisciplinary approach by scientific experts; national and international organizations must address the emergence of this threat and propose sustainable solutions.

Approach to the Problem

The interactions between humans and their physical surroundings have been extensively studied, as multiple human activities influence the environment. The environment is a coupling of the biotic (living organisms and microorganisms) and the abiotic (hydrosphere, lithosphere, and atmosphere).

Pollution is defined as the introduction into the environment of substances harmful to humans and other living organisms. Pollutants are harmful solids, liquids, or gases produced in higher than usual concentrations that reduce the quality of our environment.

Human activities have an adverse effect on the environment by polluting the water we drink, the air we breathe, and the soil in which plants grow. Although the industrial revolution was a great success in terms of technology, society, and the provision of multiple services, it also introduced the production of huge quantities of pollutants emitted into the air that are harmful to human health. Without any doubt, the global environmental pollution is considered an international public health issue with multiple facets. Social, economic, and legislative concerns and lifestyle habits are related to this major problem. Clearly, urbanization and industrialization are reaching unprecedented and upsetting proportions worldwide in our era. Anthropogenic air pollution is one of the biggest public health hazards worldwide, given that it accounts for about 9 million deaths per year ( 1 ).

Without a doubt, all of the aforementioned are closely associated with climate change, and in the event of danger, the consequences can be severe for mankind ( 2 ). Climate changes and the effects of global planetary warming seriously affect multiple ecosystems, causing problems such as food safety issues, ice and iceberg melting, animal extinction, and damage to plants ( 3 , 4 ).

Air pollution has various health effects. The health of susceptible and sensitive individuals can be impacted even on low air pollution days. Short-term exposure to air pollutants is closely related to COPD (Chronic Obstructive Pulmonary Disease), cough, shortness of breath, wheezing, asthma, respiratory disease, and high rates of hospitalization (a measurement of morbidity).

The long-term effects associated with air pollution are chronic asthma, pulmonary insufficiency, cardiovascular diseases, and cardiovascular mortality. According to a Swedish cohort study, diabetes seems to be induced after long-term air pollution exposure ( 5 ). Moreover, air pollution seems to have various malign health effects in early human life, such as respiratory, cardiovascular, mental, and perinatal disorders ( 3 ), leading to infant mortality or chronic disease in adult age ( 6 ).

National reports have mentioned the increased risk of morbidity and mortality ( 1 ). These studies were conducted in many places around the world and show a correlation between daily ranges of particulate matter (PM) concentration and daily mortality. Climate shifts and global planetary warming ( 3 ) could aggravate the situation. Besides, increased hospitalization (an index of morbidity) has been registered among the elderly and susceptible individuals for specific reasons. Fine and ultrafine particulate matter seems to be associated with more serious illnesses ( 6 ), as it can invade the deepest parts of the airways and more easily reach the bloodstream.

Air pollution mainly affects those living in large urban areas, where road emissions contribute the most to the degradation of air quality. There is also a danger of industrial accidents, where the spread of a toxic fog can be fatal to the populations of the surrounding areas. The dispersion of pollutants is determined by many parameters, most notably atmospheric stability and wind ( 6 ).

In developing countries ( 7 ), the problem is more serious due to overpopulation and uncontrolled urbanization along with the development of industrialization. This leads to poor air quality, especially in countries with social disparities and a lack of information on sustainable management of the environment. The use of fuels such as wood fuel or solid fuel for domestic needs due to low incomes exposes people to bad-quality, polluted air at home. It is of note that three billion people around the world are using the above sources of energy for their daily heating and cooking needs ( 8 ). In developing countries, the women of the household seem to carry the highest risk for disease development due to their longer duration exposure to the indoor air pollution ( 8 , 9 ). Due to its fast industrial development and overpopulation, China is one of the Asian countries confronting serious air pollution problems ( 10 , 11 ). The lung cancer mortality observed in China is associated with fine particles ( 12 ). As stated already, long-term exposure is associated with deleterious effects on the cardiovascular system ( 3 , 5 ). However, it is interesting to note that cardiovascular diseases have mostly been observed in developed and high-income countries rather than in the developing low-income countries exposed highly to air pollution ( 13 ). Extreme air pollution is recorded in India, where the air quality reaches hazardous levels. New Delhi is one of the more polluted cities in India. Flights in and out of New Delhi International Airport are often canceled due to the reduced visibility associated with air pollution. Pollution is occurring both in urban and rural areas in India due to the fast industrialization, urbanization, and rise in use of motorcycle transportation. Nevertheless, biomass combustion associated with heating and cooking needs and practices is a major source of household air pollution in India and in Nepal ( 14 , 15 ). There is spatial heterogeneity in India, as areas with diverse climatological conditions and population and education levels generate different indoor air qualities, with higher PM 2.5 observed in North Indian states (557–601 μg/m 3 ) compared to the Southern States (183–214 μg/m 3 ) ( 16 , 17 ). The cold climate of the North Indian areas may be the main reason for this, as longer periods at home and more heating are necessary compared to in the tropical climate of Southern India. Household air pollution in India is associated with major health effects, especially in women and young children, who stay indoors for longer periods. Chronic obstructive respiratory disease (CORD) and lung cancer are mostly observed in women, while acute lower respiratory disease is seen in young children under 5 years of age ( 18 ).

Accumulation of air pollution, especially sulfur dioxide and smoke, reaching 1,500 mg/m3, resulted in an increase in the number of deaths (4,000 deaths) in December 1952 in London and in 1963 in New York City (400 deaths) ( 19 ). An association of pollution with mortality was reported on the basis of monitoring of outdoor pollution in six US metropolitan cities ( 20 ). In every case, it seems that mortality was closely related to the levels of fine, inhalable, and sulfate particles more than with the levels of total particulate pollution, aerosol acidity, sulfur dioxide, or nitrogen dioxide ( 20 ).

Furthermore, extremely high levels of pollution are reported in Mexico City and Rio de Janeiro, followed by Milan, Ankara, Melbourne, Tokyo, and Moscow ( 19 ).

Based on the magnitude of the public health impact, it is certain that different kinds of interventions should be taken into account. Success and effectiveness in controlling air pollution, specifically at the local level, have been reported. Adequate technological means are applied considering the source and the nature of the emission as well as its impact on health and the environment. The importance of point sources and non-point sources of air pollution control is reported by Schwela and Köth-Jahr ( 21 ). Without a doubt, a detailed emission inventory must record all sources in a given area. Beyond considering the above sources and their nature, topography and meteorology should also be considered, as stated previously. Assessment of the control policies and methods is often extrapolated from the local to the regional and then to the global scale. Air pollution may be dispersed and transported from one region to another area located far away. Air pollution management means the reduction to acceptable levels or possible elimination of air pollutants whose presence in the air affects our health or the environmental ecosystem. Private and governmental entities and authorities implement actions to ensure the air quality ( 22 ). Air quality standards and guidelines were adopted for the different pollutants by the WHO and EPA as a tool for the management of air quality ( 1 , 23 ). These standards have to be compared to the emissions inventory standards by causal analysis and dispersion modeling in order to reveal the problematic areas ( 24 ). Inventories are generally based on a combination of direct measurements and emissions modeling ( 24 ).

As an example, we state here the control measures at the source through the use of catalytic converters in cars. These are devices that turn the pollutants and toxic gases produced from combustion engines into less-toxic pollutants by catalysis through redox reactions ( 25 ). In Greece, the use of private cars was restricted by tracking their license plates in order to reduce traffic congestion during rush hour ( 25 ).

Concerning industrial emissions, collectors and closed systems can keep the air pollution to the minimal standards imposed by legislation ( 26 ).

Current strategies to improve air quality require an estimation of the economic value of the benefits gained from proposed programs. These proposed programs by public authorities, and directives are issued with guidelines to be respected.

In Europe, air quality limit values AQLVs (Air Quality Limit Values) are issued for setting off planning claims ( 27 ). In the USA, the NAAQS (National Ambient Air Quality Standards) establish the national air quality limit values ( 27 ). While both standards and directives are based on different mechanisms, significant success has been achieved in the reduction of overall emissions and associated health and environmental effects ( 27 ). The European Directive identifies geographical areas of risk exposure as monitoring/assessment zones to record the emission sources and levels of air pollution ( 27 ), whereas the USA establishes global geographical air quality criteria according to the severity of their air quality problem and records all sources of the pollutants and their precursors ( 27 ).

In this vein, funds have been financing, directly or indirectly, projects related to air quality along with the technical infrastructure to maintain good air quality. These plans focus on an inventory of databases from air quality environmental planning awareness campaigns. Moreover, pollution measures of air emissions may be taken for vehicles, machines, and industries in urban areas.

Technological innovation can only be successful if it is able to meet the needs of society. In this sense, technology must reflect the decision-making practices and procedures of those involved in risk assessment and evaluation and act as a facilitator in providing information and assessments to enable decision makers to make the best decisions possible. Summarizing the aforementioned in order to design an effective air quality control strategy, several aspects must be considered: environmental factors and ambient air quality conditions, engineering factors and air pollutant characteristics, and finally, economic operating costs for technological improvement and administrative and legal costs. Considering the economic factor, competitiveness through neoliberal concepts is offering a solution to environmental problems ( 22 ).

The development of environmental governance, along with technological progress, has initiated the deployment of a dialogue. Environmental politics has created objections and points of opposition between different political parties, scientists, media, and governmental and non-governmental organizations ( 22 ). Radical environmental activism actions and movements have been created ( 22 ). The rise of the new information and communication technologies (ICTs) are many times examined as to whether and in which way they have influenced means of communication and social movements such as activism ( 28 ). Since the 1990s, the term “digital activism” has been used increasingly and in many different disciplines ( 29 ). Nowadays, multiple digital technologies can be used to produce a digital activism outcome on environmental issues. More specifically, devices with online capabilities such as computers or mobile phones are being used as a way to pursue change in political and social affairs ( 30 ).

In the present paper, we focus on the sources of environmental pollution in relation to public health and propose some solutions and interventions that may be of interest to environmental legislators and decision makers.

Sources of Exposure

It is known that the majority of environmental pollutants are emitted through large-scale human activities such as the use of industrial machinery, power-producing stations, combustion engines, and cars. Because these activities are performed at such a large scale, they are by far the major contributors to air pollution, with cars estimated to be responsible for approximately 80% of today's pollution ( 31 ). Some other human activities are also influencing our environment to a lesser extent, such as field cultivation techniques, gas stations, fuel tanks heaters, and cleaning procedures ( 32 ), as well as several natural sources, such as volcanic and soil eruptions and forest fires.

The classification of air pollutants is based mainly on the sources producing pollution. Therefore, it is worth mentioning the four main sources, following the classification system: Major sources, Area sources, Mobile sources, and Natural sources.

Major sources include the emission of pollutants from power stations, refineries, and petrochemicals, the chemical and fertilizer industries, metallurgical and other industrial plants, and, finally, municipal incineration.

Indoor area sources include domestic cleaning activities, dry cleaners, printing shops, and petrol stations.

Mobile sources include automobiles, cars, railways, airways, and other types of vehicles.

Finally, natural sources include, as stated previously, physical disasters ( 33 ) such as forest fire, volcanic erosion, dust storms, and agricultural burning.

However, many classification systems have been proposed. Another type of classification is a grouping according to the recipient of the pollution, as follows:

Air pollution is determined as the presence of pollutants in the air in large quantities for long periods. Air pollutants are dispersed particles, hydrocarbons, CO, CO 2 , NO, NO 2 , SO 3 , etc.

Water pollution is organic and inorganic charge and biological charge ( 10 ) at high levels that affect the water quality ( 34 , 35 ).

Soil pollution occurs through the release of chemicals or the disposal of wastes, such as heavy metals, hydrocarbons, and pesticides.

Air pollution can influence the quality of soil and water bodies by polluting precipitation, falling into water and soil environments ( 34 , 36 ). Notably, the chemistry of the soil can be amended due to acid precipitation by affecting plants, cultures, and water quality ( 37 ). Moreover, movement of heavy metals is favored by soil acidity, and metals are so then moving into the watery environment. It is known that heavy metals such as aluminum are noxious to wildlife and fishes. Soil quality seems to be of importance, as soils with low calcium carbonate levels are at increased jeopardy from acid rain. Over and above rain, snow and particulate matter drip into watery ' bodies ( 36 , 38 ).

Lastly, pollution is classified following type of origin:

Radioactive and nuclear pollution , releasing radioactive and nuclear pollutants into water, air, and soil during nuclear explosions and accidents, from nuclear weapons, and through handling or disposal of radioactive sewage.

Radioactive materials can contaminate surface water bodies and, being noxious to the environment, plants, animals, and humans. It is known that several radioactive substances such as radium and uranium concentrate in the bones and can cause cancers ( 38 , 39 ).

Noise pollution is produced by machines, vehicles, traffic noises, and musical installations that are harmful to our hearing.

The World Health Organization introduced the term DALYs. The DALYs for a disease or health condition is defined as the sum of the Years of Life Lost (YLL) due to premature mortality in the population and the Years Lost due to Disability (YLD) for people living with the health condition or its consequences ( 39 ). In Europe, air pollution is the main cause of disability-adjusted life years lost (DALYs), followed by noise pollution. The potential relationships of noise and air pollution with health have been studied ( 40 ). The study found that DALYs related to noise were more important than those related to air pollution, as the effects of environmental noise on cardiovascular disease were independent of air pollution ( 40 ). Environmental noise should be counted as an independent public health risk ( 40 ).

Environmental pollution occurs when changes in the physical, chemical, or biological constituents of the environment (air masses, temperature, climate, etc.) are produced.

Pollutants harm our environment either by increasing levels above normal or by introducing harmful toxic substances. Primary pollutants are directly produced from the above sources, and secondary pollutants are emitted as by-products of the primary ones. Pollutants can be biodegradable or non-biodegradable and of natural origin or anthropogenic, as stated previously. Moreover, their origin can be a unique source (point-source) or dispersed sources.

Pollutants have differences in physical and chemical properties, explaining the discrepancy in their capacity for producing toxic effects. As an example, we state here that aerosol compounds ( 41 – 43 ) have a greater toxicity than gaseous compounds due to their tiny size (solid or liquid) in the atmosphere; they have a greater penetration capacity. Gaseous compounds are eliminated more easily by our respiratory system ( 41 ). These particles are able to damage lungs and can even enter the bloodstream ( 41 ), leading to the premature deaths of millions of people yearly. Moreover, the aerosol acidity ([H+]) seems to considerably enhance the production of secondary organic aerosols (SOA), but this last aspect is not supported by other scientific teams ( 38 ).

Climate and Pollution

Air pollution and climate change are closely related. Climate is the other side of the same coin that reduces the quality of our Earth ( 44 ). Pollutants such as black carbon, methane, tropospheric ozone, and aerosols affect the amount of incoming sunlight. As a result, the temperature of the Earth is increasing, resulting in the melting of ice, icebergs, and glaciers.

In this vein, climatic changes will affect the incidence and prevalence of both residual and imported infections in Europe. Climate and weather affect the duration, timing, and intensity of outbreaks strongly and change the map of infectious diseases in the globe ( 45 ). Mosquito-transmitted parasitic or viral diseases are extremely climate-sensitive, as warming firstly shortens the pathogen incubation period and secondly shifts the geographic map of the vector. Similarly, water-warming following climate changes leads to a high incidence of waterborne infections. Recently, in Europe, eradicated diseases seem to be emerging due to the migration of population, for example, cholera, poliomyelitis, tick-borne encephalitis, and malaria ( 46 ).

The spread of epidemics is associated with natural climate disasters and storms, which seem to occur more frequently nowadays ( 47 ). Malnutrition and disequilibration of the immune system are also associated with the emerging infections affecting public health ( 48 ).

The Chikungunya virus “took the airplane” from the Indian Ocean to Europe, as outbreaks of the disease were registered in Italy ( 49 ) as well as autochthonous cases in France ( 50 ).

An increase in cryptosporidiosis in the United Kingdom and in the Czech Republic seems to have occurred following flooding ( 36 , 51 ).

As stated previously, aerosols compounds are tiny in size and considerably affect the climate. They are able to dissipate sunlight (the albedo phenomenon) by dispersing a quarter of the sun's rays back to space and have cooled the global temperature over the last 30 years ( 52 ).

Air Pollutants

The World Health Organization (WHO) reports on six major air pollutants, namely particle pollution, ground-level ozone, carbon monoxide, sulfur oxides, nitrogen oxides, and lead. Air pollution can have a disastrous effect on all components of the environment, including groundwater, soil, and air. Additionally, it poses a serious threat to living organisms. In this vein, our interest is mainly to focus on these pollutants, as they are related to more extensive and severe problems in human health and environmental impact. Acid rain, global warming, the greenhouse effect, and climate changes have an important ecological impact on air pollution ( 53 ).

Particulate Matter (PM) and Health

Studies have shown a relationship between particulate matter (PM) and adverse health effects, focusing on either short-term (acute) or long-term (chronic) PM exposure.

Particulate matter (PM) is usually formed in the atmosphere as a result of chemical reactions between the different pollutants. The penetration of particles is closely dependent on their size ( 53 ). Particulate Matter (PM) was defined as a term for particles by the United States Environmental Protection Agency ( 54 ). Particulate matter (PM) pollution includes particles with diameters of 10 micrometers (μm) or smaller, called PM 10 , and extremely fine particles with diameters that are generally 2.5 micrometers (μm) and smaller.

Particulate matter contains tiny liquid or solid droplets that can be inhaled and cause serious health effects ( 55 ). Particles <10 μm in diameter (PM 10 ) after inhalation can invade the lungs and even reach the bloodstream. Fine particles, PM 2.5 , pose a greater risk to health ( 6 , 56 ) ( Table 1 ).

www.frontiersin.org

Table 1 . Penetrability according to particle size.

Multiple epidemiological studies have been performed on the health effects of PM. A positive relation was shown between both short-term and long-term exposures of PM 2.5 and acute nasopharyngitis ( 56 ). In addition, long-term exposure to PM for years was found to be related to cardiovascular diseases and infant mortality.

Those studies depend on PM 2.5 monitors and are restricted in terms of study area or city area due to a lack of spatially resolved daily PM 2.5 concentration data and, in this way, are not representative of the entire population. Following a recent epidemiological study by the Department of Environmental Health at Harvard School of Public Health (Boston, MA) ( 57 ), it was reported that, as PM 2.5 concentrations vary spatially, an exposure error (Berkson error) seems to be produced, and the relative magnitudes of the short- and long-term effects are not yet completely elucidated. The team developed a PM 2.5 exposure model based on remote sensing data for assessing short- and long-term human exposures ( 57 ). This model permits spatial resolution in short-term effects plus the assessment of long-term effects in the whole population.

Moreover, respiratory diseases and affection of the immune system are registered as long-term chronic effects ( 58 ). It is worth noting that people with asthma, pneumonia, diabetes, and respiratory and cardiovascular diseases are especially susceptible and vulnerable to the effects of PM. PM 2.5 , followed by PM 10 , are strongly associated with diverse respiratory system diseases ( 59 ), as their size permits them to pierce interior spaces ( 60 ). The particles produce toxic effects according to their chemical and physical properties. The components of PM 10 and PM 2.5 can be organic (polycyclic aromatic hydrocarbons, dioxins, benzene, 1-3 butadiene) or inorganic (carbon, chlorides, nitrates, sulfates, metals) in nature ( 55 ).

Particulate Matter (PM) is divided into four main categories according to type and size ( 61 ) ( Table 2 ).

www.frontiersin.org

Table 2 . Types and sizes of particulate Matter (PM).

Gas contaminants include PM in aerial masses.

Particulate contaminants include contaminants such as smog, soot, tobacco smoke, oil smoke, fly ash, and cement dust.

Biological Contaminants are microorganisms (bacteria, viruses, fungi, mold, and bacterial spores), cat allergens, house dust and allergens, and pollen.

Types of Dust include suspended atmospheric dust, settling dust, and heavy dust.

Finally, another fact is that the half-lives of PM 10 and PM 2.5 particles in the atmosphere is extended due to their tiny dimensions; this permits their long-lasting suspension in the atmosphere and even their transfer and spread to distant destinations where people and the environment may be exposed to the same magnitude of pollution ( 53 ). They are able to change the nutrient balance in watery ecosystems, damage forests and crops, and acidify water bodies.

As stated, PM 2.5 , due to their tiny size, are causing more serious health effects. These aforementioned fine particles are the main cause of the “haze” formation in different metropolitan areas ( 12 , 13 , 61 ).

Ozone Impact in the Atmosphere

Ozone (O 3 ) is a gas formed from oxygen under high voltage electric discharge ( 62 ). It is a strong oxidant, 52% stronger than chlorine. It arises in the stratosphere, but it could also arise following chain reactions of photochemical smog in the troposphere ( 63 ).

Ozone can travel to distant areas from its initial source, moving with air masses ( 64 ). It is surprising that ozone levels over cities are low in contrast to the increased amounts occuring in urban areas, which could become harmful for cultures, forests, and vegetation ( 65 ) as it is reducing carbon assimilation ( 66 ). Ozone reduces growth and yield ( 47 , 48 ) and affects the plant microflora due to its antimicrobial capacity ( 67 , 68 ). In this regard, ozone acts upon other natural ecosystems, with microflora ( 69 , 70 ) and animal species changing their species composition ( 71 ). Ozone increases DNA damage in epidermal keratinocytes and leads to impaired cellular function ( 72 ).

Ground-level ozone (GLO) is generated through a chemical reaction between oxides of nitrogen and VOCs emitted from natural sources and/or following anthropogenic activities.

Ozone uptake usually occurs by inhalation. Ozone affects the upper layers of the skin and the tear ducts ( 73 ). A study of short-term exposure of mice to high levels of ozone showed malondialdehyde formation in the upper skin (epidermis) but also depletion in vitamins C and E. It is likely that ozone levels are not interfering with the skin barrier function and integrity to predispose to skin disease ( 74 ).

Due to the low water-solubility of ozone, inhaled ozone has the capacity to penetrate deeply into the lungs ( 75 ).

Toxic effects induced by ozone are registered in urban areas all over the world, causing biochemical, morphologic, functional, and immunological disorders ( 76 ).

The European project (APHEA2) focuses on the acute effects of ambient ozone concentrations on mortality ( 77 ). Daily ozone concentrations compared to the daily number of deaths were reported from different European cities for a 3-year period. During the warm period of the year, an observed increase in ozone concentration was associated with an increase in the daily number of deaths (0.33%), in the number of respiratory deaths (1.13%), and in the number of cardiovascular deaths (0.45%). No effect was observed during wintertime.

Carbon Monoxide (CO)

Carbon monoxide is produced by fossil fuel when combustion is incomplete. The symptoms of poisoning due to inhaling carbon monoxide include headache, dizziness, weakness, nausea, vomiting, and, finally, loss of consciousness.

The affinity of carbon monoxide to hemoglobin is much greater than that of oxygen. In this vein, serious poisoning may occur in people exposed to high levels of carbon monoxide for a long period of time. Due to the loss of oxygen as a result of the competitive binding of carbon monoxide, hypoxia, ischemia, and cardiovascular disease are observed.

Carbon monoxide affects the greenhouses gases that are tightly connected to global warming and climate. This should lead to an increase in soil and water temperatures, and extreme weather conditions or storms may occur ( 68 ).

However, in laboratory and field experiments, it has been seen to produce increased plant growth ( 78 ).

Nitrogen Oxide (NO 2 )

Nitrogen oxide is a traffic-related pollutant, as it is emitted from automobile motor engines ( 79 , 80 ). It is an irritant of the respiratory system as it penetrates deep in the lung, inducing respiratory diseases, coughing, wheezing, dyspnea, bronchospasm, and even pulmonary edema when inhaled at high levels. It seems that concentrations over 0.2 ppm produce these adverse effects in humans, while concentrations higher than 2.0 ppm affect T-lymphocytes, particularly the CD8+ cells and NK cells that produce our immune response ( 81 ).It is reported that long-term exposure to high levels of nitrogen dioxide can be responsible for chronic lung disease. Long-term exposure to NO 2 can impair the sense of smell ( 81 ).

However, systems other than respiratory ones can be involved, as symptoms such as eye, throat, and nose irritation have been registered ( 81 ).

High levels of nitrogen dioxide are deleterious to crops and vegetation, as they have been observed to reduce crop yield and plant growth efficiency. Moreover, NO 2 can reduce visibility and discolor fabrics ( 81 ).

Sulfur Dioxide (SO 2 )

Sulfur dioxide is a harmful gas that is emitted mainly from fossil fuel consumption or industrial activities. The annual standard for SO 2 is 0.03 ppm ( 82 ). It affects human, animal, and plant life. Susceptible people as those with lung disease, old people, and children, who present a higher risk of damage. The major health problems associated with sulfur dioxide emissions in industrialized areas are respiratory irritation, bronchitis, mucus production, and bronchospasm, as it is a sensory irritant and penetrates deep into the lung converted into bisulfite and interacting with sensory receptors, causing bronchoconstriction. Moreover, skin redness, damage to the eyes (lacrimation and corneal opacity) and mucous membranes, and worsening of pre-existing cardiovascular disease have been observed ( 81 ).

Environmental adverse effects, such as acidification of soil and acid rain, seem to be associated with sulfur dioxide emissions ( 83 ).

Lead is a heavy metal used in different industrial plants and emitted from some petrol motor engines, batteries, radiators, waste incinerators, and waste waters ( 84 ).

Moreover, major sources of lead pollution in the air are metals, ore, and piston-engine aircraft. Lead poisoning is a threat to public health due to its deleterious effects upon humans, animals, and the environment, especially in the developing countries.

Exposure to lead can occur through inhalation, ingestion, and dermal absorption. Trans- placental transport of lead was also reported, as lead passes through the placenta unencumbered ( 85 ). The younger the fetus is, the more harmful the toxic effects. Lead toxicity affects the fetal nervous system; edema or swelling of the brain is observed ( 86 ). Lead, when inhaled, accumulates in the blood, soft tissue, liver, lung, bones, and cardiovascular, nervous, and reproductive systems. Moreover, loss of concentration and memory, as well as muscle and joint pain, were observed in adults ( 85 , 86 ).

Children and newborns ( 87 ) are extremely susceptible even to minimal doses of lead, as it is a neurotoxicant and causes learning disabilities, impairment of memory, hyperactivity, and even mental retardation.

Elevated amounts of lead in the environment are harmful to plants and crop growth. Neurological effects are observed in vertebrates and animals in association with high lead levels ( 88 ).

Polycyclic Aromatic Hydrocarbons(PAHs)

The distribution of PAHs is ubiquitous in the environment, as the atmosphere is the most important means of their dispersal. They are found in coal and in tar sediments. Moreover, they are generated through incomplete combustion of organic matter as in the cases of forest fires, incineration, and engines ( 89 ). PAH compounds, such as benzopyrene, acenaphthylene, anthracene, and fluoranthene are recognized as toxic, mutagenic, and carcinogenic substances. They are an important risk factor for lung cancer ( 89 ).

Volatile Organic Compounds(VOCs)

Volatile organic compounds (VOCs), such as toluene, benzene, ethylbenzene, and xylene ( 90 ), have been found to be associated with cancer in humans ( 91 ). The use of new products and materials has actually resulted in increased concentrations of VOCs. VOCs pollute indoor air ( 90 ) and may have adverse effects on human health ( 91 ). Short-term and long-term adverse effects on human health are observed. VOCs are responsible for indoor air smells. Short-term exposure is found to cause irritation of eyes, nose, throat, and mucosal membranes, while those of long duration exposure include toxic reactions ( 92 ). Predictable assessment of the toxic effects of complex VOC mixtures is difficult to estimate, as these pollutants can have synergic, antagonistic, or indifferent effects ( 91 , 93 ).

Dioxins originate from industrial processes but also come from natural processes, such as forest fires and volcanic eruptions. They accumulate in foods such as meat and dairy products, fish and shellfish, and especially in the fatty tissue of animals ( 94 ).

Short-period exhibition to high dioxin concentrations may result in dark spots and lesions on the skin ( 94 ). Long-term exposure to dioxins can cause developmental problems, impairment of the immune, endocrine and nervous systems, reproductive infertility, and cancer ( 94 ).

Without any doubt, fossil fuel consumption is responsible for a sizeable part of air contamination. This contamination may be anthropogenic, as in agricultural and industrial processes or transportation, while contamination from natural sources is also possible. Interestingly, it is of note that the air quality standards established through the European Air Quality Directive are somewhat looser than the WHO guidelines, which are stricter ( 95 ).

Effect of Air Pollution on Health

The most common air pollutants are ground-level ozone and Particulates Matter (PM). Air pollution is distinguished into two main types:

Outdoor pollution is the ambient air pollution.

Indoor pollution is the pollution generated by household combustion of fuels.

People exposed to high concentrations of air pollutants experience disease symptoms and states of greater and lesser seriousness. These effects are grouped into short- and long-term effects affecting health.

Susceptible populations that need to be aware of health protection measures include old people, children, and people with diabetes and predisposing heart or lung disease, especially asthma.

As extensively stated previously, according to a recent epidemiological study from Harvard School of Public Health, the relative magnitudes of the short- and long-term effects have not been completely clarified ( 57 ) due to the different epidemiological methodologies and to the exposure errors. New models are proposed for assessing short- and long-term human exposure data more successfully ( 57 ). Thus, in the present section, we report the more common short- and long-term health effects but also general concerns for both types of effects, as these effects are often dependent on environmental conditions, dose, and individual susceptibility.

Short-term effects are temporary and range from simple discomfort, such as irritation of the eyes, nose, skin, throat, wheezing, coughing and chest tightness, and breathing difficulties, to more serious states, such as asthma, pneumonia, bronchitis, and lung and heart problems. Short-term exposure to air pollution can also cause headaches, nausea, and dizziness.

These problems can be aggravated by extended long-term exposure to the pollutants, which is harmful to the neurological, reproductive, and respiratory systems and causes cancer and even, rarely, deaths.

The long-term effects are chronic, lasting for years or the whole life and can even lead to death. Furthermore, the toxicity of several air pollutants may also induce a variety of cancers in the long term ( 96 ).

As stated already, respiratory disorders are closely associated with the inhalation of air pollutants. These pollutants will invade through the airways and will accumulate at the cells. Damage to target cells should be related to the pollutant component involved and its source and dose. Health effects are also closely dependent on country, area, season, and time. An extended exposure duration to the pollutant should incline to long-term health effects in relation also to the above factors.

Particulate Matter (PMs), dust, benzene, and O 3 cause serious damage to the respiratory system ( 97 ). Moreover, there is a supplementary risk in case of existing respiratory disease such as asthma ( 98 ). Long-term effects are more frequent in people with a predisposing disease state. When the trachea is contaminated by pollutants, voice alterations may be remarked after acute exposure. Chronic obstructive pulmonary disease (COPD) may be induced following air pollution, increasing morbidity and mortality ( 99 ). Long-term effects from traffic, industrial air pollution, and combustion of fuels are the major factors for COPD risk ( 99 ).

Multiple cardiovascular effects have been observed after exposure to air pollutants ( 100 ). Changes occurred in blood cells after long-term exposure may affect cardiac functionality. Coronary arteriosclerosis was reported following long-term exposure to traffic emissions ( 101 ), while short-term exposure is related to hypertension, stroke, myocardial infracts, and heart insufficiency. Ventricle hypertrophy is reported to occur in humans after long-time exposure to nitrogen oxide (NO 2 ) ( 102 , 103 ).

Neurological effects have been observed in adults and children after extended-term exposure to air pollutants.

Psychological complications, autism, retinopathy, fetal growth, and low birth weight seem to be related to long-term air pollution ( 83 ). The etiologic agent of the neurodegenerative diseases (Alzheimer's and Parkinson's) is not yet known, although it is believed that extended exposure to air pollution seems to be a factor. Specifically, pesticides and metals are cited as etiological factors, together with diet. The mechanisms in the development of neurodegenerative disease include oxidative stress, protein aggregation, inflammation, and mitochondrial impairment in neurons ( 104 ) ( Figure 1 ).

www.frontiersin.org

Figure 1 . Impact of air pollutants on the brain.

Brain inflammation was observed in dogs living in a highly polluted area in Mexico for a long period ( 105 ). In human adults, markers of systemic inflammation (IL-6 and fibrinogen) were found to be increased as an immediate response to PNC on the IL-6 level, possibly leading to the production of acute-phase proteins ( 106 ). The progression of atherosclerosis and oxidative stress seem to be the mechanisms involved in the neurological disturbances caused by long-term air pollution. Inflammation comes secondary to the oxidative stress and seems to be involved in the impairment of developmental maturation, affecting multiple organs ( 105 , 107 ). Similarly, other factors seem to be involved in the developmental maturation, which define the vulnerability to long-term air pollution. These include birthweight, maternal smoking, genetic background and socioeconomic environment, as well as education level.

However, diet, starting from breast-feeding, is another determinant factor. Diet is the main source of antioxidants, which play a key role in our protection against air pollutants ( 108 ). Antioxidants are free radical scavengers and limit the interaction of free radicals in the brain ( 108 ). Similarly, genetic background may result in a differential susceptibility toward the oxidative stress pathway ( 60 ). For example, antioxidant supplementation with vitamins C and E appears to modulate the effect of ozone in asthmatic children homozygous for the GSTM1 null allele ( 61 ). Inflammatory cytokines released in the periphery (e.g., respiratory epithelia) upregulate the innate immune Toll-like receptor 2. Such activation and the subsequent events leading to neurodegeneration have recently been observed in lung lavage in mice exposed to ambient Los Angeles (CA, USA) particulate matter ( 61 ). In children, neurodevelopmental morbidities were observed after lead exposure. These children developed aggressive and delinquent behavior, reduced intelligence, learning difficulties, and hyperactivity ( 109 ). No level of lead exposure seems to be “safe,” and the scientific community has asked the Centers for Disease Control and Prevention (CDC) to reduce the current screening guideline of 10 μg/dl ( 109 ).

It is important to state that impact on the immune system, causing dysfunction and neuroinflammation ( 104 ), is related to poor air quality. Yet, increases in serum levels of immunoglobulins (IgA, IgM) and the complement component C3 are observed ( 106 ). Another issue is that antigen presentation is affected by air pollutants, as there is an upregulation of costimulatory molecules such as CD80 and CD86 on macrophages ( 110 ).

As is known, skin is our shield against ultraviolet radiation (UVR) and other pollutants, as it is the most exterior layer of our body. Traffic-related pollutants, such as PAHs, VOCs, oxides, and PM, may cause pigmented spots on our skin ( 111 ). On the one hand, as already stated, when pollutants penetrate through the skin or are inhaled, damage to the organs is observed, as some of these pollutants are mutagenic and carcinogenic, and, specifically, they affect the liver and lung. On the other hand, air pollutants (and those in the troposphere) reduce the adverse effects of ultraviolet radiation UVR in polluted urban areas ( 111 ). Air pollutants absorbed by the human skin may contribute to skin aging, psoriasis, acne, urticaria, eczema, and atopic dermatitis ( 111 ), usually caused by exposure to oxides and photochemical smoke ( 111 ). Exposure to PM and cigarette smoking act as skin-aging agents, causing spots, dyschromia, and wrinkles. Lastly, pollutants have been associated with skin cancer ( 111 ).

Higher morbidity is reported to fetuses and children when exposed to the above dangers. Impairment in fetal growth, low birth weight, and autism have been reported ( 112 ).

Another exterior organ that may be affected is the eye. Contamination usually comes from suspended pollutants and may result in asymptomatic eye outcomes, irritation ( 112 ), retinopathy, or dry eye syndrome ( 113 , 114 ).

Environmental Impact of Air Pollution

Air pollution is harming not only human health but also the environment ( 115 ) in which we live. The most important environmental effects are as follows.

Acid rain is wet (rain, fog, snow) or dry (particulates and gas) precipitation containing toxic amounts of nitric and sulfuric acids. They are able to acidify the water and soil environments, damage trees and plantations, and even damage buildings and outdoor sculptures, constructions, and statues.

Haze is produced when fine particles are dispersed in the air and reduce the transparency of the atmosphere. It is caused by gas emissions in the air coming from industrial facilities, power plants, automobiles, and trucks.

Ozone , as discussed previously, occurs both at ground level and in the upper level (stratosphere) of the Earth's atmosphere. Stratospheric ozone is protecting us from the Sun's harmful ultraviolet (UV) rays. In contrast, ground-level ozone is harmful to human health and is a pollutant. Unfortunately, stratospheric ozone is gradually damaged by ozone-depleting substances (i.e., chemicals, pesticides, and aerosols). If this protecting stratospheric ozone layer is thinned, then UV radiation can reach our Earth, with harmful effects for human life (skin cancer) ( 116 ) and crops ( 117 ). In plants, ozone penetrates through the stomata, inducing them to close, which blocks CO 2 transfer and induces a reduction in photosynthesis ( 118 ).

Global climate change is an important issue that concerns mankind. As is known, the “greenhouse effect” keeps the Earth's temperature stable. Unhappily, anthropogenic activities have destroyed this protecting temperature effect by producing large amounts of greenhouse gases, and global warming is mounting, with harmful effects on human health, animals, forests, wildlife, agriculture, and the water environment. A report states that global warming is adding to the health risks of poor people ( 119 ).

People living in poorly constructed buildings in warm-climate countries are at high risk for heat-related health problems as temperatures mount ( 119 ).

Wildlife is burdened by toxic pollutants coming from the air, soil, or the water ecosystem and, in this way, animals can develop health problems when exposed to high levels of pollutants. Reproductive failure and birth effects have been reported.

Eutrophication is occurring when elevated concentrations of nutrients (especially nitrogen) stimulate the blooming of aquatic algae, which can cause a disequilibration in the diversity of fish and their deaths.

Without a doubt, there is a critical concentration of pollution that an ecosystem can tolerate without being destroyed, which is associated with the ecosystem's capacity to neutralize acidity. The Canada Acid Rain Program established this load at 20 kg/ha/yr ( 120 ).

Hence, air pollution has deleterious effects on both soil and water ( 121 ). Concerning PM as an air pollutant, its impact on crop yield and food productivity has been reported. Its impact on watery bodies is associated with the survival of living organisms and fishes and their productivity potential ( 121 ).

An impairment in photosynthetic rhythm and metabolism is observed in plants exposed to the effects of ozone ( 121 ).

Sulfur and nitrogen oxides are involved in the formation of acid rain and are harmful to plants and marine organisms.

Last but not least, as mentioned above, the toxicity associated with lead and other metals is the main threat to our ecosystems (air, water, and soil) and living creatures ( 121 ).

In 2018, during the first WHO Global Conference on Air Pollution and Health, the WHO's General Director, Dr. Tedros Adhanom Ghebreyesus, called air pollution a “silent public health emergency” and “the new tobacco” ( 122 ).

Undoubtedly, children are particularly vulnerable to air pollution, especially during their development. Air pollution has adverse effects on our lives in many different respects.

Diseases associated with air pollution have not only an important economic impact but also a societal impact due to absences from productive work and school.

Despite the difficulty of eradicating the problem of anthropogenic environmental pollution, a successful solution could be envisaged as a tight collaboration of authorities, bodies, and doctors to regularize the situation. Governments should spread sufficient information and educate people and should involve professionals in these issues so as to control the emergence of the problem successfully.

Technologies to reduce air pollution at the source must be established and should be used in all industries and power plants. The Kyoto Protocol of 1997 set as a major target the reduction of GHG emissions to below 5% by 2012 ( 123 ). This was followed by the Copenhagen summit, 2009 ( 124 ), and then the Durban summit of 2011 ( 125 ), where it was decided to keep to the same line of action. The Kyoto protocol and the subsequent ones were ratified by many countries. Among the pioneers who adopted this important protocol for the world's environmental and climate “health” was China ( 3 ). As is known, China is a fast-developing economy and its GDP (Gross Domestic Product) is expected to be very high by 2050, which is defined as the year of dissolution of the protocol for the decrease in gas emissions.

A more recent international agreement of crucial importance for climate change is the Paris Agreement of 2015, issued by the UNFCCC (United Nations Climate Change Committee). This latest agreement was ratified by a plethora of UN (United Nations) countries as well as the countries of the European Union ( 126 ). In this vein, parties should promote actions and measures to enhance numerous aspects around the subject. Boosting education, training, public awareness, and public participation are some of the relevant actions for maximizing the opportunities to achieve the targets and goals on the crucial matter of climate change and environmental pollution ( 126 ). Without any doubt, technological improvements makes our world easier and it seems difficult to reduce the harmful impact caused by gas emissions, we could limit its use by seeking reliable approaches.

Synopsizing, a global prevention policy should be designed in order to combat anthropogenic air pollution as a complement to the correct handling of the adverse health effects associated with air pollution. Sustainable development practices should be applied, together with information coming from research in order to handle the problem effectively.

At this point, international cooperation in terms of research, development, administration policy, monitoring, and politics is vital for effective pollution control. Legislation concerning air pollution must be aligned and updated, and policy makers should propose the design of a powerful tool of environmental and health protection. As a result, the main proposal of this essay is that we should focus on fostering local structures to promote experience and practice and extrapolate these to the international level through developing effective policies for sustainable management of ecosystems.

Author Contributions

All authors listed have made a substantial, direct and intellectual contribution to the work, and approved it for publication.

Conflict of Interest

IM is employed by the company Delphis S.A.

The remaining authors declare that the present review paper was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

1. WHO. Air Pollution . WHO. Available online at: http://www.who.int/airpollution/en/ (accessed October 5, 2019).

Google Scholar

2. Moores FC. Climate change and air pollution: exploring the synergies and potential for mitigation in industrializing countries. Sustainability . (2009) 1:43–54. doi: 10.3390/su1010043

CrossRef Full Text | Google Scholar

3. USGCRP (2009). Global Climate Change Impacts in the United States. In: Karl TR, Melillo JM, Peterson TC, editors. Climate Change Impacts by Sectors: Ecosystems . New York, NY: United States Global Change Research Program. Cambridge University Press.

4. Marlon JR, Bloodhart B, Ballew MT, Rolfe-Redding J, Roser-Renouf C, Leiserowitz A, et al. (2019). How hope and doubt affect climate change mobilization. Front. Commun. 4:20. doi: 10.3389/fcomm.2019.00020

5. Eze IC, Schaffner E, Fischer E, Schikowski T, Adam M, Imboden M, et al. Long- term air pollution exposure and diabetes in a population-based Swiss cohort. Environ Int . (2014) 70:95–105. doi: 10.1016/j.envint.2014.05.014

PubMed Abstract | CrossRef Full Text | Google Scholar

6. Kelishadi R, Poursafa P. Air pollution and non-respiratory health hazards for children. Arch Med Sci . (2010) 6:483–95. doi: 10.5114/aoms.2010.14458

7. Manucci PM, Franchini M. Health effects of ambient air pollution in developing countries. Int J Environ Res Public Health . (2017) 14:1048. doi: 10.3390/ijerph14091048

8. Burden of Disease from Ambient and Household Air Pollution . Available online: http://who.int/phe/health_topics/outdoorair/databases/en/ (accessed August 15, 2017).

9. Hashim D, Boffetta P. Occupational and environmental exposures and cancers in developing countries. Ann Glob Health . (2014) 80:393–411. doi: 10.1016/j.aogh.2014.10.002

10. Guo Y, Zeng H, Zheng R, Li S, Pereira G, Liu Q, et al. The burden of lung cancer mortality attributable to fine particles in China. Total Environ Sci . (2017) 579:1460–6. doi: 10.1016/j.scitotenv.2016.11.147

11. Hou Q, An XQ, Wang Y, Guo JP. An evaluation of resident exposure to respirable particulate matter and health economic loss in Beijing during Beijing 2008 Olympic Games. Sci Total Environ . (2010) 408:4026–32. doi: 10.1016/j.scitotenv.2009.12.030

12. Kan H, Chen R, Tong S. Ambient air pollution, climate change, and population health in China. Environ Int . (2012) 42:10–9. doi: 10.1016/j.envint.2011.03.003

13. Burroughs Peña MS, Rollins A. Environmental exposures and cardiovascular disease: a challenge for health and development in low- and middle-income countries. Cardiol Clin . (2017) 35:71–86. doi: 10.1016/j.ccl.2016.09.001

14. Kankaria A, Nongkynrih B, Gupta S. Indoor air pollution in india: implications on health and its control. Indian J Comm Med . 39:203–7. doi: 10.4103/0970-0218.143019

15. Parajuli I, Lee H, Shrestha KR. Indoor air quality and ventilation assessment of rural mountainous households of Nepal. Int J Sust Built Env . (2016) 5:301–11. doi: 10.1016/j.ijsbe.2016.08.003

16. Saud T, Gautam R, Mandal TK, Gadi R, Singh DP, Sharma SK. Emission estimates of organic and elemental carbon from household biomass fuel used over the Indo-Gangetic Plain (IGP), India. Atmos Environ . (2012) 61:212–20. doi: 10.1016/j.atmosenv.2012.07.030

17. Singh DP, Gadi R, Mandal TK, Saud T, Saxena M, Sharma SK. Emissions estimates of PAH from biomass fuels used in rural sector of Indo-Gangetic Plains of India. Atmos Environ . (2013) 68:120–6. doi: 10.1016/j.atmosenv.2012.11.042

18. Dherani M, Pope D, Mascarenhas M, Smith KR, Weber M BN. Indoor air pollution from unprocessed solid fuel use and pneumonia risk in children aged under five years: a systematic review and meta-analysis. Bull World Health Organ . (2008) 86:390–4. doi: 10.2471/BLT.07.044529

19. Kassomenos P, Kelessis A, Petrakakis M, Zoumakis N, Christides T, Paschalidou AK. Air Quality assessment in a heavily-polluted urban Mediterranean environment through Air Quality indices. Ecol Indic . (2012) 18:259–68. doi: 10.1016/j.ecolind.2011.11.021

20. Dockery DW, Pope CA, Xu X, Spengler JD, Ware JH, Fay ME, et al. An association between air pollution and mortality in six U.S. cities. N Engl J Med . (1993) 329:1753–9. doi: 10.1056/NEJM199312093292401

21. Schwela DH, Köth-Jahr I. Leitfaden für die Aufstellung von Luftreinhalteplänen [Guidelines for the Implementation of Clean Air Implementation Plans]. Landesumweltamt des Landes Nordrhein Westfalen. State Environmental Service of the State of North Rhine-Westphalia (1994).

22. Newlands M. Environmental Activism, Environmental Politics, and Representation: The Framing of the British Environmental Activist Movement . Ph.D. thesis. University of East London, United Kingdom (2015).

23. NEPIS (National Service Center for Environmental Publications) US EPA (Environmental Protection Agency) (2017). Available online at: https://www.epa.gov/clean-air-act-overview/air-pollution-current-and-future-challenges (accessed August 15, 2017).

24. NRC (National Research Council). Available online at: https://www.nap.edu/read/10728/chapter/1,2014 (accessed September 17, 2019).

25. Bull A. Traffic Congestion: The Problem and How to Deal With It . Santiago: Nationes Unidas, Cepal (2003).

26. Spiegel J, Maystre LY. Environmental Pollution Control, Part VII - The Environment, Chapter 55, Encyclopedia of Occupational Health and Safety . Available online at: http://www.ilocis.org/documents/chpt55e.htm (accessed September 17, 2019).

27. European Community Reports. Assessment of the Effectiveness of European Air Quality Policies and Measures: Case Study 2; Comparison of the EU and US Air Quality Standards and Planning Requirements. (2004). Available online at: https://ec.europa.eu/environment/archives/cafe/activities/pdf/case_study2.pdf (accessed September 22, 2019).

28. Gibson R, Ward S. Parties in the digital age; a review. J Represent Democracy . (2009) 45:87–100. doi: 10.1080/00344890802710888

29. Kaun A, Uldam J. Digital activism: after the hype. New Media Soc. (2017) 20:2099–106. doi: 10.1177/14614448177319

30. Sivitanides M, Shah V. The era of digital activism. In: 2011 Conference for Information Systems Applied Research(CONISAR) Proceedings Wilmington North Carolina, USA . Available online at: https://www.arifyildirim.com/ilt510/marcos.sivitanides.vivek.shah.pdf (accessed September 22, 2019).

31. Möller L, Schuetzle D, Autrup H. Future research needs associated with the assessment of potential human health risks from exposure to toxic ambient air pollutants. Environ Health Perspect . (1994) 102(Suppl. 4):193–210. doi: 10.1289/ehp.94102s4193

32. Jacobson MZ, Jacobson PMZ. Atmospheric Pollution: History, Science, and Regulation. Cambridge University Press (2002). p. 206. doi: 10.1256/wea.243.02

33. Stover RH. Flooding of soil for disease control. In: Mulder D, editor. Chapter 3. Developments in Agricultural and Managed Forest Ecology . Elsevier (1979). p. 19–28. Available online at: http://www.sciencedirect.com/science/article/pii/B9780444416926500094 doi: 10.1016/B978-0-444-41692-6.50009-4 (accessed July 1, 2019).

34. Maipa V, Alamanos Y, Bezirtzoglou E. Seasonal fluctuation of bacterial indicators in coastal waters. Microb Ecol Health Dis . (2001) 13:143–6. doi: 10.1080/089106001750462687

35. Bezirtzoglou E, Dimitriou D, Panagiou A. Occurrence of Clostridium perfringens in river water by using a new procedure. Anaerobe . (1996) 2:169–73. doi: 10.1006/anae.1996.0022

36. Kjellstrom T, Lodh M, McMichael T, Ranmuthugala G, Shrestha R, Kingsland S. Air and Water Pollution: Burden and Strategies for Control. DCP, Chapter 43. 817–32 p. Available online at: https://www.dcp-3.org/sites/default/files/dcp2/DCP43.pdf (accessed September 17, 2017).

37. Pathak RK, Wang T, Ho KF, Lee SC. Characteristics of summertime PM2.5 organic and elemental carbon in four major Chinese cities: implications of high acidity for water- soluble organic carbon (WSOC). Atmos Environ . (2011) 45:318–25. doi: 10.1016/j.atmosenv.2010.10.021

38. Bonavigo L, Zucchetti M, Mankolli H. Water radioactive pollution and related environmental aspects. J Int Env Appl Sci . (2009) 4:357–63

39. World Health Organization (WHO). Preventing Disease Through Healthy Environments: Towards an Estimate of the Environmental Burden of Disease . 1106 p. Available online at: https://www.who.int/quantifying_ehimpacts/publications/preventingdisease.pdf (accessed September 22, 2019).

40. Stansfeld SA. Noise effects on health in the context of air pollution exposure. Int J Environ Res Public Health . (2015) 12:12735–60. doi: 10.3390/ijerph121012735

41. Ethical Unicorn. Everything You Need To Know About Aerosols & Air Pollution. (2019). Available online at: https://ethicalunicorn.com/2019/04/29/everything-you-need-to-know-about-aerosols-air-pollution/ (accessed October 4, 2019).

42. Colbeck I, Lazaridis M. Aerosols and environmental pollution. Sci Nat . (2009) 97:117–31. doi: 10.1007/s00114-009-0594-x

43. Incecik S, Gertler A, Kassomenos P. Aerosols and air quality. Sci Total Env . (2014) 355, 488–9. doi: 10.1016/j.scitotenv.2014.04.012

44. D'Amato G, Pawankar R, Vitale C, Maurizia L. Climate change and air pollution: effects on respiratory allergy. Allergy Asthma Immunol Res . (2016) 8:391–5. doi: 10.4168/aair.2016.8.5.391

45. Bezirtzoglou C, Dekas K, Charvalos E. Climate changes, environment and infection: facts, scenarios and growing awareness from the public health community within Europe. Anaerobe . (2011) 17:337–40. doi: 10.1016/j.anaerobe.2011.05.016

46. Castelli F, Sulis G. Migration and infectious diseases. Clin Microbiol Infect . (2017) 23:283–9. doi: 10.1016/j.cmi.2017.03.012

47. Watson JT, Gayer M, Connolly MA. Epidemics after natural disasters. Emerg Infect Dis . (2007) 13:1–5. doi: 10.3201/eid1301.060779

48. Fenn B. Malnutrition in Humanitarian Emergencies . Available online at: https://www.who.int/diseasecontrol_emergencies/publications/idhe_2009_london_malnutrition_fenn.pdf . (accessed August 15, 2017).

49. Lindh E, Argentini C, Remoli ME, Fortuna C, Faggioni G, Benedetti E, et al. The Italian 2017 outbreak Chikungunya virus belongs to an emerging Aedes albopictus –adapted virus cluster introduced from the Indian subcontinent. Open Forum Infect Dis. (2019) 6:ofy321. doi: 10.1093/ofid/ofy321

50. Calba C, Guerbois-Galla M, Franke F, Jeannin C, Auzet-Caillaud M, Grard G, Pigaglio L, Decoppet A, et al. Preliminary report of an autochthonous chikungunya outbreak in France, July to September 2017. Eur Surveill . (2017) 22:17-00647. doi: 10.2807/1560-7917.ES.2017.22.39.17-00647

51. Menne B, Murray V. Floods in the WHO European Region: Health Effects and Their Prevention . Copenhagen: WHO; Weltgesundheits organisation, Regionalbüro für Europa (2013). Available online at: http://www.euro.who.int/data/assets/pdf_file/0020/189020/e96853.pdf (accessed 15 August 2017).

52. Schneider SH. The greenhouse effect: science and policy. Science . (1989) 243:771–81. doi: 10.1126/science.243.4892.771

53. Wilson WE, Suh HH. Fine particles and coarse particles: concentration relationships relevant to epidemiologic studies. J Air Waste Manag Assoc . (1997) 47:1238–49. doi: 10.1080/10473289.1997.10464074

54. US EPA (US Environmental Protection Agency) (2018). Available online at: https://www.epa.gov/pm-pollution/particulate-matter-pm-basics (accessed September 22, 2018).

55. Cheung K, Daher N, Kam W, Shafer MM, Ning Z, Schauer JJ, et al. Spatial and temporal variation of chemical composition and mass closure of ambient coarse particulate matter (PM10–2.5) in the Los Angeles area. Atmos Environ . (2011) 45:2651–62. doi: 10.1016/j.atmosenv.2011.02.066

56. Zhang L, Yang Y, Li Y, Qian ZM, Xiao W, Wang X, et al. Short-term and long-term effects of PM2.5 on acute nasopharyngitis in 10 communities of Guangdong, China. Sci Total Env. (2019) 688:136–42. doi: 10.1016/j.scitotenv.2019.05.470.

57. Kloog I, Ridgway B, Koutrakis P, Coull BA, Schwartz JD. Long- and short-term exposure to PM2.5 and mortality using novel exposure models, Epidemiology . (2013) 24:555–61. doi: 10.1097/EDE.0b013e318294beaa

58. New Hampshire Department of Environmental Services. Current and Forecasted Air Quality in New Hampshire . Environmental Fact Sheet (2019). Available online at: https://www.des.nh.gov/organization/commissioner/pip/factsheets/ard/documents/ard-16.pdf (accessed September 22, 2019).

59. Kappos AD, Bruckmann P, Eikmann T, Englert N, Heinrich U, Höppe P, et al. Health effects of particles in ambient air. Int J Hyg Environ Health . (2004) 207:399–407. doi: 10.1078/1438-4639-00306

60. Boschi N (Ed.). Defining an educational framework for indoor air sciences education. In: Education and Training in Indoor Air Sciences . Luxembourg: Springer Science & Business Media (2012). 245 p.

61. Heal MR, Kumar P, Harrison RM. Particles, air quality, policy and health. Chem Soc Rev . (2012) 41:6606–30. doi: 10.1039/c2cs35076a

62. Bezirtzoglou E, Alexopoulos A. Ozone history and ecosystems: a goliath from impacts to advance industrial benefits and interests, to environmental and therapeutical strategies. In: Ozone Depletion, Chemistry and Impacts. (2009). p. 135–45.

63. Villányi V, Turk B, Franc B, Csintalan Z. Ozone Pollution and its Bioindication. In: Villányi V, editor. Air Pollution . London: Intech Open (2010). doi: 10.5772/10047

64. Massachusetts Department of Public Health. Massachusetts State Health Assessment . Boston, MA (2017). Available online at: https://www.mass.gov/files/documents/2017/11/03/2017%20MA%20SHA%20final%20compressed.pdf (accessed October 30, 2017).

65. Lorenzini G, Saitanis C. Ozone: A Novel Plant “Pathogen.” In: Sanitá di Toppi L, Pawlik-Skowrońska B, editors. Abiotic Stresses in Plant Springer Link (2003). p. 205–29. doi: 10.1007/978-94-017-0255-3_8

66. Fares S, Vargas R, Detto M, Goldstein AH, Karlik J, Paoletti E, et al. Tropospheric ozone reduces carbon assimilation in trees: estimates from analysis of continuous flux measurements. Glob Change Biol . (2013) 19:2427–43. doi: 10.1111/gcb.12222

67. Harmens H, Mills G, Hayes F, Jones L, Norris D, Fuhrer J. Air Pollution and Vegetation . ICP Vegetation Annual Report 2006/2007. (2012)

68. Emberson LD, Pleijel H, Ainsworth EA, den Berg M, Ren W, Osborne S, et al. Ozone effects on crops and consideration in crop models. Eur J Agron . (2018) 100:19–34. doi: 10.1016/j.eja.2018.06.002

69. Alexopoulos A, Plessas S, Ceciu S, Lazar V, Mantzourani I, Voidarou C, et al. Evaluation of ozone efficacy on the reduction of microbial population of fresh cut lettuce ( Lactuca sativa ) and green bell pepper ( Capsicum annuum ). Food Control . (2013) 30:491–6. doi: 10.1016/j.foodcont.2012.09.018

70. Alexopoulos A, Plessas S, Kourkoutas Y, Stefanis C, Vavias S, Voidarou C, et al. Experimental effect of ozone upon the microbial flora of commercially produced dairy fermented products. Int J Food Microbiol . (2017) 246:5–11. doi: 10.1016/j.ijfoodmicro.2017.01.018

71. Maggio A, Fagnano M. Ozone damages to mediterranean crops: physiological responses. Ital J Agron . (2008) 13–20. doi: 10.4081/ija.2008.13

72. McCarthy JT, Pelle E, Dong K, Brahmbhatt K, Yarosh D, Pernodet N. Effects of ozone in normal human epidermal keratinocytes. Exp Dermatol . (2013) 22:360–1. doi: 10.1111/exd.12125

73. WHO. Health Risks of Ozone From Long-Range Transboundary Air Pollution . Available online at: http://www.euro.who.int/data/assets/pdf_file/0005/78647/E91843.pdf (accessed August 15, 2019).

74. Thiele JJ, Traber MG, Tsang K, Cross CE, Packer L. In vivo exposure to ozone depletes vitamins C and E and induces lipid peroxidation in epidermal layers of murine skin. Free Radic Biol Med. (1997) 23:365–91. doi: 10.1016/S0891-5849(96)00617-X

75. Hatch GE, Slade R, Harris LP, McDonnell WF, Devlin RB, Koren HS, et al. Ozone dose and effect in humans and rats. A comparison using oxygen- 18 labeling and bronchoalveolar lavage. Am J Respir Crit Care Med . (1994) 150:676–83. doi: 10.1164/ajrccm.150.3.8087337

76. Lippmann M. Health effects of ozone. A critical review. JAPCA . (1989) 39:672–95. doi: 10.1080/08940630.1989.10466554

77. Gryparis A, Forsberg B, Katsouyanni K, Analitis A, Touloumi G, Schwartz J, et al. Acute effects of ozone on mortality from the “air pollution and health: a European approach” project. Am J Respir Crit Care Med . (2004) 170:1080–7. doi: 10.1164/rccm.200403-333OC

78. Soon W, Baliunas SL, Robinson AB, Robinson ZW. Environmental effects of increased atmospheric carbon dioxide. Climate Res . (1999) 13:149–64 doi: 10.1260/0958305991499694

79. Richmont-Bryant J, Owen RC, Graham S, Snyder M, McDow S, Oakes M, et al. Estimation of on-road NO2 concentrations, NO2/NOX ratios, and related roadway gradients from near-road monitoring data. Air Qual Atm Health . (2017) 10:611–25. doi: 10.1007/s11869-016-0455-7

80. Hesterberg TW, Bunn WB, McClellan RO, Hamade AK, Long CM, Valberg PA. Critical review of the human data on short-term nitrogen dioxide (NO 2 ) exposures: evidence for NO2 no-effect levels. Crit Rev Toxicol . (2009) 39:743–81. doi: 10.3109/10408440903294945

81. Chen T-M, Gokhale J, Shofer S, Kuschner WG. Outdoor air pollution: nitrogen dioxide, sulfur dioxide, and carbon monoxide health effects. Am J Med Sci . (2007) 333:249–56. doi: 10.1097/MAJ.0b013e31803b900f

82. US EPA. Table of Historical SO 2 NAAQS, Sulfur US EPA . Available online at: https://www3.epa.gov/ttn/naaqs/standards/so2/s_so2_history.html (accessed October 5, 2019).

83. WHO Regional Office of Europe (2000). Available online at: https://euro.who.int/_data/assets/pdf_file/0020/123086/AQG2ndEd_7_4Sulfuroxide.pdf

84. Pruss-Ustun A, Fewrell L, Landrigan PJ, Ayuso-Mateos JL. Lead exposure. Comparative Quantification of Health Risks . World Health Organization. p. 1495–1542. Available online at: https://www.who.int/publications/cra/chapters/volume2/1495-1542.pdf?ua=1

PubMed Abstract | Google Scholar

85. Goyer RA. Transplacental transport of lead. Environ Health Perspect . (1990) 89:101–5. doi: 10.1289/ehp.9089101

86. National Institute of Environmental Health Sciences (NIH). Lead and Your Health . (2013). 1–4 p. Available online at: https://www.niehs.nih.gov/health/materials/lead_and_your_health_508.pdf (accessed September 17, 2019).

87. Farhat A, Mohammadzadeh A, Balali-Mood M, Aghajanpoor-Pasha M, Ravanshad Y. Correlation of blood lead level in mothers and exclusively breastfed infants: a study on infants aged less than six months. Asia Pac J Med Toxicol . (2013) 2:150–2.

88. Assi MA, Hezmee MNM, Haron AW, Sabri MYM, Rajion MA. The detrimental effects of lead on human and animal health. Vet World . (2016) 9:660–71. doi: 10.14202/vetworld.2016.660-671

89. Abdel-Shafy HI, Mansour MSM. A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egypt J Pet . (2016) 25:107–23. doi: 10.1016/j.ejpe.2015.03.011

90. Kumar A, Singh BP, Punia M, Singh D, Kumar K, Jain VK. Assessment of indoor air concentrations of VOCs and their associated health risks in the library of Jawaharlal Nehru University, New Delhi. Environ Sci Pollut Res Int . (2014) 21:2240–8. doi: 10.1007/s11356-013-2150-7

91. Molhave L, Clausen G, Berglund B, Ceaurriz J, Kettrup A, Lindvall T, et al. Total Volatile Organic Compounds (TVOC) in Indoor Air Quality Investigations. Indoor Air . 7:225–240. doi: 10.1111/j.1600-0668.1997.00002.x

92. Gibb T. Indoor Air Quality May be Hazardous to Your Health . MSU Extension. Available online at: https://www.canr.msu.edu/news/indoor_air_quality_may_be_hazardous_to_your_health (accessed October 5, 2019).

93. Ebersviller S, Lichtveld K, Sexton KG, Zavala J, Lin Y-H, Jaspers I, et al. Gaseous VOCs rapidly modify particulate matter and its biological effects – Part 1: simple VOCs and model PM. Atmos Chem Phys Discuss . (2012) 12:5065–105. doi: 10.5194/acpd-12-5065-2012

94. WHO (World Health Organization). Dioxins and Their Effects on Human Health. Available online at: https://www.who.int/news-room/fact-sheets/detail/dioxins-and-their-effects-on-human-health (accessed October 5, 2019).

95. EEA (European Environmental Agency). Air Quality Standards to the European Union and WHO . Available online at: https://www.eea.europa.eu/themes/data-and-maps/figures/air-quality-standards-under-the

96. Nakano T, Otsuki T. [Environmental air pollutants and the risk of cancer]. (Japanese). Gan To Kagaku Ryoho . (2013) 40:1441–5.

97. Kurt OK, Zhang J, Pinkerton KE. Pulmonary health effects of air pollution. Curr Opin Pulm Med . (2016) 22:138–43. doi: 10.1097/MCP.0000000000000248

98. Guarnieri M, Balmes JR. Outdoor air pollution and asthma. Lancet . (2014) 383:1581–92. doi: 10.1016/S0140-6736(14)60617-6

99. Jiang X-Q, Mei X-D, Feng D. Air pollution and chronic airway diseases: what should people know and do? J Thorac Dis . (2016) 8:E31–40.

100. Bourdrel T, Bind M-A, Béjot Y, Morel O, Argacha J-F. Cardiovascular effects of air pollution. Arch Cardiovasc Dis . (2017) 110:634–42. doi: 10.1016/j.acvd.2017.05.003

101. Hoffmann B, Moebus S, Möhlenkamp S, Stang A, Lehmann N, Dragano N, et al. Residential exposure to traffic is associated with coronary atherosclerosis. Circulation . (2007) 116:489–496. doi: 10.1161/CIRCULATIONAHA.107.693622

102. Katholi RE, Couri DM. Left ventricular hypertrophy: major risk factor in patients with hypertension: update and practical clinical applications. Int J Hypertens . (2011) 2011:495349. doi: 10.4061/2011/495349

103. Leary PJ, Kaufman JD, Barr RG, Bluemke DA, Curl CL, Hough CL, et al. Traffic- related air pollution and the right ventricle. the multi-ethnic study of atherosclerosis. Am J Respir Crit Care Med . (2014) 189:1093–100. doi: 10.1164/rccm.201312-2298OC

104. Genc S, Zadeoglulari Z, Fuss SH, Genc K. The adverse effects of air pollution on the nervous system. J Toxicol . (2012) 2012:782462. doi: 10.1155/2012/782462

105. Calderon-Garciduenas L, Azzarelli B, Acuna H, et al. Air pollution and brain damage. Toxicol Pathol. (2002) 30:373–89. doi: 10.1080/01926230252929954

106. Rückerl R, Greven S, Ljungman P, Aalto P, Antoniades C, Bellander T, et al. Air pollution and inflammation (interleukin-6, C-reactive protein, fibrinogen) in myocardial infarction survivors. Environ Health Perspect . (2007) 115:1072–80. doi: 10.1289/ehp.10021

107. Peters A, Veronesi B, Calderón-Garcidueñas L, Gehr P, Chen LC, Geiser M, et al. Translocation and potential neurological effects of fine and ultrafine particles a critical update. Part Fibre Toxicol . (2006) 3:13–8. doi: 10.1186/1743-8977-3-13

108. Kelly FJ. Dietary antioxidants and environmental stress. Proc Nutr Soc . (2004) 63:579–85. doi: 10.1079/PNS2004388

109. Bellinger DC. Very low lead exposures and children's neurodevelopment. Curr Opin Pediatr . (2008) 20:172–7. doi: 10.1097/MOP.0b013e3282f4f97b

110. Balbo P, Silvestri M, Rossi GA, Crimi E, Burastero SE. Differential role of CD80 and CD86 on alveolar macrophages in the presentation of allergen to T lymphocytes in asthma. Clin Exp Allergy J Br Soc Allergy Clin Immunol . (2001) 31:625–36. doi: 10.1046/j.1365-2222.2001.01068.x

111. Drakaki E, Dessinioti C, Antoniou C. Air pollution and the skin. Front Environ Sci Eng China . (2014) 15:2–8. doi: 10.3389/fenvs.2014.00011

112. Weisskopf MG, Kioumourtzoglou M-A, Roberts AL. Air pollution and autism spectrum disorders: causal or confounded? Curr Environ Health Rep . (2015) 2:430–9. doi: 10.1007/s40572-015-0073-9

113. Mo Z, Fu Q, Lyu D, Zhang L, Qin Z, Tang Q, et al. Impacts of air pollution on dry eye disease among residents in Hangzhou, China: a case-crossover study. Environ Pollut . (2019) 246:183–9. doi: 10.1016/j.envpol.2018.11.109

114. Klopfer J. Effects of environmental air pollution on the eye. J Am Optom Assoc . (1989) 60:773–8.

115. Ashfaq A, Sharma P. Environmental effects of air pollution and application of engineered methods to combat the problem. J Indust Pollut Control . (2012) 29.

116. Madronich S, de Gruijl F. Skin cancer and UV radiation. Nature . (1993) 366:23–9. doi: 10.1038/366023a0

117. Teramura A. Effects of UV-B radiation on the growth and yield of crop plants. Physiol Plant . (2006) 58:415–27. doi: 10.1111/j.1399-3054.1983.tb04203.x

118. Singh E, Tiwari S, Agrawal M. Effects of elevated ozone on photosynthesis and stomatal conductance of two soybean varieties: a case study to assess impacts of one component of predicted global climate change. Plant Biol Stuttg Ger . (2009) 11(Suppl. 1):101–8. doi: 10.1111/j.1438-8677.2009.00263.x

119. Manderson L. How global Warming is Adding to the Health Risks of Poor People . The Conversation. University of the Witwatersrand. Available online at: http://theconversation.com/how-global-warming-is-adding-to-the-health-risks-of-poor-people-109520 (accessed October 5, 2019).

120. Ministers of Energy and Environment. Federal/Provincial/Territorial Ministers of Energy and Environment (Canada), editor. The Canada-Wide Acid Rain Strategy for Post-2000 . Halifax: The Ministers (1999). 11 p.

121. Zuhara S, Isaifan R. The impact of criteria air pollutants on soil and water: a review. (2018) 278–84. doi: 10.30799/jespr.133.18040205

122. WHO. First WHO Global Conference on Air Pollution and Health. (2018). Available online at: https://www.who.int/airpollution/events/conference/en/ (accessed October 6, 2019).

123. What is the Kyoto Protocol? UNFCCC . Available online at: https://unfccc.int/kyoto__protocol (accessed October 6, 2019).

124. CopenhagenClimate Change Conference (UNFCCC) . Available online at: https://unfccc.int/process-and-meetings/conferences/past-conferences/copenhagen-climate-change-conference-december-2009/copenhagen-climate-change-conference-december-2009 (accessed October 6, 2019).

125. Durban Climate Change Conference,. UNFCCC (2011). Available online at: https://unfccc.int/process-and-meetings/conferences/past-conferences/copenhagen-climate-change-conference-december-2009/copenhagen-climate-change-conference-december-2009 (accessed October 6, 2019).

126. Paris Climate Change Agreement,. (2016). Available online at: https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement

Keywords: air pollution, environment, health, public health, gas emission, policy

Citation: Manisalidis I, Stavropoulou E, Stavropoulos A and Bezirtzoglou E (2020) Environmental and Health Impacts of Air Pollution: A Review. Front. Public Health 8:14. doi: 10.3389/fpubh.2020.00014

Received: 17 October 2019; Accepted: 17 January 2020; Published: 20 February 2020.

Reviewed by:

Copyright © 2020 Manisalidis, Stavropoulou, Stavropoulos and Bezirtzoglou. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) . The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

*Correspondence: Ioannis Manisalidis, giannismanisal@gmail.com ; Elisavet Stavropoulou, elisabeth.stavropoulou@gmail.com

† These authors have contributed equally to this work

Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Environmental Issues Research Paper Topics

Academic Writing Service

Designed to serve as a comprehensive guide for students, this page provides a wide array of environmental issues research paper topics . Whether you are just starting your course or are looking for a unique topic for your final project, you will find a wealth of ideas here. The topics are divided into ten categories, each featuring ten distinct research ideas, offering a diverse range of issues to explore. Additionally, you will find expert advice on how to select a suitable topic and how to write an impactful research paper on environmental issues. The page also introduces iResearchNet’s professional writing services, which can assist students in creating high-quality, custom research papers on any environmental issue.

100 Environmental Issues Research Paper Topics

The field of environmental science is vast and interrelated to so many other academic disciplines like civil engineering, law, and even healthcare. That is why it is imperative to create a comprehensive and engaging list of environmental issues research paper topics. These topics are not only necessary for your academic career, but they also provide valuable insights into the current state of our planet and the steps we can take to mitigate the adverse effects of human activities.

Academic Writing, Editing, Proofreading, And Problem Solving Services

Get 10% off with 24start discount code.

Climate Change

  • The Impact of Climate Change on Biodiversity
  • Climate Change and Agriculture
  • The Role of Renewable Energy in Mitigating Climate Change
  • Climate Change and Public Health
  • Climate Change and Migration
  • Climate Change and Natural Disasters
  • Climate Change and Water Resources
  • Climate Change and Food Security
  • Climate Change and Urbanization
  • Climate Change and Marine Life

Air Pollution

  • The Effects of Air Pollution on Human Health
  • Air Pollution and Climate Change
  • The Role of Transportation in Air Pollution
  • Air Pollution and Ecosystems
  • Indoor Air Pollution
  • Air Pollution and Policy
  • Air Pollution and Energy Production
  • Air Pollution and Urban Planning
  • Air Pollution and Agriculture
  • Air Pollution and Waste Management

Water Pollution

  • The Impact of Water Pollution on Marine Life
  • Water Pollution and Human Health
  • Industrial Waste and Water Pollution
  • Water Pollution and Agriculture
  • Water Pollution and Policy
  • Water Pollution and Waste Management
  • Water Pollution and Climate Change
  • Water Pollution and Urbanization
  • Water Pollution and Food Security
  • Water Pollution and Biodiversity

Soil Erosion

  • The Impact of Soil Erosion on Agriculture
  • Soil Erosion and Climate Change
  • Soil Erosion and Deforestation
  • Soil Erosion and Urbanization
  • Soil Erosion and Water Pollution
  • Soil Erosion and Desertification
  • Soil Erosion and Biodiversity
  • Soil Erosion and Policy
  • Soil Erosion and Land Management
  • Soil Erosion and Food Security

Deforestation

  • The Impact of Deforestation on Biodiversity
  • Deforestation and Climate Change
  • Deforestation and Soil Erosion
  • Deforestation and Urbanization
  • Deforestation and Agriculture
  • Deforestation and Policy
  • Deforestation and Land Management
  • Deforestation and Indigenous Rights
  • Deforestation and Water Cycle
  • Deforestation and Carbon Cycle

Biodiversity Loss

  • The Impact of Biodiversity Loss on Ecosystem Services
  • Biodiversity Loss and Climate Change
  • Biodiversity Loss and Agriculture
  • Biodiversity Loss and Deforestation
  • Biodiversity Loss and Urbanization
  • Biodiversity Loss and Policy
  • Biodiversity Loss and Invasive Species
  • Biodiversity Loss and Extinction
  • Biodiversity Loss and Conservation
  • Biodiversity Loss and Genetic Diversity

Waste Management

  • The Impact of Waste Management on Public Health
  • Waste Management and Climate Change
  • Waste Management and Policy
  • Waste Management and Urbanization
  • Waste Management and Water Pollution
  • Waste Management and Soil Pollution
  • Waste Management and Air Pollution
  • Waste Management and Recycling
  • Waste Management and Landfills
  • Waste Management and Plastic Pollution

Energy Consumption

  • The Impact of Energy Consumption on Climate Change
  • Energy Consumption and Air Pollution
  • Energy Consumption and Policy
  • Energy Consumption and Urbanization
  • Energy Consumption and Transportation
  • Energy Consumption and Renewable Energy
  • Energy Consumption and Fossil Fuels
  • Energy Consumption and Energy Efficiency
  • Energy Consumption and Economic Growth
  • Energy Consumption and Lifestyle

Overpopulation

  • The Impact of Overpopulation on Natural Resources
  • Overpopulation and Climate Change
  • Overpopulation and Urbanization
  • Overpopulation and Food Security
  • Overpopulation and Water Scarcity
  • Overpopulation and Biodiversity Loss
  • Overpopulation and Policy
  • Overpopulation and Public Health
  • Overpopulation and Migration
  • Overpopulation and Social Inequality

Ozone Layer Depletion

  • The Impact of Ozone Layer Depletion on Human Health
  • Ozone Layer Depletion and Climate Change
  • Ozone Layer Depletion and Marine Life
  • Ozone Layer Depletion and Policy
  • Ozone Layer Depletion and Air Pollution
  • Ozone Layer Depletion and UV Radiation
  • Ozone Layer Depletion and Agriculture
  • Ozone Layer Depletion and Skin Cancer
  • Ozone Layer Depletion and Eye Diseases
  • Ozone Layer Depletion and Ecosystems

This comprehensive list of environmental issues research paper topics provides a wide range of areas to choose from for your research. The topics cover major environmental issues, from climate change and air pollution to biodiversity loss and overpopulation. Each of these topics can be explored from various angles, providing a rich source of ideas for your research paper. Remember, the key to a successful research paper is a well-defined topic and a clear focus.

Environmental Issues Research Guide

Welcome to the world of environmental science, a discipline that focuses on understanding and addressing the complex challenges our planet faces today. As our society becomes increasingly aware of the critical importance of environmental sustainability, the study of environmental science has gained immense significance. In this page, we delve into the realm of environmental issues research paper topics, providing students like you with a wealth of ideas, guidance, and resources to embark on impactful research journeys.

Environmental issues, ranging from climate change to biodiversity loss, deforestation, pollution, and resource depletion, pose serious threats to our planet’s well-being. The need for in-depth research, innovative solutions, and informed decision-making has never been more urgent. As students of environmental science, you have a unique opportunity to contribute to this field of study by conducting research papers that explore various aspects of environmental issues. These research papers serve as a platform for understanding the complexities of environmental problems and proposing viable solutions.

The purpose of this page is to empower you in your research endeavors by providing a comprehensive list of environmental issues research paper topics. We recognize that choosing a suitable research topic is a critical step in the research process, and it can significantly impact the outcome and relevance of your work. Moreover, we understand the challenges students face when trying to navigate the vast landscape of environmental issues and find a research topic that aligns with their interests and goals. That’s why we are here to offer expert advice and guidance to help you make informed decisions.

Whether you are a novice researcher exploring the world of environmental science or an experienced student seeking new avenues to expand your knowledge, this page is designed to cater to your needs. Our curated list of environmental issues research paper topics spans a wide range of categories, ensuring that you can find a topic that aligns with your specific interests and academic goals. Each topic has been carefully selected to reflect the current and pressing environmental challenges we face today, allowing you to delve into the intricacies and complexities of these issues.

Moreover, we understand that writing a research paper can be a daunting task, especially for students who are new to the process or grappling with time constraints. In addition to providing you with a comprehensive list of research paper topics, we also offer writing services that allow you to order a custom environmental issues research paper tailored to your unique requirements. Our team of expert degree-holding writers is well-versed in environmental science and has extensive experience in conducting research and crafting high-quality papers.

By availing our writing services, you can benefit from the expertise of our writers, who will ensure that your research paper is meticulously researched, well-written, and aligned with the highest academic standards. We value the importance of in-depth research, customized solutions, and timely delivery. Our team is available 24/7 to provide support and address any queries or concerns you may have throughout the process. With our easy order tracking system, absolute privacy, and a money-back guarantee, you can trust us to deliver a top-quality research paper that meets your expectations.

Choosing an Environmental Issues Topic

Choosing the right environmental issues research paper topic is crucial for conducting meaningful and impactful research. With such a broad and diverse field, it can be challenging to narrow down your focus and select a topic that aligns with your interests, academic goals, and the current state of environmental science. In this section, we provide expert advice and guidance to help you navigate the process of selecting environmental issues research paper topics. Here are ten valuable tips to consider:

  • Identify your areas of interest : Begin by reflecting on your personal interests within the field of environmental science. Consider the environmental issues that resonate with you the most and align with your long-term career goals. Are you passionate about climate change, water pollution, biodiversity conservation, or sustainable energy? Identifying your areas of interest will guide you towards topics that you genuinely care about.
  • Stay updated on current environmental challenges : Stay informed about the current environmental challenges and emerging issues. Environmental science is a dynamic field, constantly evolving as new research and discoveries emerge. Subscribe to reputable environmental journals, attend conferences, and follow reputable sources to stay up-to-date with the latest environmental issues and debates. This will help you choose topics that are relevant and address the pressing concerns of the time.
  • Consider the scope and depth of research : Evaluate the scope and depth of research required for each potential topic. Some topics may require extensive data collection, fieldwork, or laboratory experiments, while others may rely more on literature review and theoretical analysis. Consider your available resources, time constraints, and access to relevant data or research materials when selecting a topic that is feasible within the given parameters.
  • Explore interdisciplinary approaches : Environmental issues are often complex and interconnected, requiring interdisciplinary perspectives. Consider topics that allow you to explore the intersections of environmental science with other disciplines such as economics, sociology, policy studies, or public health. Interdisciplinary research can provide a comprehensive understanding of environmental challenges and offer innovative solutions.
  • Assess the significance and impact : Evaluate the significance and potential impact of each research topic. Ask yourself: Does the topic address a critical environmental issue? Does it have the potential to contribute to the existing body of knowledge or influence environmental policy and decision-making? Choosing a topic with significant implications can enhance the relevance and importance of your research.
  • Consider local and global contexts : Environmental issues can vary in their local and global contexts. Consider topics that have relevance and implications at both scales. Local environmental issues may involve studying the impact of pollution on a specific ecosystem or analyzing the effectiveness of local environmental policies. Global topics could encompass climate change, deforestation, or biodiversity loss and their implications on a global scale.
  • Seek guidance from faculty and experts : Consult with your faculty members, advisors, or experts in the field of environmental science. They can provide valuable insights, suggest potential research topics, and guide you towards relevant literature and resources. Their expertise and experience can help you refine your research focus and identify unique research angles.
  • Conduct a preliminary literature review : Before finalizing your topic, conduct a preliminary literature review to familiarize yourself with existing research and identify research gaps. This will enable you to identify topics that have not been extensively explored or provide new perspectives on existing issues. A thorough literature review will also help you develop a solid research question and methodology.
  • Consider the ethical implications : Environmental research often raises ethical considerations. Reflect on the potential ethical implications associated with your research topic. Consider how your research may impact communities, ecosystems, or vulnerable populations. Ensure that your research design and methodology prioritize ethical standards and promote the well-being of the environment and human communities.
  • Stay flexible and open to refinement : Lastly, remain flexible and open to refining your research topic throughout the research process. As you delve deeper into your research, new insights and perspectives may emerge, leading you to adjust your focus or narrow down your research question. Embrace the iterative nature of research and allow yourself the freedom to adapt and refine your topic as needed.

By considering these ten expert tips, you can choose environmental issues research paper topics that align with your interests, contribute to the field of environmental science, and make a meaningful impact. Remember, selecting the right topic is the first step towards conducting a successful and rewarding research study.

How to Write an Environmental Issues Research Paper

Writing an environmental issues research paper requires careful planning, organization, and attention to detail. It involves conducting thorough research, analyzing data, and presenting your findings in a clear and compelling manner. In this section, we provide expert advice and ten valuable tips to guide you through the process of writing an environmental issues research paper.

  • Understand the research question and objectives : Begin by thoroughly understanding the research question and objectives of your paper. Clearly define the scope and purpose of your study, ensuring that it aligns with the overall theme of environmental issues. This clarity will help you stay focused and maintain a logical flow throughout your paper.
  • Conduct comprehensive literature review : Before diving into your research, conduct a comprehensive literature review. Familiarize yourself with existing studies, theories, and methodologies related to your chosen environmental issue. This will provide a foundation of knowledge and help you identify research gaps or areas where your study can contribute.
  • Develop a solid research methodology : Design a robust research methodology that aligns with your research question and objectives. Determine the appropriate data collection methods, such as surveys, interviews, field observations, or laboratory experiments. Consider the ethical implications of your research and ensure compliance with ethical guidelines.
  • Collect and analyze data : Collect relevant data using your chosen research methods. Ensure data integrity and accuracy by using standardized data collection techniques. Analyze the data using appropriate statistical or qualitative analysis methods, depending on the nature of your research.
  • Organize your paper effectively : Create a clear and logical structure for your research paper. Organize it into sections such as introduction, literature review, methodology, results, discussion, and conclusion. Use headings and subheadings to guide the reader and make the paper easy to navigate.
  • Write a compelling introduction : Begin your paper with an engaging introduction that provides background information on the environmental issue and highlights the significance of your research. Clearly state your research question or hypothesis and provide an overview of your methodology and key findings.
  • Present your findings objectively : Present your research findings objectively, using appropriate data visualization techniques such as tables, graphs, or charts. Clearly interpret the results and explain their implications for the environmental issue you’re studying. Support your findings with references to relevant literature.
  • Engage in critical analysis and discussion : Engage in critical analysis and discussion of your findings. Compare your results with existing research, highlight similarities, differences, or inconsistencies, and discuss possible reasons for these variations. Evaluate the strengths and limitations of your study and suggest areas for future research.
  • Use clear and concise language : Communicate your ideas clearly and concisely. Avoid jargon and use plain language that is accessible to a wide audience. Define technical terms if necessary and ensure that your arguments and explanations are easy to follow.
  • Craft a compelling conclusion : End your research paper with a strong conclusion that summarizes your key findings, reinforces the significance of your research, and suggests avenues for further exploration. Emphasize the implications of your study for addressing the environmental issue and provide recommendations for future actions or policies.

By following these ten expert tips, you can effectively write an environmental issues research paper that is well-structured, supported by solid evidence, and contributes to the field of environmental science. Remember to revise and proofread your paper for clarity, coherence, and grammar before submitting it for review.

Custom Research Paper Writing Services

When it comes to writing a research paper on environmental issues, we understand that students may face challenges in terms of time, resources, and expertise. That’s why iResearchNet offers professional writing services to assist students in their academic journey. Our team of expert writers, experienced in environmental science and research, is ready to provide customized solutions to meet your specific needs. Here are 13 key features of our writing services:

  • Expert Degree-Holding Writers : Our writing team consists of expert degree-holding writers with extensive knowledge and experience in the field of environmental science. They possess the expertise to tackle complex environmental issues and deliver high-quality research papers.
  • Custom Written Works : We understand that every research paper is unique. Our writers will tailor your paper to your specific requirements, ensuring that it is customized and meets your academic standards.
  • In-Depth Research : Our writers conduct thorough research to gather relevant and up-to-date information on the chosen environmental issue. They delve deep into scholarly resources, scientific journals, and credible databases to provide you with well-researched content.
  • Custom Formatting : We adhere to various formatting styles, including APA, MLA, Chicago/Turabian, and Harvard. Our writers are well-versed in these formatting guidelines and will ensure that your research paper is formatted correctly.
  • Top Quality : We prioritize delivering top-quality research papers that meet the highest academic standards. Our writers are committed to excellence and will strive to exceed your expectations.
  • Customized Solutions : We understand that each research paper has unique requirements. Our writers will work closely with you to understand your specific needs and provide customized solutions that address your research objectives.
  • Flexible Pricing : We offer flexible pricing options to accommodate students’ budgets. Our pricing structure is transparent, and we provide competitive rates for our high-quality writing services.
  • Short Deadlines : We recognize that students often face tight deadlines. Our writers are equipped to handle urgent orders, offering short turnaround times of up to 3 hours while maintaining the quality of the research paper.
  • Timely Delivery : We value punctuality and understand the importance of submitting your research paper on time. Our writers work diligently to ensure timely delivery, allowing you to meet your academic deadlines without stress.
  • 24/7 Support : Our customer support team is available 24/7 to address your queries, provide updates on your order, and assist you throughout the writing process. We prioritize effective communication and timely responses to ensure a smooth and satisfactory experience.
  • Absolute Privacy : We prioritize the privacy and confidentiality of our clients. Rest assured that all personal and order-related information will be handled securely and kept confidential.
  • Easy Order Tracking : Our user-friendly platform allows you to easily track the progress of your order. You can stay informed about the status of your research paper, communicate with your assigned writer, and provide additional instructions if needed.
  • Money Back Guarantee : We are committed to customer satisfaction. If, for any reason, you are not fully satisfied with the delivered research paper, we offer a money back guarantee, ensuring your investment is protected.

By availing our writing services, you can have peace of mind knowing that your environmental issues research paper is in capable hands. Our team of dedicated writers will deliver a customized and high-quality paper that meets your academic requirements and helps you excel in your studies.

Empower Your Academic Journey!

At iResearchNet, we are committed to supporting your academic success in environmental science. Now is the time to take action and make a difference by ordering a custom environmental issues research paper from our dedicated team of experts. By choosing our services, you can focus on making a positive impact on the environment while we take care of your research paper needs.

By entrusting your environmental issues research paper to our team, you gain access to a wealth of expertise and resources that will elevate your academic work. Our experienced writers will craft a meticulously researched and well-written paper that addresses your chosen environmental issue with depth and clarity. You can expect a comprehensive analysis of the topic, thoughtful insights, and a unique perspective that sets your research paper apart.

Take advantage of our user-friendly platform and seamless ordering process. With just a few clicks, you can submit your requirements, communicate with your assigned writer, and track the progress of your research paper. Our dedicated customer support team is available 24/7 to assist you at every step of the way. We prioritize open communication, timely responses, and a smooth customer experience.

ORDER HIGH QUALITY CUSTOM PAPER

research paper on the environment

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Front Public Health

Environmental and Health Impacts of Air Pollution: A Review

Ioannis manisalidis.

1 Delphis S.A., Kifisia, Greece

2 Laboratory of Hygiene and Environmental Protection, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece

Elisavet Stavropoulou

3 Centre Hospitalier Universitaire Vaudois (CHUV), Service de Médicine Interne, Lausanne, Switzerland

Agathangelos Stavropoulos

4 School of Social and Political Sciences, University of Glasgow, Glasgow, United Kingdom

Eugenia Bezirtzoglou

One of our era's greatest scourges is air pollution, on account not only of its impact on climate change but also its impact on public and individual health due to increasing morbidity and mortality. There are many pollutants that are major factors in disease in humans. Among them, Particulate Matter (PM), particles of variable but very small diameter, penetrate the respiratory system via inhalation, causing respiratory and cardiovascular diseases, reproductive and central nervous system dysfunctions, and cancer. Despite the fact that ozone in the stratosphere plays a protective role against ultraviolet irradiation, it is harmful when in high concentration at ground level, also affecting the respiratory and cardiovascular system. Furthermore, nitrogen oxide, sulfur dioxide, Volatile Organic Compounds (VOCs), dioxins, and polycyclic aromatic hydrocarbons (PAHs) are all considered air pollutants that are harmful to humans. Carbon monoxide can even provoke direct poisoning when breathed in at high levels. Heavy metals such as lead, when absorbed into the human body, can lead to direct poisoning or chronic intoxication, depending on exposure. Diseases occurring from the aforementioned substances include principally respiratory problems such as Chronic Obstructive Pulmonary Disease (COPD), asthma, bronchiolitis, and also lung cancer, cardiovascular events, central nervous system dysfunctions, and cutaneous diseases. Last but not least, climate change resulting from environmental pollution affects the geographical distribution of many infectious diseases, as do natural disasters. The only way to tackle this problem is through public awareness coupled with a multidisciplinary approach by scientific experts; national and international organizations must address the emergence of this threat and propose sustainable solutions.

Approach to the Problem

The interactions between humans and their physical surroundings have been extensively studied, as multiple human activities influence the environment. The environment is a coupling of the biotic (living organisms and microorganisms) and the abiotic (hydrosphere, lithosphere, and atmosphere).

Pollution is defined as the introduction into the environment of substances harmful to humans and other living organisms. Pollutants are harmful solids, liquids, or gases produced in higher than usual concentrations that reduce the quality of our environment.

Human activities have an adverse effect on the environment by polluting the water we drink, the air we breathe, and the soil in which plants grow. Although the industrial revolution was a great success in terms of technology, society, and the provision of multiple services, it also introduced the production of huge quantities of pollutants emitted into the air that are harmful to human health. Without any doubt, the global environmental pollution is considered an international public health issue with multiple facets. Social, economic, and legislative concerns and lifestyle habits are related to this major problem. Clearly, urbanization and industrialization are reaching unprecedented and upsetting proportions worldwide in our era. Anthropogenic air pollution is one of the biggest public health hazards worldwide, given that it accounts for about 9 million deaths per year ( 1 ).

Without a doubt, all of the aforementioned are closely associated with climate change, and in the event of danger, the consequences can be severe for mankind ( 2 ). Climate changes and the effects of global planetary warming seriously affect multiple ecosystems, causing problems such as food safety issues, ice and iceberg melting, animal extinction, and damage to plants ( 3 , 4 ).

Air pollution has various health effects. The health of susceptible and sensitive individuals can be impacted even on low air pollution days. Short-term exposure to air pollutants is closely related to COPD (Chronic Obstructive Pulmonary Disease), cough, shortness of breath, wheezing, asthma, respiratory disease, and high rates of hospitalization (a measurement of morbidity).

The long-term effects associated with air pollution are chronic asthma, pulmonary insufficiency, cardiovascular diseases, and cardiovascular mortality. According to a Swedish cohort study, diabetes seems to be induced after long-term air pollution exposure ( 5 ). Moreover, air pollution seems to have various malign health effects in early human life, such as respiratory, cardiovascular, mental, and perinatal disorders ( 3 ), leading to infant mortality or chronic disease in adult age ( 6 ).

National reports have mentioned the increased risk of morbidity and mortality ( 1 ). These studies were conducted in many places around the world and show a correlation between daily ranges of particulate matter (PM) concentration and daily mortality. Climate shifts and global planetary warming ( 3 ) could aggravate the situation. Besides, increased hospitalization (an index of morbidity) has been registered among the elderly and susceptible individuals for specific reasons. Fine and ultrafine particulate matter seems to be associated with more serious illnesses ( 6 ), as it can invade the deepest parts of the airways and more easily reach the bloodstream.

Air pollution mainly affects those living in large urban areas, where road emissions contribute the most to the degradation of air quality. There is also a danger of industrial accidents, where the spread of a toxic fog can be fatal to the populations of the surrounding areas. The dispersion of pollutants is determined by many parameters, most notably atmospheric stability and wind ( 6 ).

In developing countries ( 7 ), the problem is more serious due to overpopulation and uncontrolled urbanization along with the development of industrialization. This leads to poor air quality, especially in countries with social disparities and a lack of information on sustainable management of the environment. The use of fuels such as wood fuel or solid fuel for domestic needs due to low incomes exposes people to bad-quality, polluted air at home. It is of note that three billion people around the world are using the above sources of energy for their daily heating and cooking needs ( 8 ). In developing countries, the women of the household seem to carry the highest risk for disease development due to their longer duration exposure to the indoor air pollution ( 8 , 9 ). Due to its fast industrial development and overpopulation, China is one of the Asian countries confronting serious air pollution problems ( 10 , 11 ). The lung cancer mortality observed in China is associated with fine particles ( 12 ). As stated already, long-term exposure is associated with deleterious effects on the cardiovascular system ( 3 , 5 ). However, it is interesting to note that cardiovascular diseases have mostly been observed in developed and high-income countries rather than in the developing low-income countries exposed highly to air pollution ( 13 ). Extreme air pollution is recorded in India, where the air quality reaches hazardous levels. New Delhi is one of the more polluted cities in India. Flights in and out of New Delhi International Airport are often canceled due to the reduced visibility associated with air pollution. Pollution is occurring both in urban and rural areas in India due to the fast industrialization, urbanization, and rise in use of motorcycle transportation. Nevertheless, biomass combustion associated with heating and cooking needs and practices is a major source of household air pollution in India and in Nepal ( 14 , 15 ). There is spatial heterogeneity in India, as areas with diverse climatological conditions and population and education levels generate different indoor air qualities, with higher PM 2.5 observed in North Indian states (557–601 μg/m 3 ) compared to the Southern States (183–214 μg/m 3 ) ( 16 , 17 ). The cold climate of the North Indian areas may be the main reason for this, as longer periods at home and more heating are necessary compared to in the tropical climate of Southern India. Household air pollution in India is associated with major health effects, especially in women and young children, who stay indoors for longer periods. Chronic obstructive respiratory disease (CORD) and lung cancer are mostly observed in women, while acute lower respiratory disease is seen in young children under 5 years of age ( 18 ).

Accumulation of air pollution, especially sulfur dioxide and smoke, reaching 1,500 mg/m3, resulted in an increase in the number of deaths (4,000 deaths) in December 1952 in London and in 1963 in New York City (400 deaths) ( 19 ). An association of pollution with mortality was reported on the basis of monitoring of outdoor pollution in six US metropolitan cities ( 20 ). In every case, it seems that mortality was closely related to the levels of fine, inhalable, and sulfate particles more than with the levels of total particulate pollution, aerosol acidity, sulfur dioxide, or nitrogen dioxide ( 20 ).

Furthermore, extremely high levels of pollution are reported in Mexico City and Rio de Janeiro, followed by Milan, Ankara, Melbourne, Tokyo, and Moscow ( 19 ).

Based on the magnitude of the public health impact, it is certain that different kinds of interventions should be taken into account. Success and effectiveness in controlling air pollution, specifically at the local level, have been reported. Adequate technological means are applied considering the source and the nature of the emission as well as its impact on health and the environment. The importance of point sources and non-point sources of air pollution control is reported by Schwela and Köth-Jahr ( 21 ). Without a doubt, a detailed emission inventory must record all sources in a given area. Beyond considering the above sources and their nature, topography and meteorology should also be considered, as stated previously. Assessment of the control policies and methods is often extrapolated from the local to the regional and then to the global scale. Air pollution may be dispersed and transported from one region to another area located far away. Air pollution management means the reduction to acceptable levels or possible elimination of air pollutants whose presence in the air affects our health or the environmental ecosystem. Private and governmental entities and authorities implement actions to ensure the air quality ( 22 ). Air quality standards and guidelines were adopted for the different pollutants by the WHO and EPA as a tool for the management of air quality ( 1 , 23 ). These standards have to be compared to the emissions inventory standards by causal analysis and dispersion modeling in order to reveal the problematic areas ( 24 ). Inventories are generally based on a combination of direct measurements and emissions modeling ( 24 ).

As an example, we state here the control measures at the source through the use of catalytic converters in cars. These are devices that turn the pollutants and toxic gases produced from combustion engines into less-toxic pollutants by catalysis through redox reactions ( 25 ). In Greece, the use of private cars was restricted by tracking their license plates in order to reduce traffic congestion during rush hour ( 25 ).

Concerning industrial emissions, collectors and closed systems can keep the air pollution to the minimal standards imposed by legislation ( 26 ).

Current strategies to improve air quality require an estimation of the economic value of the benefits gained from proposed programs. These proposed programs by public authorities, and directives are issued with guidelines to be respected.

In Europe, air quality limit values AQLVs (Air Quality Limit Values) are issued for setting off planning claims ( 27 ). In the USA, the NAAQS (National Ambient Air Quality Standards) establish the national air quality limit values ( 27 ). While both standards and directives are based on different mechanisms, significant success has been achieved in the reduction of overall emissions and associated health and environmental effects ( 27 ). The European Directive identifies geographical areas of risk exposure as monitoring/assessment zones to record the emission sources and levels of air pollution ( 27 ), whereas the USA establishes global geographical air quality criteria according to the severity of their air quality problem and records all sources of the pollutants and their precursors ( 27 ).

In this vein, funds have been financing, directly or indirectly, projects related to air quality along with the technical infrastructure to maintain good air quality. These plans focus on an inventory of databases from air quality environmental planning awareness campaigns. Moreover, pollution measures of air emissions may be taken for vehicles, machines, and industries in urban areas.

Technological innovation can only be successful if it is able to meet the needs of society. In this sense, technology must reflect the decision-making practices and procedures of those involved in risk assessment and evaluation and act as a facilitator in providing information and assessments to enable decision makers to make the best decisions possible. Summarizing the aforementioned in order to design an effective air quality control strategy, several aspects must be considered: environmental factors and ambient air quality conditions, engineering factors and air pollutant characteristics, and finally, economic operating costs for technological improvement and administrative and legal costs. Considering the economic factor, competitiveness through neoliberal concepts is offering a solution to environmental problems ( 22 ).

The development of environmental governance, along with technological progress, has initiated the deployment of a dialogue. Environmental politics has created objections and points of opposition between different political parties, scientists, media, and governmental and non-governmental organizations ( 22 ). Radical environmental activism actions and movements have been created ( 22 ). The rise of the new information and communication technologies (ICTs) are many times examined as to whether and in which way they have influenced means of communication and social movements such as activism ( 28 ). Since the 1990s, the term “digital activism” has been used increasingly and in many different disciplines ( 29 ). Nowadays, multiple digital technologies can be used to produce a digital activism outcome on environmental issues. More specifically, devices with online capabilities such as computers or mobile phones are being used as a way to pursue change in political and social affairs ( 30 ).

In the present paper, we focus on the sources of environmental pollution in relation to public health and propose some solutions and interventions that may be of interest to environmental legislators and decision makers.

Sources of Exposure

It is known that the majority of environmental pollutants are emitted through large-scale human activities such as the use of industrial machinery, power-producing stations, combustion engines, and cars. Because these activities are performed at such a large scale, they are by far the major contributors to air pollution, with cars estimated to be responsible for approximately 80% of today's pollution ( 31 ). Some other human activities are also influencing our environment to a lesser extent, such as field cultivation techniques, gas stations, fuel tanks heaters, and cleaning procedures ( 32 ), as well as several natural sources, such as volcanic and soil eruptions and forest fires.

The classification of air pollutants is based mainly on the sources producing pollution. Therefore, it is worth mentioning the four main sources, following the classification system: Major sources, Area sources, Mobile sources, and Natural sources.

Major sources include the emission of pollutants from power stations, refineries, and petrochemicals, the chemical and fertilizer industries, metallurgical and other industrial plants, and, finally, municipal incineration.

Indoor area sources include domestic cleaning activities, dry cleaners, printing shops, and petrol stations.

Mobile sources include automobiles, cars, railways, airways, and other types of vehicles.

Finally, natural sources include, as stated previously, physical disasters ( 33 ) such as forest fire, volcanic erosion, dust storms, and agricultural burning.

However, many classification systems have been proposed. Another type of classification is a grouping according to the recipient of the pollution, as follows:

Air pollution is determined as the presence of pollutants in the air in large quantities for long periods. Air pollutants are dispersed particles, hydrocarbons, CO, CO 2 , NO, NO 2 , SO 3 , etc.

Water pollution is organic and inorganic charge and biological charge ( 10 ) at high levels that affect the water quality ( 34 , 35 ).

Soil pollution occurs through the release of chemicals or the disposal of wastes, such as heavy metals, hydrocarbons, and pesticides.

Air pollution can influence the quality of soil and water bodies by polluting precipitation, falling into water and soil environments ( 34 , 36 ). Notably, the chemistry of the soil can be amended due to acid precipitation by affecting plants, cultures, and water quality ( 37 ). Moreover, movement of heavy metals is favored by soil acidity, and metals are so then moving into the watery environment. It is known that heavy metals such as aluminum are noxious to wildlife and fishes. Soil quality seems to be of importance, as soils with low calcium carbonate levels are at increased jeopardy from acid rain. Over and above rain, snow and particulate matter drip into watery ' bodies ( 36 , 38 ).

Lastly, pollution is classified following type of origin:

Radioactive and nuclear pollution , releasing radioactive and nuclear pollutants into water, air, and soil during nuclear explosions and accidents, from nuclear weapons, and through handling or disposal of radioactive sewage.

Radioactive materials can contaminate surface water bodies and, being noxious to the environment, plants, animals, and humans. It is known that several radioactive substances such as radium and uranium concentrate in the bones and can cause cancers ( 38 , 39 ).

Noise pollution is produced by machines, vehicles, traffic noises, and musical installations that are harmful to our hearing.

The World Health Organization introduced the term DALYs. The DALYs for a disease or health condition is defined as the sum of the Years of Life Lost (YLL) due to premature mortality in the population and the Years Lost due to Disability (YLD) for people living with the health condition or its consequences ( 39 ). In Europe, air pollution is the main cause of disability-adjusted life years lost (DALYs), followed by noise pollution. The potential relationships of noise and air pollution with health have been studied ( 40 ). The study found that DALYs related to noise were more important than those related to air pollution, as the effects of environmental noise on cardiovascular disease were independent of air pollution ( 40 ). Environmental noise should be counted as an independent public health risk ( 40 ).

Environmental pollution occurs when changes in the physical, chemical, or biological constituents of the environment (air masses, temperature, climate, etc.) are produced.

Pollutants harm our environment either by increasing levels above normal or by introducing harmful toxic substances. Primary pollutants are directly produced from the above sources, and secondary pollutants are emitted as by-products of the primary ones. Pollutants can be biodegradable or non-biodegradable and of natural origin or anthropogenic, as stated previously. Moreover, their origin can be a unique source (point-source) or dispersed sources.

Pollutants have differences in physical and chemical properties, explaining the discrepancy in their capacity for producing toxic effects. As an example, we state here that aerosol compounds ( 41 – 43 ) have a greater toxicity than gaseous compounds due to their tiny size (solid or liquid) in the atmosphere; they have a greater penetration capacity. Gaseous compounds are eliminated more easily by our respiratory system ( 41 ). These particles are able to damage lungs and can even enter the bloodstream ( 41 ), leading to the premature deaths of millions of people yearly. Moreover, the aerosol acidity ([H+]) seems to considerably enhance the production of secondary organic aerosols (SOA), but this last aspect is not supported by other scientific teams ( 38 ).

Climate and Pollution

Air pollution and climate change are closely related. Climate is the other side of the same coin that reduces the quality of our Earth ( 44 ). Pollutants such as black carbon, methane, tropospheric ozone, and aerosols affect the amount of incoming sunlight. As a result, the temperature of the Earth is increasing, resulting in the melting of ice, icebergs, and glaciers.

In this vein, climatic changes will affect the incidence and prevalence of both residual and imported infections in Europe. Climate and weather affect the duration, timing, and intensity of outbreaks strongly and change the map of infectious diseases in the globe ( 45 ). Mosquito-transmitted parasitic or viral diseases are extremely climate-sensitive, as warming firstly shortens the pathogen incubation period and secondly shifts the geographic map of the vector. Similarly, water-warming following climate changes leads to a high incidence of waterborne infections. Recently, in Europe, eradicated diseases seem to be emerging due to the migration of population, for example, cholera, poliomyelitis, tick-borne encephalitis, and malaria ( 46 ).

The spread of epidemics is associated with natural climate disasters and storms, which seem to occur more frequently nowadays ( 47 ). Malnutrition and disequilibration of the immune system are also associated with the emerging infections affecting public health ( 48 ).

The Chikungunya virus “took the airplane” from the Indian Ocean to Europe, as outbreaks of the disease were registered in Italy ( 49 ) as well as autochthonous cases in France ( 50 ).

An increase in cryptosporidiosis in the United Kingdom and in the Czech Republic seems to have occurred following flooding ( 36 , 51 ).

As stated previously, aerosols compounds are tiny in size and considerably affect the climate. They are able to dissipate sunlight (the albedo phenomenon) by dispersing a quarter of the sun's rays back to space and have cooled the global temperature over the last 30 years ( 52 ).

Air Pollutants

The World Health Organization (WHO) reports on six major air pollutants, namely particle pollution, ground-level ozone, carbon monoxide, sulfur oxides, nitrogen oxides, and lead. Air pollution can have a disastrous effect on all components of the environment, including groundwater, soil, and air. Additionally, it poses a serious threat to living organisms. In this vein, our interest is mainly to focus on these pollutants, as they are related to more extensive and severe problems in human health and environmental impact. Acid rain, global warming, the greenhouse effect, and climate changes have an important ecological impact on air pollution ( 53 ).

Particulate Matter (PM) and Health

Studies have shown a relationship between particulate matter (PM) and adverse health effects, focusing on either short-term (acute) or long-term (chronic) PM exposure.

Particulate matter (PM) is usually formed in the atmosphere as a result of chemical reactions between the different pollutants. The penetration of particles is closely dependent on their size ( 53 ). Particulate Matter (PM) was defined as a term for particles by the United States Environmental Protection Agency ( 54 ). Particulate matter (PM) pollution includes particles with diameters of 10 micrometers (μm) or smaller, called PM 10 , and extremely fine particles with diameters that are generally 2.5 micrometers (μm) and smaller.

Particulate matter contains tiny liquid or solid droplets that can be inhaled and cause serious health effects ( 55 ). Particles <10 μm in diameter (PM 10 ) after inhalation can invade the lungs and even reach the bloodstream. Fine particles, PM 2.5 , pose a greater risk to health ( 6 , 56 ) ( Table 1 ).

Penetrability according to particle size.

>11 μmPassage into nostrils and upper respiratory tract
7–11 μmPassage into nasal cavity
4.7–7 μmPassage into larynx
3.3–4.7 μmPassage into trachea-bronchial area
2.1–3.3 μmSecondary bronchial area passage
1.1–2.1 μmTerminal bronchial area passage
0.65–1.1 μmBronchioles penetrability
0.43–0.65 μmAlveolar penetrability

Multiple epidemiological studies have been performed on the health effects of PM. A positive relation was shown between both short-term and long-term exposures of PM 2.5 and acute nasopharyngitis ( 56 ). In addition, long-term exposure to PM for years was found to be related to cardiovascular diseases and infant mortality.

Those studies depend on PM 2.5 monitors and are restricted in terms of study area or city area due to a lack of spatially resolved daily PM 2.5 concentration data and, in this way, are not representative of the entire population. Following a recent epidemiological study by the Department of Environmental Health at Harvard School of Public Health (Boston, MA) ( 57 ), it was reported that, as PM 2.5 concentrations vary spatially, an exposure error (Berkson error) seems to be produced, and the relative magnitudes of the short- and long-term effects are not yet completely elucidated. The team developed a PM 2.5 exposure model based on remote sensing data for assessing short- and long-term human exposures ( 57 ). This model permits spatial resolution in short-term effects plus the assessment of long-term effects in the whole population.

Moreover, respiratory diseases and affection of the immune system are registered as long-term chronic effects ( 58 ). It is worth noting that people with asthma, pneumonia, diabetes, and respiratory and cardiovascular diseases are especially susceptible and vulnerable to the effects of PM. PM 2.5 , followed by PM 10 , are strongly associated with diverse respiratory system diseases ( 59 ), as their size permits them to pierce interior spaces ( 60 ). The particles produce toxic effects according to their chemical and physical properties. The components of PM 10 and PM 2.5 can be organic (polycyclic aromatic hydrocarbons, dioxins, benzene, 1-3 butadiene) or inorganic (carbon, chlorides, nitrates, sulfates, metals) in nature ( 55 ).

Particulate Matter (PM) is divided into four main categories according to type and size ( 61 ) ( Table 2 ).

Types and sizes of particulate Matter (PM).

Particulate contaminantsSmog0.01–1
Soot0.01–0.8
Tobacco smoke0.01–1
Fly ash1–100
Cement Dust8–100
Biological ContaminantsBacteria and bacterial spores0.7–10
Viruses0.01–1
Fungi and molds2–12
Allergens (dogs, cats, pollen, household dust)0.1–100
Types of DustAtmospheric dust0.01–1
Heavy dust100–1000
Settling dust1–100
GasesDifferent gaseous contaminants0.0001–0.01

Gas contaminants include PM in aerial masses.

Particulate contaminants include contaminants such as smog, soot, tobacco smoke, oil smoke, fly ash, and cement dust.

Biological Contaminants are microorganisms (bacteria, viruses, fungi, mold, and bacterial spores), cat allergens, house dust and allergens, and pollen.

Types of Dust include suspended atmospheric dust, settling dust, and heavy dust.

Finally, another fact is that the half-lives of PM 10 and PM 2.5 particles in the atmosphere is extended due to their tiny dimensions; this permits their long-lasting suspension in the atmosphere and even their transfer and spread to distant destinations where people and the environment may be exposed to the same magnitude of pollution ( 53 ). They are able to change the nutrient balance in watery ecosystems, damage forests and crops, and acidify water bodies.

As stated, PM 2.5 , due to their tiny size, are causing more serious health effects. These aforementioned fine particles are the main cause of the “haze” formation in different metropolitan areas ( 12 , 13 , 61 ).

Ozone Impact in the Atmosphere

Ozone (O 3 ) is a gas formed from oxygen under high voltage electric discharge ( 62 ). It is a strong oxidant, 52% stronger than chlorine. It arises in the stratosphere, but it could also arise following chain reactions of photochemical smog in the troposphere ( 63 ).

Ozone can travel to distant areas from its initial source, moving with air masses ( 64 ). It is surprising that ozone levels over cities are low in contrast to the increased amounts occuring in urban areas, which could become harmful for cultures, forests, and vegetation ( 65 ) as it is reducing carbon assimilation ( 66 ). Ozone reduces growth and yield ( 47 , 48 ) and affects the plant microflora due to its antimicrobial capacity ( 67 , 68 ). In this regard, ozone acts upon other natural ecosystems, with microflora ( 69 , 70 ) and animal species changing their species composition ( 71 ). Ozone increases DNA damage in epidermal keratinocytes and leads to impaired cellular function ( 72 ).

Ground-level ozone (GLO) is generated through a chemical reaction between oxides of nitrogen and VOCs emitted from natural sources and/or following anthropogenic activities.

Ozone uptake usually occurs by inhalation. Ozone affects the upper layers of the skin and the tear ducts ( 73 ). A study of short-term exposure of mice to high levels of ozone showed malondialdehyde formation in the upper skin (epidermis) but also depletion in vitamins C and E. It is likely that ozone levels are not interfering with the skin barrier function and integrity to predispose to skin disease ( 74 ).

Due to the low water-solubility of ozone, inhaled ozone has the capacity to penetrate deeply into the lungs ( 75 ).

Toxic effects induced by ozone are registered in urban areas all over the world, causing biochemical, morphologic, functional, and immunological disorders ( 76 ).

The European project (APHEA2) focuses on the acute effects of ambient ozone concentrations on mortality ( 77 ). Daily ozone concentrations compared to the daily number of deaths were reported from different European cities for a 3-year period. During the warm period of the year, an observed increase in ozone concentration was associated with an increase in the daily number of deaths (0.33%), in the number of respiratory deaths (1.13%), and in the number of cardiovascular deaths (0.45%). No effect was observed during wintertime.

Carbon Monoxide (CO)

Carbon monoxide is produced by fossil fuel when combustion is incomplete. The symptoms of poisoning due to inhaling carbon monoxide include headache, dizziness, weakness, nausea, vomiting, and, finally, loss of consciousness.

The affinity of carbon monoxide to hemoglobin is much greater than that of oxygen. In this vein, serious poisoning may occur in people exposed to high levels of carbon monoxide for a long period of time. Due to the loss of oxygen as a result of the competitive binding of carbon monoxide, hypoxia, ischemia, and cardiovascular disease are observed.

Carbon monoxide affects the greenhouses gases that are tightly connected to global warming and climate. This should lead to an increase in soil and water temperatures, and extreme weather conditions or storms may occur ( 68 ).

However, in laboratory and field experiments, it has been seen to produce increased plant growth ( 78 ).

Nitrogen Oxide (NO 2 )

Nitrogen oxide is a traffic-related pollutant, as it is emitted from automobile motor engines ( 79 , 80 ). It is an irritant of the respiratory system as it penetrates deep in the lung, inducing respiratory diseases, coughing, wheezing, dyspnea, bronchospasm, and even pulmonary edema when inhaled at high levels. It seems that concentrations over 0.2 ppm produce these adverse effects in humans, while concentrations higher than 2.0 ppm affect T-lymphocytes, particularly the CD8+ cells and NK cells that produce our immune response ( 81 ).It is reported that long-term exposure to high levels of nitrogen dioxide can be responsible for chronic lung disease. Long-term exposure to NO 2 can impair the sense of smell ( 81 ).

However, systems other than respiratory ones can be involved, as symptoms such as eye, throat, and nose irritation have been registered ( 81 ).

High levels of nitrogen dioxide are deleterious to crops and vegetation, as they have been observed to reduce crop yield and plant growth efficiency. Moreover, NO 2 can reduce visibility and discolor fabrics ( 81 ).

Sulfur Dioxide (SO 2 )

Sulfur dioxide is a harmful gas that is emitted mainly from fossil fuel consumption or industrial activities. The annual standard for SO 2 is 0.03 ppm ( 82 ). It affects human, animal, and plant life. Susceptible people as those with lung disease, old people, and children, who present a higher risk of damage. The major health problems associated with sulfur dioxide emissions in industrialized areas are respiratory irritation, bronchitis, mucus production, and bronchospasm, as it is a sensory irritant and penetrates deep into the lung converted into bisulfite and interacting with sensory receptors, causing bronchoconstriction. Moreover, skin redness, damage to the eyes (lacrimation and corneal opacity) and mucous membranes, and worsening of pre-existing cardiovascular disease have been observed ( 81 ).

Environmental adverse effects, such as acidification of soil and acid rain, seem to be associated with sulfur dioxide emissions ( 83 ).

Lead is a heavy metal used in different industrial plants and emitted from some petrol motor engines, batteries, radiators, waste incinerators, and waste waters ( 84 ).

Moreover, major sources of lead pollution in the air are metals, ore, and piston-engine aircraft. Lead poisoning is a threat to public health due to its deleterious effects upon humans, animals, and the environment, especially in the developing countries.

Exposure to lead can occur through inhalation, ingestion, and dermal absorption. Trans- placental transport of lead was also reported, as lead passes through the placenta unencumbered ( 85 ). The younger the fetus is, the more harmful the toxic effects. Lead toxicity affects the fetal nervous system; edema or swelling of the brain is observed ( 86 ). Lead, when inhaled, accumulates in the blood, soft tissue, liver, lung, bones, and cardiovascular, nervous, and reproductive systems. Moreover, loss of concentration and memory, as well as muscle and joint pain, were observed in adults ( 85 , 86 ).

Children and newborns ( 87 ) are extremely susceptible even to minimal doses of lead, as it is a neurotoxicant and causes learning disabilities, impairment of memory, hyperactivity, and even mental retardation.

Elevated amounts of lead in the environment are harmful to plants and crop growth. Neurological effects are observed in vertebrates and animals in association with high lead levels ( 88 ).

Polycyclic Aromatic Hydrocarbons(PAHs)

The distribution of PAHs is ubiquitous in the environment, as the atmosphere is the most important means of their dispersal. They are found in coal and in tar sediments. Moreover, they are generated through incomplete combustion of organic matter as in the cases of forest fires, incineration, and engines ( 89 ). PAH compounds, such as benzopyrene, acenaphthylene, anthracene, and fluoranthene are recognized as toxic, mutagenic, and carcinogenic substances. They are an important risk factor for lung cancer ( 89 ).

Volatile Organic Compounds(VOCs)

Volatile organic compounds (VOCs), such as toluene, benzene, ethylbenzene, and xylene ( 90 ), have been found to be associated with cancer in humans ( 91 ). The use of new products and materials has actually resulted in increased concentrations of VOCs. VOCs pollute indoor air ( 90 ) and may have adverse effects on human health ( 91 ). Short-term and long-term adverse effects on human health are observed. VOCs are responsible for indoor air smells. Short-term exposure is found to cause irritation of eyes, nose, throat, and mucosal membranes, while those of long duration exposure include toxic reactions ( 92 ). Predictable assessment of the toxic effects of complex VOC mixtures is difficult to estimate, as these pollutants can have synergic, antagonistic, or indifferent effects ( 91 , 93 ).

Dioxins originate from industrial processes but also come from natural processes, such as forest fires and volcanic eruptions. They accumulate in foods such as meat and dairy products, fish and shellfish, and especially in the fatty tissue of animals ( 94 ).

Short-period exhibition to high dioxin concentrations may result in dark spots and lesions on the skin ( 94 ). Long-term exposure to dioxins can cause developmental problems, impairment of the immune, endocrine and nervous systems, reproductive infertility, and cancer ( 94 ).

Without any doubt, fossil fuel consumption is responsible for a sizeable part of air contamination. This contamination may be anthropogenic, as in agricultural and industrial processes or transportation, while contamination from natural sources is also possible. Interestingly, it is of note that the air quality standards established through the European Air Quality Directive are somewhat looser than the WHO guidelines, which are stricter ( 95 ).

Effect of Air Pollution on Health

The most common air pollutants are ground-level ozone and Particulates Matter (PM). Air pollution is distinguished into two main types:

Outdoor pollution is the ambient air pollution.

Indoor pollution is the pollution generated by household combustion of fuels.

People exposed to high concentrations of air pollutants experience disease symptoms and states of greater and lesser seriousness. These effects are grouped into short- and long-term effects affecting health.

Susceptible populations that need to be aware of health protection measures include old people, children, and people with diabetes and predisposing heart or lung disease, especially asthma.

As extensively stated previously, according to a recent epidemiological study from Harvard School of Public Health, the relative magnitudes of the short- and long-term effects have not been completely clarified ( 57 ) due to the different epidemiological methodologies and to the exposure errors. New models are proposed for assessing short- and long-term human exposure data more successfully ( 57 ). Thus, in the present section, we report the more common short- and long-term health effects but also general concerns for both types of effects, as these effects are often dependent on environmental conditions, dose, and individual susceptibility.

Short-term effects are temporary and range from simple discomfort, such as irritation of the eyes, nose, skin, throat, wheezing, coughing and chest tightness, and breathing difficulties, to more serious states, such as asthma, pneumonia, bronchitis, and lung and heart problems. Short-term exposure to air pollution can also cause headaches, nausea, and dizziness.

These problems can be aggravated by extended long-term exposure to the pollutants, which is harmful to the neurological, reproductive, and respiratory systems and causes cancer and even, rarely, deaths.

The long-term effects are chronic, lasting for years or the whole life and can even lead to death. Furthermore, the toxicity of several air pollutants may also induce a variety of cancers in the long term ( 96 ).

As stated already, respiratory disorders are closely associated with the inhalation of air pollutants. These pollutants will invade through the airways and will accumulate at the cells. Damage to target cells should be related to the pollutant component involved and its source and dose. Health effects are also closely dependent on country, area, season, and time. An extended exposure duration to the pollutant should incline to long-term health effects in relation also to the above factors.

Particulate Matter (PMs), dust, benzene, and O 3 cause serious damage to the respiratory system ( 97 ). Moreover, there is a supplementary risk in case of existing respiratory disease such as asthma ( 98 ). Long-term effects are more frequent in people with a predisposing disease state. When the trachea is contaminated by pollutants, voice alterations may be remarked after acute exposure. Chronic obstructive pulmonary disease (COPD) may be induced following air pollution, increasing morbidity and mortality ( 99 ). Long-term effects from traffic, industrial air pollution, and combustion of fuels are the major factors for COPD risk ( 99 ).

Multiple cardiovascular effects have been observed after exposure to air pollutants ( 100 ). Changes occurred in blood cells after long-term exposure may affect cardiac functionality. Coronary arteriosclerosis was reported following long-term exposure to traffic emissions ( 101 ), while short-term exposure is related to hypertension, stroke, myocardial infracts, and heart insufficiency. Ventricle hypertrophy is reported to occur in humans after long-time exposure to nitrogen oxide (NO 2 ) ( 102 , 103 ).

Neurological effects have been observed in adults and children after extended-term exposure to air pollutants.

Psychological complications, autism, retinopathy, fetal growth, and low birth weight seem to be related to long-term air pollution ( 83 ). The etiologic agent of the neurodegenerative diseases (Alzheimer's and Parkinson's) is not yet known, although it is believed that extended exposure to air pollution seems to be a factor. Specifically, pesticides and metals are cited as etiological factors, together with diet. The mechanisms in the development of neurodegenerative disease include oxidative stress, protein aggregation, inflammation, and mitochondrial impairment in neurons ( 104 ) ( Figure 1 ).

An external file that holds a picture, illustration, etc.
Object name is fpubh-08-00014-g0001.jpg

Impact of air pollutants on the brain.

Brain inflammation was observed in dogs living in a highly polluted area in Mexico for a long period ( 105 ). In human adults, markers of systemic inflammation (IL-6 and fibrinogen) were found to be increased as an immediate response to PNC on the IL-6 level, possibly leading to the production of acute-phase proteins ( 106 ). The progression of atherosclerosis and oxidative stress seem to be the mechanisms involved in the neurological disturbances caused by long-term air pollution. Inflammation comes secondary to the oxidative stress and seems to be involved in the impairment of developmental maturation, affecting multiple organs ( 105 , 107 ). Similarly, other factors seem to be involved in the developmental maturation, which define the vulnerability to long-term air pollution. These include birthweight, maternal smoking, genetic background and socioeconomic environment, as well as education level.

However, diet, starting from breast-feeding, is another determinant factor. Diet is the main source of antioxidants, which play a key role in our protection against air pollutants ( 108 ). Antioxidants are free radical scavengers and limit the interaction of free radicals in the brain ( 108 ). Similarly, genetic background may result in a differential susceptibility toward the oxidative stress pathway ( 60 ). For example, antioxidant supplementation with vitamins C and E appears to modulate the effect of ozone in asthmatic children homozygous for the GSTM1 null allele ( 61 ). Inflammatory cytokines released in the periphery (e.g., respiratory epithelia) upregulate the innate immune Toll-like receptor 2. Such activation and the subsequent events leading to neurodegeneration have recently been observed in lung lavage in mice exposed to ambient Los Angeles (CA, USA) particulate matter ( 61 ). In children, neurodevelopmental morbidities were observed after lead exposure. These children developed aggressive and delinquent behavior, reduced intelligence, learning difficulties, and hyperactivity ( 109 ). No level of lead exposure seems to be “safe,” and the scientific community has asked the Centers for Disease Control and Prevention (CDC) to reduce the current screening guideline of 10 μg/dl ( 109 ).

It is important to state that impact on the immune system, causing dysfunction and neuroinflammation ( 104 ), is related to poor air quality. Yet, increases in serum levels of immunoglobulins (IgA, IgM) and the complement component C3 are observed ( 106 ). Another issue is that antigen presentation is affected by air pollutants, as there is an upregulation of costimulatory molecules such as CD80 and CD86 on macrophages ( 110 ).

As is known, skin is our shield against ultraviolet radiation (UVR) and other pollutants, as it is the most exterior layer of our body. Traffic-related pollutants, such as PAHs, VOCs, oxides, and PM, may cause pigmented spots on our skin ( 111 ). On the one hand, as already stated, when pollutants penetrate through the skin or are inhaled, damage to the organs is observed, as some of these pollutants are mutagenic and carcinogenic, and, specifically, they affect the liver and lung. On the other hand, air pollutants (and those in the troposphere) reduce the adverse effects of ultraviolet radiation UVR in polluted urban areas ( 111 ). Air pollutants absorbed by the human skin may contribute to skin aging, psoriasis, acne, urticaria, eczema, and atopic dermatitis ( 111 ), usually caused by exposure to oxides and photochemical smoke ( 111 ). Exposure to PM and cigarette smoking act as skin-aging agents, causing spots, dyschromia, and wrinkles. Lastly, pollutants have been associated with skin cancer ( 111 ).

Higher morbidity is reported to fetuses and children when exposed to the above dangers. Impairment in fetal growth, low birth weight, and autism have been reported ( 112 ).

Another exterior organ that may be affected is the eye. Contamination usually comes from suspended pollutants and may result in asymptomatic eye outcomes, irritation ( 112 ), retinopathy, or dry eye syndrome ( 113 , 114 ).

Environmental Impact of Air Pollution

Air pollution is harming not only human health but also the environment ( 115 ) in which we live. The most important environmental effects are as follows.

Acid rain is wet (rain, fog, snow) or dry (particulates and gas) precipitation containing toxic amounts of nitric and sulfuric acids. They are able to acidify the water and soil environments, damage trees and plantations, and even damage buildings and outdoor sculptures, constructions, and statues.

Haze is produced when fine particles are dispersed in the air and reduce the transparency of the atmosphere. It is caused by gas emissions in the air coming from industrial facilities, power plants, automobiles, and trucks.

Ozone , as discussed previously, occurs both at ground level and in the upper level (stratosphere) of the Earth's atmosphere. Stratospheric ozone is protecting us from the Sun's harmful ultraviolet (UV) rays. In contrast, ground-level ozone is harmful to human health and is a pollutant. Unfortunately, stratospheric ozone is gradually damaged by ozone-depleting substances (i.e., chemicals, pesticides, and aerosols). If this protecting stratospheric ozone layer is thinned, then UV radiation can reach our Earth, with harmful effects for human life (skin cancer) ( 116 ) and crops ( 117 ). In plants, ozone penetrates through the stomata, inducing them to close, which blocks CO 2 transfer and induces a reduction in photosynthesis ( 118 ).

Global climate change is an important issue that concerns mankind. As is known, the “greenhouse effect” keeps the Earth's temperature stable. Unhappily, anthropogenic activities have destroyed this protecting temperature effect by producing large amounts of greenhouse gases, and global warming is mounting, with harmful effects on human health, animals, forests, wildlife, agriculture, and the water environment. A report states that global warming is adding to the health risks of poor people ( 119 ).

People living in poorly constructed buildings in warm-climate countries are at high risk for heat-related health problems as temperatures mount ( 119 ).

Wildlife is burdened by toxic pollutants coming from the air, soil, or the water ecosystem and, in this way, animals can develop health problems when exposed to high levels of pollutants. Reproductive failure and birth effects have been reported.

Eutrophication is occurring when elevated concentrations of nutrients (especially nitrogen) stimulate the blooming of aquatic algae, which can cause a disequilibration in the diversity of fish and their deaths.

Without a doubt, there is a critical concentration of pollution that an ecosystem can tolerate without being destroyed, which is associated with the ecosystem's capacity to neutralize acidity. The Canada Acid Rain Program established this load at 20 kg/ha/yr ( 120 ).

Hence, air pollution has deleterious effects on both soil and water ( 121 ). Concerning PM as an air pollutant, its impact on crop yield and food productivity has been reported. Its impact on watery bodies is associated with the survival of living organisms and fishes and their productivity potential ( 121 ).

An impairment in photosynthetic rhythm and metabolism is observed in plants exposed to the effects of ozone ( 121 ).

Sulfur and nitrogen oxides are involved in the formation of acid rain and are harmful to plants and marine organisms.

Last but not least, as mentioned above, the toxicity associated with lead and other metals is the main threat to our ecosystems (air, water, and soil) and living creatures ( 121 ).

In 2018, during the first WHO Global Conference on Air Pollution and Health, the WHO's General Director, Dr. Tedros Adhanom Ghebreyesus, called air pollution a “silent public health emergency” and “the new tobacco” ( 122 ).

Undoubtedly, children are particularly vulnerable to air pollution, especially during their development. Air pollution has adverse effects on our lives in many different respects.

Diseases associated with air pollution have not only an important economic impact but also a societal impact due to absences from productive work and school.

Despite the difficulty of eradicating the problem of anthropogenic environmental pollution, a successful solution could be envisaged as a tight collaboration of authorities, bodies, and doctors to regularize the situation. Governments should spread sufficient information and educate people and should involve professionals in these issues so as to control the emergence of the problem successfully.

Technologies to reduce air pollution at the source must be established and should be used in all industries and power plants. The Kyoto Protocol of 1997 set as a major target the reduction of GHG emissions to below 5% by 2012 ( 123 ). This was followed by the Copenhagen summit, 2009 ( 124 ), and then the Durban summit of 2011 ( 125 ), where it was decided to keep to the same line of action. The Kyoto protocol and the subsequent ones were ratified by many countries. Among the pioneers who adopted this important protocol for the world's environmental and climate “health” was China ( 3 ). As is known, China is a fast-developing economy and its GDP (Gross Domestic Product) is expected to be very high by 2050, which is defined as the year of dissolution of the protocol for the decrease in gas emissions.

A more recent international agreement of crucial importance for climate change is the Paris Agreement of 2015, issued by the UNFCCC (United Nations Climate Change Committee). This latest agreement was ratified by a plethora of UN (United Nations) countries as well as the countries of the European Union ( 126 ). In this vein, parties should promote actions and measures to enhance numerous aspects around the subject. Boosting education, training, public awareness, and public participation are some of the relevant actions for maximizing the opportunities to achieve the targets and goals on the crucial matter of climate change and environmental pollution ( 126 ). Without any doubt, technological improvements makes our world easier and it seems difficult to reduce the harmful impact caused by gas emissions, we could limit its use by seeking reliable approaches.

Synopsizing, a global prevention policy should be designed in order to combat anthropogenic air pollution as a complement to the correct handling of the adverse health effects associated with air pollution. Sustainable development practices should be applied, together with information coming from research in order to handle the problem effectively.

At this point, international cooperation in terms of research, development, administration policy, monitoring, and politics is vital for effective pollution control. Legislation concerning air pollution must be aligned and updated, and policy makers should propose the design of a powerful tool of environmental and health protection. As a result, the main proposal of this essay is that we should focus on fostering local structures to promote experience and practice and extrapolate these to the international level through developing effective policies for sustainable management of ecosystems.

Author Contributions

All authors listed have made a substantial, direct and intellectual contribution to the work, and approved it for publication.

Conflict of Interest

IM is employed by the company Delphis S.A. The remaining authors declare that the present review paper was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Research Environment

  • Open Access
  • First Online: 28 March 2023

Cite this chapter

You have full access to this open access chapter

research paper on the environment

  • Lana Barać   ORCID: orcid.org/0000-0002-0170-5972 3  

Part of the book series: Collaborative Bioethics ((CB,volume 1))

6711 Accesses

1 Citations

Successful research environment requires joint effort by individual researchers, research groups and the organization. This chapter describes the basic principles and good research practices in the context of the research environment and serves as a guide to good, responsible research for research newcomers – researchers at the beginning of their scientific career. In this chapter we will help you navigate the organizational pathway to doing good research. The first step to understanding your rights, obligations and responsibilities in research is knowing that they exist. This chapter offers an introductory level orientation to codes, rules and regulations but also serves as a guide on how to identify whether your organization goes above and beyond offering guidance and assistance regarding research integrity or whether it provides a bare minimum or even nothing at all, and who/what you can turn to in the latter case. Furthermore, this chapter also describes the responsibilities that you as a researcher have towards the organisation regarding the importance of maintaining research integrity, so that you are aware of your accountability and the possible consequences if you disregard organizational responsibility for responsible research.

You have full access to this open access chapter,  Download chapter PDF

Similar content being viewed by others

research paper on the environment

Research Integrity: Responsible Conduct of Research

research paper on the environment

Research Integrity and Hidden Value Conflicts

research paper on the environment

Research Assessments Should Recognize Responsible Research Practices. Narrative Review of a Lively Debate and Promising Developments

  • Research climate
  • Research culture
  • Research ethics structures
  • Research integrity structures

What This Chapter Is About

Successful research environment requires joint effort by individual researchers, research groups and the organization. This chapter describes the basic principles and good research practices in the context of research environment and serves as a guide to good, responsible research for research newcomers – researchers at the beginning of their scientific career. In this chapter we will help you navigate the organizational pathway to doing good research. The first step to understanding your rights, obligations and responsibilities in research is knowing that they exist. This chapter offers an introductory level orientation to codes, rules and regulations but also serves as a guide on how to identify whether your organization goes above and beyond offering guidance and assistance regarding research integrity or whether it provides a bare minimum or even nothing at all, and who/what you can turn to in the latter case. Furthermore, this chapter also describes the responsibilities that you as a researcher have towards the organisation regarding the importance of maintaining research integrity, so that you are aware of your accountability and the possible consequences if you disregard organizational responsibility for responsible research.

Case Scenario: Research Environment and Research Integrity

This hypothetical scenario was adapted from a narrative concerning the links between research environments and research integrity. The case scenario was developed by the Members of The Embassy of Good Science and is available at the Embassy of Good Science . The case below is published under Creative Commons Attribution-ShareAlike license, version 4.0 (CC BY-SA 4.0).

After 6 months of working as a novice researcher in a research lab at a university school, you meet up with a colleague who graduated with you and is now working as a novice researcher in a commercial research organization. She tells you that she may have encountered a potential research misconduct concerning intellectual property. She knew what she had to do because the company is very committed to making sure all employees are fully informed about all existing rules and regulations. Her action prevented the misconduct. That conversation made you think that you were never been briefed or informed in detail about rules and regulations regarding research when you signed your employment contract with your organization. You heard your mentor casually mention “standard rules of conduct in research,” expecting you to know what they are. The day after your meeting with your colleague, you check your school’s webpages for information on research integrity. Although there is no explicit mention of research integrity, your University’s website refers to its own code of conduct as well as the European Code of Conduct for Research Integrity. Furthermore, a university-wide academic integrity complaints procedure and a research integrity committee are mentioned but details of which, however, cannot be found on the university’s public webpages. After talking to your fellow novice researchers, you realize that they too are uncertain about whether your school has written guidelines for research integrity. You also realize that they feel pressurized to generate more and more research outputs and that insecurity, linked to short-term contracts and scarce opportunities for professional advancement, means that they perceive the incentives to succeed in research and academia as outweighing the incentives to comply with the norms of good research practices. They not only feel that your school does not adequately promote research integrity but that that pressure comes within the organization, also as a result of the culture of “ publish or perish ” After talking to them you realise that there is more to this problem than just ignorance or integrity issues with individual novice researchers and that their views could indicate an environmental problem in academia.

Questions for You

In light of this case scenario, what do you think which person(s) or groups should be responsible for the early-career researchers’ general lack of knowledge concerning the university’s research integrity guidelines, codes of conduct and complaints procedures? What are the reasons for your answer?

In what ways could a research organization make its research integrity standards, guidelines and processes more visible to its researchers, especially early-career researchers? What initiatives should be promoted in a research organization in order to engage early-career researchers with research integrity standards, guidelines and processes?

Thinking about the ways in which your organization currently engages early-career researchers with research integrity standards, guidelines and processes, what could be done to improve such engagement at the level of your organization and the level of your department or laboratory?

The Responsibilities of the Organization: Above and Beyond, or the Bare Minimum?

Good research practice from the european code of conduct for research integrity:.

Research institutions and organisations promote awareness and ensure a prevailing culture of research integrity .

When starting at a new job in a new research organization you have to understand that an organization is a living organism – a system with organized structure that functions as an individual entity and is, as all organisms are, prone to constant change. One change that has been having a huge momentum in Europe in recent years is the initiative to encourage activities that show commitment of organizations to make research integrity (RI) and responsible research in general as a top priority. Empowering sound and verifiable research and fostering a research integrity culture, thus creating a proper research environment, is now empowered by embedding these principles as requirements in EU funding schemes. As research environment is a dimension that needs to be considered by all involved stakeholders, activities conducted in order to foster good research practices and a culture of research integrity will impact researchers at all levels.

When we talk about organization as a system, the terms organizational climate and organizational culture are sometimes used interchangeably or considered as complementary constructs. The two terms are different. Organizational climate is usually defined as shared perceptions of policies, practices and procedures experienced by the employees, as well as the behaviours the employees perceive as rewarding. It is considered to be the measurable manifestation of organizational culture , which is defined as the system of basic assumptions, deep values and beliefs that are prevalent in the organization. Organizational culture is something that has to be built, maintained and nurtured by supportive environment.

As a part of organizational culture, research integrity has become an integral part of a university’s mission, vision and strategy. For example; universities in France will, in the near future, in what seems to be the first national initiative of its kind, go as far as requiring Ph.D. recipients to take an integrity oath on the day they successfully defend their thesis. Research integrity is also dependent on human factors – collegiality, openness, reflection, shared responsibility and work satisfaction are vital elements of a successful working environment. As a novice researcher, you should try, from the very beginning of your career, to comply with the highest standards of ethics and integrity in the performance of your research.

How can you figure out the ethical landscape at the very start of your career? The first step to understanding your rights, obligations and responsibilities is knowing that they exist .

Rules, codes and regulations can be created by the organization itself but also by national or international bodies. They can have different names and vary in scope, but they are always a written set of instructions issued by an organization. Depending on the scope of action, codes can cover issues prescribed by legal regulations such as: human subject’s protection, animal care, intellectual property and confidentiality, legality and mechanisms to identify and procedure for reporting and dealing with research misconduct. Other than binding legal issues, codes can also cover fundamental principles of research which serve organisations in creating and preserving an environment for responsible research. Fundamental principles presented by the most widely recognized and accepted documents – European Code of Conduct for Research Integrity (All European Academies 2017) and Fostering Integrity in Research (US National Academies of Sciences, Engineering, and Medicine 2017), might not be identical in the naming of the principles but the meaning of the principles in RI perspective is similar (Table 1.1 ).

Not all research or academic organizations are as big or as well developed to have the resources to promptly and adequately inform you about all rules and obligations regarding research. That does not mean you are not required to follow them or that your rights are not protected by them. Organizational guides and codes should be easily accessible on the organization’s webpages and/or intranet. You should be provided with adequate training, tailored to the research discipline and the type of organization, and briefed about standard rules of conduct in research. Bear in mind that the organizational support structure is usually proportional to the size and complexity of the organization. Apart from having binding documents about responsible research, your organization should have established channels to facilitate an open dialogue at and between all levels; from management and senior researchers to novice researchers and other members of staff. Ideally, your organization should, apart from the standard rules and regulations, develop and implement a research integrity promotion plan (RIPP). This is a document that describes, on a general level, how the organization promotes research integrity and which concrete methods are employed or are being developed to foster research integrity and to deal with allegations of breaches of research integrity. Procedures to increase transparency of research investigation procedure and safe and effective whistle-blowing channels and the protection of alleged perpetrators should also be implemented in line with the legal principle of the presumption of innocence – someone accused of research misconduct is considered innocent until proven guilty.

When navigating the research environment, it is always advisable to consider the human factor. Some organizations are very organized. Some are not. Even though an organization may be committed to following the prescribed rules, do not expect to be given a clear and user-friendly version of these rules upon arrival. Some organizations have rules and regulations because they had to comply with national or international regulations. Other organizations have them because the management is devoted to actively promoting responsible research. Some organizations are understaffed, so the lack of organizational documents may not necessarily reflect the moral of the organization. In brief, even if your organization does not have instructions for the new employees written on a (virtual) bulletin board, that does not mean that they do not exist, so no matter whether you were briefed or not these rules apply to you and you should be governed by those rules.

Here is some advice for you on how to navigate responsible research environment in your organization:

Always get familiar with existing laws, codes and regulations in the organization and country where you work. If you are a member of a professional organization or if you are professionally bound to the code of ethics of your profession, check whether the professional code is aligned with that of your organisation. Some organizations may provide a checklist with sources and links to different guidelines and rules of procedure for good research practice available online. Do not forget to get familiar with international principles and EU standards such as The European Code of Conduct for Research Integrity , principles prescribed for different professions (e.g., The Declaration of Helsinki or Convention on Biological Diversity ) and national guidelines, but first and foremost to the documents and guidance provided by your organization.

Consider that different views of research ethics around the world reflect differences in culture and legal frameworks, which can lead to differences in regulations. For example, the European General Data Protection Regulation (GDPR) has a very expansive definition of personal information that may warrant protection, whereas in the United States (US), there is a narrower (and often domain-specific) characterization of privacy-sensitive information. Even within the EU, there are differences among EU member countries – the examples are different laws on stem-cell research and human embryos. Differences in regulations unfortunately may lead to ethics dumping – the practice of researchers trained in cultures with rigorous ethical standards to go and conduct research in countries with laxer ethical rules and oversight, in order to circumvent the regulations, policies, or processes that exist in their home countries.

Keep in mind that codes and regulations change and can evolve. For example, The Nuremberg Code; which is a set of research ethics principles for human experimentation was created by the US vs. Brandt et al. court case, as a result of the Nuremberg trials at the end of the World War 2. The core elements of the Nuremberg Code are the requirements for voluntary and informed consent, a favourable risk/benefit analysis, and the right to withdraw from a study without consequences. That standard was confirmed in 1964, when the WMA’s Declaration of Helsinki was endorsed and again specified that experiments involving human beings needed the informed consent of participants. The Declaration of Helsinki has been updated overe the years, so make sure that you consult its latest version. Another example is the infamous Tuskegee syphilis study , funded by the US Public Health Service. The study was conducted between 1932 and 1972 at Tuskegee Institute in Alabama to evaluate the natural history of untreated syphilis in African American males. The study was conducted for 40 years without ethical review and denied participants the effective treatment for this curable disease. The study became a milestone in the history of US research regulations, as it was conducted without ethical re-evaluation in spite of both The Nuremberg Code and the Declaration of Helsinki being accepted and established as a standard during the study. The aftermath of the public disclosure of the Tuskegee study led to the establishment of the National Commission for the Protection of Human Subjects of Biomedical and Behavioural Research and the National Research Act that requires the establishment of institutional review boards (IRBs) at institutions receiving federal support.

Codes and regulations can also change due to scientific advancements that lead to new fields of research (e.g., the emergence of experimental psychology) or new technologies (e.g., gene editing, artificial intelligence). The changes can also come in response to changes in cultural values and behavioural norms that evolve over time (e.g., perceptions of privacy and confidentiality).

Consider emerging ethics topics , even if they are not listed or mentioned in current codes of your organization, such as bystander risk (impacts of research on other people; e.g. genetic testing and genetic research, second-hand exposure to a contagious disease) big data and open science (concerns about the potential to compromise privacy), and citizen science (involving community participation in science, allowing the research population to become researchers).

Research institutions and organisations demonstrate leadership in providing clear policies and procedures on good research practice and the transparent and proper handling of violations.

Knowing, understanding and using existing codes and regulations for good research is important and useful, but there may be times when you are in doubt about how what is written in a code translates into real life. Therefore, it is important to learn how to interpret, assess, and apply different research rules and how to make decisions to act ethically and responsibly in different situations or at least know who to turn to when in doubt . To put it simply: pure existence of the codes does not make an ethical environment. Or, in words of Aristotle: “One swallow does not a summer make.”

If codes, rules and regulations are the foundation of research integrity culture, building strong pillars to rest upon, establishing research ethics structures is the next crucial step for organizations to ensure proper research environment.

Different organizations may have different supportive mechanisms to ensure that researchers adhere to research ethics and integrity requirements. Depending on the size and the type of the organization, key organizational bodies and staff dealing with research ethics and integrity might quite vary in name and scope of work. It is important to understand that, depending on type of research organisation, you may encounter organisational bodies (or individuals) with various scope of activities regarding research ethics and integrity. This may seem confusing at first, as the concepts of ethics and integrity may seem intertwined and actually, for the most part, they are. Research ethics (RE) is the term that encompassed fundamental moral principles and research integrity (RI) is the quality of having moral principles, defined as active adherence to the ethical principles and professional standards essential for the responsible practice of research. Both of them are a necessary part of responsible conduct of research.

Ideally, your organisation will have all necessary structures, processes, and dedicated and adequately trained staff to uphold best research practices and standards, and deal with procedures relevant to the various research areas and disciplines within the organisation. Listed below are some of the common research ethics and integrity bodies (names might vary). If there is only one of these at your organisation, the scope of their responsibilities is probably wider and you can still contact them regarding any doubt and insecurity you might have about responsible research.

Ethics Committee or Institutional Review Board is probably the most common body at academic and research organizations, because it has the longest history. Research Ethics Committees were developed after the World War 2, particularly in response to The Nuremberg Trials, as bodies responsible for oversight of medical or human research studies. The role of an Ethics Committee is to scrutinise research proposals and ensure that the proposed research adequately addressed all relevant ethics issues. This means that they make sure that proposed research protocols protect rights, safety, dignity and well-being of participants, that research protocols involving animals follow the highest animal care standards and that they facilitate and promote ethical research that is of potential benefit to participants, science and society. In smaller organisations that do not necessarily have other bodies, the role of the Ethics Committee would also be to facilitate and promote research integrity and good research practices, to have mechanisms to identify and procedure for reporting and dealing with allegations of breaches of research integrity (research misconduct).

Board/Office/ Commission for Research Integrity is a body that promotes responsible research conduct, serves as a knowledge base for questions regarding research integrity and research misconduct, informs on policies and procedures in and outside of the organization, handles allegations of research misconduct and conducts investigations, advises on administrative action and also responds to allegations of retaliation against whistle-blowers. It is responsible for providing advice for researchers on how to adhere to responsible research practices, usually through guidelines, checklists and other documents in which good research practices are presented. The organisational structures of RI committees and their responsibilities regarding cases of research misconduct may vary depending on the organisational or national regulations. For example, the Office for Research Integrity in the US is a governmental body that has monitoring and oversight role to ensure that researchers and organisations which receive federal funding for health research comply with existing regulations; it offers support to further good practice research and promote integrity and high ethical standards, as well as to have robust and fair methods to address poor research practices and misconduct.

Another individual position you may encounter at your organisation is the Research Integrity Officer (RIO) , a professional with a complex role. An organisation’s RIO promotes responsible research, conducts research training, discourages research misconduct, and deals with allegations of or evidence of possible research misconduct. The details of an RIO’s job vary from country to country, but the position is mandatory in many. For example, in US organisations, a RIO serves as the liaison between the federal Office for Research Integrity and the organisation of the researchers. In the EU, countries have different requirements and roles for their RIOs, but their task is essentially the same. Some countries do not have such bodies, and their role is most often taken by Ethics Committees.

Your organisation may have a Research Integrity Ombudsperson or Confidential Advisor on Scientific Integrity or Research Integrity Advisor . The aim of such an advisor is to promote fair, non-discriminatory and equitable treatment related to research integrity within the organisation and improve the overall quality of the research working environment. Such a position should be well known in the organisation, and there should be a low threshold for contacting this person. Researchers who experience research integrity dilemmas or have come into an integrity-related conflict should be able to discuss their case with the ombudsperson in a strictly confidential manner. The function of the ombudsperson should be clearly separated from a formal research integrity committee or ethics committee, so that it is clear to researchers that contacting the ombudsperson does not imply a formal registration of an allegation but a confidential and informal assistance in resolving research work-related conflicts, disputes and grievances (including, but not limited to complaints/appeals of researchers regarding conflicts between supervisor(s) and early-stage researchers).

Research institutions and organisations support proper infrastructure for the management and protection of data and research materials in all their forms (encompassing qualitative and quantitative data, protocols, processes, other research artefacts and associated metadata) that are necessary for reproducibility, traceability and accountability.

Even as an early-career researcher you probably realise that, while doing research, dealing with a fair amount of different types of data is inevitable. Ten years ago the Science journal polled their peer reviewers from the previous year on the availability and use of research data, and, about half of those polled stored their data only in their laboratories. If you had walked in any type of research organisation 10 years ago you would have had probably been briefed about keeping your lab notebook records and advised about keeping your data somewhere other than your lab desktop computer. Today, when we talk about data management, we go well beyond keeping your lab or research notebook in order. While maintaining a lab notebook is still essential for anybody performing research as a document of completed work so that research can be replicated and validated; or a legal document to prove intellectual property/invention, data management on an organisational level entails much more . It comprises the infrastructure (technology, services and staff support), training for researchers, and policies on data management (DMPs). Therefore, you should expect from your organisation to provide instructions and policies regarding data curation (repositories), management, use, access, publishing, and sharing. Regarding the technology for data management, your organisation should provide appropriate storage media that enables collecting, organizing, protecting, storing, and sharing data. It should also inform you about available data repositories, networks and different authentication systems. Research organisations should make DMPs easily accessible and organisations’ websites should provide extensive information about the concept of data sharing in general, as well as detailed information on DMP requirements and how to comply with them. Services and staff support for data management are highly dependent on the amount of funding and size of an organisation because the amount of work and time involved in these processes is extensive and costly. Some organisations have whole departments and others at best a single person for data management.

In 2019, Science Europe released its Practical Guide to the International Alignment of Research Data Management , and, as a follow-up, compiled the document to showcase some best practices. The document also demonstrated the variability of data management processes in different organisations. Although the readiness to develop DMPs can differ according to discipline, most research funders require researchers to include a DMP in their project proposals. You should expect from your organisation to have in place the structures and procedures to facilitate data management and curation procedures that are aligned with FAIR principles, which say that data should be F indable, A ccessible, I nteroperable, and R eusable. Bear in mind that researchers’ knowledge about research data management could be limited in countries and organisations where open science policies are not well developed. This leads to misunderstandings about the need to store and archive data. For detailed guidance on data practices and management throughout the lifecycle of research data and instructions to preparation of data management plans (DMPs) see Chap. 5 .

Research institutions and organisations reward open and reproducible practices in hiring and promotion of researchers.

No matter whether you have been in research for some time or you are a novice researcher, you have probably heard the catchphrase “ publish or perish !” because it has been uttered in whisper by stressed and burned-out researchers all over the world for years, putting pressures on individual integrity and potentially fostering practices harmful to scientific research. Publish or perish culture thrives on metrics (number of articles published and impact factors of journals) but fails to adequately take societal and broader impact into account . Some aspects of research are indeed quantifiable and cannot be and will not be ignored, but recent efforts towards more inclusive evaluation scheme of research and researchers could be a “game-changer”, meaning that yes, you are still required to publish, but the scientific efforts that translate better to a broader community will not be ignored.

When it comes to hiring and promotion in research, the need for transparency should be self-explanatory, but what does promoting open practices mean in reality? Geographically speaking, Europe might be ahead of the curve in endorsing and implementing changes as the new framework programme Horizon Europe makes Open Science mandatory throughout the programme and includes Open Innovation as one of three framework pillars. What does this mean for you? Although the attitude and the level of commitment of the organisation toward endorsing open science principles could vary and very much depend on the human factor, there is no reason for you not to be aware of the change to come and strive to fulfil the general idea of quality . Producing quality science would imply producing substantive, impactful science , science that reaches broader audience and addresses valuable questions, but is also reliable enough to build upon. This mean that evaluation and appraisal procedures may assess a researcher’s contribution to addressing societal needs and publishing all research completely and transparently, regardless of whether the results were positive or negative. This would also imply implementing open research practices and embedding these skills in training of early-career researchers, making preliminary results and final results available to the general public, potential users and the research community, in order to facilitate broader assessment and accountability of research.

There are also indications that the EU is moving towards a structured CV which would include Responsible Indicators for Assessing Scientists (RIAS), and other related information. For example; the department of psychology at LMU München added a paragraph to a professorship job advertisement which asks for an open science statement from the candidates: “Our department embraces the values of open science and strives for replicable and reproducible research. For this goal we support transparent research with open data, open material, and pre-registrations. Candidates are asked to describe in what way they already pursued and plan to pursue these goals.” Another example is University of Liège , where depositing papers in the repository is now the sole mechanism for submitting them to be considered when researchers underwent performance review.

Check whether your organisation has procedures related to the publication and communication of research results, such as preregistration, preprints, and online repositories, the organisational approach to open access, FAIR data curation, expectations about the use of reporting guidelines, procedures for avoiding predatory journals, strategies for responsible peer review practices, and mechanisms to support and acknowledge public communication of research findings. Also, check whether your organisation is ahead of the curve in promoting Open Science (Fig. 1.1 ) check for procedures and practices through the organisation’s own website or other established platforms on organisational or national level, check whether your organisation has signed any declaration relevant to Open Science .

An infographic diagram of the principles of open science, namely open access, data, reproducible research, metrics, impact, peer review, science policies, science tools, and science guidelines.

Core principles of Open Science. For details, see the FOSTER project

The Responsibilities of the Researcher

Ask not what your organisation can do for you – ask what you can do for your organisation.

While The European Code of Conduct for Research Integrity (ECoC RI) provides general guidance for good research practices and serves as a framework for self-regulation, the document that details your role, responsibilities and entitlements as a researcher is The European Charter for Researchers . The Charter is a set of general principles and requirements that addresses all researchers in the European Union at all stages of their career, covers all fields of research and takes into account the multiple roles that researchers can have.

Being a researcher is highly related to context and not defined only by job positions, formal qualifications level of education or by seniority at work. According to The Frascati definition ; Researchers are professionals engaged in the conception or creation of new knowledge . They conduct research and improve or develop concepts, theories, models, techniques instrumentation, software or operational methods. The tasks performed depend on job characteristics and personal strengths but have to be related to research and innovation. Activities of a researcher are many, but first and foremost entail: conducting and evaluating research and innovation, applying for research funding, managing projects and teams, managing, sharing and transferring the generated knowledge (including through scholarly communication, science communication to society, knowledge management for policy, and knowledge transfer to industry) and higher education teaching.

As an early-career researcher, you should keep in mind that everything you do reflects upon your organisation . So be sure to comply with the highest values and ethical standards and aim at excellence. Even as a novice researcher, at a beginning of your career be aware that your organisation will treat you as a responsible adult and will hold you accountable . Also, depending on the applicable rules, your organisation might be held accountable for your wrongdoing, so, even if you are there for a brief amount of time (post-doctoral or project-based position) remember that you are a part of the research environment and are expected to contribute to a positive, fair and stimulating research culture.

Science is by definition a joint endeavour and you should learn to accept responsibility because that is what being accountable entails. Accountability refers to an obligation or willingness to accept responsibility for one’s actions, meaning that, when individuals are accountable, they understand and accept the consequences of their actions for the areas in which they assume responsibility. Remember that you, as an employee, have contractual and legal obligations. That basically means that you are liable in case of breach of contract and you have to adhere to such regulations by delivering the required results (e.g. thesis, publications, patents, reports, new products development, etc), as set out in the terms and conditions of the contract or equivalent document. You should be familiar with the strategic goals, seek all necessary approvals before starting your research or accessing the resources provided. You should, at all times, keep a professional attitude . This included maintaining a professional etiquette at workplace – respectful and courteous demeanour towards colleagues and respect in the sense of responsibilities (e.g. informing your supervisor if you are not able to meet deadlines).

As a researcher, you should, first and foremost, focus your research for the good of mankind and for expanding the frontiers of scientific knowledge. You should be guaranteed the freedom of thought and expression , and the freedom to identify methods by which problems are solved, according to recognized ethical principles and practices. But, bear in mind that there is a difference between using research freedom and abusing it. You should, by all means, recognize the limitations to this freedom that could arise as a result of particular research circumstances or operational constraints (e.g. for budgetary or infrastructural reasons or, especially in the industrial sector, for reasons of intellectual property protection). Such limitations should not contravene recognized ethical principles and practices in research. When it comes to ethical principles , you should adhere to the recognized ethical practices and fundamental ethical principles appropriate to your discipline, as well as to ethical standards defined in different national, sectoral or organisational codes of ethics. It is highly recommended to conduct ethics self-assessment at the very beginning of planning your research. Ethics self-assessment helps getting your research protocol ethics-ready , as it may give rise to binding obligations that may later on be checked through ethics checks and reviews. Consider that ethics issues arise in many areas of research and, as of recently, major scientific journals require researchers to provide ethics committee approval before publishing research articles. You should also adopt safe working practices, in line with national legislation, including taking the necessary precautions by preparing proper back-up strategies.

As we mentioned before, Open Science practices should be the norm, especially when performing publicly funded research, as they improve the quality, efficiency, responsiveness of research and trust in science. You should guarantee open access to research publications and research data and foster innovation in sharing research knowledge as early as possible in the research process, through adequate infrastructures and tools. You should ensure, in compliance with your contractual arrangements, that the results of your research are disseminated and exploited. Be public and open about your research . There are, of course, legitimate reasons to restrict access to certain data sets (for instance in order to protect the privacy of research subjects) so be guided by the principle “ As open as possible, as closed as necessary” . Ensure that your research activities are made known to society at large in such a way that they can be understood by non-specialists, thereby improving public understanding of science. Direct engagement with the public will help researchers better understand public interest in priorities for science and technology and also their concerns.

You should seek to continually improve yourself by regularly updating and expanding your skills and competencies. This may be achieved by a variety of means including, but not restricted to, formal training, workshops, conferences and e-learning.

Do not be afraid to diversify your research career , as research community is diverse in talents and expertise and can produce a wide range of research outputs (from scholar publications to scientific advice for policy makers, science communication to the public, higher education teaching, knowledge transfer to industry, and many others). Explore different career paths within the research profession, so that your talent finds the best place to produce richer research results.

Author information

Authors and affiliations.

Department of Research in Biomedicine and Health, University of Split School of Medicine, Split, Croatia

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Lana Barać .

Editor information

Editors and affiliations.

School of Medicine, University of Split, Split, Croatia

Ana Marusic

If You Want to Learn More

The embassy of good science.

Case scenario – Research Environments and Research Integrity

Guidelines – Creating a map of the normative framework informing and governing the state of Good Science

Education – Literature and tools in research integrity and ethics

Published Articles

Ashkanasy N, Wilderom C, Peterson M (2011) The handbook of organizational culture and climate. Sage Publications, New York

Fischer BA (2006) A summary of important documents in the field of research ethics. Schizophr Bull 32(1):69–80. https://doi.org/10.1093/schbul/sbj005

Moher D, Naudet F, Cristea IA, Miedema F, Ioannidis JPA, Goodman SN (2018) Assessing scientists for hiring, promotion, and tenure. PLoS Biol 16(3):e2004089. https://doi.org/10.1371/journal.pbio.2004089

Qiao H (2018) A brief introduction to institutional review boards in the United States. Pediatr Investig 2(1):46–51. https://doi.org/10.1002/ped4.12023

Qin J (2013) Infrastructure, standards, and policies for research data management. In: Sharing of scientific and technical resources in the era of big data: the proceedings of COINFO 2013. Science Press, Beijing, pp 214–219

Schneider B, Ehrhart MG, Macey WH (2013) Organizational climate and culture. Ann Rev Psychol 64(1):361–388. https://doi.org/10.1146/annurev-psych-113011-143809

Ščepanović R, Labib K, Buljan I, Tijdink J, Marušić A (2021) Practices for research integrity promotion in research performing organisations and research funding organisations: a scoping review. Sci Eng Ethics 27(1):4. https://doi.org/10.1007/s11948-021-00281-1

Science Staff (2011) Special collection. Dealing with data. Challenges and opportunities. Science 331:692–693. https://doi.org/10.1126/science.331.6018.692

National Academies of Sciences, Engineering, and Medicine (NASEM). (2017). Fostering integrity in research. Washington, DC: The National Academies Press. http://nap.nationalacademies.org/21896

Zohar DM, Hofmann DA (2012) Organizational culture and climate. In: Kozlowski SWJ (ed) The Oxford handbook of organizational psychology, vol 1. Oxford University Press, Oxford, pp 643–666

The European Code of Conduct for Research Integrity - framework for self-regulation across all scientific and scholarly disciplines and for all research settings. ECoC is a reference document for research integrity for all EU-funded research projects and as a model for organisations and researchers across Europe. All European Academies (ALLEA). (2017). https://allea.org/code-of-conduct/

The Bonn PRINTEGER Statement – Working with research integrity; guidance for research performing organisations

SOPs4RI Toolbox – Standard Operating Procedures and Guidelines that Research Performing and Funding Organisations can use to develop their own Research Integrity Promotion Plans

LERU – The League of European Research Universities (LERU) is a prominent advocate for the promotion of basic research at European research universities comprising of League of European Research Universities 23 leading universities pushing the frontiers of innovative research

Science Europe – Implementing Research Data Management Policies Across Europe: Experiences from Science Europe Member Organisations

Ask Open Science – Hosted by Bielefeld University, discussion (Q & A) on Open Science

The LSE Impact Blog – Six principles for assessing scientists for hiring, promotion, and tenure

The European Charter for Researchers – The European Charter for Researchers is a set of general principles and requirements which specifies the roles, responsibilities and entitlements of researchers

Rights and permissions

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/ ), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Reprints and permissions

Copyright information

© 2023 The Author(s)

About this chapter

Barać, L. (2023). Research Environment. In: Marusic, A. (eds) A Guide to Responsible Research. Collaborative Bioethics, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-031-22412-6_1

Download citation

DOI : https://doi.org/10.1007/978-3-031-22412-6_1

Published : 28 March 2023

Publisher Name : Springer, Cham

Print ISBN : 978-3-031-22411-9

Online ISBN : 978-3-031-22412-6

eBook Packages : Biomedical and Life Sciences Biomedical and Life Sciences (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals

Environmental studies articles from across Nature Portfolio

research paper on the environment

Implementing climate justice in Boston’s Building Performance Standard

Boston’s Building Emissions Reduction and Disclosure Ordinance (BERDO) provides an early example of how contestations around climate justice are already shaping cities’ implementation of climate action on the ground. As a landmark in equitable implementation efforts, BERDO highlights important challenges in putting climate justice into practice, including working within a program’s scope and scale constraints, translating justice goals into bureaucratic processes, and managing the potential weaponization of justice claims.

  • Claudia V. Diezmartínez
  • Benjamin K. Sovacool
  • Anne G. Short Gianotti

research paper on the environment

Community benefits can build bipartisan support for large-scale energy infrastructure

In the United States, Democrats and Republicans are more likely to support energy projects that are community-owned, create jobs, and generate solar energy, but local elected officials underestimate their constituents’ support for projects with these characteristics. Since these officials play a key role in approving new energy projects and negotiating the benefits they bring to communities, aligning local elected officials’ perceptions with the public’s could improve progress toward just energy transitions.

  • Holly Caggiano
  • Sara M. Constantino
  • Elke U. Weber

Latest Research and Reviews

research paper on the environment

Operationalizing climate justice in the implementation of Boston’s Building Performance Standard

City governments are moving to integrate justice and equity concerns into climate action. Diezmartínez et al. demonstrate that contestations about the politics of climate justice were central during the first 2 years of implementation for a Boston building decarbonization policy, highlighting important challenges in translating climate justice into practice. Nature Cities is proud that this robust work is our first fully qualitative methods study.

research paper on the environment

Perceptions of carbon dioxide emission reductions and future warming among climate experts

The authors of the IPCC Assessment Report are skeptical that warming can be limited below 2 degrees Celsius according to the survey of 211 experts and statistical analysis.

  • Steven J. Davis
  • H. Damon Matthews

research paper on the environment

Impact of circular economy on the long-term allocation structure of primary and secondary lithium

The global demand for lithium is projected to reach 1.93 million metric tons in 2050 compared to the demand in 2023, but the global implementation of recycling policies has the potential to reduce its consumption, as suggested by a bottom-up framework studying the projections of the global supply and demand of lithium for the next decades.

  • Qingbin Yuan

research paper on the environment

Globalization’s effects on South Asia’s carbon emissions, 1996–2019: a multidimensional panel data perspective via FGLS

  • Musarat Abbas
  • Michael L. Lahr

research paper on the environment

Using water and wastewater decentralization to enhance the resilience and sustainability of cities

Decentralized source separation offers a cost-effective, resilient alternative to conventional methods, enhancing resource recovery and reducing environmental impacts.

  • Manel Garrido-Baserba
  • David L. Sedlak

research paper on the environment

Spatial heterogeneity analysis of biased land resource supply policies on housing prices and innovation efficiency

  • Shixiang Chen

Advertisement

News and Comment

research paper on the environment

Quantifying women in the water workforce

Despite international policies promoting gender equality in water resources management, significant gender disparities persist globally, as women are less likely to be in the labour force than men. Addressing this issue requires closing the gender data gap, beginning with numerically assessing women’s representation in the sector to ensure sustainable and equitable water governance.

  • Grace Oluwasanya
  • Ayodetimi Omoniyi
  • Kaveh Madani

Preserving Doñana Park requires sound science, wise governance, and expert engineering

  • Julio Berbel
  • Fernando Delgado-Ramos

research paper on the environment

Re-conceptualizing the IPCC’s ‘burning embers’

Since 2001, the IPCC has utilized ‘burning embers’ to visualize risk at different levels of anthropogenic warming. An ethnoclimatological approach offers an opportunity to expand these figures, aligning the assessment of risk with the lived realities of vulnerable populations.

  • James D. Ford
  • Santiago Clerici
  • Sherilee Harper

research paper on the environment

Both downsizing and improvements to livestock systems are needed to stay within planetary boundaries

A focus on improvements to livestock production limits the scope for food systems transformation. Research, policy and industry must adopt measures to downsize livestock production and consumption to meet sustainability targets and facilitate a just transition.

  • Irina Herzon
  • Rachel Mazac

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

research paper on the environment

IMAGES

  1. research paper

    research paper on the environment

  2. Learning Environment Research Paper Example

    research paper on the environment

  3. Sustainable Environment Research template

    research paper on the environment

  4. FREE 44+ Research Paper Samples & Templates in PDF

    research paper on the environment

  5. (PDF) How to Write Ecology Research Papers

    research paper on the environment

  6. (PDF) Some current challenges in research on air pollution and health

    research paper on the environment

VIDEO

  1. Environmental Research 2021

  2. CTET ENVIRONMENT STUDIES (EVS) December 2024 MCQ 30 Questions PYQ Previous year ctet paper पर्यावरण

  3. Introduction to Environment

  4. Navigator Paper and the Environment

  5. FIRST YEAR SOLVED QUESTION PAPER👉FOUNDATION COURSE-II पर्यावरण और योगा 🔥BU Bhopal-Date-09/ जून /2023

  6. Plastic Pollution in Indian Himalayan Region

COMMENTS

  1. (PDF) Current Environmental Issues and Emerging Global Challenges in

    Abstract In 2016, a United Nations Environment Programme (UNEP) Frontiers report identified a series of global and emerging environmental problems that bring new challenges for the national and ...

  2. 2019 Best Papers published in the Environmental Science journals of the

    In 2019, the Royal Society of Chemistry published 180, 196 and 293 papers in Environmental Science: Processes & Impacts, Environmental Science: Water Research & Technology, and Environmental Science: Nano, respectively. These papers covered a wide range of topics in environmental science, from biogeochemical cycling to water reuse to ...

  3. Environmental Research

    Environmental Research is a multi-disciplinary journal publishing high quality and novel information about anthropogenic issues of global relevance and applicability in a wide range of environmental disciplines, and demonstrating …. View full aims & scope. $3590. Article publishing charge. for open access.

  4. Environmental sciences

    Environmental science is the multidisciplinary study of all aspects of the Earth's physical and biological environments. It encompasses environmental chemistry, soil science, ecology ...

  5. (PDF) CLIMATE CHANGE AND GLOBAL WARMING: STUDYING ...

    This research paper delves into the multifaceted dimensions of these issues, examining their impacts, root causes, and the strategies employed to mitigate and adapt to their effects.

  6. What really matters for successful research environments? A realist

    Introduction. Research environments matter. Environmental considerations such as robust cultures of research quality and support for researchers are thought to be the most influential predictors of research productivity.1, 2 Over 25 years ago, Bland and Ruffin1 identified 12 characteristics of research‐favourable environments in the international academic medicine literature spanning the ...

  7. Earth, Environment and Ecology Top 100 of 2023

    Earth, Environment and Ecology Top 100 of 2023. This collection highlights the most downloaded* Earth science, environmental science and ecology research papers published by Scientific Reports in ...

  8. The Unseen Effects of Deforestation: Biophysical Effects on Climate

    1 Department of Environmental Sciences, University of Virginia, Charlottesville, VA, United States; 2 The Woodwell Climate Research Center, Falmouth, MA, United States; 3 The Alliance of Bioversity International and the International Center for Tropical Agriculture, Cali, Colombia; Climate policy has thus far focused solely on carbon stocks and sequestration to evaluate the potential of ...

  9. Top 100 in Earth, Environment and Ecology

    This collection highlights our most downloaded* Earth, environment and ecology papers published in 2022. Featuring authors from aroud the world, these papers showcase valuable research from an ...

  10. Climate change and ecosystems: threats, opportunities and solutions

    In terms of environmental economics, there is a need to understand the costs and benefits of any intervention, and how those costs and benefits are distributed across society. ... Oceanographic Research Papers, 10.1016/j.dsr.2024.104390, 213, (104390), Online publication date: 1-Nov-2024.

  11. (PDF) Environmental Problems

    The Journal Environmental Politics published the highest research paper with 114 publications. ... The research results reveal that environmental problem-related information exposure is ...

  12. Home

    The International Journal of Environmental Research (IJER) is an international and multidisciplinary platform for researchers across the globe to swiftly publish, share and discuss new findings and developments in environmental science, engineering, and management.IJER is an interdisciplinary journal concerned with all aspects of the environment. These include but are not limited to air, water ...

  13. Recent applications of AI to environmental disciplines: A review

    The paper engaged with the three pillars of sustainability: social, economic, and environmental perspective. Van Wynsberghe, 2021: ... Environmental research. Researchers in the environmental disciplines can benefit from using machine learning. AI-powered tools are becoming increasingly important in monitoring and protecting biodiversity.

  14. Sustaining natural resources in a changing environment: evidence

    Full article: Sustaining natural resources in a changing environment: evidence, policy and impact. Contemporary Social Science. Journal of the Academy of Social Sciences. Volume 13, 2018 - Issue 1: Sustaining natural resources in a changing environment: Guest edited by Linda Hantrais, Ruth Kattumuri and Ashley Thomas Lenihan. Free access.

  15. Environmental and Health Impacts of Air Pollution: A Review

    This article is part of the Research Topic Environment and Health View all 15 articles. ... In the present paper, we focus on the sources of environmental pollution in relation to public health and propose some solutions and interventions that may be of interest to environmental legislators and decision makers.

  16. The contrasting roles of science and technology in environmental challenges

    The paper examines the main differences between environmental science and technology, reviews how the wider science-technology convergence has affected them and evaluates potential implications for sustainability challenges. ... Surveys of 33 countries between 1993 and 2010 showed increasing levels of environmental apathy (ISSP Research Group ...

  17. Climate change and human behaviour

    The negative effects of rising temperatures on the environment, biodiversity and human health are becoming increasingly noticeable. The years 2020 and 2016 were among the hottest since the record ...

  18. Environmental impact

    Explore the latest research and news on environmental impact from Nature Portfolio, covering topics such as climate change, energy, pollution and sustainability.

  19. Environmental Sustainability: Articles, Research, & Case Studies on

    New research on environmental sustainability from Harvard Business School faculty on issues including the role of companies to mitigate climate change, corporate social responsibility, reporting to stakeholders, government relations and development of Chief Sustainability Officers.

  20. A review of the global climate change impacts, adaptation, and

    Secondary data is used to identify sustainability issues such as environmental, social, and economic viability. To better understand the problem, gathered the information in this report from various media outlets, research agencies, policy papers, newspapers, and other sources. This review is a sectorial assessment of climate change mitigation ...

  21. Environmental Issues Research Paper Topics

    100 Environmental Issues Research Paper Topics. The field of environmental science is vast and interrelated to so many other academic disciplines like civil engineering, law, and even healthcare. That is why it is imperative to create a comprehensive and engaging list of environmental issues research paper topics.

  22. Environmental and Health Impacts of Air Pollution: A Review

    Particles <10 μm in diameter (PM 10) after inhalation can invade the lungs and even reach the bloodstream. Fine particles, PM 2.5, pose a greater risk to health (6, 56) (Table 1). Penetrability according to particle size. Multiple epidemiological studies have been performed on the health effects of PM.

  23. Research Environment

    Successful research environment requires joint effort by individual researchers, research groups and the organization. This chapter describes the basic principles and good research practices in the context of the research environment and serves as a guide to good, responsible research for research newcomers - researchers at the beginning of their scientific career.

  24. Environmental studies

    Natural fragmentation increases urban density but impedes transportation and city growth worldwide. This Article calculates how three barriers (water, steep mountains and national borders) limit ...

  25. Environmental Pollution Causes and Consequences: A Study

    Research indicates that population growth and technological advancements contribute to environmental abuse and pollution, impacting the lives of people and other living organisms (Appannagari ...