• How to Order

User Icon

Persuasive Essay Guide

Persuasive Essay About Covid19

Caleb S.

How to Write a Persuasive Essay About Covid19 | Examples & Tips

14 min read

Persuasive Essay About Covid19

People also read

A Comprehensive Guide to Writing an Effective Persuasive Essay

A Catalogue of 300 Best Persuasive Essay Topics for Students

Persuasive Essay Outline - A Complete Guide

30+ Persuasive Essay Examples To Get You Started

Read Excellent Examples of Persuasive Essay About Gun Control

How To Write A Persuasive Essay On Abortion

Learn to Write a Persuasive Essay About Business With 5 Best Examples

Check Out 14 Persuasive Essays About Online Education Examples

Persuasive Essay About Smoking - Making a Powerful Argument with Examples

Are you looking to write a persuasive essay about the Covid-19 pandemic?

Writing a compelling and informative essay about this global crisis can be challenging. It requires researching the latest information, understanding the facts, and presenting your argument persuasively.

But don’t worry! with some guidance from experts, you’ll be able to write an effective and persuasive essay about Covid-19.

In this blog post, we’ll outline the basics of writing a persuasive essay . We’ll provide clear examples, helpful tips, and essential information for crafting your own persuasive piece on Covid-19.

Read on to get started on your essay.

Arrow Down

  • 1. Steps to Write a Persuasive Essay About Covid-19
  • 2. Examples of Persuasive Essay About COVID-19
  • 3. Examples of Persuasive Essay About COVID-19 Vaccine
  • 4. Examples of Persuasive Essay About COVID-19 Integration
  • 5. Examples of Argumentative Essay About Covid 19
  • 6. Examples of Persuasive Speeches About Covid-19
  • 7. Tips to Write a Persuasive Essay About Covid-19
  • 8. Common Topics for a Persuasive Essay on COVID-19 

Steps to Write a Persuasive Essay About Covid-19

Here are the steps to help you write a persuasive essay on this topic, along with an example essay:

Step 1: Choose a Specific Thesis Statement

Your thesis statement should clearly state your position on a specific aspect of COVID-19. It should be debatable and clear. For example:


"COVID-19 vaccination mandates are necessary for public health and safety."

Step 2: Research and Gather Information

Collect reliable and up-to-date information from reputable sources to support your thesis statement. This may include statistics, expert opinions, and scientific studies. For instance:

  • COVID-19 vaccination effectiveness data
  • Information on vaccine mandates in different countries
  • Expert statements from health organizations like the WHO or CDC

Step 3: Outline Your Essay

Create a clear and organized outline to structure your essay. A persuasive essay typically follows this structure:

  • Introduction
  • Background Information
  • Body Paragraphs (with supporting evidence)
  • Counterarguments (addressing opposing views)

Step 4: Write the Introduction

In the introduction, grab your reader's attention and present your thesis statement. For example:


The COVID-19 pandemic has presented an unprecedented global challenge, and in the face of this crisis, many countries have debated the implementation of vaccination mandates. This essay argues that such mandates are essential for safeguarding public health and preventing further devastation caused by the virus.

Step 5: Provide Background Information

Offer context and background information to help your readers understand the issue better. For instance:


COVID-19, caused by the novel coronavirus SARS-CoV-2, emerged in late 2019 and quickly spread worldwide, leading to millions of infections and deaths. Vaccination has proven to be an effective tool in curbing the virus's spread and severity.

Step 6: Develop Body Paragraphs

Each body paragraph should present a single point or piece of evidence that supports your thesis statement. Use clear topic sentences , evidence, and analysis. Here's an example:


One compelling reason for implementing COVID-19 vaccination mandates is the overwhelming evidence of vaccine effectiveness. According to a study published in the New England Journal of Medicine, the Pfizer-BioNTech and Moderna vaccines demonstrated an efficacy of over 90% in preventing symptomatic COVID-19 cases. This level of protection not only reduces the risk of infection but also minimizes the virus's impact on healthcare systems.

Step 7: Address Counterarguments

Acknowledge opposing viewpoints and refute them with strong counterarguments. This demonstrates that you've considered different perspectives. For example:


Some argue that vaccination mandates infringe on personal freedoms and autonomy. While individual freedom is a crucial aspect of democratic societies, public health measures have long been implemented to protect the collective well-being. Seatbelt laws, for example, are in place to save lives, even though they restrict personal choice.

Step 8: Write the Conclusion

Summarize your main points and restate your thesis statement in the conclusion. End with a strong call to action or thought-provoking statement. For instance:


In conclusion, COVID-19 vaccination mandates are a crucial step toward controlling the pandemic, protecting public health, and preventing further loss of life. The evidence overwhelmingly supports their effectiveness, and while concerns about personal freedoms are valid, they must be weighed against the greater good of society. It is our responsibility to take collective action to combat this global crisis and move toward a safer, healthier future.

Step 9: Revise and Proofread

Edit your essay for clarity, coherence, grammar, and spelling errors. Ensure that your argument flows logically.

Step 10: Cite Your Sources

Include proper citations and a bibliography page to give credit to your sources.

Remember to adjust your approach and arguments based on your target audience and the specific angle you want to take in your persuasive essay about COVID-19.

Order Essay

Paper Due? Why Suffer? That's our Job!

Examples of Persuasive Essay About COVID-19

When writing a persuasive essay about the COVID-19 pandemic, it’s important to consider how you want to present your argument. To help you get started, here are some example essays for you to read:




Here is another example explaining How COVID-19 has changed our lives essay:

The COVID-19 pandemic, which began in late 2019, has drastically altered the way we live. From work and education to social interactions and healthcare, every aspect of our daily routines has been impacted. Reflecting on these changes helps us understand their long-term implications.

COVID-19, caused by the novel coronavirus SARS-CoV-2, is an infectious disease first identified in December 2019 in Wuhan, China. It spreads through respiratory droplets and can range from mild symptoms like fever and cough to severe cases causing pneumonia and death. The rapid spread and severe health impacts have led to significant public health measures worldwide.

The pandemic shifted many to remote work and online education. While some enjoy the flexibility, others face challenges like limited access to technology and blurred boundaries between work and home.

Social distancing and lockdowns have led to increased isolation and mental health issues. However, the pandemic has also fostered community resilience, with people finding new ways to connect and support each other virtually.

Healthcare systems have faced significant challenges, leading to innovations in telemedicine and a focus on public health infrastructure. Heightened awareness of hygiene practices, like handwashing and mask-wearing, has helped reduce the spread of infectious diseases.

COVID-19 has caused severe economic repercussions, including business closures and job losses. While governments have implemented relief measures, the long-term effects are still uncertain. The pandemic has also accelerated trends like e-commerce and contactless payments.

The reduction in travel and industrial activities during lockdowns led to a temporary decrease in pollution and greenhouse gas emissions. This has sparked discussions about sustainable practices and the potential for a green recovery.

COVID-19 has reshaped our lives in numerous ways, affecting work, education, social interactions, healthcare, the economy, and the environment. As we adapt to this new normal, it is crucial to learn from these experiences and work towards a more resilient and equitable future.

Let’s look at another sample essay:

The COVID-19 pandemic has been a transformative event, reshaping every aspect of our lives. In my opinion, while the pandemic has brought immense challenges, it has also offered valuable lessons and opportunities for growth.

One of the most striking impacts has been on our healthcare systems. The pandemic exposed weaknesses and gaps, prompting a much-needed emphasis on public health infrastructure and the importance of preparedness. Innovations in telemedicine and vaccine development have been accelerated, showing the incredible potential of scientific collaboration.

Socially, the pandemic has highlighted the importance of community and human connection. While lockdowns and social distancing measures increased feelings of isolation, they also fostered a sense of solidarity. People found creative ways to stay connected and support each other, from virtual gatherings to community aid initiatives.

The shift to remote work and online education has been another significant change. This transition, though challenging, demonstrated the flexibility and adaptability of both individuals and organizations. It also underscored the importance of digital literacy and access to technology.

Economically, the pandemic has caused widespread disruption. Many businesses closed, and millions lost their jobs. However, it also prompted a reevaluation of business models and work practices. The accelerated adoption of e-commerce and remote work could lead to more sustainable and efficient ways of operating in the future.

In conclusion, the COVID-19 pandemic has been a profound and complex event. While it brought about considerable hardship, it also revealed the strength and resilience of individuals and communities. Moving forward, it is crucial to build on the lessons learned to create a more resilient and equitable world.

Check out some more PDF examples below:

Persuasive Essay About Covid-19 Pandemic

Sample Of Persuasive Essay About Covid-19

Persuasive Essay About Covid-19 In The Philippines - Example

If you're in search of a compelling persuasive essay on business, don't miss out on our “ persuasive essay about business ” blog!

Examples of Persuasive Essay About COVID-19 Vaccine

Covid19 vaccines are one of the ways to prevent the spread of COVID-19, but they have been a source of controversy. Different sides argue about the benefits or dangers of the new vaccines. Whatever your point of view is, writing a persuasive essay about it is a good way of organizing your thoughts and persuading others.

A persuasive essay about the COVID-19 vaccine could consider the benefits of getting vaccinated as well as the potential side effects.

Below are some examples of persuasive essays on getting vaccinated for Covid-19.

Covid19 Vaccine Persuasive Essay

Persuasive Essay on Covid Vaccines

Interested in thought-provoking discussions on abortion? Read our persuasive essay about abortion blog to eplore arguments!

Examples of Persuasive Essay About COVID-19 Integration

Covid19 has drastically changed the way people interact in schools, markets, and workplaces. In short, it has affected all aspects of life. However, people have started to learn to live with Covid19.

Writing a persuasive essay about it shouldn't be stressful. Read the sample essay below to get an idea for your own essay about Covid19 integration.

Persuasive Essay About Working From Home During Covid19

Searching for the topic of Online Education? Our persuasive essay about online education is a must-read.

Examples of Argumentative Essay About Covid 19

Covid-19 has been an ever-evolving issue, with new developments and discoveries being made on a daily basis.

Writing an argumentative essay about such an issue is both interesting and challenging. It allows you to evaluate different aspects of the pandemic, as well as consider potential solutions.

Here are some examples of argumentative essays on Covid19.

Argumentative Essay About Covid19 Sample

Argumentative Essay About Covid19 With Introduction Body and Conclusion

Looking for a persuasive take on the topic of smoking? You'll find it all related arguments in out Persuasive Essay About Smoking blog!

Examples of Persuasive Speeches About Covid-19

Do you need to prepare a speech about Covid19 and need examples? We have them for you!

Persuasive speeches about Covid-19 can provide the audience with valuable insights on how to best handle the pandemic. They can be used to advocate for specific changes in policies or simply raise awareness about the virus.

Check out some examples of persuasive speeches on Covid-19:

Persuasive Speech About Covid-19 Example

Persuasive Speech About Vaccine For Covid-19

You can also read persuasive essay examples on other topics to master your persuasive techniques!

Tips to Write a Persuasive Essay About Covid-19

Writing a persuasive essay about COVID-19 requires a thoughtful approach to present your arguments effectively. 

Here are some tips to help you craft a compelling persuasive essay on this topic:

  • Choose a Specific Angle: Narrow your focus to a specific aspect of COVID-19, like vaccination or public health measures.
  • Provide Credible Sources: Support your arguments with reliable sources like scientific studies and government reports.
  • Use Persuasive Language: Employ ethos, pathos, and logos , and use vivid examples to make your points relatable.
  • Organize Your Essay: Create a solid persuasive essay outline and ensure a logical flow, with each paragraph focusing on a single point.
  • Emphasize Benefits: Highlight how your suggestions can improve public health, safety, or well-being.
  • Use Visuals: Incorporate graphs, charts, and statistics to reinforce your arguments.
  • Call to Action: End your essay conclusion with a strong call to action, encouraging readers to take a specific step.
  • Revise and Edit: Proofread for grammar, spelling, and clarity, ensuring smooth writing flow.
  • Seek Feedback: Have someone else review your essay for valuable insights and improvements.

Tough Essay Due? Hire Tough Writers!

Common Topics for a Persuasive Essay on COVID-19 

Here are some persuasive essay topics on COVID-19:

  • The Importance of Vaccination Mandates for COVID-19 Control
  • Balancing Public Health and Personal Freedom During a Pandemic
  • The Economic Impact of Lockdowns vs. Public Health Benefits
  • The Role of Misinformation in Fueling Vaccine Hesitancy
  • Remote Learning vs. In-Person Education: What's Best for Students?
  • The Ethics of Vaccine Distribution: Prioritizing Vulnerable Populations
  • The Mental Health Crisis Amidst the COVID-19 Pandemic
  • The Long-Term Effects of COVID-19 on Healthcare Systems
  • Global Cooperation vs. Vaccine Nationalism in Fighting the Pandemic
  • The Future of Telemedicine: Expanding Healthcare Access Post-COVID-19

In search of more inspiring topics for your next persuasive essay? Our persuasive essay topics blog has plenty of ideas!

To sum it up,

You’ve explored great sample essays and picked up some useful tips. You now have the tools you need to write a persuasive essay about Covid-19. So don’t let doubts hold you back—start writing!

If you’re feeling stuck or need a bit of extra help, don’t worry! MyPerfectWords.com offers a professional persuasive essay writing service that can assist you. Our experienced essay writers are ready to help you craft a well-structured, insightful paper on Covid-19.

Just place your “ do my essay for me ” request today, and let us take care of the rest!

Frequently Asked Questions

What is a good title for a covid-19 essay.

FAQ Icon

A good title for a COVID-19 essay should be clear, engaging, and reflective of the essay's content. Examples include:

  • "The Impact of COVID-19 on Global Health"
  • "How COVID-19 Has Transformed Our Daily Lives"
  • "COVID-19: Lessons Learned and Future Implications"

How do I write an informative essay about COVID-19?

To write an informative essay about COVID-19, follow these steps:

  • Choose a specific focus: Select a particular aspect of COVID-19, such as its transmission, symptoms, or vaccines.
  • Research thoroughly: Gather information from credible sources like scientific journals and official health organizations.
  • Organize your content: Structure your essay with an introduction, body paragraphs, and a conclusion.
  • Present facts clearly: Use clear, concise language to convey information accurately.
  • Include visuals: Use charts or graphs to illustrate data and make your essay more engaging.

How do I write an expository essay about COVID-19?

To write an expository essay about COVID-19, follow these steps:

  • Select a clear topic: Focus on a specific question or issue related to COVID-19.
  • Conduct thorough research: Use reliable sources to gather information.
  • Create an outline: Organize your essay with an introduction, body paragraphs, and a conclusion.
  • Explain the topic: Use facts and examples to explain the chosen aspect of COVID-19 in detail.
  • Maintain objectivity: Present information in a neutral and unbiased manner.
  • Edit and revise: Proofread your essay for clarity, coherence, and accuracy.

AI Essay Bot

Write Essay Within 60 Seconds!

Caleb S.

Caleb S. has been providing writing services for over five years and has a Masters degree from Oxford University. He is an expert in his craft and takes great pride in helping students achieve their academic goals. Caleb is a dedicated professional who always puts his clients first.

Get Help

Paper Due? Why Suffer? That’s our Job!

Keep reading

Persuasive Essay

  • +44 (0) 207 391 9032

Recent Posts

  • Abstract vs. Introduction: What’s the Difference?
  • How Do AI detectors Work? Breaking Down the Algorithm
  • What is a Literature Review? Definition, Types, and Examples
  • Why Is Your CV Getting Rejected and How to Avoid It
  • Where to Find Images for Presentations
  • What Is an Internship? Everything You Should Know

How Long Should a Thesis Statement Be?

  • How to Write a Character Analysis Essay
  • Best Colours for Your PowerPoint Presentation: Top Colour Combinations
  • How to Write a Nursing Essay – With Examples
  • Academic News
  • Custom Essays
  • Dissertation Writing
  • Essay Marking
  • Essay Writing
  • Essay Writing Companies
  • Model Essays
  • Model Exam Answers
  • Oxbridge Essays Updates
  • PhD Writing
  • Significant Academics
  • Student News
  • Study Skills
  • University Applications
  • University Essays
  • University Life
  • Writing Tips

How to write an essay on coronavirus (COVID-19)

(Last updated: 10 November 2021)

Since 2006, Oxbridge Essays has been the UK’s leading paid essay-writing and dissertation service

We have helped 10,000s of undergraduate, Masters and PhD students to maximise their grades in essays, dissertations, model-exam answers, applications and other materials. If you would like a free chat about your project with one of our UK staff, then please just reach out on one of the methods below.

With the coronavirus pandemic affecting every aspect of our lives for the last 18 months, it is no surprise that it has become a common topic in academic assignments. Writing a COVID-19 essay can be challenging, whether you're studying biology, philosophy, or any course in between.

Your first question might be, how would an essay about a pandemic be any different from a typical academic essay? Well, the answer is that in many ways it is largely similar. The key difference, however, is that this pandemic is much more current than usual academic topics. That means that it may be difficult to rely on past research to demonstrate your argument! As a result, COVID-19 essay writing needs to balance theories of past scholars with very current data (that is constantly changing).

In this post, we are going to give you our top tips on how to write a coronavirus academic essay, so that you are able to approach your writing with confidence and produce a great piece of work.

1. Do background reading

Critical reading is an essential component for any essay, but the question is – what should you be reading for a coronavirus essay? It might seem like a silly question, but the choices that you make during the reading process may determine how well you actually do on the paper. Therefore, we recommend the following steps.

First, read (and re-read) the assignment prompt that you have been given by the instructor. If you write an excellent essay, but it is off topic, you’ll likely be marked down. Make notes on the words that explain what is being asked of you – perhaps the essay asks you to “analyse”, “describe”, “list”, or “evaluate”. Make sure that these same words actually appear in your paper.

Second, look for specific things you have been instructed to do. This might include using themes from your textbook or incorporating assigned readings. Make a note of these things and read them first. Remember to take good notes while you read.

Once you have done your course readings, the question then becomes: what types of external readings are you going to need? Typically, at this point, you are going to be left with newspapers/websites, and a few scholarly articles (books on coronavirus might not be readily available at this stage, but could still be useful!). If it is a research essay, you are likely going to need to rely on a variety of sources as you work through this assignment. This might seem different than other academic writing where you would typically focus on only peer-reviewed articles or books. With coronavirus essays, there is a need for a more diverse set of sources, including;

Newspaper articles and websites

Just like with academic articles, not all newspaper articles and/or websites are created equal. Further, there are likely to be a variety of different statistics released, as the way that countries calculate coronavirus cases, deaths, and other components of the virus are not always the same.

Try to pick sources that are reputable. This might be reports done by key governmental organisations or even the World Health Organisation. If you are reading through an article and can identify obvious areas of bias, you may need to find alternate readings for your paper.

Academic articles

You may be surprised to discover the variety of articles published so far on COVID-19 - a lot can be achieved over multiple lockdowns! The research that has been done has been fairly extensive, covering a broad range of topics. Therefore, when preparing to write your academic essay, make sure to check the literature frequently as new publications are being released all the time.

If you do a search and you cannot find anything on the coronavirus specifically, you will have to widen your search. Think about the topic more widely. Are there theories that you have learned about in your classes that you can link to academic articles? Surely the answer must be yes! Just because there is limited research on this topic does not mean that you should avoid academic articles all together. Relying solely on websites or newspapers can lead you to a biased piece of writing, which usually is not what an academic essay is all about.

2. Plan your essay

Brainstorming.

Taking the time to brainstorm out your ideas can be the first step in a super successful essay. Brainstorming does not have to take a lot of time, and can be done in about 20 minutes if you have already done some background reading on the topic.

First, figure out how many points you need to identify. Each point is likely to equate to one paragraph of your paper, so if you are writing a 1500-word essay (and you use 300 words for the introduction and conclusion) you will be left with 1200 words, which means you will need between 5-6 paragraphs (and 5-6 points).

Start with a blank piece of paper. In the middle of the paper write the question or statement that you are trying to answer. From there, draw 5 or 6 lines out from the centre. At the end of each of these lines will be a point you want to address in your essay. From here, write down any additional ideas that you have.

It might look messy, but that’s OK! This is just the first step in the process and an opportunity for you to get your ideas down on paper. From this messiness, you can easily start to form a logical and linear outline that will soon become the template for your essay.

Creating an outline

Once you have a completed brainstorm, the next step is to put your ideas into a logical format The first step in this process is usually to write out a rough draft of the argument you are attempting to make. In doing this, you are then able to see how your subsequent paragraphs are addressing this topic (and if they are not addressing the topic, now is the time to change this!).

Once you have a position/argument/thesis statement, create space for your body paragraphs, but numbering each section. Then, write a rough draft of the topic sentence that you think will fit well in that section. Once you have done this, pull up the coronavirus articles, data, and other reports that you have read. Determine where each will fit best in your paper (and exclude the ones that do not fit well). Put a citation of the document in each paragraph section (this will make it easier to construct your reference list at the end).

Once every paragraph is organised, double check to make sure they are all still on track to address your main thesis. At this point you are ready to write an excellent and well-organised COVID-19 essay!

3. Structure your paragraphs

When structuring an academic essay on COVID-19, there will be a need to balance the news, evidence from academic articles, and course theory. This adds an extra layer of complexity because there are just so many things to juggle.

One strategy that can be helpful is to structure all your paragraphs in the same way. Now, you might be thinking, how boring! In reality, it is likely that the reader will appreciate the fact that you have carefully thought out your process and how you are going to approach this essay.

How to design your essay paragraphs

  • Create a topic sentence. A topic sentence is a sentence that presents the main idea for the paragraph. Usually it links back to your thesis, argument, or position.
  • Start to introduce your evidence. Use the next sentence in your introduction as a bridge between the topic sentence and the evidence/data you are going to present.
  • Add evidence. Take 2-4 sentences to give the reader some good information that supports your topic sentence. This can be statistics, details from an empirical study, information from a news article, or some other form of information.
  • Give some critical thought. It is essential to make a connection for the reader between your evidence and your topic sentence. Tell the reader why the information you have presented is important.
  • Provide a concluding sentence. Make sure you wrap up your argument or transition to the next one.

4. Write your essay

Keep it academic.

There is a lot of information available about the coronavirus, but because much of it is coming from newspaper articles, the evidence that you might use for your paper can be skewed. In order to keep your paper academic, it is best to maintain a professional and academic style.

Present statistics from reputable sources (like the World Health Organisation), rather than those that have been selected by third parties. Furthermore, if you are writing a COVID-19 essay that is about a specific region (e.g. the United Kingdom), make sure that your statistics and evidence also come from this region.

Use up-to-date sources

The information on coronavirus is constantly changing. By now, everyone has seen the exponential curve of cases reoccurring all over the world at different times. Therefore, what was true last month may not necessarily be the case now. This can be challenging when you are planning an essay, because your outline from a previous week may need to be modified.

There are a number of ways you can address this. One way is, obviously, to continue going back and refreshing the data. Another way, which can be equally useful, is to outline the scope of the problem in your paper, writing something like, “data on COVID-19 is constantly changing, but the data presented was accurate at the time of writing”.

Avoid personal bias or opinion (unless asked!)

Everybody has an opinion – this opinion can often relate to how you or your family members have been affected by the pandemic (and the government response to this). People have lost jobs, have had to avoid family/friends, or have lost someone as a result of this pandemic. Life, for many, is very different.

While all of this is extremely important, it may not necessarily be relevant for an academic essay. One of the more challenging components of this type of academic paper is to try and remove yourself from the evidence you are providing. Now… there are exceptions. If you are writing a COVID-19 reflective essay, then it is your responsibility to include your opinion; otherwise, do your best to remain objective.

Avoid personal pronouns

Along the same lines as avoiding bias, it is also a good idea to avoid personal pronouns in your academic essay (except in a reflection, of course). This means avoiding words like “I, we, our, my”. While you may agree (or disagree) with the sentiment you are presenting, try and present your information from a distanced perspective.

Proofread carefully

Finally (and this is true of any essay), make sure that you take the time to proofread your essay carefully. Is it free from spelling errors? Have you checked the grammar? Have you made sure that your references are correct and in order? Have you carefully reviewed the submission requirements of your instructor (e.g. font, margins, spacing, etc.)? If the answer is yes, it sounds as if you are finally ready to submit your essay.

Final thoughts

Writing an essay is not easy. Writing an essay on a pandemic while living in that same pandemic is even more difficult.

A good essay is appropriately structured with a clear purpose and is presented according to the recommended guidelines. Unless it is a personal reflection, it attempts to present information as if it were free from bias.

So before you start to panic about having to write an essay about a pandemic, take a breath. You can do this. Take all the same steps as you would in a conventional academic essay, but expand your search to include relevant and up-to-date information that you know will make your essay a success. Once you have done this, make sure to have your university writing centre or an academic at Oxbridge Essays check it over and make suggestions! Now, stop reading and get writing! Good luck.

Essay exams: how to answer ‘To what extent…’

How to write a master’s essay, writing services.

  • Essay Plans
  • Critical Reviews
  • Literature Reviews
  • Presentations
  • Dissertation Title Creation
  • Dissertation Proposals
  • Dissertation Chapters
  • PhD Proposals
  • Journal Publication
  • CV Writing Service
  • Business Proofreading Services

Editing Services

  • Proofreading Service
  • Editing Service
  • Academic Editing Service

Additional Services

  • Marking Services
  • Consultation Calls
  • Personal Statements
  • Tutoring Services

Our Company

  • Frequently Asked Questions
  • Become a Writer

Terms & Policies

  • Fair Use Policy
  • Policy for Students in England
  • Privacy Policy
  • Terms & Conditions
  • Editing Service Examples
  • [email protected]
  • Contact Form

Payment Methods

Cryptocurrency payments.

I Thought We’d Learned Nothing From the Pandemic. I Wasn’t Seeing the Full Picture

essay on covid 19 with outline

M y first home had a back door that opened to a concrete patio with a giant crack down the middle. When my sister and I played, I made sure to stay on the same side of the divide as her, just in case. The 1988 film The Land Before Time was one of the first movies I ever saw, and the image of the earth splintering into pieces planted its roots in my brain. I believed that, even in my own backyard, I could easily become the tiny Triceratops separated from her family, on the other side of the chasm, as everything crumbled into chaos.

Some 30 years later, I marvel at the eerie, unexpected ways that cartoonish nightmare came to life – not just for me and my family, but for all of us. The landscape was already covered in fissures well before COVID-19 made its way across the planet, but the pandemic applied pressure, and the cracks broke wide open, separating us from each other physically and ideologically. Under the weight of the crisis, we scattered and landed on such different patches of earth we could barely see each other’s faces, even when we squinted. We disagreed viciously with each other, about how to respond, but also about what was true.

Recently, someone asked me if we’ve learned anything from the pandemic, and my first thought was a flat no. Nothing. There was a time when I thought it would be the very thing to draw us together and catapult us – as a capital “S” Society – into a kinder future. It’s surreal to remember those early days when people rallied together, sewing masks for health care workers during critical shortages and gathering on balconies in cities from Dallas to New York City to clap and sing songs like “Yellow Submarine.” It felt like a giant lightning bolt shot across the sky, and for one breath, we all saw something that had been hidden in the dark – the inherent vulnerability in being human or maybe our inescapable connectedness .

More from TIME

Read More: The Family Time the Pandemic Stole

But it turns out, it was just a flash. The goodwill vanished as quickly as it appeared. A couple of years later, people feel lied to, abandoned, and all on their own. I’ve felt my own curiosity shrinking, my willingness to reach out waning , my ability to keep my hands open dwindling. I look out across the landscape and see selfishness and rage, burnt earth and so many dead bodies. Game over. We lost. And if we’ve already lost, why try?

Still, the question kept nagging me. I wondered, am I seeing the full picture? What happens when we focus not on the collective society but at one face, one story at a time? I’m not asking for a bow to minimize the suffering – a pretty flourish to put on top and make the whole thing “worth it.” Yuck. That’s not what we need. But I wondered about deep, quiet growth. The kind we feel in our bodies, relationships, homes, places of work, neighborhoods.

Like a walkie-talkie message sent to my allies on the ground, I posted a call on my Instagram. What do you see? What do you hear? What feels possible? Is there life out here? Sprouting up among the rubble? I heard human voices calling back – reports of life, personal and specific. I heard one story at a time – stories of grief and distrust, fury and disappointment. Also gratitude. Discovery. Determination.

Among the most prevalent were the stories of self-revelation. Almost as if machines were given the chance to live as humans, people described blossoming into fuller selves. They listened to their bodies’ cues, recognized their desires and comforts, tuned into their gut instincts, and honored the intuition they hadn’t realized belonged to them. Alex, a writer and fellow disabled parent, found the freedom to explore a fuller version of herself in the privacy the pandemic provided. “The way I dress, the way I love, and the way I carry myself have both shrunk and expanded,” she shared. “I don’t love myself very well with an audience.” Without the daily ritual of trying to pass as “normal” in public, Tamar, a queer mom in the Netherlands, realized she’s autistic. “I think the pandemic helped me to recognize the mask,” she wrote. “Not that unmasking is easy now. But at least I know it’s there.” In a time of widespread suffering that none of us could solve on our own, many tended to our internal wounds and misalignments, large and small, and found clarity.

Read More: A Tool for Staying Grounded in This Era of Constant Uncertainty

I wonder if this flourishing of self-awareness is at least partially responsible for the life alterations people pursued. The pandemic broke open our personal notions of work and pushed us to reevaluate things like time and money. Lucy, a disabled writer in the U.K., made the hard decision to leave her job as a journalist covering Westminster to write freelance about her beloved disability community. “This work feels important in a way nothing else has ever felt,” she wrote. “I don’t think I’d have realized this was what I should be doing without the pandemic.” And she wasn’t alone – many people changed jobs , moved, learned new skills and hobbies, became politically engaged.

Perhaps more than any other shifts, people described a significant reassessment of their relationships. They set boundaries, said no, had challenging conversations. They also reconnected, fell in love, and learned to trust. Jeanne, a quilter in Indiana, got to know relatives she wouldn’t have connected with if lockdowns hadn’t prompted weekly family Zooms. “We are all over the map as regards to our belief systems,” she emphasized, “but it is possible to love people you don’t see eye to eye with on every issue.” Anna, an anti-violence advocate in Maine, learned she could trust her new marriage: “Life was not a honeymoon. But we still chose to turn to each other with kindness and curiosity.” So many bonds forged and broken, strengthened and strained.

Instead of relying on default relationships or institutional structures, widespread recalibrations allowed for going off script and fortifying smaller communities. Mara from Idyllwild, Calif., described the tangible plan for care enacted in her town. “We started a mutual-aid group at the beginning of the pandemic,” she wrote, “and it grew so quickly before we knew it we were feeding 400 of the 4000 residents.” She didn’t pretend the conditions were ideal. In fact, she expressed immense frustration with our collective response to the pandemic. Even so, the local group rallied and continues to offer assistance to their community with help from donations and volunteers (many of whom were originally on the receiving end of support). “I’ve learned that people thrive when they feel their connection to others,” she wrote. Clare, a teacher from the U.K., voiced similar conviction as she described a giant scarf she’s woven out of ribbons, each representing a single person. The scarf is “a collection of stories, moments and wisdom we are sharing with each other,” she wrote. It now stretches well over 1,000 feet.

A few hours into reading the comments, I lay back on my bed, phone held against my chest. The room was quiet, but my internal world was lighting up with firefly flickers. What felt different? Surely part of it was receiving personal accounts of deep-rooted growth. And also, there was something to the mere act of asking and listening. Maybe it connected me to humans before battle cries. Maybe it was the chance to be in conversation with others who were also trying to understand – what is happening to us? Underneath it all, an undeniable thread remained; I saw people peering into the mess and narrating their findings onto the shared frequency. Every comment was like a flare into the sky. I’m here! And if the sky is full of flares, we aren’t alone.

I recognized my own pandemic discoveries – some minor, others massive. Like washing off thick eyeliner and mascara every night is more effort than it’s worth; I can transform the mundane into the magical with a bedsheet, a movie projector, and twinkle lights; my paralyzed body can mother an infant in ways I’d never seen modeled for me. I remembered disappointing, bewildering conversations within my own family of origin and our imperfect attempts to remain close while also seeing things so differently. I realized that every time I get the weekly invite to my virtual “Find the Mumsies” call, with a tiny group of moms living hundreds of miles apart, I’m being welcomed into a pocket of unexpected community. Even though we’ve never been in one room all together, I’ve felt an uncommon kind of solace in their now-familiar faces.

Hope is a slippery thing. I desperately want to hold onto it, but everywhere I look there are real, weighty reasons to despair. The pandemic marks a stretch on the timeline that tangles with a teetering democracy, a deteriorating planet , the loss of human rights that once felt unshakable . When the world is falling apart Land Before Time style, it can feel trite, sniffing out the beauty – useless, firing off flares to anyone looking for signs of life. But, while I’m under no delusions that if we just keep trudging forward we’ll find our own oasis of waterfalls and grassy meadows glistening in the sunshine beneath a heavenly chorus, I wonder if trivializing small acts of beauty, connection, and hope actually cuts us off from resources essential to our survival. The group of abandoned dinosaurs were keeping each other alive and making each other laugh well before they made it to their fantasy ending.

Read More: How Ice Cream Became My Own Personal Act of Resistance

After the monarch butterfly went on the endangered-species list, my friend and fellow writer Hannah Soyer sent me wildflower seeds to plant in my yard. A simple act of big hope – that I will actually plant them, that they will grow, that a monarch butterfly will receive nourishment from whatever blossoms are able to push their way through the dirt. There are so many ways that could fail. But maybe the outcome wasn’t exactly the point. Maybe hope is the dogged insistence – the stubborn defiance – to continue cultivating moments of beauty regardless. There is value in the planting apart from the harvest.

I can’t point out a single collective lesson from the pandemic. It’s hard to see any great “we.” Still, I see the faces in my moms’ group, making pancakes for their kids and popping on between strings of meetings while we try to figure out how to raise these small people in this chaotic world. I think of my friends on Instagram tending to the selves they discovered when no one was watching and the scarf of ribbons stretching the length of more than three football fields. I remember my family of three, holding hands on the way up the ramp to the library. These bits of growth and rings of support might not be loud or right on the surface, but that’s not the same thing as nothing. If we only cared about the bottom-line defeats or sweeping successes of the big picture, we’d never plant flowers at all.

More Must-Reads from TIME

  • How Kamala Harris Knocked Donald Trump Off Course
  • Introducing TIME's 2024 Latino Leaders
  • George Lopez Is Transforming Narratives With Comedy
  • How to Make an Argument That’s Actually Persuasive
  • What Makes a Friendship Last Forever?
  • 33 True Crime Documentaries That Shaped the Genre
  • Why Gut Health Issues Are More Common in Women
  • The 100 Most Influential People in AI 2024

Contact us at [email protected]

Weekend Edition Saturday, hosted by NPR's Peabody Award-winning Scott Simon, wraps up the week's news and offers a mix of analysis and features on a wide range of topics, including arts, sports, entertainment, and human interest stories.

Weekend Edition Saturday

Listen live.

Wait Wait... Don't Tell Me! is NPR's weekly quiz program. Each week on the radio you can test your knowledge against some of the best and brightest in the news and entertainment world while figuring out what's real news and what's made up.

Wait Wait...Don't Tell Me

Wait Wait... Don't Tell Me! is NPR's weekly quiz program. Each week on the radio you can test your knowledge against some of the best and brightest in the news and entertainment world while figuring out what's real news and what's made up.

Coronavirus: The world has come together to flatten the curve. Can we stay united to tackle other crises?

Watching the world come together gives me hope for the future, writes mira patel, a high school junior..

Mira Patel and her sister Veda. (Courtesy of Dee Patel)

Mira Patel and her sister Veda. (Courtesy of Dee Patel)

Related Content

David Cabello is the owner of Black and Mobile, a delivery business focused on connecting Black restaurant owners to customers. (Kimberly Paynter/WHYY)

This 24-year-old entrepreneur is helping Black-owned restaurants survive coronavirus

Black and Mobile is an online delivery service that caters to Black-owned restaurants. The coronavirus shutdown has increased demand for its service.

4 years ago

Philly skyline

Home desks won’t replace Philly’s high-rise office towers anytime soon, analysts say

Philadelphia’s office market might fare better post-coronavirus than those of other U.S. cities, CBRE analysts said in a new report.

Before the pandemic, I had often heard adults say that young people would lose the ability to connect in-person with others due to our growing dependence on technology and social media. However, this stay-at-home experience has proven to me that our elders’ worry is unnecessary. Because isolation isn’t in human nature, and no advancement in technology could replace our need to meet in person, especially when it comes to learning.

As the weather gets warmer and we approach summertime, it’s going to be more and more tempting for us teenagers to go out and do what we have always done: hang out and have fun. Even though the decision-makers are adults, everyone has a role to play and we teens can help the world move forward by continuing to self-isolate. It’s incredibly important that in the coming weeks, we respect the government’s effort to contain the spread of the coronavirus.

In the meantime, we can find creative ways to stay connected and continue to do what we love. Personally, I see many 6-feet-apart bike rides and Zoom calls in my future.

If there is anything that this pandemic has made me realize, it’s how connected we all are. At first, the infamous coronavirus seemed to be a problem in China, which is worlds away. But slowly, it steadily made its way through various countries in Europe, and inevitably reached us in America. What was once framed as a foreign virus has now hit home.

Watching the global community come together, gives me hope, as a teenager, that in the future we can use this cooperation to combat climate change and other catastrophes.

As COVID-19 continues to creep its way into each of our communities and impact the way we live and communicate, I find solace in the fact that we face what comes next together, as humanity.

When the day comes that my generation is responsible for dealing with another crisis, I hope we can use this experience to remind us that moving forward requires a joint effort.

Mira Patel is a junior at Strath Haven High School and is an education intern at the Foreign Policy Research Institute in Philadelphia. Follow her on Instagram here.  

Becoming a storyteller at WHYY, your local public media station, is easier than you might think. Text STORYTELLER to 267-494-9949 to learn more. 

WHYY is your source for fact-based, in-depth journalism and information. As a nonprofit organization, we rely on financial support from readers like you. Please give today.

Part of the series

essay on covid 19 with outline

Coronavirus Pandemic

You may also like.

New Jersey police car (6ABC)

Threats and violence suspend high school football games Friday night

Fight breaks out at a game between Pennsauken and Camden High Schools, threats suspend games in Chester and Northampton Counties.

3 years ago

Viola Dales brought her son Raheem Dales, a sophomore at Parkway West High School, to the Philadelphia Zoo to get his COVID-19 vaccine. (Emma Lee/WHYY)

Philly students get vaxxed at the zoo before heading back to school

The event is the first of its kind for the school district, but arrives after months of partnering with CHOP to organize other vaccination clinics around the city.

Senior Grace Honeyman and her father, Tom Honeyman, prepare to attend a virtual graduation event at Harriton High School in Lower Merion Township. (Photo by Kate Honeyman)

Montco high school senior reflects on missing experiences because of coronavirus

Grace Honeyman, a senior at Harriton High School, talks with her father about how she’s dealing with missing milestones due to coronavirus.

Want a digest of WHYY’s programs, events & stories? Sign up for our weekly newsletter.

Together we can reach 100% of WHYY’s fiscal year goal

Select Your Interests

Customize your JAMA Network experience by selecting one or more topics from the list below.

  • Academic Medicine
  • Acid Base, Electrolytes, Fluids
  • Allergy and Clinical Immunology
  • American Indian or Alaska Natives
  • Anesthesiology
  • Anticoagulation
  • Art and Images in Psychiatry
  • Artificial Intelligence
  • Assisted Reproduction
  • Bleeding and Transfusion
  • Caring for the Critically Ill Patient
  • Challenges in Clinical Electrocardiography
  • Climate and Health
  • Climate Change
  • Clinical Challenge
  • Clinical Decision Support
  • Clinical Implications of Basic Neuroscience
  • Clinical Pharmacy and Pharmacology
  • Complementary and Alternative Medicine
  • Consensus Statements
  • Coronavirus (COVID-19)
  • Critical Care Medicine
  • Cultural Competency
  • Dental Medicine
  • Dermatology
  • Diabetes and Endocrinology
  • Diagnostic Test Interpretation
  • Drug Development
  • Electronic Health Records
  • Emergency Medicine
  • End of Life, Hospice, Palliative Care
  • Environmental Health
  • Equity, Diversity, and Inclusion
  • Facial Plastic Surgery
  • Gastroenterology and Hepatology
  • Genetics and Genomics
  • Genomics and Precision Health
  • Global Health
  • Guide to Statistics and Methods
  • Hair Disorders
  • Health Care Delivery Models
  • Health Care Economics, Insurance, Payment
  • Health Care Quality
  • Health Care Reform
  • Health Care Safety
  • Health Care Workforce
  • Health Disparities
  • Health Inequities
  • Health Policy
  • Health Systems Science
  • History of Medicine
  • Hypertension
  • Images in Neurology
  • Implementation Science
  • Infectious Diseases
  • Innovations in Health Care Delivery
  • JAMA Infographic
  • Law and Medicine
  • Leading Change
  • Less is More
  • LGBTQIA Medicine
  • Lifestyle Behaviors
  • Medical Coding
  • Medical Devices and Equipment
  • Medical Education
  • Medical Education and Training
  • Medical Journals and Publishing
  • Mobile Health and Telemedicine
  • Narrative Medicine
  • Neuroscience and Psychiatry
  • Notable Notes
  • Nutrition, Obesity, Exercise
  • Obstetrics and Gynecology
  • Occupational Health
  • Ophthalmology
  • Orthopedics
  • Otolaryngology
  • Pain Medicine
  • Palliative Care
  • Pathology and Laboratory Medicine
  • Patient Care
  • Patient Information
  • Performance Improvement
  • Performance Measures
  • Perioperative Care and Consultation
  • Pharmacoeconomics
  • Pharmacoepidemiology
  • Pharmacogenetics
  • Pharmacy and Clinical Pharmacology
  • Physical Medicine and Rehabilitation
  • Physical Therapy
  • Physician Leadership
  • Population Health
  • Primary Care
  • Professional Well-being
  • Professionalism
  • Psychiatry and Behavioral Health
  • Public Health
  • Pulmonary Medicine
  • Regulatory Agencies
  • Reproductive Health
  • Research, Methods, Statistics
  • Resuscitation
  • Rheumatology
  • Risk Management
  • Scientific Discovery and the Future of Medicine
  • Shared Decision Making and Communication
  • Sleep Medicine
  • Sports Medicine
  • Stem Cell Transplantation
  • Substance Use and Addiction Medicine
  • Surgical Innovation
  • Surgical Pearls
  • Teachable Moment
  • Technology and Finance
  • The Art of JAMA
  • The Arts and Medicine
  • The Rational Clinical Examination
  • Tobacco and e-Cigarettes
  • Translational Medicine
  • Trauma and Injury
  • Treatment Adherence
  • Ultrasonography
  • Users' Guide to the Medical Literature
  • Vaccination
  • Venous Thromboembolism
  • Veterans Health
  • Women's Health
  • Workflow and Process
  • Wound Care, Infection, Healing
  • Download PDF
  • Share X Facebook Email LinkedIn
  • Permissions

A National Strategy for the “New Normal” of Life With COVID

  • 1 Perelman School of Medicine and The Wharton School, University of Pennsylvania, Philadelphia
  • 2 Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis
  • 3 Grossman School of Medicine, New York University, New York, New York
  • Viewpoint The First 2 Years of COVID-19—Lessons to Improve Preparedness for the Next Pandemic Jennifer B. Nuzzo, DrPH, SM; Lawrence O. Gostin, JD JAMA
  • Viewpoint A National Strategy for COVID-19—Testing, Surveillance, and Mitigation Strategies David Michaels, PhD, MPH; Ezekiel J. Emanuel, MD, PhD; Rick A. Bright, PhD JAMA
  • Viewpoint A National Strategy for COVID-19 Medical Countermeasures Luciana L. Borio, MD; Rick A. Bright, PhD; Ezekiel J. Emanuel, MD, PhD JAMA
  • Viewpoint The Pandemic Preparedness Program Eli Y. Adashi, MD, MS; I. Glenn Cohen, JD JAMA
  • Medical News & Perspectives Former Biden-Harris Transition Advisors Propose a New National Strategy for COVID-19 Jennifer Abbasi JAMA
  • Comment & Response Strategy for the “New Normal” of Life With COVID—Reply Ezekiel J. Emanuel, MD, PhD; Michael Osterholm, PhD, MPH; Céline R. Gounder, MD, ScM JAMA
  • Comment & Response Strategy for the “New Normal” of Life With COVID Afschin Gandjour, MD, PhD, MA JAMA
  • Viewpoint COVID-19 Vaccination—Becoming Part of the New Normal Peter Marks, MD, PhD; Janet Woodcock, MD; Robert Califf, MD JAMA

As the Omicron variant of SARS-CoV-2 demonstrates, COVID-19 is here to stay. In January 2021, President Biden issued the “National Strategy for the COVID-19 Response and Pandemic Preparedness.” As the US moves from crisis to control, this national strategy needs to be updated. Policy makers need to specify the goals and strategies for the “new normal” of life with COVID-19 and communicate them clearly to the public.

SARS-CoV-2 continues to persist, evolve, and surprise. In July 2021, with vaccinations apace and infection rates plummeting, Biden proclaimed that “we’ve gained the upper hand against this virus,” and the Centers for Disease Control and Prevention (CDC) relaxed its guidance for mask wearing and socializing. 1 By September 2021, the Delta variant proved these steps to be premature, and by late November, the Omicron variant created concern about a perpetual state of emergency.

In delineating a national strategy, humility is essential. The precise duration of immunity to SARS-CoV-2 from vaccination or prior infection is unknown. Also unknown is whether SARS-CoV-2 will become a seasonal infection; whether antiviral therapies will prevent long COVID; or whether even more transmissible, immune-evading, or virulent variants will arise after Omicron.

Another part of this humility is recognizing that predictions are necessary but educated guesses, not mathematical certainty. The virus, host response, and data will evolve. Biomedical and public health tools will expand, along with better understanding of their limitations. The incidence of SARS-CoV-2, vaccination rates, hospital capacity, tolerance for risk, and willingness to implement different interventions will vary geographically, and national recommendations will need to be adapted locally.

It is imperative for public health, economic, and social functioning that US leaders establish and communicate specific goals for COVID-19 management, benchmarks for the imposition or relaxation of public health restrictions, investments and reforms needed to prepare for future SARS-CoV-2 variants and other novel viruses, and clear strategies to accomplish all of this.

Redefining the Appropriate National Risk Level

The goal for the “new normal” with COVID-19 does not include eradication or elimination, eg, the “zero COVID” strategy. 2 Neither COVID-19 vaccination nor infection appear to confer lifelong immunity. Current vaccines do not offer sterilizing immunity against SARS-CoV-2 infection. Infectious diseases cannot be eradicated when there is limited long-term immunity following infection or vaccination or nonhuman reservoirs of infection. The majority of SARS-CoV-2 infections are asymptomatic or mildly symptomatic, and the SARS-CoV-2 incubation period is short, preventing the use of targeted strategies like “ring vaccination.” Even “fully” vaccinated individuals are at risk for breakthrough SARS-CoV-2 infection. Consequently, a “new normal with COVID” in January 2022 is not living without COVID-19.

The “new normal” requires recognizing that SARS-CoV-2 is but one of several circulating respiratory viruses that include influenza, respiratory syncytial virus (RSV), and more. COVID-19 must now be considered among the risks posed by all respiratory viral illnesses combined. Many of the measures to reduce transmission of SARS-CoV-2 (eg, ventilation) will also reduce transmission of other respiratory viruses. Thus, policy makers should retire previous public health categorizations, including deaths from pneumonia and influenza or pneumonia, influenza, and COVID-19, and focus on a new category: the aggregate risk of all respiratory virus infections.

What should be the peak risk level for cumulative viral respiratory illnesses for a “normal” week? Even though seasonal influenza, RSV, and other respiratory viruses circulating before SARS-CoV-2 were harmful, the US has not considered them a sufficient threat to impose emergency measures in over a century. People have lived normally with the threats of these viruses, even though more could have been done to reduce their risks.

The appropriate risk threshold should reflect peak weekly deaths, hospitalizations, and community prevalence of viral respiratory illnesses during high-severity years, such as 2017-2018. 3 That year had approximately 41 million symptomatic cases of influenza, 710 000 hospitalizations and 52 000 deaths. 4 In addition, the CDC estimates that each year RSV leads to more than 235 000 hospitalizations and 15 000 deaths in the US. 3 This would translate into a risk threshold of approximately 35 000 hospitalizations and 3000 deaths (<1 death/100 000 population) in the worst week.

Today, the US is far from these thresholds. For the week of December 13, 2021, the CDC reported the US experienced more than 900 000 COVID-19 cases, more than 50 000 new hospitalizations for COVID-19, and more than 7000 deaths. 5 , 6 The tolerance for disease, hospitalization, and death varies widely among individuals and communities. What constitutes appropriate thresholds for hospitalizations and death, at what cost, and with what trade-offs remains undetermined.

This peak week risk threshold serves at least 2 fundamental functions. This risk threshold triggers policy recommendations for emergency implementation of mitigation and other measures. In addition, health systems could rely on this threshold for planning on the bed and workforce capacity they need normally, and when to institute surge measures.

Rebuilding Public Health

To cope with pandemic, and eventually, endemic SARS-CoV-2 and to respond to future public health threats requires deploying real-time information systems, a public health implementation workforce, flexible health systems, trust in government and public health institutions, and belief in the value of collective action for public good. 7 , 8

First, the US needs a comprehensive, digital, real-time, integrated data infrastructure for public health. As Omicron has reemphasized, the US is operating with imprecise estimates of disease spread, limited genomic surveillance, projections based on select reporting sites, and data from other countries that may not be generalizable. These shortcomings are threatening lives and societal function.

The US must establish a modern data infrastructure that includes real-time electronic collection of comprehensive information on respiratory viral infections, hospitalizations, deaths, disease-specific outcomes, and immunizations merged with sociodemographic and other relevant variables. The public health data infrastructure should integrate data from local, state, and national public health units, health care systems, public and commercial laboratories, and academic and research institutions. Using modern technology and analytics, it is also essential to merge nontraditional environmental (air, wastewater) surveillance data, including genomic data, with traditional clinical and epidemiological data to track outbreaks and target containment.

Second, the US needs a permanent public health implementation workforce that has the flexibility and surge capacity to manage persistent problems while simultaneously responding to emergencies. Data collection, analysis, and technical support are necessary, but it takes people to respond to crises. This implementation workforce should include a public health agency–based community health worker system and expanded school nurse system.

A system of community public health workers could augment the health care system by testing and vaccinating for SARS-CoV-2 and other respiratory infections; ensuring adherence to ongoing treatment for tuberculosis, HIV, diabetes, and other chronic conditions; providing health screening and support to pregnant individuals and new parents and their newborns; and delivering various other public health services to vulnerable or homebound populations.

School nurses need to be empowered to address the large unmet public health needs of children and adolescents. As polio vaccination campaigns showed, school health programs are an efficient and effective way to care for children, including preventing and treating mild asthma exacerbations (often caused by viral respiratory infections), ensuring vaccination as a condition for attendance, and addressing adolescents’ mental and sexual health needs. School clinics must be adequately staffed and funded as an essential component of the nation’s public health infrastructure.

Third, because respiratory infections ebb and flow, institutionalizing telemedicine waivers, licensure to practice and enable billing across state lines, and other measures that allow the flow of medical services to severely affected regions should be a priority.

Fourth, it is essential to rebuild trust in public health institutions and a belief in collective action in service of public health. 7 Communities with higher levels of trust and reciprocity, such as Denmark, have experienced lower rates of hospitalization and death from COVID-19. 7 Improving public health data systems and delivering a diverse public health workforce that can respond in real time in communities will be important steps toward building that trust more widely.

Conclusions

After previous infectious disease threats, the US quickly forgot and failed to institute necessary reforms. That pattern must change with the COVID-19 pandemic. Without a strategic plan for the “new normal” with endemic COVID-19, more people in the US will unnecessarily experience morbidity and mortality, health inequities will widen, and trillions will be lost from the US economy. This time, the nation must learn and prepare effectively for the future.

The resources necessary to build and sustain an effective public health infrastructure will be substantial. Policy makers should weigh not only the costs but also the benefits, including fewer deaths and lost productivity from COVID-19 and all viral respiratory illnesses. Indeed, after more than 800 000 deaths from COVID-19, and a projected loss of $8 trillion in gross domestic product through 2030, 8 these interventions will be immensely valuable.

Corresponding Author: Ezekiel J. Emanuel, MD, PhD, Medical Ethics and Health Policy, Perelman School of Medicine, University of Pennsylvania, 423 Guardian Dr, Blockley Hall, Philadelphia, PA 19104 ( [email protected] ).

Published Online: January 6, 2022. doi:10.1001/jama.2021.24282

Conflict of Interest Disclosures: Dr Emanuel reported personal fees, nonfinancial support, or both from companies, organizations, and professional health care meetings and being a venture partner at Oak HC/FT; a partner at Embedded Healthcare LLC, ReCovery Partners LLC, and COVID-19 Recovery Consulting; and an unpaid board member of Village MD and Oncology Analytics. Dr Emanuel owns no stock in pharmaceutical, medical device companies, or health insurers. No other disclosures were reported.

Additional Information: Drs Emanuel, Osterholm, and Gounder were members of the Biden-Harris Transition COVID-19 Advisory Board from November 2020 to January 2021.

See More About

Emanuel EJ , Osterholm M , Gounder CR. A National Strategy for the “New Normal” of Life With COVID. JAMA. 2022;327(3):211–212. doi:10.1001/jama.2021.24282

Manage citations:

© 2024

Artificial Intelligence Resource Center

Cardiology in JAMA : Read the Latest

Browse and subscribe to JAMA Network podcasts!

Others Also Liked

  • Register for email alerts with links to free full-text articles
  • Access PDFs of free articles
  • Manage your interests
  • Save searches and receive search alerts
  • Fact sheets
  • Facts in pictures

Publications

  • Questions and answers
  • Tools and toolkits
  • Endometriosis
  • Excessive heat
  • Mental disorders
  • Polycystic ovary syndrome
  • All countries
  • Eastern Mediterranean
  • South-East Asia
  • Western Pacific
  • Data by country
  • Country presence 
  • Country strengthening 
  • Country cooperation strategies 
  • News releases

Feature stories

  • Press conferences
  • Commentaries
  • Photo library
  • Afghanistan
  • Cholera 
  • Coronavirus disease (COVID-19)
  • Greater Horn of Africa
  • Israel and occupied Palestinian territory
  • Disease Outbreak News
  • Situation reports
  • Weekly Epidemiological Record
  • Surveillance
  • Health emergency appeal
  • International Health Regulations
  • Independent Oversight and Advisory Committee
  • Classifications
  • Data collections
  • Global Health Observatory
  • Global Health Estimates
  • Mortality Database
  • Sustainable Development Goals
  • Health Inequality Monitor
  • Global Progress
  • World Health Statistics
  • Partnerships
  • Committees and advisory groups
  • Collaborating centres
  • Technical teams
  • Organizational structure
  • Initiatives
  • General Programme of Work
  • WHO Academy
  • Investment in WHO
  • WHO Foundation
  • External audit
  • Financial statements
  • Internal audit and investigations 
  • Programme Budget
  • Results reports
  • Governing bodies
  • World Health Assembly
  • Executive Board
  • Member States Portal

There is a current outbreak of Coronavirus (COVID-19) disease Find out more →

  • Health topics /

Coronavirus disease (COVID-19) is an infectious disease caused by the SARS-CoV-2 virus.

Most people infected with the virus will experience mild to moderate respiratory illness and recover without requiring special treatment. However, some will become seriously ill and require medical attention. Older people and those with underlying medical conditions like cardiovascular disease, diabetes, chronic respiratory disease, or cancer are more likely to develop serious illness. Anyone can get sick with COVID-19 and become seriously ill or die at any age. 

The best way to prevent and slow down transmission is to be well informed about the disease and how the virus spreads. Protect yourself and others from infection by staying at least 1 metre apart from others, wearing a properly fitted mask, and washing your hands or using an alcohol-based rub frequently. Get vaccinated when it’s your turn and follow local guidance.

The virus can spread from an infected person’s mouth or nose in small liquid particles when they cough, sneeze, speak, sing or breathe. These particles range from larger respiratory droplets to smaller aerosols. It is important to practice respiratory etiquette, for example by coughing into a flexed elbow, and to stay home and self-isolate until you recover if you feel unwell.

Stay informed:

  • Advice for the public
  • Myth busters
  • All information on the COVID-19 outbreak

To prevent infection and to slow transmission of COVID-19, do the following: 

  • Get vaccinated when a vaccine is available to you.
  • Stay at least 1 metre apart from others, even if they don’t appear to be sick.
  • Wear a properly fitted mask when physical distancing is not possible or when in poorly ventilated settings.
  • Choose open, well-ventilated spaces over closed ones. Open a window if indoors.
  • Wash your hands regularly with soap and water or clean them with alcohol-based hand rub.
  • Cover your mouth and nose when coughing or sneezing.
  • If you feel unwell, stay home and self-isolate until you recover.

COVID-19 affects different people in different ways. Most infected people will develop mild to moderate illness and recover without hospitalization.

Most common symptoms:

  • loss of taste or smell.

Less common symptoms:

  • sore throat
  • aches and pains
  • a rash on skin, or discolouration of fingers or toes
  • red or irritated eyes.

Serious symptoms:

  • difficulty breathing or shortness of breath
  • loss of speech or mobility, or confusion
  • chest pain.

Seek immediate medical attention if you have serious symptoms.  Always call before visiting your doctor or health facility. 

People with mild symptoms who are otherwise healthy should manage their symptoms at home. 

On average it takes 5–6 days from when someone is infected with the virus for symptoms to show, however it can take up to 14 days. 

  • Q&As on COVID-19 and related health topics
  • WHO Coronavirus (COVID-19) Dashboard
  • COVID-19 Clinical Care Pathway
  • COVID-19 Impact on nutrition analytical framework
  • COVID-19 Vaccine delivery toolkit
  • Global Clinical Platform for COVID-19
  • Coronavirus disease (COVID-19) pandemic
  • Access to COVID-19 Tools (ACT) Accelerator
  • COVID-19 Technology access pool 
  • ACT-Accelerator Ethics & Governance Working Group
  • Advisory Group on Therapeutics Prioritization for COVID-19
  • COVID-19 IHR Emergency Committee
  • COVID-19 Infection Prevention and Control Guidance Development Group
  • Facilitation Council for the Access to COVID-19 Tools (ACT) Accelerator
  • International Travel and Health (ITH) guideline development group (GDG) for COVID-19
  • Technical Advisory Group on the COVID-19 Technology Access Pool
  • Technical Advisory Group on COVID-19 Vaccine Composition
  • Technical Advisory Group on SARS-CoV-2 Virus Evolution
  • Working Group on Ethics and COVID-19
  • COVID-19 Training

WHO and Switzerland strengthen partnership for global BioHub System

COVID-19 eliminated a decade of progress in global level of life expectancy

Statement on the antigen composition of COVID-19 vaccines

WHO reports widespread overuse of antibiotics in patients hospitalized with COVID-19

WHO SEAR 11th Epidemiological Bulletin 2024

WHO SEAR 11th Epidemiological Bulletin 2024

This epidemiological bulletin aims to provide the situation of key infectious diseases in the WHO South-East Asia region to inform risk assessments and...

WHO SEAR 10th Epidemiological Bulletin 2024

WHO SEAR 10th Epidemiological Bulletin 2024

WHO SEAR 9th Epidemiological Bulletin 2024

WHO SEAR 9th Epidemiological Bulletin 2024

WHO SEAR 8th Epidemiological Bulletin 2024

WHO SEAR 8th Epidemiological Bulletin 2024

Who documents.

essay on covid 19 with outline

COVID-19 epidemiological update – 13 August 2024

SARS-CoV-2 PCR percent positivity during the four-week reporting period from 24 June to 21 July 2024, as detected in integrated sentinel surveillance as...

essay on covid 19 with outline

COVID-19 epidemiological update – 15 July 2024

SARS-CoV-2 PCR percent positivity during the four-week reporting period from 27 May to 23 June 2024, as detected in integrated sentinel surveillance as...

essay on covid 19 with outline

COVID-19 epidemiological update – 17 June 2024

SARS-CoV-2 PCR percent positivity, as detected in integrated sentinel surveillance as part of the Global Influenza Surveillance and Response System...

essay on covid 19 with outline

COVID-19 epidemiological update – 17 May 2024

Tracking SARS-CoV-2 variants

Promoting a fair and equitable response to the COVID-19 pandemic

Promoting the health of refugees and migrants during COVID-19 pandemic

Preparing and preventing epidemics and pandemics

Donors making a difference for WHO’s work to save lives in Sudan and South Sudan

Development partners making a difference: The European Union supports WHO in eight Asian countries to prepare for the future

Infographics

essay on covid 19 with outline

Diagnostic testing for SARS-CoV-2 infection

essay on covid 19 with outline

Why testing is important?

essay on covid 19 with outline

Pandemic preparedness: Introducing WHO's Investigations and Studies (Unity Studies) approach

essay on covid 19 with outline

Nurses Facing COVID - 2023 Health Emergencies "GRAND PRIX" at the 4th Health for All Film Festival

demographics

WHO's Science in 5: Older adults and COVID-19 vaccines - 14 October 2022

text - Science in 5 on blue background

WHO’s Science in 5 on COVID-19: Genome Sequencing

INB-related interactive dialogues

Webinar program on mental health and post COVID-19 condition

Related links

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Springer Nature - PMC COVID-19 Collection

Logo of phenaturepg

An Introduction to COVID-19

Simon james fong.

4 Department of Computer and Information Science, University of Macau, Taipa, Macau, China

Nilanjan Dey

5 Department of Information Technology, Techno International New Town, Kolkata, West Bengal India

Jyotismita Chaki

6 School of Information Technology and Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu India

A novel coronavirus (CoV) named ‘2019-nCoV’ or ‘2019 novel coronavirus’ or ‘COVID-19’ by the World Health Organization (WHO) is in charge of the current outbreak of pneumonia that began at the beginning of December 2019 near in Wuhan City, Hubei Province, China [1–4]. COVID-19 is a pathogenic virus. From the phylogenetic analysis carried out with obtainable full genome sequences, bats occur to be the COVID-19 virus reservoir, but the intermediate host(s) has not been detected till now.

A Brief History of the Coronavirus Outbreak

A novel coronavirus (CoV) named ‘2019-nCoV’ or ‘2019 novel coronavirus’ or ‘COVID-19’ by the World Health Organization (WHO) is in charge of the current outbreak of pneumonia that began at the beginning of December 2019 near in Wuhan City, Hubei Province, China [ 1 – 4 ]. COVID-19 is a pathogenic virus. From the phylogenetic analysis carried out with obtainable full genome sequences, bats occur to be the COVID-19 virus reservoir, but the intermediate host(s) has not been detected till now. Though three major areas of work already are ongoing in China to advise our awareness of the pathogenic origin of the outbreak. These include early inquiries of cases with symptoms occurring near in Wuhan during December 2019, ecological sampling from the Huanan Wholesale Seafood Market as well as other area markets, and the collection of detailed reports of the point of origin and type of wildlife species marketed on the Huanan market and the destination of those animals after the market has been closed [ 5 – 8 ].

Coronaviruses mostly cause gastrointestinal and respiratory tract infections and are inherently categorized into four major types: Gammacoronavirus, Deltacoronavirus, Betacoronavirus and Alphacoronavirus [ 9 – 11 ]. The first two types mainly infect birds, while the last two mostly infect mammals. Six types of human CoVs have been formally recognized. These comprise HCoVHKU1, HCoV-OC43, Middle East Respiratory Syndrome coronavirus (MERS-CoV), Severe Acute Respiratory Syndrome coronavirus (SARS-CoV) which is the type of the Betacoronavirus, HCoV229E and HCoV-NL63, which are the member of the Alphacoronavirus. Coronaviruses did not draw global concern until the 2003 SARS pandemic [ 12 – 14 ], preceded by the 2012 MERS [ 15 – 17 ] and most recently by the COVID-19 outbreaks. SARS-CoV and MERS-CoV are known to be extremely pathogenic and spread from bats to palm civets or dromedary camels and eventually to humans.

COVID-19 is spread by dust particles and fomites while close unsafe touch between the infector and the infected individual. Airborne distribution has not been recorded for COVID-19 and is not known to be a significant transmission engine based on empirical evidence; although it can be imagined if such aerosol-generating practices are carried out in medical facilities. Faecal spreading has been seen in certain patients, and the active virus has been reported in a small number of clinical studies [ 18 – 20 ]. Furthermore, the faecal-oral route does not seem to be a COVID-19 transmission engine; its function and relevance for COVID-19 need to be identified.

For about 18,738,58 laboratory-confirmed cases recorded as of 2nd week of April 2020, the maximum number of cases (77.8%) was between 30 and 69 years of age. Among the recorded cases, 21.6% are farmers or employees by profession, 51.1% are male and 77.0% are Hubei.

However, there are already many concerns regarding the latest coronavirus. Although it seems to be transferred to humans by animals, it is important to recognize individual animals and other sources, the path of transmission, the incubation cycle, and the features of the susceptible community and the survival rate. Nonetheless, very little clinical knowledge on COVID-19 disease is currently accessible and details on age span, the animal origin of the virus, incubation time, outbreak curve, viral spectroscopy, dissemination pathogenesis, autopsy observations, and any clinical responses to antivirals are lacking among the serious cases.

How Different and Deadly COVID-19 is Compared to Plagues in History

COVID-19 has reached to more than 150 nations, including China, and has caused WHO to call the disease a worldwide pandemic. By the time of 2nd week of April 2020, this COVID-19 cases exceeded 18,738,58, although more than 1,160,45 deaths were recorded worldwide and United States of America became the global epicentre of coronavirus. More than one-third of the COVID-19 instances are outside of China. Past pandemics that have existed in the past decade or so, like bird flu, swine flu, and SARS, it is hard to find out the comparison between those pandemics and this coronavirus. Following is a guide to compare coronavirus with such diseases and recent pandemics that have reformed the world community.

Coronavirus Versus Seasonal Influenza

Influenza, or seasonal flu, occurs globally every year–usually between December and February. It is impossible to determine the number of reports per year because it is not a reportable infection (so no need to be recorded to municipality), so often patients with minor symptoms do not go to a physician. Recent figures placed the Rate of Case Fatality at 0.1% [ 21 – 23 ].

There are approximately 3–5 million reports of serious influenza a year, and about 250,000–500,000 deaths globally. In most developed nations, the majority of deaths arise in persons over 65 years of age. Moreover, it is unsafe for pregnant mothers, children under 59 months of age and individuals with serious illnesses.

The annual vaccination eliminates infection and severe risks in most developing countries but is nevertheless a recognized yet uncomfortable aspect of the season.

In contrast to the seasonal influenza, coronavirus is not so common, has led to fewer cases till now, has a higher rate of case fatality and has no antidote.

Coronavirus Versus Bird Flu (H5N1 and H7N9)

Several cases of bird flu have existed over the years, with the most severe in 2013 and 2016. This is usually from two separate strains—H5N1 and H7N9 [ 24 – 26 ].

The H7N9 outbreak in 2016 accounted for one-third of all confirmed human cases but remained confined relative to both coronavirus and other pandemics/outbreak cases. After the first outbreak, about 1,233 laboratory-confirmed reports of bird flu have occurred. The disease has a Rate of Case Fatality of 20–40%.

Although the percentage is very high, the blowout from individual to individual is restricted, which, in effect, has minimized the number of related deaths. It is also impossible to monitor as birds do not necessarily expire from sickness.

In contrast to the bird flu, coronavirus becomes more common, travels more quickly through human to human interaction, has an inferior cardiothoracic ratio, resulting in further total fatalities and spread from the initial source.

Coronavirus Versus Ebola Epidemic

The Ebola epidemic of 2013 was primarily centred in 10 nations, including Sierra Leone, Guinea and Liberia have the greatest effects, but the extremely high Case Fatality Rate of 40% has created this as a significant problem for health professionals nationwide [ 27 – 29 ].

Around 2013 and 2016, there were about 28,646 suspicious incidents and about 11,323 fatalities, although these are expected to be overlooked. Those who survived from the original epidemic may still become sick months or even years later, because the infection may stay inactive for prolonged periods. Thankfully, a vaccination was launched in December 2016 and is perceived to be effective.

In contrast to the Ebola, coronavirus is more common globally, has caused in fewer fatalities, has a lesser case fatality rate, has no reported problems during treatment and after recovery, does not have an appropriate vaccination.

Coronavirus Versus Camel Flu (MERS)

Camel flu is a misnomer–though camels have MERS antibodies and may have been included in the transmission of the disease; it was originally transmitted to humans through bats [ 30 – 32 ]. Like Ebola, it infected only a limited number of nations, i.e. about 27, but about 858 fatalities from about 2,494 laboratory-confirmed reports suggested that it was a significant threat if no steps were taken in place to control it.

In contrast to the camel flu, coronavirus is more common globally, has occurred more fatalities, has a lesser case fatality rate, and spreads more easily among humans.

Coronavirus Versus Swine Flu (H1N1)

Swine flu is the same form of influenza that wiped 1.7% of the world population in 1918. This was deemed a pandemic again in June 2009 an approximately-21% of the global population infected by this [ 33 – 35 ].

Thankfully, the case fatality rate is substantially lower than in the last pandemic, with 0.1%–0.5% of events ending in death. About 18,500 of these fatalities have been laboratory-confirmed, but statistics range as high as 151,700–575,400 worldwide. 50–80% of severe occurrences have been reported in individuals with chronic illnesses like asthma, obesity, cardiovascular diseases and diabetes.

In contrast to the swine flu, coronavirus is not so common, has caused fewer fatalities, has more case fatality rate, has a longer growth time and less impact on young people.

Coronavirus Versus Severe Acute Respiratory Syndrome (SARS)

SARS was discovered in 2003 as it spread from bats to humans resulted in about 774 fatalities. By May there were eventually about 8,100 reports across 17 countries, with a 15% case fatality rate. The number is estimated to be closer to 9.6% as confirmed cases are counted, with 0.9% cardiothoracic ratio for people aged 20–29, rising to 28% for people aged 70–79. Similar to coronavirus, SARS had bad results for males than females in all age categories [ 36 – 38 ].

Coronavirus is more common relative to SARS, which ended in more overall fatalities, lower case fatality rate, the even higher case fatality rate in older ages, and poorer results for males.

Coronavirus Versus Hong Kong Flu (H3N2)

The Hong Kong flu pandemic erupted on 13 July 1968, with 1–4 million deaths globally by 1969. It was one of the greatest flu pandemics of the twentieth century, but thankfully the case fatality rate was smaller than the epidemic of 1918, resulting in fewer fatalities overall. That may have been attributed to the fact that citizens had generated immunity owing to a previous epidemic in 1957 and to better medical treatment [ 39 ].

In contrast to the Hong Kong flu, coronavirus is not so common, has caused in fewer fatalities and has a higher case fatality rate.

Coronavirus Versus Spanish Flu (H1N1)

The 1918 Spanish flu pandemic was one of the greatest occurrences of recorded history. During the first year of the pandemic, lifespan in the US dropped by 12 years, with more civilians killed than HIV/AIDS in 24 h [ 40 – 42 ].

Regardless of the name, the epidemic did not necessarily arise in Spain; wartime censors in Germany, the United States, the United Kingdom and France blocked news of the disease, but Spain did not, creating the misleading perception that more cases and fatalities had occurred relative to its neighbours

This strain of H1N1 eventually affected more than 500 million men, or 27% of the world’s population at the moment, and had deaths of between 40 and 50 million. At the end of 1920, 1.7% of the world’s people had expired of this illness, including an exceptionally high death rate for young adults aged between 20 and 40 years.

In contrast to the Spanish flu, coronavirus is not so common, has caused in fewer fatalities, has a higher case fatality rate, is more harmful to older ages and is less risky for individuals aged 20–40 years.

Coronavirus Versus Common Cold (Typically Rhinovirus)

Common cold is the most common illness impacting people—Typically, a person suffers from 2–3 colds each year and the average kid will catch 6–8 during the similar time span. Although there are more than 200 cold-associated virus types, infections are uncommon and fatalities are very rare and typically arise mainly in extremely old, extremely young or immunosuppressed cases [ 43 , 44 ].

In contrast to the common cold, coronavirus is not so prevalent, causes more fatalities, has more case fatality rate, is less infectious and is less likely to impact small children.

Reviews of Online Portals and Social Media for Epidemic Information Dissemination

As COVID-19 started to propagate across the globe, the outbreak contributed to a significant change in the broad technology platforms. Where they once declined to engage in the affairs of their systems, except though the possible danger to public safety became obvious, the advent of a novel coronavirus placed them in a different interventionist way of thought. Big tech firms and social media are taking concrete steps to guide users to relevant, credible details on the virus [ 45 – 48 ]. And some of the measures they’re doing proactively. Below are a few of them.

Facebook started adding a box in the news feed that led users to the Centers for Disease Control website regarding COVID-19. It reflects a significant departure from the company’s normal strategy of placing items in the News Feed. The purpose of the update, after all, is personalization—Facebook tries to give the posts you’re going to care about, whether it is because you’re connected with a person or like a post. In the virus package, Facebook has placed a remarkable algorithmic thumb on the scale, potentially pushing millions of people to accurate, authenticated knowledge from a reputable source.

Similar initiatives have been adopted by Twitter. Searching for COVID-19 will carry you to a page highlighting the latest reports from public health groups and credible national news outlets. The search also allows for common misspellings. Twitter has stated that although Russian-style initiatives to cause discontent by large-scale intelligence operations have not yet been observed, a zero-tolerance approach to network exploitation and all other attempts to exploit their service at this crucial juncture will be expected. The problem has the attention of the organization. It also offers promotional support to public service agencies and other non-profit groups.

Google has made a step in making it better for those who choose to operate or research from home, offering specialized streaming services to all paying G Suite customers. Google also confirmed that free access to ‘advanced’ Hangouts Meet apps will be rolled out to both G Suite and G Suite for Education clients worldwide through 1st July. It ensures that companies can hold meetings of up to 250 people, broadcast live to up to about 100,000 users within a single network, and archive and export meetings to Google Drive. Usually, Google pays an additional $13 per person per month for these services in comparison to G Suite’s ‘enterprise’ membership, which adds up to a total of about $25 per client each month.

Microsoft took a similar move, introducing the software ‘Chat Device’ to help public health and protection in the coronavirus epidemic, which enables collaborative collaboration via video and text messaging. There’s an aspect of self-interest in this. Tech firms are offering out their goods free of charge during periods of emergency for the same purpose as newspapers are reducing their paywalls: it’s nice to draw more paying consumers.

Pinterest, which has introduced much of the anti-misinformation strategies that Facebook and Twitter are already embracing, is now restricting the search results for ‘coronavirus’, ‘COVID-19’ and similar words for ‘internationally recognized health organizations’.

Google-owned YouTube, traditionally the most conspiratorial website, has recently introduced a connection to the World Health Organization virus epidemic page to the top of the search results. In the early days of the epidemic, BuzzFeed found famous coronavirus conspiratorial videos on YouTube—especially in India, where one ‘explain’ with a false interpretation of the sources of the disease racketeered 13 million views before YouTube deleted it. Yet in the United States, conspiratorial posts regarding the illness have failed to gain only 1 million views.

That’s not to suggest that misinformation doesn’t propagate on digital platforms—just as it travels through the broader Internet, even though interaction with friends and relatives. When there’s a site that appears to be under-performing in the global epidemic, it’s Facebook-owned WhatsApp, where the Washington Post reported ‘a torrent of disinformation’ in places like Nigeria, Indonesia, Peru, Pakistan and Ireland. Given the encrypted existence of the app, it is difficult to measure the severity of the problem. Misinformation is also spread in WhatsApp communities, where participation is restricted to about 250 individuals. Knowledge of one category may be readily exchanged with another; however, there is a considerable amount of complexity of rotating several groups to peddle affected healing remedies or propagate false rumours.

Preventative Measures and Policies Enforced by the World Health Organization (WHO) and Different Countries

Coronavirus is already an ongoing epidemic, so it is necessary to take precautions to minimize both the risk of being sick and the transmission of the disease.

WHO Advice [ 49 ]

  • Wash hands regularly with alcohol-based hand wash or soap and water.
  • Preserve contact space (at least 1 m/3 feet between you and someone who sneezes or coughs).
  • Don’t touch your nose, head and ears.
  • Cover your nose and mouth as you sneeze or cough, preferably with your bent elbow or tissue.
  • Try to find early medical attention if you have fatigue, cough and trouble breathing.
  • Take preventive precautions if you are in or have recently go to places where coronavirus spreads.

The first person believed to have become sick because of the latest virus was near in Wuhan on 1 December 2019. A formal warning of the epidemic was released on 31 December. The World Health Organization was informed of the epidemic on the same day. Through 7 January, the Chinese Government addressed the avoidance and regulation of COVID-19. A curfew was declared on 23 January to prohibit flying in and out of Wuhan. Private usage of cars has been banned in the region. Chinese New Year (25 January) festivities have been cancelled in many locations [ 50 ].

On 26 January, the Communist Party and the Government adopted more steps to contain the COVID-19 epidemic, including safety warnings for travellers and improvements to national holidays. The leading party has agreed to prolong the Spring Festival holiday to control the outbreak. Universities and schools across the world have already been locked down. Many steps have been taken by the Hong Kong and Macau governments, in particular concerning schools and colleges. Remote job initiatives have been placed in effect in many regions of China. Several immigration limits have been enforced.

Certain counties and cities outside Hubei also implemented travel limits. Public transit has been changed and museums in China have been partially removed. Some experts challenged the quality of the number of cases announced by the Chinese Government, which constantly modified the way coronavirus cases were recorded.

Italy, a member state of the European Union and a popular tourist attraction, entered the list of coronavirus-affected nations on 30 January, when two positive cases in COVID-19 were identified among Chinese tourists. Italy has the largest number of coronavirus infections both in Europe and outside of China [ 51 ].

Infections, originally limited to northern Italy, gradually spread to all other areas. Many other nations in Asia, Europe and the Americas have tracked their local cases to Italy. Several Italian travellers were even infected with coronavirus-positive in foreign nations.

Late in Italy, the most impacted coronavirus cities and counties are Lombardia, accompanied by Veneto, Emilia-Romagna, Marche and Piedmonte. Milan, the second most populated city in Italy, is situated in Lombardy. Other regions in Italy with coronavirus comprised Campania, Toscana, Liguria, Lazio, Sicilia, Friuli Venezia Giulia, Umbria, Puglia, Trento, Abruzzo, Calabria, Molise, Valle d’Aosta, Sardegna, Bolzano and Basilicata.

Italy ranks 19th of the top 30 nations getting high-risk coronavirus airline passengers in China, as per WorldPop’s provisional study of the spread of COVID-19.

The Italian State has taken steps like the inspection and termination of large cultural activities during the early days of the coronavirus epidemic and has gradually declared the closing of educational establishments and airport hygiene/disinfection initiatives.

The Italian National Institute of Health suggested social distancing and agreed that the broader community of the country’s elderly is a problem. In the meantime, several other nations, including the US, have recommended that travel to Italy should be avoided temporarily, unless necessary.

The Italian government has declared the closing (quarantine) of the impacted areas in the northern region of the nation so as not to spread to the rest of the world. Italy has declared the immediate suspension of all to-and-fro air travel with China following coronavirus discovery by a Chinese tourist to Italy. Italian airlines, like Ryan Air, have begun introducing protective steps and have begun calling for the declaration forms to be submitted by passengers flying to Poland, Slovakia and Lithuania.

The Italian government first declined to permit fans to compete in sporting activities until early April to prevent the potential transmission of coronavirus. The step ensured players of health and stopped event cancellations because of coronavirus fears. Two days of the declaration, the government cancelled all athletic activities owing to the emergence of the outbreak asking for an emergency. Sports activities in Veneto, Lombardy and Emilia-Romagna, which recorded coronavirus-positive infections, were confirmed to be temporarily suspended. Schools and colleges in Italy have also been forced to shut down.

Iran announced the first recorded cases of SARS-CoV-2 infection on 19 February when, as per the Medical Education and Ministry of Health, two persons died later that day. The Ministry of Islamic Culture and Guidance has declared the cancellation of all concerts and other cultural activities for one week. The Medical Education and Ministry of Health has also declared the closing of universities, higher education colleges and schools in many cities and regions. The Department of Sports and Culture has taken action to suspend athletic activities, including football matches [ 52 ].

On 2 March 2020, the government revealed plans to train about 300,000 troops and volunteers to fight the outbreak of the epidemic, and also send robots and water cannons to clean the cities. The State also developed an initiative and a webpage to counter the epidemic. On 9 March 2020, nearly 70,000 inmates were immediately released from jail owing to the epidemic, presumably to prevent the further dissemination of the disease inside jails. The Revolutionary Guards declared a campaign on 13 March 2020 to clear highways, stores and public areas in Iran. President Hassan Rouhani stated on 26 February 2020 that there were no arrangements to quarantine areas impacted by the epidemic and only persons should be quarantined. The temples of Shia in Qom stayed open to pilgrims.

South Korea

On 20 January, South Korea announced its first occurrence. There was a large rise in cases on 20 February, possibly due to the meeting in Daegu of a progressive faith community recognized as the Shincheonji Church of Christ. Any citizens believed that the hospital was propagating the disease. As of 22 February, 1,261 of the 9,336 members of the church registered symptoms. A petition was distributed calling for the abolition of the church. More than 2,000 verified cases were registered on 28 February, increasing to 3,150 on 29 February [ 53 ].

Several educational establishments have been partially closing down, including hundreds of kindergartens in Daegu and many primary schools in Seoul. As of 18 February, several South Korean colleges had confirmed intentions to delay the launch of the spring semester. That included 155 institutions deciding to postpone the start of the semester by two weeks until 16 March, and 22 institutions deciding to delay the start of the semester by one week until 9 March. Also, on 23 February 2020, all primary schools, kindergartens, middle schools and secondary schools were declared to postpone the start of the semester from 2 March to 9 March.

South Korea’s economy is expected to expand by 1.9%, down from 2.1%. The State has given 136.7 billion won funding to local councils. The State has also coordinated the purchase of masks and other sanitary supplies. Entertainment Company SM Entertainment is confirmed to have contributed five hundred million won in attempts to fight the disease.

In the kpop industry, the widespread dissemination of coronavirus within South Korea has contributed to the cancellation or postponement of concerts and other programmes for kpop activities inside and outside South Korea. For instance, circumstances such as the cancellation of the remaining Asian dates and the European leg for the Seventeen’s Ode To You Tour on 9 February 2020 and the cancellation of all Seoul dates for the BTS Soul Tour Map. As of 15 March, a maximum of 136 countries and regions provided entry restrictions and/or expired visas for passengers from South Korea.

The overall reported cases of coronavirus rose significantly in France on 12 March. The areas with reported cases include Paris, Amiens, Bordeaux and Eastern Haute-Savoie. The first coronaviral death happened in France on 15 February, marking it the first death in Europe. The second death of a 60-year-old French national in Paris was announced on 26 February [ 54 ].

On February 28, fashion designer Agnès B. (not to be mistaken with Agnès Buzyn) cancelled fashion shows at the Paris Fashion Week, expected to continue until 3 March. On a subsequent day, the Paris half-marathon, planned for Sunday 1 March with 44,000 entrants, was postponed as one of a series of steps declared by Health Minister Olivier Véran.

On 13 March, the Ligue de Football Professional disbanded Ligue 1 and Ligue 2 (France’s tier two professional divisions) permanently due to safety threats.

Germany has a popular Regional Pandemic Strategy detailing the roles and activities of the health care system participants in the case of a significant outbreak. Epidemic surveillance is carried out by the federal government, like the Robert Koch Center, and by the German governments. The German States have their preparations for an outbreak. The regional strategy for the treatment of the current coronavirus epidemic was expanded by March 2020. Four primary goals are contained in this plan: (1) to minimize mortality and morbidity; (2) to guarantee the safety of sick persons; (3) to protect vital health services and (4) to offer concise and reliable reports to decision-makers, the media and the public [ 55 ].

The programme has three phases that may potentially overlap: (1) isolation (situation of individual cases and clusters), (2) safety (situation of further dissemination of pathogens and suspected causes of infection), (3) prevention (situation of widespread infection). So far, Germany has not set up border controls or common health condition tests at airports. Instead, while at the isolation stage-health officials are concentrating on recognizing contact individuals that are subject to specific quarantine and are tracked and checked. Specific quarantine is regulated by municipal health authorities. By doing so, the officials are seeking to hold the chains of infection small, contributing to decreased clusters. At the safety stage, the policy should shift to prevent susceptible individuals from being harmed by direct action. By the end of the day, the prevention process should aim to prevent cycles of acute treatment to retain emergency facilities.

United States

The very first case of coronavirus in the United States was identified in Washington on 21 January 2020 by an individual who flew to Wuhan and returned to the United States. The second case was recorded in Illinois by another individual who had travelled to Wuhan. Some of the regions with reported novel coronavirus infections in the US are California, Arizona, Connecticut, Illinois, Texas, Wisconsin and Washington [ 56 ].

As the epidemic increased, requests for domestic air travel decreased dramatically. By 4 March, U.S. carriers, like United Airlines and JetBlue Airways, started growing their domestic flight schedules, providing generous unpaid leave to workers and suspending recruits.

A significant number of universities and colleges cancelled classes and reopened dormitories in response to the epidemic, like Cornell University, Harvard University and the University of South Carolina.

On 3 March 2020, the Federal Reserve reduced its goal interest rate from 1.75% to 1.25%, the biggest emergency rate cut following the 2008 global financial crash, in combat the effect of the recession on the American economy. In February 2020, US businesses, including Apple Inc. and Microsoft, started to reduce sales projections due to supply chain delays in China caused by the COVID-19.

The pandemic, together with the subsequent financial market collapse, also contributed to greater criticism of the crisis in the United States. Researchers disagree about when a recession is likely to take effect, with others suggesting that it is not unavoidable, while some claim that the world might already be in recession. On 3 March, Federal Reserve Chairman Jerome Powell reported a 0.5% (50 basis point) interest rate cut from the coronavirus in the context of the evolving threats to economic growth.

When ‘social distance’ penetrated the national lexicon, disaster response officials promoted the cancellation of broad events to slow down the risk of infection. Technical conferences like E3 2020, Apple Inc.’s Worldwide Developers Conference (WWDC), Google I/O, Facebook F8, and Cloud Next and Microsoft’s MVP Conference have been either having replaced or cancelled in-person events with internet streaming events.

On February 29, the American Physical Society postponed its annual March gathering, planned for March 2–6 in Denver, Colorado, even though most of the more than 11,000 physicist attendees already had arrived and engaged in the pre-conference day activities. On March 6, the annual South to Southwest (SXSW) seminar and festival planned to take place from March 13–22 in Austin, Texas, was postponed after the city council announced a local disaster and forced conferences to be shut down for the first time in 34 years.

Four of North America’s major professional sports leagues—the National Hockey League (NHL), National Basketball Association (NBA), Major League Soccer (MLS) and Major League Baseball (MLB) —jointly declared on March 9 that they would all limit the media access to player accommodations (such as locker rooms) to control probable exposure.

Emergency Funding to Fight the COVID-19

COVID-19 pandemic has become a common international concern. Different countries are donating funds to fight against it [ 57 – 60 ]. Some of them are mentioned here.

China has allocated about 110.48 billion yuan ($15.93 billion) in coronavirus-related funding.

Foreign Minister Mohammad Javad Zarif said that Iran has requested the International Monetary Fund (IMF) of about $5 billion in emergency funding to help to tackle the coronavirus epidemic that has struck the Islamic Republic hard.

President Donald Trump approved the Emergency Supplementary Budget Bill to support the US response to a novel coronavirus epidemic. The budget plan would include about $8.3 billion in discretionary funding to local health authorities to promote vaccine research for production. Trump originally requested just about $2 billion to combat the epidemic, but Congress quadrupled the number in its version of the bill. Mr. Trump formally announced a national emergency that he claimed it will give states and territories access to up to about $50 billion in federal funding to tackle the spread of the coronavirus outbreak.

California politicians approved a plan to donate about $1 billion on the state’s emergency medical responses as it readies hospitals to fight an expected attack of patients because of the COVID-19 pandemic. The plans, drawn up rapidly in reaction to the dramatic rise in reported cases of the virus, would include the requisite funds to establish two new hospitals in California, with the assumption that the state may not have the resources to take care of the rise in patients. The bill calls for an immediate response of about $500 million from the State General Fund, with an additional about $500 million possible if requested.

India committed about $10 million to the COVID-19 Emergency Fund and said it was setting up a rapid response team of physicians for the South Asian Association for Regional Cooperation (Saarc) countries.

South Korea unveiled an economic stimulus package of about 11.7 trillion won ($9.8 billion) to soften the effects of the biggest coronavirus epidemic outside China as attempts to curb the disease exacerbate supply shortages and drain demand. Of the 11,7 trillion won expected, about 3.2 trillion won would cover up the budget shortfall, while an additional fiscal infusion of about 8.5 trillion won. An estimated 10.3 trillion won in government bonds will be sold this year to fund the extra expenditure. About 2.3 trillion won will be distributed to medical establishments and would support quarantine operations, with another 3.0 trillion won heading to small and medium-sized companies unable to pay salaries to their employees and child care supports.

The Swedish Parliament announced a set of initiatives costing more than 300 billion Swedish crowns ($30.94 billion) to help the economy in the view of the coronavirus pandemic. The plan contained steps like the central government paying the entire expense of the company’s sick leave during April and May, and also the high cost of compulsory redundancies owing to the crisis.

In consideration of the developing scenario, an updating of this strategy is planned to take place before the end of March and will recognize considerably greater funding demands for the country response, R&D and WHO itself.

Artificial Intelligence, Data Science and Technological Solutions Against COVID-19

These days, Artificial Intelligence (AI) takes a major role in health care. Throughout a worldwide pandemic such as the COVID-19, technology, artificial intelligence and data analytics have been crucial in helping communities cope successfully with the epidemic [ 61 – 65 ]. Through the aid of data mining and analytical modelling, medical practitioners are willing to learn more about several diseases.

Public Health Surveillance

The biggest risk of coronavirus is the level of spreading. That’s why policymakers are introducing steps like quarantines around the world because they can’t adequately monitor local outbreaks. One of the simplest measures to identify ill patients through the study of CCTV images that are still around us and to locate and separate individuals that have serious signs of the disease and who have touched and disinfected the related surfaces. Smartphone applications are often used to keep a watch on people’s activities and to assess whether or not they have come in touch with an infected human.

Remote Biosignal Measurement

Many of the signs such as temperature or heartbeat are very essential to overlook and rely entirely on the visual image that may be misleading. However, of course, we can’t prevent someone from checking their blood pressure, heart or temperature. Also, several advances in computer vision can predict pulse and blood pressure based on facial skin examination. Besides, there are several advances in computer vision that can predict pulse and blood pressure based on facial skin examination.

Access to public records has contributed to the development of dashboards that constantly track the virus. Several companies are designing large data dashboards. Face recognition and infrared temperature monitoring technologies have been mounted in all major cities. Chinese AI companies including Hanwang Technology and SenseTime have reported having established a special facial recognition system that can correctly identify people even though they are covered.

IoT and Wearables

Measurements like pulse are much more natural and easier to obtain from tracking gadgets like activity trackers and smartwatches that nearly everybody has already. Some work suggests that the study of cardiac activity and its variations from the standard will reveal early signs of influenza and, in this case, coronavirus.

Chatbots and Communication

Apart from public screening, people’s knowledge and self-assessment may also be used to track their health. If you can check your temperature and pulse every day and monitor your coughs time-to-time, you can even submit that to your record. If the symptoms are too serious, either an algorithm or a doctor remotely may prescribe a person to stay home, take several other preventive measures, or recommend a visit from the doctor.

Al Jazeera announced that China Mobile had sent text messages to state media departments, telling them about the citizens who had been affected. The communications contained all the specifics of the person’s travel history.

Tencent runs WeChat, and via it, citizens can use free online health consultation services. Chatbots have already become important connectivity platforms for transport and tourism service providers to keep passengers up-to-date with the current transport protocols and disturbances.

Social Media and Open Data

There are several people who post their health diary with total strangers via Facebook or Twitter. Such data becomes helpful for more general research about how far the epidemic has progressed. For consumer knowledge, we may even evaluate the social network group to attempt to predict what specific networks are at risk of being viral.

Canadian company BlueDot analyses far more than just social network data: for instance, global activities of more than four billion passengers on international flights per year; animal, human and insect population data; satellite environment data and relevant knowledge from health professionals and journalists, across 100,000 news posts per day covering 65 languages. This strategy was so successful that the corporation was able to alert clients about coronavirus until the World Health Organization and the Centers for Disease Control and Prevention notified the public.

Automated Diagnostics

COVID-19 has brought up another healthcare issue today: it will not scale when the number of patients increases exponentially (actually stressed doctors are always doing worse) and the rate of false-negative diagnosis remains very high. Machine learning therapies don’t get bored and scale simply by growing computing forces.

Baidu, the Chinese Internet company, has made the Lineatrfold algorithm accessible to the outbreak-fighting teams, according to the MIT Technology Review. Unlike HIV, Ebola and Influenza, COVID-19 has just one strand of RNA and it can mutate easily. The algorithm is also simpler than other algorithms that help to determine the nature of the virus. Baidu has also developed software to efficiently track large populations. It has also developed an Ai-powered infrared device that can detect a difference in the body temperature of a human. This is currently being used in Beijing’s Qinghe Railway Station to classify possibly contaminated travellers where up to 200 individuals may be checked in one minute without affecting traffic movement, reports the MIT Review.

Singapore-based Veredus Laboratories, a supplier of revolutionary molecular diagnostic tools, has currently announced the launch of the VereCoV detector package, a compact Lab-on-Chip device able to detect MERS-CoV, SARS-CoV and COVID-19, i.e. Wuhan Coronavirus, in a single study.

The VereCoV identification package is focused on VereChip technology, a Lab-on-Chip device that incorporates two important molecular biological systems, Polymerase Chain Reaction (PCR) and a microarray, which will be able to classify and distinguish within 2 h MERS-CoV, SARS-CoV and COVID-19 with high precision and responsiveness.

This is not just the medical activities of healthcare facilities that are being charged, but also the corporate and financial departments when they cope with the increase in patients. Ant Financials’ blockchain technology helps speed-up the collection of reports and decreases the number of face-to-face encounters with patients and medical personnel.

Companies like the Israeli company Sonovia are aiming to provide healthcare systems and others with face masks manufactured from their anti-pathogenic, anti-bacterial cloth that depends on metal-oxide nanoparticles.

Drug Development Research

Aside from identifying and stopping the transmission of pathogens, the need to develop vaccinations on a scale is also needed. One of the crucial things to make that possible is to consider the origin and essence of the virus. Google’s DeepMind, with their expertise in protein folding research, has rendered a jump in identifying the protein structure of the virus and making it open-source.

BenevolentAI uses AI technologies to develop medicines that will combat the most dangerous diseases in the world and is also working to promote attempts to cure coronavirus, the first time the organization has based its product on infectious diseases. Within weeks of the epidemic, it used its analytical capability to recommend new medicines that might be beneficial.

Robots are not vulnerable to the infection, and they are used to conduct other activities, like cooking meals in hospitals, doubling up as waiters in hotels, spraying disinfectants and washing, selling rice and hand sanitizers, robots are on the front lines all over to deter coronavirus spread. Robots also conduct diagnostics and thermal imaging in several hospitals. Shenzhen-based firm Multicopter uses robotics to move surgical samples. UVD robots from Blue Ocean Robotics use ultraviolet light to destroy viruses and bacteria separately. In China, Pudu Technology has introduced its robots, which are usually used in the cooking industry, to more than 40 hospitals throughout the region. According to the Reuters article, a tiny robot named Little Peanut is distributing food to passengers who have been on a flight from Singapore to Hangzhou, China, and are presently being quarantined in a hotel.

Colour Coding

Using its advanced and vast public service monitoring network, the Chinese government has collaborated with software companies Alibaba and Tencent to establish a colour-coded health ranking scheme that monitors millions of citizens every day. The mobile device was first introduced in Hangzhou with the cooperation of Alibaba. This applies three colours to people—red, green or yellow—based on their transportation and medical records. Tencent also developed related applications in the manufacturing centre of Shenzhen.

The decision of whether an individual will be quarantined or permitted in public spaces is dependent on the colour code. Citizens will sign into the system using pay wallet systems such as Alibaba’s Alipay and Ant’s wallet. Just those citizens who have been issued a green colour code will be permitted to use the QR code in public spaces at metro stations, workplaces, and other public areas. Checkpoints are in most public areas where the body temperature and the code of individual are tested. This programme is being used by more than 200 Chinese communities and will eventually be expanded nationwide.

In some of the seriously infected regions where people remain at risk of contracting the infection, drones are used to rescue. One of the easiest and quickest ways to bring emergency supplies where they need to go while on an epidemic of disease is by drone transportation. Drones carry all surgical instruments and patient samples. This saves time, improves the pace of distribution and reduces the chance of contamination of medical samples. Drones often operate QR code placards that can be checked to record health records. There are also agricultural drones distributing disinfectants in the farmland. Drones, operated by facial recognition, are often used to warn people not to leave their homes and to chide them for not using face masks. Terra Drone uses its unmanned drones to move patient samples and vaccination content at reduced risk between the Xinchang County Disease Control Center and the People’s Hospital. Drones are often used to monitor public areas, document non-compliance with quarantine laws and thermal imaging.

Autonomous Vehicles

At a period of considerable uncertainty to medical professionals and the danger to people-to-people communication, automated vehicles are proving to be of tremendous benefit in the transport of vital products, such as medications and foodstuffs. Apollo, the Baidu Autonomous Vehicle Project, has joined hands with the Neolix self-driving company to distribute food and supplies to a big hospital in Beijing. Baidu Apollo has also provided its micro-car packages and automated cloud driving systems accessible free of charge to virus-fighting organizations.

Idriverplus, a Chinese self-driving organization that runs electrical street cleaning vehicles, is also part of the project. The company’s signature trucks are used to clean hospitals.

This chapter provides an introduction to the coronavirus outbreak (COVID-19). A brief history of this virus along with the symptoms are reported in this chapter. Then the comparison between COVID-19 and other plagues like seasonal influenza, bird flu (H5N1 and H7N9), Ebola epidemic, camel flu (MERS), swine flu (H1N1), severe acute respiratory syndrome, Hong Kong flu (H3N2), Spanish flu and the common cold are included in this chapter. Reviews of online portal and social media like Facebook, Twitter, Google, Microsoft, Pinterest, YouTube and WhatsApp concerning COVID-19 are reported in this chapter. Also, the preventive measures and policies enforced by WHO and different countries such as China, Italy, Iran, South Korea, France, Germany and the United States for COVID-19 are included in this chapter. Emergency funding provided by different countries to fight the COVID-19 is mentioned in this chapter. Lastly, artificial intelligence, data science and technological solutions like public health surveillance, remote biosignal measurement, IoT and wearables, chatbots and communication, social media and open data, automated diagnostics, drug development research, robotics, colour coding, drones and autonomous vehicles are included in this chapter.

Introduction - Pandemic Preparedness | Lessons From COVID-19

Introduction.

  • Recommendations
  • Other Views
  • Defense & Security
  • Diplomacy & International Institutions
  • Energy & Environment
  • Human Rights
  • Politics & Government
  • Social Issues
  • All Regions
  • Europe & Eurasia
  • Global Commons
  • Middle East & North Africa
  • Sub-Saharan Africa
  • More Explainers
  • Backgrounders
  • Special Projects

Research & Analysis

  • All Research & Analysis
  • Centers & Programs
  • Books & Reports
  • Independent Task Force Program
  • Fellowships

Communities

  • All Communities
  • State & Local Officials
  • Religion Leaders
  • Local Journalists
  • Lectureship Series
  • Webinars & Conference Calls
  • Member Login
  • ForeignAffairs.com
  • Co-chairs Sylvia Mathews Burwell and Frances Fragos Townsend
  • Authors Thomas J. Bollyky and Stewart M. Patrick
  • The work ahead—home

On December 31, 2019, the World Health Organization (WHO) contacted China about media reports of a cluster of viral pneumonias in Wuhan, later attributed to a coronavirus, now named SARS-CoV-2 . By January 30, 2020, scarcely a month later, WHO declared the virus to be a public health emergency of international concern (PHEIC)—the highest alarm the organization can sound. Thirty days more and the pandemic was well underway; the coronavirus had spread to more than seventy countries and territories on six continents, and there were roughly ninety thousand confirmed cases worldwide of COVID-19, the disease caused by the coronavirus.

The COVID-19 pandemic is far from over and could yet evolve in unanticipated ways, but one of its most important lessons is already clear: preparation and early execution are essential in detecting, containing, and rapidly responding to and mitigating the spread of potentially dangerous emerging infectious diseases. The ability to marshal early action depends on nations and global institutions being prepared for the worst-case scenario of a severe pandemic and ready to execute on that preparedness The COVID-19 pandemic is far from over and could yet evolve in unanticipated ways, but one of its most important lessons is already clear: preparation and early execution are essential in detecting, containing, and rapidly responding to and mitigating the spread of potentially dangerous emerging infectious diseases. The ability to marshal early action depends on nations and global institutions being prepared for the worst-case scenario of a severe pandemic and ready to execute on that preparedness before that worst-case outcome is certain.

The rapid spread of the coronavirus and its devastating death toll and economic harm have revealed a failure of global and U.S. domestic preparedness and implementation, a lack of cooperation and coordination across nations, a breakdown of compliance with established norms and international agreements, and a patchwork of partial and mishandled responses. This pandemic has demonstrated the difficulty of responding effectively to emerging outbreaks in a context of growing geopolitical rivalry abroad and intense political partisanship at home.

Pandemic preparedness is a global public good. Infectious disease threats know no borders, and dangerous pathogens that circulate unabated anywhere are a risk everywhere. As the pandemic continues to unfold across the United States and world, the consequences of inadequate preparation and implementation are abundantly clear. Despite decades of various commissions highlighting the threat of global pandemics and international planning for their inevitability, neither the United States nor the broader international system were ready to execute those plans and respond to a severe pandemic. The result is the worst global catastrophe since World War II.

The lessons of this pandemic could go unheeded once life returns to a semblance of normalcy and COVID-19 ceases to menace nations around the globe. The United States and the world risk repeating many of the same mistakes that exacerbated this crisis, most prominently the failure to prioritize global health security, to invest in the essential domestic and international institutions and infrastructure required to achieve it, and to act quickly in executing a coherent response at both the national and the global level.

The goal of this report is to curtail that possibility by identifying what went wrong in the early national and international responses to the coronavirus pandemic and by providing a road map for the United States and the multilateral system to better prepare and execute in future waves of the current pandemic and when the next pandemic threat inevitably emerges. This report endeavors to preempt the next global health challenge before it becomes a disaster.

A Rapid Spread, a Grim Toll, and an Economic Disaster

On January 23, 2020, China’s government began to undertake drastic measures against the coronavirus, imposing a lockdown on Wuhan, a city of ten million people, aggressively testing, and forcibly rounding up potential carriers in makeshift quarantine centers. 1 In the subsequent days and weeks, the Chinese government extended containment to most of the country, sealing off cities and villages and mobilizing tens of thousands of health workers to contain and treat the disease. By the time those interventions began, however, the disease had already spread well beyond the country’s borders.

SARS-CoV-2 is a highly transmissible emerging infectious disease for which no highly effective treatments or vaccines currently exist and against which people have no preexisting immunity. Some nations have been successful so far in containing its spread through public health measures such as testing, contact tracing, and isolation of confirmed and suspected cases. Those nations have managed to keep the number of cases and deaths within their territories low.

More than one hundred countries implemented either a full or a partial shutdown in an effort to contain the spread of the virus and reduce pressure on their health systems. Although these measures to enforce physical distancing slowed the pace of infection, the societal and economic consequences in many nations have been grim. The supply chain for personal protective equipment (PPE), testing kits, and medical equipment such as oxygen treatment equipment and ventilators remains under immense pressure to meet global demand.

If international cooperation in response to COVID-19 has been occurring at the top levels of government, evidence of it has been scant, though technical areas such as data sharing have witnessed some notable successes. Countries have mostly gone their own ways, closing borders and often hoarding medical equipment. More than a dozen nations are competing in a biotechnology arms race to find a vaccine. A proposed international arrangement to ensure timely equitable access to the products of that biomedical innovation has yet to attract the necessary support from many vaccine-manufacturing nations, and many governments are now racing to cut deals with pharmaceutical firms and secure their own supplies.

As of August 31, 2020, the pandemic had infected at least twenty-five million people worldwide and killed at least 850,000 (both likely gross undercounts), including at least six million reported cases and 183,000 deaths in the United States. Meanwhile, the world economy had collapsed into a slump rivaling or surpassing the Great Depression, with unemployment rates averaging 8.4 percent in high-income economies. In the second quarter of 2020, the U.S gross domestic product (GDP) fell 9.5 percent, the largest quarterly decline in the nation’s history. 2

Already in May 2020, the Asia Development Bank estimated that the pandemic would cost the world $5.8 to 8.8 trillion, reducing global GDP in 2020 by 6.4 to 9.7 percent. The ultimate financial cost could be far higher. 3

The United States is among the countries most affected by the coronavirus, with about 24 percent of global cases (as of August 31) but just 4 percent of the world’s population. While many countries in Europe and Asia succeeded in driving down the rate of transmission in spring 2020, the United States experienced new spikes in infections in the summer because the absence of a national strategy left it to individual U.S. states to go their own way on reopening their economies. In the hardest-hit areas, U.S. hospitals with limited spare beds and intensive care unit capacity have struggled to accommodate the surge in COVID-19 patients. Resource-starved local and state public health departments have been unable to keep up with the staggering demand for case identification, contract tracing, and isolation required to contain the coronavirus’s spread.

A Failure to Heed Warnings

  • Institute of Medicine, Microbial Threats to Health (1992)
  • National Intelligence Estimate, The Global Infectious Disease Threat and Its Implications ...

This failing was not for any lack of warning of the dangers of pandemics. Indeed, many had sounded the alarm over the years. For nearly three decades, countless epidemiologists, public health specialists, intelligence community professionals, national security officials, and think tank experts have underscored the inevitability of a global pandemic of an emerging infectious disease. Starting with the Bill Clinton administration, successive administrations, including the current one, have included pandemic preparedness and response in their national security strategies. The U.S. government, foreign counterparts, and international agencies commissioned multiple scenarios and tabletop exercises that anticipated with uncanny accuracy the trajectory that a major outbreak could take, the complex national and global challenges it would create, and the glaring gaps and limitations in national and international capacity it would reveal.

The global health security community was almost uniformly in agreement that the most significant natural threat to population health and global security would be a respiratory virus—either a novel strain of influenza or a coronavirus that jumped from animals to humans. 4 Yet, for all this foresight and planning, national and international institutions alike have failed to rise to the occasion.

  • National Intelligence Estimate, The Global Infectious Disease Threat and Its Implications for the United States (2000)
  • Launch of the U.S. Global Health Security Initiative (2001)
  • Institute of Medicine, Microbial Threats to Health: Emergence, Detection, and Response (2003)
  • Revision of the International Health Regulations (2005)
  • World Health Organization, Global Influenza Preparedness Plan (2005)
  • Homeland Security Council, National Strategy for Pandemic Influenza (2005)
  • U.S. Department of Health and Human Services, National Health Security Strategy of the United States of America (2009)
  • U.S. Director of National Intelligence, Worldwide Threat Assessments (2009–2019)
  • World Health Organization, Report of Review Committee on the Functioning of the International Health Regulations (2005) in Relation to Pandemic (H1N1) 2009 (2011)
  • Pandemic and All-Hazards Preparedness Reauthorization Act of 2013
  • Launch of the Global Health Security Agenda (2014)
  • Blue Ribbon Study Panel on Biodefense (now Bipartisan Commission on Biodefense) (2015)
  • National Security Strategy (2017)
  • National Biodefense Strategy (2018)
  • Crimson Contagion Simulation (2019)
  • Global Preparedness Monitoring Board, A Work at Risk: Annual Report on Global Preparedness for Health Emergencies (2019)
  • CSIS Commission, Ending the Cycle of Crisis and Complacency in U.S. Global Health Security (2019)
  • U.S. National Health Security Strategy, 2019–2022 (2019)
  • Global Health Security Index (2019)

Further Reading

Health-Systems Strengthening in the Age of COVID-19

By Angela E. Micah , Katherine Leach-Kemon , Joseph L Dieleman August 25, 2020

What Is the World Doing to Create a COVID-19 Vaccine?

By Claire Felter Aug 26, 2020

What Does the World Health Organization Do?

By CFR.org Editors Jun 1, 2020

EDITORIAL article

Editorial: coronavirus disease (covid-19): the impact and role of mass media during the pandemic.

\nPatrícia Arriaga

  • 1 Department of Social and Organizational Psychology, Iscte-University Institute of Lisbon, CIS-IUL, Lisbon, Portugal
  • 2 Department of Psychology and Social Work, Mid Sweden University, Östersund, Sweden
  • 3 Department of Psychiatry and Psychotherapy, Medical School and University Hospital, Eberhard Karls University of Tübingen, Tübingen, Germany

Editorial on the Research Topic Coronavirus Disease (COVID-19): The Impact and Role of Mass Media During the Pandemic

The outbreak of the coronavirus disease 2019 (COVID-19) has created a global health crisis that had a deep impact on the way we perceive our world and our everyday lives. Not only has the rate of contagion and patterns of transmission threatened our sense of agency, but the safety measures to contain the spread of the virus also required social and physical distancing, preventing us from finding solace in the company of others. Within this context, we launched our Research Topic on March 27th, 2020, and invited researchers to address the Impact and Role of Mass Media During the Pandemic on our lives at individual and social levels.

Despite all the hardships, disruption, and uncertainty brought by the pandemic, we received diverse and insightful manuscript proposals. Frontiers in Psychology published 15 articles, involving 61 authors from 8 countries, which were included in distinct specialized sections, including Health Psychology, Personality and Social Psychology, Emotion Science, and Organizational Psychology. Despite the diversity of this collective endeavor, the contributions fall into four areas of research: (1) the use of media in public health communication; (2) the diffusion of false information; (3) the compliance with the health recommendations; and (4) how media use relates to mental health and well-being.

A first line of research includes contributions examining the use of media in public health communication. Drawing on media messages used in previous health crises, such as Ebola and Zika, Hauer and Sood describe how health organizations use media. They offer a set of recommendations for COVID-19 related media messages, including the importance of message framing, interactive public forums with up-to-date information, and an honest communication about what is known and unknown about the pandemic and the virus. Following a content analysis approach, Parvin et al. studied the representations of COVID-19 in the opinion section of five Asian e-newspapers. The authors identified eight main issues (health and drugs, preparedness and awareness, social welfare and humanity, governance and institutions, the environment and wildlife, politics, innovation and technology, and the economy) and examined how e-newspapers from these countries attributed different weights to these issues and how this relates to the countries' cultural specificity. Raccanello et al. show how the internet can be a platform to disseminate a public campaign devised to inform adults about coping strategies that could help children and teenagers deal with the challenges of the pandemic. The authors examined the dissemination of the program through the analysis of website traffic, showing that in the 40 days following publication, the website reached 6,090 visits.

A second related line of research that drew the concern of researchers was the diffusion of false information about COVID-19 through the media. Lobato et al. examined the role of distinct individual differences (political orientation, social dominance orientation, traditionalism, conspiracy ideation, attitudes about science) on the willingness to share misinformation about COVID-19 over social media. The misinformation topics varied between the severity and spread of COVID-19, treatment and prevention, conspiracy theories, and miscellaneous unverifiable claims. Their results from 296 adult participants (Mage = 36.23; 117 women) suggest two different profiles. One indicating that those reporting more liberal positions and lower social dominance were less willing to share conspiracy misinformation. The other profile indicated that participants scoring high on social dominance and low in traditionalism were more willing to share both conspiracy and other miscellaneous claims, but less willing to share misinformation about the severity and spread of COVID-19. Their findings can have relevant contributions for the identification of specific individual profiles related to the widespread of distinct types of misinformation. Dhanani and Franz examined a sample of 1,141 adults (Mage = 44.66; 46.9% female, 74.7% White ethnic identity) living in the United States in March 2020. The authors examined how media consumption and information source were related to knowledge about COVID-19, the endorsement of misinformation about COVID-19, and prejudice toward Asian Americans. Higher levels of trust in informational sources such as public health organizations (e.g., Center for Disease Control) was associated with greater knowledge, lower endorsement of misinformation, and less prejudice toward Asian Americans. Media source was associated with distinct levels of knowledge, willingness to endorsement misinformation and prejudice toward American Asians, with social media use (e.g., Twitter, Facebook) being related with a lower knowledge about COVID-19, higher endorsement of misinformation, and stronger prejudice toward Asian Americans.

A third line of research addressed the factors that could contribute to compliance with the health recommendations to avoid the spread of the disease. Vai et al. studied early pre-lockdown risk perceptions about COVID-19 and the trust in media sources among 2,223 Italians (Mage = 36.4, 69.2% female). They found that the perceived usefulness of the containment measures (e.g., social distancing) was related to threat perception and efficacy beliefs. Lower threat perception was associated with less perception of utility of the containment measures. Although most participants considered themselves and others capable of taking preventive measures, they saw the measures as generally ineffective. Participants acknowledged using the internet as their main source of information and considered health organizations' websites as the most trustworthy source. Albeit frequently used, social media was in general considered an unreliable source of information. Tomczyk et al. studied knowledge about preventive behaviors, risk perception, stigmatizing attitudes (support for discrimination and blame), and sociodemographic data (e.g., age, gender, country of origin, education level, region, persons per household) as predictors of compliance with the behavioral recommendations among 157 Germans, (age range: 18–77 years, 80% female). Low compliance was associated with male gender, younger age, and lower public stigma. Regarding stigmatizing attitudes, the authors only found a relation between support for discrimination (i.e., support for compulsory measures) and higher intention to comply with recommendations. Mahmood et al. studied the relation between social media use, risk perception, preventive behaviors, and self-efficacy in a sample of 310 Pakistani adults (54.2% female). The authors found social media use to be positively related to self-efficacy and perceived threat, which were both positively related to preventive behaviors (e.g., hand hygiene, social distancing). Information credibility was also related to compliance with health recommendations. Lep et al. examined the relationship between information source perceived credibility and trust, and participants' levels of self-protective behavior among 1,718 Slovenians (age range: 18–81 years, 81.7% female). The authors found that scientists, general practitioners (family doctors), and the National Institute of Public Health were perceived as the more credible source of information, while social media and government officials received the lowest ratings. Perceived information credibility was found to be associated with lower levels of negative emotional responses (e.g., nervousness, helplessness) and a higher level of observance of self-protective measures (e.g., hand washing). Siebenhaar et al. also studied the link between compliance, distress by information, and information avoidance. They examined the online survey responses of 1,059 adults living in Germany (Mage = 39.53, 79.4% female). Their results suggested that distress by information could lead to higher compliance with preventive measures. Distress by information was also associated with higher information avoidance, which in turn is related to less compliance. Gantiva et al. studied the effectiveness of different messages regarding the intentions toward self-care behaviors, perceived efficacy to motivate self-care behaviors in others, perceived risk, and perceived message strength, in a sample of 319 Colombians (age range: 18–60 years, 69.9% female). Their experiment included the manipulation of message framing (gain vs. loss) and message content (economy vs. health). Participants judged gain-frame health related messages to be stronger and more effective in changing self-behavior, whereas loss-framed health messages resulted in increased perceived risk. Rahn et al. offer a comparative view of compliance and risk perception, examining three hazard types: COVID-19 pandemic, violent acts, and severe weather. With a sample of 403 Germans (age range: 18–89 years, 72% female), they studied how age, gender, previous hazard experience and different components of risk appraisal (perceived severity, anticipated negative emotions, anticipatory worry, and risk perception) were related to the intention to comply with behavioral recommendations. They found that higher age predicted compliance with health recommendations to prevent COVID-19, anticipatory worry predicted compliance with warning messages regarding violent acts, and women complied more often with severe weather recommendations than men.

A fourth line of research examined media use, mental health and well-being during the COVID-19 pandemic. Gabbiadini et al. addressed the use of digital technology (e.g., voice/video calls, online games, watching movies in party mode) to stay connected with others during lockdown. Participants, 465 Italians (age range: 18–73 years, 348 female), reported more perceived social support associated with the use of these digital technologies, which in turn was associated with fewer feelings of loneliness, boredom, anger, and higher sense of belongingness. Muñiz-Velázquez et al. compared the media habits of 249 Spanish adults (Mage = 42.06, 53.8% female) before and during confinement. They compared the type of media consumed (e.g., watching TV series, listening to radio, watching news) and found the increased consumption of TV and social networking sites during confinement to be negatively associated with reported level of happiness. People who reported higher levels of well-being also reported watching less TV and less use of social networking sites. Majeed et al. , on the other hand, examined the relation between problematic social media use, fear of COVID-19, depression, and mindfulness. Their study, involving 267 Pakistani adults (90 female), suggested trait mindfulness had a buffer effect, reducing the impact of problematic media use and fear of COVID-19 on depression.

Taken together, these findings highlight how using different frames for mass media gives a more expansive view of its positive and negative roles, but also showcase the major concerns in the context of a pandemic crisis. As limitations we highlight the use of cross-sectional designs in most studies, not allowing to establish true inferences of causal relationships. The outcome of some studies may also be limited by the unbalanced number of female and male participants, by the non-probability sampling method used, and by the restricted time frame in which the research occurred. Nevertheless, we are confident that all the selected studies in our Research Topic bring important and enduring contributions to the understanding of how media, individual differences, and social factors intertwine to shape our lives, which can also be useful to guide public policies during these challenging times.

Author Contributions

PA: conceptualization, writing the original draft, funding acquisition, writing—review, and editing. FE: conceptualization, writing—review, and editing. MP: writing—review and editing. NP: conceptualization, writing the original draft, writing—review, and editing. All authors approved the submitted version.

PA and NP received partial support to work on this Research Topic through Fundação para a Ciência e Tecnologia (FCT) with reference to the project PTDC/CCI-INF/29234/2017. MP contribution was supported by the German Research Foundation (DFG, PA847/22-1 and PA847/25-1). The authors are independent of the funders.

Conflict of Interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's Note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Acknowledgments

We would like to express our gratitude to all the authors who proposed their work, all the researchers who reviewed the submissions to this Research Topic, and to Rob Richards for proofreading the Editorial manuscript.

Keywords: COVID-19, coronavirus disease, mass media, health communication, prevention, intervention, social behavioral changes

Citation: Arriaga P, Esteves F, Pavlova MA and Piçarra N (2021) Editorial: Coronavirus Disease (COVID-19): The Impact and Role of Mass Media During the Pandemic. Front. Psychol. 12:729238. doi: 10.3389/fpsyg.2021.729238

Received: 22 June 2021; Accepted: 30 July 2021; Published: 23 August 2021.

Edited and reviewed by: Eduard Brandstätter , Johannes Kepler University of Linz, Austria

Copyright © 2021 Arriaga, Esteves, Pavlova and Piçarra. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) . The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

*Correspondence: Patrícia Arriaga, patricia.arriaga@iscte-iul.pt

Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Writing about COVID-19 in a college admission essay

by: Venkates Swaminathan | Updated: September 14, 2020

Print article

Writing about COVID-19 in your college admission essay

For students applying to college using the CommonApp, there are several different places where students and counselors can address the pandemic’s impact. The different sections have differing goals. You must understand how to use each section for its appropriate use.

The CommonApp COVID-19 question

First, the CommonApp this year has an additional question specifically about COVID-19 :

Community disruptions such as COVID-19 and natural disasters can have deep and long-lasting impacts. If you need it, this space is yours to describe those impacts. Colleges care about the effects on your health and well-being, safety, family circumstances, future plans, and education, including access to reliable technology and quiet study spaces. Please use this space to describe how these events have impacted you.

This question seeks to understand the adversity that students may have had to face due to the pandemic, the move to online education, or the shelter-in-place rules. You don’t have to answer this question if the impact on you wasn’t particularly severe. Some examples of things students should discuss include:

  • The student or a family member had COVID-19 or suffered other illnesses due to confinement during the pandemic.
  • The candidate had to deal with personal or family issues, such as abusive living situations or other safety concerns
  • The student suffered from a lack of internet access and other online learning challenges.
  • Students who dealt with problems registering for or taking standardized tests and AP exams.

Jeff Schiffman of the Tulane University admissions office has a blog about this section. He recommends students ask themselves several questions as they go about answering this section:

  • Are my experiences different from others’?
  • Are there noticeable changes on my transcript?
  • Am I aware of my privilege?
  • Am I specific? Am I explaining rather than complaining?
  • Is this information being included elsewhere on my application?

If you do answer this section, be brief and to-the-point.

Counselor recommendations and school profiles

Second, counselors will, in their counselor forms and school profiles on the CommonApp, address how the school handled the pandemic and how it might have affected students, specifically as it relates to:

  • Grading scales and policies
  • Graduation requirements
  • Instructional methods
  • Schedules and course offerings
  • Testing requirements
  • Your academic calendar
  • Other extenuating circumstances

Students don’t have to mention these matters in their application unless something unusual happened.

Writing about COVID-19 in your main essay

Write about your experiences during the pandemic in your main college essay if your experience is personal, relevant, and the most important thing to discuss in your college admission essay. That you had to stay home and study online isn’t sufficient, as millions of other students faced the same situation. But sometimes, it can be appropriate and helpful to write about something related to the pandemic in your essay. For example:

  • One student developed a website for a local comic book store. The store might not have survived without the ability for people to order comic books online. The student had a long-standing relationship with the store, and it was an institution that created a community for students who otherwise felt left out.
  • One student started a YouTube channel to help other students with academic subjects he was very familiar with and began tutoring others.
  • Some students used their extra time that was the result of the stay-at-home orders to take online courses pursuing topics they are genuinely interested in or developing new interests, like a foreign language or music.

Experiences like this can be good topics for the CommonApp essay as long as they reflect something genuinely important about the student. For many students whose lives have been shaped by this pandemic, it can be a critical part of their college application.

Want more? Read 6 ways to improve a college essay , What the &%$! should I write about in my college essay , and Just how important is a college admissions essay? .

Great!Schools Logo

Homes Nearby

Homes for rent and sale near schools

Why the worry about Critical Race Theory in schools?

How our schools are (and aren't) addressing race

Homework-in-America

The truth about homework in America

College essay

What should I write my college essay about?

What the #%@!& should I write about in my college essay?

GreatSchools Logo

Yes! Sign me up for updates relevant to my child's grade.

Please enter a valid email address

Thank you for signing up!

Server Issue: Please try again later. Sorry for the inconvenience

  • Research article
  • Open access
  • Published: 04 June 2021

Coronavirus disease (COVID-19) pandemic: an overview of systematic reviews

  • Israel Júnior Borges do Nascimento 1 , 2 ,
  • Dónal P. O’Mathúna 3 , 4 ,
  • Thilo Caspar von Groote 5 ,
  • Hebatullah Mohamed Abdulazeem 6 ,
  • Ishanka Weerasekara 7 , 8 ,
  • Ana Marusic 9 ,
  • Livia Puljak   ORCID: orcid.org/0000-0002-8467-6061 10 ,
  • Vinicius Tassoni Civile 11 ,
  • Irena Zakarija-Grkovic 9 ,
  • Tina Poklepovic Pericic 9 ,
  • Alvaro Nagib Atallah 11 ,
  • Santino Filoso 12 ,
  • Nicola Luigi Bragazzi 13 &
  • Milena Soriano Marcolino 1

On behalf of the International Network of Coronavirus Disease 2019 (InterNetCOVID-19)

BMC Infectious Diseases volume  21 , Article number:  525 ( 2021 ) Cite this article

17k Accesses

35 Citations

14 Altmetric

Metrics details

Navigating the rapidly growing body of scientific literature on the SARS-CoV-2 pandemic is challenging, and ongoing critical appraisal of this output is essential. We aimed to summarize and critically appraise systematic reviews of coronavirus disease (COVID-19) in humans that were available at the beginning of the pandemic.

Nine databases (Medline, EMBASE, Cochrane Library, CINAHL, Web of Sciences, PDQ-Evidence, WHO’s Global Research, LILACS, and Epistemonikos) were searched from December 1, 2019, to March 24, 2020. Systematic reviews analyzing primary studies of COVID-19 were included. Two authors independently undertook screening, selection, extraction (data on clinical symptoms, prevalence, pharmacological and non-pharmacological interventions, diagnostic test assessment, laboratory, and radiological findings), and quality assessment (AMSTAR 2). A meta-analysis was performed of the prevalence of clinical outcomes.

Eighteen systematic reviews were included; one was empty (did not identify any relevant study). Using AMSTAR 2, confidence in the results of all 18 reviews was rated as “critically low”. Identified symptoms of COVID-19 were (range values of point estimates): fever (82–95%), cough with or without sputum (58–72%), dyspnea (26–59%), myalgia or muscle fatigue (29–51%), sore throat (10–13%), headache (8–12%) and gastrointestinal complaints (5–9%). Severe symptoms were more common in men. Elevated C-reactive protein and lactate dehydrogenase, and slightly elevated aspartate and alanine aminotransferase, were commonly described. Thrombocytopenia and elevated levels of procalcitonin and cardiac troponin I were associated with severe disease. A frequent finding on chest imaging was uni- or bilateral multilobar ground-glass opacity. A single review investigated the impact of medication (chloroquine) but found no verifiable clinical data. All-cause mortality ranged from 0.3 to 13.9%.

Conclusions

In this overview of systematic reviews, we analyzed evidence from the first 18 systematic reviews that were published after the emergence of COVID-19. However, confidence in the results of all reviews was “critically low”. Thus, systematic reviews that were published early on in the pandemic were of questionable usefulness. Even during public health emergencies, studies and systematic reviews should adhere to established methodological standards.

Peer Review reports

The spread of the “Severe Acute Respiratory Coronavirus 2” (SARS-CoV-2), the causal agent of COVID-19, was characterized as a pandemic by the World Health Organization (WHO) in March 2020 and has triggered an international public health emergency [ 1 ]. The numbers of confirmed cases and deaths due to COVID-19 are rapidly escalating, counting in millions [ 2 ], causing massive economic strain, and escalating healthcare and public health expenses [ 3 , 4 ].

The research community has responded by publishing an impressive number of scientific reports related to COVID-19. The world was alerted to the new disease at the beginning of 2020 [ 1 ], and by mid-March 2020, more than 2000 articles had been published on COVID-19 in scholarly journals, with 25% of them containing original data [ 5 ]. The living map of COVID-19 evidence, curated by the Evidence for Policy and Practice Information and Co-ordinating Centre (EPPI-Centre), contained more than 40,000 records by February 2021 [ 6 ]. More than 100,000 records on PubMed were labeled as “SARS-CoV-2 literature, sequence, and clinical content” by February 2021 [ 7 ].

Due to publication speed, the research community has voiced concerns regarding the quality and reproducibility of evidence produced during the COVID-19 pandemic, warning of the potential damaging approach of “publish first, retract later” [ 8 ]. It appears that these concerns are not unfounded, as it has been reported that COVID-19 articles were overrepresented in the pool of retracted articles in 2020 [ 9 ]. These concerns about inadequate evidence are of major importance because they can lead to poor clinical practice and inappropriate policies [ 10 ].

Systematic reviews are a cornerstone of today’s evidence-informed decision-making. By synthesizing all relevant evidence regarding a particular topic, systematic reviews reflect the current scientific knowledge. Systematic reviews are considered to be at the highest level in the hierarchy of evidence and should be used to make informed decisions. However, with high numbers of systematic reviews of different scope and methodological quality being published, overviews of multiple systematic reviews that assess their methodological quality are essential [ 11 , 12 , 13 ]. An overview of systematic reviews helps identify and organize the literature and highlights areas of priority in decision-making.

In this overview of systematic reviews, we aimed to summarize and critically appraise systematic reviews of coronavirus disease (COVID-19) in humans that were available at the beginning of the pandemic.

Methodology

Research question.

This overview’s primary objective was to summarize and critically appraise systematic reviews that assessed any type of primary clinical data from patients infected with SARS-CoV-2. Our research question was purposefully broad because we wanted to analyze as many systematic reviews as possible that were available early following the COVID-19 outbreak.

Study design

We conducted an overview of systematic reviews. The idea for this overview originated in a protocol for a systematic review submitted to PROSPERO (CRD42020170623), which indicated a plan to conduct an overview.

Overviews of systematic reviews use explicit and systematic methods for searching and identifying multiple systematic reviews addressing related research questions in the same field to extract and analyze evidence across important outcomes. Overviews of systematic reviews are in principle similar to systematic reviews of interventions, but the unit of analysis is a systematic review [ 14 , 15 , 16 ].

We used the overview methodology instead of other evidence synthesis methods to allow us to collate and appraise multiple systematic reviews on this topic, and to extract and analyze their results across relevant topics [ 17 ]. The overview and meta-analysis of systematic reviews allowed us to investigate the methodological quality of included studies, summarize results, and identify specific areas of available or limited evidence, thereby strengthening the current understanding of this novel disease and guiding future research [ 13 ].

A reporting guideline for overviews of reviews is currently under development, i.e., Preferred Reporting Items for Overviews of Reviews (PRIOR) [ 18 ]. As the PRIOR checklist is still not published, this study was reported following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2009 statement [ 19 ]. The methodology used in this review was adapted from the Cochrane Handbook for Systematic Reviews of Interventions and also followed established methodological considerations for analyzing existing systematic reviews [ 14 ].

Approval of a research ethics committee was not necessary as the study analyzed only publicly available articles.

Eligibility criteria

Systematic reviews were included if they analyzed primary data from patients infected with SARS-CoV-2 as confirmed by RT-PCR or another pre-specified diagnostic technique. Eligible reviews covered all topics related to COVID-19 including, but not limited to, those that reported clinical symptoms, diagnostic methods, therapeutic interventions, laboratory findings, or radiological results. Both full manuscripts and abbreviated versions, such as letters, were eligible.

No restrictions were imposed on the design of the primary studies included within the systematic reviews, the last search date, whether the review included meta-analyses or language. Reviews related to SARS-CoV-2 and other coronaviruses were eligible, but from those reviews, we analyzed only data related to SARS-CoV-2.

No consensus definition exists for a systematic review [ 20 ], and debates continue about the defining characteristics of a systematic review [ 21 ]. Cochrane’s guidance for overviews of reviews recommends setting pre-established criteria for making decisions around inclusion [ 14 ]. That is supported by a recent scoping review about guidance for overviews of systematic reviews [ 22 ].

Thus, for this study, we defined a systematic review as a research report which searched for primary research studies on a specific topic using an explicit search strategy, had a detailed description of the methods with explicit inclusion criteria provided, and provided a summary of the included studies either in narrative or quantitative format (such as a meta-analysis). Cochrane and non-Cochrane systematic reviews were considered eligible for inclusion, with or without meta-analysis, and regardless of the study design, language restriction and methodology of the included primary studies. To be eligible for inclusion, reviews had to be clearly analyzing data related to SARS-CoV-2 (associated or not with other viruses). We excluded narrative reviews without those characteristics as these are less likely to be replicable and are more prone to bias.

Scoping reviews and rapid reviews were eligible for inclusion in this overview if they met our pre-defined inclusion criteria noted above. We included reviews that addressed SARS-CoV-2 and other coronaviruses if they reported separate data regarding SARS-CoV-2.

Information sources

Nine databases were searched for eligible records published between December 1, 2019, and March 24, 2020: Cochrane Database of Systematic Reviews via Cochrane Library, PubMed, EMBASE, CINAHL (Cumulative Index to Nursing and Allied Health Literature), Web of Sciences, LILACS (Latin American and Caribbean Health Sciences Literature), PDQ-Evidence, WHO’s Global Research on Coronavirus Disease (COVID-19), and Epistemonikos.

The comprehensive search strategy for each database is provided in Additional file 1 and was designed and conducted in collaboration with an information specialist. All retrieved records were primarily processed in EndNote, where duplicates were removed, and records were then imported into the Covidence platform [ 23 ]. In addition to database searches, we screened reference lists of reviews included after screening records retrieved via databases.

Study selection

All searches, screening of titles and abstracts, and record selection, were performed independently by two investigators using the Covidence platform [ 23 ]. Articles deemed potentially eligible were retrieved for full-text screening carried out independently by two investigators. Discrepancies at all stages were resolved by consensus. During the screening, records published in languages other than English were translated by a native/fluent speaker.

Data collection process

We custom designed a data extraction table for this study, which was piloted by two authors independently. Data extraction was performed independently by two authors. Conflicts were resolved by consensus or by consulting a third researcher.

We extracted the following data: article identification data (authors’ name and journal of publication), search period, number of databases searched, population or settings considered, main results and outcomes observed, and number of participants. From Web of Science (Clarivate Analytics, Philadelphia, PA, USA), we extracted journal rank (quartile) and Journal Impact Factor (JIF).

We categorized the following as primary outcomes: all-cause mortality, need for and length of mechanical ventilation, length of hospitalization (in days), admission to intensive care unit (yes/no), and length of stay in the intensive care unit.

The following outcomes were categorized as exploratory: diagnostic methods used for detection of the virus, male to female ratio, clinical symptoms, pharmacological and non-pharmacological interventions, laboratory findings (full blood count, liver enzymes, C-reactive protein, d-dimer, albumin, lipid profile, serum electrolytes, blood vitamin levels, glucose levels, and any other important biomarkers), and radiological findings (using radiography, computed tomography, magnetic resonance imaging or ultrasound).

We also collected data on reporting guidelines and requirements for the publication of systematic reviews and meta-analyses from journal websites where included reviews were published.

Quality assessment in individual reviews

Two researchers independently assessed the reviews’ quality using the “A MeaSurement Tool to Assess Systematic Reviews 2 (AMSTAR 2)”. We acknowledge that the AMSTAR 2 was created as “a critical appraisal tool for systematic reviews that include randomized or non-randomized studies of healthcare interventions, or both” [ 24 ]. However, since AMSTAR 2 was designed for systematic reviews of intervention trials, and we included additional types of systematic reviews, we adjusted some AMSTAR 2 ratings and reported these in Additional file 2 .

Adherence to each item was rated as follows: yes, partial yes, no, or not applicable (such as when a meta-analysis was not conducted). The overall confidence in the results of the review is rated as “critically low”, “low”, “moderate” or “high”, according to the AMSTAR 2 guidance based on seven critical domains, which are items 2, 4, 7, 9, 11, 13, 15 as defined by AMSTAR 2 authors [ 24 ]. We reported our adherence ratings for transparency of our decision with accompanying explanations, for each item, in each included review.

One of the included systematic reviews was conducted by some members of this author team [ 25 ]. This review was initially assessed independently by two authors who were not co-authors of that review to prevent the risk of bias in assessing this study.

Synthesis of results

For data synthesis, we prepared a table summarizing each systematic review. Graphs illustrating the mortality rate and clinical symptoms were created. We then prepared a narrative summary of the methods, findings, study strengths, and limitations.

For analysis of the prevalence of clinical outcomes, we extracted data on the number of events and the total number of patients to perform proportional meta-analysis using RStudio© software, with the “meta” package (version 4.9–6), using the “metaprop” function for reviews that did not perform a meta-analysis, excluding case studies because of the absence of variance. For reviews that did not perform a meta-analysis, we presented pooled results of proportions with their respective confidence intervals (95%) by the inverse variance method with a random-effects model, using the DerSimonian-Laird estimator for τ 2 . We adjusted data using Freeman-Tukey double arcosen transformation. Confidence intervals were calculated using the Clopper-Pearson method for individual studies. We created forest plots using the RStudio© software, with the “metafor” package (version 2.1–0) and “forest” function.

Managing overlapping systematic reviews

Some of the included systematic reviews that address the same or similar research questions may include the same primary studies in overviews. Including such overlapping reviews may introduce bias when outcome data from the same primary study are included in the analyses of an overview multiple times. Thus, in summaries of evidence, multiple-counting of the same outcome data will give data from some primary studies too much influence [ 14 ]. In this overview, we did not exclude overlapping systematic reviews because, according to Cochrane’s guidance, it may be appropriate to include all relevant reviews’ results if the purpose of the overview is to present and describe the current body of evidence on a topic [ 14 ]. To avoid any bias in summary estimates associated with overlapping reviews, we generated forest plots showing data from individual systematic reviews, but the results were not pooled because some primary studies were included in multiple reviews.

Our search retrieved 1063 publications, of which 175 were duplicates. Most publications were excluded after the title and abstract analysis ( n = 860). Among the 28 studies selected for full-text screening, 10 were excluded for the reasons described in Additional file 3 , and 18 were included in the final analysis (Fig. 1 ) [ 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 ]. Reference list screening did not retrieve any additional systematic reviews.

figure 1

PRISMA flow diagram

Characteristics of included reviews

Summary features of 18 systematic reviews are presented in Table 1 . They were published in 14 different journals. Only four of these journals had specific requirements for systematic reviews (with or without meta-analysis): European Journal of Internal Medicine, Journal of Clinical Medicine, Ultrasound in Obstetrics and Gynecology, and Clinical Research in Cardiology . Two journals reported that they published only invited reviews ( Journal of Medical Virology and Clinica Chimica Acta ). Three systematic reviews in our study were published as letters; one was labeled as a scoping review and another as a rapid review (Table 2 ).

All reviews were published in English, in first quartile (Q1) journals, with JIF ranging from 1.692 to 6.062. One review was empty, meaning that its search did not identify any relevant studies; i.e., no primary studies were included [ 36 ]. The remaining 17 reviews included 269 unique studies; the majority ( N = 211; 78%) were included in only a single review included in our study (range: 1 to 12). Primary studies included in the reviews were published between December 2019 and March 18, 2020, and comprised case reports, case series, cohorts, and other observational studies. We found only one review that included randomized clinical trials [ 38 ]. In the included reviews, systematic literature searches were performed from 2019 (entire year) up to March 9, 2020. Ten systematic reviews included meta-analyses. The list of primary studies found in the included systematic reviews is shown in Additional file 4 , as well as the number of reviews in which each primary study was included.

Population and study designs

Most of the reviews analyzed data from patients with COVID-19 who developed pneumonia, acute respiratory distress syndrome (ARDS), or any other correlated complication. One review aimed to evaluate the effectiveness of using surgical masks on preventing transmission of the virus [ 36 ], one review was focused on pediatric patients [ 34 ], and one review investigated COVID-19 in pregnant women [ 37 ]. Most reviews assessed clinical symptoms, laboratory findings, or radiological results.

Systematic review findings

The summary of findings from individual reviews is shown in Table 2 . Overall, all-cause mortality ranged from 0.3 to 13.9% (Fig. 2 ).

figure 2

A meta-analysis of the prevalence of mortality

Clinical symptoms

Seven reviews described the main clinical manifestations of COVID-19 [ 26 , 28 , 29 , 34 , 35 , 39 , 41 ]. Three of them provided only a narrative discussion of symptoms [ 26 , 34 , 35 ]. In the reviews that performed a statistical analysis of the incidence of different clinical symptoms, symptoms in patients with COVID-19 were (range values of point estimates): fever (82–95%), cough with or without sputum (58–72%), dyspnea (26–59%), myalgia or muscle fatigue (29–51%), sore throat (10–13%), headache (8–12%), gastrointestinal disorders, such as diarrhea, nausea or vomiting (5.0–9.0%), and others (including, in one study only: dizziness 12.1%) (Figs. 3 , 4 , 5 , 6 , 7 , 8 and 9 ). Three reviews assessed cough with and without sputum together; only one review assessed sputum production itself (28.5%).

figure 3

A meta-analysis of the prevalence of fever

figure 4

A meta-analysis of the prevalence of cough

figure 5

A meta-analysis of the prevalence of dyspnea

figure 6

A meta-analysis of the prevalence of fatigue or myalgia

figure 7

A meta-analysis of the prevalence of headache

figure 8

A meta-analysis of the prevalence of gastrointestinal disorders

figure 9

A meta-analysis of the prevalence of sore throat

Diagnostic aspects

Three reviews described methodologies, protocols, and tools used for establishing the diagnosis of COVID-19 [ 26 , 34 , 38 ]. The use of respiratory swabs (nasal or pharyngeal) or blood specimens to assess the presence of SARS-CoV-2 nucleic acid using RT-PCR assays was the most commonly used diagnostic method mentioned in the included studies. These diagnostic tests have been widely used, but their precise sensitivity and specificity remain unknown. One review included a Chinese study with clinical diagnosis with no confirmation of SARS-CoV-2 infection (patients were diagnosed with COVID-19 if they presented with at least two symptoms suggestive of COVID-19, together with laboratory and chest radiography abnormalities) [ 34 ].

Therapeutic possibilities

Pharmacological and non-pharmacological interventions (supportive therapies) used in treating patients with COVID-19 were reported in five reviews [ 25 , 27 , 34 , 35 , 38 ]. Antivirals used empirically for COVID-19 treatment were reported in seven reviews [ 25 , 27 , 34 , 35 , 37 , 38 , 41 ]; most commonly used were protease inhibitors (lopinavir, ritonavir, darunavir), nucleoside reverse transcriptase inhibitor (tenofovir), nucleotide analogs (remdesivir, galidesivir, ganciclovir), and neuraminidase inhibitors (oseltamivir). Umifenovir, a membrane fusion inhibitor, was investigated in two studies [ 25 , 35 ]. Possible supportive interventions analyzed were different types of oxygen supplementation and breathing support (invasive or non-invasive ventilation) [ 25 ]. The use of antibiotics, both empirically and to treat secondary pneumonia, was reported in six studies [ 25 , 26 , 27 , 34 , 35 , 38 ]. One review specifically assessed evidence on the efficacy and safety of the anti-malaria drug chloroquine [ 27 ]. It identified 23 ongoing trials investigating the potential of chloroquine as a therapeutic option for COVID-19, but no verifiable clinical outcomes data. The use of mesenchymal stem cells, antifungals, and glucocorticoids were described in four reviews [ 25 , 34 , 35 , 38 ].

Laboratory and radiological findings

Of the 18 reviews included in this overview, eight analyzed laboratory parameters in patients with COVID-19 [ 25 , 29 , 30 , 32 , 33 , 34 , 35 , 39 ]; elevated C-reactive protein levels, associated with lymphocytopenia, elevated lactate dehydrogenase, as well as slightly elevated aspartate and alanine aminotransferase (AST, ALT) were commonly described in those eight reviews. Lippi et al. assessed cardiac troponin I (cTnI) [ 25 ], procalcitonin [ 32 ], and platelet count [ 33 ] in COVID-19 patients. Elevated levels of procalcitonin [ 32 ] and cTnI [ 30 ] were more likely to be associated with a severe disease course (requiring intensive care unit admission and intubation). Furthermore, thrombocytopenia was frequently observed in patients with complicated COVID-19 infections [ 33 ].

Chest imaging (chest radiography and/or computed tomography) features were assessed in six reviews, all of which described a frequent pattern of local or bilateral multilobar ground-glass opacity [ 25 , 34 , 35 , 39 , 40 , 41 ]. Those six reviews showed that septal thickening, bronchiectasis, pleural and cardiac effusions, halo signs, and pneumothorax were observed in patients suffering from COVID-19.

Quality of evidence in individual systematic reviews

Table 3 shows the detailed results of the quality assessment of 18 systematic reviews, including the assessment of individual items and summary assessment. A detailed explanation for each decision in each review is available in Additional file 5 .

Using AMSTAR 2 criteria, confidence in the results of all 18 reviews was rated as “critically low” (Table 3 ). Common methodological drawbacks were: omission of prospective protocol submission or publication; use of inappropriate search strategy: lack of independent and dual literature screening and data-extraction (or methodology unclear); absence of an explanation for heterogeneity among the studies included; lack of reasons for study exclusion (or rationale unclear).

Risk of bias assessment, based on a reported methodological tool, and quality of evidence appraisal, in line with the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) method, were reported only in one review [ 25 ]. Five reviews presented a table summarizing bias, using various risk of bias tools [ 25 , 29 , 39 , 40 , 41 ]. One review analyzed “study quality” [ 37 ]. One review mentioned the risk of bias assessment in the methodology but did not provide any related analysis [ 28 ].

This overview of systematic reviews analyzed the first 18 systematic reviews published after the onset of the COVID-19 pandemic, up to March 24, 2020, with primary studies involving more than 60,000 patients. Using AMSTAR-2, we judged that our confidence in all those reviews was “critically low”. Ten reviews included meta-analyses. The reviews presented data on clinical manifestations, laboratory and radiological findings, and interventions. We found no systematic reviews on the utility of diagnostic tests.

Symptoms were reported in seven reviews; most of the patients had a fever, cough, dyspnea, myalgia or muscle fatigue, and gastrointestinal disorders such as diarrhea, nausea, or vomiting. Olfactory dysfunction (anosmia or dysosmia) has been described in patients infected with COVID-19 [ 43 ]; however, this was not reported in any of the reviews included in this overview. During the SARS outbreak in 2002, there were reports of impairment of the sense of smell associated with the disease [ 44 , 45 ].

The reported mortality rates ranged from 0.3 to 14% in the included reviews. Mortality estimates are influenced by the transmissibility rate (basic reproduction number), availability of diagnostic tools, notification policies, asymptomatic presentations of the disease, resources for disease prevention and control, and treatment facilities; variability in the mortality rate fits the pattern of emerging infectious diseases [ 46 ]. Furthermore, the reported cases did not consider asymptomatic cases, mild cases where individuals have not sought medical treatment, and the fact that many countries had limited access to diagnostic tests or have implemented testing policies later than the others. Considering the lack of reviews assessing diagnostic testing (sensitivity, specificity, and predictive values of RT-PCT or immunoglobulin tests), and the preponderance of studies that assessed only symptomatic individuals, considerable imprecision around the calculated mortality rates existed in the early stage of the COVID-19 pandemic.

Few reviews included treatment data. Those reviews described studies considered to be at a very low level of evidence: usually small, retrospective studies with very heterogeneous populations. Seven reviews analyzed laboratory parameters; those reviews could have been useful for clinicians who attend patients suspected of COVID-19 in emergency services worldwide, such as assessing which patients need to be reassessed more frequently.

All systematic reviews scored poorly on the AMSTAR 2 critical appraisal tool for systematic reviews. Most of the original studies included in the reviews were case series and case reports, impacting the quality of evidence. Such evidence has major implications for clinical practice and the use of these reviews in evidence-based practice and policy. Clinicians, patients, and policymakers can only have the highest confidence in systematic review findings if high-quality systematic review methodologies are employed. The urgent need for information during a pandemic does not justify poor quality reporting.

We acknowledge that there are numerous challenges associated with analyzing COVID-19 data during a pandemic [ 47 ]. High-quality evidence syntheses are needed for decision-making, but each type of evidence syntheses is associated with its inherent challenges.

The creation of classic systematic reviews requires considerable time and effort; with massive research output, they quickly become outdated, and preparing updated versions also requires considerable time. A recent study showed that updates of non-Cochrane systematic reviews are published a median of 5 years after the publication of the previous version [ 48 ].

Authors may register a review and then abandon it [ 49 ], but the existence of a public record that is not updated may lead other authors to believe that the review is still ongoing. A quarter of Cochrane review protocols remains unpublished as completed systematic reviews 8 years after protocol publication [ 50 ].

Rapid reviews can be used to summarize the evidence, but they involve methodological sacrifices and simplifications to produce information promptly, with inconsistent methodological approaches [ 51 ]. However, rapid reviews are justified in times of public health emergencies, and even Cochrane has resorted to publishing rapid reviews in response to the COVID-19 crisis [ 52 ]. Rapid reviews were eligible for inclusion in this overview, but only one of the 18 reviews included in this study was labeled as a rapid review.

Ideally, COVID-19 evidence would be continually summarized in a series of high-quality living systematic reviews, types of evidence synthesis defined as “ a systematic review which is continually updated, incorporating relevant new evidence as it becomes available ” [ 53 ]. However, conducting living systematic reviews requires considerable resources, calling into question the sustainability of such evidence synthesis over long periods [ 54 ].

Research reports about COVID-19 will contribute to research waste if they are poorly designed, poorly reported, or simply not necessary. In principle, systematic reviews should help reduce research waste as they usually provide recommendations for further research that is needed or may advise that sufficient evidence exists on a particular topic [ 55 ]. However, systematic reviews can also contribute to growing research waste when they are not needed, or poorly conducted and reported. Our present study clearly shows that most of the systematic reviews that were published early on in the COVID-19 pandemic could be categorized as research waste, as our confidence in their results is critically low.

Our study has some limitations. One is that for AMSTAR 2 assessment we relied on information available in publications; we did not attempt to contact study authors for clarifications or additional data. In three reviews, the methodological quality appraisal was challenging because they were published as letters, or labeled as rapid communications. As a result, various details about their review process were not included, leading to AMSTAR 2 questions being answered as “not reported”, resulting in low confidence scores. Full manuscripts might have provided additional information that could have led to higher confidence in the results. In other words, low scores could reflect incomplete reporting, not necessarily low-quality review methods. To make their review available more rapidly and more concisely, the authors may have omitted methodological details. A general issue during a crisis is that speed and completeness must be balanced. However, maintaining high standards requires proper resourcing and commitment to ensure that the users of systematic reviews can have high confidence in the results.

Furthermore, we used adjusted AMSTAR 2 scoring, as the tool was designed for critical appraisal of reviews of interventions. Some reviews may have received lower scores than actually warranted in spite of these adjustments.

Another limitation of our study may be the inclusion of multiple overlapping reviews, as some included reviews included the same primary studies. According to the Cochrane Handbook, including overlapping reviews may be appropriate when the review’s aim is “ to present and describe the current body of systematic review evidence on a topic ” [ 12 ], which was our aim. To avoid bias with summarizing evidence from overlapping reviews, we presented the forest plots without summary estimates. The forest plots serve to inform readers about the effect sizes for outcomes that were reported in each review.

Several authors from this study have contributed to one of the reviews identified [ 25 ]. To reduce the risk of any bias, two authors who did not co-author the review in question initially assessed its quality and limitations.

Finally, we note that the systematic reviews included in our overview may have had issues that our analysis did not identify because we did not analyze their primary studies to verify the accuracy of the data and information they presented. We give two examples to substantiate this possibility. Lovato et al. wrote a commentary on the review of Sun et al. [ 41 ], in which they criticized the authors’ conclusion that sore throat is rare in COVID-19 patients [ 56 ]. Lovato et al. highlighted that multiple studies included in Sun et al. did not accurately describe participants’ clinical presentations, warning that only three studies clearly reported data on sore throat [ 56 ].

In another example, Leung [ 57 ] warned about the review of Li, L.Q. et al. [ 29 ]: “ it is possible that this statistic was computed using overlapped samples, therefore some patients were double counted ”. Li et al. responded to Leung that it is uncertain whether the data overlapped, as they used data from published articles and did not have access to the original data; they also reported that they requested original data and that they plan to re-do their analyses once they receive them; they also urged readers to treat the data with caution [ 58 ]. This points to the evolving nature of evidence during a crisis.

Our study’s strength is that this overview adds to the current knowledge by providing a comprehensive summary of all the evidence synthesis about COVID-19 available early after the onset of the pandemic. This overview followed strict methodological criteria, including a comprehensive and sensitive search strategy and a standard tool for methodological appraisal of systematic reviews.

In conclusion, in this overview of systematic reviews, we analyzed evidence from the first 18 systematic reviews that were published after the emergence of COVID-19. However, confidence in the results of all the reviews was “critically low”. Thus, systematic reviews that were published early on in the pandemic could be categorized as research waste. Even during public health emergencies, studies and systematic reviews should adhere to established methodological standards to provide patients, clinicians, and decision-makers trustworthy evidence.

Availability of data and materials

All data collected and analyzed within this study are available from the corresponding author on reasonable request.

World Health Organization. Timeline - COVID-19: Available at: https://www.who.int/news/item/29-06-2020-covidtimeline . Accessed 1 June 2021.

COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU). Available at: https://coronavirus.jhu.edu/map.html . Accessed 1 June 2021.

Anzai A, Kobayashi T, Linton NM, Kinoshita R, Hayashi K, Suzuki A, et al. Assessing the Impact of Reduced Travel on Exportation Dynamics of Novel Coronavirus Infection (COVID-19). J Clin Med. 2020;9(2):601.

Chinazzi M, Davis JT, Ajelli M, Gioannini C, Litvinova M, Merler S, et al. The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak. Science. 2020;368(6489):395–400. https://doi.org/10.1126/science.aba9757 .

Article   CAS   PubMed   PubMed Central   Google Scholar  

Fidahic M, Nujic D, Runjic R, Civljak M, Markotic F, Lovric Makaric Z, et al. Research methodology and characteristics of journal articles with original data, preprint articles and registered clinical trial protocols about COVID-19. BMC Med Res Methodol. 2020;20(1):161. https://doi.org/10.1186/s12874-020-01047-2 .

EPPI Centre . COVID-19: a living systematic map of the evidence. Available at: http://eppi.ioe.ac.uk/cms/Projects/DepartmentofHealthandSocialCare/Publishedreviews/COVID-19Livingsystematicmapoftheevidence/tabid/3765/Default.aspx . Accessed 1 June 2021.

NCBI SARS-CoV-2 Resources. Available at: https://www.ncbi.nlm.nih.gov/sars-cov-2/ . Accessed 1 June 2021.

Gustot T. Quality and reproducibility during the COVID-19 pandemic. JHEP Rep. 2020;2(4):100141. https://doi.org/10.1016/j.jhepr.2020.100141 .

Article   PubMed   PubMed Central   Google Scholar  

Kodvanj, I., et al., Publishing of COVID-19 Preprints in Peer-reviewed Journals, Preprinting Trends, Public Discussion and Quality Issues. Preprint article. bioRxiv 2020.11.23.394577; doi: https://doi.org/10.1101/2020.11.23.394577 .

Dobler CC. Poor quality research and clinical practice during COVID-19. Breathe (Sheff). 2020;16(2):200112. https://doi.org/10.1183/20734735.0112-2020 .

Article   Google Scholar  

Bastian H, Glasziou P, Chalmers I. Seventy-five trials and eleven systematic reviews a day: how will we ever keep up? PLoS Med. 2010;7(9):e1000326. https://doi.org/10.1371/journal.pmed.1000326 .

Lunny C, Brennan SE, McDonald S, McKenzie JE. Toward a comprehensive evidence map of overview of systematic review methods: paper 1-purpose, eligibility, search and data extraction. Syst Rev. 2017;6(1):231. https://doi.org/10.1186/s13643-017-0617-1 .

Pollock M, Fernandes RM, Becker LA, Pieper D, Hartling L. Chapter V: Overviews of Reviews. In: Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA (editors). Cochrane Handbook for Systematic Reviews of Interventions version 6.1 (updated September 2020). Cochrane. 2020. Available from www.training.cochrane.org/handbook .

Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, et al. Cochrane handbook for systematic reviews of interventions version 6.1 (updated September 2020). Cochrane. 2020; Available from www.training.cochrane.org/handbook .

Pollock M, Fernandes RM, Newton AS, Scott SD, Hartling L. The impact of different inclusion decisions on the comprehensiveness and complexity of overviews of reviews of healthcare interventions. Syst Rev. 2019;8(1):18. https://doi.org/10.1186/s13643-018-0914-3 .

Pollock M, Fernandes RM, Newton AS, Scott SD, Hartling L. A decision tool to help researchers make decisions about including systematic reviews in overviews of reviews of healthcare interventions. Syst Rev. 2019;8(1):29. https://doi.org/10.1186/s13643-018-0768-8 .

Hunt H, Pollock A, Campbell P, Estcourt L, Brunton G. An introduction to overviews of reviews: planning a relevant research question and objective for an overview. Syst Rev. 2018;7(1):39. https://doi.org/10.1186/s13643-018-0695-8 .

Pollock M, Fernandes RM, Pieper D, Tricco AC, Gates M, Gates A, et al. Preferred reporting items for overviews of reviews (PRIOR): a protocol for development of a reporting guideline for overviews of reviews of healthcare interventions. Syst Rev. 2019;8(1):335. https://doi.org/10.1186/s13643-019-1252-9 .

Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Open Med. 2009;3(3):e123–30.

Krnic Martinic M, Pieper D, Glatt A, Puljak L. Definition of a systematic review used in overviews of systematic reviews, meta-epidemiological studies and textbooks. BMC Med Res Methodol. 2019;19(1):203. https://doi.org/10.1186/s12874-019-0855-0 .

Puljak L. If there is only one author or only one database was searched, a study should not be called a systematic review. J Clin Epidemiol. 2017;91:4–5. https://doi.org/10.1016/j.jclinepi.2017.08.002 .

Article   PubMed   Google Scholar  

Gates M, Gates A, Guitard S, Pollock M, Hartling L. Guidance for overviews of reviews continues to accumulate, but important challenges remain: a scoping review. Syst Rev. 2020;9(1):254. https://doi.org/10.1186/s13643-020-01509-0 .

Covidence - systematic review software. Available at: https://www.covidence.org/ . Accessed 1 June 2021.

Shea BJ, Reeves BC, Wells G, Thuku M, Hamel C, Moran J, et al. AMSTAR 2: a critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. BMJ. 2017;358:j4008.

Borges do Nascimento IJ, et al. Novel Coronavirus Infection (COVID-19) in Humans: A Scoping Review and Meta-Analysis. J Clin Med. 2020;9(4):941.

Article   PubMed Central   Google Scholar  

Adhikari SP, Meng S, Wu YJ, Mao YP, Ye RX, Wang QZ, et al. Epidemiology, causes, clinical manifestation and diagnosis, prevention and control of coronavirus disease (COVID-19) during the early outbreak period: a scoping review. Infect Dis Poverty. 2020;9(1):29. https://doi.org/10.1186/s40249-020-00646-x .

Cortegiani A, Ingoglia G, Ippolito M, Giarratano A, Einav S. A systematic review on the efficacy and safety of chloroquine for the treatment of COVID-19. J Crit Care. 2020;57:279–83. https://doi.org/10.1016/j.jcrc.2020.03.005 .

Li B, Yang J, Zhao F, Zhi L, Wang X, Liu L, et al. Prevalence and impact of cardiovascular metabolic diseases on COVID-19 in China. Clin Res Cardiol. 2020;109(5):531–8. https://doi.org/10.1007/s00392-020-01626-9 .

Article   CAS   PubMed   Google Scholar  

Li LQ, Huang T, Wang YQ, Wang ZP, Liang Y, Huang TB, et al. COVID-19 patients’ clinical characteristics, discharge rate, and fatality rate of meta-analysis. J Med Virol. 2020;92(6):577–83. https://doi.org/10.1002/jmv.25757 .

Lippi G, Lavie CJ, Sanchis-Gomar F. Cardiac troponin I in patients with coronavirus disease 2019 (COVID-19): evidence from a meta-analysis. Prog Cardiovasc Dis. 2020;63(3):390–1. https://doi.org/10.1016/j.pcad.2020.03.001 .

Lippi G, Henry BM. Active smoking is not associated with severity of coronavirus disease 2019 (COVID-19). Eur J Intern Med. 2020;75:107–8. https://doi.org/10.1016/j.ejim.2020.03.014 .

Lippi G, Plebani M. Procalcitonin in patients with severe coronavirus disease 2019 (COVID-19): a meta-analysis. Clin Chim Acta. 2020;505:190–1. https://doi.org/10.1016/j.cca.2020.03.004 .

Lippi G, Plebani M, Henry BM. Thrombocytopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: a meta-analysis. Clin Chim Acta. 2020;506:145–8. https://doi.org/10.1016/j.cca.2020.03.022 .

Ludvigsson JF. Systematic review of COVID-19 in children shows milder cases and a better prognosis than adults. Acta Paediatr. 2020;109(6):1088–95. https://doi.org/10.1111/apa.15270 .

Lupia T, Scabini S, Mornese Pinna S, di Perri G, de Rosa FG, Corcione S. 2019 novel coronavirus (2019-nCoV) outbreak: a new challenge. J Glob Antimicrob Resist. 2020;21:22–7. https://doi.org/10.1016/j.jgar.2020.02.021 .

Marasinghe, K.M., A systematic review investigating the effectiveness of face mask use in limiting the spread of COVID-19 among medically not diagnosed individuals: shedding light on current recommendations provided to individuals not medically diagnosed with COVID-19. Research Square. Preprint article. doi : https://doi.org/10.21203/rs.3.rs-16701/v1 . 2020 .

Mullins E, Evans D, Viner RM, O’Brien P, Morris E. Coronavirus in pregnancy and delivery: rapid review. Ultrasound Obstet Gynecol. 2020;55(5):586–92. https://doi.org/10.1002/uog.22014 .

Pang J, Wang MX, Ang IYH, Tan SHX, Lewis RF, Chen JIP, et al. Potential Rapid Diagnostics, Vaccine and Therapeutics for 2019 Novel coronavirus (2019-nCoV): a systematic review. J Clin Med. 2020;9(3):623.

Rodriguez-Morales AJ, Cardona-Ospina JA, Gutiérrez-Ocampo E, Villamizar-Peña R, Holguin-Rivera Y, Escalera-Antezana JP, et al. Clinical, laboratory and imaging features of COVID-19: a systematic review and meta-analysis. Travel Med Infect Dis. 2020;34:101623. https://doi.org/10.1016/j.tmaid.2020.101623 .

Salehi S, Abedi A, Balakrishnan S, Gholamrezanezhad A. Coronavirus disease 2019 (COVID-19): a systematic review of imaging findings in 919 patients. AJR Am J Roentgenol. 2020;215(1):87–93. https://doi.org/10.2214/AJR.20.23034 .

Sun P, Qie S, Liu Z, Ren J, Li K, Xi J. Clinical characteristics of hospitalized patients with SARS-CoV-2 infection: a single arm meta-analysis. J Med Virol. 2020;92(6):612–7. https://doi.org/10.1002/jmv.25735 .

Yang J, Zheng Y, Gou X, Pu K, Chen Z, Guo Q, et al. Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: a systematic review and meta-analysis. Int J Infect Dis. 2020;94:91–5. https://doi.org/10.1016/j.ijid.2020.03.017 .

Bassetti M, Vena A, Giacobbe DR. The novel Chinese coronavirus (2019-nCoV) infections: challenges for fighting the storm. Eur J Clin Investig. 2020;50(3):e13209. https://doi.org/10.1111/eci.13209 .

Article   CAS   Google Scholar  

Hwang CS. Olfactory neuropathy in severe acute respiratory syndrome: report of a case. Acta Neurol Taiwanica. 2006;15(1):26–8.

Google Scholar  

Suzuki M, Saito K, Min WP, Vladau C, Toida K, Itoh H, et al. Identification of viruses in patients with postviral olfactory dysfunction. Laryngoscope. 2007;117(2):272–7. https://doi.org/10.1097/01.mlg.0000249922.37381.1e .

Rajgor DD, Lee MH, Archuleta S, Bagdasarian N, Quek SC. The many estimates of the COVID-19 case fatality rate. Lancet Infect Dis. 2020;20(7):776–7. https://doi.org/10.1016/S1473-3099(20)30244-9 .

Wolkewitz M, Puljak L. Methodological challenges of analysing COVID-19 data during the pandemic. BMC Med Res Methodol. 2020;20(1):81. https://doi.org/10.1186/s12874-020-00972-6 .

Rombey T, Lochner V, Puljak L, Könsgen N, Mathes T, Pieper D. Epidemiology and reporting characteristics of non-Cochrane updates of systematic reviews: a cross-sectional study. Res Synth Methods. 2020;11(3):471–83. https://doi.org/10.1002/jrsm.1409 .

Runjic E, Rombey T, Pieper D, Puljak L. Half of systematic reviews about pain registered in PROSPERO were not published and the majority had inaccurate status. J Clin Epidemiol. 2019;116:114–21. https://doi.org/10.1016/j.jclinepi.2019.08.010 .

Runjic E, Behmen D, Pieper D, Mathes T, Tricco AC, Moher D, et al. Following Cochrane review protocols to completion 10 years later: a retrospective cohort study and author survey. J Clin Epidemiol. 2019;111:41–8. https://doi.org/10.1016/j.jclinepi.2019.03.006 .

Tricco AC, Antony J, Zarin W, Strifler L, Ghassemi M, Ivory J, et al. A scoping review of rapid review methods. BMC Med. 2015;13(1):224. https://doi.org/10.1186/s12916-015-0465-6 .

COVID-19 Rapid Reviews: Cochrane’s response so far. Available at: https://training.cochrane.org/resource/covid-19-rapid-reviews-cochrane-response-so-far . Accessed 1 June 2021.

Cochrane. Living systematic reviews. Available at: https://community.cochrane.org/review-production/production-resources/living-systematic-reviews . Accessed 1 June 2021.

Millard T, Synnot A, Elliott J, Green S, McDonald S, Turner T. Feasibility and acceptability of living systematic reviews: results from a mixed-methods evaluation. Syst Rev. 2019;8(1):325. https://doi.org/10.1186/s13643-019-1248-5 .

Babic A, Poklepovic Pericic T, Pieper D, Puljak L. How to decide whether a systematic review is stable and not in need of updating: analysis of Cochrane reviews. Res Synth Methods. 2020;11(6):884–90. https://doi.org/10.1002/jrsm.1451 .

Lovato A, Rossettini G, de Filippis C. Sore throat in COVID-19: comment on “clinical characteristics of hospitalized patients with SARS-CoV-2 infection: a single arm meta-analysis”. J Med Virol. 2020;92(7):714–5. https://doi.org/10.1002/jmv.25815 .

Leung C. Comment on Li et al: COVID-19 patients’ clinical characteristics, discharge rate, and fatality rate of meta-analysis. J Med Virol. 2020;92(9):1431–2. https://doi.org/10.1002/jmv.25912 .

Li LQ, Huang T, Wang YQ, Wang ZP, Liang Y, Huang TB, et al. Response to Char’s comment: comment on Li et al: COVID-19 patients’ clinical characteristics, discharge rate, and fatality rate of meta-analysis. J Med Virol. 2020;92(9):1433. https://doi.org/10.1002/jmv.25924 .

Download references

Acknowledgments

We thank Catherine Henderson DPhil from Swanscoe Communications for pro bono medical writing and editing support. We acknowledge support from the Covidence Team, specifically Anneliese Arno. We thank the whole International Network of Coronavirus Disease 2019 (InterNetCOVID-19) for their commitment and involvement. Members of the InterNetCOVID-19 are listed in Additional file 6 . We thank Pavel Cerny and Roger Crosthwaite for guiding the team supervisor (IJBN) on human resources management.

This research received no external funding.

Author information

Authors and affiliations.

University Hospital and School of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil

Israel Júnior Borges do Nascimento & Milena Soriano Marcolino

Medical College of Wisconsin, Milwaukee, WI, USA

Israel Júnior Borges do Nascimento

Helene Fuld Health Trust National Institute for Evidence-based Practice in Nursing and Healthcare, College of Nursing, The Ohio State University, Columbus, OH, USA

Dónal P. O’Mathúna

School of Nursing, Psychotherapy and Community Health, Dublin City University, Dublin, Ireland

Department of Anesthesiology, Intensive Care and Pain Medicine, University of Münster, Münster, Germany

Thilo Caspar von Groote

Department of Sport and Health Science, Technische Universität München, Munich, Germany

Hebatullah Mohamed Abdulazeem

School of Health Sciences, Faculty of Health and Medicine, The University of Newcastle, Callaghan, Australia

Ishanka Weerasekara

Department of Physiotherapy, Faculty of Allied Health Sciences, University of Peradeniya, Peradeniya, Sri Lanka

Cochrane Croatia, University of Split, School of Medicine, Split, Croatia

Ana Marusic, Irena Zakarija-Grkovic & Tina Poklepovic Pericic

Center for Evidence-Based Medicine and Health Care, Catholic University of Croatia, Ilica 242, 10000, Zagreb, Croatia

Livia Puljak

Cochrane Brazil, Evidence-Based Health Program, Universidade Federal de São Paulo, São Paulo, Brazil

Vinicius Tassoni Civile & Alvaro Nagib Atallah

Yorkville University, Fredericton, New Brunswick, Canada

Santino Filoso

Laboratory for Industrial and Applied Mathematics (LIAM), Department of Mathematics and Statistics, York University, Toronto, Ontario, Canada

Nicola Luigi Bragazzi

You can also search for this author in PubMed   Google Scholar

Contributions

IJBN conceived the research idea and worked as a project coordinator. DPOM, TCVG, HMA, IW, AM, LP, VTC, IZG, TPP, ANA, SF, NLB and MSM were involved in data curation, formal analysis, investigation, methodology, and initial draft writing. All authors revised the manuscript critically for the content. The author(s) read and approved the final manuscript.

Corresponding author

Correspondence to Livia Puljak .

Ethics declarations

Ethics approval and consent to participate.

Not required as data was based on published studies.

Consent for publication

Not applicable.

Competing interests

The authors declare no conflict of interest.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Additional file 1: appendix 1..

Search strategies used in the study.

Additional file 2: Appendix 2.

Adjusted scoring of AMSTAR 2 used in this study for systematic reviews of studies that did not analyze interventions.

Additional file 3: Appendix 3.

List of excluded studies, with reasons.

Additional file 4: Appendix 4.

Table of overlapping studies, containing the list of primary studies included, their visual overlap in individual systematic reviews, and the number in how many reviews each primary study was included.

Additional file 5: Appendix 5.

A detailed explanation of AMSTAR scoring for each item in each review.

Additional file 6: Appendix 6.

List of members and affiliates of International Network of Coronavirus Disease 2019 (InterNetCOVID-19).

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ . The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/ ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Cite this article.

Borges do Nascimento, I.J., O’Mathúna, D.P., von Groote, T.C. et al. Coronavirus disease (COVID-19) pandemic: an overview of systematic reviews. BMC Infect Dis 21 , 525 (2021). https://doi.org/10.1186/s12879-021-06214-4

Download citation

Received : 12 April 2020

Accepted : 19 May 2021

Published : 04 June 2021

DOI : https://doi.org/10.1186/s12879-021-06214-4

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Coronavirus
  • Evidence-based medicine
  • Infectious diseases

BMC Infectious Diseases

ISSN: 1471-2334

essay on covid 19 with outline

  • Share full article

Advertisement

Supported by

current events

12 Ideas for Writing Through the Pandemic With The New York Times

A dozen writing projects — including journals, poems, comics and more — for students to try at home.

essay on covid 19 with outline

By Natalie Proulx

The coronavirus has transformed life as we know it. Schools are closed, we’re confined to our homes and the future feels very uncertain. Why write at a time like this?

For one, we are living through history. Future historians may look back on the journals, essays and art that ordinary people are creating now to tell the story of life during the coronavirus.

But writing can also be deeply therapeutic. It can be a way to express our fears, hopes and joys. It can help us make sense of the world and our place in it.

Plus, even though school buildings are shuttered, that doesn’t mean learning has stopped. Writing can help us reflect on what’s happening in our lives and form new ideas.

We want to help inspire your writing about the coronavirus while you learn from home. Below, we offer 12 projects for students, all based on pieces from The New York Times, including personal narrative essays, editorials, comic strips and podcasts. Each project features a Times text and prompts to inspire your writing, as well as related resources from The Learning Network to help you develop your craft. Some also offer opportunities to get your work published in The Times, on The Learning Network or elsewhere.

We know this list isn’t nearly complete. If you have ideas for other pandemic-related writing projects, please suggest them in the comments.

We are having trouble retrieving the article content.

Please enable JavaScript in your browser settings.

Thank you for your patience while we verify access. If you are in Reader mode please exit and  log into  your Times account, or  subscribe  for all of The Times.

Thank you for your patience while we verify access.

Already a subscriber?  Log in .

Want all of The Times?  Subscribe .

Log in using your username and password

  • Search More Search for this keyword Advanced search
  • Latest content
  • Current issue
  • BMJ Journals

You are here

  • Volume 74, Issue 11
  • The COVID-19 pandemic and health inequalities
  • Article Text
  • Article info
  • Citation Tools
  • Rapid Responses
  • Article metrics

Download PDF

  • http://orcid.org/0000-0002-1294-6851 Clare Bambra 1 ,
  • Ryan Riordan 2 ,
  • John Ford 2 ,
  • Fiona Matthews 1
  • 1 Population Health Sciences Institute, Newcastle University Institute for Health and Society , Newcastle upon Tyne , UK
  • 2 School of Clinical Medicine, Cambridge University , Cambridge , UK
  • Correspondence to Clare Bambra, Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 4LP, UK; clare.bambra{at}newcastle.ac.uk

This essay examines the implications of the COVID-19 pandemic for health inequalities. It outlines historical and contemporary evidence of inequalities in pandemics—drawing on international research into the Spanish influenza pandemic of 1918, the H1N1 outbreak of 2009 and the emerging international estimates of socio-economic, ethnic and geographical inequalities in COVID-19 infection and mortality rates. It then examines how these inequalities in COVID-19 are related to existing inequalities in chronic diseases and the social determinants of health, arguing that we are experiencing a syndemic pandemic . It then explores the potential consequences for health inequalities of the lockdown measures implemented internationally as a response to the COVID-19 pandemic, focusing on the likely unequal impacts of the economic crisis. The essay concludes by reflecting on the longer-term public health policy responses needed to ensure that the COVID-19 pandemic does not increase health inequalities for future generations.

  • DEPRIVATION
  • Health inequalities

This article is made freely available for use in accordance with BMJ's website terms and conditions for the duration of the COVID-19 pandemic or until otherwise determined by BMJ. You may use, download and print the article for any lawful, non-commercial purpose (including text and data mining) provided that all copyright notices and trade marks are retained.

https://doi.org/10.1136/jech-2020-214401

Statistics from Altmetric.com

Request permissions.

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.

Twitter Clare Bambra @ProfBambra.

Funding CB is a senior investigator in the National Institute for Health Research (NIHR) ARC North East and North Cumbria, NIHR Policy Research Unit in Behavioural Science, NIHR School of Public Health Research, the UK Prevention Research Partnership SIPHER: Systems science in Public Health and Health Economics Research consortium, and the Norwegian Research Council Centre for Global Health Inequalities Research. JF is a senior investigator in the NIHR ARC East of England. FM is a senior investigator in the NIHR Policy Research Unit in Ageing and Frailty. The views expressed in this publication are those of the authors and not necessarily those of the funders.

Competing interests We have read and understood the BMJ Group policy on declaration of interests and declare the following interests: none.

Patient consent for publication Not required.

Data sharing statement Data sharing not applicable as no datasets generated and/or analysed for this study.

Provenance and peer review Not commissioned; internally peer reviewed.

Read the full text or download the PDF:

COMMENTS

  1. Covid 19 Essays: Examples, Topics, & Outlines

    View our collection of covid 19 essays. Find inspiration for topics, titles, outlines, & craft impactful covid 19 papers. Read our covid 19 papers today!

  2. How to Write About COVID-19 In Your College Essay & Application

    Should you write about coronavirus in your college essay or in the Common App? Learn how write about COVID-19 in your college application.

  3. Covid 19 Essay in English

    Essay on Covid 19 in English - Governments have had to take severe measures to try and contain the pandemic. The virus has altered our way of life in many ways, including its effects on our health and our economy. Here are a few sample essays on 'CoronaVirus'.

  4. Persuasive Essay About Covid19

    Struggling to write a persuasive essay about Covid 19? Check out this blog and get helpful tips and sample essays written by experts to get started. Read more!

  5. How to write an essay on coronavirus (COVID-19)

    Read our top tips on how to write an academic essay on coronavirus, so that you can approach your writing with confidence and produce a great piece of work.

  6. COVID-19 pandemic crisis—a complete outline of SARS-CoV-2

    This article outlines and gives a complete overview of SARS-CoV-2, including its pathogenesis, diagnosis, treatment, prevention, and precautions. This article also provides the current scenario of the pandemic worldwide, since new findings are rapidly evolving and can help the readers in upgrading their knowledge about the COVID-19.

  7. How to Write About Coronavirus in a College Essay

    Students can share how they navigated life during the coronavirus pandemic in a full-length essay or an optional supplement.

  8. What We Learned About Ourselves During the COVID-19 Pandemic

    The landscape was already covered in fissures well before COVID-19 made its way across the planet, but the pandemic applied pressure, and the cracks broke wide open, separating us from each other ...

  9. Essay: COVID-19 and humanity's interconnectedness

    Coronavirus: The world has come together to flatten the curve. Can we stay united to tackle other crises? Watching the world come together gives me hope for the future, writes Mira Patel, a high school junior.

  10. Coronavirus Essays: Examples, Topics, & Outlines

    View our collection of coronavirus essays. Find inspiration for topics, titles, outlines, & craft impactful coronavirus papers. Read our coronavirus papers today!

  11. A National Strategy for the "New Normal" of Life With COVID

    As the Omicron variant of SARS-CoV-2 demonstrates, COVID-19 is here to stay. In January 2021, President Biden issued the "National Strategy for the COVID-19 Response and Pandemic Preparedness." As the US moves from crisis to control, this national strategy needs to be updated. Policy makers need to specify the goals and strategies for the "new normal" of life with COVID-19 and ...

  12. Impact of COVID-19 on people's livelihoods, their health and our food

    The COVID-19 pandemic has led to a dramatic loss of human life worldwide and presents an unprecedented challenge to public health, food systems and the world of work. The economic and social disruption caused by the pandemic is devastating: tens of millions of people are at risk of falling into extreme poverty, while the number of undernourished people, currently estimated at nearly 690 ...

  13. COVID-19 pandemic and its impact on social relationships and health

    This essay examines key aspects of social relationships that were disrupted by the COVID-19 pandemic. It focuses explicitly on relational mechanisms of health and brings together theory and emerging evidence on the effects of the COVID-19 pandemic to make recommendations for future public health policy and recovery. We first provide an overview of the pandemic in the UK context, outlining the ...

  14. Editor in Chief's Introduction to Essays on the Impact of COVID-19 on

    Editor in Chief's Introduction to Essays on the Impact of COVID-19 on Work and Workers. On March 11, 2020, the World Health Organization declared that COVID-19 was a global pandemic, indicating significant global spread of an infectious disease ( World Health Organization, 2020 ). At that point, there were 118,000 confirmed cases of the ...

  15. Coronavirus disease (COVID-19)

    Coronavirus disease (COVID-19) is an infectious disease caused by the SARS-CoV-2 virus. Most people infected with the virus will experience mild to moderate respiratory illness and recover without requiring special treatment. However, some will become seriously ill and require medical attention. Older people and those with underlying medical ...

  16. An Introduction to COVID-19

    A novel coronavirus (CoV) named '2019-nCoV' or '2019 novel coronavirus' or 'COVID-19' by the World Health Organization (WHO) is in charge of the current outbreak of pneumonia that began at the beginning of December 2019 near in Wuhan City, Hubei Province, China [1-4]. COVID-19 is a pathogenic virus. From the phylogenetic analysis ...

  17. Introduction

    The COVID-19 pandemic is far from over and could yet evolve in unanticipated ways, but one of its most important lessons is already clear: preparation and early execution are essential in ...

  18. Frontiers

    The outbreak of the coronavirus disease 2019 (COVID-19) has created a global health crisis that had a deep impact on the way we perceive our world and our everyday lives. Not only has the rate of contagion and patterns of transmission threatened our sense of agency, but the safety measures to contain the spread of the virus also required social and physical distancing, preventing us from ...

  19. Writing about COVID-19 in a college essay GreatSchools.org

    Should your child write about their experience with COVID-19 in a college essay or application? An expert shares some key considerations.

  20. Coronavirus disease (COVID-19) pandemic: an overview of systematic

    Background Navigating the rapidly growing body of scientific literature on the SARS-CoV-2 pandemic is challenging, and ongoing critical appraisal of this output is essential. We aimed to summarize and critically appraise systematic reviews of coronavirus disease (COVID-19) in humans that were available at the beginning of the pandemic. Methods Nine databases (Medline, EMBASE, Cochrane Library ...

  21. 12 Ideas for Writing Through the Pandemic With The New York Times

    12 Ideas for Writing Through the Pandemic With The New York Times A dozen writing projects — including journals, poems, comics and more — for students to try at home.

  22. PDF Jech-2020-214401 1..5

    ABSTRACT This essay examines the implications of the COVID-19 pandemic for health inequalities. It outlines historical and contemporary evidence of inequalities in pandemics— drawing on international research into the Spanish influenza pandemic of 1918, the H1N1 outbreak of 2009 and the emerging international estimates of socio-economic, ethnic and geographical inequalities in COVID-19 ...

  23. Outline of the COVID-19 pandemic

    Map of school closures around the world, red represents where schools were entirely closed at some point in the pandemic and orange where they were partially closed. Social impact of the COVID-19 pandemic. COVID-19 pandemic baby bust. Impact of the COVID-19 pandemic on education.