Using Case Studies to Teach

case study teaching questions

Why Use Cases?

Many students are more inductive than deductive reasoners, which means that they learn better from examples than from logical development starting with basic principles. The use of case studies can therefore be a very effective classroom technique.

Case studies are have long been used in business schools, law schools, medical schools and the social sciences, but they can be used in any discipline when instructors want students to explore how what they have learned applies to real world situations. Cases come in many formats, from a simple “What would you do in this situation?” question to a detailed description of a situation with accompanying data to analyze. Whether to use a simple scenario-type case or a complex detailed one depends on your course objectives.

Most case assignments require students to answer an open-ended question or develop a solution to an open-ended problem with multiple potential solutions. Requirements can range from a one-paragraph answer to a fully developed group action plan, proposal or decision.

Common Case Elements

Most “full-blown” cases have these common elements:

  • A decision-maker who is grappling with some question or problem that needs to be solved.
  • A description of the problem’s context (a law, an industry, a family).
  • Supporting data, which can range from data tables to links to URLs, quoted statements or testimony, supporting documents, images, video, or audio.

Case assignments can be done individually or in teams so that the students can brainstorm solutions and share the work load.

The following discussion of this topic incorporates material presented by Robb Dixon of the School of Management and Rob Schadt of the School of Public Health at CEIT workshops. Professor Dixon also provided some written comments that the discussion incorporates.

Advantages to the use of case studies in class

A major advantage of teaching with case studies is that the students are actively engaged in figuring out the principles by abstracting from the examples. This develops their skills in:

  • Problem solving
  • Analytical tools, quantitative and/or qualitative, depending on the case
  • Decision making in complex situations
  • Coping with ambiguities

Guidelines for using case studies in class

In the most straightforward application, the presentation of the case study establishes a framework for analysis. It is helpful if the statement of the case provides enough information for the students to figure out solutions and then to identify how to apply those solutions in other similar situations. Instructors may choose to use several cases so that students can identify both the similarities and differences among the cases.

Depending on the course objectives, the instructor may encourage students to follow a systematic approach to their analysis.  For example:

  • What is the issue?
  • What is the goal of the analysis?
  • What is the context of the problem?
  • What key facts should be considered?
  • What alternatives are available to the decision-maker?
  • What would you recommend — and why?

An innovative approach to case analysis might be to have students  role-play the part of the people involved in the case. This not only actively engages students, but forces them to really understand the perspectives of the case characters. Videos or even field trips showing the venue in which the case is situated can help students to visualize the situation that they need to analyze.

Accompanying Readings

Case studies can be especially effective if they are paired with a reading assignment that introduces or explains a concept or analytical method that applies to the case. The amount of emphasis placed on the use of the reading during the case discussion depends on the complexity of the concept or method. If it is straightforward, the focus of the discussion can be placed on the use of the analytical results. If the method is more complex, the instructor may need to walk students through its application and the interpretation of the results.

Leading the Case Discussion and Evaluating Performance

Decision cases are more interesting than descriptive ones. In order to start the discussion in class, the instructor can start with an easy, noncontroversial question that all the students should be able to answer readily. However, some of the best case discussions start by forcing the students to take a stand. Some instructors will ask a student to do a formal “open” of the case, outlining his or her entire analysis.  Others may choose to guide discussion with questions that move students from problem identification to solutions.  A skilled instructor steers questions and discussion to keep the class on track and moving at a reasonable pace.

In order to motivate the students to complete the assignment before class as well as to stimulate attentiveness during the class, the instructor should grade the participation—quantity and especially quality—during the discussion of the case. This might be a simple check, check-plus, check-minus or zero. The instructor should involve as many students as possible. In order to engage all the students, the instructor can divide them into groups, give each group several minutes to discuss how to answer a question related to the case, and then ask a randomly selected person in each group to present the group’s answer and reasoning. Random selection can be accomplished through rolling of dice, shuffled index cards, each with one student’s name, a spinning wheel, etc.

Tips on the Penn State U. website: http://tlt.its.psu.edu/suggestions/cases/

If you are interested in using this technique in a science course, there is a good website on use of case studies in the sciences at the University of Buffalo.

Dunne, D. and Brooks, K. (2004) Teaching with Cases (Halifax, NS: Society for Teaching and Learning in Higher Education), ISBN 0-7703-8924-4 (Can be ordered at http://www.bookstore.uwo.ca/ at a cost of $15.00)

  • Our Mission

Making Learning Relevant With Case Studies

The open-ended problems presented in case studies give students work that feels connected to their lives.

Students working on projects in a classroom

To prepare students for jobs that haven’t been created yet, we need to teach them how to be great problem solvers so that they’ll be ready for anything. One way to do this is by teaching content and skills using real-world case studies, a learning model that’s focused on reflection during the problem-solving process. It’s similar to project-based learning, but PBL is more focused on students creating a product.

Case studies have been used for years by businesses, law and medical schools, physicians on rounds, and artists critiquing work. Like other forms of problem-based learning, case studies can be accessible for every age group, both in one subject and in interdisciplinary work.

You can get started with case studies by tackling relatable questions like these with your students:

  • How can we limit food waste in the cafeteria?
  • How can we get our school to recycle and compost waste? (Or, if you want to be more complex, how can our school reduce its carbon footprint?)
  • How can we improve school attendance?
  • How can we reduce the number of people who get sick at school during cold and flu season?

Addressing questions like these leads students to identify topics they need to learn more about. In researching the first question, for example, students may see that they need to research food chains and nutrition. Students often ask, reasonably, why they need to learn something, or when they’ll use their knowledge in the future. Learning is most successful for students when the content and skills they’re studying are relevant, and case studies offer one way to create that sense of relevance.

Teaching With Case Studies

Ultimately, a case study is simply an interesting problem with many correct answers. What does case study work look like in classrooms? Teachers generally start by having students read the case or watch a video that summarizes the case. Students then work in small groups or individually to solve the case study. Teachers set milestones defining what students should accomplish to help them manage their time.

During the case study learning process, student assessment of learning should be focused on reflection. Arthur L. Costa and Bena Kallick’s Learning and Leading With Habits of Mind gives several examples of what this reflection can look like in a classroom: 

Journaling: At the end of each work period, have students write an entry summarizing what they worked on, what worked well, what didn’t, and why. Sentence starters and clear rubrics or guidelines will help students be successful. At the end of a case study project, as Costa and Kallick write, it’s helpful to have students “select significant learnings, envision how they could apply these learnings to future situations, and commit to an action plan to consciously modify their behaviors.”

Interviews: While working on a case study, students can interview each other about their progress and learning. Teachers can interview students individually or in small groups to assess their learning process and their progress.

Student discussion: Discussions can be unstructured—students can talk about what they worked on that day in a think-pair-share or as a full class—or structured, using Socratic seminars or fishbowl discussions. If your class is tackling a case study in small groups, create a second set of small groups with a representative from each of the case study groups so that the groups can share their learning.

4 Tips for Setting Up a Case Study

1. Identify a problem to investigate: This should be something accessible and relevant to students’ lives. The problem should also be challenging and complex enough to yield multiple solutions with many layers.

2. Give context: Think of this step as a movie preview or book summary. Hook the learners to help them understand just enough about the problem to want to learn more.

3. Have a clear rubric: Giving structure to your definition of quality group work and products will lead to stronger end products. You may be able to have your learners help build these definitions.

4. Provide structures for presenting solutions: The amount of scaffolding you build in depends on your students’ skill level and development. A case study product can be something like several pieces of evidence of students collaborating to solve the case study, and ultimately presenting their solution with a detailed slide deck or an essay—you can scaffold this by providing specified headings for the sections of the essay.

Problem-Based Teaching Resources

There are many high-quality, peer-reviewed resources that are open source and easily accessible online.

  • The National Center for Case Study Teaching in Science at the University at Buffalo built an online collection of more than 800 cases that cover topics ranging from biochemistry to economics. There are resources for middle and high school students.
  • Models of Excellence , a project maintained by EL Education and the Harvard Graduate School of Education, has examples of great problem- and project-based tasks—and corresponding exemplary student work—for grades pre-K to 12.
  • The Interdisciplinary Journal of Problem-Based Learning at Purdue University is an open-source journal that publishes examples of problem-based learning in K–12 and post-secondary classrooms.
  • The Tech Edvocate has a list of websites and tools related to problem-based learning.

In their book Problems as Possibilities , Linda Torp and Sara Sage write that at the elementary school level, students particularly appreciate how they feel that they are taken seriously when solving case studies. At the middle school level, “researchers stress the importance of relating middle school curriculum to issues of student concern and interest.” And high schoolers, they write, find the case study method “beneficial in preparing them for their future.”

Center for Teaching

Case studies.

Print Version

Case studies are stories that are used as a teaching tool to show the application of a theory or concept to real situations. Dependent on the goal they are meant to fulfill, cases can be fact-driven and deductive where there is a correct answer, or they can be context driven where multiple solutions are possible. Various disciplines have employed case studies, including humanities, social sciences, sciences, engineering, law, business, and medicine. Good cases generally have the following features: they tell a good story, are recent, include dialogue, create empathy with the main characters, are relevant to the reader, serve a teaching function, require a dilemma to be solved, and have generality.

Instructors can create their own cases or can find cases that already exist. The following are some things to keep in mind when creating a case:

  • What do you want students to learn from the discussion of the case?
  • What do they already know that applies to the case?
  • What are the issues that may be raised in discussion?
  • How will the case and discussion be introduced?
  • What preparation is expected of students? (Do they need to read the case ahead of time? Do research? Write anything?)
  • What directions do you need to provide students regarding what they are supposed to do and accomplish?
  • Do you need to divide students into groups or will they discuss as the whole class?
  • Are you going to use role-playing or facilitators or record keepers? If so, how?
  • What are the opening questions?
  • How much time is needed for students to discuss the case?
  • What concepts are to be applied/extracted during the discussion?
  • How will you evaluate students?

To find other cases that already exist, try the following websites:

  • The National Center for Case Study Teaching in Science , University of Buffalo. SUNY-Buffalo maintains this set of links to other case studies on the web in disciplines ranging from engineering and ethics to sociology and business
  • A Journal of Teaching Cases in Public Administration and Public Policy , University of Washington

For more information:

  • World Association for Case Method Research and Application

Book Review :  Teaching and the Case Method , 3rd ed., vols. 1 and 2, by Louis Barnes, C. Roland (Chris) Christensen, and Abby Hansen. Harvard Business School Press, 1994; 333 pp. (vol 1), 412 pp. (vol 2).

Creative Commons License

Teaching Guides

  • Online Course Development Resources
  • Principles & Frameworks
  • Pedagogies & Strategies
  • Reflecting & Assessing
  • Challenges & Opportunities
  • Populations & Contexts

Quick Links

  • Services for Departments and Schools
  • Examples of Online Instructional Modules
  • Columbia University in the City of New York
  • Office of Teaching, Learning, and Innovation
  • University Policies
  • Columbia Online
  • Academic Calendar
  • Resources and Technology
  • Resources and Guides

Case Method Teaching and Learning

What is the case method? How can the case method be used to engage learners? What are some strategies for getting started? This guide helps instructors answer these questions by providing an overview of the case method while highlighting learner-centered and digitally-enhanced approaches to teaching with the case method. The guide also offers tips to instructors as they get started with the case method and additional references and resources.

On this page:

What is case method teaching.

  • Case Method at Columbia

Why use the Case Method?

Case method teaching approaches, how do i get started.

  • Additional Resources

The CTL is here to help!

For support with implementing a case method approach in your course, email [email protected] to schedule your 1-1 consultation .

Cite this resource: Columbia Center for Teaching and Learning (2019). Case Method Teaching and Learning. Columbia University. Retrieved from [today’s date] from https://ctl.columbia.edu/resources-and-technology/resources/case-method/  

Case method 1 teaching is an active form of instruction that focuses on a case and involves students learning by doing 2 3 . Cases are real or invented stories 4  that include “an educational message” or recount events, problems, dilemmas, theoretical or conceptual issue that requires analysis and/or decision-making.

Case-based teaching simulates real world situations and asks students to actively grapple with complex problems 5 6 This method of instruction is used across disciplines to promote learning, and is common in law, business, medicine, among other fields. See Table 1 below for a few types of cases and the learning they promote.

Table 1: Types of cases and the learning they promote.

For a more complete list, see Case Types & Teaching Methods: A Classification Scheme from the National Center for Case Study Teaching in Science.

Back to Top

Case Method Teaching and Learning at Columbia

The case method is actively used in classrooms across Columbia, at the Morningside campus in the School of International and Public Affairs (SIPA), the School of Business, Arts and Sciences, among others, and at Columbia University Irving Medical campus.

Faculty Spotlight:

Professor Mary Ann Price on Using Case Study Method to Place Pre-Med Students in Real-Life Scenarios

Read more  

Professor De Pinho on Using the Case Method in the Mailman Core

Case method teaching has been found to improve student learning, to increase students’ perception of learning gains, and to meet learning objectives 8 9 . Faculty have noted the instructional benefits of cases including greater student engagement in their learning 10 , deeper student understanding of concepts, stronger critical thinking skills, and an ability to make connections across content areas and view an issue from multiple perspectives 11 . 

Through case-based learning, students are the ones asking questions about the case, doing the problem-solving, interacting with and learning from their peers, “unpacking” the case, analyzing the case, and summarizing the case. They learn how to work with limited information and ambiguity, think in professional or disciplinary ways, and ask themselves “what would I do if I were in this specific situation?”

The case method bridges theory to practice, and promotes the development of skills including: communication, active listening, critical thinking, decision-making, and metacognitive skills 12 , as students apply course content knowledge, reflect on what they know and their approach to analyzing, and make sense of a case. 

Though the case method has historical roots as an instructor-centered approach that uses the Socratic dialogue and cold-calling, it is possible to take a more learner-centered approach in which students take on roles and tasks traditionally left to the instructor. 

Cases are often used as “vehicles for classroom discussion” 13 . Students should be encouraged to take ownership of their learning from a case. Discussion-based approaches engage students in thinking and communicating about a case. Instructors can set up a case activity in which students are the ones doing the work of “asking questions, summarizing content, generating hypotheses, proposing theories, or offering critical analyses” 14 . 

The role of the instructor is to share a case or ask students to share or create a case to use in class, set expectations, provide instructions, and assign students roles in the discussion. Student roles in a case discussion can include: 

  • discussion “starters” get the conversation started with a question or posing the questions that their peers came up with; 
  • facilitators listen actively, validate the contributions of peers, ask follow-up questions, draw connections, refocus the conversation as needed; 
  • recorders take-notes of the main points of the discussion, record on the board, upload to CourseWorks, or type and project on the screen; and 
  • discussion “wrappers” lead a summary of the main points of the discussion. 

Prior to the case discussion, instructors can model case analysis and the types of questions students should ask, co-create discussion guidelines with students, and ask for students to submit discussion questions. During the discussion, the instructor can keep time, intervene as necessary (however the students should be doing the talking), and pause the discussion for a debrief and to ask students to reflect on what and how they learned from the case activity. 

Note: case discussions can be enhanced using technology. Live discussions can occur via video-conferencing (e.g., using Zoom ) or asynchronous discussions can occur using the Discussions tool in CourseWorks (Canvas) .

Table 2 includes a few interactive case method approaches. Regardless of the approach selected, it is important to create a learning environment in which students feel comfortable participating in a case activity and learning from one another. See below for tips on supporting student in how to learn from a case in the “getting started” section and how to create a supportive learning environment in the Guide for Inclusive Teaching at Columbia . 

Table 2. Strategies for Engaging Students in Case-Based Learning

Approaches to case teaching should be informed by course learning objectives, and can be adapted for small, large, hybrid, and online classes. Instructional technology can be used in various ways to deliver, facilitate, and assess the case method. For instance, an online module can be created in CourseWorks (Canvas) to structure the delivery of the case, allow students to work at their own pace, engage all learners, even those reluctant to speak up in class, and assess understanding of a case and student learning. Modules can include text, embedded media (e.g., using Panopto or Mediathread ) curated by the instructor, online discussion, and assessments. Students can be asked to read a case and/or watch a short video, respond to quiz questions and receive immediate feedback, post questions to a discussion, and share resources. 

For more information about options for incorporating educational technology to your course, please contact your Learning Designer .

To ensure that students are learning from the case approach, ask them to pause and reflect on what and how they learned from the case. Time to reflect  builds your students’ metacognition, and when these reflections are collected they provides you with insights about the effectiveness of your approach in promoting student learning.

Well designed case-based learning experiences: 1) motivate student involvement, 2) have students doing the work, 3) help students develop knowledge and skills, and 4) have students learning from each other.  

Designing a case-based learning experience should center around the learning objectives for a course. The following points focus on intentional design. 

Identify learning objectives, determine scope, and anticipate challenges. 

  • Why use the case method in your course? How will it promote student learning differently than other approaches? 
  • What are the learning objectives that need to be met by the case method? What knowledge should students apply and skills should they practice? 
  • What is the scope of the case? (a brief activity in a single class session to a semester-long case-based course; if new to case method, start small with a single case). 
  • What challenges do you anticipate (e.g., student preparation and prior experiences with case learning, discomfort with discussion, peer-to-peer learning, managing discussion) and how will you plan for these in your design? 
  • If you are asking students to use transferable skills for the case method (e.g., teamwork, digital literacy) make them explicit. 

Determine how you will know if the learning objectives were met and develop a plan for evaluating the effectiveness of the case method to inform future case teaching. 

  • What assessments and criteria will you use to evaluate student work or participation in case discussion? 
  • How will you evaluate the effectiveness of the case method? What feedback will you collect from students? 
  • How might you leverage technology for assessment purposes? For example, could you quiz students about the case online before class, accept assignment submissions online, use audience response systems (e.g., PollEverywhere) for formative assessment during class? 

Select an existing case, create your own, or encourage students to bring course-relevant cases, and prepare for its delivery

  • Where will the case method fit into the course learning sequence? 
  • Is the case at the appropriate level of complexity? Is it inclusive, culturally relevant, and relatable to students? 
  • What materials and preparation will be needed to present the case to students? (e.g., readings, audiovisual materials, set up a module in CourseWorks). 

Plan for the case discussion and an active role for students

  • What will your role be in facilitating case-based learning? How will you model case analysis for your students? (e.g., present a short case and demo your approach and the process of case learning) (Davis, 2009). 
  • What discussion guidelines will you use that include your students’ input? 
  • How will you encourage students to ask and answer questions, summarize their work, take notes, and debrief the case? 
  • If students will be working in groups, how will groups form? What size will the groups be? What instructions will they be given? How will you ensure that everyone participates? What will they need to submit? Can technology be leveraged for any of these areas? 
  • Have you considered students of varied cognitive and physical abilities and how they might participate in the activities/discussions, including those that involve technology? 

Student preparation and expectations

  • How will you communicate about the case method approach to your students? When will you articulate the purpose of case-based learning and expectations of student engagement? What information about case-based learning and expectations will be included in the syllabus?
  • What preparation and/or assignment(s) will students complete in order to learn from the case? (e.g., read the case prior to class, watch a case video prior to class, post to a CourseWorks discussion, submit a brief memo, complete a short writing assignment to check students’ understanding of a case, take on a specific role, prepare to present a critique during in-class discussion).

Andersen, E. and Schiano, B. (2014). Teaching with Cases: A Practical Guide . Harvard Business Press. 

Bonney, K. M. (2015). Case Study Teaching Method Improves Student Performance and Perceptions of Learning Gains†. Journal of Microbiology & Biology Education , 16 (1), 21–28. https://doi.org/10.1128/jmbe.v16i1.846

Davis, B.G. (2009). Chapter 24: Case Studies. In Tools for Teaching. Second Edition. Jossey-Bass. 

Garvin, D.A. (2003). Making the Case: Professional Education for the world of practice. Harvard Magazine. September-October 2003, Volume 106, Number 1, 56-107.

Golich, V.L. (2000). The ABCs of Case Teaching. International Studies Perspectives. 1, 11-29. 

Golich, V.L.; Boyer, M; Franko, P.; and Lamy, S. (2000). The ABCs of Case Teaching. Pew Case Studies in International Affairs. Institute for the Study of Diplomacy. 

Heath, J. (2015). Teaching & Writing Cases: A Practical Guide. The Case Center, UK. 

Herreid, C.F. (2011). Case Study Teaching. New Directions for Teaching and Learning. No. 128, Winder 2011, 31 – 40. 

Herreid, C.F. (2007). Start with a Story: The Case Study Method of Teaching College Science . National Science Teachers Association. Available as an ebook through Columbia Libraries. 

Herreid, C.F. (2006). “Clicker” Cases: Introducing Case Study Teaching Into Large Classrooms. Journal of College Science Teaching. Oct 2006, 36(2). https://search.proquest.com/docview/200323718?pq-origsite=gscholar  

Krain, M. (2016). Putting the Learning in Case Learning? The Effects of Case-Based Approaches on Student Knowledge, Attitudes, and Engagement. Journal on Excellence in College Teaching. 27(2), 131-153. 

Lundberg, K.O. (Ed.). (2011). Our Digital Future: Boardrooms and Newsrooms. Knight Case Studies Initiative. 

Popil, I. (2011). Promotion of critical thinking by using case studies as teaching method. Nurse Education Today, 31(2), 204–207. https://doi.org/10.1016/j.nedt.2010.06.002

Schiano, B. and Andersen, E. (2017). Teaching with Cases Online . Harvard Business Publishing. 

Thistlethwaite, JE; Davies, D.; Ekeocha, S.; Kidd, J.M.; MacDougall, C.; Matthews, P.; Purkis, J.; Clay D. (2012). The effectiveness of case-based learning in health professional education: A BEME systematic review . Medical Teacher. 2012; 34(6): e421-44. 

Yadav, A.; Lundeberg, M.; DeSchryver, M.; Dirkin, K.; Schiller, N.A.; Maier, K. and Herreid, C.F. (2007). Teaching Science with Case Studies: A National Survey of Faculty Perceptions of the Benefits and Challenges of Using Cases. Journal of College Science Teaching; Sept/Oct 2007; 37(1). 

Weimer, M. (2013). Learner-Centered Teaching: Five Key Changes to Practice. Second Edition. Jossey-Bass.

Additional resources 

Teaching with Cases , Harvard Kennedy School of Government. 

Features “what is a teaching case?” video that defines a teaching case, and provides documents to help students prepare for case learning, Common case teaching challenges and solutions, tips for teaching with cases. 

Promoting excellence and innovation in case method teaching: Teaching by the Case Method , Christensen Center for Teaching & Learning. Harvard Business School. 

National Center for Case Study Teaching in Science . University of Buffalo. 

A collection of peer-reviewed STEM cases to teach scientific concepts and content, promote process skills and critical thinking. The Center welcomes case submissions. Case classification scheme of case types and teaching methods:

  • Different types of cases: analysis case, dilemma/decision case, directed case, interrupted case, clicker case, a flipped case, a laboratory case. 
  • Different types of teaching methods: problem-based learning, discussion, debate, intimate debate, public hearing, trial, jigsaw, role-play. 

Columbia Resources

Resources available to support your use of case method: The University hosts a number of case collections including: the Case Consortium (a collection of free cases in the fields of journalism, public policy, public health, and other disciplines that include teaching and learning resources; SIPA’s Picker Case Collection (audiovisual case studies on public sector innovation, filmed around the world and involving SIPA student teams in producing the cases); and Columbia Business School CaseWorks , which develops teaching cases and materials for use in Columbia Business School classrooms.

Center for Teaching and Learning

The Center for Teaching and Learning (CTL) offers a variety of programs and services for instructors at Columbia. The CTL can provide customized support as you plan to use the case method approach through implementation. Schedule a one-on-one consultation. 

Office of the Provost

The Hybrid Learning Course Redesign grant program from the Office of the Provost provides support for faculty who are developing innovative and technology-enhanced pedagogy and learning strategies in the classroom. In addition to funding, faculty awardees receive support from CTL staff as they redesign, deliver, and evaluate their hybrid courses.

The Start Small! Mini-Grant provides support to faculty who are interested in experimenting with one new pedagogical strategy or tool. Faculty awardees receive funds and CTL support for a one-semester period.

Explore our teaching resources.

  • Blended Learning
  • Contemplative Pedagogy
  • Inclusive Teaching Guide
  • FAQ for Teaching Assistants
  • Metacognition

CTL resources and technology for you.

  • Overview of all CTL Resources and Technology
  • The origins of this method can be traced to Harvard University where in 1870 the Law School began using cases to teach students how to think like lawyers using real court decisions. This was followed by the Business School in 1920 (Garvin, 2003). These professional schools recognized that lecture mode of instruction was insufficient to teach critical professional skills, and that active learning would better prepare learners for their professional lives. ↩
  • Golich, V.L. (2000). The ABCs of Case Teaching. International Studies Perspectives. 1, 11-29. ↩
  • Herreid, C.F. (2007). Start with a Story: The Case Study Method of Teaching College Science . National Science Teachers Association. Available as an ebook through Columbia Libraries. ↩
  • Davis, B.G. (2009). Chapter 24: Case Studies. In Tools for Teaching. Second Edition. Jossey-Bass. ↩
  • Andersen, E. and Schiano, B. (2014). Teaching with Cases: A Practical Guide . Harvard Business Press. ↩
  • Lundberg, K.O. (Ed.). (2011). Our Digital Future: Boardrooms and Newsrooms. Knight Case Studies Initiative. ↩
  • Heath, J. (2015). Teaching & Writing Cases: A Practical Guide. The Case Center, UK. ↩
  • Bonney, K. M. (2015). Case Study Teaching Method Improves Student Performance and Perceptions of Learning Gains†. Journal of Microbiology & Biology Education , 16 (1), 21–28. https://doi.org/10.1128/jmbe.v16i1.846 ↩
  • Krain, M. (2016). Putting the Learning in Case Learning? The Effects of Case-Based Approaches on Student Knowledge, Attitudes, and Engagement. Journal on Excellence in College Teaching. 27(2), 131-153. ↩
  • Thistlethwaite, JE; Davies, D.; Ekeocha, S.; Kidd, J.M.; MacDougall, C.; Matthews, P.; Purkis, J.; Clay D. (2012). The effectiveness of case-based learning in health professional education: A BEME systematic review . Medical Teacher. 2012; 34(6): e421-44. ↩
  • Yadav, A.; Lundeberg, M.; DeSchryver, M.; Dirkin, K.; Schiller, N.A.; Maier, K. and Herreid, C.F. (2007). Teaching Science with Case Studies: A National Survey of Faculty Perceptions of the Benefits and Challenges of Using Cases. Journal of College Science Teaching; Sept/Oct 2007; 37(1). ↩
  • Popil, I. (2011). Promotion of critical thinking by using case studies as teaching method. Nurse Education Today, 31(2), 204–207. https://doi.org/10.1016/j.nedt.2010.06.002 ↩
  • Weimer, M. (2013). Learner-Centered Teaching: Five Key Changes to Practice. Second Edition. Jossey-Bass. ↩
  • Herreid, C.F. (2006). “Clicker” Cases: Introducing Case Study Teaching Into Large Classrooms. Journal of College Science Teaching. Oct 2006, 36(2). https://search.proquest.com/docview/200323718?pq-origsite=gscholar ↩

This website uses cookies to identify users, improve the user experience and requires cookies to work. By continuing to use this website, you consent to Columbia University's use of cookies and similar technologies, in accordance with the Columbia University Website Cookie Notice .

Getting Started with Case Teaching

Key considerations as you begin your case teaching journey

Anyone can teach well with cases, as long as they are open to asking questions and trusting their students to participate and discuss. Here are some key considerations as you begin your case teaching journey.

Understand the Why

Cases have many benefits for students:

Case discussions are inherently relevant, which engages students more actively in their learning.

Students learn to apply course concepts in context; theories move from abstract to applicable.

Students develop valuable skills in speaking extemporaneously on topics, making connections, and doing analysis in real time.

These benefits apply at the undergraduate, MBA, specialized masters, doctoral, and executive education levels. Teaching with cases is a powerful way to “flip” your classroom, using your time with students to grapple with the application of content rather than purely transmitting the knowledge.

Consider Where Cases Will Fit Best

You know your students, courses, program, and university, and you can adapt your curriculum to deliver the best experience for all of them. Designing a case course is similar to other pedagogies. Decide on your learning objectives, as well as any content you wish to provide in addition to cases (textbooks, articles, videos, recorded lectures, etc.).

If you have not prepared a case course before, consider starting with a set of cases suggested by colleagues or featured within our Course Explorer tool. Review the case descriptions and perhaps search for and replace some cases to fit your abilities and your students’ interests and abilities. See Selecting Cases to Use in Your Classes for more guidance on choosing cases. If your time to prepare is tight, consider adopting cases with teaching notes.

Prepare Your Teaching Plan

Create a teaching plan for each case you choose to use. This can range from determining a set of labels for each of your classroom boards to preparing a detailed list of questions to ask with possible responses and analysis. Your preference could be anywhere in between. The key is that you will be as comfortable as is feasible in guiding the class to achieve your goals for each discussion. Do not treat the plan as a script—you should be open to unexpected opportunities during discussions. Preparing detailed teaching plans can help manage anxiety, but don’t let it displace other value-adding activities for your class.

Prepare Your Students, Too

If your students have little-to-no experience learning with cases before your course, be sure to provide them guidance. This could come in the form of a pre-meeting, recorded or written guidance from you, or reference materials such as Case Companion and The Case Study Handbook . No matter what, communicate to your students before the course begins to establish your expectations that they will come prepared for class. Even if your students have had other case classes, the expectations of their prior faculty may have varied, so being clear will still be of value.

Characteristics of Effective Case Teaching

The Heart of the Case Method

What the Case Method Really Teaches

More Key Topics

Assessing Learning Outcomes in Case Classrooms

Steps to equitably and credibly grade discussion-based learning

Teaching Cases in Hybrid Settings

How to balance the needs of both your in-person and remote students

Selecting Cases to Use in Your Classes

Find the right materials to achieve your learning goals

We use cookies to understand how you use our site and to improve your experience, including personalizing content. Learn More . By continuing to use our site, you accept our use of cookies and revised Privacy Policy .

case study teaching questions

Search type

University Wide

Faculty / School Portals

Main navigation 4plus items

  • Instructional Strategies

Case-Based Learning

What is case-based learning.

Using a case-based approach engages students in discussion of specific scenarios that resemble or typically are real-world examples. This method is learner-centered with intense interaction between participants as they build their knowledge and work together as a group to examine the case. The instructor's role is that of a facilitator while the students collaboratively analyze and address problems and resolve questions that have no single right answer.

Clyde Freeman Herreid provides eleven basic rules for case-based learning.

  • Tells a story.
  • Focuses on an interest-arousing issue.
  • Set in the past five years
  • Creates empathy with the central characters.
  • Includes quotations. There is no better way to understand a situation and to gain empathy for the characters
  • Relevant to the reader.
  • Must have pedagogic utility.
  • Conflict provoking.
  • Decision forcing.
  • Has generality.

Why Use Case-Based Learning?

To provide students with a relevant opportunity to see theory in practice. Real world or authentic contexts expose students to viewpoints from multiple sources and see why people may want different outcomes. Students can also see how a decision will impact different participants, both positively and negatively.

To require students to analyze data in order to reach a conclusion. Since many assignments are open-ended, students can practice choosing appropriate analytic techniques as well. Instructors who use case-based learning say that their students are more engaged, interested, and involved in the class.

To develop analytic, communicative and collaborative skills along with content knowledge. In their effort to find solutions and reach decisions through discussion, students sort out factual data, apply analytic tools, articulate issues, reflect on their relevant experiences, and draw conclusions they can relate to new situations. In the process, they acquire substantive knowledge and develop analytic, collaborative, and communication skills.

Many faculty also use case studies in their curriculum to teach content, connect students with real life data, or provide opportunities for students to put themselves in the decision maker's shoes.

Teaching Strategies for Case-Based Learning

By bringing real world problems into student learning, cases invite active participation and innovative solutions to problems as they work together to reach a judgment, decision, recommendation, prediction or other concrete outcome.

The Campus Instructional Consulting unit at Indiana University has created a great resource for case-based learning. The following is from their website which we have permission to use.

Formats for Cases

  • “Finished” cases based on facts: for analysis only, since the solution is indicated or alternate solutions are suggested.
  • “Unfinished” open-ended cases: the results are not yet clear (either because the case has not come to a factual conclusion in real life, or because the instructor has eliminated the final facts.) Students must predict, make choices and offer suggestions that will affect the outcome.
  • Fictional cases: entirely written by the instructor—can be open-ended or finished. Cautionary note: the case must be both complex enough to mimic reality, yet not have so many “red herrings” as to obscure the goal of the exercise.
  • Original documents: news articles, reports with data and statistics, summaries, excerpts from historical writings, artifacts, literary passages, video and audio recordings, ethnographies, etc. With the right questions, these can become problem-solving opportunities. Comparison between two original documents related to the same topic or theme is a strong strategy for encouraging both analysis and synthesis. This gives the opportunity for presenting more than one side of an argument, making the conflicts more complex.

Managing a Case Assignment

  • Design discussions for small groups. 3-6 students are an ideal group size for setting up a discussion on a case.
  • Design the narrative or situation such that it requires participants to reach a judgment, decision, recommendation, prediction or other concrete outcome. If possible, require each group to reach a consensus on the decision requested.
  • Structure the discussion. The instructor should provide a series of written questions to guide small group discussion. Pay careful attention to the sequencing of the questions. Early questions might ask participants to make observations about the facts of the case. Later questions could ask for comparisons, contrasts, and analyses of competing observations or hypotheses. Final questions might ask students to take a position on the matter. The purpose of these questions is to stimulate, guide or prod (but not dictate) participants’ observations and analyses. The questions should be impossible to answer with a simple yes or no.
  • Debrief the discussion to compare group responses. Help the whole class interprets and understand the implications of their solutions.
  • Allow groups to work without instructor interference. The instructor must be comfortable with ambiguity and with adopting the non-traditional roles of witness and resource, rather than authority.

Designing Case Study Questions

Cases can be more or less “directed” by the kinds of questions asked. These kinds of questions can be appended to any case, or could be a handout for participants unfamiliar with case studies on how to approach one.

  • What is the situation—what do you actually know about it from reading the case? (Distinguishes between fact and assumptions under critical understanding)
  • What issues are at stake? (Opportunity for linking to theoretical readings)
  • What questions do you have—what information do you still need? Where/how could you find it?
  • What problem(s) need to be solved? (Opportunity to discuss communication versus conflict, gaps between assumptions, sides of the argument)
  • What are all the possible options? What are the pros/cons of each option?
  • What are the underlying assumptions for [person X] in the case—where do you see them?
  • What criteria should you use when choosing an option? What does that mean about your assumptions?

Managing Discussion and Debate Effectively

  • Delay the problem-solving part until the rest of the discussion has had time to develop. Start with expository questions to clarify the facts, then move to analysis, and finally to evaluation, judgment, and recommendations.
  • Shift points of view: “Now that we’ve seen it from [W’s] standpoint, what’s happening here from [Y’s] standpoint?” What evidence would support Y’s position? What are the dynamics between the two positions?
  • Shift levels of abstraction: if the answer to the question above is “It’s just a bad situation for her,” quotations help: When [Y] says “_____,” what are her assumptions? Or seek more concrete explanations: Why does she hold this point of view?”
  • Ask for benefits/disadvantages of a position; for all sides.
  • Shift time frame— not just to “What’s next?” but also to “How could this situation have been different?” What could have been done earlier to head off this conflict and turn it into a productive conversation? Is it too late to fix this? What are possible leverage points for a more productive discussion? What good can come of the existing situation?
  • Shift to another context: We see how a person who thinks X would see the situation. How would a person who thinks Y see it? We see what happened in the Johannesburg news, how could this be handled in [your town/province]? How might [insert person, organization] address this problem?
  • Follow-up questions: “What do you mean by ___?” Or, “Could you clarify what you said about ___?” (even if it was a pretty clear statement—this gives students time for thinking, developing different views, and exploration in more depth). Or “How would you square that observation with what [name of person] pointed out?”
  • Point out and acknowledge differences in discussion— “that’s an interesting difference from what Sam just said, Sarah. Let’s look at where the differences lie.” (let sides clarify their points before moving on).

Herreid, C. F. (2007). Start with a story: The case study method of teaching college science. NSTA Press.

Select Books available through the Queen's Library

Crosling, G. & Webb, G. (2002). Supporting Student Learning: Case Studies, Experience and Practice from Higher Education. London: Kogan Page

Edwards, H., Smith, B., & Webb, G. (Eds.) (2001). Lecturing: Case Studies, Experience and Practice. London: Kogan Page.

Ellington, H. & Earl, S. (1998). Using Games, Simulations and Interactive Case Studies. Birmingham: Staff and Educational Development Association

Wassermann, S. (1994). Introduction to Case Method Teaching: A Guide to the Galaxy. New York: Teachers College Press, Columbia University.

Online Articles

Bieron, J. & Dinan, F. (1999). Case Studies Across a Science Curriculum. Department of Chemistry and Biochemistry, Canisius College in Buffalo, NY.

Walters. M. R. (1999). Case-stimulated learning within endocrine physiology lectures: An approach applicable to other disciplines. Advances in Physiology Education, 276, 74-78.

Websites and Online Case Collections

The Center for Teaching Excellence at the University of Medicine and Dentistry in New Jersey offers a wide variety of references including 21 links to case repositories in the Health Sciences.

The National Center for Case Study Teaching in Science provides an award-winning library of over 410 cases and case materials while promoting the development and dissemination of innovative materials and sound educational practices for case teaching in the sciences.

Houghton and Mifflin provide an excellent resource for students including on analyzing and writing the case.

HKS Case Program

  • Case Teaching Resources

Teaching With Cases

Included here are resources to learn more about case method and teaching with cases.

What Is A Teaching Case?

This video explores the definition of a teaching case and introduces the rationale for using case method.

Narrated by Carolyn Wood, former director of the HKS Case Program

Learning by the Case Method

Questions for class discussion, common case teaching challenges and possible solutions, teaching with cases tip sheet, teaching ethics by the case method.

The case method is an effective way to increase student engagement and challenge students to integrate and apply skills to real-world problems. In these videos,  Using the Case Method to Teach Public Policy , you'll find invaluable insights into the art of case teaching from one of HKS’s most respected professors, Jose A. Gomez-Ibanez.

Chapter 1: Preparing for Class (2:29)

Chapter 2: How to begin the class and structure the discussion blocks (1:37)

Chapter 3: How to launch the discussion (1:36)

Chapter 4: Tools to manage the class discussion (2:23)

Chapter 5: Encouraging participation and acknowledging students' comments (1:52)

Chapter 6: Transitioning from one block to the next / Importance of body (2:05)

Chapter 7: Using the board plan to feed the discussion (3:33)

Chapter 8: Exploring the richness of the case (1:42)

Chapter 9: The wrap-up. Why teach cases? (2:49)

Case Study Teaching and Learning

  • First Online: 09 July 2020

Cite this chapter

case study teaching questions

  • Riann Singh 2 &
  • Shalini Ramdeo 2  

2220 Accesses

This chapter is the first of three chapters that explore case studies in OD. This chapter presents the fundamentals of case method teaching and learning. It is important to understand such fundamentals before presenting OD cases to readers. In OD and other related fields, the case approach is widely used as a pedagogy for learning by making decisions on information about an issue or problem. Case method teaching and learning strategies attempt to bridge the gap between theoretical and practical applications in any field of study. The chapter also presents the reader with the basics of case method approaches, provides an explanation of its importance in OD, describes how students should approach case method learning, and outlines how they can approach case analysis and discussion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Burgoyne, J., and A. Mumford. 2001. Learning from the case method: A report to the European case. In Clearing house . Cranfield: ECCH.

Google Scholar  

McDade, S.A. 1995. Case study pedagogy to advance critical thinking. Teaching of Psychology 22 (1): 9–10.

Article   Google Scholar  

Geering, J. 2004. What is a case study and what is it good for? American Political Science Review 98 (2): 341–354.

———. 2001. Learning from the case method: A report to the European case. In Clearing house . Cranfield: ECCH.

Golich, V.L., M. Boyer, P. Franko, and S. Lamy. 2000. The ABCs of case teaching. Pew Case Studies in International Affairs .

Bloom, B.S. 1956. Taxonomy of educational objectives: The classification of educational goals . New York, NY: Longmans, Green.

Pun, Hubert. Ivey publishing case teaching and writing workshop 2018. The University of the West Indies-Arthur Lok Jack Global School of Business.

Further Readings

Download references

Author information

Authors and affiliations.

The University of the West Indies, St. Augustine Campus, Trinidad, Saint Kitts and Nevis

Riann Singh & Shalini Ramdeo

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Riann Singh .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s)

About this chapter

Singh, R., Ramdeo, S. (2020). Case Study Teaching and Learning. In: Leading Organizational Development and Change. Palgrave Macmillan, Cham. https://doi.org/10.1007/978-3-030-39123-2_21

Download citation

DOI : https://doi.org/10.1007/978-3-030-39123-2_21

Published : 09 July 2020

Publisher Name : Palgrave Macmillan, Cham

Print ISBN : 978-3-030-39122-5

Online ISBN : 978-3-030-39123-2

eBook Packages : Business and Management Business and Management (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research
  • Utility Menu

University Logo

harvardchan_logo.png

school logo

Harvard T.H. Chan School of Public Health Case-Based Teaching & Learning Initiative

Teaching cases & active learning resources for public health education, writing a "teaching" case study: 10 easy steps, using our case library, access to cases.

Many of our cases are available for sale through Harvard Business Publishing in the  Harvard T.H. Chan case collection . Others are free to download through this website .

Cases in this collection may be used free of charge by Harvard Chan course instructors in their teaching. Contact  Allison Bodznick , Harvard Chan Case Library administrator, for access.

Access to teaching notes

Teaching notes are available as supporting material to many of the cases in the Harvard Chan Case Library. Teaching notes provide an overview of the case and suggested discussion questions, as well as a roadmap for using the case in the classroom.

Access to teaching notes is limited to course instructors only.

  • Teaching notes for cases available through  Harvard Business Publishing may be downloaded after registering for an Educator account .
  • To request teaching notes for cases that are available for free through this website, look for the "Teaching note  available for faculty/instructors " link accompanying the abstract for the case you are interested in; you'll be asked to complete a brief survey verifying your affiliation as an instructor.

Using the Harvard Business Publishing site

Faculty and instructors with university affiliations can register for Educator access on the Harvard Business Publishing website,  where many of our cases are available . An Educator account provides access to teaching notes, full-text review copies of cases, articles, simulations, course planning tools, and discounted pricing for your students.

related case

Filter cases

Case format.

  • Case (116) Apply Case filter
  • Case book (5) Apply Case book filter
  • Case collection (2) Apply Case collection filter
  • Industry or background note (1) Apply Industry or background note filter
  • Simulation or role play (4) Apply Simulation or role play filter
  • Teaching example (1) Apply Teaching example filter
  • Teaching pack (2) Apply Teaching pack filter

Case availability & pricing

  • Available for purchase from Harvard Business Publishing (73) Apply Available for purchase from Harvard Business Publishing filter
  • Download free of charge (50) Apply Download free of charge filter
  • Request from author (4) Apply Request from author filter

Case discipline/subject

  • Child & adolescent health (15) Apply Child & adolescent health filter
  • Maternal & child health (1) Apply Maternal & child health filter
  • Human rights & health (11) Apply Human rights & health filter
  • Women, gender, & health (11) Apply Women, gender, & health filter
  • Social & behavioral sciences (41) Apply Social & behavioral sciences filter
  • Social innovation & entrepreneurship (11) Apply Social innovation & entrepreneurship filter
  • Finance & accounting (10) Apply Finance & accounting filter
  • Environmental health (12) Apply Environmental health filter
  • Epidemiology (6) Apply Epidemiology filter
  • Ethics (5) Apply Ethics filter
  • Global health (28) Apply Global health filter
  • Health policy (35) Apply Health policy filter
  • Healthcare management (55) Apply Healthcare management filter
  • Life sciences (5) Apply Life sciences filter
  • Marketing (15) Apply Marketing filter
  • Multidisciplinary (16) Apply Multidisciplinary filter
  • Nutrition (6) Apply Nutrition filter
  • Population health (8) Apply Population health filter
  • Quality improvement (4) Apply Quality improvement filter
  • Quantative methods (3) Apply Quantative methods filter
  • Social medicine (7) Apply Social medicine filter
  • Technology (6) Apply Technology filter

Geographic focus

  • Cambodia (1) Apply Cambodia filter
  • Australia (1) Apply Australia filter
  • Bangladesh (2) Apply Bangladesh filter
  • China (1) Apply China filter
  • Egypt (1) Apply Egypt filter
  • El Salvador (1) Apply El Salvador filter
  • Guatemala (2) Apply Guatemala filter
  • Haiti (2) Apply Haiti filter
  • Honduras (1) Apply Honduras filter
  • India (3) Apply India filter
  • International/multiple countries (11) Apply International/multiple countries filter
  • Israel (3) Apply Israel filter
  • Japan (2) Apply Japan filter
  • Kenya (2) Apply Kenya filter
  • Liberia (1) Apply Liberia filter
  • Mexico (4) Apply Mexico filter
  • Nigeria (1) Apply Nigeria filter
  • Pakistan (1) Apply Pakistan filter
  • Philippines (1) Apply Philippines filter
  • Rhode Island (1) Apply Rhode Island filter
  • South Africa (2) Apply South Africa filter
  • Turkey (1) Apply Turkey filter
  • Uganda (2) Apply Uganda filter
  • United Kingdom (2) Apply United Kingdom filter
  • United States (63) Apply United States filter
  • California (6) Apply California filter
  • Colorado (2) Apply Colorado filter
  • Connecticut (1) Apply Connecticut filter
  • Louisiana (1) Apply Louisiana filter
  • Maine (1) Apply Maine filter
  • Massachusetts (14) Apply Massachusetts filter
  • Michigan (1) Apply Michigan filter
  • Minnesota (1) Apply Minnesota filter
  • New Jersey (1) Apply New Jersey filter
  • New York (3) Apply New York filter
  • Washington DC (1) Apply Washington DC filter
  • Washington state (2) Apply Washington state filter
  • Zambia (1) Apply Zambia filter

Case keywords

  • Financial analysis & accounting practices (1) Apply Financial analysis & accounting practices filter
  • Law & policy (2) Apply Law & policy filter
  • Sexual & reproductive health & rights (2) Apply Sexual & reproductive health & rights filter
  • Cigarettes & e-cigarettes (1) Apply Cigarettes & e-cigarettes filter
  • Occupational health & safety (2) Apply Occupational health & safety filter
  • Bullying & cyber-bullying (1) Apply Bullying & cyber-bullying filter
  • Sports & athletics (1) Apply Sports & athletics filter
  • Women's health (1) Apply Women's health filter
  • Anchor mission (1) Apply Anchor mission filter
  • Board of directors (1) Apply Board of directors filter
  • Body mass index (1) Apply Body mass index filter
  • Carbon pollution (1) Apply Carbon pollution filter
  • Child protection (2) Apply Child protection filter
  • Collective impact (1) Apply Collective impact filter
  • Colorism (1) Apply Colorism filter
  • Community health (3) Apply Community health filter
  • Community organizing (2) Apply Community organizing filter
  • Corporate social responsibility (2) Apply Corporate social responsibility filter
  • Crisis communications (2) Apply Crisis communications filter
  • DDT (1) Apply DDT filter
  • Dietary supplements (1) Apply Dietary supplements filter
  • Education (3) Apply Education filter
  • Higher education (1) Apply Higher education filter
  • Electronic medical records (1) Apply Electronic medical records filter
  • Air pollution (1) Apply Air pollution filter
  • Lead poisoning (1) Apply Lead poisoning filter
  • Gender-based violence (3) Apply Gender-based violence filter
  • Genetic testing (1) Apply Genetic testing filter
  • Geriatrics (1) Apply Geriatrics filter
  • Global health (3) Apply Global health filter
  • Health (in)equity (6) Apply Health (in)equity filter
  • Health care delivery (3) Apply Health care delivery filter
  • Health reform (1) Apply Health reform filter
  • Homelessness (3) Apply Homelessness filter
  • Housing (1) Apply Housing filter
  • Insecticide (1) Apply Insecticide filter
  • Legislation (2) Apply Legislation filter
  • Management issues (4) Apply Management issues filter
  • Cost accounting (1) Apply Cost accounting filter
  • Differential analysis (1) Apply Differential analysis filter
  • Queuing analysis (1) Apply Queuing analysis filter
  • Marketing (5) Apply Marketing filter
  • Mergers (3) Apply Mergers filter
  • Strategic planning (6) Apply Strategic planning filter
  • Marijuana (1) Apply Marijuana filter
  • Maternal and child health (2) Apply Maternal and child health filter
  • Medical Spending (1) Apply Medical Spending filter
  • Mental health (1) Apply Mental health filter
  • Mercury (1) Apply Mercury filter
  • Monitoring and Evaluation (1) Apply Monitoring and Evaluation filter
  • Non-profit hospital (1) Apply Non-profit hospital filter
  • Pharmaceuticals (5) Apply Pharmaceuticals filter
  • Power plants (2) Apply Power plants filter
  • Prevention (1) Apply Prevention filter
  • Public safety (4) Apply Public safety filter
  • Racism (1) Apply Racism filter
  • Radiation (1) Apply Radiation filter
  • Research practices (1) Apply Research practices filter
  • Rural hospital (2) Apply Rural hospital filter
  • Salmonella (1) Apply Salmonella filter
  • Sanitation (1) Apply Sanitation filter
  • Seafood (1) Apply Seafood filter
  • Skin tanning (1) Apply Skin tanning filter
  • Social business (1) Apply Social business filter
  • Social determinants of health (9) Apply Social determinants of health filter
  • Social Impact Bonds (1) Apply Social Impact Bonds filter
  • Social media (2) Apply Social media filter
  • State governance (2) Apply State governance filter
  • Statistics (1) Apply Statistics filter
  • Surveillance (3) Apply Surveillance filter
  • United Nations (1) Apply United Nations filter
  • Vaccination (4) Apply Vaccination filter
  • Water (3) Apply Water filter
  • Wellness (1) Apply Wellness filter
  • Workplace/employee health (4) Apply Workplace/employee health filter
  • World Health Organization (3) Apply World Health Organization filter

Supplemental teaching material

  • Additional teaching materials available (12) Apply Additional teaching materials available filter
  • Simulation (2) Apply Simulation filter
  • Multi-part case (18) Apply Multi-part case filter
  • Teaching note available (70) Apply Teaching note available filter

Author affiliation

  • Global Health Education and Learning Incubator at Harvard University (12) Apply Global Health Education and Learning Incubator at Harvard University filter
  • Harvard Business School (22) Apply Harvard Business School filter
  • Harvard Kennedy School of Government (1) Apply Harvard Kennedy School of Government filter
  • Harvard Malaria Initiative (1) Apply Harvard Malaria Initiative filter
  • Harvard T.H. Chan School of Public Health (98) Apply Harvard T.H. Chan School of Public Health filter
  • Social Medicine Consortium (8) Apply Social Medicine Consortium filter
  • Strategic Training Initiative for the Prevention of Eating Disorders (STRIPED) (11) Apply Strategic Training Initiative for the Prevention of Eating Disorders (STRIPED) filter
  • Women, Gender, and Health interdisciplinary concentration (1) Apply Women, Gender, and Health interdisciplinary concentration filter

Health condition

  • Alcohol & drug use (1) Apply Alcohol & drug use filter
  • Opioids (1) Apply Opioids filter
  • Asthma (1) Apply Asthma filter
  • Breast implants (1) Apply Breast implants filter
  • Cancer (3) Apply Cancer filter
  • Breast cancer (2) Apply Breast cancer filter
  • Cervical cancer (1) Apply Cervical cancer filter
  • Cardiovascular disease (1) Apply Cardiovascular disease filter
  • Cholera (1) Apply Cholera filter
  • COVID-19 (3) Apply COVID-19 filter
  • Disordered eating (2) Apply Disordered eating filter
  • Ebola (2) Apply Ebola filter
  • Food poisoning (1) Apply Food poisoning filter
  • HPV (1) Apply HPV filter
  • Influenza (2) Apply Influenza filter
  • Injury (2) Apply Injury filter
  • Road traffic injury (1) Apply Road traffic injury filter
  • Sharps injury (1) Apply Sharps injury filter
  • Malaria (2) Apply Malaria filter
  • Malnutrition (1) Apply Malnutrition filter
  • Meningitis (1) Apply Meningitis filter
  • Obesity (3) Apply Obesity filter
  • Psychological trauma (1) Apply Psychological trauma filter
  • Skin bleaching (1) Apply Skin bleaching filter

Filter resources

Resource format.

  • Article (15) Apply Article filter
  • Video (8) Apply Video filter
  • Blog or post (7) Apply Blog or post filter
  • Slide deck or presentation (5) Apply Slide deck or presentation filter
  • Book (2) Apply Book filter
  • Digital resource (2) Apply Digital resource filter
  • Peer-reviewed research (2) Apply Peer-reviewed research filter
  • Publication (2) Apply Publication filter
  • Conference proceedings (1) Apply Conference proceedings filter
  • Internal Harvard resource (1) Apply Internal Harvard resource filter

Resource topic

  • Teaching, learning, & pedagogy (33) Apply Teaching, learning, & pedagogy filter
  • Teaching & learning with the case method (14) Apply Teaching & learning with the case method filter
  • Active learning (12) Apply Active learning filter
  • Leading discussion (10) Apply Leading discussion filter
  • Case writing (9) Apply Case writing filter
  • Writing a case (8) Apply Writing a case filter
  • Asking effective questions (5) Apply Asking effective questions filter
  • Engaging students (5) Apply Engaging students filter
  • Managing the classroom (4) Apply Managing the classroom filter
  • Writing a teaching note (4) Apply Writing a teaching note filter
  • Teaching inclusively (3) Apply Teaching inclusively filter
  • Active listening (1) Apply Active listening filter
  • Assessing learning (1) Apply Assessing learning filter
  • Planning a course (1) Apply Planning a course filter
  • Problem-based learning (1) Apply Problem-based learning filter
  • Abare, Marce (1)
  • Abdallah, Mouin (1)
  • Abell, Derek (1)
  • Abo Kweder, Amir (1)
  • Al Kasir, Ahmad (1)
  • Alidina, Shehnaz (3)
  • Ammerman, Colleen (1)
  • Andersen, Espen (1)
  • Anyona, Mamka (1)
  • Arnold, Brittany (1)
  • --> Login or Sign Up

Harvard Law School  The Case Studies

The Case Study Teaching Method

It is easy to get confused between the case study method and the case method , particularly as it applies to legal education. The case method in legal education was invented by Christopher Columbus Langdell, Dean of Harvard Law School from 1870 to 1895. Langdell conceived of a way to systematize and simplify legal education by focusing on previous case law that furthered principles or doctrines. To that end, Langdell wrote the first casebook, entitled A Selection of Cases on the Law of Contracts , a collection of settled cases that would illuminate the current state of contract law. Students read the cases and came prepared to analyze them during Socratic question-and-answer sessions in class.

The Harvard Business School case study approach grew out of the Langdellian method. But instead of using established case law, business professors chose real-life examples from the business world to highlight and analyze business principles. HBS-style case studies typically consist of a short narrative (less than 25 pages), told from the point of view of a manager or business leader embroiled in a dilemma. Case studies provide readers with an overview of the main issue; background on the institution, industry, and individuals involved; and the events that led to the problem or decision at hand. Cases are based on interviews or public sources; sometimes, case studies are disguised versions of actual events or composites based on the faculty authors’ experience and knowledge of the subject. Cases are used to illustrate a particular set of learning objectives; as in real life, rarely are there precise answers to the dilemma at hand.

Our suite of free materials offers a great introduction to the case study method. We also offer review copies of our products free of charge to educators and staff at degree-granting institutions.

For more information on the case study teaching method, see:

  • Martha Minow and Todd Rakoff: A Case for Another Case Method
  • HLS Case Studies Blog: Legal Education’s 9 Big Ideas
  • Teaching Units: Problem Solving , Advanced Problem Solving , Skills , Decision Making and Leadership , Professional Development for Law Firms , Professional Development for In-House Counsel
  • Educator Community: Tips for Teachers

Watch this informative video about the Problem-Solving Workshop:

<< Previous: About Harvard Law School Case Studies | Next: Downloading Case Studies >>

Cart

  • SUGGESTED TOPICS
  • The Magazine
  • Newsletters
  • Managing Yourself
  • Managing Teams
  • Work-life Balance
  • The Big Idea
  • Data & Visuals
  • Reading Lists
  • Case Selections
  • HBR Learning
  • Topic Feeds
  • Account Settings
  • Email Preferences

What the Case Study Method Really Teaches

  • Nitin Nohria

case study teaching questions

Seven meta-skills that stick even if the cases fade from memory.

It’s been 100 years since Harvard Business School began using the case study method. Beyond teaching specific subject matter, the case study method excels in instilling meta-skills in students. This article explains the importance of seven such skills: preparation, discernment, bias recognition, judgement, collaboration, curiosity, and self-confidence.

During my decade as dean of Harvard Business School, I spent hundreds of hours talking with our alumni. To enliven these conversations, I relied on a favorite question: “What was the most important thing you learned from your time in our MBA program?”

  • Nitin Nohria is the George F. Baker Professor of Business Administration, Distinguished University Service Professor, and former dean of Harvard Business School.

Partner Center

  • Harvard Business School →
  • Christensen Center →

Teaching by the Case Method

  • Preparing to Teach
  • Leading in the Classroom
  • Providing Assessment & Feedback
  • Sample Class

Case Method in Practice

Chris Christensen described case method teaching as "the art of managing uncertainty"—a process in which the instructor serves as "planner, host, moderator, devil's advocate, fellow-student, and judge," all in search of solutions to real-world problems and challenges.

Unlike lectures, case method classes unfold without a detailed script. Successful instructors simultaneously manage content and process, and they must prepare rigorously for both. Case method teachers learn to balance planning and spontaneity. In practice, they pursue opportunities and "teachable moments" that emerge throughout the discussion, and deftly guide students toward discovery and learning on multiple levels. The principles and techniques are developed, Christensen says, "through collaboration and cooperation with friends and colleagues, and through self-observation and reflection."

This section of the Christensen Center website explores the Case Method in Practice along the following dimensions:

  • Providing Assessment and Feedback

Each subsection provides perspectives and guidance through a written overview, supplemented by video commentary from experienced case method instructors. Where relevant, links are included to downloadable documents produced by the Christensen Center or Harvard Business School Publishing. References for further reading are provided as well.

An additional subsection, entitled Resources, appears at the end. It combines references from throughout the Case Method in Practice section with additional information on published materials and websites that may be of interest to prospective, new, and experienced case method instructors.

Note: We would like to thank Harvard Business School Publishing for permission to incorporate the video clips that appear in the Case Method in Practice section of our website. The clips are drawn from video excerpts included in Participant-Centered Learning and the Case Method: A DVD Case Teaching Tool (HBSP, 2003).

Christensen Center Tip Sheets

  • Characteristics of Effective Case Method Teaching
  • Elements of Effective Class Preparation
  • Guidelines for Effective Observation of Case Instructors
  • In-Class Assessment of Discussion-Based Teaching
  • Questions for Class Discussions
  • Teaching Quantitative Material
  • Strategies and Tactics for Sensitive Topics

Curriculum Innovation

The case method has evolved so students may act as decision-makers in new engaging formats:

Game Simulations

Multimedia cases, ideo: human-centered service design.

loading

How it works

For Business

Join Mind Tools

Article • 10 min read

Case Study-Based Learning

Enhancing learning through immediate application.

By the Mind Tools Content Team

case study teaching questions

If you've ever tried to learn a new concept, you probably appreciate that "knowing" is different from "doing." When you have an opportunity to apply your knowledge, the lesson typically becomes much more real.

Adults often learn differently from children, and we have different motivations for learning. Typically, we learn new skills because we want to. We recognize the need to learn and grow, and we usually need – or want – to apply our newfound knowledge soon after we've learned it.

A popular theory of adult learning is andragogy (the art and science of leading man, or adults), as opposed to the better-known pedagogy (the art and science of leading children). Malcolm Knowles , a professor of adult education, was considered the father of andragogy, which is based on four key observations of adult learners:

  • Adults learn best if they know why they're learning something.
  • Adults often learn best through experience.
  • Adults tend to view learning as an opportunity to solve problems.
  • Adults learn best when the topic is relevant to them and immediately applicable.

This means that you'll get the best results with adults when they're fully involved in the learning experience. Give an adult an opportunity to practice and work with a new skill, and you have a solid foundation for high-quality learning that the person will likely retain over time.

So, how can you best use these adult learning principles in your training and development efforts? Case studies provide an excellent way of practicing and applying new concepts. As such, they're very useful tools in adult learning, and it's important to understand how to get the maximum value from them.

What Is a Case Study?

Case studies are a form of problem-based learning, where you present a situation that needs a resolution. A typical business case study is a detailed account, or story, of what happened in a particular company, industry, or project over a set period of time.

The learner is given details about the situation, often in a historical context. The key players are introduced. Objectives and challenges are outlined. This is followed by specific examples and data, which the learner then uses to analyze the situation, determine what happened, and make recommendations.

The depth of a case depends on the lesson being taught. A case study can be two pages, 20 pages, or more. A good case study makes the reader think critically about the information presented, and then develop a thorough assessment of the situation, leading to a well-thought-out solution or recommendation.

Why Use a Case Study?

Case studies are a great way to improve a learning experience, because they get the learner involved, and encourage immediate use of newly acquired skills.

They differ from lectures or assigned readings because they require participation and deliberate application of a broad range of skills. For example, if you study financial analysis through straightforward learning methods, you may have to calculate and understand a long list of financial ratios (don't worry if you don't know what these are). Likewise, you may be given a set of financial statements to complete a ratio analysis. But until you put the exercise into context, you may not really know why you're doing the analysis.

With a case study, however, you might explore whether a bank should provide financing to a borrower, or whether a company is about to make a good acquisition. Suddenly, the act of calculating ratios becomes secondary – it's more important to understand what the ratios tell you. This is how case studies can make the difference between knowing what to do, and knowing how, when, and why to do it.

Then, what really separates case studies from other practical forms of learning – like scenarios and simulations – is the ability to compare the learner's recommendations with what actually happened. When you know what really happened, it's much easier to evaluate the "correctness" of the answers given.

When to Use a Case Study

As you can see, case studies are powerful and effective training tools. They also work best with practical, applied training, so make sure you use them appropriately.

Remember these tips:

  • Case studies tend to focus on why and how to apply a skill or concept, not on remembering facts and details. Use case studies when understanding the concept is more important than memorizing correct responses.
  • Case studies are great team-building opportunities. When a team gets together to solve a case, they'll have to work through different opinions, methods, and perspectives.
  • Use case studies to build problem-solving skills, particularly those that are valuable when applied, but are likely to be used infrequently. This helps people get practice with these skills that they might not otherwise get.
  • Case studies can be used to evaluate past problem solving. People can be asked what they'd do in that situation, and think about what could have been done differently.

Ensuring Maximum Value From Case Studies

The first thing to remember is that you already need to have enough theoretical knowledge to handle the questions and challenges in the case study. Otherwise, it can be like trying to solve a puzzle with some of the pieces missing.

Here are some additional tips for how to approach a case study. Depending on the exact nature of the case, some tips will be more relevant than others.

  • Read the case at least three times before you start any analysis. Case studies usually have lots of details, and it's easy to miss something in your first, or even second, reading.
  • Once you're thoroughly familiar with the case, note the facts. Identify which are relevant to the tasks you've been assigned. In a good case study, there are often many more facts than you need for your analysis.
  • If the case contains large amounts of data, analyze this data for relevant trends. For example, have sales dropped steadily, or was there an unexpected high or low point?
  • If the case involves a description of a company's history, find the key events, and consider how they may have impacted the current situation.
  • Consider using techniques like SWOT analysis and Porter's Five Forces Analysis to understand the organization's strategic position.
  • Stay with the facts when you draw conclusions. These include facts given in the case as well as established facts about the environmental context. Don't rely on personal opinions when you put together your answers.

Writing a Case Study

You may have to write a case study yourself. These are complex documents that take a while to research and compile. The quality of the case study influences the quality of the analysis. Here are some tips if you want to write your own:

  • Write your case study as a structured story. The goal is to capture an interesting situation or challenge and then bring it to life with words and information. You want the reader to feel a part of what's happening.
  • Present information so that a "right" answer isn't obvious. The goal is to develop the learner's ability to analyze and assess, not necessarily to make the same decision as the people in the actual case.
  • Do background research to fully understand what happened and why. You may need to talk to key stakeholders to get their perspectives as well.
  • Determine the key challenge. What needs to be resolved? The case study should focus on one main question or issue.
  • Define the context. Talk about significant events leading up to the situation. What organizational factors are important for understanding the problem and assessing what should be done? Include cultural factors where possible.
  • Identify key decision makers and stakeholders. Describe their roles and perspectives, as well as their motivations and interests.
  • Make sure that you provide the right data to allow people to reach appropriate conclusions.
  • Make sure that you have permission to use any information you include.

A typical case study structure includes these elements:

  • Executive summary. Define the objective, and state the key challenge.
  • Opening paragraph. Capture the reader's interest.
  • Scope. Describe the background, context, approach, and issues involved.
  • Presentation of facts. Develop an objective picture of what's happening.
  • Description of key issues. Present viewpoints, decisions, and interests of key parties.

Because case studies have proved to be such effective teaching tools, many are already written. Some excellent sources of free cases are The Times 100 , CasePlace.org , and Schroeder & Schroeder Inc . You can often search for cases by topic or industry. These cases are expertly prepared, based mostly on real situations, and used extensively in business schools to teach management concepts.

Case studies are a great way to improve learning and training. They provide learners with an opportunity to solve a problem by applying what they know.

There are no unpleasant consequences for getting it "wrong," and cases give learners a much better understanding of what they really know and what they need to practice.

Case studies can be used in many ways, as team-building tools, and for skill development. You can write your own case study, but a large number are already prepared. Given the enormous benefits of practical learning applications like this, case studies are definitely something to consider adding to your next training session.

Knowles, M. (1973). 'The Adult Learner: A Neglected Species [online].' Available here .

You've accessed 1 of your 2 free resources.

Get unlimited access

Discover more content

The 7 cs of communication.

A Checklist for Clear Communication

Creative Problem-Solving Technique

Using Divergent and Convergent Thinking

Add comment

Comments (0)

Be the first to comment!

case study teaching questions

Gain essential management and leadership skills

Busy schedule? No problem. Learn anytime, anywhere. 

Subscribe to unlimited access to meticulously researched, evidence-based resources.

Join today and take advantage of our 30% offer, available until May 31st .

Sign-up to our newsletter

Subscribing to the Mind Tools newsletter will keep you up-to-date with our latest updates and newest resources.

Subscribe now

Business Skills

Personal Development

Leadership and Management

Member Extras

Most Popular

Latest Updates

Article a0pows5

Winning Body Language

Article andjil2

Business Stripped Bare

Mind Tools Store

About Mind Tools Content

Discover something new today

Nine ways to get the best from x (twitter).

Growing Your Business Quickly and Safely on Social Media

Managing Your Emotions at Work

Controlling Your Feelings... Before They Control You

How Emotionally Intelligent Are You?

Boosting Your People Skills

Self-Assessment

What's Your Leadership Style?

Learn About the Strengths and Weaknesses of the Way You Like to Lead

Recommended for you

Paired comparison analysis.

Working Out Relative Importances

Business Operations and Process Management

Strategy Tools

Customer Service

Business Ethics and Values

Handling Information and Data

Project Management

Knowledge Management

Self-Development and Goal Setting

Time Management

Presentation Skills

Learning Skills

Career Skills

Communication Skills

Negotiation, Persuasion and Influence

Working With Others

Difficult Conversations

Creativity Tools

Self-Management

Work-Life Balance

Stress Management and Wellbeing

Coaching and Mentoring

Change Management

Team Management

Managing Conflict

Delegation and Empowerment

Performance Management

Leadership Skills

Developing Your Team

Talent Management

Problem Solving

Decision Making

Member Podcast

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • J Microbiol Biol Educ
  • v.16(1); 2015 May

Case Study Teaching Method Improves Student Performance and Perceptions of Learning Gains †

Associated data.

  • Appendix 1: Example assessment questions used to assess the effectiveness of case studies at promoting learning
  • Appendix 2: Student learning gains were assessed using a modified version of the SALG course evaluation tool

Following years of widespread use in business and medical education, the case study teaching method is becoming an increasingly common teaching strategy in science education. However, the current body of research provides limited evidence that the use of published case studies effectively promotes the fulfillment of specific learning objectives integral to many biology courses. This study tested the hypothesis that case studies are more effective than classroom discussions and textbook reading at promoting learning of key biological concepts, development of written and oral communication skills, and comprehension of the relevance of biological concepts to everyday life. This study also tested the hypothesis that case studies produced by the instructor of a course are more effective at promoting learning than those produced by unaffiliated instructors. Additionally, performance on quantitative learning assessments and student perceptions of learning gains were analyzed to determine whether reported perceptions of learning gains accurately reflect academic performance. The results reported here suggest that case studies, regardless of the source, are significantly more effective than other methods of content delivery at increasing performance on examination questions related to chemical bonds, osmosis and diffusion, mitosis and meiosis, and DNA structure and replication. This finding was positively correlated to increased student perceptions of learning gains associated with oral and written communication skills and the ability to recognize connections between biological concepts and other aspects of life. Based on these findings, case studies should be considered as a preferred method for teaching about a variety of concepts in science courses.

INTRODUCTION

The case study teaching method is a highly adaptable style of teaching that involves problem-based learning and promotes the development of analytical skills ( 8 ). By presenting content in the format of a narrative accompanied by questions and activities that promote group discussion and solving of complex problems, case studies facilitate development of the higher levels of Bloom’s taxonomy of cognitive learning; moving beyond recall of knowledge to analysis, evaluation, and application ( 1 , 9 ). Similarly, case studies facilitate interdisciplinary learning and can be used to highlight connections between specific academic topics and real-world societal issues and applications ( 3 , 9 ). This has been reported to increase student motivation to participate in class activities, which promotes learning and increases performance on assessments ( 7 , 16 , 19 , 23 ). For these reasons, case-based teaching has been widely used in business and medical education for many years ( 4 , 11 , 12 , 14 ). Although case studies were considered a novel method of science education just 20 years ago, the case study teaching method has gained popularity in recent years among an array of scientific disciplines such as biology, chemistry, nursing, and psychology ( 5 – 7 , 9 , 11 , 13 , 15 – 17 , 21 , 22 , 24 ).

Although there is now a substantive and growing body of literature describing how to develop and use case studies in science teaching, current research on the effectiveness of case study teaching at meeting specific learning objectives is of limited scope and depth. Studies have shown that working in groups during completion of case studies significantly improves student perceptions of learning and may increase performance on assessment questions, and that the use of clickers can increase student engagement in case study activities, particularly among non-science majors, women, and freshmen ( 7 , 21 , 22 ). Case study teaching has been shown to improve exam performance in an anatomy and physiology course, increasing the mean score across all exams given in a two-semester sequence from 66% to 73% ( 5 ). Use of case studies was also shown to improve students’ ability to synthesize complex analytical questions about the real-world issues associated with a scientific topic ( 6 ). In a high school chemistry course, it was demonstrated that the case study teaching method produces significant increases in self-reported control of learning, task value, and self-efficacy for learning and performance ( 24 ). This effect on student motivation is important because enhanced motivation for learning activities has been shown to promote student engagement and academic performance ( 19 , 24 ). Additionally, faculty from a number of institutions have reported that using case studies promotes critical thinking, learning, and participation among students, especially in terms of the ability to view an issue from multiple perspectives and to grasp the practical application of core course concepts ( 23 ).

Despite what is known about the effectiveness of case studies in science education, questions remain about the functionality of the case study teaching method at promoting specific learning objectives that are important to many undergraduate biology courses. A recent survey of teachers who use case studies found that the topics most often covered in general biology courses included genetics and heredity, cell structure, cells and energy, chemistry of life, and cell cycle and cancer, suggesting that these topics should be of particular interest in studies that examine the effectiveness of the case study teaching method ( 8 ). However, the existing body of literature lacks direct evidence that the case study method is an effective tool for teaching about this collection of important topics in biology courses. Further, the extent to which case study teaching promotes development of science communication skills and the ability to understand the connections between biological concepts and everyday life has not been examined, yet these are core learning objectives shared by a variety of science courses. Although many instructors have produced case studies for use in their own classrooms, the production of novel case studies is time-consuming and requires skills that not all instructors have perfected. It is therefore important to determine whether case studies published by instructors who are unaffiliated with a particular course can be used effectively and obviate the need for each instructor to develop new case studies for their own courses. The results reported herein indicate that teaching with case studies results in significantly higher performance on examination questions about chemical bonds, osmosis and diffusion, mitosis and meiosis, and DNA structure and replication than that achieved by class discussions and textbook reading for topics of similar complexity. Case studies also increased overall student perceptions of learning gains and perceptions of learning gains specifically related to written and oral communication skills and the ability to grasp connections between scientific topics and their real-world applications. The effectiveness of the case study teaching method at increasing academic performance was not correlated to whether the case study used was authored by the instructor of the course or by an unaffiliated instructor. These findings support increased use of published case studies in the teaching of a variety of biological concepts and learning objectives.

Student population

This study was conducted at Kingsborough Community College, which is part of the City University of New York system, located in Brooklyn, New York. Kingsborough Community College has a diverse population of approximately 19,000 undergraduate students. The student population included in this study was enrolled in the first semester of a two-semester sequence of general (introductory) biology for biology majors during the spring, winter, or summer semester of 2014. A total of 63 students completed the course during this time period; 56 students consented to the inclusion of their data in the study. Of the students included in the study, 23 (41%) were male and 33 (59%) were female; 40 (71%) were registered as college freshmen and 16 (29%) were registered as college sophomores. To normalize participant groups, the same student population pooled from three classes taught by the same instructor was used to assess both experimental and control teaching methods.

Course material

The four biological concepts assessed during this study (chemical bonds, osmosis and diffusion, mitosis and meiosis, and DNA structure and replication) were selected as topics for studying the effectiveness of case study teaching because they were the key concepts addressed by this particular course that were most likely to be taught in a number of other courses, including biology courses for both majors and nonmajors at outside institutions. At the start of this study, relevant existing case studies were freely available from the National Center for Case Study Teaching in Science (NCCSTS) to address mitosis and meiosis and DNA structure and replication, but published case studies that appropriately addressed chemical bonds and osmosis and diffusion were not available. Therefore, original case studies that addressed the latter two topics were produced as part of this study, and case studies produced by unaffiliated instructors and published by the NCCSTS were used to address the former two topics. By the conclusion of this study, all four case studies had been peer-reviewed and accepted for publication by the NCCSTS ( http://sciencecases.lib.buffalo.edu/cs/ ). Four of the remaining core topics covered in this course (macromolecules, photosynthesis, genetic inheritance, and translation) were selected as control lessons to provide control assessment data.

To minimize extraneous variation, control topics and assessments were carefully matched in complexity, format, and number with case studies, and an equal amount of class time was allocated for each case study and the corresponding control lesson. Instruction related to control lessons was delivered using minimal slide-based lectures, with emphasis on textbook reading assignments accompanied by worksheets completed by students in and out of the classroom, and small and large group discussion of key points. Completion of activities and discussion related to all case studies and control topics that were analyzed was conducted in the classroom, with the exception of the take-home portion of the osmosis and diffusion case study.

Data collection and analysis

This study was performed in accordance with a protocol approved by the Kingsborough Community College Human Research Protection Program and the Institutional Review Board (IRB) of the City University of New York (CUNY IRB reference 539938-1; KCC IRB application #: KCC 13-12-126-0138). Assessment scores were collected from regularly scheduled course examinations. For each case study, control questions were included on the same examination that were similar in number, format, point value, and difficulty level, but related to a different topic covered in the course that was of similar complexity. Complexity and difficulty of both case study and control questions were evaluated using experiential data from previous iterations of the course; the Bloom’s taxonomy designation and amount of material covered by each question, as well as the average score on similar questions achieved by students in previous iterations of the course was considered in determining appropriate controls. All assessment questions were scored using a standardized, pre-determined rubric. Student perceptions of learning gains were assessed using a modified version of the Student Assessment of Learning Gains (SALG) course evaluation tool ( http://www.salgsite.org ), distributed in hardcopy and completed anonymously during the last week of the course. Students were presented with a consent form to opt-in to having their data included in the data analysis. After the course had concluded and final course grades had been posted, data from consenting students were pooled in a database and identifying information was removed prior to analysis. Statistical analysis of data was conducted using the Kruskal-Wallis one-way analysis of variance and calculation of the R 2 coefficient of determination.

Teaching with case studies improves performance on learning assessments, independent of case study origin

To evaluate the effectiveness of the case study teaching method at promoting learning, student performance on examination questions related to material covered by case studies was compared with performance on questions that covered material addressed through classroom discussions and textbook reading. The latter questions served as control items; assessment items for each case study were compared with control items that were of similar format, difficulty, and point value ( Appendix 1 ). Each of the four case studies resulted in an increase in examination performance compared with control questions that was statistically significant, with an average difference of 18% ( Fig. 1 ). The mean score on case study-related questions was 73% for the chemical bonds case study, 79% for osmosis and diffusion, 76% for mitosis and meiosis, and 70% for DNA structure and replication ( Fig. 1 ). The mean score for non-case study-related control questions was 60%, 54%, 60%, and 52%, respectively ( Fig. 1 ). In terms of examination performance, no significant difference between case studies produced by the instructor of the course (chemical bonds and osmosis and diffusion) and those produced by unaffiliated instructors (mitosis and meiosis and DNA structure and replication) was indicated by the Kruskal-Wallis one-way analysis of variance. However, the 25% difference between the mean score on questions related to the osmosis and diffusion case study and the mean score on the paired control questions was notably higher than the 13–18% differences observed for the other case studies ( Fig. 1 ).

An external file that holds a picture, illustration, etc.
Object name is jmbe-16-21f1.jpg

Case study teaching method increases student performance on examination questions. Mean score on a set of examination questions related to lessons covered by case studies (black bars) and paired control questions of similar format and difficulty about an unrelated topic (white bars). Chemical bonds, n = 54; Osmosis and diffusion, n = 54; Mitosis and meiosis, n = 51; DNA structure and replication, n = 50. Error bars represent the standard error of the mean (SEM). Asterisk indicates p < 0.05.

Case study teaching increases student perception of learning gains related to core course objectives

Student learning gains were assessed using a modified version of the SALG course evaluation tool ( Appendix 2 ). To determine whether completing case studies was more effective at increasing student perceptions of learning gains than completing textbook readings or participating in class discussions, perceptions of student learning gains for each were compared. In response to the question “Overall, how much did each of the following aspects of the class help your learning?” 82% of students responded that case studies helped a “good” or “great” amount, compared with 70% for participating in class discussions and 58% for completing textbook reading; only 4% of students responded that case studies helped a “small amount” or “provided no help,” compared with 2% for class discussions and 22% for textbook reading ( Fig. 2A ). The differences in reported learning gains derived from the use of case studies compared with class discussion and textbook readings were statistically significant, while the difference in learning gains associated with class discussion compared with textbook reading was not statistically significant by a narrow margin ( p = 0.051).

An external file that holds a picture, illustration, etc.
Object name is jmbe-16-21f2.jpg

The case study teaching method increases student perceptions of learning gains. Student perceptions of learning gains are indicated by plotting responses to the question “How much did each of the following activities: (A) Help your learning overall? (B) Improve your ability to communicate your knowledge of scientific concepts in writing? (C) Improve your ability to communicate your knowledge of scientific concepts orally? (D) Help you understand the connections between scientific concepts and other aspects of your everyday life?” Reponses are represented as follows: Helped a great amount (black bars); Helped a good amount (dark gray bars); Helped a moderate amount (medium gray bars); Helped a small amount (light gray bars); Provided no help (white bars). Asterisk indicates p < 0.05.

To elucidate the effectiveness of case studies at promoting learning gains related to specific course learning objectives compared with class discussions and textbook reading, students were asked how much each of these methods of content delivery specifically helped improve skills that were integral to fulfilling three main course objectives. When students were asked how much each of the methods helped “improve your ability to communicate knowledge of scientific concepts in writing,” 81% of students responded that case studies help a “good” or “great” amount, compared with 63% for class discussions and 59% for textbook reading; only 6% of students responded that case studies helped a “small amount” or “provided no help,” compared with 8% for class discussions and 21% for textbook reading ( Fig. 2B ). When the same question was posed about the ability to communicate orally, 81% of students responded that case studies help a “good” or “great” amount, compared with 68% for class discussions and 50% for textbook reading, while the respective response rates for helped a “small amount” or “provided no help,” were 4%, 6%, and 25% ( Fig. 2C ). The differences in learning gains associated with both written and oral communication were statistically significant when completion of case studies was compared with either participation in class discussion or completion of textbook readings. Compared with textbook reading, class discussions led to a statistically significant increase in oral but not written communication skills.

Students were then asked how much each of the methods helped them “understand the connections between scientific concepts and other aspects of your everyday life.” A total of 79% of respondents declared that case studies help a “good” or “great” amount, compared with 70% for class discussions and 57% for textbook reading ( Fig. 2D ). Only 4% stated that case studies and class discussions helped a “small amount” or “provided no help,” compared with 21% for textbook reading ( Fig. 2D ). Similar to overall learning gains, the use of case studies significantly increased the ability to understand the relevance of science to everyday life compared with class discussion and textbook readings, while the difference in learning gains associated with participation in class discussion compared with textbook reading was not statistically significant ( p = 0.054).

Student perceptions of learning gains resulting from case study teaching are positively correlated to increased performance on examinations, but independent of case study author

To test the hypothesis that case studies produced specifically for this course by the instructor were more effective at promoting learning gains than topically relevant case studies published by authors not associated with this course, perceptions of learning gains were compared for each of the case studies. For both of the case studies produced by the instructor of the course, 87% of students indicated that the case study provided a “good” or “great” amount of help to their learning, and 2% indicated that the case studies provided “little” or “no” help ( Table 1 ). In comparison, an average of 85% of students indicated that the case studies produced by an unaffiliated instructor provided a “good” or “great” amount of help to their learning, and 4% indicated that the case studies provided “little” or “no” help ( Table 1 ). The instructor-produced case studies yielded both the highest and lowest percentage of students reporting the highest level of learning gains (a “great” amount), while case studies produced by unaffiliated instructors yielded intermediate values. Therefore, it can be concluded that the effectiveness of case studies at promoting learning gains is not significantly affected by whether or not the course instructor authored the case study.

Case studies positively affect student perceptions of learning gains about various biological topics.

Finally, to determine whether performance on examination questions accurately predicts student perceptions of learning gains, mean scores on examination questions related to case studies were compared with reported perceptions of learning gains for those case studies ( Fig. 3 ). The coefficient of determination (R 2 value) was 0.81, indicating a strong, but not definitive, positive correlation between perceptions of learning gains and performance on examinations, suggesting that student perception of learning gains is a valid tool for assessing the effectiveness of case studies ( Fig. 3 ). This correlation was independent of case study author.

An external file that holds a picture, illustration, etc.
Object name is jmbe-16-21f3.jpg

Perception of learning gains but not author of case study is positively correlated to score on related examination questions. Percentage of students reporting that each specific case study provided “a great amount of help” to their learning was plotted against the point difference between mean score on examination questions related to that case study and mean score on paired control questions. Positive point differences indicate how much higher the mean scores on case study-related questions were than the mean scores on paired control questions. Black squares represent case studies produced by the instructor of the course; white squares represent case studies produced by unaffiliated instructors. R 2 value indicates the coefficient of determination.

The purpose of this study was to test the hypothesis that teaching with case studies produced by the instructor of a course is more effective at promoting learning gains than using case studies produced by unaffiliated instructors. This study also tested the hypothesis that the case study teaching method is more effective than class discussions and textbook reading at promoting learning gains associated with four of the most commonly taught topics in undergraduate general biology courses: chemical bonds, osmosis and diffusion, mitosis and meiosis, and DNA structure and replication. In addition to assessing content-based learning gains, development of written and oral communication skills and the ability to connect scientific topics with real-world applications was also assessed, because these skills were overarching learning objectives of this course, and classroom activities related to both case studies and control lessons were designed to provide opportunities for students to develop these skills. Finally, data were analyzed to determine whether performance on examination questions is positively correlated to student perceptions of learning gains resulting from case study teaching.

Compared with equivalent control questions about topics of similar complexity taught using class discussions and textbook readings, all four case studies produced statistically significant increases in the mean score on examination questions ( Fig. 1 ). This indicates that case studies are more effective than more commonly used, traditional methods of content delivery at promoting learning of a variety of core concepts covered in general biology courses. The average increase in score on each test item was equivalent to nearly two letter grades, which is substantial enough to elevate the average student performance on test items from the unsatisfactory/failing range to the satisfactory/passing range. The finding that there was no statistical difference between case studies in terms of performance on examination questions suggests that case studies are equally effective at promoting learning of disparate topics in biology. The observations that students did not perform significantly less well on the first case study presented (chemical bonds) compared with the other case studies and that performance on examination questions did not progressively increase with each successive case study suggests that the effectiveness of case studies is not directly related to the amount of experience students have using case studies. Furthermore, anecdotal evidence from previous semesters of this course suggests that, of the four topics addressed by cases in this study, DNA structure and function and osmosis and diffusion are the first and second most difficult for students to grasp. The lack of a statistical difference between case studies therefore suggests that the effectiveness of a case study at promoting learning gains is not directly proportional to the difficulty of the concept covered. However, the finding that use of the osmosis and diffusion case study resulted in the greatest increase in examination performance compared with control questions and also produced the highest student perceptions of learning gains is noteworthy and could be attributed to the fact that it was the only case study evaluated that included a hands-on experiment. Because the inclusion of a hands-on kinetic activity may synergistically enhance student engagement and learning and result in an even greater increase in learning gains than case studies that lack this type of activity, it is recommended that case studies that incorporate this type of activity be preferentially utilized.

Student perceptions of learning gains are strongly motivating factors for engagement in the classroom and academic performance, so it is important to assess the effect of any teaching method in this context ( 19 , 24 ). A modified version of the SALG course evaluation tool was used to assess student perceptions of learning gains because it has been previously validated as an efficacious tool ( Appendix 2 ) ( 20 ). Using the SALG tool, case study teaching was demonstrated to significantly increase student perceptions of overall learning gains compared with class discussions and textbook reading ( Fig. 2A ). Case studies were shown to be particularly useful for promoting perceived development of written and oral communication skills and for demonstrating connections between scientific topics and real-world issues and applications ( Figs. 2B–2D ). Further, student perceptions of “great” learning gains positively correlated with increased performance on examination questions, indicating that assessment of learning gains using the SALG tool is both valid and useful in this course setting ( Fig. 3 ). These findings also suggest that case study teaching could be used to increase student motivation and engagement in classroom activities and thus promote learning and performance on assessments. The finding that textbook reading yielded the lowest student perceptions of learning gains was not unexpected, since reading facilitates passive learning while the class discussions and case studies were both designed to promote active learning.

Importantly, there was no statistical difference in student performance on examinations attributed to the two case studies produced by the instructor of the course compared with the two case studies produced by unaffiliated instructors. The average difference between the two instructor-produced case studies and the two case studies published by unaffiliated instructors was only 3% in terms of both the average score on examination questions (76% compared with 73%) and the average increase in score compared with paired control items (14% compared with 17%) ( Fig. 1 ). Even when considering the inherent qualitative differences of course grades, these differences are negligible. Similarly, the effectiveness of case studies at promoting learning gains was not significantly affected by the origin of the case study, as evidenced by similar percentages of students reporting “good” and “great” learning gains regardless of whether the case study was produced by the course instructor or an unaffiliated instructor ( Table 1 ).

The observation that case studies published by unaffiliated instructors are just as effective as those produced by the instructor of a course suggests that instructors can reasonably rely on the use of pre-published case studies relevant to their class rather than investing the considerable time and effort required to produce a novel case study. Case studies covering a wide range of topics in the sciences are available from a number of sources, and many of them are free access. The National Center for Case Study Teaching in Science (NCCSTS) database ( http://sciencecases.lib.buffalo.edu/cs/ ) contains over 500 case studies that are freely available to instructors, and are accompanied by teaching notes that provide logistical advice and additional resources for implementing the case study, as well as a set of assessment questions with a password-protected answer key. Case study repositories are also maintained by BioQUEST Curriculum Consortium ( http://www.bioquest.org/icbl/cases.php ) and the Science Case Network ( http://sciencecasenet.org ); both are available for use by instructors from outside institutions.

It should be noted that all case studies used in this study were rigorously peer-reviewed and accepted for publication by the NCCSTS prior to the completion of this study ( 2 , 10 , 18 , 25 ); the conclusions of this study may not apply to case studies that were not developed in accordance with similar standards. Because case study teaching involves skills such as creative writing and management of dynamic group discussion in a way that is not commonly integrated into many other teaching methods, it is recommended that novice case study teachers seek training or guidance before writing their first case study or implementing the method. The lack of a difference observed in the use of case studies from different sources should be interpreted with some degree of caution since only two sources were represented in this study, and each by only two cases. Furthermore, in an educational setting, quantitative differences in test scores might produce meaningful qualitative differences in course grades even in the absence of a p value that is statistically significant. For example, there is a meaningful qualitative difference between test scores that result in an average grade of C− and test scores that result in an average grade of C+, even if there is no statistically significant difference between the two sets of scores.

In the future, it could be informative to confirm these findings using a larger cohort, by repeating the study at different institutions with different instructors, by evaluating different case studies, and by directly comparing the effectiveness of the case studying teaching method with additional forms of instruction, such as traditional chalkboard and slide-based lecturing, and laboratory-based activities. It may also be informative to examine whether demographic factors such as student age and gender modulate the effectiveness of the case study teaching method, and whether case studies work equally well for non-science majors taking a science course compared with those majoring in the subject. Since the topical material used in this study is often included in other classes in both high school and undergraduate education, such as cell biology, genetics, and chemistry, the conclusions of this study are directly applicable to a broad range of courses. Presently, it is recommended that the use of case studies in teaching undergraduate general biology and other science courses be expanded, especially for the teaching of capacious issues with real-world applications and in classes where development of written and oral communication skills are key objectives. The use of case studies that involve hands-on activities should be emphasized to maximize the benefit of this teaching method. Importantly, instructors can be confident in the use of pre-published case studies to promote learning, as there is no indication that the effectiveness of the case study teaching method is reliant on the production of novel, customized case studies for each course.

SUPPLEMENTAL MATERIALS

Acknowledgments.

This article benefitted from a President’s Faculty Innovation Grant, Kingsborough Community College. The author declares that there are no conflicts of interest.

† Supplemental materials available at http://jmbe.asm.org

  • Publications
  • Conferences & Events
  • Professional Learning
  • Science Standards
  • Awards & Competitions
  • Instructional Materials
  • Free Resources
  • American Rescue Plan
  • For Preservice Teachers
  • NCCSTS Case Collection
  • Partner Jobs in Education
  • Interactive eBooks+
  • Digital Catalog
  • Regional Product Representatives
  • e-Newsletters
  • Bestselling Books
  • Latest Books
  • Popular Book Series
  • Prospective Authors
  • Web Seminars
  • Exhibits & Sponsorship
  • Conference Reviewers
  • National Conference • Denver 24
  • Leaders Institute 2024
  • National Conference • New Orleans 24
  • Submit a Proposal
  • Latest Resources
  • Professional Learning Units & Courses
  • For Districts
  • Online Course Providers
  • Schools & Districts
  • College Professors & Students
  • The Standards
  • Teachers and Admin
  • eCYBERMISSION
  • Toshiba/NSTA ExploraVision
  • Junior Science & Humanities Symposium
  • Teaching Awards
  • Climate Change
  • Earth & Space Science
  • New Science Teachers
  • Early Childhood
  • Middle School
  • High School
  • Postsecondary
  • Informal Education
  • Journal Articles
  • Lesson Plans
  • e-newsletters
  • Science & Children
  • Science Scope
  • The Science Teacher
  • Journal of College Sci. Teaching
  • Connected Science Learning
  • NSTA Reports
  • Next-Gen Navigator
  • Science Update
  • Teacher Tip Tuesday
  • Trans. Sci. Learning

MyNSTA Community

  • My Collections

The Anti-Cancer Fight with the Wellness Menu

By Michelle Sue, Kenneth W. Yip

Share Start a Discussion

The Anti-Cancer Fight with the Wellness Menu

This directed case study engages students in an accessible discussion of cancer pathogenesis, prevention, and risk factors. Students are introduced to “William,” a middle-aged man worried about his cancer risk. William seeks out his family physician to address his concerns and to learn about ways to decrease his risk of developing cancer. Students learn about the pathogenesis of cancer, including how cancerous cells differ from normal cells, how cancer arises, and how it progresses. Students examine both controllable and uncontrollable risk factors for cancer development, with a focus on nutrition and the design of an anti-cancer menu for a week’s worth of meals. The case study is written for lower-division undergraduate students and is accessible for both science and non-science majors. It introduces fundamental biology concepts and builds a strong foundation for students to critically evaluate online sources, an invaluable skill.

Download Case

   

Date Posted

  • Describe what cancer is and how it forms.
  • Differentiate between controllable and uncontrollable risk factors for cancer.
  • List both controllable and uncontrollable risk factors for cancer.
  • List characteristics of normal and cancerous cells.
  • Understand the importance of preventative measures for cancer.
  • List and apply the CRAP test to correctly assess source credibility.
  • List anti-cancer foods.
  • Consider the ethical considerations of preventative cancer measures at both the corporation and community level.

Cancer; nutrition; disease; prevention; oncology; diet; cell cycle; lifestyle; carcinogen; tumor; benign; malignant

  

Subject Headings

EDUCATIONAL LEVEL

High school, Undergraduate lower division

TOPICAL AREAS

TYPE/METHODS

Teaching Notes & Answer Key

Teaching notes.

Case teaching notes are protected and access to them is limited to paid subscribed instructors. To become a paid subscriber, purchase a subscription here .

Teaching notes are intended to help teachers select and adopt a case. They typically include a summary of the case, teaching objectives, information about the intended audience, details about how the case may be taught, and a list of references and resources.

Download Notes

Answer Keys are protected and access to them is limited to paid subscribed instructors. To become a paid subscriber, purchase a subscription here .

Download Answer Key

Materials & Media

Supplemental materials, you may also like.

Web Seminar

Join us on Tuesday, June 4, 2024, from 7:00 PM to 8:30 PM ET, to learn about the free lesson plans and storyline units designed for high school studen...

Join us on Thursday, October 24, 2024, from 7:00 PM to 8:00 PM ET, to learn about all NSTA Teacher Awards available and how to apply.Did you come up w...

  • Work & Careers
  • Life & Arts

Business school teaching case study: risks of the AI arms race

case study teaching questions

  • Business school teaching case study: risks of the AI arms race on x (opens in a new window)
  • Business school teaching case study: risks of the AI arms race on facebook (opens in a new window)
  • Business school teaching case study: risks of the AI arms race on linkedin (opens in a new window)
  • Business school teaching case study: risks of the AI arms race on whatsapp (opens in a new window)

David De Cremer

Roula Khalaf, Editor of the FT, selects her favourite stories in this weekly newsletter.

Prabhakar Raghavan, Google’s search chief, was preparing for the Paris launch of its much-anticipated artificial intelligence chatbot in February last year when he received some unpleasant news.

Two days earlier, his chief executive, Sundar Pichai, had boasted that the chatbot, Bard, “draws on information from the web to provide fresh, high-quality responses”. But, within hours of Google posting a short gif video on Twitter demonstrating Bard in action, observers spotted that the bot had given a wrong answer.

Bard’s response to “What new discoveries from the James Webb Space Telescope (JWST) can I tell my 9-year-old about?” was that the telescope had taken the very first pictures of a planet outside the Earth’s solar system. In fact, those images were generated by the European Southern Observatory’s Very Large Telescope nearly two decades before. It was an error that harmed Bard’s credibility and wiped $100bn off the market value of Google’s parent company, Alphabet.

The incident highlighted the dangers in the high-pressure arms race around AI. It has the potential to improve accuracy, efficiency and decision-making. However, while developers are expected to have clear boundaries for what they will do and to act responsibly when bringing technology to the market, the temptation is to prioritise profit over reliability.

The genesis of the AI arms race can be traced back to 2019, when Microsoft chief executive Satya Nadella realised that the AI-powered auto-complete function Google’s in Gmail was becoming so effective that his own company was at risk of being left behind in AI development.

Test yourself

This article is part of a collection of ‘instant teaching case studies ’ exploring business challenges. Read the piece then consider the questions at the end.

About the author: David De Cremer is the Dunton Family Dean and a professor of management and technology at D’Amore-McKim School of Business at Northeastern University in Boston. He is author of ‘The AI-Savvy Leader: 9 ways to take back control and make AI work’ (Harvard Business Review Press, 2024).

Technology start-up OpenAI, which needed external capital to secure additional computing resources, provided an opportunity. Nadella quietly made an initial $1bn investment. He believed that a collaboration between the two companies would allow Microsoft to commercialise OpenAI’s future discoveries, making Google “dance” and eating into its dominant market share. He was soon proved right.

Microsoft’s swift integration of OpenAI’s ChatGPT into Bing marked a strategic coup, projecting an image of technological ascendancy over Google. In an effort not to be left behind, Google rushed to release its own chatbot — even though the company knew that Bard was not ready to compete with ChatGPT. Its haste-driven error cost Alphabet $100bn in market capitalisation.

Nowadays, it seems the prevailing modus operandi in the tech industry is a myopic fixation on pioneering ever-more-sophisticated AI software. Fear of missing out compels companies to rush unfinished products to market, disregarding inherent risks and costs. Meta , for exampl e , recently confirmed its intention to double down in the AI arms race, despite rising costs and a nearly 12 per cent drop in its share price.

There appears to be a conspicuous absence of purpose-driven initiatives, with a focus on profit eclipsing societal welfare considerations. Tesla rushed to launch its AI-based “Fully Self Driving” (FSD) features, for example, with technology nowhere near the maturity needed for safe deployment on roads. FSD, with driver inattention, has been linked  to hundreds of crashes and dozens of deaths.

As a result, Tesla has had to recall more than 2mn vehicles because of FSD/autopilot issues. Despite identifying concerns about drivers’ ability to reverse necessary software updates, regulators argue that Tesla did not make those suggested changes part of the recall.

Compounding the issue is the proliferation of sub-par “ so-so technologies ”. For example, two new GenAI-based portable gadgets, Rabbit R1 and Humane AI Pin, triggered a backlash, accused of being unusable, overpriced, and not solving any meaningful problem. 

Unfortunately, this trend will not slow: driven by a desire to capitalise as quickly as possible on incremental improvements of ChatGPT, some start-ups are rushing to launch “so-so” GenAI-based hardware devices. They appear to show little interest in whether a market exists; the goal seems to be winning any possible AI race available, regardless of whether it adds value for end users. In response, OpenAI has warned start-ups to stop engaging in an opportunistic and short-term strategy of pursuing purposeless innovations and noted that more powerful versions of ChatGPT are coming that can easily replicate any GPT-based apps that the start-ups are launching.

In response, governments are preparing regulations to govern AI development and deployment. Some tech companies are responding with greater responsibility. A recent open letter  signed by industry leaders endorsed the idea that: “It is our collective responsibility to make choices that maximise AI’s benefits and mitigate the risks, for today and for the future generations”.

As the tech industry grapples with the ethical and societal implications of AI proliferation, some consultants, customers and external groups are making the case for purpose-driven innovation. While regulators offer a semblance of oversight, progress will require industry stakeholders to take responsibility for fostering an ecosystem that gives greater priority to societal welfare .

Questions for discussion

Do tech companies bear responsibility for how businesses deploy artificial intelligence in possibly wrong and unethical ways?

What strategies can tech companies follow to keep purpose centre stage and see profit as an outcome of purpose?

Should bringing AI to market be more regulated? And if so, how?

How do you predict that the tendency to race to the bottom will play out in the next five to 10 years in businesses working with AI? Which factors are most important?

What risks for companies are associated with not joining the race to the bottom in AI development? How can these risks be managed by adopting a more purpose-driven strategy? What factors are important in that scenario?

Promoted Content

Follow the topics in this article.

  • Executive education Add to myFT
  • Technology sector Add to myFT
  • Business school case Add to myFT
  • Artificial intelligence Add to myFT
  • Google LLC Add to myFT

International Edition

  • International
  • Schools directory
  • Resources Jobs Schools directory News Search

LIBF UNIT 2 JUNE 2024 - 'Alex's New Car (PCP)' ANNOTATED CASE STUDY | FINANCIAL STUDIES  CeFS U2 CS2

LIBF UNIT 2 JUNE 2024 - 'Alex's New Car (PCP)' ANNOTATED CASE STUDY | FINANCIAL STUDIES CeFS U2 CS2

Subject: Business and finance

Age range: 16+

Resource type: Assessment and revision

CGS Money and Finance

Last updated

16 May 2024

  • Share through email
  • Share through twitter
  • Share through linkedin
  • Share through facebook
  • Share through pinterest

pdf, 4.08 MB

LIBF Certificate in Financial Studies Unit 2 (FCML) June 2024 Part B Exam - Fully annotated ‘Alex’s new car’ Case Study

A fully annotated copy of the pre-released case study to support students to become familiar with the key themes contained within the ‘Alex’s new car’ case study (CeFS Unit 2 June 2024 Exam).

The annotated case study can be used flexibly - it can be printed and given out in class, shared via a VLE (Google Classroom, Microsoft Teams, etc.) or given to students to read as an independent learning/homework activity.

As part of the purchase you will be provided with:

  • Fully annotated scan of the ‘Alex’s new car (PCP)’ Case Study (CS2)

The scan does not include any names or school logos so can be used straight away without any further work on your part - A READY-TO-USE RESOURCE!!!

LIBF Certificate in Financial Studies

Unit 2 - Financial Capability for the Medium and Long Term (FCML)

Also available for June 2024 examinations:

U2 CS1 QUIZ - ‘Ben and Lucy’ https://www.tes.com/teaching-resource/resource-13040198

U2 CS1 ANNOTATED CASE STUDY - ‘Ben and Lucy’ https://www.tes.com/teaching-resource/resource-13040217

U2 CS2 QUIZ - ‘Alex’s New Car (PCP)’ https://www.tes.com/teaching-resource/resource-13040969

U2 CS2 ANNOTATED CASE STUDY - ‘Alex’s New Car (PCP)’ https://www.tes.com/teaching-resource/resource-13040245

U4 CS1 QUIZ - ‘Frank and Nina’ https://www.tes.com/teaching-resource/resource-13040204

U4 CS1 ANNOTATED CASE STUDY - ‘Frank and Nina’ https://www.tes.com/teaching-resource/resource-13040232

Tes paid licence How can I reuse this?

Your rating is required to reflect your happiness.

It's good to leave some feedback.

Something went wrong, please try again later.

This resource hasn't been reviewed yet

To ensure quality for our reviews, only customers who have purchased this resource can review it

Report this resource to let us know if it violates our terms and conditions. Our customer service team will review your report and will be in touch.

Not quite what you were looking for? Search by keyword to find the right resource:

IMAGES

  1. Case study questions

    case study teaching questions

  2. How to Use a Case Studies as A Teaching Method

    case study teaching questions

  3. 49 Free Case Study Templates ( + Case Study Format Examples + )

    case study teaching questions

  4. Case Study revision questions and tasks

    case study teaching questions

  5. practice theory case study questions

    case study teaching questions

  6. case study method of teaching

    case study teaching questions

VIDEO

  1. Case Study

  2. CASE STUDY— TEACHING AND ASSESSMENT OF THE MACRO SKILLS

  3. IESE Open Day: What would you do?

  4. Take a seat in IMT G Accelerated PGDM ExP Case Classroom

  5. Lec 26 Case Study, Drill, macro teaching method, learning models

  6. Proper Deal Analysis and a Case Study. TEACHING TUESDAYS!

COMMENTS

  1. Using Case Studies to Teach

    A major advantage of teaching with case studies is that the students are actively engaged in figuring out the principles by abstracting from the examples. This develops their skills in: Problem solving. Analytical tools, quantitative and/or qualitative, depending on the case. Decision making in complex situations.

  2. Making Learning Relevant With Case Studies

    Addressing questions like these leads students to identify topics they need to learn more about. In researching the first question, for example, students may see that they need to research food chains and nutrition. ... The National Center for Case Study Teaching in Science at the University at Buffalo built an online collection of more than ...

  3. Case Studies

    Print Version. Case studies are stories that are used as a teaching tool to show the application of a theory or concept to real situations. Dependent on the goal they are meant to fulfill, cases can be fact-driven and deductive where there is a correct answer, or they can be context driven where multiple solutions are possible.

  4. Case Method Teaching and Learning

    Prior to the case discussion, instructors can model case analysis and the types of questions students should ask, co-create discussion guidelines with students, and ask for students to submit discussion questions. ... Bonney, K. M. (2015). Case Study Teaching Method Improves Student Performance and Perceptions of Learning Gains†.

  5. PDF WRITING TEACHING CASES: A QUICK REFERENCE GUIDE

    The case method is a powerful approach to teaching and learning business subjects. Its main advantage is that it is a "question-oriented", as opposed to solution-based, approach to teaching and learning. It allows students to participate in "real-life" decision making processes by first identifying the major "question" in the case ...

  6. Getting Started with Case Teaching

    Create a teaching plan for each case you choose to use. This can range from determining a set of labels for each of your classroom boards to preparing a detailed list of questions to ask with possible responses and analysis. Your preference could be anywhere in between. The key is that you will be as comfortable as is feasible in guiding the ...

  7. NCCSTS Case Collection Teaching Resources Publications

    Originally published in 2006 by NSTA Press; reprinted by the National Center for Case Study Teaching in Science (NCCSTS) in 2013. Collection of 40+ essays examining every aspect of the case study method and its use in the science classroom. ... A compilation of case studies with questions and teaching notes that can be used to help develop STEM ...

  8. Case studies and practical examples: Supporting teaching and improving

    Case studies and practical examples: Supporting teaching and improving student outcomes. Sometime about 400,000 years ago, humans learned to fully control fire. This extended the day and allowed people to unleash their imaginations and tell stories, rather than merely focus on mundane topics. ... Case studies can help students gain a more ...

  9. Case-Based Learning

    The instructor's role is that of a facilitator while the students collaboratively analyze and address problems and resolve questions that have no single right answer. Clyde Freeman Herreid provides eleven basic rules for case-based learning. Tells a story. Focuses on an interest-arousing issue. Set in the past five years.

  10. Teaching with Cases

    The case method is an effective way to increase student engagement and challenge students to integrate and apply skills to real-world problems. In these videos, Using the Case Method to Teach Public Policy, you'll find invaluable insights into the art of case teaching from one of HKS's most respected professors, Jose A. Gomez-Ibanez.

  11. NCCSTS Case Studies

    The NCCSTS Case Collection, created and curated by the National Center for Case Study Teaching in Science, on behalf of the University at Buffalo, contains over a thousand peer-reviewed case studies on a variety of topics in all areas of science. Cases (only) are freely accessible; subscription is required for access to teaching notes and ...

  12. Case Study Teaching and Learning

    3.1 Step 1: The Short Cycle—Peruse the Case, Followed by the Case Study Questions. Depending on the length of the case, become familiar with the content of the case by perusing the entire case. For a short case, it can be read through quickly. For a longer case, skim the introduction, subheadings, and conclusion.

  13. Writing a "Teaching" Case Study: 10 Easy Steps

    Teaching notes are available as supporting material to many of the cases in the Harvard Chan Case Library. Teaching notes provide an overview of the case and suggested discussion questions, as well as a roadmap for using the case in the classroom. Access to teaching notes is limited to course instructors only.

  14. The Case Study Teaching Method

    The Case Study Teaching Method. It is easy to get confused between the case study method and the case method, particularly as it applies to legal education. The case method in legal education was invented by Christopher Columbus Langdell, Dean of Harvard Law School from 1870 to 1895. ... May assign questions prior to class to focus participants ...

  15. What the Case Study Method Really Teaches

    What the Case Study Method Really Teaches. Summary. It's been 100 years since Harvard Business School began using the case study method. Beyond teaching specific subject matter, the case study ...

  16. Teaching by the Case Method

    Case Method in Practice. Chris Christensen described case method teaching as "the art of managing uncertainty"—a process in which the instructor serves as "planner, host, moderator, devil's advocate, fellow-student, and judge," all in search of solutions to real-world problems and challenges. Unlike lectures, case method classes unfold ...

  17. Case Study Analysis as an Effective Teaching Strategy: Perceptions of

    Background: Case study analysis is an active, problem-based, student-centered, teacher-facilitated teaching strategy preferred in undergraduate programs as they help the students in developing critical thinking skills.Objective: It determined the effectiveness of case study analysis as an effective teacher-facilitated strategy in an undergraduate nursing program.

  18. PDF Using a Case Study in the EFL Classroom A

    a new paragraph. The case-study method usually involves the following steps: Step 1: The teacher introduces the situation and, if necessary, relevant vocabulary. Step 2: Everyone reads the case study and analyzes additional materials. The following procedure can help students analyze a case systematically:

  19. Case Studies

    The case study method of teaching hinges on your ability as the instructor to ask the right questions of your class. Of course, your most immediate concern is to generate focused participation ...

  20. Case Study-Based Learning

    Case studies are a form of problem-based learning, where you present a situation that needs a resolution. A typical business case study is a detailed account, or story, of what happened in a particular company, industry, or project over a set period of time. The learner is given details about the situation, often in a historical context.

  21. Case Study Teaching Method Improves Student Performance and Perceptions

    INTRODUCTION. The case study teaching method is a highly adaptable style of teaching that involves problem-based learning and promotes the development of analytical skills ().By presenting content in the format of a narrative accompanied by questions and activities that promote group discussion and solving of complex problems, case studies facilitate development of the higher levels of Bloom ...

  22. Write a teaching case study

    Teaching plan and objectives. Provide a breakdown of the classroom discussion time into sections. Include a brief description of the opening and closing 10-15 minutes, as well as challenging case discussion questions with comprehensive sample answers. Provide instructors a detailed breakdown of how you would teach the case in 90 minutes.

  23. The Anti-Cancer Fight with the Wellness Menu

    The case study is written for lower-division undergraduate students and is accessible for both science and non-science majors. It introduces fundamental biology concepts and builds a strong foundation for students to critically evaluate online sources, an invaluable skill. ... Case teaching notes are protected and access to them is limited to ...

  24. Case Article—Creating a Brick Empire Through Data Visualization and

    Case study, Darden Business Publishing, Charlottesville, VA. Google Scholar; Pachamanova DA (2015) Case article—Mapping business problems to analytics solutions: Surrogate experiential learning in an MBA introductory data science and business analytics course. INFORMS Trans. Ed. 16 (1): 15 - 22. Google Scholar Digital Library

  25. Reality vs. Expectations of assessment in STEM education: An

    In this exploratory case study, the assessment methods planned and used in Egyptian STEM schools were explored. The purpose of the study was to explore the relationship between the ideals provided in STEM education both from research and policy documents and the actual assessment strategies used both at the classroom and state level in order to understand the alignment between the proposed ...

  26. Business school teaching case study: risks of the AI arms race

    This article is part of a collection of 'instant teaching case studies' exploring business challenges. Read the piece then consider the questions at the end. About the author: David De Cremer ...

  27. PDF Practical Exploration of Reverse Teaching Design of High School English

    Practical Exploration of Reverse Teaching Design of High School English Writing—Based on the Perspective of Big Ideas: A Case Study of Unit 1 Teenage Life . Wei Min . Liaocheng University, Liaocheng, China . Keywords: ... curriculum standards and instructional objectives into questions that explore important ideas and promote students ...

  28. LIBF UNIT 2 JUNE 2024

    A fully annotated copy of the pre-released case study to support students to become familiar with the key themes contained within the 'Alex's new car' case study (CeFS Unit 2 June 2024 Exam). The annotated case study can be used flexibly - it can be printed and given out in class, shared via a VLE (Google Classroom, Microsoft Teams, etc ...

  29. Grammar intervention using graduated input type variation (gitv) for

    PurposeThis study examined the early efficacy of a new theory-driven principle of grammar intervention, graduated input type variation (GITV).MethodThree Cantonese-speaking children, aged between 4;01 and 5;10, with oral language difficulties participated in this single baseline within-participant single case experimental study. The children received a total of 300 teaching episodes of the ...

  30. [Solved] Read the following case study and respond to the questions at

    Read the following case study and respond to the questions at the end. Please answer the questions thoroughly and at a master's level. Kerzner, H., (2006). Project Management Case Studies (2 nd ed.), John Wiley & Sons, Inc., Hoboken: NJ. Quantum Telecom: pp. 329-330