• Subject List
  • Take a Tour
  • For Authors
  • Subscriber Services
  • Publications
  • African American Studies
  • African Studies
  • American Literature
  • Anthropology
  • Architecture Planning and Preservation
  • Art History
  • Atlantic History
  • Biblical Studies
  • British and Irish Literature
  • Childhood Studies
  • Chinese Studies
  • Cinema and Media Studies
  • Communication
  • Criminology
  • Environmental Science
  • Evolutionary Biology
  • International Law
  • International Relations
  • Islamic Studies
  • Jewish Studies
  • Latin American Studies
  • Latino Studies
  • Linguistics
  • Literary and Critical Theory
  • Medieval Studies
  • Military History
  • Political Science
  • Public Health
  • Renaissance and Reformation
  • Social Work
  • Urban Studies
  • Victorian Literature
  • Browse All Subjects

How to Subscribe

  • Free Trials

In This Article Expand or collapse the "in this article" section Case Study in Education Research

Introduction, general overview and foundational texts of the late 20th century.

  • Conceptualisations and Definitions of Case Study
  • Case Study and Theoretical Grounding
  • Choosing Cases
  • Methodology, Method, Genre, or Approach
  • Case Study: Quality and Generalizability
  • Multiple Case Studies
  • Exemplary Case Studies and Example Case Studies
  • Criticism, Defense, and Debate around Case Study

Related Articles Expand or collapse the "related articles" section about

About related articles close popup.

Lorem Ipsum Sit Dolor Amet

Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Aliquam ligula odio, euismod ut aliquam et, vestibulum nec risus. Nulla viverra, arcu et iaculis consequat, justo diam ornare tellus, semper ultrices tellus nunc eu tellus.

  • Data Collection in Educational Research
  • Mixed Methods Research
  • Program Evaluation

Other Subject Areas

Forthcoming articles expand or collapse the "forthcoming articles" section.

  • Black Women in Academia
  • Girls' Education in the Developing World
  • History of Education in Europe
  • Find more forthcoming articles...
  • Export Citations
  • Share This Facebook LinkedIn Twitter

Case Study in Education Research by Lorna Hamilton LAST REVIEWED: 27 June 2018 LAST MODIFIED: 27 June 2018 DOI: 10.1093/obo/9780199756810-0201

It is important to distinguish between case study as a teaching methodology and case study as an approach, genre, or method in educational research. The use of case study as teaching method highlights the ways in which the essential qualities of the case—richness of real-world data and lived experiences—can help learners gain insights into a different world and can bring learning to life. The use of case study in this way has been around for about a hundred years or more. Case study use in educational research, meanwhile, emerged particularly strongly in the 1970s and 1980s in the United Kingdom and the United States as a means of harnessing the richness and depth of understanding of individuals, groups, and institutions; their beliefs and perceptions; their interactions; and their challenges and issues. Writers, such as Lawrence Stenhouse, advocated the use of case study as a form that teacher-researchers could use as they focused on the richness and intensity of their own practices. In addition, academic writers and postgraduate students embraced case study as a means of providing structure and depth to educational projects. However, as educational research has developed, so has debate on the quality and usefulness of case study as well as the problems surrounding the lack of generalizability when dealing with single or even multiple cases. The question of how to define and support case study work has formed the basis for innumerable books and discursive articles, starting with Robert Yin’s original book on case study ( Yin 1984 , cited under General Overview and Foundational Texts of the Late 20th Century ) to the myriad authors who attempt to bring something new to the realm of case study in educational research in the 21st century.

This section briefly considers the ways in which case study research has developed over the last forty to fifty years in educational research usage and reflects on whether the field has finally come of age, respected by creators and consumers of research. Case study has its roots in anthropological studies in which a strong ethnographic approach to the study of peoples and culture encouraged researchers to identify and investigate key individuals and groups by trying to understand the lived world of such people from their points of view. Although ethnography has emphasized the role of researcher as immersive and engaged with the lived world of participants via participant observation, evolving approaches to case study in education has been about the richness and depth of understanding that can be gained through involvement in the case by drawing on diverse perspectives and diverse forms of data collection. Embracing case study as a means of entering these lived worlds in educational research projects, was encouraged in the 1970s and 1980s by researchers, such as Lawrence Stenhouse, who provided a helpful impetus for case study work in education ( Stenhouse 1980 ). Stenhouse wrestled with the use of case study as ethnography because ethnographers traditionally had been unfamiliar with the peoples they were investigating, whereas educational researchers often worked in situations that were inherently familiar. Stenhouse also emphasized the need for evidence of rigorous processes and decisions in order to encourage robust practice and accountability to the wider field by allowing others to judge the quality of work through transparency of processes. Yin 1984 , the first book focused wholly on case study in research, gave a brief and basic outline of case study and associated practices. Various authors followed this approach, striving to engage more deeply in the significance of case study in the social sciences. Key among these are Merriam 1988 and Stake 1995 , along with Yin 1984 , who established powerful groundings for case study work. Additionally, evidence of the increasing popularity of case study can be found in a broad range of generic research methods texts, but these often do not have much scope for the extensive discussion of case study found in case study–specific books. Yin’s books and numerous editions provide a developing or evolving notion of case study with more detailed accounts of the possible purposes of case study, followed by Merriam 1988 and Stake 1995 who wrestled with alternative ways of looking at purposes and the positioning of case study within potential disciplinary modes. The authors referenced in this section are often characterized as the foundational authors on this subject and may have published various editions of their work, cited elsewhere in this article, based on their shifting ideas or emphases.

Merriam, S. B. 1988. Case study research in education: A qualitative approach . San Francisco: Jossey-Bass.

This is Merriam’s initial text on case study and is eminently accessible. The author establishes and reinforces various key features of case study; demonstrates support for positioning the case within a subject domain, e.g., psychology, sociology, etc.; and further shapes the case according to its purpose or intent.

Stake, R. E. 1995. The art of case study research . Thousand Oaks, CA: SAGE.

Stake is a very readable author, accessible and yet engaging with complex topics. The author establishes his key forms of case study: intrinsic, instrumental, and collective. Stake brings the reader through the process of conceptualizing the case, carrying it out, and analyzing the data. The author uses authentic examples to help readers understand and appreciate the nuances of an interpretive approach to case study.

Stenhouse, L. 1980. The study of samples and the study of cases. British Educational Research Journal 6:1–6.

DOI: 10.1080/0141192800060101

A key article in which Stenhouse sets out his stand on case study work. Those interested in the evolution of case study use in educational research should consider this article and the insights given.

Yin, R. K. 1984. Case Study Research: Design and Methods . Beverley Hills, CA: SAGE.

This preliminary text from Yin was very basic. However, it may be of interest in comparison with later books because Yin shows the ways in which case study as an approach or method in research has evolved in relation to detailed discussions of purpose, as well as the practicalities of working through the research process.

back to top

Users without a subscription are not able to see the full content on this page. Please subscribe or login .

Oxford Bibliographies Online is available by subscription and perpetual access to institutions. For more information or to contact an Oxford Sales Representative click here .

  • About Education »
  • Meet the Editorial Board »
  • Academic Achievement
  • Academic Audit for Universities
  • Academic Freedom and Tenure in the United States
  • Action Research in Education
  • Adjuncts in Higher Education in the United States
  • Administrator Preparation
  • Adolescence
  • Advanced Placement and International Baccalaureate Courses
  • Advocacy and Activism in Early Childhood
  • African American Racial Identity and Learning
  • Alaska Native Education
  • Alternative Certification Programs for Educators
  • Alternative Schools
  • American Indian Education
  • Animals in Environmental Education
  • Art Education
  • Artificial Intelligence and Learning
  • Assessing School Leader Effectiveness
  • Assessment, Behavioral
  • Assessment, Educational
  • Assessment in Early Childhood Education
  • Assistive Technology
  • Augmented Reality in Education
  • Beginning-Teacher Induction
  • Bilingual Education and Bilingualism
  • Black Undergraduate Women: Critical Race and Gender Perspe...
  • Blended Learning
  • Case Study in Education Research
  • Changing Professional and Academic Identities
  • Character Education
  • Children’s and Young Adult Literature
  • Children's Beliefs about Intelligence
  • Children's Rights in Early Childhood Education
  • Citizenship Education
  • Civic and Social Engagement of Higher Education
  • Classroom Learning Environments: Assessing and Investigati...
  • Classroom Management
  • Coherent Instructional Systems at the School and School Sy...
  • College Admissions in the United States
  • College Athletics in the United States
  • Community Relations
  • Comparative Education
  • Computer-Assisted Language Learning
  • Computer-Based Testing
  • Conceptualizing, Measuring, and Evaluating Improvement Net...
  • Continuous Improvement and "High Leverage" Educational Pro...
  • Counseling in Schools
  • Critical Approaches to Gender in Higher Education
  • Critical Perspectives on Educational Innovation and Improv...
  • Critical Race Theory
  • Crossborder and Transnational Higher Education
  • Cross-National Research on Continuous Improvement
  • Cross-Sector Research on Continuous Learning and Improveme...
  • Cultural Diversity in Early Childhood Education
  • Culturally Responsive Leadership
  • Culturally Responsive Pedagogies
  • Culturally Responsive Teacher Education in the United Stat...
  • Curriculum Design
  • Data-driven Decision Making in the United States
  • Deaf Education
  • Desegregation and Integration
  • Design Thinking and the Learning Sciences: Theoretical, Pr...
  • Development, Moral
  • Dialogic Pedagogy
  • Digital Age Teacher, The
  • Digital Citizenship
  • Digital Divides
  • Disabilities
  • Distance Learning
  • Distributed Leadership
  • Doctoral Education and Training
  • Early Childhood Education and Care (ECEC) in Denmark
  • Early Childhood Education and Development in Mexico
  • Early Childhood Education in Aotearoa New Zealand
  • Early Childhood Education in Australia
  • Early Childhood Education in China
  • Early Childhood Education in Europe
  • Early Childhood Education in Sub-Saharan Africa
  • Early Childhood Education in Sweden
  • Early Childhood Education Pedagogy
  • Early Childhood Education Policy
  • Early Childhood Education, The Arts in
  • Early Childhood Mathematics
  • Early Childhood Science
  • Early Childhood Teacher Education
  • Early Childhood Teachers in Aotearoa New Zealand
  • Early Years Professionalism and Professionalization Polici...
  • Economics of Education
  • Education For Children with Autism
  • Education for Sustainable Development
  • Education Leadership, Empirical Perspectives in
  • Education of Native Hawaiian Students
  • Education Reform and School Change
  • Educational Statistics for Longitudinal Research
  • Educator Partnerships with Parents and Families with a Foc...
  • Emotional and Affective Issues in Environmental and Sustai...
  • Emotional and Behavioral Disorders
  • English as an International Language for Academic Publishi...
  • Environmental and Science Education: Overlaps and Issues
  • Environmental Education
  • Environmental Education in Brazil
  • Epistemic Beliefs
  • Equity and Improvement: Engaging Communities in Educationa...
  • Equity, Ethnicity, Diversity, and Excellence in Education
  • Ethical Research with Young Children
  • Ethics and Education
  • Ethics of Teaching
  • Ethnic Studies
  • Evidence-Based Communication Assessment and Intervention
  • Family and Community Partnerships in Education
  • Family Day Care
  • Federal Government Programs and Issues
  • Feminization of Labor in Academia
  • Finance, Education
  • Financial Aid
  • Formative Assessment
  • Future-Focused Education
  • Gender and Achievement
  • Gender and Alternative Education
  • Gender, Power and Politics in the Academy
  • Gender-Based Violence on University Campuses
  • Gifted Education
  • Global Mindedness and Global Citizenship Education
  • Global University Rankings
  • Governance, Education
  • Grounded Theory
  • Growth of Effective Mental Health Services in Schools in t...
  • Higher Education and Globalization
  • Higher Education and the Developing World
  • Higher Education Faculty Characteristics and Trends in the...
  • Higher Education Finance
  • Higher Education Governance
  • Higher Education Graduate Outcomes and Destinations
  • Higher Education in Africa
  • Higher Education in China
  • Higher Education in Latin America
  • Higher Education in the United States, Historical Evolutio...
  • Higher Education, International Issues in
  • Higher Education Management
  • Higher Education Policy
  • Higher Education Research
  • Higher Education Student Assessment
  • High-stakes Testing
  • History of Early Childhood Education in the United States
  • History of Education in the United States
  • History of Technology Integration in Education
  • Homeschooling
  • Inclusion in Early Childhood: Difference, Disability, and ...
  • Inclusive Education
  • Indigenous Education in a Global Context
  • Indigenous Learning Environments
  • Indigenous Students in Higher Education in the United Stat...
  • Infant and Toddler Pedagogy
  • Inservice Teacher Education
  • Integrating Art across the Curriculum
  • Intelligence
  • Intensive Interventions for Children and Adolescents with ...
  • International Perspectives on Academic Freedom
  • Intersectionality and Education
  • Knowledge Development in Early Childhood
  • Leadership Development, Coaching and Feedback for
  • Leadership in Early Childhood Education
  • Leadership Training with an Emphasis on the United States
  • Learning Analytics in Higher Education
  • Learning Difficulties
  • Learning, Lifelong
  • Learning, Multimedia
  • Learning Strategies
  • Legal Matters and Education Law
  • LGBT Youth in Schools
  • Linguistic Diversity
  • Linguistically Inclusive Pedagogy
  • Literacy Development and Language Acquisition
  • Literature Reviews
  • Mathematics Identity
  • Mathematics Instruction and Interventions for Students wit...
  • Mathematics Teacher Education
  • Measurement for Improvement in Education
  • Measurement in Education in the United States
  • Meta-Analysis and Research Synthesis in Education
  • Methodological Approaches for Impact Evaluation in Educati...
  • Methodologies for Conducting Education Research
  • Mindfulness, Learning, and Education
  • Motherscholars
  • Multiliteracies in Early Childhood Education
  • Multiple Documents Literacy: Theory, Research, and Applica...
  • Multivariate Research Methodology
  • Museums, Education, and Curriculum
  • Music Education
  • Narrative Research in Education
  • Native American Studies
  • Nonformal and Informal Environmental Education
  • Note-Taking
  • Numeracy Education
  • One-to-One Technology in the K-12 Classroom
  • Online Education
  • Open Education
  • Organizing for Continuous Improvement in Education
  • Organizing Schools for the Inclusion of Students with Disa...
  • Outdoor Play and Learning
  • Outdoor Play and Learning in Early Childhood Education
  • Pedagogical Leadership
  • Pedagogy of Teacher Education, A
  • Performance Objectives and Measurement
  • Performance-based Research Assessment in Higher Education
  • Performance-based Research Funding
  • Phenomenology in Educational Research
  • Philosophy of Education
  • Physical Education
  • Podcasts in Education
  • Policy Context of United States Educational Innovation and...
  • Politics of Education
  • Portable Technology Use in Special Education Programs and ...
  • Post-humanism and Environmental Education
  • Pre-Service Teacher Education
  • Problem Solving
  • Productivity and Higher Education
  • Professional Development
  • Professional Learning Communities
  • Programs and Services for Students with Emotional or Behav...
  • Psychology Learning and Teaching
  • Psychometric Issues in the Assessment of English Language ...
  • Qualitative Data Analysis Techniques
  • Qualitative, Quantitative, and Mixed Methods Research Samp...
  • Qualitative Research Design
  • Quantitative Research Designs in Educational Research
  • Queering the English Language Arts (ELA) Writing Classroom
  • Race and Affirmative Action in Higher Education
  • Reading Education
  • Refugee and New Immigrant Learners
  • Relational and Developmental Trauma and Schools
  • Relational Pedagogies in Early Childhood Education
  • Reliability in Educational Assessments
  • Religion in Elementary and Secondary Education in the Unit...
  • Researcher Development and Skills Training within the Cont...
  • Research-Practice Partnerships in Education within the Uni...
  • Response to Intervention
  • Restorative Practices
  • Risky Play in Early Childhood Education
  • Scale and Sustainability of Education Innovation and Impro...
  • Scaling Up Research-based Educational Practices
  • School Accreditation
  • School Choice
  • School Culture
  • School District Budgeting and Financial Management in the ...
  • School Improvement through Inclusive Education
  • School Reform
  • Schools, Private and Independent
  • School-Wide Positive Behavior Support
  • Science Education
  • Secondary to Postsecondary Transition Issues
  • Self-Regulated Learning
  • Self-Study of Teacher Education Practices
  • Service-Learning
  • Severe Disabilities
  • Single Salary Schedule
  • Single-sex Education
  • Single-Subject Research Design
  • Social Context of Education
  • Social Justice
  • Social Network Analysis
  • Social Pedagogy
  • Social Science and Education Research
  • Social Studies Education
  • Sociology of Education
  • Standards-Based Education
  • Statistical Assumptions
  • Student Access, Equity, and Diversity in Higher Education
  • Student Assignment Policy
  • Student Engagement in Tertiary Education
  • Student Learning, Development, Engagement, and Motivation ...
  • Student Participation
  • Student Voice in Teacher Development
  • Sustainability Education in Early Childhood Education
  • Sustainability in Early Childhood Education
  • Sustainability in Higher Education
  • Teacher Beliefs and Epistemologies
  • Teacher Collaboration in School Improvement
  • Teacher Evaluation and Teacher Effectiveness
  • Teacher Preparation
  • Teacher Training and Development
  • Teacher Unions and Associations
  • Teacher-Student Relationships
  • Teaching Critical Thinking
  • Technologies, Teaching, and Learning in Higher Education
  • Technology Education in Early Childhood
  • Technology, Educational
  • Technology-based Assessment
  • The Bologna Process
  • The Regulation of Standards in Higher Education
  • Theories of Educational Leadership
  • Three Conceptions of Literacy: Media, Narrative, and Gamin...
  • Tracking and Detracking
  • Traditions of Quality Improvement in Education
  • Transformative Learning
  • Transitions in Early Childhood Education
  • Tribally Controlled Colleges and Universities in the Unite...
  • Understanding the Psycho-Social Dimensions of Schools and ...
  • University Faculty Roles and Responsibilities in the Unite...
  • Using Ethnography in Educational Research
  • Value of Higher Education for Students and Other Stakehold...
  • Virtual Learning Environments
  • Vocational and Technical Education
  • Wellness and Well-Being in Education
  • Women's and Gender Studies
  • Young Children and Spirituality
  • Young Children's Learning Dispositions
  • Young Children's Working Theories
  • Privacy Policy
  • Cookie Policy
  • Legal Notice
  • Accessibility

Powered by:

  • [66.249.64.20|185.126.86.119]
  • 185.126.86.119
  • Our Mission

Making Learning Relevant With Case Studies

The open-ended problems presented in case studies give students work that feels connected to their lives.

Students working on projects in a classroom

To prepare students for jobs that haven’t been created yet, we need to teach them how to be great problem solvers so that they’ll be ready for anything. One way to do this is by teaching content and skills using real-world case studies, a learning model that’s focused on reflection during the problem-solving process. It’s similar to project-based learning, but PBL is more focused on students creating a product.

Case studies have been used for years by businesses, law and medical schools, physicians on rounds, and artists critiquing work. Like other forms of problem-based learning, case studies can be accessible for every age group, both in one subject and in interdisciplinary work.

You can get started with case studies by tackling relatable questions like these with your students:

  • How can we limit food waste in the cafeteria?
  • How can we get our school to recycle and compost waste? (Or, if you want to be more complex, how can our school reduce its carbon footprint?)
  • How can we improve school attendance?
  • How can we reduce the number of people who get sick at school during cold and flu season?

Addressing questions like these leads students to identify topics they need to learn more about. In researching the first question, for example, students may see that they need to research food chains and nutrition. Students often ask, reasonably, why they need to learn something, or when they’ll use their knowledge in the future. Learning is most successful for students when the content and skills they’re studying are relevant, and case studies offer one way to create that sense of relevance.

Teaching With Case Studies

Ultimately, a case study is simply an interesting problem with many correct answers. What does case study work look like in classrooms? Teachers generally start by having students read the case or watch a video that summarizes the case. Students then work in small groups or individually to solve the case study. Teachers set milestones defining what students should accomplish to help them manage their time.

During the case study learning process, student assessment of learning should be focused on reflection. Arthur L. Costa and Bena Kallick’s Learning and Leading With Habits of Mind gives several examples of what this reflection can look like in a classroom: 

Journaling: At the end of each work period, have students write an entry summarizing what they worked on, what worked well, what didn’t, and why. Sentence starters and clear rubrics or guidelines will help students be successful. At the end of a case study project, as Costa and Kallick write, it’s helpful to have students “select significant learnings, envision how they could apply these learnings to future situations, and commit to an action plan to consciously modify their behaviors.”

Interviews: While working on a case study, students can interview each other about their progress and learning. Teachers can interview students individually or in small groups to assess their learning process and their progress.

Student discussion: Discussions can be unstructured—students can talk about what they worked on that day in a think-pair-share or as a full class—or structured, using Socratic seminars or fishbowl discussions. If your class is tackling a case study in small groups, create a second set of small groups with a representative from each of the case study groups so that the groups can share their learning.

4 Tips for Setting Up a Case Study

1. Identify a problem to investigate: This should be something accessible and relevant to students’ lives. The problem should also be challenging and complex enough to yield multiple solutions with many layers.

2. Give context: Think of this step as a movie preview or book summary. Hook the learners to help them understand just enough about the problem to want to learn more.

3. Have a clear rubric: Giving structure to your definition of quality group work and products will lead to stronger end products. You may be able to have your learners help build these definitions.

4. Provide structures for presenting solutions: The amount of scaffolding you build in depends on your students’ skill level and development. A case study product can be something like several pieces of evidence of students collaborating to solve the case study, and ultimately presenting their solution with a detailed slide deck or an essay—you can scaffold this by providing specified headings for the sections of the essay.

Problem-Based Teaching Resources

There are many high-quality, peer-reviewed resources that are open source and easily accessible online.

  • The National Center for Case Study Teaching in Science at the University at Buffalo built an online collection of more than 800 cases that cover topics ranging from biochemistry to economics. There are resources for middle and high school students.
  • Models of Excellence , a project maintained by EL Education and the Harvard Graduate School of Education, has examples of great problem- and project-based tasks—and corresponding exemplary student work—for grades pre-K to 12.
  • The Interdisciplinary Journal of Problem-Based Learning at Purdue University is an open-source journal that publishes examples of problem-based learning in K–12 and post-secondary classrooms.
  • The Tech Edvocate has a list of websites and tools related to problem-based learning.

In their book Problems as Possibilities , Linda Torp and Sara Sage write that at the elementary school level, students particularly appreciate how they feel that they are taken seriously when solving case studies. At the middle school level, “researchers stress the importance of relating middle school curriculum to issues of student concern and interest.” And high schoolers, they write, find the case study method “beneficial in preparing them for their future.”

  • Columbia University in the City of New York
  • Office of Teaching, Learning, and Innovation
  • University Policies
  • Columbia Online
  • Academic Calendar
  • Resources and Technology
  • Resources and Guides

Case Method Teaching and Learning

What is the case method? How can the case method be used to engage learners? What are some strategies for getting started? This guide helps instructors answer these questions by providing an overview of the case method while highlighting learner-centered and digitally-enhanced approaches to teaching with the case method. The guide also offers tips to instructors as they get started with the case method and additional references and resources.

On this page:

What is case method teaching.

  • Case Method at Columbia

Why use the Case Method?

Case method teaching approaches, how do i get started.

  • Additional Resources

The CTL is here to help!

For support with implementing a case method approach in your course, email [email protected] to schedule your 1-1 consultation .

Cite this resource: Columbia Center for Teaching and Learning (2019). Case Method Teaching and Learning. Columbia University. Retrieved from [today’s date] from https://ctl.columbia.edu/resources-and-technology/resources/case-method/  

Case method 1 teaching is an active form of instruction that focuses on a case and involves students learning by doing 2 3 . Cases are real or invented stories 4  that include “an educational message” or recount events, problems, dilemmas, theoretical or conceptual issue that requires analysis and/or decision-making.

Case-based teaching simulates real world situations and asks students to actively grapple with complex problems 5 6 This method of instruction is used across disciplines to promote learning, and is common in law, business, medicine, among other fields. See Table 1 below for a few types of cases and the learning they promote.

Table 1: Types of cases and the learning they promote.

For a more complete list, see Case Types & Teaching Methods: A Classification Scheme from the National Center for Case Study Teaching in Science.

Back to Top

Case Method Teaching and Learning at Columbia

The case method is actively used in classrooms across Columbia, at the Morningside campus in the School of International and Public Affairs (SIPA), the School of Business, Arts and Sciences, among others, and at Columbia University Irving Medical campus.

Faculty Spotlight:

Professor Mary Ann Price on Using Case Study Method to Place Pre-Med Students in Real-Life Scenarios

Read more  

Professor De Pinho on Using the Case Method in the Mailman Core

Case method teaching has been found to improve student learning, to increase students’ perception of learning gains, and to meet learning objectives 8 9 . Faculty have noted the instructional benefits of cases including greater student engagement in their learning 10 , deeper student understanding of concepts, stronger critical thinking skills, and an ability to make connections across content areas and view an issue from multiple perspectives 11 . 

Through case-based learning, students are the ones asking questions about the case, doing the problem-solving, interacting with and learning from their peers, “unpacking” the case, analyzing the case, and summarizing the case. They learn how to work with limited information and ambiguity, think in professional or disciplinary ways, and ask themselves “what would I do if I were in this specific situation?”

The case method bridges theory to practice, and promotes the development of skills including: communication, active listening, critical thinking, decision-making, and metacognitive skills 12 , as students apply course content knowledge, reflect on what they know and their approach to analyzing, and make sense of a case. 

Though the case method has historical roots as an instructor-centered approach that uses the Socratic dialogue and cold-calling, it is possible to take a more learner-centered approach in which students take on roles and tasks traditionally left to the instructor. 

Cases are often used as “vehicles for classroom discussion” 13 . Students should be encouraged to take ownership of their learning from a case. Discussion-based approaches engage students in thinking and communicating about a case. Instructors can set up a case activity in which students are the ones doing the work of “asking questions, summarizing content, generating hypotheses, proposing theories, or offering critical analyses” 14 . 

The role of the instructor is to share a case or ask students to share or create a case to use in class, set expectations, provide instructions, and assign students roles in the discussion. Student roles in a case discussion can include: 

  • discussion “starters” get the conversation started with a question or posing the questions that their peers came up with; 
  • facilitators listen actively, validate the contributions of peers, ask follow-up questions, draw connections, refocus the conversation as needed; 
  • recorders take-notes of the main points of the discussion, record on the board, upload to CourseWorks, or type and project on the screen; and 
  • discussion “wrappers” lead a summary of the main points of the discussion. 

Prior to the case discussion, instructors can model case analysis and the types of questions students should ask, co-create discussion guidelines with students, and ask for students to submit discussion questions. During the discussion, the instructor can keep time, intervene as necessary (however the students should be doing the talking), and pause the discussion for a debrief and to ask students to reflect on what and how they learned from the case activity. 

Note: case discussions can be enhanced using technology. Live discussions can occur via video-conferencing (e.g., using Zoom ) or asynchronous discussions can occur using the Discussions tool in CourseWorks (Canvas) .

Table 2 includes a few interactive case method approaches. Regardless of the approach selected, it is important to create a learning environment in which students feel comfortable participating in a case activity and learning from one another. See below for tips on supporting student in how to learn from a case in the “getting started” section and how to create a supportive learning environment in the Guide for Inclusive Teaching at Columbia . 

Table 2. Strategies for Engaging Students in Case-Based Learning

Approaches to case teaching should be informed by course learning objectives, and can be adapted for small, large, hybrid, and online classes. Instructional technology can be used in various ways to deliver, facilitate, and assess the case method. For instance, an online module can be created in CourseWorks (Canvas) to structure the delivery of the case, allow students to work at their own pace, engage all learners, even those reluctant to speak up in class, and assess understanding of a case and student learning. Modules can include text, embedded media (e.g., using Panopto or Mediathread ) curated by the instructor, online discussion, and assessments. Students can be asked to read a case and/or watch a short video, respond to quiz questions and receive immediate feedback, post questions to a discussion, and share resources. 

For more information about options for incorporating educational technology to your course, please contact your Learning Designer .

To ensure that students are learning from the case approach, ask them to pause and reflect on what and how they learned from the case. Time to reflect  builds your students’ metacognition, and when these reflections are collected they provides you with insights about the effectiveness of your approach in promoting student learning.

Well designed case-based learning experiences: 1) motivate student involvement, 2) have students doing the work, 3) help students develop knowledge and skills, and 4) have students learning from each other.  

Designing a case-based learning experience should center around the learning objectives for a course. The following points focus on intentional design. 

Identify learning objectives, determine scope, and anticipate challenges. 

  • Why use the case method in your course? How will it promote student learning differently than other approaches? 
  • What are the learning objectives that need to be met by the case method? What knowledge should students apply and skills should they practice? 
  • What is the scope of the case? (a brief activity in a single class session to a semester-long case-based course; if new to case method, start small with a single case). 
  • What challenges do you anticipate (e.g., student preparation and prior experiences with case learning, discomfort with discussion, peer-to-peer learning, managing discussion) and how will you plan for these in your design? 
  • If you are asking students to use transferable skills for the case method (e.g., teamwork, digital literacy) make them explicit. 

Determine how you will know if the learning objectives were met and develop a plan for evaluating the effectiveness of the case method to inform future case teaching. 

  • What assessments and criteria will you use to evaluate student work or participation in case discussion? 
  • How will you evaluate the effectiveness of the case method? What feedback will you collect from students? 
  • How might you leverage technology for assessment purposes? For example, could you quiz students about the case online before class, accept assignment submissions online, use audience response systems (e.g., PollEverywhere) for formative assessment during class? 

Select an existing case, create your own, or encourage students to bring course-relevant cases, and prepare for its delivery

  • Where will the case method fit into the course learning sequence? 
  • Is the case at the appropriate level of complexity? Is it inclusive, culturally relevant, and relatable to students? 
  • What materials and preparation will be needed to present the case to students? (e.g., readings, audiovisual materials, set up a module in CourseWorks). 

Plan for the case discussion and an active role for students

  • What will your role be in facilitating case-based learning? How will you model case analysis for your students? (e.g., present a short case and demo your approach and the process of case learning) (Davis, 2009). 
  • What discussion guidelines will you use that include your students’ input? 
  • How will you encourage students to ask and answer questions, summarize their work, take notes, and debrief the case? 
  • If students will be working in groups, how will groups form? What size will the groups be? What instructions will they be given? How will you ensure that everyone participates? What will they need to submit? Can technology be leveraged for any of these areas? 
  • Have you considered students of varied cognitive and physical abilities and how they might participate in the activities/discussions, including those that involve technology? 

Student preparation and expectations

  • How will you communicate about the case method approach to your students? When will you articulate the purpose of case-based learning and expectations of student engagement? What information about case-based learning and expectations will be included in the syllabus?
  • What preparation and/or assignment(s) will students complete in order to learn from the case? (e.g., read the case prior to class, watch a case video prior to class, post to a CourseWorks discussion, submit a brief memo, complete a short writing assignment to check students’ understanding of a case, take on a specific role, prepare to present a critique during in-class discussion).

Andersen, E. and Schiano, B. (2014). Teaching with Cases: A Practical Guide . Harvard Business Press. 

Bonney, K. M. (2015). Case Study Teaching Method Improves Student Performance and Perceptions of Learning Gains†. Journal of Microbiology & Biology Education , 16 (1), 21–28. https://doi.org/10.1128/jmbe.v16i1.846

Davis, B.G. (2009). Chapter 24: Case Studies. In Tools for Teaching. Second Edition. Jossey-Bass. 

Garvin, D.A. (2003). Making the Case: Professional Education for the world of practice. Harvard Magazine. September-October 2003, Volume 106, Number 1, 56-107.

Golich, V.L. (2000). The ABCs of Case Teaching. International Studies Perspectives. 1, 11-29. 

Golich, V.L.; Boyer, M; Franko, P.; and Lamy, S. (2000). The ABCs of Case Teaching. Pew Case Studies in International Affairs. Institute for the Study of Diplomacy. 

Heath, J. (2015). Teaching & Writing Cases: A Practical Guide. The Case Center, UK. 

Herreid, C.F. (2011). Case Study Teaching. New Directions for Teaching and Learning. No. 128, Winder 2011, 31 – 40. 

Herreid, C.F. (2007). Start with a Story: The Case Study Method of Teaching College Science . National Science Teachers Association. Available as an ebook through Columbia Libraries. 

Herreid, C.F. (2006). “Clicker” Cases: Introducing Case Study Teaching Into Large Classrooms. Journal of College Science Teaching. Oct 2006, 36(2). https://search.proquest.com/docview/200323718?pq-origsite=gscholar  

Krain, M. (2016). Putting the Learning in Case Learning? The Effects of Case-Based Approaches on Student Knowledge, Attitudes, and Engagement. Journal on Excellence in College Teaching. 27(2), 131-153. 

Lundberg, K.O. (Ed.). (2011). Our Digital Future: Boardrooms and Newsrooms. Knight Case Studies Initiative. 

Popil, I. (2011). Promotion of critical thinking by using case studies as teaching method. Nurse Education Today, 31(2), 204–207. https://doi.org/10.1016/j.nedt.2010.06.002

Schiano, B. and Andersen, E. (2017). Teaching with Cases Online . Harvard Business Publishing. 

Thistlethwaite, JE; Davies, D.; Ekeocha, S.; Kidd, J.M.; MacDougall, C.; Matthews, P.; Purkis, J.; Clay D. (2012). The effectiveness of case-based learning in health professional education: A BEME systematic review . Medical Teacher. 2012; 34(6): e421-44. 

Yadav, A.; Lundeberg, M.; DeSchryver, M.; Dirkin, K.; Schiller, N.A.; Maier, K. and Herreid, C.F. (2007). Teaching Science with Case Studies: A National Survey of Faculty Perceptions of the Benefits and Challenges of Using Cases. Journal of College Science Teaching; Sept/Oct 2007; 37(1). 

Weimer, M. (2013). Learner-Centered Teaching: Five Key Changes to Practice. Second Edition. Jossey-Bass.

Additional resources 

Teaching with Cases , Harvard Kennedy School of Government. 

Features “what is a teaching case?” video that defines a teaching case, and provides documents to help students prepare for case learning, Common case teaching challenges and solutions, tips for teaching with cases. 

Promoting excellence and innovation in case method teaching: Teaching by the Case Method , Christensen Center for Teaching & Learning. Harvard Business School. 

National Center for Case Study Teaching in Science . University of Buffalo. 

A collection of peer-reviewed STEM cases to teach scientific concepts and content, promote process skills and critical thinking. The Center welcomes case submissions. Case classification scheme of case types and teaching methods:

  • Different types of cases: analysis case, dilemma/decision case, directed case, interrupted case, clicker case, a flipped case, a laboratory case. 
  • Different types of teaching methods: problem-based learning, discussion, debate, intimate debate, public hearing, trial, jigsaw, role-play. 

Columbia Resources

Resources available to support your use of case method: The University hosts a number of case collections including: the Case Consortium (a collection of free cases in the fields of journalism, public policy, public health, and other disciplines that include teaching and learning resources; SIPA’s Picker Case Collection (audiovisual case studies on public sector innovation, filmed around the world and involving SIPA student teams in producing the cases); and Columbia Business School CaseWorks , which develops teaching cases and materials for use in Columbia Business School classrooms.

Center for Teaching and Learning

The Center for Teaching and Learning (CTL) offers a variety of programs and services for instructors at Columbia. The CTL can provide customized support as you plan to use the case method approach through implementation. Schedule a one-on-one consultation. 

Office of the Provost

The Hybrid Learning Course Redesign grant program from the Office of the Provost provides support for faculty who are developing innovative and technology-enhanced pedagogy and learning strategies in the classroom. In addition to funding, faculty awardees receive support from CTL staff as they redesign, deliver, and evaluate their hybrid courses.

The Start Small! Mini-Grant provides support to faculty who are interested in experimenting with one new pedagogical strategy or tool. Faculty awardees receive funds and CTL support for a one-semester period.

Explore our teaching resources.

  • Blended Learning
  • Contemplative Pedagogy
  • Inclusive Teaching Guide
  • FAQ for Teaching Assistants
  • Metacognition

CTL resources and technology for you.

  • Overview of all CTL Resources and Technology
  • The origins of this method can be traced to Harvard University where in 1870 the Law School began using cases to teach students how to think like lawyers using real court decisions. This was followed by the Business School in 1920 (Garvin, 2003). These professional schools recognized that lecture mode of instruction was insufficient to teach critical professional skills, and that active learning would better prepare learners for their professional lives. ↩
  • Golich, V.L. (2000). The ABCs of Case Teaching. International Studies Perspectives. 1, 11-29. ↩
  • Herreid, C.F. (2007). Start with a Story: The Case Study Method of Teaching College Science . National Science Teachers Association. Available as an ebook through Columbia Libraries. ↩
  • Davis, B.G. (2009). Chapter 24: Case Studies. In Tools for Teaching. Second Edition. Jossey-Bass. ↩
  • Andersen, E. and Schiano, B. (2014). Teaching with Cases: A Practical Guide . Harvard Business Press. ↩
  • Lundberg, K.O. (Ed.). (2011). Our Digital Future: Boardrooms and Newsrooms. Knight Case Studies Initiative. ↩
  • Heath, J. (2015). Teaching & Writing Cases: A Practical Guide. The Case Center, UK. ↩
  • Bonney, K. M. (2015). Case Study Teaching Method Improves Student Performance and Perceptions of Learning Gains†. Journal of Microbiology & Biology Education , 16 (1), 21–28. https://doi.org/10.1128/jmbe.v16i1.846 ↩
  • Krain, M. (2016). Putting the Learning in Case Learning? The Effects of Case-Based Approaches on Student Knowledge, Attitudes, and Engagement. Journal on Excellence in College Teaching. 27(2), 131-153. ↩
  • Thistlethwaite, JE; Davies, D.; Ekeocha, S.; Kidd, J.M.; MacDougall, C.; Matthews, P.; Purkis, J.; Clay D. (2012). The effectiveness of case-based learning in health professional education: A BEME systematic review . Medical Teacher. 2012; 34(6): e421-44. ↩
  • Yadav, A.; Lundeberg, M.; DeSchryver, M.; Dirkin, K.; Schiller, N.A.; Maier, K. and Herreid, C.F. (2007). Teaching Science with Case Studies: A National Survey of Faculty Perceptions of the Benefits and Challenges of Using Cases. Journal of College Science Teaching; Sept/Oct 2007; 37(1). ↩
  • Popil, I. (2011). Promotion of critical thinking by using case studies as teaching method. Nurse Education Today, 31(2), 204–207. https://doi.org/10.1016/j.nedt.2010.06.002 ↩
  • Weimer, M. (2013). Learner-Centered Teaching: Five Key Changes to Practice. Second Edition. Jossey-Bass. ↩
  • Herreid, C.F. (2006). “Clicker” Cases: Introducing Case Study Teaching Into Large Classrooms. Journal of College Science Teaching. Oct 2006, 36(2). https://search.proquest.com/docview/200323718?pq-origsite=gscholar ↩

This website uses cookies to identify users, improve the user experience and requires cookies to work. By continuing to use this website, you consent to Columbia University's use of cookies and similar technologies, in accordance with the Columbia University Website Cookie Notice .

Using Case Studies to Teach

case study method in education

Why Use Cases?

Many students are more inductive than deductive reasoners, which means that they learn better from examples than from logical development starting with basic principles. The use of case studies can therefore be a very effective classroom technique.

Case studies are have long been used in business schools, law schools, medical schools and the social sciences, but they can be used in any discipline when instructors want students to explore how what they have learned applies to real world situations. Cases come in many formats, from a simple “What would you do in this situation?” question to a detailed description of a situation with accompanying data to analyze. Whether to use a simple scenario-type case or a complex detailed one depends on your course objectives.

Most case assignments require students to answer an open-ended question or develop a solution to an open-ended problem with multiple potential solutions. Requirements can range from a one-paragraph answer to a fully developed group action plan, proposal or decision.

Common Case Elements

Most “full-blown” cases have these common elements:

  • A decision-maker who is grappling with some question or problem that needs to be solved.
  • A description of the problem’s context (a law, an industry, a family).
  • Supporting data, which can range from data tables to links to URLs, quoted statements or testimony, supporting documents, images, video, or audio.

Case assignments can be done individually or in teams so that the students can brainstorm solutions and share the work load.

The following discussion of this topic incorporates material presented by Robb Dixon of the School of Management and Rob Schadt of the School of Public Health at CEIT workshops. Professor Dixon also provided some written comments that the discussion incorporates.

Advantages to the use of case studies in class

A major advantage of teaching with case studies is that the students are actively engaged in figuring out the principles by abstracting from the examples. This develops their skills in:

  • Problem solving
  • Analytical tools, quantitative and/or qualitative, depending on the case
  • Decision making in complex situations
  • Coping with ambiguities

Guidelines for using case studies in class

In the most straightforward application, the presentation of the case study establishes a framework for analysis. It is helpful if the statement of the case provides enough information for the students to figure out solutions and then to identify how to apply those solutions in other similar situations. Instructors may choose to use several cases so that students can identify both the similarities and differences among the cases.

Depending on the course objectives, the instructor may encourage students to follow a systematic approach to their analysis.  For example:

  • What is the issue?
  • What is the goal of the analysis?
  • What is the context of the problem?
  • What key facts should be considered?
  • What alternatives are available to the decision-maker?
  • What would you recommend — and why?

An innovative approach to case analysis might be to have students  role-play the part of the people involved in the case. This not only actively engages students, but forces them to really understand the perspectives of the case characters. Videos or even field trips showing the venue in which the case is situated can help students to visualize the situation that they need to analyze.

Accompanying Readings

Case studies can be especially effective if they are paired with a reading assignment that introduces or explains a concept or analytical method that applies to the case. The amount of emphasis placed on the use of the reading during the case discussion depends on the complexity of the concept or method. If it is straightforward, the focus of the discussion can be placed on the use of the analytical results. If the method is more complex, the instructor may need to walk students through its application and the interpretation of the results.

Leading the Case Discussion and Evaluating Performance

Decision cases are more interesting than descriptive ones. In order to start the discussion in class, the instructor can start with an easy, noncontroversial question that all the students should be able to answer readily. However, some of the best case discussions start by forcing the students to take a stand. Some instructors will ask a student to do a formal “open” of the case, outlining his or her entire analysis.  Others may choose to guide discussion with questions that move students from problem identification to solutions.  A skilled instructor steers questions and discussion to keep the class on track and moving at a reasonable pace.

In order to motivate the students to complete the assignment before class as well as to stimulate attentiveness during the class, the instructor should grade the participation—quantity and especially quality—during the discussion of the case. This might be a simple check, check-plus, check-minus or zero. The instructor should involve as many students as possible. In order to engage all the students, the instructor can divide them into groups, give each group several minutes to discuss how to answer a question related to the case, and then ask a randomly selected person in each group to present the group’s answer and reasoning. Random selection can be accomplished through rolling of dice, shuffled index cards, each with one student’s name, a spinning wheel, etc.

Tips on the Penn State U. website: http://tlt.its.psu.edu/suggestions/cases/

If you are interested in using this technique in a science course, there is a good website on use of case studies in the sciences at the University of Buffalo.

Dunne, D. and Brooks, K. (2004) Teaching with Cases (Halifax, NS: Society for Teaching and Learning in Higher Education), ISBN 0-7703-8924-4 (Can be ordered at http://www.bookstore.uwo.ca/ at a cost of $15.00)

Center for Teaching

Case studies.

Print Version

Case studies are stories that are used as a teaching tool to show the application of a theory or concept to real situations. Dependent on the goal they are meant to fulfill, cases can be fact-driven and deductive where there is a correct answer, or they can be context driven where multiple solutions are possible. Various disciplines have employed case studies, including humanities, social sciences, sciences, engineering, law, business, and medicine. Good cases generally have the following features: they tell a good story, are recent, include dialogue, create empathy with the main characters, are relevant to the reader, serve a teaching function, require a dilemma to be solved, and have generality.

Instructors can create their own cases or can find cases that already exist. The following are some things to keep in mind when creating a case:

  • What do you want students to learn from the discussion of the case?
  • What do they already know that applies to the case?
  • What are the issues that may be raised in discussion?
  • How will the case and discussion be introduced?
  • What preparation is expected of students? (Do they need to read the case ahead of time? Do research? Write anything?)
  • What directions do you need to provide students regarding what they are supposed to do and accomplish?
  • Do you need to divide students into groups or will they discuss as the whole class?
  • Are you going to use role-playing or facilitators or record keepers? If so, how?
  • What are the opening questions?
  • How much time is needed for students to discuss the case?
  • What concepts are to be applied/extracted during the discussion?
  • How will you evaluate students?

To find other cases that already exist, try the following websites:

  • The National Center for Case Study Teaching in Science , University of Buffalo. SUNY-Buffalo maintains this set of links to other case studies on the web in disciplines ranging from engineering and ethics to sociology and business
  • A Journal of Teaching Cases in Public Administration and Public Policy , University of Washington

For more information:

  • World Association for Case Method Research and Application

Book Review :  Teaching and the Case Method , 3rd ed., vols. 1 and 2, by Louis Barnes, C. Roland (Chris) Christensen, and Abby Hansen. Harvard Business School Press, 1994; 333 pp. (vol 1), 412 pp. (vol 2).

Creative Commons License

Teaching Guides

  • Online Course Development Resources
  • Principles & Frameworks
  • Pedagogies & Strategies
  • Reflecting & Assessing
  • Challenges & Opportunities
  • Populations & Contexts

Quick Links

  • Services for Departments and Schools
  • Examples of Online Instructional Modules
  • Harvard Business School →
  • Christensen Center →

Teaching by the Case Method

  • Preparing to Teach
  • Leading in the Classroom
  • Providing Assessment & Feedback
  • Sample Class

Case Method in Practice

Chris Christensen described case method teaching as "the art of managing uncertainty"—a process in which the instructor serves as "planner, host, moderator, devil's advocate, fellow-student, and judge," all in search of solutions to real-world problems and challenges.

Unlike lectures, case method classes unfold without a detailed script. Successful instructors simultaneously manage content and process, and they must prepare rigorously for both. Case method teachers learn to balance planning and spontaneity. In practice, they pursue opportunities and "teachable moments" that emerge throughout the discussion, and deftly guide students toward discovery and learning on multiple levels. The principles and techniques are developed, Christensen says, "through collaboration and cooperation with friends and colleagues, and through self-observation and reflection."

This section of the Christensen Center website explores the Case Method in Practice along the following dimensions:

  • Providing Assessment and Feedback

Each subsection provides perspectives and guidance through a written overview, supplemented by video commentary from experienced case method instructors. Where relevant, links are included to downloadable documents produced by the Christensen Center or Harvard Business School Publishing. References for further reading are provided as well.

An additional subsection, entitled Resources, appears at the end. It combines references from throughout the Case Method in Practice section with additional information on published materials and websites that may be of interest to prospective, new, and experienced case method instructors.

Note: We would like to thank Harvard Business School Publishing for permission to incorporate the video clips that appear in the Case Method in Practice section of our website. The clips are drawn from video excerpts included in Participant-Centered Learning and the Case Method: A DVD Case Teaching Tool (HBSP, 2003).

Christensen Center Tip Sheets

  • Characteristics of Effective Case Method Teaching
  • Elements of Effective Class Preparation
  • Guidelines for Effective Observation of Case Instructors
  • In-Class Assessment of Discussion-Based Teaching
  • Questions for Class Discussions
  • Teaching Quantitative Material
  • Strategies and Tactics for Sensitive Topics

Curriculum Innovation

The case method has evolved so students may act as decision-makers in new engaging formats:

Game Simulations

Multimedia cases, ideo: human-centered service design.

A Case for Case Study Research in Education

Cite this chapter.

case study method in education

  • Kit Grauer  

13 Citations

This chapter makes the case that case study research is making a comeback in educational research because it allows researchers a broad range of methodological tools to suit the needs of answering questions of “how” and “why” within a particular real-world context. As Stake (1995) suggests, case study is often a preferred method of research because case studies may be epistemologically in harmony with the reader’s experience and thus to that person a natural basis for generalization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
  • Durable hardcover edition

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Unable to display preview.  Download preview PDF.

Bassey, M. (1999). Case study research in educational settings . Buckingham, England: Open University Press.

Google Scholar  

Baxter, P., & Jack, S. (2008). Qualitative case study methodology: Study design and implementation for novice researchers. The Qualitative Report , 13(4), 544–559.

Becker, H. S. (2000). Generalizing from case studies. In E. W. Eisner & A. Peshkin (Eds.), Qualitative inquiry in education: The continuing debate (pp. 233–242). New York, NY: Teachers College Press.

Corcoran, P. B., Walker, K. E., & Wals, A. E. (2004). Case studies, make-your-case studies, and case stories: A critique of case-study methodology in sustainability in higher education. Environmental Education Research , 10(1), 7–21.

Article   Google Scholar  

Creswell, J. (2002). Research design: Qualitative, quantitative and mixed method approaches . London, England: Sage.

Grauer, K. (1998). Beliefs of preservice teachers in art education. Studies in Art Education, 39(4) , 350–370.

Grauer, K., Irwin R. L., de Cosson, A., & Wilson, S. (2001). Images for understanding: Snapshots of learning through the arts. International Journal of Education & the Arts , 2(9). Retrieved from http://www.ijea.org/v2n9.

Guba, E. (1981). Criteria for assessing the trustworthiness of naturalistic inquiries. Educational Resources Information Center Annual Review Paper, 29 , 75–91.

Hancock, D. R., & Algozzine, B. (2006). Doing case study research: A practical guide for beginning researchers . New York, NY: Teachers College Press.

Henderson, J. (2001). Reflective teaching: Professional artistry through inquiry (3rd ed.). Upper Saddle River, NJ: Merrill/Prentice Hall.

Klein, S. (Ed.). (2003). Teaching art in context: Case studies for art education. Reston, VA: National Art Education Association.

Lather, P. (1992). Critical frames in educational research: Feminist and poststructural perspectives. Theory into Practice , 31(2), 87–99.

Lincoln, Y. S., & Guba, E. A. (1985). Naturalistic inquiry . Beverly Hills, CA: Sage.

Merriam, S. B. (1998). Case study research and case study applications in education . San Francisco, CA: Jossey-Bass.

Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis: An expanded source book (2nd ed.). Thousand Oaks, CA: Sage.

Patton, M. (1990). Qualitative evaluation and research methods (2nd ed.). Newbury Park, CA: Sage.

Richards, L., & Richards, T. (1994). From filing cabinet to computer. In A. Bryman & R. G. Burgess (Eds.), Analysing qualitative data (pp. 146–172). London, England: Routledge.

Chapter   Google Scholar  

Richards, T. J., & Richards, L. (1998). Using computers in qualitative research. In N. K. Denzin & Y. S. Lincoln (Eds.), Collecting and interpreting qualita¬tive materials (pp. 445–462). London, England: Sage.

Stake, R. E. (1995). The art of case study research . Thousand Oaks, CA: Sage.

VanWynsberghe, R., & Khan, S. (2007). Redefining case study. International Journal of Qualitative Methods , 6(2), 80–94. Retrieved from http://ejournals.library.ualberta.ca/index.php/IJQM/article/view/542.

Yin, R. K. (2003). Case study research: Design and methods (3rd ed.). Thousand Oaks, CA: Sage.

Download references

You can also search for this author in PubMed   Google Scholar

Editor information

Copyright information.

© 2012 Sheri R. Klein

About this chapter

Grauer, K. (2012). A Case for Case Study Research in Education. In: Klein, S.R. (eds) Action Research Methods. Palgrave Macmillan, New York. https://doi.org/10.1057/9781137046635_4

Download citation

DOI : https://doi.org/10.1057/9781137046635_4

Publisher Name : Palgrave Macmillan, New York

Print ISBN : 978-1-349-29560-9

Online ISBN : 978-1-137-04663-5

eBook Packages : Palgrave Education Collection Education (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research
  • Technical Support
  • Find My Rep

You are here

Using Case Study in Education Research

Using Case Study in Education Research

  • Lorna Hamilton - University of Edinburgh, UK
  • Connie Corbett-Whittier - Friends University, Topeka, Kansas
  • Description

This book provides an accessible introduction to using case studies. It makes sense of literature in this area, and shows how to generate collaborations and communicate findings.

The authors bring together the practical and the theoretical, enabling readers to build expertise on the principles and practice of case study research, as well as engaging with possible theoretical frameworks. They also highlight the place of case study as a key component of educational research.

With the help of this book, graduate students, teacher educators and practitioner researchers will gain the confidence and skills needed to design and conduct a high quality case study.

See what’s new to this edition by selecting the Features tab on this page. Should you need additional information or have questions regarding the HEOA information provided for this title, including what is new to this edition, please email [email protected] . Please include your name, contact information, and the name of the title for which you would like more information. For information on the HEOA, please go to http://ed.gov/policy/highered/leg/hea08/index.html .

For assistance with your order: Please email us at [email protected] or connect with your SAGE representative.

SAGE 2455 Teller Road Thousand Oaks, CA 91320 www.sagepub.com

'Drawing on a wide range of their own and others' experiences, the authors offer a comprehensive and convincing account of the value of case study in educational research. What comes across - quite passionately - is the way in which a case study approach can bring to life some of the complexities, challenges and contradictions inherent in educational settings. The book is written in a clear and lively manner and should be an invaluable resource for those teachers and students who are incorporating a case study dimension into their research work' - Ian Menter, Professor of Teacher Education, University of Oxford

'This book is comprehensive in its coverage, yet detailed in its exposition of case study research. It is a highly interactive text with a critical edge and is a useful tool for teaching. It is of particular relevance to practitioner researchers, providing accessible guidance for reflective practice. It covers key matters such as: purposes, ethics, data analysis, technology, dissemination and communities for research. And it is a good read!' - Professor Anne Campbell, formerly of Leeds Metropolitan University

'This excellent book is a principled and theoretically informed guide to case study research design and methods for the collection, analysis and presentation of evidence' -Professor Andrew Pollard, Institute of Educaiton, University of London

This publication provides easy text, giving differing viewpoints to establish definitions for case study research. This book has been recommended to the Fd students to support projects of action research.

This has again been recommended for students on the Foundation Degree and Degree programmes as it is an easy text, providing differing viewpoints to establish definitions for case study research. Additionally recommended on the reading list for the BA programmes to provide a clearer insight into using Case Studies in preschool and school environments.

This is an excellent book - very clear

This text clearly discusses the case study approach and would be useful for both undergraduate and post graduate learners.

An easily accessible text, giving alternative points of view on what case study research actually is and how it might be interpreted at doctoral level.

This is a pleasant read with a number of useful group and individual tasks for students to engage with as they think through designing and doing a project. These tasks for useful not just for case studies but can be adapted as students consider other research designs.

Offers a good understanding of case study research in a clear and accessible manner. A perfect starting point for the researcher new to the case study method and will also offer the experienced researcher some useful tips and insights.

This text is clearly written and argues strongly for using case study in educational research, despite the challenges this approach faces in the dynamic world of shifting research paradigms. Step-by-step guidance from initial ideas through to the reality of undertaking case study in educational research is helpful

The book is written in a practical way, which gives a clear guide for undergraduate students especially for those who are using case study in education research. I will definitely add this book to recommended reading lists.

Preview this book

Sample materials & chapters.

Additional Resource 1

Additional Resource 2

Sample Chapter - Chapter 1

Activity 6.12 Observation 1 p98

Activity 6.12 Observation 2 p98

Activity 6.12 Observation 3 p98

Activity 6.18 Interview pupils

Activity 6.18 Interview schedule 1

Activity 6.19 and 6.20 Questionnaire P110

Activity 6.20 Questionnaire 2 p110

Activity 6.21 Sample interview teachers

For instructors

Select a purchasing option, related products.

Doing Research in Education

This title is also available on SAGE Research Methods , the ultimate digital methods library. If your library doesn’t have access, ask your librarian to start a trial .

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • J Microbiol Biol Educ
  • v.16(1); 2015 May

Case Study Teaching Method Improves Student Performance and Perceptions of Learning Gains †

Associated data.

  • Appendix 1: Example assessment questions used to assess the effectiveness of case studies at promoting learning
  • Appendix 2: Student learning gains were assessed using a modified version of the SALG course evaluation tool

Following years of widespread use in business and medical education, the case study teaching method is becoming an increasingly common teaching strategy in science education. However, the current body of research provides limited evidence that the use of published case studies effectively promotes the fulfillment of specific learning objectives integral to many biology courses. This study tested the hypothesis that case studies are more effective than classroom discussions and textbook reading at promoting learning of key biological concepts, development of written and oral communication skills, and comprehension of the relevance of biological concepts to everyday life. This study also tested the hypothesis that case studies produced by the instructor of a course are more effective at promoting learning than those produced by unaffiliated instructors. Additionally, performance on quantitative learning assessments and student perceptions of learning gains were analyzed to determine whether reported perceptions of learning gains accurately reflect academic performance. The results reported here suggest that case studies, regardless of the source, are significantly more effective than other methods of content delivery at increasing performance on examination questions related to chemical bonds, osmosis and diffusion, mitosis and meiosis, and DNA structure and replication. This finding was positively correlated to increased student perceptions of learning gains associated with oral and written communication skills and the ability to recognize connections between biological concepts and other aspects of life. Based on these findings, case studies should be considered as a preferred method for teaching about a variety of concepts in science courses.

INTRODUCTION

The case study teaching method is a highly adaptable style of teaching that involves problem-based learning and promotes the development of analytical skills ( 8 ). By presenting content in the format of a narrative accompanied by questions and activities that promote group discussion and solving of complex problems, case studies facilitate development of the higher levels of Bloom’s taxonomy of cognitive learning; moving beyond recall of knowledge to analysis, evaluation, and application ( 1 , 9 ). Similarly, case studies facilitate interdisciplinary learning and can be used to highlight connections between specific academic topics and real-world societal issues and applications ( 3 , 9 ). This has been reported to increase student motivation to participate in class activities, which promotes learning and increases performance on assessments ( 7 , 16 , 19 , 23 ). For these reasons, case-based teaching has been widely used in business and medical education for many years ( 4 , 11 , 12 , 14 ). Although case studies were considered a novel method of science education just 20 years ago, the case study teaching method has gained popularity in recent years among an array of scientific disciplines such as biology, chemistry, nursing, and psychology ( 5 – 7 , 9 , 11 , 13 , 15 – 17 , 21 , 22 , 24 ).

Although there is now a substantive and growing body of literature describing how to develop and use case studies in science teaching, current research on the effectiveness of case study teaching at meeting specific learning objectives is of limited scope and depth. Studies have shown that working in groups during completion of case studies significantly improves student perceptions of learning and may increase performance on assessment questions, and that the use of clickers can increase student engagement in case study activities, particularly among non-science majors, women, and freshmen ( 7 , 21 , 22 ). Case study teaching has been shown to improve exam performance in an anatomy and physiology course, increasing the mean score across all exams given in a two-semester sequence from 66% to 73% ( 5 ). Use of case studies was also shown to improve students’ ability to synthesize complex analytical questions about the real-world issues associated with a scientific topic ( 6 ). In a high school chemistry course, it was demonstrated that the case study teaching method produces significant increases in self-reported control of learning, task value, and self-efficacy for learning and performance ( 24 ). This effect on student motivation is important because enhanced motivation for learning activities has been shown to promote student engagement and academic performance ( 19 , 24 ). Additionally, faculty from a number of institutions have reported that using case studies promotes critical thinking, learning, and participation among students, especially in terms of the ability to view an issue from multiple perspectives and to grasp the practical application of core course concepts ( 23 ).

Despite what is known about the effectiveness of case studies in science education, questions remain about the functionality of the case study teaching method at promoting specific learning objectives that are important to many undergraduate biology courses. A recent survey of teachers who use case studies found that the topics most often covered in general biology courses included genetics and heredity, cell structure, cells and energy, chemistry of life, and cell cycle and cancer, suggesting that these topics should be of particular interest in studies that examine the effectiveness of the case study teaching method ( 8 ). However, the existing body of literature lacks direct evidence that the case study method is an effective tool for teaching about this collection of important topics in biology courses. Further, the extent to which case study teaching promotes development of science communication skills and the ability to understand the connections between biological concepts and everyday life has not been examined, yet these are core learning objectives shared by a variety of science courses. Although many instructors have produced case studies for use in their own classrooms, the production of novel case studies is time-consuming and requires skills that not all instructors have perfected. It is therefore important to determine whether case studies published by instructors who are unaffiliated with a particular course can be used effectively and obviate the need for each instructor to develop new case studies for their own courses. The results reported herein indicate that teaching with case studies results in significantly higher performance on examination questions about chemical bonds, osmosis and diffusion, mitosis and meiosis, and DNA structure and replication than that achieved by class discussions and textbook reading for topics of similar complexity. Case studies also increased overall student perceptions of learning gains and perceptions of learning gains specifically related to written and oral communication skills and the ability to grasp connections between scientific topics and their real-world applications. The effectiveness of the case study teaching method at increasing academic performance was not correlated to whether the case study used was authored by the instructor of the course or by an unaffiliated instructor. These findings support increased use of published case studies in the teaching of a variety of biological concepts and learning objectives.

Student population

This study was conducted at Kingsborough Community College, which is part of the City University of New York system, located in Brooklyn, New York. Kingsborough Community College has a diverse population of approximately 19,000 undergraduate students. The student population included in this study was enrolled in the first semester of a two-semester sequence of general (introductory) biology for biology majors during the spring, winter, or summer semester of 2014. A total of 63 students completed the course during this time period; 56 students consented to the inclusion of their data in the study. Of the students included in the study, 23 (41%) were male and 33 (59%) were female; 40 (71%) were registered as college freshmen and 16 (29%) were registered as college sophomores. To normalize participant groups, the same student population pooled from three classes taught by the same instructor was used to assess both experimental and control teaching methods.

Course material

The four biological concepts assessed during this study (chemical bonds, osmosis and diffusion, mitosis and meiosis, and DNA structure and replication) were selected as topics for studying the effectiveness of case study teaching because they were the key concepts addressed by this particular course that were most likely to be taught in a number of other courses, including biology courses for both majors and nonmajors at outside institutions. At the start of this study, relevant existing case studies were freely available from the National Center for Case Study Teaching in Science (NCCSTS) to address mitosis and meiosis and DNA structure and replication, but published case studies that appropriately addressed chemical bonds and osmosis and diffusion were not available. Therefore, original case studies that addressed the latter two topics were produced as part of this study, and case studies produced by unaffiliated instructors and published by the NCCSTS were used to address the former two topics. By the conclusion of this study, all four case studies had been peer-reviewed and accepted for publication by the NCCSTS ( http://sciencecases.lib.buffalo.edu/cs/ ). Four of the remaining core topics covered in this course (macromolecules, photosynthesis, genetic inheritance, and translation) were selected as control lessons to provide control assessment data.

To minimize extraneous variation, control topics and assessments were carefully matched in complexity, format, and number with case studies, and an equal amount of class time was allocated for each case study and the corresponding control lesson. Instruction related to control lessons was delivered using minimal slide-based lectures, with emphasis on textbook reading assignments accompanied by worksheets completed by students in and out of the classroom, and small and large group discussion of key points. Completion of activities and discussion related to all case studies and control topics that were analyzed was conducted in the classroom, with the exception of the take-home portion of the osmosis and diffusion case study.

Data collection and analysis

This study was performed in accordance with a protocol approved by the Kingsborough Community College Human Research Protection Program and the Institutional Review Board (IRB) of the City University of New York (CUNY IRB reference 539938-1; KCC IRB application #: KCC 13-12-126-0138). Assessment scores were collected from regularly scheduled course examinations. For each case study, control questions were included on the same examination that were similar in number, format, point value, and difficulty level, but related to a different topic covered in the course that was of similar complexity. Complexity and difficulty of both case study and control questions were evaluated using experiential data from previous iterations of the course; the Bloom’s taxonomy designation and amount of material covered by each question, as well as the average score on similar questions achieved by students in previous iterations of the course was considered in determining appropriate controls. All assessment questions were scored using a standardized, pre-determined rubric. Student perceptions of learning gains were assessed using a modified version of the Student Assessment of Learning Gains (SALG) course evaluation tool ( http://www.salgsite.org ), distributed in hardcopy and completed anonymously during the last week of the course. Students were presented with a consent form to opt-in to having their data included in the data analysis. After the course had concluded and final course grades had been posted, data from consenting students were pooled in a database and identifying information was removed prior to analysis. Statistical analysis of data was conducted using the Kruskal-Wallis one-way analysis of variance and calculation of the R 2 coefficient of determination.

Teaching with case studies improves performance on learning assessments, independent of case study origin

To evaluate the effectiveness of the case study teaching method at promoting learning, student performance on examination questions related to material covered by case studies was compared with performance on questions that covered material addressed through classroom discussions and textbook reading. The latter questions served as control items; assessment items for each case study were compared with control items that were of similar format, difficulty, and point value ( Appendix 1 ). Each of the four case studies resulted in an increase in examination performance compared with control questions that was statistically significant, with an average difference of 18% ( Fig. 1 ). The mean score on case study-related questions was 73% for the chemical bonds case study, 79% for osmosis and diffusion, 76% for mitosis and meiosis, and 70% for DNA structure and replication ( Fig. 1 ). The mean score for non-case study-related control questions was 60%, 54%, 60%, and 52%, respectively ( Fig. 1 ). In terms of examination performance, no significant difference between case studies produced by the instructor of the course (chemical bonds and osmosis and diffusion) and those produced by unaffiliated instructors (mitosis and meiosis and DNA structure and replication) was indicated by the Kruskal-Wallis one-way analysis of variance. However, the 25% difference between the mean score on questions related to the osmosis and diffusion case study and the mean score on the paired control questions was notably higher than the 13–18% differences observed for the other case studies ( Fig. 1 ).

An external file that holds a picture, illustration, etc.
Object name is jmbe-16-21f1.jpg

Case study teaching method increases student performance on examination questions. Mean score on a set of examination questions related to lessons covered by case studies (black bars) and paired control questions of similar format and difficulty about an unrelated topic (white bars). Chemical bonds, n = 54; Osmosis and diffusion, n = 54; Mitosis and meiosis, n = 51; DNA structure and replication, n = 50. Error bars represent the standard error of the mean (SEM). Asterisk indicates p < 0.05.

Case study teaching increases student perception of learning gains related to core course objectives

Student learning gains were assessed using a modified version of the SALG course evaluation tool ( Appendix 2 ). To determine whether completing case studies was more effective at increasing student perceptions of learning gains than completing textbook readings or participating in class discussions, perceptions of student learning gains for each were compared. In response to the question “Overall, how much did each of the following aspects of the class help your learning?” 82% of students responded that case studies helped a “good” or “great” amount, compared with 70% for participating in class discussions and 58% for completing textbook reading; only 4% of students responded that case studies helped a “small amount” or “provided no help,” compared with 2% for class discussions and 22% for textbook reading ( Fig. 2A ). The differences in reported learning gains derived from the use of case studies compared with class discussion and textbook readings were statistically significant, while the difference in learning gains associated with class discussion compared with textbook reading was not statistically significant by a narrow margin ( p = 0.051).

An external file that holds a picture, illustration, etc.
Object name is jmbe-16-21f2.jpg

The case study teaching method increases student perceptions of learning gains. Student perceptions of learning gains are indicated by plotting responses to the question “How much did each of the following activities: (A) Help your learning overall? (B) Improve your ability to communicate your knowledge of scientific concepts in writing? (C) Improve your ability to communicate your knowledge of scientific concepts orally? (D) Help you understand the connections between scientific concepts and other aspects of your everyday life?” Reponses are represented as follows: Helped a great amount (black bars); Helped a good amount (dark gray bars); Helped a moderate amount (medium gray bars); Helped a small amount (light gray bars); Provided no help (white bars). Asterisk indicates p < 0.05.

To elucidate the effectiveness of case studies at promoting learning gains related to specific course learning objectives compared with class discussions and textbook reading, students were asked how much each of these methods of content delivery specifically helped improve skills that were integral to fulfilling three main course objectives. When students were asked how much each of the methods helped “improve your ability to communicate knowledge of scientific concepts in writing,” 81% of students responded that case studies help a “good” or “great” amount, compared with 63% for class discussions and 59% for textbook reading; only 6% of students responded that case studies helped a “small amount” or “provided no help,” compared with 8% for class discussions and 21% for textbook reading ( Fig. 2B ). When the same question was posed about the ability to communicate orally, 81% of students responded that case studies help a “good” or “great” amount, compared with 68% for class discussions and 50% for textbook reading, while the respective response rates for helped a “small amount” or “provided no help,” were 4%, 6%, and 25% ( Fig. 2C ). The differences in learning gains associated with both written and oral communication were statistically significant when completion of case studies was compared with either participation in class discussion or completion of textbook readings. Compared with textbook reading, class discussions led to a statistically significant increase in oral but not written communication skills.

Students were then asked how much each of the methods helped them “understand the connections between scientific concepts and other aspects of your everyday life.” A total of 79% of respondents declared that case studies help a “good” or “great” amount, compared with 70% for class discussions and 57% for textbook reading ( Fig. 2D ). Only 4% stated that case studies and class discussions helped a “small amount” or “provided no help,” compared with 21% for textbook reading ( Fig. 2D ). Similar to overall learning gains, the use of case studies significantly increased the ability to understand the relevance of science to everyday life compared with class discussion and textbook readings, while the difference in learning gains associated with participation in class discussion compared with textbook reading was not statistically significant ( p = 0.054).

Student perceptions of learning gains resulting from case study teaching are positively correlated to increased performance on examinations, but independent of case study author

To test the hypothesis that case studies produced specifically for this course by the instructor were more effective at promoting learning gains than topically relevant case studies published by authors not associated with this course, perceptions of learning gains were compared for each of the case studies. For both of the case studies produced by the instructor of the course, 87% of students indicated that the case study provided a “good” or “great” amount of help to their learning, and 2% indicated that the case studies provided “little” or “no” help ( Table 1 ). In comparison, an average of 85% of students indicated that the case studies produced by an unaffiliated instructor provided a “good” or “great” amount of help to their learning, and 4% indicated that the case studies provided “little” or “no” help ( Table 1 ). The instructor-produced case studies yielded both the highest and lowest percentage of students reporting the highest level of learning gains (a “great” amount), while case studies produced by unaffiliated instructors yielded intermediate values. Therefore, it can be concluded that the effectiveness of case studies at promoting learning gains is not significantly affected by whether or not the course instructor authored the case study.

Case studies positively affect student perceptions of learning gains about various biological topics.

Finally, to determine whether performance on examination questions accurately predicts student perceptions of learning gains, mean scores on examination questions related to case studies were compared with reported perceptions of learning gains for those case studies ( Fig. 3 ). The coefficient of determination (R 2 value) was 0.81, indicating a strong, but not definitive, positive correlation between perceptions of learning gains and performance on examinations, suggesting that student perception of learning gains is a valid tool for assessing the effectiveness of case studies ( Fig. 3 ). This correlation was independent of case study author.

An external file that holds a picture, illustration, etc.
Object name is jmbe-16-21f3.jpg

Perception of learning gains but not author of case study is positively correlated to score on related examination questions. Percentage of students reporting that each specific case study provided “a great amount of help” to their learning was plotted against the point difference between mean score on examination questions related to that case study and mean score on paired control questions. Positive point differences indicate how much higher the mean scores on case study-related questions were than the mean scores on paired control questions. Black squares represent case studies produced by the instructor of the course; white squares represent case studies produced by unaffiliated instructors. R 2 value indicates the coefficient of determination.

The purpose of this study was to test the hypothesis that teaching with case studies produced by the instructor of a course is more effective at promoting learning gains than using case studies produced by unaffiliated instructors. This study also tested the hypothesis that the case study teaching method is more effective than class discussions and textbook reading at promoting learning gains associated with four of the most commonly taught topics in undergraduate general biology courses: chemical bonds, osmosis and diffusion, mitosis and meiosis, and DNA structure and replication. In addition to assessing content-based learning gains, development of written and oral communication skills and the ability to connect scientific topics with real-world applications was also assessed, because these skills were overarching learning objectives of this course, and classroom activities related to both case studies and control lessons were designed to provide opportunities for students to develop these skills. Finally, data were analyzed to determine whether performance on examination questions is positively correlated to student perceptions of learning gains resulting from case study teaching.

Compared with equivalent control questions about topics of similar complexity taught using class discussions and textbook readings, all four case studies produced statistically significant increases in the mean score on examination questions ( Fig. 1 ). This indicates that case studies are more effective than more commonly used, traditional methods of content delivery at promoting learning of a variety of core concepts covered in general biology courses. The average increase in score on each test item was equivalent to nearly two letter grades, which is substantial enough to elevate the average student performance on test items from the unsatisfactory/failing range to the satisfactory/passing range. The finding that there was no statistical difference between case studies in terms of performance on examination questions suggests that case studies are equally effective at promoting learning of disparate topics in biology. The observations that students did not perform significantly less well on the first case study presented (chemical bonds) compared with the other case studies and that performance on examination questions did not progressively increase with each successive case study suggests that the effectiveness of case studies is not directly related to the amount of experience students have using case studies. Furthermore, anecdotal evidence from previous semesters of this course suggests that, of the four topics addressed by cases in this study, DNA structure and function and osmosis and diffusion are the first and second most difficult for students to grasp. The lack of a statistical difference between case studies therefore suggests that the effectiveness of a case study at promoting learning gains is not directly proportional to the difficulty of the concept covered. However, the finding that use of the osmosis and diffusion case study resulted in the greatest increase in examination performance compared with control questions and also produced the highest student perceptions of learning gains is noteworthy and could be attributed to the fact that it was the only case study evaluated that included a hands-on experiment. Because the inclusion of a hands-on kinetic activity may synergistically enhance student engagement and learning and result in an even greater increase in learning gains than case studies that lack this type of activity, it is recommended that case studies that incorporate this type of activity be preferentially utilized.

Student perceptions of learning gains are strongly motivating factors for engagement in the classroom and academic performance, so it is important to assess the effect of any teaching method in this context ( 19 , 24 ). A modified version of the SALG course evaluation tool was used to assess student perceptions of learning gains because it has been previously validated as an efficacious tool ( Appendix 2 ) ( 20 ). Using the SALG tool, case study teaching was demonstrated to significantly increase student perceptions of overall learning gains compared with class discussions and textbook reading ( Fig. 2A ). Case studies were shown to be particularly useful for promoting perceived development of written and oral communication skills and for demonstrating connections between scientific topics and real-world issues and applications ( Figs. 2B–2D ). Further, student perceptions of “great” learning gains positively correlated with increased performance on examination questions, indicating that assessment of learning gains using the SALG tool is both valid and useful in this course setting ( Fig. 3 ). These findings also suggest that case study teaching could be used to increase student motivation and engagement in classroom activities and thus promote learning and performance on assessments. The finding that textbook reading yielded the lowest student perceptions of learning gains was not unexpected, since reading facilitates passive learning while the class discussions and case studies were both designed to promote active learning.

Importantly, there was no statistical difference in student performance on examinations attributed to the two case studies produced by the instructor of the course compared with the two case studies produced by unaffiliated instructors. The average difference between the two instructor-produced case studies and the two case studies published by unaffiliated instructors was only 3% in terms of both the average score on examination questions (76% compared with 73%) and the average increase in score compared with paired control items (14% compared with 17%) ( Fig. 1 ). Even when considering the inherent qualitative differences of course grades, these differences are negligible. Similarly, the effectiveness of case studies at promoting learning gains was not significantly affected by the origin of the case study, as evidenced by similar percentages of students reporting “good” and “great” learning gains regardless of whether the case study was produced by the course instructor or an unaffiliated instructor ( Table 1 ).

The observation that case studies published by unaffiliated instructors are just as effective as those produced by the instructor of a course suggests that instructors can reasonably rely on the use of pre-published case studies relevant to their class rather than investing the considerable time and effort required to produce a novel case study. Case studies covering a wide range of topics in the sciences are available from a number of sources, and many of them are free access. The National Center for Case Study Teaching in Science (NCCSTS) database ( http://sciencecases.lib.buffalo.edu/cs/ ) contains over 500 case studies that are freely available to instructors, and are accompanied by teaching notes that provide logistical advice and additional resources for implementing the case study, as well as a set of assessment questions with a password-protected answer key. Case study repositories are also maintained by BioQUEST Curriculum Consortium ( http://www.bioquest.org/icbl/cases.php ) and the Science Case Network ( http://sciencecasenet.org ); both are available for use by instructors from outside institutions.

It should be noted that all case studies used in this study were rigorously peer-reviewed and accepted for publication by the NCCSTS prior to the completion of this study ( 2 , 10 , 18 , 25 ); the conclusions of this study may not apply to case studies that were not developed in accordance with similar standards. Because case study teaching involves skills such as creative writing and management of dynamic group discussion in a way that is not commonly integrated into many other teaching methods, it is recommended that novice case study teachers seek training or guidance before writing their first case study or implementing the method. The lack of a difference observed in the use of case studies from different sources should be interpreted with some degree of caution since only two sources were represented in this study, and each by only two cases. Furthermore, in an educational setting, quantitative differences in test scores might produce meaningful qualitative differences in course grades even in the absence of a p value that is statistically significant. For example, there is a meaningful qualitative difference between test scores that result in an average grade of C− and test scores that result in an average grade of C+, even if there is no statistically significant difference between the two sets of scores.

In the future, it could be informative to confirm these findings using a larger cohort, by repeating the study at different institutions with different instructors, by evaluating different case studies, and by directly comparing the effectiveness of the case studying teaching method with additional forms of instruction, such as traditional chalkboard and slide-based lecturing, and laboratory-based activities. It may also be informative to examine whether demographic factors such as student age and gender modulate the effectiveness of the case study teaching method, and whether case studies work equally well for non-science majors taking a science course compared with those majoring in the subject. Since the topical material used in this study is often included in other classes in both high school and undergraduate education, such as cell biology, genetics, and chemistry, the conclusions of this study are directly applicable to a broad range of courses. Presently, it is recommended that the use of case studies in teaching undergraduate general biology and other science courses be expanded, especially for the teaching of capacious issues with real-world applications and in classes where development of written and oral communication skills are key objectives. The use of case studies that involve hands-on activities should be emphasized to maximize the benefit of this teaching method. Importantly, instructors can be confident in the use of pre-published case studies to promote learning, as there is no indication that the effectiveness of the case study teaching method is reliant on the production of novel, customized case studies for each course.

SUPPLEMENTAL MATERIALS

Acknowledgments.

This article benefitted from a President’s Faculty Innovation Grant, Kingsborough Community College. The author declares that there are no conflicts of interest.

† Supplemental materials available at http://jmbe.asm.org

Cart

  • SUGGESTED TOPICS
  • The Magazine
  • Newsletters
  • Managing Yourself
  • Managing Teams
  • Work-life Balance
  • The Big Idea
  • Data & Visuals
  • Reading Lists
  • Case Selections
  • HBR Learning
  • Topic Feeds
  • Account Settings
  • Email Preferences

What the Case Study Method Really Teaches

  • Nitin Nohria

case study method in education

Seven meta-skills that stick even if the cases fade from memory.

It’s been 100 years since Harvard Business School began using the case study method. Beyond teaching specific subject matter, the case study method excels in instilling meta-skills in students. This article explains the importance of seven such skills: preparation, discernment, bias recognition, judgement, collaboration, curiosity, and self-confidence.

During my decade as dean of Harvard Business School, I spent hundreds of hours talking with our alumni. To enliven these conversations, I relied on a favorite question: “What was the most important thing you learned from your time in our MBA program?”

  • Nitin Nohria is the George F. Baker Jr. and Distinguished Service University Professor. He served as the 10th dean of Harvard Business School, from 2010 to 2020.

Partner Center

  • Illinois Online
  • Illinois Remote

teaching_learning_banner

  • TA Resources
  • Teaching Consultation
  • Teaching Portfolio Program
  • Grad Academy for College Teaching
  • Faculty Events
  • The Art of Teaching
  • 2022 Illinois Summer Teaching Institute
  • Large Classes
  • Leading Discussions
  • Laboratory Classes
  • Lecture-Based Classes
  • Planning a Class Session
  • Questioning Strategies
  • Classroom Assessment Techniques (CATs)
  • Problem-Based Learning (PBL)
  • The Case Method
  • Community-Based Learning: Service Learning
  • Group Learning
  • Just-in-Time Teaching
  • Creating a Syllabus
  • Motivating Students
  • Dealing With Cheating
  • Discouraging & Detecting Plagiarism
  • Diversity & Creating an Inclusive Classroom
  • Harassment & Discrimination
  • Professional Conduct
  • Foundations of Good Teaching
  • Student Engagement
  • Assessment Strategies
  • Course Design
  • Student Resources
  • Teaching Tips
  • Graduate Teacher Certificate
  • Certificate in Foundations of Teaching
  • Teacher Scholar Certificate
  • Certificate in Technology-Enhanced Teaching
  • Master Course in Online Teaching (MCOT)
  • 2022 Celebration of College Teaching
  • 2023 Celebration of College Teaching
  • Hybrid Teaching and Learning Certificate
  • 2024 Celebration of College Teaching
  • Classroom Observation Etiquette
  • Teaching Philosophy Statement
  • Pedagogical Literature Review
  • Scholarship of Teaching and Learning
  • Instructor Stories
  • Podcast: Teach Talk Listen Learn
  • Universal Design for Learning

Sign-Up to receive Teaching and Learning news and events

Cases are narratives, situations, select data samplings, or statements that present unresolved and provocative issues, situations, or questions (Indiana University Teaching Handbook, 2005). The case method is a participatory, discussion-based way of learning where students gain skills in critical thinking, communication, and group dynamics. It is a type of problem-based learning . Often seen in the professional schools of medicine, law, and business, the case method is now used successfully in disciplines such as engineering, chemistry, education, and journalism. Students can work through a case during class as a whole or in small groups.

In addition to the definition above, the case method of teaching (or learning):

  • Is a partnership between students and teacher as well as among students.
  • Promotes more effective contextual learning and long-term retention.
  • Involves trust that students will find the answers.
  • Answers questions not only of “how” but “why.”
  • Provides students the opportunity to “walk around the problem” and to see varied perspectives.

(Bruner, 2002, and Christensen, Garvin, and Sweet, 1991)

What is the value of the case method?

Bruner (1991) states that the case method:

  • Is effective: It employs active learning, involves self-discovery where the teacher serves as facilitator.
  • Builds the capacity for critical thinking: It uses questioning skills as modeled by the teacher and employs discussion and debates.
  • Exercises an administrative point of view: Students must develop a framework for making decisions.
  • Models a learning environment: It offers an exchange and flow of ideas from one person to another and achieves trust, respect, and risk-taking.
  • Models the process of inductive learning-from-experience: It is valuable in promoting life-long learning. It also promotes more effective contextual learning and long-term retention.
  • Mimics the real world: Decisions are sometimes based not on absolute values of right and wrong, but on relative values and uncertainty.

What are some ways to use the case method appropriately?

Choose an appropriate case

Cases can be any of the following (Indiana University Teaching Handbook, 2005):

  • Finished cases based on facts; these are useful for purposes of analysis.
  • Unfinished open-ended cases; where the results are not clear yet, so the student must predict, make suggestions, and conclusions.
  • Fictional cases that the teacher writes; the difficulty is in writing these cases so they reflect a real-world situation.
  • Original documents, such as the use of news articles, reports, data sets, ethnographies; an interesting case would be to provide two sides of a scenario.

Develop effective questions

Think about ways to start the discussion such as using a hypothetical example or employing the background knowledge of your students.

Get students prepared

To prepare for the next class ask students to think about the following questions:

  • What is the problem or decision?
  • Who is the key decision-maker?
  • Who are the other people involved?
  • What caused the problem?
  • What are some underlying assumptions or objectives?
  • What decision needs to be made?
  • Are there alternative responses?

Set ground rules with your students

For effective class discussion suggest the following to your students:

  • Carefully listen to the discussion, but do not wait too long to participate.
  • Collaboration and respect should always be present.
  • Provide value-added comments, suggestions, or questions. Strive to think of the class objective by keeping the discussion going toward constructive inquiry and solutions.

Other suggestions

  • Try to refrain from being the “sage on the stage” or a monopolizer. If you are, students are merely absorbing and not engaging with the material in the way that the case method allows.
  • Make sure the students have finished presenting their perspective before interjecting. Wait and check their body language before adding or changing the discussion.
  • Take note of the progress and the content in the discussion. One way is by using the board or computer to structure the comments. Another way, particularly useful where there is a conflict or multiple alternatives, is the two-column method. In this method, the teacher makes two columns: “For and Against” or “Alternative A and Alternative B.” All arguments/comments are listed in the respective column before discussions or evaluations occur. Don't forget to note supportive evidence.
  • In addition to the discussion method, you can also try debates, role-plays, and simulations as ways to uncover the lesson from the case.
  • If you decide to grade participation, make sure that your grading system is an accurate and defensible portrayal of the contributions.

In conclusion, cases are a valuable way for learning to occur. It takes a fair amount of preparation by both the teacher and the students, but don't forget these benefits (Bruner, 2002):

  • The teacher is learning as well as the students. Because of the interactive nature of this method, the teacher constantly “encounters fresh perspective on old problems or tests classic solutions to new problems.”
  • The students are having fun, are motivated and engaged. If done well, the students are working collaboratively to support each other.

Where can I learn more?

  • Case Studies, Center for Teaching, Vanderbilt University
  • Case-based Teaching, Center for Research on Teaching and Learning, University of Michigan
  • Barnes, L. B., Christensen, C. R., & Hansen, A. J. (1994). Teaching and the case method (3rd ed.). Boston: Harvard Business School Press.
  • Boehrer, J., & Linsky, M. (1990). Teaching with cases: Learning to question. In M. D. Svinicki (Ed.), New Directions for Teaching and Learning: No. 42, The changing face of college teaching . San Francisco: Jossey-Bass.
  • Bruner, R. (2002). Socrates' muse: Reflections on effective case discussion leadership . New York: McGraw-Hill.
  • Christensen, C. R., Garvin, D. A., & Sweet, A. (Eds.). (1991). Education for judgment: The artistry of discussion leadership . Boston: Harvard Business School Press.
  • Indiana University, Bloomington, Campus Instructional Consulting. (n.d.). Teaching with the case method. In Indiana University Teaching Handbook . Retrieved June 23, 2010, from http://www.teaching.iub.edu/wrapper_big.php?section_id=case
  • Mitchell, T., & Rosenstiel, T. (2003). Background and tips for case study teaching . Retrieved June 23, 2010, from http://www.journalism.org/node/1757

Center for Innovation in Teaching & Learning

249 Armory Building 505 East Armory Avenue Champaign, IL 61820

217 333-1462

Email: [email protected]

Office of the Provost

  • Privacy Policy

Research Method

Home » Case Study – Methods, Examples and Guide

Case Study – Methods, Examples and Guide

Table of Contents

Case Study Research

A case study is a research method that involves an in-depth examination and analysis of a particular phenomenon or case, such as an individual, organization, community, event, or situation.

It is a qualitative research approach that aims to provide a detailed and comprehensive understanding of the case being studied. Case studies typically involve multiple sources of data, including interviews, observations, documents, and artifacts, which are analyzed using various techniques, such as content analysis, thematic analysis, and grounded theory. The findings of a case study are often used to develop theories, inform policy or practice, or generate new research questions.

Types of Case Study

Types and Methods of Case Study are as follows:

Single-Case Study

A single-case study is an in-depth analysis of a single case. This type of case study is useful when the researcher wants to understand a specific phenomenon in detail.

For Example , A researcher might conduct a single-case study on a particular individual to understand their experiences with a particular health condition or a specific organization to explore their management practices. The researcher collects data from multiple sources, such as interviews, observations, and documents, and uses various techniques to analyze the data, such as content analysis or thematic analysis. The findings of a single-case study are often used to generate new research questions, develop theories, or inform policy or practice.

Multiple-Case Study

A multiple-case study involves the analysis of several cases that are similar in nature. This type of case study is useful when the researcher wants to identify similarities and differences between the cases.

For Example, a researcher might conduct a multiple-case study on several companies to explore the factors that contribute to their success or failure. The researcher collects data from each case, compares and contrasts the findings, and uses various techniques to analyze the data, such as comparative analysis or pattern-matching. The findings of a multiple-case study can be used to develop theories, inform policy or practice, or generate new research questions.

Exploratory Case Study

An exploratory case study is used to explore a new or understudied phenomenon. This type of case study is useful when the researcher wants to generate hypotheses or theories about the phenomenon.

For Example, a researcher might conduct an exploratory case study on a new technology to understand its potential impact on society. The researcher collects data from multiple sources, such as interviews, observations, and documents, and uses various techniques to analyze the data, such as grounded theory or content analysis. The findings of an exploratory case study can be used to generate new research questions, develop theories, or inform policy or practice.

Descriptive Case Study

A descriptive case study is used to describe a particular phenomenon in detail. This type of case study is useful when the researcher wants to provide a comprehensive account of the phenomenon.

For Example, a researcher might conduct a descriptive case study on a particular community to understand its social and economic characteristics. The researcher collects data from multiple sources, such as interviews, observations, and documents, and uses various techniques to analyze the data, such as content analysis or thematic analysis. The findings of a descriptive case study can be used to inform policy or practice or generate new research questions.

Instrumental Case Study

An instrumental case study is used to understand a particular phenomenon that is instrumental in achieving a particular goal. This type of case study is useful when the researcher wants to understand the role of the phenomenon in achieving the goal.

For Example, a researcher might conduct an instrumental case study on a particular policy to understand its impact on achieving a particular goal, such as reducing poverty. The researcher collects data from multiple sources, such as interviews, observations, and documents, and uses various techniques to analyze the data, such as content analysis or thematic analysis. The findings of an instrumental case study can be used to inform policy or practice or generate new research questions.

Case Study Data Collection Methods

Here are some common data collection methods for case studies:

Interviews involve asking questions to individuals who have knowledge or experience relevant to the case study. Interviews can be structured (where the same questions are asked to all participants) or unstructured (where the interviewer follows up on the responses with further questions). Interviews can be conducted in person, over the phone, or through video conferencing.

Observations

Observations involve watching and recording the behavior and activities of individuals or groups relevant to the case study. Observations can be participant (where the researcher actively participates in the activities) or non-participant (where the researcher observes from a distance). Observations can be recorded using notes, audio or video recordings, or photographs.

Documents can be used as a source of information for case studies. Documents can include reports, memos, emails, letters, and other written materials related to the case study. Documents can be collected from the case study participants or from public sources.

Surveys involve asking a set of questions to a sample of individuals relevant to the case study. Surveys can be administered in person, over the phone, through mail or email, or online. Surveys can be used to gather information on attitudes, opinions, or behaviors related to the case study.

Artifacts are physical objects relevant to the case study. Artifacts can include tools, equipment, products, or other objects that provide insights into the case study phenomenon.

How to conduct Case Study Research

Conducting a case study research involves several steps that need to be followed to ensure the quality and rigor of the study. Here are the steps to conduct case study research:

  • Define the research questions: The first step in conducting a case study research is to define the research questions. The research questions should be specific, measurable, and relevant to the case study phenomenon under investigation.
  • Select the case: The next step is to select the case or cases to be studied. The case should be relevant to the research questions and should provide rich and diverse data that can be used to answer the research questions.
  • Collect data: Data can be collected using various methods, such as interviews, observations, documents, surveys, and artifacts. The data collection method should be selected based on the research questions and the nature of the case study phenomenon.
  • Analyze the data: The data collected from the case study should be analyzed using various techniques, such as content analysis, thematic analysis, or grounded theory. The analysis should be guided by the research questions and should aim to provide insights and conclusions relevant to the research questions.
  • Draw conclusions: The conclusions drawn from the case study should be based on the data analysis and should be relevant to the research questions. The conclusions should be supported by evidence and should be clearly stated.
  • Validate the findings: The findings of the case study should be validated by reviewing the data and the analysis with participants or other experts in the field. This helps to ensure the validity and reliability of the findings.
  • Write the report: The final step is to write the report of the case study research. The report should provide a clear description of the case study phenomenon, the research questions, the data collection methods, the data analysis, the findings, and the conclusions. The report should be written in a clear and concise manner and should follow the guidelines for academic writing.

Examples of Case Study

Here are some examples of case study research:

  • The Hawthorne Studies : Conducted between 1924 and 1932, the Hawthorne Studies were a series of case studies conducted by Elton Mayo and his colleagues to examine the impact of work environment on employee productivity. The studies were conducted at the Hawthorne Works plant of the Western Electric Company in Chicago and included interviews, observations, and experiments.
  • The Stanford Prison Experiment: Conducted in 1971, the Stanford Prison Experiment was a case study conducted by Philip Zimbardo to examine the psychological effects of power and authority. The study involved simulating a prison environment and assigning participants to the role of guards or prisoners. The study was controversial due to the ethical issues it raised.
  • The Challenger Disaster: The Challenger Disaster was a case study conducted to examine the causes of the Space Shuttle Challenger explosion in 1986. The study included interviews, observations, and analysis of data to identify the technical, organizational, and cultural factors that contributed to the disaster.
  • The Enron Scandal: The Enron Scandal was a case study conducted to examine the causes of the Enron Corporation’s bankruptcy in 2001. The study included interviews, analysis of financial data, and review of documents to identify the accounting practices, corporate culture, and ethical issues that led to the company’s downfall.
  • The Fukushima Nuclear Disaster : The Fukushima Nuclear Disaster was a case study conducted to examine the causes of the nuclear accident that occurred at the Fukushima Daiichi Nuclear Power Plant in Japan in 2011. The study included interviews, analysis of data, and review of documents to identify the technical, organizational, and cultural factors that contributed to the disaster.

Application of Case Study

Case studies have a wide range of applications across various fields and industries. Here are some examples:

Business and Management

Case studies are widely used in business and management to examine real-life situations and develop problem-solving skills. Case studies can help students and professionals to develop a deep understanding of business concepts, theories, and best practices.

Case studies are used in healthcare to examine patient care, treatment options, and outcomes. Case studies can help healthcare professionals to develop critical thinking skills, diagnose complex medical conditions, and develop effective treatment plans.

Case studies are used in education to examine teaching and learning practices. Case studies can help educators to develop effective teaching strategies, evaluate student progress, and identify areas for improvement.

Social Sciences

Case studies are widely used in social sciences to examine human behavior, social phenomena, and cultural practices. Case studies can help researchers to develop theories, test hypotheses, and gain insights into complex social issues.

Law and Ethics

Case studies are used in law and ethics to examine legal and ethical dilemmas. Case studies can help lawyers, policymakers, and ethical professionals to develop critical thinking skills, analyze complex cases, and make informed decisions.

Purpose of Case Study

The purpose of a case study is to provide a detailed analysis of a specific phenomenon, issue, or problem in its real-life context. A case study is a qualitative research method that involves the in-depth exploration and analysis of a particular case, which can be an individual, group, organization, event, or community.

The primary purpose of a case study is to generate a comprehensive and nuanced understanding of the case, including its history, context, and dynamics. Case studies can help researchers to identify and examine the underlying factors, processes, and mechanisms that contribute to the case and its outcomes. This can help to develop a more accurate and detailed understanding of the case, which can inform future research, practice, or policy.

Case studies can also serve other purposes, including:

  • Illustrating a theory or concept: Case studies can be used to illustrate and explain theoretical concepts and frameworks, providing concrete examples of how they can be applied in real-life situations.
  • Developing hypotheses: Case studies can help to generate hypotheses about the causal relationships between different factors and outcomes, which can be tested through further research.
  • Providing insight into complex issues: Case studies can provide insights into complex and multifaceted issues, which may be difficult to understand through other research methods.
  • Informing practice or policy: Case studies can be used to inform practice or policy by identifying best practices, lessons learned, or areas for improvement.

Advantages of Case Study Research

There are several advantages of case study research, including:

  • In-depth exploration: Case study research allows for a detailed exploration and analysis of a specific phenomenon, issue, or problem in its real-life context. This can provide a comprehensive understanding of the case and its dynamics, which may not be possible through other research methods.
  • Rich data: Case study research can generate rich and detailed data, including qualitative data such as interviews, observations, and documents. This can provide a nuanced understanding of the case and its complexity.
  • Holistic perspective: Case study research allows for a holistic perspective of the case, taking into account the various factors, processes, and mechanisms that contribute to the case and its outcomes. This can help to develop a more accurate and comprehensive understanding of the case.
  • Theory development: Case study research can help to develop and refine theories and concepts by providing empirical evidence and concrete examples of how they can be applied in real-life situations.
  • Practical application: Case study research can inform practice or policy by identifying best practices, lessons learned, or areas for improvement.
  • Contextualization: Case study research takes into account the specific context in which the case is situated, which can help to understand how the case is influenced by the social, cultural, and historical factors of its environment.

Limitations of Case Study Research

There are several limitations of case study research, including:

  • Limited generalizability : Case studies are typically focused on a single case or a small number of cases, which limits the generalizability of the findings. The unique characteristics of the case may not be applicable to other contexts or populations, which may limit the external validity of the research.
  • Biased sampling: Case studies may rely on purposive or convenience sampling, which can introduce bias into the sample selection process. This may limit the representativeness of the sample and the generalizability of the findings.
  • Subjectivity: Case studies rely on the interpretation of the researcher, which can introduce subjectivity into the analysis. The researcher’s own biases, assumptions, and perspectives may influence the findings, which may limit the objectivity of the research.
  • Limited control: Case studies are typically conducted in naturalistic settings, which limits the control that the researcher has over the environment and the variables being studied. This may limit the ability to establish causal relationships between variables.
  • Time-consuming: Case studies can be time-consuming to conduct, as they typically involve a detailed exploration and analysis of a specific case. This may limit the feasibility of conducting multiple case studies or conducting case studies in a timely manner.
  • Resource-intensive: Case studies may require significant resources, including time, funding, and expertise. This may limit the ability of researchers to conduct case studies in resource-constrained settings.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Questionnaire

Questionnaire – Definition, Types, and Examples

Observational Research

Observational Research – Methods and Guide

Quantitative Research

Quantitative Research – Methods, Types and...

Qualitative Research Methods

Qualitative Research Methods

Explanatory Research

Explanatory Research – Types, Methods, Guide

Survey Research

Survey Research – Types, Methods, Examples

What is the Case Study Method?

Baker library peak and cupola

Overview Dropdown up

Overview dropdown down, celebrating 100 years of the case method at hbs.

The 2021-2022 academic year marks the 100-year anniversary of the introduction of the case method at Harvard Business School. Today, the HBS case method is employed in the HBS MBA program, in Executive Education programs, and in dozens of other business schools around the world. As Dean Srikant Datar's says, the case method has withstood the test of time.

Case Discussion Preparation Details Expand All Collapse All

In self-reflection in self-reflection dropdown down, in a small group setting in a small group setting dropdown down, in the classroom in the classroom dropdown down, beyond the classroom beyond the classroom dropdown down, how the case method creates value dropdown up, how the case method creates value dropdown down, in self-reflection, in a small group setting, in the classroom, beyond the classroom.

case study method in education

How Cases Unfold In the Classroom

How cases unfold in the classroom dropdown up, how cases unfold in the classroom dropdown down, preparation guidelines expand all collapse all, read the professor's assignment or discussion questions read the professor's assignment or discussion questions dropdown down, read the first few paragraphs and then skim the case read the first few paragraphs and then skim the case dropdown down, reread the case, underline text, and make margin notes reread the case, underline text, and make margin notes dropdown down, note the key problems on a pad of paper and go through the case again note the key problems on a pad of paper and go through the case again dropdown down, how to prepare for case discussions dropdown up, how to prepare for case discussions dropdown down, read the professor's assignment or discussion questions, read the first few paragraphs and then skim the case, reread the case, underline text, and make margin notes, note the key problems on a pad of paper and go through the case again, case study best practices expand all collapse all, prepare prepare dropdown down, discuss discuss dropdown down, participate participate dropdown down, relate relate dropdown down, apply apply dropdown down, note note dropdown down, understand understand dropdown down, case study best practices dropdown up, case study best practices dropdown down, participate, what can i expect on the first day dropdown down.

Most programs begin with registration, followed by an opening session and a dinner. If your travel plans necessitate late arrival, please be sure to notify us so that alternate registration arrangements can be made for you. Please note the following about registration:

HBS campus programs – Registration takes place in the Chao Center.

India programs – Registration takes place outside the classroom.

Other off-campus programs – Registration takes place in the designated facility.

What happens in class if nobody talks? Dropdown down

Professors are here to push everyone to learn, but not to embarrass anyone. If the class is quiet, they'll often ask a participant with experience in the industry in which the case is set to speak first. This is done well in advance so that person can come to class prepared to share. Trust the process. The more open you are, the more willing you’ll be to engage, and the more alive the classroom will become.

Does everyone take part in "role-playing"? Dropdown down

Professors often encourage participants to take opposing sides and then debate the issues, often taking the perspective of the case protagonists or key decision makers in the case.

View Frequently Asked Questions

Subscribe to Our Emails

  • --> Login or Sign Up

Harvard Law School  The Case Studies

The Case Study Teaching Method

It is easy to get confused between the case study method and the case method , particularly as it applies to legal education. The case method in legal education was invented by Christopher Columbus Langdell, Dean of Harvard Law School from 1870 to 1895. Langdell conceived of a way to systematize and simplify legal education by focusing on previous case law that furthered principles or doctrines. To that end, Langdell wrote the first casebook, entitled A Selection of Cases on the Law of Contracts , a collection of settled cases that would illuminate the current state of contract law. Students read the cases and came prepared to analyze them during Socratic question-and-answer sessions in class.

The Harvard Business School case study approach grew out of the Langdellian method. But instead of using established case law, business professors chose real-life examples from the business world to highlight and analyze business principles. HBS-style case studies typically consist of a short narrative (less than 25 pages), told from the point of view of a manager or business leader embroiled in a dilemma. Case studies provide readers with an overview of the main issue; background on the institution, industry, and individuals involved; and the events that led to the problem or decision at hand. Cases are based on interviews or public sources; sometimes, case studies are disguised versions of actual events or composites based on the faculty authors’ experience and knowledge of the subject. Cases are used to illustrate a particular set of learning objectives; as in real life, rarely are there precise answers to the dilemma at hand.

Our suite of free materials offers a great introduction to the case study method. We also offer review copies of our products free of charge to educators and staff at degree-granting institutions.

For more information on the case study teaching method, see:

  • Martha Minow and Todd Rakoff: A Case for Another Case Method
  • HLS Case Studies Blog: Legal Education’s 9 Big Ideas
  • Teaching Units: Problem Solving , Advanced Problem Solving , Skills , Decision Making and Leadership , Professional Development for Law Firms , Professional Development for In-House Counsel
  • Educator Community: Tips for Teachers

Watch this informative video about the Problem-Solving Workshop:

<< Previous: About Harvard Law School Case Studies | Next: Downloading Case Studies >>

2024 Theses Doctoral

Charter-School Music Teacher Practitioners and Instructional Leaders’ Perception of Professional Development: A Multiple-Bounded Case Study

Moss, Jameon DeSean

This multiple-bounded case study explored charter-school music teacher practitioners’(MTPs’) and instructional leaders’ (ILs’) perceptions of professional development (PD) in four charter management organizations (CMOs). The purpose was to provide a rich description of these practitioners’ professional development, with the goal of spurring policy conversations and further research on music teachers and their experiences in the charter domain. Over two months in the fall of 2023, the researcher conducted one-on-one interviews with eight participants, which focused on ways of making change, methods of delivery, beneficial components of the methods of supporting music literacy, and forms of PD assessment from the perspectives of MTPs and ILs. In addition to holding two focus groups (one with each case), the researcher conducted four classroom and debrief observations. The interviews and observations were analyzed using the participants’ words as first-cycle analysis themes; these were then filtered through the study’s conceptual framework of Desimone’s (2009) core elements of effective professional development: content focus, active learning, coherence, sustained duration, and collective participation. The findings illustrate the participants’ experience with the professional development phenomenon through a series of main themes: instruction is classroom management, except PROFESSIONAL DEVELOPMENT IN CHARTER SCHOOLS when it is not, (b) the many moods of instructional coaching and workshops, (c) content expertise via cycles of inquiry, and (d) reflection is essential. Implications include framing future empirical research in this usually guarded sector as a partnership to identify best and emergent practices for practitioners that directly affect students and families. Framing research in this manner may resonate with charter management organizations that adhere to more formative professional development practices. Additionally, cycles of inquiry in which self-reflection can occur may be a way forward for myriad non-content-expert instructional leaders who support the professional development of music teacher practitioners in charter schools or traditional public schools. Further suggestions for future practice include hosting charter-specific sessions at music education conferences, which could be framed as dialogic sessions to foster collegial inquiry concerning practices at both charter and public schools. Because CMOs’ system structures are different, practitioners there experience some aspects of teaching and professional development differently than their traditional public counterparts. Offering sessions specifically tailored to charter practitioners’ needs could help ensure that their needs, as well as those of the ILs that support them, are met. Keywords: Professional Development, Charter Schools, In-Service Music Teacher Practitioners, Instructional Leaders, Instructional Coaching, Mentors, Workshops.

  • Music--Instruction and study
  • Music teachers--Training of
  • Music teachers--Attitudes
  • Charter schools
  • Mentoring in education
  • Professional development for teachers

thumnail for Moss_tc.columbia_0055E_11456.pdf

More About This Work

  • DOI Copy DOI to clipboard
  • Open access
  • Published: 24 May 2024

Integration of case-based learning and three-dimensional printing for tetralogy of fallot instruction in clinical medical undergraduates: a randomized controlled trial

  • Jian Zhao 1   na1 ,
  • Xin Gong 1   na1 ,
  • Jian Ding 1 ,
  • Kepin Xiong 2 ,
  • Kangle Zhuang 3 ,
  • Rui Huang 1 ,
  • Shu Li 4 &
  • Huachun Miao 1  

BMC Medical Education volume  24 , Article number:  571 ( 2024 ) Cite this article

65 Accesses

Metrics details

Case-based learning (CBL) methods have gained prominence in medical education, proving especially effective for preclinical training in undergraduate medical education. Tetralogy of Fallot (TOF) is a congenital heart disease characterized by four malformations, presenting a challenge in medical education due to the complexity of its anatomical pathology. Three-dimensional printing (3DP), generating physical replicas from data, offers a valuable tool for illustrating intricate anatomical structures and spatial relationships in the classroom. This study explores the integration of 3DP with CBL teaching for clinical medical undergraduates.

Sixty senior clinical medical undergraduates were randomly assigned to the CBL group and the CBL-3DP group. Computed tomography imaging data from a typical TOF case were exported, processed, and utilized to create four TOF models with a color 3D printer. The CBL group employed CBL teaching methods, while the CBL-3DP group combined CBL with 3D-printed models. Post-class exams and questionnaires assessed the teaching effectiveness of both groups.

The CBL-3DP group exhibited improved performance in post-class examinations, particularly in pathological anatomy and TOF imaging data analysis ( P  < 0.05). Questionnaire responses from the CBL-3DP group indicated enhanced satisfaction with teaching mode, promotion of diagnostic skills, bolstering of self-assurance in managing TOF cases, and cultivation of critical thinking and clinical reasoning abilities ( P  < 0.05). These findings underscore the potential of 3D printed models to augment the effectiveness of CBL, aiding students in mastering instructional content and bolstering their interest and self-confidence in learning.

The fusion of CBL with 3D printing models is feasible and effective in TOF instruction to clinical medical undergraduates, and worthy of popularization and application in medical education, especially for courses involving intricate anatomical components.

Peer Review reports

Tetralogy of Fallot (TOF) is the most common cyanotic congenital heart disease(CHD) [ 1 ]. Characterized by four structural anomalies: ventricular septal defect (VSD), pulmonary stenosis (PS), right ventricular hypertrophy (RVH), and overriding aorta (OA), TOF is a focal point and challenge in medical education. Understanding anatomical spatial structures is pivotal for learning and mastering TOF [ 2 ]. Given the constraints of course duration, medical school educators aim to provide students with a comprehensive and intuitive understanding of the disease within a limited timeframe [ 3 ].

The case-based learning (CBL) teaching model incorporates a case-based instructional approach that emphasizes typical clinical cases as a guide in student-centered and teacher-facilitated group discussions [ 4 ]. The CBL instructional methods have garnered widespread attention in medical education as they are particularly appropriate for preclinical training in undergraduate medical education [ 5 , 6 ]. The collection of case data, including medical records and examination results, is essential for case construction [ 7 ]. The anatomical and hemodynamic consequences of TOF can be determined using ultrasonography, computed tomography (CT), and magnetic resonance imaging techniques. However, understanding the anatomical structures from imaging data is a slow and challenging psychological reconstruction process for undergraduate medical students [ 8 ]. Three-dimensional (3D) visualization is valuable for depicting anatomical structures [ 9 ]. 3D printing (3DP), which creates physical replicas based on data, facilitates the demonstration of complex anatomical structures and spatial relationships in the classroom [ 10 ].

During the classroom session, 3D-printed models offer a convenient means for hands-on demonstration and communication, similar to facing a patient, enhancing the efficiency and specificity of intra-team communication and discussion [ 11 ]. In this study, we printed TOF models based on case imaging data, integrated them into CBL teaching, and assessed the effectiveness of classroom instruction.

Research participants

The study employed a prospective, randomized controlled design which received approval from the institutional ethics committee. Senior undergraduate students majoring in clinical medicine at Wannan Medical College were recruited for participation based on predefined inclusion criteria. The researchers implemented recruitment according to the recruitment criteria by contacting the class leaders of the target classes they had previously taught. Notably, these students were in their third year of medical education, with anticipation of progressing to clinical courses in the fourth year, encompassing Internal Medicine, Surgery, Obstetrics, Gynecology, and Pediatrics. Inclusion criteria for participants encompassed the following: (1) proficient communication and comprehension abilities, (2) consistent attendance without absenteeism or truancy, (3) absence of failing grades in prior examinations, and (4) capability to conscientiously fulfill assigned learning tasks. Exclusion criteria were (1) absence from lectures, (2) failure to complete pre-and post-tests, and (3) inadequate completion of questionnaires. For their participation in the study, Students were provided access to the e-book “Localized Anatomy,” authored by the investigators, as an incentive for their participation. Voluntary and anonymous participation was emphasized, with participants retaining the right to withdraw from the study at any time without providing a reason.

The study was conducted between May 1st, 2023, and June 30, 2023, from recruitment to completion of data collection. Drawing upon insights gained from a previous analogous investigation which yielded an effect size of 0.95 [ 10 ]. Sample size was computed, guided by a statistical consultant, with the aim of 0.85 power value, predicated on an effect size of 0.8 and a margin of error set at 0.05. A minimum of 30 participants per group was calculated using G*Power software (latest ver. 3.1.9.7; Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany), resulting in the recruitment of a total of 60 undergraduate students. Each participant was assigned an identification number, with codes placed in boxes. Codes drawn from the boxes determined allocation to either the CBL group or the CBL-3DP group. Subsequently, participants were randomly assigned to either the CBL group, receiving instruction utilizing the CBL methodology, or the CBL-3DP group, which received instruction integrating both CBL and 3D Printed models.

Printing of TOF models

Figure  1 A shows the printing flowchart of the TOF models. A typical TOF case was collected from the Yijishan Hospital of Wannan Medical College. The CT angiography imaging data of the case was exported. Mimics Research 20.0 software (Mimics Innovation Suite version 20, Materialize, Belgium) was used for data processing. The cardiovascular module of the CT-Heart tool was employed to adjust the threshold range, independently obtain the cardiac chambers and vessels, post-process the chambers and vessels to generate a hollow blood pool, and merge it with the myocardial volume to construct a complete heart model. The file was imported into Magics 24.0 software (version 24.0; Materialize, Belgium) for correction using the Shell tool page. After repairs, the model entered the smoothing page, where tools such as triangular surface simplification, local smoothing, refinement and smoothing, subdivision of components, and mesh painting were utilized to achieve varying degrees of smoothness. Finally, optimized data were obtained and exported as stereolithography (STL) files. An experienced cardiothoracic surgeon validated the anatomical accuracy of the digital model.

The STL files were imported into a 3D printer (J401Pro; Sailner 3D Technology, China) for model printing. This printer can produce full-color medical models using different materials. The models were fabricated using two distinct materials: rigid and flexible. Both materials are suitable for the observational discussion of the teaching objectives outlined in our study. From the perspective of observing pathological changes in the TOF, there is no significant difference between the two materials.

figure 1

Experimental flow chart of this study. A TOF model printing flow chart. B The instructional framework

Teaching implementation

Figure  1 B illustrates the instructional framework employed in this study. One week preceding the class session, all the students were tasked with a 30-minute self-study session, focusing on the theoretical content related to TOF as outlined in the Pediatrics and Surgery textbooks, along with a review of pertinent academic literature. Both groups received co-supervision from two basic medicine lecturers boasting over a decade of teaching experience, alongside a senior cardiothoracic surgeon. Teaching conditions remained consistent across groups, encompassing uniform assessment criteria and adherence to predefined teaching time frames, all conducted in a Project-Based Learning (PBL) classroom at Wannan Medical College. Additionally, a pre-course examination was administered to gauge students’ preparedness for self-study.

In adherence to the curriculum guidelines, the teaching objectives aimed to empower students to master TOF’s clinical manifestations, diagnostic modalities, and differential diagnoses, while acquainting them with treatment principles and surgical methodologies. Additionally, the objectives sought to cultivate students’ clinical reasoning abilities and problem-solving skills. the duration of instruction for the TOF theory session was standardized to 25 min. The didactic content was integrated with the TOF case study to construct a coherent pedagogical structure.

During the instructional session, both groups underwent teaching utilizing the CBL methodology. Clinical manifestations and case details of TOF cases were presented to stimulate students’ interest and curiosity. Subsequently, the theory of TOF, including its etiology, pathogenesis, pathologic anatomy, clinical manifestations, diagnostic methods, and therapeutic interventions, was briefly elucidated. Emphasis was then placed on the case, wherein selected typical TOF cases were explained, guiding students in analysis and discussion. Students were organized into four teams under the instructors’ supervision, fostering cooperative learning and communication, thereby deepening their understanding of the disease through continuous inquiry and exploration (Fig.  2 L). In the routinely equipped PBL classroom with standard heart models (Fig.  2 J, K), all students had prior exposure to human anatomy and were familiar with these models. Both groups were provided with four standard heart models for reference, while the CBL-3DP group received additional four 3D-printed models depicting TOF anomalies, enriching their learning experience (Fig.  2 D, G). After the lesson, summarization, and feedback sessions were conducted to consolidate group discussions’ outcomes, evaluate teaching effectiveness, and assess learning outcomes.

figure 2

Heart models utilized in instructional sessions. A External perspective of 3D digital models. B, C Cross-sectional views following trans-septal sagittal dissection of the 3D digital model (PS: Pulmonary Stenosis; OA: Overriding Aorta; VSD: Ventricular Septal Defect; RVH: Right Ventricular Hypertrophy). D External depiction of rigid 3D printed model. E, F Sagittal sections of the rigid 3D printed model. G External portrayal of flexible 3D printed model. H, I Sagittal sections of the flexible 3D printed model. J, K The normal heart model employed in the instruction of the CBL group. L Ongoing classroom session

Teaching effectiveness assessment

Following the instructional session, participants from the two groups underwent a theoretical examination to assess their comprehension of the taught material. This assessment covered domains such as pathological anatomy, clinical manifestations, imaging data interpretation, diagnosis, and treatment relevant to TOF. Additionally, structured questionnaires were administered to evaluate the efficacy of the pedagogical approach employed. The questionnaire consisted of six questions designed to gauge participants’ understanding of the teaching content, enhancement of diagnostic skills, cultivation of critical thinking and clinical reasoning abilities, bolstering of confidence in managing TOF cases, satisfaction with the teaching mode, and satisfaction with the CBL methodology.

The questionnaire employed a 5-point Likert scale to gauge responses, with 5 indicating “strongly satisfied/agree,” 4 for “satisfied/agree,” 3 denoting “neutral,” 2 reflecting “dissatisfied/disagree,” and 1 indicating “strongly dissatisfied/disagree.” It comprised six questions, with the initial two probing participants’ knowledge acquisition, questions 3 and 4 exploring satisfaction regarding enhanced competence, and the final two assessing satisfaction with teaching methods and modes. Additionally, participants were encouraged to provide suggestions at the end of the questionnaire. To ensure the questionnaire’s validity, five esteemed lecturers in basic medical sciences with more than 10 years of experience verified its content and assessed its Content Validity Ratio and Content Validity Index to ensure alignment with the study’s objectives.

Statistical analysis

Statistical analyses were conducted utilizing GraphPad Prism 9.0 software. Aggregate score data for both groups were presented as mean ± standard deviation (x ± s). The gender comparisons were analyzed with the chi-square (χ2) test, while the other variables were compared using the Mann-Whitney U test. The threshold for determining statistical significance was set at P  < 0.05.

Three-dimensional printing models

After configuring the structural colors of each component (Fig.  2 A, B, C), we printed four color TOF models using both rigid and flexible materials, resulting in four life-sized TOF models. Two color TOF models were created using rigid materials (Fig.  2 D, E, F). These models, exhibiting resistance to deformation, and with a firm texture, smooth and glossy surface, and good transparency, allowing visibility of the internal structures, were deemed conducive to teaching and observation. We also fabricated two color TOF models using flexible materials (Fig.  2 G, H, I), characterized by soft texture, opacity, and deformability, allowing for easy manipulation and cutting. It has potential utility beyond observational purposes. It can serve as a valuable tool for simulating surgical interventions and may be employed to create tomographic anatomical specimens. In this study, both material models were suitable for observation in the classroom. The participants were able to discern the four pathological changes characteristic of TOF from surface examination or cross-sectional analysis.

Baseline characteristics of the students

In total, 60 students were included in this study. The CBL group comprised 30 students (14 males and 16 females), with an average age of (21.20 ± 0.76) years. The CBL-3DP group consisted of 30 students (17 males and 13 females) with an average age of 20.96 years. All the students completed the study procedures. There were no significant differences in age, sex ratio, or pre-class exam scores between the two groups ( P  > 0.05), indicating that the baseline scores between the two groups were comparable (Table  1 ).

Theoretical examination results

All students completed the research procedures as planned. The post-class theoretical examination encompassed assessment of pathological anatomy, clinical presentations, imaging data interpretation, diagnosis, and treatment pertinent to TOF. Notably, no statistically significant disparities were observed in the scores on clinical manifestations, diagnosis and treatment components between the cohorts, as delineated in Table  2 . Conversely, discernible distinctions were evident whereby the CBL-3DP group outperformed the CBL group notably in pathological anatomy, imaging data interpretation, and overall aggregate scores ( P  < 0.05).

Results of the questionnaires

All the 60 participants submitted the questionnaire. Comparing the CBL and CBL-3DP groups, the scores from the CBL-3DP group showed significant improvements in many areas. This included satisfaction with the teaching mode, promotion of diagnostic skills, bolstering of self-assurance in managing TOF cases, and cultivation of critical thinking and clinical reasoning abilities (Fig.  3 B, C, D, E). All of which improved significantly ( P  < 0.05 for the first aspects and P  < 0.01 for the rest). However, the two groups were not comparable ( P  > 0.05) in terms of understanding of the teaching content and Satisfaction with the CBL methodology (Fig.  3 A, F).

Upon completion of the questionnaires, participants were invited to proffer recommendations. Notably, in the CBL group, seven students expressed challenges in comprehending TOF and indicated a need for additional time for consolidation to enhance understanding. Conversely, within the CBL-3DP group, twelve students advocated for the augmentation of model repertoire and the expansion of disease-related data collection to bolster pedagogical efficacy across other didactic domains.

figure 3

Five-point Likert scores of students’ attitudes in CBL ( n  = 30) and CBL-3DP ( n  = 30) groups. A Understanding of teaching content. B Promotion of diagnostic skills. C Cultivation of critical thinking and clinical reasoning abilities. D Bolstering of self-assurance in managing TOF cases. E Satisfaction with the teaching mode. F Satisfaction with the CBL methodology. ns No significant difference, * p  < 0.05, ** p  < 0.01, *** p  < 0.001

TOF presents a significant challenge in clinical practice, necessitating a comprehensive understanding for effective diagnosis and treatment [ 12 ]. Traditional teaching methods in medical schools have relied on conventional resources such as textbooks, 2D illustrations, cadaver dissections, and radiographic materials to impart knowledge about complex conditions like TOF [ 13 ]. However, the limitations of these methods in fully engaging students and bridging the gap between theoretical knowledge and practical application have prompted a need for innovative instructional approaches.

CBL has emerged as a valuable tool in medical education, offering students opportunities to engage with authentic clinical cases through group discussions and inquiry-based learning [ 14 ]. By actively involving students in problem-solving and decision-making processes, CBL facilitates the application of theoretical knowledge to real-world scenarios, thus better-preparing students for future clinical practice [ 15 ]. Our investigation revealed that both groups of students exhibited comparable levels of satisfaction with the CBL methodology, devoid of discernible disparities.

CHD presents a formidable challenge due to the intricate nature of anatomical anomalies, the diverse spectrum of conditions, and individual variations [ 16 ]. Utilizing 3D-printed physical models, derived from patient imaging data, can significantly enhance comprehension of complex anatomical structures [ 17 ]. These models have proven invaluable in guiding surgical planning, providing training for junior or inexperienced pediatric residents, and educating healthcare professionals and parents of patients [ 18 ]. Studies indicate that as much as 50% of pediatric surgical decisions can be influenced by the insights gained from 3D printed models [ 19 ]. By providing tangible, anatomically accurate models, 3D printing offers a unique opportunity for people to visualize complex structures and enhance their understanding of anatomical intricacies. Our study utilized full-color, to-scale 3D printed models to illustrate the structural abnormalities associated with TOF, thereby enriching classroom sessions and facilitating a deeper comprehension of the condition.

Comparative analysis between the CBL-3DP group and the CBL group revealed significant improvements in post-test performance, particularly in pathological anatomy and imaging data interpretation. Additionally, questionnaire responses indicated higher levels of satisfaction and confidence among students in the CBL-3DP group, highlighting the positive impact of incorporating 3D printed models into the learning environment, improving the effectiveness of CBL classroom instruction. Despite the merits, our study has limitations. Primarily, participants were exclusively drawn from the same grade level within a single college, possibly engendering bias owing to shared learning backgrounds. Future research could further strengthen these findings by expanding the sample size and including long-term follow-up to assess the retention of knowledge and skills. Additionally, the influence of the 3D models depicting a normal heart on the learning process and its potential to introduce bias into the results warrants consideration, highlighting a need for scrutiny in subsequent studies.

As medical science continues to advance, the need for effective teaching methods becomes increasingly paramount. Our study underscores the potential of combining active learning approaches like CBL with innovative technologies such as 3D printing to enhance teaching effectiveness, improve knowledge acquisition, and foster students’ confidence and enthusiasm in pursuing clinical careers. Moving forward, further research and integration of such methodologies are essential for meeting the evolving demands of medical education, especially in areas involving complex anatomical understanding.

Conclusions

Integrating 3D-printed models with the CBL method is feasible and effective in TOF instruction. The demonstrated success of this method warrants broad implementation in medical education, particularly for complex anatomical topics.

Data availability

All data supporting the conclusions of this research are available upon reasonable request from the corresponding author.

Apitz C, Webb GD, Redington AN. Tetralogy of Fallot. Lancet. 2009;374:1462–71.

Article   Google Scholar  

Ghosh RM, Jolley MA, Mascio CE, Chen JM, Fuller S, Rome JJ, et al. Clinical 3D modeling to guide pediatric cardiothoracic surgery and intervention using 3D printed anatomic models, computer aided design and virtual reality. 3D Print Med. 2022;8:11.

Chakrabarti R, Wardle K, Wright T, Bennie T, Gishen F. Approaching an undergraduate medical curriculum map: challenges and expectations. BMC Med Educ. 2021;21:341.

Donkin R, Yule H, Fyfe T. Online case-based learning in medical education: a scoping review. BMC Med Educ. 2023;23:564.

Novack JP. Designing cases for case-based immunology teaching in large medical school classes. Front Immunol. 2020;11:995.

Chen HC, Van Den Broek WES, Ten Cate O. The case for use of entrustable professional activities in undergraduate medical education. Acad Med. 2015;90:431–6.

Wang M, Sun Z, Jia M, Wang Y, Wang H, Zhu X, et al. Intelligent virtual case learning system based on real medical records and natural language processing. BMC Med Inf Decis Mak. 2022;22:60.

Yoo S-J, Thabit O, Kim EK, Ide H, Yim D, Dragulescu A, et al. 3D printing in medicine of congenital heart diseases. 3D Print Med. 2015;2:3.

Yammine K, Violato C. A meta-analysis of the educational effectiveness of three-dimensional visualization technologies in teaching anatomy. Anat Sci Educ. 2015;8:525–38.

Miao H, Ding J, Gong X, Zhao J, Li H, Xiong K, et al. Application of 3D-printed pulmonary segment specimens in experimental teaching of sectional anatomy. BMC Surg. 2023;23:109.

Sun Z, Wong YH, Yeong CH. Patient-specific 3D-printed low-cost models in medical education and clinical practice. Micromachines (Basel). 2023;14:464.

Downing TE, Kim YY. Tetralogy of Fallot: general principles of management. Cardiol Clin. 2015;33:531–41. vii–viii.

Jia X, Zeng W, Zhang Q. Combined administration of problem- and lecture-based learning teaching models in medical education in China: a meta-analysis of randomized controlled trials. Med (Baltim). 2018;97:e11366.

McLean SF. Case-based learning and its application in medical and health-care fields: a review of worldwide literature. J Med Educ Curric Dev. 2016;3:JMECD.S20377.

Zeng N, Lu H, Li S, Yang Q, Liu F, Pan H, et al. Application of the combination of CBL teaching method and SEGUE framework to improve the doctor-patient communication skills of resident physicians in otolaryngology department. Bmc Med Educ. 2024;24:201.

Sun Z. Patient-specific 3D-printed models in pediatric congenital heart disease. Children. 2023;10:319.

Meyer-Szary J, Luis MS, Mikulski S, Patel A, Schulz F, Tretiakow D, et al. The role of 3D printing in planning complex medical procedures and training of medical professionals—cross-sectional multispecialty review. IJERPH. 2022;19:3331.

Sun Z, Wee C. 3D printed models in cardiovascular disease: an exciting future to deliver personalized medicine. Micromachines-basel. 2022;13:1575.

Valverde I, Gomez-Ciriza G, Hussain T, Suarez-Mejias C, Velasco-Forte MN, Byrne N, et al. Three-dimensional printed models for surgical planning of complex congenital heart defects: an international multicentre study. Eur J Cardio-thorac. 2017;52:1139–48.

Download references

Acknowledgements

We extend our sincere appreciation to the instructors and students whose invaluable participated in this study.

This paper received support from the Education Department of Anhui Province, China (Grant Numbers 2022jyxm1693, 2022jyxm1694, 2022xskc103, 2018jyxm1280).

Author information

Jian Zhao and Xin Gong are joint first authors.

Authors and Affiliations

Department of Human Anatomy, Wannan Medical College, No.22 West Wenchang Road, Wuhu, 241002, China

Jian Zhao, Xin Gong, Jian Ding, Rui Huang & Huachun Miao

Department of Cardio-Thoracic Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, China

Kepin Xiong

Zhuhai Sailner 3D Technology Co., Ltd., Zhuhai, China

Kangle Zhuang

School of Basic Medical Sciences, Wannan Medical College, Wuhu, China

You can also search for this author in PubMed   Google Scholar

Contributions

Jian Zhao and Huachun Miao designed the research. Jian Zhao, Xin Gong, Jian Ding, Kepin Xiong designed the tests and questionnaires. Kangle Zhuang processed the imaging data and printed the models. Xing Gong and Kepin Xiong implemented the teaching. Jian Zhao and Rui Huang collected the data and performed the statistical analysis. Jian Zhao and Huachun Miao prepared the manuscript. Shu Li and Huachun Miao revised the manuscript. Shu Li provided the Funding acquisition. All authors reviewed and approved the final manuscript.

Corresponding authors

Correspondence to Shu Li or Huachun Miao .

Ethics declarations

Ethics approval and consent to participate.

This investigation received ethical approval from the Ethical Committee of School of Basic Medical Sciences, Wannan Medical College (ECBMSWMC2022-1-12). All methodologies adhered strictly to established protocols and guidelines. Written informed consent was obtained from the study participants to take part in the study.

Consent for publication

Written informed consent was obtained from the individuals for the publication of any potentially identifiable images or data included in this article.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary material 2, supplementary material 3, rights and permissions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ . The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/ ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Cite this article.

Zhao, J., Gong, X., Ding, J. et al. Integration of case-based learning and three-dimensional printing for tetralogy of fallot instruction in clinical medical undergraduates: a randomized controlled trial. BMC Med Educ 24 , 571 (2024). https://doi.org/10.1186/s12909-024-05583-z

Download citation

Received : 03 March 2024

Accepted : 21 May 2024

Published : 24 May 2024

DOI : https://doi.org/10.1186/s12909-024-05583-z

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Medical education
  • Case-based learning
  • 3D printing
  • Tetralogy of fallot
  • Medical undergraduates

BMC Medical Education

ISSN: 1472-6920

case study method in education

These languages are provided via eTranslation, the European Commission's machine translation service.

  • slovenščina
  • Azerbaijani

Brain pic showing al skills around it

Nonformal Education

This course is designed for educators who are looking for alternative ways to involve students in learning procedure as also educator's of children with learning disabilities to help their classroom induction.

Nonformal education techniques motivates the students and enhances their participation in formal education.

Description

Learning objectives.

  • To develop competences regarding applying non-formal education activities and techniques in different formal settings in order to encourage inclusion
  • To Understand the dimensions of incorporation/integration, identity and belonging
  • To develop skills for dialogue, tolerance and collaboration, using games and exercises;
  • To develop communication, collaboration, presentation, problem-solving, negotiation, critical & creative thinking skills;
  • To overcome integration barriers such as poor qualifications and language which may harm immigrants/refugees;
  • To share best practices and transfer knowledge and methods between different cultural zones and different learner ages regarding successful inclusive approaches
  • To develop the participants’ competences of ensuring harmonious group building (taking into account diversity challenges) and transforming the class as a group into a team by usage of non-formal group dynamics
  • To develop better understanding of their own competence as teachers and to develop creative intercultural strategies for dealing with inclusion challenges in their own schools and classrooms
  • To help teachers understand the students different realities and better integrate them in the classroom
  • To be better aware of inclusion issues in different cultures
  • To supply tools that will help create bonds between the students and the teacher in a way that every student feels included
  • To promote the use mediation and negotiation tools in the fight against exclusion of people with fewer opportunities
  • To promote European cooperation in the field of education within the framework of the Erasmus+ program by partnership building

Methodology & assessment

Certification details.

  • Title of the course
  • Name of participants
  • Duration of course
  • Dates of the course
  • Signature of educator

Pricing, packages and other information

  • Price: 400 Euro
  • Package contents: Course

Additional information

  • Language: English
  • Target audience ISCED: Primary education (ISCED 1) Lower secondary education (ISCED 2) Upper secondary education (ISCED 3)
  • Target audience type: Teacher Head Teacher / Principal Teacher Educator
  • Learning time: 20-25 hours

case study method in education

Vocational subjects

Key competences, more courses by this organiser.

Default course image

Nature's Classroom

Next upcoming session  29.07.2024 - 04.08.2024

case study method in education

Digital Classroom Dynamics: Empowering Educators with technology

Kids using VR headsets

AppGrade your classroom

  • Open access
  • Published: 14 May 2024

Developing a survey to measure nursing students’ knowledge, attitudes and beliefs, influences, and willingness to be involved in Medical Assistance in Dying (MAiD): a mixed method modified e-Delphi study

  • Jocelyn Schroeder 1 ,
  • Barbara Pesut 1 , 2 ,
  • Lise Olsen 2 ,
  • Nelly D. Oelke 2 &
  • Helen Sharp 2  

BMC Nursing volume  23 , Article number:  326 ( 2024 ) Cite this article

Metrics details

Medical Assistance in Dying (MAiD) was legalized in Canada in 2016. Canada’s legislation is the first to permit Nurse Practitioners (NP) to serve as independent MAiD assessors and providers. Registered Nurses’ (RN) also have important roles in MAiD that include MAiD care coordination; client and family teaching and support, MAiD procedural quality; healthcare provider and public education; and bereavement care for family. Nurses have a right under the law to conscientious objection to participating in MAiD. Therefore, it is essential to prepare nurses in their entry-level education for the practice implications and moral complexities inherent in this practice. Knowing what nursing students think about MAiD is a critical first step. Therefore, the purpose of this study was to develop a survey to measure nursing students’ knowledge, attitudes and beliefs, influences, and willingness to be involved in MAiD in the Canadian context.

The design was a mixed-method, modified e-Delphi method that entailed item generation from the literature, item refinement through a 2 round survey of an expert faculty panel, and item validation through a cognitive focus group interview with nursing students. The settings were a University located in an urban area and a College located in a rural area in Western Canada.

During phase 1, a 56-item survey was developed from existing literature that included demographic items and items designed to measure experience with death and dying (including MAiD), education and preparation, attitudes and beliefs, influences on those beliefs, and anticipated future involvement. During phase 2, an expert faculty panel reviewed, modified, and prioritized the items yielding 51 items. During phase 3, a sample of nursing students further evaluated and modified the language in the survey to aid readability and comprehension. The final survey consists of 45 items including 4 case studies.

Systematic evaluation of knowledge-to-date coupled with stakeholder perspectives supports robust survey design. This study yielded a survey to assess nursing students’ attitudes toward MAiD in a Canadian context.

The survey is appropriate for use in education and research to measure knowledge and attitudes about MAiD among nurse trainees and can be a helpful step in preparing nursing students for entry-level practice.

Peer Review reports

Medical Assistance in Dying (MAiD) is permitted under an amendment to Canada’s Criminal Code which was passed in 2016 [ 1 ]. MAiD is defined in the legislation as both self-administered and clinician-administered medication for the purpose of causing death. In the 2016 Bill C-14 legislation one of the eligibility criteria was that an applicant for MAiD must have a reasonably foreseeable natural death although this term was not defined. It was left to the clinical judgement of MAiD assessors and providers to determine the time frame that constitutes reasonably foreseeable [ 2 ]. However, in 2021 under Bill C-7, the eligibility criteria for MAiD were changed to allow individuals with irreversible medical conditions, declining health, and suffering, but whose natural death was not reasonably foreseeable, to receive MAiD [ 3 ]. This population of MAiD applicants are referred to as Track 2 MAiD (those whose natural death is foreseeable are referred to as Track 1). Track 2 applicants are subject to additional safeguards under the 2021 C-7 legislation.

Three additional proposed changes to the legislation have been extensively studied by Canadian Expert Panels (Council of Canadian Academics [CCA]) [ 4 , 5 , 6 ] First, under the legislation that defines Track 2, individuals with mental disease as their sole underlying medical condition may apply for MAiD, but implementation of this practice is embargoed until March 2027 [ 4 ]. Second, there is consideration of allowing MAiD to be implemented through advanced consent. This would make it possible for persons living with dementia to receive MAID after they have lost the capacity to consent to the procedure [ 5 ]. Third, there is consideration of extending MAiD to mature minors. A mature minor is defined as “a person under the age of majority…and who has the capacity to understand and appreciate the nature and consequences of a decision” ([ 6 ] p. 5). In summary, since the legalization of MAiD in 2016 the eligibility criteria and safeguards have evolved significantly with consequent implications for nurses and nursing care. Further, the number of Canadians who access MAiD shows steady increases since 2016 [ 7 ] and it is expected that these increases will continue in the foreseeable future.

Nurses have been integral to MAiD care in the Canadian context. While other countries such as Belgium and the Netherlands also permit euthanasia, Canada is the first country to allow Nurse Practitioners (Registered Nurses with additional preparation typically achieved at the graduate level) to act independently as assessors and providers of MAiD [ 1 ]. Although the role of Registered Nurses (RNs) in MAiD is not defined in federal legislation, it has been addressed at the provincial/territorial-level with variability in scope of practice by region [ 8 , 9 ]. For example, there are differences with respect to the obligation of the nurse to provide information to patients about MAiD, and to the degree that nurses are expected to ensure that patient eligibility criteria and safeguards are met prior to their participation [ 10 ]. Studies conducted in the Canadian context indicate that RNs perform essential roles in MAiD care coordination; client and family teaching and support; MAiD procedural quality; healthcare provider and public education; and bereavement care for family [ 9 , 11 ]. Nurse practitioners and RNs are integral to a robust MAiD care system in Canada and hence need to be well-prepared for their role [ 12 ].

Previous studies have found that end of life care, and MAiD specifically, raise complex moral and ethical issues for nurses [ 13 , 14 , 15 , 16 ]. The knowledge, attitudes, and beliefs of nurses are important across practice settings because nurses have consistent, ongoing, and direct contact with patients who experience chronic or life-limiting health conditions. Canadian studies exploring nurses’ moral and ethical decision-making in relation to MAiD reveal that although some nurses are clear in their support for, or opposition to, MAiD, others are unclear on what they believe to be good and right [ 14 ]. Empirical findings suggest that nurses go through a period of moral sense-making that is often informed by their family, peers, and initial experiences with MAID [ 17 , 18 ]. Canadian legislation and policy specifies that nurses are not required to participate in MAiD and may recuse themselves as conscientious objectors with appropriate steps to ensure ongoing and safe care of patients [ 1 , 19 ]. However, with so many nurses having to reflect on and make sense of their moral position, it is essential that they are given adequate time and preparation to make an informed and thoughtful decision before they participate in a MAID death [ 20 , 21 ].

It is well established that nursing students receive inconsistent exposure to end of life care issues [ 22 ] and little or no training related to MAiD [ 23 ]. Without such education and reflection time in pre-entry nursing preparation, nurses are at significant risk for moral harm. An important first step in providing this preparation is to be able to assess the knowledge, values, and beliefs of nursing students regarding MAID and end of life care. As demand for MAiD increases along with the complexities of MAiD, it is critical to understand the knowledge, attitudes, and likelihood of engagement with MAiD among nursing students as a baseline upon which to build curriculum and as a means to track these variables over time.

Aim, design, and setting

The aim of this study was to develop a survey to measure nursing students’ knowledge, attitudes and beliefs, influences, and willingness to be involved in MAiD in the Canadian context. We sought to explore both their willingness to be involved in the registered nursing role and in the nurse practitioner role should they chose to prepare themselves to that level of education. The design was a mixed-method, modified e-Delphi method that entailed item generation, item refinement through an expert faculty panel [ 24 , 25 , 26 ], and initial item validation through a cognitive focus group interview with nursing students [ 27 ]. The settings were a University located in an urban area and a College located in a rural area in Western Canada.

Participants

A panel of 10 faculty from the two nursing education programs were recruited for Phase 2 of the e-Delphi. To be included, faculty were required to have a minimum of three years of experience in nurse education, be employed as nursing faculty, and self-identify as having experience with MAiD. A convenience sample of 5 fourth-year nursing students were recruited to participate in Phase 3. Students had to be in good standing in the nursing program and be willing to share their experiences of the survey in an online group interview format.

The modified e-Delphi was conducted in 3 phases: Phase 1 entailed item generation through literature and existing survey review. Phase 2 entailed item refinement through a faculty expert panel review with focus on content validity, prioritization, and revision of item wording [ 25 ]. Phase 3 entailed an assessment of face validity through focus group-based cognitive interview with nursing students.

Phase I. Item generation through literature review

The goal of phase 1 was to develop a bank of survey items that would represent the variables of interest and which could be provided to expert faculty in Phase 2. Initial survey items were generated through a literature review of similar surveys designed to assess knowledge and attitudes toward MAiD/euthanasia in healthcare providers; Canadian empirical studies on nurses’ roles and/or experiences with MAiD; and legislative and expert panel documents that outlined proposed changes to the legislative eligibility criteria and safeguards. The literature review was conducted in three online databases: CINAHL, PsycINFO, and Medline. Key words for the search included nurses , nursing students , medical students , NPs, MAiD , euthanasia , assisted death , and end-of-life care . Only articles written in English were reviewed. The legalization and legislation of MAiD is new in many countries; therefore, studies that were greater than twenty years old were excluded, no further exclusion criteria set for country.

Items from surveys designed to measure similar variables in other health care providers and geographic contexts were placed in a table and similar items were collated and revised into a single item. Then key variables were identified from the empirical literature on nurses and MAiD in Canada and checked against the items derived from the surveys to ensure that each of the key variables were represented. For example, conscientious objection has figured prominently in the Canadian literature, but there were few items that assessed knowledge of conscientious objection in other surveys and so items were added [ 15 , 21 , 28 , 29 ]. Finally, four case studies were added to the survey to address the anticipated changes to the Canadian legislation. The case studies were based upon the inclusion of mature minors, advanced consent, and mental disorder as the sole underlying medical condition. The intention was to assess nurses’ beliefs and comfort with these potential legislative changes.

Phase 2. Item refinement through expert panel review

The goal of phase 2 was to refine and prioritize the proposed survey items identified in phase 1 using a modified e-Delphi approach to achieve consensus among an expert panel [ 26 ]. Items from phase 1 were presented to an expert faculty panel using a Qualtrics (Provo, UT) online survey. Panel members were asked to review each item to determine if it should be: included, excluded or adapted for the survey. When adapted was selected faculty experts were asked to provide rationale and suggestions for adaptation through the use of an open text box. Items that reached a level of 75% consensus for either inclusion or adaptation were retained [ 25 , 26 ]. New items were categorized and added, and a revised survey was presented to the panel of experts in round 2. Panel members were again asked to review items, including new items, to determine if it should be: included, excluded, or adapted for the survey. Round 2 of the modified e-Delphi approach also included an item prioritization activity, where participants were then asked to rate the importance of each item, based on a 5-point Likert scale (low to high importance), which De Vaus [ 30 ] states is helpful for increasing the reliability of responses. Items that reached a 75% consensus on inclusion were then considered in relation to the importance it was given by the expert panel. Quantitative data were managed using SPSS (IBM Corp).

Phase 3. Face validity through cognitive interviews with nursing students

The goal of phase 3 was to obtain initial face validity of the proposed survey using a sample of nursing student informants. More specifically, student participants were asked to discuss how items were interpreted, to identify confusing wording or other problematic construction of items, and to provide feedback about the survey as a whole including readability and organization [ 31 , 32 , 33 ]. The focus group was held online and audio recorded. A semi-structured interview guide was developed for this study that focused on clarity, meaning, order and wording of questions; emotions evoked by the questions; and overall survey cohesion and length was used to obtain data (see Supplementary Material 2  for the interview guide). A prompt to “think aloud” was used to limit interviewer-imposed bias and encourage participants to describe their thoughts and response to a given item as they reviewed survey items [ 27 ]. Where needed, verbal probes such as “could you expand on that” were used to encourage participants to expand on their responses [ 27 ]. Student participants’ feedback was collated verbatim and presented to the research team where potential survey modifications were negotiated and finalized among team members. Conventional content analysis [ 34 ] of focus group data was conducted to identify key themes that emerged through discussion with students. Themes were derived from the data by grouping common responses and then using those common responses to modify survey items.

Ten nursing faculty participated in the expert panel. Eight of the 10 faculty self-identified as female. No faculty panel members reported conscientious objector status and ninety percent reported general agreement with MAiD with one respondent who indicated their view as “unsure.” Six of the 10 faculty experts had 16 years of experience or more working as a nurse educator.

Five nursing students participated in the cognitive interview focus group. The duration of the focus group was 2.5 h. All participants identified that they were born in Canada, self-identified as female (one preferred not to say) and reported having received some instruction about MAiD as part of their nursing curriculum. See Tables  1 and 2 for the demographic descriptors of the study sample. Study results will be reported in accordance with the study phases. See Fig.  1 for an overview of the results from each phase.

figure 1

Fig. 1  Overview of survey development findings

Phase 1: survey item generation

Review of the literature identified that no existing survey was available for use with nursing students in the Canadian context. However, an analysis of themes across qualitative and quantitative studies of physicians, medical students, nurses, and nursing students provided sufficient data to develop a preliminary set of items suitable for adaptation to a population of nursing students.

Four major themes and factors that influence knowledge, attitudes, and beliefs about MAiD were evident from the literature: (i) endogenous or individual factors such as age, gender, personally held values, religion, religiosity, and/or spirituality [ 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 ], (ii) experience with death and dying in personal and/or professional life [ 35 , 40 , 41 , 43 , 44 , 45 ], (iii) training including curricular instruction about clinical role, scope of practice, or the law [ 23 , 36 , 39 ], and (iv) exogenous or social factors such as the influence of key leaders, colleagues, friends and/or family, professional and licensure organizations, support within professional settings, and/or engagement in MAiD in an interdisciplinary team context [ 9 , 35 , 46 ].

Studies of nursing students also suggest overlap across these categories. For example, value for patient autonomy [ 23 ] and the moral complexity of decision-making [ 37 ] are important factors that contribute to attitudes about MAiD and may stem from a blend of personally held values coupled with curricular content, professional training and norms, and clinical exposure. For example, students report that participation in end of life care allows for personal growth, shifts in perception, and opportunities to build therapeutic relationships with their clients [ 44 , 47 , 48 ].

Preliminary items generated from the literature resulted in 56 questions from 11 published sources (See Table  3 ). These items were constructed across four main categories: (i) socio-demographic questions; (ii) end of life care questions; (iii) knowledge about MAiD; or (iv) comfort and willingness to participate in MAiD. Knowledge questions were refined to reflect current MAiD legislation, policies, and regulatory frameworks. Falconer [ 39 ] and Freeman [ 45 ] studies were foundational sources for item selection. Additionally, four case studies were written to reflect the most recent anticipated changes to MAiD legislation and all used the same open-ended core questions to address respondents’ perspectives about the patient’s right to make the decision, comfort in assisting a physician or NP to administer MAiD in that scenario, and hypothesized comfort about serving as a primary provider if qualified as an NP in future. Response options for the survey were also constructed during this stage and included: open text, categorical, yes/no , and Likert scales.

Phase 2: faculty expert panel review

Of the 56 items presented to the faculty panel, 54 questions reached 75% consensus. However, based upon the qualitative responses 9 items were removed largely because they were felt to be repetitive. Items that generated the most controversy were related to measuring religion and spirituality in the Canadian context, defining end of life care when there is no agreed upon time frames (e.g., last days, months, or years), and predicting willingness to be involved in a future events – thus predicting their future selves. Phase 2, round 1 resulted in an initial set of 47 items which were then presented back to the faculty panel in round 2.

Of the 47 initial questions presented to the panel in round 2, 45 reached a level of consensus of 75% or greater, and 34 of these questions reached a level of 100% consensus [ 27 ] of which all participants chose to include without any adaptations) For each question, level of importance was determined based on a 5-point Likert scale (1 = very unimportant, 2 = somewhat unimportant, 3 = neutral, 4 = somewhat important, and 5 = very important). Figure  2 provides an overview of the level of importance assigned to each item.

figure 2

Ranking level of importance for survey items

After round 2, a careful analysis of participant comments and level of importance was completed by the research team. While the main method of survey item development came from participants’ response to the first round of Delphi consensus ratings, level of importance was used to assist in the decision of whether to keep or modify questions that created controversy, or that rated lower in the include/exclude/adapt portion of the Delphi. Survey items that rated low in level of importance included questions about future roles, sex and gender, and religion/spirituality. After deliberation by the research committee, these questions were retained in the survey based upon the importance of these variables in the scientific literature.

Of the 47 questions remaining from Phase 2, round 2, four were revised. In addition, the two questions that did not meet the 75% cut off level for consensus were reviewed by the research team. The first question reviewed was What is your comfort level with providing a MAiD death in the future if you were a qualified NP ? Based on a review of participant comments, it was decided to retain this question for the cognitive interviews with students in the final phase of testing. The second question asked about impacts on respondents’ views of MAiD and was changed from one item with 4 subcategories into 4 separate items, resulting in a final total of 51 items for phase 3. The revised survey was then brought forward to the cognitive interviews with student participants in Phase 3. (see Supplementary Material 1 for a complete description of item modification during round 2).

Phase 3. Outcomes of cognitive interview focus group

Of the 51 items reviewed by student participants, 29 were identified as clear with little or no discussion. Participant comments for the remaining 22 questions were noted and verified against the audio recording. Following content analysis of the comments, four key themes emerged through the student discussion: unclear or ambiguous wording; difficult to answer questions; need for additional response options; and emotional response evoked by questions. An example of unclear or ambiguous wording was a request for clarity in the use of the word “sufficient” in the context of assessing an item that read “My nursing education has provided sufficient content about the nursing role in MAiD.” “Sufficient” was viewed as subjective and “laden with…complexity that distracted me from the question.” The group recommended rewording the item to read “My nursing education has provided enough content for me to care for a patient considering or requesting MAiD.”

An example of having difficulty answering questions related to limited knowledge related to terms used in the legislation such as such as safeguards , mature minor , eligibility criteria , and conscientious objection. Students were unclear about what these words meant relative to the legislation and indicated that this lack of clarity would hamper appropriate responses to the survey. To ensure that respondents are able to answer relevant questions, student participants recommended that the final survey include explanation of key terms such as mature minor and conscientious objection and an overview of current legislation.

Response options were also a point of discussion. Participants noted a lack of distinction between response options of unsure and unable to say . Additionally, scaling of attitudes was noted as important since perspectives about MAiD are dynamic and not dichotomous “agree or disagree” responses. Although the faculty expert panel recommended the integration of the demographic variables of religious and/or spiritual remain as a single item, the student group stated a preference to have religion and spirituality appear as separate items. The student focus group also took issue with separate items for the variables of sex and gender, specifically that non-binary respondents might feel othered or “outed” particularly when asked to identify their sex. These variables had been created based upon best practices in health research but students did not feel they were appropriate in this context [ 49 ]. Finally, students agreed with the faculty expert panel in terms of the complexity of projecting their future involvement as a Nurse Practitioner. One participant stated: “I certainly had to like, whoa, whoa, whoa. Now let me finish this degree first, please.” Another stated, “I'm still imagining myself, my future career as an RN.”

Finally, student participants acknowledged the array of emotions that some of the items produced for them. For example, one student described positive feelings when interacting with the survey. “Brought me a little bit of feeling of joy. Like it reminded me that this is the last piece of independence that people grab on to.” Another participant, described the freedom that the idea of an advance request gave her. “The advance request gives the most comfort for me, just with early onset Alzheimer’s and knowing what it can do.” But other participants described less positive feelings. For example, the mature minor case study yielded a comment: “This whole scenario just made my heart hurt with the idea of a child requesting that.”

Based on the data gathered from the cognitive interview focus group of nursing students, revisions were made to 11 closed-ended questions (see Table  4 ) and 3 items were excluded. In the four case studies, the open-ended question related to a respondents’ hypothesized actions in a future role as NP were removed. The final survey consists of 45 items including 4 case studies (see Supplementary Material 3 ).

The aim of this study was to develop and validate a survey that can be used to track the growth of knowledge about MAiD among nursing students over time, inform training programs about curricular needs, and evaluate attitudes and willingness to participate in MAiD at time-points during training or across nursing programs over time.

The faculty expert panel and student participants in the cognitive interview focus group identified a need to establish core knowledge of the terminology and legislative rules related to MAiD. For example, within the cognitive interview group of student participants, several acknowledged lack of clear understanding of specific terms such as “conscientious objector” and “safeguards.” Participants acknowledged discomfort with the uncertainty of not knowing and their inclination to look up these terms to assist with answering the questions. This survey can be administered to nursing or pre-nursing students at any phase of their training within a program or across training programs. However, in doing so it is important to acknowledge that their baseline knowledge of MAiD will vary. A response option of “not sure” is important and provides a means for respondents to convey uncertainty. If this survey is used to inform curricular needs, respondents should be given explicit instructions not to conduct online searches to inform their responses, but rather to provide an honest appraisal of their current knowledge and these instructions are included in the survey (see Supplementary Material 3 ).

Some provincial regulatory bodies have established core competencies for entry-level nurses that include MAiD. For example, the BC College of Nurses and Midwives (BCCNM) requires “knowledge about ethical, legal, and regulatory implications of medical assistance in dying (MAiD) when providing nursing care.” (10 p. 6) However, across Canada curricular content and coverage related to end of life care and MAiD is variable [ 23 ]. Given the dynamic nature of the legislation that includes portions of the law that are embargoed until 2024, it is important to ensure that respondents are guided by current and accurate information. As the law changes, nursing curricula, and public attitudes continue to evolve, inclusion of core knowledge and content is essential and relevant for investigators to be able to interpret the portions of the survey focused on attitudes and beliefs about MAiD. Content knowledge portions of the survey may need to be modified over time as legislation and training change and to meet the specific purposes of the investigator.

Given the sensitive nature of the topic, it is strongly recommended that surveys be conducted anonymously and that students be provided with an opportunity to discuss their responses to the survey. A majority of feedback from both the expert panel of faculty and from student participants related to the wording and inclusion of demographic variables, in particular religion, religiosity, gender identity, and sex assigned at birth. These and other demographic variables have the potential to be highly identifying in small samples. In any instance in which the survey could be expected to yield demographic group sizes less than 5, users should eliminate the demographic variables from the survey. For example, the profession of nursing is highly dominated by females with over 90% of nurses who identify as female [ 50 ]. Thus, a survey within a single class of students or even across classes in a single institution is likely to yield a small number of male respondents and/or respondents who report a difference between sex assigned at birth and gender identity. When variables that serve to identify respondents are included, respondents are less likely to complete or submit the survey, to obscure their responses so as not to be identifiable, or to be influenced by social desirability bias in their responses rather than to convey their attitudes accurately [ 51 ]. Further, small samples do not allow for conclusive analyses or interpretation of apparent group differences. Although these variables are often included in surveys, such demographics should be included only when anonymity can be sustained. In small and/or known samples, highly identifying variables should be omitted.

There are several limitations associated with the development of this survey. The expert panel was comprised of faculty who teach nursing students and are knowledgeable about MAiD and curricular content, however none identified as a conscientious objector to MAiD. Ideally, our expert panel would have included one or more conscientious objectors to MAiD to provide a broader perspective. Review by practitioners who participate in MAiD, those who are neutral or undecided, and practitioners who are conscientious objectors would ensure broad applicability of the survey. This study included one student cognitive interview focus group with 5 self-selected participants. All student participants had held discussions about end of life care with at least one patient, 4 of 5 participants had worked with a patient who requested MAiD, and one had been present for a MAiD death. It is not clear that these participants are representative of nursing students demographically or by experience with end of life care. It is possible that the students who elected to participate hold perspectives and reflections on patient care and MAiD that differ from students with little or no exposure to end of life care and/or MAiD. However, previous studies find that most nursing students have been involved with end of life care including meaningful discussions about patients’ preferences and care needs during their education [ 40 , 44 , 47 , 48 , 52 ]. Data collection with additional student focus groups with students early in their training and drawn from other training contexts would contribute to further validation of survey items.

Future studies should incorporate pilot testing with small sample of nursing students followed by a larger cross-program sample to allow evaluation of the psychometric properties of specific items and further refinement of the survey tool. Consistent with literature about the importance of leadership in the context of MAiD [ 12 , 53 , 54 ], a study of faculty knowledge, beliefs, and attitudes toward MAiD would provide context for understanding student perspectives within and across programs. Additional research is also needed to understand the timing and content coverage of MAiD across Canadian nurse training programs’ curricula.

The implementation of MAiD is complex and requires understanding of the perspectives of multiple stakeholders. Within the field of nursing this includes clinical providers, educators, and students who will deliver clinical care. A survey to assess nursing students’ attitudes toward and willingness to participate in MAiD in the Canadian context is timely, due to the legislation enacted in 2016 and subsequent modifications to the law in 2021 with portions of the law to be enacted in 2027. Further development of this survey could be undertaken to allow for use in settings with practicing nurses or to allow longitudinal follow up with students as they enter practice. As the Canadian landscape changes, ongoing assessment of the perspectives and needs of health professionals and students in the health professions is needed to inform policy makers, leaders in practice, curricular needs, and to monitor changes in attitudes and practice patterns over time.

Availability of data and materials

The datasets used and/or analysed during the current study are not publicly available due to small sample sizes, but are available from the corresponding author on reasonable request.

Abbreviations

British Columbia College of Nurses and Midwives

Medical assistance in dying

Nurse practitioner

Registered nurse

University of British Columbia Okanagan

Nicol J, Tiedemann M. Legislative Summary: Bill C-14: An Act to amend the Criminal Code and to make related amendments to other Acts (medical assistance in dying). Available from: https://lop.parl.ca/staticfiles/PublicWebsite/Home/ResearchPublications/LegislativeSummaries/PDF/42-1/c14-e.pdf .

Downie J, Scallion K. Foreseeably unclear. The meaning of the “reasonably foreseeable” criterion for access to medical assistance in dying in Canada. Dalhousie Law J. 2018;41(1):23–57.

Nicol J, Tiedeman M. Legislative summary of Bill C-7: an act to amend the criminal code (medical assistance in dying). Ottawa: Government of Canada; 2021.

Google Scholar  

Council of Canadian Academies. The state of knowledge on medical assistance in dying where a mental disorder is the sole underlying medical condition. Ottawa; 2018. Available from: https://cca-reports.ca/wp-content/uploads/2018/12/The-State-of-Knowledge-on-Medical-Assistance-in-Dying-Where-a-Mental-Disorder-is-the-Sole-Underlying-Medical-Condition.pdf .

Council of Canadian Academies. The state of knowledge on advance requests for medical assistance in dying. Ottawa; 2018. Available from: https://cca-reports.ca/wp-content/uploads/2019/02/The-State-of-Knowledge-on-Advance-Requests-for-Medical-Assistance-in-Dying.pdf .

Council of Canadian Academies. The state of knowledge on medical assistance in dying for mature minors. Ottawa; 2018. Available from: https://cca-reports.ca/wp-content/uploads/2018/12/The-State-of-Knowledge-on-Medical-Assistance-in-Dying-for-Mature-Minors.pdf .

Health Canada. Third annual report on medical assistance in dying in Canada 2021. Ottawa; 2022. [cited 2023 Oct 23]. Available from: https://www.canada.ca/en/health-canada/services/medical-assistance-dying/annual-report-2021.html .

Banner D, Schiller CJ, Freeman S. Medical assistance in dying: a political issue for nurses and nursing in Canada. Nurs Philos. 2019;20(4): e12281.

Article   PubMed   Google Scholar  

Pesut B, Thorne S, Stager ML, Schiller CJ, Penney C, Hoffman C, et al. Medical assistance in dying: a review of Canadian nursing regulatory documents. Policy Polit Nurs Pract. 2019;20(3):113–30.

Article   PubMed   PubMed Central   Google Scholar  

College of Registered Nurses of British Columbia. Scope of practice for registered nurses [Internet]. Vancouver; 2018. Available from: https://www.bccnm.ca/Documents/standards_practice/rn/RN_ScopeofPractice.pdf .

Pesut B, Thorne S, Schiller C, Greig M, Roussel J, Tishelman C. Constructing good nursing practice for medical assistance in dying in Canada: an interpretive descriptive study. Global Qual Nurs Res. 2020;7:2333393620938686. https://doi.org/10.1177/2333393620938686 .

Article   Google Scholar  

Pesut B, Thorne S, Schiller CJ, Greig M, Roussel J. The rocks and hard places of MAiD: a qualitative study of nursing practice in the context of legislated assisted death. BMC Nurs. 2020;19:12. https://doi.org/10.1186/s12912-020-0404-5 .

Pesut B, Greig M, Thorne S, Burgess M, Storch JL, Tishelman C, et al. Nursing and euthanasia: a narrative review of the nursing ethics literature. Nurs Ethics. 2020;27(1):152–67.

Pesut B, Thorne S, Storch J, Chambaere K, Greig M, Burgess M. Riding an elephant: a qualitative study of nurses’ moral journeys in the context of Medical Assistance in Dying (MAiD). Journal Clin Nurs. 2020;29(19–20):3870–81.

Lamb C, Babenko-Mould Y, Evans M, Wong CA, Kirkwood KW. Conscientious objection and nurses: results of an interpretive phenomenological study. Nurs Ethics. 2018;26(5):1337–49.

Wright DK, Chan LS, Fishman JR, Macdonald ME. “Reflection and soul searching:” Negotiating nursing identity at the fault lines of palliative care and medical assistance in dying. Social Sci & Med. 2021;289: 114366.

Beuthin R, Bruce A, Scaia M. Medical assistance in dying (MAiD): Canadian nurses’ experiences. Nurs Forum. 2018;54(4):511–20.

Bruce A, Beuthin R. Medically assisted dying in Canada: "Beautiful Death" is transforming nurses' experiences of suffering. The Canadian J Nurs Res | Revue Canadienne de Recherche en Sci Infirmieres. 2020;52(4):268–77. https://doi.org/10.1177/0844562119856234 .

Canadian Nurses Association. Code of ethics for registered nurses. Ottawa; 2017. Available from: https://www.cna-aiic.ca/en/nursing/regulated-nursing-in-canada/nursing-ethics .

Canadian Nurses Association. National nursing framework on Medical Assistance in Dying in Canada. Ottawa: 2017. Available from: https://www.virtualhospice.ca/Assets/cna-national-nursing-framework-on-maidEng_20170216155827.pdf .

Pesut B, Thorne S, Greig M. Shades of gray: conscientious objection in medical assistance in dying. Nursing Inq. 2020;27(1): e12308.

Durojaiye A, Ryan R, Doody O. Student nurse education and preparation for palliative care: a scoping review. PLoS ONE. 2023. https://doi.org/10.1371/journal.pone.0286678 .

McMechan C, Bruce A, Beuthin R. Canadian nursing students’ experiences with medical assistance in dying | Les expériences d’étudiantes en sciences infirmières au regard de l’aide médicale à mourir. Qual Adv Nurs Educ - Avancées en Formation Infirmière. 2019;5(1). https://doi.org/10.17483/2368-6669.1179 .

Adler M, Ziglio E. Gazing into the oracle. The Delphi method and its application to social policy and public health. London: Jessica Kingsley Publishers; 1996

Keeney S, Hasson F, McKenna H. Consulting the oracle: ten lessons from using the Delphi technique in nursing research. J Adv Nurs. 2006;53(2):205–12.

Keeney S, Hasson F, McKenna H. The Delphi technique in nursing and health research. 1st ed. City: Wiley; 2011.

Willis GB. Cognitive interviewing: a tool for improving questionnaire design. 1st ed. Thousand Oaks, Calif: Sage; 2005. ISBN: 9780761928041

Lamb C, Evans M, Babenko-Mould Y, Wong CA, Kirkwood EW. Conscience, conscientious objection, and nursing: a concept analysis. Nurs Ethics. 2017;26(1):37–49.

Lamb C, Evans M, Babenko-Mould Y, Wong CA, Kirkwood K. Nurses’ use of conscientious objection and the implications of conscience. J Adv Nurs. 2018;75(3):594–602.

de Vaus D. Surveys in social research. 6th ed. Abingdon, Oxon: Routledge; 2014.

Boateng GO, Neilands TB, Frongillo EA, Melgar-Quiñonez HR, Young SL. Best practices for developing and validating scales for health, social, and behavioral research: A primer. Front Public Health. 2018;6:149. https://doi.org/10.3389/fpubh.2018.00149 .

Puchta C, Potter J. Focus group practice. 1st ed. London: Sage; 2004.

Book   Google Scholar  

Streiner DL, Norman GR, Cairney J. Health measurement scales: a practical guide to their development and use. 5th ed. Oxford: Oxford University Press; 2015.

Hsieh H-F, Shannon SE. Three approaches to qualitative content analysis. Qual Health Res. 2005;15(9):1277–88.

Adesina O, DeBellis A, Zannettino L. Third-year Australian nursing students’ attitudes, experiences, knowledge, and education concerning end-of-life care. Int J of Palliative Nurs. 2014;20(8):395–401.

Bator EX, Philpott B, Costa AP. This moral coil: a cross-sectional survey of Canadian medical student attitudes toward medical assistance in dying. BMC Med Ethics. 2017;18(1):58.

Beuthin R, Bruce A, Scaia M. Medical assistance in dying (MAiD): Canadian nurses’ experiences. Nurs Forum. 2018;53(4):511–20.

Brown J, Goodridge D, Thorpe L, Crizzle A. What is right for me, is not necessarily right for you: the endogenous factors influencing nonparticipation in medical assistance in dying. Qual Health Res. 2021;31(10):1786–1800.

Falconer J, Couture F, Demir KK, Lang M, Shefman Z, Woo M. Perceptions and intentions toward medical assistance in dying among Canadian medical students. BMC Med Ethics. 2019;20(1):22.

Green G, Reicher S, Herman M, Raspaolo A, Spero T, Blau A. Attitudes toward euthanasia—dual view: Nursing students and nurses. Death Stud. 2022;46(1):124–31.

Hosseinzadeh K, Rafiei H. Nursing student attitudes toward euthanasia: a cross-sectional study. Nurs Ethics. 2019;26(2):496–503.

Ozcelik H, Tekir O, Samancioglu S, Fadiloglu C, Ozkara E. Nursing students’ approaches toward euthanasia. Omega (Westport). 2014;69(1):93–103.

Canning SE, Drew C. Canadian nursing students’ understanding, and comfort levels related to medical assistance in dying. Qual Adv Nurs Educ - Avancées en Formation Infirmière. 2022;8(2). https://doi.org/10.17483/2368-6669.1326 .

Edo-Gual M, Tomás-Sábado J, Bardallo-Porras D, Monforte-Royo C. The impact of death and dying on nursing students: an explanatory model. J Clin Nurs. 2014;23(23–24):3501–12.

Freeman LA, Pfaff KA, Kopchek L, Liebman J. Investigating palliative care nurse attitudes towards medical assistance in dying: an exploratory cross-sectional study. J Adv Nurs. 2020;76(2):535–45.

Brown J, Goodridge D, Thorpe L, Crizzle A. “I am okay with it, but I am not going to do it:” the exogenous factors influencing non-participation in medical assistance in dying. Qual Health Res. 2021;31(12):2274–89.

Dimoula M, Kotronoulas G, Katsaragakis S, Christou M, Sgourou S, Patiraki E. Undergraduate nursing students’ knowledge about palliative care and attitudes towards end-of-life care: A three-cohort, cross-sectional survey. Nurs Educ Today. 2019;74:7–14.

Matchim Y, Raetong P. Thai nursing students’ experiences of caring for patients at the end of life: a phenomenological study. Int J Palliative Nurs. 2018;24(5):220–9.

Canadian Institute for Health Research. Sex and gender in health research [Internet]. Ottawa: CIHR; 2021 [cited 2023 Oct 23]. Available from: https://cihr-irsc.gc.ca/e/50833.html .

Canadian Nurses’ Association. Nursing statistics. Ottawa: CNA; 2023 [cited 2023 Oct 23]. Available from: https://www.cna-aiic.ca/en/nursing/regulated-nursing-in-canada/nursing-statistics .

Krumpal I. Determinants of social desirability bias in sensitive surveys: a literature review. Qual Quant. 2013;47(4):2025–47. https://doi.org/10.1007/s11135-011-9640-9 .

Ferri P, Di Lorenzo R, Stifani S, Morotti E, Vagnini M, Jiménez Herrera MF, et al. Nursing student attitudes toward dying patient care: a European multicenter cross-sectional study. Acta Bio Medica Atenei Parmensis. 2021;92(S2): e2021018.

PubMed   PubMed Central   Google Scholar  

Beuthin R, Bruce A. Medical assistance in dying (MAiD): Ten things leaders need to know. Nurs Leadership. 2018;31(4):74–81.

Thiele T, Dunsford J. Nurse leaders’ role in medical assistance in dying: a relational ethics approach. Nurs Ethics. 2019;26(4):993–9.

Download references

Acknowledgements

We would like to acknowledge the faculty and students who generously contributed their time to this work.

JS received a student traineeship through the Principal Research Chairs program at the University of British Columbia Okanagan.

Author information

Authors and affiliations.

School of Health and Human Services, Selkirk College, Castlegar, BC, Canada

Jocelyn Schroeder & Barbara Pesut

School of Nursing, University of British Columbia Okanagan, Kelowna, BC, Canada

Barbara Pesut, Lise Olsen, Nelly D. Oelke & Helen Sharp

You can also search for this author in PubMed   Google Scholar

Contributions

JS made substantial contributions to the conception of the work; data acquisition, analysis, and interpretation; and drafting and substantively revising the work. JS has approved the submitted version and agreed to be personally accountable for the author's own contributions and to ensure that questions related to the accuracy or integrity of any part of the work, even ones in which the author was not personally involved, are appropriately investigated, resolved, and the resolution documented in the literature. BP made substantial contributions to the conception of the work; data acquisition, analysis, and interpretation; and drafting and substantively revising the work. BP has approved the submitted version and agreed to be personally accountable for the author's own contributions and to ensure that questions related to the accuracy or integrity of any part of the work, even ones in which the author was not personally involved, are appropriately investigated, resolved, and the resolution documented in the literature. LO made substantial contributions to the conception of the work; data acquisition, analysis, and interpretation; and substantively revising the work. LO has approved the submitted version and agreed to be personally accountable for the author's own contributions and to ensure that questions related to the accuracy or integrity of any part of the work, even ones in which the author was not personally involved, are appropriately investigated, resolved, and the resolution documented in the literature. NDO made substantial contributions to the conception of the work; data acquisition, analysis, and interpretation; and substantively revising the work. NDO has approved the submitted version and agreed to be personally accountable for the author's own contributions and to ensure that questions related to the accuracy or integrity of any part of the work, even ones in which the author was not personally involved, are appropriately investigated, resolved, and the resolution documented in the literature. HS made substantial contributions to drafting and substantively revising the work. HS has approved the submitted version and agreed to be personally accountable for the author's own contributions and to ensure that questions related to the accuracy or integrity of any part of the work, even ones in which the author was not personally involved, are appropriately investigated, resolved, and the resolution documented in the literature.

Authors’ information

JS conducted this study as part of their graduate requirements in the School of Nursing, University of British Columbia Okanagan.

Corresponding author

Correspondence to Barbara Pesut .

Ethics declarations

Ethics approval and consent to participate.

The research was approved by the Selkirk College Research Ethics Board (REB) ID # 2021–011 and the University of British Columbia Behavioral Research Ethics Board ID # H21-01181.

All participants provided written and informed consent through approved consent processes. Research was conducted in accordance with the Declaration of Helsinki.

Consent for publication

Not applicable.

Competing interests

The authors declare they have no competing interests.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary material 1., supplementary material 2., supplementary material 3., rights and permissions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ . The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/ ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Cite this article.

Schroeder, J., Pesut, B., Olsen, L. et al. Developing a survey to measure nursing students’ knowledge, attitudes and beliefs, influences, and willingness to be involved in Medical Assistance in Dying (MAiD): a mixed method modified e-Delphi study. BMC Nurs 23 , 326 (2024). https://doi.org/10.1186/s12912-024-01984-z

Download citation

Received : 24 October 2023

Accepted : 28 April 2024

Published : 14 May 2024

DOI : https://doi.org/10.1186/s12912-024-01984-z

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Medical assistance in dying (MAiD)
  • End of life care
  • Student nurses
  • Nursing education

BMC Nursing

ISSN: 1472-6955

case study method in education

  • Open access
  • Published: 21 May 2024

A modern way to teach and practice manual therapy

  • Roger Kerry 1 ,
  • Kenneth J. Young   ORCID: orcid.org/0000-0001-8837-7977 2 ,
  • David W. Evans 3 ,
  • Edward Lee 1 , 4 ,
  • Vasileios Georgopoulos 1 , 5 ,
  • Adam Meakins 6 ,
  • Chris McCarthy 7 ,
  • Chad Cook 8 ,
  • Colette Ridehalgh 9 , 10 ,
  • Steven Vogel 11 ,
  • Amanda Banton 11 ,
  • Cecilia Bergström 12 ,
  • Anna Maria Mazzieri 13 ,
  • Firas Mourad 14 , 15 &
  • Nathan Hutting 16  

Chiropractic & Manual Therapies volume  32 , Article number:  17 ( 2024 ) Cite this article

113 Altmetric

Metrics details

Musculoskeletal conditions are the leading contributor to global disability and health burden. Manual therapy (MT) interventions are commonly recommended in clinical guidelines and used in the management of musculoskeletal conditions. Traditional systems of manual therapy (TMT), including physiotherapy, osteopathy, chiropractic, and soft tissue therapy have been built on principles such as clinician-centred assessment , patho-anatomical reasoning, and technique specificity. These historical principles are not supported by current evidence. However, data from clinical trials support the clinical and cost effectiveness of manual therapy as an intervention for musculoskeletal conditions, when used as part of a package of care.

The purpose of this paper is to propose a modern evidence-guided framework for the teaching and practice of MT which avoids reference to and reliance on the outdated principles of TMT. This framework is based on three fundamental humanistic dimensions common in all aspects of healthcare: safety , comfort , and efficiency . These practical elements are contextualised by positive communication , a collaborative context , and person-centred care . The framework facilitates best-practice, reasoning, and communication and is exemplified here with two case studies.

A literature review stimulated by a new method of teaching manual therapy, reflecting contemporary evidence, being trialled at a United Kingdom education institute. A group of experienced, internationally-based academics, clinicians, and researchers from across the spectrum of manual therapy was convened. Perspectives were elicited through reviews of contemporary literature and discussions in an iterative process. Public presentations were made to multidisciplinary groups and feedback was incorporated. Consensus was achieved through repeated discussion of relevant elements.

Conclusions

Manual therapy interventions should include both passive and active, person-empowering interventions such as exercise, education, and lifestyle adaptations. These should be delivered in a contextualised healing environment with a well-developed person-practitioner therapeutic alliance. Teaching manual therapy should follow this model.

Musculoskeletal (MSK) conditions are leading contributors to the burden of global disability and healthcare [ 1 ]. Amongst other interventions, manual therapy (MT) has been recommended for the management of people with MSK conditions in multiple clinical guidelines, for example [ 2 , 3 ].

MT has been described as the deliberate application of externally generated force upon body tissue, typically via the hands, with therapeutic intent [ 4 ]. It includes touch-based interventions such as thrust manipulation, joint mobilisation, soft-tissue mobilisation, and neurodynamic movements [ 5 ]. For people with MSK conditions, this therapeutic intent is usually to reduce pain and improve movement, thus facilitating a return to function and improved quality of life [ 6 ]. Patient perceptions of MT are, however, vague and sit among wider expectations of treatment including education, self-efficacy and the role of exercise, and prognosis [ 7 ].

Although the teaching and practice of MT has invariably changed over time, its foundations arguably remain unaltered and set in biomedical and outdated principles. This paper sets out to review contemporary literature and propose a revised model to inform the teaching and practice of MT.

The aim of this paper is to stimulate debate about the future teaching and practice of manual therapy through the proposal of an evidence-informed re-conceptualised model of manual therapy. The new model dismisses traditional elements of manual therapy which are not supported by research evidence. In place, the model offers a structure based on common humanistic principles of healthcare.

Consenus methodology

We present the literature synthesis and proposed framework as a consensus document to motivate further professional discussion developed through a simple three-stage iterative process over a 5-year period. The consensus methodology was classed as educational development which did not require ethical approval. Stage 1: a change of teaching practice was adopted by some co-authors (VG, RK, EL) on undergraduate and postgraduate Physiotherapy programmes at a UK University in 2018. This was a result of standard institutional teaching practice development which includes consideration of evidence-informed teaching. Stage 2: Input from a broader spectrum of stakeholders was sought, so a group of experienced, internationally-based educators, clinicians, and researchers from across the spectrum of manual therapy was convened. Perspectives were elicited through discussions in an iterative process. Stage 3: Presentations were made by some of the co-authors (VG, RK, SV, KY) to multidisciplinary groups (UK, Europe, North America) and feedback via questions and discussions was incorporated into further co-author discussions on the development of the framework. Consensus was achieved through repeated discussion of relevant elements. Figure  1 summarises the consensus methodology.

figure 1

Summary and timeline of iterative consensus process for development of framework (MT: Manual Therapy; UG: Undergraduate; PG: Postgraduate)

Clinical & cost effectiveness of manual therapy

Manual therapy has been suggested to be a valuable part of a multimodal approach to managing MSK pain and disability, for example [ 8 ]. The majority of recent systematic reviews of clinical trials report a beneficial effect of MT for a range of MSK conditions, with at least similar effect sizes to other recommended approaches, for example [ 9 ]. Some systematic reviews report inconclusive findings, for example [ 10 ], and a minority report effects that were no better than comparison or sham treatments, for example [ 11 ].

Potential benefits must always be weighed against potential harms, of course. Mild to moderate adverse events from MT (e.g. mild muscle soreness) are common and generally considered acceptable [ 12 ], whilst serious adverse events are very rare and their risk may be mitigated by good practice [ 13 ]. MT has been reported by people with MSK disorders as a preferential and effective treatment with accepted levels of post-treatment soreness [ 14 ].

MT is considered cost-effective [ 15 ] and the addition of MT to exercise packages has been shown to increase clinical and cost-effectiveness compared to exercise alone in several MSK conditions [ 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 ]. Further, manual therapy has been shown to be less costly and more beneficial than evidence-based advice to stay active [ 24 ].

In summary, MT is considered a useful evidence-based addition to care packages for people experiencing pain and disability associated with MSK conditions. As such, MT continues to be included in national and international clinical guidelines for a range of MSK conditions as part of multimodal care.

Principles of traditional manual therapy (TMT)

Manual therapy has been used within healthcare for centuries [ 4 ] with many branches of MT having appeared (and disappeared) over time [ 25 ]. In developed nations today, MT is most commonly utilised by the formalised professional groups of physiotherapy, osteopathy, chiropractic, as well as groups such as soft tissue therapists. All of these groups have a history that borrows heavily from traditional healers and bone-setters [ 26 ].

Although there are many elements of MT, three principles appear to have become ubiquitous within what we shall now refer to as ‘traditional manual therapy’ (TMT): clinician-centred assessment , patho-anatomical reasoning , and technique specificity [ 27 , 28 , 29 , 30 ]. These principles continue to influence the teaching and practice of manual therapy over recent years, for example [ 31 ].

However, they have become increasingly difficult to defend given a growing volume of empirical evidence to the contrary.

Traditional manual therapy (TMT) principles: origins and problems

Clinician-centred assessment.

TMT has long had an emphasis on what we shall refer to as clinician-centred assessments . Within this, we claim, is an assumption that clinical information is both highly accurate and diagnostically important, for example [ 32 ]. Clinician-centred assessments include, for example, routine imaging, the search for patho-anatomical 'lesions’ and asymmetries, and specialised palpation. Although the focus of this paper is on the ‘hands-on’ examples of client-centred assessment, the notion of imaging is presented below to expose some of the flaws in the underlying belief system for TMT.

The emphasis on clinician-centred assessments has probably been driven, in part, by a desire for objective diagnostic tests which align well with gold-standard imaging. Indeed, since the discovery of x-rays, radiological imaging been used as an assessment for spinal pain – and a justification for using spinal manipulation – particularly in the chiropractic profession [ 33 ]. Contrary to many TMT claims, X-ray imaging is not without risk [ 34 ]. Additionally, until relatively recently (with the advent of magnetic resonance imaging) it was not widely appreciated that patho-anatomical ‘lesions’ believed to explain MSK pain conditions were nearly as common in pain-free individuals as those with pain [ 35 ]. Accordingly, the rates of unnecessary treatments, including surgery, are known to increase when imaging is used routinely [ 36 ]. For patients with non-specific low back pain, for example, imaging does not improve outcomes and risks overdiagnosis and overtreatment [ 37 ]. Hence, despite being objective in nature, the value of imaging for many MSK pain conditions (particularly spinal pain) has reduced drastically with clinical guidelines across the globe recommending against routine imaging for MSK pain of non-traumatic origin [ 38 ]. Even so, the practice of routine imaging continues [ 39 ].

Hands-on interventions are inextricably related to hands-on assessment [ 40 ], and often associated with claims of ‘specialisation’ [ 41 ]. By this we mean where a great level of training and precision are claimed to be necessary for influencing the interpretation of assessment findings, treatment decisions, and/or treatment outcomes. Implicit within this claim is that therapists who are unable to achieve such precision are not able to perform MT to an acceptable level (and thereby are not able to provide benefit to patients).

There are numerous studies that cast doubt over claims of highly specialised palpation skills. Palpation of anatomical landmarks does not reach a clinically acceptable level of validity [ 42 ]. Specialised motion palpation does not appear to be a good method for differentiating people with or without low back pain [ 43 ]. Poor content validity of specialised motion tests have been reported, in line with a lack of acceptable reference standards [ 44 ]. Palpable sensations reported by therapists are unlikely to be due to tissue deformation [ 45 ]. Furthermore, the delivery of interventions based on specialised palpatory findings is no better than non-specialised palpation [ 46 ]. Generally poor reliability of motion palpation skills has been reported, for example [ 47 ] and appear to be independent of clinician experience or training, for example [ 48 ]. Notably, person-centred palpation—for pain and tenderness for example—has slightly higher reliability, but is still fair at best [ 49 ].

This does not mean that palpation is of no use at all though; just that effective manual therapy does not depend upon it. For example, expert therapists can display high levels of interrater reliability during specialised motion palpation [ 50 ]. Focused training can improve the interrater reliability of specialised skills [ 51 ]. However, the validity of the phenomenon remains poor. Given the weight of the evidence and consistency of data over recent decades, we suggest that the role of clinician-centred hands-on assessment is no longer central to contemporary manual therapy.

Patho-anatomical reasoning

The justification for selecting particular MT interventions has historically been based upon the patho-anatomical status of local peripheral tissue [ 52 , 53 , 54 , 55 ]. Patho-anatomical reasoning, we propose, is the framework that links clinician-centred assessments to the desire for highly specific delivery of MT interventionsKey to this is the relationship between a patho-anatomic diagnosis and the assumed mechanisms of action of the intervention employed.

Theories for the mechanisms of action of MT interventions are many. Some of the most prominent include reductions of disc herniations [ 56 ], re-positioning of a bone or joint [ 32 ], removal of intra-articular adhesions [ 57 ], changes in the biomechanical properties of soft tissues [ 58 ], central pain modulation [ 59 ], and biochemical changes [ 60 ]. These theories have been used to justify the choice of certain interventions: a matching of diagnosis (i.e., existence of a lesion) to the effect of treatment takes place. However, most of these mechanistic theories either lack evidence or have been directly contested [ 61 ].

The causal relationship between proposed tissue-based factors such as posture, ergonomic settings, etc. and painful experience has also been disputed [ 62 ]. Although local tissue stiffness has been observed in people with pain, this is typically associated with neuromuscular responses, rather than patho-anatomical changes at local tissue level [ 63 , 64 , 65 , 66 ]. Overall, although some local tissue adaptions have been identified in people with recurrent MSK pain, this is inconsistent and the evidence is currently of low quality [ 67 ] are generally limited to short-term follow-up measures [ 68 ].

Technique specificity

TMT techniques have been taught with an emphasis that a particular direction, ‘grade’ of joint movement, or deformation of tissue at a very specific location in a certain way, is required to achieve a successful treatment outcome.

One problem with a demand for technique specificity in manual therapy is that an intervention does not always result in the intended effect. For example, posteroanterior forces applied during spinal mobilization consistently induce sagittal rotation, as opposed to the assumed posteroanterior translation, for example [ 69 ]. Furthermore, irrespective of the MT intervention chosen, restricting movements to a particular spinal segment is difficult and a regional, non-specific motion is typically induced, for example [ 70 ].

To support technique specificity, comparative data must repeatedly and reproducibly show superiority of outcome from specific MT interventions over non-specific MT, which is consistently not observed [ 71 , 72 , 73 ]. Some studies have demonstrated localised effects of targeted interventions [ 74 ] but there appears to be no difference in outcome related to: the way in which techniques are delivered [ 75 ]; whether technique selection is random or clinician-selected [ 41 ]; or variations in the direction of force or targeted spinal level [ 76 ]. Conversely, there is evidence that non-specific technique application may improve outcomes [ 77 , 78 , 79 ]. Further, sham techniques produce comparable results to specialised approaches [ 11 ].

Passive movement and localised touch have been associated with significant analgesic responses [ 80 ]. These data indicate the presence of an analgesic mechanism. Unfortunately, mechanistic explanation for the therapeutic effects of MT upon pain and disability still remain largely in a ‘black box’ state [ 81 ]. Nevertheless, there are several plausible mechanisms of action to explain the analgesic action of MT interventions, including the activation of modulatory spinal and supraspinal responses [ 82 , 83 , 84 , 85 ]. In support of this, MT interventions have been associated with a variety of neurophysiological responses [ 61 ]. However, it must be acknowledged that these studies provide mechanistic evidence based on association, which is insufficient to make causal claims [ 86 ]. Importantly, none of these neurophysiological responses have been directly related to either the analgesic mechanisms or clinical outcome and may therefore be incidental.

There is evidence that MT does not provide analgesia in injured tissues [ 87 , 88 ]. Conversely, MT has been shown to decrease inflammatory biomarkers [ 89 , 90 , 91 , 92 , 93 ], although these changes have not been evaluated in the longer-term, nor associated with clinical outcomes.

A modern framework for manual therapy

We propose a new direction for the future of MT in which the teaching and practice of this core dimension of MSK care are no longer based on the traditional principles of clinician-centred assessment , patho-anatomical reasoning , and technique specificity .

In doing so, this framework places MT more explicitly as part of person-centred care and appeals to common principles of healthcare, best available evidence, and contemporary theory which avoids unnecessary and over-complicated explanations of observed effects. The framework is simple in terms of implementation and delivery and contextualised by common elements of best practice for healthcare, in line with regulated standard of practice, e.g., [ 94 , 95 , 96 , 97 ]. Our proposal simply illustrates the operationalisation of these common elements through manual therapy.

Too much emphasis has been given to clinician-centred assessments and this should be rebalanced with an increased use of patient-centred assessments, such as a thorough case history, the use of validated patient-reported outcome measures (PROMS), and real-time patient feedback during assessments.

The new framework considers fundamental and humanistic dimensions of touch-based therapies, such as non-specific neuromodulation, communication and sense-making, physical education, and contextual clinical effectiveness. This aligns to contemporary ideas regarding therapeutic alliance and a move towards genuinely holistic healthcare [ 98 , 99 ]. The framework needs to be “open” in order to represent and allow expression of the complexity of the therapeutic encounter. However, to prevent the exploitation of this openness the framework is underpinned by evidence, and any manual therapy approaches without plausible and measurable mechanisms are not supported.

To provide the best care, common healthcare elements such as the safety and comfort of the person seeking help and therapist must be considered, and care should be provided as efficiently as possible. Our framework embraces these dimensions and employs an integration of current evidence. It is transdisciplinary in nature and may be adopted by all MT professions. Figure  1 provides a graphical representation of the framework. It is acknowledged that all components overlap, relate, and influence each. There are two main components: the practical elements on the inside, comprised of safety, comfort, and efficiency, and the conceptual themes on the outer regions, consisting of communication, context, and person-centred care Fig. 2 .

figure 2

Representation of a modern teaching and practice framework for manual therapy. The image is purposefully designed to be simple, and has been developed primarily to be used as a teaching aid. When displayed in a learning environment, learners and clinicians can quickly refer to the image to check their practice against each element. To keep the image clear, each element of the image is described in detail in the text below”

Practical elements

Safety for people seeking help is a primary concern for all healthcare providers, with the aims to “ prevent and reduce risks, errors and harm that occur to patients [sic] during provision of health care… and to deliver quality essential health services ” [ 100 ]. This, and the notion of safety more generally (including that of the therapist), should be central to way MT is taught and practised.

A fundamentally safe context should be created where there is an absence of any obvious danger or risk of harm to physical or mental health. Consideration should be given to ensuring that communication and consent processes are orientated towards the safety of both the person seeking help and the therapist. The therapist should pay attention to any sense of threat that could be present in the physical, emotional, cognitive and environmental domains of the clinical encounter, and use skilful communication to mitigate anxiety about the assessment or therapeutic process.

Safety should also be considered in the clinical context of the assessment and treatment approach, ensuring that relevant and meaningful safety screenings have been undertaken [ 67 , 101 ]. There remains a need for good, skilful practice and development of manually applied techniques, but this can be achieved without reference to the principles of TMT and without the dogma of a proprietary therapeutic approach.

Comfort suggests that both the person seeking help and the therapist are physically and emotionally content during the assessment and therapeutic process. For example, the person seeking help is agreeable with any necessary state of dress (sociocultural difference should be considered); the person is relaxed and untroubled in whatever position they are in, and is adequately supported whether sitting, standing or recumbent during assessment and treatment; the therapist is comfortable with their positioning and posture; any discomfort produced by the therapeutic process is negotiated and agreed. Any physical mobilisation or touch should be applied with respect to the feedback from the person in relation to their comfort, rather than a pre-determined force based on the notion of resistance. This process requires clinical phronesis, sensitivity, responsivity, dexterity, and embodied communication [ 102 ].

The therapeutic process should be undertaken in a well-organised, competent manner aiming to achieve maximum therapeutic benefit with minimum waste of effort, time, or expense. To enhance the efficiency dimension, the assessment and therapeutic process should be an integral part of a holistic educational and/or activity-based approach to the management of the people which might also address psychological, nutritional, or ergonomic aspects of care, while being aware of social determinants to health. Recommendations exist which serve as a useful guide for enhancing care and promoting self-management in an efficient way [ 103 ].

A principle of this new model of MT is that therapists should not lose sight of the goals they develop with the people they help and ensure that there is coherence between their management aims and their techniques. Therapists should aim to support a person’s self-efficacy and use active approaches to empower them in their recovery. The overall number of therapeutic applications should be made in the context of fostering therapeutic alliance and supporting people to make sense of their situation and symptoms. This should be informed by contemporary views of the effects of manual therapy, emphasising a “physical education process” to promote sense-making and self-efficacy in alliance with the people they aim to help.

Clinical interactions need to be reproducible under a person’s own volition, serving to enhance self-empowerment. For example, someone could be taught how to “self-mobilise” if a positive effect is found with a particular therapeutic application. This should be appropriately scaffolded with behavioural change principles and functional contextualism that promote autonomy and self-management, rather than inappropriate reliance on the therapist [ 103 , 104 ].

An important and emergent notion from the proposed model is to question what constitutes indications for MT given that the model excludes traditional factors which would have informed whether manual therapy is indicated or not for a particular person. The response to this sits within the efficiency and safety dimensions: MT can be beneficial as part of a multi-dimensional approach to management across a broad population of people with musculoskeletal dysfunction, with no evidence to suggest any clinician-centered or patho-anatomical finding influences outcomes. The choice of whether or not to include MT as part of a management strategy should therefore be a product of a lack of contraindications and shared-decision making.

This framework aligns with evidence-based propositions that effectiveness and efficiency in assessment, diagnosis, and outcomes are not reliant on the therapist’s skill set of specialised elements of TMT, but rather other factors—for example variations in pain phenotypes [ 5 ].

Conceptual themes

Communication.

Communication is the overriding critical dimension to the whole therapeutic process and should be aimed at addressing peoples’ fundamental needs to make sense of their symptoms and path to recovery. The delivery and uptake of the therapy should therefore be operationalised in a communication process that meaningfully represents shared-decision making and the best possible attempt to contextualise the therapy in positive and evidence-informed explanations of the process and desired effects [ 105 ].

Within a therapeutic encounter, practitioners must give the time to listen to peoples’ accounts and explanations of their symptoms, including their ideas about their cause [ 106 ]. The assessment and diagnostic process should be a shared endeavour, for example, the negotiation of symptom reproduction. This should be done in a manner that facilitates sense-making, and which simultaneously encourages people to move on from unhelpful beliefs about their symptoms [ 107 , 108 ], encouraging understanding of the uncertain nature of pain and injury. Person-centered communication requires attention to what we communicate and how we communicate across the entire clinical interaction including interview, examination, and management planning [ 109 ]. Therapists need to be open, reflective, aware and responsive to verbal and non-verbal cues, and demonstrate a balance between engaging with people (e.g. eye-gaze) and writing/typing notes during the interview [ 110 , 111 , 112 ].

People should be given the opportunity to discuss their understanding of the diagnosis and options for treatment and rehabilitation. The decision-making process is dialogical, in which alternative options to the offered therapy should also be discussed with the comparative risks and benefits of all available management options, including doing nothing [ 113 , 114 ].

The therapist must fully appreciate the potential consequences of touch without consent. Continual dialogue should ensure that all parties are moving towards mutually agreed goals. The context of the therapy should be explicitly communicated to give appropriate context for any particular intervention as part of a holistic, evidence-based approach [ 115 , 116 , 117 ]. Therapists should be aware that their own beliefs can affect the way they communicate with their people; in the same way, a person’s context affects how they communicate what they expect from their treatment [ 107 , 118 , 119 , 120 ]. The construction of contextual healing scenarios which support positive outcomes, whilst minimising nocebic effects, is critical to effective healthcare [ 121 , 122 , 123 ].

There is a growing academic interest in the nature, role, and purpose of social and affective touch, and any re-framing of MT should consider touch as a means of communication to develop and enhance cooperative communications and strengthen the therapeutic relationship [ 124 , 125 , 126 , 127 , 128 , 129 ]. It can be soothing for a person in pain to experience the caring touch of a professional therapist [ 130 ]; on the other hand, probing, diagnostic, and touch can be experienced as alienating [ 131 , 132 , 133 ]. Touch can alter a person’s sense of body ownership and their ability to recognise and process their emotions by modulating interoceptive precision [ 129 , 134 , 135 ], and intentional touch may be perceived differently from casual, unfocussed touch [ 136 , 137 ]. There is also a thesis that touch generates shared understanding and meaning [ 138 , 139 , 140 ]. This wider appreciation of touch should be embedded in modern MT communication.

The contextual quality of a person’s experience of the therapeutic encounter can affect satisfaction and clinical outcomes [ 141 , 142 , 143 , 144 , 145 ]. The context in which therapeutic care takes place should therefore be developed to enhance this experience. There could be very local, practical aspects of the context, such as the type of passive information available in the clinical space, e.g. replacing biomedical and pathological imagery and objects with positive, active artefacts; judicious and thoughtful organisation and use of treatment tables to discourage a sense of passivity and disempowerment; allocating a comfortable space where communication can take place; colour schemes and light sources which facilitate positivity; ensuring consistency through all clinical and administrative staff promoting encouraging and non-nocebic messages. Importantly, the way the therapist dresses influences peoples’ perception of their healthcare experience [ 146 , 147 ], and that in turn should be contextually and culturally sensitive [ 148 , 149 , 150 ].

Beyond the local clinical space is the broader social environment. The undertaking of MT should serve a role in a person’s engagement with their social environment. For example, someone returning home after engaging with their therapist and disseminating positive health messages within their home and social networks; people acting as advocates for self-empowered healthcare. Furthermore, early data have demonstrated that aligning treatment with the beliefs and values of culturally and linguistically diverse communities enhances peoples’ engagement with their healthcare [ 151 ].

Person-centred care

Here we borrow directly from one of the most established and clinically useful definitions of Person-Centered Medicine [ 152 ]:

“(Person-Centered Medicine is) an affordable biomedical and technological advance to be delivered to patients [sic] within a humanistic framework of care that recognises the importance of applying science in a manner that respects the patients [sic] as a whole person and takes full account of [their] values, preferences, aspirations, stories, cultural context, fears, worries and hopes and thus that recognises and responds to [their] emotional, social and spiritual necessities in addition to [their] physical needs” [ 152 ] , p219.

Person-centred care incorporates a person’s perspective as part of the therapeutic process. In practice, therapists need to communicate in a manner that creates adequate conversational space to elicit a person’s agenda (i.e. understanding, impact of pain, concerns, needs, and goals), which guides clinical interactions. This approach encourages greater partnership in management [ 109 , 153 , 154 ].

A roadmap outlining key actions to implement person-centeredness in clinical practice has been outlined in detail elsewhere [ 155 ]. This includes screening for serious pathology, health co-morbidities and psychosocial factors; adopting effective communication; providing positive health education; coaching and supporting people towards active self-management; and facilitating and managing co-care (when needed) [ 154 ].

It is critical and necessary now to make these features explicit and central to the revised model of MT proposed in this paper. We wish to identify common ground across all MT professions in order to achieve a trans-disciplinary understanding of the evidence supporting the use of MT.

We acknowledge that our arguments here are rooted in empiricism and deliberately based on available research data from within the health science disciplines. We also acknowledge that there is a wider debate about future directions in person-centred care arising from the current evolution of the evidence-based health care movement, which has pointed to the need to learn more about peoples’ lived experiences, to redefine the model of the therapeutic relationship. Although beyond the scope of this paper, a full exploration of modern health care provision involves reconsideration of the ethics and legal requirements of communication and shared decision-making [ 156 , 157 , 158 , 159 ]. The authors envision this paper as a stimulus for self-reflection, stakeholder discussions, and ultimately change that can positively impact outcomes for people who seek manual therapy interventions.

Manual therapy has long been part of MSK healthcare and, given that is likely to continue. Current evidence suggests that effectiveness does not rely on the traditional principles historically developed in any of the major manual therapies. Therefore, the continued teaching and practice based on the principles of clinician-centred palpation , patho-anatomical reasoning , and technique specificity are no longer justified and may well even limit the value of MT.

A revised and reconceptualised framework of MT, based on the humanistic domains of safety, comfort and efficiency and underpinned by the dimensions of communication, context and person-centred care will ensure an empowering, biopsychosocial, evidence-informed approach to MSK care. We propose that the future teaching and practice of MT in physiotherapy, osteopathy, chiropractic, and all associated hands-on professions working within the healthcare field should be based on this new framework.

Availability of data and materials

Young C, Argáez C. CADTH Rapid Response Reports. Manual Therapy for Chronic Non-Cancer Back and Neck Pain: A Review of Clinical Effectiveness. Ottawa (ON): Canadian Agency for Drugs and Technologies in Health. Copyright © 2020 Canadian Agency for Drugs and Technologies in Health.; 2020.

Blanpied PR, Gross AR, Elliott JM, Devaney LL, Clewley D, Walton DM, et al. Neck Pain: Revision 2017. J Orthop Sports Phys Ther. 2017;47(7):A1-a83.

Article   PubMed   Google Scholar  

NICE. Low back pain and sciatica in over 16s: assessment and management. NICE guideline [NG59]. 2016.

Pettman E. A history of manipulative therapy. J Man Manip Ther. 2007;15(3):165–74.

Article   PubMed   PubMed Central   Google Scholar  

Damian K, Chad C, Kenneth L, David G. Time to evolve: the applicability of pain phenotyping in manual therapy. J Man Manip Ther. 2022;30(2):61–7.

McCarthy CJ. Combined Movement Theory: Rational Mobilization and Manipulation of the Vertebral Column. London, UK: Churchill Livingstone; 2010.

Google Scholar  

Subialka JA, Smith K, Signorino JA, Young JL, Rhon DI, Rentmeester C. What do patients referred to physical therapy for a musculoskeletal condition expect? A qualitative assessment. Musculoskel Sci Pract. 2022;59:102543.

Article   Google Scholar  

Louw A, Nijs J, Puentedura EJ. A clinical perspective on a pain neuroscience education approach to manual therapy. J Man Manip Ther. 2017;25(3):160–8.

Wilhelm M, Cleland J, Carroll A, Marinch M, Imhoff M, Severini N, et al. The combined effects of manual therapy and exercise on pain and related disability for individuals with nonspecific neck pain: A systematic review with meta-analysis. J Man Manip Ther. 2023;31(6):393–407.

Schenk R, Donaldson M, Parent-Nichols J, Wilhelm M, Wright A, Cleland JA. Effectiveness of cervicothoracic and thoracic manual physical therapy in managing upper quarter disorders - a systematic review. J Man Manipulative Therap. 2021:1–10.

Lavazza C, Galli M, Abenavoli A, Maggiani A. Sham treatment effects in manual therapy trials on back pain patients: a systematic review and pairwise meta-analysis. BMJ Open. 2021;11(5):e045106.

Funabashi M, Pohlman KA, Goldsworthy R, Lee A, Tibbles A, Mior S, et al. Beliefs, perceptions and practices of chiropractors and patients about mitigation strategies for benign adverse events after spinal manipulation therapy. Chiropr Man Therap. 2020;28(1):46.

Rushton A, Carlesso LC, Flynn T, Hing WA, Rubinstein SM, Vogel S, et al. International Framework for Examination of the Cervical Region for Potential of Vascular Pathologies of the Neck Prior to Musculoskeletal Intervention: International IFOMPT Cervical Framework. J Orthop Sports Phys Ther. 2022;53(1):7–22.

Thomas M, Thomson OP, Kolubinski DC, Stewart-Lord A. The attitudes and beliefs about manual therapy held by patients experiencing low back pain: a scoping review. Musculoskelet Sci Pract. 2023;65:102752.

Lilje S, van Tulder M, Wykman A, Aboagye E, Persson U. Cost-effectiveness of specialised manual therapy versus orthopaedic care for musculoskeletal disorders: long-term follow-up and health economic model. Ther Adv Musculoskelet Dis. 2023;15:1759720x221147751.

Article   CAS   PubMed   PubMed Central   Google Scholar  

Abbott JH, Robertson MC, Chapple C, Pinto D, Wright AA, Leon de la Barra S, et al. Manual therapy, exercise therapy, or both, in addition to usual care, for osteoarthritis of the hip or knee: a randomized controlled trial. 1: clinical effectiveness. Osteoarthritis Cartilage. 2013;21(4):525–34.

Article   CAS   PubMed   Google Scholar  

Bove AM, Smith KJ, Bise CG, Fritz JM, Childs JD, Brennan GP, et al. Exercise, Manual Therapy, and Booster Sessions in Knee Osteoarthritis: Cost-Effectiveness Analysis From a Multicenter Randomized Controlled Trial. Phys Ther. 2018;98(1):16–27.

Leininger B, McDonough C, Evans R, Tosteson T, Tosteson AN, Bronfort G. Cost-effectiveness of spinal manipulative therapy, supervised exercise, and home exercise for older adults with chronic neck pain. Spine J. 2016;16(11):1292–304.

Tsertsvadze A, Clar C, Court R, Clarke A, Mistry H, Sutcliffe P. Cost-effectiveness of manual therapy for the management of musculoskeletal conditions: a systematic review and narrative synthesis of evidence from randomized controlled trials. J Manipulative Physiol Ther. 2014;37(6):343–62.

UK Beam Trial Team. United Kingdom back pain exercise and manipulation (UK BEAM) randomised trial: effectiveness of physical treatments for back pain in primary care. BMJ. 2004;329(7479):1377.

Article   PubMed Central   Google Scholar  

UK Beam Trial Team. United Kingdom back pain exercise and manipulation (UK BEAM) randomised trial: cost effectiveness of physical treatments for back pain in primary care. BMJ (Clinical research ed). 2004;329(7479):1381.

van Dongen JM, Groeneweg R, Rubinstein SM, Bosmans JE, Oostendorp RA, Ostelo RW, et al. Cost-effectiveness of manual therapy versus physiotherapy in patients with sub-acute and chronic neck pain: a randomised controlled trial. Eur Spine J. 2016;25(7):2087–96.

Woods B, Manca A, Weatherly H, Saramago P, Sideris E, Giannopoulou C, et al. Cost-effectiveness of adjunct non-pharmacological interventions for osteoarthritis of the knee. PLoS ONE. 2017;12(3):e0172749.

Aboagye E, Lilje S, Bengtsson C, Peterson A, Persson U, Skillgate E. Manual therapy versus advice to stay active for nonspecific back and/or neck pain: a cost-effectiveness analysis. Chiropr Man Therap. 2022;30(1):27.

Paris SV. A History of Manipulative Therapy Through the Ages and Up to the Current Controversy in the United States. J Man Manipulative Ther. 2000;8(2):66–77.

MacDonald CW, Osmotherly PG, Parkes R, Rivett DA. The current manipulation debate: historical context to address a broken narrative. J Man Manipulative Therap. 2019;27(1):1–4.

Fryer G. Intervertebral dysfunction: a discussion of the manipulable spinal lesion. J Am Osteopath Assoc. 2003;6(2):64–73.

McCarthy CJ. Spinal manipulative thrust technique using combined movement theory. Man Ther. 2001;6(4):197–204.

Vickers A, Zollman C. ABC of complementary medicine Massage therapies. BMJ (Clinical research ed). 1999;319(7219):1254–7.

Evans DW. Osteopathic principles: More harm than good? Int J Osteopath Med. 2013;16(1):46–53.

Mourad F, Yousif MS, Maselli F, Pellicciari L, Meroni R, Dunning J, et al. Knowledge, beliefs, and attitudes of spinal manipulation: a cross-sectional survey of Italian physiotherapists. Chiropr Man Therap. 2022;30(1):38.

Cyriax JH, Cyriax PJ. Cyriax's Illustrated Manual of Orthopaedic Medicine. 3rd ed: Butterworth-Heinemann; 1996.

Young KJ. Words matter: the prevalence of chiropractic-specific terminology on Australian chiropractors’ websites. Chiropr Man Therap. 2020;28(1):18.

Jenkins HJ, Downie AS, Moore CS, French SD. Current evidence for spinal X-ray use in the chiropractic profession: a narrative review. Chiropr Man Therap. 2018;26:48.

Brinjikji W, Luetmer PH, Comstock B, Bresnahan BW, Chen LE, Deyo RA, et al. Systematic literature review of imaging features of spinal degeneration in asymptomatic populations. AJNR Am J Neuroradiol. 2015;36(4):811–6.

Mafi JN, McCarthy EP, Davis RB, Landon BE. Worsening trends in the management and treatment of back pain. JAMA Intern Med. 2013;173(17):1573–81.

Hall AM, Aubrey-Bassler K, Thorne B, Maher CG. Do not routinely offer imaging for uncomplicated low back pain. BMJ (Clinical research ed). 2021;372:n291.

PubMed   Google Scholar  

Lin I, Wiles L, Waller R, Goucke R, Nagree Y, Gibberd M, et al. What does best practice care for musculoskeletal pain look like? Eleven consistent recommendations from high-quality clinical practice guidelines: systematic review. Br J Sports Med. 2020;54(2):79.

Hall AM, Scurrey SR, Pike AE, Albury C, Richmond HL, Matthews J, et al. Physician-reported barriers to using evidence-based recommendations for low back pain in clinical practice: a systematic review and synthesis of qualitative studies using the Theoretical Domains Framework. Implement Sci. 2019;14(1):49.

Eriksson L, Ekenberg L, Melander-Wikman A. The concept of palpation of the shoulder – A basic element of physiotherapy practice: A focus group study with physiotherapists. Adv Physiother. 2012;14(4):183–93.

Nim CG, Downie A, O’Neill S, Kawchuk GN, Perle SM, Leboeuf-Yde C. The importance of selecting the correct site to apply spinal manipulation when treating spinal pain: Myth or reality? A systematic review. Sci Rep. 2021;11(1):23415.

Alexander N, Rastelli A, Webb T, Rajendran D. The validity of lumbo-pelvic landmark palpation by manual practitioners: A systematic review. Int J Osteopath Med. 2021;39:10–20.

Leboeuf-Yde C, van Dijk J, Franz C, Hustad SA, Olsen D, Pihl T, et al. Motion palpation findings and self-reported low back pain in a population-based study sample. J Manipulative Physiol Ther. 2002;25(2):80–7.

Najm WI, Seffinger MA, Mishra SI, Dickerson VM, Adams A, Reinsch S, et al. Content validity of manual spinal palpatory exams - A systematic review. BMC Complement Altern Med. 2003;3:1.

Chaudhry H, Schleip R, Ji Z, Bukiet B, Maney M, Findley T. Three-dimensional mathematical model for deformation of human fasciae in manual therapy. J Am Osteopath Assoc. 2008;108(8):379–90.

Gabriel A, Konrad A, Roidl A, Queisser J, Schleip R, Horstmann T, et al. Myofascial Treatment Techniques on the Plantar Surface Influence Functional Performance in the Dorsal Kinetic Chain. J Sports Sci Med. 2022;21(1):13–22.

PubMed   PubMed Central   Google Scholar  

Nolet PS, Yu H, Côté P, Meyer A-L, Kristman VL, Sutton D, et al. Reliability and validity of manual palpation for the assessment of patients with low back pain: a systematic and critical review. Chiropr Man Therap. 2021;29(1):33.

Seffinger MA, Najm WI, Mishra SI, Adams A, Dickerson VM, Murphy LS, et al. Reliability of spinal palpation for diagnosis of back and neck pain: a systematic review of the literature. Spine. 2004;29(19):E413–25.

Beynon AM, Hebert JJ, Walker BF. The interrater reliability of static palpation of the thoracic spine for eliciting tenderness and stiffness to test for a manipulable lesion. Chiropr Man Therap. 2018;26:49.

Petersen EJ, Thurmond SM, Shaw CA, Miller KN, Lee TW, Koborsi JA. Reliability and accuracy of an expert physical therapist as a reference standard for a manual therapy joint mobilization trial. J Man Manip Ther. 2021;29(3):189–95.

Petersen EJ, Thurmond SM, Buchanan SI, Chun DH, Richey AM, Nealon LP. The effect of real-time feedback on learning lumbar spine joint mobilization by entry-level doctor of physical therapy students: a randomized, controlled, crossover trial. J Man Manip Ther. 2020;28(4):201–11.

Abbott JH, Flynn TW, Fritz JM, Hing WA, Reid D, Whitman JM. Manual physical assessment of spinal segmental motion: intent and validity. Man Ther. 2009;14(1):36–44.

Bialosky JE, Simon CB, Bishop MD, George SZ. Basis for spinal manipulative therapy: a physical therapist perspective. J Electromyogr Kinesiol. 2012;22(5):643–7.

Henderson CN. The basis for spinal manipulation: chiropractic perspective of indications and theory. J Electromyogr Kinesiol. 2012;22(5):632–42.

Sizer PS Jr, Felstehausen V, Sawyer S, Dornier L, Matthews P, Cook C. Eight critical skill sets required for manual therapy competency: a Delphi study and factor analysis of physical therapy educators of manual therapy. J Allied Health. 2007;36(1):30–40.

Ombregt L. A System of Orthopaedic Medicine: Elsevier; 2013.

Cramer GD, Henderson CN, Little JW, Daley C, Grieve TJ. Zygapophyseal joint adhesions after induced hypomobility. J Manipulative Physiol Ther. 2010;33(7):508–18.

George JW, Tunstall AC, Tepe RE, Skaggs CD. The Effects of Active Release Technique on Hamstring Flexibility: A Pilot Study. J Manipulative Physiol Ther. 2006;29(3):224–7.

Bialosky JE, Bishop MD, Price DD, Robinson ME, George SZ. The mechanisms of manual therapy in the treatment of musculoskeletal pain: a comprehensive model. Man Ther. 2009;14(5):531–8.

Plaza-Manzano G, Molina-Ortega F, Lomas-Vega R, Martínez-Amat A, Achalandabaso A, Hita-Contreras F. Changes in biochemical markers of pain perception and stress response after spinal manipulation. J Orthop Sports Phys Ther. 2014;44(4):231–9.

Zusman M. Mechanism of mobilization. Physical Therapy Reviews. 2011;16(4):233–6.

De Carvalho DE, de Luca K, Funabashi M, Breen A, Wong AYL, Johansson MS, et al. Association of Exposures to Seated Postures With Immediate Increases in Back Pain: A Systematic Review of Studies With Objectively Measured Sitting Time. J Manipulative Physiol Ther. 2020;43(1):1–12.

Colloca CJ, Keller TS. Stiffness and neuromuscular reflex response of the human spine to posteroanterior manipulative thrusts in patients with low back pain. J Manipulative Physiol Ther. 2001;24(8):489–500.

Colloca CJ, Keller TS, Gunzburg R. Biomechanical and neurophysiological responses to spinal manipulation in patients with lumbar radiculopathy. J Manipulative Physiol Ther. 2004;27(1):1–15.

Reed WR, Long CR, Kawchuk GN, Sozio RS, Pickar JG. Neural Responses to Physical Characteristics of a High-velocity, Low-amplitude Spinal Manipulation: Effect of Thrust Direction. Spine. 2018;43(1):1–9.

Reed WR, Pickar JG, Sozio RS, Liebschner MAK, Little JW, Gudavalli MR. Characteristics of Paraspinal Muscle Spindle Response to Mechanically Assisted Spinal Manipulation: A Preliminary Report. J Manipulative Physiol Ther. 2017;40(6):371–80.

Devecchi V, Rushton AB, Gallina A, Heneghan NR, Falla D. Are neuromuscular adaptations present in people with recurrent spinal pain during a period of remission? a systematic review. PLoS ONE. 2021;16(4):e0249220.

Pagé I, Nougarou F, Lardon A, Descarreaux M. Changes in spinal stiffness with chronic thoracic pain: Correlation with pain and muscle activity. PLoS ONE. 2018;13(12):e0208790.

Lee RY, McGregor AH, Bull AM, Wragg P. Dynamic response of the cervical spine to posteroanterior mobilisation. Clin Biomech (Bristol, Avon). 2005;20(2):228–31.

Ross JK, Bereznick DE, McGill SM. Determining cavitation location during lumbar and thoracic spinal manipulation: is spinal manipulation accurate and specific? Spine. 2004;29(13):1452–7.

Donaldson M, Petersen S, Cook C, Learman K. A Prescriptively Selected Nonthrust Manipulation Versus a Therapist-Selected Nonthrust Manipulation for Treatment of Individuals With Low Back Pain: A Randomized Clinical Trial. J Orthop Sports Phys Ther. 2016;46(4):243–50.

McCarthy CJ, Potter L, Oldham JA. Comparing targeted thrust manipulation with general thrust manipulation in patients with low back pain. A general approach is as effective as a specific one. A randomised controlled trial. BMJ Open Sport  Exerc Med. 2019;5(1):e000514.

Sutlive TG, Mabry LM, Easterling EJ, Durbin JD, Hanson SL, Wainner RS, et al. Comparison of short-term response to two spinal manipulation techniques for patients with low back pain in a military beneficiary population. Mil Med. 2009;174(7):750–6.

Tuttle N, Evans K, Sperotto dos Santos Rocha C. Localised manual therapy treatment has a preferential effect on the kinematics of the targeted motion segment. Musculoskelet Sci Pract. 2021;56:102457.

Ali MN, Sethi K, Noohu MM. Comparison of two mobilization techniques in management of chronic non-specific low back pain. J Bodyw Mov Ther. 2019;23(4):918–23.

de Oliveira RF, Costa LOP, Nascimento LP, Rissato LL. Directed vertebral manipulation is not better than generic vertebral manipulation in patients with chronic low back pain: a randomised trial. J Physiother. 2020;66(3):174–9.

Gevers-Montoro C, Provencher B, Northon S, Stedile-Lovatel JP, Ortega de Mues A, Piché M. Chiropractic Spinal Manipulation Prevents Secondary Hyperalgesia Induced by Topical Capsaicin in Healthy Individuals. Front Pain Res (Lausanne, Switzerland). 2021;2:702429.

Provencher B, Northon S, Piché M. Segmental Chiropractic Spinal Manipulation Does not Reduce Pain Amplification and the Associated Pain-Related Brain Activity in a Capsaicin-Heat Pain Model. Front Pain Res (Lausanne, Switzerland). 2021;2:733727.

Watanabe N, Piché M. Editorial: Mechanisms and Effectiveness of Complementary and Alternative Medicine for Pain Management. Front Pain Res (Lausanne, Switzerland). 2022;3:863751.

Muhsen A, Moss P, Gibson W, Walker B, Jacques A, Schug S, et al. The Association Between Conditioned Pain Modulation and Manipulation-induced Analgesia in People With Lateral Epicondylalgia. Clin J Pain. 2019;35(5):435–42.

Howick J, Glasziou P, Aronson JK. Evidence-based mechanistic reasoning. J Roy Soc Med. 2010;103(11):433–41.

Haavik Taylor H, Murphy B. The effects of spinal manipulation on central integration of dual somatosensory input observed after motor training: a crossover study. J Manipulative Physiol Ther. 2010;33(4):261–72.

Haavik-Taylor H, Murphy B. Cervical spine manipulation alters sensorimotor integration: a somatosensory evoked potential study. ClinNeurophysiol. 2007;118(2):391–402.

Ogura T, Tashiro M, Masud M, Watanuki S, Shibuya K, Yamaguchi K, et al. Cerebral metabolic changes in men after chiropractic spinal manipulation for neck pain. Altern Ther Health Med. 2011;17(6):12–7.

Sparks C, Cleland JA, Elliott JM, Zagardo M, Liu WC. Using functional magnetic resonance imaging to determine if cerebral hemodynamic responses to pain change following thoracic spine thrust manipulation in healthy individuals. J Orthop Sports Phys Ther. 2013;43(5):340–8.

Evans DW. How to gain evidence for causation in disease and therapeutic intervention: from Koch’s postulates to counter-counterfactuals. Med Health Care Philos. 2022;25(3):509–21.

Lascurain-Aguirrebeña I, Newham D, Critchley DJ. Mechanism of Action of Spinal Mobilizations: A Systematic Review. Spine. 2016;41(2):159–72.

Parravicini G, Bergna A. Biological effects of direct and indirect manipulation of the fascial system Narrative review. J Bodyw Mov Ther. 2017;21(2):435–45.

Crane JD, Ogborn DI, Cupido C, Melov S, Hubbard A, Bourgeois JM, et al. Massage therapy attenuates inflammatory signaling after exercise-induced muscle damage. Sci Transl Med. 2012;4(119):119ra13.

Degenhardt BF, Darmani NA, Johnson JC, Towns LC, Rhodes DC, Trinh C, et al. Role of osteopathic manipulative treatment in altering pain biomarkers: a pilot study. J Am Osteopath Assoc. 2007;107(9):387–400.

Kovanur-Sampath K, Mani R, Cotter J, Gisselman AS, Tumilty S. Changes in biochemical markers following spinal manipulation-a systematic review and meta-analysis. Musculoskelet Sci Pract. 2017;29:120–31.

Lohman EB, Pacheco GR, Gharibvand L, Daher N, Devore K, Bains G, et al. The immediate effects of cervical spine manipulation on pain and biochemical markers in females with acute non-specific mechanical neck pain: a randomized clinical trial. J Man Manip Ther. 2019;27(4):186–96.

Teodorczyk-Injeyan JA, McGregor M, Triano JJ, Injeyan SH. Elevated Production of Nociceptive CC Chemokines and sE-Selectin in Patients With Low Back Pain and the Effects of Spinal Manipulation: A Nonrandomized Clinical Trial. Clin J Pain. 2018;34(1):68–75.

Council GC. The Code: Standards of conduct, performance and ethics for chiropractors. GCC; 2019.

Council HaCP. Standards of Proficiency - Physiotherapists. HCPC; 2013.

Council GO. Osteopathic Practice Standards. GOC; 2023.

Therapies TCfST. GCMT Code of Practice, Ethics and Proficiency for Professional Associations. GCMT; 2023.

Daluiso-King G, Hebron C. Is the biopsychosocial model in musculoskeletal physiotherapy adequate? An evolutionary concept analysis. Physiotherapy theory and practice. 2020:1–17.

Søndenå P, Dalusio-King G, Hebron C. Conceptualisation of the therapeutic alliance in physiotherapy: is it adequate? Musculoskelet Sci Pract. 2020;46:102131.

World Health Organisation. Patient Safety 2019 [Available from: https://www.who.int/news-room/fact-sheets/detail/patient-safety#:~:text=Patient%20Safety%20is%20a%20health,during%20provision%20of%20health%20care .

Vogel S, Mars T, Keeping S, Barton T, Marlin N, Froud R, et al. Clinical Risk Osteopathy and Management Scientific Report. 2012.

Ekerholt K, Bergland A. Learning and knowing bodies: Norwegian psychomotor physiotherapists’ reflections on embodied knowledge. Physiother Theory Pract. 2019;35(1):57–69.

Hutting N, Johnston V, Staal JB, Heerkens YF. Promoting the Use of Self-management Strategies for People With Persistent Musculoskeletal Disorders: The Role of Physical Therapists. J Orthop Sports Phys Ther. 2019;49(4):212–5.

Kongsted A, Ris I, Kjaer P, Hartvigsen J. Self-management at the core of back pain care: 10 key points for clinicians. Braz J Phys Therap. 2021.

Elwyn G, Durand MA, Song J, Aarts J, Barr PJ, Berger Z, et al. A three-talk model for shared decision making: multistage consultation process. BMJ (Clinical research ed). 2017;359:j4891.

Broom B. The Practice of Whole Person-Centred Healthcare. In: Anjum RL, Copeland S, Rocca E, editors. Rethinking Causality, Complexity and Evidence for the Unique Patient: A CauseHealth Resource for Healthcare Professionals and the Clinical Encounter. Cham: Springer International Publishing; 2020. p. 215–26.

Chapter   Google Scholar  

Darlow B, Dowell A, Baxter GD, Mathieson F, Perry M, Dean S. The enduring impact of what clinicians say to people with low back pain. Ann Fam Med. 2013;11(6):527–34.

Stewart M, Loftus S. Sticks and Stones: The Impact of Language in Musculoskeletal Rehabilitation. J Orthop Sports Phys Ther. 2018;48(7):519–22.

Lin I, Wiles L, Waller R, Caneiro JP, Nagree Y, Straker L, et al. Patient-centred care: the cornerstone for high-value musculoskeletal pain management. Br J Sports Med. 2020;54(21):1240–2.

Cowell I, O’Sullivan P, O’Sullivan K, Poyton R, McGregor A, Murtagh G. Perceptions of physiotherapists towards the management of non-specific chronic low back pain from a biopsychosocial perspective: A qualitative study. Musculoskelet Sci Pract. 2018;38:113–9.

Edmond SN, Keefe FJ. Validating pain communication: current state of the science. Pain. 2015;156(2):215–9.

O’Keeffe M, Cullinane P, Hurley J, Leahy I, Bunzli S, O’Sullivan PB, et al. What Influences Patient-Therapist Interactions in Musculoskeletal Physical Therapy? Qualitative Systematic Review and Meta-Synthesis. Phys Ther. 2016;96(5):609–22.

Copnell G. Informed consent in physiotherapy practice: it is not what is said but how it is said. Physiotherapy. 2018;104(1):67–71.

Lee A. Bolam’ to “Montgomery” is result of evolutionary change of medical practice towards ’patient-centred care. Postgrad Med J. 2017;93(1095):46–50.

Lewis J, O’Sullivan P. Is it time to reframe how we care for people with non-traumatic musculoskeletal pain? Br J Sports Med. 2018;52(24):1543–4.

Lewis J, Ridehalgh C, Moore A, Hall K. This is the day your life must surely change: Prioritising behavioural change in musculoskeletal practice. Physiotherapy. 2021.

Lewis JS, Stokes EK, Gojanovic B, Gellatly P, Mbada C, Sharma S, et al. Reframing how we care for people with persistent non-traumatic musculoskeletal pain. Suggestions for the rehabilitation community. Physiotherapy. 2021.

Bishop A, Foster NE, Thomas E, Hay EM. How does the self-reported clinical management of patients with low back pain relate to the attitudes and beliefs of health care practitioners? A survey of UK general practitioners and physiotherapists. Pain. 2008;135(1–2):187–95.

Darlow B, Fullen BM, Dean S, Hurley DA, Baxter GD, Dowell A. The association between health care professional attitudes and beliefs and the attitudes and beliefs, clinical management, and outcomes of patients with low back pain: a systematic review. Eur J Pain (London, England). 2012;16(1):3–17.

Article   CAS   Google Scholar  

Lakke SE, Soer R, Krijnen WP, van der Schans CP, Reneman MF, Geertzen JH. Influence of Physical Therapists’ Kinesiophobic Beliefs on Lifting Capacity in Healthy Adults. Phys Ther. 2015;95(9):1224–33.

Howe LC, Leibowitz KA, Crum AJ. When Your Doctor “Gets It” and “Gets You”: The Critical Role of Competence and Warmth in the Patient-Provider Interaction. Front Psych. 2019;10:475.

Newell D, Lothe LR, Raven TJL. Contextually Aided Recovery (CARe): a scientific theory for innate healing. Chiropr Man Therap. 2017;25:6.

Rossettini G, Camerone EM, Carlino E, Benedetti F, Testa M. Context matters: the psychoneurobiological determinants of placebo, nocebo and context-related effects in physiotherapy. Arch Physiother. 2020;10:11.

Gallace A. Social Touch. In: Olausson H, Wessberg J, Morrison I, McGlone F, editors. Affective Touch and the Neurophysiology of CT Afferents: Springer; 2016.

Gallace A, Spence C. The science of interpersonal touch: an overview. Neurosci Biobehav Rev. 2010;34(2):246–59.

Kelly MA, Nixon L, McClurg C, Scherpbier A, King N, Dornan T. Experience of Touch in Health Care: A Meta-Ethnography Across the Health Care Professions. Qual Health Res. 2018;28(2):200–12.

McGlone F, Cerritelli F, Walker S, Esteves J. The role of gentle touch in perinatal osteopathic manual therapy. Neurosci Biobehav Rev. 2017;72:1–9.

Olausson H, Wessberg J, Morrison I, McGlone F. Affective Touch and the Neurophysiology of CT Afferents: Springer; 2016.

McParlin Z, Cerritelli F, Rossettini G, Friston KJ, Esteves JE. Therapeutic Alliance as Active Inference: The Role of Therapeutic Touch and Biobehavioural Synchrony in Musculoskeletal Care. Front Behav Neurosci. 2022;16:897247.

Meijer LL, Ruis C, van der Smagt MJ, Scherder EJA, Dijkerman HC. Neural basis of affective touch and pain: A novel model suggests possible targets for pain amelioration. J Neuropsychol. 2021.

Allen-Collinson J, Pavey A. Touching moments: phenomenological sociology and the haptic dimension in the lived experience of motor neurone disease. Sociol Health Illn. 2014;36(6):793–806.

Bjorbækmo WS, Mengshoel AM. “A touch of physiotherapy” - the significance and meaning of touch in the practice of physiotherapy. Physiother Theory Pract. 2016;32(1):10–9.

Nummenmaa L, Tuominen L, Dunbar R, Hirvonen J, Manninen S, Arponen E, et al. Social touch modulates endogenous μ-opioid system activity in humans. Neuroimage. 2016;138:242–7.

Calsius J, De Bie J, Hertogen R, Meesen R. Touching the Lived Body in Patients with Medically Unexplained Symptoms. How an Integration of Hands-on Bodywork and Body Awareness in Psychotherapy may Help People with Alexithymia. Front Psychol. 2016;7:253.

Gentsch A, Crucianelli L, Jenkinson P, Fotopoulou A. The touched self: Affective touch and body awareness in health and disease. Affective touch and the neurophysiology of CT afferents Springer; 2016.

Cerritelli F, Chiacchiaretta P, Gambi F, Ferretti A. Effect of Continuous Touch on Brain Functional Connectivity Is Modified by the Operator’s Tactile Attention. Front Hum Neurosci. 2017;11:368.

Tramontano M, Cerritelli F, Piras F, Spanò B, Tamburella F, Piras F, et al. Brain Connectivity Changes after Osteopathic Manipulative Treatment: A Randomized Manual Placebo-Controlled Trial. Brain Sci. 2020;10(12):969.

Øberg GK, Blanchard Y, Obstfelder A. Therapeutic encounters with preterm infants: interaction, posture and movement. Physiother Theory Pract. 2014;30(1):1–5.

Øberg GK, Normann B, Gallagher S. Embodied-enactive clinical reasoning in physical therapy. Physiother Theory Pract. 2015;31(4):244–52.

Consedine S, Standen C, Niven E. Knowing hands converse with an expressive body – An experience of osteopathic touch. Int J Osteopath Med. 2016;19:3–12.

Barbosa CD, Balp MM, Kulich K, Germain N, Rofail D. A literature review to explore the link between treatment satisfaction and adherence, compliance, and persistence. Patient Prefer Adherence. 2012;6:39–48.

Boulding W, Glickman SW, Manary MP, Schulman KA, Staelin R. Relationship between patient satisfaction with inpatient care and hospital readmission within 30 days. Am J Manag Care. 2011;17(1):41–8.

Manary MP, Boulding W, Staelin R, Glickman SW. The patient experience and health outcomes. N Engl J Med. 2013;368(3):201–3.

Sherriff B, Clark C, Killingback C, Newell D. Musculoskeletal practitioners’ perceptions of contextual factors that may influence chronic low back pain outcomes: a modified Delphi study. Chiropr Man Therap. 2023;31(1):12.

Sherriff B, Clark C, Killingback C, Newell D. Impact of contextual factors on patient outcomes following conservative low back pain treatment: systematic review. Chiropr Manual Therap. 2022;30(1):20.

Mercer E, Mackay-Lyons M, Conway N, Flynn J, Mercer C. Perceptions of outpatients regarding the attire of physiotherapists. Physiother Can. 2008;60(4):349–57.

Petrilli CM, Mack M, Petrilli JJ, Hickner A, Saint S, Chopra V. Understanding the role of physician attire on patient perceptions: a systematic review of the literature— targeting attire to improve likelihood of rapport (TAILOR) investigators. BMJ Open. 2015;5(1):e006578.

Beach MC, Fitzgerald A, Saha S. White Coat Hype: Branding Physicians With Professional Attire. JAMA Intern Med. 2013;173(6):467–8.

Bearman G, Bryant K, Leekha S, Mayer J, Munoz-Price LS, Murthy R, et al. Healthcare Personnel Attire in Non-Operating-Room Settings. Infect Control Hosp Epidemiol. 2014;35(2):107–21.

Rehman SU, Nietert PJ, Cope DW, Kilpatrick AO. What to wear today? Effect of doctor’s attire on the trust and confidence of patients. Am J Med. 2005;118(11):1279–86.

Brady B, Veljanova I, Schabrun S, Chipchase L. Integrating culturally informed approaches into physiotherapy assessment and treatment of chronic pain: a pilot randomised controlled trial. BMJ Open. 2018;8(7):e021999.

Miles A, Mezzich JE. The care of the patient and the soul of the clinic: person-centered medicine as an emergent model of clinical practice. Int J Person Centred Med. 2012;1(2):207–22.

Cowell I, McGregor A, O’Sullivan P, O’Sullivan K, Poyton R, Schoeb V, et al. How do physiotherapists solicit and explore patients’ concerns in back pain consultations: a conversation analytic approach. Physiother Theory Pract. 2021;37(6):693–709.

Hutting N, Caneiro JP, Ong'wen MO, Miciak M, Roberts LE. Patient-centered care in musculoskeletal practice: key elements to support clinicians to focus on the person. 2021.

Caneiro JP, Roos EM, Barton CJ, O’Sullivan K, Kent P, Lin I, et al. It is time to move beyond “body region silos” to manage musculoskeletal pain: five actions to change clinical practice. Br J Sports Med. 2020;54(8):438–9.

Greenhalgh T, Howick J, Maskrey N, EBM Renaissance Group. Evidence based medicine: a movement in crisis? Brit Med J. 2014;348:g3725.

Greenhalgh T, Snow R, Ryan S, Rees S, Salisbury H. Six ‘biases’ against patients and carers in evidence-based medicine. Bmc Med. 2015;13(1):200.

Loughlin M, Fuller J, Bluhm R, Buetow S, Borgerson K. Theory, experience and practice. J Eval Clin Pract. 2016;22(4):459–65.

Simpson JK, Innes S. Informed consent, duty of disclosure and chiropractic: where are we? Chiropr Man Therap. 2020;28(1):60.

Download references

Acknowledgements

Use of any animal or human data or tissue.

No funding was received for this paper.

Author information

Authors and affiliations.

School of Health Sciences, Queens Medical Centre, University of Nottingham, Nottingham, NG7 2HA, UK

Roger Kerry, Edward Lee & Vasileios Georgopoulos

Allied Health Research Unit, University of Central Lancashire, Preston, PR1 2HE, UK

Kenneth J. Young

Centre of Precision Rehabilitation for Spinal Pain, School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK

David W. Evans

Nottingham CityCare Partnership, Bennerley Rd, Nottingham, NG6 8WR, UK

School of Medicine, University of Nottingham, Queens Medical Centre, Nottingham, NG7 2HA, UK

Vasileios Georgopoulos

Department of Orthopaedics, West Herts Hospitals Trust, Watford, WD18 0HB, UK

Adam Meakins

School of Physiotherapy, Manchester Metropolitan University, Manchester, M15 6GX, UK

Chris McCarthy

Department of Orthopaedics, Duke University, 200 Morris Street, Durham, NC, 27701, USA

School of Sport and Health Sciences, University of Brighton, Darley Rd, Eastbourne, BN20 7UR, UK

Colette Ridehalgh

Clinical Neuroscience, Trafford Building, Brighton and Sussex Medical School, University of Sussex, Brighton, BN1 9PX, UK

University College of Osteopathy, 275 Borough High St, London, SE1 1JE, UK

Steven Vogel & Amanda Banton

Department of Clinical Sciences, Obstetrics and Gynecology, Umeå University, S-90187, Umeå, Sweden

Cecilia Bergström

The School of Soft Tissue Therapy, Exmouth, Devon, EX8 1DQ, UK

Anna Maria Mazzieri

Department of health, LUNEX, Differdange, 4671, Luxembourg

Firas Mourad

Luxembourg Health & Sport Sciences Research Institute A.s.b.l., 50, Avenue du Parc des Sports, Differdange, 4671, Luxembourg

Department of Occupation and Health, School of Organization and Development, HAN University of Applied Sciences, Nijmegen, the Netherlands

Nathan Hutting

You can also search for this author in PubMed   Google Scholar

Contributions

Concept and research design: RK, KJY, DWE, EL, AM, VG. Data collection: All authors. Data analysis: All authors. Writing and editing of the manuscript: All authors.

Corresponding author

Correspondence to Kenneth J. Young .

Ethics declarations

Ethics approval and consent to participate.

All participants are co-authors. Ethical approval was not necessary.

Consent for publication

Competing interests.

The authors declare that they have no competing interests.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary material 1., rights and permissions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ . The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/ ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Cite this article.

Kerry, R., Young, K.J., Evans, D.W. et al. A modern way to teach and practice manual therapy. Chiropr Man Therap 32 , 17 (2024). https://doi.org/10.1186/s12998-024-00537-0

Download citation

Received : 18 October 2023

Accepted : 17 April 2024

Published : 21 May 2024

DOI : https://doi.org/10.1186/s12998-024-00537-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Manual Therapy
  • Evidence-based healthcare
  • Person-centred healthcare
  • Physiotherapy
  • Chiropractic
  • Soft-tissue therapy

Chiropractic & Manual Therapies

ISSN: 2045-709X

  • Submission enquiries: Access here and click Contact Us
  • General enquiries: [email protected]

case study method in education

IMAGES

  1. How to Use a Case Studies as A Teaching Method

    case study method in education

  2. Case study method in education

    case study method in education

  3. case study teaching methods

    case study method in education

  4. PPT

    case study method in education

  5. case study approach to teaching

    case study method in education

  6. Case Study

    case study method in education

VIDEO

  1. Day-1 Tips for conducting Group Discussion as Innovative Teaching Practices

  2. #Case_study_method#notes #study #psychology #PG #BEd

  3. Case Study Method In Hindi || वैयक्तिक अध्ययन विधि || D.Ed SE (I.D) || All Students || Special BSTC

  4. Case study method used in Educational Psychology

  5. Case Study Research design and Method

  6. Day-2 Case Study Method for better Teaching

COMMENTS

  1. Case Study in Education Research

    A key article in which Stenhouse sets out his stand on case study work. Those interested in the evolution of case study use in educational research should consider this article and the insights given. Yin, R. K. 1984. Case Study Research: Design and Methods. Beverley Hills, CA: SAGE. This preliminary text from Yin was very basic.

  2. Making Learning Relevant With Case Studies

    1. Identify a problem to investigate: This should be something accessible and relevant to students' lives. The problem should also be challenging and complex enough to yield multiple solutions with many layers. 2. Give context: Think of this step as a movie preview or book summary.

  3. Case Method Teaching and Learning

    Case method 1 teaching is an active form of instruction that focuses on a case and involves students learning by doing 2 3. Cases are real or invented stories 4 that include "an educational message" or recount events, problems, dilemmas, theoretical or conceptual issue that requires analysis and/or decision-making.

  4. Three Approaches to Case Study Methods in Education: Yin, Merriam, and

    The chief. purpose of his book is the explication of a set of interpretive orientations towards case study. which include "naturalistic, holistic, ethnographic, phenomenological, and biographic ...

  5. Using Case Studies to Teach

    Advantages to the use of case studies in class. A major advantage of teaching with case studies is that the students are actively engaged in figuring out the principles by abstracting from the examples. This develops their skills in: Problem solving. Analytical tools, quantitative and/or qualitative, depending on the case.

  6. Case Studies

    Print Version. Case studies are stories that are used as a teaching tool to show the application of a theory or concept to real situations. Dependent on the goal they are meant to fulfill, cases can be fact-driven and deductive where there is a correct answer, or they can be context driven where multiple solutions are possible.

  7. Teaching by the Case Method

    Case Method in Practice. Chris Christensen described case method teaching as "the art of managing uncertainty"—a process in which the instructor serves as "planner, host, moderator, devil's advocate, fellow-student, and judge," all in search of solutions to real-world problems and challenges. Unlike lectures, case method classes unfold ...

  8. Case Study Analysis as an Effective Teaching Strategy: Perceptions of

    The authors add that the case study method also improved student's clinical reasoning, diagnostic interpretation of patient information as well as their ability to think logically when presented a challenge in the classroom and in the clinical area. ... Effectiveness of teaching methods in business education: A comparison study on the learning ...

  9. A Case for Case Study Research in Education

    This chapter makes the case that case study research is making a comeback in educational research because it allows researchers a broad range of methodological tools to suit the needs of answering questions of "how" and "why" within a particular real-world context. As Stake (1995) suggests, case study is often a preferred method of ...

  10. Using Case Study in Education Research

    Case Study Research | Research Methods in Education. December 2012 | 240 pages | SAGE Publications Ltd. Download flyer. Description. Contents. Reviews. Preview. This book provides an accessible introduction to using case studies. It makes sense of literature in this area, and shows how to generate collaborations and communicate findings.

  11. Case Study Teaching Method Improves Student Performance and Perceptions

    INTRODUCTION. The case study teaching method is a highly adaptable style of teaching that involves problem-based learning and promotes the development of analytical skills ().By presenting content in the format of a narrative accompanied by questions and activities that promote group discussion and solving of complex problems, case studies facilitate development of the higher levels of Bloom ...

  12. Three Approaches to Case Study Methods in Education: Yin, Merriam, and

    the utilization of case study method in the field of educational research. I will zero in on the ensuing works: Robert K. Yin's Case Study Research: Design and Methods (2002), Sharan B. Merriam's Qualitative Research and Case Study Applications in Education(1998), and Robert E. Stake's The Art of Case Study Research (1995).

  13. What the Case Study Method Really Teaches

    What the Case Study Method Really Teaches. Summary. It's been 100 years since Harvard Business School began using the case study method. Beyond teaching specific subject matter, the case study ...

  14. What Is a Case Study?

    A case study is a detailed study of a specific subject, such as a person, group, place, event, organization, or phenomenon. Case studies are commonly used in social, educational, clinical, and business research. A case study research design usually involves qualitative methods, but quantitative methods are sometimes also used.

  15. The Case Method

    The case method is a participatory, discussion-based way of learning where students gain skills in critical thinking, communication, and group dynamics. It is a type of problem-based learning. Often seen in the professional schools of medicine, law, and business, the case method is now used successfully in disciplines such as engineering ...

  16. Case Study Methodology of Qualitative Research: Key Attributes and

    A case study is one of the most commonly used methodologies of social research. This article attempts to look into the various dimensions of a case study research strategy, the different epistemological strands which determine the particular case study type and approach adopted in the field, discusses the factors which can enhance the effectiveness of a case study research, and the debate ...

  17. Case Study Methods and Examples

    The purpose of case study research is twofold: (1) to provide descriptive information and (2) to suggest theoretical relevance. Rich description enables an in-depth or sharpened understanding of the case. It is unique given one characteristic: case studies draw from more than one data source. Case studies are inherently multimodal or mixed ...

  18. What Is a Case, and What Is a Case Study?

    Résumé. Case study is a common methodology in the social sciences (management, psychology, science of education, political science, sociology). A lot of methodological papers have been dedicated to case study but, paradoxically, the question "what is a case?" has been less studied.

  19. Case studies and practical examples: Supporting teaching and improving

    Search for: HOME; OUR MISSION. About; ACCESS MODELS. Institutional. Library Provisioned Textbooks

  20. Case Study

    Defnition: A case study is a research method that involves an in-depth examination and analysis of a particular phenomenon or case, such as an individual, organization, community, event, or situation. It is a qualitative research approach that aims to provide a detailed and comprehensive understanding of the case being studied.

  21. What is the Case Study Method?

    Celebrating 100 Years of the Case Method at HBS . The 2021-2022 academic year marks the 100-year anniversary of the introduction of the case method at Harvard Business School. Today, the HBS case method is employed in the HBS MBA program, in Executive Education programs, and in dozens of other business schools around the world.

  22. Case Study Methods.

    By now, the case study method has attained routine status as a viable method for doing education research. Other methods include but are not limited to surveys, ethnographies, experiments, quasi-experiments, economic and statistical modeling, histories, research syntheses, and developmental methods. Summary Point No. 1: Compared to other methods, the strength of the case study method is its ...

  23. The Case Study Teaching Method

    The Case Study Teaching Method. It is easy to get confused between the case study method and the case method, particularly as it applies to legal education. The case method in legal education was invented by Christopher Columbus Langdell, Dean of Harvard Law School from 1870 to 1895. Langdell conceived of a way to systematize and simplify legal ...

  24. What is a Case Study? Definition & Examples

    A case study is an in-depth investigation of a single person, group, event, or community. This research method involves intensively analyzing a subject to understand its complexity and context. The richness of a case study comes from its ability to capture detailed, qualitative data that can offer insights into a process or subject matter that ...

  25. Charter-School Music Teacher Practitioners and Instructional Leaders

    This multiple-bounded case study explored charter-school music teacher practitioners'(MTPs') and instructional leaders' (ILs') perceptions of professional development (PD) in four charter management organizations (CMOs). The purpose was to provide a rich description of these practitioners' professional development, with the goal of spurring policy conversations and further research ...

  26. Integration of case-based learning and three-dimensional printing for

    Background Case-based learning (CBL) methods have gained prominence in medical education, proving especially effective for preclinical training in undergraduate medical education. Tetralogy of Fallot (TOF) is a congenital heart disease characterized by four malformations, presenting a challenge in medical education due to the complexity of its anatomical pathology. Three-dimensional printing ...

  27. Nonformal Education

    METHODS A variety of methods will be implemented in order to give both theoretical and practical support to the teachers. The participants will have the opportunity to participate in lectures, workshops, team activities, case studies and visits to real classes in order to have an integrated training. DAY TO DAY SCHEDULE DAY 1 Course introduction Needs and expectations evaluation Intercultural ...

  28. Developing a survey to measure nursing students' knowledge, attitudes

    The final survey consists of 45 items including 4 case studies. Systematic evaluation of knowledge-to-date coupled with stakeholder perspectives supports robust survey design. ... the registered nursing role and in the nurse practitioner role should they chose to prepare themselves to that level of education. The design was a mixed-method ...

  29. A modern way to teach and practice manual therapy

    The framework facilitates best-practice, reasoning, and communication and is exemplified here with two case studies. Methods. A literature review stimulated by a new method of teaching manual therapy, reflecting contemporary evidence, being trialled at a United Kingdom education institute.