Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals

Organic chemistry articles from across Nature Portfolio

Organic chemistry is the study of the synthesis, structure, reactivity and properties of the diverse group of chemical compounds primarily constructed of carbon. All life on earth is carbon-based, thus organic chemistry is also the basis of biochemistry. The ability to form compounds containing long chains of carbon atoms is the basis of polymer chemistry.

organic compounds research topics

Characterization of a secondary carbon-centred radical

A diazapentadienyl radical featuring a disubstituted carbon centre is discovered allowing the isolation and structural characterization of a stable secondary carbon radical.

  • Koushik Saha
  • Holger Braunschweig

Related Subjects

  • Carbohydrate chemistry
  • Combinatorial libraries
  • Synthetic chemistry methodology
  • Microwave chemistry
  • Natural product synthesis
  • Reaction mechanisms
  • Stereochemistry
  • Structure elucidation

Latest Research and Reviews

organic compounds research topics

Para -selective nitrobenzene amination lead by C(sp 2 )-H/N-H oxidative cross-coupling through aminyl radical

Direct radical C–H amination strategies have exhibited innovation, but challenges remain with C–H amination of electron-poor nitroarenes due to the essence of the electron-deficient nitrogen radical. Herein, the authors report a transition metal-free dehydrogenative C(sp 2 )-H/N-H cross-coupling between electron-poor nitroarenes and amines.

  • Shusheng Yue

organic compounds research topics

Geometry-controlled reactivity and dynamics in organic molecules

Geometry control in organic reactions can be used to promote dynamic processes or stabilize reactive transition states. This Review discusses the concept of geometry control, its impact on transition states and bonding, as well as the reactivity and properties that emerge as a consequence of constraining molecules.

  • Promeet K. Saha
  • Trung Tran Ngoc
  • Johannes F. Teichert

organic compounds research topics

One-pot synthesis of quinazolinone heterocyclic compounds using functionalized SBA-15 with natural material ellagic acid as a novel nanocatalyst

  • Nazanin Mohassel Yazdi
  • Mohammad Reza Naimi-Jamal

organic compounds research topics

Late-stage benzenoid-to-troponoid skeletal modification of the cephalotanes exemplified by the total synthesis of harringtonolide

Many natural products exist as families of structurally similar molecules, and therefore developing skeletal modifications of common intermediates offers flexible and powerful approaches for target synthesis. Here, the authors report a single-atom insertion into the framework of the benzenoid subfamily, providing access to the troponoid congeners.

  • Stefan Wiesler
  • Goh Sennari
  • Richmond Sarpong

organic compounds research topics

Introduction of the difluoromethyl group at the meta- or para-position of pyridines through regioselectivity switch

The direct C−H-difluoromethylation of pyridines represents a highly efficient economic way to access azines. However, the direct meta-difluoromethylation of pyridines remains elusive. Here, the authors demonstrate switchable meta- as well as para-C−H difluoromethylation of pyridines through radical processes by using oxazino pyridine intermediates.

  • Armido Studer

organic compounds research topics

Asymmetric C–H Dehydrogenative Alkenylation via a Photo-induced Chiral α ‑Imino Radical Intermediate

The direct alkenylation with simple alkenes stands out as the most ideal yet challenging strategy for obtaining high-valued desaturated alkanes. Herein, the authors present a direct asymmetric dehydrogenative α -C(sp3)-H alkenylation of carbonyls based on synergistic photoredox-cobalt-chiral primary amine catalysis under visible light.

  • Zongbin Jia
  • Liang Cheng
  • Sanzhong Luo

Advertisement

News and Comment

organic compounds research topics

Cobalt catalysis for double dehydrogenation

  • Thomas West

organic compounds research topics

Enzymatic radical fluorine transfer

  • Jan-Stefan Völler

organic compounds research topics

Tailor-made glycans

A highly chemoselective method for the insertion of carbohydrates into existing oligosaccharides has been developed. The reaction sequence involves a selective Lewis-acid catalysed cleavage of one glycosidic bond followed by sequential construction of two new glycosidic bonds.

  • Sugyeom Kim
  • George A. O’Doherty

organic compounds research topics

Triple catalysis for quaternary stereocentre synthesis

organic compounds research topics

Trio of radicals choreographed for versatile chemical reaction

The idea that three different free radicals could be used together to carry out specific steps in a chemical reaction has long been implausible. A ‘radical sorting’ strategy now achieves this feat to make organic molecules.

  • Kenneth F. Clark
  • John A. Murphy

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

organic compounds research topics

Organic Chemistry Research Paper Topics

Academic Writing Service

  • Carbon family
  • Fermentation
  • Hydrologic cycle
  • Natural gas
  • Nitrogen cycle
  • Nitrogen family
  • Oxygen family

In 1828, German chemist Friedrich Wöhler (1800–1882) proved that this theory of vitalism was untrue. He found a very simple way to convert chemical compounds from living organisms into comparable compounds from nonliving entities.

Academic Writing, Editing, Proofreading, And Problem Solving Services

Get 10% off with 24start discount code.

As a result of Wöhler’s research, the definition of organic chemistry changed. The new definition was based on the observation that every compound discovered in living organisms had one property in common: they all contained the element carbon. As a result, the modern definition of organic chemistry—as the study of carbon compounds—was adopted.

Organic and Inorganic Chemistry

One important point that Wöhler’s research showed was that the principles and techniques of chemistry apply equally well to compounds found in living organisms and in nonliving things. Nonetheless, some important differences between organic and inorganic (not organic) compounds exist. These include the following:

  • The number of organic compounds vastly exceeds the number of inorganic compounds. The ratio of carbon-based compounds to noncarbon- based compounds is at least ten to one, with close to 10 million organic compounds known today. The reason for this dramatic difference is a special property of the carbon atom: its ability to join with other carbon atoms in very long chains, in rings, and in other kinds of geometric arrangements. It is not at all unusual for dozens, hundreds, or thousands of carbon atoms to bond to each other within a single compound—a property that no other element exhibits.
  • In general, organic compounds tend to have much lower melting and boiling points than do inorganic compounds.
  • In general, organic compounds are less likely to dissolve in water than are inorganic compounds.
  • Organic compounds are likely to be more flammable but poorer conductors of heat and electricity than are inorganic compounds.
  • Organic reactions tend to take place more slowly and to produce a much more complex set of products than do inorganic reactions.

Functional Groups and Organic Families

The huge number of organic compounds requires that some system be developed for organizing them. The criterion on which those compounds are organized is the presence of various functional groups. A functional group is an arrangement of atoms that is responsible for certain characteristic physical and chemical properties in a compound. For example, one such functional group is the hydroxyl group, consisting of an oxygen atom and hydrogen atom joined to each other. It is represented by the formula -OH.

All organic compounds with the same functional group are said to belong to the same organic family. Any organic compound that contains a hydroxyl group, for instance, is called an alcohol. All alcohols are similar to each other in that: (1) they contain one or more hydroxyl groups, and (2) because of those groups, they have similar physical and chemical properties. For example, alcohols tend to be more soluble in water than other organic compounds because the hydroxyl groups in the alcohol form bonds with water molecules.

The simplest organic compounds are the hydrocarbons, compounds that contain only two elements: carbon and hydrogen. The class of hydrocarbons can be divided into subgroups depending on the way in which carbon and hydrogen atoms are joined to each other. In some hydrocarbons, for example, carbon and hydrogen atoms are joined to each other only by single bonds. A single bond is a chemical bond that consists of a pair of electrons. Such hydrocarbons are known as saturated hydrocarbons.

In other hydrocarbons, carbon and hydrogen atoms are joined to each other by double or triple bonds. A double bond consists of two pairs of electrons, and a triple bond consists of three pairs of electrons. Hydrocarbons containing double and triple bonds are said to be unsaturated.

Hydrocarbons can also be open-chain or ring compounds. In an open-chain hydrocarbon, the carbon atoms are all arranged in a straight line, like a strand of spaghetti. In a ring hydrocarbon, the carbons are arranged in a continuous loop, such as a square, a pentagon, or a triangle.

Back to Science Research Paper Topics .

ORDER HIGH QUALITY CUSTOM PAPER

organic compounds research topics

organic compounds research topics

Themed collection Top 50 Articles of 2016: Organic Chemistry

Open Access

Glycosylation, an effective synthetic strategy to improve the bioavailability of therapeutic peptides

Glycosylation of peptides is a promising strategy for modulating the physicochemical properties of peptide drugs and for improving their absorption through biological membranes.

Graphical abstract: Glycosylation, an effective synthetic strategy to improve the bioavailability of therapeutic peptides

Pot economy and one-pot synthesis

This review describes the importance and usefulness of pot-economy and one-pot reactions in current synthetic organic chemistry.

Graphical abstract: Pot economy and one-pot synthesis

Peptide-based synthetic vaccines

This review summarise the current stand and future perspective on synthetic peptide-based vaccines.

Graphical abstract: Peptide-based synthetic vaccines

Efficient metal-free photochemical borylation of aryl halides under batch and continuous-flow conditions

A metal-free C–B bond forming reaction of aryl halides under batch and continuous-flow conditions is described.

Graphical abstract: Efficient metal-free photochemical borylation of aryl halides under batch and continuous-flow conditions

The total synthesis of K-252c (staurosporinone) via a sequential C–H functionalisation strategy

A synthesis of the bioactive indolocarbazole alkaloid K-252c (staurosporinone) via a sequential C–H functionalisation strategy is reported.

Graphical abstract: The total synthesis of K-252c (staurosporinone) via a sequential C–H functionalisation strategy

A visible-light-promoted radical reaction system for azidation and halogenation of tertiary aliphatic C–H bonds

A highly tunable visible-light-promoted reaction system for the radical-mediated functionalization of tertiary aliphatic C–H bonds of complex substrates has been developed.

Graphical abstract: A visible-light-promoted radical reaction system for azidation and halogenation of tertiary aliphatic C–H bonds

Aminofluorination: transition-metal-free N–F bond insertion into diazocarbonyl compounds

Gem-aminofluorination of diazocarbonyl compounds has been achieved for the first time.

Graphical abstract: Aminofluorination: transition-metal-free N–F bond insertion into diazocarbonyl compounds

Rh( III )-catalyzed diastereoselective C–H bond addition/cyclization cascade of enone tethered aldehydes

Rh( III )-catalyzed cascade addition of C–H bonds across alkene and carbonyl π-bonds to form two new σ C–C bonds is accomplished.

Graphical abstract: Rh(iii)-catalyzed diastereoselective C–H bond addition/cyclization cascade of enone tethered aldehydes

Visible light-mediated gold-catalysed carbon(sp 2 )–carbon(sp) cross-coupling

A new method for the alkynylation of aryldiazonium salts with TMS-alkynes via dual gold and photoredox catalysis is described.

Graphical abstract: Visible light-mediated gold-catalysed carbon(sp2)–carbon(sp) cross-coupling

Dual gold/photoredox-catalyzed C(sp)–H arylation of terminal alkynes with diazonium salts

The arylation of alkyl and aromatic terminal alkynes by a dual gold/photoredox catalytic system is described.

Graphical abstract: Dual gold/photoredox-catalyzed C(sp)–H arylation of terminal alkynes with diazonium salts

Access to a new class of synthetic building blocks via trifluoromethoxylation of pyridines and pyrimidines

One-pot trifluoromethoxylation of functionalized pyridines and pyrimidines via OCF 3 -migraion.

Graphical abstract: Access to a new class of synthetic building blocks via trifluoromethoxylation of pyridines and pyrimidines

Profiling the reactivity of cyclic C-nucleophiles towards electrophilic sulfur in cysteine sulfenic acid

Oxidation of a protein cysteine thiol to sulfenic acid, termed S -sulfenylation, is a reversible post-translational modification that plays a crucial role in regulating protein function and is correlated with disease states.

Graphical abstract: Profiling the reactivity of cyclic C-nucleophiles towards electrophilic sulfur in cysteine sulfenic acid

About this collection

We are delighted to present a collection showcasing the 50 most downloaded Chemical Science articles of 2016. This is only available for a limited time and provides an easy way to quickly access the most important papers published in Chemical Science in the past year. These articles highlight exciting and impactful research across a broad range of subject areas, analytical chemistry, chemical biology, catalysis, energy, inorganic chemistry, materials science, nanoscience, organic chemistry and physical chemistry. We hope you enjoy reading this collection!

Advertisements

100+ Great Chemistry Research Topics

image

Table of contents

  • 1 What are the best chemistry research topics?
  • 2 5 Tips for Writing Chemistry Research Papers
  • 3 Chemical Engineering Research Topics
  • 4 Organic Сhemistry Research Topics
  • 5 Іnorganic Сhemistry Research Topics
  • 6 Biomolecular Сhemistry Research Topics
  • 7 Analytical Chemistry Research Topics
  • 8 Computational Chemistry Research Topics
  • 9 Physical Chemistry Research Topics
  • 10 Innovative Chemistry Research Topics
  • 11 Environmental Chemistry Research Topics
  • 12 Green Chemistry Research Topics
  • 13.1 Conclusion

Do you need a topic for your chemistry research paper? Are you unsure of where to start? Don’t worry – we’re here to help. In this post, we’ll go over a series of the best chemistry research paper topics as well as Tips for Writing Chemistry Research Papers on different topics. By the time you finish reading this post, you’ll have plenty of ideas to get started on your next research project!

There are many different subfields of chemistry, so it can be tough to find interesting chemistry topics to write about. If you’re struggling to narrow down your topic, we’ll go over lists of topics in multiple fields of study.

What are the best chemistry research topics?

Doing research is important to help scientists learn more about the world around us. By researching different compounds and elements, we can learn more about how they interact with one another and how they can be used to create new products or improve existing ones.

There are many different topics that you can choose to research in chemistry. Here are just a few examples:

  • The history of chemistry and how it has evolved over time
  • How different chemicals react with one another
  • How to create new compounds or improve existing ones
  • The role of chemistry in the environment
  • The health effects of different chemicals

5 Tips for Writing Chemistry Research Papers

Once you have chosen a topic for your research paper , it is important to follow some tips to ensure that your paper is well-written and accurate. Here are a few tips to get you started:

  • Start by doing some background research on your topic. This will help you understand the basics of the topic and give you a good foundation to build your paper on.
  • Make sure to cite all of the sources that you use in your paper. This will help to show where you got your information and will also help to add credibility to your work.
  • Be sure to proofread your paper before you submit it. This will ensure that there are no errors and that your paper is clear and concise.
  • Get help from a tutor or friend if you are struggling with your paper. They may be able to offer helpful advice or feedback.
  • Take your time when writing your research paper . This is not a race, and it is important to make sure that you do a good job on your research.

By following these tips, you can be sure that your chemistry research paper will be a success! So what are you waiting for? Let’s go over some of the best research paper topics out there.

Chemical Engineering Research Topics

Chemical Engineering is a branch of engineering that deals with the design and application of chemical processes. If you’re wondering how to choose a paper topic, here are some ideas to inspire you:

  • How to create new alloy compounds or improve existing ones
  • The health effects of the food industry chemicals
  • Chemical engineering and sustainable development
  • The future of chemical engineering
  • Chemical engineering and the food industry
  • Chemical engineering and the pharmaceutical industry
  • Chemical engineering and the cosmetics industry
  • Chemical engineering and the petrochemical industry

These are just a few examples – there are many more possibilities out there! So get started on your research today. Who knows what you might discover!

more_shortcode

Organic Сhemistry Research Topics

Organic chemistry is the study of carbon-containing molecules. There are many different organic chemistry research topics that a student could choose to focus on and here are just a few examples of possible research projects in organic chemistry:

  • Investigating new methods for synthesizing chiral molecules
  • Studying the structure and reactivity of carbon nanotubes
  • Investigating metal complexes with organometallic ligands
  • Designing benzene derivatives with improved thermal stability
  • Exploring new ways to control the stereochemistry of chemical reactions
  • Studying the role of enzymes in organic synthesis
  • Investigating new strategies for combating drug resistance
  • Developing new methods for detecting explosives residues
  • Studying the photochemistry of organic molecules
  • Studying the behavior of organometallic compounds in biological systems

Іnorganic Сhemistry Research Topics

Inorganic Chemistry is the study of the chemistry of materials that do not contain carbon. Unlike other chemistry research topics, these include elements such as metals, minerals, and inorganic compounds. If you are looking for inorganic chemistry research topics on inorganic chemistry, here are some ideas to get you started:

  • How different metals react with one another
  • How to create new alloys or improve existing ones
  • The role of inorganic chemistry in the environment
  • Inorganic chemistry and sustainable development
  • The future of inorganic chemistry
  • Inorganic chemistry and the food industry
  • Inorganic chemistry and the pharmaceutical industry
  • Atomic structure progressive scale grading
  • Inorganiс Сhemistry and the cosmetics industry

Biomolecular Сhemistry Research Topics

Biomolecular chemistry is the study of molecules that are important for life. These molecules can be found in all living things, from tiny bacteria to the largest animals. Researchers who work in this field use a variety of techniques to learn more about how these molecules function and how they interact with each other.

If you are looking for essential biomolecular chemistry research topics, here are some ideas to get you started:

  • The structure and function of DNA
  • The structure and function of proteins
  • The role of carbohydrates in the body
  • The role of lipids in the body
  • How enzymes work
  • The role of biochemistry in heart disease
  • Cyanides and their effect on the body
  • The role of biochemistry in cancer treatment
  • The role of biochemistry in Parkison’s disease treatment
  • The role of biochemistry in the immune system

The possibilities are endless for someone willing to dedicate some time to research.

Analytical Chemistry Research Topics

Analytical Chemistry is a type of chemistry that helps scientists figure out what something is made of. This can be done through a variety of methods, such as spectroscopy or chromatography. If you are looking for research topics, here are some ideas to get you started:

  • How food chemicals react with one another
  • Mass spectrometry
  • Analytical aspects of gas and liquid chromatography
  • Analytical chemistry and sustainable development
  • Atomic absorption spectroscopy methods and best practices
  • Analytical chemistry and the pharmaceutical industry in Ibuprofen consumption
  • Analytical chemistry and the cosmetics industry in UV protectors
  • Dispersive x-ray analysis of damaged tissues

Analytical chemistry is considered by many a complex science and there is a lot yet to be discovered in the field.

more_shortcode

Computational Chemistry Research Topics

Computational chemistry is a way to use computers to help chemists understand chemical reactions. This can be done by simulating reactions or by designing new molecules. If you are looking for essential chemistry research topics in computational chemistry, here are some ideas to get you started:

  • Molecular mechanics simulation
  • Reaction rates of complex chemical reactions
  • Designing new molecules: how can simulation help
  • The role of computers in the study of quantum mechanics
  • How to use computers to predict chemical reactions
  • Using computers to understand organic chemistry
  • The future of computational chemistry in organic reactions
  • The impacts of simulation on the development of new medications
  • Combustion reaction simulation impact on engine development
  • Quantum-chemistry simulation review

Computers are cutting-edge technology in chemical research and this relatively new field of study has a ton yet to be explored.

Physical Chemistry Research Topics

Physical chemistry is the study of how matter behaves. It looks at the physical and chemical properties of atoms and molecules and how they interact with each other. If you are looking for physical chemistry research topics, here are some ideas to get you started:

  • Standardization of pH scales
  • Structure of atom on a quantum scale
  • Bonding across atoms and molecules
  • The effect of temperature on chemical reactions
  • The role of light in in-body chemical reactions
  • Chemical kinetics
  • Surface tension and its effects on mixtures
  • The role of pressure in chemical reactions
  • Rates of diffusion in gases and liquids
  • The role of entropy in chemical reactions

Here are just a few samples, but there are plenty more options! Start your research right now!

Innovative Chemistry Research Topics

Innovative chemistry is all about coming up with new ideas and ways to do things. This can be anything from creating new materials to finding new ways to make existing products. If you are looking for ground-breaking chemistry research topics, here are some ideas to get you started:

  • Amino acids side chain effects in protein folding
  • Chemistry in the production of nanomaterials
  • The role of enzymes in chemical reactions
  • Photocatalysis in 3D printing
  • Avoiding pesticides in agriculture
  • Combining chemical and biological processes
  • Gene modification in medicinal chemistry
  • The role of quantum mechanics in chemical reactions
  • Astrochemical research on extraterrestrial molecules
  • Spectroscopy signatures of pressurized organic components

If you need a hand, there are several sites that also offer research papers for sale and can be a great asset as you work to create your own research papers.

Whatever route you decide to take, good luck! And remember – the sky’s the limit when it comes to research! So get started today and see where your studies may take you. Who knows, you might just make a breakthrough discovery!

Environmental Chemistry Research Topics

Environmental Chemistry is the study of how chemicals interact with the environment. This can include anything from the air we breathe to the water we drink. If you are looking for environmental chemistry research topics, here are some ideas to get you started:

  • Plastic effects on ocean life
  • Urban ecology
  • The role of carbon in climate change
  • Air pollution and its effects
  • Water pollution and its effects
  • Chemicals in food and their effect on the body
  • The effect of chemicals on plant life
  • Earth temperature prediction models

A lot of research on the environment is being conducted at the moment because the environment is in danger. There are a lot of environmental problems that need to be solved, and research is the key to solving them.

Green Chemistry Research Topics

Green chemistry is the study of how to make products and processes that are environmentally friendly. This can include anything from finding new ways to recycle materials to developing new products that are biodegradable. If you are looking for green chemistry research topics, here are some ideas to get you started:

  • Recycling and reuse of materials
  • Developing biodegradable materials
  • Improving existing recycling processes
  • Green chemistry and sustainable development
  • The future of green chemistry
  • Green chemistry and the food industry
  • Green chemistry and the pharmaceutical industry
  • Green chemistry and the cosmetics industry

A more environmentally friendly world is something we all aspire for and a lot of research has been conducted on how we can achieve this, making this one of the most promising areas of study. The results have been varied, but there are a few key things we can do to make a difference.

Controversial Chemistry Research Topics

Controversial chemistry is all about hot-button topics that people are passionate about. This can include anything from the use of chemicals in warfare to the health effects of different chemicals. If you are looking for controversial topics to write about , here are some ideas to get you started:

  • The use of chemicals in warfare
  • Gene modification in human babies
  • Bioengineering
  • How fast food chemicals affect the human brain
  • The role of the government in regulating chemicals
  • Evolution of cigarette chemicals over time
  • Chemical effects of CBD oils
  • Antidepressant chemical reactions
  • Synthetic molecules replication methods
  • Gene analysis

Controversial research papers often appear in the media before it has been peer-reviewed and published in a scientific journal. The reason for this is that the media is interested in stories that are new, exciting, and generate a lot of debate.

Chemistry is an incredibly diverse and interesting field, with many controversial topics to write about. If you are looking for a research topic, consider the examples listed in this article. With a little bit of effort, you are sure to find a topic that is both interesting and within your skillset.

In order to be a good researcher, it is important to be able to think critically and solve problems. However, innovation in chemistry research can be challenging. When thinking about how to innovate, it is important to consider both the practical and theoretical aspects of your research. Additionally, try to build on the work of others in order to create something new and unique. With a little bit of effort, you are sure to be able to find a topic that is both interesting and within your skillset.

Happy writing!

Readers also enjoyed

Exploring Cutting-Edge Trends: Engineering Research Paper Topics

WHY WAIT? PLACE AN ORDER RIGHT NOW!

Just fill out the form, press the button, and have no worries!

We use cookies to give you the best experience possible. By continuing we’ll assume you board with our cookie policy.

organic compounds research topics

  • Interesting
  • Scholarships
  • UGC-CARE Journals

50 Research Ideas in Organic Chemistry

Unlocking the Potential: 50 Intriguing Organic Chemistry Research Ideas

Dr. Somasundaram R

In the world of science, organic chemistry is like the hidden language of life. It’s the study of carbon and its dance with other elements to create everything from medicines that heal to materials that make our world. Today, iLovePhD delves into 50 intriguing research ideas in this fascinating field, uncovering the secrets and innovations that drive progress in science.

50 Intriguing Organic Chemistry Research Ideas

  • Green Synthesis of Organic Compounds : Explore eco-friendly methods for synthesizing organic molecules.
  • Applications of Organometallic Chemistry : Discuss the use of organometallic compounds in catalysis and materials science.
  • Designing Sustainable Polymers : Investigate the development of biodegradable and recyclable polymers.
  • Catalytic Asymmetric Synthesis : Examine recent advances in creating chiral organic compounds.
  • Supramolecular Chemistry in Drug Design : Discuss how non-covalent interactions can be harnessed for drug discovery.
  • Functionalization of C-H Bonds : Explore methods for selectively functionalizing carbon-hydrogen bonds.
  • Natural Product Synthesis : Highlight recent total syntheses of complex natural products.
  • Electroorganic Chemistry : Discuss the use of electricity as a reagent in organic reactions.
  • Molecular Machines : Explore the design and applications of synthetic molecular machines.
  • Metal-Organic Frameworks (MOFs) : Investigate the use of MOFs in gas storage and separation.
  • Enzyme Mimicry in Catalysis : Discuss synthetic catalysts that mimic enzyme behavior.
  • Chemical Biology : Explore the interface between chemistry and biology for drug discovery.
  • Organic Photovoltaics : Discuss the development of organic materials for solar cells.
  • Peptide Chemistry : Investigate the synthesis and applications of peptides in drug design.
  • Click Chemistry : Highlight the versatility of click reactions in organic synthesis.
  • Chemoinformatics : Discuss the use of computational methods in organic chemistry.
  • Bioorthogonal Chemistry : Explore reactions that are compatible with living systems.
  • Green Solvents in Organic Synthesis : Examine environmentally friendly solvents for organic reactions.
  • Nanocatalysis : Discuss the role of nanoparticles in catalytic processes.
  • Fluorine Chemistry : Investigate the unique properties of fluorinated organic compounds.
  • Carbohydrate Chemistry : Explore the synthesis and functions of carbohydrates.
  • Chemical Sensors : Discuss the design of organic sensors for detecting analytes.
  • Synthetic Biology : Explore the engineering of biological systems for chemical production.
  • Organic Chemistry in Medicine : Highlight the role of organic chemistry in drug development.
  • Heterocyclic Chemistry : Investigate the synthesis and reactivity of heterocycles.
  • Chemistry of Aromatics : Discuss reactions and applications of aromatic compounds.
  • Polycyclic Aromatic Hydrocarbons (PAHs) : Explore the environmental and health impact of PAHs.
  • Green Extraction Methods : Investigate eco-friendly techniques for extracting natural products.
  • Organic Chemistry in Food : Discuss the chemistry behind food flavor and preservation.
  • Chemistry of Natural Dyes : Explore the use of organic compounds as dyes.
  • Artificial Sweeteners : Investigate the chemistry of sugar substitutes.
  • Chemistry of Medicinal Plants : Highlight the organic compounds found in medicinal plants.
  • Organic Synthesis with Flow Chemistry : Discuss continuous-flow methods in organic synthesis.
  • Stereochemistry : Explore the importance of stereochemistry in organic reactions.
  • Chirality in Pharmaceuticals : Discuss the role of chirality in drug design.
  • Green Chemistry Metrics : Investigate metrics for assessing the sustainability of organic reactions.
  • Photochemistry : Explore the use of light in driving organic reactions.
  • Chemistry of Natural Toxins : Highlight the structures and effects of natural toxins.
  • Chemistry of Pharmaceuticals : Discuss the synthesis and mechanisms of action of common drugs.
  • Organic Chemistry in Cosmetics : Explore the chemistry of cosmetic products.
  • Organic Chemistry in Art Conservation : Investigate the role of organic chemistry in preserving artworks.
  • Radical Chemistry : Discuss the use of radicals in organic synthesis.
  • Chemistry of Terpenes : Explore the diverse structures and functions of terpenes.
  • Organic Chemistry of Vitamins : Highlight the organic compounds essential for health.
  • Biocatalysis : Discuss the use of enzymes in organic synthesis.
  • Chemistry of Lipids : Investigate the structure and functions of lipids.
  • Chemistry of Amino Acids : Explore the building blocks of proteins.
  • Chemistry of DNA : Discuss the structure and chemical properties of DNA.
  • Nucleic Acid Chemistry : Investigate the synthesis and modification of nucleic acids.
  • Organic Chemistry in Environmental Remediation : Highlight the use of organic compounds for cleaning up pollutants.

In closing, organic chemistry isn’t just about molecules; it’s about endless possibilities. These 50 research ideas showcase the diverse avenues researchers explore , from green synthesis to life-saving drugs. As we continue to unravel the mysteries of carbon, we can look forward to a future where science and innovation walk hand in hand, shaping a brighter world for us all.

  • Aromatic chemistry
  • Biocatalysis
  • Bioorthogonal reactions
  • Carbon compounds
  • Catalysis Sustainable polymers
  • Chiral compounds Chemical biology
  • Click chemistry Computational chemistry
  • DNA chemistry
  • Drug discovery
  • Environmental remediation
  • Flow chemistry Stereochemistry
  • Green metrics
  • Green solvents
  • Green synthesis
  • Nanocatalysis Heterocyclic compounds
  • Organic Chemistry
  • Organic photovoltaics
  • Peptide synthesis
  • Photochemistry
  • Research Ideas
  • Supramolecular chemistry
  • Terpenes Vitamins

Dr. Somasundaram R

How to Write a Research Paper? A Complete Guide

14 websites to download research paper for free – 2024, 42 digital signal processing project ideas to explore, most popular, 100 connective words for research paper writing, phd supervisors – unsung heroes of doctoral students, india-canada collaborative industrial r&d grant, call for mobility plus project proposal – india and the czech republic, effective tips on how to read research paper, iitm & birmingham – joint master program, anna’s archive – download research papers for free, fulbright-kalam climate fellowship: fostering us-india collaboration, fulbright specialist program 2024-25, six effective tips to identify research gap, best for you, 24 best free plagiarism checkers in 2024, what is phd, popular posts, how to check scopus indexed journals 2024, 480 ugc-care list of journals – science – 2024, popular category.

  • POSTDOC 317
  • Interesting 258
  • Journals 234
  • Fellowship 128
  • Research Methodology 102
  • All Scopus Indexed Journals 92

ilovephd_logo

iLovePhD is a research education website to know updated research-related information. It helps researchers to find top journals for publishing research articles and get an easy manual for research tools. The main aim of this website is to help Ph.D. scholars who are working in various domains to get more valuable ideas to carry out their research. Learn the current groundbreaking research activities around the world, love the process of getting a Ph.D.

Contact us: [email protected]

Google News

Copyright © 2024 iLovePhD. All rights reserved

  • Artificial intelligence

organic compounds research topics

  • Privacy Policy

Research Method

Home » 300+ Chemistry Research Topics

300+ Chemistry Research Topics

Table of Contents

Chemistry Research Topics

Chemistry is a fascinating and complex field that explores the composition, properties, and behavior of matter at the molecular and atomic level. As a result, there are numerous chemistry research topics that can be explored, ranging from the development of new materials and drugs to the study of natural compounds and the environment. In this rapidly evolving field, researchers are constantly uncovering new insights and pushing the boundaries of our understanding of chemistry. Whether you are a student, a professional researcher, or simply curious about the world around you, there is always something new to discover in the field of chemistry. In this post, we will explore some of the exciting and important research topics in chemistry today.

Chemistry Research Topics

Chemistry Research Topics are as follows:

Organic Chemistry Research Topics

Organic Chemistry Research Topics are as follows:

  • Development of novel synthetic routes for the production of biologically active natural products
  • Investigation of reaction mechanisms and kinetics for organic transformations
  • Design and synthesis of new catalysts for asymmetric organic reactions
  • Synthesis and characterization of chiral compounds for pharmaceutical applications
  • Development of sustainable methods for the synthesis of organic molecules using renewable resources
  • Discovery of new reaction pathways for the conversion of biomass into high-value chemicals
  • Study of molecular recognition and host-guest interactions for drug design
  • Design and synthesis of new materials for energy storage and conversion
  • Development of efficient and selective methods for C-H functionalization reactions
  • Exploration of the reactivity of reactive intermediates such as radicals and carbenes
  • Study of supramolecular chemistry and self-assembly of organic molecules
  • Development of new methods for the synthesis of heterocyclic compounds
  • Investigation of the biological activities and mechanisms of action of natural products
  • Synthesis of polymeric materials with controlled architecture and functionality
  • Development of new synthetic methodologies for the preparation of bioconjugates
  • Investigation of the mechanisms of enzyme catalysis and the design of enzyme inhibitors
  • Synthesis and characterization of novel fluorescent probes for biological imaging
  • Development of new synthetic strategies for the preparation of carbohydrates and glycoconjugates
  • Study of the properties and reactivity of carbon nanomaterials
  • Design and synthesis of novel drugs for the treatment of diseases such as cancer, diabetes, and Alzheimer’s disease.

Inorganic Chemistry Research Topics

Inorganic Chemistry Research Topics are as follows:

  • Synthesis and characterization of new metal-organic frameworks (MOFs) for gas storage and separation applications
  • Development of new catalysts for sustainable chemical synthesis reactions
  • Investigation of the electronic and magnetic properties of transition metal complexes for spintronics applications
  • Synthesis and characterization of novel nanomaterials for energy storage applications
  • Development of new ligands for metal coordination complexes with potential medical applications
  • Investigation of the mechanism of metal-catalyzed reactions using advanced spectroscopic techniques
  • Synthesis and characterization of new inorganic materials for photocatalytic water splitting
  • Development of new materials for electrochemical carbon dioxide reduction reactions
  • Investigation of the properties of transition metal oxides for energy storage and conversion applications
  • Synthesis and characterization of new metal chalcogenides for optoelectronic applications
  • Development of new methods for the preparation of inorganic nanoparticles with controlled size and shape
  • Investigation of the reactivity and catalytic properties of metal clusters
  • Synthesis and characterization of new metal-organic polyhedra (MOPs) for gas storage and separation applications
  • Development of new methods for the synthesis of metal nanoparticles using environmentally friendly reducing agents
  • Investigation of the properties of metal-organic frameworks for gas sensing applications
  • Synthesis and characterization of new coordination polymers with potential magnetic and electronic properties
  • Development of new materials for electrocatalytic water oxidation reactions
  • Investigation of the properties of metal-organic frameworks for carbon capture and storage applications
  • Synthesis and characterization of new metal-containing polymers with potential applications in electronics and energy storage
  • Development of new methods for the synthesis of metal-organic frameworks using green solvents and renewable resources.

Physical Chemistry Research Topics

Physical Chemistry Research Topics are as follows:

  • Investigation of the properties and interactions of ionic liquids in aqueous and non-aqueous solutions.
  • Development of advanced analytical techniques for the study of protein structure and dynamics.
  • Investigation of the thermodynamic properties of supercritical fluids for use in industrial applications.
  • Development of novel nanomaterials for energy storage applications.
  • Studies of the surface chemistry of catalysts for the optimization of their performance in chemical reactions.
  • Development of new methods for the synthesis of complex organic molecules with improved yields and selectivity.
  • Investigation of the molecular mechanisms involved in the catalysis of biochemical reactions.
  • Development of new strategies for the controlled release of drugs and other bioactive molecules.
  • Studies of the interaction of nanoparticles with biological systems for biomedical applications.
  • Investigation of the thermodynamic properties of materials under extreme conditions of temperature and pressure.
  • Development of new methods for the characterization of materials at the nanoscale.
  • Investigation of the electronic and magnetic properties of materials for use in spintronics.
  • Development of new materials for energy conversion and storage.
  • Studies of the kinetics and thermodynamics of adsorption processes on surfaces.
  • Investigation of the transport properties of ionic liquids for use in energy storage and conversion devices.
  • Development of new materials for the capture and sequestration of greenhouse gases.
  • Studies of the structure and properties of biomolecules for use in drug design and development.
  • Investigation of the dynamics of chemical reactions in solution using time-resolved spectroscopic techniques.
  • Development of new approaches for the synthesis of metallic and semiconductor nanoparticles with controlled size and shape.
  • Studies of the structure and properties of materials for use in electrochemical energy storage devices.

Analytical Chemistry Research Topics

Analytical Chemistry Research Topics are as follows:

  • Development and optimization of analytical techniques for the quantification of trace elements in food and environmental samples.
  • Design and synthesis of novel analytical probes for the detection of biomolecules in complex matrices.
  • Investigation of the fundamental mechanisms involved in the separation and detection of complex mixtures using chromatographic techniques.
  • Development of sensors and biosensors for the detection of chemical and biological species in real-time.
  • Investigation of the chemical and structural properties of nanomaterials and their applications in analytical chemistry.
  • Development and validation of analytical methods for the quantification of contaminants and pollutants in water, air, and soil.
  • Investigation of the molecular mechanisms underlying drug metabolism and toxicity using mass spectrometry.
  • Development of analytical tools for the identification and quantification of drugs of abuse in biological matrices.
  • Investigation of the chemical composition and properties of natural products and their applications in medicine and food science.
  • Development of advanced analytical techniques for the characterization of proteins and peptides.
  • Investigation of the chemistry and mechanism of action of antioxidants in foods and their impact on human health.
  • Development of analytical methods for the detection and quantification of microorganisms in food and environmental samples.
  • Investigation of the molecular mechanisms involved in the biosynthesis and degradation of important biomolecules such as proteins, carbohydrates, and lipids.
  • Development of analytical methods for the detection and quantification of environmental toxins and their impact on human health.
  • Investigation of the structure and properties of biological membranes and their role in drug delivery and disease.
  • Development of analytical techniques for the characterization of complex mixtures such as petroleum and crude oil.
  • Investigation of the chemistry and mechanism of action of natural and synthetic dyes.
  • Development of analytical techniques for the detection and quantification of pharmaceuticals and personal care products in water and wastewater.
  • Investigation of the chemical composition and properties of biopolymers and their applications in biomedicine and biomaterials.
  • Development of analytical methods for the identification and quantification of essential nutrients and vitamins in food and dietary supplements.

Biochemistry Research Topics

Biochemistry Research Topics are as follows:

  • The role of enzymes in metabolic pathways
  • The biochemistry of DNA replication and repair
  • Protein folding and misfolding diseases
  • Lipid metabolism and the pathogenesis of atherosclerosis
  • The role of vitamins and minerals in human metabolism
  • Biochemistry of cancer and the development of targeted therapies
  • The biochemistry of signal transduction pathways and their regulation
  • The mechanisms of antibiotic resistance in bacteria
  • The biochemistry of neurotransmitters and their roles in behavior and disease
  • The role of oxidative stress in aging and age-related diseases
  • The biochemistry of microbial fermentation and its applications in industry
  • The biochemistry of the immune system and its response to pathogens
  • The biochemistry of plant metabolism and its regulation
  • The molecular basis of genetic diseases and gene therapy
  • The biochemistry of membrane transport and its role in cell function
  • The biochemistry of muscle contraction and its regulation
  • The role of lipids in membrane structure and function
  • The biochemistry of photosynthesis and its regulation
  • The biochemistry of RNA splicing and alternative splicing events
  • The biochemistry of epigenetics and its regulation in gene expression.

Environmental Chemistry Research Topics

Environmental Chemistry Research Topics are as follows:

  • Investigating the effects of microplastics on aquatic ecosystems and their potential impact on human health.
  • Examining the impact of climate change on soil quality and nutrient availability in agricultural systems.
  • Developing methods to improve the removal of heavy metals from contaminated soils and waterways.
  • Assessing the effectiveness of natural and synthetic antioxidants in mitigating the effects of air pollution on human health.
  • Investigating the potential for using algae and other microorganisms to sequester carbon dioxide from the atmosphere.
  • Studying the role of biodegradable plastics in reducing plastic waste and their impact on the environment.
  • Examining the impact of pesticides and other agricultural chemicals on water quality and the health of aquatic organisms.
  • Investigating the effects of ocean acidification on marine organisms and ecosystems.
  • Developing new materials and technologies to reduce carbon emissions from industrial processes.
  • Evaluating the effectiveness of phytoremediation in cleaning up contaminated soils and waterways.
  • Studying the impact of microplastics on terrestrial ecosystems and their potential to enter the food chain.
  • Developing sustainable methods for managing and recycling electronic waste.
  • Investigating the role of natural processes, such as weathering and erosion, in regulating atmospheric carbon dioxide levels.
  • Assessing the impact of urbanization on air quality and developing strategies to mitigate pollution in cities.
  • Examining the effects of climate change on the distribution and abundance of species in different ecosystems.
  • Investigating the impact of ocean currents on the distribution of pollutants and other environmental contaminants.
  • Developing new materials and technologies for renewable energy generation and storage.
  • Studying the effects of deforestation on soil quality, water availability, and biodiversity.
  • Assessing the potential for using waste materials, such as agricultural residues and municipal solid waste, as sources of renewable energy.
  • Investigating the role of natural and synthetic chemicals in regulating ecosystem functions, such as nutrient cycling and carbon sequestration.

Polymer Chemistry Research Topics

Polymer Chemistry Research Topics are as follows:

  • Development of new monomers for high-performance polymers
  • Synthesis and characterization of biodegradable polymers for sustainable packaging
  • Design of stimuli-responsive polymers for drug delivery applications
  • Investigation of the properties and applications of conductive polymers
  • Development of new catalysts for controlled/living polymerization
  • Synthesis of polymers with tailored mechanical properties
  • Characterization of the structure-property relationship in polymer nanocomposites
  • Study of the impact of polymer architecture on material properties
  • Design and synthesis of new polymeric materials for energy storage
  • Development of high-throughput methods for polymer synthesis and characterization
  • Exploration of new strategies for polymer recycling and upcycling
  • Synthesis and characterization of responsive polymer networks for smart textiles
  • Design of advanced polymer coatings with self-healing properties
  • Investigation of the impact of processing conditions on the morphology and properties of polymer materials
  • Study of the interactions between polymers and biological systems
  • Development of biocompatible polymers for tissue engineering applications
  • Synthesis and characterization of block copolymers for advanced membrane applications
  • Exploration of the potential of polymer-based sensors and actuators
  • Design of novel polymer electrolytes for advanced batteries and fuel cells
  • Study of the behavior of polymers under extreme conditions, such as high pressure or temperature.

Materials Chemistry Research Topics

Materials Chemistry Research Topics are as follows:

  • Development of new advanced materials for energy storage and conversion
  • Synthesis and characterization of nanomaterials for environmental remediation
  • Design and fabrication of stimuli-responsive materials for drug delivery
  • Investigation of electrocatalytic materials for fuel cells and electrolysis
  • Fabrication of flexible and stretchable electronic materials for wearable devices
  • Development of novel materials for high-performance electronic devices
  • Exploration of organic-inorganic hybrid materials for optoelectronic applications
  • Study of corrosion-resistant coatings for metallic materials
  • Investigation of biomaterials for tissue engineering and regenerative medicine
  • Synthesis and characterization of metal-organic frameworks for gas storage and separation
  • Design and fabrication of new materials for water purification
  • Investigation of carbon-based materials for supercapacitors and batteries
  • Synthesis and characterization of self-healing materials for structural applications
  • Development of new materials for catalysis and chemical reactions
  • Exploration of magnetic materials for spintronic devices
  • Investigation of thermoelectric materials for energy conversion
  • Study of 2D materials for electronic and optoelectronic applications
  • Development of sustainable and eco-friendly materials for packaging
  • Fabrication of advanced materials for sensors and actuators
  • Investigation of materials for high-temperature applications such as aerospace and nuclear industries.

Nuclear Chemistry Research Topics

Nuclear Chemistry Research Topics are as follows:

  • Nuclear fission and fusion reactions
  • Nuclear power plant safety and radiation protection
  • Radioactive waste management and disposal
  • Nuclear fuel cycle and waste reprocessing
  • Nuclear energy and its impact on climate change
  • Radiation therapy for cancer treatment
  • Radiopharmaceuticals for medical imaging
  • Nuclear medicine and its role in diagnostics
  • Nuclear forensics and nuclear security
  • Isotopic analysis in environmental monitoring and pollution control
  • Nuclear magnetic resonance (NMR) spectroscopy
  • Nuclear magnetic resonance imaging (MRI)
  • Radiation damage in materials and radiation effects on electronic devices
  • Nuclear data evaluation and validation
  • Nuclear reactors design and optimization
  • Nuclear fuel performance and irradiation behavior
  • Nuclear energy systems integration and optimization
  • Neutron and gamma-ray detection and measurement techniques
  • Nuclear astrophysics and cosmology
  • Nuclear weapons proliferation and disarmament.

Medicinal Chemistry Research Topics

Medicinal Chemistry Research Topics are as follows:

  • Drug discovery and development
  • Design and synthesis of novel drugs
  • Medicinal chemistry of natural products
  • Structure-activity relationships (SAR) of drugs
  • Rational drug design using computational methods
  • Target identification and validation
  • Drug metabolism and pharmacokinetics (DMPK)
  • Drug delivery systems
  • Development of new antibiotics
  • Design of drugs for the treatment of cancer
  • Development of drugs for the treatment of neurological disorders
  • Medicinal chemistry of peptides and proteins
  • Development of drugs for the treatment of infectious diseases
  • Discovery of new antiviral agents
  • Design of drugs for the treatment of cardiovascular diseases
  • Medicinal chemistry of enzyme inhibitors
  • Development of drugs for the treatment of inflammatory diseases
  • Design of drugs for the treatment of metabolic disorders
  • Medicinal chemistry of anti-cancer agents
  • Development of drugs for the treatment of rare diseases.

Food Chemistry Research Topics

Food Chemistry Research Topics are as follows:

  • Investigating the effect of cooking methods on the nutritional value of food.
  • Analyzing the role of antioxidants in preventing food spoilage and degradation.
  • Examining the effect of food processing techniques on the nutritional value of fruits and vegetables.
  • Studying the chemistry of food additives and their impact on human health.
  • Evaluating the role of enzymes in food digestion and processing.
  • Investigating the chemical properties and functional uses of food proteins.
  • Analyzing the effect of food packaging materials on the quality and safety of food products.
  • Examining the chemistry of food flavorings and the impact of flavor on consumer acceptance.
  • Studying the role of carbohydrates in food texture and structure.
  • Investigating the chemistry of food lipids and their impact on human health.
  • Analyzing the chemical properties and functional uses of food gums and emulsifiers.
  • Examining the effect of processing on the flavor and aroma of food products.
  • Studying the chemistry of food preservatives and their impact on food safety.
  • Investigating the chemical properties and functional uses of food fibers.
  • Analyzing the effect of food processing on the bioavailability of nutrients.
  • Examining the chemistry of food colorants and their impact on consumer acceptance.
  • Studying the role of vitamins and minerals in food and their impact on human health.
  • Investigating the chemical properties and functional uses of food hydrocolloids.
  • Analyzing the effect of food processing on the allergenicity of food products.
  • Examining the chemistry of food sweeteners and their impact on human health.

Industrial Chemistry Research Topics

Industrial Chemistry Research Topics are as follows:

  • Development of catalysts for selective hydrogenation reactions in the petrochemical industry.
  • Green chemistry approaches for the synthesis of biodegradable polymers from renewable sources.
  • Optimization of solvent extraction processes for the separation of rare earth elements from ores.
  • Development of novel materials for energy storage applications, such as lithium-ion batteries.
  • Production of biofuels from non-food sources, such as algae or waste biomass.
  • Application of computational chemistry to optimize the design of new catalysts and materials.
  • Design and optimization of continuous flow processes for large-scale chemical production.
  • Development of new synthetic routes for the production of pharmaceutical intermediates.
  • Investigation of the environmental impact of industrial processes and development of sustainable alternatives.
  • Development of innovative water treatment technologies for industrial wastewater.
  • Synthesis of functionalized nanoparticles for use in drug delivery and other biomedical applications.
  • Optimization of processes for the production of high-performance polymers, such as polyamides or polyesters.
  • Design and optimization of process control strategies for efficient and safe chemical production.
  • Development of new methods for the detection and removal of heavy metal ions from industrial effluents.
  • Investigation of the behavior of surfactants in complex mixtures, such as crude oil or food products.
  • Development of new materials for catalytic oxidation reactions, such as the removal of volatile organic compounds from air.
  • Investigation of the properties and behavior of materials under extreme conditions, such as high pressure or high temperature.
  • Development of new processes for the production of chemicals from renewable resources, such as bio-based building blocks.
  • Study of the kinetics and mechanism of chemical reactions in complex systems, such as multi-phase reactors.
  • Optimization of the production of fine chemicals, such as flavors and fragrances, using biocatalytic processes.

Computational Chemistry Research Topics

Computational Chemistry Research Topics are as follows:

  • Development and application of machine learning algorithms for predicting chemical reactions and properties.
  • Investigation of the role of solvents in chemical reactions using molecular dynamics simulations.
  • Modeling and simulation of protein-ligand interactions to aid drug design.
  • Study of the electronic structure and reactivity of catalysts for sustainable energy production.
  • Analysis of the thermodynamics and kinetics of complex chemical reactions using quantum chemistry methods.
  • Exploration of the mechanism and kinetics of enzyme-catalyzed reactions using molecular dynamics simulations.
  • Investigation of the properties and behavior of nanoparticles using computational modeling.
  • Development of computational tools for the prediction of chemical toxicity and environmental impact.
  • Study of the electronic properties of graphene and other 2D materials for applications in electronics and energy storage.
  • Investigation of the mechanisms of protein folding and aggregation using molecular dynamics simulations.
  • Development and optimization of computational methods for calculating thermodynamic properties of liquids and solids.
  • Study of the properties of supercritical fluids for applications in separation and extraction processes.
  • Development of new methods for the calculation of electron transfer rates in complex systems.
  • Investigation of the electronic and mechanical properties of carbon nanotubes for applications in nanoelectronics and nanocomposites.
  • Development of new approaches for modeling the interaction of biomolecules with biological membranes.
  • Study of the mechanisms of charge transfer in molecular and hybrid solar cells.
  • Analysis of the structural and mechanical properties of materials under extreme conditions using molecular dynamics simulations.
  • Development of new approaches for the calculation of free energy differences in complex systems.
  • Investigation of the reaction mechanisms of metalloenzymes using quantum mechanics/molecular mechanics (QM/MM) methods.
  • Study of the properties of ionic liquids for applications in catalysis and energy storage.

Theoretical Chemistry Research Topics

Theoretical Chemistry Research Topics are as follows:

  • Quantum Chemical Studies of Excited State Processes in Organic Molecules
  • Theoretical Investigation of Structure and Reactivity of Metal-Organic Frameworks
  • Computational Modeling of Reaction Mechanisms and Kinetics in Enzyme Catalysis
  • Theoretical Investigation of Non-Covalent Interactions in Supramolecular Chemistry
  • Quantum Chemical Studies of Photochemical Processes in Organic Molecules
  • Theoretical Analysis of Charge Transport in Organic and Inorganic Materials
  • Computational Modeling of Protein Folding and Dynamics
  • Quantum Chemical Investigations of Electron Transfer Processes in Complex Systems
  • Theoretical Studies of Surface Chemistry and Catalysis
  • Computational Design of Novel Materials for Energy Storage Applications
  • Theoretical Analysis of Chemical Bonding and Molecular Orbital Theory
  • Quantum Chemical Investigations of Magnetic Properties of Complex Systems
  • Computational Modeling of Biological Membranes and Transport Processes
  • Theoretical Studies of Nonlinear Optical Properties of Molecules and Materials
  • Quantum Chemical Studies of Spectroscopic Properties of Molecules
  • Theoretical Investigations of Reaction Mechanisms in Organometallic Chemistry
  • Computational Modeling of Heterogeneous Catalysis
  • Quantum Chemical Studies of Excited State Dynamics in Photosynthesis
  • Theoretical Analysis of Chemical Reaction Networks
  • Computational Design of Nanomaterials for Biomedical Applications

Astrochemistry Research Topics

Astrochemistry Research Topics are as follows:

  • Investigating the chemical composition of protoplanetary disks and its implications for planet formation
  • Examining the role of magnetic fields in the formation of complex organic molecules in space
  • Studying the effects of interstellar radiation on the chemical evolution of molecular clouds
  • Exploring the chemistry of comets and asteroids to better understand the early solar system
  • Investigating the origin and evolution of interstellar dust and its relationship to organic molecules
  • Examining the formation and destruction of interstellar molecules in shocked gas
  • Studying the chemical processes that occur in the atmospheres of planets and moons in our solar system
  • Exploring the possibility of life on other planets through astrobiology and astrochemistry
  • Investigating the chemistry of planetary nebulae and their role in the evolution of stars
  • Studying the chemical properties of exoplanets and their potential habitability
  • Examining the chemical reactions that occur in the interstellar medium
  • Investigating the chemical composition of supernova remnants and their impact on the evolution of galaxies
  • Studying the chemical composition of interstellar grains and their role in the formation of stars and planets
  • Exploring the chemistry of astrocytes and their role in the evolution of galaxies
  • Investigating the formation of interstellar ice and its implications for the origin of life
  • Examining the chemistry of molecular clouds and its relationship to star formation
  • Studying the chemical composition of the interstellar medium in different galaxies and how it varies
  • Investigating the role of cosmic rays in the formation of complex organic molecules in space
  • Exploring the chemical properties of interstellar filaments and their relationship to star formation
  • Studying the chemistry of protostars and the role of turbulence in the formation of stars.

Geochemistry Research Topics

Geochemistry Research Topics are as follows:

  • Understanding the role of mineralogical and geochemical factors on metal mobility in contaminated soils
  • Investigating the sources and fate of dissolved organic matter in aquatic systems
  • Exploring the geochemical signatures of ancient sedimentary rocks to reconstruct Earth’s past atmospheric conditions
  • Studying the impacts of land-use change on soil organic matter content and quality
  • Investigating the impact of acid mine drainage on water quality and ecosystem health
  • Examining the processes controlling the behavior and fate of emerging contaminants in the environment
  • Characterizing the organic matter composition of shale gas formations to better understand hydrocarbon storage and migration
  • Evaluating the potential for carbon capture and storage in geologic formations
  • Investigating the geochemical processes controlling the formation and evolution of ore deposits
  • Studying the geochemistry of geothermal systems to better understand energy production potential and environmental impacts
  • Exploring the impacts of climate change on the biogeochemistry of terrestrial ecosystems
  • Investigating the geochemical cycling of nutrients in coastal marine environments
  • Characterizing the isotopic composition of minerals and fluids to understand Earth’s evolution
  • Developing new analytical techniques to better understand the chemistry of natural waters
  • Studying the impact of anthropogenic activities on the geochemistry of urban soils
  • Investigating the role of microbial processes in geochemical cycling of elements in soils and sediments
  • Examining the impact of wildfires on soil and water chemistry
  • Characterizing the geochemistry of mineral dust and its impact on climate and biogeochemical cycles
  • Investigating the geochemical factors controlling the release and transport of contaminants from mine tailings
  • Exploring the biogeochemistry of wetlands and their role in carbon sequestration and nutrient cycling.

Electrochemistry Research Topics

Electrochemistry Research Topics are as follows:

  • Development of high-performance electrocatalysts for efficient electrochemical conversion of CO2 to fuels and chemicals
  • Investigation of electrode-electrolyte interfaces in lithium-ion batteries for enhanced battery performance and durability
  • Design and synthesis of novel electrolytes for high-energy-density and stable lithium-sulfur batteries
  • Development of advanced electrochemical sensors for the detection of trace-levels of analytes in biological and environmental samples
  • Analysis of the electrochemical behavior of new materials and their electrocatalytic properties in fuel cells
  • Study of the kinetics of electrochemical reactions and their effect on the efficiency and selectivity of electrochemical processes
  • Development of novel strategies for the electrochemical synthesis of value-added chemicals from biomass and waste materials
  • Analysis of the electrochemical properties of metal-organic frameworks (MOFs) for energy storage and conversion applications
  • Investigation of the electrochemical degradation mechanisms of polymer electrolyte membranes in fuel cells
  • Study of the electrochemical properties of 2D materials and their applications in energy storage and conversion devices
  • Development of efficient electrochemical systems for desalination and water treatment applications
  • Investigation of the electrochemical properties of metal-oxide nanoparticles for energy storage and conversion applications
  • Analysis of the electrochemical behavior of redox-active organic molecules and their application in energy storage and conversion devices
  • Study of the electrochemical behavior of metal-organic frameworks (MOFs) for the catalytic conversion of CO2 to value-added chemicals
  • Development of novel electrode materials for electrochemical capacitors with high energy density and fast charge/discharge rates
  • Investigation of the electrochemical properties of perovskite materials for energy storage and conversion applications
  • Study of the electrochemical behavior of enzymes and their application in bioelectrochemical systems
  • Development of advanced electrochemical techniques for the characterization of interfacial processes in electrochemical systems
  • Analysis of the electrochemical behavior of nanocarbons and their application in electrochemical energy storage devices
  • Investigation of the electrochemical properties of ionic liquids for energy storage and conversion applications.

Surface Chemistry Research Topics

Surface Chemistry Research Topics are as follows:

  • Surface modification of nanoparticles for enhanced catalytic activity
  • Investigating the effect of surface roughness on the wetting behavior of materials
  • Development of new materials for solar cell applications through surface chemistry techniques
  • Surface chemistry of graphene and its applications in electronic devices
  • Surface functionalization of biomaterials for biomedical applications
  • Characterization of surface defects and their effect on material properties
  • Surface modification of carbon nanotubes for energy storage applications
  • Developing surface coatings for corrosion protection of metals
  • Synthesis of self-assembled monolayers on surfaces for sensor applications
  • Surface chemistry of metal-organic frameworks for gas storage and separation
  • Investigating the role of surface charge in protein adsorption
  • Developing surfaces with superhydrophobic or superoleophobic properties for self-cleaning applications
  • Surface functionalization of nanoparticles for drug delivery applications
  • Surface chemistry of semiconductors and its effect on photovoltaic properties
  • Development of surface-enhanced Raman scattering (SERS) substrates for trace analyte detection
  • Surface functionalization of graphene oxide for water purification applications
  • Investigating the role of surface tension in emulsion formation and stabilization
  • Surface modification of membranes for water desalination and purification
  • Synthesis and characterization of metal nanoparticles for catalytic applications
  • Development of surfaces with controlled wettability for microfluidic applications.

Atmospheric Chemistry Research Topics

Atmospheric Chemistry Research Topics are as follows:

  • The impact of wildfires on atmospheric chemistry
  • The role of aerosols in atmospheric chemistry
  • The chemistry and physics of ozone depletion in the stratosphere
  • The chemistry and dynamics of the upper atmosphere
  • The impact of anthropogenic emissions on atmospheric chemistry
  • The role of clouds in atmospheric chemistry
  • The chemistry of atmospheric particulate matter
  • The impact of nitrogen oxides on atmospheric chemistry and air quality
  • The effects of climate change on atmospheric chemistry
  • The impact of atmospheric chemistry on climate change
  • The chemistry and physics of atmospheric mercury cycling
  • The impact of volcanic eruptions on atmospheric chemistry
  • The chemistry and physics of acid rain formation and effects
  • The role of halogen chemistry in the atmosphere
  • The chemistry of atmospheric radicals and their impact on air quality and health
  • The impact of urbanization on atmospheric chemistry
  • The chemistry and physics of stratospheric polar vortex dynamics
  • The role of natural sources (e.g. ocean, plants) in atmospheric chemistry
  • The impact of atmospheric chemistry on the biosphere
  • The chemistry and dynamics of the ozone hole over Antarctica.

Photochemistry Research Topics

Photochemistry Research Topics are as follows:

  • Investigating the mechanisms of photoinduced electron transfer reactions in organic photovoltaic materials.
  • Developing novel photoredox catalysts for photochemical reactions.
  • Understanding the effects of light on DNA and RNA stability and replication.
  • Studying the photochemistry of atmospheric pollutants and their impact on air quality.
  • Designing new photoresponsive materials for advanced photonic and electronic devices.
  • Exploring the photochemistry of metalloporphyrins for potential applications in catalysis.
  • Investigating the photochemistry of transition metal complexes and their use as photodynamic therapy agents.
  • Developing new photocatalytic systems for sustainable energy production.
  • Studying the photochemistry of natural products and their potential pharmaceutical applications.
  • Investigating the role of light in the formation and degradation of environmental contaminants.
  • Designing new photochromic materials for smart windows and displays.
  • Exploring the photochemistry of carbon nanomaterials for energy storage and conversion.
  • Developing new light-driven molecular machines for nanotechnology applications.
  • Investigating the photochemistry of organic dyes for potential applications in dye-sensitized solar cells.
  • Studying the effects of light on the behavior of biological macromolecules.
  • Designing new photoresponsive hydrogels for drug delivery applications.
  • Exploring the photochemistry of semiconductor nanoparticles for potential applications in quantum computing.
  • Investigating the mechanisms of photochemical reactions in ionic liquids.
  • Developing new photonic sensors for chemical and biological detection.
  • Studying the photochemistry of transition metal complexes for potential applications in water splitting and hydrogen production.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Funny Research Topics

200+ Funny Research Topics

Sports Research Topics

500+ Sports Research Topics

American History Research Paper Topics

300+ American History Research Paper Topics

Cyber Security Research Topics

500+ Cyber Security Research Topics

Environmental Research Topics

500+ Environmental Research Topics

Economics Research Topics

500+ Economics Research Topics

instagram

Department of Chemistry - UC Santa Barbara

Research areas - organic/bioorganic.

Flask

The organic chemistry research area of the Department of Chemistry and Biochemistry at the University of California at Santa Barbara offers a nice mix of cutting edge research, student mentorship, and  coursework  on one of the most attractive campuses in the USA.  It’s a friendly place where students can wander into faculty offices to ask questions.  Nevertheless, it remains a center for cutting-edge research vigorously preparing students for  future careers in organic chemistry .

Lab Tests

Organic Research Faculty

  • Aue, Donald H. Physical Organic and Computational Chemistry
  • Bazan, Guillermo C. Organic materials
  • Bruice, Thomas C. Enzyme mechanism
  • Butler, Alison
  • Hawker, Craig Application of advanced organic transformations to the synthesis of initiators, macromolecules and nanostructures
  • Lipshutz, Bruce H. Organometallics and synthetic methods
  • Little, Daniel Synthetic applications of radicals and electrochemistry
  • Pettus, Thomas R. R.   Asymmetric methods and total synthesis
  • Read de Alaniz, Javier Alkaloid synthesis and organocatalyisis
  • Wudl, Fred Organic materials
  • Zakarian, Armen Organic Synthesis
  • Zhang, Liming Transition metal catalysis, organic synthesis and medicinal chemistry

Awards for undergraduate and graduate students in organic & bioorganic chemistry

  • B. R. Baker Lecturers & Graduate Student Awards in Organic & Bio-organic Chemistry
  • Robert H. DeWolfe Teaching Fellowship in Organic Chemistry
  • Robert H. DeWolfe Summer Undergraduate Fellowship

Lecturer Faculty

  • Bruice, Paula Y. Lecturer/Textbook Author
  • Kahn, Kalju Lecturer
  • Gainer, Morgan Lecturer

Emeritus Faculty

  • Anderson, Curtis B. Metal catalyzed hydro silylation
  • Bunton, Clifford A. Physical Organic Chemistry
  • Neuman, Robert C. Dynamics of organic reactions

Your browser is not supported

Sorry but it looks as if your browser is out of date. To get the best experience using our site we recommend that you upgrade or switch browsers.

Find a solution

  • Skip to main content
  • Skip to navigation
  • hot-topics Extras
  • Newsletters
  • Reading room

Tell us what you think. Take part in our reader survey

Celebrating twenty years

  • Back to parent navigation item
  • Collections
  • Water and the environment
  • Chemical bonding
  • Antimicrobial resistance
  • Energy storage and batteries
  • AI and automation
  • Sustainability
  • Research culture
  • Nobel prize
  • Food science and cookery
  • Plastics and polymers
  • Periodic table
  • Coronavirus

Quarts

  • More from navigation items

Porous organic ‘cage of cages’ crystalline structure predicted by computational modelling

Zahra Khan

  • No comments

Organic cages have been used as precursors to synthesise higher-order porous structures, adding to their functionality while the ability to solution process them is retained.

Structure

Source: © Qiang Zhu et al 2024

The ‘cage of cages’ could be used in water remediation technologies or gas separation

The team from the UK and China used ether-bridged cage molecules as a building block – its chlorine atoms are essential for forming ether bridges – with fluorine-enriched tetrafluorohydroquinone (TFHQ) as the linear bridge. The fluorine atoms offer structural integrity by limiting bond rotation and can improve the solubility of the resulting cage–cage molecules.

Models were constructed using molecular dynamics and density functional theory to predict the reaction products of these blocks. Several topologies and their relative energies were predicted, not considering solvent effects, and the results indicated a strong preference for a [4[2+3]+6] cage product. The team, guided by these simulations, conducted two-step assembly experiments to screen optimum conditions.

The results showed good agreement between the predicted structure for the [4[2+3]+6] cage molecule and the observed crystal structure – four trigonal cages assembled into a larger tetrahedral cage. The product demonstrated both good sorption capacity and hydrolytic stability – important properties for gas separation and water remediation technologies.

This new ‘cage of cages’ structure could be used as a building block for even more complex structures. This study highlights the use of computational methods to assess the most likely reaction products as well as non-intuitive new materials in supramolecular synthesis.

Q Zhu et al , Nat. Synth. , 2024, DOI: 10.1038/s44160-024-00531-7

Zahra Khan

More from Zahra Khan

Electrolysis

Electrochemical acid–base reactions can be fine tuned to control reactivity

Fractal

First regular molecular fractal in nature

A layer of a wooden material is peeled back to reveal a woven material underneath

Intelligent ionotronic wood device can keep an eye on people’s health

  • Organic cage
  • Organic chemistry
  • Supramolecular chemistry

Related articles

3D spinning gif depicting CCDC attributed molecule 2179030

Crystalline cages create unusual ‘touchless’ sensors

2024-03-28T14:30:00Z

By Fernando Gomollón-Bel

Contraceptive pills

Steroid separation made easy with photoswitchable coordination cage

2024-01-31T09:30:00Z

By Victoria Atkinson

An image showing a porphyrinic cage

Porphyrin assembly is ‘largest pure organic synthetic cage’ ever made

2020-11-04T14:46:00Z

By Jamie Durrani

An image showing the structure of Zn(NTf2)2

New class of recyclable permanently porous liquid doesn’t need a solvent

2020-02-17T14:30:00Z

By Kira Welter

porous_liquid

First permanently porous liquid created

2015-11-13T00:00:00Z

Porous materials break out of covalent cage

2013-06-25T00:00:00Z

By Phillip Broadwith

No comments yet

Only registered users can comment on this article., more from news.

Close up of a man sneezing showing the droplets spreading from his nose and mouth

Elevated carbon dioxide lets Sars-CoV-2 live far longer in droplets

2024-05-17T08:30:00Z

By Maria Burke

Humphry Davy

Humphry Davy’s whole story – warts and all – deserves to be told

2024-05-16T14:37:00Z

By Patrick Walter

Elisabeth Bik

Legal threats, online trolls and low pay: the world of scientific sleuth Elisabeth Bik

2024-05-16T13:31:00Z

By Dalmeet Singh Chawla

Elisabeth Bik

Integrity specialist has no case to answer over blackmail, extortion allegations, French officials find

2024-05-16T13:30:00Z

Structure

‘Late-stage saturation’ could improve drugs' effectiveness

2024-05-16T08:30:00Z

An oil painting of Sir Humphrey Davy, a well-dressed Regency gentleman at his desk

Davy notebook project paints complicated picture of influential chemist

2024-05-15T08:30:00Z

  • Contributors
  • Terms of use
  • Accessibility
  • Permissions
  • This website collects cookies to deliver a better user experience. See how this site uses cookies .
  • This website collects cookies to deliver a better user experience. Do not sell my personal data .
  • Este site coleta cookies para oferecer uma melhor experiência ao usuário. Veja como este site usa cookies .

Site powered by Webvision Cloud

share this!

May 8, 2024

This article has been reviewed according to Science X's editorial process and policies . Editors have highlighted the following attributes while ensuring the content's credibility:

fact-checked

peer-reviewed publication

trusted source

Researchers discover family of natural compounds that selectively kill parasites

by University of Toronto

Researchers discovery family of natural compounds that selectively kill parasites

An international team led by researchers at the University of Toronto has found a family of natural compounds with potential as new and more effective treatments for parasitic worms. The compounds stall the unique metabolic process that worms use to survive in the human gut.

Parasitic worms transmitted through soil wreak havoc in developing countries in the tropics. Infection by these parasites leads to malaise, weakness, malnutrition and other debilitating symptoms, and can cause developmental defects in children and impair their growth.

"Soil-transmitted parasitic worms infect over one billion people around the world, typically in low-income communities of developing countries without comprehensive health care and infrastructure for sanitation," said Taylor Davie, first author on the study and Ph.D. student at U of T's Donnelly Center for Cellular and Biomolecular Research. "Parasites are becoming less susceptible to the few anthelmintic drugs available, so there's an urgent need to find new compounds."

The study is published in the journal Nature Communications .

Many parasitic worm species live out a large portion of their life cycle inside a human host. To adapt to the environmental conditions of the gut, particularly a lack of oxygen, the parasite switches to a type of metabolism that depends on a molecule called rhodoquinone (RQ).

The parasite can survive inside its human host for many months using RQ-dependent metabolism.

The research team chose to target the adaptive metabolic process of the parasitic worm because RQ is only present in the parasite's system—humans do not produce or use RQ. Therefore, compounds that can regulate the molecule's production or activity would selectively kill the parasite, with no harm done to the human host .

The researchers conducted a screen of natural compounds isolated from plants, fungi and bacteria on the model organism C. elegans. While it is not a parasite, this worm also depends on RQ for metabolism when oxygen is not available.

"This is the first time that we have been able to screen for drugs that specifically target the unusual metabolism of these parasites," said Andrew Fraser, principal investigator on the study and professor of molecular genetics at the Donnelly Center and the Temerty Faculty of Medicine.

"The screen was only possible because of recent progress made by our group and others in using C. elegans to study RQ-dependent metabolism, and our collaboration with RIKEN, one of Japan's biggest research agencies. We screened their world-class collection of 25,000 natural compounds, resulting in our discovery of a family of benzimidazole compounds that kills worms relying on this type of metabolism."

The researchers suggest a multi-dose regimen using the newly discovered family of compounds to treat parasitic worms. While a single-dose treatment is easier to facilitate in mass drug administration programs, a longer treatment program would eliminate the parasite more effectively.

"We are very pleased with the results of the study, which made use of our library," said Hiroyuki Osada, professor of pharmacy at the University of Shizuoka and group director of the Chemical Biology Research Group at the RIKEN Center for Sustainable Resource Science.

"The study shows the power of the screening approach, allowing researchers in this case to search through a very large number of molecules within a focused collection of natural products. Screens are very efficient, which is key for addressing urgent research questions of global relevance like this one."

Next steps for the research team are to refine the new class of inhibitors through additional in vivo testing with parasitic worms, which will be performed by the Keiser lab at the University of Basel in Switzerland, and to continue screening for compounds that inhibit RQ.

"This study is just the beginning," said Fraser. "We have found several other very powerful compounds that affect this metabolism, including, for the first time, a compound that blocks the ability of the worms to make RQ. We hope our screens will deliver drugs to treat major pathogens around the world."

Journal information: Nature Communications

Provided by University of Toronto

Explore further

Feedback to editors

organic compounds research topics

Astronomers detect rare neutral atomic-carbon absorbers with deep neural network

5 minutes ago

organic compounds research topics

Chemists develop new method for making gamma chiral centers on simple carboxylic acids

7 minutes ago

organic compounds research topics

A new 'rule of biology' may have come to light, expanding insight into evolution and aging

9 minutes ago

organic compounds research topics

'Zombie cells' in the sea: Viruses keep the most common marine bacteria in check

18 minutes ago

organic compounds research topics

Researchers use machine-learning modeling tools to improve zinc-finger nuclease editing technology

33 minutes ago

organic compounds research topics

Pottery residue research explores culinary traditions in Germany from the Early Neolithic to the Bronze Age

35 minutes ago

organic compounds research topics

New research shows the true cost of reproduction across the animal kingdom

54 minutes ago

organic compounds research topics

Bacterial proteins shed light on antiviral immunity

organic compounds research topics

The observation of a Spin Berry curvature-enhanced orbital Zeeman effect in a kagome metal

organic compounds research topics

Spiny legged 308-million-year-old arachnid discovered in the Mazon Creek locality

Relevant physicsforums posts, and now, here comes covid-19 version ba.2, ba.4, ba.5,....

6 hours ago

Is it usual for vaccine injection site to hurt again during infection?

22 hours ago

A Brief Biography of Dr Virgina Apgar, creator of the baby APGAR test

May 12, 2024

Who chooses official designations for individual dolphins, such as FB15, F153, F286?

May 9, 2024

The Cass Report (UK)

May 1, 2024

Is 5 milliamps at 240 volts dangerous?

Apr 29, 2024

More from Biology and Medical

Related Stories

organic compounds research topics

Airless worms: A new hope against drug-resistant parasites

Jul 2, 2019

organic compounds research topics

Archaea can be 'picky eaters': Study shows a group of parasitic microbes can change host metabolism

organic compounds research topics

Investigators identify molecular switch allowing parasites to survive without oxygen inside host

Aug 4, 2020

organic compounds research topics

New compound offers hope for deadly tropical disease

Mar 25, 2024

organic compounds research topics

Chemicals produced by soil microbes hold promise as drugs and research tools

Dec 18, 2019

organic compounds research topics

Researchers discover that blocking an essential nutrient inhibits malaria parasite growth

Feb 13, 2024

Recommended for you

organic compounds research topics

Mystery CRISPR unlocked: A new ally against antibiotic resistance?

20 hours ago

organic compounds research topics

Protein prediction technology yields accurate results to efficiently find the best drug candidate for many conditions

Let us know if there is a problem with our content.

Use this form if you have come across a typo, inaccuracy or would like to send an edit request for the content on this page. For general inquiries, please use our contact form . For general feedback, use the public comments section below (please adhere to guidelines ).

Please select the most appropriate category to facilitate processing of your request

Thank you for taking time to provide your feedback to the editors.

Your feedback is important to us. However, we do not guarantee individual replies due to the high volume of messages.

E-mail the story

Your email address is used only to let the recipient know who sent the email. Neither your address nor the recipient's address will be used for any other purpose. The information you enter will appear in your e-mail message and is not retained by Phys.org in any form.

Newsletter sign up

Get weekly and/or daily updates delivered to your inbox. You can unsubscribe at any time and we'll never share your details to third parties.

More information Privacy policy

Donate and enjoy an ad-free experience

We keep our content available to everyone. Consider supporting Science X's mission by getting a premium account.

E-mail newsletter

ScienceDaily

How wildfires change soil chemistry

Understanding how wildfires change soil could aid recovery.

The huge, long-lasting wildfires that have become increasingly common in recent years can cause changes in soil chemistry that affect water contamination, air quality, and plant growth. But these changes are poorly monitored and rarely factor into post-fire recovery efforts or risk assessments, according to a review study published May 14 in Nature Reviews Earth & Environment .

The study, led by Stanford University and Colorado State University scientists, found that better techniques are needed to monitor changes in soil and surrounding ecosystems. This enhanced monitoring could inform decisions on how to treat drinking water sourced from burned areas, support reforestation, and protect workers against toxins during cleanup, rebuilding, or revegetation.

"In our study, we mesh organic and inorganic chemistry together, whereas a lot of fire research will typically just consider one subject area," said soil biogeochemist Claudia Avila, who co-led the study with Alandra Lopez, PhD '22, while both researchers were postdoctoral scholars in the lab of Stanford Doerr School of Sustainability Professor Scott Fendorf.

"A better understanding of the molecular mechanisms in soil can help explain, for instance, why drinking water from a forest fire-impacted watershed is suddenly more toxic, or why a forest is not coming back," said Colorado State University soil chemist Thomas Borch, a senior author of the study.

Climate and ecosystem impacts

The review highlights evidence from recent studies suggesting wildfires may release more planet-warming carbon dioxide into the atmosphere than anticipated. Charcoal-like remnants of burned wood and other organic materials, known as black carbon, may not trap carbon dioxide for long periods, as scientists had hoped. "Carbon that's gone through forest fires and becomes black carbon can actually turn more readily into carbon dioxide by microbes than previously thought," said Fendorf, the Terry Huffington Professor at Stanford.

"From a climate perspective, we still have a poor understanding of how much of the carbon that is left after a fire has the potential to be transformed into greenhouse gasses, such as carbon dioxide," said Borch, who worked in Fendorf's lab as a postdoctoral fellow 20 years ago.

Wildfires can have many benefits for ecosystems, the authors note. Some fires can increase the nitrogen in soils and augment the water solubility of soil organic carbon, for example, setting the stage for regrowth. However, recovery depends on the presence of other chemicals. For instance, certain types of organic molecules formed in soil during fires are needed for many seeds to germinate. If the local soil chemistry and fire conditions do not produce enough of these molecules, called karrikins, revegetation may be stunted.

Other research included in the new review has shown that wildfires can double the soil concentration of a group of toxic chemicals known as polycyclic aromatic hydrocarbons, which can induce chemical reactions that inhibit revegetation. These molecular-scale effects could well explain the mystery of vast areas where trees have struggled to reestablish after wildfires in the Rocky Mountains, Borch said.

Wildfires can also alter the chemical properties of inorganic materials such as metals within soils. Fire can change the metals into dangerous forms that readily move through the environment, ending up in the air or nearby water, the authors explained, citing Fendorf and Lopez's own recent research. The scientists documented high levels of a hazardous form of the metal chromium at wildfire sites resulting from heat-induced transformation of naturally occurring, benign forms of chromium. At sites where extremely hot, long-lasting fires cooked soils to high temperatures for extended periods, chromium persisted for many months until the next large rain event.

Other research on chromium indicates that after lower-intensity fires, remnant plant and animal tissue in soil can allow the toxic form of chromium to return to its inert form. Taken together, these studies illustrate the broader reality that wildfire impacts on soil chemistry depend on the intricate nature of the fire and landscape, including fire duration and temperature.

Predicting and mitigating wildfire risks

Broader surveillance and modeling could inform strategies for protecting lives, property, and natural resources, as well as wildlife management decisions. Avila offers an example of how this approach to informed stewardship could help prevent the leaching of metals into drinking water supplies. "By identifying an area that has a high potential for, say, chromium release, we can call for prescribed burns that are lower intensity and reduce the potential for high-intensity, toxin-releasing fires," said Avila, who is now an assistant professor of environmental and ocean sciences at the University of San Diego.

"If we can grasp the complexity of the intertwined processes that are happening both on the organic and the inorganic side, then that helps give us the ability to predict outcomes for different fire, landscape, and geological conditions," said Fendorf.

  • Ecology Research
  • Geochemistry
  • Global Warming
  • Sustainable land management
  • Pesticide poisoning
  • Organic farming
  • Ecological niche
  • Soil science
  • Conservation ethic

Story Source:

Materials provided by Stanford University . Note: Content may be edited for style and length.

Journal Reference :

  • Alandra Marie Lopez, Claudia Christine E. Avila, Jacob P. VanderRoest, Holly K. Roth, Scott Fendorf, Thomas Borch. Molecular insights and impacts of wildfire-induced soil chemical changes . Nature Reviews Earth & Environment , 2024; DOI: 10.1038/s43017-024-00548-8

Cite This Page :

Explore More

  • Highly Efficient Thermoelectric Materials
  • Toward Human Brain Gene Therapy
  • Whale Families Learn Each Other's Vocal Style
  • AI Can Answer Complex Physics Questions
  • Otters Use Tools to Survive a Changing World
  • Monogamy in Mice: Newly Evolved Type of Cell
  • Sustainable Electronics, Doped With Air
  • Male Vs Female Brain Structure
  • Breeding 'Carbon Gobbling' Plants
  • Why Do We Overindulge?

Trending Topics

Strange & offbeat.

IMAGES

  1. Organic Compounds: Introduction, Applications, Examples

    organic compounds research topics

  2. Classification of Organic Compounds with Structure and Examples

    organic compounds research topics

  3. Organic Compounds

    organic compounds research topics

  4. List of important Organic Compounds

    organic compounds research topics

  5. (DOC) 2 Examples of Organic Compounds| Their Uses and Types

    organic compounds research topics

  6. How to Prepare to the Second Semester of Organic Chemistry

    organic compounds research topics

VIDEO

  1. An idea about organic chemistry

  2. Naming of organic compounds with functional groups, practice problems

  3. Organic Compounds Review #biology

  4. Complete Organic Chemistry in 6 Days

  5. Video 17 QUALITATIVE ANALYSIS OF ORGANIC COMPOUNDS

  6. Organic Compounds Ch # 15 part II

COMMENTS

  1. Organic chemistry

    Organic chemistry is the study of the synthesis, structure, reactivity and properties of the diverse group of chemical compounds primarily constructed of carbon. ... Research Open Access 15 May ...

  2. Most popular 2021 organic chemistry articles, 2021 Home

    Wajid Ali, Gaurav Prakash and Debabrata Maiti. Transition metal-catalysed functionalizations of inert C-H bonds to construct C-C bonds represent an ideal route in the synthesis of valuable organic molecules. From the themed collection: Most popular 2021 organic chemistry articles, 2021. The article was first published on 29 Jan 2021Chem.

  3. The Journal of Organic Chemistry

    ACS Publications Symposium: Catalysis for Organic Synthesis. Join The Journal of Organic Chemistry this summer in Vienna, Austria for two days of innovative, scientific exchange with leading experts in organic chemistry and have the chance to present your own research through poster sessions and lightning talks.. Invited Keynote Speakers Agenda. UPDATED DEADLINE: Call for Poster Abstracts ...

  4. Most popular 2022 organic chemistry articles Home

    This specially curated collection pulls together some of the most popular articles from 2022 in the field of organic chemistry. The collection presents some outstanding contributions to the field, ranging from photocatalytic radical generation to prediction of protein pKa, and as with all Chemical Science articles - they are all completely free to access and read.

  5. Organic Chemistry News -- ScienceDaily

    Organic Chemistry in the News. Organic compounds, protein engineering, and more. Read all the latest research in the field of organic chemistry. Full-text with images. Free.

  6. Trends and Opportunities in Organic Synthesis: Global State of Research

    Emerging research topics in organic synthesis were identified by evaluating clusters of newly appeared subject-concept indexes and associated documents in the CAS organic synthesis content corpus. Three topics, namely, enzyme catalysis, photocatalysis, and green chemistry, showed the most consistent and recent (in the last 10 years) publication ...

  7. 220908 PDFs

    Organic chemistry is a subdiscipline within chemistry involving the scientific study of the structure, properties, composition, reactions,... | Explore the latest full-text research PDFs, articles ...

  8. 26901 PDFs

    Explore the latest full-text research PDFs, articles, conference papers, preprints and more on ORGANIC COMPOUNDS. Find methods information, sources, references or conduct a literature review on ...

  9. Organic Chemistry Editor's Pick 2021

    We are pleased to introduce the collection Organic Chemistry Editor's Pick 2021. This collection showcases well-received spontaneous articles from the past couple of years, which have been specially handpicked by our Chief Editor, Prof. Iwao Ojima. The work presented here highlights the broad diversity of research performed across the section, and aims to put a spotlight on the main areas of ...

  10. Frontiers in Chemistry

    Mohammad Khalilzadeh. Hasan Sadeghifar. 5,945 views. 3 articles. Part of a journal that explores the role of chemistry in our everyday lives, this section publishes significant fundamental and applied work across all branches of organic chemistry.

  11. Organic Chemistry Research Paper Topics

    See our list of organic chemistry research paper topics . Organic chemistry is the science of compounds of carbon. The name organic goes back to a much earlier time in history when chemists thought that chemical compounds in living organisms were fundamentally different from those that occur in nonliving things.

  12. Top 50 Articles of 2016: Organic Chemistry Home

    Aminofluorination: transition-metal-free N-F bond insertion into diazocarbonyl compounds. Gui Chen, Jinshuai Song, Yinghua Yu, Xuesong Luo, Chunsen Li and Xueliang Huang. Gem-aminofluorination of diazocarbonyl compounds has been achieved for the first time. From the themed collection: Top 50 Articles of 2016: Organic Chemistry.

  13. Organic Chemistry Research

    Organic Chemistry Research is an international peer-reviewed, open access journal that covers all aspects of organic chemistry. The journal publishes original papers of high scientific level in the form of Full Papers, Short Communications and Reviews. All submitted manuscripts undergo rigorous blind peer review. ... Key topics include:

  14. What are some the hottest topics right now in organic chemistry research?

    The hottest topics right now in organic chemistry research 1) Green Chemistry. 2)Synthesis of nano-materials and their applications in Organic synthesis as catalysts.3) Multicomponent synthesis 4 ...

  15. 110 Great Chemistry Research Topics [2024]

    Organic Сhemistry Research Topics. Organic chemistry is the study of carbon-containing molecules. There are many different organic chemistry research topics that a student could choose to focus on and here are just a few examples of possible research projects in organic chemistry: Investigating new methods for synthesizing chiral molecules

  16. Frontiers in Chemistry

    Functional Nanomaterials for the Therapeutic Regulation of Tissue Redox Microenvironment- Volume II. Advances our understanding of how atoms, ions, and molecules come together and come apart. It explores the role of chemistry in our everyday lives - from electronic devices to health and wellbeing.

  17. 50 Research Ideas in Organic Chemistry

    50 Intriguing Organic Chemistry Research Ideas. Green Synthesis of Organic Compounds: Explore eco-friendly methods for synthesizing organic molecules. Applications of Organometallic Chemistry: Discuss the use of organometallic compounds in catalysis and materials science. Designing Sustainable Polymers: Investigate the development of ...

  18. 300+ Chemistry Research Topics

    Organic Chemistry Research Topics. Organic Chemistry Research Topics are as follows: Development of novel synthetic routes for the production of biologically active natural products. Investigation of reaction mechanisms and kinetics for organic transformations. Design and synthesis of new catalysts for asymmetric organic reactions.

  19. Research Areas

    Research Areas - Organic/Bioorganic. The organic chemistry research area of the Department of Chemistry and Biochemistry at the University of California at Santa Barbara offers a nice mix of cutting edge research, student mentorship, and coursework on one of the most attractive campuses in the USA. It's a friendly place where students can wander into faculty offices to ask questions.

  20. Synthesis of Azahelicenes via Friedel‐Crafts‐Type Ring‐Closing Reaction

    From the axially chiral compounds prepared by Fischer indole synthesis, aza[6]helicene and aza[7]helicene were synthesized. Aza[7]helicene was also synthesized from an axially chiral pyrrole compound prepared by Piloty-Robinson-type pyrrole synthesis through simultaneous cyclization on both sides of the pyrrole ring.

  21. Porous organic 'cage of cages' crystalline structure predicted by

    Zahra Khan Zahra completed a PhD in chemistry in 2023 at University College London (UCL) and A*STAR (Singapore). She is interested in science reporting and passionate about sharing diverse ...

  22. Insights into Solvent Effects on Ni-BTC-Derived Ni@C Catalysts for the

    The structural characteristics of metal-organic framework (MOF)-derived materials are strongly influenced by synthesis solvents. Herein, Ni-BTC MOFs were solvothermally synthesized in different solvents, and their derived Ni@C catalysts were achieved through a one-step pyrolysis. The synthesis solvents significantly affect the microstructures and catalytic performance of the Ni@C catalysts ...

  23. Researchers discover family of natural compounds that selectively kill

    The distinct rhodoquinone-dependent metabolism of parasitic helminths is an attractive target for anthelmintic development. Credit: Nature Communications (2024). DOI: 10.1038/s41467-024-47331-3

  24. Real‐time LSPR‐based study of metal‐organic ...

    Chemistry - A European Journal showcases fundamental research and topical reviews in all areas of the chemical sciences around the world. MOFs are known for their absorption properties and widely used for accumulation, filtering, sensorics, photothermal, catalytical and other applications.

  25. 2D all-organic perovskites: potential use in 2D electronics

    Perovskites are among the most researched topics in materials science. Recently, a research team has solved an age-old challenge to synthesize all-organic two-dimensional perovskites, extending ...

  26. How wildfires change soil chemistry

    May 14, 2024. Source: Stanford University. Summary: Severe wildfires can drive chemical changes in soil that affect ecosystem recovery and risks to human health. A new study finds broader ...