Nanotechnology: Applications and Implications Research Paper

Nanotechnology is an emerging technology which is developing at an exponential rate. The technology utilizes novel characteristics of materials that are exhibited only at nanoscale level. Although still in early stages, this technology has signaled potential and breakthroughs in many areas such as medicine, computer technology, food industry, building construction, environment protection to mention just a few.

The many exciting products it promises have served to draw a lot of attention to it. Many findings of nanotechnology are quickly being implemented in viable commercial products. This is in spite of insufficient toxicological data about the environmental and biological effects of such nanomaterials.

As nanotechnology gains widespread application in various disciplines, it is imperative to understand its potential effects. This is important for its long terms sustainability. It is also equally critical to set up necessary control legislations and benchmark standards to control research and commercial application of this emerging technology.

The last half of the last century witnessed the technological world going “micro” evidenced by microdevices and microparticles. However, from the start of 21 st century, the “micro” is poised to give way to the “Nano”. Nanotechnology is an emerging technology that is offering promises of breakthroughs cutting across multiple subjects such as medicine, food industry, energy sector and environmental remediation to mention a few.

The Potential of nanotechnology to solve hitherto “unsolvable” problems by conventional technologies has attracted the attention of government and commercial corporations with diverse interests. Billions of dollars for research and development continue to be channeled to nanotechnology projects all over the world. This paper presents the potential applications of nano-inventions in selected areas of medicine, pollution control, energy, construction, computer technology, and food sectors.

While the benefits of this emerging technology appear to be immense, its environmental and social effects also need to be given as much attention. Nanotechnology is a relatively nascent industry and its potential uses and effects need to be exhaustively established researched before mass production and commercialization. Nanotechnology is the most significant emerging technology today and will play a major role in social, economic, and environmental developments in this century.

What is nanotechnology?

Nanotechnology is the “creation of functional materials, devices, and systems through the manipulation of matter at a length of ~1-100 nm” (Srinivas, et al., 2010).

At such scale, matter exhibits new properties unlike those observed at larger scales (Wickson, Baun, & Grieger, 2010). This includes enhanced plasticity, change in thermal properties, enhanced reactivity and catalysis, negative refractivity, faster ion/electron transport and novel quantum mechanical properties (Vaddiraju, Tomazos, Burgess, Jain, & Papadimitrakopoulos, 2010).

The novel properties of matter at nanoscale has been explained by the presence of quantum effect, increase in surface area to volume ratio and alterations in atomic configurations (Wickson et al., 2010). The properties of nanomaterials may be characterized in terms of size, shape, crystallinity, light absorption and scattering, chemical composition, surface area, assembly structure, surface structure, as well as surface charge.

Some of the techniques used in nanoscience to study these properties include Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Analysis (EDX), Atomic Force Microscopy (ATM), Transmission Electron Microscopy (TEM), X-ray Diffraction (XRD), UV-Vis-nIR Spectroscopy, Extended X-ray Absorption Fine structure (EXAFS) , Photoluminescence Spectroscopy (XPS), Chemisorption among other new only developed ones.

The applications of nanotechnology are as a result of investigating and utilizing these properties (Wickson et al., 2010). There are a host of substances utilised in nanotechnology, the most researched ones are carbon, silicon dioxide and titanium dioxide (Robinson, 2010). Others are aluminum, zinc, silver, copper and gold (Robinson, 2010).

Nanotechnology projects continue to channel out a wide range of applications at a very high rate (Dang, Zhang, Fan, Chen, & C.Roco, 2010). This exponential growth rate is evident from the number of patent applications. Data by Dang and fellow researchers (2010) shows that patent application for nanotechnology inventions in developed countries increased from zero percent in 1991 to about 27 % in 2008 and that this growth is set to continue for the better part of this century.

Applications of nanotechnology

Spurred by huge funding from government and commercial players, nanotechnology projects continue to release more and more potential innovations into the market. This may be an indication that nanotechnology will in future play a pivotal role in scientific and economic development (Dang et al., 2010). Nanotechnology may be a critical solution for companies seeking to stay ahead of competitors. The potential of nanotechnology appears limitless as can be shown by the number of areas where it is already being applied.

Nanomedicine

This field encompasses pharmaceutical and medical nanotechnology. It is one of the most active areas of nanotechnology due it promises of novel therapeutic applications in crucial areas such as cancer therapy, drug delivery, imaging, biosensors and diagnosis.

Nanoparticles have been cited as having great potential in vivo imaging applications (Solomon & D’Souza, 2011). Already, a surface functionalized iron oxide nanoparticle is being used in modern imaging technologies such as magnetomotive imaging. This type of imaging is comparatively powerful and is expected to improve disease diagnosis significantly.

Nanoparticles are also being engineered to be used to enhance drug biodistribution and delivery to target sites in the body. This approach seeks to deliver drug agents to affected sites without damaging the healthy cells. This has been promising in the case of solid tumors whereby a transferrin-modified cyclodextrin nanoparticle successfully delivered anti-tumor agents to the target tumor site in human subjects (Solomon & D’Souza, 2011).

Nanoparticles have also displayed the ability to cross the blood-brain barrier, a major impediment to drug delivery to the brain, thus offering hope of improving the efficacy of some drugs. It has also been reported that nanoparticles conjugated to model antigens have been able to stimulate immunity in mice (Solomon & D’Souza, 2011). This indicates potential for application in improving vaccine therapy.

Elsewhere, nanoparticles have been used to engineer self-assembled tissue capable of repairing damaged tissues in rats though this is yet to be replicated in humans. Another area that has generated much interest is in production of microscopic and highly sensitive in vitro and in vivo biosensors. This application holds the promise of increasing portability and lowering the cost of such devices.

Nanoparticles are increasingly gaining application in cancer therapy. Nanoparticles are for this purpose is characterized by surface modifications that enable them interact with receptors of target cells. This makes it possible to develop therapies targeting cancerous cells only while leaving out healthy cells.

Free radical such as superoxide, hydroxides and peroxides has been known to produce disease initiating changes in cells. To counter this adverse effect, neuroprotective compound is being developed using carbon-60 fullerene (Silva, 2010). In terms of detection of biochemical compounds carbon nanotubes have been used for detection DNA and proteins in serum samples.

Nanotechnology has opened up new possibilities in regard to medical application. The technology has potential to alter medical therapy in many ways.

Pollution control

Waste disposal remains a challenging task for many industries. Current waste disposal technologies are expensive and require a lot of time to render the waste less harmful. In addition, current processes such as air stripping, carbon adsorption, biological reactors or chemical precipitation produce highly toxic wastes that require further disposal (Karn, Kuiken, & Otto, 2009).

Nanoremediation is a new form of waste disposal mechanism that utilizes nanoparticles to detoxify pollutants. nZVI, a nanoscale zero-valent iron has gained widespread use in this area and has been applied in remediating polluted in situ groundwater. This technology has been cited as cost-effective and faster compared to traditional pump-and-treat methods (Karn et al., 2009).

Other forms of pollution solutions employ the use of nanocatalysts. Just like biological and chemical catalysts, nanocatalysts speed up chemical reaction leading to decomposition of the reactive species. This is already being used to detoxify harmful vapor in cars and industrial machinery. Notable ongoing projects in pollution control include research on the recycling greenhouse gas emissions using carbon nanotubes (CNT) (Zhao, 2009).

For his effort, the researcher for this “green” solution received an $ 85,000 Foundation Research Excellence Award (Zhao, 2009). Nanoparticles have also been used to treat highly polluted industrial waste (Zhao, 2009). Nanotechnology is also aiding in improving current water purification technologies. The technology has made it possible to decrease the membrane pores to nanoscale levels leading to greater filtration power.

Energy applications

Nanotechnology has offered promises and potential for development of efficient and long-lasting energy devices. Nanofabricated energy storage compounds have been cited as potentially beneficial as they may serve as replacement for traditional environmentally harmful fossil fuels.

It is expected that nanoscience for energy application will transfer the nano-scale effects of energy carriers such as photons, phonons, electrons, and molecules to conventional photovoltaic, photochemical solar cells, thermoelectric, fuel cells and batteries. This is expected to greatly enhance the capacity, life, and efficiency of such energy producers. Laboratory tests have already shown that the nanomaterials-based electrodes enhance the charge storage capacity and reaction rates in fuel cells.

Also, nanomaterials such as carbon nanotubes and carbon nanohorns are proving useful in energy application due to their ability to provide excellent conductivity for charge transport (Yimin, 2011). Some nanomaterials e.g., PbTe-based quantum dot superlattice system, have demonstrated improved energy conversion efficiency. This property has been suggested to be replicated to produce more energy-efficient thermoelectric devices used to convert waste heat energy into electricity (Yimin, 2011).

This is necessary as the energy efficiency of most thermoelectric devices is very low. In terms of energy conservation, semiconductor nanostructures are actively being explored for the development of highly luminous and efficient light-emitting diodes (LED). This can have a significant impact in energy conservation as lighting uses about 20% of the total electric power generated (Yimin, 2011). Nanostructures are also gaining application in solar energy technologies.

Nonastructured photovoltaic materials have been cited as potentially significant in improving the efficiency of solar energy-based devices. To this end, nanomaterials, such as quantum dots and dye-sensitized semiconductors, are being tested for the possible production of next-generation solar devices projects (Yimin, 2011).

Nanotechnology has the potential to revolutionize man-made energy. Although still, in early phases, nanomaterials have the potential to deliver efficient, high capacity, clean and more durable energy solutions. The challenge, perhaps, remains the development of controlled large scale manufacturing approaches that will ensure greater realization of the powers of these promising materials.

Food nanotechnology

Application of nanoscience in food industry has opened up numerous new possibilities for the food sector. Areas that have gained prominence in this area include food packaging and preservation. Attention to this sector has been contributed by projections of enormous economic gains it offers. Data shows that sales of nanotechnology products to food and beverage packaging sector is expected to surpass US $20.4 billion beyond 2010 (Sozer & Kokini, 2008).

Already, bionanocomposites, which are nanostructures with enhanced mechanical, thermal, and porosity properties, are being used in food packaging. Additional benefits of bionanocomposites include being environmentally friendly as are they are biodegradable as well as increasing the food shelf life (Sozer & Kokini, 2008). Bioactive packaging materials made of nanomaterials have been used in controlling oxidation of foodstuffs and formation of undesirable textures and flavors (Sozer & Kokini, 2008).

One of the nanomaterials with high potential here is carbon nanotube. Apart from offering enhanced mechanical properties to food packaging materials, it has been discovered that the same tube could be possessing effective antimicrobial effects.

This is due to the fact that Escherichia coli bacteria have been found to immediately die upon coming in contact with aggregated nanotubes (Sekhon, 2010). Another area being explored is the fortification of food packaging with nano active additives that would allow controlled release of nutrient into the stored food.

Nanomaterials have also been said to have potential application in food preservation. Nanosensors made to fluoresce in different colors when in contact with food spoilage microorganisms, have been selected as a possible solution. This may reduce the time it takes to detect food spoilage and thus lessen cases of food poisoning.

Examples are nanosilica, already used in food packaging and nanoselenium, which has been added into some beverage and said to enhance uptake of selenium. Nano-iron is also available and is used as a health supplement, although it can also be used in the treatment of contaminated water. Said to be still under development, nanosalt has to be cited as having the benefit of enabling reduction in dietary salt intake.

Another nanoagent, nanoemulsion is already being used to add nanoemulfied bioctives and flavors to beverages (Sekhon, 2010). Nanoemulsions have also proved effective against gram-negative bacteria, a major food pathogen (Sekhon, 2010). Elsewhere scientists have also reported improved bioavailability and color changes brought about by iron/zinc-containing nanostructures.

Other areas being explored include probiotics and edible nanocoatings. Probiotics will entail using nanofabrications to deliver beneficial bacterial cells to the gut system while edible nanocoatings will be in the form of edible coatings to provide barrier to moisture, gas exchange, and deliver food enhancement additives.

It is clear that nanotechnology presents unlimited opportunities to the food industry. However, just like the controversy that followed GMOs food, foodstuffs bearing nano components are surely bound to generate a prolonged public debate. This is because the effects of such miniscule particles in the consumer body remain unclear. Nevertheless, given the nascent nature of nanotechnology, such opposition is expected.

Computer technology

Nanotechnology is expected to revolutionize computer architecture technologies. Current processors have an unofficial limit of 4 GHz. This year a synthetic material capable of replacing silicon, the long-standing semiconductor of choice in the 20th century, and attaining a clock speed of 6 GHz was unveiled (Partyka & Mazur, 2012).

This is because nanotechnology presents the possibility of adding even more transistors per a nanometric length than what is possible through current microprocessor development technologies.

What is even more interesting is that this development could not have come at a more opportune time as silicon processors are expected to have attained their maximum performance by 2020 (Partyka & Mazur, 2012). This year scientists have also announced the successful development of a Nano transistor “based on single molecules of a chemical compound” (Partyka & Mazur, 2012, n.p).

Application of nanotechnology in construction

Nanotechnology portends immense benefits for the future of the construction sector. From the amazing self-cleaning window to the “smog-eating” concrete, this technology has the capability of transforming building materials to new levels in terms of energy, light, strength, security, beauty and intelligence (Halicioglu, 2009).

The development of super-strength plastics has a possible application in diverse areas such as in cars, trucks, and planes where it can serve to replace heavy metals leading to significant energy savings (Zhao, 2009). Nanomaterials such as carbon nanotubes have been found to possess strength and flexibility on a much larger scale compared known strong materials such as steel. Nanocoatings have been suggested as possible solutions to insulation, microbial activity, and mildew growth in buildings (Halicioglu, 2009).

Nanotechnology is expected to produce unique bio-products characterized by hyper-performance and superior serviceability (Halicioglu, 2009).

Notable nanoparticles already in use in construction are titanium dioxide (TiO 2 ) and carbon nanotubes (CNT’s). Titanium dioxide is being used in degrading pollutants in buildings while carbon nanotubes have been applied in strengthening and monitoring concrete (Halicioglu, 2009).

Just like other applications of nanotechnology, nanomaterials are used in construction sector yet their environmental, health effect, and other risks remain unclear. However, despite this drawback, nanotechnology has the potential to revolutionize building design and construction in the near future.

Concerns about nanotechnology

Concerns have been raised about nanotechnology. Nanoparticles have been said to be potentially unsafe for the biological system (Vishwakarma, Samal, & N.Manoharan, 2010). Owing to their small size, these particles can gain entry into the body easily through the skin, mucosal membranes of nose or lungs through inhalation. Their catalytic properties are likely to produce dangerous reactive radicals such as hyper-reactive oxygen with much toxic effects.

These reactive radicals have been linked to chronic diseases such as cancer. Once inside the body, nanoparticles may reach the brain or liver. This is because nanoparticles are able to cross the blood-brain barrier. Their effects on these organs are yet to be established. The nature of their toxicity remains a speculation, but the disruption in the body chemistry cannot be ignored.

The Royal Society of UK’s National Science Academy has reported that nanotube can cause lung fibrosis when inhaled in large amount over long periods (Vishwakarma et al., 2010). Early research has also shown that some types of nanoparticles could cause lung damage in rats (Vishwakarma et al., 2010).

Possible environmental effects of nanoparticles have also been documented. Because they are easily airborne, and adhesive, it is claimed nanoparticles may enter the food chain with profound undesirable changes on the ecosystem.

Currently, there are no standard techniques for assessing nanocompounds hazards. This, together with the unique features of nanomaterials – large surface area, multi forms, makes risk assessment difficult (Williams, Kulinowski, White, & Louis, 2010). Quality control for nanomaterials manufacturing, terminology as well as nomenclature standards are also lacking.

Additionally, it is alarming that currently there is no data on potential hazards, dose-response relationships and exposure levels of nanomaterials used in numerous applications (Musee, Brent, & Asthton, 2010). It is also worth stating that much of current funding on nanotechnology is directed toward potentially viable commercial projects while little is channeled towards risk assessment initiatives (Musee et al., 2010). This needs to be reversed.

Nanotechnology has the potential to revolutionize our lives. This is because it presents almost unlimited potential to make remarkable changes in virtually all fields ranging from medicine, computer technology, construction, environmental remediation, food industry, to new energy sources.

Despite presenting many potential benefits in many areas, nanotechnology of today is still in its infancy as just a few projects have been commercialized. Many are yet to undergo full lifecycle assessment. The number of nanotechnology innovations continues to rise. However, the same cannot be said of research about their potential effects on environment and biological systems.

As the world readily adapts to this new technology wave, concomitant effort should be directed to the understanding of their possible impacts. This is essential to ensure that nanomaterials do not become the new hazard of 21 st century. The long-long term sustainability of this new technology may depend on the establishment of its risks.

Dang, Y., Zhang, Y., Fan, L., Chen, H., & C.Roco, M. (2010). Trends in worldwide nanotechnology patent applications: 1991:2008. Journal of Nanoparticles Research, 12 , 687-706.

Halicioglu, FH (2009). The potential benefits of nanotechnology innovative solutions in the construction sector . Web.

Karn, B., Kuiken, T., & Otto, M. (2009). Nanotechnology and in situ remediation: A review of the benefits and potential risks. Environmental Health Perspectives, 117 , 1823-1831.

Misra, R., Acharya, S., & Sahoo, S. K. (2010). Cancer nanotechnology: Application of nanotechnology in cancer therapy. Drug Discovery Today, 15 (19), 843-856.

Musee, N., C.Brent, A., & J.Ashton, P. (2010). South African research agenda to investigate the potential enviromental,health and safety risks of nanotechnology. South African Journal of Science, 106 (3/4), 6 pages.

Partyka, J., & Mazur, M. (2012). Prospects for the appliication of Nanotechnology. Journal of Nano-Electronics Physics, 4 (1).

Robinson, R. (2010). Application of nanotechnology in green building practises . Web.

Sekhon, S.B. (2010). Food nanotechnology-an overview. Nanotechnology, Science and Applications, 3 , 1-15.

Silva, G. A. (2010). Nanotechnology applications and approached for neuroregeneration and drug delivery to the central nervous system. Annals of New York Academy of Science, 1199 , 221-230.

Solomon, M., & D’Souza, G. G. (2011). Recent progress in the therapeutic applications of nanotechnology. Current Opinion in Pediatrics, 23 , 215-220.

Sozer, N., & Kokini, J. L. (2008). Nanotechnology and its applications in the food sector. Trends in Biotechnology, 27 (2), 82-90.

Srinivas, P. R., Philbert, M., Q.Vu, T., Huang, Q., Kokini, J. L., Saos, E., et al. (2010). Nanotechnology research: Applications in nutritional sciences. Journal of Nutrition, 140 (1), 119-124.

Vaddiraju, S., Tomazos, I., Burgess, D. J., Jain, F. C., & Papadimitrakopoulos, F. (2010). Emerging synergy between nanotechnology and implantable biosensors. Biosens Bioelectron, 25 (7), 1553-1565.

Vishwakarma, V., Samal, S. S., & N.Manoharan. (2010). Safety and risk associated with nanoparticles. J or Mineral & Material Characteristics & Engineering, 9 (5), 455-459.

Wickson, F., Baun, A., & Grieger, K. (2010). Nature and nanotechnology: Science,ideology and policy. Int J of Emerging Tech & Society, 8 (1), 5-23.

Williams, R. A., Kulinowski, K. M., White, R., & Louis, G. (2010). Risk characterization for nanotechnology. Risk Analysis, 30 (1), 144-155.

Yimin, Li (2011). Nano scale advances in catalysis and energy applications . Web.

Zhao, J (2009). Turning to nanotechnology for pollution control: Applications of nanoparticles . Web.

  • Chicago (A-D)
  • Chicago (N-B)

IvyPanda. (2022, April 28). Nanotechnology: Applications and Implications. https://ivypanda.com/essays/nanotechnology/

"Nanotechnology: Applications and Implications." IvyPanda , 28 Apr. 2022, ivypanda.com/essays/nanotechnology/.

IvyPanda . (2022) 'Nanotechnology: Applications and Implications'. 28 April.

IvyPanda . 2022. "Nanotechnology: Applications and Implications." April 28, 2022. https://ivypanda.com/essays/nanotechnology/.

1. IvyPanda . "Nanotechnology: Applications and Implications." April 28, 2022. https://ivypanda.com/essays/nanotechnology/.

Bibliography

IvyPanda . "Nanotechnology: Applications and Implications." April 28, 2022. https://ivypanda.com/essays/nanotechnology/.

  • Single-Walled Nanotubes and Multi-Walled Nanotubes
  • Nanotrchnolody: Regulation of Nano-Sized Materials
  • Nano-Particles in the Current World
  • Nanotechnology: Principles and Benefit
  • Nanotechnology in the Food Industry
  • Nanotechnologies in Medical Diagnosis and Treatment
  • Nanotechnology in the US Analysis
  • Nanoscale Silver and Stem Cell Research
  • Nanotechnology in Regenerative Medicine: Scaffold and Tissue Engineering
  • Nanomaterials for Bone Repair and Regeneration
  • Dialysis Water Treatment System
  • Wind Power Exploitation to Generate Electricity
  • Nuclear Power Exploitation to Generate Electricity
  • How Does Magnetic Train Works
  • Fossil Fuel, Nuclear Energy, and Alternative Power Sources

Nanotechnology

Nanotechnology is the study and manipulation of individual atoms and molecules.

Biology, Health, Chemistry, Engineering, Physics

Loading ...

Nanotechnology involves the understanding and control of matter at the nanometer -scale. The so-called nanoscale deals with dimensions between approximately 1 and 100 nanometers .

A nanometer is an extremely small unit of length—a billionth (10 - 9) of a meter. Just how small is a nanometer (nm)?

On the nanometer-scale, materials may exhibit unusual properties. When you change the size of a particle , it can change color, for example. That’s because in nanometer-scale particles, the arrangement of atoms reflects light differently. Gold can appear dark red or purple, while silver can appear yellowish or amber -colored.

Nanotechnology can increase the surface area of a material. This allows more atoms to interact with other materials. An increased surface area is one of the chief reasons nanometer-scale materials can be stronger, more durable , and more conductive than their larger-scale (called bulk) counterparts.

Nanotechnology is not microscopy. "Nanotechnology is not simply working at ever smaller dimensions," the U.S.-based National Nanotechnology Initiative says. "Rather, working at the nanoscale enables scientists to utilize the unique physical, chemical, mechanical, and optical properties of materials that naturally occur at that scale."

Scientists study these properties for a range of uses, from altering consumer products such as clothes to revolutionizing medicine and tackling environmental issues.

Classifying Nanomaterials

There are different types of nanomaterials, and different ways to classify them.

Natural nanomaterials, as the name suggests, are those that occur naturally in the world. These include particles that make up volcanic ash , smoke, and even some molecules in our bodies, such as the hemoglobin in our blood. The brilliant colors of a peacock’s feathers are the result of spacing between nanometer-scale structures on their surface.

Artificial nanomaterials are those that occur from objects or processes created by people. Examples include exhaust from fossil fuel burning engines and some forms of pollution . But while some of these just happen to be nanomaterials—vehicle exhaust, for instance, was not developed as one—scientists and engineers are working to create them for use in industries from manufacturing to medicine. These are called intentionally produced nanomaterials.

Fullerenes and Nanoparticles

One way to classify nanomaterials is between fullerenes and nanoparticles. This classification includes both naturally occurring and artificial nanomaterials.

Fullerenes are allotropes of carbon. Allotropes are different molecular forms of the same element. The most familiar carbon allotropes are probably diamond and graphite , a type of coal .

Fullerenes are atom-thick sheets of another carbon allotrope, graphene , rolled into spheres or tubes.

The most familiar type of spherical fullerene is probably the buckminsterfullerene, nicknamed the buckyball . Buckyballs are nanometer-sized carbon molecules shaped like soccer balls—tightly bonded hexagons and pentagons .

Buckyballs are very stable—able to withstand extreme temperatures and pressure. For this reason, buckyballs are able to exist in extremely harsh environments, such as outer space. In fact, buckyballs are the largest molecules ever discovered in space, detected around planetary nebula in 2010.

Buckyballs’ cage-like structure seems to protect any atom or molecule trapped within it. Many researchers are experimenting with "impregnating" buckyballs with elements, such as helium. These impregnated buckyballs may make excellent chemical "tracers," meaning scientists could follow them as they wind through a system. For example, scientists could track water pollution kilometers away from where it entered a river, lake, or ocean.

Tubular fullerenes are called nanotubes . Thanks to the way carbon atoms bond to each other, carbon nanotubes are remarkably strong and flexible. Carbon nanotubes are harder than diamond and more flexible than rubber.

Carbon nanotubes hold great potential for science and technology. The U.S. space agency NASA, for example, is experimenting with carbon nanotubes to produce "blacker than black" coloration on satellites . This would reduce reflection, so data collected by the satellite are not "polluted" by light.

Nanoparticles

Nanoparticles can include carbon, like fullerenes, as well as nanometer-scale versions of many other elements, such as gold, silicon, and titanium. Quantum dots , a type of nanoparticle, are semiconductors made of different elements, including cadmium and sulfur. Quantum dots have unusual fluorescent capabilities. Scientists and engineers have experimented with using quantum dots in everything from photovoltaic cells (used for solar power) to fabric dye.

The properties of nanoparticles have been important in the study of nanomedicine. One promising development in nanomedicine is the use of gold nanoparticles to fight lymphoma , a type of cancer that attacks cholesterol cells. Researchers have developed a nanoparticle that looks like a cholesterol cell, but with gold at its core. When this nanoparticle attaches to a lymphoma cell, it prevents the lymphoma from "feeding" off actual cholesterol cells, starving it to death.

Intentionally Produced Nanomaterials

There are four main types of intentionally produced nanomaterials: carbon-based, metal-based, dendrimers , and nanocomposites .

Carbon-based nanomaterials

Carbon-based nanomaterials are intentionally produced fullerenes. These include carbon nanotubes and buckyballs.

Carbon nanotubes are often produced using a process called carbon assisted vapor deposition. (This is the process NASA uses to create its "blacker than black" satellite color.) In this process, scientists establish a substrate , or base material, where the nanotubes grow. Silicon is a common substrate. Then, a catalyst helps the chemical reaction that grows the nanotubes. Iron is a common catalyst. Finally, the process requires a heated gas, blown over the substrate and catalyst. The gas contains the carbon that grows into nanotubes.

Metal-based nanomaterials

Metal-based nanomaterials include gold nanoparticles and quantum dots.

Quantum dots are synthesized using different methods. In one method, small crystals of two different elements are formed under high temperatures. By controlling the temperature and other conditions, the size of the nanometer-scale crystals can be carefully controlled. The size is what determines the fluorescent color. These nanocrystals are quantum dots—tiny semiconductors—suspended in a solution.

Dendrimers are complex nanoparticles built from linked, branched units. Each dendrimer has three sections: a core, an inner shell, and an outer shell. In addition, each dendrimer has branched ends. Each part of a dendrimer—its core, inner shell, outer shell, and branched ends—can be designed to perform a specific chemical function.

Dendrimers can be fabricated either from the core outward (divergent method) or from the outer shell inward (convergent method).

Like buckyballs and some other nanomaterials, dendrimers have strong, cage-like cavities in their structure. Scientists and researchers are experimenting with dendrimers as multifunctional drug-delivery methods. A single dendrimer, for example, may deliver a drug to a specific cell, and also trace that drug's impact on the surrounding tissue .

Nanocomposites

Nanocomposites combine nanomaterials with other nanomaterials, or with larger, bulk materials. There are three main types of nanocomposites: nano ceramic matrix composites ( NCMCs ), metal matrix composites ( MMCs ), and polymer matrix composites (PMCs).

NCMCs, sometimes called nanoclays , are often used to coat packing materials. They strengthen the material’s heat resistance and flame- retardant properties.

MMCs are stronger and lighter than bulk metals. MMCs may be used to reduce heat in computer " server farms" or build vehicles light enough to airlift.

Industrial plastics are often composed of PMCs. One promising area of nanomedical research is creating PMC "tissue scaffolding ." Tissue scaffolds are nanostructures that provide a frame around which tissue, such as an organ or skin, can be grown. This could revolutionize the treatment of burn injuries and organ loss.

Nanomanufacturing  

Nanotech equipment

Scientists and engineers working at the nanometer-scale need special microscopes. The atomic force microscope ( AFM ) and the scanning tunneling microscope ( STM ) are essential in the study of nanotechnology. These powerful tools allow scientists and engineers to see and manipulate individual atoms.

AFMs use a very small probe —a cantilever with a tiny tip—to scan a nanostructure. The tip is only nanometers in diameter. As the tip is brought close to the sample being examined, the cantilever moves because of the atomic forces between the tip and the surface of the sample.

With STMs, an electronic signal is passed between the microscope’s tip—formed by one single atom—and the surface of the sample being scanned. The tip moves up and down to keep both the signal and the distance from the sample constant.

AFMs and STMs allow researchers to create an image of an individual atom or molecule that looks just like a topographic map . Using an AFM’s or STM’s sensitive tip, researchers can also pick up and move atoms and molecules like tiny building blocks.

Nanomanufacturing

There are two ways to build materials on the nanometer-scale: top-down or bottom-up.

Top-down nanomanufacturing involves carving bulk materials to create features with nanometer-scale dimensions. For decades, the process used to produce computer chips has been top-down. Producers work to increase the speed and efficiency of each "generation" of microchip . The manufacture of graphene-based (as opposed to silicon-based) microchips may revolutionize the industry.

Bottom-up nanomanufacturing builds products atom-by-atom or molecule-by-molecule. Experimenting with quantum dots and other nanomaterials, tech companies are starting to develop transistors and other electronic devices using individual molecules. These atom-thick transistors may mark the future development of the microchip industry.

History of Nanotechnology

U.S. physicist Richard Feynman is considered the father of nanotechnology. He introduced the ideas and concepts behind nanotech in a 1959 talk titled "There’s Plenty of Room at the Bottom." Feynman did not use the term "nanotechnology," but described a process in which scientists would be able to manipulate and control individual atoms and molecules.

Modern nanotechnology truly began in 1981, when the scanning tunneling microscope allowed scientists and engineers to see and manipulate individual atoms. IBM scientists Gerd Binnig and Heinrich Rohrer won the 1986 Nobel Prize in Physics for inventing the scanning tunneling microscope. The Binnig and Rohrer Nanotechnology Center in Zurich, Switzerland, continues to build on the work of these pioneering scientists by conducting research and developing new applications for nanotechnology.

The iconic example of the development of nanotechnology was an effort led by Don Eigler at IBM to spell out "IBM" using 35 individual atoms of xenon.

By the end of the 20th century, many companies and governments were investing in nanotechnology. Major nanotech discoveries, such as carbon nanotubes, were made throughout the 1990s. By the early 2000s, nanomaterials were being used in consumer products from sports equipment to digital cameras.

Modern nanotechnology may be quite new, but nanometer-scale materials have been used for centuries. 

As early as the 4th century, Roman artists had discovered that adding gold and silver to glass created a startling effect: The glass appeared slate green when lit from the outside, but glowed red when lit from within. Nanoparticles of gold and silver were suspended in the glass solution, coloring it. The most famous surviving example of this technique is a ceremonial vessel , the Lycurgus Cup.

Artists from China, western Asia, and Europe were also using nanoparticles of silver and copper, this time in pottery glazes. This gave a distinctive luster to ceramics such as tiles and bowls.

In 2006, modern microscopy revealed the technology of Damascus steel , a metal used in South Asia and the Middle East until the technique was lost in the 18th century—carbon nanotubes. Swords made with Damascus steel are legendary for their strength, durability, and ability to maintain a very sharp edge.

One of the most well-known examples of premodern use of nanomaterials is in European medieval stained-glass windows. Like the Romans before them, medieval artisans knew that by putting varying, small amounts of gold and silver in glass, they could produce bright reds and yellows.

Nanotech and the Environment

Many governments, scientists, and engineers are researching the potential of nanotechnology to bring affordable, high-tech, and energy-efficient products to millions of people around the world. Nanotechnology has improved the design of products such as light bulbs, paints, computer screens, and fuels.

Nanotechnology is helping inform the development of alternative energy sources, such as solar and wind power. Solar cells, for instance, turn sunlight into electric currents . Nanotechnology could change the way solar cells are used, making them more efficient and affordable.

Solar cells, also called photovoltaic cells, are usually assembled as a series of large, flat panels. These solar panels are big and bulky. They are also expensive and often difficult to install. Using nanotechnology, scientists and engineers have been able to experiment with print-like development processes, which reduces manufacturing costs. Some experimental solar panels have been made in flexible rolls rather than rigid panels. In the future, panels might even be "painted" with photovoltaic technology.

The bulky, heavy blades on wind turbines may also benefit from nanotech. An epoxy containing carbon nanotubes is being used to make turbine blades that are longer, stronger, and lighter. Other nanotech innovations may include a coating to reduce ice buildup.

Nanotech is already helping increase the energy-efficiency of products. One of the United Kingdom's biggest bus operators, for instance, has been using a nano-fuel additive for close to a decade. Engineers mix a tiny amount of the additive with diesel fuel, and the cerium-oxide nanoparticles help the fuel burn more cleanly and efficiently. Use of the additive has achieved a 5 percent annual reduction in fuel consumption and emissions .

Access to clean water has become a problem in many parts of the world. Nanomaterials may be a tiny solution to this large problem.

Nanomaterials can strip water of toxic metals and organic molecules. For example, researchers have discovered that nanometer-scale specks of rust are magnetic, which can help remove dangerous chemicals from water. Other engineers are developing nanostructured filters that can remove viruses from water.

Researchers are also experimenting with using nanotechnology to safely, affordably, and efficiently turn saltwater into freshwater, a process called desalination . In one experiment, nano-sized electrodes are being used to reduce the cost and energy requirements of removing salts from water.

Oil Spill Clean-Up

Scientists and engineers are experimenting with nanotechnology to help isolate and remove oil spilled from offshore oil platforms and container ships.

One method uses nanoparticles' unique magnetic properties to help isolate oil. Oil itself is not magnetic, but when mixed with water-resistant iron nanoparticles, it can be magnetically separated from seawater. The nanoparticles can later be removed so the oil can be used.

Another method involves the use of a nanofabric "towel" woven from nanowires. These towels can absorb 20 times their weight in oil.

Nanotech and People

Hundreds of consumer products are already benefiting from nanotechnology. You may be wearing, eating, or breathing nanoparticles right now! 

Scientists and engineers are using nanotechnology to enhance clothing. By coating fabrics with a thin layer of zinc oxide nanoparticles, for instance, manufacturers can create clothes that give better protection from ultraviolet (UV) radiation , like that from the sun. Some clothes have nanoparticles in the form of little hairs or whiskers that help repel water and other materials, making fabric more stain-resistant.

Some researchers are experimenting with nanotechnology for "personal climate control." Nanofiber jackets allow the wearer to control the jacket’s warmth using a small set of batteries.

Many cosmetic products contain nanoparticles. Nanometer-scale materials in these products provide greater clarity , coverage, cleansing, or absorption. For instance, the nanoparticles used in sunscreen (titanium dioxide and zinc oxide) provide reliable, extensive protection from harmful UV radiation. These nanomaterials offer better light reflection for a longer time period.

Nanotechnology may also provide better "delivery systems" for cosmetic ingredients. Nanomaterials may be able to penetrate a skin’s cell membranes to augment the cell’s features, such as elasticity or moisture.

Nanotech is revolutionizing the sports world. Nanometer-scale additives can make sporting equipment lightweight, stiff, and durable.

Carbon nanotubes, for example, are used to make bicycle frames and tennis rackets lighter, thinner, and more resilient . Nanotubes give golf clubs and hockey sticks a more powerful and accurate drive.

Carbon nanotubes embedded in epoxy coatings make kayaks faster and more stable in the water. A similar epoxy keeps tennis balls bouncy.

The food industry is using nanomaterials in both the packaging and agricultural sectors. Clay nanocomposites provide an impenetrable barrier to gases such as oxygen or carbon dioxide in lightweight bottles, cartons, and packaging films. Silver nanoparticles, embedded in the plastic of storage containers, kill bacteria .

Engineers and chemists use nanotechnology to adapt the texture and flavor of foods. Nanomaterials’ greater surface area may improve the "spreadability" of foods such as mayonnaise, for instance. 

Nanotech engineers have isolated and studied the way our taste buds perceive flavor. By targeting individual cells on a taste bud, nanomaterials can enhance the sweetness or saltiness of a particular food. A chemical nicknamed "bitter blocker," for instance, can trick the tongue into not tasting the naturally bitter taste of many foods.

Electronics

Nanotechnology has revolutionized the realm of electronics. It provides faster and more portable systems that can manage and store larger and larger amounts of data.

Nanotech has improved display screens on electronic devices. This involves reducing power consumption while decreasing the weight and thickness of the screens.

Nanotechnology has allowed glass to be more consumer friendly. One glass uses nanomaterials to clean itself, for example. As ultraviolet light hits the glass, nanoparticles become energized and begin to break down and loosen organic molecules—dirt—on the glass. Rain cleanly washes the dirt away. Similar technology could be applied to touch-screen devices to resist sweat.

Nanomedicine

Nanotechnology can help medical tools and procedures be more personalized, portable, cheaper, safer, and easier to administer . Silver nanoparticles incorporated into bandages, for example, smother and kill harmful microbes . This can be especially useful in healing burns.

Nanotech is also furthering advances in disease treatments. Researchers are developing ways to use nanoparticles to deliver medications directly to specific cells. This is especially promising for the treatment of cancer, because chemotherapy and radiation treatments can damage healthy as well as diseased tissue.

Dendrimers, nanomaterials with multiple branches, may improve the speed and efficiency of drug delivery. Researchers have experimented with dendrimers that deliver drugs that slow the spread of cerebral palsy -like symptoms in rabbits, for example.

The list goes on. Fullerenes can be manipulated to have anti- inflammatory properties to slow or even stop allergic reactions. Nanomaterials may reduce bleeding and speed coagulation . Diagnostic testing and imaging can be improved by arranging nanoparticles to detect and attach themselves to specific proteins or diseased cells.

Grey Goo and Other Concerns

Unregulated pursuit of nanotechnology is controversial. In 1986, Eric Drexler wrote a book called Engines of Creation , which painted a vision of the future of nanotech, but also warned of the dangers. The book’s apocalyptic vision included self-replicating nanometer-scale robots that malfunctioned , duplicating themselves a trillion times over. These nano-bots rapidly consumed the entire world as they pulled carbon from the environment to replicate themselves.

Drexler’s vision is nicknamed the "grey goo" scenario. Many experts think concerns like "grey goo" are probably premature . Even so, many scientists and engineers continue to voice their concerns about nanotech’s future.

Nanopollution is the nickname given to the waste created by the manufacturing of nanomaterials. Some forms of nanopollution are toxic, and environmentalists are concerned about the bioaccumulation , or buildup, of these toxic nanomaterials in microbes, plants, and animals.

Nanotoxicology is the study of toxic nanoparticles, particularly their interaction with the human body. Nanotoxicology is an important research field, as nanomaterials can enter the body both intentionally and unintentionally. 

“Research is needed,” writes the U.S. Environmental Protection Agency, “to determine whether exposure to manufactured nanomaterials can lead to adverse effects to the heart, lungs, skin; alter reproductive performance; or contribute to cancer.”

Another concern about nanotechnology is the price. Nanotech is an expensive area of research, and largely confined to developed nations with strong infrastructure . Many social scientists are concerned that underdeveloped countries will fall further behind as they cannot afford to develop a nanotechnology industry.

Investing in Nanotech

There are many ways of assessing investment in nanotechnology: government funding of research, venture capital funding of start-ups, or the number of new nanotech companies. These nations have made significant investment in nanotechnology.

  • United States

Nano-Cartography

In 2010, researchers at IBM used nanotechnology to create a 3-D relief map of the world . . . 1/1000 the size of a grain of salt. Researchers used a sophisticated silicon tip in their microscope to carve into a glass substrate.

Nano-Graffiti

In 1989, IBM researchers spelled out their company’s logo using 35 xenon atoms. Twenty years later, researchers at Stanford University spelled out “SU” using subatomic particles. The letters were so small they could be used to print the 32-volume Encyclopedia Britannica 2,000 times and the contents would fit on the head of a pin.

Nanoscale Perspective

  • Your fingernails grow about one nanometer every second.
  • When a seagull lands on an aircraft carrier, the carrier sinks about one nanometer.
  • A man’s beard grows about a nanometer between the time he picks up a razor and lifts it to his face.

Nano-Soccer

Nanosoccer is an event where computer-driven “nanobots” the size of dust mites challenge one another on fields no bigger than a grain of rice. Often sponsored by government laboratories, nanosoccer teams from all over the world compete in events such as the “RoboCup.” See the rules and results of the 2009 nanosoccer tournament here .

Articles & Profiles

Media credits.

The audio, illustrations, photos, and videos are credited beneath the media asset, except for promotional images, which generally link to another page that contains the media credit. The Rights Holder for media is the person or group credited.

Expert Reviewers

Last updated.

October 19, 2023

User Permissions

For information on user permissions, please read our Terms of Service. If you have questions about how to cite anything on our website in your project or classroom presentation, please contact your teacher. They will best know the preferred format. When you reach out to them, you will need the page title, URL, and the date you accessed the resource.

If a media asset is downloadable, a download button appears in the corner of the media viewer. If no button appears, you cannot download or save the media.

Text on this page is printable and can be used according to our Terms of Service .

Interactives

Any interactives on this page can only be played while you are visiting our website. You cannot download interactives.

Related Resources

Logo

Essay on Nanotechnology

Students are often asked to write an essay on Nanotechnology in their schools and colleges. And if you’re also looking for the same, we have created 100-word, 250-word, and 500-word essays on the topic.

Let’s take a look…

100 Words Essay on Nanotechnology

Introduction.

Nanotechnology is a field of science that deals with tiny, almost invisible particles. It’s about manipulating matter at an incredibly small scale, smaller than a human hair!

What is Nanotechnology?

Nanotechnology involves studying and applying materials at the nanoscale, which is about 1 to 100 nanometers. A nanometer is a billionth of a meter. It’s used in many fields like medicine, electronics, and energy production.

Uses of Nanotechnology

Nanotechnology has many uses. In medicine, it’s used to deliver drugs directly to cancer cells. In electronics, it helps make devices smaller but more powerful. In energy production, it’s used to improve solar panels.

Future of Nanotechnology

The future of nanotechnology is exciting. It could lead to new treatments for diseases, more efficient energy sources, and even tiny robots that can repair our bodies from the inside. It’s a field full of potential!

250 Words Essay on Nanotechnology

Introduction to nanotechnology.

Nanotechnology, the science of the extremely small, operates at the nanoscale, typically between 1 and 100 nanometers. This technology harnesses the unique properties and behaviors of matter at this scale to create innovative solutions and applications.

The Science Behind Nanotechnology

Nanotechnology is rooted in quantum physics. At the nanoscale, the physical and chemical properties of materials can differ significantly from those at a larger scale. For instance, materials can exhibit different conductivity, reactivity, or magnetic behavior, which nanotechnology exploits for various applications.

Applications of Nanotechnology

Nanotechnology has a broad spectrum of applications. In healthcare, it’s used in targeted drug delivery, regenerative medicine, and diagnostics. In electronics, it has enabled the development of nanoscale transistors, leading to faster, more powerful computing devices. Environmental applications include the use of nanomaterials for pollution control and renewable energy solutions.

Potential and Challenges

The potential of nanotechnology is vast. However, it also poses challenges. For instance, the environmental, health, and safety impacts of nanomaterials are not fully understood. Additionally, ethical considerations arise in areas like surveillance and privacy due to the technology’s potential misuse.

Nanotechnology, with its promise and challenges, is shaping our future. As we continue to explore the nanoscale world, we must also address the ethical and safety issues it presents, ensuring a balanced and responsible approach to this transformative technology.

500 Words Essay on Nanotechnology

Nanotechnology, the science of the extremely small, has been making waves in various fields, from medicine to energy production. It involves the manipulation of matter on an atomic, molecular, and supramolecular scale. The prefix ‘nano’ denotes one billionth of a meter, signifying the minuscule scale on which nanotechnologists work.

The Evolution of Nanotechnology

The concept of nanotechnology was first introduced by physicist Richard Feynman in a talk titled “There’s Plenty of Room at the Bottom” in 1959. However, it wasn’t until the development of the scanning tunneling microscope in the 1980s that scientists could observe and manipulate individual atoms, propelling the field into reality.

Nanotechnology’s most significant promise lies in its potential applications. In medicine, nanoparticles are used for targeted drug delivery, reducing side effects and improving treatment efficacy. In electronics, nanotechnology has led to the development of smaller, faster, and more energy-efficient devices.

In the energy sector, nanotechnology is revolutionizing solar cells, making them more efficient and cost-effective. Moreover, nanotechnology’s role in environmental remediation, such as the removal of pollutants and toxins, is emerging as a promising field.

The Ethical and Safety Considerations

Despite its promising applications, nanotechnology also raises ethical and safety concerns. The same properties that make nanoparticles useful in medicine and industry may also pose potential risks to human health and the environment. The long-term effects of exposure to nanoparticles are still not fully understood, necessitating further research and regulation.

The Future of Nanotechnology

The future of nanotechnology is brimming with possibilities. Advancements in nanorobotics could revolutionize medicine, allowing for precise surgeries and targeted treatments. In the realm of quantum computing, nanotechnology could help overcome current limitations, ushering in a new era of computational power.

However, the future also calls for a balance between technological advancement and ethical considerations. As we continue to explore the nano world, it is crucial to develop guidelines for safe and responsible use.

Nanotechnology, while still a relatively young field, holds immense potential to transform various sectors of society. Its applications are vast and continually expanding, offering solutions to some of the world’s most pressing problems. Yet, as we push the boundaries of the minuscule, we must also ensure that we navigate the ethical and safety considerations with care. The future of nanotechnology is indeed promising, but it requires a thoughtful and balanced approach to realize its full potential.

That’s it! I hope the essay helped you.

If you’re looking for more, here are essays on other interesting topics:

  • Essay on Mobile Technology
  • Essay on Misuse of Technology
  • Essay on Impact of Technology on Jobs

Apart from these, you can look at all the essays by clicking here .

Happy studying!

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

Essays on Nanotechnology

Faq about nanotechnology.

Home / Essay Samples / Information Science and Technology / Modern Technology / Nanotechnology

Essays on Nanotechnology

Nanotechnology and its remediation.

Nanotechnology is a rapidly advancing field that involves manipulating matter at the nanoscale level, typically within the range of 1 to 100 nanometers. At this size, materials exhibit unique properties and behaviors that can be harnessed for various applications. This essay explores the fascinating world...

Exploring Nanotechnology as a Promising Career Path

Nanotechnology is a rapidly growing and interdisciplinary field that offers exciting career opportunities for individuals interested in cutting-edge research and innovation. This essay explores the potential of nanotechnology as a career choice, the skills required, and the diverse applications of nanotechnology in various industries. Embarking...

Jeroen Van Den Hoven: Nanotechnology and Privacy

Jeroen van den Hoven is a prominent philosopher and ethicist known for his work on the ethical implications of emerging technologies, including nanotechnology. In particular, he has explored the complex relationship between nanotechnology and privacy, raising thought-provoking questions about the potential threats and safeguards associated...

Trying to find an excellent essay sample but no results?

Don’t waste your time and get a professional writer to help!

You may also like

  • Digital Era
  • Cyber Security
  • Mobile Phone
  • Effects of Watching too much TV
  • Information Technology
  • Children and Technology
  • Data Mining
  • Robots Essays
  • Artificial Intelligence Essays
  • Cloud Computing Essays
  • Bitcoin Essays
  • Blockchain Essays
  • Encryption Essays
  • Google Glass Essays
  • Text Messaging Essays
  • 3D Printing Essays
  • Net Neutrality Essays

samplius.com uses cookies to offer you the best service possible.By continuing we’ll assume you board with our cookie policy .--> -->