• Skip to main content

Update your browser for the best possible experience

As of January 1st, 2020, Internet Explorer (versions 11 and below) is no longer supported by Evolve. To get the best possible experience using Evolve, we recommend that you use another web browser. See the browsers we support. .

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • HHS Author Manuscripts

Logo of nihpa

Case 6–2020: A 34-Year-Old Woman with Hyperglycemia

Presentation of case.

Dr. Max C. Petersen (Medicine): A 34-year-old woman was evaluated in the diabetes clinic of this hospital for hyperglycemia.

Eleven years before this presentation, the blood glucose level was 126 mg per deciliter (7.0 mmol per liter) on routine laboratory evaluation, which was performed as part of an annual well visit. The patient could not recall whether she had been fasting at the time the test had been performed. One year later, the fasting blood glucose level was 112 mg per deciliter (6.2 mmol per liter; reference range, <100 mg per deciliter [<5.6 mmol per liter]).

Nine years before this presentation, a randomly obtained blood glucose level was 217 mg per deciliter (12.0 mmol per liter), and the patient reported polyuria. At that time, the glycated hemoglobin level was 5.8% (reference range, 4.3 to 5.6); the hemoglobin level was normal. One year later, the glycated hemoglobin level was 5.9%. The height was 165.1 cm, the weight 72.6 kg, and the body-mass index (BMI; the weight in kilograms divided by the square of the height in meters) 26.6. The patient received a diagnosis of prediabetes and was referred to a nutritionist. She made changes to her diet and lost 4.5 kg of body weight over a 6-month period; the glycated hemoglobin level was 5.5%.

Six years before this presentation, the patient became pregnant with her first child. Her prepregnancy BMI was 24.5. At 26 weeks of gestation, the result of a 1-hour oral glucose challenge test (i.e., the blood glucose level obtained 1 hour after the oral administration of a 50-g glucose load in the nonfasting state) was 186 mg per deciliter (10.3 mmol per liter; reference range, <140 mg per deciliter [<7.8 mmol per liter]). She declined a 3-hour oral glucose tolerance test; a presumptive diagnosis of gestational diabetes was made. She was asked to follow a meal plan for gestational diabetes and was treated with insulin during the pregnancy. Serial ultrasound examinations for fetal growth and monitoring were performed. At 34 weeks of gestation, the fetal abdominal circumference was in the 76th percentile for gestational age. Polyhydramnios developed at 37 weeks of gestation. The child was born at 39 weeks 3 days of gestation, weighed 3.9 kg at birth, and had hypoglycemia after birth, which subsequently resolved. Six weeks post partum, the patient’s fasting blood glucose level was 120 mg per deciliter (6.7 mmol per liter), and the result of a 2-hour oral glucose tolerance test (i.e., the blood glucose level obtained 2 hours after the oral administration of a 75-g glucose load in the fasting state) was 131 mg per deciliter (7.3 mmol per liter; reference range, <140 mg per deciliter). Three months post partum, the glycated hemoglobin level was 6.1%. Lifestyle modification for diabetes prevention was recommended.

Four and a half years before this presentation, the patient became pregnant with her second child. Her prepregnancy BMI was 25.1. At 5 weeks of gestation, she had an elevated blood glucose level. Insulin therapy was started at 6 weeks of gestation, and episodes of hypoglycemia occurred during the pregnancy. Serial ultrasound examinations for fetal growth and monitoring were performed. At 28 weeks of gestation, the fetal abdominal circumference was in the 35th percentile for gestational age, and the amniotic fluid level was normal. Labor was induced at 38 weeks of gestation; the child weighed 2.6 kg at birth. Neonatal blood glucose levels were reported as stable after birth. Six weeks post partum, the patient’s fasting blood glucose level was 133 mg per deciliter (7.4 mmol per liter), and the result of a 2-hour oral glucose tolerance test was 236 mg per deciliter (13.1 mmol per liter). The patient received a diagnosis of type 2 diabetes mellitus; lifestyle modification was recommended. Three months post partum, the glycated hemoglobin level was 5.9% and the BMI was 30.0. Over the next 2 years, she followed a low-carbohydrate diet and regular exercise plan and self-monitored the blood glucose level.

Two years before this presentation, the patient became pregnant with her third child. Blood glucose levels were again elevated, and insulin therapy was started early in gestation. She had episodes of hypoglycemia that led to adjustment of her insulin regimen. The child was born at 38 weeks 5 days of gestation, weighed 3.0 kg at birth, and had hypoglycemia that resolved 48 hours after birth. After the birth of her third child, the patient started to receive metformin, which had no effect on the glycated hemoglobin level, despite adjustment of the therapy to the maximal dose.

One year before this presentation, the patient became pregnant with her fourth child. Insulin therapy was again started early in gestation. The patient reported that episodes of hypoglycemia occurred. Polyhydramnios developed. The child was born at 38 weeks 6 days of gestation and weighed 3.5 kg. The patient sought care at the diabetes clinic of this hospital for clarification of her diagnosis.

The patient reported following a low-carbohydrate diet and exercising 5 days per week. There was no fatigue, change in appetite, change in vision, chest pain, shortness of breath, polydipsia, or polyuria. There was no history of anemia, pancreatitis, hirsutism, proximal muscle weakness, easy bruising, headache, sweating, tachycardia, gallstones, or diarrhea. Her menstrual periods were normal. She had not noticed any changes in her facial features or the size of her hands or feet.

The patient had a history of acne and low-back pain. Her only medication was metformin. She had no known medication allergies. She lived with her husband and four children in a suburban community in New England and worked as an administrator. She did not smoke tobacco or use illicit drugs, and she rarely drank alcohol. She identified as non-Hispanic white. Both of her grandmothers had type 2 diabetes mellitus. Her father had hypertension, was overweight, and had received a diagnosis of type 2 diabetes at 50 years of age. Her mother was not overweight and had received a diagnosis of type 2 diabetes at 48 years of age. The patient had two sisters, neither of whom had a history of diabetes or gestational diabetes. There was no family history of hemochromatosis.

On examination, the patient appeared well. The blood pressure was 126/76 mm Hg, and the heart rate 76 beats per minute. The BMI was 25.4. The physical examination was normal. The glycated hemoglobin level was 6.2%.

A diagnostic test was performed.

DIFFERENTIAL DIAGNOSIS

Dr. Miriam S. Udler: I am aware of the diagnosis in this case and participated in the care of this patient. This healthy 34-year-old woman, who had a BMI just above the upper limit of the normal range, presented with a history of hyperglycemia of varying degrees since 24 years of age. When she was not pregnant, she was treated with lifestyle measures as well as metformin therapy for a short period, and she maintained a well-controlled blood glucose level. In thinking about this case, it is helpful to characterize the extent of the hyperglycemia and then to consider its possible causes.

CHARACTERIZING HYPERGLYCEMIA

This patient’s hyperglycemia reached a threshold that was diagnostic of diabetes 1 on two occasions: when she was 25 years of age, she had a randomly obtained blood glucose level of 217 mg per deciliter with polyuria (with diabetes defined as a level of ≥200 mg per deciliter [≥11.1 mmol per liter] with symptoms), and when she was 30 years of age, she had on the same encounter a fasting blood glucose level of 133 mg per deciliter (with diabetes defined as a level of ≥126 mg per deciliter) and a result on a 2-hour oral glucose tolerance test of 236 mg per deciliter (with diabetes defined as a level of ≥200 mg per deciliter). On both of these occasions, her glycated hemoglobin level was in the prediabetes range (defined as 5.7 to 6.4%). In establishing the diagnosis of diabetes, the various blood glucose studies and glycated hemoglobin testing may provide discordant information because the tests have different sensitivities for this diagnosis, with glycated hemoglobin testing being the least sensitive. 2 Also, there are situations in which the glycated hemoglobin level can be inaccurate; for example, the patient may have recently received a blood transfusion or may have a condition that alters the life span of red cells, such as anemia, hemoglobinopathy, or pregnancy. 3 These conditions were not present in this patient at the time that the glycated hemoglobin measurements were obtained. In addition, since the glycated hemoglobin level reflects the average glucose level typically over a 3-month period, discordance with timed blood glucose measurements can occur if there has been a recent change in glycemic control. This patient had long-standing mild hyperglycemia but met criteria for diabetes on the basis of the blood glucose levels noted.

Type 1 and Type 2 Diabetes

Now that we have characterized the patient’s hyperglycemia as meeting criteria for diabetes, it is important to consider the possible types. More than 90% of adults with diabetes have type 2 diabetes, which is due to progressive loss of insulin secretion by beta cells that frequently occurs in the context of insulin resistance. This patient had received a diagnosis of type 2 diabetes; however, some patients with diabetes may be given a diagnosis of type 2 diabetes on the basis of not having features of type 1 diabetes, which is characterized by autoimmune destruction of the pancreatic beta cells that leads to rapid development of insulin dependence, with ketoacidosis often present at diagnosis.

Type 1 diabetes accounts for approximately 6% of all cases of diabetes in adults (≥18 years of age) in the United States, 4 and 80% of these cases are diagnosed before the patient is 20 years of age. 5 Since this patient’s diabetes was essentially nonprogressive over a period of at least 9 years, she most likely does not have type 1 diabetes. It is therefore not surprising that she had received a diagnosis of type 2 diabetes, but there are several other types of diabetes to consider, particularly since some features of her case do not fit with a typical case of type 2 diabetes, such as her age at diagnosis, the presence of hyperglycemia despite a nearly normal BMI, and the mild and nonprogressive nature of her disease over the course of many years.

Less Common Types of Diabetes

Latent autoimmune diabetes in adults (LADA) is a mild form of autoimmune diabetes that should be considered in this patient. However, there is controversy as to whether LADA truly represents an entity that is distinct from type 1 diabetes. 6 Both patients with type 1 diabetes and patients with LADA commonly have elevated levels of diabetes-associated autoantibodies; however, LADA has been defined by an older age at onset (typically >25 years) and slower progression to insulin dependence (over a period of >6 months). 7 This patient had not been tested for diabetes-associated autoantibodies. I ordered these tests to help evaluate for LADA, but this was not my leading diagnosis because of her young age at diagnosis and nonprogressive clinical course over a period of at least 9 years.

If the patient’s diabetes had been confined to pregnancy, we might consider gestational diabetes, but she had hyperglycemia outside of pregnancy. Several medications can cause hyperglycemia, including glucocorticoids, atypical antipsychotic agents, cancer immunotherapies, and some antiretroviral therapies and immunosuppressive agents used in transplantation. 8 However, this patient was not receiving any of these medications. Another cause of diabetes to consider is destruction of the pancreas due to, for example, cystic fibrosis, a tumor, or pancreatitis, but none of these were present. Secondary endocrine disorders — including excess cortisol production, excess growth hormone production, and pheochromocytoma — were considered to be unlikely in this patient on the basis of the history, review of symptoms, and physical examination.

Monogenic Diabetes

A final category to consider is monogenic diabetes, which is caused by alteration of a single gene. Types of monogenic diabetes include maturity-onset diabetes of the young (MODY), neonatal diabetes, and syndromic forms of diabetes. Monogenic diabetes accounts for 1 to 6% of cases of diabetes in children 9 and approximately 0.4% of cases in adults. 10 Neonatal diabetes is diagnosed typically within the first 6 months of life; syndromic forms of monogenic diabetes have other abnormal features, including particular organ dysfunction. Neither condition is applicable to this patient.

MODY is an autosomal dominant condition characterized by primary pancreatic beta-cell dysfunction that causes mild diabetes that is diagnosed during adolescence or early adulthood. As early as 1964, the nomenclature “maturity-onset diabetes of the young” was used to describe cases that resembled adult-onset type 2 diabetes in terms of the slow progression to insulin use (as compared with the rapid progression in type 1 diabetes) but occurred in relatively young patients. 11 Several genes cause distinct forms of MODY that have specific disease features that inform treatment, and thus MODY is a clinically important diagnosis. Most forms of MODY cause isolated abnormal glucose levels (in contrast to syndromic monogenic diabetes), a manifestation that has contributed to its frequent misdiagnosis as type 1 or type 2 diabetes. 12

Genetic Basis of MODY

Although at least 13 genes have been associated with MODY, 3 genes — GCK , which encodes glucokinase, and HNF1A and HNF4A , which encode hepatocyte nuclear factors 1A and 4A, respectively — account for most cases. MODY associated with GCK (known as GCK-MODY) is characterized by mild, nonprogressive hyperglycemia that is present since birth, whereas the forms of MODY associated with HNF1A and HNF4A (known as HNF1A-MODY and HNF4A-MODY, respectively) are characterized by the development of diabetes, typically in the early teen years or young adulthood, that is initially mild and then progresses such that affected patients may receive insulin before diagnosis.

In patients with GCK-MODY, genetic variants reduce the function of glucokinase, the enzyme in pancreatic beta cells that functions as a glucose sensor and controls the rate of entry of glucose into the glycolytic pathway. As a result, reduced sensitivity to glucose-induced insulin secretion causes asymptomatic mild fasting hyperglycemia, with an upward shift in the normal range of the fasting blood glucose level to 100 to 145 mg per deciliter (5.6 to 8.0 mmol per liter), and also causes an upward shift in postprandial blood glucose levels, but with tight regulation maintained ( Fig. 1 ). 13 This mild hyperglycemia is not thought to confer a predisposition to complications of diabetes, 14 is largely unaltered by treatment, 15 and does not necessitate treatment outside of pregnancy.

An external file that holds a picture, illustration, etc.
Object name is nihms-1692251-f0001.jpg

Key features suggesting maturity-onset diabetes of the young (MODY) in this patient were an age of less than 35 years at the diagnosis of diabetes, a strong family history of diabetes with an autosomal dominant pattern of inheritance, and hyperglycemia despite a close-to-normal body-mass index. None of these features is an absolute criterion. MODY is caused by single gene–mediated disruption of pancreatic beta-cell function. In MODY associated with the GCK gene (known as GCK-MODY), disrupted glucokinase function causes a mild upward shift in glucose levels through-out the day and does not necessitate treatment. 13 In the pedigree, circles represent female family members, squares male family members, blue family members affected by diabetes, and green unaffected family members. The arrow indicates the patient.

In contrast to GCK-MODY, the disorders HNF1A-MODY and HNF4A-MODY result in progressive hyperglycemia that eventually leads to treatment. 16 Initially, there may be a normal fasting glucose level and large spikes in postprandial glucose levels (to >80 mg per deciliter [>4.4 mmol per liter]). 17 Patients can often be treated with oral agents and discontinue insulin therapy started before the diagnosis of MODY. 18 Of note, patients with HNF1A-MODY or HNF4A-MODY are typically sensitive to treatment with sulfonylureas 19 but may also respond to glucagon-like peptide-1 receptor agonists. 20

This patient had received a diagnosis of diabetes before 35 years of age, had a family history of diabetes involving multiple generations, and was not obese. These features are suggestive of MODY but do not represent absolute criteria for the condition ( Fig. 1 ). 1 Negative testing for diabetes-associated autoantibodies would further increase the likelihood of MODY. There are methods to calculate a patient’s risk of having MODY associated with GCK , HNF1A , or HNF4A . 21 , 22 Using an online calculator ( www.diabetesgenes.org/mody-probability-calculator ), we estimate that the probability of this patient having MODY is at least 75.5%. Genetic testing would be needed to confirm this diagnosis, and in patients at an increased risk for MODY, multigene panel testing has been shown to be cost-effective. 23 , 24

DR. MIRIAM S. UDLER’S DIAGNOSIS

Maturity-onset diabetes of the young, most likely due to a GCK variant.

DIAGNOSTIC TESTING

Dr. Christina A. Austin-Tse: A diagnostic sequencing test of five genes associated with MODY was performed. One clinically significant variant was identified in the GCK gene (NM_000162.3): a c.787T→C transition resulting in the p.Ser263Pro missense change. Review of the literature and variant databases revealed that this variant had been previously identified in at least three patients with early-onset diabetes and had segregated with disease in at least three affected members of two families (GeneDx: personal communication). 25 , 26 Furthermore, the variant was rare in large population databases (occurring in 1 out of 128,844 European chromosomes in gnomAD 27 ), a feature consistent with a disease-causing role. Although the serine residue at position 263 was not highly conserved, multiple in vitro functional studies have shown that the p.Ser263Pro variant negatively affects the stability of the glucokinase enzyme. 26 , 28 – 30 As a result, this variant met criteria to be classified as “likely pathogenic.” 31 As mentioned previously, a diagnosis of GCK-MODY is consistent with this patient’s clinical features. On subsequent testing of additional family members, the same “likely pathogenic” variant was identified in the patient’s father and second child, both of whom had documented hyperglycemia.

DISCUSSION OF MANAGEMENT

Dr. Udler: In this patient, the diagnosis of GCK-MODY means that it is normal for her blood glucose level to be mildly elevated. She can stop taking metformin because discontinuation is not expected to substantially alter her glycated hemoglobin level 15 , 32 and because she is not at risk for complications of diabetes. 14 However, she should continue to maintain a healthy lifestyle. Although patients with GCK-MODY are not typically treated for hyperglycemia outside of pregnancy, they may need to be treated during pregnancy.

It is possible for a patient to have type 1 or type 2 diabetes in addition to MODY, so this patient should be screened for diabetes according to recommendations for the general population (e.g., in the event that she has a risk factor for diabetes, such as obesity). 1 Since the mild hyperglycemia associated with GCK-MODY is asymptomatic (and probably unrelated to the polyuria that this patient had described in the past), the development of symptoms of hyperglycemia, such as polyuria, polydipsia, or blurry vision, should prompt additional evaluation. In patients with GCK-MODY, the glycated hemoglobin level is typically below 7.5%, 33 so a value rising above that threshold or a sudden large increase in the glycated hemoglobin level could indicate concomitant diabetes from another cause, which would need to be evaluated and treated.

This patient’s family members are at risk for having the same GCK variant, with a 50% chance of offspring inheriting a variant from an affected parent. Since the hyperglycemia associated with GCK-MODY is present from birth, it is necessary to perform genetic testing only in family members with demonstrated hyperglycemia. I offered site-specific genetic testing to the patient’s parents and second child.

Dr. Meridale V. Baggett (Medicine): Dr. Powe, would you tell us how you would treat this patient during pregnancy?

Dr. Camille E. Powe: During the patient’s first pregnancy, routine screening led to a presumptive diagnosis of gestational diabetes, the most common cause of hyperglycemia in pregnancy. Hyperglycemia in pregnancy is associated with adverse pregnancy outcomes, 34 and treatment lowers the risk of such outcomes. 35 , 36 Two of the most common complications — fetal overgrowth (which can lead to birth injuries, shoulder dystocia, and an increased risk of cesarean delivery) and neonatal hypoglycemia — are thought to be the result of fetal hyperinsulinemia. 37 Maternal glucose is freely transported across the placenta, and excess glucose augments insulin secretion from the fetal pancreas. In fetal life, insulin is a potent growth factor, and neonates who have hyperinsulinemia in utero often continue to secrete excess insulin in the first few days of life. In the treatment of pregnant women with diabetes, we strive for strict blood sugar control (fasting blood glucose level, <95 mg per deciliter [<5.3 mmol per liter]; 2-hour postprandial blood glucose level, <120 mg per deciliter) to decrease the risk of these and other hyperglycemia-associated adverse pregnancy outcomes. 38 – 40

In the third trimester of the patient’s first pregnancy, obstetrical ultrasound examination revealed a fetal abdominal circumference in the 76th percentile for gestational age and polyhydramnios, signs of fetal exposure to maternal hyperglycemia. 40 – 42 Case series involving families with GCK-MODY have shown that the effect of maternal hyperglycemia on the fetus depends on whether the fetus inherits the pathogenic GCK variant. 43 – 48 Fetuses that do not inherit the maternal variant have overgrowth, presumably due to fetal hyperinsulinemia ( Fig. 2A ). In contrast, fetuses that inherit the variant do not have overgrowth and are born at a weight that is near the average for gestational age, despite maternal hyperglycemia, presumably because the variant results in decreased insulin secretion ( Fig. 2B ). Fetuses that inherit GCK-MODY from their fathers and have euglycemic mothers appear to be undergrown, most likely because their insulin secretion is lower than normal when they and their mothers are euglycemic ( Fig. 2D ). Because fetal overgrowth and polyhydramnios occurred during this patient’s first pregnancy and neonatal hypoglycemia developed after the birth, the patient’s first child is probably not affected by GCK-MODY.

An external file that holds a picture, illustration, etc.
Object name is nihms-1692251-f0002.jpg

Pathogenic variants that lead to GCK-MODY, when carried by a fetus, change the usual relationship of maternal hyperglycemia to fetal hyperinsulinemia and fetal overgrowth. GCK-MODY–affected fetuses have lower insulin secretion than unaffected fetuses in response to the same maternal blood glucose level. In a hyperglycemic mother carrying a fetus who is unaffected by GCK-MODY, excessive fetal growth is usually apparent (Panel A). Studies involving GCK-MODY–affected hyperglycemic mothers have shown that fetal growth is normal despite maternal hyperglycemia when a fetus has the maternal GCK variant (Panel B). The goal of treatment of maternal hyperglycemia when a fetus is unaffected by GCK-MODY is to establish euglycemia to normalize fetal insulin levels and growth (Panel C); whether this can be accomplished in the case of maternal GCK-MODY is controversial, given the genetically determined elevated maternal glycemic set point. In the context of maternal euglycemia, GCK-MODY–affected fetuses may be at risk for fetal growth restriction (Panel D).

In accordance with standard care for pregnant women with diabetes who do not meet glycemic targets after dietary modification, 38 , 39 the patient was treated with insulin during her pregnancies. In her second pregnancy, treatment was begun early, after hyperglycemia was detected in the first trimester. Because she had not yet received the diagnosis of GCK-MODY during any of her pregnancies, no consideration of this condition was given during her obstetrical treatment. Whether treatment affects the risk of hyperglycemia-associated adverse pregnancy outcomes in pregnant women with known GCK-MODY is controversial, with several case series showing that the birth weight percentile in unaffected neonates remains consistent regardless of whether the mother is treated with insulin. 44 , 45 Evidence suggests that it may be difficult to overcome a genetically determined glycemic set point in patients with GCK-MODY with the use of pharmacotherapy, 15 , 32 and affected patients may have symptoms of hypoglycemia when the blood glucose level is normal because of an enhanced counterregulatory response. 49 , 50 Still, to the extent that it is possible, it would be desirable to safely lower the blood glucose level in a woman with GCK-MODY who is pregnant with an unaffected fetus in order to decrease the risk of fetal overgrowth and other consequences of mildly elevated glucose levels ( Fig. 2C ). 46 , 47 , 51 In contrast, there is evidence that lowering the blood glucose level in a pregnant woman with GCK-MODY could lead to fetal growth restriction if the fetus is affected ( Fig. 2D ). 45 , 52 During this patient’s second pregnancy, she was treated with insulin beginning in the first trimester, and her daughter’s birth weight was near the 16th percentile for gestational age; this outcome is consistent with the daughter’s ultimate diagnosis of GCK-MODY.

Expert opinion suggests that, in pregnant women with GCK-MODY, insulin therapy should be deferred until fetal growth is assessed by means of ultrasound examination beginning in the late second trimester. If there is evidence of fetal overgrowth, the fetus is presumed to be unaffected by GCK-MODY and insulin therapy is initiated. 53 After I have counseled women with GCK-MODY on the potential risks and benefits of insulin treatment during pregnancy, I have sometimes used a strategy of treating hyperglycemia from early in pregnancy using modified glycemic targets that are less stringent than the targets typically used during pregnancy. This strategy attempts to balance the risk of growth restriction in an affected fetus (as well as maternal hypoglycemia) with the potential benefit of glucose-lowering therapy for an unaffected fetus.

Dr. Udler: The patient stopped taking metformin, and subsequent glycated hemoglobin levels remained unchanged, at 6.2%. Her father and 5-year-old daughter (second child) both tested positive for the same GCK variant. Her father had a BMI of 36 and a glycated hemoglobin level of 7.8%, so I counseled him that he most likely had type 2 diabetes in addition to GCK-MODY. He is currently being treated with metformin and lifestyle measures. The patient’s daughter now has a clear diagnosis to explain her hyperglycemia, which will help in preventing misdiagnosis of type 1 diabetes, given her young age, and will be important for the management of any future pregnancies. She will not need any medical follow-up for GCK-MODY until she is considering pregnancy.

FINAL DIAGNOSIS

Maturity-onset diabetes of the young due to a GCK variant.

Acknowledgments

We thank Dr. Andrew Hattersley and Dr. Sarah Bernstein for helpful comments on an earlier draft of the manuscript.

This case was presented at the Medical Case Conference.

No potential conflict of interest relevant to this article was reported.

Disclosure forms provided by the authors are available with the full text of this article at NEJM.org .

hesi case study diabetes type 1

Provide details on what you need help with along with a budget and time limit. Questions are posted anonymously and can be made 100% private.

hesi case study diabetes type 1

Studypool matches you to the best tutor to help you with your question. Our tutors are highly qualified and vetted.

hesi case study diabetes type 1

Your matched tutor provides personalized help according to your question details. Payment is made only after you have completed your 1-on-1 session and are satisfied with your session.

hesi case study diabetes type 1

  • Homework Q&A
  • Become a Tutor

hesi case study diabetes type 1

All Subjects

Mathematics

Programming

Health & Medical

Engineering

Computer Science

Foreign Languages

hesi case study diabetes type 1

Access over 35 million academic & study documents

Hesi rn case study diabetes type i.

hesi case study diabetes type 1

Sign up to view the full document!

hesi case study diabetes type 1

24/7 Study Help

Stuck on a study question? Our verified tutors can answer all questions, from basic  math  to advanced rocket science !

hesi case study diabetes type 1

Similar Documents

hesi case study diabetes type 1

working on a study question?

Studypool BBB Business Review

Studypool is powered by Microtutoring TM

Copyright © 2024. Studypool Inc.

Studypool is not sponsored or endorsed by any college or university.

Ongoing Conversations

hesi case study diabetes type 1

Access over 35 million study documents through the notebank

hesi case study diabetes type 1

Get on-demand Q&A study help from verified tutors

hesi case study diabetes type 1

Read 1000s of rich book guides covering popular titles

hesi case study diabetes type 1

Sign up with Google

hesi case study diabetes type 1

Sign up with Facebook

Already have an account? Login

Login with Google

Login with Facebook

Don't have an account? Sign Up

Issue Cover

History of the Diabetes Control and Complications Trial and Its Follow-up Epidemiology of Diabetes Interventions and Complications Study: Studies That Changed the Treatment of Type 1 Diabetes

ORCID logo

  • Article contents
  • Figures & tables
  • Supplementary Data
  • Peer Review
  • Cite Icon Cite
  • Get Permissions

David M. Nathan , John M. Lachin; History of the Diabetes Control and Complications Trial and Its Follow-up Epidemiology of Diabetes Interventions and Complications Study: Studies That Changed the Treatment of Type 1 Diabetes. Diabetes Care 27 August 2024; 47 (9): 1511–1517. https://doi.org/10.2337/dci24-0063

Download citation file:

  • Ris (Zotero)
  • Reference Manager

This article is part of a special article collection available at diabetesjournals.org/collection/2296/DCCT-EDIC-40th-Anniversary-Collection.

This article is featured in a podcast available at diabetesjournals.org/care/pages/diabetes_care_on_air.

This article is part of a special article collection available at diabetesjournals.org/collection/2296/DCCT-EDIC-40th-Anniversary-Collection .

This article is featured in a podcast available at diabetesjournals.org/care/pages/diabetes_care_on_air .

Sign in via ADA

Sign in via your institution, email alerts.

  • Online ISSN 1935-5548
  • Print ISSN 0149-5992
  • Diabetes Care
  • Clinical Diabetes
  • Diabetes Spectrum
  • Standards of Medical Care in Diabetes
  • Scientific Sessions Abstracts
  • BMJ Open Diabetes Research & Care
  • ShopDiabetes.org
  • ADA Professional Books

Clinical Compendia

  • Clinical Compendia Home
  • Latest News
  • DiabetesPro SmartBrief
  • Special Collections
  • DiabetesPro®
  • Diabetes Food Hub™
  • Insulin Affordability
  • Know Diabetes By Heart™
  • About the ADA
  • Journal Policies
  • For Reviewers
  • Advertising in ADA Journals
  • Reprints and Permission for Reuse
  • Copyright Notice/Public Access Policy
  • ADA Professional Membership
  • ADA Member Directory
  • Diabetes.org
  • X (Twitter)
  • Cookie Policy
  • Accessibility
  • Terms & Conditions
  • Get Adobe Acrobat Reader
  • © Copyright American Diabetes Association

This Feature Is Available To Subscribers Only

Sign In or Create an Account

IMAGES

  1. EAQ 3 DM

    hesi case study diabetes type 1

  2. Changing the Course of Disease in Type 1 Diabetes

    hesi case study diabetes type 1

  3. SOLUTION: Hesi rn case study diabetes type i

    hesi case study diabetes type 1

  4. Case Study #3 Diabetes Mellitus: Type 1

    hesi case study diabetes type 1

  5. Gestational Diabetes Danielle Hesi Case Study

    hesi case study diabetes type 1

  6. HESI CASE Study

    hesi case study diabetes type 1

VIDEO

  1. UK v US Healthcare: My Experience

  2. New Diabetes Cure

  3. Breaking Discoveries: The Latest Research on Type-1 Diabetes

  4. What to study for HESI A2

  5. My Type 1 Diabetes Diagnosis Story

  6. HESI Group Video: HESI Case Study: Fundamentals: Pain

COMMENTS

  1. HESI RN Case Study Diabetes Type 1 Flashcards

    Study with Quizlet and memorize flashcards containing terms like According to Erikson, to meet the psychosocial needs of a 5-year-old child in relation to a diagnosis of diabetes, which of the following should the nurse implement?, Which immunizations would the nurse anticipate administering to Anya?, Which assessment findings are of concern to the nurse? and more.

  2. HESI: Case Study: Diabetes Type 1 Flashcards

    HESI: Case Study: Diabetes Type 1. 3.8 (14 reviews) Meet the Client: Anya Mikhailov. Olga and Boris Mikhailov come to an outpatient clinic with their five-year-old daughter, Anya. The receptionist gathers information during the initial history. Olga and Boris were born in Russia and they have lived in the country for 8 years.

  3. HESI Case Study Diabetes Type 1 (2022) Flashcards

    Study set for the HESI case study. This is the updated 2022 version. Learn with flashcards, games, and more — for free.

  4. HESI Diabetes scenario

    Diabetes Type 1 Case Study (adapted from the Elsevier HESI Case Study by Jean Flick, RN, MS) Ashanti is a 20-year-old college student who comes to the student health centre with a 4 day history of flu like symptoms.

  5. HESI Case Study Diabetes Type 1 Clinical Medical Surgical 1

    This document provides a case study about a patient diagnosed with Type 1 diabetes. It includes nursing diagnoses, assessments, and interventions for the patient. It also provides questions to help students develop a teaching plan for managing the patient's diabetes and summarize a relevant journal article.

  6. HESI CASE Study

    EXAM QUESTIONS AND ANSWERS 2024 What is the mechanism that results in Kussmaul respirations? - answer To compensate for metabolic acidosis, the respirations are deep and rapid To achieve the goal of restoring Lara&#039;s fluid volume, the nurse would expect to implement which intervention? - answer Maintain an infusion of normal saline solution To restore Lara&#039;s blood glucose to a normal ...

  7. HESI Case Studies: Complete RN Collection (1 Year Version)

    HESI Case Studies provide real-world patient care scenarios accompanied by application-based questions and rationales that will help you learn how to manage complex patient conditions and make sound clinical judgments. Questions cover nursing care for patients with a wide variety physiological and psychosocial alterations, as well as related management, pharmacology and nursing concepts. HESI ...

  8. Hesi Rn Case Study Diabetes Type 1 Exam Questions and Answers 2024

    HESI RN CASE STUDY DIABETES TYPE 1 EXAM QUESTIONS AND ANSWERS 2024 According to Erikson, to meet the psychosocial needs of a 5-year-old child in relation to a diagnosis of diabetes, which of the following should the nurse implement? - answer Allow the client to check blood glucose levels indepen...

  9. HESI CASE STUDY--> Diabetes Type 1 Flashcards

    What is the priority nursing action? Check Lara's blood glucose. 14. Which action should the nurse take first? Administer IV dextrose to a diabetic client with a blood glucose level of 25 mg/dL. 15. What action should the nurse take first? Ask the unit clerk to find out when the trays will be available.

  10. HESI RN CASE STUDY Diabetes Type I

    Written for Institution HESI RN CASE STUDY Diabetes Type I. Course HESI RN CASE STUDY Diabetes Type I.

  11. Hesi Rn Case Study Diabetes Type 1 Exam Questions and Answers 2024

    Document information Uploaded on December 15, 2023 Number of pages 5 Written in 2023/2024 Type Exam (elaborations) Contains Unknown

  12. Case 6-2020: A 34-Year-Old Woman with Hyperglycemia

    Type 1 diabetes accounts for approximately 6% of all cases of diabetes in adults (≥18 years of age) in the United States, 4 and 80% of these cases are diagnosed before the patient is 20 years of age. 5 Since this patient's diabetes was essentially nonprogressive over a period of at least 9 years, she most likely does not have type 1 diabetes.

  13. HESI Case Study Diabetes Mellitus

    1. Perfusion Concept Map Assignment Worksheet. Concepts of Nursing IV. Assignments. 95% (20) 23. Shadow Health Pediatrics TBI. Concepts of Nursing IV. Assignments.

  14. Case Study: A Patient With Type 1 Diabetes Who Transitions to Insulin

    The role of RDs in case and disease management was explored in a recent article 2 that included interviews with three dietitians who work as case managers or disease managers. All three reported experiencing challenges in practice and noted that the meaning of "case management" varies from one health care setting to another.

  15. HESI Case Study: Diabetes Type 1 Flashcards

    HESI Case Study: Diabetes Type 1. According to Erikson, to meet the psychosocial needs of a 5-year-old child in relation to a diagnosis of diabetes, which of the following should the nurse implement? Allow the client to check blood glucose levels independently whenever possible.

  16. SOLUTION: Hesi rn case study diabetes type i

    Meet the Client: Anya, Mikhailov, Olga and Boris Mikhailov come to an outpatient clinic with their fiveyear-old daughter, Anya. The receptionist ...

  17. HESI Case Study: Diabetes Mellitus Flashcards

    Lifestyle Modifications: The client attends a series of classes on management of diabetes and learns that the goals of diet therapy for clients with Type 1 diabetes are to consume all essential nutrients, achieve and maintain ideal body weight, and maintain blood glucose levels as near normal as possible.

  18. Genesis of the Diabetes Control and Complications Trial

    The clinical description of the juvenile form of diabetes that we currently call type 1 diabetes (T1D) dates back to antiquity. The Ebers papyrus in 1500 BCE and the Indian surgeon Sushrita in 500 BCE described the sweetness of urine in diabetes ().Later descriptions of diabetes by Aretaeus of Cappadocia in 150 BCE also noted polyuria and captured the catabolic state of diabetes, noting the ...

  19. Pediatric HESI Case Study

    Study with Quizlet and memorize flashcards containing terms like According to Erickson, in what stage of dvpt is Anya?, Which immunizations would the nurse anticipate administering to Anya?, Which assessment findings are of concern to the nurse? and more.

  20. Study reveals best exercise for type-1 diabetes patients

    Staffordshire University. (2024, August 21). Study reveals best exercise for type-1 diabetes patients. ScienceDaily. Retrieved August 26, 2024 from www.sciencedaily.com / releases / 2024 / 08 ...

  21. Hesi Case Study

    Document information Uploaded on December 15, 2023 Number of pages 5 Written in 2023/2024 Type Exam (elaborations) Contains Unknown