Purdue University Graduate School

File(s) under embargo

until file(s) become available

First Principles and Machine Learning-Based Analyses of Stability and Reactivity Trends for High-Entropy Alloy Catalysts

Since its inception, the field of heterogeneous catalysis has evolved to address the needs of the ever-growing human population. Necessity, after all, fosters innovation. Today, the world faces numerous challenges related to anthropogenic climate change, and that has necessitated, among other things, a search for new catalysts that can enable renewable energy conversion and storage, sustainable food and chemicals production, and a reduction in carbon emissions. This search has led to the emergence of many promising classes of materials, each having a unique set of catalytic properties. Among such candidate materials, high-entropy alloys (HEAs) have very recently shown the potential to be a new catalyst design paradigm. HEAs are multimetallic, disordered alloys containing more than four elements and, as a result, possess a higher configurational entropy, which gives them considerable stability. They have many conceivable benefits over conventional bimetallic alloy catalysts—greater site heterogeneity, larger design space, and higher stability, among others­. Consequently, there is a need to explore their application in a wide range of thermal and electrocatalytic reaction systems so that their potential can be realized.

In the past few decades, first principles-based approaches involving Density Functional Theory (DFT) calculations have proven to be effective in probing catalytic mechanisms at the atomic scale. Fundamental insights from first principles studies have also led to a detailed understanding of reactivity and stability trends for bimetallic alloy catalysts. However, the express application of first principles approaches to study HEA catalysts remains a challenge, due to the large computational cost incurred in performing DFT calculations for disordered alloys, which can be represented by millions of different configurations. A combination of first principles approaches and computationally efficient machine learning (ML) approaches can, however, potentially overcome this limitation.

In this thesis, combined workflows involving first principles and machine learning-based approaches are developed. To map catalyst structure to properties graph convolutional network (GCN) models are developed and trained on DFT-predicted target properties such as formation energies, surface energies, and adsorption energies. Further, the Monte Carlo dropout method is integrated into GCN models to provide uncertainty quantification, and these models are in turn used in active learning workflows that involve iterative model retraining to both improve model predictions and optimize the target property value. Dimensionality reduction methods, such as principal components analysis (PCA) and Diffusion Maps (DMaps), are used to glean physicochemical insights from the parameterization of the GCN.

These workflows are applied to the analysis of binary, ternary, and quaternary alloy catalysts, and a series of fundamental insights regarding their stability are elucidated. In particular, the origin and stability of “Pt skins” that form on Pt-based bimetallic alloys such as Pt 3 Ni in the context of the oxygen reduction reaction (ORR) are investigated using a rigorous surface thermodynamic framework. The active learning workflow enables the study of Pt skin formation on stepped facets of Pt 3 Ni (with a complex, low-symmetry geometry), and this analysis reveals a hitherto undiscovered relationship between surface coordination and surface segregation. In another study, an active learning workflow is used to identify the most stable bulk composition in the Pd-Pt-Sn ternary alloy system using a combination of exhaustively sampled binary alloy data and prudently sampled ternary alloy data. Lastly, a new GCN model architecture, called SlabGCN, is introduced to predict the sulfur poisoning characteristics of quaternary alloy catalysts, and to find an optimal sulfur tolerant composition.

On another front, the electrocatalytic activity of quinary HEAs towards the ORR is investigated by performing DFT calculations on HEA structures generated using the High-Entropy Alloy Toolbox (HEAT), an in-house code developed for the high-throughput generation and analysis of disordered alloy structures with stability constraints (such as Pt skin formation). DFT-predicted adsorption energies of key ORR intermediates are further deconvoluted into ligand, strain, and surface relaxation effects, and the influence of the number of Pt skins on these effects is expounded. A Sabatier volcano analysis is performed to calculate the ORR activities of selected HEA compositions, and correspondence between theoretical predictions and experimental results is established, to pave the way for rational design of HEA catalysts for oxygen reduction.

In summary, this thesis examines stability and reactivity trends of a multitude of alloy catalysts, from conventional bimetallic alloys to high-entropy alloys, using a combination of first principles approaches (involving Density Functional Theory calculations) and machine learning approaches comprising graph convolutional network models.

Data Science-Driven Discovery of Multimetallic Oxygen-cycle Electrocatalysts for Enhanced Energy Conversion

Office of Basic Energy Sciences

Degree Type

  • Doctor of Philosophy
  • Chemical Engineering

Campus location

  • West Lafayette

Advisor/Supervisor/Committee Chair

Additional committee member 2, additional committee member 3, additional committee member 4, usage metrics.

  • Chemical engineering not elsewhere classified
  • Catalysis and mechanisms of reactions

CC BY 4.0

Carnegie Mellon University

Attacking, Defending, and Evaluating Machine-Learning-Based Raw-Binary Malware Detectors

Machine learning (ML) models have shown promise in classifying raw executable files (binaries) as malicious or benign with high accuracy. This has led to the increasing influence of ML-based classification methods in academic and real-world malware detection, a critical component of cybersecurity. This thesis examines and improves the reliability of these ML-based malware detectors. First, we propose an attack that interweaves binary-diversification techniques and optimization frameworks to mislead such malware detectors while preserving the transformed binaries’ functionality. Unlike prior attacks, ours manipulates instructions that are a functional part of the binary, which makes defending against the attack particularly challenging. We then investigate the effectiveness of using adversarial training methods to create malware classification models that are more robust to our attacks. To make adversarial training practical for raw-binary malware detectors, we significantly increase the efficiency and scale of attack creation. In the best case, we reduce one of our most potent attack’s success rate from 90% to 5% and show that training with some types of attacks can increase robustness to other types of attacks. We then propose to accelerate the training and evaluation of robust malware detectors by introducing fast training augmentation and several proxy measures that can quickly indicate increased robustness to more computationally expensive attacks. We will then show that this quick robustness estimation allows us to find robust malware detectors while executing fewer expensive attacks. Finally, we investigate the behavior of ML-based malware detectors by analyzing the similarity of their explanations to explanations of YARA rules created by human experts. Thesis statement: Machine-learning-based (ML-based) raw binary malware detectors can be fooled by adversarially modified binaries. These detectors can also be made more robust via computationally expensive adversarial training. A faster training augmentation, combined with new methods for estimating robustness, can make the detectors even more robust and quicker to train. 

Degree Type

  • Dissertation
  • Electrical and Computer Engineering

Degree Name

  • Doctor of Philosophy (PhD)

Usage metrics

  • Electrical and Electronic Engineering not elsewhere classified

CC BY 4.0

thesis machine learning

[email protected]

login.png

MyTUM-Portal Technische Universität München

Technische universität münchen.

--> --> MSc project and or thesis: Advancing Machine Learning-Based State of Health Estimation   Zurück zu  Nachrichten-Bereich      Browse in News     
:  --->

Die Herausforderung, den Zustand von Lithium-Ionen-Batterien mittels maschinellen Lernens zu schätzen, eröffnet durch effizientes Feature Engineering und systematische Datenanalyse den Weg zu präzisen Ergebnissen. Von der sorgfältigen Aufbereitung der Daten über die Exploration von Merkmalen bis hin zur Entwicklung und Evaluation von Modellen, ist das Ziel dieser Arbeit, durch diesen methodischen Ansatz fundierte Erkenntnisse zu erlangen. Damit soll ein signifikanter Beitrag zur Beantwortung kritischer Forschungsfragen geleistet und die Effizienz der Energiespeicherung und -nutzung maßgeblich verbessert werden.

Schaffung eines Überblicks über die Datengrundlage und Filterung von Alterungsreihen anhand gegebener Kriterien Gruppierung / Clusterung / Sortierung der Alterungsstudien in einzelne Teildatensätze Erstellung eines Überblicks über vorhandene und in der Literatur verwendete Features Feature Engineering - Explorative Untersuchung der Merkmale und deren Relevanz in Bezug auf den SOHC, inklusive Vorverarbeitung / Transformation der Merkmale (voraussichtlich ein iterativer Prozess) Beantwortung des ersten Teils der Forschungsfrage durch Erhalt deskriptiver Features pro Datensatz Beantwortung des zweiten Teils der Forschungsfrage durch Erstellung, Generierung oder Training eines prädiktiven Modells, das ausschließlich gefundene deskriptive Features verwendet. Das Modell basiert auf der „best promising Architektur“ aus der Literaturrecherche. Filterung, Vereinheitlichung des Inputs Training und Optimierung des Modells Modelevaluation

Kontakt:

Advancing Machine Learning-Based State of Health Estimation: Data Mining and Feature Engineering on Diverse Datasets, (Type: application/pdf, Größe: 98.7 kB)

Studentische Weltraummission unter der Erde

TUM bietet zahlreiche Chancen zur Berufsausbildung

Großer Erfolg für Mobilitätsforschung MCube

Nachhaltigkeit und Inklusion müssen Hand in Hand gehen

Mehr Wissenschaftsfreiheit führt zu mehr Innovation

Daten nutzen, um besser zu lernen

Termine heute

no events today.

  • Alle Meldungen
  • Veranstaltungen
  • Studienangebot
  • Von der Schule zur Universität
  • Bewerbung & Einschreibung
  • Studienabschluss
  • Internationale Studierende
  • Hilfe & Beratung
  • Studienfinanzierung
  • Lehre & Qualitätsmanagement
  • Executive and Professional Education
  • Angebote für unsere Mitarbeitenden
  • Angebote für unsere Studierenden
  • Innovation in Lehre und Weiterbildung
  • Publikationen und Medienbeiträge
  • Exzellenzcluster
  • Schools und Forschungszentren
  • Forschungsziele
  • Forschung mit Tieren
  • Unsere Partner
  • Service für Forschende
  • Entrepreneurship
  • Industriekoopera­tionen
  • Ökosystem München
  • Patente und Lizenzen
  • Campusleben
  • Public Engagement
  • Globales Netzwerk
  • Spenden und Fördern
  • Exzellenzuniversität
  • Ziele und Werte
  • Daten und Fakten
  • Organisation
  • Karriere und Jobs
  • Fan der TUM?
  • Kontakt und Anfahrt

thesis machine learning

Available Master's thesis topics in machine learning

Main content.

Here we list topics that are available. You may also be interested in our list of completed Master's theses .

Learning and inference with large Bayesian networks

Most learning and inference tasks with Bayesian networks are NP-hard. Therefore, one often resorts to using different heuristics that do not give any quality guarantees.

Task: Evaluate quality of large-scale learning or inference algorithms empirically.

Advisor: Pekka Parviainen

Sum-product networks

Traditionally, probabilistic graphical models use a graph structure to represent dependencies and independencies between random variables. Sum-product networks are a relatively new type of a graphical model where the graphical structure models computations and not the relationships between variables. The benefit of this representation is that inference (computing conditional probabilities) can be done in linear time with respect to the size of the network.

Potential thesis topics in this area: a) Compare inference speed with sum-product networks and Bayesian networks. Characterize situations when one model is better than the other. b) Learning the sum-product networks is done using heuristic algorithms. What is the effect of approximation in practice?

Bayesian Bayesian networks

The naming of Bayesian networks is somewhat misleading because there is nothing Bayesian in them per se; A Bayesian network is just a representation of a joint probability distribution. One can, of course, use a Bayesian network while doing Bayesian inference. One can also learn Bayesian networks in a Bayesian way. That is, instead of finding an optimal network one computes the posterior distribution over networks.

Task: Develop algorithms for Bayesian learning of Bayesian networks (e.g., MCMC, variational inference, EM)

Large-scale (probabilistic) matrix factorization

The idea behind matrix factorization is to represent a large data matrix as a product of two or more smaller matrices.They are often used in, for example, dimensionality reduction and recommendation systems. Probabilistic matrix factorization methods can be used to quantify uncertainty in recommendations. However, large-scale (probabilistic) matrix factorization is computationally challenging.

Potential thesis topics in this area: a) Develop scalable methods for large-scale matrix factorization (non-probabilistic or probabilistic), b) Develop probabilistic methods for implicit feedback (e.g., recommmendation engine when there are no rankings but only knowledge whether a customer has bought an item)

Bayesian deep learning

Standard deep neural networks do not quantify uncertainty in predictions. On the other hand, Bayesian methods provide a principled way to handle uncertainty. Combining these approaches leads to Bayesian neural networks. The challenge is that Bayesian neural networks can be cumbersome to use and difficult to learn.

The task is to analyze Bayesian neural networks and different inference algorithms in some simple setting.

Deep learning for combinatorial problems

Deep learning is usually applied in regression or classification problems. However, there has been some recent work on using deep learning to develop heuristics for combinatorial optimization problems; see, e.g., [1] and [2].

Task: Choose a combinatorial problem (or several related problems) and develop deep learning methods to solve them.

References: [1] Vinyals, Fortunato and Jaitly: Pointer networks. NIPS 2015. [2] Dai, Khalil, Zhang, Dilkina and Song: Learning Combinatorial Optimization Algorithms over Graphs. NIPS 2017.

Advisors: Pekka Parviainen, Ahmad Hemmati

Estimating the number of modes of an unknown function

Mode seeking considers estimating the number of local maxima of a function f. Sometimes one can find modes by, e.g., looking for points where the derivative of the function is zero. However, often the function is unknown and we have only access to some (possibly noisy) values of the function. 

In topological data analysis,  we can analyze topological structures using persistent homologies. For 1-dimensional signals, this can translate into looking at the birth/death persistence diagram, i.e. the birth and death of connected topological components as we expand the space around each point where we have observed our function. These observations turn out to be closely related to the modes (local maxima) of the function. A recent paper [1] proposed an efficient method for mode seeking.

In this project, the task is to extend the ideas from [1] to get a probabilistic estimate on the number of modes. To this end, one has to use probabilistic methods such as Gaussian processes.

[1] U. Bauer, A. Munk, H. Sieling, and M. Wardetzky. Persistence barcodes versus Kolmogorov signatures: Detecting modes of one-dimensional signals. Foundations of computational mathematics17:1 - 33, 2017.

Advisors:  Pekka Parviainen ,  Nello Blaser

Causal Abstraction Learning

We naturally make sense of the world around us by working out causal relationships between objects and by representing in our minds these objects with different degrees of approximation and detail. Both processes are essential to our understanding of reality, and likely to be fundamental for developing artificial intelligence. The first process may be expressed using the formalism of structural causal models, while the second can be grounded in the theory of causal abstraction [1].      This project will consider the problem of learning an abstraction between two given structural causal models. The primary goal will be the development of efficient algorithms able to learn a meaningful abstraction between the given causal models.      [1] Rubenstein, Paul K., et al. "Causal consistency of structural equation models." arXiv preprint arXiv:1707.00819 (2017).

Advisor: Fabio Massimo Zennaro

Causal Bandits

"Multi-armed bandit" is an informal name for slot machines, and the formal name of a large class of problems where an agent has to choose an action among a range of possibilities without knowing the ensuing rewards. Multi-armed bandit problems are one of the most essential reinforcement learning problems where an agent is directly faced with an exploitation-exploration trade-off.       This project will consider a class of multi-armed bandits where an agent, upon taking an action, interacts with a causal system [1]. The primary goal will be the development of learning strategies that takes advantage of the underlying causal system in order to learn optimal policies in a shortest amount of time.      [1] Lattimore, Finnian, Tor Lattimore, and Mark D. Reid. "Causal bandits: Learning good interventions via causal inference." Advances in neural information processing systems 29 (2016).

Causal Modelling for Battery Manufacturing

Lithium-ion batteries are poised to be one of the most important sources of energy in the near future. Yet, the process of manufacturing these batteries is very hard to model and control. Optimizing the different phases of production to maximize the lifetime of the batteries is a non-trivial challenge since physical models are limited in scope and collecting experimental data is extremely expensive and time-consuming [1].      This project will consider the problem of aggregating and analyzing data regarding a few stages in the process of battery manufacturing. The primary goal will be the development of algorithms for transporting and integrating data collected in different contexts, as well as the use of explainable algorithms to interpret them.      [1] Niri, Mona Faraji, et al. "Quantifying key factors for optimised manufacturing of Li-ion battery anode and cathode via artificial intelligence." Energy and AI 7 (2022): 100129.

Advisor: Fabio Massimo Zennaro ,  Mona Faraji Niri

Reinforcement Learning for Computer Security

The field of computer security presents a wide variety of challenging problems for artificial intelligence and autonomous agents. Guaranteeing the security of a system against attacks and penetrations by malicious hackers has always been a central concern of this field, and machine learning could now offer a substantial contribution. Security capture-the-flag simulations are particularly well-suited as a testbed for the application and development of reinforcement learning algorithms [1].       This project will consider the use of reinforcement learning for the preventive purpose of testing systems and discovering vulnerabilities before they can be exploited. The primary goal will be the modelling of capture-the-flag challenges of interest and the development of reinforcement learning algorithms that can solve them.      [1] Erdodi, Laszlo, and Fabio Massimo Zennaro. "The Agent Web Model--Modelling web hacking for reinforcement learning." arXiv preprint arXiv:2009.11274 (2020).

Advisor: Fabio Massimo Zennaro ,  Laszlo Tibor Erdodi

Approaches to AI Safety

The world and the Internet are more and more populated by artificial autonomous agents carrying out tasks on our behalf. Many of these agents are provided with an objective and they learn their behaviour trying to achieve their objective as better as they can. However, this approach can not guarantee that an agent, while learning its behaviour, will not undertake actions that may have unforeseen and undesirable effects. Research in AI safety tries to design autonomous agent that will behave in a predictable and safe way [1].      This project will consider specific problems and novel solution in the domain of AI safety and reinforcement learning. The primary goal will be the development of innovative algorithms and their implementation withing established frameworks.      [1] Amodei, Dario, et al. "Concrete problems in AI safety." arXiv preprint arXiv:1606.06565 (2016).

Reinforcement Learning for Super-modelling

Super-modelling [1] is a technique designed for combining together complex dynamical models: pre-trained models are aggregated with messages and information being exchanged in order synchronize the behavior  of the different modles and produce more accurate and reliable predictions. Super-models are used, for instance, in weather or climate science, where pre-existing models are ensembled together and their states dynamically aggregated to generate more realistic simulations. 

This project will consider how reinforcement learning algorithms may be used to solve the coordination problem among the individual models forming a super-model. The primary goal will be the formulation of the super-modelling problem within the reinforcement learning framework and the study of custom RL algorithms to improve the overall performance of super-models.

[1] Schevenhoven, Francine, et al. "Supermodeling: improving predictions with an ensemble of interacting models." Bulletin of the American Meteorological Society 104.9 (2023): E1670-E1686.

Advisor: Fabio Massimo Zennaro ,  Francine Janneke Schevenhoven

Multilevel Causal Discovery

Modelling causal relationships between variables of interest is a crucial step in understanding and controlling a system. A common approach is to represent such relations using graphs with directed arrows discriminating causes from effects.

While causal graphs are often built relying on expert knowledge, a more interesting challenge is to learn them from data. In particular, we want to consider the case where data might have been collected at multiple levels, for instance, with sensor with different resolutions. In this project we want to explore how these heterogeneous data can help the process of inferring causal structures.

[1] Anand, Tara V., et al. "Effect identification in cluster causal diagrams." Proceedings of the 37th AAAI Conference on Artificial Intelligence. Vol. 82. 2023.

Advisor: Fabio Massimo Zennaro ,  Pekka Parviainen

Manifolds of Causal Models

Modelling causal relationships is fundamental in order to understand real-world systems. A common formalism is offered by structural causal models (SCMs) which represent these relationships graphical. However, SCMs are complex mathematical objects entailing collections of different probability distributions.      In this project we want to explore a differential geometric perspective on structural causal models [1]. We will model an SCM and the probability distributions it generates in terms of manifold, and we will study how this modelling encodes causal properties of interest and how relevant quantities may be computed in this framework.      [1] Dominguez-Olmedo, Ricardo, et al. "On data manifolds entailed by structural causal models." International Conference on Machine Learning. PMLR, 2023.

Advisor: Fabio Massimo Zennaro ,  Nello Blaser

Topological Data Analysis on Simulations

Complex systems and dynamics may be hard to formalize in a closed form, and they can often be better studied through simulations. Social systems, for instance, may be reproduced by instantiating simple agents whose interactions generate complex and emergent dynamics. Still, analyzing the behaviours arising from these interactions is not trivial.      In this project we will consider the use of topological data analysis for categorizing and understanding the behaviour of agents in agent-based models [1]. We will analyze the insights and the limitations of exisiting algorithms, as well as consider what dynamical information may be glimpsed through such an analysis.

[1] Swarup, Samarth, and Reza Rezazadegan. "Constructing an Agent Taxonomy from a Simulation Through Topological Data Analysis." Multi-Agent-Based Simulation XX: 20th International Workshop, MABS 2019, Montreal, QC, Canada, May 13, 2019, Revised Selected Papers 20. Springer International Publishing, 2020.

Abstraction for Epistemic Logic

Weighted Kripke models constitute a powerful formalism to express the evolving knowledge of an agent; it allows to express known facts and beliefs, and to recursively model the knowledge of an agent about another agent. Moreover, such relations of knowledge can be given a graphical expression using suitable diagrams on which to perform reasoning. Unfortunately, such graphs can quickly become very large and inefficient to process.

This project consider the reduction of epistemic logic graph using ideas from causal abstraction [1]. The primary goal will be the development of ML models that can learn to output small epistemic logic graph still satisfying logical and consistency constraints.

[1] Zennaro, Fabio Massimo, et al. "Jointly learning consistent causal abstractions over multiple interventional distributions." Conference on Causal Learning and Reasoning. PMLR, 2023

Advisor: Fabio Massimo Zennaro ,  Rustam Galimullin

Optimal Transport for Public Transportation

Modelling public transportation across cities is critical in order to improve viability, provide reliable services and increase reliance on greener form of mass transport. Yet cities and transportation networks are complex systems and modelling often has to rely on incomplete and uncertain data. 

This project will start from considering a concrete challenge in modelling commuter flows across the city of Bergen. In particular, it will consider the application of the mathematical framework of optimal transport [1] to recover statistical patterns in the usage of the main transportation lines across different periods.

[1] Peyré, Gabriel, and Marco Cuturi. "Computational optimal transport: With applications to data science." Foundations and Trends in Machine Learning 11.5-6 (2019): 355-607.

Finalistic Models

The behavior of an agent may be explained both in causal terms (what has caused a certain behavior) or in finalistic terms (what aim justifies a certain behaviour). While causal reasoning is well explained by different mathematical formalism (e.g., structural causal models), finalistic reasoning is still object of research.

In this project we want to explore how a recently-proposed framework for finalistic reasoning [1] may be used to model intentions and counterfactuals in a causal bandit setting, or how it could be used to enhance inverse reinforcement learning.

[1] Compagno, Dario. "Final models: A finalistic interpretation of statistical correlation." arXiv preprint arXiv:2310.02272 (2023).

Advisor: Fabio Massimo Zennaro , Dario Compagno

Automatic hyperparameter selection for isomap

Isomap is a non-linear dimensionality reduction method with two free hyperparameters (number of nearest neighbors and neighborhood radius). Different hyperparameters result in dramatically different embeddings. Previous methods for selecting hyperparameters focused on choosing one optimal hyperparameter. In this project, you will explore the use of persistent homology to find parameter ranges that result in stable embeddings. The project has theoretic and computational aspects.

Advisor: Nello Blaser

Topological Ancombs quartet

This topic is based on the classical Ancombs quartet and families of point sets with identical 1D persistence ( https://arxiv.org/abs/2202.00577 ). The goal is to generate more interesting datasets using the simulated annealing methods presented in ( http://library.usc.edu.ph/ACM/CHI%202017/1proc/p1290.pdf ). This project is mostly computational.

Persistent homology vectorization with cycle location

There are many methods of vectorizing persistence diagrams, such as persistence landscapes, persistence images, PersLay and statistical summaries. Recently we have designed algorithms to in some cases efficiently detect the location of persistence cycles. In this project, you will vectorize not just the persistence diagram, but additional information such as the location of these cycles. This project is mostly computational with some theoretic aspects.

Divisive covers

Divisive covers are a divisive technique for generating filtered simplicial complexes. They original used a naive way of dividing data into a cover. In this project, you will explore different methods of dividing space, based on principle component analysis, support vector machines and k-means clustering. In addition, you will explore methods of using divisive covers for classification. This project will be mostly computational.

Learning Acquisition Functions for Cost-aware Bayesian Optimization

This is a follow-up project of an earlier Master thesis that developed a novel method for learning Acquisition Functions in Bayesian Optimization through the use of Reinforcement Learning. The goal of this project is to further generalize this method (more general input, learned cost-functions) and apply it to hyperparameter optimization for neural networks.

Advisors: Nello Blaser , Audun Ljone Henriksen

Stable updates

This is a follow-up project of an earlier Master thesis that introduced and studied empirical stability in the context of tree-based models. The goal of this project is to develop stable update methods for deep learning models. You will design sevaral stable methods and empirically compare them (in terms of loss and stability) with a baseline and with one another.

Advisors:  Morten Blørstad , Nello Blaser

Multimodality in Bayesian neural network ensembles

One method to assess uncertainty in neural network predictions is to use dropout or noise generators at prediction time and run every prediction many times. This leads to a distribution of predictions. Informatively summarizing such probability distributions is a non-trivial task and the commonly used means and standard deviations result in the loss of crucial information, especially in the case of multimodal distributions with distinct likely outcomes. In this project, you will analyze such multimodal distributions with mixture models and develop ways to exploit such multimodality to improve training. This project can have theoretical, computational and applied aspects.

Wet area segmentation for rivers

NORCE LFI is working on digitizing wetted areas in rivers. You will apply different machine learning techniques for distinguishing water bodies (rivers) from land based on drone aerial (RGB) pictures. This is important for water management and assessing effects of hydropower on river ecosystems (residual flow, stranding of fish and spawning areas).  We have a database of approximately 100 rivers (aerial pictures created from totally ca. 120.000 single pictures with Structure from Motion, single pictures available as well) and several of these rivers are flown at 2-4 different discharges, taken in different seasons and with different weather patterns. For ca. 50 % of the pictures the wetted area is digitized for training (GIS shapefile), most (>90 % of single pictures) cover water surface and land. Possible challenges include shading, reflectance from the water surface, different water/ground colours and wet surfaces on land. This is an applied topic, where you will try many different machine learning techniques to find the best solution for the mapping tasks by NORCE LFI.

Advisor: Nello Blaser , Sebastian Franz Stranzl

Learning a hierarchical metric

Often, labels have defined relationships to each other, for instance in a hierarchical taxonomy. E.g. ImageNet labels are derived from the WordNet graph, and biological species are taxonomically related, and can have similarities depending on life stage, sex, or other properties.

ArcFace is an alternative loss function that aims for an embedding that is more generally useful than softmax. It is commonly used in metric learning/few shot learning cases.

Here, we will develop a metric learning method that learns from data with hierarchical labels. Using multiple ArcFace heads, we will simultaneously learn to place representations to optimize the leaf label as well as intermediate labels on the path from leaf to root of the label tree. Using taxonomically classified plankton image data, we will measure performance as a function of ArcFace parameters (sharpness/temperature and margins -- class-wise or level-wise), and compare the results to existing methods.

Advisor: Ketil Malde ( [email protected] )

Self-supervised object detection in video

One challenge with learning object detection is that in many scenes that stretch off into the distance, annotating small, far-off, or blurred objects is difficult. It is therefore desirable to learn from incompletely annotated scenes, and one-shot object detectors may suffer from incompletely annotated training data.

To address this, we will use a region-propsal algorithm (e.g. SelectiveSearch) to extract potential crops from each frame. Classification will be based on two approaches: a) training based on annotated fish vs random similarly-sized crops without annotations, and b) using a self-supervised method to build a representation for crops, and building a classifier for the extracted regions. The method will be evaluated against one-shot detectors and other training regimes.

If successful, the method will be applied to fish detection and tracking in videos from baited and unbaited underwater traps, and used to estimate abundance of various fish species.

See also: Benettino (2016): https://link.springer.com/chapter/10.1007/978-3-319-48881-3_56

Representation learning for object detection

While traditional classifiers work well with data that is labeled with disjoint classes and reasonably balanced class abundances, reality is often less clean. An alternative is to learn a vectors space embedding that reflects semantic relationships between objects, and deriving classes from this representation. This is especially useful for few-shot classification (ie. very few examples in the training data).

The task here is to extend a modern object detector (e.g. Yolo v8) to output an embedding of the identified object. Instead of a softmax classifier, we can learn the embedding either in a supervised manner (using annotations on frames) by attaching an ArcFace or other supervised metric learning head. Alternatively, the representation can be learned from tracked detections over time using e.g. a contrastive loss function to keep the representation for an object (approximately) constant over time. The performance of the resulting object detector will be measured on underwater videos, targeting species detection and/or indiviual recognition (re-ID).

Time-domain object detection

Object detectors for video are normally trained on still frames, but it is evident (from human experience) that using time domain information is more effective. I.e., it can be hard to identify far-off or occluded objects in still images, but movement in time often reveals them.

Here we will extend a state of the art object detector (e.g. yolo v8) with time domain data. Instead of using a single frame as input, the model will be modified to take a set of frames surrounding the annotated frame as input. Performance will be compared to using single-frame detection.

Large-scale visualization of acoustic data

The Institute of Marine Research has decades of acoustic data collected in various surveys. These data are in the process of being converted to data formats that can be processed and analyzed more easily using packages like Xarray and Dask.

The objective is to make these data more accessible to regular users by providing a visual front end. The user should be able to quickly zoom in and out, perform selection, export subsets, apply various filters and classifiers, and overlay annotations and other relevant auxiliary data.

Learning acoustic target classification from simulation

Broadband echosounders emit a complex signal that spans a large frequency band. Different targets will reflect, absorb, and generate resonance at different amplitudes and frequencies, and it is therefore possible to classify targets at much higher resolution and accuracy than before. Due to the complexity of the received signals, deriving effective profiles that can be used to identify targets is difficult.

Here we will use simulated frequency spectra from geometric objects with various shapes, orientation, and other properties. We will train ML models to estimate (recover) the geometric and material properties of objects based on these spectra. The resulting model will be applied to read broadband data, and compared to traditional classification methods.

Online learning in real-time systems

Build a model for the drilling process by using the Virtual simulator OpenLab ( https://openlab.app/ ) for real-time data generation and online learning techniques. The student will also do a short survey of existing online learning techniques and learn how to cope with errors and delays in the data.

Advisor: Rodica Mihai

Building a finite state automaton for the drilling process by using queries and counterexamples

Datasets will be generated by using the Virtual simulator OpenLab ( https://openlab.app/ ). The student will study the datasets and decide upon a good setting to extract a finite state automaton for the drilling process. The student will also do a short survey of existing techniques for extracting finite state automata from process data. We present a novel algorithm that uses exact learning and abstraction to extract a deterministic finite automaton describing the state dynamics of a given trained RNN. We do this using Angluin's L*algorithm as a learner and the trained RNN as an oracle. Our technique efficiently extracts accurate automata from trained RNNs, even when the state vectors are large and require fine differentiation.arxiv.org

Machine Learning for Drug Repositioning in Parkinson’s Disease

Background : Parkinson’s Disease (PD) is a major neurological condition with a complex etiology that tends to affect the elderly population. Understanding the risk factors associated with PD, including drug usage patterns across different demographics, can provide insights into its management and prevention. The Norwegian Prescribed Drug Registry (NorPD) provides comprehensive data on prescriptions dispensed from 2004, making it an excellent resource for such an analysis.

Objective : This project seeks to investigate how well machine learning techniques can predict PD risk, using the individual histories of drug usage along with demographic variables like gender and age.

Methodology :

  • Exploratory Data Analysis and Data Preprocessing: Although the dataset is clean and structured, specific preprocessing steps will be required to tailor the data for the chosen methods.
  • Predictive Modeling: Apply standard machine learning models such as Random Forest for handling large, imbalanced, sparse dataset, to find the best model or ensemble models to robust prediction. The predictive model will be employed to discern patterns in drug usage and demographic factors that correlate with PD risk.
  • Feature Analysis: Conduct a detailed analysis to understand the importance of different features, such as specific drugs, gender, and age, in predicting PD risk and explore complex dependencies between features.
  • Evaluation Metrics: Explore different metrics, such as F1-score and AUC-ROC to evaluate the performance of the predictive models.

Expected Outcomes : The project aims to study and develop predictive models that can accurately identify individuals at increased risk of developing PD based on their prescription history and demographic data.

Ethical Considerations : Data privacy and confidentiality will be strictly maintained by conducting all analyses on the SAFE server, following ethical guidelines for handling sensitive health data. The approval from regional ethics committee (REK) is already in place, as the project will be part of DRONE ( https://www.uib.no/en/epistat/139849/drone-drug-repurposing-neurological-diseases ).

Project Benefits .

  • The student practices working with a huge and rich set of real data and working with experts from epidemiology group at MED faculty.
  • Utilizing different ML methods in real data
  • The possibility of publication if the results are promising.

Advisors :  Asieh Abolpour Mofrad , Samaneh Abolpour Mofrad , Julia Romanowska , Jannicke Igland

Exploring Graph Neural Networks for Analyzing Prescription Data to Predict Parkinson’s Disease Risk

Background : Parkinson’s Disease (PD) significantly impacts the elderly, necessitating advanced computational approaches to predict and understand its risk factors better. The Norwegian Prescribed Drug Registry (NorPD) provides comprehensive data on prescriptions dispensed from 2004, presents an excellent opportunity to employ graph neural networks (GNNs), especially to analyze the temporal dynamics of prescription data.

Objective . The project aims to investigate the effectiveness of GNNs in analyzing time-dependent prescription data, focusing on various graph structures to understand how drug interactions and patient demographics influence PD risk over time.

  • Exploratory Data Analysis and Data Preprocessing: Prepare the prescription data for GNN analysis by investigating different structures to represent the data as a graph. This step is a challenging step; we must investigate what is the best structure for a graph based on the existing GNN and temporal GNN methods. For instance, one might assign a graph to each individual and consider classification approaches, or defining a graph for all participants, and investigating the GNN methods for clustering or predicting nodes and edges.

Incorporate demographic features, such as age, gender, and education, into the graph. Additionally, explore how to integrate time-dependent features to reflect the dynamic nature of the prescription data effectively.

  • Graph Neural Network Implementation: Apply graph neural network models such as Graph Convolutional Networks (GCNs) or Graph Attention Networks (GATs) that can process temporal graph data, based on the structure of our defined graph.
  • Feature Analysis: Perform an in-depth analysis of the learned embeddings and node features to identify significant patterns and influential factors related to increased, decreased PD risk.
  • Evaluation Metrics: Explore different metrics to evaluate the performance of the predictive models.

Expected Outcomes :

The project aims to study how graph neural networks (GNNs) can be utilized to analyze complex, time-dependent prescription data.

Ethical Considerations . All analyses will adhere to strict privacy protocols by conducting research on the SAFE server, ensuring that all individual data remains confidential and secure in compliance with ethical healthcare data management practices. The approval from regional ethics committee (REK) is already in place, as the project will be part of DRONE ( https://www.uib.no/en/epistat/139849/drone-drug-repurposing-neurological-diseases )

Project Benefits :

  • Get familiar with GNNs as advanced ML methods and utilize them in real data.

Advisors :  Samaneh Abolpour Mofrad , Asieh Abolpour Mofrad , Julia Romanowska , Jannicke Igland

Scaling Laws for Language Models in Generative AI

Large Language Models (LLM) power today's most prominent language technologies in Generative AI like ChatGPT, which, in turn, are changing the way that people access information and solve tasks of many kinds.

A recent interest on scaling laws for LLMs has shown trends on understanding how well they perform in terms of factors like the how much training data is used, how powerful the models are, or how much computational cost is allocated. (See, for example, Kaplan et al. - "Scaling Laws for Neural Language Models”, 2020.)

In this project, the task will consider to study scaling laws for different language models and with respect with one or multiple modeling factors.

Advisor: Dario Garigliotti

Applications of causal inference methods to omics data

Many hard problems in machine learning are directly linked to causality [1]. The graphical causal inference framework developed by Judea Pearl can be traced back to pioneering work by Sewall Wright on path analysis in genetics and has inspired research in artificial intelligence (AI) [1].

The Michoel group has developed the open-source tool Findr [2] which provides efficient implementations of mediation and instrumental variable methods for applications to large sets of omics data (genomics, transcriptomics, etc.). Findr works well on a recent data set for yeast [3].

We encourage students to explore promising connections between the fiels of causal inference and machine learning. Feel free to contact us to discuss projects related to causal inference. Possible topics include: a) improving methods based on structural causal models, b) evaluating causal inference methods on data for model organisms, c) comparing methods based on causal models and neural network approaches.

References:

1. Schölkopf B, Causality for Machine Learning, arXiv (2019):  https://arxiv.org/abs/1911.10500

2. Wang L and Michoel T. Efficient and accurate causal inference with hidden confounders from genome-transcriptome variation data. PLoS Computational Biology 13:e1005703 (2017).  https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005703

3. Ludl A and and Michoel T. Comparison between instrumental variable and mediation-based methods for reconstructing causal gene networks in yeast. arXiv:2010.07417  https://arxiv.org/abs/2010.07417

Advisors: Adriaan Ludl ,  Tom Michoel

Space-Time Linkage of Fish Distribution to Environmental Conditions

Conditions in the marine environment, such as, temperature and currents, influence the spatial distribution and migration patterns of marine species. Hence, understanding the link between environmental factors and fish behavior is crucial in predicting, e.g., how fish populations may respond to climate change.   Deriving this link is challenging because it requires analysis of two types of datasets (i) large environmental (currents, temperature) datasets that vary in space and time, and (ii) sparse and sporadic spatial observations of fish populations.

Project goal   

The primary goal of the project is to develop a methodology that helps predict how spatial distribution of two fish stocks (capelin and mackerel) change in response to variability in the physical marine environment (ocean currents and temperature).  The information can also be used to optimize data collection by minimizing time spent in spatial sampling of the populations.

The project will focus on the use of machine learning and/or causal inference algorithms.  As a first step, we use synthetic (fish and environmental) data from analytic models that couple the two data sources.  Because the ‘truth’ is known, we can judge the efficiency and error margins of the methodologies. We then apply the methodologies to real world (empirical) observations.

Advisors:  Tom Michoel , Sam Subbey . 

Towards precision medicine for cancer patient stratification

On average, a drug or a treatment is effective in only about half of patients who take it. This means patients need to try several until they find one that is effective at the cost of side effects associated with every treatment. The ultimate goal of precision medicine is to provide a treatment best suited for every individual. Sequencing technologies have now made genomics data available in abundance to be used towards this goal.

In this project we will specifically focus on cancer. Most cancer patients get a particular treatment based on the cancer type and the stage, though different individuals will react differently to a treatment. It is now well established that genetic mutations cause cancer growth and spreading and importantly, these mutations are different in individual patients. The aim of this project is use genomic data allow to better stratification of cancer patients, to predict the treatment most likely to work. Specifically, the project will use machine learning approach to integrate genomic data and build a classifier for stratification of cancer patients.

Advisor: Anagha Joshi

Unraveling gene regulation from single cell data

Multi-cellularity is achieved by precise control of gene expression during development and differentiation and aberrations of this process leads to disease. A key regulatory process in gene regulation is at the transcriptional level where epigenetic and transcriptional regulators control the spatial and temporal expression of the target genes in response to environmental, developmental, and physiological cues obtained from a signalling cascade. The rapid advances in sequencing technology has now made it feasible to study this process by understanding the genomewide patterns of diverse epigenetic and transcription factors as well as at a single cell level.

Single cell RNA sequencing is highly important, particularly in cancer as it allows exploration of heterogenous tumor sample, obstructing therapeutic targeting which leads to poor survival. Despite huge clinical relevance and potential, analysis of single cell RNA-seq data is challenging. In this project, we will develop strategies to infer gene regulatory networks using network inference approaches (both supervised and un-supervised). It will be primarily tested on the single cell datasets in the context of cancer.

Developing a Stress Granule Classifier

To carry out the multitude of functions 'expected' from a human cell, the cell employs a strategy of division of labour, whereby sub-cellular organelles carry out distinct functions. Thus we traditionally understand organelles as distinct units defined both functionally and physically with a distinct shape and size range. More recently a new class of organelles have been discovered that are assembled and dissolved on demand and are composed of liquid droplets or 'granules'. Granules show many properties characteristic of liquids, such as flow and wetting, but they can also assume many shapes and indeed also fluctuate in shape. One such liquid organelle is a stress granule (SG). 

Stress granules are pro-survival organelles that assemble in response to cellular stress and important in cancer and neurodegenerative diseases like Alzheimer's. They are liquid or gel-like and can assume varying sizes and shapes depending on their cellular composition. 

In a given experiment we are able to image the entire cell over a time series of 1000 frames; from which we extract a rough estimation of the size and shape of each granule. Our current method is susceptible to noise and a granule may be falsely rejected if the boundary is drawn poorly in a small majority of frames. Ideally, we would also like to identify potentially interesting features, such as voids, in the accepted granules.

We are interested in applying a machine learning approach to develop a descriptor for a 'classic' granule and furthermore classify them into different functional groups based on disease status of the cell. This method would be applied across thousands of granules imaged from control and disease cells. We are a multi-disciplinary group consisting of biologists, computational scientists and physicists. 

Advisors: Sushma Grellscheid , Carl Jones

Machine Learning based Hyperheuristic algorithm

Develop a Machine Learning based Hyper-heuristic algorithm to solve a pickup and delivery problem. A hyper-heuristic is a heuristics that choose heuristics automatically. Hyper-heuristic seeks to automate the process of selecting, combining, generating or adapting several simpler heuristics to efficiently solve computational search problems [Handbook of Metaheuristics]. There might be multiple heuristics for solving a problem. Heuristics have their own strength and weakness. In this project, we want to use machine-learning techniques to learn the strength and weakness of each heuristic while we are using them in an iterative search for finding high quality solutions and then use them intelligently for the rest of the search. Once a new information is gathered during the search the hyper-heuristic algorithm automatically adjusts the heuristics.

Advisor: Ahmad Hemmati

Machine learning for solving satisfiability problems and applications in cryptanalysis

Advisor: Igor Semaev

Hybrid modeling approaches for well drilling with Sintef

Several topics are available.

"Flow models" are first-principles models simulating the flow, temperature and pressure in a well being drilled. Our project is exploring "hybrid approaches" where these models are combined with machine learning models that either learn from time series data from flow model runs or from real-world measurements during drilling. The goal is to better detect drilling problems such as hole cleaning, make more accurate predictions and correctly learn from and interpret real-word data.

The "surrogate model" refers to  a ML model which learns to mimic the flow model by learning from the model inputs and outputs. Use cases for surrogate models include model predictions where speed is favoured over accuracy and exploration of parameter space.

Surrogate models with active Learning

While it is possible to produce a nearly unlimited amount of training data by running the flow model, the surrogate model may still perform poorly if it lacks training data in the part of the parameter space it operates in or if it "forgets" areas of the parameter space by being fed too much data from a narrow range of parameters.

The goal of this thesis is to build a surrogate model (with any architecture) for some restricted parameter range and implement an active learning approach where the ML requests more model runs from the flow model in the parts of the parameter space where it is needed the most. The end result should be a surrogate model that is quick and performs acceptably well over the whole defined parameter range.

Surrogate models trained via adversarial learning

How best to train surrogate models from runs of the flow model is an open question. This master thesis would use the adversarial learning approach to build a surrogate model which to its "adversary" becomes indistinguishable from the output of an actual flow model run.

GPU-based Surrogate models for parameter search

While CPU speed largely stalled 20 years ago in terms of working frequency on single cores, multi-core CPUs and especially GPUs took off and delivered increases in computational power by parallelizing computations.

Modern machine learning such as deep learning takes advantage this boom in computing power by running on GPUs.

The SINTEF flow models in contrast, are software programs that runs on a CPU and does not happen to utilize multi-core CPU functionality. The model runs advance time-step by time-step and each time step relies on the results from the previous time step. The flow models are therefore fundamentally sequential and not well suited to massive parallelization.

It is however of interest to run different model runs in parallel, to explore parameter spaces. The use cases for this includes model calibration, problem detection and hypothesis generation and testing.

The task of this thesis is to implement an ML-based surrogate model in such a way that many surrogate model outputs can be produced at the same time using a single GPU. This will likely entail some trade off with model size and maybe some coding tricks.

Uncertainty estimates of hybrid predictions (Lots of room for creativity, might need to steer it more, needs good background literature)

When using predictions from a ML model trained on time series data, it is useful to know if it's accurate or should be trusted. The student is challenged to develop hybrid approaches that incorporates estimates of uncertainty. Components could include reporting variance from ML ensembles trained on a diversity of time series data, implementation of conformal predictions, analysis of training data parameter ranges vs current input, etc. The output should be a "traffic light signal" roughly indicating the accuracy of the predictions.

Transfer learning approaches

We're assuming an ML model is to be used for time series prediction

It is possible to train an ML on a wide range of scenarios in the flow models, but we expect that to perform well, the model also needs to see model runs representative of the type of well and drilling operation it will be used in. In this thesis the student implements a transfer learning approach, where the model is trained on general model runs and fine-tuned on a most representative data set.

(Bonus1: implementing one-shot learning, Bonus2: Using real-world data in the fine-tuning stage)

ML capable of reframing situations

When a human oversees an operation like well drilling, she has a mental model of the situation and new data such as pressure readings from the well is interpreted in light of this model. This is referred to as "framing" and is the normal mode of work. However, when a problem occurs, it becomes harder to reconcile the data with the mental model. The human then goes into "reframing", building a new mental model that includes the ongoing problem. This can be seen as a process of hypothesis generation and testing.

A computer model however, lacks re-framing. A flow model will keep making predictions under the assumption of no problems and a separate alarm system will use the deviation between the model predictions and reality to raise an alarm. This is in a sense how all alarm systems work, but it means that the human must discard the computer model as a tool at the same time as she's handling a crisis.

The student is given access to a flow model and a surrogate model which can learn from model runs both with and without hole cleaning and is challenged to develop a hybrid approach where the ML+flow model continuously performs hypothesis generation and testing and is able to "switch" into predictions of  a hole cleaning problem and different remediations of this.

Advisor: Philippe Nivlet at Sintef together with advisor from UiB

Explainable AI at Equinor

In the project Machine Teaching for XAI (see  https://xai.w.uib.no ) a master thesis in collaboration between UiB and Equinor.

Advisor: One of Pekka Parviainen/Jan Arne Telle/Emmanuel Arrighi + Bjarte Johansen from Equinor.

Explainable AI at Eviny

In the project Machine Teaching for XAI (see  https://xai.w.uib.no ) a master thesis in collaboration between UiB and Eviny.

Advisor: One of Pekka Parviainen/Jan Arne Telle/Emmanuel Arrighi + Kristian Flikka from Eviny.

If you want to suggest your own topic, please contact Pekka Parviainen ,  Fabio Massimo Zennaro or Nello Blaser .

Graph

Machine Learning - CMU

PhD Dissertations

PhD Dissertations

[all are .pdf files].

Neural processes underlying cognitive control during language production (unavailable) Tara Pirnia, 2024

The Neurodynamic Basis of Real World Face Perception Arish Alreja, 2024

Towards More Powerful Graph Representation Learning Lingxiao Zhao, 2024

Robust Machine Learning: Detection, Evaluation and Adaptation Under Distribution Shift Saurabh Garg, 2024

UNDERSTANDING, FORMALLY CHARACTERIZING, AND ROBUSTLY HANDLING REAL-WORLD DISTRIBUTION SHIFT Elan Rosenfeld, 2024

Representing Time: Towards Pragmatic Multivariate Time Series Modeling Cristian Ignacio Challu, 2024

Foundations of Multisensory Artificial Intelligence Paul Pu Liang, 2024

Advancing Model-Based Reinforcement Learning with Applications in Nuclear Fusion Ian Char, 2024

Learning Models that Match Jacob Tyo, 2024

Improving Human Integration across the Machine Learning Pipeline Charvi Rastogi, 2024

Reliable and Practical Machine Learning for Dynamic Healthcare Settings Helen Zhou, 2023

Automatic customization of large-scale spiking network models to neuronal population activity (unavailable) Shenghao Wu, 2023

Estimation of BVk functions from scattered data (unavailable) Addison J. Hu, 2023

Rethinking object categorization in computer vision (unavailable) Jayanth Koushik, 2023

Advances in Statistical Gene Networks Jinjin Tian, 2023 Post-hoc calibration without distributional assumptions Chirag Gupta, 2023

The Role of Noise, Proxies, and Dynamics in Algorithmic Fairness Nil-Jana Akpinar, 2023

Collaborative learning by leveraging siloed data Sebastian Caldas, 2023

Modeling Epidemiological Time Series Aaron Rumack, 2023

Human-Centered Machine Learning: A Statistical and Algorithmic Perspective Leqi Liu, 2023

Uncertainty Quantification under Distribution Shifts Aleksandr Podkopaev, 2023

Probabilistic Reinforcement Learning: Using Data to Define Desired Outcomes, and Inferring How to Get There Benjamin Eysenbach, 2023

Comparing Forecasters and Abstaining Classifiers Yo Joong Choe, 2023

Using Task Driven Methods to Uncover Representations of Human Vision and Semantics Aria Yuan Wang, 2023

Data-driven Decisions - An Anomaly Detection Perspective Shubhranshu Shekhar, 2023

Applied Mathematics of the Future Kin G. Olivares, 2023

METHODS AND APPLICATIONS OF EXPLAINABLE MACHINE LEARNING Joon Sik Kim, 2023

NEURAL REASONING FOR QUESTION ANSWERING Haitian Sun, 2023

Principled Machine Learning for Societally Consequential Decision Making Amanda Coston, 2023

Long term brain dynamics extend cognitive neuroscience to timescales relevant for health and physiology Maxwell B. Wang, 2023

Long term brain dynamics extend cognitive neuroscience to timescales relevant for health and physiology Darby M. Losey, 2023

Calibrated Conditional Density Models and Predictive Inference via Local Diagnostics David Zhao, 2023

Towards an Application-based Pipeline for Explainability Gregory Plumb, 2022

Objective Criteria for Explainable Machine Learning Chih-Kuan Yeh, 2022

Making Scientific Peer Review Scientific Ivan Stelmakh, 2022

Facets of regularization in high-dimensional learning: Cross-validation, risk monotonization, and model complexity Pratik Patil, 2022

Active Robot Perception using Programmable Light Curtains Siddharth Ancha, 2022

Strategies for Black-Box and Multi-Objective Optimization Biswajit Paria, 2022

Unifying State and Policy-Level Explanations for Reinforcement Learning Nicholay Topin, 2022

Sensor Fusion Frameworks for Nowcasting Maria Jahja, 2022

Equilibrium Approaches to Modern Deep Learning Shaojie Bai, 2022

Towards General Natural Language Understanding with Probabilistic Worldbuilding Abulhair Saparov, 2022

Applications of Point Process Modeling to Spiking Neurons (Unavailable) Yu Chen, 2021

Neural variability: structure, sources, control, and data augmentation Akash Umakantha, 2021

Structure and time course of neural population activity during learning Jay Hennig, 2021

Cross-view Learning with Limited Supervision Yao-Hung Hubert Tsai, 2021

Meta Reinforcement Learning through Memory Emilio Parisotto, 2021

Learning Embodied Agents with Scalably-Supervised Reinforcement Learning Lisa Lee, 2021

Learning to Predict and Make Decisions under Distribution Shift Yifan Wu, 2021

Statistical Game Theory Arun Sai Suggala, 2021

Towards Knowledge-capable AI: Agents that See, Speak, Act and Know Kenneth Marino, 2021

Learning and Reasoning with Fast Semidefinite Programming and Mixing Methods Po-Wei Wang, 2021

Bridging Language in Machines with Language in the Brain Mariya Toneva, 2021

Curriculum Learning Otilia Stretcu, 2021

Principles of Learning in Multitask Settings: A Probabilistic Perspective Maruan Al-Shedivat, 2021

Towards Robust and Resilient Machine Learning Adarsh Prasad, 2021

Towards Training AI Agents with All Types of Experiences: A Unified ML Formalism Zhiting Hu, 2021

Building Intelligent Autonomous Navigation Agents Devendra Chaplot, 2021

Learning to See by Moving: Self-supervising 3D Scene Representations for Perception, Control, and Visual Reasoning Hsiao-Yu Fish Tung, 2021

Statistical Astrophysics: From Extrasolar Planets to the Large-scale Structure of the Universe Collin Politsch, 2020

Causal Inference with Complex Data Structures and Non-Standard Effects Kwhangho Kim, 2020

Networks, Point Processes, and Networks of Point Processes Neil Spencer, 2020

Dissecting neural variability using population recordings, network models, and neurofeedback (Unavailable) Ryan Williamson, 2020

Predicting Health and Safety: Essays in Machine Learning for Decision Support in the Public Sector Dylan Fitzpatrick, 2020

Towards a Unified Framework for Learning and Reasoning Han Zhao, 2020

Learning DAGs with Continuous Optimization Xun Zheng, 2020

Machine Learning and Multiagent Preferences Ritesh Noothigattu, 2020

Learning and Decision Making from Diverse Forms of Information Yichong Xu, 2020

Towards Data-Efficient Machine Learning Qizhe Xie, 2020

Change modeling for understanding our world and the counterfactual one(s) William Herlands, 2020

Machine Learning in High-Stakes Settings: Risks and Opportunities Maria De-Arteaga, 2020

Data Decomposition for Constrained Visual Learning Calvin Murdock, 2020

Structured Sparse Regression Methods for Learning from High-Dimensional Genomic Data Micol Marchetti-Bowick, 2020

Towards Efficient Automated Machine Learning Liam Li, 2020

LEARNING COLLECTIONS OF FUNCTIONS Emmanouil Antonios Platanios, 2020

Provable, structured, and efficient methods for robustness of deep networks to adversarial examples Eric Wong , 2020

Reconstructing and Mining Signals: Algorithms and Applications Hyun Ah Song, 2020

Probabilistic Single Cell Lineage Tracing Chieh Lin, 2020

Graphical network modeling of phase coupling in brain activity (unavailable) Josue Orellana, 2019

Strategic Exploration in Reinforcement Learning - New Algorithms and Learning Guarantees Christoph Dann, 2019 Learning Generative Models using Transformations Chun-Liang Li, 2019

Estimating Probability Distributions and their Properties Shashank Singh, 2019

Post-Inference Methods for Scalable Probabilistic Modeling and Sequential Decision Making Willie Neiswanger, 2019

Accelerating Text-as-Data Research in Computational Social Science Dallas Card, 2019

Multi-view Relationships for Analytics and Inference Eric Lei, 2019

Information flow in networks based on nonstationary multivariate neural recordings Natalie Klein, 2019

Competitive Analysis for Machine Learning & Data Science Michael Spece, 2019

The When, Where and Why of Human Memory Retrieval Qiong Zhang, 2019

Towards Effective and Efficient Learning at Scale Adams Wei Yu, 2019

Towards Literate Artificial Intelligence Mrinmaya Sachan, 2019

Learning Gene Networks Underlying Clinical Phenotypes Under SNP Perturbations From Genome-Wide Data Calvin McCarter, 2019

Unified Models for Dynamical Systems Carlton Downey, 2019

Anytime Prediction and Learning for the Balance between Computation and Accuracy Hanzhang Hu, 2019

Statistical and Computational Properties of Some "User-Friendly" Methods for High-Dimensional Estimation Alnur Ali, 2019

Nonparametric Methods with Total Variation Type Regularization Veeranjaneyulu Sadhanala, 2019

New Advances in Sparse Learning, Deep Networks, and Adversarial Learning: Theory and Applications Hongyang Zhang, 2019

Gradient Descent for Non-convex Problems in Modern Machine Learning Simon Shaolei Du, 2019

Selective Data Acquisition in Learning and Decision Making Problems Yining Wang, 2019

Anomaly Detection in Graphs and Time Series: Algorithms and Applications Bryan Hooi, 2019

Neural dynamics and interactions in the human ventral visual pathway Yuanning Li, 2018

Tuning Hyperparameters without Grad Students: Scaling up Bandit Optimisation Kirthevasan Kandasamy, 2018

Teaching Machines to Classify from Natural Language Interactions Shashank Srivastava, 2018

Statistical Inference for Geometric Data Jisu Kim, 2018

Representation Learning @ Scale Manzil Zaheer, 2018

Diversity-promoting and Large-scale Machine Learning for Healthcare Pengtao Xie, 2018

Distribution and Histogram (DIsH) Learning Junier Oliva, 2018

Stress Detection for Keystroke Dynamics Shing-Hon Lau, 2018

Sublinear-Time Learning and Inference for High-Dimensional Models Enxu Yan, 2018

Neural population activity in the visual cortex: Statistical methods and application Benjamin Cowley, 2018

Efficient Methods for Prediction and Control in Partially Observable Environments Ahmed Hefny, 2018

Learning with Staleness Wei Dai, 2018

Statistical Approach for Functionally Validating Transcription Factor Bindings Using Population SNP and Gene Expression Data Jing Xiang, 2017

New Paradigms and Optimality Guarantees in Statistical Learning and Estimation Yu-Xiang Wang, 2017

Dynamic Question Ordering: Obtaining Useful Information While Reducing User Burden Kirstin Early, 2017

New Optimization Methods for Modern Machine Learning Sashank J. Reddi, 2017

Active Search with Complex Actions and Rewards Yifei Ma, 2017

Why Machine Learning Works George D. Montañez , 2017

Source-Space Analyses in MEG/EEG and Applications to Explore Spatio-temporal Neural Dynamics in Human Vision Ying Yang , 2017

Computational Tools for Identification and Analysis of Neuronal Population Activity Pengcheng Zhou, 2016

Expressive Collaborative Music Performance via Machine Learning Gus (Guangyu) Xia, 2016

Supervision Beyond Manual Annotations for Learning Visual Representations Carl Doersch, 2016

Exploring Weakly Labeled Data Across the Noise-Bias Spectrum Robert W. H. Fisher, 2016

Optimizing Optimization: Scalable Convex Programming with Proximal Operators Matt Wytock, 2016

Combining Neural Population Recordings: Theory and Application William Bishop, 2015

Discovering Compact and Informative Structures through Data Partitioning Madalina Fiterau-Brostean, 2015

Machine Learning in Space and Time Seth R. Flaxman, 2015

The Time and Location of Natural Reading Processes in the Brain Leila Wehbe, 2015

Shape-Constrained Estimation in High Dimensions Min Xu, 2015

Spectral Probabilistic Modeling and Applications to Natural Language Processing Ankur Parikh, 2015 Computational and Statistical Advances in Testing and Learning Aaditya Kumar Ramdas, 2015

Corpora and Cognition: The Semantic Composition of Adjectives and Nouns in the Human Brain Alona Fyshe, 2015

Learning Statistical Features of Scene Images Wooyoung Lee, 2014

Towards Scalable Analysis of Images and Videos Bin Zhao, 2014

Statistical Text Analysis for Social Science Brendan T. O'Connor, 2014

Modeling Large Social Networks in Context Qirong Ho, 2014

Semi-Cooperative Learning in Smart Grid Agents Prashant P. Reddy, 2013

On Learning from Collective Data Liang Xiong, 2013

Exploiting Non-sequence Data in Dynamic Model Learning Tzu-Kuo Huang, 2013

Mathematical Theories of Interaction with Oracles Liu Yang, 2013

Short-Sighted Probabilistic Planning Felipe W. Trevizan, 2013

Statistical Models and Algorithms for Studying Hand and Finger Kinematics and their Neural Mechanisms Lucia Castellanos, 2013

Approximation Algorithms and New Models for Clustering and Learning Pranjal Awasthi, 2013

Uncovering Structure in High-Dimensions: Networks and Multi-task Learning Problems Mladen Kolar, 2013

Learning with Sparsity: Structures, Optimization and Applications Xi Chen, 2013

GraphLab: A Distributed Abstraction for Large Scale Machine Learning Yucheng Low, 2013

Graph Structured Normal Means Inference James Sharpnack, 2013 (Joint Statistics & ML PhD)

Probabilistic Models for Collecting, Analyzing, and Modeling Expression Data Hai-Son Phuoc Le, 2013

Learning Large-Scale Conditional Random Fields Joseph K. Bradley, 2013

New Statistical Applications for Differential Privacy Rob Hall, 2013 (Joint Statistics & ML PhD)

Parallel and Distributed Systems for Probabilistic Reasoning Joseph Gonzalez, 2012

Spectral Approaches to Learning Predictive Representations Byron Boots, 2012

Attribute Learning using Joint Human and Machine Computation Edith L. M. Law, 2012

Statistical Methods for Studying Genetic Variation in Populations Suyash Shringarpure, 2012

Data Mining Meets HCI: Making Sense of Large Graphs Duen Horng (Polo) Chau, 2012

Learning with Limited Supervision by Input and Output Coding Yi Zhang, 2012

Target Sequence Clustering Benjamin Shih, 2011

Nonparametric Learning in High Dimensions Han Liu, 2010 (Joint Statistics & ML PhD)

Structural Analysis of Large Networks: Observations and Applications Mary McGlohon, 2010

Modeling Purposeful Adaptive Behavior with the Principle of Maximum Causal Entropy Brian D. Ziebart, 2010

Tractable Algorithms for Proximity Search on Large Graphs Purnamrita Sarkar, 2010

Rare Category Analysis Jingrui He, 2010

Coupled Semi-Supervised Learning Andrew Carlson, 2010

Fast Algorithms for Querying and Mining Large Graphs Hanghang Tong, 2009

Efficient Matrix Models for Relational Learning Ajit Paul Singh, 2009

Exploiting Domain and Task Regularities for Robust Named Entity Recognition Andrew O. Arnold, 2009

Theoretical Foundations of Active Learning Steve Hanneke, 2009

Generalized Learning Factors Analysis: Improving Cognitive Models with Machine Learning Hao Cen, 2009

Detecting Patterns of Anomalies Kaustav Das, 2009

Dynamics of Large Networks Jurij Leskovec, 2008

Computational Methods for Analyzing and Modeling Gene Regulation Dynamics Jason Ernst, 2008

Stacked Graphical Learning Zhenzhen Kou, 2007

Actively Learning Specific Function Properties with Applications to Statistical Inference Brent Bryan, 2007

Approximate Inference, Structure Learning and Feature Estimation in Markov Random Fields Pradeep Ravikumar, 2007

Scalable Graphical Models for Social Networks Anna Goldenberg, 2007

Measure Concentration of Strongly Mixing Processes with Applications Leonid Kontorovich, 2007

Tools for Graph Mining Deepayan Chakrabarti, 2005

Automatic Discovery of Latent Variable Models Ricardo Silva, 2005

thesis machine learning

thesis machine learning

Research Topics & Ideas

Artifical Intelligence (AI) and Machine Learning (ML)

Research topics and ideas about AI and machine learning

If you’re just starting out exploring AI-related research topics for your dissertation, thesis or research project, you’ve come to the right place. In this post, we’ll help kickstart your research topic ideation process by providing a hearty list of research topics and ideas , including examples from past studies.

PS – This is just the start…

We know it’s exciting to run through a list of research topics, but please keep in mind that this list is just a starting point . To develop a suitable research topic, you’ll need to identify a clear and convincing research gap , and a viable plan  to fill that gap.

If this sounds foreign to you, check out our free research topic webinar that explores how to find and refine a high-quality research topic, from scratch. Alternatively, if you’d like hands-on help, consider our 1-on-1 coaching service .

Research topic idea mega list

AI-Related Research Topics & Ideas

Below you’ll find a list of AI and machine learning-related research topics ideas. These are intentionally broad and generic , so keep in mind that you will need to refine them a little. Nevertheless, they should inspire some ideas for your project.

  • Developing AI algorithms for early detection of chronic diseases using patient data.
  • The use of deep learning in enhancing the accuracy of weather prediction models.
  • Machine learning techniques for real-time language translation in social media platforms.
  • AI-driven approaches to improve cybersecurity in financial transactions.
  • The role of AI in optimizing supply chain logistics for e-commerce.
  • Investigating the impact of machine learning in personalized education systems.
  • The use of AI in predictive maintenance for industrial machinery.
  • Developing ethical frameworks for AI decision-making in healthcare.
  • The application of ML algorithms in autonomous vehicle navigation systems.
  • AI in agricultural technology: Optimizing crop yield predictions.
  • Machine learning techniques for enhancing image recognition in security systems.
  • AI-powered chatbots: Improving customer service efficiency in retail.
  • The impact of AI on enhancing energy efficiency in smart buildings.
  • Deep learning in drug discovery and pharmaceutical research.
  • The use of AI in detecting and combating online misinformation.
  • Machine learning models for real-time traffic prediction and management.
  • AI applications in facial recognition: Privacy and ethical considerations.
  • The effectiveness of ML in financial market prediction and analysis.
  • Developing AI tools for real-time monitoring of environmental pollution.
  • Machine learning for automated content moderation on social platforms.
  • The role of AI in enhancing the accuracy of medical diagnostics.
  • AI in space exploration: Automated data analysis and interpretation.
  • Machine learning techniques in identifying genetic markers for diseases.
  • AI-driven personal finance management tools.
  • The use of AI in developing adaptive learning technologies for disabled students.

Research topic evaluator

AI & ML Research Topic Ideas (Continued)

  • Machine learning in cybersecurity threat detection and response.
  • AI applications in virtual reality and augmented reality experiences.
  • Developing ethical AI systems for recruitment and hiring processes.
  • Machine learning for sentiment analysis in customer feedback.
  • AI in sports analytics for performance enhancement and injury prevention.
  • The role of AI in improving urban planning and smart city initiatives.
  • Machine learning models for predicting consumer behaviour trends.
  • AI and ML in artistic creation: Music, visual arts, and literature.
  • The use of AI in automated drone navigation for delivery services.
  • Developing AI algorithms for effective waste management and recycling.
  • Machine learning in seismology for earthquake prediction.
  • AI-powered tools for enhancing online privacy and data protection.
  • The application of ML in enhancing speech recognition technologies.
  • Investigating the role of AI in mental health assessment and therapy.
  • Machine learning for optimization of renewable energy systems.
  • AI in fashion: Predicting trends and personalizing customer experiences.
  • The impact of AI on legal research and case analysis.
  • Developing AI systems for real-time language interpretation for the deaf and hard of hearing.
  • Machine learning in genomic data analysis for personalized medicine.
  • AI-driven algorithms for credit scoring in microfinance.
  • The use of AI in enhancing public safety and emergency response systems.
  • Machine learning for improving water quality monitoring and management.
  • AI applications in wildlife conservation and habitat monitoring.
  • The role of AI in streamlining manufacturing processes.
  • Investigating the use of AI in enhancing the accessibility of digital content for visually impaired users.

Recent AI & ML-Related Studies

While the ideas we’ve presented above are a decent starting point for finding a research topic in AI, they are fairly generic and non-specific. So, it helps to look at actual studies in the AI and machine learning space to see how this all comes together in practice.

Below, we’ve included a selection of AI-related studies to help refine your thinking. These are actual studies,  so they can provide some useful insight as to what a research topic looks like in practice.

  • An overview of artificial intelligence in diabetic retinopathy and other ocular diseases (Sheng et al., 2022)
  • HOW DOES ARTIFICIAL INTELLIGENCE HELP ASTRONOMY? A REVIEW (Patel, 2022)
  • Editorial: Artificial Intelligence in Bioinformatics and Drug Repurposing: Methods and Applications (Zheng et al., 2022)
  • Review of Artificial Intelligence and Machine Learning Technologies: Classification, Restrictions, Opportunities, and Challenges (Mukhamediev et al., 2022)
  • Will digitization, big data, and artificial intelligence – and deep learning–based algorithm govern the practice of medicine? (Goh, 2022)
  • Flower Classifier Web App Using Ml & Flask Web Framework (Singh et al., 2022)
  • Object-based Classification of Natural Scenes Using Machine Learning Methods (Jasim & Younis, 2023)
  • Automated Training Data Construction using Measurements for High-Level Learning-Based FPGA Power Modeling (Richa et al., 2022)
  • Artificial Intelligence (AI) and Internet of Medical Things (IoMT) Assisted Biomedical Systems for Intelligent Healthcare (Manickam et al., 2022)
  • Critical Review of Air Quality Prediction using Machine Learning Techniques (Sharma et al., 2022)
  • Artificial Intelligence: New Frontiers in Real–Time Inverse Scattering and Electromagnetic Imaging (Salucci et al., 2022)
  • Machine learning alternative to systems biology should not solely depend on data (Yeo & Selvarajoo, 2022)
  • Measurement-While-Drilling Based Estimation of Dynamic Penetrometer Values Using Decision Trees and Random Forests (García et al., 2022).
  • Artificial Intelligence in the Diagnosis of Oral Diseases: Applications and Pitfalls (Patil et al., 2022).
  • Automated Machine Learning on High Dimensional Big Data for Prediction Tasks (Jayanthi & Devi, 2022)
  • Breakdown of Machine Learning Algorithms (Meena & Sehrawat, 2022)
  • Technology-Enabled, Evidence-Driven, and Patient-Centered: The Way Forward for Regulating Software as a Medical Device (Carolan et al., 2021)
  • Machine Learning in Tourism (Rugge, 2022)
  • Towards a training data model for artificial intelligence in earth observation (Yue et al., 2022)
  • Classification of Music Generality using ANN, CNN and RNN-LSTM (Tripathy & Patel, 2022)

As you can see, these research topics are a lot more focused than the generic topic ideas we presented earlier. So, in order for you to develop a high-quality research topic, you’ll need to get specific and laser-focused on a specific context with specific variables of interest.  In the video below, we explore some other important things you’ll need to consider when crafting your research topic.

Get 1-On-1 Help

If you’re still unsure about how to find a quality research topic, check out our Research Topic Kickstarter service, which is the perfect starting point for developing a unique, well-justified research topic.

Research Topic Kickstarter - Need Help Finding A Research Topic?

can one come up with their own tppic and get a search

can one come up with their own title and get a search

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly

youtube logo

The Future of AI Research: 20 Thesis Ideas for Undergraduate Students in Machine Learning and Deep Learning for 2023!

A comprehensive guide for crafting an original and innovative thesis in the field of ai..

By Aarafat Islam on 2023-01-11

“The beauty of machine learning is that it can be applied to any problem you want to solve, as long as you can provide the computer with enough examples.” — Andrew Ng

This article provides a list of 20 potential thesis ideas for an undergraduate program in machine learning and deep learning in 2023. Each thesis idea includes an  introduction , which presents a brief overview of the topic and the  research objectives . The ideas provided are related to different areas of machine learning and deep learning, such as computer vision, natural language processing, robotics, finance, drug discovery, and more. The article also includes explanations, examples, and conclusions for each thesis idea, which can help guide the research and provide a clear understanding of the potential contributions and outcomes of the proposed research. The article also emphasized the importance of originality and the need for proper citation in order to avoid plagiarism.

1. Investigating the use of Generative Adversarial Networks (GANs) in medical imaging:  A deep learning approach to improve the accuracy of medical diagnoses.

Introduction:  Medical imaging is an important tool in the diagnosis and treatment of various medical conditions. However, accurately interpreting medical images can be challenging, especially for less experienced doctors. This thesis aims to explore the use of GANs in medical imaging, in order to improve the accuracy of medical diagnoses.

2. Exploring the use of deep learning in natural language generation (NLG): An analysis of the current state-of-the-art and future potential.

Introduction:  Natural language generation is an important field in natural language processing (NLP) that deals with creating human-like text automatically. Deep learning has shown promising results in NLP tasks such as machine translation, sentiment analysis, and question-answering. This thesis aims to explore the use of deep learning in NLG and analyze the current state-of-the-art models, as well as potential future developments.

3. Development and evaluation of deep reinforcement learning (RL) for robotic navigation and control.

Introduction:  Robotic navigation and control are challenging tasks, which require a high degree of intelligence and adaptability. Deep RL has shown promising results in various robotics tasks, such as robotic arm control, autonomous navigation, and manipulation. This thesis aims to develop and evaluate a deep RL-based approach for robotic navigation and control and evaluate its performance in various environments and tasks.

4. Investigating the use of deep learning for drug discovery and development.

Introduction:  Drug discovery and development is a time-consuming and expensive process, which often involves high failure rates. Deep learning has been used to improve various tasks in bioinformatics and biotechnology, such as protein structure prediction and gene expression analysis. This thesis aims to investigate the use of deep learning for drug discovery and development and examine its potential to improve the efficiency and accuracy of the drug development process.

5. Comparison of deep learning and traditional machine learning methods for anomaly detection in time series data.

Introduction:  Anomaly detection in time series data is a challenging task, which is important in various fields such as finance, healthcare, and manufacturing. Deep learning methods have been used to improve anomaly detection in time series data, while traditional machine learning methods have been widely used as well. This thesis aims to compare deep learning and traditional machine learning methods for anomaly detection in time series data and examine their respective strengths and weaknesses.

thesis machine learning

Photo by  Joanna Kosinska  on  Unsplash

6. Use of deep transfer learning in speech recognition and synthesis.

Introduction:  Speech recognition and synthesis are areas of natural language processing that focus on converting spoken language to text and vice versa. Transfer learning has been widely used in deep learning-based speech recognition and synthesis systems to improve their performance by reusing the features learned from other tasks. This thesis aims to investigate the use of transfer learning in speech recognition and synthesis and how it improves the performance of the system in comparison to traditional methods.

7. The use of deep learning for financial prediction.

Introduction:  Financial prediction is a challenging task that requires a high degree of intelligence and adaptability, especially in the field of stock market prediction. Deep learning has shown promising results in various financial prediction tasks, such as stock price prediction and credit risk analysis. This thesis aims to investigate the use of deep learning for financial prediction and examine its potential to improve the accuracy of financial forecasting.

8. Investigating the use of deep learning for computer vision in agriculture.

Introduction:  Computer vision has the potential to revolutionize the field of agriculture by improving crop monitoring, precision farming, and yield prediction. Deep learning has been used to improve various computer vision tasks, such as object detection, semantic segmentation, and image classification. This thesis aims to investigate the use of deep learning for computer vision in agriculture and examine its potential to improve the efficiency and accuracy of crop monitoring and precision farming.

9. Development and evaluation of deep learning models for generative design in engineering and architecture.

Introduction:  Generative design is a powerful tool in engineering and architecture that can help optimize designs and reduce human error. Deep learning has been used to improve various generative design tasks, such as design optimization and form generation. This thesis aims to develop and evaluate deep learning models for generative design in engineering and architecture and examine their potential to improve the efficiency and accuracy of the design process.

10. Investigating the use of deep learning for natural language understanding.

Introduction:  Natural language understanding is a complex task of natural language processing that involves extracting meaning from text. Deep learning has been used to improve various NLP tasks, such as machine translation, sentiment analysis, and question-answering. This thesis aims to investigate the use of deep learning for natural language understanding and examine its potential to improve the efficiency and accuracy of natural language understanding systems.

thesis machine learning

Photo by  UX Indonesia  on  Unsplash

11. Comparing deep learning and traditional machine learning methods for image compression.

Introduction:  Image compression is an important task in image processing and computer vision. It enables faster data transmission and storage of image files. Deep learning methods have been used to improve image compression, while traditional machine learning methods have been widely used as well. This thesis aims to compare deep learning and traditional machine learning methods for image compression and examine their respective strengths and weaknesses.

12. Using deep learning for sentiment analysis in social media.

Introduction:  Sentiment analysis in social media is an important task that can help businesses and organizations understand their customers’ opinions and feedback. Deep learning has been used to improve sentiment analysis in social media, by training models on large datasets of social media text. This thesis aims to use deep learning for sentiment analysis in social media, and evaluate its performance against traditional machine learning methods.

13. Investigating the use of deep learning for image generation.

Introduction:  Image generation is a task in computer vision that involves creating new images from scratch or modifying existing images. Deep learning has been used to improve various image generation tasks, such as super-resolution, style transfer, and face generation. This thesis aims to investigate the use of deep learning for image generation and examine its potential to improve the quality and diversity of generated images.

14. Development and evaluation of deep learning models for anomaly detection in cybersecurity.

Introduction:  Anomaly detection in cybersecurity is an important task that can help detect and prevent cyber-attacks. Deep learning has been used to improve various anomaly detection tasks, such as intrusion detection and malware detection. This thesis aims to develop and evaluate deep learning models for anomaly detection in cybersecurity and examine their potential to improve the efficiency and accuracy of cybersecurity systems.

15. Investigating the use of deep learning for natural language summarization.

Introduction:  Natural language summarization is an important task in natural language processing that involves creating a condensed version of a text that preserves its main meaning. Deep learning has been used to improve various natural language summarization tasks, such as document summarization and headline generation. This thesis aims to investigate the use of deep learning for natural language summarization and examine its potential to improve the efficiency and accuracy of natural language summarization systems.

thesis machine learning

Photo by  Windows  on  Unsplash

16. Development and evaluation of deep learning models for facial expression recognition.

Introduction:  Facial expression recognition is an important task in computer vision and has many practical applications, such as human-computer interaction, emotion recognition, and psychological studies. Deep learning has been used to improve facial expression recognition, by training models on large datasets of images. This thesis aims to develop and evaluate deep learning models for facial expression recognition and examine their performance against traditional machine learning methods.

17. Investigating the use of deep learning for generative models in music and audio.

Introduction:  Music and audio synthesis is an important task in audio processing, which has many practical applications, such as music generation and speech synthesis. Deep learning has been used to improve generative models for music and audio, by training models on large datasets of audio data. This thesis aims to investigate the use of deep learning for generative models in music and audio and examine its potential to improve the quality and diversity of generated audio.

18. Study the comparison of deep learning models with traditional algorithms for anomaly detection in network traffic.

Introduction:  Anomaly detection in network traffic is an important task that can help detect and prevent cyber-attacks. Deep learning models have been used for this task, and traditional methods such as clustering and rule-based systems are widely used as well. This thesis aims to compare deep learning models with traditional algorithms for anomaly detection in network traffic and analyze the trade-offs between the models in terms of accuracy and scalability.

19. Investigating the use of deep learning for improving recommender systems.

Introduction:  Recommender systems are widely used in many applications such as online shopping, music streaming, and movie streaming. Deep learning has been used to improve the performance of recommender systems, by training models on large datasets of user-item interactions. This thesis aims to investigate the use of deep learning for improving recommender systems and compare its performance with traditional content-based and collaborative filtering approaches.

20. Development and evaluation of deep learning models for multi-modal data analysis.

Introduction:  Multi-modal data analysis is the task of analyzing and understanding data from multiple sources such as text, images, and audio. Deep learning has been used to improve multi-modal data analysis, by training models on large datasets of multi-modal data. This thesis aims to develop and evaluate deep learning models for multi-modal data analysis and analyze their potential to improve performance in comparison to single-modal models.

I hope that this article has provided you with a useful guide for your thesis research in machine learning and deep learning. Remember to conduct a thorough literature review and to include proper citations in your work, as well as to be original in your research to avoid plagiarism. I wish you all the best of luck with your thesis and your research endeavors!

Continue Learning

Ai and automation: not replacements, but empowering tools for humans, znote ai: the perfect sandbox for prototyping and deploying code, generative ai vs. discriminative ai.

Breaking Down the Difference Between Generative AI and Discriminative AI and How Industry LLM Giants Cohere and OpenAI are Changing the Game in Generative AI

Art Generating AI

Mastering the gpt-3 temperature parameter with ruby, how to use llama 2 with an api on aws to power your ai apps.

Academia.edu no longer supports Internet Explorer.

To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to  upgrade your browser .

Enter the email address you signed up with and we'll email you a reset link.

  • We're Hiring!
  • Help Center

paper cover thumbnail

Thesis on Machine Learning Methods and Its Applications

Profile image of IJRASET Publication

2021, IJRASET

In the 1950s, the concept of machine learning was discovered and developed as a subfield of artificial intelligence. However, there were no significant developments or research on it until this decade. Typically, this field of study has developed and expanded since the 1990s. It is a field that will continue to develop in the future due to the difficulty of analysing and processing data as the number of records and documents increases. Due to the increasing data, machine learning focuses on finding the best model for the new data that takes into account all the previous data. Therefore, machine learning research will continue in correlation with this increasing data. This research focuses on the history of machine learning, the methods of machine learning, its applications, and the research that has been conducted on this topic. Our study aims to give researchers a deeper understanding of machine learning, an area of research that is becoming much more popular today, and its applications.

Related Papers

Manisha More

Machine learning is the fastest growing areas of computer science. It has the ability to lets the computer to create the program. It is a subset of Artificial Intelligence (AI), and consists of the more advanced techniques and models that enable computers to figure things out from the data and deliver. It is a field of learning and broadly divided into supervised learning, unsupervised learning, and reinforcement learning. There are many fields where the Machine learning algorithms are used. The objective of the paper is to represent the ML objectives, explore the various ML techniques and algorithms with its applications in the various fields from published papers, workshop materials & material collected from books and material available online on the World Wide Web.

thesis machine learning

Pattern Recognition Letters

Ramon Lopez De Mantaras

pankaj verma

The field of machine learning is introduced at a conceptual level. The main goal of machine learning is how computers automatically learn without any human invention or assistance so that they can adjust their action accordingly. We are discussing mainly three types of algorithms in machine learning and also discussed ML's features and applications in detail. Supervised ML, In this typeof algorithm, the machine applies what it has learned in its past to new data, in which they use labeled examples, so that they predict future events. Unsupervised ML studies how systems can infer a function, so that they can describe a hidden structure from unlabeled data. Reinforcement ML, is a type of learning method, which interacts with its environment, produces action, as well as discovers errors and rewards.

Journal of Advances in Mathematical & Computational Science. Vol 10, No.3. Pp 1 – 14.

Jerry Sarumi

Machine learning and associated algorithms occupies a pride of place in the execution of automation in the field of computing and its application to addressing contemporary and human-centred problems such as predictions, evaluations, deductions, analytics and analysis. This paper presents types of data and machine learning algorithms in a broader sense. We briefly discuss and explain different machine learning algorithms and real-world application areas based on machine learning. We highlight several research issues and potential future directions

IJESRT Journal

Machine learning [1], a branch of artificial intelligence, that gives computers the ability to learn without being explicitly programmed, means it gives system the ability to learn from data. There are two types of learning techniques: supervised learning and unsupervised learning [2]. This paper summarizes the recent trends of machine learning research.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

Dr. Manish Kumar Singh

Machine learning has become one of the most envisaged areas of research and development field in modern times. But the area of research related to machine learning is not new. The term machine learning was coined by Arthur Samuel in 1952 and since then lots of developments have been made in this field. The data scientists and the machine learning enthusiasts have developed myriad algorithms from time to time to let the benefit of machine learning reach to each and every field of human endeavors. This paper is an effort to put light on some of the most prominent algorithms that have been used in machine learning field on frequent basis since the time of its inception. Further, we will analyze their area of applications.

International Journal of Advanced Technology and Engineering Exploration

Akash Badone

International Journal of Engineering Applied Sciences and Technology

vishal bari

Today, huge amounts of data are available everywhere. Therefore, analyzing this data is very important to derive useful information from it and develop an algorithm based on this analysis. This can be achieved through data mining and machine learning. Machine learning is an essential part of artificial intelligence used to design algorithms based on data trends and past relationships between data. Machine learning is used in a variety of areas such as bioinformatics, intrusion detection, information retrieval, games, marketing, malware detection, and image decoding. This paper shows the work of various authors in the field of machine learning in various application areas.

Ioannis Vlahavas

IJRASET Publication

This paper describes essential points of machine learning and its application. It seamlessly turns around and teach about the pros and cons of the ML. As well as it covers the real-life application where the machine learning is being used. Different types of machine learning and its algorithms. This paper is giving the detail knowledge about the different algorithms used in machine learning with their applications. There is brief explanation about the Weather Prediction application using the machine learning and also the comparison between various machine learning algorithms used by various researchers for weather prediction.

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

RELATED PAPERS

Sumeet Agarwal

JMSS, A2Z Journals

Journal of Management and Service Science (JMSS), A 2 Z Journals

Applied Sciences

Grzegorz Dudek

Pooja Ambatkar

Journal of Physics: Conference Series

Jafar Alzubi

IRJET Journal

Kostantinos Demertzis

International Journal of Computer Applications

IJERA Journal

International journal of engineering research and technology

Dr Nitin Rajvanshi

International Journal of Engineering Research and Advanced Technology

rama prasad

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

International Journal of Scientific Research in Computer Science, Engineering and Information Technology IJSRCSEIT

Zachary Barillaro

International Journal of Innovative Technology and Exploring Engineering

atul kathole

Iqbal Muhammad

Artificial Intelligence

mplab.ucsd.edu

Paul Ruvolo

Foundation of Computer Applications

Editor IJATCA , nikhil katoch

International Journal of Scientific Research in Science, Engineering and Technology

International Journal of Scientific Research in Science, Engineering and Technology IJSRSET

RELATED TOPICS

  •   We're Hiring!
  •   Help Center
  • Find new research papers in:
  • Health Sciences
  • Earth Sciences
  • Cognitive Science
  • Mathematics
  • Computer Science
  • Academia ©2024
  • Latest News

Logo

  • Cryptocurrencies
  • White Papers

Top 10 Research and Thesis Topics for ML Projects in 2022

This article features the top 10 research and thesis topics for ml projects for students to try in 2022.

In this tech-driven world, selecting research and thesis topics in machine learning projects is the first choice of masters and Doctorate scholars. Selecting and working on a thesis topic in machine learning is not an easy task as machine learning uses statistical algorithms to make computers work in a certain way without being explicitly programmed. Achieving mastery over machine learning (ML) is becoming increasingly crucial for all the students in this field. Both artificial intelligence and machine learning complement each other. So, if you are a beginner, the best thing you can do is work on some ML projects. This article features the top 10 research and thesis topics for ML projects for students to try in 2022.

Text Mining and Text Classification

Text mining (also referred to as text analytics) is an artificial intelligence (AI) technology that uses natural language processing (NLP) to transform the free (unstructured) text in documents and databases into normalized, structured data suitable for analysis or to drive machine learning (ML) algorithms. Text classification tools categorize text by understanding its overall meaning, without predefined categories being explicitly present within the text. This is one of the best research and thesis topics for ML projects.

Image-Based Applications

An image-based test consists of a sequence of operations on UI elements in your tested application: clicks (for desktop and web applications), touches (for mobile applications), drag and drop operations, checkpoints, and so on. In image applications, one must first get familiar with masks, convolution, edge, and corner detection to be able to extract useful information from images and further use them for applications like image segmentation, keypoints extraction, and more.

Machine Vision

Using machine learning -based/mathematical techniques to enable machines to do specific tasks. For example, watermarking, face identification from datasets of images with rotation and different camera angles, criminals identification from surveillance cameras (video and series of images), handwriting and personal signature classification, object detection/recognition.

Clustering or cluster analysis is a machine learning technique, which groups the unlabeled dataset. It can be defined as "A way of grouping the data points into different clusters, consisting of similar data points. For example Graph clustering, data clustering, density-based clustering, and more. Clustering is one of the best research and thesis topics for ML projects.

Optimization

A) Population-based optimization inspired from a natural mechanism: Black-box optimization, multi/many-objective optimization, evolutionary methods (Genetic Algorithm, Genetic Programming, Memetic Programming), Metaheuristics (e.g., PSO, ABC, SA)

B) Exact/Mathematical Models: Convex optimization, Bi-Convex, and Semi-Convex optimization, Gradient Descent, Block Coordinate Descent, Manifold Optimization, and Algebraic Models

Voice Classification

Voice classification or sound classification can be referred to as the process of analyzing audio recordings. Voice and Speech Recognition, Signal Processing, Message Embedding, Message Extraction from Voice Encoded, and more are the best research and thesis topics for ML projects.

Sentiment Analysis

Sentiment analysis is one of the best Machine Learning projects well-known to uncover emotions in the text. By analyzing movie reviews, customer feedback, support tickets, companies may discover many interesting things. So learning how to build sentiment analysis models is quite a practical skill. There is no need to collect the data yourself. To train and test your model, use the biggest open-source database for sentiment analysis created by IMDb.

Recommendation Framework Project

This a rich dataset assortment containing a different scope of datasets accumulated from famous sites like Goodreads book audits, Amazon item surveys, online media, and so forth You will probably fabricate a recommendation engine (like the ones utilized by Amazon and Netflix) that can create customized recommendations for items, films, music, and so on, because of client inclinations, needs, and online conduct.

Mall Customers' Project

As the name suggests, the mall customers' dataset includes the records of people who visited the mall, such as gender, age, customer ID, annual income, spending score, etc. You will build a model that will use this data to segment the customers into different groups based on their behavior patterns. Such customer segmentation is a highly useful marketing tactic used by brands and marketers to boost sales and revenue while also increasing customer satisfaction.

Object Detection with Deep Learning

Object Detection with Deep Learning is one of the interesting machine learning projects to create. When it comes to image classification, Deep Neural Networks (DNNs) should be your go-to choice. While DNNs are already used in many real-world image classification applications, it is one of the best ML projects that aims to crank it up a notch. In this Machine Learning project, you will solve the problem of object detection by leveraging DNNs.

Disclaimer: Analytics Insight does not provide financial advice or guidance. Also note that the cryptocurrencies mentioned/listed on the website could potentially be scams, i.e. designed to induce you to invest financial resources that may be lost forever and not be recoverable once investments are made. You are responsible for conducting your own research (DYOR) before making any investments. Read more here.

Related Stories

logo

  • DSpace@MIT Home
  • MIT Libraries
  • Doctoral Theses

A machine learning approach to modeling and predicting training effectiveness

Thumbnail

Other Contributors

Terms of use, description, date issued, collections.

Show Statistical Information

  • ODSC EUROPE
  • AI+ Training
  • Speak at ODSC

thesis machine learning

  • Data Analytics
  • Data Engineering
  • Data Visualization
  • Deep Learning
  • Generative AI
  • Machine Learning
  • NLP and LLMs
  • Business & Use Cases
  • Career Advice
  • Write for us
  • ODSC Community Slack Channel
  • Upcoming Webinars

10 Compelling Machine Learning Dissertations from Ph.D. Students

10 Compelling Machine Learning Dissertations from Ph.D. Students

Data Science Academic Research Featured Post Academia Machine Learning Research posted by Daniel Gutierrez, ODSC June 18, 2019 Daniel Gutierrez, ODSC

As a data scientist, an integral part of my work in the field revolves around keeping current with research coming out of academia. I frequently scour arXiv.org for late-breaking papers that show trends and fertile areas of research. Other sources of valuable research developments are in the form of Ph.D. dissertations, the culmination of a doctoral candidate’s work to confer his/her degree. Ph.D. candidates are highly motivated to choose research topics that establish new and creative paths toward discovery in their field of study. In this article, I present 10 compelling machine learning dissertations that I found interesting in terms of my own areas of pursuit. I hope you’ll find several of them that match your own interests. Each thesis may take a while to consume but will result in hours of satisfying summer reading. Enjoy!

[Related Article: The Best Machine Learning Research of 2019 So Far ]

1. Recognition of Everyday Activities through Wearable Sensors and Machine Learning

machine learning dissertation

Over the past several years, the use of wearable devices has increased dramatically, primarily for fitness monitoring, largely due to their greater sensor reliability, increased functionality, smaller size, increased ease of use, and greater affordability. These devices have helped many people of all ages live healthier lives and achieve their personal fitness goals, as they are able to see quantifiable and graphical results of their efforts every step of the way (i.e. in real-time). Yet, while these device systems work well within the fitness domain, they have yet to achieve a convincing level of functionality in the larger domain of healthcare.

The goal of the research detailed in this dissertation is to explore and develop accurate and quantifiable sensing and machine learning techniques for eventual real-time health monitoring by wearable device systems. To that end, a two-tier recognition system is presented that is designed to identify health activities in a naturalistic setting based on accelerometer data of common activities. In Tier I a traditional activity recognition approach is employed to classify short windows of data, while in Tier II these classified windows are grouped to identify instances of a specific activity.

2. Algorithms and analysis for non-convex optimization problems in machine learning

This dissertation proposes efficient algorithms and provides theoretical analysis through the angle of spectral methods for some important non-convex optimization problems in machine learning. Specifically, the focus is on two types of non-convex optimization problems: learning the parameters of latent variable models and learning in deep neural networks. Learning latent variable models is traditionally framed as a non-convex optimization problem through Maximum Likelihood Estimation (MLE). For some specific models such as multi-view model, it’s possible to bypass the non-convexity by leveraging the special model structure and convert the problem into spectral decomposition through Methods of Moments (MM) estimator. In this research, a novel algorithm is proposed that can flexibly learn a multi-view model in a non-parametric fashion. To scale the nonparametric spectral methods to large datasets, an algorithm called doubly stochastic gradient descent is proposed which uses sampling to approximate two expectations in the problem, and it achieves better balance of computation and statistics by adaptively growing the model as more data arrive. Learning with neural networks is a difficult non-convex problem while simple gradient-based methods achieve great success in practice. This part of the research tries to understand the optimization landscape of learning one-hidden-layer networks with Rectified Linear (ReLU) activation functions. By directly analyzing the structure of the gradient, it can be shown that neural networks with diverse weights have no spurious local optima.

3. Algorithms, Machine Learning, and Speech: The Future of the First Amendment in a Digital World

We increasingly depend on algorithms to mediate information and thanks to the advance of computation power and big data, they do so more autonomously than ever before. At the same time, courts have been deferential to First Amendment defenses made in light of new technology. Computer code, algorithmic outputs, and arguably, the dissemination of data have all been determined as constituting “speech” entitled to constitutional protection. However, continuing to use the First Amendment as a barrier to regulation may have extreme consequences as our information ecosystem evolves. This research focuses on developing a new approach to determining what should be considered “speech” if the First Amendment is to continue to protect the marketplace of ideas, individual autonomy, and democracy.

4. Deep in-memory computing

There is much interest in embedding data analytics into sensor-rich platforms such as wearables, biomedical devices, autonomous vehicles, robots, and Internet-of-Things to provide these with decision-making capabilities. Such platforms often need to implement machine learning (ML) algorithms under stringent energy constraints with battery-powered electronics. Especially, energy consumption in memory subsystems dominates such a system’s energy efficiency. In addition, the memory access latency is a major bottleneck for overall system throughput. To address these issues in memory-intensive inference applications, this dissertation proposes deep in-memory accelerator (DIMA), which deeply embeds computation into the memory array, employing two key principles: (1) accessing and processing multiple rows of memory array at a time, and (2) embedding pitch-matched low-swing analog processing at the periphery of bitcell array.

5. Classification with Large Sparse Datasets: Convergence Analysis and Scalable Algorithms

Large and sparse datasets, such as user ratings over a large collection of items, are common in the big data era. Many applications need to classify the users or items based on the high-dimensional and sparse data vectors, e.g., to predict the profitability of a product or the age group of a user, etc. Linear classifiers are popular choices for classifying such data sets because of their efficiency. In order to classify the large sparse data more effectively, the following important questions need to be answered: (a) Sparse data and convergence behavior. How different properties of a data set, such as the sparsity rate and the mechanism of missing data systematically affect convergence behavior of classification? (b) Handling sparse data with non-linear model. How to efficiently learn non-linear data structures when classifying large sparse data? This dissertation attempts to address these questions with empirical and theoretical analysis on large and sparse data sets.

6. Collaborative detection of cyberbullying behavior in Twitter data

As the size of Twitter data is increasing, so are undesirable behaviors of its users. One such undesirable behavior is cyberbullying, which could lead to catastrophic consequences. Hence, it is critical to efficiently detect cyberbullying behavior by analyzing tweets, in real-time if possible. Prevalent approaches to identifying cyberbullying are mainly stand-alone, and thus, are time-consuming. This dissertation proposes a new approach called distributed-collaborative approach for cyberbullying detection. It contains a network of detection nodes, each of which is independent and capable of classifying tweets it receives. These detection nodes collaborate with each other in case they need help in classifying a given tweet. The study empirically evaluates various collaborative patterns, and it assesses the performance of each pattern in detail. Results indicate an improvement in recall and precision of the detection mechanism over the stand- alone paradigm.

7. Bringing interpretability and visualization with artificial neural networks

Extreme Learning Machine (ELM) is a training algorithm for Single-Layer Feed-forward Neural Network (SLFN). The difference in theory of ELM from other training algorithms is in the existence of explicitly-given solution due to the immutability of initialed weights. In practice, ELMs achieve performance similar to that of other state-of-the-art training techniques, while taking much less time to train a model. Experiments show that the speedup of training ELM is up to the 5 orders of magnitude comparing to standard Error Back-propagation algorithm. ELM is a recently discovered technique that has proved its efficiency in classic regression and classification tasks, including multi-class cases. In this dissertation, extensions of ELMs for non-typical for Artificial Neural Networks (ANNs) problems are presented.

8. Scalable Manifold Learning and Related Topics

The subject of manifold learning is vast and still largely unexplored. As a subset of unsupervised learning it has a fundamental challenge in adequately defining the problem but whose solution is to an increasingly important desire to understand data sets intrinsically. It is the overarching goal of this work to present researchers with an understanding of the topic of manifold learning, with a description and proposed method for performing manifold learning, guidance for selecting parameters when applying manifold learning to large scientific data sets and together with open source software powerful enough to meet the demands of big data.

9. The Intelligent Management of Crowd-Powered Machine Learning

Artificial intelligence and machine learning power many technologies today, from spam filters to self-driving cars to medical decision assistants. While this revolution has hugely benefited from algorithmic developments, it also could not have occurred without data, which nowadays is frequently procured at massive scale from crowds. Because data is so crucial, a key next step towards truly autonomous agents is the design of better methods for intelligently managing now-ubiquitous crowd-powered data-gathering processes. This dissertation takes this key next step by developing algorithms for the online and dynamic control of these processes. The research considers how to gather data for its two primary purposes: training and evaluation.

[Related Article: 25 Excellent Machine Learning Open Datasets ]

10. System-Aware Optimization for Machine Learning at Scale

New computing systems have emerged in response to the increasing size and complexity of modern datasets. For best performance, machine learning methods must be designed to closely align with the underlying properties of these systems. This dissertation illustrates the impact of system-aware machine learning through the lens of optimization, a crucial component in formulating and solving most machine learning problems. Classically, the performance of an optimization method is measured in terms of accuracy (i.e., does it realize the correct machine learning model?) and convergence rate (after how many iterations?). In modern computing regimes, however, it becomes critical to additionally consider a number of systems-related aspects for best overall performance. These aspects can range from low-level details, such as data structures or machine specifications, to higher-level concepts, such as the tradeoff between communication and computation. We propose a general optimization framework for machine learning, CoCoA, that gives careful consideration to systems parameters, often incorporating them directly into the method and theory.

thesis machine learning

Daniel Gutierrez, ODSC

Daniel D. Gutierrez is a practicing data scientist who’s been working with data long before the field came in vogue. As a technology journalist, he enjoys keeping a pulse on this fast-paced industry. Daniel is also an educator having taught data science, machine learning and R classes at the university level. He has authored four computer industry books on database and data science technology, including his most recent title, “Machine Learning and Data Science: An Introduction to Statistical Learning Methods with R.” Daniel holds a BS in Mathematics and Computer Science from UCLA.

eu square

How AI Impacts Diversity in College Admissions

Business + Management posted by Zac Amos Aug 27, 2024 Higher education institutions are beginning to use artificial intelligence to review college applications. Where does this...

Scaling AI Initiatives in Retail

Scaling AI Initiatives in Retail

West 2024 Conferences posted by ODSC Community Aug 27, 2024 Editor’s note: Fatih is a speaker for ODSC West this October 29th-31st! Be sure to check...

Just Do Something with AI: Bridging the Business Communication Gap for ML Practitioners

Just Do Something with AI: Bridging the Business Communication Gap for ML Practitioners

West 2024 Career Insights posted by ODSC Community Aug 26, 2024 Editor’s note: Stephanie Kirmer is a speaker for ODSC West this October 29th-31st. Be sure to...

genaix square

IMAGES

  1. Top 15+ Interesting Machine Learning Master Thesis (Research Guidance)

    thesis machine learning

  2. Machine Learning Thesis Ideas

    thesis machine learning

  3. Machine Learning Thesis Topics

    thesis machine learning

  4. Research Master Thesis Machine Learning (Performance Analysis)

    thesis machine learning

  5. Matlab Simulation

    thesis machine learning

  6. Innovative PhD Thesis Machine Learning Research Guidance

    thesis machine learning

COMMENTS

  1. First Principles and Machine Learning-Based Analyses of Stability and

    In this thesis, combined workflows involving first principles and machine learning-based approaches are developed. To map catalyst structure to properties graph convolutional network (GCN) models are developed and trained on DFT-predicted target properties such as formation energies, surface energies, and adsorption energies.

  2. Advancing In-hand Dexterous Manipulation via Machine Learning

    This thesis proposes machine learning techniques that substantially improve the state-ofthe-art performance of dexterous manipulation controllers. It focuses specifically on in-hand object reorientation tasks. Previous works on this problem had limitations like using expensive sensors or hands, only working for a few objects, requiring the hand ...

  3. Attacking, Defending, and Evaluating Machine-Learning-Based Raw-Binary

    Machine learning (ML) models have shown promise in classifying raw executable files (binaries) as malicious or benign with high accuracy. This has led to the increasing influence of ML-based classification methods in academic and real-world malware detection, a critical component of cybersecurity. This thesis examines and improves the reliability of these ML-based malware detectors. First, we ...

  4. TUM

    MSc project and or thesis: Advancing Machine Learning-Based State of Health Estimation. 28.08.2024, Abschlussarbeiten, Bachelor- und Masterarbeiten. Die Schätzung des Zustands von Lithium-Ionen-Batterien mittels maschinellen Lernens ermöglicht durch effizientes Feature Engineering und systematische Datenanalyse präzise Ergebnisse.

  5. PDF Master Thesis Using Machine Learning Methods for Evaluating the

    Based on this background, the aim of this thesis is to select and implement a machine learning process that produces an algorithm, which is able to detect whether documents have been translated by humans or computerized systems. This algorithm builds the basic structure for an approach to evaluate these documents. 1.2 Related Work

  6. Available Master's thesis topics in machine learning

    Building a finite state automaton for the drilling process by using queries and counterexamples. Machine Learning for Drug Repositioning in Parkinson's Disease. Exploring Graph Neural Networks for Analyzing Prescription Data to Predict Parkinson's Disease Risk. Scaling Laws for Language Models in Generative AI.

  7. PhD Dissertations

    Principled Machine Learning for Societally Consequential Decision Making Amanda Coston, 2023. Long term brain dynamics extend cognitive neuroscience to timescales relevant for health and physiology Maxwell B. Wang, 2023. Long term brain dynamics extend cognitive neuroscience to timescales relevant for health and physiology Darby M. Losey, 2023.

  8. 10 Compelling Machine Learning Ph.D. Dissertations for 2020

    10 Compelling Machine Learning Ph.D. Dissertations for 2020. Machine Learning Modeling Research posted by Daniel Gutierrez, ODSC August 19, 2020. As a data scientist, an integral part of my work in the field revolves around keeping current with research coming out of academia. I frequently scour arXiv.org for late-breaking papers that show ...

  9. AI & Machine Learning Research Topics (+ Free Webinar)

    Get 1-On-1 Help. If you're still unsure about how to find a quality research topic, check out our Research Topic Kickstarter service, which is the perfect starting point for developing a unique, well-justified research topic. A comprehensive list of research topics ideas in the AI and machine learning area. Includes access to a free webinar ...

  10. The Future of AI Research: 20 Thesis Ideas for Undergraduate

    "The beauty of machine learning is that it can be applied to any problem you want to solve, as long as you can provide the computer with enough examples." — Andrew Ng. This article provides a list of 20 potential thesis ideas for an undergraduate program in machine learning and deep learning in 2023.

  11. PDF Machine Learning for Decision Making

    Machine learning applications to both decision-making and decision-support are growing. Further,witheachsuccessfulapplication,learningalgorithmsaregain- ing increased autonomy and control over decision-making. As a result, research into intelligent decision-making algorithms continues to improve. For example, theStanfordResearchInstitute ...

  12. Thesis on Machine Learning Methods and Its Applications

    Machine learning is an essential part of artificial intelligence used to design algorithms based on data trends and past relationships between data. Machine learning is used in a variety of areas such as bioinformatics, intrusion detection, information retrieval, games, marketing, malware detection, and image decoding.

  13. PDF New Theoretical Frameworks for Machine Learning

    Machine Learning, a natural outgrowth at the intersection of Computer Science and Statistics, has evolved into a broad, highly successful, and extremely dynamic discipline. ... In this thesis, we develop theoretical foundations and new algorithms for several important emerging learning paradigms of significant practical importance, including ...

  14. Foundations of Machine Learning: Over-parameterization and Feature Learning

    Abstract. In this thesis, we establish and analyze two core principles driving the success of neural networks: over-parameterization and feature learning. We leverage these principles to design models with improved performance and interpretability on various computer vision and biomedical applications. We begin by discussing the benefits of ...

  15. UofT Machine Learning

    2010. Andriy Mnih Learning Distributed Representations for Statistical Language Modelling and Collaborative Filtering (Ph. D. Thesis) Renqiang Min Machine Learning Approaches to Biological Sequence and Phenotype Data Analysis (Ph. D. Thesis) Vinod Nair Visual Object Recognition Using Generative Models of Images (Ph. D. Thesis)

  16. Top 10 Research and Thesis Topics for ML Projects in 2022

    In this tech-driven world, selecting research and thesis topics in machine learning projects is the first choice of masters and Doctorate scholars. Selecting and working on a thesis topic in machine learning is not an easy task as machine learning uses statistical algorithms to make computers work in a certain way without being explicitly ...

  17. PDF Artificial Intelligence and Machine Learning Capabilities and

    that a machine can be made to simulate it." [3] In the AI field, there are several terms. Artificial intelligence is the largest collection, machine learning is a subset of artificial intelligence, and deep learning is a subset of machine learning, as shown in Exhibit 2.3 [4]. This thesis mainly

  18. PDF Using Machine Learning to Predict Student Performance

    Student PerformanceM. Sc. Thesis, 35 pages June 2017This thesis examines the application of machine learning algorithms t. predict whether a student will be successful or not. The specific focus of the thesis is the comparison of machine learning methods and feature engineering techniques in term. of how much they improve the prediction ...

  19. 17 Compelling Machine Learning Ph.D. Dissertations

    This machine learning dissertation presents analyses on tree asymptotics in the perspectives of tree terminal nodes, tree ensembles, and models incorporating tree ensembles respectively. The study introduces a few new tree-related learning frameworks which provides provable statistical guarantees and interpretations.

  20. PDF Solving Machine Learning Problems

    homework, and quiz questions from MIT's 6.036 Introduction to Machine Learning course and train a machine learning model to answer these questions. Our system demonstrates an overall accuracy of 96% for open-response questions and 97% for multiple-choice questions, compared with MIT students' average of 93%, achieving

  21. Brown Digital Repository

    Advancements in machine learning techniques have encouraged scholars to focus on convolutional neural network (CNN) based solutions for object detection and pose estimation tasks. Most … Year: 2020 Contributor: Derman, Can Eren (creator) Bahar, Iris (thesis advisor) Taubin, Gabriel (reader) Brown University. School of Engineering (sponsor ...

  22. A machine learning approach to modeling and predicting training

    However, traditional analysis techniques and human intuition are of limited use on so-called "big-data" environments, and one of the most promising areas to prepare for this influx of complex training data is the field of machine learning. Thus, the objective of this thesis was to lay the foundations for the use of machine learning algorithms ...

  23. PDF Eindhoven University of Technology MASTER Automated machine learning

    This thesis is the result of the graduation project of the Computer Science and Engineering pro-gram at the Eindhoven University of Technology (TU/e). The research of this project is performed within the Data Mining Group of the TU/e in collaboration with OpenML. I would like to thank my supervisor Joaquin Vanschoren.

  24. PDF Master's Thesis: Machine Learning for Technical Information Quality

    machine learning might be a solution, which is what is evaluated in this thesis. 1.2 Problem The purpose of this master thesis is to try to nd an answer to the question: How well can we grade the quality of technical texts using machine learning with graded job application tests from Sigma Technology as reference? 1

  25. PDF Adversarially Robust Machine Learning With

    Machine learning (ML) systems are remarkably successful on a variety of benchmarks across sev-eral domains. In these benchmarks, the test data points, though not identical, are very similar to ... This thesis focuses on an extreme version of this brittleness, adversarial examples, where even imperceptible (but carefully constructed) changes ...

  26. 10 Compelling Machine Learning Dissertations from Ph.D. Students

    Extreme Learning Machine (ELM) is a training algorithm for Single-Layer Feed-forward Neural Network (SLFN). The difference in theory of ELM from other training algorithms is in the existence of explicitly-given solution due to the immutability of initialed weights. In practice, ELMs achieve performance similar to that of other state-of-the-art ...

  27. 25 Machine Learning Projects for All Levels

    Working on a completely new dataset will help you with code debugging and improve your problem-solving skills. 2. Classify Song Genres from Audio Data. In the Classify Song Genres machine learning project, you will be using the song dataset to classify songs into two categories: 'Hip-Hop' or 'Rock.'.