High Impact Tutoring Built By Math Experts

Personalized standards-aligned one-on-one math tutoring for schools and districts

Free ready-to-use math resources

Hundreds of free math resources created by experienced math teachers to save time, build engagement and accelerate growth

Free ready-to-use math resources

20 Effective Math Strategies To Approach Problem-Solving 

Katie Keeton

Math strategies for problem-solving help students use a range of approaches to solve many different types of problems. It involves identifying the problem and carrying out a plan of action to find the answer to mathematical problems.  

Problem-solving skills are essential to math in the general classroom and real-life. They require logical reasoning and critical thinking skills.  students must be equipped with strategies to help them find solutions to problems.

This article explores mathematical problem solving strategies, logical reasoning and critical thinking skills to help learners with solving math word problems independently in real-life situations. 

What are problem-solving strategies?

Problem-solving strategies in math are methods students can use to figure out solutions to math problems. Some problem-solving strategies: 

  • Draw a model
  • Use different approaches
  • Check the inverse to make sure the answer is correct

Students need to have a toolkit of math problem-solving strategies at their disposal to provide different ways to approach math problems. This makes it easier to find solutions and understand math better. 

Strategies can help guide students to the solution when it is difficult ot know when to start.

The ultimate guide to problem solving techniques

The ultimate guide to problem solving techniques

Download these ready-to-go problem solving techniques that every student should know. Includes printable tasks for students including challenges, short explanations for teachers with questioning prompts.

20 Math Strategies For Problem-Solving

Different problem-solving math strategies are required for different parts of the problem. It is unlikely that students will use the same strategy to understand and solve the problem. 

Here are 20 strategies to help students develop their problem-solving skills. 

Strategies to understand the problem

Strategies that help students understand the problem before solving it helps ensure they understand: 

  • The context
  • What the key information is
  • How to form a plan to solve it

Following these steps leads students to the correct solution and makes the math word problem easier .

Here are five strategies to help students understand the content of the problem and identify key information. 

1. Read the problem aloud

Read a word problem aloud to help understand it. Hearing the words engages auditory processing. This can make it easier to process and comprehend the context of the situation.

2. Highlight keywords 

When keywords are highlighted in a word problem, it helps the student focus on the essential information needed to solve it. Some important keywords help determine which operation is needed.  For example, if the word problem asks how many are left, the problem likely requires subtraction.  Ensure students highlight the keywords carefully and do not highlight every number or keyword. There is likely irrelevant information in the word problem.

3. Summarize the information

Read the problem aloud, highlight the key information and then summarize the information. Students can do this in their heads or write down a quick summary.  Summaries should include only the important information and be in simple terms that help contextualize the problem.

4. Determine the unknown

A common problem that students have when solving a word problem is misunderstanding what they are solving. Determine what the unknown information is before finding the answer.  Often, a word problem contains a question where you can find the unknown information you need to solve. For example, in the question ‘How many apples are left?’ students need to find the number of apples left over.

5. Make a plan

Once students understand the context of the word problem, have dentified the important information and determined the unknown, they can make a plan to solve it.  The plan will depend on the type of problem. Some problems involve more than one step to solve them as some require more than one answer.  Encourage students to make a list of each step they need to take to solve the problem before getting started.

Strategies for solving the problem 

1. draw a model or diagram.

Students may find it useful to draw a model, picture, diagram, or other visual aid to help with the problem solving process.  It can help to visualize the problem to understand the relationships between the numbers in the problem. In turn, this helps students see the solution.

math problem that needs a problem solving strategy

Similarly, you could draw a model to represent the objects in the problem:

math problem requiring problem solving

2. Act it out

This particular strategy is applicable at any grade level but is especially helpful in math investigation in elementary school . It involves a physical demonstration or students acting out the problem using movements, concrete resources and math manipulatives .  When students act out a problem, they can visualize and contectualize the word problem in another way and secure an understanding of the math concepts.  The examples below show how 1st-grade students could “act out” an addition and subtraction problem:

3. Work backwards

Working backwards is a popular problem-solving strategy. It involves starting with a possible solution and deciding what steps to take to arrive at that solution.  This strategy can be particularly helpful when students solve math word problems involving multiple steps. They can start at the end and think carefully about each step taken as opposed to jumping to the end of the problem and missing steps in between.

For example,

problem solving math question 1

To solve this problem working backwards, start with the final condition, which is Sam’s grandmother’s age (71) and work backwards to find Sam’s age. Subtract 20 from the grandmother’s age, which is 71.  Then, divide the result by 3 to get Sam’s age. 71 – 20 = 51 51 ÷ 3 = 17 Sam is 17 years old.

4. Write a number sentence

When faced with a word problem, encourage students to write a number sentence based on the information. This helps translate the information in the word problem into a math equation or expression, which is more easily solved.  It is important to fully understand the context of the word problem and what students need to solve before writing an equation to represent it.

5. Use a formula

Specific formulas help solve many math problems. For example, if a problem asks students to find the area of a rug, they would use the area formula (area = length × width) to solve.   Make sure students know the important mathematical formulas they will need in tests and real-life. It can help to display these around the classroom or, for those who need more support, on students’ desks.

Strategies for checking the solution 

Once the problem is solved using an appropriate strategy, it is equally important to check the solution to ensure it is correct and makes sense. 

There are many strategies to check the solution. The strategy for a specific problem is dependent on the problem type and math content involved.

Here are five strategies to help students check their solutions. 

1. Use the Inverse Operation

For simpler problems, a quick and easy problem solving strategy is to use the inverse operation. For example, if the operation to solve a word problem is 56 ÷ 8 = 7 students can check the answer is correct by multiplying 8 × 7. As good practice, encourage students to use the inverse operation routinely to check their work. 

2. Estimate to check for reasonableness

Once students reach an answer, they can use estimation or rounding to see if the answer is reasonable.  Round each number in the equation to a number that’s close and easy to work with, usually a multiple of ten.  For example, if the question was 216 ÷ 18 and the quotient was 12, students might round 216 to 200 and round 18 to 20. Then use mental math to solve 200 ÷ 20, which is 10.  When the estimate is clear the two numbers are close. This means your answer is reasonable. 

3. Plug-In Method

This method is particularly useful for algebraic equations. Specifically when working with variables.  To use the plug-in method, students solve the problem as asked and arrive at an answer. They can then plug the answer into the original equation to see if it works. If it does, the answer is correct.

Problem solving math problem 2

If students use the equation 20m+80=300 to solve this problem and find that m = 11, they can plug that value back into the equation to see if it is correct. 20m + 80 = 300 20 (11) + 80 = 300 220 + 80 = 300 300 = 300 ✓

4. Peer Review

Peer review is a great tool to use at any grade level as it promotes critical thinking and collaboration between students. The reviewers can look at the problem from a different view as they check to see if the problem was solved correctly.   Problem solvers receive immediate feedback and the opportunity to discuss their thinking with their peers. This strategy is effective with mixed-ability partners or similar-ability partners. In mixed-ability groups, the partner with stronger skills provides guidance and support to the partner with weaker skills, while reinforcing their own understanding of the content and communication skills.  If partners have comparable ability levels and problem-solving skills, they may find that they approach problems differently or have unique insights to offer each other about the problem-solving process.

5. Use a Calculator

A calculator can be introduced at any grade level but may be best for older students who already have a foundational understanding of basic math operations. Provide students with a calculator to allow them to check their solutions independently, accurately, and quickly. Since calculators are so readily available on smartphones and tablets, they allow students to develop practical skills that apply to real-world situations.  

Step-by-step problem-solving processes for your classroom

In his book, How to Solve It , published in 1945, mathematician George Polya introduced a 4-step process to solve problems. 

Polya’s 4 steps include:

  • Understand the problem
  • Devise a plan
  • Carry out the plan

Today, in the style of George Polya, many problem-solving strategies use various acronyms and steps to help students recall. 

Many teachers create posters and anchor charts of their chosen process to display in their classrooms. They can be implemented in any elementary, middle school or high school classroom. 

Here are 5 problem-solving strategies to introduce to students and use in the classroom.

CUBES math strategy for problem solving

How Third Space Learning improves problem-solving 

Resources .

Third Space Learning offers a free resource library is filled with hundreds of high-quality resources. A team of experienced math experts carefully created each resource to develop students mental arithmetic, problem solving and critical thinking. 

Explore the range of problem solving resources for 2nd to 8th grade students. 

One-on-one tutoring 

Third Space Learning offers one-on-one math tutoring to help students improve their math skills. Highly qualified tutors deliver high-quality lessons aligned to state standards. 

Former teachers and math experts write all of Third Space Learning’s tutoring lessons. Expertly designed lessons follow a “my turn, follow me, your turn” pedagogy to help students move from guided instruction and problem-solving to independent practice. 

Throughout each lesson, tutors ask higher-level thinking questions to promote critical thinking and ensure students are developing a deep understanding of the content and problem-solving skills.

math problem solving strategies high school

Problem-solving

Educators can use many different strategies to teach problem-solving and help students develop and carry out a plan when solving math problems. Incorporate these math strategies into any math program and use them with a variety of math concepts, from whole numbers and fractions to algebra. 

Teaching students how to choose and implement problem-solving strategies helps them develop mathematical reasoning skills and critical thinking they can apply to real-life problem-solving.

READ MORE : 8 Common Core math examples

There are many different strategies for problem-solving; Here are 5 problem-solving strategies: • draw a model  • act it out  • work backwards  • write a number sentence • use a formula

Here are 10 strategies of problem-solving: • Read the problem aloud • Highlight keywords • Summarize the information • Determine the unknown • Make a plan • Draw a model  • Act it out  • Work backwards  • Write a number sentence • Use a formula

1. Understand the problem 2. Devise a plan 3. Carry out the plan 4. Look back

Some strategies you can use to solve challenging math problems are: breaking the problem into smaller parts, using diagrams or models, applying logical reasoning, and trying different approaches.

Related articles

Why Student Centered Learning Is Important: A Guide For Educators

Why Student Centered Learning Is Important: A Guide For Educators

13 Effective Learning Strategies: A Guide to Using them in your Math Classroom

13 Effective Learning Strategies: A Guide to Using them in your Math Classroom

Differentiated Instruction: 9 Differentiated Curriculum And Instruction Strategies For Teachers 

Differentiated Instruction: 9 Differentiated Curriculum And Instruction Strategies For Teachers 

5 Math Mastery Strategies To Incorporate Into Your 4th and 5th Grade Classrooms

5 Math Mastery Strategies To Incorporate Into Your 4th and 5th Grade Classrooms

Ultimate Guide to Metacognition [FREE]

Looking for a summary on metacognition in relation to math teaching and learning?

Check out this guide featuring practical examples, tips and strategies to successfully embed metacognition across your school to accelerate math growth.

Privacy Overview

  • Prodigy Math
  • Prodigy English
  • Is a Premium Membership Worth It?
  • Promote a Growth Mindset
  • Help Your Child Who's Struggling with Math
  • Parent's Guide to Prodigy
  • Assessments
  • Math Curriculum Coverage
  • English Curriculum Coverage
  • Game Portal

Top 9 Math Strategies for Successful Learning (2021 and Beyond)

no image

Written by Ashley Crowe

  • Teaching Strategies

Why are effective Math strategies so important for students?

Getting students excited about math problems, top 9 math strategies for engaging lessons.

  • How teachers can refine math strategies

Math is an essential life skill. You use problem-solving every day. The math strategies you teach are needed, but many students have a difficult time making that connection between math and life.

Math isn’t just done with a pencil and paper. It’s not just solving word problems in a textbook. As an educator, you need fresh ways for math skills to stick while also keeping your students engaged. 

In this article, we’re sharing 9 engaging math strategies to boost your students’ learning . Show your students how fun math can be, and let’s freshen up those lesson plans!

Unlike other subjects, math builds on itself. You can’t successfully move forward without a strong understanding of previous materials. And this makes math instruction difficult.

To succeed in math, students need to do more than memorize formulas or drill times tables. They need to develop a full understanding of what their math lessons mean , and how they translate into the real world. To reach that level of understanding, you need a variety of teaching strategies. 

Conceptual understanding doesn’t just happen at the whiteboard. But it can be achieved by incorporating fun math activities into your lessons, including 

  • Hands-on practice
  • Collaborative projects
  • Gamified or game-based learning

Repetition and homework are important. But for these lessons to really stick, your students need to find the excitement and wonder in math.

Creating excitement around math can be an uphill battle. But it’s one you and your students can win! 

Math is a challenging subject — both to teach and to learn. But it’s also one of the most rewarding. Finding the right mix of fun and learning can bring a lot of excitement to the classroom. 

Think about what your students already love doing. Video games? Legos? Use these passions to create exciting math lesson plans your students can relate to. 

Hands-on math practice can engage students that have disconnected from math. Putting away the pencils and textbooks and moving students out of their desks can re-energize your classroom.

If you’re teaching elementary or middle school math, find ways for your students to work together. Kids this age crave peer interaction. So don’t fight it — provide it! 

Play a variety of math games or puzzles . Give them a chance to problem-solve together. Build real-world skills in the classroom while also boosting student confidence. 

And be sure to celebrate all the wins! It is easy to get bogged down with instruction and testing. But even the smallest accomplishments are worth celebrating. And these rewarding moments will keep your students motivated and pushing forward.

Keep reading to uncover all of our top math strategies for keeping your students excited about math. 

1. Explicit instruction

You can’t always jump straight into the fun. Explicit instruction still provides the best foundation for the activities to come. 

Set up your lesson for the day at the whiteboard, along with materials to demonstrate the coming activities. Make sure to also focus on any new vocabulary and concepts. 

Tip: don't stay here for too long. Once the lesson is introduced, move on to the next fun strategy for the day!

2. Conceptual understanding

Helping your students understand the concept behind the lesson is crucial, but not always easy. Even your highest performing students may only be following a pattern to solve problems, without grasping the “why.”

Visual aids and math manipulatives are some of your best tools to increase conceptual understanding. Math is not a two dimensional subject. Even the best drawing of a cone isn’t going to provide the same experience as holding one. Find ways to let your students examine math from all sides.

Math manipulatives don’t need to be anything fancy. Basic wooden blocks, magnets, molding clay and other toys can create great hands-on lessons. No need to invest in expensive or hard-to-find materials. 

Math word problems are also a great time to break out a full-fledged demo. Hot Wheels cars can demonstrate velocity and acceleration. A tape measure is an interactive way to teach area and volume. These materials give your students a chance to bring math off the page and into real life. 

3. Using concepts in Math vocabulary

There’s more than one way to say something. And the more ways you can describe a mathematical concept, the better. Subtraction can also be described as taking away or removing. Memorizing multiplication facts is useful, but seeing these numbers used to calculate area gives them new meaning. 

Some math words are going to be unfamiliar. So to help students get comfortable with these concepts, demonstrate and label math ideas throughout your classroom . Understanding comes more easily when students are surrounded by new ideas. 

For example, create a division corner in your station rotations , with blocks to demonstrate the concept of one number going into another. Use baskets and labels to have students separate the blocks into each part of the division problem: dividend, divisor, quotient and remainder.  

Give students time to explore, and teach them big ideas with both academic and everyday terms. Demystify math and watch their confidence build!

Teacher sitting in front of her class of students with their arms raised

4. Cooperative learning strategies

When students work together, it benefits everyone. More advanced students can lead, helping them solidify their knowledge. And they may have just the right words to describe an idea to others who are struggling.

It is rare in real-life situations for big problems to be solved alone. Cooperative learning allows students to view a problem from various angles. This can lead to more flexible, out-of-the-box thinking. 

After reviewing a word problem together as a class, ask small student groups to create their own problems. What is something they care about that they can solve with these skills? Involve them as much as possible in both the planning and solving. Encourage each student to think about what they bring to the group. There’s no better preparation for the future than learning to work as a team. 

5. Meaningful and frequent homework

When it comes to homework, it pays to think outside of textbooks and worksheets. Repetition is important, but how can you keep it fun?

Create more meaningful homework by including games in your curriculum plans. Encourage board game play or encourage families to play quiz-style games at home to improve critical thinking, problem solving and basic math skills. 

Sometimes you need homework that doesn’t put extra work onto the parents. The end of the day is already full for many families. To encourage practice and give parents a break, assign game-based options like Prodigy Math Game for homework. 

With Prodigy, students can enjoy a fun, video game experience that helps them stay excited and motivated to keep learning. They’ll practice math skills, while their parents have time to fix dinner. Plus, you’ll get progress reports that can help you plan future instruction . Win-win-win!    

Set an Assessment through your Prodigy teacher account today to reinforce what you’re teaching in class and differentiate for student needs. 

The Assessment creation screen in a Prodigy teacher account.

Ready to make homework fun?

6. Puzzle pieces math instruction

Some kids excel at math. But others pull back and may rarely participate. That lack of confidence is hard to break through. How can you get your reluctant students to join in?

Try giving each student a piece of the puzzle. When you’re presenting your class with a problem, this creates necessary collaboration to get to the solution. 

Each student is given a piece of information needed to solve the problem. A number, a unit of measurement, or direction — break your problem into as many pieces as possible. 

If you have a large class, break down three or more problems at a time. The first task: find the other students who are working on your problem (try color-coding or using symbols to distinguish each problem’s parts). Then watch the learning happen as everyone plays their own important role. 

7. Verbalize math problems

There’s little time to slow down in the classroom. Instruction has to move fast to keep up with the expected standards. And students feel that, too. 

When possible, try to set aside some time to ask about your students’ math struggles. Make sure they know that they can come to you when they get stuck. Keep the conversation open to their questions as much as possible.

One great way to encourage questions is to address common troubles students have encountered in the past. Where have your past classes struggled? Point these out during your explicit instruction, and let your students know this is a tricky area. 

It’s always encouraging to know you’re not alone in finding something difficult. This also leaves the door open for questions, leading to more discovery and greater understanding.

8. Reflection time

Providing time to reflect gives the brain a chance to process the work completed. This can be done after both group and individual activities.

Group Reflection

After a collaborative activity, save some time for the group to discuss the project . Encourage them to ask:

  • What worked?
  • What didn’t work?
  • Did I learn a new approach?
  • What could we have done differently?
  • Did someone share something I had never thought of before? 

These questions encourage critical thinking. They also show the value of working together with others to solve a problem. Everyone has different ways of approaching a problem, and they’re all valuable.

Individual Reflection

One way to make math more approachable is to show how often math is used. Journaling math encounters can be a great way for students to see that math is all around. 

Ask them to add a little bit to their journal every day, even just a line or two. Where did they encounter math outside of class? Or what have they learned in class that has helped them at home? 

Zoomed in image of a student's hand writing in a journal

Math skills easily transfer outside of the classroom. Help them see how much they have grown, both in terms of academics and social emotional learning .

9. Making Math facts fun

As a teacher, you know math is anything but boring. But transferring that passion to your students is a tricky task. So how can you make learning math facts fun?

Play games! Math games are great classroom activities. Here are a few examples:

  • Design and play a board game.
  • Build structures and judge durability.
  • Divide into groups for a quiz or game show. 
  • Get kids moving and measure speed or distance jumped.

Even repetitive tasks can be fun with the right tools. That’s why engaging games are a great way to help students build essential math skills. When students play Prodigy Math Game , for example, they learn curriculum-aligned math facts without things like worksheets or flashcards. This can help them become excited to play and learn! 

How teachers can refine Math strategies

Sometimes trying something new can make a huge difference for your students. But don’t stress and try to change too much at once. 

You know your classroom and students best. Pick a couple of your favorite strategies above and try them out. 

If you're looking to freshen up your math instruction, sign up for a free Prodigy teacher account. Your students can jump right into the magic of the Prodigy Math Game, and you’ll start seeing data on their progress right away! 

  • Skip to main content
  • Skip to primary sidebar

CLICK HERE TO LEARN ABOUT MTM ALL ACCESS MEMBERSHIP FOR GRADES 6-ALGEBRA 1

Maneuvering the Middle

Student-Centered Math Lessons

Math Problem Solving Strategies

math problem solving strategies high school

How many times have you been teaching a concept that students are feeling confident in, only for them to completely shut down when faced with a word problem?  For me, the answer is too many to count.  Word problems require problem solving strategies. And more than anything, word problems require decoding, eliminating extra information, and opportunities for students to solve for something that the question is not asking for .  There are so many places for students to make errors! Let’s talk about some problem solving strategies that can help guide and encourage students!

Problem solving strategies are a must teach skill. Today I analyze strategies that I have tried and introduce the strategy I plan to use this school year. | maneuveringthemiddle.com

1. C.U.B.E.S.

C.U.B.E.S stands for circle the important numbers, underline the question, box the words that are keywords, eliminate extra information, and solve by showing work.  

  • Why I like it: Gives students a very specific ‘what to do.’
  • Why I don’t like it: With all of the annotating of the problem, I’m not sure that students are actually reading the problem.  None of the steps emphasize reading the problem but maybe that is a given.

math problem solving strategies high school

2. R.U.N.S.

R.U.N.S. stands for read the problem, underline the question, name the problem type, and write a strategy sentence. 

  • Why I like it: Students are forced to think about what type of problem it is (factoring, division, etc) and then come up with a plan to solve it using a strategy sentence.  This is a great strategy to teach when you are tackling various types of problems.
  • Why I don’t like it: Though I love the opportunity for students to write in math, writing a strategy statement for every problem can eat up a lot of time.

math problem solving strategies high school

3. U.P.S. CHECK

U.P.S. Check stands for understand, plan, solve, and check.

  • Why I like it: I love that there is a check step in this problem solving strategy.  Students having to defend the reasonableness of their answer is essential for students’ number sense.
  • Why I don’t like it: It can be a little vague and doesn’t give concrete ‘what to dos.’ Checking that students completed the ‘understand’ step can be hard to see.

Problem solving strategies are a must teach skill. Today I analyze strategies that I have tried and introduce the strategy I plan to use this school year.  | maneuveringthemiddle.com

4. Maneuvering the Middle Strategy AKA K.N.O.W.S.

Here is the strategy that I adopted a few years ago.  It doesn’t have a name yet nor an acronym, (so can it even be considered a strategy…?)

UPDATE: IT DOES HAVE A NAME! Thanks to our lovely readers, Wendi and Natalie!

  • Know: This will help students find the important information.
  • Need to Know: This will force students to reread the question and write down what they are trying to solve for.
  • Organize:   I think this would be a great place for teachers to emphasize drawing a model or picture.
  • Work: Students show their calculations here.
  • Solution: This is where students will ask themselves if the answer is reasonable and whether it answered the question.

Problem solving strategies are a must teach skill. Today I analyze strategies that I have tried and introduce the strategy I plan to use this school year. | maneuveringthemiddle.com

Ideas for Promoting Showing Your Work

  • White boards are a helpful resource that make (extra) writing engaging!
  • Celebrating when students show their work. Create a bulletin board that says ***I showed my work*** with student exemplars.
  • Take a picture that shows your expectation for how work should look and post it on the board like Marissa did here.

Show Work Digitally

Many teachers are facing how to have students show their work or their problem solving strategy when tasked with submitting work online. Platforms like Kami make this possible. Go Formative has a feature where students can use their mouse to “draw” their work. 

If you want to spend your energy teaching student problem solving instead of writing and finding math problems, look no further than our All Access membership . Click the button to learn more. 

math problem solving strategies high school

Students who plan succeed at a higher rate than students who do not plan.   Do you have a go to problem solving strategy that you teach your students? 

Problem solving strategies are a must teach skill. Today I analyze strategies that I have tried and introduce the strategy I plan to use this school year. | maneuveringthemiddle.com

Editor’s Note: Maneuvering the Middle has been publishing blog posts for nearly 8 years! This post was originally published in September of 2017. It has been revamped for relevancy and accuracy.

math problem solving strategies high school

Problem Solving Posters (Represent It! Bulletin Board)

Check out these related products from my shop.

6th Grade Project: Rational Numbers

Reader Interactions

18 comments.

' src=

October 4, 2017 at 7:55 pm

As a reading specialist, I love your strategy. It’s flexible, “portable” for any problem, and DOES get kids to read and understand the problem by 1) summarizing what they know and 2) asking a question for what they don’t yet know — two key comprehension strategies! How about: “Make a Plan for the Problem”? That’s the core of your rationale for using it, and I bet you’re already saying this all the time in class. Kids will get it even more because it’s a statement, not an acronym to remember. This is coming to my reading class tomorrow with word problems — thank you!

' src=

October 4, 2017 at 8:59 pm

Hi Nora! I have never thought about this as a reading strategy, genius! Please let me know how it goes. I would love to hear more!

' src=

December 15, 2017 at 7:57 am

Hi! I am a middle school teacher in New York state and my district is “gung ho” on CUBES. I completely agree with you that kids are not really reading the problem when using CUBES and only circling and boxing stuff then “doing something” with it without regard for whether or not they are doing the right thing (just a shot in the dark!). I have adopted what I call a “no fear word problems” procedure because several of my students told me they are scared of word problems and I thought, “let’s take the scary out of it then by figuring out how to dissect it and attack it! Our class strategy is nearly identical to your strategy:

1. Pre-Read the problem (do so at your normal reading speed just so you basically know what it says) 2. Active Read: Make a short list of: DK (what I Definitely Know), TK (what I Think I Know and should do), and WK (what I Want to Know– what is the question?) 3. Draw and Solve 4. State the answer in a complete sentence.

This procedure keep kids for “surfacely” reading and just trying something that doesn’t make sense with the context and implications of the word problem. I adapted some of it from Harvey Silver strategies (from Strategic Teacher) and incorporated the “Read-Draw-Write” component of the Eureka Math program. One thing that Harvey Silver says is, “Unlike other problems in math, word problems combine quantitative problem solving with inferential reading, and this combination can bring out the impulsive side in students.” (The Strategic Teacher, page 90, Silver, et al.; 2007). I found that CUBES perpetuates the impulsive side of middle school students, especially when the math seems particularly difficult. Math word problems are packed full of words and every word means something to about the intent and the mathematics in the problem, especially in middle school and high school. Reading has to be done both at the literal and inferential levels to actually correctly determine what needs to be done and execute the proper mathematics. So far this method is going really well with my students and they are experiencing higher levels of confidence and greater success in solving.

' src=

October 5, 2017 at 6:27 am

Hi! Another teacher and I came up with a strategy we call RUBY a few years ago. We modeled this very closely after close reading strategies that are language arts department was using, but tailored it to math. R-Read the problem (I tell kids to do this without a pencil in hand otherwise they are tempted to start underlining and circling before they read) U-Underline key words and circle important numbers B-Box the questions (I always have student’s box their answer so we figured this was a way for them to relate the question and answer) Y-You ask yourself: Did you answer the question? Does your answer make sense (mathematically)

I have anchor charts that we have made for classrooms and interactive notebooks if you would like them let me me know….

October 5, 2017 at 9:46 am

Great idea! Thanks so much for sharing with our readers!

' src=

October 8, 2017 at 6:51 pm

LOVE this idea! Will definitely use it this year! Thank you!

' src=

December 18, 2019 at 7:48 am

I would love an anchor chart for RUBY

' src=

October 15, 2017 at 11:05 am

I will definitely use this concept in my Pre-Algebra classes this year; I especially like the graphic organizer to help students organize their thought process in solving the problems too.

' src=

April 20, 2018 at 7:36 am

I love the process you’ve come up with, and think it definitely balances the benefits of simplicity and thoroughness. At the risk of sounding nitpicky, I want to point out that the examples you provide are all ‘processes’ rather than strategies. For the most part, they are all based on the Polya’s, the Hungarian mathematician, 4-step approach to problem solving (Understand/Plan/Solve/Reflect). It’s a process because it defines the steps we take to approach any word problem without getting into the specific mathematical ‘strategy’ we will use to solve it. Step 2 of the process is where they choose the best strategy (guess and check, draw a picture, make a table, etc) for the given problem. We should start by teaching the strategies one at a time by choosing problems that fit that strategy. Eventually, once they have added multiple strategies to their toolkit, we can present them with problems and let them choose the right strategy.

' src=

June 22, 2018 at 12:19 pm

That’s brilliant! Thank you for sharing!

' src=

May 31, 2018 at 12:15 pm

Mrs. Brack is setting up her second Christmas tree. Her tree consists of 30% red and 70% gold ornaments. If there are 40 red ornaments, then how many ornaments are on the tree? What is the answer to this question?

June 22, 2018 at 10:46 am

Whoops! I guess the answer would not result in a whole number (133.333…) Thanks for catching that error.

' src=

July 28, 2018 at 6:53 pm

I used to teach elementary math and now I run my own learning center, and we teach a lot of middle school math. The strategy you outlined sounds a little like the strategy I use, called KFCS (like the fast-food restaurant). K stands for “What do I know,” F stands for “What do I need to Find,” C stands for “Come up with a plan” [which includes 2 parts: the operation (+, -, x, and /) and the problem-solving strategy], and lastly, the S stands for “solve the problem” (which includes all the work that is involved in solving the problem and the answer statement). I find the same struggles with being consistent with modeling clearly all of the parts of the strategy as well, but I’ve found that the more the student practices the strategy, the more intrinsic it becomes for them; of course, it takes a lot more for those students who struggle with understanding word problems. I did create a worksheet to make it easier for the students to follow the steps as well. If you’d like a copy, please let me know, and I will be glad to send it.

' src=

February 3, 2019 at 3:56 pm

This is a supportive and encouraging site. Several of the comments and post are spot on! Especially, the “What I like/don’t like” comparisons.

' src=

March 7, 2019 at 6:59 am

Have you named your unnamed strategy yet? I’ve been using this strategy for years. I think you should call it K.N.O.W.S. K – Know N – Need OW – (Organise) Plan and Work S – Solution

' src=

September 2, 2019 at 11:18 am

Going off of your idea, Natalie, how about the following?

K now N eed to find out O rganize (a plan – may involve a picture, a graphic organizer…) W ork S ee if you’re right (does it make sense, is the math done correctly…)

I love the K & N steps…so much more tangible than just “Read” or even “Understand,” as I’ve been seeing is most common in the processes I’ve been researching. I like separating the “Work” and “See” steps. I feel like just “Solve” May lead to forgetting the checking step.

' src=

March 16, 2020 at 4:44 pm

I’m doing this one. Love it. Thank you!!

' src=

September 17, 2019 at 7:14 am

Hi, I wanted to tell you how amazing and kind you are to share with all of us. I especially like your word problem graphic organizer that you created yourself! I am adopting it this week. We have a meeting with all administrators to discuss algebra. I am going to share with all the people at the meeting.

I had filled out the paperwork for the number line. Is it supposed to go to my email address? Thank you again. I am going to read everything you ahve given to us. Have a wonderful Tuesday!

math problem solving strategies high school

math problem solving strategies high school

Problem Solving Activities: 7 Strategies

  • Critical Thinking

math problem solving strategies high school

Problem solving can be a daunting aspect of effective mathematics teaching, but it does not have to be! In this post, I share seven strategic ways to integrate problem solving into your everyday math program.

In the middle of our problem solving lesson, my district math coordinator stopped by for a surprise walkthrough. 

I was so excited!

We were in the middle of what I thought was the most brilliant math lesson– teaching my students how to solve problem solving tasks using specific problem solving strategies. 

It was a proud moment for me!

Each week, I presented a new problem solving strategy and the students completed problems that emphasized the strategy. 

Genius right? 

After observing my class, my district coordinator pulled me aside to chat. I was excited to talk to her about my brilliant plan, but she told me I should provide the tasks and let my students come up with ways to solve the problems. Then, as students shared their work, I could revoice the student’s strategies and give them an official name. 

What a crushing blow! Just when I thought I did something special, I find out I did it all wrong. 

I took some time to consider her advice. Once I acknowledged she was right, I was able to make BIG changes to the way I taught problem solving in the classroom. 

When I Finally Saw the Light

To give my students an opportunity to engage in more authentic problem solving which would lead them to use a larger variety of problem solving strategies, I decided to vary the activities and the way I approached problem solving with my students. 

Problem Solving Activities

Here are seven ways to strategically reinforce problem solving skills in your classroom. 

This is an example of seasonal problem solving activities.

Seasonal Problem Solving

Many teachers use word problems as problem solving tasks. Instead, try engaging your students with non-routine tasks that look like word problems but require more than the use of addition, subtraction, multiplication, and division to complete. Seasonal problem solving tasks and daily challenges are a perfect way to celebrate the season and have a little fun too!

Cooperative Problem Solving Tasks

Go cooperative! If you’ve got a few extra minutes, have students work on problem solving tasks in small groups. After working through the task, students create a poster to help explain their solution process and then post their poster around the classroom. Students then complete a gallery walk of the posters in the classroom and provide feedback via sticky notes or during a math talk session.

Notice and Wonder

Before beginning a problem solving task, such as a seasonal problem solving task, conduct a Notice and Wonder session. To do this, ask students what they notice about the problem. Then, ask them what they wonder about the problem. This will give students an opportunity to highlight the unique characteristics and conditions of the problem as they try to make sense of it. 

Want a better experience? Remove the stimulus, or question, and allow students to wonder about the problem. Try it! You’ll gain some great insight into how your students think about a problem.

This is an example of a math starter.

Math Starters

Start your math block with a math starter, critical thinking activities designed to get your students thinking about math and provide opportunities to “sneak” in grade-level content and skills in a fun and engaging way. These tasks are quick, designed to take no more than five minutes, and provide a great way to turn-on your students’ brains. Read more about math starters here ! 

Create your own puzzle box! The puzzle box is a set of puzzles and math challenges I use as fast finisher tasks for my students when they finish an assignment or need an extra challenge. The box can be a file box, file crate, or even a wall chart. It includes a variety of activities so all students can find a challenge that suits their interests and ability level.

Calculators

Use calculators! For some reason, this tool is not one many students get to use frequently; however, it’s important students have a chance to practice using it in the classroom. After all, almost everyone has access to a calculator on their cell phones. There are also some standardized tests that allow students to use them, so it’s important for us to practice using calculators in the classroom. Plus, calculators can be fun learning tools all by themselves!

Three-Act Math Tasks

Use a three-act math task to engage students with a content-focused, real-world problem! These math tasks were created with math modeling in mind– students are presented with a scenario and then given clues and hints to help them solve the problem. There are several sites where you can find these awesome math tasks, including Dan Meyer’s Three-Act Math Tasks and Graham Fletcher’s 3-Acts Lessons . 

Getting the Most from Each of the Problem Solving Activities

When students participate in problem solving activities, it is important to ask guiding, not leading, questions. This provides students with the support necessary to move forward in their thinking and it provides teachers with a more in-depth understanding of student thinking. Selecting an initial question and then analyzing a student’s response tells teachers where to go next. 

Ready to jump in? Grab a free set of problem solving challenges like the ones pictured using the form below. 

Which of the problem solving activities will you try first? Respond in the comments below.

math problem solving strategies high school

Shametria Routt Banks

math problem solving strategies high school

  • Assessment Tools
  • Content and Standards
  • Differentiation
  • Math & Literature
  • Math & Technology
  • Math Routines
  • Math Stations
  • Virtual Learning
  • Writing in Math

You may also like...

math problem solving strategies high school

2 Responses

This is a very cool site. I hope it takes off and is well received by teachers. I work in mathematical problem solving and help prepare pre-service teachers in mathematics.

Thank you, Scott! Best wishes to you and your pre-service teachers this year!

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed .

©2024 The Routty Math Teacher.   All Rights Reserved.  Designed by Ashley Hughes.

Privacy overview.

You are using an outdated browser. Please upgrade your browser to improve your experience.

Math Problem Solving Strategies That Make Students Say “I Get It!”

math problem solving strategies high school

Even students who are quick with math facts can get stuck when it comes to problem solving.

As soon as a concept is translated to a word problem, or a simple mathematical sentence contains an unknown, they’re stumped.

That’s because problem solving requires us to  consciously choose the strategies most appropriate for the problem   at hand . And not all students have this metacognitive ability.

But you can teach these strategies for problem solving.  You just need to know what they are.

We’ve compiled them here divided into four categories:

Strategies for understanding a problem

Strategies for solving the problem, strategies for working out, strategies for checking the solution.

Get to know these strategies and then model them explicitly to your students. Next time they dive into a rich problem, they’ll be filling up their working out paper faster than ever!

Before students can solve a problem, they need to know what it’s asking them. This is often the first hurdle with word problems that don’t specify a particular mathematical operation.

Encourage your students to:

Read and reread the question

They say they’ve read it, but have they  really ? Sometimes students will skip ahead as soon as they’ve noticed one familiar piece of information or give up trying to understand it if the problem doesn’t make sense at first glance.

Teach students to interpret a question by using self-monitoring strategies such as:

  • Rereading a question more slowly if it doesn’t make sense the first time
  • Asking for help
  • Highlighting or underlining important pieces of information.

Identify important and extraneous information

John is collecting money for his friend Ari’s birthday. He starts with $5 of his own, then Marcus gives him another $5. How much does he have now?

As adults looking at the above problem, we can instantly look past the names and the birthday scenario to see a simple addition problem. Students, however, can struggle to determine what’s relevant in the information that’s been given to them.

Teach students to sort and sift the information in a problem to find what’s relevant. A good way to do this is to have them swap out pieces of information to see if the solution changes. If changing names, items or scenarios has no impact on the end result, they’ll realize that it doesn’t need to be a point of focus while solving the problem.

Schema approach

This is a math intervention strategy that can make problem solving easier for all students, regardless of ability.

Compare different word problems of the same type and construct a formula, or mathematical sentence stem, that applies to them all. For example, a simple subtraction problems could be expressed as:

[Number/Quantity A] with [Number/Quantity B] removed becomes [end result].

This is the underlying procedure or  schema  students are being asked to use. Once they have a list of schema for different mathematical operations (addition, multiplication and so on), they can take turns to apply them to an unfamiliar word problem and see which one fits.

Struggling students often believe math is something you either do automatically or don’t do at all. But that’s not true. Help your students understand that they have a choice of problem-solving strategies to use, and if one doesn’t work, they can try another.

Here are four common strategies students can use for problem solving.

Visualizing

Visualizing an abstract problem often makes it easier to solve. Students could draw a picture or simply draw tally marks on a piece of working out paper.

Encourage visualization by modeling it on the whiteboard and providing graphic organizers that have space for students to draw before they write down the final number.

Guess and check

Show students how to make an educated guess and then plug this answer back into the original problem. If it doesn’t work, they can adjust their initial guess higher or lower accordingly.

Find a pattern

To find patterns, show students how to extract and list all the relevant facts in a problem so they can be easily compared. If they find a pattern, they’ll be able to locate the missing piece of information.

Work backward

Working backward is useful if students are tasked with finding an unknown number in a problem or mathematical sentence. For example, if the problem is 8 + x = 12, students can find x by:

  • Starting with 12
  • Taking the 8 from the 12
  • Being left with 4
  • Checking that 4 works when used instead of x

Now students have understood the problem and formulated a strategy, it’s time to put it into practice. But if they just launch in and do it, they might make it harder for themselves. Show them how to work through a problem effectively by:

Documenting working out

Model the process of writing down every step you take to complete a math problem and provide working out paper when students are solving a problem. This will allow students to keep track of their thoughts and pick up errors before they reach a final solution.

Check along the way

Checking work as you go is another crucial self-monitoring strategy for math learners. Model it to them with think aloud questions such as:

  • Does that last step look right?
  • Does this follow on from the step I took before?
  • Have I done any ‘smaller’ sums within the bigger problem that need checking?

Students often make the mistake of thinking that speed is everything in math — so they’ll rush to get an answer down and move on without checking.

But checking is important too. It allows them to pinpoint areas of difficulty as they come up, and it enables them to tackle more complex problems that require multiple checks  before  arriving at a final answer.

Here are some checking strategies you can promote:

Check with a partner

Comparing answers with a peer leads is a more reflective process than just receiving a tick from the teacher. If students have two different answers, encourage them to talk about how they arrived at them and compare working out methods. They’ll figure out exactly where they went wrong, and what they got right.

Reread the problem with your solution

Most of the time, students will be able to tell whether or not their answer is correct by putting it back into the initial problem. If it doesn’t work or it just ‘looks wrong’, it’s time to go back and fix it up.

Fixing mistakes

Show students how to backtrack through their working out to find the exact point where they made a mistake. Emphasize that they can’t do this if they haven’t written down everything in the first place — so a single answer with no working out isn’t as impressive as they might think!

Need more help developing problem solving skills?

Read up on  how to set a problem solving and reasoning activity  or explore Mathseeds and Mathletics, our award winning online math programs. They’ve got over 900 teacher tested problem solving activities between them!

3p-solutions-mathletics

Get access to 900+ unique problem solving activities

You might like....

  • 1st Grade Math
  • 2nd Grade Math
  • 3rd Grade Math
  • 4th Grade Math
  • 5th Grade Math
  • 6th Grade Math
  • 7th Grade Math
  • 8th Grade Math
  • Knowledge Base
  • Math for kids

10 Strategies for Problem Solving in Math

May 19, 2022

8 minutes read

strategies for problem solving in math

When faced with problem-solving, children often get stuck. Word puzzles and math questions with an unknown variable, like x, usually confuse them. Therefore, this article discusses math strategies and how your students may use them since instructors often have to lead students through this problem-solving maze.

What Are Problem Solving Strategies in Math?

If you want to fix a problem, you need a solid plan. Math strategies for problem solving are ways of tackling math in a way that guarantees better outcomes. These strategies simplify math for kids so that less time is spent figuring out the problem. Both those new to mathematics and those more knowledgeable about the subject may benefit from these methods.

There are several methods to apply problem-solving procedures in math, and each strategy is different. While none of these methods failsafe, they may help your student become a better problem solver, particularly when paired with practice and examples. The more math problems kids tackle, the more math problem solving skills they acquire, and practice is the key.

Strategies for Problem-solving in Math

Even if a student is not a math wiz, a suitable solution to mathematical problems in math may help them discover answers. There is no one best method for helping students solve arithmetic problems, but the following ten approaches have shown to be very effective.

Understand the Problem

Understanding the nature of math problems is a prerequisite to solving them. They need to specify what kind of issue it is ( fraction problem , word problem, quadratic equation, etc.). Searching for keywords in the math problem, revisiting similar questions, or consulting the internet are all great ways to strengthen their grasp of the material. This step keeps the pupil on track.

1:1 Math Lessons

Want to raise a genius? Start learning Math with Brighterly

Guess and check.

One of the time-intensive strategies for resolving mathematical problems is the guess and check method. In this approach, students keep guessing until they get the answer right.

After assuming how to solve a math issue, students should reintroduce that assumption to check for correctness. While the approach may appear cumbersome, it is typically successful in revealing patterns in a child’s thought process.

Work It Out

Encourage pupils to record their thinking process as they go through a math problem. Since this technique requires an initial comprehension of the topic, it serves as a self-monitoring method for mathematics students. If they immediately start solving the problem, they risk making mistakes.

Students may keep track of their ideas and fix their math problems as they go along using this method. A youngster may still need you to explain their methods of solving the arithmetic questions on the extra page. This confirmation stage etches the steps they took to solve the problem in their minds.

Work Backwards

In mathematics, a fresh perspective is sometimes the key to a successful solution. Young people need to know that the ability to recreate math problems is valuable in many professional fields, including project management and engineering.

Students may better prepare for difficulties in real-world circumstances by using the “Work Backwards” technique. The end product may be used as a start-off point to identify the underlying issue.

In most cases, a visual representation of a math problem may help youngsters understand it better. Some of the most helpful math tactics for kids include having them play out the issue and picture how to solve it.

One way to visualize a workout is to use a blank piece of paper to draw a picture or make tally marks. Students might also use a marker and a whiteboard to draw as they demonstrate the technique before writing it down.

Find a Pattern

Kids who use pattern recognition techniques can better grasp math concepts and retain formulae. The most remarkable technique for problem solving in mathematics is to help students see patterns in math problems by instructing them how to extract and list relevant details. This method may be used by students when learning shapes and other topics that need repetition.

Students may use this strategy to spot patterns and fill in the blanks. Over time, this strategy will help kids answer math problems quickly.

When faced with a math word problem, it might be helpful to ask, “What are some possible solutions to this issue?” It encourages you to give the problem more thought, develop creative solutions, and prevent you from being stuck in a rut. So, tell the pupils to think about the math problems and not just go with the first solution that comes to mind.

Draw a Picture or Diagram

Drawing a picture of a math problem can help kids understand how to solve it, just like picturing it can help them see it. Shapes or numbers could be used to show the forms to keep things easy. Kids might learn how to use dots or letters to show the parts of a pattern or graph if you teach them.

Charts and graphs can be useful even when math isn’t involved. Kids can draw pictures of the ideas they read about to help them remember them after they’ve learned them. The plan for how to solve the mathematical problem will help kids understand what the problem is and how to solve it.

Trial and Error Method

The trial and error method may be one of the most common problem solving strategies for kids to figure out how to solve problems. But how well this strategy is used will determine how well it works. Students have a hard time figuring out math questions if they don’t have clear formulas or instructions.

They have a better chance of getting the correct answer, though, if they first make a list of possible answers based on rules they already know and then try each one. Don’t be too quick to tell kids they shouldn’t learn by making mistakes.

Review Answers with Peers

It’s fun to work on your math skills with friends by reviewing the answers to math questions together. If different students have different ideas about how to solve the same problem, get them to share their thoughts with the class.

During class time, kids’ ways of working might be compared. Then, students can make their points stronger by fixing these problems.

Check out the Printable Math Worksheets for Your Kids!

There are different ways to solve problems that can affect how fast and well students do on math tests. That’s why they need to learn the best ways to do things. If students follow the steps in this piece, they will have better experiences with solving math questions.

Author Jessica Kaminski

Jessica is a a seasoned math tutor with over a decade of experience in the field. With a BSc and Master’s degree in Mathematics, she enjoys nurturing math geniuses, regardless of their age, grade, and skills. Apart from tutoring, Jessica blogs at Brighterly. She also has experience in child psychology, homeschooling and curriculum consultation for schools and EdTech websites.

Previous Article Image

As adults, we take numbers for granted, but preschoolers and kindergartners have no idea what these symbols mean. Yet, we often demand instant understanding and flawless performance when we start teaching numbers to our children. If you don’t have a clue about how to teach numbers for kids, browse no more. You will get four […]

Previous Article Image

Teaching children is a complex process because they require more attention than an adult person. You may need to employ different teaching strategies when teaching kids. But what are teaching strategies? Teaching strategies are the methods to ensure your kids or students learn efficiently. But not all strategies yield similarly, and if the one you […]

Book 1 to 1 Math Lesson

Image -Book 1 to 1 Math Lesson

Kid’s grade

After-School Math Program Boost Your Child's Math Abilities! Ideal for 1st-8th Graders, Perfectly Synced with School Curriculum!

After-School Math Program

After-School Math Program

Related posts.

How to Teach Addition to Kindergarten

How to Teach Addition to Kindergarten Students

Teachers and parents often start learning math with children with the addition definition for kids and its different concepts since it provides the foundation for later mathematical literacy and reasoning. If you’re a kindergarten teacher looking for an addition definition for kindergarten or how to introduce addition to your pupils, this post has you covered. […]

Apr 05, 2022

teaching kids about money

How To Teach Kids About Money?

As we venture deeper into the age of digital finance management, you need to start teaching children about money early. The earlier you start teaching kids about money, the more poised they would be to plan their finances as adults. They do not only need to learn to count money; they also need to understand […]

Feb 22, 2022

math intervention programs

The Importance of Math Intervention Programs

Math intervention programs for elementary can make a big difference for a child who cannot grasp math topics quickly and needs additional support. Some schools implement free math intervention programs to help students who experience trouble with math. But what are these intervention programs, and is it for your child? This article will focus on […]

May 20, 2022

We use cookies to help give you the best service possible. If you continue to use the website we will understand that you consent to the Terms and Conditions. These cookies are safe and secure. We will not share your history logs with third parties. Learn More

Initial Thoughts

Perspectives & resources, what is high-quality mathematics instruction and why is it important.

  • Page 1: The Importance of High-Quality Mathematics Instruction
  • Page 2: A Standards-Based Mathematics Curriculum
  • Page 3: Evidence-Based Mathematics Practices

What evidence-based mathematics practices can teachers employ?

  • Page 4: Explicit, Systematic Instruction
  • Page 5: Visual Representations
  • Page 6: Schema Instruction

Page 7: Metacognitive Strategies

  • Page 8: Effective Classroom Practices
  • Page 9: References & Additional Resources
  • Page 10: Credits

girl doing a math problem at chalkboard

However, teaching students cognitive strategies alone is not enough to ensure that those strategies will be implemented correctly or independently. This is especially the case for students with mathematics difficulties and disabilities, who tend to implement the same strategy for every problem, implement strategies without considering the problem type, or fail to use a strategy at all. If students are to be more successful, teachers should pair instruction on cognitive strategies with that of metacognitive strategies —strategies that enable students to become aware of how they think when solving mathematics problems. This combined strategy instruction teaches students how to consider the appropriateness of the problem-solving approach, make sure that all procedural steps are implemented, and check for accuracy or to confirm that their answers makes sense. More specifically, metacognitive strategies help students learn to:

How does this practice align?

High-leverage practice (hlp).

  • HLP14 : Teach cognitive and metacognitive strategies to support learning and independence

CCSSM: Standards for Mathematical Practice

  • MP1 : Make sense of problems and persevere in solving them.
  • Plan — Students decide how to approach the mathematical problem, first determining what the problem is asking and then selecting and implementing an appropriate strategy to solve it.
  • Monitor — As students solve a mathematical problem, they check to see whether their problem-solving approach is working. After completing the problem, they consider whether the answer makes sense.
  • Modify — If, as they work to solve a mathematical problem, students determine that their problem-solving approach is not working or that their answer is incorrect, they can adjust their approach.

Research Shows

  • When paired with cognitive strategies, metacognitive strategies have been shown to increase the understanding and ability of students with mathematics learning difficulties and disabilities to solve mathematics problems. (Pfannenstiel, Bryant, Bryant, & Porterfield, 2015)
  • Middle school students who received cognitive and metacognitive strategy instruction outperformed peers who received typical math instruction. (Montague, Enders, & Dietz, 2011; Pfannenstiel, Bryant, Bryant, & Porterfield, 2015)

Types of Metacognitive Strategies

Metacognitive strategies that help students plan, monitor, and modify their mathematical problem-solving include self-instruction and self-monitoring . Not only are these strategies relatively easy for students to implement, but they also help students to become better independent problem solvers.

Teaching Metacognitive Strategies

Teachers should use explicit instruction to help students understand how to use self-instruction and self-monitoring during the problem-solving process. To do this, teachers can:

  • Example questions: What information is relevant? Have I solved a problem like this before?
  • Example prompts: Identify the relevant information. Use a visual to solve the problem.
  • Model working through a problem using “think alouds,” during which the teacher verbalizes her thoughts as she demonstrates using self-instruction and self-monitoring throughout the problem-solving process.
  • Provide sufficient opportunities for students to practice these metacognitive strategies with corrective feedback.
  • Encourage students to use these strategies independently, once they have achieved mastery.

Examples of Students Using Metacognitive Strategies

The videos below illustrate students using metacognitive strategies to solve mathematics problems. In the first video, in addition to self-instruction, an elementary student uses an age-appropriate self-monitoring checklist that includes visual cues for each step. Note that the student was explicitly taught how to use this checklist before using it to solve problems independently. In the second video, a high-school student uses self-instruction and self-monitoring to solve a word problem.

Elementary School Example (time: 1:49)

View Transcript

Transcript: Metacognative Strategies: Elementary School

Narrator: In this video, an elementary student uses metacognitive strategies while solving an addition problem. More specifically, he uses self-instruction and a self-monitoring checklist to guide himself through the problem-solving process. By doing so, he actively plans and monitors his work.

Student: I can’t figure out what 3 + 5 is. What is it? Well, let me look at my checklist. First, it says, “read the problem.” The problem says 3 + 5, so I’ve checked that. Now what is…now it says…my checklist says, “What is the problem asking?” It’s asking me to add 3 + 5.

Now, to draw a picture. One, two, three. One, two, three, four, five. Now it says, “Does my drawing match the problem?” Up here it says 3 + 5, so down here it says one, two, three, one, two, three, four, five. Now I have to solve it. So one, two, three, four, five, six, seven, eight. The answer to 3 + 5 is 8.

Click here to view the self-monitoring checklist used by the elementary student in the video above.

self monitoring checklist

High School Example (time: 2:54)

Transcript: Metacognative Strategies: High School

Narrator : In this video, a high school student uses metacognitive strategies while solving a word problem. By using self-instruction and self-monitoring, she actively plans and monitors her work.

Student : First, I’m going to read the problem. “Mr. Smith, the principal, is standing on top of the high school. He is looking at a tree in the courtyard that is 30 feet away from the school. The angle from Mr. Smith’s feet to the base of the tree is 43 degrees. Using this information, determine the height of the high school.”

So what am I missing? The problem says that the angle from Mr. Smith’s feet to the base of the tree is 43 degrees. I’ve noticed that, if you connect this point to this point, we have a right triangle. So, while this angle is 43 degrees, this angle right here is a right angle that’s 90 degrees.

There’s a trick that I’m going to use that’s called SOHCAHTOA that you can use to find the sides and angles in a right triangle. The opposite side to 43 degrees is 30 feet, right here. So what do I need to find? I need to find the adjacent side. I’ll label it with an “A.” I look at SOHCAHTOA, and I know that I need to find the tangent, because tangent equals opposite over adjacent.

Now all I have to do is plug in the information that I have in order to find “A.” Tangent of 43 degrees, the angle, equals 30—that’s the opposite side—over “A.” And I find that 30 over 0.93 equals 32.25. So the height of this building is 32.25 feet.

Now that I’ve solved the problem, I ask does my answer make sense? Given the information from the problem, and with what I know about most buildings, 32 feet seems like a reasonable answer.

Diane Bryant discusses the importance of teaching students cognitive and metacognitive strategies and how they benefit students (time: 2:22).

Diane Bryant

Diane Pedrotty Bryant, PhD Project Director, Mathematics Institute for Learning Disabilities and Difficulties University of Texas at Austin

Transcript: Diane Pedrotty Bryant, PhD

It really is important to pair metacognitive strategies with cognitive strategies. Metacognitive strategies simply refers to thinking about thinking. It’s beneficial and certainly validated in research that they have a series of cognitive steps to employ to solve problems, whatever the problem might be. The metacognitive strategies help students think about what steps that they’re supposed to be using—that’s the self-instruction—and then pausing to check about whether they are indeed using those various cognitive strategies steps, which really refers to the self-monitoring. For students with mathematics learning disabilities, we want them to become independent learners and to use strategies for solving various problems and to be able to pause and ask themselves questions about how they’re proceeding and back up and check on a particular step. Through the use of cognitive strategies paired with metacognitive strategies, the goal is to empower them to be more independent learners, and that’s definitely something we strive for when we teach students with learning disabilities. I think that there is difficulty in students learning how to implement metacognitive strategies independently, because they may not know how to approach the learning task. They may not be aware of their own ability to self-monitor, to self-instruct, to use self-talk, self-verbalizations for tackling tasks. Usually students with mathematics learning disabilities really need to be taught to use metacognitive strategies and to learn the metacognitive strategies to mastery before being able to use them independently.

For Your Information

Although teachers can provide students with a generic list of questions or prompts to guide them through the problem-solving process, some students, such as those with mathematics difficulties and disabilities, might need more individualized support to address their specific learning challenges. The teacher can identify the student’s common error patterns by conducting an error analysis —a process by which instructors identify the types of errors made by students when working mathematical problems. Using this information, teachers can develop a list of questions or prompts that students can use to address their specific needs. To begin with, many of these students might require a self-monitoring checklist, such as the one below, to guide them through the problem-solving process.

404 Not found

Make Math Instruction Better: 3 Tips on How From Researchers

math problem solving strategies high school

  • Share article

Education Week reporter and data journalist Sarah D. Sparks attended the American Educational Research Association’s annual conference in Philadelphia earlier this month. Here, she shares three of the key takeaways she heard from researchers studying some of the key challenges around math instruction.

math problem solving strategies high school

Sign Up for EdWeek Update

Edweek top school jobs.

Illustration of city buildings with financial, job, data, technology, and statistics iconography.

Sign Up & Sign In

module image 9

  • Our Mission

Elementary students working on a word math problem

A Game-Changing Practice Fuses Math and Literacy

A program that scaffolds math with reading and writing has a formerly struggling elementary school in the Bronx dramatically outperforming the state in math.

When Concourse Village Elementary School (CVES) opened in 2013 in the wake of the planned phaseout of P.S. 385, which the New York City Department of Education had tagged with a D, students were struggling academically.

“When we arrived, we found a major deficit across all content areas,” said incoming principal and school founder Alexa Sorden, who was particularly alarmed by the reading scores. “The first year was challenging because we were trying to come up with a plan and say, ‘OK, how are we going to make sure that all the children are reading on grade level so that they’re prepared?’”

Sorden, a former literacy specialist and teacher, felt that a strong foundation in reading and writing underpinned success across all content areas—and she made it the school’s mission to be literacy-first. Today, students employ collaborative literacy strategies to support science and social studies units, for example, and bring their narrative skills to bear while making predictions and inferences as they analyze artwork .

In mathematics, a subject area not traditionally associated with literacy, Concourse Village has developed an especially innovative model that reinforces both reading and computational skills. Students tackle tough mathematical word problems through two literacy strategies: a group reading exercise that relies on what Sorden calls “the power of repeated reading,” and a problem-solving procedure developed by Exemplars, Inc , along with the problems, that requires students to produce an organized body of written artifacts.   

Despite the statistics stacked against them—the school is situated in the poorest congressional district in the nation , and 96 percent of children at CVES are on free and reduced lunch, while 15 percent are homeless—students are now outperforming the averages in both New York State English and math exams by over 40 percent .

What are the details of the math program? We visited the school and spoke to Sorden and fourth-grade mathematics teacher Blair Pacheco at length, and we provide an outline and some video of the school’s practices below.

Translating Math Into Words, and Back Into Numbers

In math classes, CVES students approach challenging word problems by reading, annotating, and writing to tease out the meaning—breaking the problems down into smaller parts and using the power of storytelling and narrative to bolster their insights. Word problems are above grade level to ensure that students are stretching to master difficult concepts.

Before considering solutions to a problem, the students start small by trying to clarify what it is actually saying. Numbers and questions are stripped out, and the class uses a three-read protocol that fosters both group and individual learning: The teacher reads the problem, then the students read it, and then everyone reads it together.

“Sometimes when kids see numbers, they start to get confused,” said Pacheco. “If we take out those numbers for a brief moment, they’re reading it as a story and they’re getting that understanding. It’s no longer just about math.”

For example, in one of Pacheco’s classes, students read: “Jaci and Emma are playing a game on their computer where a player earns points.” Students relay the gist of the story back to the teacher, who writes it on the board for reference.

The word problem—now with numbers included, but still without the questions that ask students to perform calculations or mathematical comparisons—is then shown on the interactive whiteboard, and the students read it aloud and process the information together.

One student annotates the word problem on the board with input from the class—underlining important information, including numbers and key words. In the example from Pacheco’s class, students underline the repeated word round  to indicate that there will likely be several rounds of numbers that might require a comparison or a computation.

Based on the annotations, students then create a “What I Know” chart as a class. For example, Pacheco’s students agree on how many points each player made in each round.

Using the information they have already identified, students hypothesize about what questions might be asked. For example, Pacheco’s students might guess that the question would ask the total number of points for all rounds. Brainstorming possible questions requires students to call on prior knowledge about what they can do with the numbers—compare through greater or lesser than or equal signs, for example, or compute by adding or subtracting.

Finally, the actual question is revealed on the board—and the class reads the whole problem aloud.

From Group to Independent Problem-Solving

After rereading the above-grade-level problem as a class, each student receives a word problem printout differentiated based on their ability. Students work through a five-step problem-solving procedure based on the reading protocol they use as a class. They work independently, or in small groups if they need more support. A checklist of the steps guides them through the problem.

Students scaffold their understanding—and make it visible to themselves and their teachers—by underlining important words, circling the question the problem is asking, and then writing an “I Have To” statement that clarifies what the student must do to arrive at the answer. For example, a student might write, “I have to find out who made the most points in each round.”

Then each student devises a mathematical strategy to solve the problem. They might write, “I will use addition,” “I will multiply,” or “I will use the comparison strategy.”

Finally students solve the problem and double-check their work. They write their answer in a complete sentence, put a box around it, and label it “answer.” They write out an explanation of how they solved the problem using at least two math words, like multiply  and add , and then write a complete sentence making connections to previous math they have learned. They might comment on an observation they made, a pattern or rule they found, a different strategy they could have used, or a comparison they noticed. Writing their takeaways in words reinforces their prior knowledge and how it can be applied in new ways.

“We ask them to make their thinking visible,” says Sorden, explaining the rationale behind all the writing in her school’s math courses. “Create a plan. Make your thinking visible and clear on paper so that anyone that picks it up is able to make meaning about what you were trying to share. We want them to be able to communicate orally and in writing so that their ideas are clearly communicated with the world.”

The problem-solving procedure and math tasks that CVES uses were developed by Exemplars , a company that provides a library of rich performance tasks and professional development for K-12 schools.

math problem solving strategies high school

10 Helpful Worksheet Ideas for Primary School Math Lessons

M athematics is a fundamental subject that shapes the way children think and analyze the world. At the primary school level, laying a strong foundation is crucial. While hands-on activities, digital tools, and interactive discussions play significant roles in learning, worksheets remain an essential tool for reinforcing concepts, practicing skills, and assessing understanding. Here’s a look at some helpful worksheets for primary school math lessons.

Comparison Chart Worksheets

Comparison charts provide a visual means for primary school students to grasp relationships between numbers or concepts. They are easy to make at www.storyboardthat.com/create/comparison-chart-template , and here is how they can be used:

  • Quantity Comparison: Charts might display two sets, like apples vs. bananas, prompting students to determine which set is larger.
  • Attribute Comparison: These compare attributes, such as different shapes detailing their number of sides and characteristics.
  • Number Line Comparisons: These help students understand number magnitude by placing numbers on a line to visualize their relative sizes.
  • Venn Diagrams: Introduced in later primary grades, these diagrams help students compare and contrast two sets of items or concepts.
  • Weather Charts: By comparing weather on different days, students can learn about temperature fluctuations and patterns.

Number Recognition and Counting Worksheets

For young learners, recognizing numbers and counting is the first step into the world of mathematics. Worksheets can offer:

  • Number Tracing: Allows students to familiarize themselves with how each number is formed.
  • Count and Circle: Images are presented, and students have to count and circle the correct number.
  • Missing Numbers: Sequences with missing numbers that students must fill in to practice counting forward and backward.

Basic Arithmetic Worksheets

Once students are familiar with numbers, they can start simple arithmetic. 

  • Addition and Subtraction within 10 or 20: Using visual aids like number lines, counters, or pictures can be beneficial.
  • Word Problems: Simple real-life scenarios can help students relate math to their daily lives.
  • Skip Counting: Worksheets focused on counting by 2s, 5s, or 10s.

Geometry and Shape Worksheets

Geometry offers a wonderful opportunity to relate math to the tangible world.

  • Shape Identification: Recognizing and naming basic shapes such as squares, circles, triangles, etc.
  • Comparing Shapes: Worksheets that help students identify differences and similarities between shapes.
  • Pattern Recognition: Repeating shapes in patterns and asking students to determine the next shape in the sequence.

Measurement Worksheets

Measurement is another area where real-life application and math converge.

  • Length and Height: Comparing two or more objects and determining which is longer or shorter.
  • Weight: Lighter vs. heavier worksheets using balancing scales as visuals.
  • Time: Reading clocks, days of the week, and understanding the calendar.

Data Handling Worksheets

Even at a primary level, students can start to understand basic data representation.

  • Tally Marks: Using tally marks to represent data and counting them.
  • Simple Bar Graphs: Interpreting and drawing bar graphs based on given data.
  • Pictographs: Using pictures to represent data, which can be both fun and informative.

Place Value Worksheets

Understanding the value of each digit in a number is fundamental in primary math.

  • Identifying Place Values: Recognizing units, tens, hundreds, etc., in a given number.
  • Expanding Numbers: Breaking down numbers into their place value components, such as understanding 243 as 200 + 40 + 3.
  • Comparing Numbers: Using greater than, less than, or equal to symbols to compare two numbers based on their place values.

Fraction Worksheets

Simple fraction concepts can be introduced at the primary level.

  • Identifying Fractions: Recognizing half, quarter, third, etc., of shapes or sets.
  • Comparing Fractions: Using visual aids like pie charts or shaded drawings to compare fractions.
  • Simple Fraction Addition: Adding fractions with the same denominator using visual aids.

Money and Real-Life Application Worksheets

Understanding money is both practical and a great way to apply arithmetic.

  • Identifying Coins and Notes: Recognizing different denominations.
  • Simple Transactions: Calculating change, adding up costs, or determining if there’s enough money to buy certain items.
  • Word Problems with Money: Real-life scenarios involving buying, selling, and saving.

Logic and Problem-Solving Worksheets

Even young students can hone their problem-solving skills with appropriate challenges.

  • Sequences and Patterns: Predicting the next item in a sequence or recognizing a pattern.
  • Logical Reasoning: Simple puzzles or riddles that require students to think critically.
  • Story Problems: Reading a short story and solving a math-related problem based on the context.

Worksheets allow students to practice at their own pace, offer teachers a tool for assessment, and provide parents with a glimpse into their child’s learning progression. While digital tools and interactive activities are gaining prominence in education, the significance of worksheets remains undiminished. They are versatile and accessible and, when designed creatively, can make math engaging and fun for young learners.

The post 10 Helpful Worksheet Ideas for Primary School Math Lessons appeared first on Mom and More .

Mathematics is a fundamental subject that shapes the way children think and analyze the world. At the primary school level, laying a strong foundation is crucial. While hands-on activities, digital tools, and interactive discussions play significant roles in learning, worksheets remain an essential tool for reinforcing concepts, practicing skills, and assessing understanding. Here’s a look […]

IMAGES

  1. Math Problem Solving Strategy Anchor Chart Posters

    math problem solving strategies high school

  2. the 9 problem solving strategies

    math problem solving strategies high school

  3. Problem Solving Strategies Math Posters

    math problem solving strategies high school

  4. Problem Solving Strategies for Math Poster by TeachPlanLove

    math problem solving strategies high school

  5. Anchor Charts and Posters to Help Teach Students Problem Solving

    math problem solving strategies high school

  6. Image of 8 problem solving strategies for upper elementary and middle

    math problem solving strategies high school

VIDEO

  1. Navigating Student-Teacher Conflict w/ Dr. Stephanie Mihalas

  2. Instructional Strategies for Mathematics in the Intermediate Grades

  3. Easiest SAT Math Question

  4. Previous year Math Olympiad Question

  5. How To Differentiate A Maths Mastery Lesson Through Questioning

  6. Adding Like Terms in Algebra SAT

COMMENTS

  1. 20 Effective Math Strategies For Problem Solving

    Here are five strategies to help students check their solutions. 1. Use the Inverse Operation. For simpler problems, a quick and easy problem solving strategy is to use the inverse operation. For example, if the operation to solve a word problem is 56 ÷ 8 = 7 students can check the answer is correct by multiplying 8 × 7.

  2. Top 9 Math Strategies for Successful Learning (2021 and Beyond)

    Math isn't just done with a pencil and paper. It's not just solving word problems in a textbook. As an educator, you need fresh ways for math skills to stick while also keeping your students engaged. In this article, we're sharing 9 engaging math strategies to boost your students' learning. Show your students how fun math can be, and ...

  3. 7 Real-World Math Strategies

    The Real-World Math Wall. To get her fifth-grade students thinking about the math in their lives—and to head off the inevitable "we'll never use this in the real world" complaint—Samantha Baumgardner, a teacher at Woodrow Petty Elementary School in Taft, Texas, has them bring in a common item and write three ways it relates to math on ...

  4. Math Problem Solving Strategies

    Math Problem Solving Strategies 1. C.U.B.E.S. C.U.B.E.S stands for circle the important numbers, underline the question, box the words that are keywords, eliminate extra information, and solve by showing work. ... especially in middle school and high school. Reading has to be done both at the literal and inferential levels to actually correctly ...

  5. 6 Tips for Teaching Math Problem-Solving Skills

    Telling a student to reread the problem or to think about what tools or resources would help them solve it is a way to get them to try something new but not take over their thinking. These skills are also transferable across content, and students will be reminded, "Good readers and mathematicians reread.". 6.

  6. Four Teacher-Recommended Instructional Strategies for Math

    A group of high school girls work together to solve an algebra problem during their precalculus class. Allison Shelley for All4Ed Mathematics Video Make Math Instruction Better: 3 Tips on How From ...

  7. Problem Solving Activities: 7 Strategies

    When students participate in problem solving activities, it is important to ask guiding, not leading, questions. This provides students with the support necessary to move forward in their thinking and it provides teachers with a more in-depth understanding of student thinking. Selecting an initial question and then analyzing a student's ...

  8. Math Problem Solving Strategies That Make Students Say "I Get It!"

    Schema approach. This is a math intervention strategy that can make problem solving easier for all students, regardless of ability. Compare different word problems of the same type and construct a formula, or mathematical sentence stem, that applies to them all. For example, a simple subtraction problems could be expressed as:

  9. 10 Strategies for Problem Solving in Math

    The most remarkable technique for problem solving in mathematics is to help students see patterns in math problems by instructing them how to extract and list relevant details. This method may be used by students when learning shapes and other topics that need repetition. Students may use this strategy to spot patterns and fill in the blanks.

  10. Math Strategies for High School Students

    Using math strategies in high school is a smart idea. Strategies save time and energy and help students reach goals, like better grades and understanding of concepts. ... Problem Solving Skills ...

  11. IRIS

    Transcript: Metacognative Strategies: High School. Narrator: In this video, a high school student uses metacognitive strategies while solving a word problem. By using self-instruction and self-monitoring, she actively plans and monitors her work. Student: First, I'm going to read the problem. "Mr. Smith, the principal, is standing on top of ...

  12. A Strategy for Teaching Math Word Problems

    A Math Word Problem Framework That Fosters Conceptual Thinking. This strategy for selecting and teaching word problems guides students to develop their understanding of math concepts. Word problems in mathematics are a powerful tool for helping students make sense of and reason with mathematical concepts. Many students, however, struggle with ...

  13. How to Improve Math Skills for High School Students

    In addition, students practice problem solving in clubs and activities, including Investment Club, Chess Club, and Science Olympiad. 3. Collaborate and Grow. For students to improve their high school math skills, they must learn to collaborate. Frequently, group projects involve at least one math element, requiring team members to work together ...

  14. High School Competitive Mathematics I

    High School Competitive Mathematics I. Develop your problem-solving skills and your mathematical creativity while preparing for contests like the American Mathematics Competition (AMC). You'll learn to think at an advanced level while tackling challenging problems and exploring a variety of math topics, including advanced concepts from algebra ...

  15. Math Books

    Getting Started. Getting Started with Competition Math, a textbook meant for true beginners (on-target middle school students, or advanced elementary school students). It is written by AoPS Community Member cargeek9, currently a junior in high school. It covers the basics of algebra, geometry, combinatorics, and number theory, along with sets ...

  16. Response: Best Practices for Teaching High School Math

    The best practices are the same for all levels: a. pose interesting problems or set a stage for students to pose interesting questions/problems about the situation. b. encourage investigations ...

  17. Problem Solving Methods and Strategies in High School Mathematical

    In solving some mathematical problems, we should think globally of the structure and essential character of the problem. The main strategies for globally thinking for solving problems are: First, if the condition or conclusion of the problem possesses a global character, we should use its essential property so as to simplify the problem.

  18. 19 Math Problem Solving IEP Goals including Math Reasoning

    Math problem solving is a critical skill used students using learning disabilities that requires individualized back and focus. Useful math problem dissolving IEP goals are specific, measurable, and achievable, and are developed through collaboration with parents, teachers, and other stakeholders.; By setting realistic goals, monitoring progress, and adjusting goals like needed, educators can ...

  19. PDF Students' Mathematical Problem-solving Ability Based on ...

    Participants in this study were 145 junior high school students, with details of 50 students learning through the Connect, Organize, Reflect, and Extend Realistic ... enable students to develop new mathematical knowledge through problem-solving, solve mathematics and ... implement and adjust various strategies available to solve problems, and ...

  20. Methods Of Solving Problems In High School Mathematics

    The authors consider all the most frequent methods of solving problems from the high-school course of mathematics. The fact that many problems are not followed by their solutions makes it possible to use the book for preparing for the entrance examinations to higher ... tsypkin-pinsky-methods-of-solving-problems-in-high-school-mathematics-mir ...

  21. 5 Ways to Boost Engagement in High School Math Classes

    1. 4 Corners. 4 Corners is a "jigsaw" strategy that can be used when you have groups of four students. First, you give each student in the group a problem (this can also be a representation, part of a task, etc.). Next, they go to their "corner" where all the students in the corner also have the same problem and they work together to ...

  22. PDF MATHEMATICAL PROBLEM-SOLVING STRATEGIES AMONG STUDENT TEACHERS

    the studies showing how strategies can improve mathematics problem solving, Koichu, Berman, and Moore (2004) aimed to promote heuristic literacy in a regular mathematics classroom. Moreover, Dewey's (1933) "How we think", Polya's (1988) problem-solving methods and the stages of Krulik and

  23. Make Math Instruction Better: 3 Tips on How From Researchers

    During recess at Ruby Bridges Elementary School in Woodinville, Wash., students have access to cards with objects and words on them so that all students, including those who do not speak, can ...

  24. Using Literacy Skills to Solve Math Word Problems

    Student Work. A completed 5th-grade math word problem. pdf 273.47 KB. Finally students solve the problem and double-check their work. They write their answer in a complete sentence, put a box around it, and label it "answer.". They write out an explanation of how they solved the problem using at least two math words, like multiply and add ...

  25. 10 Helpful Worksheet Ideas for Primary School Math Lessons

    Story Problems: Reading a short story and solving a math-related problem based on the context. ... The post 10 Helpful Worksheet Ideas for Primary School Math Lessons appeared first on Mom and More.